
Chapter 5
Heterogeneous Populations

Homogeneity of objects is a unique property that is very rare in nature and in
industry. It can be created in the laboratory, but not outside it. Therefore, one can
hardly find homogeneous populations in real life; however, most of reliability
modeling deals with homogeneous cases. Due to instability of production pro-
cesses, environmental and other factors, most populations of manufactured items
in real life are heterogeneous. Similar considerations are obviously true for
biological items (organisms). Neglecting heterogeneity can lead to serious errors
in reliability assessment of items and, as a consequence, to crucial economic
losses. Stochastic analysis of heterogeneous populations presents a significant
challenge to developing mathematical descriptions of the corresponding reliability
indices. On the other hand, everything depends on the definition, on what we
understand by homogeneous and heterogeneous populations. From the statistical
point of view, these terms mean the following.

In homogeneous populations, the lifetimes of items form a sequence of inde-
pendent and identically distributed random variables (i.i.d.) with the common Cdf
FðtÞ pdf f ðtÞ, and the failure rate, kðtÞ. However, due to instability of production
processes, environmental and other factors, most populations of manufactured
items in real life (and biological organisms in nature as well) are heterogeneous.
This means that these populations can be often considered as a finite or non-finite
collection of homogeneous subpopulations [which are frequently ordered in some
suitable stochastic sense, e.g., in the sense of the hazard rate ordering (2.70)].

As an illustrative discrete example, we can think about the collection of n ¼ 2
subpopulations of statistically identical items produced at different facilities and
mixed together in one population. Assume for simplicity, that each subpopulation
consists of a sufficiently large (infinite) number of items. Let the first subpopu-
lation be described by the failure rate kðtÞ (baseline failure rate), whereas the
second subpopulation, due to the better production quality has a smaller failure
rate kkðtÞ , where k is a fixed constant such that 0 \ k \ 1. Let the proportions of
both subpopulations in the population be p1 and p2, p1 þ p2 ¼ 1. An item is
selected at random from the described heterogeneous population and therefore, we
do not know to which subpopulation it belongs (although the proportions can be
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known at some instances). This choice can be described by the discrete random
variable Z (unobserved) with the possible values ‘‘1’’ and ‘‘k’’ and the corre-
sponding probability masses pð1Þ ¼ p1; pðkÞ ¼ p2. Based on the description of Z,
the failure rates of the subpopulation with Z ¼ z can be now specified as kðt; zÞ:
kðt; 1Þ ¼ kðtÞ and kðt; kÞ ¼ kkðtÞ. In the literature, the random variable Z is often
called ‘‘frailty’’. Frailty describes the susceptibility to failures of items from dif-
ferent ordered subpopulations. Various frailty models have been studied in
numerous statistical publications. However, as most of the settings that were
considered in reliability theory and practice are homogeneous, the concept of
frailty has not been sufficiently elaborated in the reliability literature so far.

Instability of production processes, environmental and other factors can obvi-
ously result in more than n ¼ 2 ‘quality levels’ and in the continuous frailty model
as well. Let, as previously, kðtÞ denote now the failure rate of some baseline
subpopulation. For illustration of the continuous frailty concept, consider the
multiplicative (proportional) frailty model. In this model, the failure rates of all
other subpopulations are defined as kðt; zÞ � zkðtÞ, where z is the realization of
Z with support, e.g., in ½0;1Þ. Thus, the failure rate is larger (smaller) for larger
(smaller) values of z and we see here the explicit ordering of the corresponding
subpopulations in the sense of the hazard rate ordering (2.70). The frailty Z is now
the continuous random variable. The term ‘‘frailty’’ was introduced in Vaupel et al.
[63] for the gamma-distributed frailty Z. It is worth noting, however, that this
specific case of the gamma-frailty model was, in fact, first considered by the
British actuary Robert Beard [7, 8].

Mixtures of distributions usually present an effective mathematical tool for
modeling heterogeneity, especially when we are interested in the failure rate,
which is the conditional characteristic. The introductory Sect. 2.3 was devoted to
the shape of the failure rate in the homogeneous setting, which is really important
in many applications (reliability, demography, risk analysis, etc.). In heteroge-
neous populations, the analysis of the shape of the mixture (population) failure rate
starts to be even more meaningful. It is well known, e.g., that mixtures of
decreasing failure rate (DFR) distributions are always DFR [6]. On the other hand,
mixtures of increasing failure rate (IFR) distributions can decrease, at least in some
intervals of time. Note that the IFR distributions are often used to model lifetimes
governed by the aging processes. Therefore, the operation of mixing can dra-
matically change the pattern of population aging, e.g., from positive aging (IFR) to
negative aging (DFR).

In Sects. 5.1–5.6, on the basis of Finkelstein [28, 29], we will present a brief
survey of results relevant for our further discussion in this and in the subsequent
chapters. In the rest of this chapter, some new applications of the mixture failure
rate modeling will be considered.
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5.1 Failure Rate of Mixture of Two Distributions

Suppose, for instance, that a population of some manufactured items consists of
items with and without manufacturing defects. The time to failure of an item
picked up at random from this population can be obviously described in terms of
mixtures. We start with a mixture of two lifetime distributions F1ðtÞ and F2ðtÞ with
the pdfs f1ðtÞ and f2ðtÞ and failure rates k1ðtÞ and k2ðtÞ, respectively, whereas the
Cdf, pdf, and the failure rate of the mixture itself are denoted by FmðtÞ, fmðtÞ and
kmðtÞ, accordingly.

Let the masses p and 1� p define the discrete mixture distribution. The mixture
survival function and the mixture pdf are

�FmðtÞ ¼ p�F1ðtÞ þ ð1� pÞ�F2ðtÞ;
fmðtÞ ¼ pf1ðtÞ þ ð1� pÞf2ðtÞ;

ð5:1Þ

respectively. In accordance with the definition of the failure rate (2.4), the mixture
failure rate in this case is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
:

As kiðtÞ ¼ fiðtÞ=�FiðtÞ; i ¼ 1; 2; this can be transformed into

kmðtÞ ¼ pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ; ð5:2Þ

where the time-dependent probabilities are

pðtÞ ¼ p�F1ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; 1� pðtÞ ¼ ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; ð5:3Þ

It follows from Eq. (5.2) that kmðtÞ is contained between minfk1ðtÞ; k2ðtÞg and
maxfk1ðtÞ; k2ðtÞg. Specifically, if the failure rates are ordered as k1ðtÞ � k2ðtÞ,
then

k1ðtÞ � kmðtÞ � k2ðtÞ:

Differentiating (5.1) results in [51]:

k0mðtÞ ¼ pðtÞk01ðtÞ þ ð1� pðtÞÞk02ðtÞ � pðtÞÞð1� pðtÞðk1ðtÞ � k2ðtÞÞ2: ð5:4Þ

Assume that kiðtÞ i ¼ 1; 2 are DFR. Then the mixture failure rate is also
decreasing, which is the well-known fact for general mixtures [6].

As �Fið0Þ ¼ 1; i ¼ 1; 2, the initial value of the mixture failure rate t ¼ 0ð Þ is just
the ‘ordinary’ mixture of initial values of the two failure rates, i.e.,

kmð0Þ ¼ pk1ð0Þ þ ð1� pÞk2ð0Þ:
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When t [ 0, the conditional probabilities pðtÞ and 1� pðtÞ are obviously not
equal to p and 1� p, respectively. Assume that k1ðtÞ � k2ðtÞ. Dividing the
numerator and the denominator in the first equation in (5.3) by �F1ðtÞ it is easy to
see that the proportion of the survived up to t items in the mixed population, i.e.,
pðtÞ is increasing ( 1� pðtÞð Þ is decreasing). This effect can be meaningfully
interpreted in the following way: the weakest items are dying out first. Therefore,

kmðtÞ\ pk1ðtÞ þ ð1� pÞk2ðtÞ; t [ 0: ð5:5Þ

Thus, kmðtÞ is always smaller than the expectation pk1ðtÞ þ ð1� pÞk2ðtÞ.
Assume now that both k1ðtÞ and k2ðtÞ are increasing for t � 0. Can the mixture

failure rate initially (at, least, for small t) decrease? Equation (5.4) helps us to give
the positive answer to this question. The corresponding sufficient condition is

pk01ðtÞ þ ð1� pÞk02ðtÞ � pð1� pÞðk1ð0Þ � k2ð0ÞÞ2 \ 0; ð5:6Þ

where the derivatives are obtained at t ¼ 0. Inequality (5.6), e.g., means that if
jk1ð0Þ � k2ð0Þj is sufficiently large, then the mixture failure rate is initially
decreasing no matter how fast the failure rates k1ðtÞ and k2ðtÞ are increasing in the
neighborhood of 0, which is a remarkable fact, indeed. Let, for instance,

k1ðtÞ ¼ c1t þ a1; k2ðtÞ ¼ c2t þ a2; 0 \ c1 \ c2; 0 \ a1\a2;

Then, if

a2 � a1 [
pc1 þ ð1� p1Þc2

pð1� pÞ

� �1=2

;

kmðtÞ is initially decreasing.
What about the asymptotic (for large t) behavior of kmðtÞ? Due to the weakest

populations are dying first principle the intuitive guess would be: the mixture
failure rate tends (in some suitable sense) to the failure rate of the strongest
population as t!1. Block and Joe [13] give some general conditions for this
convergence. We will just consider here an important specific case of proportional
failure rates that allows formulating these conditions explicitly:

k1ðtÞ � kðt; z1Þ ¼ z1kðtÞ; k2ðtÞ � kðt; z2Þ ¼ z2kðtÞ; z2 [ z1;

where kðtÞ is some baseline failure rate. We will distinguish between the
convergence

kmðtÞ � kðt; z1Þ ! 0 as t!1 ð5:7Þ

and the asymptotic equivalence

kmðtÞ ¼ kðt; z1Þð1þ oð1ÞÞ as t!1; ð5:8Þ

which will mostly be used in the following alternative notation: kmðtÞ� kðt; z1Þ as
t!1.
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When kðtÞ has a finite limit as t!1, these relationships coincide. The fol-
lowing theorem [32] specifies the corresponding conditions:

Theorem 5.1 Consider the mixture model (5.1)–(5.3), where

kðt; z1Þ ¼ z1kðtÞ; kðt; z2Þ ¼ z2kðtÞ; z2 [ z1 [ 0;

and kðtÞ ! 1 as t!1.Then

• Relationship (5.8) holds;
• Relationship (5.7) holds if

kðtÞ expf�ðz2 � z1Þ
Z t

0

kðuÞdug ! 0 as t!1: ð5:9Þ

The proof is straightforward and is based on considering the quotient kmðtÞ=kðt; z1Þ
as in Block and Joe [13].

h

Condition (5.9) is a rather weak one. In essence, it states that the pdf of a
distribution with an ultimately increasing failure rate tends to 0 as t!1. All
distributions that are typically used in lifetime data analysis meet this requirement.

Similar reasoning can be used for describing the shape of the failure rate for the
mixture of n [ 2 distributions [13, 28].

We have described some approaches to analyze the general pattern of the shape
of the mixture failure rate for two distributions focusing on initial and tail
behavior. The concrete shapes can be versatile. We will just present here a few
examples. More information on specific shapes of the mixture failure rate of two
distributions can be found in Gurland and Sethuraman [40], Gupta and Waren [39],
Block et al. [14, 18], Lai and Xie [43], Navarro and Hernandez [51], Finkelstein
[28], and Block et al. [16]. Note that the different shapes of the mixture mortality
rate were analyzed in various demographic applications.

• As follows from Gupta and Waren [39], the mixture of two gamma distributions
with increasing failure rates (with the same scale parameter) can result either in
the increasing mixture failure rate or in the modified bathtub (MBT) mixture
failure rate (it first increases and then behaves like a bathtub (BT) failure rate).
This shape agrees with our general reasoning of this section, as it can be easily
verified that condition (5.6) does not hold in this case and therefore the initial
decreasing is not possible.

• Similar shapes occur for the mixtures of two Weibull distributions with
increasing failure rates. Note that in this case, MBT shape results when p in Eq.
(5.1) is less than some n; 0 \ n \ 1 and the mixture failure rate increases for
p � n.
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• Navarro and Hernandez [51] state that the mixture failure rate of two truncated
normal distributions (we are dealing with lifetime random variables), depending
on parameters involved, can also be increasing, BT-shaped or MBT-shaped. The
BT shape obtained via the generalized mixtures (when p is a real number and
not necessarily p 2 ½0; 1�) where studied in Navarro and Hernandez [52].

• Block et al. [18] give explicit conditions which describe the possible shapes of the
mixture failure rate for two increasing linear failure rates. Again the possible
shapes in this case are IFR, BT, and MBT (for the non-crossing linear failure rates).

• Block et al. [16] present an interesting generalization when one of the distri-
butions is itself a continuous mixture of exponentials (and therefore, decreasing)
and the other is a gamma distribution. It is shown that for the specific values of
parameters involved the mixture failure rate has a BT shape. In essence, these
authors are ‘constructing’ the BT shape using the specifically decreasing in
ð0;1Þ to f [ k0 [ 0 failure rate of the first distribution and the increasing to
k0 failure rate of the second distribution. Note that, as follows from (5.3), kmðtÞ
is contained between these two failure rates. Block et al. [16] also prove that
mixtures of DFR gamma distributions with an IFR gamma distribution are
bathtub-shaped and mixtures of modified Weibull distributions (the failure rate
is decreasing not to 0, as for ‘ordinary’ Weibull distribution, but to f ) with an
IFR gamma distribution have also the bathtub-shaped failure rate.

5.2 Continuous Mixtures

Let Z be now a continuous mixing random variable (frailty) with support in ½0;1Þ
and the pdf pðzÞ. Other intervals of support can be also considered. Similar to the
previous section, the mixture survival function and the mixture pdf are defined as
the following expectations:

�FmðtÞ ¼
Z1

0

�Fðt; zÞpðzÞdz;

fmðtÞ ¼
Z1

0

f ðt; zÞpðzÞdz;

ð5:10Þ

respectively, where the notation for conditional functions �FðtjZ ¼ zÞ ¼ �Fðt; zÞ and
f ðtjZ ¼ zÞ ¼ f ðt; zÞ means that a lifetime distribution is indexed by parameter z.
The corresponding conditional failure rate is denoted by kðt; zÞ, whereas the mixture
(observed) failure rate is

kmðtÞ ¼
R1

0 f ðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdz
: ð5:11Þ
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Equation (5.11) can be transformed to [47]:

kmðtÞ ¼
Z1

0

kðt; zÞpðzjtÞdz; pðzjtÞ ¼ pðzÞ�Fðt; zÞR1
0

�Fðt; zÞpðzÞdz
; ð5:12Þ

where pðzjtÞ denotes the conditional pdf of Z on condition that T [ t, i.e., an item
described by a lifetime T with the Cdf FmðtÞ had survived in ½0; t�. Denote this
random variable by Zjt. Obviously the masses pðtÞ and 1� pðtÞ in (5.1) corre-
spond to pðzjtÞ in the continuous case.

Under the mild assumptions (see Theorem 5.2), a property that is similar to the
discrete case (5.5) holds for the continuous case as well, i.e.,

kmðtÞ\kPðtÞ �
Z1

0

kðt; zÞpðzÞdz; t [ 0; kmð0Þ ¼ kPðtÞ ð5:13Þ

meaning that the mixture failure rate is always smaller than the ‘ordinary’
expectation. Thus, owing to conditioning, the mixture failure rate is smaller than
the unconditional one for each t [ 0, which, as in the discrete case, can be
interpreted via the weakest populations are dying out first principle. As time
increases, those subpopulations that have larger failure rates have larger chances of
dying and, therefore, the proportion of subpopulations with a smaller failure rate
increases.

The following theorem [33] states also the condition for kPðtÞ � kmðtÞ to
increase:

Theorem 5.2 Let the failure rate kðt; zÞ be differentiable with respect to both
arguments and be ordered as

kðt; z1Þ\kðt; z2Þ; z1\z2; 8z1; z2 2 ½a; b�; t � 0: ð5:14Þ

Then

• Inequality (5.13) holds;
• If, additionally, okðt; zÞ=ozis increasing in t, then kPðtÞ � kmðtÞ is increasing.

We will consider now two important applications specific in cases of model
(5.12). Let kðt; zÞ be indexed by parameter z in the following additive way:

kðt; zÞ ¼ kðtÞ þ z; ð5:15Þ

where kðtÞ is a deterministic, continuous, and positive function for t [ 0. It can be
viewed as some baseline failure rate. Equation (5.15) defines for z 2 ½0;1Þ a
family of ‘horizontally parallel’ functions. We will be interested in an increasing
kðtÞ. Applying (5.12) to this model results in
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kmðtÞ ¼ kðtÞ þ
R1

0 z �Fðt; zÞpðzÞdzR1
0

�Fðt; zÞpðzÞdh
¼ kðtÞ þ E½Zjt�; ð5:16Þ

where, in accordance with (5.12), E½Zjt� denotes the expectation of the random
variable Zjt. It can be easily shown by direct derivation that
E0½Zjt� ¼ �VarðZjtÞ\0. Differentiating (5.16) and using this property, we obtain
the following result [32, 47].

Theorem 5.3 Let kðtÞ be an increasing, convex function in ½0;1Þ. Assume that
VarðZjtÞ is decreasing in t 2 ½0;1Þ and

VarðZj0Þ[ k0ð0Þ:

Then kmðtÞ decreases in ½0; cÞ and increases in ½c;1Þ, where c can be uniquely
defined from the following equation:

VarðZjtÞ ¼ k0ðtÞ:

It follows from this theorem that the corresponding model of mixing results in
the bathtub shape of the mixture failure rate: it first decreases and then increases,
converging to the failure rate of the strongest population, which is kðtÞ in our case.
It seems that the conditional variance VarðZjtÞ should decrease, as the ‘‘weak
populations are dying out first’’ when t increases. It turns out, however, that this
intuitive reasoning is not true for the general case and some specific distributions
can result in initially increasing VarðZjtÞ. The corresponding counter-example can
be found in Finkelstein and Esaulova [32]. It is also shown that VarðZjtÞ is always
decreasing in ½0;1Þ when Z is gamma-distributed.

The most popular and elaborated applications model of mixing is the multi-
plicative one:

kðt; zÞ ¼ z kðtÞ; ð5:17Þ

where, as previously, the baseline kðtÞ is a deterministic, continuous, and positive
function for t [ 0. In survival analysis, Eq. (5.17) is usually called a multiplicative
frailty model (proportional hazards). The mixture failure rate in this case is

kmðtÞ ¼
Z1

0

kðt; zÞpðzjtÞdz ¼ kðtÞE½Zjt�: ð5:18Þ

Differentiating both sides gives

k0mðtÞ ¼ k0ðtÞE½Zjt� þ kðtÞE0½Zjt�: ð5:19Þ

Thus, when kð0Þ ¼ 0, the failure rate kmðtÞ increases in the neighborhood of
t ¼ 0. Further behavior of this function depends on the other parameters involved.
Similar to the additive case, E0½Zjt� ¼ �kðtÞVarðZjtÞ\0, which means that E½Zjt�
is decreasing in t [38]. Therefore, it follows from Eq. (5.18) that the function
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kmðtÞ=kðtÞ is a decreasing one, which imply that kðtÞ and kmðtÞ cross at most at
only one point. It immediately follows from Eq. (5.19) that when kðtÞ is
decreasing, kmðtÞ is also decreasing (another proof of this well-known property).
When kð0Þ 6¼ 0 and

k0ð0Þ
k2ð0Þ

� VarðZÞ
E½Z� ;

the mixture failure rate is decreasing in ½0; eÞ; e [ 0 meaning, e.g., that for the
fixed E½Z� the variance of Z should be sufficiently large.

Asymptotic behavior of kmðtÞ as t!1 for this and other (more general models
will be discussed in Sect. 5.4). Note that, the accelerated life model (ALM) to be
studied in this section does not allow the foregoing reasoning based on considering
expectation E½Zjt�.

5.3 Examples

5.3.1 Weibull and Gompertz Distributions

Consider multiplicative frailty model (5.17). Let Z be a gamma-distributed random
variable with shape parameter a and scale parameter b and let kðtÞ ¼ c tc�1; c [ 1
be the increasing failure rate of the Weibull distribution, limt!1 kðtÞ ¼ 1. The
mixture failure rate kmðtÞ in this case, can be obtained by the direct integration, as
in Finkelstein [28] (see also [38]):

kmðtÞ ¼
abc tc�1

1þ b tc
: ð5:20Þ

The shape of the mixture failure rate differs dramatically from the shape of the
increasing baseline failure rate kðtÞ. Thus kmðtÞ is equal to 0 at t ¼ 0, increases to a
maximum at

tmax ¼
c� 1

b

� �1
c

and then decreases to 0 as t!1 (Fig. 5.1).
Weibull distribution with c[ 1 is often used for modeling aging processes as

its failure rate is increasing. Therefore the mixture model results in the dramati-
cally different shape (the upside-down bathtub shape). This phenomenon should
certainly be taken in account in reliability practice.

The described shape of the mixture failure rate was observed for a heteroge-
neous sample of miniature light bulbs [28]. The failure rate of the homogeneous
population of these light bulbs, however, follows the Weibull law. Therefore the
observed shape complies with the predicted one.
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Let again the mixing distribution be the gamma distribution with shape
parameter c and scale parameter b, whereas the baseline distribution be the
Gompertz distribution with the failure rate kðtÞ ¼ a expfbtg; a; b [ 0. Owing to
its computational simplicity, the gamma-frailty model is practically the only one
widely used in applications so far. Direct computation in accordance with
Eq. (5.12) for this baseline failure rate results in

kmðtÞ ¼
bc expfb tg

expfb tg þ bb
a � 1

� � : ð5:21Þ

If bb ¼ a, then kmðtÞ � bc. However, if bb [ a, then kmðtÞ increases to bc and
if bb\a, it decreases to bc (Fig. 5.2).

Thus, we are mixing exponentially increasing failure rates and as a result
obtaining a slowly increasing (decreasing) mixture failure rate, which converges to
a constant value.

5.3.2 Reliability Theory of Aging

Consider now a discrete frailty parameter, Z ¼ N with the Cdf F0ðnÞ � PðN � nÞ.
We will be interested in the following meaningful reliability interpretation.

bβ<a

bβ>a

t

λm(t)

bβ=a

Fig. 5.2 Gamma-Gompertz
mixture failure rate

Fig. 5.1 The mixture failure
rate for the Weibull baseline
distribution, c ¼ 2; a ¼ 1
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Let N be a random number of initially (at t ¼ 0) operating independent and
identically distributed components with constant failure rates k. Assume that these
components form a parallel system, which, according to Gavrilov and Gavrilova
[36], models the lifetime of an organism (generalization to the series-parallel
structure is straightforward). These authors also provide a biological justification
of the model. In each realization N ¼ n; n � 1, the degradation process of pure
death can be defined as just the number of failed components. When this number
reaches n, the death of an organism occurs. Denote by knðtÞ the mortality (failure)
rate, which describes Tn—the time to death for the fixed N ¼ n; n ¼ 1; 2; . . .
(n ¼ 0 is excluded, as there should be at least one operating component at t ¼ 0).
It is shown in Gavrilov and Gavrilova [36] that as t! 0, this mortality rate tends
to an increasing power function (the Weibull law), which is a remarkable fact. On
the other hand, for random N, similar to (5.2), (5.3) and (5.11, 5.12), the observed
(mixture) mortality rate is given as the following conditional expectation with
respect to N:

kmðtÞ ¼ E½kNðtÞjT [ t�; ð5:22Þ

where T, as usual, denotes the lifetime of interest. Therefore, as previously, kmðtÞ
is a conditional expectation (on condition that the system is operable at t) of a
random mortality rate kNðtÞ. Note that, for small t, this operation can approxi-
mately result in the unconditional expectation

kmðtÞ � E½kNðtÞ� ¼
X1
n¼1

PnknðtÞ; ð5:23Þ

where Pn � Pr½N ¼ n�, but the limiting transition, as t! 0, should be performed
carefully in this case. As t!1, we observe the following mortality plateau [34]:

kmðtÞ ! k: ð5:24Þ

This is due to the fact that the conditional probability that only one component
with the failure rate k is operating tends to 1 as t!1 (on condition that the
system is operating).

Assume now that N is Poisson distributed with parameter g (on condition that
the system is operable at t ¼ 0). Therefore

Pn ¼
expf�g ggn

n!ð1� expf�ggÞ ; n ¼ 1; 2; . . . :

It can be shown via direct integration that the time to death in our simplified
model has the following Cdf [55]:

FðtÞ ¼ Pr½T � t� ¼ 1� expf�g expf�ktgg
1� expf�gg : ð5:25Þ
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The corresponding mixture mortality rate is

kmðtÞ ¼
F0ðtÞ

1� FðtÞ ¼
gk expf�ktg

expfg expf�ktgg � 1
: ð5:26Þ

Performing, as t!1, the limiting transition in (5.26), we also arrive at the
mortality plateau (5.5).

In fact, the mortality rate given by Eq. (5.26) is far from the exponentially
increasing Gompertz law. The Gompertz law can erroneously follow (as in Gav-
rilov and Gavrilova [36]) from (5.23) if this approximation is used formally,
without considering a proper conditioning in (5.23). However, for some specific
values of parameters and sufficiently small t, exponential approximation can still
hold. The relevant discussion can be found in Steinsaltz and Evans [55].

5.4 Mixture Failure Rate for Large t

The failure (mortality) rate behavior for large t, is important for objects at the last
phase of their useful life (e.g., the above mentioned mortality plateaus). Among the
first to consider the limiting behavior of mixture failure rates for the continuous
mixtures were Clarotti and Spizzichino [23]. They showed that the mixture failure
rate for a family of exponential distributions with parameter a 2 ½a;1Þ converges
to the failure rate of the strongest population, which is a in this case. Block et al.
[17], Block et al. [14], and Li [44] extended this to a general case (see also [15]). As
the approach (and obtained important mathematical results) of these authors is very
general and some assumptions are rather restrictive, it does not provide specific
asymptotic relationship that can be used in practical analysis for mixed populations.
In order to be able to perform this analysis, Finkelstein and Esaulova [33] devel-
oped an approach that was applied to reasonably general survival model that allows
for explicit asymptotic relationships and covers (as specific cases) three most
popular in survival analysis frailty models: additive, proportional, and accelerated
life. The main results that were obtained using this approach are discussed below.
The corresponding proofs that are quite technical can be found in this paper.

Let T � 0 be a lifetime with the cdf FðtÞ, pdf f ðtÞ, and the failure rate kðtÞ. Let,
as previously, these functions be indexed by the realization of the frailty parameter
Z ¼ z, i.e., Fðt; zÞ; f ðt; zÞ; kðt; zÞ, respectively. Consider the following general
survival model:

Kðt; zÞ ¼ Aðz/ðtÞÞ þ wðtÞ; ð5:27Þ

where Kðt; zÞ �
R t

0 kðt; zÞ denotes the corresponding cumulative failure rate and
Að	Þ, wð	Þ and /ð	Þ are increasing differentiable functions of their arguments.
The meaning of relationship (5.27): we perform a scale transformation /ðtÞ in the
argument of the cumulated failure rate KðtÞ and ‘insert’ a frailty parameter. An
important feature of the model is that parameter z is a multiplier.
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This model includes a number of well-known survival analysis and reliability
specific cases, i.e.,
Additive Model: Let

AðuÞ � u; /ðtÞ ¼ t; wð0Þ ¼ 0:

Then

kðt; zÞ ¼ zþ w0ðtÞ; Kðt; zÞ ¼ zt þ wðtÞ: ð5:28Þ

PH (multiplicative) Model: Let

AðuÞ � u; /ðtÞ ¼ KðtÞ:

Then

kðt; zÞ ¼ zkðtÞ;

Kðt; zÞ ¼ zKðtÞ ¼ z

Z t

0

kðuÞdu:
ð5:29Þ

Accelerated Life Model: Let

AðuÞ � KðuÞ; /ðtÞ ¼ t:

Then

Kðt; zÞ ¼
Zzt

0

kðuÞdu ¼ KðztÞ; ð5:30Þ

kðt; zÞ ¼ zkðztÞ: ð5:31Þ

We are interested in asymptotic behavior (as t!1) of kmðtÞ. For simplicity of
notation (and, in fact, not loosing the generality), we will assume further that
wðtÞ ¼ 0.

Theorem 5.4 Let the cumulative failure rate Kðt; zÞ be given by Eq. (5.27)
wðtÞ ¼ 0ð Þ and let the mixing pdf pðzÞ; z 2 ½0;1Þ be defined as

pðzÞ ¼ zap1ðzÞ; ð5:32Þ

where a[ � 1 and p1ðzÞ; p1ð0Þ 6¼ 0 is a function bounded in ½0;1Þ and con-
tinuous at z ¼ 0. Assume also that /ðtÞ ! 1 as t!1 and that A(s) satisfies

Z1

0

expf�AðsÞgsads\1: ð5:33Þ

5.4 Mixture Failure Rate for Large t 155



Then

kmðtÞ� ðaþ 1Þ/
0ðtÞ

/ðtÞ ; ð5:34Þ

where, as usual, asymptotic notation aðtÞ� bðtÞ as t!1 means that
limt!1 aðtÞ=bðtÞ ¼ 1. As we had mentioned, another possible notation for (5.34)
is kmðtÞ ¼ ðaþ 1Þ/0ðtÞ=/ðtÞð1þ oð1ÞÞ:

The proof of this result is cumbersome and is based on Abelian-type theorems
for the corresponding asymptotic integrals. That is why the multiplicative form in
Aðz/ðtÞÞ is so important.

h

The specific case of this theorem for the multiplicative model (5.31) was inde-
pendently considered by Steinsaltz and Wachter [56]. Assumption (5.32) just states
the ‘form’ of the admissible mixing distribution and holds for the main lifetime
distributions, such as Weibull, gamma, truncated normal, etc. However, it does not
hold for a lognormal distribution, as the corresponding asymptote is proportional to
1=z when z! 0. Assumption (5.33) is a very weak one (weaker than just having a
finite expectation for a lifetime) and can be omitted in practical analysis.

A crucial feature of this result is that the asymptotic behavior of the mixture
failure rate depends only on the behavior of the mixing distribution in the
neighborhood of 0 and on the derivative of the logarithm of the scale function
/ðtÞ, i.e.,

ðlog /ðtÞÞ0 ¼ /0ðtÞ=/ðtÞ:

When pð0Þ 6¼ 0 and pðzÞ is bounded in ½0;1Þ, the result does not depend on the
mixing distribution at all, as a ¼ 0 in this case. Intuitively, the qualitative meaning
is quite clear: as t!1, only the most robust survivors are left and in, accordance
with (5.27), this corresponds to the small values of z (weak populations are dying
out first).

It is easy to see that for the multiplicative model (5.29), Eq. (5.34) reduces to

kmðtÞ�
ðaþ 1ÞkðtÞR t

0 kðuÞdu
: ð5:35Þ

and to

kmðtÞ�
aþ 1

t
ð5:36Þ

for the ALM (5.30), (5.31).
It should be noted that (5.36) is a really surprising result, as the shape of the

mixture failure rate for large t does not depend on the baseline distribution FðtÞ. It
is also dramatically different from the multiplicative case (5.35). This means that
the ‘nature’ of the ALM is such that it ignores’ the baseline distribution for large t.
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Comparing (5.35) and (5.36), we see that the latter never results in the
asymptotically flat observed failure rate (the mortality plateau in human mortality
studies), whereas the multiplicative model can have this possibility, as in the case
of the gamma-frailty model for the Gompertz distribution (see Eq. 5.21).

Note that, by direct integration, Eq. (5.21) can be generalized to the case of an
arbitrary (absolutely continuous) baseline distribution characterized by the failure
rate kðtÞ:

kmðtÞ ¼
ckðtÞ

bþ KðtÞ ¼
ckðtÞ

bþ
R t

0 kðuÞdu
: ð5:37Þ

It is clear that c ¼ aþ 1 for the gamma pdf and this formula perfectly comply
with the general asymptotic result (5.34) and a classical result by Vaupel et al. [63].

Let, for instance, pðzÞ be the uniform density in ½0; 1� and let also
kðtÞ ¼ expftg(a; b ¼ 1 for simplicity of notation). Then kðt; zÞ ¼ z expftg and

Z1

0

�Fðt; zÞpðzÞdz ¼ 1
x
ð1� expf�xgÞ;

Z1

0

f ðt; zÞpðzÞdz ¼ ðxþ 1Þ � expf�xg
x

þ 1
x2
ð1� expf�xgÞ

� �
;

where x ¼ expftg � 1 and x!1 as t!1. Therefore, in accordance with
Eq. (5.11),

lim
t!1

kmðtÞ ¼ 1:

The same limit holds for kmðtÞ in (5.37) for the considered specific values of
parameters. This example illustrates the fact that the asymptotic value of the
mixture failure rate does not depend on a mixing distribution if pð0Þ 6¼ 0.

Theorem 5.4 deals with the case when the support of a mixing distribution
includes 0, i.e., z 2 ½0;1Þ. In this case, the strongest population cannot usually be
properly defined. If, however, the support is separated from 0, the mixture failure
rate can tend to the failure rate of the strongest population as t!1. The fol-
lowing theorem [33] states reasonable conditions for this convergence (we assume,
for simplicity, as previously, that wðtÞ ¼ 0):

Theorem 5.5 Let, as in Theorem 5.4, the class c by Eq. (5.27), where /ðtÞ ! 1,
wðtÞ ¼ 0 and let A(s) be twice differentiable.Assume that, as s!1

A00ðsÞ
ðA0ðsÞÞ2

! 0 ð5:38Þ

and

sA0ðsÞ ! 1: ð5:39Þ
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Also assume that for all b; c [ a; b\c, the quotient A0ðbsÞ=A0ðcsÞ is bounded
as s!1. Finally, let the mixing pdf pðzÞ be defined in ½a;1Þ; a [ 0, bounded in
this interval and continuous at z ¼ a and pðaÞ 6¼ 0. Then

kmðtÞ� a/0ðtÞA0ða/ðtÞÞ: ð5:40Þ

The assumptions of this theorem are rather natural and hold at least for the
specific models under consideration and for the main lifetime distributions.
Assume additionally that the family of failure rates kðt; zÞ is ordered in z (as for
additive or multiplicative models), i.e.,

kðt; z1Þ\kðt; z2Þ; z1\z2; 8z1; z2 2 ½a;1�; a [ 0: ð5:41Þ

The right-hand side of (5.40) can be interpreted in this case as the failure rate of
the strongest population. Specifically, for the multiplicative model:

kmðtÞ� akðtÞ: ð5:42Þ

Thus, as intuition suggests, the mixture failure rate asymptotically does not
depend on a mixing distribution. A similar result holds also for the case when there
is a singularity in the pdf of the mixing distribution of the form:

pðzÞ ¼ ðz� aÞap1ðz� aÞ; ð5:43Þ

where a[ � 1 and p1ðz� aÞ is bounded, p1ð0Þ 6¼ 0.
Missov and Finkelstein [49] have generalized these results to the wider class of

mixing distributions. It turned out that the mixing pdf (5.32) in Theorem 5.4 can be
of a more general form

pðzÞ ¼ zaGðzÞp1ðzÞ;

where G(z) is a regularly varying function. Recall (Bingham et al. [11]) that a
positive function G(t) defined on ð0:1Þ is slowly varying at 0 if for every k [ 0,

lim
t!0

GðktÞ
GðtÞ ¼ 1:

Moreover, a positive function R(t) defined on ð0:1Þ is regularly varying at 0
with power �1\p\1, if

lim
t!0

RðtÞ
tpGðtÞ ¼ 1;

where the function G(t) is slowly varying at 0.
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5.5 Mortality Plateaus

As it was already mentioned, demographers had recently observed the deceleration
in human mortality at advanced ages which eventually results in human mortality
plateaus [58]. The most reasonable explanation of this fact is via the concept of
heterogeneity of human population which obviously takes place. The following
refers to the interpretation of our results for this application.

• As follows from Eq. (5.36), the ALM (5.31) never results in the asymptotically
flat failure rate. Moreover, it asymptotically tends to 0 and does not depend on a
baseline distribution, which is Gompertz for the case under consideration

• The only function g(t), for which gðtÞ=
R t

o gðuÞdu tends to a constant as t!1,
is the exponential function. Therefore, as follows from Relationship (5.35), the
asymptotically flat rate in the multiplicative model (5.29) can result via mixing
of a random lifetime distributed only in accordance with the Gompertz distri-
bution or in accordance with a distribution with the failure rate that asymptot-
ically converges to an exponential function.

• In accordance with Theorem 5.4, the admissible mixing distributions (i.e., the
distributions that can lead to the asymptotically flat mortality rate) are those with
behavior as za; a [ � 1 for z! 0. The behavior outside the neighborhood of 0
does not contribute to asymptotic properties of the failure rate. Therefore, the
power law (Weibull distribution), the gamma distribution, and some other dis-
tributions are admissible. Note that, when the mixing pdf is such that pð0Þ 6¼ 0
has a finite limit when z! 0 (as, e.g., for the exponential distribution), rela-
tionship (5.35) reduces to

kmðtÞ�
kðtÞR t

0 kðuÞdu

• And, therefore, the mixture mortality rate does not depend on the mixing dis-
tribution at all! The same result holds for, e.g., the mixing density that is
1=a; a [ 0 in ½0; a� and is 0 in ða;1Þ (uniform distribution).

In view of the foregoing discussion, the asymptotically flat rate (as for human
populations) can be viewed as an indication of:

• that the mixing model is multiplicative,
• that the underlying distribution is definitely Gompertz or asymptotically con-

verges to the Gompertz distribution,
• that the mixing pdf is proportional to za; z [ � 1, when z! 0, e.g., the gamma

distribution. The form of this distribution outside neighborhood of 0 has no
influence on the asymptotic behavior of kðtÞ.
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5.6 Inverse Problem

There can be different approaches to considering the inverse problem in mixing. In
view of the results of Sect. 5.4, one can be interested in defining the class of
mixing distributions that ‘produce’ the mixture failure rate of the form given by
(5.34). The following theorem [49] solves this problem.

Theorem 5.6 Let conditions of Theorem 5.4 hold and, therefore, Relation (5.34)
takes place.Then the pdf pðzÞ of the mixing (frailty) distribution satisfies for z! 0

R1
0 expf�Aðz/ðtÞÞgzp0ðzÞdzR1
0 expf�Aðz/ðtÞÞgpðzÞdz

� a: ð5:44Þ

Condition (5.44) is not easy to check. However, the following theorem [49]
gives a simple sufficient condition.

Theorem 5.7 Let pðzÞ be a regularly varying function defined by pðzÞ ¼ zaGðzÞ,
where a[ � 1 and p0ðzÞ be asymptotically monotone as z! 0. Then Relationship
(5.44) holds.

A well-known fact from survival analysis states that the failure data alone do
not uniquely define a mixing distribution and additional information (e.g., on
covariates) should be taken into account (a problem of nonidentifiability, as, e.g.,
in Tsiatis [59] and Yashin and Manton [66]). On the other hand, the following
specific inverse problem can be solved analytically, at least for additive and
multiplicative models of mixing [28]:

Given the mixture failure rate kmðtÞ and the mixing pdf pðzÞ, obtain the failure
rate kðtÞ of the baseline distribution.

This means that under certain assumptions any shape of the mixture failure rate
can be constructed by the proper choice of the baseline failure rate. To illustrate
this statement, consider the additive model (5.28):

�Fðt; zÞ ¼ expf�KðtÞ � ztg; f ðt; zÞ ¼ ðkðtÞ þ zÞ expf�KðtÞ � ztg: ð5:45Þ

Therefore, the mixture survival function in (5.10) can be written via the Laplace
transform as

�FmðtÞ ¼ expf�KðtÞ
Z1

0

expf�ztgpðzÞdz ¼ expf�KðtÞgp
ðtÞ; ð5:46Þ

where, p
ðtÞ ¼ E½expf�ztg� is the Laplace transform of the mixing pdf pðzÞ.
Therefore, Eq. (5.15) yields

kmðtÞ ¼ kðtÞ þ
R1

0 z expf�ztgpðzÞdzR1
0 expf�ztgpðzÞdz

¼ kðtÞ � d
dt

log p
ðtÞ ð5:47Þ

160 5 Heterogeneous Populations



and the solution of the inverse problem for this special case is given by the
following relationship:

kðtÞ ¼ kmðtÞ þ
d

dt
log p
ðtÞ ¼ kmðtÞ � E½Zjt�: ð5:48Þ

If the Laplace transform of the mixing distribution can be derived explicitly,
then Eq. (5.48) gives a simple analytical solution for the inverse problem. Assume,
e.g., that ‘we want’ the mixture failure rate to be constant, i.e., kmðtÞ ¼ c. Then the
baseline failure rate is obtained as

kðtÞ ¼ c� E½Zjt�:

The corresponding survival function for the multiplicative model (5.17) is
expf�zKðtÞg and the mixture survival function for this specific case is

�FmðtÞ ¼
Z1

0

expf�zKðtÞgpðzÞdz ¼ p
ðKðtÞÞ: ð5:49Þ

It is obtained in terms of the Laplace transform of the mixing distribution as a
function of the cumulative baseline failure rate KðtÞ. Therefore,

kmðtÞ ¼ �
d
dt

log p
ðKðtÞÞ: ð5:50Þ

The general solution to the inverse problem in terms of the Laplace transform is
also simple in this case. Note that,

p
ðKðtÞÞ ¼ expf�KmðtÞg; ð5:51Þ

where KmðtÞ denotes the cumulative mixture failure rate. Applying the inverse
Laplace transform L�1ð	Þ to both sides of this equation finally results in

kðtÞ ¼ K0ðtÞ ¼ d
dt

L�1ðexpf�KmðtÞgÞ: ð5:52Þ

The Laplace transform methodology in multiplicative and additive models is
usually very effective. It constitutes a convenient tool for dealing with mixture
failure rates when the Laplace transform of the mixing distribution can be obtained
explicitly. The exponential family [41] presents a wide class of such distributions.
The corresponding pdf is defined in this case as

pðzÞ ¼ expf�hzggðzÞ
gðhÞ ; ð5:53Þ

where g(z) and gðzÞ are some positive functions and h is a parameter. The function
gðhÞ plays the role of a normalizing constant ensuring that the pdf integrates to 1.
The gamma, the inverse Gaussian, and the stable distributions are relevant
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examples. Note that, the Laplace transform of pðzÞ depends only on the normal-
izing function gðzÞ [41], i.e.,

p
ðsÞ �
Z1

0

expf�szgpðzÞdz ¼ gðhþ sÞ
gðhÞ :

This means that under certain assumptions any shape of the mixture failure rate
can be constructed by the proper choice of the baseline failure rate. Specifically,
for the exponential family of mixing densities and the multiplicative model under
consideration, the mixture failure rate is obtained as

kmðtÞ ¼ �
d
dt

log
gðhþ KðtÞÞ

gðhÞ

¼ �kðtÞ
d

dðhþKðtÞÞ gðhþ KðtÞÞ
gðhþ KðtÞÞ :

ð5:54Þ

Therefore, the solution to the inverse problem can be obtained in this case as the
derivative of the following function:

KðtÞ ¼ g�1ðexpf�kmðtÞggðhÞÞ � h: ð5:55Þ

It can be easily calculated [28] that when the mixing pdf is gamma with
parameters a and b, the solution of the inverse problem is obtained as

kðtÞ ¼ b
a

kmðtÞ exp
KmðtÞ

a

� 	
: ð5:56Þ

Assume that the mixture failure rate is constant, i.e., kmðtÞ ¼ c. It follows from
(5.56) that for obtaining a constant kmðtÞ the baseline kðtÞ should be exponentially
increasing, i.e.,

kðtÞ ¼ b
a

c exp
ctÞ
a

� 	
:

But this is what we would really expect. As we already mentioned, this result is
really surprising: we are mixing the exponentially increasing family of failure rates
and arriving at a constant mixture failure rate.

5.7 The Failure Rate Dynamics in Heterogeneous
Populations

The mixture failure rate function and some other measures based on it (e.g., the
reliability function, the mean residual life function, etc.) are conventionally con-
sidered as measures of performance (or quality) of items in heterogeneous
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populations. However, if we pick an operable item at random from this population,
its individual failure rate at each instant of time can be considered as a random
variable, whereas the mixture failure rate is defined as its expectation. As in the
case of ‘ordinary’ random variables, other than expectation characteristics are also
important. The obvious first choice is the corresponding variance.

As an example, consider a system that should perform an important mission.
The quality of its performance can be described by the probability of operation
without failures during a mission time. If a mission is important and its failure
results, e.g., in substantial economic loss, then not only the population (mixture)
failure rate of a system that defines the average value of this probability, but the
deviations from this value due to heterogeneity of a population are of considerable
interest. As the weakest items are dying out first, the composition of the ordered
heterogeneous population is improving in the sense that proportions of stronger
items are increasing. However, does it mean that the ‘quality’ (from a broader
perspective) of the entire population is improving? Not necessarily, as this quality
can depend also on the variability characteristics to be discussed in this section.
Furthermore, when we are dealing with failures that may result in serious con-
sequences, more attention should be paid to the items with a high risk of failure,
i.e., the items with large failure rates. Therefore, the measures for quality of these
items should be also defined.

We consider a heterogeneous population of items (components) that consists of
different homogeneous subpopulations, that are modeled via the frailty Z. The
numbers of items in populations are supposed to be sufficiently large and thus our
problems can be statistically described in terms of infinite populations. As time
progresses, the failed items are discarded and therefore, the composition of the
population of survived items (which is, in fact, the conditional frailty ZjT [ t)
changes. Alternatively, an item is chosen at random from our heterogeneous
population and if it did not fail in ½0; tÞ, then our initial knowledge about its
‘quality’ which is described by the frailty Z is changing in accordance with
ZjT [ t (see Eq. (5.12) and the discussion after it).

For illustrating the dynamics in variability characteristics, consider the case of
n ¼ 2 subpopulations that can be generalized to the arbitrary finite n. Denote the
lifetime of a component from the strong subpopulation by TS and its absolutely
continuous Cdf, pdf, and the failure rate function by F1ðtÞ, f1ðtÞ and k1ðtÞ,
respectively. Similarly, the lifetime, the Cdf, the pdf, and the failure rate function
of a weak component are TW , F2ðtÞ, f2ðtÞ and k2ðtÞ, accordingly. Formal defini-
tions of the strong and weak subpopulations will be given after presenting the
necessary notation. The initial ðt ¼ 0Þ composition of our mixed population is as
follows: the proportion of strong items is p, whereas the proportion of weak items
is 1� p, which means that the distribution of the discrete frailty Z with realizations
z1 and z2 in this case is

pðzÞ ¼
p; z ¼ z1

1� p; z ¼ z2

(
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and z1, z2 (z1\z2), correspond to the strong and the weak subpopulations,
respectively. In accordance with Eqs. (5.1)–(5.3):

The mixture (population) survival function is

FmðtÞ ¼ pF1ðtÞ þ ð1� pÞF2ðtÞ:

The mixture (observed) failure rate is

kmðtÞ ¼
pf1ðtÞ þ ð1� pÞf2ðtÞ

p�F1ðtÞ þ ð1� pÞ�F2ðtÞ
¼ pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ; ð5:57Þ

where the time-dependent probabilities are

pðtÞ ¼ p�F1ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

; 1� pðtÞ ¼ ð1� pÞ�F2ðtÞ
p�F1ðtÞ þ ð1� pÞ�F2ðtÞ

:

Thus, the composition of our population is changing in time in accordance with
the following distribution of Zjt � ZjT [ t:

pðzjtÞ ¼
pðtÞ; z ¼ z1

1� pðtÞ; z ¼ z2

(
:

Assume now that the populations are ordered (and therefore, the weak and the
strong subpopulations are defined accordingly) in the sense of the failure rate
ordering:

k2ðtÞ � k1ðtÞ; t � 0:

Then, it is easy to see that the proportion of strong items

pðtÞ ¼ p
pþ ð1� pÞ�F2ðtÞ=�F1ðtÞ

;

is increasing as t is increasing. In the context of burn-in, e.g., it means that the
quality of a population in the defined sense is improving as the time of burn-in is
increasing.

Equation (5.57) defines the observed (mixture) failure rate, which is obviously
an averaged characteristic. However, the above mixture setting implies that an
operable item at time t can be described by a random failure rate kRðtÞ with
realizations k1ðtÞ and k2ðtÞ:

kRðtÞ ¼
k1ðtÞ; with probability pðtÞ;
k2ðtÞ; with probability 1� pðtÞ:

(
ð5:58Þ

Thus, we can also interpret (5.57) as the expectation of the random failure rate
kRðtÞ

kmðtÞ ¼ E½kRðtÞ�:
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Expectation is obviously an important characteristic, but, as in the case of
‘ordinary random variables’ we might be interested in moments and, first of all, in
Var½kRðtÞ� as the variability measure of the population structure. This measure is
important as we want to know (or control) the ‘risks’ (i.e., large deviations from
the mean) that can occur in field usage. Therefore, kmðtÞ and Var½kRðtÞ� can
describe the quality of our heterogeneous population. It is reasonable to assume
that the larger these characteristics are, the worse is the corresponding quality.
Furthermore, at many instances, along with the absolute variability measure
Var½kRðtÞ�, the relative variability is of interest. Thus, in addition to Var½kRðtÞ�, we
will consider the measure for the ‘relative deviation’, i.e., the corresponding
coefficient of variation:

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=E½kRðtÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=kmðtÞ:

We will derive now general formulas for the measures of interest. In order to
obtain Var½kRðtÞ�, in accordance with (5.58), it is easier to consider the supple-
mentary random variable kRCðtÞ, which is equal to k1ðtÞ � k2ðtÞ with probability
pðtÞ and to 0 with probability 1� pðtÞ. Then

Var½kRðtÞ� ¼ Var½kRCðtÞ� ¼ ðk1ðtÞ � k2ðtÞÞ2pðtÞð1� pðtÞÞ; ð5:59Þ

and

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kRðtÞ�

p
=kmðtÞ ¼

ðk2ðtÞ � k1ðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
pðtÞk1ðtÞ þ ð1� pðtÞÞk2ðtÞ

: ð5:60Þ

As we know, the shape of the mixture failure rate is very important in
describing heterogeneous populations. In accordance with the foregoing consid-
erations, the shape of the functions Var½kRðtÞ� and CV ½kRðtÞ� is also of interest. For
simplicity, we consider first the mixture of two exponential distributions. Let
k2ðtÞ ¼ k2 [ k1ðtÞ ¼ k1. Then, as a special case of Eq. (5.59),

Var½kRðtÞ� ¼ ðk1 � k2Þ2pðtÞð1� pðtÞÞ;

and

k0mðtÞ ¼ �ðk1 � k2Þ2pðtÞð1� pðtÞÞ ¼ �Var½kRðtÞ�: ð5:61Þ

Thus, the slope of the mixture failure rate in this case is equal to the variance of
the random failure rate (with the negative sign). We can consider the following
two cases:

(i) Let the initial proportion of strong components be larger than 0.5 (p [ 0:5);
then pðtÞð1� pðtÞÞ strictly decreases in t from pð0Þð1� pð0ÞÞ. Therefore,
kmðtÞ and Var½kRðtÞ� strictly decrease and, therefore, the population becomes
‘better’ (the failure rate is smaller) and more ‘stable’ (the variance is smaller).
Observe that
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CV 0½kRðtÞ� ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
ðk1pðtÞ þ k2ð1� pðtÞÞÞ2

� ½ðk2 � k1Þp0ðtÞf1� 2pðtÞgðk1pðtÞ þ k2ð1� pðtÞÞÞ þ 2ðk2 � k1Þ2p0ðtÞpðtÞð1� pðtÞÞ�

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtÞð1� pðtÞÞ

p
ðk1pðtÞ þ k2ð1� pðtÞÞÞ2

ðk2 � k1Þp0ðtÞfk2ð1� pðtÞÞ � k1pðtÞg:

Therefore, as p0ðtÞ is positive (pðtÞ is increasing):

CV 0½kRðtÞ�[ 0) k2

k1
[

pðtÞ
1� pðtÞ :

Obviously, pðtÞ=ð1� pðtÞÞ strictly increases to 1 as t increases. Thus, when

k2

k1
[

pð0Þ
1� pð0Þ ; ð5:62Þ

CV ½kRðtÞ� increases and then decreases with one change point t
 such that
k2=k1 ¼ pðt
Þ=ð1� pðt
ÞÞ. When

k2

k1
\

pð0Þ
1� pð0Þ ;

then CV ½kRðtÞ� monotonically decreases.

(ii) Let the initial proportion of strong components be smaller or equal to 0.5
(p � 0:5). As it was stated, the proportion of remaining weak components
1� pðtÞ is always decreasing in time. Therefore, the first guess based on
intuition would be that Var½kRðtÞ� (similar to (i)) is also decreasing. However,
it is easy to see that at time t such that pðtÞ ¼ 0:5, the function, Var½kRðtÞ� (and
as follows from (5.61), jk0mðtÞj as well) has its maximum and only after this
point it strictly decreases. In this case, Inequality (5.62) always holds and thus
CV ½kRðtÞ� increases and then decreases with one change point t
 such that
k2=k1 ¼ pðt
Þ=ð1� pðt
ÞÞ.

Equation (5.59) can be used for analyzing the shape of Var½kRðtÞ� for time-
dependent failure rates. Specifically, when k2ðtÞ � k1ðtÞ is increasing and p � 0:5,
then pðtÞð1� pðtÞÞ first strictly increases and then decreases. Therefore, Var½kRðtÞ�
initially strictly increases.

When k1ðtÞ � k2ðtÞ is decreasing:

(i) If p [ 0:5, then pðtÞð1� pðtÞÞ strictly decreases and Var½kRðtÞ� strictly
decreases.

(ii) If p � 0:5, then, pðtÞð1� pðtÞÞ strictly increases in ½0; t
Þ and decreases in
½t
;1Þ, where t
 is the solution of the following equation: pðtÞ ¼ 0:5. Thus
Var½kRðtÞ� strictly decreases in ½t
;1Þ.
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Equation (5.60) can be used for analyzing the shape of CV ½kRðtÞ�. For instance,
if k2ðtÞ � k1ðtÞ is decreasing and kmðtÞ is increasing, then CV ½kRðtÞ� is strictly
decreasing or it initially increases and then monotonically decreases.

Example 5.1 Let k1ðtÞ ¼ 1, k2ðtÞ ¼ 5 and p ¼ 0:2. Then the mixture failure rate
kmðtÞ is given by Fig. 5.3.

Assume that an item has survived to age 0.4. As follows from the graph:
kmð0:4Þ � 3:0. How much can we rely on this value? To answer this question, it is
reasonable to consider Var½kRðtÞ� given by Fig. 5.4.

We can see that Var½kRðtÞ� has a maximum at t � 0:4 (pð0:4Þ � 0:5). This
means that at t ¼ 0:4, approximately 50 % of survived items have the failure rate
with realization 5.0, and the other 50 % will have it 1.0, whereas the observed
(mixture) failure rate kmðtÞ is 3.0. However, as t increases from 0.4, we may more
and more ‘rely’ on kmðtÞ as variability decreases.

The above example is rather interesting: We may think that the population
would become more and more ‘stable’ (monotonically) as kmðtÞ (monotonically)

Fig. 5.3 Mixture Failure
Rate kmðtÞ

Fig. 5.4 Var½kRðtÞ� and
CV ½kRðtÞ�

5.7 The Failure Rate Dynamics in Heterogeneous Populations 167



approaches the failure rate of the strongest subpopulation. However, it is not true,
as the variance is not monotonic. The similar conclusion follows when considering
CV ½kRðtÞ� (Fig. 5.4).

Similar consideration s can be applied to continuous mixtures defined by Eqs.
(5.10)–(5.12). Let our subpopulations be ordered in the sense of the failure rate
ordering:

kðt; z1Þ � kðt; z2Þ; z1\z2; 8z1; z2 2 ½0;1Þ; t � 0: ð5:63Þ

Denote the Cdfs of pðzÞ and pðzjtÞ by PðzÞ and PðzjtÞ, respectively, and by Zjt
the conditional frailty (on condition that the item did not fail in ½0; tÞ). The fol-
lowing simple result describes the important property of the family fZjtgt � 0 .

Theorem 5.8 Let our subpopulations be ordered in the sense of the failure rate
ordering (5.64). Then the family of random variables Zjt � ZjT [ t is DLR
(decreasing in the sense of the likelihood ratio) in t 2 ½0;1Þ.

Proof Recall that a random variable X (with the pdf f(t)) is smaller than a random
variable Y (with the pdf gðtÞ) in the sense of the likelihood ratio ordering (LRO) if
f ðtÞ=gðtÞ is decreasing in t (see also (2.71)).Therefore, the DLR property of the
family fZjtgt � 0 means that for all t2 [ t1, Zjt2 is smaller than Zjt1 in the sense of
the LRO.

In accordance with the definition of the conditional mixing distribution (5.12) in
the mixing model (5.11), the ratio of the corresponding densities for different
instants of time is

Lðz; t1; t2Þ ¼
pðzjt2Þ
pðzjt1Þ

¼
�Fðt2; zÞ

R1
0

�Fðt1; zÞpðzÞdz
�Fðt1; zÞ

R1
0

�Fðt2; zÞpðzÞdz
:

Therefore, monotonicity in z of Lðz; t1; t2Þ is defined by the function

�Fðt2; zÞ
�Fðt1; zÞ

¼ exp �
Zt2

t1

kðu; zÞdu

8<
:

9=
;;

which, owing to ordering (5.63), is decreasing in z for all t2 [ t1.
h

As the LRO ordering is stronger than the usual stochastic ordering, it means that
PðzjtÞ is increasing in t for each z [ 0. Therefore, in accordance with (5.63), the
proportion of ‘better’ (with smaller failure rates) items is increasing.

For tractability, consider now the important specific case of the multiplicative
model: kðt; zÞ ¼ zkðtÞ. Therefore,

kRðtÞ ¼ ZtkðtÞ;
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where Zt ¼ Zjt and

kmðtÞ ¼ E½kRðtÞ� ¼ kðtÞ
Z1

0

zpðzjtÞdz ¼ kðtÞE½Zjt�:

Observe that

Var½kRðtÞ� ¼ ðkðtÞÞ2Var½Zt� ¼ ðkðtÞÞ2Var½Zjt�;

and thus,

CV ½kRðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Zjt�

p
E½Zjt� ¼ CV ½Zjt�:

Furthermore, as E0½Zt� ¼ E0½Zjt� ¼ �kðtÞVar½Zjt�\0;

k0mðtÞ ¼ k0ðtÞE½Zjt� � ðkðtÞÞ2Var½Zjt�:

Specifically, when the population is a mixture of exponential distributions, we
have

k0mðtÞ ¼ �ðkðtÞÞ
2Var½Zjt�:

Example 5.2 Consider continuous mixture of exponentials. Let the conditional
failure rate and the mixing distribution be kðt; zÞ ¼ z and pðzÞ ¼ h expf�hzg,
respectively. Then

kmðtÞ ¼ E½kRðtÞ� ¼ E½Zjt� ¼ 1=ðhþ tÞ;

and

Var½kRðtÞ� ¼ Var½Zjt� ¼ 1=ðhþ tÞ2:

Thus

CV ½kRðtÞ� ¼ 1:

Obviously, the quality of the population is defined only by E½Zjt�, which is
decreasing in t. Therefore, the failure rates are ‘improving’ and the variance as
well. However, the CV is constant, and this characteristic often more adequately
describes variability especially when both the failure rate and its variance are
decreasing in time.
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5.8 Stochastic Intensity for Minimal Repairs
in Heterogeneous Populations

In Sect. 2.5, we have defined and described the crucial for the reliability of
repairable systems notion of minimal repair. This was done for items from
homogeneous populations. It is really a challenge to define and study minimal
repair in heterogeneous populations.

Consider a system with an absolutely continuous time to failure Cdf FðtÞ and
the failure rate kðtÞ, which starts operating at t ¼ 0. Assume that the repair action
is performed instantaneously upon failure. Recall that the repair is usually quali-
fied as perfect if the Cdf of the repaired object is FðtÞ (as good as new) and as
minimal at time x, if its Cdf is:

FðtjxÞ � 1� 1� Fðt þ xÞ
1� FðxÞ ð5:64Þ

(as bad as old), which is equivalent to Eq. (2.26). Thus the minimal repair restores
our system (in terms of the corresponding distribution) to the state it had prior to
the failure.

Sometimes, upon failure, we can observe additional information about the state
of an object (e.g., the structure of a system). This can allow us to define a more
general type of repair, which is usually called the information-based (or physical)
minimal repair. The information-based minimal repair brings our object back to
the state (to be defined by the relevant information) it had just prior to the failure
[4, 5, 10, 19, 26, 27, 50].

It is really challenging to generalize the notion of minimal repair to items from
heterogeneous populations. The corresponding attempt was performed in Finkel-
stein [27] and further elaborated in Cha and Finkelstein [20]. Our presentation in
this section will mostly follow the latter paper.

Let failures of repairable items be repaired instantaneously. Then the process of
repairs can be described by a stochastic point process. A convenient way of
mathematical description of these processes is using the concept of the stochastic
intensity (the intensity process) kt; t � 0 defined by Relationship (2.12). A clas-
sical example of kt is the intensity process generated by the renewal process
(perfect, instantaneous repairs):

kt ¼
X1
n¼0

kðt � TnÞIðTn � t \ Tnþ1Þ; T0 ¼ 0;

where T1 \ T2 \ T3 \ . . .; are the random failure times. Another standard
example is the ‘deterministic stochastic intensity’ kt ¼ kðtÞ which defines the
nonhomogeneous Poisson process (NHPP) of repairs with rate (intensity) kðtÞ. It is
well known that this example can also be interpreted as the process of minimal
repairs.

170 5 Heterogeneous Populations

http://dx.doi.org/10.1007/978-1-4471-5028-2_2
http://dx.doi.org/10.1007/978-1-4471-5028-2_2
http://dx.doi.org/10.1007/978-1-4471-5028-2_2


As in the previous sections, we formally describe heterogeneous populations in
the following way. Let T � 0 be a lifetime r.v. with the Cdf
F(t) �FðtÞ � 1� FðtÞð Þ. Assume that FðtÞ is indexed by a r.v. Z, i.e.,

PðT � tjZ ¼ zÞ � PðT � tjzÞ � Fðt; zÞ

and that the pdf f ðt; zÞ exists. Then the corresponding failure rate kðt; zÞ is
f ðt; zÞ=�Fðt; zÞ. Let Z be a frailty with support in ½a; b�; 0 � a \ b � 1, and the
pdf pðzÞ. The above setting leads naturally to considering mixtures of distributions,
which are useful for describing heterogeneity [see Eqs. (5.10–5.12)].

We can now define two types (scenarios) of minimal repair for heterogeneous
populations, but in a more general context than in Finkelstein [27]. The first type
of minimal repair does not employ any additional information and, therefore, the
failed item is replaced by the statistically identical item. As the failure time dis-
tribution in this case is just the mixture (5.10), the stochastic intensity for the
corresponding process of minimal repairs of this type is obviously equal to the
mixture failure rate, i.e.,

kt ¼ kmðtÞ; t � 0:

The second type of minimal repair (already information-based) restores an item
to a statistically identical item with the same value of frailty Z. It can be realized in
practice by performing the second ‘operation’ resulting in the ‘classical’ minimal
repair when during the repair only a small part of a large system is replaced. It is
natural to suggest that the state of an item is also defined by the corresponding
realization of the frailty parameter (i.e., if Z ¼ z before the failure, it should be
z after the failure). Thus (5.64) is modified to:

Fðt; zjxÞ � 1� 1� Fðt þ x; zÞ
1� Fðx; zÞ :

Our main attention here focuses on this type of minimal repair, as it is the most
‘interesting’ from both a practical and a theoretical points of view.

Let us come back to the definition of the intensity process (2.12) and modify it
with respect to the ‘heterogeneous’ case when the orderly point process is indexed
by the frailty parameter Z. Observe that the stochastic intensity kt (unconditional
with respect to frailty Z) can be specified now as:

kt ¼ lim
Dt!0

E½Pr½Nðt; t þ DtÞ ¼ 1jHt;Z��
Dt

¼ E lim
Dt!0

Pr½Nðt; t þ DtÞ ¼ 1jHt�; Z�
Dt

� �

¼ E½kt;Z �;

ð5:65Þ

where the expectation is with respect to the conditional distribution ZjHt and
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kt;Z � lim
Dt!0

Pr½Nðt; t þ DtÞ ¼ 1jHt; Z�
Dt

: ð5:66Þ

Then kt;z Z ¼ zð Þ in (5.66) can be interpreted as the conditional (with respect to
Z) stochastic intensity of the orderly point process, indexed by frailty Z.

We will specify now our point process. As before, let Z be the frailty of an item
randomly selected at time t ¼ 0 from our heterogeneous population. Upon each
failure we perform the minimal repair of the second type. Note that, in this case, if
Z ¼ z at time t ¼ 0, then the corresponding realization is kt;z ¼ kðt; zÞ for all t � 0
Z. Therefore, for the second type of minimal repair, kt;Z in (5.66) is now given by

kt;Z ¼ kðt; ZÞ; t � 0;

and, in accordance with (5.65), the corresponding stochastic intensity kt is the
expectation of kðt; ZÞ with respect to the distribution of ZjHt. This operation
means that, although the value of Z is chosen at t ¼ 0 and is fixed, its distribution
is updated with time as information about failures and survival times emerges (see
the detailed procedure in what follows).

We see that stochastic modeling for the second type of minimal repair is
dramatically different from that for the first type, as information about the oper-
ational history (failure times and survival times) updates the conditional frailty
distribution ZjHt.

In accordance with our considerations, it is clear that the stochastic intensity
kt ¼ E½kt;Z � defined in (5.65) for t 2 ½0; t1Þ, where t1 is the realization of the failure

time T1, is just the mixture failure rate (5.12), i.e., k1
mðtÞ ¼ kmðtÞ, as the infor-

mation at hand is just the initial distribution pðzÞ (and the fact that the item has
survived in ½0; tÞ).

Consider now the next interval ½t1; t2Þ. Given the additional information (in
addition to the initial distribution pðzÞ) that an item has failed at t ¼ t1, the pdf of
frailty Z ¼ z (we repair an item to the state, defined by the same value of frailty) is

p02ðzÞ �
kðt1; zÞ exp �

R t1
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t1

0 kðs; zÞds
� �

	 pðzÞdz
: ð5:67Þ

Thus the ‘initial frailty distribution’ (at the start of the second cycle) just after
the minimal repair is given by (5.67). Furthermore, the ‘remaining survival
function’ at time t ¼ t1 is given by ½Fðt1 þ u; zÞ=Fðt1; zÞ�. Then, the conditional
frailty distribution ZjHt in ½t1; t2Þ is

½Fðt; zÞ=Fðt1; zÞ� 	 p02ðzÞR b
a ½Fðt; zÞ=Fðt1; zÞ� 	 p02ðzÞdz

¼
kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
;

and the corresponding stochastic intensity is, in accordance with (5.65),
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k2
mðtÞ ¼

Zb

a

kðt; zÞ 	
kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
dz; in ½t1; t2Þ: ð5:68Þ

Using another useful (Bayesian) interpretation, we can say that the item fails at
time t1 and, after repair, survives in ½t1; t�. Thus, the corresponding probability
(conditional probability given Z ¼ z at t ¼ 0) is

kðt1; zÞ expf�
Zt1

0

kðs; zÞdsg	 exp �
Z t

t1

kðs; zÞds

8<
:

9=
;dt1

¼ kðt1; zÞ exp �
Z t

0

kðs; zÞds

8<
:

9=
;dt1:

Given this information, the conditional frailty distribution ZjHt should be
updated as

kðt1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞR b
a kðt1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞdz

;

which yields (5.68).
Consider now the intensity process in ½t2; t3Þ. As we know that the item has failed

at times t1 and t2 and after minimal repairs has survived to t1-t2, the corresponding
probability (conditional probability given Z ¼ z at t ¼ 0, divided by dt1dt2) is

kðt1; zÞ exp �
Zt1

0

kðs; zÞds

8<
:

9=
; 	 kðt2; zÞ exp �

Zt2

t1

kðs; zÞds

8<
:

9=
; 	 exp �

Z t

t2

kðs; zÞds

8<
:

9=
;

¼ kðt1; zÞkðt2; zÞ exp �
Z t

0

kðs; zÞds

8<
:

9=
;:

Given this information, the conditional frailty distribution ZjHt should be
updated as

kðt1; zÞkðt2; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞR b
a kðt1; zÞkðt2; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞdz

:

Thus, in ½t2; t3Þ, as before,

k3
mðtÞ ¼

Zb

a

kðt; zÞ 	
kðt1; zÞkðt2; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞkðt2; zÞ exp �
R t

0 kðs; zds
� �

	 pðzÞdz
dz; in ½t2; t3Þ:
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More generally, for t 2 ½tn�1; tnÞ, the conditional frailty distribution ZjHt is
defined by

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
ð5:69Þ

and, therefore,

kn
mðtÞ ¼

Zb

a

kðt; zÞpnðzjt1; . . .; tn�1Þdz in ½tn�1; tnÞ: ð5:70Þ

Based on (5.69) and (5.70), the corresponding stochastic intensity can now be
defined as

kt ¼
X1
n¼1

kn
mðtÞIðTn�1 � t \ TnÞ; T0 � 0: ð5:71Þ

The following result presents a useful ordering of stochastic intensities for
minimal repairs of the first and the second types (Cha and Finkelstein [20]).

Theorem 5.9 Let the values of kðt; zÞ be ordered with respect to z: for all
z1; z2 2 ½a; b�; t � 0

kðt; z1Þ\kðt; z2Þ; if z1\z2:

Then

kmðtÞ � kt; t � 0;

where kt is the stochastic intensity for the second type of minimal repair in (5.71).

Proof Note that if X� stY and gð	Þ is any increasing function, then gðXÞ� st gðYÞ
and, accordingly, E½gðXÞ� � E½gðYÞ�. Observe that both kmðtÞ and kt are expec-
tations of kðt; ZÞ with respect to the mixing distributions

pðzjtÞ ¼ pðzÞ Fðt; zÞR b
a Fðt; zÞpðzÞdz

and

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz
;

respectively. Then it is sufficient to show that

PðvjtÞ � Pnðvjt1; . . .; tn�1Þ; ð5:72Þ
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for all n � 1, 0 \ t1 \ . . . \ tn�1 \ t, where PðzjtÞ and Pnðvjt1; . . .; tn�1Þ are the
corresponding Cdfs. Observe that

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞFðt; zÞpðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞFðt; zÞpðzÞdz

¼ kðt1; zÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞR b
a kðt1; zÞ 	 	 	 kðtn�1; zÞpðzjtÞdz

:

It is clear that there exist a � z
ða; vÞ � v and v � z
ðv; bÞ � b such that

Zv

a

kðt1; zÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞdz ¼ kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z

ða; vÞÞ

Zv

a

pðzjtÞdz

and

Zb

v

kðt1; zÞÞ 	 	 	 kðtn�1; zÞ 	 pðzjtÞdz ¼ kðt1; z
ðv; bÞÞ 	 	 	 kðtn�1; z

ðv; bÞÞ

Zb

v

pðzjtÞdz:

Thus,

Pnðvjt1; . . .; tn�1Þ ¼
kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z
ða; vÞÞ 	

R v
a pðzjtÞdz

kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z
ða; vÞÞ 	
R v

a pðzjtÞdzþ kðt1; z
ðv; bÞÞ 	 	 	 kðtn�1; z
ðv; bÞÞ 	
R b

v pðzjtÞdz

�
Zv

a

pðzjtÞdz ¼ PðvjtÞ:

Since kðt1; zÞ 	 	 	 kðtn�1; zÞ is an increasing function of z,

kðt1; z
ða; vÞÞ 	 	 	 kðtn�1; z

ða; vÞÞ � kðt1; z


ðv; bÞÞ 	 	 	 kðtn�1; z

ðv; bÞÞ;

and, therefore, Inequality (5.72) is justified.
h

Example 5.3 Suppose that Fðt; zÞ is an exponential distribution with parameter
kðt; zÞ ¼ zk and let pðzÞ be an exponential pdf in ½0;1Þ with parameter h. Then
direct integration in (5.11) gives: kmðtÞ ¼ k=ðkt þ hÞ. Observe that

pnðzjt1; . . .; tn�1Þ �
kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �

R t
0 kðs; zÞds

� �
	 pðzÞR b

a kðt1; zÞ 	 	 	 kðtn�1; zÞ exp �
R t

0 kðs; zÞds
� �

	 pðzÞdz

¼ ðzkÞn�1
expf�zktg 	 h expf�hzgR1

0 ðzkÞ
n�1

expf�zktg 	 h expf�hzgdz
;

and, from (5.69) and (5.70),
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kn
mðtÞ ¼

R1
0 ðzkÞ

n
expf�ðkt þ hÞzgdzR1

0 ðzkÞ
n�1

expf�ðkt þ hÞzgdz
¼ n

k
kt þ h

:

Finally,

k1 ¼
X1
n¼1

n
k

kt þ h
IðTn�1 � t \ TnÞ; T0 � 0:

Thus, kmðtÞ � kt, t � 0, holds.
Denote by HmðtÞ and HkðtÞ the mean numbers of repairs (failures) in ½0; tÞ that

correspond to the minimal repair processes of type 1 and type 2, respectively. The
following result obviously follows from Theorem 5.9: HmðtÞ � HkðtÞ.

5.9 Preventive Maintenance in Heterogeneous Populations

The previous section dealt with the minimal repair as a specific type of corrective
maintenance (CM). Now we will consider the preventive maintenance in hetero-
geneous populations. Our presentation mostly follows Cha and Finkelstein [21],
whereas the developed approach is related to that of Sect. 5.8.

Preventive maintenance (PM) for non-repairable systems is a schedule of
planned maintenance actions aimed at the prevention of breakdowns and failures of
deteriorating systems. By ‘‘non-repairable’’ in this context we mean that the failure
of a system is considered as an ‘end event’ and, therefore, the CM is not performed.
We shall use this term in the defined sense throughout this section. Detailed surveys
on the PM models for deteriorating systems can be found in, e.g., Valdez-Flores and
Feldman [60] and Wang [65]. However, almost all models, procedures, and
approaches described in the literature and those applied in reliability practice deal
only with the case when the items come from homogeneous populations. Therefore,
as in the case of the minimal repair in the previous section, it is quite a challenge to
generalize PM to the case of heterogeneous populations of items.

As previously, we deal with the population described by the continuous mix-
tures setting (5.10)–(5.12). If the items are not maintained during operation, then
their susceptibility to failures can be described by the ‘ordinary’ failure rate (2.4)
(homogeneous case) or (5.12) (heterogeneous case). However, when maintenance
actions that can affect reliability of items are performed, the corresponding effects
should be taken into account. In the following, we will assume that the times of
maintenance are negligible.

Consider first, reliability of a non-repairable item from a homogeneous popu-
lation under PM (without CM). As PM affects its lifetime, we need to define new
reliability measures in this case. Let TP be the time to failure of item ‘under
preventive maintenance’ and Ht be the maintenance history in ½0; tÞ, i.e., the times
of maintenance actions and the stochastic effects of the corresponding mainte-
nances. Then, in order to describe the susceptibility to failure at time t, it is natural
to define the following conditional failure rate:

176 5 Heterogeneous Populations

http://dx.doi.org/10.1007/978-1-4471-5028-2_2


kcðtÞ � lim
Dt!0

Pr½t \ TP � t þ DtjHt; TP [ t�
Dt

; t � 0 ð5:73Þ

Note that when maintenance is deterministic (times and effect), kcðtÞ is also
deterministic. However, if, e.g., times of maintenances are random, then kcðtÞ is
the stochastic process. The following example for the ‘homogeneous items’ is
crucial for our further discussion:

Example 5.4 A non-repairable item with a lifetime described by the increasing
failure rate kðtÞ starts its operation at t ¼ 0. If it operable, it is preventively
maintained at times ktPM, k ¼ 1; 2; . . .. Assume that each preventive maintenance
does not change the ‘shape’ of the function kðtÞ, but the age of the item is reduced
in accordance with the factor 0 \ a \ 1 (the reduced age is called the ‘virtual
age’). Therefore, PM has the effect of decreasing the failure rate as compared to an
item that is not preventively maintained [28, 42]). Under these assumptions, the
‘virtual age’ of the item just after the first PM is atPM, just after the second PM is
aðatPM þ tPMÞ ¼ atPM þ a2tPM; . . .; and the virtual age just after the ðn� 1Þth PM,
is

tn�1 ¼ atPM þ a2tPM þ . . .þ an�1tPM

¼ ½að1� an�1Þ=ð1� aÞ�tPM; n ¼ 2; 3; . . . :
ð5:74Þ

Suppose that the item under this PM schedule has not failed until time t,
t 2 ½ðn� 1ÞtPM; ntPMÞ meaning that it has been preventively maintained for
ðn� 1Þtimes at ktPM, k ¼ 1; 2; . . .; ðn� 1Þ, whereas the last PM was performed at
ðn� 1ÞtPM. Thus, the virtual age of this item at time t is given by
tn�1 þ ðt � ðn� 1ÞtPMÞ. Due to the PM assumptions, the statistical state of the
maintained item at time t is the same as that of an identical (without maintenance)
item with age tn�1 þ ðt � ðn� 1ÞtPMÞ. Accordingly, the conditional failure rate
(5.73) that takes into account the described specific history Ht is given by

kcðtÞ ¼ kðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; t 2 ½ðn� 1ÞtPM; ntPMÞ:

or, equivalently, letting t0 � 0:

kcðtÞ ¼
X½t=tPM�þ1

n¼1

kðtn�1 þ ðt � ðn� 1ÞtPMÞÞIððn� 1ÞtPM � t \ ntPMÞ: ð5:75Þ

where Ið	Þ is the corresponding indicator and ½t=tPM� denotes the integer part of
t=tPM. Therefore, if the original failure rate kðtÞ is increasing, then kcðtÞ � kðtÞ, for
all t and accordingly, PMs increase reliability of our item, i.e.,

exp �
Z t

0

kcðuÞdu

8<
:

9=
; � exp �

Z t

0

kðuÞdu

8<
:

9=
;:
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We will now study the PM considered in Example 5.4, but for items from a
heterogeneous population described by (5.10)–(5.12). Suppose that an item is
randomly selected from this population and is preventively maintained at times
ktPM, k ¼ 1; 2; . . .. Preventive maintenance does not change the shape of the failure
rate of an item but reduces its age in the same way as described by (5.74). Then,
following the similar reasoning as in Example 5.4, one may construct the condi-
tional failure rate by simply replacing kðtÞ in (5.75) with kmðtÞ:

kcðtÞ ¼
X½t=tPM�þ1

n¼1

kmðtn�1 þ ðt � ðn� 1ÞtPMÞÞIððn� 1ÞtPM � t \ ntPMÞ: ð5:76Þ

However, distinct from the homogeneous case, it is now not clear at all how this
age reducing operation can be performed. In what follows, we will investigate the
appropriateness of kcðtÞ in (5.76) in defining the actual susceptibility of the sur-
vived item to failure at time t. For this purpose, we will suggest the operational
profile that results in (5.76) and explain why it is unrealistic in practice. Then, we
will suggest alternative profile with a different form of the conditional failure rate,
which can be already justified in practice. Finally, the corresponding comparison
of two profiles will be performed.

Operation profile 1 An item is chosen at random from our population and
starts operation at t ¼ 0. Furthermore, a statistically identical ‘‘NEW’’ population
is ‘switched on’ at time tPM � atPM (the delayed start). At time t ¼ tPM, if the
selected item has not failed yet, it is replaced by an item randomly selected from
the ‘‘delayed’’ population with age atPM. Then the replaced one starts its opera-
tion. At time t ¼ 2tPM, if the replaced item has not failed yet, it is replaced by an
item randomly selected from another ‘delayed’ population that started its opera-
tion at 2tPM � ða2tPM þ atPMÞ and, therefore, its age is now a2tPM þ atPM. Then the
replaced item starts its operation, and so on.

We will construct the corresponding conditional failure rate for the described
Operation profile 1 and will show that it is eventually given by Eq. (5.76). First, it
is necessary to have in mind that the conditional failure rate defined in (5.73) can
be expressed for the heterogeneous case as

kcðtÞ ¼ lim
Dt!0

E½Pr½t \ TP � t þ DtjHt; TP [ t; Z��
Dt

¼ E lim
Dt!0

Pr½ t \ TP � t þ DtjHt; TP [ t; Z�
Dt

� �

¼ E½kt;Z �;

ð5:77Þ

where the expectation is with respect to the conditional distribution ZjðHt; TP [ tÞ
and

kt;Z � lim
Dt!0

Pr½t \ TP � t þ DtjHt; TP [ t; Z�
Dt

: ð5:78Þ
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Then kt;z Z ¼ zð Þ in (5.78) can be interpreted as the conditional (with respect to
Z in addition to Ht) failure rate of the item, indexed by the frailty Z.

Denote by k1
mðtÞ the failure rate kcðtÞ in the interval ½0; tPMÞ (defined by (5.77)

for the Operation profile 1). It obviously equals the mixture failure rate in this
interval, i.e.,

kcðtÞ � k1
mðtÞ ¼ kmðtÞ; in ½0; tPMÞ;

as information at hand is just the initial distribution pðzÞ (and the fact that the item
has survived in ½0; tÞ).

As the survived item is replaced by an item randomly selected from the statis-
tically identical population (but with the initial age atPM) at t ¼ tPM, the conditional
failure rate kt;Z in ½tPM; 2tPMÞ is

kt;Z ¼ kðatPM þ ðt � tPMÞ; ZÞ; ð5:79Þ

where Z is the frailty randomly selected at the previous PM. Consider now the
conditional distribution ZjðHt; TP [ tÞ. Note that at t ¼ tPM, the initial distribution
of Z is

p02ðzÞ ¼
�FðatPM; zÞpðzÞR1

0
�FðatPM; zÞpðzÞdz

ð5:80Þ

and we know that the item has additionally survived in ðtPM; t�. Therefore, the
corresponding survival function (for Z ¼ z) is

�FðatPM þ ðt � tPMÞ; zÞ
�FðatPM; zÞ

:

After updating, the conditional distribution ZjðHt; TP [ tÞ becomes

�FðatPM þ ðt � tPMÞ; zÞpðzÞR1
0

�FðatPM þ ðt � tPMÞ; zÞpðzÞdz
: ð5:81Þ

Therefore, in accordance with (5.78), the failure rate k2
mðtÞ in ½tPM; 2tPMÞ for the

described operation is

kcðtÞ � k2
mðtÞ

¼
Z1

0

kðatPM þ ðt � tPMÞ; zÞ
�FðatPM þ ðt � tPMÞ; zÞpðzÞR1

0
�FðatPM þ ðt � tPMÞ; zÞpðzÞdz

dz; in ½tPM; 2tPMÞ:

Similar to (5.81), the conditional distribution ZjðHt; TP [ tÞ for the interval
t 2 ½ðn� 1ÞtPM; ntPMÞ is

�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞR1
0

�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞdz
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and we eventually arrive at

kcðtÞ � kn
mðtÞ

¼
Z1

0

kðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞ
�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞR1

0
�Fðtn�1 þ ðt � ðn� 1ÞtPMÞ; zÞpðzÞdz

dz; in ½ðn� 1ÞtPM; ntPMÞ;

n ¼ 1; 2; 3; . . ., where t0 � 0 and tn�1 are defined in (5.74).
Taking into account Eq. (5.12),

kn
mðtÞ ¼ kmðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; n ¼ 1; 2; 3; . . . ð5:82Þ

and thus, kcðtÞ for the Operation profile 1 is given by (5.76). However, this strategy
can hardly be realized in the PM practice for many reasons. For instance, even if
the item selected at time t ¼ 0 has been described by the frailty Z ¼ z1, its value
can be changed to Z ¼ z2, z1 6¼ z2 just after the first PM at tPM, which is unrealistic.

Then, what is the proper conditional failure rate for our PM policy? It is more
realistic to assume that the original frailty variable Z ¼ z selected at time t ¼ 0 is
preserved throughout the whole operation of an item:

Operation profile 2 An item is chosen at random from our population and
starts operation at t ¼ 0. The original frailty that is ‘acquired’ at t ¼ 0 is pre-
served during the PM actions that follow the pattern of the ‘virtual age structure’
defined in (5.74).

As the PMs are applied to the same item, this operation profile is definitely
more adequate than the first one. However, the construction of the corresponding
failure rate is completely different in this case.

In ½0; tPMÞ, the failure rate is still the same:

kcðtÞ � k1
mðtÞ ¼ kmðtÞ; in ½0; tPMÞ;

as the information at hand is the same as before.
Consider now the second cycle ½tPM; 2tPMÞ. As the survived item was randomly

selected at time t ¼ 0 from the heterogeneous population, the conditional failure
rate kt;Z in ½tPM; 2tPMÞ is given by (5.79), where Z is the frailty ‘randomly selected’
at t ¼ 0. At t ¼ tPM, the survived item has the frailty Z ¼ z with the pdf that in
accordance with (5.12) is

p02ðzÞ �
FðtPM; zÞpðzÞR1

0 FðtPM; zÞpðzÞdz
:

We also have the information that the item with the decreased age atPM after the
PM has additionally survived in ðtPM; t�. Therefore, the corresponding survival
function is

Fðt1 þ ðt � tPMÞÞ; zÞ
Fðt1; zÞ

:
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In accordance with (5.12), the conditional distribution ZjðHt; TP [ tÞ is given
now by

½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞR1
0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞdz

and the failure rate k2
mðtÞ in ½tPM; 2tPMÞ, in accordance with (5.77), is

k2
mðtÞ ¼

Z1

0

kðt1 þ ðt � tPMÞÞ; zÞ 	
½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞR1

0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 p02ðzÞdz
dz

¼
Z1

0

kðt1 þ ðt � tPMÞÞ; zÞ 	
½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 FðtPM; zÞpðzÞR1

0 ½Fðt1 þ ðt � tPMÞÞ; zÞ=Fðt1; zÞ� 	 FðtPM; zÞpðzÞdz
dz:

In a similar way, for t 2 ½ðn� 1ÞtPM; ntPMÞ,

kn
mðtÞ ¼

Z1

0

kðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ 	
½Fðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ=Fðtn�1; zÞ�R1

0 ½Fðtn�1 þ ðt � ðn� 1ÞtPMÞÞ; zÞ=Fðtn�1; zÞ�

�
FðtPM; zÞ 	 Fðt1þtPM;zÞ

Fðt1;zÞ
	 	 	 Fðtn�2þtPM;zÞ

Fðtn�2;zÞ
pðzÞ

FðtPM; zÞ 	 Fðt1þtPM;zÞ
Fðt1;zÞ

	 	 	 Fðtn�2þtPM;zÞ
Fðtn�2;zÞ

pðzÞdz
;

ð5:83Þ

where tn�1, n ¼ 1; 2; 3; . . ., t0 � 0ð Þ are defined in (5.74).
Observe that conditional failure rates for both operation profiles can now be

uniformly written as

kJ
cðtÞ ¼

X½t=tPM�þ1

n¼1

kn
mJðtÞIððn� 1ÞtPM � t \ ntPMÞ; J ¼ I; II;

where Ið	Þ is the corresponding indicator and J ¼ I; II refers to the number of the
profile. Thus, kn

mIðtÞ corresponds to kn
mðtÞ in (5.82) and kn

mIIðtÞ to kn
mðtÞ in (5.83).

Therefore, in practice, kII
c ðtÞ (not kI

cðtÞ) should be applied for the described type
of PM. However, assume that the user, who is performing the PM (via reducing the
age of items by the method described previously), does not know (or does not take
into account) the heterogeneity structure of the population and considers it as
homogeneous with the corresponding time to failure distribution FmðtÞ and the
failure rate kmðtÞ. Then he is using the failure rate kI

cðtÞ to assess reliability of
items in operation. What is the consequence of this error? The following theorem
answers to this question.
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Theorem 5.10 Let the values of kðt; zÞ: be ordered with respect to z: for all
z1; z2 2 ½0;1�; t � 0:

kðt; z1Þ\ kðt; z2Þ if z1 \ z2:

Then

kII
c ðtÞ � kI

cðtÞ; for all t � 0:

The proof of this theorem is rather straightforward (although technical) and can
be found in Cha and Finkelstein [21].

h

It follows from this theorem that using kI
cðtÞ instead of the ‘proper’ kII

c ðtÞ
eventually results in the overestimation of the failure rate of items under operation.
Practically, this may cause unnecessary frequent PMs and therefore, additional
redundant costs.

Example 5.5 Suppose that kðt; zÞ is strictly increasing in t for each z (e.g.,
kðt; zÞ ¼ zkt; k[ 0). An item is randomly selected from the heterogeneous pop-
ulation and it is preventively maintained at times ktPM, k ¼ 1; 2; . . .. Let s be the
mission time of the item in field operation. If the mission is successful, a gain
K [ 0 is obtained, whereas if the mission is not completed (a failure in ½0; sÞ), a
cost cf [ 0 is incurred (K [ cf ). Furthermore, the cost for each PM is cp [ 0.
Then, the following cost function, which is the function of tPM, can be constructed.

cðtPMÞ ¼
s

tPM

 �
cp þ cf 	 PðTp � sÞ � K 	 PðTp [ sÞ

¼ s
tPM

 �
cp � ðK þ cf Þ 	 exp �

Zs

0

kII
c ðuÞdu

8<
:

9=
;þ cf ;

ð5:84Þ

where \s=tPM [ is the largest integer which is strictly less than s=tPM. The
problem is to find the optimal t
PM which satisfies

cðt
PMÞ ¼ min
tPM2ð0;1Þ

cðtPMÞ

It is reasonable to consider only tPM 2 ð0; s� as cðtPMÞ ¼ cðsÞ, for all
tPM 2 ðs;1Þ. When tPM ! 0 ½s=tPM� ! 1ð Þ, obviously,
exp �

R s
0 kII

c ðuÞdu
� �

! expf�kmð0Þsg, which implies that limtPM!0 cðtPMÞ ¼ 1.

On the other hand, cðsÞ ¼ cf � ðK þ cf Þ exp �
R s

0 kmðuÞdu
� �

. Therefore, there
should be an optimal t
PM 2 ð0; sÞ depending on the parameters involved, e.g.,
when s is large enough and K is relatively large compared with cf and cp.
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5.10 Population Mortality at Advanced Ages
(Demographic Application)

In Sects. 5.4 and 5.5, we have briefly discussed asymptotic behavior of mixture
failure rates as t!1. In the current section, we will deal with this problem from
a different view point and in more detail [31].

The shape of the failure rate (force of mortality) at advanced ages especially for
human populations has attracted a considerable interest in the last decades when
more and more centenarians and super centenarians have been recorded. The
International Database on Longevity (http://www.supercentenarians.org/) offers
the detailed information on thoroughly validated cases of super centenarians.
Gampe [35] has used these data to estimate the human force of mortality after the
age of 110. Her analysis revealed that human mortality between ages 110 and 114
levels off regardless of gender. The widely used explanation of this fact is by
employing the corresponding fixed frailty models that account for heterogeneity of
populations. Beard [7, 8] (see also Vaupel et al. [63]) has considered the Gompertz
(baseline)-gamma-frailty model, which results in the asymptotically flat hazard
rate. Note that, the exponentially increasing hazard rate of the Gompertz distri-
bution is the only baseline function that can ‘produce’ this shape in the framework
of the multiplicative frailty model (see Sect. 5.3.1), which can be considered as
another justification of the uniqueness and importance of this distribution for
human mortality modeling. As follows from the results of Sect. 5.4, the gamma
distribution of frailty is not so unique in this respect and all probability density
functions f ðzÞ that behave as za; a[ 1 when z! 0 are equivalent in this sense.

The intuitive meaning of the deceleration of mortality at advanced ages in this
context is simple and meaningful at the same time: the oldest-old mortality in
heterogeneous populations with properly ordered subpopulations is defined by the
small values of frailty, as the subpopulations with larger values of frailty (and,
therefore, larger values of the failure rate) are dying out first.

The first question to be answered is what common statistical distributions are
characterized by the asymptotically flat failure rate? The exponential distribution
that is often used for statistical analysis of non-degrading objects is obviously not
relevant for our topic. The most popular distribution of the desired type is the
inverse Gaussian distribution. It is well known that it describes the distribution of
the first passage time for the Wiener process with drift. Although its sample paths
are nonmonotone and even can be nonpositive, the inverse Gaussian distribution
was widely used, e.g., in reliability analysis of stochastic deterioration (aging) in
engineering objects. It was also applied in vitality models for modeling the life-
span of organisms [3, 45], where the initial vitality (resource) of organisms is
‘consumed’ in the course of life in accordance with the Wiener process with drift.
This model was also studied in the path-breaking papers by Aalen and Gjessing [1]
and Steinsaltz and Evans [55] as an example highlighting the meaning and
properties of the corresponding quasistationary distributions for this particular
case. Our goal in this section is more modest: to exploit further some relevant
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distributional properties in the context of stochastic ordering of lifetimes of sub-
populations in heterogeneous populations. However, the combination of these two
approaches can hopefully be considered as the basis for the future research on
statistical inference in heterogeneous populations with underlying stochastic pro-
cesses (e.g., the Wiener process).

The other example of a distribution with asymptotically flat hazard rate is the
Birnbaum-Saunders distribution [12] that was also derived as a distribution of the
first passage time for the corresponding deterioration process and, therefore, is a
good candidate for vitality models as well. We also consider the gamma process as
a possible model of deterioration (with monotone sample paths), although the
failure rate in this case is decreasing to 0 as t!1. It should be noted, however,
that the initial increase in the failure rates for all these models is not exponential,
as in the case of the Gompertz distribution and, therefore, the possibilities of the
corresponding mortality modeling for human populations for intermediate ages
(30–90 years) are obviously limited.

5.10.1 Fixed and Evolving (Changing) Heterogeneity

Let FðtÞ; f ðtÞ, and kðtÞ be the Cdf, the pdf, and the failure rate (force of mortality)
for some infinite homogeneous population that characterize the corresponding
random lifetime T � 0. As previously, by heterogeneity of a population we mean
that it consists of a finite or non-finite number of homogeneous subpopulations that
differ in some respect to be discussed. For instance, in the multiplicative frailty
model of the form kðt; ZÞ ¼ ZkðtÞ, the difference between subpopulations is
modeled directly by the differences in failure rates: for two realizations z2 [ z1,
this difference is ðz2 � z1ÞkðtÞ. Thus, the multiplicative frailty model describes the
ordering of subpopulations in the sense of the hazard rate ordering (2.70). More
generally, the smaller is the value of z, the larger is the lifetime of the subpopu-
lation Tz in the appropriate stochastic sense (e.g., (2.69), (2.70) or (2.71)):

Tz1 � Tz2 ; z1 � z2: ð5:85Þ

As previously in this chapter, we will understand the fixed heterogeneity
(frailty) of a population as:

Heterogeneity in lifetimes of the corresponding homogeneous subpopulations that
is defined by the appropriate stochastic ordering.

This also means that, if randomization of a parameter (parameters) of a lifetime
distribution leads to the corresponding stochastic ordering, which formally is not
always the case, then this operation can be also interpreted in terms of the fixed
frailty modeling. For example, the Gompertz Cdf Fðt; a; bÞÞ is a function of two
parameters, and the corresponding failure rate is:

kðt; a; bÞ ¼ aebt: ð5:86Þ
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If we randomize a, whereas b is fixed, then (taking care, of course, of the
corresponding baseline constant), we obviously arrive at the multiplicative frailty
model (and to the asymptotically flat rate when the distribution of frailty is,
e.g., gamma), which illustrates ordering (2.70). We just want to emphasize the fact
that in this specific model, frailty acts multiplicatively and directly on the failure
rate, which is not the case in general even when the hazard rate ordering (2.70)
holds. Some relevant aspects of frailty modeling for the bivariate case will be
considered later.

In accordance with our definition, the fixed heterogeneity (frailty) is described
only by ordered subpopulation lifetimes. What can happen, if apart from the
information on failure times (the black box point of view), we possess some
information or adopt a model on a failure process or mechanism (the process point
of view)? In this case, another type of heterogeneity, which is usually referred to as
evolving (or changing) (see, e.g., Li and Anderson [45]) comes into play. This type
of heterogeneity usually does not lead to ordering of lifetimes in the described here
sense. However, it characterizes an important feature of a model, which can be
useful for further analysis.

In order to illustrate our point, consider the model for vitality loss (fixed initial
value) that will be treated in detail further in this section. The loss of vitality of an
organism (deterioration) is modeled by the Wiener process with negative drift, in
which the time to death is determined by the first passage time to the zero
boundary. It is well known that the variance of the Wiener process is increasing
linearly in time and if the drift is positive, the mean is also linearly increasing.
However, due to the boundary, the most vulnerable organisms (or items in reli-
ability engineering applications) are dying out first and linear functions that cor-
respond to the non-boundary case ‘decelerate’. Actual shapes depend on
parameters of the model (see the graphs in Li and Anderson [45] for the corre-
sponding shapes for the specific values of parameters). Thus we do not see here
any frailty parameters or ordered (in the defined in this section sense) lifetimes, but
we observe the changing in time mean and variability in the survived population.
And this is how the evolving heterogeneity should be understood:

Variability in sample paths of the underlying process of deterioration.

In this section, however, we are mostly interested in the fixed heterogeneity of
lifetimes and the evolving heterogeneity of processes will be ‘hidden’ in lifetime
distributions. We feel that this ‘distributional approach’ in the context of ran-
domization of parameters and of the corresponding ordering of lifetimes was not
sufficiently elaborated in the literature so far. For instance, for the first passage
time models to be considered further, randomization of the initial vitality of an
organism and of the corresponding drift parameter of the Brownian motion defi-
nitely illustrates this ordering, as the larger is the vitality and (or) the smaller is the
drift parameter, the larger is the lifetime in some suitable stochastic sense to be
discussed. Note that, there can be other situations when randomization is relevant
but does not lead to the ordered subpopulations.
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5.10.2 Fixed Heterogeneity

Equations (5.10)–(5.12) describe the standard statistical mixture (or the fixed
frailty) model for an item and for the collection of items (population) as well. As
was discussed in the previous subsection, we understand heterogeneity as the
property of a population that consists of ordered homogeneous subpopulations
(ordered lifetimes Tz, defined by Inequality (5.85)). But what type of ordering is
sufficient for our reasoning? As we are looking at the failure rates, the first guess
would be that this should be (2.70). How can we interpret in mathematical terms
the well-known and intuitively clear property: ‘‘the weakest populations are dying
out first’’ and the resulting mortality deceleration with time? To answer these
questions, denote, as previously, by PðzÞ the Cdf of Z and by PðzjtÞ the Cdf that
corresponds to the density pðzjtÞ. Therefore, the deceleration can be a consequence
of the increasing in t distribution function PðzjtÞ [28]. This would mean that
PðzjtÞ tends to be more concentrated around small values of Z � 0 as time
increases, which corresponds to stronger populations. The following theorem
proves this result.

Theorem 5.11 Let stochastic ordering (5.85) in the sense of the failure rates hold.
Then PðzjtÞ is a non-decreasing function of t for each fixed z.

Proof. It follows from (5.12) that

PðzjtÞ ¼
R z

0
�Fðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

:

It is easy to see that the derivative of this function is nonpositive if
R z

0
�F0tðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

�
R1

0
�F0tðt; uÞpðuÞduR1

0
�Fðt; uÞpðuÞdu

:

Therefore, it is sufficient to show that the function:

Aðt; zÞ ¼
R z

0
�F0tðt; uÞpðuÞduR z

0
�Fðt; uÞpðuÞdu

is nonincreasing in z. As �F0tðt; zÞ ¼ �lðt; zÞ�Fðt; zÞ, inequality A0zðt; zÞ � 0 is
equivalent to the following one:

lðt; zÞ
Zz

0

�Fðt; uÞpðuÞdu �
Zz

0

lðt; uÞ�Fðt; uÞpðuÞdu;

which obviously follows from Ordering (5.85) which should be understood in the
sense of the hazard rate ordering.

h
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Consider now the bivariate frailty model. We will need the following consid-
erations for analyzing asymptotic failure rates for vitality models of the next
subsection. Let Z1 and Z2 be interpreted as non-negative random variables with
supports in ½0;1Þ. Similar to the univariate case,

PðT � tjZ1 ¼ z; Z2 ¼ z2Þ � PðT � tjz1; z2Þ ¼ Fðt; z1; z2Þ

and

kðt; z1; z2Þ ¼
f ðt; z1; z2Þ
�Fðt; z1; z2Þ

Assume that Z1 and Z2 have the joint pdf pðz1; z2Þ. The mixture failure rate is
defined in this case as [28]:

kðtÞ ¼ f ðtÞ
FðtÞ ¼

R1
0

R1
0 f ðt; z1; z2Þpðz1; z2Þdz1dz2R1

0

R1
0

�Fðt; z1; z2Þpðz1; z2dz1dz2

¼
Z1

0

Z1

0

kðt; z1; z2Þpðz1; z2jtÞdz1dz2;

ð5:87Þ

where the corresponding conditional pdf (on condition T [ t) is

pðz1; z2jtÞ ¼ pðz1; z2Þ
�Fðt; z1; z2ÞR1

0

R1
0

�Fðt; z1; z2Þpðz1; z2Þdz1dz2
: ð5:88Þ

Equation (5.87) is a general result and can be analyzed for some specific cases.
For instance, it can be easily shown that when we assume the independence of
frailties:

pðz1; z2Þ ¼ p1ðz1Þp2ðz2Þ

and the competing risks for the failure model:

Fðt; z1; z2Þ ¼ 1� �F1ðt; z1Þ�F2ðt; z2Þ;

the population failure rate is just the sum kðtÞ ¼ k1ðtÞ þ k2ðtÞ of the corresponding
‘univariate failure rates’.

Although it is difficult to analyze kðtÞ in (5.87) in full generality, certain
qualitative considerations that will be very helpful in the next subsection can be
stated. Indeed, let us first fix the second frailty Z2 ¼ z2. Then the corresponding
failure rate is defined by the univariate frailty model

kðt; z2Þ ¼
Z1

0

lðt; z1; z2Þpðz1; z2jtÞdz1: ð5:89Þ

Thus, at the first stage, we have selected from our overall heterogeneous
population the heterogeneous subpopulation that corresponds to Z2 ¼ z2
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z2 \ Z2 � z2 þ dz2ð Þ and have defined its failure rate. As our goal is to analyze
the failure rate, at the second stage, we consider our overall population as a
‘continuous collection’ of homogeneous subpopulations with failure rates given by
(5.89). Then we can analyze kðtÞ again in the univariate manner. For instance,
assume that the family kðt; z2Þ is ordered in z2 (the smaller values of z2 correspond
to the smaller values of kðt; z2Þ). Therefore, the deceleration in mortality due to
‘the weakest populations are dying out first’ takes place. Specifically, let kðt; z2Þ
for each z2 decreases (nonincreases) at least, asymptotically when t!1. It is
well known that the corresponding population (mixture) failure rate is strictly
decreasing in this case (see, e.g., Ross [54]). Thus, we have described the fol-
lowing result [31]:

Theorem 5.12 Let frailty Z1 ¼ z1 Z2 ¼ z2ð Þ in the bivariate frailty model be first
fixed. Assume that the corresponding univariate frailty model (with respect to Z2

(Z1) results in the decreasing ordered failure rates for all subpopulations.
Then ‘allowing’ random Z1 (Z2), results in the strictly decreasing population

failure rate.
The formal proof of the validity of the two-stage procedure is straightforward

and is based on the representation of the bivariate density pðz1; z2Þ as a product
p1ðz1jZ2 ¼ z2Þp2ðz2Þ and on the similar representation for the conditional density:

pðz1; z2jtÞ ¼ p1ðz1jZ2 ¼ z2; T [ tÞp2ðz2jtÞ:

The latter seems intuitively evident, and can be immediately obtained formally
from Eqs. (5.87), (5.88). Theorem 2 then follows, as the (univariate) mixture of
distributions with decreasing (nonincreasing) failure rates is characterized by the
strictly decreasing failure rate.

h

Example 5.6 An important application that illustrates Theorem 2 deals with the
Gompertz law of mortality (5.86). It is well known that randomization of a (e.g.,
via the gamma distribution of the frailty) results in the mortality plateau as t!1.
Thus, randomization of b (second stage) results in the decreasing force of mortality
as t!1. Therefore, if we observe the mortality plateau for some population that
follows the Gompertz-gamma model, then there should not be noticeable heter-
ogeneity in this population due to parameter b.

The described multistage approach can be applied in a similar way to the case
when there are more than 2 frailties or parameters of distributions that can be
randomized. It is possible that all failure rates from the ordered family converge
asymptotically (as t!1) to one curve (specifically, to a constant). Therefore,
the population failure rate also tends to this curve which will also be illustrated in
the next subsection.

The foregoing discussion will help us to analyze the shape of the failure rate for
some examples of vitality models. We will focus mostly on the vitality model
described by the Wiener process with drift [3, 45, 64]. Parameters of lifetime
distributions after randomization will act as fixed frailties that define the
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corresponding ordered subpopulations. This interpretation adds some simple and
useful additional reasoning from the distributional point of view to the process
point of view approach developed by Aalen and Gjessing [1] and Steinsaltz and
Evans [55].

5.10.3 Vitality Models and Lifetime Distributions

Linear process of degradation. We start with the simplest vitality model that will
be used as an explanatory example for highlighting certain properties and
approaches.

Let v0 [ 0 be the deterministic initial (at t ¼ 0) vitality of an organism, which
is monotonically decreasing with t in accordance with the simplest stochastic
process:

Vt ¼ v0 � Rt; ð5:90Þ

where R is a positive random variable with the Cdf S(t). For each realization
R = r, (5.90) can model the linear decline in physiological functions of organisms
noted by Strehler and Mildvan [57] and in numerous subsequent publications.
However, exponential and logarithmic models for this decline can be also
considered.

Death occurs when Vt reaches 0. Denote the corresponding lifetime by TR.
Therefore, the Cdf that describes this lifetime is

FRðtÞ ¼ Pr½TR � t� ¼ Pr½R � v0=t� ¼ 1� Sðv0=tÞ:

Assume that R is gamma-distributed with the pdf agxg�1e�ax=CðgÞ with the
scale parameter a [ 0 and the shape parameter g[ 0. Then the pdf fRðtÞ ¼ F0RðtÞ
has the form of the inverse gamma distribution:

fRðtÞ ¼
ðv0aÞ
CðgÞ t�g�1e�v0a=t: ð5:91Þ

We will analyze the shape of the corresponding hazard rate using the ‘classic’
Glazer’s theorem [37], formulated in a slightly more general form by Marshall and
Olkin [48] as can be seen from Theorem 2.1 in Chap. 2. We will intensively use
this result and other relevant considerations in what follows.

The essential fact to be exploited is that the behavior of the failure rate kðtÞ is
related to the behavior of the derivative of the logarithm of the density of a lifetime
distribution F(t), namely,

gðtÞ ¼ � d log f ðtÞ
dt

¼ � f 0ðtÞ
f ðtÞ :
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The failure rate kRðtÞ that corresponds to (5.91) can be easily analyzed with the
help of Theorem 2.1. Indeed, as limt!1 fRðtÞ ¼ 0, it follows that
limt!1 kRðtÞ ¼ 0, whereas

lim
t!1

kRðtÞ ¼ lim
t!1

fRðtÞ=�FRðtÞ ¼ lim
t!1
� d log fRðtÞ

dt
¼ 0

and kRðtÞ is bell-shaped with a maximum at t ¼ 2v0a=ðgþ 1Þ.
This simple example, however, can be helpful for discussing the notion of

heterogeneity that we adopt. If we consider the model as a black box with the
lifetime described by the Cdf FRðtÞ, then by definition, the corresponding popu-
lation is homogeneous. However, in view of the model (5.90), we can identify the
corresponding subpopulations for each value of R ¼ r that will be definitely
ordered (in this case the lifetimes that correspond to each realization R ¼ r are
deterministic, and therefore, can be ordered accordingly). Thus, our infinite pop-
ulation can be considered as heterogeneous in the described sense.

The considered vitality model results in the vanishing at the infinity failure rate.
If we are interested in explaining mortality plateaus that has been observed in
human and other populations, then we must look at other, more realistic vitality
models. The first candidate for that is when the simplest stochastic process Rt is
substituted by the more advanced stochastic model given by the Wiener process
with drift.

Wiener process with drift. We modify the degradation model (5.90) with the
fixed initial vitality v0 to

Vt ¼ v0 � Rt;

Rt ¼ rt þWt;
ð5:92Þ

where Rt; t � 0 is the Wiener process with drift, r is a drift parameter and
Wt; t � 0 is the standard Wiener process with normally distributed values (for each
fixed t) with mean 0 and variance r2t.

It is well known (see, e.g., [24]) that the probability distribution for the first
passage time (when Rt reaches the boundary v0 for the first time) is defined by the
inverse Gaussian distribution with the pdf:

fRðtÞ � fRðt; v0; r; rÞ ¼
v0

r
ffiffiffiffiffiffi
2p
p t�3=2 exp �ðv0 � rtÞ2

2r2t

( )
: ð5:93Þ

The exact expression for the corresponding failure rate, kRðtÞ � lRðt; v0; r; rÞ,
is complicated and, therefore, as our goal is just to analyze its shape, we will use
Theorem 2.1. It is easy to derive from (5.93) that

gRðtÞ ¼ �
d log fRðtÞ

dt
¼ 3

2t
þ r2

2r2
� v2

0

2r2t2
: ð5:94Þ
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Note that, (5.93) is written in parameterization v0; r; r. However, reparame-
terization: k ¼ r2=r2, x ¼ rv0=r2 leads to the standard two-parameter form of the
inverse Gaussian distribution (which we need for stating some useful properties):

fRðt; k;xÞ ¼
kx

r
ffiffiffiffiffiffi
2p
p ðktÞ�3=2

exp �ðx� ktÞ2

2kt

( )
: ð5:95Þ

It immediately follows from (5.94) that the failure rate tends to a constant when
t!1(mortality plateau):

lim
t!1

kRðtÞ ¼ lim
t!1
� d log fRðtÞ

dt
¼ k

2
¼ r2

2r2
: ð5:96Þ

It is also obvious that limt!0 kRðtÞ ¼ 0. The ‘rest of the shape’ of kRðtÞ is
defined by Theorem 2.1: kRðtÞis increasing for t 2 ½0 � t2�, where t2 � t1 ¼
2v2

0=3r2 and is asymptotically decreasing to the plateau for t � t2. This form of the
hazard rate for the inverse Gaussian distribution was first described by Chhikara
and Folks [22] using straightforward calculus and asymptotic bounds. We, how-
ever, rely on a general Theorem 2.1 that can be used for analysis of other distri-
butions as well.

Although the ‘underlying physics’ of the inverse Gaussian distribution is given
by the Wiener process with drift, we cannot identify now the corresponding
subpopulations in the sense that we have defined earlier. Therefore, the corre-
sponding population in this ‘black-box’ analysis should be considered as homo-
geneous and there is no (fixed) heterogeneity in the defined sense so far.

From (5.95) it follows that k is the scale parameter. Therefore, obviously, the
corresponding lifetimes are decreasing in k in the sense of the usual stochastic
ordering (2.69), i.e., for the fixed x:

FRðk1t; xÞ � Fðk2t; xÞ; k1 � k2; t 2 ½0;1Þ: ð5:97Þ

This is a simple general fact. However, for the specific case of inverse Gaussian
distribution, it can be shown that the stronger hazard rate ordering (2.70) also takes
place [48], which means:

lRðt; k1;xÞ ¼ k1lRðk1t; x1Þ � k2lRðk2t; x2Þ ¼ kRðt; k2;xÞ;
k1 � k2; t 2 ½0;1Þ:

As k ¼ r2=r2, the distribution of the first passage time fRðt; k;xÞ does not
change when we change r and r proportionally. Thus the mechanism of the failure
process driven by the Wiener process with drift is such that, e.g., the increase in
the drift parameter is compensated by the proportional increase in the standard
deviation r. This is a rather unexpected observation, however, as stated, it is a
consequence of the considered specific setting. Strictly speaking, as parameters k
and x are ‘dependent’ the foregoing orders hold only asymptomatically for large
t and this is how we will understand it in what follows.
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After discussing the issue of stochastic ordering, we can now qualitatively
analyze the shape of kRðt; k;xÞ for large t with respect to the randomized
parameters r and r (m0 is fixed so far) to be denoted by R and R, respectively. Note
that, Aalen and Gjessing [1], have performed the necessary derivations assuming
that R is normally distributed and r is fixed. However, as the drift (-r) can be
positive in this case, the resulting survival distribution is defective. These distri-
butions are often used for describing the corresponding ‘cure models’.

Assume that R and R are non-negative random variables with supports in
½0;1Þ. Thus, the bivariate frailty model discussed in Sect. 3 can be applied. We
proceed as described there: fixing R ¼ r and considering subpopulations with one
frailty parameter R. At the first stage, we select from the overall heterogeneous
population the heterogeneous (with respect to different values of r) subpopulation
that corresponds to R ¼ r and define its failure rate. As the corresponding
homogeneous ‘sub-subpopulations’ (for different fixed values of r) are ordered in
the sense of the hazard rate ordering and ‘have’ the shapes of the failure rates
described above (increasing and then decreasing to a plateau), this heterogeneous
subpopulation has asymptotically decreasing to 0 failure rate [54]. Now, at the
second stage, as these failure rates are ordered with respect to the values of the
second frailty R ¼ r, we can use Theorem 5.12, which means that the population
failure rate is also decreasing as t!1 (and in our specific case, it is decreasing to
0).

Thus, mortality plateaus cannot occur in the described frailty model. However,
this can still happen, if the supports of frailties R and R are modified to ½a;1� and
½0; b�, respectively. Then the population failure rate tends to the failure rate of the
strongest subpopulation which is, in accordance with (5.96) [31],

lim
t!1

kRðtÞ ¼
a2

2b2
: ð5:98Þ

We are ready now to add variability to the initial vitality. Denote the corre-
sponding random variable by V0 � 0 (fixed frailty). It immediately follows from
(5.96) that, in contrast to the other considered fixed frailties, the effect of the initial
vitality vanishes as t!1. Therefore, it has no effect asymptotically on the shape
of the failure rate. This was analytically shown and discussed using the concept of
quasisationary distributions in Aaalen and Gjessing [1], Steinsaltz and Evans [55],
and Li and Anderson [45].

Gamma process and the Birnbaum-Saunders distribution. The Wiener process
is often criticized as a model for degradation and aging as its sample paths are not
necessarily positive and strictly increasing. On the other hand, the gamma process
always possesses these properties. Therefore, let Rt; t � 0 be now the stationary
gamma process with the following density for each t:

fRtðxÞ ¼ Gaðxjr2t=r2; r=r2Þ; l; r [ 0; ð5:99Þ

E½Rt� ¼ rt; VarðRtÞ ¼ r2t;
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where Gaðxja; bÞ denotes the gamma distribution with shape parameter a and scale
parameter b. We see that the mean and the variance of this process have the same
functional form as for the corresponding Brownian motion with drift. The first
passage time distribution function for the vitality model with initial value v0 is

FRtðtÞ ¼ Pr½TR � t� ¼ Pr½Rt � v0�

¼
Z1

v0

fRtðxÞdx ¼ Cðr2t=r2; v0r=r2Þ
Cðr2t=r2Þ ;

ð5:100Þ

where Cða; xÞ ¼
R1

x za�1e�zdz is the incomplete gamma function for x � 0 and
a [ 0. This function can be calculated numerically [61]. It is shown by Liao et al.
[46] that the corresponding failure rate is increasing, whereas Abdel-Hameed [2]
proves that it tends to infinity as t!1, which means that the mortality plateau
cannot occur in accordance with this model.

Park and Padgett [53] have derived a very complex exact expression for the pdf
fRðtÞ. Therefore, a simpler meaningful approximation for (5.100) was suggested by
these authors in the form of the Birnbaum-Saunders distribution that can be
already effectively analyzed. In a general form, this distribution is given by

FBSðt; k; aÞ ¼ Uða�1hðktÞÞ; t [ 0; ð5:101Þ

where k; a[ 0; Uð	Þ is a standard normal distribution function and
hðtÞ ¼ t1=2 � t�1=2. For our specific case, the corresponding approximation reads
[61]:

FRtðtÞ � U

ffiffiffiffiffiffiffi
v0r

r2

r ffiffiffiffiffi
rt

v0

r
�

ffiffiffiffiffi
v0

rt

r� �� �
: ð5:102Þ

It was obtained by Park and Padgett [53] via discretization of the first passage
time and then using the central limit theorem. The error of the approximation was
not assessed, however, it was stated that it can be used at least for the case when
r [ [ r. On the other hand, it should be noted that approximation of distribution
functions does not necessarily mean that the tails of the failure rate functions are
also approximated. Therefore, given our interest in asymptotic behavior of failure
rates, why not to start directly from distribution (5.102) that, similar to the inverse
Gaussian distribution, also has a meaningful process point of view interpretation.
To see this, consider the following damage accumulation model. Let Rt in (5.92)
be modeled by the following shock process: suppose that shocks occur at regular
intervals at times D; 2D; 3D; . . .. Let each shock causes a random damage Yi [ 0:
i.i.d with E½Yi� ¼ Dl; VarðYiÞ ¼ Dr2. Damages accumulate additively and the k-
th shock is survived if the accumulated damage is less than the initial vitality v0,

i.e.,
Pk

1 Yi � v0. Then, letting D! 0 and using the central limit theorem, after
straightforward derivations [48] one can obtain the lifetime distribution (5.100),
where
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a ¼ r=
ffiffiffiffiffiffiffiffi
lv0
p

; k ¼ l=v0: ð5:103Þ

Differentiation of (5.101) results in the following density

fBSðt; k; aÞ ¼
k

2a
ffiffiffiffiffiffi
2p
p 1ffiffiffiffi

kt
p 1þ 1

kt

� �� �
exp � 1

2a2
kt � 2þ 1

kt

� �� 	
: ð5:104Þ

Obviously, limt!0 kBSðt; k; aÞ ¼ 0. Using Theorem 2.1, it can be shown now
that the failure rate is bell-shaped [9] and is decreasing to a constant as
t!1(mortality plateau):

lim
t!1

kBSðt; k; aÞ ¼ lim
t!1
� d log fBSðt; k; aÞ

dt

¼ k
2a2
¼ l2

2r2
:

ð5:105Þ

It follows from (5.105) that, as previously, the effect of initial vitality v0 is
vanishing as t!1. Similar to the case of the inverse Gaussian distribution, it can
be seen from (5.104) that k ¼ l=vo is a scale parameter and, therefore, the usual
stochastic ordering (and the hazard rate ordering) holds, i.e., if voðlÞ is fixed, then
the larger values of l voð Þ will result in the larger (smaller) values of the failure rate
in ½0;1Þ.

The possibility of ordering with respect to the values of r for a general case is
not clear (it is an open question in the theory of this distribution). On the other
hand, as follows from (5.105), this ordering exists asymptotically. Assume now
that l is a realization of a random variable M, whereas r is a realization of a
random variable R with support to ½0;1�. Then, similar to the case of the inverse
Gaussian distribution, the randomization results in the asymptotically decreasing
to 0 population failure rate. Mortality plateaus are theoretically possible in this
model only when the supports of the frailties M and R are ½a;1� and ½0; b�,
respectively.

5.11 On the Rate of Aging in Heterogeneous Populations

In this section, we will consider another application of heterogeneity modeling to
demography [30]. It should be noted that because of the existing heterogeneity,
e.g., in populations for different countries, statistical models describing this
property are crucial for this discipline.

Non-parametric classes of lifetime distributions were extensively studied in
numerous publications of the last decades (see e.g., the excellent encyclopedic
monograph by Lai and Xie [43] and the references therein). One of the main
properties of a lifetime random variable that defines the corresponding non-
parametric class is a property of stochastic aging. This notion can be understood in
many ways. The most intuitively evident and the first to be considered in the
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literature was the class of aging distributions with increasing (nondecreasing)
failure rate (IFR) (see, e.g., Barlow and Proschan [6] for this and other basic
classes).

Let T � 0 be a lifetime with an absolutely continuous Cdf F(t), pdf f(t) and the
failure rate kðtÞ ¼ f ðtÞ=ð1� FðtÞÞ. As in the previous section, we will use the
terms failure rate and mortality rate interchangeably employing the first one
mostly for a more general reasoning and the second one in a demographic context.
Assume that the derivative k0ðtÞ exists. Then, obviously, FðtÞ 2 IFR, if
k0ðtÞ � 0; t � 0. We can compare the ‘extent of aging’ described by different IFR
distributions by the value of this derivative at each instant of time. However, this is
not always the right thing to do, as intuitively, it is clear that at many instances in
order to compare aging for different lifetimes some ‘relative reasoning’ should be
also employed.

In life sciences (e.g., in demography), the rate of aging R(t) is usually defined as

RðtÞ � d ln kðtÞ
dt

¼ k0ðtÞ
kðtÞ : ð5:106Þ

This characteristic already describes the relative change in the failure (mor-
tality) rate in an infinitesimally small unit interval of time. It takes into account the
value of kðtÞ, as intuition prompts that this measure should often depend not only
on the derivative but on the value of the failure rate itself. Indeed, consider, for
instance, two failure rates kðtÞ and kðtÞ þ c, where c is a constant. It is clear that
the relative change for the second failure rate decreases as c increases and when
c is large, the change in the failure rate can be negligible compared with the failure
rate itself.

Thus, not only the change in the derivative is important, but also the level of the
failure rate as well. Formal definition (5.106) is the simplest way to implement this
relative concept. As most of simple definitions that are trying to describe complex
properties, it has its pros and contras (e.g., De Gray [25] mostly focuses on the
contras). However, this approach to defining the rate of aging is well justified in
demography, as for the Gompertz law of mortality (5.86) that describes mortality
rate at adult ages, it is a constant, i.e., RðtÞ ¼ b. Thus, in practical demography, b is
usually estimated as the slope of the Gompertz regression, i.e., the slope of ln kðtÞ.
It should be understood, however, that R(t) is just a useful (at least, for the
Gompertz law) statistical measure, which describes in some ‘integrated way’ the
real aging processes that are manifested by the changes in probabilities of failure
(death) over time.

The foregoing considerations refer to the homogeneous populations, where
obviously, b can be also regarded as the individual rate of aging. However, human
populations are heterogeneous, and it is interesting to consider the rate of aging
for this case. The general mixture model is described in Sect. 5.1 given by
Eqs. (5.10)–(5.12). In what follows, we will focus on the specific multiplicative
model (5.17). We will also need the following example:
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Example 5.6 Let the frailty Z be a gamma-distributed random variable with shape
parameter a and scale parameter b, whereas the baseline distribution be an arbi-
trary distribution with the failure rate kðtÞ. It is well known [28] that (5.21) is
generalized in this case to

kmðtÞ ¼
akðtÞ

bþ KðtÞ ; ð5:107Þ

where KðtÞ is the cumulative failure rate KðtÞ ¼
R t

0 kðuÞdu. Therefore,

E½Zjt� ¼ a
bþ KðtÞ :

As E½Z� ¼ a=b and VarðZÞ ¼ a=b2, Eq. (5.107) can now be written in terms of
E½Z� and VarðZÞ � r2 in the following way:

kmðtÞ ¼ kðtÞ E2½Z�
E½Z� þ r2KðtÞ ; ð5:108Þ

which, for the specific case E½Z� ¼ 1, gives the result of Vaupel et al. [63] that is
widely used in demography:

kmðtÞ ¼
kðtÞ

1þ r2KðtÞ : ð5:109Þ

We will use Eq. (5.109) for analyzing the rate of aging as a function of
parameters of the baseline and frailty distributions.

We start analyzing the rate of aging in heterogeneous populations with the
specific gamma-Gompertz multiplicative model with the failure rate given by Eq.
(5.21). Therefore,

ln kmðtÞ ¼ ln aþ bt � ln 1þ ðar2=bÞðexpfbtg � 1Þ
� �

ð5:110Þ

and the corresponding rate of aging is

RmðtÞ ¼ ðln kmðtÞÞ0 ¼ b� ar2 expfbtg
1þ ðar2=bÞðexpfbtg � 1Þ : ð5:111Þ

Equation (5.111) states a simple and expected fact that the observed (popula-
tion) rate of aging RmðtÞ is smaller than the individual rate of aging b. The latter, as
was staed, corresponds to the homogeneous case. It can be also clearly seen that
when r2 increases, RmðtÞ decreases. Therefore, the following hypothesis makes
sense: the increase in the rate of aging observed in the previous century in the
developed countries could be attributed to the decreasing heterogeneity in mor-
tality of populations in these countries.

Another important feature that follows from (5.111) is that the increase in
parameter a also results in the decrease in RmðtÞ, which can be interpreted as some
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kind of negative correlation between a of the Gompertz mortality law and the rate
of aging.

In the case of arbitrary lifetimes, (5.109) results in

RmðtÞ ¼ ðln kmðtÞÞ0

¼ k0ðtÞ
kðtÞ � r2 kðtÞ

1þ r2KðtÞ ¼ RðtÞ � r2kmðtÞ
ð5:112Þ

and, obviously, the rate of aging is also decreasing as a function of variance of the
gamma-distributed frailty (for the fixed expectation E½Z� ¼ 1). The similar con-
clusion was made in Yashin et al. [67].

Consider now a general case of the multiplicative model (5.17) not restricting
ourselves to the gamma-distributed frailty. It can be shown [30] that

RmðtÞ ¼ ðln kmðtÞÞ0 ¼
k0ðtÞE½ZjT [ t� þ kðtÞE0½ZjT [ t�

kðtÞE½ZjT [ t�

¼ k0ðtÞ
kðtÞ þ

E0½ZjT [ t�
E½ZjT [ t�

¼ RðtÞ � kðtÞVarðZjT [ tÞ
E½ZjT [ t� :

ð5:113Þ

Thus, as previously, the observed (mixture) rate of aging RmðtÞ is smaller than
the individual rate of aging R(t) defined for the baseline distribution with the
failure rate kðtÞ. A similar result using a different approach for derivations was
independently recently obtained by Vaupel and Zhang [62]. As we are focusing on
the specific multiplicative model (5.17), Eq. (5.113) is very helpful in analyzing a
‘proportional effect of environment’ on mortality rates.

Suppose now we have two heterogeneous populations with the same baseline
kðtÞ and different frailties Z1, Z2. In other words, compositions of populations are
different. Let

VarðZ2jT [ tÞ
E½Z2jT [ t� �

VarðZ1jT [ tÞ
E½Z1jT [ t� ; t [ 0: ð5:114Þ

Then it is easy to see that the corresponding rates of aging are ordered as
R2mðtÞ � R1mðtÞ. Thus, the rate of aging decreases as the relative variance
increases, i.e.,

R2mðtÞ � R1mðtÞ ¼ kðtÞ VarðZ1jT [ tÞ
E½Z1jT [ t� �

VarðZ2jT [ tÞ
E½Z2jT [ t�

� �
� 0; 8t � 0:

Inequality (5.114) defines a new class of stochastic ordering of random vari-
ables that can be called ordering in the sense of the relative variance [30]. The
corresponding measure depends not only on the variance (variability), but on the
mean as well.

5.11 On the Rate of Aging in Heterogeneous Populations 197



References

1. Aalen OO, Gjessing HK (2001) Understanding the shape of the hazard rate: a process point of
view. Stat Sci 16:11–22

2. Abdel-Hameed M (1975) A gamma wear process. IEEE Trans Reliab 24:152–153
3. Anderson JJ (2000) A vitality-based model relating stressors and environmental properties to

Arjas E, Norros I (1989). Change of life distribution via a hazard transformation: an
inequality with application to minimal repair. Math Oper Res 14:355–361

4. Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York
5. Aven T, Jensen U (2000) A general minimal repair model. J Appl Probab 37:187–197
6. Barlow R, Proschan F (1975). Statistical theory of reliability and life testing. Holt, Renerhart

& Winston, New York
7. Beard RE (1959) Note on some mathematical mortality models. In: Woolstenholme GEW,

O’Connor M (eds) The lifespan of animals. Little, Brown and Company, Boston, pp 302–311
8. Beard RE (1971) Some aspects of theories of mortality, cause of death analysis, forecasting

and stochastic processes. In: Brass W (ed) Biological aspects of demography. Taylor &
Francis, London, pp 57–68

9. Bebbington M, Lai CD, Zitikis R (2008) A proof of the shape of the Birnbaum-Saunders
hazard rate function. Math Sci 33:49–56

10. Bergman B (1985) Reliability theory and its applications. Scand J Stat 12:1–41
11. Bingham NH, Goldie CM, Teugels JL (1987) Regular Variation. Cambridge University

Press, Cambridge
12. Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab

6:319–327
13. Block HW, Joe H (1997) Tail behaviour of the failure rate functions of mixtures. Lifetime

Data Anal 3:269–288
14. Block HW, Li Y, Savits TH (2003) Initial and final behavior of failure rate functions for

mixtures and systems. J Appl Probab 40:721–740
15. Block HW, Li Y, Savits TH (2003) Preservation of properties under mixture. Probab Eng Inf

Sci 17:205–212
16. Block HW, Li Y, Savits TH, Wang J (2008) Continuous mixtures with bathtub-shaped failure

rates. J Appl Probab 45:260–270
17. Block HW, Mi J, Savits TH (1993) Burn-in and mixed populations. J Appl Probab

30:692–702
18. Block HW, Savits TH, Wondmagegnehu ET (2003) Mixtures of distributions with increasing

linear failure rates. J Appl Probab 40:485–504
19. Boland PJ, El-Neweihi E (1998) Statistical and information based minimal repair for k out of

n systems. J Appl Probab 35:731–740
20. Cha JH, Finkelstein M (2011) Stochastic intensity for minimal repairs in heterogeneous

populations. J Appl Probab 48:868–876
21. Cha JH, Finkelstein M (2012) Stochastic analysis of preventive maintenance in

heterogeneous populations. Oper Res Lett 40:416–421
22. Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model.

Technometrics 19:461–468
23. Clarotti CA, Spizzichino F (1990) Bayes burn-in and decision procedures. Probab Eng Inf Sci

4:437–445
24. Cox DR, Miller HD (1965) Theory of stochastic processes. Methuen & Co., London
25. De Gray DNJ (2005) ‘‘The rate of aging’’: a counterproductively undefinable term.

Rejuvenation Res 8(2):77–78
26. Finkelstein M (1992) Some notes on two types of minimal repair. Adv Appl Probab

24:226–228
27. Finkelstein M (2004) Minimal repair in heterogeneous populations. J Appl Probab

41:281–286

198 5 Heterogeneous Populations



28. Finkelstein M (2008) Failure rate modelling for reliability and risk. Springer, London
29. Finkelstein M (2009) Understanding the shape of the mixture failure rate (with engineering

and demographic applications). Appl Stoch Models Bus Ind 25:643–663
30. Finkelstein M (2011) On the ‘rate of aging’ in heterogeneous populations. Math Biosci

22:20–23
31. Finkelstein M (2012) On ordered subpopulations and population mortality at advanced ages.

Theor Popul Biol 81:292–299
32. Finkelstein M, Esaulova V (2001) Modelling a failure rate for the mixture of distribution

functions. Probab Eng Inf Sci 15:383–400
33. Finkelstein M, Esaulova V (2006) Asymptotic behavior of a general class of mixture failure

rates. Adv Appl Probab 38:244–262
34. Finkelstein M, Vaupel JW (2006) The relative tail of longevity and the mean remaining

lifetime. Demogr Res 14(6):111–138
35. Gampe J (2010) Human mortality beyond age 110. In: Maier H, Gampe J, Jeune B, Robine

J-M, Vaupel JW (eds) Supercentenarians, demographic research monographs. Springer,
Berlin, pp 219–230

36. Gavrilov NA, Gavrilova NS (2001) The reliability theory of ageing and longevity. J Theor
Biol 213:527–545

37. Glaser RE (1980) Bathtub and related failure rate characterizations. J Am Stat Assoc
75:667–672

38. Gupta RC, Gupta PL (1996) Ageing characteristics of the Weibull mixtures. Probab Eng Inf
Sci 10:591–600

39. Gupta RC, Warren R (2001) Determination of change points of nonmonotonic failure rates.
Commun Stat Theory Methods 30:1903–1920

40. Gurland J, Sethuraman J (1995) How pooling failure data may reverse increasing failure rate.
J Am Stat Assoc 90:1416–1423

41. Hougaard P (2000) Analysis of multivariate survival data. Springer-Verlag, New York
42. Kijima M (1989) Some results for repairable systems with general repair. J Appl Probab

26:89–102
43. Lai CD, Xie M (2006) Stochastic ageing and dependence for reliability. Springer, New York
44. Li Y (2005) Asymptotic baseline of the hazard rate function of mixtures. J Appl Probab

42:892–901
45. Li T, Anderson JJ (2009) The vitality model: a way to understand population survival and

demographic heterogeneity. Theor Popul Biol 76:118–131
46. Liao H, Elsayed EA, Chan LY (2006) Maintenance of continuously monitored degrading

systems. Eur J Oper Res 175:821–835
47. Lynn NJ, Singpurwalla ND (1997) Comment: ‘‘burn-in’’ makes us feel good. Stat Sci

12:13–19
48. Marshall AW, Olkin I (2007) Life distributions. Springer, New York
49. Missov TI, Finkelstein M (2011) Admissible mixing distributions for a general class of

mixture survival models with known asymptotics. Theor Popul Biol 80:64–70
50. Natvig B (1990) On information-based minimal repair and reduction in remaining system

lifetime due to a failure of a specific module. J Appl Probab 27:365–375
51. Navarro J, Hernandez PJ (2004) How to obtain bathtub-shaped failure rate models from

normal mixtures. Probab Eng Inf Sci 18:511–531
52. Navarro J, Hernandez PJ (2008) Mean residual life functions of finite mixtures, order

statistics and coherent systems. Metrica 67:277–298
53. Park C, Padgett WJ (2005) Accelerated degradation models for failure based on geometric

Brownian motion and gamma process. Lifetime Data Anal 11:511–527
54. Ross SM (1996) Stochastic processes, 2nd edn. Wiley, New York
55. Steinsaltz D, Evans S (2004) Markov mortality models: implications of quasistationarity and

varying initial distributions. Theor Popul Biol 65:319–337
56. Steinsaltz D, Wachter KW (2006) Understanding mortality rate deceleration and

heterogeneity. Math Popul Stud 13:19–37

References 199



57. Strehler L, Mildvan AS (1960) General theory of mortality and aging. Science 132:14–21
58. Thatcher RE (1999) The long-term pattern of adult mortality and the highest attained age.

J Roy Stat Soc 162:5–43
59. Tsiatis A (1975) A nonidentifiability aspect of the problem of competing risks. Proc Natl

Acad Sci U S A 72:20–22
60. Valdez-Flores C, Feldman RM (1989) A survey of preventive maintenance models for

stochastically deteriorating single-unit systems. Naval Res Logist 36:419–446
61. Van Nortwijk JM (2009) A survey of the application of gamma processes in maintenance.

Reliab Eng Syst Saf 94:2–21
62. Vaupel JW, Zhang Z (2010) Attrition in heterogeneous cohorts. Demogr Res 23:737–749
63. Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in individual frailty

on the dynamics of mortality. Demography 16:439–454
64. Weitz JS, Fraser HB (2001) Explaining mortality rates plateaus. PNAS 98:15383–15386
65. Wang H (2002) A survey of maintenance policies of deteriorating systems. Eur J Oper Res

139:469–489
66. Yashin AI, Manton KG (1997) Effects of unobserved and partially observed covariate

processes on system failure: a review of models and estimation strategies. Stat Sci 12:20–34
67. Yashin AI, Ukraintseva SV, Boiko SI, Arbeev KG (2002) Individual aging and mortality rate:

how are they related. Soc Biol 49:206–217

200 5 Heterogeneous Populations


	5 Heterogeneous Populations
	5.1…Failure Rate of Mixture of Two Distributions
	5.2…Continuous Mixtures
	5.3…Examples
	5.3.1 Weibull and Gompertz Distributions
	5.3.2 Reliability Theory of Aging

	5.4…Mixture Failure Rate for Large t
	5.5…Mortality Plateaus
	5.6…Inverse Problem
	5.7…The Failure Rate Dynamics in Heterogeneous Populations
	5.8…Stochastic Intensity for Minimal Repairs in Heterogeneous Populations
	5.9…Preventive Maintenance in Heterogeneous Populations
	5.10…Population Mortality at Advanced Ages (Demographic Application)
	5.10.1 Fixed and Evolving (Changing) Heterogeneity
	5.10.2 Fixed Heterogeneity
	5.10.3 Vitality Models and Lifetime Distributions

	5.11…On the Rate of Aging in Heterogeneous Populations
	References


