
Chapter 4
Advanced Theory for Poisson
Shock Models

In this chapter, we extend and generalize approaches and results of the previous
chapter to various reliability-related settings of a more complex nature. We relax
some assumptions of the traditional models except the one that defines the under-
lying shock process as the nonhomogeneous Poisson process (NHPP). Only in the
last section, we suggest an alternative to the Poisson process to be called the
geometric point process. It is remarkable that although the members of the class of
geometric processes do not possess the property of independent increments, some
shock models can be effectively described without specifying the corresponding
dependence structure. Most of the contents of this chapter is based on our recent work
[5–11] and covers various settings that, we believe, are meaningful both from the
theoretical and the practical points of view. The chapter is rather technical in nature,
however, general descriptions of results are reasonably simple and illustrated by
meaningful examples. As the assumption of the NHPP of shocks is adopted, many of
the proofs follow the same pattern by using the time-transformation of the NHPP to
the HPP (see the derivation of Eq. (2.31)). This technique will be used often in this
chapter. Sometimes the corresponding derivations will be reasonably abridged,
whereas other proofs will be presented at full length.

Recall that in extreme shock models, only an impact of the current, possibly
fatal shock is usually taken into account, whereas in cumulative shock models, the
impacts of the preceding shocks are accumulated as well. In this chapter, we
combine extreme shock models with specific cumulative shock models and derive
probabilities of interest, e.g., the probability that the process will not be terminated
during a ‘mission time’. We also consider some meaningful interpretations and
examples. We depart from the assumption that the probability of termination does
not depend on the history of the process and this makes the modeling more
complex on the one hand, but more adequate on the other hand.
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4.1 The Terminating Shock Process with Independent
Wear Increments

4.1.1 General Setting

Consider a system subject to a NHPP of shocks with rate mðtÞ. Let it be ‘absolutely
reliable’ in the absence of shocks. As in Chap. 3, assume that each shock
(regardless of its number) results in the system’s failure (and, therefore, in the
termination of the corresponding Poisson shock process) with probability pðtÞ and
is harmless to the system with probability qðtÞ ¼ 1� pðtÞ. Denote the corre-
sponding time to failure of a system by TS. Then Eq. (3.18) can be written now as

PðTS [ tÞ � �FSðtÞ ¼ exp �
Z t

0

pðuÞmðuÞ du

0
@

1
A; ð4:1Þ

whereas the corresponding failure rate is

kSðtÞ ¼ pðtÞmðtÞ:

The formal proof of (4.1) can be found in Beichelt and Fisher [3] and Block
et al. [4]. A ‘non-technical proof’, based on the notion of the conditional intensity
function (CIF) (see [15]) is given e.g., in Nachlas [25] and Finkelstein [17]. Thus,
(4.1) describes an extreme shock model, as only the impact of the current, possibly
fatal shock is taken into account. For convenience, we shall often call the
described model the pðtÞ , qðtÞ model.

It is clear that the extreme shock model can be easily modified to the case when
a system can also fail from causes other than shocks. Denote the corresponding
Cdf in the absence of shocks by FðtÞ and assume that the process of failure from
other causes and the shock process are independent. It follows from the competing
risks considerations that

PðTS [ tÞ ¼ �FðtÞ exp �
Z t

0

pðuÞmðuÞ du

0
@

1
A: ð4:2Þ

A crucial assumption for obtaining Eqs. (4.1) and (4.2) is the assumption that
with probability qðtÞ ¼ 1� pðtÞ, a shock does not result in any changes in a
system. However, in practice, shocks can also increase deterioration, wear, etc.
The effect of different shocks is also usually accumulated in some way. Therefore,
we start with the following setting [5]:

Let the lifetime of a system in a baseline environment (without shocks) be
denoted by R. Thus, PðR � tÞ ¼ FðtÞ. We interpret here R as some initial, random
resource, which is ‘consumed’ by a system (with rate 1) in the process of its oper-
ation. Therefore, the age of our system in this case is equal to a calendar time t, and a
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failure occurs when this age reaches R. It is clear that when the remaining resource
decreases with time, our system can be considered as aging (deteriorating).

Let fNðtÞ; t � 0g denote an orderly point process of shocks with arrival times
Ti; i ¼ 1; 2; . . . Denote also by FSðtÞ the Cdf that describes the lifetime of our
system, TS in the presence of shocks. Assume that the ith shock causes immediate
system’s failure with probability pðtÞ, but in contrast to the extreme shock model,
with probability qðtÞ, it now increases the age of a system by a random increment
Wi � 0. In terms of repair actions, this repair is ‘worse than minimal’. In accor-
dance with this setting, a random age of a system at time t (which is similar to the
‘virtual age’ of Finkelstein [16, 17]) is

Tv ¼ t þ
XNðtÞ
i¼ 0

Wi;

where, formally, W0 ¼ 0 corresponds to the case NðtÞ ¼ 0 when there are no
shocks in ½0; t�. Failure occurs when this random variable reaches the boundary R.
Therefore,

PðTS [ tjNðsÞ; 0 � s� t; W1; W2; . . .;WNðtÞ; RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ IðTv � RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ I
XNðtÞ
i¼ 0

Wi � R� t

 !
;

ð4:3Þ

where qðT0Þ ¼ 1 describes the case when NðtÞ ¼ 0 and IðxÞ is the corresponding
indicator. This probability should be understood conditionally on realizations of
NðtÞ; Wi; i ¼ 1; 2; . . .; NðtÞ and R.

Relationship (4.3) is very general and it is impossible to ‘integrate out’
explicitly NðtÞ; Wi; i ¼ 1; 2; . . .; NðtÞ and R without substantial simplifying
assumptions. Therefore, after the forthcoming comment we will consider two
important specific cases [5].

The described model can be equivalently formulated in the following way. Let
FðtÞ be the distribution of a lifetime of the wearing item in a baseline environment.
Failure occurs when this wear, which in the standardized form is equal to t, reaches
the resource (boundary) R. Denote the random wear in a more severe environment

by Wt; t � 0: Specifically, for our shock model, Wt ¼ t þ
PN tð Þ

i¼ 0 Wi, where Wi; i ¼
1; 2; . . .; NðtÞ; are the random increments of wear due to shocks and W0 � 0 [18].
For convenience, in what follows we will use this wear-based interpretation.

4.1 The Terminating Shock Process with Independent Wear Increments 81



4.1.2 Exponentially Distributed Boundary

In addition to the previous assumptions, we need the following:
Assumption 1. NðtÞ; t � 0; is the NHPP with rate mðtÞ.
Assumption 2. Wi; i ¼ 1; 2; . . . ; are i.i.d. random variables characterized by the

moment generating function MWðtÞ and the Cdf GðtÞ.
Assumption 3. NðtÞ; t � 0; Wi; i ¼ 1; 2; . . . and R are independent of each other.
Assumption 4. R is exponentially distributed with the failure rate k, i.e.,

FðtÞ ¼ expf�ktg.
The following result gives the survival function and the failure rate function for

TS [5].

Theorem 4.1 Let mðtÞ � EðNðtÞÞ ¼
R t

0 mðxÞ dx. Suppose that Assumptions 1–4

hold and that the inverse function m�1ðtÞ exists for t [ 0. Then the survival
function for TS and the corresponding failure rate kSðtÞ are given by

PðTS [ tÞ ¼ exp �kt �
Z t

0

vðxÞ dxþMW �kð Þ �
Z t

0

qðxÞ vðxÞ dx

8<
:

9=
;; t � 0;

and

kSðtÞ ¼ kþ ð1�MWð�kÞ � qðtÞÞ mðtÞ; ð4:4Þ

respectively.

Proof Given the assumptions, we can directly ‘integrate out’ the variable R and
define the corresponding probability as

PðTS [ t jN sð Þ; 0� s� t; W1; W2; � � � ; WNðtÞÞ

¼
YN tð Þ

i¼ 0

q Tið Þ
 !

� exp �
Ztþ
PNðtÞ

i¼ 0
Wi

0

k du

8>><
>>:

9>>=
>>;

¼ exp �kt � k
XNðtÞ
i¼ 1

Wi þ
XNðtÞ
i¼ 1

ln q Tið Þ
( )

:

Thus

PðTS [ t jN sð Þ; 0� s� tÞ

¼ exp �ktf g � exp
XNðtÞ
i¼ 1

ln q Tið Þ
( )

� E exp �
XNðtÞ
i¼ 1

kWi

( )" #

¼ exp �ktf g � exp
XNðtÞ
i¼ 1

ln q Tið Þ þ ln MW �kð Þð Þ½ �
( )

: ð4:5Þ
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We use now the same reasoning as when deriving Eq. (2.31). Therefore, some
evident intermediate transformations are omitted. More details can be found in
the original publication [5]. A similar approach is applied to our presentation in the
rest of this chapter.

Define N� tð Þ � N m�1 tð Þð Þ; t � 0, and T�j � m Tj

� �
; j � 1. It is well-known that

fN� tð Þ; t � tg is a stationary Poisson process with intensity one (see, e.g., [14])
and T�j ; j� 1, are the times of occurrence of shocks in the new time scale. Let
s ¼ m tð Þ. Then

E exp
XNðtÞ
i¼ 1

ln q Tið Þ þ ln MW �kð Þð Þ½ �
( )" #

¼ E E exp
XN�ðsÞ
i¼ 1

ln q m�1 T�i
� �� �

þ ln MW �kð Þð Þ
� �( )

jN� sð Þ
" #" #

:

ð4:6Þ

The joint distribution of T�1 ; T�2 ; . . .; T�n
� �

given N� sð Þ ¼ n is the same as the

joint distribution of V 1ð Þ; V 2ð Þ; . . .; V nð Þ
� �

, where V 1ð Þ � V 2ð Þ � . . .�V nð Þ are the
order statistics of i.i.d. random variables V1; V2; . . .;Vn which are uniformly dis-
tributed in the interval 0; s½ � ¼ 0; m tð Þ½ �. Then

E exp
XN�ðsÞ
i¼ 1

ln q m�1 T�i
� �� �

þ ln MW �kð Þð Þ
� �( )

jN� sð Þ ¼ n

" #

¼ E exp
Xn

i¼ 1

ln q m�1 V ið Þ
� �� �

þ ln MW �kð Þð Þ
� �( )" #

¼ E exp
Xn

i¼ 1

ln q m�1 Við Þ
� �

þ ln MW �kð Þð Þ
� �( )" #

¼ E exp ln q m�1 sUð Þ
� �

þ ln MW �kð Þð Þ
� �� �� �n

;

ð4:7Þ

where U � V1=s ¼ V1=m tð Þ is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E exp ln q m�1 sUð Þ
� �

þ ln MW �kð Þð Þ
� �� �

¼
Z1

0

exp ln q m�1 m tð Þuð Þ
� �

þ ln MW �kð Þð Þ
� �

du

¼ MW �kð Þ
m tð Þ

Z t

0

q xð Þv xð Þ dx:

ð4:8Þ
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From Eqs. (4.5)–(4.8),

PðTS [ tÞ ¼ exp �ktf g �
X1
n¼ 0

MW �kð Þ
m tð Þ

Z t

0

q xð Þv xð Þdx

0
@

1
A

n

sn

n !
e�s:

¼ exp �ktf g � e�s � exp MW �kð Þ � s

m tð Þ

Z t

0

q xð Þv xð Þdx

8<
:

9=
;

¼ exp �kt �
Z t

0

v xð Þ dxþMW �kð Þ �
Z t

0

q xð Þv xð Þ dx

8<
:

9=
;:

Therefore, the failure rate of the system, kSðtÞ, is given by

kSðtÞ ¼ kþ 1�MWð�kÞ � qðtÞð ÞmðtÞ: h

The following corollary defines the failure rate that describes TS when Wi’s are
distributed exponentially with mean l.

Corollary 4.1 If the Wi’s are distributed exponentially with mean l then the
failure rate kSðtÞ is given by

kSðtÞ ¼ kþ 1� qðtÞ
kl þ 1

� 	
mðtÞ: ð4:9Þ

We present now a qualitative analysis of the obtained result. Eq. (4.4) suggests
that the failure rate kSðtÞ can be interpreted as a failure rate of a series system with
dependent (via R) components. When l!1, from Eq. (4.9), we obtain
kSðtÞ ! kþ mðtÞ, which means that a failure occurs either in accordance with the
baseline FðtÞ or as a result of the first shock (competing risks). Note that, in
accordance with the properties of Poisson processes, the rate mðtÞ is equal to the
failure rate, which corresponds to the time to the first shock. Therefore, the two
‘components’ of the described series system are asymptotically independent as
l!1.

When l ¼ 0, which means that Wi ¼ 0; i� 1, Eq. (4.9) becomes
kSðtÞ ¼ kþ pðtÞmðtÞ. Therefore, this specific case describes the series system with
two independent components. The first component has the failure rate k and the
second component has the failure rate pðtÞ mðtÞ.

Let qðtÞ ¼ 1 (there are no ‘killing’ shocks) and let Wi be deterministic and
equal to l. Then MWð�kÞ ¼ expf�lkg and Eq. (4.4) becomes

kSðtÞ ¼ kþ ð1� expf�lkgÞmðtÞ:

Assume for simplicity of notation that there is no baseline wear and all wear
increments come from shocks. Then from Theorem1
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PðTS [ tÞ ¼ exp �
Z t

0

v xð Þ dxþMW �kð Þ �
Z t

0

q xð Þv xð Þdx

8<
:

9=
;:

The form of this equation suggests the following probabilistic interpretation [6].
A system can fail from (i) the critical shock or (ii) the accumulated wear caused by
the shocks. Suppose that the system has survived until time t. Then, as the dis-
tribution of the random boundary R is exponential, the accumulated wear until

time t,
PN tð Þ

i¼ 0 Wi, does not affect the failure process of the component after time t.
That is, on the next shock, the probability of the system’s failure due to the
accumulated wear given that a critical shock has not occurred, is just
PðR�WNðtÞ þ 1Þ. This probability does not depend on the wear accumulation
history, that is,

PðR�W1 þW2 þ . . .þWn jR [ W1 þW2 þ . . .þWn�1Þ
¼ PðR [ WnÞ; 8n ¼ 1; 2; . . .; W1; W2; . . .;

where W1 þW2 þ . . .þWn � 1 � 0 when n ¼ 1. Finally, each shock results in the
immediate failure with probability pðtÞ þ qðtÞPðR � W1Þ; otherwise, the system
survives with probability qðtÞPðR [ W1Þ. Although we have two (independent)
causes of failure in this case, the second cause also does not depend on the history
of the process and, therefore, our initial pðtÞ , qðtÞ model can be applied after an
obvious modification. In accordance with (4.1), the corresponding failure rate can
then be immediately obtained as

kSðtÞ ¼ pðtÞ þ qðtÞPðR � W1Þð Þ mðtÞ
¼ 1� qðtÞPðR [ W1Þð Þ mðtÞ
¼ 1� qðtÞMW �kð Þð ÞmðtÞ:

The validity of the above reasoning and interpretation can be verified by
comparing this failure rate function with that directly derived in (4.4) (k ¼ 0).

It is clear that this reasoning can be applied due to the specific, exponential
distribution of the boundary R, which implies the Markov property for the wear
‘accumulation’. In the next section, the case of a deterministic boundary will be
considered and, obviously, the foregoing interpretation ‘does not work’ for this case.

4.1.3 Deterministic Boundary

Let R ¼ b be the deterministic boundary. Let other assumptions of Sect. 4.3.1
hold. We consider the case when t \ b, which means that a failure cannot occur
without shocks. The following result gives the survival function for TS.
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Theorem 4.2 Suppose that Assumptions 1–3 of Sect. 4.3.1 hold and that the
inverse function m�1 tð Þ exists for t [ 0. Furthermore, let the Wi’s be i.i.d. expo-
nential with mean 1=g. Then the survival function for TS is given by

PðTS [ tÞ ¼
X1
n¼ 0

X1
j¼ n

g b� tð Þð Þ j

j !
exp �g b� tð Þf g

 !

	 1
m tð Þ

Z t

0

q xð Þv xð Þ dx

0
@

1
A

n

�m tð Þn

n !
exp �m tð Þf g; 0 � t \ b:

ð4:10Þ

Proof Similar to the previous subsection,

PðTS [ tjN sð Þ; 0 � s � t; W1; W2; . . .;WNðtÞÞ

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

� I t þ
XNðtÞ
i¼ 1

Wi� b

 !
:

Thus, we have

PðTS [ tjN sð Þ; 0 � s � tÞ

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

P
XNðtÞ
i¼ 1

Wi � b� t

 !

¼
YNðtÞ
i¼ 1

q Tið Þ
 !

G NðtÞð Þ b� tð Þ;

where G nð Þ tð Þ is the n-fold convolution of G tð Þ with itself.
As a special case, when the Wi’s are i.i.d. exponential with mean 1=g,

PðTS [ tjN sð Þ; 0 � s � tÞ ¼
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð Þ;

where

W N tð Þð Þ �
X1

j¼N tð Þ

g b � tð Þð Þ j

j!
exp �g b� tð Þf g;

and

PðTS [ tÞ ¼ E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð Þ
" #

¼ E E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ
" #" #

;
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where

E
YN tð Þ

i¼ 1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ ¼ n

" #

¼ W nð Þ � E
YN tð Þ

i¼ 1

q Tið Þ
 !

jN tð Þ ¼ n

" #
:

Using the same notation and properties as those of the previous subsection, we
have

E
YN tð Þ

i¼ 1

q Tið Þ
 !

jN tð Þ ¼ n

" #
¼ E q m�1 sUð Þ

� �� �� � n

and

E q m�1 sUð Þ
� �� �

¼ 1
m tð Þ

Z t

0

q xð Þv xð Þ dx:

Therefore,

E
YN tð Þ

i¼1

q Tið Þ
 !

�W N tð Þð ÞjN tð Þ ¼ n

" #

¼ W nð Þ � 1
m tð Þ

Z t

0

q xð Þv xð Þ dx

0
@

1
A

n

:

Finally, we obtain a rather cumbersome Eq. (4.10).
h

It can be easily shown that the survival function in (4.10) can be written in the
following compact form [6]:

PðTs [ tÞ ¼ exp �
Z t

0

p xð Þ v xð Þ dx

8<
:

9=
; �

X1
n¼0

P Z1 � nð Þ � P Z2 ¼ nð Þ; ð4:11Þ

where Z1 and Z2 are two Poisson random variables with parameters gðb� tÞ andR t
0 qðxÞ mðxÞ dx, respectively. The following presents a qualitative analysis for two

marginal cases of Eq. (4.11) for each fixed t \ b.
When g ¼ 1=l!1, which means that the mean of increments Wi tends to 0,

Eq. (4.11) ‘reduces’ to (4.1). Indeed, as g!1,

X1
n¼ 0

PðZ1 � nÞPðZ2 ¼ nÞ !
X1
n¼ 0

PðZ2 ¼ nÞ ¼ 1;
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because PðZ1 � nÞ ! 1 for 8n � 1 and PðZ1 � 0Þ ¼ 1. From ‘physical consid-
erations’, it is also clear that as increments vanish, their impact on the model also
vanishes.

When g! 0, the mean of the increments tends to infinity and, therefore, the
first shock will kill the system with probability tending to one as g! 0. The
infinite sum in the right-hand side in the following equation vanishes in this case:

X1
n¼ 0

PðZ1 � nÞPðZ2 ¼ nÞ ¼ PðZ1 � 0ÞPðZ2 ¼ 0Þ

þ
X1
n¼ 1

PðZ1 � nÞPðZ2 ¼ nÞ ! PðZ2 ¼ 0Þ;

as PðZ1 � 0Þ ¼ 1 and PðZ1 � nÞ ! 0 for 8n � 1 when g! 0. Therefore, finally

PðTS [ tÞ ! exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; exp �

Z t

0

qðxÞmðxÞ dx

8<
:

9=
;

¼ exp �
Z t

0

mðxÞ dx

8<
:

9=
;;

which is the probability that no shocks have occurred in ½0; t�. This is what we also
expect from general considerations for g! 0, as the system can survive for t \ b
only without shocks.

4.2 History-Dependent Termination Probability

Consider first, the orderly point process with the conditional (complete) intensity
function (CIF) mðtjHðtÞÞ [2, 15], where HðtÞ is the history of the process up to t.
This notion is similar to the intensity process defined in (2.12). Whereas the
intensity process is considered as a stochastic process defined by filtration Ht�, the
CIF is usually a realization of this process defined by the realization of filtration
HðtÞ. We will use these terms in our book interchangeably. Accordingly, let the
probability of termination under a single shock be adjusted in a similar way and,
therefore, also depend on this history, i.e., pðtjHðtÞÞ. Denote, as previously, by TS

the corresponding lifetime. It is clear that in accordance with our assumptions, the
conditional probability of termination in the infinitesimal interval of time can be
written in the following simplified form [17]:

P½TS 2 ½t; t þ dtÞjTS � t; HðtÞ� ¼ p tjHðtÞð Þ m tjHðtÞð Þ dt:

The only way for p tjHðtÞð Þ mðtjHðtÞÞ to become a ‘full-fledged’ failure rate that
corresponds to the lifetime TS is when there is no dependence on HðtÞ for both
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multipliers in the right-hand side. It is obvious that elimination of this dependence
for the second multiplier uniquely leads to the NHPP. In what follows, we will
consider this case. However, specific types of dependence on history in the first
multiplier will be retained and this will give rise to the new classes of extreme
shock models.
Model A. We will consider the NHPP of shocks with rate mðtÞ and with the
history-dependent termination probability

p tjHðtÞð Þ ¼ pðtjNðsÞ; 0 � s \ tÞ:

Let this be the simplest history case, i.e., the number of shocks, NðtÞ that our
system has experienced in ½0; tÞ. This seems to be a reasonable assumption, as
each shock can contribute to ‘weakening’ of the system by increasing the prob-
ability p tjHðtÞð Þ � p t; NðtÞð Þ and, therefore, the function p t; NðtÞð Þ is usually
increasing in nðtÞ (for each realization, NðtÞ ¼ nðtÞ). To obtain the following
result, we must assume the specific form of this function. It is more convenient to
consider the corresponding probability of survival. Let

q t; nðtÞð Þ � 1� p t; nðtÞð Þ ¼ qðtÞ q nðtÞð Þ; ð4:12Þ

where q nðtÞð Þ is a decreasing function of its argument (for each fixed t). Thus the
survival probability at each shock decreases as the number of survived shocks in
½0; tÞ increases. The multiplicative form of (4.12) will be important for us as it will
be ‘responsible’ for the vital independence to be discussed later.

The survival function of the system’s lifetime TS is given by the following
theorem.

Theorem 4.3 Let mðtÞ � E NðtÞð Þ ¼
R t

0 mðxÞ dx and WðnÞ �
Qn

i¼ 0 qðiÞ (qð0Þ � 1).
Suppose that the inverse function m�1ðtÞ exists for t [ 0. Then

PðTS � tÞ ¼ E W NqmðtÞ
� �� �

� exp �
Z t

0

p xð Þ mðxÞ dx

8<
:

9=
;; ð4:13Þ

where fNqmðtÞ; t � 0g follows the NHPP with rate qðtÞmðtÞ.

Proof Obviously, conditioning on the process (in each realization) gives

PðTS� tjNðsÞ; 0 � s \ tÞ ¼
YNðtÞ
i¼ 0

qðTiÞqðiÞ;

where formally qðT0Þ � 1 and qð0Þ � 1 corresponds to the case when NðtÞ ¼ 0.
Also, by convention,

Qn
i¼ 1 ð�Þi � 1 for n ¼ 0. Then the corresponding expectation is

PðTS � tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞ qðiÞ
" #

:
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As previously, define the stationary Poisson process with rate 1: N�ðtÞ � N m�1ð
ðtÞÞ; t � 0, and T�j � mðTjÞ; j � 1 are the times of occurrence of shocks in the
new time scale. Let s ¼ mðtÞ. Then

E
YNðtÞ
i¼ 1

qðTiÞ qðiÞ
" #

¼ E E
YN�ðsÞ
i¼ 1

q m�1ðT�i Þ
� �

qðiÞjN�ðsÞ
" #" #

:

The joint distribution of T�1 ; T�2 ; . . .; T�n
� �

given N�ðsÞ ¼ n is the same as the

joint distribution of V 1ð Þ; V 2ð Þ; . . .; V nð Þ
� �

, where V 1ð Þ � V 2ð Þ � � � � � V nð Þ are
the order statistics of i.i.d. random variables V1; V2; . . .; Vn which are uniformly
distributed in the interval 0; s½ � ¼ 0; mðtÞ½ �. Thus omitting derivations that are
similar, to those in the proofs of Theorems 4.1 and 4.2 (see [6] for more details):

E
YN�ðsÞ
i¼ 1

q m�1ðT�i Þ
� �

qðiÞjN�ðsÞ ¼ n

" #
¼
Yn

i¼ 1

qðiÞ E q m�1ðsUÞ
� �� �� �n

;

where U � V1=s ¼ V1=mðtÞ is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E qðm�1ðsUÞÞ
� �

¼
Z1

0

q m�1 suð Þ
� �

du ¼
Z1

0

q m�1 mðtÞuð Þ
� �

du

¼ 1
mðtÞ

Z t

0

qðxÞmðxÞ dx:

Hence,

E
YN�ðsÞ
i¼ 1

qðm�1ðT�i Þ qðiÞjN�ðsÞ ¼ n

" #
¼
Yn

i¼ 1

qðiÞ � 1
mðtÞ

Z t

0

qðxÞmðxÞ dx

0
@

1
A

n

:

Using WðnÞ �
Qn

i¼ 1 qðiÞ;

PðTS� tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞqðiÞ
" #

¼
X1
n¼ 0

WðnÞ 1
mðtÞ

Z t

0

qðxÞmðxÞ dx

0
@

1
A

n

� ðmðtÞÞ
n

n !
e�mðtÞ

¼ exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; �

X1
n¼0

WðnÞ �
R t

0 qðxÞmðxÞ dx
� �n

n !
�

exp �
Z t

0

qðxÞmðxÞ dx

8<
:

9=
; ¼ E WðNqmðtÞÞ

� �
� exp �

Z t

0

pðxÞmðxÞ dx

8<
:

9=
;;
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where fNqmðtÞ; t� 0g follows the NHPP with rate qðtÞmðtÞ.
h

Example 4.1 Let qðiÞ ¼ qi � 1; i ¼ 1; 2; . . .. Then WðnÞ � qnðn � 1Þ=2 and

PðTS� tÞ ¼
X1
n¼ 0

qnðn � 1Þ=2 �
R t

0 qðxÞmðxÞ dx
� �n

n !
� exp �

Z t

0

qðxÞmðxÞ dx

8<
:

9=
; � exp �

Z t

0

pðxÞmðxÞ dx

8<
:

9=
;

¼
X1
n¼ 0

qnðn� 1Þ=2 �
R t

0 qðxÞmðxÞ dx
� �n

n !
� exp �

Z t

0

mðxÞ dx

8<
:

9=
;:

ð4:14Þ

The following discussion will help us in the further presentation of our time-
dependent results. Let fNðtÞ; t� 0g be the NHPP with rate mðtÞ. If an event occurs
at time t, it is classified as a Type I event with probability pðtÞ and as a Type II
event with the complementary probability 1� pðtÞ, as in our initial pðtÞ , qðtÞ
model. Then fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are the independent NHPP with
rates pðtÞ mðtÞ and qðtÞ mðtÞ; respectively, and NðtÞ ¼ N1ðtÞ þ N2ðtÞ. Accordingly,
e.g., given that there have been no Type I events in ½0; tÞ, the process fNðtÞ; t� 0g
reduces to fN2ðtÞ; t� 0g, as in our specific case when a Type I event (fatal shock)
leads to the termination of the process (failure). Therefore, in order to describe the
lifetime to termination, it is obviously sufficient to consider fN2ðtÞ; t� 0g, and not
the original fNðtÞ; t� 0g.

We will use a similar reasoning for a more general pðtjHðtÞÞ , qðtjHðtÞÞ
model considered above, although interpretation of the types of events will be
slightly different in this case. In the following, in accordance with our previous
notation, N2ðtÞ ¼ NqmðtÞ and the arrival times of this process are denoted by
TðqmÞ1; TðqmÞ2; . . ..

The multiplicative form of the specific result in (4.13) indicates that it might be
also obtained and interpreted via the following general reasoning, which can be
useful for probabilistic analysis of various extensions of standard extreme shock
models. Considering the classical pðtÞ , qðtÞ extreme shock model, assume that
there can be other additional causes of termination dependent either directly on a
history of the point process (as in Model A) or on some other variables, as for the
marked point process, when each event is ‘characterized’ by some variable (e.g.,
damage or wear). Just for the sake of definiteness of presentation, let us call this
‘initial’ cause of failure, which corresponds to the pðtÞ , qðtÞmodel, the main or
the critical cause of failure (termination) and the shock that leads to this event—
the critical shock (Type I event). However, distinct from the pðtÞ , qðtÞ model,
the Type II events, which follow the Poisson process with rate qðtÞ mðtÞ; can now
also result in failure.
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Let ECðtÞ denote the event that there were no critical shocks until time t in the
absence of other causes of failures. Then, obviously,

PðTS� tjECðtÞÞ ¼
PðTS � t; ECðtÞÞ

PðECðtÞÞ
¼ PðTS � tÞ

PðECðtÞÞ
;

and, thus,

PðTS� tÞ ¼ PðTS� tjECðtÞÞPðECðtÞÞ;

where

PðECðtÞÞ ¼ PðN1ðtÞ ¼ 0Þ ¼ exp �
Z t

0

p xð ÞmðxÞ dx

8<
:

9=
;: ð4:15Þ

Therefore, in accordance with our previous reasoning and notation, we can
describe PðTS� tjECðtÞÞ in terms of the process fNqmðtÞ; t� 0g (and not in terms
of the original processfNðtÞ; t� 0g) in the following general form to be specified
for the forthcoming model:

PðTS� tjECðtÞÞ ¼ EðIðWðNqmðtÞ; HÞ 2 SÞjECðtÞÞ;

where Ið�Þ is the corresponding indicator, H is a set of random variables that are
‘responsible’ for other causes of failure (see later), WðNqmðtÞ; HÞ is a real-valued
function of ðNqmðtÞ; HÞ which represents the state of the system at time t (given
ECðtÞ i.e., no critical shock has occurred), and S is a set of real values which
defines the survival of the system in terms of WðNqmðtÞ; HÞ. That is, if the critical
shock has not occurred, the system survives when WðNqmðtÞ; HÞ 2 S.

In order to apply effectively Model A, we have to reinterpret it as follows.
Suppose first, that the system is composed of two parts in series and that each
shock affects only one component. If it hits the first component (with probability
pðtÞ), it directly causes its (and the systems) failure (the critical shock). On the
other hand, if it hits the second component (with probability qðtÞ), then this
component fails with probability 1� qðnðtÞÞ and survives with probability qðnðtÞÞ.
This interpretation nicely conforms with the two independent causes of failure
model in (4.12). Note that, in fact, we are speaking about the conditional inde-
pendence of causes of failure (on condition that a shock from the Poisson process
with rate mðtÞ has occurred).

Another (and probably more practical) interpretation is as follows. Assume that
there are some parts of a system (component 1) that are critical only to, e.g., the
shock’s level of severity, which is assumed to be random. This results in failure
with probability pðtÞ. On the other hand, the other parts (component 2) are critical
only to accumulation of damage (failure with probability 1� qðnðtÞÞ). Assuming
the series structure and the corresponding independence, we arrive at the survival
(on shock) probability (4.12).
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We can define now the function WðNqmðtÞ; HÞ for Model A. Suppose that there
have been no critical shocks in ½0; tÞ and let ui ¼ 1 if the second component
survives the ith shock, and ui ¼ 0, i ¼ 1; 2; 3; . . .NðtÞ otherwise. Then

WðNqmðtÞ; HÞ ¼
YNqmðtÞ

i ¼ 1

ui;

and S ¼ f1g. Therefore, as events ECðtÞ and WðNqmðtÞ; HÞ 2 S are ‘related’ only
to the first and the second causes of failure, respectively, and these causes of failure
are independent, we have:

PðTS� tjECðtÞÞ
¼ EðIðWðNqmðtÞ; HÞ 2 SÞjECðtÞÞ
¼ EðIðWðNqmðtÞ; HÞ 2 SÞÞ

¼ E I
YNqmðtÞ

i¼ 1

ui ¼ 1

 ! !
¼ E P

YNqmðtÞ

i¼ 1

ui ¼ 1jNqmðtÞ
 !" #

¼ E
YNqmðtÞ

i¼ 1

qðiÞ
 !

:

Combining this equation with (4.15), we arrive at the original result in (4.13).
Model B. Consider now another type of extreme shock model, which is, in fact, a
generalization of Model A. In model A, the second cause of failure (termination)
was due to the number of noncritical shocks, no matter what the severity of these
shocks was. Now, we will count only those shocks (to be called ‘dangerous’) with
severity larger than some level j. Assume that the second cause of failure
‘materializes’ only when the number of dangerous shocks exceeds some random
level M. That is, given M ¼ m, in the absence of critical shocks, the system fails as
soon as it experiences the ðmþ 1Þth dangerous shock.

Assume that the shock’s severity is a random variable with the Cdf GðtÞ, and the
survival function for M, PðM [ lÞ; l ¼ 0; 1; 2; ::, is also given. Suppose that there
have been no critical shocks until time t and let ui be the indicator random variable
(ui ¼ 1 if the ith shock is dangerous and ui ¼ 0 otherwise). Then, as previously,

W NqmðtÞ; HÞ ¼ IðM �
XNqmðtÞ

i¼ 1

ui

 !
;

and S ¼ f1g. Thus

PðTS� tjECðtÞÞ ¼ EðIðWðNqmðtÞ; HÞ 2 SÞÞ ¼ E I M�
XNqmðtÞ

i¼ 1

ui

 ! !

¼ P M�
XNqmðtÞ

i¼ 1

ui

 !
¼ E P M�

XNqmðtÞ

i¼ 1

uijNqmðtÞ
 !" #

;

4.2 History-Dependent Termination Probability 93



where,

P M�
XNqmðtÞ

i¼ 1

uijNqmðtÞ ¼ n

 !

¼ PðM [ njNqmðtÞ ¼ nÞ þ
Xn

m¼ 0

P M�
Xn

i¼ 1

uijNqmðtÞ ¼ n; M ¼ m

 !
�PðM ¼ mjNqmðtÞ ¼ nÞ:

¼ PðM [ nÞ þ
Xn

m¼ 0

Xm

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l �PðM ¼ mÞ

¼ PðM [ nÞ þ
Xn

l¼ 0

Xn

m¼ l

n

l

� 	
�GðjÞl GðjÞn � l �PðM ¼ mÞ

¼ PðM [ nÞ þ
Xn

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l � PðM� lÞ � PðM� nþ 1Þð Þ

¼
Xn

l¼ 0

n

l

� 	
�GðjÞl GðjÞn � l � PðM� lÞ:

Thus, similar to the derivations of the previous section

PðTS� tjECðtÞÞ ¼
X1
n¼ 0

Xn

l¼ 0

PðM� lÞ � n
l

� 	
�GðjÞl GðjÞn � l

" #

� mqðtÞn
exp �mqðtÞ
� �

n!
;

where mqðtÞ �
R t

0 qðxÞmðxÞ dx, and finally, we have

PðTS� tÞ ¼ exp �
Z t

0

pðxÞmðxÞ dx

8<
:

9=
; �

X1
n¼ 0

Xn

l¼ 0

PðM� lÞ � n
l

� 	
GðjÞl GðjÞn � l

" #

� mqðtÞn
exp �mqðtÞ
� �

n!

Note that, when the expression for PðTS� tjECðtÞÞ involves not only the
number of shocks NqmðtÞ but also the filtration generated by ðNqmðsÞ; 0� s� tÞ,
the computation becomes intensive and the results might not be useful in practice.
The corresponding example with numerical results can be found in [6].

4.3 Shot Noise Process for the Failure Rate

4.3.1 Shot Noise Process Without Critical Shocks

Assume that a system is subject to the NHPP of shocks fNðtÞ; t� 0g with rate mðtÞ,
which is the only possible cause of its failure. The consequences of shocks are
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accumulated in accordance with the ‘standard’ shot noise process XðtÞ, Xð0Þ ¼ 0
(see e.g., [26], [27] and the previous chapter). Similar to (3.8), but in a slightly
different and more convenient for us here notation, define the level of the cumu-
lative stress (wear) at time t as the following stochastic process:

XðtÞ ¼
XNðtÞ
j¼ 1

Djhðt � TjÞ; ð4:16Þ

where Tn is the n-th arrival time in the shock process, Dj; j ¼ 1; 2; . . . are the i.i.d.
magnitudes of shocks and hðtÞ is a non-negative, nonincreasing for t� 0, deter-
ministic function (hðtÞ ¼ 0 for t\0). The usual assumption for considering
asymptotic properties of XðtÞ is that hðtÞ vanishes as t!1 and its integral in
½0; 1Þis finite, however, we formally do not need this rather restrictive assump-
tion here. The shock process fNðtÞ; t� 0g and the sequence fD1; D2; . . .g are
supposed to be independent.

The cumulative stress eventually results in failures, which can be probabilis-
tically described in different ways. Denote by TS, as previously, the failure time of
our system. Lemoine and Wenocur [23, 24], for example, modeled the distribution
of TS by assuming that the corresponding intensity process is proportional to XðtÞ
(see (2.12) for a general definition). As we are dealing with the intensity process,
we will rather use the term ‘‘stress’’ instead of ‘‘wear’’. Proportionality is a rea-
sonable assumption that describes the proportional dependence of the probability
of failure in the infinitesimal interval of time on the level of stress

kt � k XðtÞ ¼ k
XNðtÞ
j ¼ 1

Dj hðt � TjÞ; ð4:17Þ

where k [ 0 is the constant of proportionality. Then

PðTS [ tjNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼ exp �k

Z t

0

XNðxÞ
j ¼ 1

Dj hðx � TjÞ dx

8<
:

9=
;;

ð4:18Þ

Therefore, it means that the intensity process (4.17) can be also considered as
the failure rate process [22]. Probability (4.18) should be understood conditionally
on the corresponding realizations of fNðsÞ; 0� s� tg and D1; D2; . . .; DNðtÞ.
Therefore, ‘integrating them out’,

PðTS [ tÞ ¼ E exp �k

Z t

0

XðuÞ du

8<
:

9=
;

2
4

3
5:

Lemoine and Wenocur [24] had finally derived the following relationship for
the survival probability PðTS [ tÞ:
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PðTS [ tÞ ¼ expf�mðtÞg exp

Z t

0

LðkHðuÞÞ mðt � uÞ du

8<
:

9=
;; ð4:19Þ

where mðtÞ ¼
R t

0 mðuÞ du; HðtÞ ¼
R t

0 hðuÞ du and Lð�Þ is the operator of the
Laplace transform with respect to the distribution of the shock’s magnitude. In
what follows, we generalize the approach of these authors to the case when a
system can also fail due to a fatal shock with the magnitude exceeding the time-
dependent bound, which is more realistic in practice.

4.3.2 Shot Noise Process with Critical Shocks
and Deterioration

Model 1. In addition to the general assumptions of Lemoine and Wenocur [24]
stated in the previous subsection, let on each shock, depending on its magnitude
Dj; j ¼ 1; 2. . ., the following mutually exclusive events occur [11]:

(i) If Dj [ gUðTjÞ, then the shock results in an immediate system’s failure
(ii) If Dj� gLðTjÞ, then the shock does not cause any change in the system

(harmless)
(iii) If gLðTjÞ\Dj� gUðTjÞ, then the shock increases the stress by Dj hð0Þ,

where gUðtÞ; gLðtÞ are the decreasing, deterministic functions.
The functions of operating time, gUðtÞ; gLðtÞ define the corresponding upper

and lower bounds. Because they are decreasing, this means that the probability that
the shock arriving at time t results in the system’s failure is increasing in time,
whereas the probability that the shock is harmless is decreasing with time.
Therefore, obviously, a deterioration of our system is described in this way. The
function gUðtÞ can also be interpreted as the strength of our system with respect to
shocks, whereas the function gLðtÞ, can be interpreted as the ‘sensitivity’ to shocks.
At many instances, they can be defined from the general ‘physical considerations’
on the criterion of failure of a system. For instance, the minimum peak voltage that
can ruin a new electronic item is usually given in its specifications.

Define the following ‘membership function’:

nðTj; DjÞ ¼
1; gLðTjÞ\Dj� gUðTjÞ

0; Dj� gLðTjÞ

(
: ð4:20Þ

Using this notation, the cumulative stress, similar to (4.16), can be written as

XðtÞ �
XNðtÞ
j¼1

nðTj; DjÞDj hðt � TjÞ; ð4:21Þ
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provided that the system is operating at time t [i.e., the event Dj [ gUðTjÞ; j ¼
1; 2; . . . did not happen in ½0; tÞ].

Generalizing (4.17), assume that the conditional failure rate process k̂t (on
condition that the event Dj [ gUðTjÞ; j ¼ 1; 2; . . . did not happen in ½0; tÞ and
fNðtÞ; T1; T2; . . .; TNðtÞg and fD1; D2; . . .; DNðtÞg are given) is proportional to XðtÞ

k̂t � k XðtÞ ¼ k
XNðtÞ
n¼ 1

nðTj; DjÞDjhðt � TjÞ; k [ 0: ð4:22Þ

It is clear that conditionally on the corresponding history

(i) If Dj [ gUðTjÞ, for at least one j, then

PðTS [ t jNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ ¼ 0;

(ii) If Dj� gUðtÞ, for all j, then

PðTS [ t jNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ ¼ exp �k

Z t

0

XNðxÞ
j¼ 1

nðTj; DjÞDj hðx � TjÞ dx:

8<
:

9=
; :

Therefore,

PðTS [ t j NðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼
YNðtÞ
j¼ 1

cðTj; DjÞ � exp �k

Z t

0

XNðxÞ
j¼ 1

nðTj; DjÞDjhðx � TjÞ dx

8<
:

9=
;;

ð4:23Þ

where

cðTj; DjÞ ¼
0; Dj [ gUðTjÞ
1; Dj� gUðTjÞ



: ð4:24Þ

Thus, we have described a rather general model that extends (4.18) to the defined
deterioration pattern. Indeed, if gUðtÞ ¼ 1; gLðtÞ ¼ 0, then nðTj;DjÞ � 1and
(4.23) reduces to (4.18) with the corresponding survival probability (4.19). On the
other hand, let gUðtÞ ¼ gLðtÞ ¼ gðtÞ: Then, defining pðtÞ ¼ PðDj [ gðtÞÞ as the
probability of failure under a shock at time t (qðtÞ ¼ PðDj� gðtÞÞ, we obviously
arrive at the pðtÞ , qðtÞ model described by Eq. (4.1).

On the basis of the above described model, we will derive now the (uncondi-
tional) survival function and the corresponding failure rate function. First, we need
the following general lemma (see, [13] for the proof):

Lemma 4. 1 Let X1; X2; . . .; Xn be i.i.d. random variables and Z1; Z2; . . .; Zn be
i.i.d. continuous random variables with the corresponding common pdf. Further-
more, let X ¼ ðX1; X2; . . .; XnÞ and Z ¼ ðZ1; Z2; . . .; ZnÞ be independent. Suppose
that the function uðx; zÞ : Rn 	 Rn ! R satisfies uðX; tÞ ¼d uðX; pðtÞÞ, for
any vector t 2 Rn and for any n-dimensional permutation function pð�Þ. Then
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uðX; ZÞ ¼d uðX; Z�Þ;

where Z� ¼ ðZð1Þ; Zð2Þ; . . .; ZðnÞÞ is the vector of the order statistics of Z.

We are ready now to prove the following theorem [11].

Theorem 4.4 Let HðtÞ ¼
R t

0 hðvÞ dv; m tð Þ � EðNðtÞÞ ¼
R t

0 m xð Þ dx and fDðuÞ;
FDðuÞ be the pdf and the Cdf of D ¼d Dj; j ¼ 1; 2; . . .. Assume that the inverse
function m�1 tð Þ exists for t [ 0. Then the survival function that corresponds to the
lifetime TS is

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
;

exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;;

ð4:25Þ

and the corresponding failure rate is

kSðtÞ ¼ PðD [ gUðtÞÞ kðtÞ

þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds: ð4:26Þ

Proof Observe that

PðTS [ t j NðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼
YNðtÞ
j¼ 1

cðTj; DjÞ exp �k
XNðtÞ
j¼ 1

nðTj; DjÞDj Hðt � TjÞ
( )

¼ exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDj Hðt � TjÞÞ
( )

:

Therefore,

PðTS [ tÞ ¼ E exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDjHðt � TjÞÞ
( )" #

¼ E E exp
XNðtÞ
j¼ 1

ðln cðTj; DjÞ � knðTj; DjÞDj Hðt � TjÞÞ
( )

NðtÞj
 !" #

:
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As previously, if m�1 tð Þ exists, then the joint distribution of T1; T2; . . .; Tn,
given NðtÞ ¼ n, is the same as the joint distribution of the order statistics
T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables T 01; T

0
2; . . .; T 0n, where the pdf of

the common distribution of T 0j ’s is given by mðxÞ=mðtÞ. Thus,

E exp
XNðtÞ
j¼ 1

ðln cðTj;DjÞ � knðTj;DjÞDj Hðt � TjÞÞ
( )

NðtÞ ¼ nj
 !

¼ E exp
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ;DjÞDjHðt � T 0ðjÞÞÞ
( ) !

:

Let X ¼ ðD1;D2; . . .;DnÞ, Z ¼ ðT 01; T 02; . . .; T 0nÞ and

uðX; ZÞ �
Xn

j¼1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDjHðt � T 0j ÞÞ: ð4:27Þ

Note that, as was mentioned, if gUðtÞ ¼ 1; gLðtÞ ¼ 0, then nðTj;DjÞ � 1 and
our model reduces to the original model of Lemoine and Wenocur [24], where
each term in uðX;ZÞ is just a simple product of Dj and Hðt � T 0j Þ. Due to this
simplicity, the rest was straightforward. Now we have a much more complex form
of uðX;ZÞ, as given in (4.27), where the terms in the sum cannot be factorized.

Observe that the function uðx; zÞ satisfies

uðX; tÞ ¼d uðX; pðtÞÞ

for any vector t 2 Rn and for any n-dimensional permutation function pð�Þ. Thus,
applying Lemma 4.1,

Xn

j¼ 1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDj Hðt � T 0j ÞÞ

¼d
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ;DjÞDj Hðt � T 0ðjÞÞÞ

and, therefore,

E exp
Xn

j¼ 1

ðln cðT 0ðjÞ;DjÞ � knðT 0ðjÞ; DjÞDj Hðt � T 0ðjÞÞÞ
( ) !

¼ E exp
Xn

j¼ 1

ðln cðT 0j ;DjÞ � knðT 0j ;DjÞDj Hðt � T 0j ÞÞ
( ) !

¼ E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �� �n

:

As
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E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg j T 01 ¼ s
� �
¼ E expfln cðs;D1Þ � knðs;D1ÞD1 Hðt � sÞg½ �

¼
ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du þ PðD1� gLðsÞÞ;
ð4:28Þ

where for D1 [ gUðsÞ, expfln cðs; D1Þ � knðs;D1ÞD1 Hðt � sÞg ¼ 0, for all
s [ 0, the unconditional expectation is

E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �

¼
Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du
mðsÞ
mðtÞ ds þ

Z t

0

PðD1� gLðsÞÞ
mðsÞ
mðtÞ ds:

Let

aðtÞ �
Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ dukðsÞ ds þ
Z t

0

PðD1� gLðsÞÞ mðsÞ ds;

and we finally arrive at

PðTS [ tÞ ¼
X1
n¼ 0

mðtÞ
mðtÞ

� 	n

� mðtÞn

n!
exp �

Z t

0

mðuÞ du

8<
:

9=
;

¼ exp �
Z t

0

mðuÞ du þ
Z t

0

ZgU ðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ dsþ
Z t

0

PðD1 � gLðuÞÞmðuÞ du

8><
>:

9>=
>;;

which is obviously equal to (4.25).
The corresponding failure rate can be obtained as

kSðtÞ ¼ �
d
dt

ln PðTS [ tÞ

¼ mðtÞ � PðgLðtÞ�D1� guðtÞÞ mðtÞ

þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds � PðD1� gLðtÞÞ mðtÞ

¼ PðD1 [ gUðtÞÞmðtÞ þ
Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds;

where the Leibnitz rule was used for differentiation of the double integral. h
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Relationship (4.26) suggests that (4.25) can be equivalently written as

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgUðuÞÞ mðuÞ du

8<
:

9=
; exp �

Z t

0

ZgUðsÞ

gLðsÞ

kuhðt � sÞ expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>; :

Therefore, we can again interpret our system as a series one with two inde-
pendent components: one that fails only because of fatal (critical) shocks and the
other that fails because of nonfatal shocks.

Example 4.2 Consider the special case when gUðtÞ ¼ 1 and gLðtÞ ¼ 0. Then the
survival function in (4.25) is

PðT [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
; exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�kuHðt � sÞg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;

¼ expf�mðtÞg exp

Z t

0

LðkHðt � sÞÞ mðsÞ ds

8<
:

9=
; ¼ expf�mðtÞg exp

Z t

0

LðkHðuÞÞ mðt � uÞ du

8<
:

9=
;;

where Lð�Þ is the operator of the Laplace transform with respect to fDðuÞ. There-
fore, we arrive at Eq. (4.19) obtained in [24].

Example 4.3 Suppose that mðtÞ ¼ m, t� 0, Dj � d, j ¼ 1; 2; . . ., and there exist
t2 [ t1 [ 0 such that

gUðtÞ[ gLðtÞ[ d, for 0� t\t1 (shocks are harmless);
d [ gUðtÞ[ gLðtÞ, for t2\t (shocks are fatal), and
gUðtÞ[ d [ gLðtÞ, for t1\t\t2; gLðt1Þ ¼ gUðt2Þ ¼ d.

Let for the sake of further integration, hðtÞ ¼ 1=ð1 þ tÞ, t� 0, and k ¼ 1=d
(for simplicity of notation). From Eq. (4.28),

E½expfln cðT 01;D1Þ � knðT 01;D1ÞD1Hðt � T 01Þg j T 01 ¼ s�
¼ expfln cðs; dÞ � knðs; dÞ dHðt � sÞg

¼
0; if gUðsÞ[ dðs [ t2Þ

expf�Hðt � sÞg; if gLðsÞ\d � gUðsÞ ðt1\s� t2Þ
1; if d� gLðsÞ ðs� t1Þ

8><
>:

¼ expf�Hðt � sÞg IðgLðsÞ[ d� gUðsÞÞ þ Iðd � gLðsÞÞ
¼ expf�Hðt � sÞg Iðt1 [ s� t2Þ þ Iðs1Þ:
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Thus, ‘integrating T 01 ¼ s out’:

E expfln cðT 01;D1Þ � knðT 01;D1ÞD1 Hðt � T 01Þg
� �

¼ 1
mðtÞ

Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds þ
Z t

0

Iðs� t1Þ mðsÞ ds

2
4

3
5:

Then,

PðTS [ tÞ ¼ exp �
Z t

0

mðuÞ du þ
Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds þ
Z t

0

Iðs� t1Þ mðsÞ ds

8<
:

9=
;

¼ exp �
Z t

0

Iðs [ t1Þ mðsÞ ds þ
Z t

0

expf�Hðt � sÞg Iðt1\s� t2Þ mðsÞ ds

8<
:

9=
;:

Thus [11],

(i) For 0� t� t1, PðT [ tÞ ¼ 1;
(ii) For t1� t� t2,

PðTS [ tÞ ¼ exp �
Z t

t1

kdu

8<
:

9=
; exp k

Z t

t1

expf�Hðt � sÞg ds

8<
:

9=
;

¼ exp �mðt � t1Þf g exp m lnð1 þ t � t1Þf g
¼ exp �mðt � t1Þf gð1 þ t � t1Þm;

(iii) For t2� t,

PðTS [ tÞ ¼ exp �
Z t

t1

mdu

8<
:

9=
; exp m

Zt2

t1

expf�Hðt � sÞg ds

8<
:

9=
;

¼ expf�mðt � t1Þgð1 þ t2 � t1Þm;

which shows (compared with case (ii)) that if the system has survived in 0� t� t1,
then the next shock with probability 1 will ‘kill’ it.

Model 2. We consider now the following useful modification of Model 1:
Let, on each shock, depending on its magnitude Dj; j ¼ 1; 2; ::, the following

mutually exclusive events occur:

(i) If Dj [ gUðTjÞ, the shock results in an immediate system failure (as in Model 1)
(ii) If Dj� gLðTjÞ, the shock is harmless (as in Model 1)
(iii) If gLðTjÞ\Dj� gUðTjÞ, then the shock imposes a (constant) effect on the

system lasting for a random time, which depends on its arrival time and
magnitude.
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In the latter case, assume that the larger are the shock’s arrival time and magni-
tude, the longer this effect lasts. Formally, let the shock increase the system failure
rate by g units (constant) for the random time wðTj; DjÞ, where wðt; dÞ is a strictly
increasing function of each argument. Thus, along with decreasing functions
gUðtÞ; gLðtÞ, the increasing function wðt; dÞ models deterioration of our system.

Similar to (4.22) (where for simplicity of notation, we set k � 1), the conditional
failure rate process (on condition that the event Dj [ gUðTjÞ; j ¼ 1; 2; . . . did not
happen in ½0; tÞ and fNðtÞ; T1; T2; . . .; TNðtÞg and fD1;D2; . . .;DNðtÞg are given) is

k̂t � XðtÞ ¼
XNðtÞ
j¼1

nðTj;DjÞ gIðTj� t\Tj þ wðTj;DjÞÞ:

Then, similar to (4.23),

PðTS [ t j NðsÞ; 0� s� t; D1;D2; . . .;DNðtÞÞ

¼
YNðtÞ
j¼1

cðTj;DjÞ � exp �
Z t

0

XNðxÞ
j¼1

nðTj;DjÞ gIðTj� x\Tj þ wðTj;DjÞÞ dx

8<
:

9=
;:

ð4:29Þ

where the functions nðTj;DjÞ and cðTj;DjÞ are defined in (4.20) and (4.24),
respectively.

Similar to Theorem 4.4, the following result holds.

Theorem 4.5 Let g be the increment in the system’s failure rate due to a single
shock that lasts for the random time wðTj;DjÞ. Under assumptions of Theorem 4.4,
the survival function PðTS [ tÞ is given by

PðTS [ tÞ ¼ exp �
Z t

0

�FDðgLðuÞÞ mðuÞ du

8<
:

9=
;

	 exp

Z t

0

ZgUðsÞ

gLðsÞ

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞ du mðsÞ ds

8><
>:

9>=
>;:

ð4:30Þ

Proof Observe that from (4.29),

PðTS [ tjNðsÞ; 0� s� t; D1; D2; . . .; DNðtÞÞ

¼ exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞminfwðTj;DjÞ; ðt � TjÞgÞ
( )

:
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Therefore,

PðTS [ tÞ ¼ E exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞ minfwðTj;DjÞ; ðt � TjÞgÞ
( )" #

¼ E E exp
XNðtÞ
j¼1

ðln cðTj;DjÞ � gnðTj;DjÞminfwðTj;DjÞ; ðt � TjÞgÞ
( )

NðtÞj
 !" #

:

Following straightforwardly the procedure described in the proof of Theorem 4.4,
we eventually arrive at (4.30).

h

In contrast to Theorem 4.4 and owing to dependence in (4.30) on the function of
minimum, the corresponding failure rate can only be obtained when specific forms
of gUðtÞ, gLðtÞ, and wðt; dÞ are given. As in the case of Model 1, when gUðtÞ ¼
gLðtÞ ¼ gðtÞ; this model also obviously reduces to the pðtÞ , qðtÞ model (4.1).

Example 4.4 Let gLðtÞ ¼ 0, gUðtÞ ¼ 1, for all t� 0, and wðt; dÞ ¼ d(no deteri-
oration in time). This means that the shocks are not fatal with probability 1 and
that the durations of the shock’s effect do not depend on the arrival times but are
just given by the i.i.d. random variables Dj. In this case, from (4.30),

PðTS [ tÞ ¼ exp �
Z t

0

mðuÞ du

8<
:

9=
;

	 exp

Z t

0

Z1

0

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞ du mðsÞ ds

8<
:

9=
;;

where

Z t

0

Z1

0

expf�g �minfwðu; sÞ; ðt � sÞgg fDðuÞdu mðsÞ ds

¼
Z t

0

Zt � s

0

expf�gug fDðuÞ du mðsÞ dsþ
Z t

0

Z1

t � s

expf�gðt � sÞg fDðuÞ du mðsÞ ds:

¼
Z t

0

Zt � u

0

mðsÞ ds expf�gugfDðuÞ du þ
Z t

0

expf�gðt � sÞgFDðt � sÞ mðsÞ ds:

¼
Z t

0

mðt � uÞ expf�gug fDðuÞ du þ
Z t

0

expf�gðuÞgFDðuÞ mðt � uÞ du
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¼ ½�FDðuÞ expf�gugmðt � uÞ�t0 �
Z t

0

FDðuÞ expf�gug mðt � uÞ du

� g
Z t

0

FDðuÞ expf�gugmðt � uÞ du þ
Z t

0

expf�gðuÞgFDðuÞ mðt � uÞ du

¼ mðtÞ � g
Z t

0

FDðuÞ expf�gugmðt � uÞ du:

Therefore,

PðTS [ tÞ ¼ exp �g
Z t

0

expf�gug � FDðuÞ � mðt � uÞ du

8<
:

9=
;;

and thus

kSðtÞ ¼ g
Z t

0

expf�gug � FDðuÞ � mðt � uÞ du:

4.4 Extreme Shock Model with Delayed Termination

Consider an orderly point process (without multiple occurrences) fNðtÞ; t� 0g of
some ‘initiating’ events (IEs) with arrival times T1\T2\T3\. . .. Let each event
from this process triggers the ‘effective event’ (EE), which occurs after a random
time (delay) Di; i ¼ 1; 2; . . ., since the occurrence of the corresponding IE at Ti.
Obviously, in contrast to the initial ordered sequence T1\T2\T3\. . ., the EEs
fTi þ Dig; i ¼ 1; 2; . . . are now not necessarily ordered. This setting can be
encountered in many practical situations, when, e.g., initiating events start the
process of developing the non-fatal faults in a system and we are interested in the
number of these faults in ½0; tÞ: Alternatively, effective events can result in fatal,
terminating faults (failures) and then we are interested in the survival probability
of our system. Therefore, the latter setting means that the first EE ruins our system.
When there are no delays, each shock (with the specified probability) results in the
failure of the survived system and the described model obviously reduces to the
classical extreme shock model ([17]; [19]) considered in the previous section of
this chapter and in Chap. 3.

The IEs can often be interpreted as some external shocks affecting a system, and
for convenience and in the spirit of the current chapter, we will often use this term
(interchangeably with the ‘‘IE’’). We will consider the case of the NHPP of the IEs.
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The approach can, in principle, be applied to the case of renewal processes, but the
corresponding formulas are too cumbersome. However, the obtained results for the
NHPP case are in simple, closed forms that allow intuitive interpretations and
proper analyses. Our presentation in this and the subsequent section will mostly
follow Cha and Finkelstein[7].

Thus, a system is subject to the NHPP of IEs, fNðtÞ; t� 0g to be called shocks.
Let the rate of this process be mðtÞ and the corresponding arrival times be denoted
as T1\T2\T3. . .. Assume that the ith shock is ‘harmless’ to the system with
probability qðTiÞ, and with probability pðTiÞ it triggers the failure process of the
system which results in its failure after a random time DðTiÞ, i ¼ 1; 2; . . ., where
DðtÞ is a non-negative, semicontinuous random variable with the point mass at ‘‘0’’
(at each fixed t). Note that, this ‘point mass’ at 0 opens the possibility of the
‘immediate failure’ of the system on a shock’s occurrence, which is practically
very important. Furthermore, the case of the ‘full point mass’ of DðtÞ at 0 reduces
to the ordinary ‘extreme shock model’. Obviously, without the point mass at 0, we
arrive at an absolutely continuous random variable. The distributions of DðtÞ
having point masses at other values of time could be considered similarly.

Let Gðt; xÞ � PðDðtÞ� xÞ, �Gðt; xÞ � 1 � Gðt; xÞ, and gðt; xÞ be the Cdf, the
survival function and the pdf for the ‘continuous part’ of DðtÞ, respectively. Then,
in accordance with our terminology, the failure in this case is the EE.

First of all, we are interested in describing the lifetime of our system TS. The
corresponding conditional survival function is given by

PðTS [ t j NðsÞ; 0� s� t; DðT1Þ; DðT2Þ; . . .; DðTNðtÞÞ; J1; J2; . . .; JNðtÞÞ

¼
YNðtÞ
i¼ 1

Ji þ ð1� JiÞIðDðTiÞ[ t � TiÞð Þ;

ð4:31Þ

where the indicators are defined as

IðDðTiÞ[ t � TiÞ ¼
1; if DðTiÞ[ t � Ti

0; otherwise



;

Ji ¼
1; if the ith shock does not trigger the subsequent failure process,

0; otherwise:




Assume the following conditions regarding ‘conditional independence’:

(i) Given the shock process, DðTiÞ; i ¼ 1; 2; . . ., are mutually independent.
(ii) Given the shock process, Ji, i ¼ 1; 2; . . ., are mutually independent. (It means

that whether each shock triggers the failure process of the system or not is
‘independently determined’).

(iii) Given the shock process, fDðTiÞ; i ¼ 1; 2; . . .g and fJi; i ¼ 1; 2; . . .g are
mutually independent.
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As in the previous sections, integrating out all conditional random quantities in
(4.31) under the basic assumptions described above results in the following
theorem.

Theorem 4.6 Let m�1ðtÞ; t [ 0 exist ( mðtÞ � EðNðTÞÞ. Then

PðTS� tÞ ¼ exp �
Z t

0

Gðx; t � xÞ pðxÞ mðxÞ dx

8<
:

9=
;; t� 0;

and the failure rate function of the system is

kSðtÞ ¼
Z t

0

gðx; t � xÞ pðxÞ mðxÞ dx þ Gðt; 0Þ pðtÞ mðtÞ; t� 0:

Proof Given the assumptions, we can directly ‘integrate out’ Ji’s and Di’s and
define the corresponding probability in the following way:

PðTS [ t j NðsÞ; 0� s� tÞ ¼
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

:

Therefore,

PðTS [ tÞ ¼ E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �" #

¼ E E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

j NðtÞ
" #" #

:

ð4:32Þ

As the joint distribution of T1; T2; . . .; Tn given NðtÞ ¼ n is the same as the joint
distribution of order statistics T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables

T 01; T
0
2; . . .; T 0n, where the pdf of the common distribution of T 0j ’s is given by

mðxÞ=mðtÞ; 0� x� t, we have

E
YNðtÞ
i¼ 1

qðTiÞ þ pðTiÞGðTi; t � TiÞ
� �

j NðtÞ ¼ n

" #

¼ E
Yn

i¼ 1

qðT 0ðiÞÞ þ pðT 0ðiÞÞGðTðiÞ; t � T 0ðiÞÞ
� �" #

¼ E
Yn

i¼ 1

qðT 0i Þ þ pðT 0i ÞGðT 0i ; t � T 0i Þ
� �" #

¼ E qðT 0i Þ þ pðT 0i ÞGðT 0i ; t � T 0i Þ
� �� �n¼ 1

mðtÞ

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

0
@

1
A

n

:

ð4:33Þ
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From Eqs. (4.32) and (4.33),

PðTS [ tÞ ¼
X1
n¼ 0

1
mðtÞ

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

0
@

1
A

n

� mðtÞ
n

n !
e�mðtÞ

¼ e�mðtÞ � exp

Z t

0

qðxÞ þ pðxÞGðx; t � xÞ
� �

mðxÞ dx

8<
:

9=
;

¼ exp

Z t

0

qðxÞmðxÞ dxþ
Z t

0

Gðx; t � xÞpðxÞ mðxÞ dx�
Z t

0

mðxÞ dx

8<
:

9=
;

¼ exp �
Z t

0

Gðx; t � xÞ pðxÞ mðxÞ dx

8<
:

9=
;:

Therefore, by Leibnitz rule, the failure rate function of the system, kSðtÞ, is
given in the following meaningful and rather simple form:

kSðtÞ ¼
Z t

0

gðx; t � xÞpðxÞ mðxÞ dxþ Gðt; 0ÞpðtÞ mðtÞ; t� 0: ð4:34Þ

h

Formally, the split of effects to effective and ineffective shocks does not add
any mathematical complexity because of the NHPP nature of the arrival process.
This means that the result would be the same if we had only one type of effects and
the NHPP with the rate function pðtÞ vðtÞ. However, from the practical point of
view and keeping in mind that we are generalizing here the classical extreme
shock model with two types of effects, this splitting seems to be reasonable.
Furthermore, we can consider the case of the multitype delayed consequences of
shocks (n [ 1), where the shock that occurs at time t causes the delayed (with
distribution Giðt; xÞ) effect of type i with probability piðtÞ, whereas the probability
of ‘no effect’ is 1�

Pn
i¼ 1 piðtÞ. Obviously, this model is the same as the single-

type model with Gðt; xÞ ¼
Pn

i¼ 1 p�i ðtÞGiðt; xÞ and pðtÞ ¼
Pn

i¼ 1 piðtÞ, where
p�i ðtÞ ¼ piðtÞ

Pn
i¼ 1 piðtÞ. Therefore, similar to Theorem 4.6,

PðTS� tÞ ¼ exp �
Z t

0

Xn

i¼ 1

piðxÞGiðx; t � xÞ
 !

mðxÞ dx

8<
:

9=
;; t� 0

and

kSðtÞ ¼
Z t

0

Xn

i¼ 1

piðxÞ giðx; t � xÞ
 !

mðxÞ dx þ
Xn

i¼ 1

piðtÞGiðt; 0Þ
 !

mðtÞ:

108 4 Advanced Theory for Poisson Shock Models



4.5 Cumulative Shock Model with Initiated
Wear Processes

Consider now a cumulative model for the IEs, where the accumulated wear can
result in a system’s failure when it reaches the given boundary. Our setting that
follows is different from the conventional one. In the conventional setting, the
wear caused by a shock is incurred at the moment of the corresponding shock (see
Sect. 4.1). In our model, however, the wear process, triggered by a shock, is
activated at the moment of a shock’s occurrence and continuously increases with
time.

Denote by Wðt; uÞ the random wear incurred in u units of time after a single
shock (IE) that has occurred at time t. Let Wðt; 0Þ � 0, for all t� 0. Assume that
Wðt; uÞ is stochastically increasing (see Sect. 2.8) in t and u, that is,

Wðt1; uÞ� stWðt2; uÞ for all t2 [ t1 [ 0 and for all u [ 0;

and

Wðt1; uÞ� stWðt; uÞ for all u2 [ u [ 0 and for all t [ 0:

An example for this type of Wðt; uÞ is the gamma process, with the pdf for
Wðt; uÞ given by

f ðw; t; uÞ ¼ baðt; uÞ � waðt; uÞ � 1 expf�bwg
Cðaðt; uÞÞ ; w� 0;

where aðt; 0Þ ¼ 0, for all t� 0, and aðt; uÞ is strictly increasing in both t and u.
If all shocks from the initial process trigger wear, then the accumulated wear

from all shocks in ½0; tÞ is

WðtÞ ¼
XNðtÞ
i¼ 0

WðTi; t � TiÞ;

which can be considered as a general form of a shot noise process (see Sect. 4.3).
Assume that each shock with probability pðtÞ results in an immediate failure
(termination), otherwise, with probability qðtÞ it triggers the wear process in the
way described above. The failure also occurs when the accumulated wear reaches
the random boundary R and we are interested in obtaining the distribution of the
time to failure, TS.

The corresponding conditional survival probability for this model can be
written as [7]

PðTS [ tjNðsÞ; 0� s� t; WðTi; t � TiÞ; i ¼ 1; 2; . . .;NðtÞ; RÞ

¼
YNðtÞ
i¼ 0

qðTiÞ � I
XNðtÞ
i¼ 0

WðTi; t � TiÞ�R

 !
:
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For obtaining the explicit expression for the unconditional survival probability
in this case assume additionally that R is the exponentially distributed (with
parameter k) random variable.

Theorem 4.7 Let the shock process be the NHPP with rate mðtÞ and suppose that
m�1ðtÞ exists (for t [ 0). Then

PðTS� tÞ ¼ exp �
Z t

0

mðxÞ dxþ
Z t

0

MWðx; t� xÞð�kÞ � qðxÞmðxÞ dx

8<
:

9=
;; t� 0;

and the corresponding failure rate function is

kSðtÞ ¼ pðtÞ mðtÞ �
Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx; t� 0;

where MWðt; uÞð�Þ is the mgf of Wðt; uÞ (for fixed t and u).

Proof Given the assumptions, we can directly ‘integrate out’ the variable R and
define the corresponding probability in the following way:

PðTS [ tjNðsÞ; 0� s� t; WðTi; t � TiÞ; i ¼ 1; 2; . . .;NðtÞÞ

¼
YN tð Þ

i¼ 0

q Tið Þ
 !

� exp �
Z

PNðtÞ
i¼0

WðTi; t�TiÞ

0

kdu

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

:

Thus, the survival function can be obtained as

PðTS [ tÞ ¼ E E exp �k
XNðtÞ
i¼1

WðTi; t � TiÞ þ
XN tð Þ

i¼1

ln q Tið Þ
( )

jNðtÞ
" #" #

:

Following the same procedure described in the Proof of Theorem 4.6,

E exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

jNðtÞ ¼ n

" #

¼ E exp �k WðT 01; t � T 01Þ þ ln q T 01
� �� �� �� �n

:
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Observe that,

E exp �k WðT 01; t � T 01Þ þ ln q T 01
� �� �� �

¼ 1
mðtÞ

Z t

0

qðxÞMWðx; t�xÞð�kÞ
� �

mðxÞ dx:

Hence,

E exp �k
XNðtÞ
i¼ 1

WðTi; t � TiÞ þ
XN tð Þ

i¼ 1

ln q Tið Þ
( )

jNðtÞ ¼ n

" #

¼ 1
mðtÞ

Z t

0

qðxÞMWðx; t� xÞð�kÞ
� �

mðxÞ dx

0
@

1
A

n

:

Finally,

PðTS [ tÞ ¼ exp �
Z t

0

mðxÞ dx þ
Z t

0

MWðx; t� xÞð�kÞ � qðxÞ mðxÞ dx

8<
:

9=
;:

Therefore, by Leibnitz rule, the failure rate function of the system, kSðtÞ, is

kSðtÞ ¼ ð1 � MWðt; 0Þð�kÞ � qðtÞÞ mðtÞ �
Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx

¼ pðtÞmðtÞ �
Z t

0

d
dt

MWðx; t � xÞð�kÞ
� �

� qðxÞ mðxÞ dx: h

Let, for simplicity, limt!1 mðtÞ � mð1Þ � m0\1; m0 [ 0; pðtÞ � p; qðtÞ � q.
It is clear from general considerations that limt!1 kSðtÞ ¼ limt!1 mðtÞ ¼ m0

monotonically approaching the limit from below. Indeed, consider a system
that had survived in ½0; tÞ, which means that the next interval ½t; t þ dtÞ starts with
the same ‘resource’ R, as the boundary is exponentially distributed. Due to the
fact that all previous nonfatal shocks accumulate wear and all triggered wear
processes are increasing, as t increases (WðtÞ ! 1 as t!1), the resource R
is ‘consumed more intensively’ with time. This obviously means that the probability
of failure in ½t; t þ dtÞ is increasing in t and, therefore, kSðtÞ is increasing.
Eventually, when t!1, each triggering shock becomes fatal in the limit, which
means that
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lim
t!1

kSðtÞ ¼ lim
t!1

mðtÞ ¼ m0:

The following example illustrates these considerations.

Example 4.5 Suppose that Wðt; uÞ follows the gamma process, that is, the pdf of
Wðt; uÞ is

f ðw; t; uÞ ¼ baðt; uÞ � waðt; uÞ� 1 expf�bwg
Cðaðt; uÞÞ ; w� 0;

where aðt; 0Þ ¼ 0 for all t� 0, and aðt; uÞ is strictly increasing in both t and u.
Then

MWðx; t� xÞð�kÞ ¼ b
bþ k

� 	aðx; t� xÞ
;

and

d
dt

MWðx; t � xÞð�kÞ
� �

¼ d
dt

aðx; t � xÞð Þ ln
b

bþ k

� 	
� b

bþ k

� 	aðx; t � xÞ
:

Let mðtÞ ¼ m; qðtÞ ¼ q; t� 0; aðt; uÞ ¼ au; t; u� 0. Then

Z t

0

d
dt

MWðx; t� xÞð�kÞ
� �

� qðxÞ mðxÞ dx ¼
Z t

0

a � ln b
bþ k

� 	
� b

bþ k

� 	aðt � xÞ
�q mdx

¼
Zat

0

ln
b

bþ k

� 	
� b

bþ k

� 	x

�q mdx

¼ qm
b

bþ k

� 	at

�1

� 	
:

Therefore, we have

kSðtÞ ¼ pm þ qm 1 � b
bþ k

� 	at� 	
; t� 0

and

lim
t!1

kSðtÞ � m;

which illustrates the fact that every triggering shock in the limit becomes fatal.
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4.6 ‘Curable’ Shock Processes

In this section, we generalize the setting of Sect. 4.4 to the case when each failure
that was initiated (and delayed), has a chance to be repaired or cured as well.
Therefore, as previously, consider a system subject to the NHPP of IEs
fNðtÞ; t� 0g to be called shocks. Let the rate of this process be mðtÞ and the
corresponding arrival times be denoted as T1\T2\T3. . .. Assume that the ith
shock triggers the failure process of the system which can result in its failure after
a random time DðTiÞ, i ¼ 1; 2; . . ., where for each fixed t� 0, the delay DðtÞ is a
non-negative, continuous random variable. Let Gðt; xÞ � PðDðtÞ� xÞ,
�Gðt; xÞ � 1� Gðt; xÞ, and gðt; xÞ be the Cdf, the survival function, and the pdf of
DðtÞ, respectively. Assume now that with probability qðt; xÞ ¼ 1� pðt; xÞ, where
t is the time of a shock’s occurrence and x is the corresponding delay, each failure
can be instantaneously cured (repaired), as if this shock did not trigger the failure
process at all. For instance, it can be an instantaneous overhaul of an operating
system by the new one that was not exposed to shocks before. It should be noted
that this operation is executed at time t þ x and not at time t, as in the classical
extreme shock model without delay. Different cure models have been considered
mostly in the biostatistical literature (see Aalen et al. [1] and references therein).
Usually, these models deal with a population that contains a subpopulation that is
not susceptible to, e.g., a disease (i.e., ‘cured’) after some treatment. This setting is
often described by the multiplicative frailty model with the frailty parameter
having a mass at 0. It means that there exists a nonsusceptible (cured) subpopu-
lation with the hazard rate equal to 0. In our case, however, the interpretation is
different, but the mathematical description is also based on considering the cor-
responding improper distributions [9].

For simplicity of notation, consider the t-independent case, when DðtÞ � D,
Gðt; xÞ � GðxÞ, gðt; xÞ � gðxÞ and pðt; xÞ � pðxÞ. The results can be easily
modified to the t-dependent setting. Having in mind that D denotes the time of
delay, let DC be the time from the occurrence of an IE to the system failure caused
by this IE. Note that DC is an improper random variable, as DC � 1 (with a non-
zero probability) when the corresponding IE does not result in an ultimate system
failure due to cure. Then the improper survival function that describes DC is:

�GCðxÞ � 1 �
Zx

0

pðuÞgðuÞ du ð4:35Þ

with the corresponding density:

gCðxÞ ¼ pðxÞ gðxÞ: ð4:36Þ

Thus, the EE that has occurred in ½x; xþ dxÞ is fatal with probability pðxÞ and is
cured with probability qðxÞ. For the specific case, pðxÞ � p, we can say that the
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proportion p of events of interest results in failure, whereas ‘the proportion 1 � p
is cured’

Another setting, which yields a similar description, is as follows: let each IE
along with the failure development mechanism ignites a repair mechanism
described by the repair time R with the Cdf KðtÞ. If R [ D, then the EE is fatal,
otherwise it will be repaired before the failure (R�D) and therefore, can formally
be considered as cured. Thus, probability pðxÞ in (4.36) has a specific, meaningful
form in this case

pðxÞ ¼ 1 � KðxÞ:

After describing the setting, we are ready now to derive the formal result. The
proof is relatively straightforward and similar to the proofs of the previous sections
of this chapter; however the explicit result to be obtained is really meaningful. We
are interested in describing the lifetime of our system TS (time to the first fatal EE).
The corresponding conditional survival function is given by

PðTS [ tjNðsÞ; 0� s� t; DC1;DC2; . . .;DCNðtÞÞ

¼
YNðtÞ
i ¼ 1

IðDCi [ t � TiÞð Þ;
ð4:37Þ

where the indicators are defined as

IðDCi [ t � TiÞ ¼
1; if DCi [ t � Ti

0; otherwise

(
:

Let

Ji ¼
1; if the ith cure process is successful;

0; otherwise:

(

We assume that given the shock process, (i) Ji, i ¼ 1; 2; . . ., are mutually
independent; (ii) Di, i ¼ 1; 2; . . ., are mutually independent; (iii) fJi; i ¼ 1; 2; . . .g,
fDi; i ¼ 1; 2; . . .g are mutually independent. Therefore, DCi i ¼ 1; 2; . . ., are also
mutually independent.

Integrating out all conditional random quantities in (4.37) under the basic
assumptions described above, we arrive at the following theorem, which modifies
Theorem 4.6 [11]:

Theorem 4.8 Let m�1ðtÞ exist for t [ 0. Then

PðTS� tÞ ¼ exp �
Z t

0

GCðt � uÞmðuÞ du

8<
:

9=
;; t� 0; ð4:38Þ

and the failure rate function of the system is
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kSðtÞ ¼
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du; t� 0: ð4:39Þ

Proof From (4.37),

PðTS [ tjNðtÞ; T1; T2; . . .; TNðtÞ; DC1; DC2; . . .; DCNðtÞÞ

¼
YNðtÞ
i ¼ 1

IðDCi [ t � TiÞð Þ:

Due to the conditional independence assumption described above, we can
‘integrate out’ DCi’s separately and define the corresponding probability in the
following way:

PðTS [ tjNðtÞ; T1; T2; . . .; TnÞ ¼
YNðtÞ
i ¼ 1

�GCðt � TiÞð Þ:

Therefore,

PðTS [ tÞ ¼ E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �" #

¼ E E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �

j NðtÞ
" #" #

:

ð4:40Þ

The joint distribution of T1; T2; . . .; Tn given NðtÞ ¼ n is the same as the joint
distribution of order statistics T 0ð1Þ � T 0ð2Þ � . . .� T 0ðnÞ of i.i.d. random variables

T 01; T
0
2; . . .; T 0n, where the p.d.f. of the common distribution of T 0j ’s is given by

mðxÞ=mðtÞ; 0� x� t:

ðT1; T2; . . .; TnjNðtÞ ¼ nÞ ¼d ðT 0ð1Þ; T 0ð2Þ; . . .; T 0ðnÞÞ:

Then

E
YNðtÞ
i ¼ 1

GCðt � TiÞ
� �

jNðtÞ ¼ n

" #

¼ E
Yn

i ¼ 1

GCðt � T 0ðiÞÞ
� �" #

¼ E
Yn

i ¼ 1

GCðt � T 0i Þ
� �" #

¼ E GCðt � T 0i Þ
� �� �n

¼ 1
mðtÞ

Z t

0

Gðt � uÞ
� �

mðuÞ du

0
@

1
A

n

:

ð4:41Þ
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From Eqs. (4.40) and (4.41),

PðTS [ tÞ ¼
X1
n ¼ 0

1
mðtÞ

Z t

0

GCðt � uÞ
� �

mðuÞ du

0
@

1
A

n

� mðtÞ
n

n !
e�mðtÞ

¼ e�mðtÞ � exp

Z t

0

GCðt � uÞ
� �

mðuÞ du

8<
:

9=
;

¼ exp

Z t

0

GCðt � uÞ mðuÞ dx�
Z t

0

mðuÞ du

8<
:

9=
;

¼ exp �
Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;;

where GCðt � uÞ is defined by (4.35). Therefore, using Leibnitz rule and
Eq. (4.36), kSðtÞ can be obtained in the following meaningful and a rather simple
form:

kSðtÞ ¼
Z t

0

gCðt � uÞ mðuÞ du ¼
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du: ð4:42Þ

h

We will show now that under certain assumptions the pðtÞ , qðtÞ model (4.1)
and the current one are asymptotically equivalent. Indeed, assume that
limt!1 mðtÞ � m\1. Without loss of generality, let pðtÞ and mðtÞ be the con-
tinuous functions with pðtÞ[ 0, for all t� 0. Then the failure rate (4.42) tends to a
constant as t!1, i.e.,

lim
t !1

kSðtÞ ¼ lim
t!1

Z t

0

pðt � uÞ gðt � uÞ mðuÞ du

¼ v

Z1

0

pðuÞgðuÞ du:

The latter integral obviously is finite as gðtÞ is the pdf and pðtÞ\1 for all t [ 0.
Specifically, when limt!1 pðtÞ ¼ p;

lim
t!1

kSðtÞ ¼ vp:

Thus, under the given assumptions, the failure rate (4.42), ‘asymptotically
converges’ (as t!1) to that of the classical extreme shock model (4.1).
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4.7 Stress–Strength Model with Delay and Cure

Consider now a more specific and practical model with delay and possible cure
that can be applied, e.g., in reliability modeling of materials and mechanical
structures. Let, as previously, mðtÞ be the rate of the NHPP process of shocks (IEs)
affecting our system and Si denote the magnitude of the ith shock (stress). Assume
that Si; i ¼ 1; 2; . . . are i.i.d. random variables with the common Cdf FSðsÞ
(FSðsÞ � 1 � FSðsÞ) and the corresponding pdf fSðsÞ. The system is characterized
by its strength to resist stresses. Let first, the strength of the system Y be a constant,
i.e., Y ¼ y. Assume that for each i ¼ 1; 2; ::, the operable system immediately fails
if Si [ y (fatal immediate failure) and the EE is triggered with the delay time and
possible cure (as in the previous section) if Si� y. It is clear that due to the
described operation of thinning, the initial NHPP splits into two NHPP processes
with rates �FSðyÞ mðtÞ and FSðyÞ mðtÞ. Therefore, combining results of the previous
section with the classical extreme shock model (4.1), Eqs. (4.38) and (4.39) can be
generalized to

PðTS [ tjY ¼ yÞ ¼ exp ��FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
; exp �FSðyÞ

Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;; t� 0;

ð4:43Þ

kSðtjY ¼ yÞ ¼ �FSðyÞ mðtÞ þ FSðyÞ
Z t

0

pðt � uÞ gðt � uÞ mðuÞ du; t� 0; ð4:44Þ

accordingly.
In practice, due to various reasons, the strength of a system Y can be considered

as a random variable. Let its support be, e.g., ½0;1Þ. Denote by HYðyÞ
(HYðyÞ � 1 � HYðyÞ) and by hYðyÞ, the corresponding Cdf and the pdf, respec-
tively. The first guess in generalizing (4.43) and (4.44) to the case of a random Y
would be just to replace FSðuÞ and FSðuÞ in these equations by the expectations

Z1

0

FSðyÞ hYðyÞ dy and
Z1

0

�FSðyÞ hYðyÞ dy; ð4:45Þ

accordingly. However, it is not true, as the proper conditioning should be imposed
(on condition that the previous shocks have been survived). This operation is
similar to the Bayesian update of information. It can be easily seen from (4.43) and
(4.44) that the model can be considered now as a mixture, or equivalently as a
frailty model with the frailty parameter Y (see the next Chapter). Therefore, the
mixture (observed) survival function for the lifetime TS is obtained directly from
(4.43) as the corresponding expectation:
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PðTS [ tÞ ¼
Z1

0

PðTS� tjY ¼ yÞ hYðyÞ dy

¼
Z1

0

exp �
Z t

0

ð�FSðyÞ mðuÞ du þ FSðyÞGCðt � uÞ mðuÞÞ du

8<
:

9=
;hYðyÞ dy;

ð4:46Þ

whereas the failure rate is the following conditional expectation:

kSðtÞ ¼
Z1

0

kSðtjY ¼ yÞ hYðyjTS [ tÞ dy; ð4:47Þ

where hYðyjTS [ tÞ is the pdf of the random variable Y jTS [ t, or equivalently,
kSðtÞ, in accordance with the definition, is

kSðtÞ ¼ �
P0ðTS [ tÞ
PðTS [ tÞ :

From (4.43), hYðyjTS [ tÞ can be obtained as

hYðyjTS [ tÞ ¼ exp ��FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
; exp �FSðyÞ

Z t

0

GCðt � uÞ mðuÞ du

8<
:

9=
;hYðyÞ

	
Z1

0

exp �
Z t

0

ð�FSðxÞ mðuÞ du þ FSðxÞGCðt � uÞ mðuÞÞ du

8<
:

9=
;hYðxÞ dx

0
@

1
A
�1

ð4:48Þ

Equations (4.44), (4.47) and (4.48) show that the explicit form of kSðtÞ is rather
cumbersome and numerical methods should be used for calculating it in practice.
However, our goal here is to emphasize the relevant methodological issues.

Specifically, when there is only a fatal immediate failure (i.e., without delays),
Eq. (4.46) simplifies to

PðTS [ tÞ ¼
Z1

0

exp �FSðyÞ
Z t

0

mðuÞ du

8<
:

9=
;hYðyÞ dy ð4:49Þ

and after the change in the order of integration, the corresponding failure rate
becomes

kSðtÞ ¼

R1
0

R s
0 exp �FSðyÞ

Rt
0

mðuÞ du


 �
hYðyÞ dy fSðsÞ ds

R1
0

exp �FSðyÞ
Rt
0

mðuÞ du


 �
hYðyÞ dy

mðtÞ: ð4:50Þ
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The right-hand side of Eq. (4.50) is still much more complex than the corre-
sponding failure rate for the fixed strength model, which is the simple product,
�FSðyÞ mðtÞ. The price for this simplicity is in neglecting the random nature of the
strength of a system.

4.8 Survival of Systems with Protection Subject to Two
Types of External Attacks

Consider a large system (LS) that, because of its importance and (or) large eco-
nomic value, should be protected from possible harmful attacks or intrusions. At
many instances, this protective function is performed by a specially designed
defence system (DS). Therefore, the attacker wants to destroy the DS partially or
completely and then to attack the LS [12].

Let the maximum level of performance of the DS be described by the value of
the initial defence capacity, DM—to be interpreted as, e.g., the total number of
defence units, service points, firewalls, etc. For instance, we may imagine a system
that executes defence against aircraft or missile strikes on some important object
(as, e.g., a power station or a marine port during combat). Another more ‘peaceful
example’ is the computer network that should be protected from hack-attacks
aimed at disabling firewalls.

The attacker executes two types of attacks—those that target the DS and those
that target the system itself. We will model these actions by two different sto-
chastic point processes to be called for convenience, the A1 and the A2 shock
processes, respectively. The shocks from the A1 process damage, i.e., destroy
certain parts of the DS. We assume that the DS is repairable and, therefore, this
effect is temporal. Given the stochastic nature of the setting, the actual defence
capacity at time t can be modeled by a stochastic process fDðtÞ; t� 0g. For
example, it may be maximal for long periods of time, i.e., DðtÞ ¼ DM , or severely
hampered when DðtÞ\\ DM . Thus, distinct from the conventional shock models
with accumulated damage, our model describes a nonmonotonic damage process,
which accounts for, e.g., the corresponding repair actions.

The DS defends the nonrepairable LS from the A2 process of shocks that are
aimed to destroy the LS or, in other words, to completely terminate its operation.
In accordance with reliability terminology, we will call this event a failure.
Assume that, similar to the classical extreme shock models, each shock from the
A2 process results in the LS failure with probability pðtÞ or it is ‘perfectly’ sur-
vived with the complementary probability qðtÞ ¼ 1 � pðtÞ. The latter means in
our case that the DS has neutralized the attack. It is natural to assume that these
probabilities are the functions of the defence capacity in the following sense: for
each realization of DðtÞ ¼ dðtÞ, the failure probability pðtÞ is a decreasing function
of the actual defence capacity, i.e., pðtÞ ¼ p�ðdðtÞÞ, where p�ð�Þ is strictly
decreasing in its argument. As the simplest and meaningful scenario, one may
define a proportion-type function:
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p�ðdðtÞÞ ¼ ðDM � dðtÞÞ=DM :

The failure of the LS occurs when the attack on it is not neutralized by the DS.
We are interested in the survival probability of the LS in ½0; tÞ. An obvious specific
case is when instead of the A2 shock process, only one attack at time instant
t0 2 ½0; tÞ is executed with the corresponding survival probability pðt0Þ ¼ p�ðdðt0ÞÞ.
The foregoing setting indicates that the description of the stochastic process
fDðtÞ; t� 0g is the crucial part of our approach. In order to obtain the mathe-
matically tractable solution, the relatively simple stochastic point processes need
to be adopted as the corresponding models for the A1 and the A2 shock processes.

For a formal description, denote

(i) NðtÞ; t� 0f g the NHPP process of the A1 shocks with rate vðtÞ and (ordered)
arrival times Ri; i ¼ 0; 1; 2; . . .; R1\R2\R3; . . ., where i ¼ 0 formally
means that there were no events in ½0; tÞ.

(ii) QðtÞ; t� 0f g—the NHPP process of the A2 shocks with rate wðtÞ and ordered
arrival times Bi; i ¼ 1; 2; . . .; B1\B2\B3; . . ., where i ¼ 0 formally means
that there were no events in ½0; tÞ. The specific case of the only one A2 event
in ½0; tÞ will be also considered.

Assume that, when DðtÞ ¼ D, the A2 shock at time t directly destroys the
operating LS with probability

pðt j DðtÞ ¼ DÞ ¼ 1 � a
D

DM

and is survived with the complementary probability

qðt j DðtÞ ¼ DÞ � 1 � pðt j DðtÞ ¼ DÞ ¼ a
D

DM
; ð4:51Þ

where fDðtÞ; t� 0g is a stochastic process that models the defence capacity of the
DS, DM ¼ Dð0Þ is its fixed initial maximal value and a ð0\a� 1Þ is a constant.
The coefficient a shows the protection coverage of the LS by the DS. Specifically,
when a ¼ 1 and DðtÞ ¼ DM , the DS executes the 100 % protection of the LS from
the A2 shock at time t. In what follows, for simplicity of notation, we will assume
that a ¼ 1, whereas the general case is obtained by a trivial modification. It should
be noted that Eq. (4.51) means that the survival probability for the A2 shock is
proportional to the normalized defence capacity DðtÞ=DM .

We must set now the model for the process fDðtÞ; t� 0g, which is the major
challenge in this setting. Let the ith A1 shock causes the damage Wi; i ¼ 1; 2; . . .
to the DS. We assume that this effect ‘expires’ in a random time si (e.g., the repair
facility is restoring the DS from the consequences of this shock). As the damages
are accumulated,

DðtÞ ¼ DM �
XNðtÞ
i ¼ 1

Wi1ðt � Ri\siÞ; ð4:52Þ
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where 1ð�Þ is the corresponding indicator. Obviously, the stochastic process
fDðtÞ; t� 0g should not be negative and we will discuss it for the specific models
to follow.

The number of A1 shocks that contribute toward the total damage at time t can
be obviously defined as the following stochastic process

XðtÞ ¼
XNðtÞ
i ¼ 1

1ðt � Ri� siÞ; ð4:53Þ

In other words, XðtÞ counts the number of A1 shocks with ‘active’ damage (not
eliminated or vanished) at time t. Assume further that

(iii) si; i ¼ 1; 2; 3; . . . are i.i.d. random variables with the Cdf GðtÞ and mean �sG.
(iv) Wi; i ¼ 1; 2; 3; . . . are i.i.d. random variables with finite expectation

E½Wi� ¼ dw (for Model 1 to follow).
(v) fNðtÞ; t� 0g; fQðtÞ; t� 0g; Wi; i ¼ 1; 2; . . . and si; i ¼ 1; 2; . . . are inde-

pendent of each other.

We will consider two models for damage accumulation and the resulting
probabilities of interest.
Model 1. In accordance with (4.51) (a ¼ 1Þ,

q1ðtjWi ¼ wi; i ¼ 1; 2; . . .; XðtÞ ¼ rÞ ¼
DM �

Pr
i ¼ 1

wji

DM
; ð4:54Þ

where, j1\j2\. . .\jr are the subscripts of Wi for which ft � Ri\sig is satisfied
and the subscript ‘‘1’’ in q1 stands for the first model. Assume initially that there is
only one A2 shock, whereas the case of the process of A2 shocks will be con-
sidered further. The unconditional probability of survival under a single A2 shock
at time t is the corresponding expectation that, in accordance with Wald’s equality,
can be written as

q1ðtÞ ¼ E½q1ðtjWii ¼ 1; 2; . . .; XðtÞÞ�

¼
DM � E

PXðtÞ
i¼ 1

Wji

" #

DM
¼ 1� E½XðtÞ� dw

DM
:

ð4:55Þ

In this model, we implicitly assume that damages are relatively small compared
with the full size DM , i.e.,dw 
 DM and the rate of the A1 process is not too large,
in order (4.52) to be positive (i.e., the probability that it is formally negative is
negligible). These assumptions in a broader context will be discussed later.
Model 2. Model 1 traditionally describes accumulation of damage via the i.i.d.
increments. However, in view of our two shock processes setting, it can be
interesting and appealing to consider a different new scenario when each shock
decreases proportionally the defence capacity [12]. The damage in this case
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depends on the value of the defence capacity: the larger DðtÞ corresponds to the
larger damage from a shock. This assumption seems to be often more realistic than
the i.i.d. one, as at many instances, the size of the damage depends on the size of
the attacked system. Suppose that a single A2 shock has occurred at time t. Then
our assumption can be formalized as

DðtÞ ¼ kDðt�Þ; ð4:56Þ

where the proportionality factor kð0\k\1Þ describes the efficiency of attacks for
each shock from the A1 process and ‘‘t�’’ denotes the time instant just prior to t.

As the defence system starts at t ¼ 0 at ‘full size’, its capacity at time t is given
by the following random variable (for each fixed t), or equivalently, by the sto-
chastic process fDðtÞ; t� 0g:

DðtÞ ¼ DMkXðtÞ; ð4:57Þ

as the effect of all other damages caused by the process NðtÞ; t� 0 (not counted by
(4.53)), was eliminated (repaired). In contrast to Model 1, DðtÞ is always positive
and no additional assumption for that is needed. In accordance with (4.51):

q2ðtjXðtÞ ¼ rÞ ¼ kr: ð4:58Þ

The unconditional probability of survival under a shock at time t is the cor-
responding expectation with respect to XðtÞ:

q2ðtÞ ¼ E½q2ðtjXðtÞÞ� ¼ E½kXðtÞ�: ð4:59Þ

In practice, k is usually close to 1 meaning that only a small portion of the
defence capability is lost on each A1 shock.

Denote, as previously, by TS the time to failure of the LS. Now we are ready for
obtaining the survival probability, PrðTS [ tÞ. As follows from (4.55) and (4.59),
in order to describe the process fDðtÞ; t� 0g and to derive PrðTS [ tÞ for both
models, we need to obtain the discrete distribution of XðtÞ given by Eq. (4.53). The
proof of the following theorem is rather straightforward and similar to the proofs
of the previous sections and, therefore, it is omitted. However, this result will be
basic for our further derivations in this section.

Theorem 4.9 Let mvðtÞ � EðNðtÞÞ ¼
Rt
0

vðxÞ dx denotes the cumulative rate of the

A1 process of shocks and suppose that m�1
v ðtÞ; t [ 0 exists. Then, the distribution

of XðtÞ for each fixed t is given by the following formula:

PrðXðtÞ ¼ rÞ ¼
R t

0 vðxÞ �Gðt � xÞ dx
� �r

exp �
R t

0 vðxÞ�Gðt � xÞdx
� �

r!
; ð4:60Þ

where �GðtÞ � 1 � GðtÞ is the survival probability for si; i ¼ 1; 2; 3; . . .
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Consider first, the probability of survival under a single A2 shock at time t,
which can be already of a practical interest in applications. In fact, this is our qðtÞ
defined for both models by expectations (4.55) and (4.59), respectively. The fol-
lowing theorem gives the corresponding expressions.

Theorem 4.10 The probability of survival of the operating LS under a single A2
shock at time t is

q1ðtÞ ¼ 1�
R t

0 vðxÞ �Gðt � xÞ dx
� �

dw

DM
ð4:61Þ

for Model 1 and

q2ðtÞ ¼ exp �ð1� kÞ
Z t

0

vðxÞ �Gðt � xÞ dx

8<
:

9=
; ð4:62Þ

for Model 2.

Proof It immediately follows from Eq. (4.60) that

E½XðtÞ� ¼
Z t

0

vðxÞ �Gðt � xÞ dx

and, therefore, (4.61) holds.
Similarly, for Model 2,

q2ðtÞ ¼ E½kXðtÞ�

¼
X1
r¼ 0

kr

R t
0 vðxÞ �Gðt � xÞ dx

� �r
exp �

R t
0 vðxÞ �Gðt � xÞ dx

� �
r!

¼ exp �ð1 � kÞ
Z t

0

vðxÞ �Gðt � xÞ dx

8<
:

9=
;:

h

Theorem 4.11 Let vðtÞ ¼ v; t 2 ½0; 1Þ or limt!1 vðtÞ ¼ v. Then the sta-
tionary values of qiðtÞ, i.e., limt!1 qiðtÞ ¼ qi; i ¼ 1; 2 are given by

q1 ¼ 1 � �sGdw

�sNDM
; ð4:63Þ

q2 ¼ exp �ð1 � kÞ�sG

�sN


 �
; ð4:64Þ
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where �sG ¼
R1

0
�GðxÞ dx is the mean time which corresponds to random variables

si; i ¼ 1; 2; . . . and �sN ¼ 1=v is the mean time (exactly or asymptotically as
t!1) between successive A1 shocks.

Theorem 4.11 is intuitively obvious and can be proved in a straightforward way
by using the variable substitution y ¼ t � x for the integrals in (4.61) and (4.62)
and by applying the Lebesgue’s Dominated Convergence Theorem afterward.
When �sG=�sN\\1, which means a very quick repair of damage with respect to the
time between successive A1 shocks, Model 2 reduces to a very simple (and usually
not practically justified) setting when the repair periods after different A1 shocks
do not overlap. In this case, the probability of failure that corresponds to (4.64) is
just p2 ¼ 1 � q2 � ð1 � kÞ�sG=�sN :

It follows from the above reasoning that the stationary variant of (4.60) (i.e., for
t sufficiently large and vðtÞ ¼ v; t 2 ½0; 1Þ or limt !1 vðtÞ ¼ v) can be of
interest. Denote, �sG=�sN � g. Then the stationary distribution for (4.60) is the
Poisson random variable with this parameter:

PrðXS ¼ rÞ ¼ gr expf�gg
r!

: ð4:65Þ

Theorem 4.10 provides a simple way of obtaining the probability of failure of
the LS under a single attack at time t.

We are ready now to consider the A2 process of shocks and to derive the
corresponding probability of system’s survival, PðTS [ tÞ under the attacks of two
types. However, it turns out that this problem is much more complex than it looks
from the first sight and, therefore, additional assumptions should be imposed in
order to simplify it and to obtain results that potentially can have practical value.
First of all, we must answer the question: are the probabilities qiðtÞ ðpiðtÞÞ obtained
in Theorem 4.10 suitable for using in the classical pðtÞ , qðtÞ model? Recall that
in this extreme shock model, each event from the Poisson process of shocks with
rate wðtÞ is survived with probability qðtÞ and ‘kills’ a system with the comple-
mentary probability pðtÞ ¼ 1� qðtÞ independently of all previous history. In this
case, the system’s survival probability in ½0; tÞ is given by the following expo-
nential representation (see also Eq. (4.1):

PðTS [ tÞ � �FSðtÞ ¼ exp �
Z t

0

pðuÞwðuÞ du

0
@

1
A; ð4:66Þ

and, therefore, the corresponding failure rate function kSðtÞ is

kSðtÞ ¼ pðtÞwðtÞ; t� 0: ð4:67Þ

From the first glance, it looks that we have already everything in place for using
(4.61) and (4.62) in Eq. (4.66). However, it can be shown, that certain dependence
on history prevents from that and the only way to deal with this complexity for
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obtaining some practically meaningful results is to consider additional assump-
tions that allow for additional simplification of the model.

Let both A1 and A2 be the homogeneous Poisson shock processes with rates v
and w, respectively. Let the A2 shocks be sufficiently rare when compared with the
dynamics of the XðtÞ process

�sQ �
1
w
� 1

v
� �sN ; �sG 
 �sQ; ð4:68Þ

which makes sense in practice, as the intensity of attacks on the LS could be
considered as much smaller than that on the DS. The second inequality in (4.68)
implies that the mean time of repair of the DS is much smaller than the mean inter-
arrival time of the potentially terminal A2 shocks, which is also a reasonable
assumption in practice. Inequalities (4.68) can be considered as the analogue to the
fast repair conditions (see e.g., Ushakov and Harrison [28]). Finkelstein and
Zarudnij [20] have used the similar assumptions for approximating the multiple
availability on stochastic demand (i.e., the repairable system should be available at
all demands that occur in accordance with the homogeneous Poisson process in
½0; tÞ). Assumptions (4.68) ‘can help to forget the history’ of the process XðtÞ and,
therefore, a simple pðtÞ , qðtÞ model (4.66)–(4.67) holds. Indeed, under these
assumptions the correlation between values of the process XðtÞ at instants of
occurrence of the A2 shocks is negligible as the time between successive A2
shocks is sufficiently large. Therefore, the probabilities of survival under each A2
shock for both models are given approximately by Eq. (4.66), whereas the fol-
lowing result holds asymptotically:

Theorem 4.12 Let vðtÞ ¼ v; wðtÞ ¼ w; w=v! 0, �sG=�sQ ! 0 and t is sufficiently
large: t��sQ. Then the probabilities of survival for two models, in accordance
with Theorem 4.11, are

P1ðTS [ tÞ ¼ exp �w g
dw

DM

� �
t


 �
ð1 þ oð1ÞÞ; ð4:69Þ

P2ðTS [ tÞ ¼ exp �w 1 � exp �ð1 � kÞgf g½ �tf gð1 þ oð1ÞÞ; ð4:70Þ

where g � �sG=�sN :

It should be noted that for the sufficiently small t, when t
 �sQ, we can
approximately consider the case of only one A2 shock that is arriving in accor-
dance with the distribution FðtÞ ¼ 1 � exp �

R t
0 wðuÞ du

� �
. Then

PiðTS [ tÞ ¼
Z t

0

qiðuÞ f ðuÞ du þ exp �
Z t

0

wðuÞ du

8<
:

9=
;;

where qiðuÞ; i ¼ 1; 2 are given by Eqs. (4.61) and (4.62) and f ðuÞ ¼ F0ðtÞ.
Obviously, as in this case the A2 process can be approximately regarded as one
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first event, we do not need any other assumptions on the A1 process. Dealing with
the A2 process of shocks, however, creates more mathematical difficulties and,
therefore, a number of assumptions and simplifications have been made to arrive at
approximations (4.69) and (4.70).

4.9 Geometric Process of Shocks

The nonhomogeneous Poisson process (NHPP), due to its relative probabilistic
simplicity, is definitely the most popular counting (point) process in applications
and, specifically, in shock modeling. It often allows for rather simple and compact
expressions for the probabilities of interest for the basic and generalized settings as
was shown in the Sect. 4.8. However, in practice, the point events do not neces-
sarily possess the property of independent increments and the number of events in
the fixed interval of time does not necessarily follow the Poisson distribution.
Therefore, other distribution-based counting processes should also be considered
and, therefore, in this section, we will suggest another distribution-based class of
counting processes (with dependent increments) that still allows for compact,
explicit relationships for some applications [10].

The counting (point) processes that describe ‘events’ in the real world should
share certain natural properties that can be formulated in the following way:

(i) two or more events cannot occur ‘at the same time’ (i.e., the process is orderly),
(ii) the mean number of occurrences in ð0; t� as a function of t, i.e.,

KðtÞ � E½NðtÞ�, is sufficiently ‘smooth’, so that its derivative that is called the
rate or intensity, exists at every t, i.e., K0ðtÞ ¼ kðtÞ; t� 0, or KðtÞ ¼

R t
0 kðuÞ du.

It is well-known that these statements (for the sufficiently small Dt) can be
formalized as

(a) Nð0Þ ¼ 0:
(b) PðNðt þ DtÞ � NðtÞ ¼ 1Þ ¼ kðtÞDt þ oðDtÞ:
(c) PðNðt þ DtÞ � NðtÞ� 2Þ ¼ oðDtÞ:

For the sake of notation, let us denote the general class of point processes,
which satisfy (a), (b), and (c) by G. Clearly, if we adopt additionally

(d) fNðtÞ; t� 0g has independent increments,

then we arrive at the NHPP. It is also well-known that assumptions (a)–(d) result in
the Poisson distribution of the number of events in ðt1; t2�. Thus, in what follows,
in accordance with our intention stated above, we will ‘depart’ from the governing
Poisson distribution.

Definition 4.1 The counting process fNðtÞ; t� 0g belongs to the Class of Geo-
metric Counting Processes (CGCP), i.e., fNðtÞ; t� 0g 2 C, if
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(a) Nð0Þ ¼ 0.
(b)

PðNðt2Þ � Nðt1Þ ¼ kÞ ¼ 1
1þ Kðt2Þ � Kðt1Þ

� 	
Kðt2Þ � Kðt1Þ

1þ Kðt2Þ � Kðt1Þ

� 	k

;

k ¼ 0; 1; 2; . . .

ð4:71Þ

It is easy to see that properties (b) and (c) of the general class G can be derived
from (4.71):

(b) PðNðt þ DtÞ � NðtÞ ¼ 1Þ
¼ kðtÞDt þ �kðtÞDt þ 1

1þKðtþDtÞ�KðtÞ

� �
KðtþDtÞ�KðtÞ

1þKðtþDtÞ�KðtÞ

� �n o
;

where the second term in the right-hand side is clearly oðDtÞ;

(c) PðNðt þ DtÞ � NðtÞ� 2Þ ¼ KðtþDtÞ�KðtÞ
1þKðtþDtÞ�KðtÞ

� �2
, which is obviously oðDtÞ.

Therefore, the CGCP becomes a subclass of G.

Observe that the counting distribution in (4.71) is obtained from the time-
dependent reparametrization of the geometric distribution:

PðN ¼ kÞ ¼ dð1� dÞk; k ¼ 0; 1; 2; . . .;

where 0\d\1.
In accordance with (4.71), the mean number of events in ðt1; t2� is

E½Nðt2Þ � Nðt1Þ� ¼ Kðt2Þ � Kðt1Þ ¼
Zt2

t1

kðuÞ du:

Specifically,

PðNðtÞ ¼ kÞ ¼ 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	k

; k ¼ 0; 1; 2; . . .; ð4:72Þ

where E½NðtÞ� ¼ KðtÞ ¼
R t

0 kðuÞdu:
Thus NHPP and fNðtÞ; t� 0g 2 C can have the same rate, but the crucial

difference is that the members of the latter class, as intended, do not possess the
property of independent increments, which can be easily seen from the following
considerations.

Definition 4.2 The orderly counting process fNðtÞ; t� 0g with Nð0Þ ¼ 0 pos-
sesses the weak positive (negative) dependence, if

Cov IðfNðsþ tÞ � NðsÞ ¼ 0gÞ; IðfNðsÞ ¼ 0gÞð Þ[ 0 ð\0Þ; ð4:73Þ

where Ið�Þ is the indicator function for the corresponding event.
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The intuitive meaning of (4.73) for the positive (negative) dependence case is
that the two events fNðsÞ ¼ 0g and fNðsþ tÞ � NðsÞ ¼ 0g have the ‘tendency’ to
occur simultaneously (not to occur simultaneously). We will also interpret this
definition in the other equivalent form after the following simple theorem.

Theorem 4.13 The counting process fNðtÞ; t� 0g 2 C, possesses the weak
positive dependence property.

Proof Observe that, from (4.71),

Cov IðfNðsþ tÞ � NðsÞ ¼ 0gÞ; IðfNðsÞ ¼ 0gÞð Þ
¼ E½IðfNðsþ tÞ � NðsÞ ¼ 0g; fNðsÞ ¼ 0gÞ� � E½IðfNðsþ tÞ � NðsÞ ¼ 0gÞ�E½IðfNðsÞ ¼ 0gÞ�
¼ PðNðsþ tÞ � NðsÞ ¼ 0; NðsÞ ¼ 0Þ � PðNðsþ tÞ � NðsÞ ¼ 0ÞPðNðsÞ ¼ 0Þ
¼ PðNðsþ tÞ ¼ 0Þ � PðNðsþ tÞ � NðsÞ ¼ 0ÞPðNðsÞ ¼ 0Þ

¼ ½1þ KðsÞ�½1þ Kðsþ tÞ � KðsÞ� � ½1þ Kðsþ tÞ�
½1þ Kðsþ tÞ�½1þ Kðsþ tÞ � KðsÞ�½1þ KðsÞ� [ 0: h

It follows from the proof that, as PðNðsÞ ¼ 0Þ[ 0, inequality (4.73) (for
positive dependence) is equivalent to

PðNðsþ tÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ[ PðNðsþ tÞ � NðsÞ ¼ 0Þ ð4:74Þ

or to

PðNðsþ tÞ � NðsÞ� 1jNðsÞ ¼ 0Þ\PðNðsþ tÞ � NðsÞ� 1Þ:

The latter means that the absence of events in ð0; s� decreases the probability of
events in ðs; sþ t�. This seems to be a more natural interpretation of a (weak)
positive dependence.

In order to consider the rate and the corresponding conditional characteristic,
we replace t in (4.74) by the infinitesimal dt. Then

PðNðsþ dtÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 0Þ

¼
R s

0 kðuÞ du
R sþ dt

s kðuÞ du

1þ
R sþ dt

0 kðuÞ du
� �

1þ
R sþdt

s kðuÞ du
� �

¼
kðsÞ

R t
0 kðuÞ du

1þ
R s

0 kðuÞ duþ kðsÞ dt
� �

1þ kðsÞ dtð Þ
ð1þ oð1ÞÞ dt

¼
kðsÞ

R s
0 kðuÞ du

1þ
R s

0 kðuÞ du
� � 1þ oð1Þð Þ dt ¼ kðsÞKðsÞ

ð1þ KðsÞÞ ð1þ oð1ÞÞ dt;

which is obviously positive. However, we can say now more about the corre-
sponding dependence properties. As oð1Þ can be made as small as we wish, it is
sufficient to consider kðsÞKðsÞ=ð1þ KðsÞÞ. This expression (for k0ðsÞ\1) is
increasing in s when
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ðk0ðsÞKðsÞ þ k2ðsÞÞ ð1þ KðsÞÞ � kðsÞ2KðsÞ ¼ k0ðsÞKðsÞ ð1þ KðsÞÞ þ k2ðsÞ[ 0;

ð4:75Þ

which holds, for instance, for increasing kðsÞ. Specifically, when kðsÞ � k, the left-
hand side of (4.75) is equal to k2. Thus, the dependence of the defined type is
‘getting stronger’ with s increasing.

Taking into account that fNðtÞ; t� 0g 2 C is orderly, i.e.,

PðNðsþ dtÞ � NðsÞ ¼ 0jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 0Þ
¼ �ðPðNðsþ dtÞ � NðsÞ ¼ 1jNðsÞ ¼ 0Þ � PðNðsþ dtÞ � NðsÞ ¼ 1ÞÞ þ oðdtÞ;

the difference between the conditional rate of fNðtÞ; t� 0g 2 C (the intensity
function) on condition that there were no events in ð0; s� and its unconditional
rate, is obviously also increasing in s when (4.75) holds.

As previously, we will consider shocks as events of point processes. The
described weak dependence means now that the absence of shocks in ð0; s�
decreases the probability of a shock in ðs; sþ dt�, which can be natural for certain
types of shock processes. For instance, the probability of an earthquake is usually
larger when the previous earthquake occurred recently, compared with the case
when it occurred earlier. A similar argument can be true for heart attacks. For
another example, suppose that the ‘realization’ of a shock process is the homo-
geneous Poisson process (HPP) with a constant rate, but the rate is determined
randomly at t ¼ 0 (i.e., the conditional Poisson process). It is well-known [27],
that the conditional Poisson process has dependent increments. It can be easily
shown that it possesses our weak positive dependence property, i.e., the absence of
a shock in ð0; s� decreases the probability of a shock in ðs; sþ dt�.

The NHPP has another important limitation in terms of the mean and variance
relationship for the counting random variable Var½NðtÞ� ¼ E½NðtÞ�, for all t� 0.
However, for fNðtÞ; t� 0g 2 C,

Var½NðtÞ� ¼ KðtÞ ð1þ KðtÞÞ[ E½NðtÞ�; ð4:76Þ

which can describe many other cases that are not covered by the NHPP.
Thus, in our formulation, the rates of the NHPP and the members of the CGCP,

fNðtÞ; t� 0g 2 C can be the same, but because of the dependence of increments,
the corresponding probabilistic properties are different. Different members of this
class can possess different dependence structures sharing some common features
(e.g., the positive dependence of the described type).

Usually for the corresponding stochastic modeling, we need a sufficiently
complete description of a relevant stochastic process. However, there are settings
when probabilistic reasoning and explicit results do not depend on certain prop-
erties of the processes. The shock models to be considered in the following
examples are the perfect examples of that. It turns out that the results to be derived
are valid for any member fNðtÞ; t� 0g 2 C and therefore, they do not depend on
the specific dependence structure of this process [10]. Therefore, in practice, in
order to apply the proposed CGCP, it is sufficient to check the validity of (4.71).

4.9 Geometric Process of Shocks 129



Example 4.6 Extreme Shock model. Consider an extreme shock model (see 4.1)
for the specific case pðtÞ ¼ p and let the shock process be from the CGCP, i.e.,
fNðtÞ; t� 0g 2 C, with rate kðtÞ and arrival times Ti; i ¼ 1; 2; . . .. Then, due to
the assumption of independence,

PðTS [ tjNðtÞ ¼ nÞ ¼ qn;

and

PðTS [ tÞ ¼ E½PðTS [ tjNðtÞÞ� ¼ E½qNðtÞ�

¼
X1
n¼ 0

qn 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	n

¼ 1
1þ KðtÞp :

The corresponding failure rate function is

kSðtÞ ¼ �
d ln PðTS [ tÞ

dt
¼ kðtÞp

1þ KðtÞp :

Thus, the survival probability and the failure rate are obtained without speci-
fying the dependence structure of the shock process. It should be noted that when
the process of shocks is NHPP,

kSðtÞ ¼ pkðtÞ; 8t� 0

and the shape of kSðtÞ coincides with that of kðtÞ. However, in the considered case,
the result can be dramatically different. Assume that kðtÞ is differentiable, then

k0SðtÞ ¼
k0ðtÞp� ðkðtÞpÞ2

ð1þ KðtÞpÞ2
;

and thus, kSðtÞ is increasing (decreasing) in ðt1; t2Þ iff

k0ðtÞ� pðkðtÞÞ2 ðk0ðtÞ� pðkðtÞÞ2Þ

in ðt1; t2Þ.
Let, specifically, kðtÞ ¼ k, 8t� 0, and therefore, the failure rate, kSðtÞ is con-

stant when shocks follow the HPP pattern. However, if it is the process,
fNðtÞ; t� 0g 2 C with the same rate k, then the system failure rate, kSðtÞ ¼
pk=ð1þ pktÞ is strictly decreasing with time. This can be loosely interpreted in the
following way: equation PðTS [ tÞ ¼ E½qNðtÞ�, which defines the survival proba-
bility for the extreme shock model with an arbitrary point process fNðtÞ; t� 0Þ
means that the larger t for the survived system results in the ‘sparser’ shocks in
time. The latter, due to the independent increments property of the Poisson pro-
cess, does not change the probability of a system’s failure in the infinitesimal
interval of time ½t; t þ dtÞ. However, forfNðtÞ; t� 0g 2 C, as prompted by (4.74),
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it decreases the chance of shocks in the next interval, which eventually results in
the decreasing failure rate.

Example 4.7 Cumulative Shock Model. Let, as previously, a system be subject to
the process fNðtÞ; t� 0g 2 C of shocks with arrival times Ti; i ¼ 1; 2; . . .. Assume
that the ith shock increases the wear of a system by a random increment Wi� 0. In
accordance with this setting, a random accumulated wear of a system at time t is

WðtÞ ¼
XNðtÞ
i¼ 0

Wi:

As previously, assume that the system fails when the accumulated wear exceeds
a random boundary R, i.e., WðtÞ[ R. The corresponding survival function in this
case is given by

PðTS [ tÞ ¼ PðWðtÞ�RÞ: ð4:77Þ

Explicit derivations in (4.77) can be performed in specific, mathematically trac-
table cases.

Case 1. Suppose that Wi; i ¼ 1; 2; . . . are i.i.d. and exponential with mean h.
Denote, for the sake of notation, the random variable with this distribution by W .
Let fRðrÞ be the pdf of the random boundary R. First of all, the mgf of WðtÞ,
MWðtÞðzÞ, can be expressed as

MWðtÞðzÞ ¼ E½expfzWðtÞg� ¼
X1
n¼0

E½expfzWg�n 1
1þ KðtÞ

� 	
KðtÞ

1þ KðtÞ

� 	n

¼ 1

1þ KðtÞ½1� ð1� hzÞ�1�
¼ 1

1þ KðtÞ �M0ðzÞ þ
KðtÞ

1þ KðtÞ �Mexp½hð1þKðtÞÞ�ðzÞ;

ð4:78Þ

where M0ðzÞ � 1 corresponds to the mgf of the degenerate distribution with
probability 1 at 0 and

Mexp½hð1þKðtÞÞ�ðzÞ �
1

1 � hð1þ KðtÞÞz

� 	

corresponds to the mgf of an exponential distribution with mean hð1þ KðtÞÞ. It
follows from (4.78) that the mgf of WðtÞ is given by the weighted average of the
mgf’s of two random variables, which implies that the distribution of WðtÞ is the
mixture of the corresponding distributions. Therefore, WðtÞ has the point mass at 0
(no shocks had occurred in ½0; t�),

PðWðtÞ ¼ 0Þ ¼ 1
1þ KðtÞ ;

and, for x [ 0; WðtÞ has the pdf
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fWðtÞðxÞ ¼
KðtÞ

hð1þ KðtÞÞ2
exp � x

hð1þ KðtÞÞ


 �
; x� 0:

Then the Cdf of WðtÞ is given by

FWðtÞðxÞ ¼ 1� KðtÞ
1þ KðtÞ exp � x

hð1þ KðtÞÞ


 �
; x� 0:

Finally, the survival function of a system can now be defined as

PðTS [ tÞ ¼
Z1

0

FWðtÞðrÞ fRðrÞ dr; t� 0

¼ 1� KðtÞ
1þ KðtÞ

Z1

0

exp � r

hð1þ KðtÞÞ


 �
fRðrÞ dr; t� 0:

Case 2. Suppose that the distribution of the random boundary R is now expo-
nential with mean h. Let MWðzÞ be the mgf of an arbitrary distributed random
variable W (Wi are i.i.d)).

Observe that, as the distribution of the random boundary R is exponential, the

accumulated wear until time t, WðtÞ ¼
PN tð Þ

i¼0 Wi does not affect the failure process
of the system after time t. That is, on the next shock, the probability of a system’s
failure due to the accumulated wear is just PðR�WNðtÞþ 1Þ, and does not depend
on the wear accumulation history, i.e.,

PðR�W1 þW2 þ . . .þWnjR�W1 þW2 þ . . .þWn� 1Þ
¼ PðR�WnÞ; for all n ¼ 1; 2; . . .; W1; W2; . . .;

where W1 þW2 þ . . .þWn� 1 � 0 when n ¼ 1. Then, finally, each shock
results in the immediate failure of a system with probability PðR\WÞ and it does
not cause any change in the system with probability PðR�WÞ. This interpretation
of the model implies that the cumulative shock model in this setting corresponds to
the extreme shock model considered previously and

p ¼ PðR\WÞ ¼ 1� PðR�WÞ ¼ 1�MWð�hÞ:

Therefore,

PðTS [ tÞ ¼ 1
1þ KðtÞ ð1�MWð�hÞÞ ; t� 0;

and the corresponding failure rate is

kSðtÞ ¼
kðtÞð1�MWð�hÞÞ

1þ KðtÞð1�MWð�hÞÞ ; t� 0:
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Finally, the combined shock model (see also Sect. 4.1 for a more general
setting) can be also considered. Assume that the ith shock, as in the extreme shock
model, causes immediate system’s failure with probability p, but in contrast to this
model, with probability q it increases the wear of a system by a random increment
Wi� 0. The failure occurs when a critical shock (that destroys a system with
probability p) occurs or the random accumulated wear WðtÞ reaches the random
boundary R. Therefore,

PðTS [ tjNðsÞ; 0� s� t; W1;W2; . . .;WNðtÞ; RÞ ¼ qNðtÞI
XNðtÞ
i¼ 0

Wi�R

 !

and the survival function of a system is

PðTS [ tÞ ¼ E½qNðtÞIðWðtÞ�RÞ�:

As previously, for simplicity, let the distribution of a random boundary R be
exponential with mean h. In a similar way, it can be shown that

PðTS [ tjNðtÞ ¼ nÞ ¼ E
Yn

i¼ 1

q expf�hWig
" #

¼ qMWð�hÞð Þn:

Finally,

PðTS [ tÞ ¼ 1
1þ KðtÞð1� qMWð�hÞÞ :

And the failure rate function is

kSðtÞ ¼ �
d ln PðTS [ tÞ

dt
¼ kðtÞð1� qMWð�hÞÞ

1þ KðtÞð1� qMWð�hÞÞ :

Thus, we have shown that survival probabilities for some shock models can be
effectively obtained for any process that belongs to the CGCP without specifying
its dependence structure [10].

4.10 Information-Based Thinning of Shock Processes

4.10.1 General Setting

In this section, we consider some of the settings of the previous sections from a
more general viewpoint that employs the operation of thinning of point processes
[15]. Thinning of point processes is often applied in stochastic modeling when
different types of point events (in terms of their impact, e.g., on a system) occur. In
the previous sections, we were mostly interested in the corresponding survival
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probabilities and, therefore, there was a sequence of ‘survival events’ and one final
event of failure. Now we will be interested in two sequences of events and will use
this characterization for further discussion of the strength–stress model of Sect. 4.7.

When the initial point process is the NHPP, the thinned processes are also
NHPP independent of each other [15]. The crucial assumption in obtaining this
well-known result is that the classification of occurring point events is independent
of all other events, including the history of the process. However, in practice, this
classification is often dependent on the history. In this section, we define and
describe the thinned processes for the history-dependent case using different levels
of available information and apply our general results to the strength–stress type
shock model, which is meaningful in reliability applications. For each considered
level of information, we construct the corresponding conditional intensity function
and interpret the obtained results.

Let us define the setting in formal terms. Suppose that each event from the
NHPP, fNðtÞ; t� 0g with rate (intensity function) mðtÞ is classified as the Type I
event with probability pðtÞ or as the Type II event with the complementary
probability 1� pðtÞ. It is well-known (see, e.g., [4], [5]) that the corresponding
stochastic processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are NHPPs with rates
pðtÞmðtÞ and ð1� pðtÞÞmðtÞ, respectively, and they are stochastically independent.
This operation for pðtÞ � p is usually called in the literature ‘the thinning of the
point process’ [15]. As stated above, in reality, classification of events is often
history-dependent and the point process is not necessarily Poisson. Therefore,
considering history-dependent thinning appears to be an interesting and important
problem both from theoretical and practical points of view. The following setting
considered in Sect. 4.7 can be helpful as a relevant example.

Suppose that an object (e.g., a system or an organism) is characterized by an
unobserved random quantity U(e.g., strength or vitality). The object is ‘exposed’
to a marked NHPP with rate mðtÞ, arrival times T1\T2\T3. . . and random marks
Si; i ¼ 1; 2; . . ., that can be interpreted as some stresses or demands. If Si [ U,
then the Type I event occurs; if Si�U then the Type II event occurs. We are
interested in probabilistic description of the processes of Type I and Type II
events. It should be noted that probabilities PðSi [ UÞ; i ¼ 2; 3; . . . already
depend on the history, as the distribution of U is updated by the previous infor-
mation, as was mentioned in Sect. 4.7 [8].

First, we will characterize the ‘conditional properties’ of fN1ðtÞ; t� 0g and
fN2ðtÞ; t� 0g, (NðtÞ ¼ N1ðtÞ þ N2ðtÞ). In various practical problems, we are often
interested in the conditional intensity of one of the processes, as only this process
‘impacts’ our system. The conditional intensity or the intensity process and
Eq. (2.12) e.g., for the thinned process, fN1ðtÞ; t� 0g is defined as

k1ðtjH1t�Þ ¼ lim
Dt! 0

E½N1ððt þ DtÞ�Þ � N1ðt�ÞjH1t��
Dt

¼ lim
Dt! 0

P½N1ððt þ DtÞ�Þ � N1ðt�Þ ¼ 1jH1t��
Dt

;

ð4:79Þ
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where H1t� ¼ fN1ðt�Þ; T11; T12; . . .; T1N1ðt�Þg is the history of the Type I process
before time t and T1i, i ¼ 1; 2; . . . are the corresponding sequential arrival times.
In practice, we often observe the process fN1ðtÞ; t� 0g, e.g., as the process of
some ‘effective events’ that can cause certain ‘detectable changes’ (or conse-
quences) in the system. On the other hand, fN2ðtÞ; t� 0g can be the process of
‘ineffective events’ that have no impact on the system at all. Therefore, the
‘observed history’ H1t� is our ‘available information’ that is used for describing
fN1ðtÞ; t� 0g via the corresponding conditional intensity, whereas the ineffective
events are often (but not necessarily) not observed and thus information on
fN2ðtÞ; t� 0g is not available.

As the conditional intensity fully describes the underlying point process, it can
obviously be used for defining the corresponding conditional failure rates, which
describe the times to events of interest. For example, assume that our system fails
at the kth Type I event (e.g., due to accumulation of some damage), whereas Type
II events, as previously, are ineffective. Then, given N1ðt�Þ ¼ k � 1, the condi-
tional intensity k1ðtjH1t�Þ in (4.79) can be viewed as the conditional failure rate
(given the history). Specifically, when our system fails at the first Type I event, the
history of our interest becomes H1t� ¼ fN1ðt�Þ ¼ 0g. Alternatively, let the sys-
tem fail on the kth Type I event with probability pðkÞ and survives with probability
1� pðkÞ independent of all other events. Then, given N1ðt�Þ ¼ k � 1, the con-
ditional failure rate (on condition that the history H1t� is given) at time t is
k1ðtjH1t�Þ pðkÞ. Thus, the Type 1 event could terminate the process, which is
important for different reliability settings.

As illustrated in the above examples, different conditions can be defined that
characterize ‘fatal events’. However, we are primarily interested in a general
description of the process fN1ðtÞ; t� 0g via its conditional intensity k1ðtjH1t�Þ
(without termination). Thus, we will focus first on the conditional intensity (4.79)
for a general history H1t� ¼ fN1ðt�Þ; T11; T12; . . .; T1N1ðt�Þg. For convenience, at
some instances, the notation H1t� for denoting the corresponding realization
fN1ðt�Þ ¼ n1; T11 ¼ t11; T12 ¼ t12; . . .; T1N1ðt�Þ ¼ t1n1g will be used as well.
Furthermore, the case when the given history is partial, i.e., k1ðtjHP

1t�Þ, where HP
1t�

is the partial history of H1t�, will also be investigated. For example, there can be
situations when the arrival times are not observed/recorded but only the number of
Type I events is observed/recorded. In this case, the ‘available information’ at
hand is only N1ðt�Þ.

Coming back to the specific stress–strength example, note that, when
fNðtÞ; t� 0g is the NHPP, U is deterministic, U ¼ u and Si; i ¼ 1; 2; . . . are i.i.d.
with the common Cdf FSðsÞ, the processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are
NHPPes. Moreover, they are stochastically independent with rates pðtÞmðtÞ and
ð1� pðtÞÞ mðtÞ, respectively, where pðtÞ ¼ PðSi [ uÞ. Thus, obviously,

k1ðtjH1t�Þ ¼ lim
Dt! 0

E½N1ððt þ DtÞ�Þ � N1ðt�ÞjH1t��
Dt

¼ PðSi [ uÞ mðtÞ;

as the process fN1ðtÞ; t� 0g possesses the property of independent increments.
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We will come back to discussing the case when U is random after a general
formulation of the operation of thinning [8].

4.10.2 Formal Description of the Information-Dependent
Thinning

Let fNðtÞ; t� 0g denote an orderly point process of events with arrival times
Ti; i ¼ 1; 2; . . .. We assume that this process is external for the system in the sense
that it may influence its performance but is not influenced by it [21]. On each event
from fNðtÞ; t� 0g; depending on the history of the processes fNðtÞ; t� 0g,
fN1ðtÞ; t� 0g (note that, NðtÞ ¼ N1ðtÞ þ N2ðtÞ and see the corresponding
description in the previous subsection) and also on some other random history
process up to t, Ut�, the event is classified as belonging to either the Type I or to
the Type II category. Specifically, Ut� � U can be just a random variable as, e.g.,
the random quantity U in the previous example. The conditional probability of the
Type I event in the infinitesimal interval of time can be formally written as

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ��
þ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 0�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 0jH1t�;Ht�;Uðtþ dtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
	 P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jHt��;

ð4:80Þ

where

P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jH1t�; Ht�; Uðtþ dtÞ��

reduces to

P½Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1jHt��;

as the initial point process is defined as external. It should be noted that Ht� is the
history of the initial process fNðtÞ; t� 0g and it does not contain the information
on the type of events and on the corresponding arrival times of events. In other
words, mathematically, Ht� ‘does not define’ H1t� and we need both of them for
conditioning. Accordingly, from (4.80),

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;UðtþdtÞ��
¼ P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�;Ht�;UðtþdtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ
¼ 1� � mðtjHt�Þ dt;
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where mðtjHt�Þ is the conditional intensity for NðtÞ; t� 0

mðtjHt�Þ � lim
Dt! 0

P½Nððt þ DtÞ�Þ � Nðt�Þ ¼ 1jHt��
Dt

:

Therefore, we arrive at the following result ([8] for the conditional intensity for
a general history-dependent thinned process:

Theorem 4.14 Under the given assumptions, the conditional intensity k1ðtjH1t�Þ
is defined by the following expression:

k1ðtjH1t�Þ ¼ E½P½N1ððt þ dtÞ�Þ � N1ðt�Þ
¼ 1jH1t�;Ht�;Uðtþ dtÞ�;Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1� � mðtjHt�Þ�;

ð4:81Þ

where the expectation is with respect to the joint conditional distribution
ðHt�; Uðtþ dtÞ�jH1t�Þ.

Theorem 4.14 holds for general orderly point processes. Furthermore, when we
observe only the partial history HP

1t�, the conditional intensity k1ðtjHP
1t�Þ can be

obtained from (4.81) by replacing H1t� by HP
1t� and by applying an appropriately

modified conditional distribution ðHt�; Uðtþ dtÞ�jHP
1t�Þ:

In what follows, we will simplify the setting and consider the case when the
dependence on the history in the second multiplier in (4.81) is eliminated, whereas
it is preserved for the first multiplier. Therefore, mðtjHt�Þ is substituted by the rate
of the corresponding NHPP, mðtÞ. This assumption enables to derive the closed-
form results of the following subsection.

4.10.3 Stress–Strength Type Classification Model

Consider first, the case when only the partial information HP
1t� ¼ fN1ðt�Þg is

observed, which means that the corresponding arrival times are not observed.
Thus, only the number of Type 1 events is available. Then, formally,

k1ðtjHP
1t�Þ

¼ E½P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jHP
1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ

� Nðt�Þ ¼ 1�� � mðtÞ;
ð4:82Þ

where the expectation is with respect to the joint conditional distribution
ðHt�; Uðtþ dtÞ�jHP

1t�Þ. Denote the pdf and the Cdf of a random quantity (strength)
U by gUðuÞ and GUðuÞ, respectively. In this case, Uðtþ dtÞ� ¼
fS1; S2; . . .; SNððtþ dtÞ�Þ; Ug and
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P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jHP
1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�

¼ IðSNðt�Þþ 1 [ UÞ;

where the conditional distribution of UjHP
1t� does depend on the history HP

1t� and,
as previously, Si denotes the value of stress on the ith event. Therefore, in
accordance with Theorem 4.14, k1ðtjHP

1t�Þ can be obtained as

k1ðtjHP
1t�Þ ¼ PðSNðt�Þþ 1 [ UjHP

1t�Þ � mðtÞ:

As the distribution of SNðt�Þþ 1 does not depend on the history
HP

1t� ¼ fN1ðt�Þg, it is sufficient to derive the distribution for UjHP
1t�. Given

U ¼ u, the process fN1ðtÞ; t� 0g is the NHPP with intensity FSðuÞ mðtÞ and thus
the conditional distribution of N1ðt�ÞjU is

PðN1ðt�Þ ¼ n1jU ¼ uÞ ¼
FSðuÞ

R t
0 mðxÞ dx

� �n1

n1!
exp �FSðuÞ

Z t

0

mðxÞ dx

8<
:

9=
;:

Therefore, the conditional distribution of UjN1ðt�Þ is

FSðuÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ

R1
0

FSðwÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðwÞ
R t

0 mðxÞ dx
� �

� gUðwÞ dw

:

Finally, from (4.82),

k1ðtjHP
1t�Þ ¼

R1
0

FSðuÞ �
FSðuÞ

R t

0
mðxÞdx

� �n1

n1! exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ du

R1
0

FSðwÞ
R t

0
mðxÞdx

� �n1

n1! exp �FSðwÞ
R t

0 mðxÞ dx
� �

� gUðwÞ dw

� mðtÞ:

ð4:83Þ

For the specific case when HP
1t� ¼ fN1ðt�Þ ¼ 0g, i.e., n1 ¼ 0; the conditional

intensity k1ðtjHP
1t�Þ in (4.83) reduces to

kSðtÞ ¼
R1

0

R s
0 exp �FSðrÞ

R t
0 mðxÞ dx

� �
� gUðrÞ dr fSðsÞ dsR1

0 exp �FSðrÞ
R t

0 mðxÞ dx
� �

gUðrÞ dr
mðtÞ;

which is, obviously the same as Eq. (4.50).
Consider now the case when the full history

H1t� ¼ fN1ðt�Þ ¼ n1; T11 ¼ t11; T12 ¼ t12; . . .; T1N1ðt�Þ ¼ t1n1g
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is observed and, therefore, is available. The crucial step in deriving the conditional
intensity in the previous case was to obtain the conditional distribution of UjHP

1t�.
Intuitively, as the distribution of U depends only on ‘the number of successes’ up
to t, but not on the arrival times of events, it seems that the full history H1t�can be
reduced to the partial history HP

1t� ‘without loss of relevant information’ (i.e., the
full history H1t� is redundant). Thus it would be meaningful to see whether this
statement is true or not. To show this, consider, as before,

P½N1ððt þ dtÞ�Þ � N1ðt�Þ ¼ 1jH1t�; Ht�; Uðtþ dtÞ�; Nððt þ dtÞ�Þ � Nðt�Þ ¼ 1�
¼ IðSNðt�Þþ 1 [ UÞ:

In accordance with Theorem 4.14, k1ðtjH1t�Þ can be obtained as

k1ðtjH1t�Þ ¼ PðSNðt�Þþ 1 [ UjH1t�Þ � mðtÞ:

It is sufficient to derive the distribution for UjH1t�. Note that the joint condi-
tional distribution of ðN1ðt�Þ; T11; T12; . . .; T1N1ðt�ÞjUÞ is given by

exp

Zt11

0

FSðuÞ mðxÞ dx

8<
:

9=
;FSðuÞ mðt11Þ exp �

Zt12

t11

FSðuÞ mðxÞ dx

8<
:

9=
;FSðuÞ mðt2Þ. . .

	 exp �
Zt1n1

t1ðn1 � 1Þ

FSðuÞ mðxÞ dx

8><
>:

9>=
>;FSðuÞ mðt1n1Þ exp �

Z t

t1n1

FSðuÞ mðxÞ dx

8><
>:

9>=
>;

¼ FSðuÞ
� �n1mðt11Þmðt12Þ. . .mðt1nÞ exp �FSðuÞ

Z t

0

mðxÞ dx

8<
:

9=
;:

Therefore, the conditional distribution of ðUjN1ðt�Þ; T11; T12; . . .; T1N1ðt�ÞÞ is

FSðuÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðuÞ

R t
0 mðxÞ dx

� �
� gUðuÞR1

0 FSðwÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðwÞ

R t
0 mðxÞ dx

� �
� gUðwÞ dw

:

Finally, from (4.81)

k1ðtjH1t�Þ ¼
R1

0 FSðuÞ
� �n1 þ 1

mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðuÞ
R t

0 mðxÞ dx
� �

� gUðuÞ duR1
0 FSðwÞ
� �n1mðt11Þmðt12Þ. . .mðt1n1Þ exp �FSðwÞ

R t
0 mðxÞ dx

� �
� gUðwÞ dw

� mðtÞ :

ð4:84Þ

It can be seen that k1ðtjH1t�Þ in Eq. (4.84) and that in Eq. (4.83) are identical
and, therefore, H1t� can be reduced to the partial history HP

1t� ‘‘without loss of
relevant information’’ as our initial intuition prompted us.

Note that, as the external point process is the NHPP, kðtjHt�Þ ¼ vðtÞ. Then,
using kðtjH1t�Þ ¼ k1ðtjH1t�Þ þ k2ðtjH1t�Þ, the following relationship holds:
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k2ðtjH1t�Þ � lim
Dt! 0

P½N2ððt þ DtÞ�Þ � N2ðt�Þ ¼ 1jH1t��
Dt

¼ mðtÞ � k1ðtjH1t�Þ:

It is clear that the conditional probability that the event that happened at time t
belongs to fN1ðtÞ; t� 0g is

k1ðtjH1t�Þ
k1ðtjH1t�Þ þ k2ðtjH1t�Þ

:

Obviously, both processes fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g are not NHPPs
now.

The case when we observe the full history of fN1ðtÞ; t� 0g and fN2ðtÞ; t� 0g,
can be considered in a similar way [8].
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