Chapter 7 Burn-in for Repairable Systems

In the previous chapter, the emphasis was made on the burn-in procedures for nonrepairable items. If a non-repairable item fails during burn-in, then, obviously, it is just scraped and discarded. However, an expensive, complex product or device will not be discarded on account of failure of its part, but rather a repair will be performed. Therefore, in this chapter, we deal mostly with repairable items. Note that the contents of this chapter are rather technical and it can be skipped by a less mathematically oriented reader.

After the survey provided by Block and Savits [\[3](#page-23-0)], there has been much research on burn-in procedures, especially for repairable systems. These studies include: (i) various reliability models which jointly deal with burn-in and maintenance policies; (ii) burn-in procedures for general failure model; (iii) a stochastic model for the accelerated burn-in procedure.

7.1 Burn-in and Maintenance Policies: Initial Models

In this section, reliability models that jointly deal with burn-in and *maintenance* policies will be considered. We describe properties of joint optimal solutions for burn-in and replacement times for each of these models. Mi [[10\]](#page-23-0) was the first to consider the joint optimization problem for determining optimal burn-in and replacement times.

Let $F(t)$ be the distribution function of the absolutely continuous lifetime X. Mi [\[10](#page-23-0)] studied an optimal burn-in and maintenance policy under the assumption that $F(t)$ has a bathtub-shaped failure rate function. The following burn-in procedure was considered.

Burn-in Procedure A

Consider a fixed burn-in time b and begin to burn-in a new device. If the device fails before the burn-in time b , then repair it completely with the shop repair cost $c_s > 0$, then burn-in the repaired device again, and so on. If the device survives the burn-in time b , then it is put into field operation $[10]$ $[10]$.

We assume here that the repair is complete, i.e., the repaired device is as good as new. Let the cost of burn-in be proportional to the total burn-in time with proportionality constant $c_0 > 0$.

Let $h(b)$ denote the total cost incurred for obtaining the device which survives the burn-in procedure. Then, similar to [Sect. 6.3,](http://dx.doi.org/10.1007/978-1-4471-5028-2_6) the mean cost $E[h(b)]$ can be obtained as

$$
E[h(b)] = c_0 \frac{\int_0^b \overline{F}(t) dt}{\overline{F}(b)} + c_s \frac{F(b)}{\overline{F}(b)}.
$$

7.1.1 Model 1

For field operation, Mi [\[10](#page-23-0)] considered two types of replacement policies, depending on whether the device is repairable or not. For a non-repairable device, the age replacement policy is considered. That is, the device is replaced by a new burned-in device at the time of its failure or 'field-use age' T , whichever occurs first. Let c_f denote the cost incurred for each failure in field operation and $c_a (0 < c_a < c_f)$, the cost incurred for each non-failed item which is replaced by a new burned-in item at its field-use age T. Then, by the theory of renewal reward processes, the long-run average cost rate $c(b, T)$ is given by

$$
c(b, T) = \frac{k(b) + c_f F_b(T) + c_a \overline{F}_b(T)}{\int_0^T \overline{F}_b(t) dt},
$$

where $\bar{F}_b(t)$ is the conditional survival function, i.e., $\bar{F}_b(t) \equiv \bar{F}(b+t)/\bar{F}(b)$ and $k(b) \equiv E[h(b)]$. Mi [\[10](#page-23-0)] have obtained certain results regarding the optimal burnin time b^* and the optimal age T^* which satisfy

$$
c(b^*, T^*) = \min_{b \ge 0, T > 0} c(b, T)
$$

However, there are several useful 'hidden' properties which can be found in the proof of the corresponding theorem and, therefore, we reformulate the result as follows.

Theorem 7.1 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let

$$
B_1 \equiv \left\{ b \geq 0 : \mu(b)r(\infty) > \frac{c_f + k(b)}{c_f - c_a} \right\},\,
$$

where $\mu(b) \equiv \int_0^\infty \bar{F}_b(t) dt$, and $B_2 \equiv [0,\infty) \backslash B_1$. Then properties of the optimal burn-in time b^* and of the optimal replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
r(b+T)\int_{0}^{T}\frac{\bar{F}(b+t)}{\bar{F}(b)}dt + \frac{\bar{F}(b+T)}{\bar{F}(b)} = \frac{c_{f} + k(b)}{c_{f} - c_{a}}.
$$
 (7.1)

Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq t_1$, is the value that satisfies

$$
b^* + T^*(b^*) = \min_{0 \leq b \leq t_1} (b + T^*(b)).
$$

Case 2. $B_1 = \phi, B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where $0 \leq b^* \leq t_1$, is the value that satisfies

$$
\frac{c_f + k(b^*)}{\mu(b^*)} = \min_{0 \leq b \leq t_1} \frac{c_f + k(b)}{\mu(b)}.
$$

Case 3. $B_1 = \phi$, $B_2 = \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of Eq. (7.1). Furthermore, let $b_1^* \in [0, t_1] \cap B_1$ satisfy

$$
b_1^* + T^*(b_1^*) = \min_{b \ \leq \ t_1, \ b \in B_1} (b + T^*(b)),
$$

and $b_2^* \in [0, t_1] \cap B_2$ satisfy

$$
\frac{c_f + k(b_2^*)}{\mu(b_2^*)} = \min_{b \leq t_1, b \in B_2} \frac{c_f + k(b)}{\mu(b)}.
$$

If

$$
(c_f-c_a)r(b_1^*+T^*(b_1^*))\,\leq\,\frac{c_f\,+\,k(b_2^*)}{\mu(b_2^*)},
$$

then $(b^*, T^*) = (b_1^*, T^*(b_1^*))$. Otherwise the optimal (b^*, T^*) is (b_2^*, ∞) .

Proof The proof for a more general model is given in the proof of Theorem 7.4 in this chapter and thus it is omitted. \Box

7.1.2 Model 2

For a repairable device, applying the same burn-in procedure as before, block replacement with minimal repair on failures is performed in field operation. More precisely, fix a $T > 0$ and replace the component at times T, 2T, 3T, ..., with a new burned-in component. Also, at each intervening failure, a minimal repair is performed. Let $c_m > 0$ be the cost of a minimal repair, and $c_r > 0$ be the cost of replacement. In this case, the long-run average cost rate is given by

$$
c(b,T) = \frac{1}{T} \left(k(b) + c_m \int_b^{b+T} r(t) dt + c_r \right).
$$
 (7.2)

The following theorem [\[10](#page-23-0)] provides the properties of optimal (b^*, T^*) minimizing $c(b, T)$.

Theorem 7.2 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let

$$
B_1 \equiv \left\{ b \ge 0 : \int_b^{\infty} [r(\infty) - r(t)] dt \right\}
$$

>
$$
\frac{1}{c_m \overline{F}(b)} \left[(c_r - c_s) \overline{F}(b) + c_s + c_0 \int_0^b \overline{F}(t) dt \right] \right\},
$$

and $B_2 \equiv [0, \infty) \setminus B_1$. Then the properties of the optimal burn-in time b^{*} and the replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
Tr(b+T) - \int_{b}^{b+T} r(t) dt = \frac{1}{c_m \bar{F}(b)} \left[(c_r - c_s) \bar{F}(b) + c_s + c_0 \int_{0}^{b} \bar{F}(t) dt \right].
$$
\n(7.3)

Then, the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq t_1$, is the value which satisfies

$$
b^* + T^*(b^*) = \min_{0 \le b \le t_1} (b + T^*(b)).
$$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where b^* can be any value in $[0, \infty)$.

Case 3. $B_1 = \phi$, $B_2 = \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of the Eq. (7.3). Then, the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where b^* is the value which satisfies

$$
b^* + T^*(b^*) = \min_{b \, \le \, t_1, \, b \, \in \, B_1} (b + T^*(b)).
$$

Proof The proof for a more general model is given in the proof of Theorem 7.4 in this chapter and thus it is omitted. \Box

7.1.3 Model 3

In Model 2, Burn-in Procedure A is applied to repairable devices. In many cases, because of practical limitations, products which fail during burn-in are just scraped, regardless of whether the products are repairable or not. In this case, the burn-in procedure A can be applied. However, an expensive, complex product or device will not be discarded on account of failure of its part, but rather a repair will be performed. Cha [[4\]](#page-23-0) proposed the following burn-in procedure.

Burn-in Procedure B

Consider the fixed burn-in time b and begin to burn-in a new component. On each component failure, only minimal repair is done with shop minimal repair cost $c_{\text{sm}} > 0$. Continue the burn-in procedure for the repaired component. Immediately after the fixed burn-in time b , the component is put into field operation [\[4](#page-23-0)].

Note that the total burn-in time for this burn-in procedure is a constant b. For a burned-in component, the block replacement policy with minimal repairs on failures is adopted in field operation as it was in Model 2. Assume $0 < c_{sm} < c_s$, then this means that the cost of a minimal repair during the burn-in process is smaller than that of the complete (perfect) repair, which is a reasonable assumption. Then, the long-run average cost rate is

$$
c(b,T) = \frac{1}{T}(c_0b + c_{sm}\Lambda(b) + c_m(\Lambda(b+T) - \Lambda(b)) + c_r).
$$
 (7.4)

where $\Lambda(t) \equiv \int_0^t r(u) \, \mathrm{d}u$. It can be shown that

$$
c_B(b, T) \le c_A(b, T), \quad \forall 0 < b < \infty, \ 0 < T < \infty,
$$

where $c_A(b, T)$ and $c_B(b, T)$ are the cost rate functions in Eqs. ([7.2](#page-3-0)) and (7.4), respectively. This implies that

$$
c_B(b_B^*, T_B^*) \leq c_A(b_A^*, T_A^*),
$$

where (b_A^*, T_A^*) and (b_B^*, T_B^*) are the optimal solutions which minimize $c_A(b, T)$ and $c_B(b, T)$, respectively. Thus, we can conclude that the burn-in procedure B is always preferable to the burn-in procedure A when the minimal repair policy is applicable.

Let (b^*, T^*) be the optimal burn-in time and the optimal replacement time that minimize the cost rate Eq. (7.4). Then the properties of b^* and T^* are given by the following theorem.

Theorem 7.3 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let

$$
B_1 \equiv \left\{ b \geq 0 : \int\limits_b^{\infty} [r(\infty) - r(t)] \, \mathrm{d}t > \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)] \right\},\,
$$

and $B_2 \equiv [0, \infty) \setminus B_1$. Then the properties of the optimal burn-in time b^{*} and of the replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
Tr(b+T) - \int_{b}^{b+T} r(t) dt = \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)]. \qquad (7.5)
$$

Then, the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq t_1$, is the value which satisfies

$$
b^* + T^*(b^*) = \min_{0 \le b \le t_1} (b + T^*(b)).
$$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where b^* can be any value in $[0, \infty)$.

Case 3. $B_1 = \phi$, $B_2 = \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of Eq. (7.5). Then, the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where b^* is the value which satisfies

$$
b^* + T^*(b^*) = \min_{b \ \leq \ t_1, \ b \in B_1} (b + T^*(b)).
$$

Proof Clearly, $b_2^* \neq \infty$, since $c_2(\infty, T) = \infty$ for any $0 < T \leq \infty$. For any fixed $0 \leq b < \infty$,

$$
\frac{\partial c_2}{\partial T} = \frac{c_m}{T^2} \bigg\{ \Psi_b(T) - \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)] \bigg\},
$$

where

$$
\Psi_b(T) \equiv Tr(b+T) - \int_b^{b+T} r(t) dt.
$$

Hence, $\partial c_2/\partial T = 0$ if and only if

$$
\Psi_b(T) = \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)].
$$

Note that, $\Psi_b(0) = 0$ and that $\Psi_b(T)$

$$
\begin{cases}\n\text{strictly decreases} & \text{if } 0 \le T \le t_1 - b \\
\text{is a constant} & \text{if } t_1 - b \le T \le t_2 - b \\
\text{strictly increases} & \text{if } t_2 - b \le T\n\end{cases}
$$

Then define

$$
B_1 \equiv \left\{ b \geq 0 : \Psi_b(\infty) = \int_b^{\infty} [r(\infty) - r(t)] dt > \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)] \right\}
$$

and set $B_2 \equiv [0, \infty) \backslash B_1$.

Now, as in the proof of Theorem 2 in [[10\]](#page-23-0), the following three separate cases are considered.

Case 1. $B_1 = [0, \infty)$, $B_2 = \phi$. Case 2. $B_1 = \phi, B_2 = [0, \infty).$ Case 3. $B_1 = \phi$, $B_2 = \phi$.

Case 1 is equivalent to the condition that $\Psi(\infty) \equiv \int_b^{\infty} [r(\infty) - r(t)] dt = \infty$ for at least one $b \ge 0$. In particular, it occurs when $r(\infty) = \infty$ and $r(0) < \infty$. Let $T_2^*(b)$ be the value which satisfies

$$
c_2(b, T_2^*(b)) < c_2(b, T), \ \ \forall T \neq T_2^*(b),
$$

for all $b \ge 0$. Then for Case 2, it is easy to see that for all $b \ge 0$,

$$
c_2(b, T(b)) > c_2(b, \infty), \forall T > 0,
$$

i.e., $T_2^*(b) = \infty$, for $b \ge 0$ and $c_2(b, T_2^*(b)) = c_m r(\infty)$.

For Case 1 and Case 3, it can be shown, as in Case 2, that for every $b' \in$ B_2 , $T_2^*(b') = \infty$ and $c_2(b', T_2^*(b')) = c_m r(\infty)$. Moreover, for all $b \in B_1$, the following properties can be established:

(i) There exists $T_2^*(b)$, which is the unique solution of Eq. ([7.3](#page-3-0)).

- (ii) $t_2 < b + T_2^*(b) < \infty$.
- (iii) $c_2(b, T_2^*(b)) = c_m r(b + T_2^*(b)).$

(iv) For all $b' \in B_2, c_2(b, T_2^*(b)) = c_m r(b + T_2^*(b)) < c_m r(\infty) = c_2(b', T_2^*(b')).$ (v) The optimal burn-in time b_2^* satisfies: $0 \leq b_2^* \leq t_1$.

Therefore, $b_2^* \in \{b : 0 \le b \le t_1\} \cap B_1$ and b_2^* is the value that satisfies:

$$
b_2^* + T_2^*(b_2^*) = \min_{b \leq t_1, b \in B_1} (b + T_2^*(b)).
$$

7.2 Burn-in Procedures for General Failure Model

In this section, we discuss the burn-in procedures for a general failure model that was partly studied in the previous chapter. Recall that according to this model, when the unit fails, the Type I failure and the Type II failure may occur with some probabilities. We assume that the Type I failure is a minor one and thus can be removed by a minimal repair, whereas Type II failure is a catastrophic one and thus can be removed only by a complete repair. Such models have been considered in the literature (e.g., $[1, 2]$ $[1, 2]$ $[1, 2]$).

7.2.1 Constant Probability Model

In this model, when the unit fails, Type I failure occurs with probability $1 - p$ and Type II failure occurs with probability p , $0 \le p \le 1$. Cha [[5\]](#page-23-0) proposed the following burn-in procedure for this model.

Burn-in Procedure C

Consider the fixed burn-in time b and begin to burn-in a new component. On each component failure, only minimal repair is done for the Type I failure with shop minimal repair cost c_{sm} , $0 \leq c_{sm} \leq c_s$, and a complete repair is performed for the Type II failure with shop complete repair cost c_s . Then continue the burn-in procedure for the repaired component [\[5](#page-23-0)].

Cha [\[5](#page-23-0)] studied optimal burn-in and replacement policy for the burn-in procedures A and C under the general failure model defined above.

Note that the burn-in procedure A stops when there is no failure during the fixed burn-in time $(0, b]$ for the first time, whereas procedure C stops when there is no Type II failure during the fixed burn-in time $(0, b]$ for the first time.

Note that, in field operation, the component is replaced by a new burned-in component at the 'field-use age' T or at the time of the first Type II failure, whichever occurs first. For each Type I failure occurring during field use, only minimal repair is done.

Let Y_b be the time to the first Type II failure of a burned-in component with the fixed burn-in time b. If we define $G_b(t)$ as the distribution function of Y_b and $\overline{G}_b(t)$ as $1 - G_b(t)$, then $\overline{G}_b(t)$ is given by

$$
\overline{G}_b(t) = P(Y_b > t)
$$

= $\exp\{-\int_0^t pr(b + u) du\}$
= $\exp\{-p[\Lambda(b + t) - \Lambda(b)]\}, \forall t \ge 0,$ (7.6)

where $\Lambda(t) \equiv \int_0^t r(u) \, \mathrm{d}u$. Let the random variable $N(b; T)$ be the total number of minimal repairs of a burned-in component which occur during field operation after the burn-in time b and in accordance with the replacement policy T . Then, using the results of Beichelt [\[2](#page-23-0)], it is easy to see that, when $p \neq 0$, the expectation of $N(b; T)$ is

7.2 Burn-in Procedures for General Failure Model 245

$$
E[N(b; T)] = \frac{1}{G_b(t)} \int_{0}^{T} \int_{0}^{t} (1 - p)r(b + u) du dG_b(t) \cdot G_b(t)
$$

+
$$
\int_{0}^{T} (1 - p)r(b + u) du \cdot \overline{G}_b(T)
$$

=
$$
\left(\frac{1}{p} - 1\right) (1 - \exp{-p[\Lambda(b + T) - \Lambda(b)]}).
$$
 (7.7)

When $p = 0$ the expectation is given by

$$
E[N(b; T)] = \Lambda(b + T) - \Lambda(b).
$$

Let c_f denote the cost incurred for each Type II failure in field operation and c_a satisfying $0 < c_a < c_f$ be the cost incurred for each non-failed item which is replaced at field use age $T > 0$. Denote also by c_m the cost of a minimal repair which is performed in field operation. When $p = 0$ or $p = 1$, the burn-in and replacement model discussed in this section reduces to that in [[10\]](#page-23-0) or [[4](#page-23-0)]. Thus, in the discussion below, we assume that $0 \lt p \lt 1$. Then, using the results given by Eqs. [\(7.6\)](#page-7-0) and (7.7), the long-run average cost rate functions for procedures A and C are given by [[5\]](#page-23-0)

$$
c_A(b, T) = \frac{1}{\int_0^T \overline{G}_b(t) dt} \left(\left[c_0 \frac{\int_0^b \overline{F}(t) dt}{\overline{F}(b)} + c_s \frac{F(b)}{\overline{F}(b)} \right] + c_m \left[\left(\frac{1}{p} - 1 \right) (1 - \exp\{-p[\Lambda(b + T) - \Lambda(b)]\}) \right] + c_f G_b(T) + c_a \overline{G}_b(T)),
$$
\n(7.8)

and

$$
c_C(b,T) = \frac{1}{\int\limits_0^T \overline{G}_b(t) dt} \left(\left[c_0 \frac{\int\limits_0^b \overline{G}(t) dt}{\overline{G}(b)} + c_s \frac{G(b)}{\overline{G}(b)} + c_{sm} \left(\frac{1}{p} - 1 \right) (\exp\{pA(b)\} - 1) \right] + c_m \left[\left(\frac{1}{p} - 1 \right) (1 - \exp\{-p[A(b+T) - A(b)]\}) \right] + c_f G_b(T) + c_a \overline{G}_b(T), \qquad (7.9)
$$

where $c_A(b, T)$ and $c_C(b, T)$ represent the cost rate for the burn-in procedures A and C, respectively.

Cha [[5\]](#page-23-0) showed that

- (i) $c_C(0, T; p) = c_A(0, T; p), \forall 0 < T \le \infty, 0 < p < 1,$
- (ii) $c_C(b, T; p) < c_A(b, T; p), \ \forall 0 < b < \infty, \ 0 < p < 1,$

where $c_A(b, T; p)$ and $c_C(b, T; p)$ are the cost rate functions $c_A(b, T)$ and $c_C(b, T)$ when the Type II probability is p, $0 \lt p \lt 1$. Then, from the above inequalities, it can be concluded that the burn-in procedure C is always (i.e., for all $0 < p < 1$) preferable to the burn-in procedure A when the minimal repair method is applicable.

Now we discuss the properties of optimal burn-in and of optimal replacement times. Note that the cost rate functions in Eqs. (7.8) (7.8) (7.8) and (7.9) can be expressed as

$$
c(b, T) = \frac{1}{\int_0^T \overline{G}_b(t) dt} \left(k(b) + c_m \left[\left(\frac{1}{p} - 1 \right) (1 - \exp\{-p[A(b + T) - A(b)]\}) \right] + c_f G_b(T) + c_a \overline{G}_b(T) \right),
$$
\n(7.10)

where $k(b)$ is the average cost incurred during the burn-in process for each model. The properties of the optimal (b^*, T^*) which minimizes the cost rate Eq. (7.10) are given by the following theorem.

Theorem 7.4 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let

$$
B_1 \equiv \left\{ b \ge 0 : pr(\infty) \int_b^{\infty} exp\{-p[\Lambda(t) - \Lambda(b)]\} dt - 1
$$

$$
> \frac{1}{[c_m(\frac{1}{p} - 1) + (c_f - c_a)]} (c_a + k(b)) \right\},\,
$$

and $B_2 \equiv [0, \infty) \setminus B_1$. Then the properties of the optimal burn-in time b^* and the replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
pr(b+T)\int_{b}^{b+T} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt + \exp\{-p[\Lambda(b+T) - \Lambda(b)]\} - 1
$$

=
$$
\frac{1}{[c_m(\frac{1}{p}-1) + (c_f - c_a)]}(c_a + k(b)).
$$
 (7.11)

Then, the optimal $(b^*, T^*) = (b^*, T^*(b^*)),$ where $0 \leq b^* \leq t_1$, is the value which satisfies $b^* + T^*(b^*) = \min_{0 \le b \le t_1} (b + T^*(b)).$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where $0 \leq b^* \leq t_1$, is the value which satisfies

$$
\frac{1}{\mu(b^*)}\bigg[c_f + c_m\bigg(\frac{1}{p} - 1\bigg) + k(b^*)\bigg] = \min_{0 \le b \le t_1} \frac{1}{\mu(b)}\bigg[c_f + c_m\bigg(\frac{1}{p} - 1\bigg) + k(b)\bigg].
$$

Case 3. $B_1 = \phi$, $B_2 = \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of the Eq. [\(7.11\)](#page-9-0). Furthermore, let $b_1^* \in [0, t_1] \cap B_1$ satisfy

$$
b_1^* + T^*(b_1^*) = \min_{b^* \leq t_1, b \in B_1} (b + T^*(b)),
$$

and $b_2^* \in [0, t_1] \cap B_2$ satisfy

$$
\frac{1}{\mu(b_2^*)}\bigg[c_f + c_m\bigg(\frac{1}{p}-1\bigg) + k(b_2^*)\bigg] = \min_{b \leq t_1, b \in B_2} \frac{1}{\mu(b)}\bigg[c_f + c_m\bigg(\frac{1}{p}-1\bigg) + k(b)\bigg].
$$

If

$$
\[c_m\left(\frac{1}{p}-1\right)+c_f-c_a\]pr(b_1^* + T^*(b_1^*)) \leq \frac{1}{\mu(b_2^*)}\left[c_f+c_m\left(\frac{1}{p}-1\right)+k(b_2^*)\right],
$$

then the optimal $(b^*, T^*) = (b_1^*, T^*(b_1^*))$. Otherwise the optimal (b^*, T^*) is (b_2^*, ∞) .

Proof The cost rate $c(b, T)$ in Eq. ([7.10](#page-9-0)) can be rewritten as

$$
c(b, T) = \frac{1}{\int_0^T \overline{G}_b(t) dt} \left(h(b) + c_2 + c_m \left(\frac{1}{p} - 1 \right) (1 - \exp\{-p[A(b + T) - A(b)]\}) + c_1 [1 - \exp\{-p[A(b + T) - A(b)]\}] \right),
$$
\n(7.12)

where $c_1 \equiv c_f - c_a$ and $c_2 \equiv c_a$. Clearly, $b^* \neq \infty$ since $c(\infty, T) = \infty$ for any $0 < T \le \infty$. Then, for any fixed $0 \le b < \infty$, $\partial c / \partial T = 0$ if and only if

$$
\Psi_b(T) = \frac{1}{c_3}(c_2 + h(b)), \tag{7.13}
$$

where $c_3 \equiv [c_m(1/p - 1) + c_1]$ and

$$
\Psi_b(T) \equiv pr(b+T) \int_b^{b+T} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt
$$

+
$$
\exp\{-p[\Lambda(b+T) - \Lambda(b)]\} - 1.
$$

Note that $\Psi_b(0) = 0$ and

 $\Psi_b(T)$ strictly decreases if $0 \le T \le t_1 - b$, is a constant if $t_1 - b \leq T \leq t_2 - b$, strictly increases if $t_2 - b \leq T$. $\overline{6}$ \vert $\overline{}$

Define

$$
B_1 \equiv \left\{ b \ge 0 : \Psi_b(\infty) \equiv \lim_{T \to \infty} \Psi_b(T) \right\}
$$

$$
= pr(\infty) \int_b^{\infty} \exp\{-p[A(t) - A(b)]\} dt - 1 > \frac{1}{c_3} (c_2 + h(b)) \right\}
$$

and set $B_2 \equiv [0, \infty) \backslash B_1$.

We consider now the following three separate cases.

Case 1. $B_1 = [0, \infty)$ and $B_2 = \phi$. This is equivalent to the condition that

$$
\Psi_b(\infty) = pr(\infty) \int_b^{\infty} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt - 1 = \infty
$$

for at least one $b \ge 0$. In particular, it occurs when $r(\infty) = \infty$ and $r(0) < \infty$. In this case, Eq. [\(7.13\)](#page-10-0) has a unique solution for all $b \ge 0$. which we denote by $T^*(b)$. Furthermore, from the fact that $\Psi_b(0) = 0$ and the monotonicity of Ψ_b , we can immediately see that $\Psi_b(T) < 0$, for all $0 < T \leq t_2 - b$. This implies that the unique solution $T^*(b)$ of Eq. ([7.13](#page-10-0)) must satisfy $T^*(b) > t_2 - b$ for any given $b > 0$. Thus, we have shown that

$$
t_2 < T^*(b) + b \le \infty \tag{7.14}
$$

As $T^*(b)$ satisfies Eq. ([7.13](#page-10-0)),

$$
pr(b + T^*(b)) \int_b^{b + T^*(b)} \exp\{-p[A(t) - A(b)]\} dt
$$

+
$$
\exp\{-p[A(b + T^*(b)) - A(b)]\} - 1 = \frac{1}{c_3}(c_2 + h(b)).
$$
 (7.15)

Combining Eqs. (7.12) and (7.15) , we obtain

$$
c(b, T^*(b)) = c_3pr(b + T^*(b)).
$$

Thus, minimizing $c(b, T[*](b))$ is equivalent to minimizing $r(b + T[*](b))$ for $0 \leq b \lt \infty$. By Eq. (7.14), $b + T^*(b) > t_2$, so the problem of finding b^* minimizing $c(b, T^*(b))$ is equivalent to finding b^* which satisfies

$$
b + T^*(b) = \min_{b \geq 0} (b + T^*(b)).
$$

The inequality $b^* \leq t_1$ is now verified. To prove this inequality, it is sufficient to show that $\partial (b + T^*(b))/\partial b > 0$ for all $b \ge t_1$. From Eq. ([7.15](#page-11-0)),

$$
pr(b + T^*(b)) \int_b^{b+T^*(b)} \exp\{-p\Lambda(t)\} dt + \exp\{-p\Lambda(b + T^*(b))\}
$$

= $\exp\{-p\Lambda(b)\}\left[1 + \frac{c_2}{c_3} + \frac{1}{c_3}h(b)\right].$ (7.16)

Taking the derivative with respect to b on both sides of Eq. (7.16), we obtain

$$
pr'(b + T^*(b))(1 + T^{*'}(b)) \int_b^{b + T^*(b)} \exp\{-pA(t)\} dt - pr(b + T^*(b)) \exp\{-pA(b)\}
$$

= $\exp\{-pA(b)\}\frac{1}{c_3}h'(b) - \exp\{-pA(b)\}pr(b)\left(1 + \frac{c_2}{c_3} + \frac{1}{c_3}h(b)\right)$
> $-\exp\{-pA(b)\}pr(b)\left(1 + \frac{c_2}{c_3} + \frac{1}{c_3}h(b)\right),$ (7.17)

since $h'(b) > 0$. Then, from the Inequality Eq. (7.17),

$$
pr'(b + T^*(b))(1 + T^{*'}(b)) \int_b^{b + T^*(b)} \exp\{-p\Lambda(t)dt\}
$$

> $pr(b + T^*(b)) \exp\{-p\Lambda(b)\} - \exp\{-p\Lambda(b)\left(1 + \frac{c_2}{c_2} + \frac{1}{c_3}h(b)\right)\}.$ (7.18)

However, from Eq. [\(7.15\)](#page-11-0),

$$
pr(b + T^*(b)) = \frac{1}{\int_b^{b+T^*(b)} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt}
$$

$$
\times \left\{1 - \exp\{-p[\Lambda(b + T^*(b)) - \Lambda(b)]\} + \frac{c_2}{c_3} + \frac{1}{c_3}h(b)\right\},
$$
 (7.19)

and by the bathtub-shaped assumption, if $b \geq t_1$, it follows that

$$
pr(b) \int_{b}^{b+T^{*}(b)} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt \leq \int_{b}^{b+T^{*}(b)} pr(t) \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt
$$

$$
= \exp\{p\Lambda(b)\}[-\exp\{-p\Lambda(t)\}]_{b}^{b+T^{*}(b)}
$$

$$
= 1 - \exp\{-p[\Lambda(b + T^{*}(b)) - \Lambda(b)]\}
$$

$$
\leq 1.
$$
 (7.20)

Then, by combining Eqs. $(7.18, 7.19, 7.20)$, we obtain

$$
pr'(b + T^*(b))(1 + T^{*'}(b)) \int\limits_{b}^{b+T^*(b)} \exp\{-p\Lambda(t)\}dt > 0,
$$

which implies that $\partial (b + T^*(b))/\partial b > 0$ for all $b \ge t_1$. Therefore, $b^* \le t_1$ holds. Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. In this case, it can easily be shown that

$$
\Psi_b(T) < \frac{1}{c_3}(c_2 + h(b)), \ \forall T \ge 0,
$$

which implies that $\partial c / \partial T < 0$, for every $T > 0$ for all fixed $b \ge 0$. Hence, for all $T > 0$ and $b \ge 0$

$$
c(b, T) \geq c(b, \infty)
$$

=
$$
\frac{1}{\mu(b)} \left[c_1 + c_2 + c_m \left(\frac{1}{p} - 1 \right) + h(b) \right],
$$

where $\mu(b)$ is defined by

$$
\mu(b) \equiv \int_{b}^{\infty} \exp\{-p[\Lambda(t) - \Lambda(b)]\} dt
$$

$$
= \frac{\int_{b}^{\infty} \overline{G}(t) dt}{\overline{G}(b)},
$$

which is the MRL. Then, as follows from [[2,](#page-23-0) [7](#page-23-0)], it is easy to see that $\mu(b)$ strictly decreases for all $b \ge t_1$, whereas the term

$$
\left[c_1+c_2+c_m\left(\frac{1}{p}-1\right)+h(b)\right]
$$

strictly increases as b increases. Therefore, the inequalities

$$
c(b, T) \ge c(b, \infty), \quad \forall T > 0, \forall b \ge 0,
$$

>
$$
c(t_1, \infty), \quad \forall b > t_1,
$$

hold and, consequently, in this case, we have $(b^*, T^*) = (b^*, \infty)$, $0 \le b^* \le t_1$ and $b^* + T^* > t_2$. Also, the optimal burn-in time b^* is the value which satisfies

$$
c(b^*,\infty) = \min_{0 \leq b \leq t_1} c(b,\infty).
$$

Case 3. $B_1 = \phi$, $B_2 = \phi$. In advance, note that $\Psi_b(\infty)$ is strictly decreasing in b for $b \geq t_1$ since

$$
\Psi_b(\infty) = pr(\infty)\mu(b) - 1,
$$

and the function

$$
\frac{1}{c_3}[c_2 + h(b)],\tag{7.21}
$$

strictly decreases as $b \uparrow \infty$. Then, by similar arguments to those in [[10\]](#page-23-0), it can be shown that ∞ cannot be in the closure B_1 and there exists $0 \le s \lt \infty$ such that $[s, \infty) \subseteq B_2$. If we set

$$
\beta \equiv \inf\{t : [t, \infty) \subseteq B_2\},\
$$

then, clearly, $[\beta, \infty) \subseteq B_2$.

First suppose that $\beta \leq t_1$, therefore, obviously $[t_1, \infty) \subseteq B_2$. In this case, by the arguments of Case 2, the set $[t_1, \infty)$ cannot contain the optimal b^* . Hence $b^* \leq t_1.$

Suppose now that $\beta > t_1$. Since $\Psi_b(\infty)$ strictly decreases for $b \geq t_1$ and the function in Eq. (7.21) strictly increases, the fact that $\beta > t_1$ yields that $[t_1, \beta) \subseteq$ B_1 . Then, by the procedure described in Case 2, the relationship

$$
\min_{b \in [\beta,\infty), T > 0} c(b, T) = \min_{b \in [\beta,\infty)} c(b, \infty) > c(t_1, \infty)
$$

holds, and, therefore, the set $\left[\beta, \infty\right)$ cannot contain the optimal b^{*}. Also, for $b \in [t_1, \beta)$, by the similar arguments to those in Case 1, we can show that $\partial (b + T^*(b))/\partial b > 0$, for all $t_1 \leq b < \beta$, and therefore we can conclude that $b^* \le t_1$.

7.2.2 Time-Dependent Probability Model

In [[6\]](#page-23-0), the Constant Probability Model was further extended to the case when the corresponding probabilities change with operating time. Assume now that, when the unit fails at its age t, Type I failure occurs with probability $1 - p(t)$ and Type II failure occurs with probability $p(t), 0 \leq p(t) \leq 1$.

In this model, we employ the same notations and random variables used before. Also, note that if $p(t) = p$ a.e. (w.r.t. Lebesgue measure), $0 \le p \le 1$, the models under consideration can be reduced to those of Mi $[10]$ $[10]$ and Cha $[4, 5]$ $[4, 5]$ $[4, 5]$ $[4, 5]$. Thus, we only consider the set of functions P as the set of all of the Type II failure probability functions, which is given by

$$
P = \{p(\cdot) : 0 \le p(t) \le 1, \ \forall t \ge 0\} \setminus \{p(\cdot) : p(t) = p \ a.e., \ 0 \le p \le 1\}
$$

It can be shown that

$$
\overline{G}_b(t) = \exp\{-[\Lambda_p(b+t) - \Lambda_p(b)]\}, \ \forall t \ge 0
$$

where $\Lambda_p(t) \equiv \int_0^t p(u) r(u) \, du$, and

252 7 Burn-in for Repairable Systems

$$
E[N(b; T)] = \int_{0}^{T} r(b + t) \bar{G}_{b}(t) dt - G_{b}(T).
$$

Then, considering both burn-in procedures A and C for this extended model, the long-run average cost rate functions are given by

$$
c_{A}(b, T) = \frac{1}{\int_{0}^{T} \bar{G}_{b}(t) dt} \left(\left[c_{0} \int_{0}^{b} \exp\{-[\Lambda(t) - \Lambda(b)]\} dt + c_{s} [\exp\{\Lambda(b)\} - 1] \right] + c_{m} \left[\int_{0}^{T} r(b + t) \bar{G}_{b}(t) dt - G_{b}(T) \right] + c_{f} G_{b}(T) + c_{a} \bar{G}_{b}(T) \right),
$$
\n(7.22)

where $\Lambda(t) \equiv \int_0^t r(u) \, \mathrm{d}u$, and

$$
c_C(b, T) = \frac{1}{\int_0^T \bar{G}_b(t)dt} \left(\left[c_0 \int_0^b \exp\left\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\right\} dt + c_s \left[\exp\{\Lambda_p(b)\} - 1 \right] + c_{sm} \int_0^b (1 - p(t))r(t) \exp\left\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\right\} dt \right] + c_m \left[\int_0^T r(b + t) \bar{G}_b(t) dt - G_b(T) \right] + c_f G_b(T) + c_a \bar{G}_b(T) \right). \tag{7.23}
$$

As before, it can be shown that

$$
(i) \ c_C(0, T; p(\cdot)) = c_A(0, T; p(\cdot)), \ \forall 0 < T \leq \infty, \ p(\cdot) \in P,
$$
\n
$$
(ii) \ c_C(b, T; p(\cdot)) \leq c_A(b, T; p(\cdot)), \ \forall 0 < b < \infty, \ 0 < T \leq \infty, \ p(\cdot) \in P,
$$

which ensures the superiority of the burn-in procedure C when the minimal repair method is applicable.

The cost rate functions in Eqs. (7.22) and (7.23) can be rewritten as

$$
c(b, T) = \frac{1}{\int\limits_{0}^{T} \bar{G}_b(t) dt} \left(k(b) + c_m \left[\int\limits_{0}^{T} r(b+t) \bar{G}_b(t) dt - G_b(T) \right] \right. + c_f G_b(T) + c_a \bar{G}_b(T) \right),
$$

where $k(b)$ denotes the average cost incurred during the burn-in process. Then, under the following assumptions, the properties regarding the optimal burn-in time b^* and the optimal replacement policy T^* can be obtained.

Assumptions

- 1. The failure rate function $r(t)$ is differentiable and bathtub shaped with the first change point s_1 and the second change point s_2 .
- 2. The Type II failure probability function $p(t)$ is differentiable and bathtub shaped with the first change point u_1 and the second change point u_2 .
- 3. Let $t_1 \equiv \max(s_1, u_1)$ and $t_2 \equiv \min(s_2, u_2)$ then $t_1 < t_2$ holds.
- 4. $(c_f c_a) > c_m$.

Theorem 7.5 Suppose that assumptions (1)–(4) hold. Let the set B_1 be

$$
B_1 = \{b \ge 0 : c_m \int_b^{\infty} [r(\infty) - r(t)] \exp\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\} dt
$$

+
$$
((c_f - c_a) - c_m) \left[p(\infty)r(\infty) \int_b^{\infty} \exp\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\} dt - 1\right]
$$

>
$$
(c_a + k(b))\},
$$

and $B_2 \equiv [0, \infty) \setminus B_1$. Then the properties of the optimal burn-in time b^{*} and replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation,

$$
c_m \int_{b}^{b+T} [r(b+T) - r(t)] \exp\{-[\Lambda_p(t) - \Lambda_p(b)]\} dt + ((c_f - c_a) - c_m)
$$

$$
\left[p(b+T)r(b+T) \int_{b}^{b+T} \exp\{-[\Lambda_p(t) - \Lambda_p(b)]\} dt - (1 - \exp\{-[\Lambda_p(b+T) - \Lambda_p(b)]\}) \right]
$$

$$
= (c_a + k(b)),
$$
 (7.24)

then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq t_1$ is the value which satisfies $(b^* + T^*(b^*)) = \min_{0 \le b \le t_1} (b + T^*(b)).$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where $0 \leq b^* \leq t_1$ is the value which satisfies

254 7 Burn-in for Repairable Systems

$$
\frac{1}{\mu(b^*)}\left[(c_f-c_m)+c_m\int\limits_{b^*}^{\infty}r(t)\exp\left\{-\left[\Lambda_p(t)-\Lambda_p(b^*)\right]\right\}\mathrm{d}t+k(b^*)\right]
$$
\n
$$
=\min_{0\leq b\leq t_1}\frac{1}{\mu(b)}\left[(c_f-c_m)+c_m\int\limits_{b}^{\infty}r(t)\exp\left\{-\left[\Lambda_p(t)-\Lambda_p(b)\right]\right\}\mathrm{d}t+k(b)\right],
$$

where $\mu(b)$ is given by

$$
\mu(b) = \int_{b}^{\infty} \exp\left\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\right\} dt. \tag{7.25}
$$

Case 3. $B_1 \neq \phi$, $B_2 \neq \phi$. Let $T^*(b)$, $b \in B_1$, be the unique solution of the Eq.([7.24](#page-16-0)) and $\mu(b)$ be given by Eq. (7.25). Furthermore, let $b_1^* \in [0, t_1] \cap B_1$ be the value which satisfies

$$
(b_1^* + T^*(b_1^*)) = \min_{b \leq t_1, b \in B_1} (b + T^*(b)),
$$

and $b_2^* \in [0, t_1] \cap B_2$ be the value which satisfies

$$
\frac{1}{\mu(b_2^*)}\left[(c_f-c_m) + c_m \int\limits_{b_2^*}^{\infty} r(t) \exp\left\{-\left[\Lambda_p(t) - \Lambda_p(b_2^*)\right]\right\} \mathrm{d}t + k(b_2^*)\right]
$$
\n
$$
= \min_{b \leq t_1, b \in B_2} \frac{1}{\mu(b)} \left[(c_f-c_m) + c_m \int\limits_{b}^{\infty} r(t) \exp\left\{-\left[\Lambda_p(t) - \Lambda_p(b)\right]\right\} \mathrm{d}t + k(b) \right].
$$

If

$$
c_{m}r(b_{1}^{*} + T^{*}(b_{1}^{*})) + ((c_{f} - c_{a}) - c_{m})p(b_{1}^{*} + T^{*}(b_{1}^{*}))r(b_{1}^{*} + T^{*}(b_{1}^{*}))
$$

$$
\leq \frac{1}{\mu(b_{2}^{*})} \left[(c_{f} - c_{m}) + c_{m} \int_{b_{2}^{*}}^{\infty} r(t) \exp\left\{-\left[\Lambda_{p}(t) - \Lambda_{p}(b_{2}^{*})\right]\right\}dt + k(b_{2}^{*})\right],
$$

then the optimal $(b^*, T^*) = (b_1^*, T^*(b_1^*))$. Otherwise, optimal (b^*, T^*) (b_2^*, ∞) .

Remark 7.1 In this theorem, we assume that both $r(t)$ and $p(t)$ are bathtub-shaped functions. Cha and Mi [\[7](#page-23-0)] investigated how this assumption can practically be satisfied when a device is composed of two statistically independent parts (Part A and Part B) in series. Assume that the failure of Part A causes a catastrophic failure, whereas that of Part B causes a minor failure. The failure rate of the device is

$$
r(t) = r_1(t) + r_2(t)
$$

and the probability of Type II failure $p(t)$ is given by

$$
p(t) = \frac{r(t)}{r_1(t) + r_2(t)}
$$

where $r_1(t)$ and $r_2(t)$ are the failure rate functions of Parts A and B, respectively (see [\[7\]](#page-23-0) for a detailed discussion and several examples when $r(t)$ and $p(t)$ have various shapes).

7.3 Accelerated Burn-in and Maintenance Policy

Burn-in is generally considered to be expensive and its duration is typically limited. Stochastic models for accelerated burn-in were introduced in the previous chapter. In this section, we will discuss reliability models that jointly deal with accelerated burn-in and maintenance policies. In [\[8](#page-23-0)], the burn-in and replacement models 1, 2, and 3 of [Sect. 7.1](#page-0-0) were extended to the case when burn-in is performed in an accelerated environment assuming the failure rate model described in [Sect. 6.4](http://dx.doi.org/6.4) of the previous chapter.

7.3.1 Model 1

We consider burn-in and replacement Model 1: the component is burned-in in accordance with the burn-in procedure A under the accelerated environment. The component that had survived burn-in is put into field operation. In field operation, an age replacement policy is applied. We will use the notation of [Sects. 6.4](http://dx.doi.org/6.4) and [7.1](#page-0-0).

The corresponding long-run average cost rate is given by (see [Sects.6.4](http://dx.doi.org/10.1007/978-1-4471-5028-2_6) and [7.1](#page-0-0))

$$
c(b,T) = \frac{1}{\int_0^T \bar{F}_b(t) dt} \left(\left[c_0 \frac{\int_0^b \bar{F}_A(t) dt}{\bar{F}_A(b)} + c_s \frac{F_A(b)}{\bar{F}_A(b)} \right] + c_f F_b(T) + c_a \bar{F}_b(T) \right),
$$

where

$$
\overline{F}_b(t) \equiv \exp\left(-\int\limits_0^t r(a(b) + u) du\right) = \frac{\overline{F}(a(b) + t)}{\overline{F}(a(b))},
$$

and $F_A(t) = F(\rho(t)), \forall t \geq 0.$

Let b^* be the optimal accelerated burn-in time and T^* be the optimal replacement policy which satisfy

$$
c(b^*, T^*) = \min_{b \geq 0, T > 0} c(b, T).
$$

Then the properties regarding the optimal accelerated burn-in time b^* and the optimal replacement policy T^* are given by the following theorem [[8\]](#page-23-0), which is similar in formulation to Theorem 7.1.

Theorem 7.6 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let the set B_1 be

$$
B_1 \equiv \left\{ b \ge 0 : r(\infty) \int\limits_{a(b)}^{\infty} \exp\{-[\Lambda(t) - \Lambda(a(b))]\} dt - 1
$$

$$
> \frac{1}{c_f - c_a} \left[c_a + c_s [\exp\{\Lambda(\rho(b))\} - 1 \right]
$$

$$
+ c_0 \int\limits_{0}^{b} \exp\left\{-\left[\Lambda(\rho(t)) - \Lambda(\rho(b))\right]\right\} dt \right\},\
$$

and $B_2 \equiv [0, \infty) \setminus B_1$. Furthermore, let $a^{-1}(t_1) \geq 0$ be the unique solution of the equation $a(t) = t_1$. Then the properties of the optimal accelerated burn-in time b^* and replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty)$, $B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
r(a(b) + T) \int_{a(b)}^{a(b)+T} \exp\{-[\Lambda(t) - \Lambda(a(b))]\} dt + \exp\{-[\Lambda(a(b) + T) - \Lambda(a(b))]\} - 1
$$

=
$$
\frac{1}{c_f - c_a} \Bigg[c_a + c_s [\exp\{\Lambda(\rho(b))\} - 1] + c_0 \int_0^b \exp\{-[\Lambda(\rho(t)) - \Lambda(\rho(b))]\} dt \Bigg].
$$
 (7.26)

Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq a^{-1}(t_1)$, is the value which satisfies $a(b^*) + T^*(b^*) = \min_{0 \le b \le a^{-1}(t_1)} (a(b) + T^*(b)).$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. In this case, the optimal $(b^*, T^*) = (b^*, \infty)$, where $0 \le b^* \le a^{-1}(t_1)$ is the value which satisfies

$$
\frac{1}{\mu(a(b^*))}\left[c_f + c_s[\exp{\{\Lambda(\rho(b^*))\}} - 1] + c_0 \int_0^{b^*} \exp{\{-[\Lambda(\rho(t)) - \Lambda(\rho(b^*))]\} dt}\right]
$$
\n
$$
= \min_{0 \le b \le a^{-1}(t_1)} \frac{1}{\mu(a(b))}\left[c_f + c_s[\exp{\{\Lambda(\rho(b))\}} - 1] + c_0 \int_0^{b} \exp{\{-[\Lambda(\rho(t)) - \Lambda(\rho(b))]\} dt}\right],
$$

where $\mu(a(b))$ is given by

$$
\mu(a(b)) \equiv \int_{a(b)}^{\infty} \exp\{-[\Lambda(t) - \Lambda(a(b))]\} dt. \tag{7.27}
$$

Case 3. $B_1 \neq \phi$, $B_2 \neq \phi$ For $b \in B_1$, let $T^*(b)$ be the unique solution of the Eq. [\(7.26\)](#page-19-0) and let $\mu(a(b))$ be given by Eq. (7.27). Furthermore, let $b_1^* \in$ $[0, a^{-1}(t_1)] \cap B_1$ satisfy

$$
a(b_1^*) + T^*(b_1^*) = \min_{b \leq a^{-1}(t_1), b \in B_1} (a(b) + T^*(b)),
$$

and

$$
b_2^* \in [0, a^{-1}(t_1)] \cap B_2
$$

satisfy

$$
\frac{1}{\mu(a(b_2^*))}\left[c_f + c_s\left[\exp\{\Lambda(\rho(b_2^*))\} - 1\right] + c_0 \int_0^{b_2^*} \exp\left\{-\left[\Lambda(\rho(t)) - \Lambda(\rho(b_2^*))\right]\right\} dt\right]
$$
\n
$$
= \min_{b \leq a^{-1}(t_1), b \in B_2} \frac{1}{\mu(a(b))}\left[c_f + c_s\left[\exp\{\Lambda(\rho(b))\} - 1\right] + c_0 \int_0^b \exp\{-\left[\Lambda(\rho(t)) - \Lambda(\rho(b))\right]\} dt\right].
$$

If

$$
(c_f - c_a)r(a(b_1^*) + T^*(b_1^*)) \leq \frac{1}{\mu(a(b_2^*))} \left[c_f + c_s \left[exp\{\Lambda(\rho(b_2^*))\} - 1 \right] + c_0 \int_0^{b_2^*} exp\{-\left[\Lambda(\rho(t)) - \Lambda(\rho(b_2^*))\right]\} dt \right],
$$

then the optimal (b^*, T^*) is $(b_1^*, T^*(b_1^*))$. Otherwise, the optimal (b^*, T^*) is (b_2^*, ∞) .

7.3.2 Model 2

We consider burn-in and replacement model 2: the component is burned-in by the burn-in procedure C and the block replacement with minimal repair at failure is applied to the component in field use.

In this case, the long-run average cost rate is given by

$$
c(b,T) = \frac{1}{T} \left(\left[c_0 \frac{\int_0^b \bar{F}_A(t) dt}{\bar{F}_A(b)} + c_s \frac{F_A(b)}{\bar{F}_A(b)} \right] + c_m [\Lambda(a(b) + T) - \Lambda(a(b))] + c_r \right).
$$
\n(7.28)

Then properties of the optimal b^* and T^* minimizing $c(b, T)$ in Eq. [\(7.28\)](#page-20-0) are given by the following theorem [\[8](#page-23-0)]

Theorem 7.7 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let the set B_1 be

$$
B_1 \equiv \left\{ b \ge 0 : \int_{a(b)}^{\infty} [r(\infty) - r(t)] dt \right\}
$$

>
$$
\frac{1}{c_m} [c_r + c_s [\exp{\Lambda(\rho(b))} - 1] + c_0 \int_{0}^{b} \exp{-[\Lambda(\rho(t)) - \Lambda(\rho(b))} dt] \right\},
$$

 $B_2 \equiv [0, \infty) \setminus B_1$ and $a^{-1}(t_1) \geq 0$ be the unique solution of the equation $a(t) = t_1$. Then the properties of the optimal burn-in time b^{*} and the replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
Tr(a(b) + T) - \int_{a(b)}^{a(b)+T} r(t) dt
$$

= $\frac{1}{c_m} \left[c_r + c_s [exp{\{\Lambda(\rho(b))\}} - 1] + c_0 \int_0^b exp{-[\Lambda(\rho(t)) - \Lambda(\rho(b))]\} dt \right].$ (7.29)

Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq a^{-1}(t_1)$, is the value which satisfies $a(b^*) + T^*(b^*) = \min_{0 \le b \le a^{-1}(t_1)} (a(b) + T^*(b)).$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where b^* can be any value in $[0, \infty)$.

Case 3. $B_1 \neq \phi$, $B_2 \neq \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of the Eq. (7.29). Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where b^* is the value which satisfies

$$
a(b^*) + T^*(b^*) = \min_{b \leq a^{-1}(t_1), b \in B_1} (a(b) + T^*(b)).
$$

7.3.3 Model 3

We consider burn-in and replacement Model 3: the component is burned-in by the burn-in procedure B and the block replacement with minimal repair at failure is applied to the component in field use. Then, obviously, the long-run average cost rate is given by

$$
c(b,T) = \frac{1}{T}\Biggl([c_0b + c_{sm}\Lambda(\rho(b))] + c_m[\Lambda(a(b) + T) - \Lambda(a(b))] + c_r\Biggr),
$$
\n(7.30)

The properties of the optimal b^* and T^* minimizing $c(b, T)$ in Eq. (7.30) are given by the following theorem.

Theorem 7.8 Suppose that the failure rate function $r(t)$ is bathtub-shaped and differentiable. Let

$$
B_1 \equiv \left\{ b \geq 0 : \int\limits_b^{\infty} [r(\infty) - r(t)] \, \mathrm{d}t > \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(b)] \right\},\,
$$

 $B_2 \equiv [0, \infty) \setminus B_1$ and $a^{-1}(t_1) \geq 0$ be the unique solution of the equation $a(t) = t_1$. Then the properties of the optimal burn-in time b^{*} and the replacement policy T^* can be stated in detail as follows:

Case 1. $B_1 = [0, \infty), B_2 = \phi$. Let $T^*(b)$ be the unique solution of the equation

$$
Tr(a(b) + T) - \int_{a(b)}^{a(b)+T} r(t) dt = \frac{1}{c_m} [c_r + c_0 b + c_{sm} \Lambda(\rho(b))]. \tag{7.31}
$$

Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where $0 \leq b^* \leq a^{-1}(t_1)$, is the value which satisfies

$$
a(b^*) + T^*(b^*) = \min_{0 \le b \le a^{-1}(t_1)} (a(b) + T^*(b)).
$$

Case 2. $B_1 = \phi$, $B_2 = [0, \infty)$. The optimal $(b^*, T^*) = (b^*, \infty)$, where b^* can be any value in $[0, \infty)$.

Case 3. $B_1 \neq \phi$, $B_2 \neq \phi$. For $b \in B_1$, let $T^*(b)$ be the unique solution of the Eq. (7.31). Then the optimal $(b^*, T^*) = (b^*, T^*(b^*))$, where b^* is the value which satisfies

$$
a(b^*) + T^*(b^*) = \min_{b \leq a^{-1}(t_1), b \in B_1} (a(b) + T^*(b)).
$$

References

- 1. Beichelt FE, Fischer K (1980) General failure model applied to preventive maintenance policies. IEEE Trans Reliab 29:39–41
- 2. Beichelt FE (1993) A unifying treatment of replacement policies with minimal repair. Naval Res Logist 40:51–67
- 3. Block HW, Savits TH (1997) Burn-in. Stat Sci 12:1–19
- 4. Cha JH (2000) On a better burn-in procedure. J Appl Probab 37:1099–1103
- 5. Cha JH (2001) Burn-in procedures for a generalized model. J Appl Probab 38:542–553
- 6. Cha JH (2003) A further extension of the generalized burn-in model. J Appl Probab 40:264–270
- 7. Cha JH, Mi J (2007) Some probability functions in reliability and their applications. Naval Res Logist 54:128–135
- 8. Cha JH, Na MH (2009) Accelerated burn-in and system maintenance policies. Commun Stat-Theor Methods 38:719–733
- 9. Mi J (1991) Optimal burn-in. Ph.D. Thesis, Department Statistics, University Pittsburgh, Pittsburgh
- 10. Mi J (1994) Burn-in and maintenance policies. Adv Appl Probab 26:207–221