Chapter 4

Advanced Theory for Poisson
Shock Models

In this chapter, we extend and generalize approaches and results of the previous
chapter to various reliability-related settings of a more complex nature. We relax
some assumptions of the traditional models except the one that defines the under-
lying shock process as the nonhomogeneous Poisson process (NHPP). Only in the
last section, we suggest an alternative to the Poisson process to be called the
geometric point process. It is remarkable that although the members of the class of
geometric processes do not possess the property of independent increments, some
shock models can be effectively described without specifying the corresponding
dependence structure. Most of the contents of this chapter is based on our recent work
[5-11] and covers various settings that, we believe, are meaningful both from the
theoretical and the practical points of view. The chapter is rather technical in nature,
however, general descriptions of results are reasonably simple and illustrated by
meaningful examples. As the assumption of the NHPP of shocks is adopted, many of
the proofs follow the same pattern by using the time-transformation of the NHPP to
the HPP (see the derivation of Eq. (2.31)). This technique will be used often in this
chapter. Sometimes the corresponding derivations will be reasonably abridged,
whereas other proofs will be presented at full length.

Recall that in extreme shock models, only an impact of the current, possibly
fatal shock is usually taken into account, whereas in cumulative shock models, the
impacts of the preceding shocks are accumulated as well. In this chapter, we
combine extreme shock models with specific cuamulative shock models and derive
probabilities of interest, e.g., the probability that the process will not be terminated
during a ‘mission time’. We also consider some meaningful interpretations and
examples. We depart from the assumption that the probability of termination does
not depend on the history of the process and this makes the modeling more
complex on the one hand, but more adequate on the other hand.
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4.1 The Terminating Shock Process with Independent
Wear Increments

4.1.1 General Setting

Consider a system subject to a NHPP of shocks with rate v(z). Let it be ‘absolutely
reliable’ in the absence of shocks. As in Chap. 3, assume that each shock
(regardless of its number) results in the system’s failure (and, therefore, in the
termination of the corresponding Poisson shock process) with probability p(¢) and
is harmless to the system with probability ¢(f) = 1 — p(¢). Denote the corre-
sponding time to failure of a system by Ts. Then Eq. (3.18) can be written now as

t

P(Ts > t) = Fg(t) = exp f/p(u)v(u) du |, (4.1)
0

whereas the corresponding failure rate is

As(t) = p(1)v(1).

The formal proof of (4.1) can be found in Beichelt and Fisher [3] and Block
et al. [4]. A ‘non-technical proof’, based on the notion of the conditional intensity
function (CIF) (see [15]) is given e.g., in Nachlas [25] and Finkelstein [17]. Thus,
(4.1) describes an extreme shock model, as only the impact of the current, possibly
fatal shock is taken into account. For convenience, we shall often call the
described model the p(f) < ¢(r) model.

It is clear that the extreme shock model can be easily modified to the case when
a system can also fail from causes other than shocks. Denote the corresponding
Cdf in the absence of shocks by F(r) and assume that the process of failure from
other causes and the shock process are independent. It follows from the competing
risks considerations that

t

P(Ts >1t)=F(t)exp| — /p(u)v(u) du |. (4.2)
0

A crucial assumption for obtaining Egs. (4.1) and (4.2) is the assumption that
with probability ¢(#) =1 — p(t), a shock does not result in any changes in a
system. However, in practice, shocks can also increase deterioration, wear, etc.
The effect of different shocks is also usually accumulated in some way. Therefore,
we start with the following setting [5]:

Let the lifetime of a system in a baseline environment (without shocks) be
denoted by R. Thus, P(R < t) = F(t). We interpret here R as some initial, random
resource, which is ‘consumed’ by a system (with rate 1) in the process of its oper-
ation. Therefore, the age of our system in this case is equal to a calendar time ¢, and a
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failure occurs when this age reaches R. It is clear that when the remaining resource
decreases with time, our system can be considered as aging (deteriorating).

Let {N(t), t > 0} denote an orderly point process of shocks with arrival times
T;,i=1,2,... Denote also by Fs(t) the Cdf that describes the lifetime of our
system, Ts in the presence of shocks. Assume that the ith shock causes immediate
system’s failure with probability p(t), but in contrast to the extreme shock model,
with probability ¢(7), it now increases the age of a system by a random increment
W; > 0. In terms of repair actions, this repair is ‘worse than minimal’. In accor-
dance with this setting, a random age of a system at time ¢ (which is similar to the
‘virtual age’ of Finkelstein [16, 17]) is

where, formally, Wy = 0 corresponds to the case N(¢#) =0 when there are no
shocks in [0, 7]. Failure occurs when this random variable reaches the boundary R.
Therefore,

P(Tg > t|N(s) 0<s<t; Wi, Wa, ..., Wy(i; R)

—Hq I(T, <R)

:]ﬁ (ZW<R )

i=0

(4.3)

where ¢(Ty) = 1 describes the case when N(¢) = 0 and I(x) is the corresponding
indicator. This probability should be understood conditionally on realizations of
N(t), Wi,i=1,2,...,N(z) and R.

Relationship (4.3) is very general and it is impossible to ‘integrate out’
explicitly N(t), Wi, i=1,2,...,N(t) and R without substantial simplifying
assumptions. Therefore, after the forthcoming comment we will consider two
important specific cases [5].

The described model can be equivalently formulated in the following way. Let
F(¢) be the distribution of a lifetime of the wearing item in a baseline environment.
Failure occurs when this wear, which in the standardized form is equal to ¢, reaches
the resource (boundary) R. Denote the random wear in a more severe environment

by W;, t > 0. Specifically, for our shock model, W; = ¢ + ZNU W;, where W, i =

1, 2,..., N(t), are the random increments of wear due to shocks and W, = 0 [18].
For convenience, in what follows we will use this wear-based interpretation.
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4.1.2 Exponentially Distributed Boundary

In addition to the previous assumptions, we need the following:
Assumption 1. N(t), t > 0, is the NHPP with rate v(r).
Assumption 2. W; i = 1,2,..., are i.i.d. random variables characterized by the
moment generating function My () and the Cdf G(z).
Assumption 3. N(t), t > 0; W;, i = 1, 2,... and R are independent of each other.
Assumption 4. R is exponentially distributed with the failure rate 4, i.e.,

F(t) = exp{—it}.
The following result gives the survival function and the failure rate function for
Ts [5].

Theorem 4.1 Let m(t) = = [y o V(x)dx. Suppose that Assumptions 1-4

hold and that the inverse functton m l(t) exists for t > 0. Then the survival
function for Ts and the corresponding failure rate )s(t) are given by

t t

P(Ts > t) = expg —At — /v(x)dx—i—MW(—/l) . /q(x)v(x)dx ,1>0,
0 0

and
As(t) = A+ (1 = Mw(=2) - q(1)) v(1), (4.4)
respectively.

Proof Given the assumptions, we can directly ‘integrate out’ the variable R and
define the corresponding probability as

P(Ts > t|N(s), 0<s<t, Wy, Wa,---, Wy(y)

N(r)
N(I) Z+Zl 0 Wi
= (Hq(T,)) - expq — / Adu
i=0 0

N(z) N(z)
= exp{—/lt - ﬂvz Wi + Zlnq(Ti)}.

i=1 i=1

Thus
P(Ts > t|N(s), 0<s<1)

N(1) N(@D)
= exp{—At}- exp{z In q(T,-)} -E lexp{— Z AW,}]

i=1 i=1

N(z)

= exp{—At} ~exp{z Ing(T;) + In (My (— X))]} (4.5)

i=1
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We use now the same reasoning as when deriving Eq. (2.31). Therefore, some
evident intermediate transformations are omitted. More details can be found in
the original publication [5]. A similar approach is applied to our presentation in the
rest of this chapter.

Define N*(1) = N(m~'(1)), t > 0,and T} = m(T;), j > 1.Itis well-known that
{N*(t), t > t} is a stationary Poisson process with intensity one (see, e.g., [14])
and T7, j> 1, are the times of occurrence of shocks in the new time scale. Let
s = m(t). Then

N(t)
exp{z (Ing(T;) + In(Mw (=4))] H

E

i=1

(4.6)

=FE|E

N*(s)
exp{ > [ing(m™'(17)) + ln(MW()L))}} |N*(s)H :
i=1

The joint distribution of (Tl*, T;, ... T;‘) given N*(s) = n is the same as the
joint distribution of (V(1), V(a), - .., Vi), Where V(1) < V(5 <...< V|, are the
order statistics of i.i.d. random variables Vi, V5, ..., V,, which are uniformly dis-
tributed in the interval [0, s] = [0, m(¢)]. Then

E

i=1

N*(s)
exp{z (lnq(m’l(Tl.*)) + ln(MW(—}v)))} [N*(s) = n]

=F
i=1

exp{zn: (Ing(m™" (V(y)) + In(Myw(=2))) H (4.7)

=F

exp{fj (Ing(m™" (Vi) + In(Mw(~12))) H

i=1
n

= (E[exp{lnq(m’l(sU)) +1n(Mw(7/l))}] ) ,

where U =V, /s = V| /m(t) is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,

E[exp{lnq(m’l(sU)) +1In (MW(—/I))}]
1

= /exp{lnq(m*l(m(t)u)) +In (My(—24))} du
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From Egs. (4.5)—(4.8),

P(Ts > t) = exp{—At} - Z /q x)dx S—n'e"‘.

=exp{—At} - e’ -exp{ My(—41) -ﬁt)/q(x)v(x)dx
0

t t

= exp —it—/v(x)dx+Mw(—},)-/q(x)v(x)dx

0

Therefore, the failure rate of the system, Ag(t), is given by

Is(t) = A4 (1 = My(=2) - q(0))(0). =

The following corollary defines the failure rate that describes 75 when W;’s are
distributed exponentially with mean .

Corollary 4.1 If the W;’s are distributed exponentially with mean p then the
failure rate As(t) is given by

Js(t) = A+ (1 - ﬂ) v(t). (4.9)

A+ 1

We present now a qualitative analysis of the obtained result. Eq. (4.4) suggests
that the failure rate Zs(f) can be interpreted as a failure rate of a series system with
dependent (via R) components. When u — oo, from Egq. (4.9), we obtain
As(t) — A4 v(¢), which means that a failure occurs either in accordance with the
baseline F(r) or as a result of the first shock (competing risks). Note that, in
accordance with the properties of Poisson processes, the rate v(¢) is equal to the
failure rate, which corresponds to the time to the first shock. Therefore, the two
‘components’ of the described series system are asymptotically independent as
U — o0.

When u =0, which means that W;=0,i>1, Eq.(4.9) becomes
2s(t) = 2+ p(2)v(¢). Therefore, this specific case describes the series system with
two independent components. The first component has the failure rate 4 and the
second component has the failure rate p(t) v(¢).

Let g(t) = 1 (there are no ‘killing’ shocks) and let W; be deterministic and
equal to p. Then My (—4) = exp{—pA} and Eq. (4.4) becomes

As(t) = 24 (1 — exp{—ud})v(z).

Assume for simplicity of notation that there is no baseline wear and all wear
increments come from shocks. Then from Theoreml
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t t

P(Ts > t) = exp —/v(x) dx + My (—=4) - /q(x)v(x)dx
0 0

The form of this equation suggests the following probabilistic interpretation [6].
A system can fail from (i) the critical shock or (ii) the accumulated wear caused by
the shocks. Suppose that the system has survived until time z. Then, as the dis-
tribution of the random boundary R is exponential, the accumulated wear until

time ¢, va:(% W;, does not affect the failure process of the component after time ¢.
That is, on the next shock, the probability of the system’s failure due to the
accumulated wear given that a critical shock has not occurred, is just
P(R< Wy +1). This probability does not depend on the wear accumulation
history, that is,

P(RZW1—|-W2+...—|—W,,|R>W1+W2+...—|—Wn_1)
:P(R>Wn), Vn:l,Z,...,Wl,Wz,...,

where W) + W, + ... 4+ W, _ | = 0 when n = 1. Finally, each shock results in the
immediate failure with probability p(r) + ¢(t) P(R < W;); otherwise, the system
survives with probability ¢(#) P(R > W;). Although we have two (independent)
causes of failure in this case, the second cause also does not depend on the history
of the process and, therefore, our initial p(¢) < ¢(¢) model can be applied after an
obvious modification. In accordance with (4.1), the corresponding failure rate can
then be immediately obtained as

As(t) = (p(2) + q(1) P(R < W) v(1)
= (1—q(t) P(R > Wy))v(t
= (1= q(t) Mw (=2))v(2).

The validity of the above reasoning and interpretation can be verified by
comparing this failure rate function with that directly derived in (4.4) (4 = 0).

It is clear that this reasoning can be applied due to the specific, exponential
distribution of the boundary R, which implies the Markov property for the wear
‘accumulation’. In the next section, the case of a deterministic boundary will be
considered and, obviously, the foregoing interpretation ‘does not work” for this case.

4.1.3 Deterministic Boundary

Let R = b be the deterministic boundary. Let other assumptions of Sect. 4.3.1
hold. We consider the case when ¢ < b, which means that a failure cannot occur
without shocks. The following result gives the survival function for Ty.
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Theorem 4.2 Suppose that Assumptions -3 of Sect. 4.3.1 hold and that the
inverse function m~'(t) exists for t > 0. Furthermore, let the W;’s be i.i.d. expo-
nential with mean 1/v. Then the survival function for Ts is given by

o0 o0 b—

P(Ts > 1) = Z Z

=0 =n

eXp{ n(b —f)}>
. . (4.10)
’",Et,) exp{—m(1)}, 0 < 1 <b.

Proof Similar to the previous subsection,

P(Ts > t|N(s), 0<s<t, Wi, Wa,...,Wy)
N(1) N(1)
( q(T, )-I(z—i—ZWigb).
i=1 i=1
P(Ts>1t/N(s), 0<s<1t)
N(1) N(z)
i=1 i=1
N(1)
<H q<m> GO (b 1),
i=1

where G (¢) is the n-fold convolution of G(z) with itself.
As a special case, when the W;’s are i.i.d. exponential with mean 1/7,

Thus, we have

N(t)

P(Ts > 1|N(s), 0 <5 < 1) = (qu)) PN()),

i=1

where
wv = > M ep(oyo ),
Ny
and
N(1)
P(Ty> 1) = E q(T,>> ~\P<N<r>>]
=F|E
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where

N(r)
o £ | (LTacma Jvo o).

i=

Using the same notation and properties as those of the previous subsection, we
have

E (ﬁqm)) |N<r>=n] = [E(q(m™" (s0)))]"
and
Elg(n™ (60))) = s / gLv(x) dr.
Therefore, O

Finally, we obtain a rather cumbersome Eq. (4.10).
O

It can be easily shown that the survival function in (4.10) can be written in the
following compact form [6]:

t

P(Ts; > t) = exp —/p(x) v(x) dx ~§:P(Zl >n) - P(Z,=n), (4.11)
0 n=0

where Z; and Z, are two Poisson random variables with parameters n(b — t) and
f(; q(x) v(x) dx, respectively. The following presents a qualitative analysis for two
marginal cases of Eq. (4.11) for each fixed t < b.

When 5 = 1/ — oo, which means that the mean of increments W; tends to 0,
Eq. (4.11) ‘reduces’ to (4.1). Indeed, as n — oo,

Y P(Zy > n)P(Z =n) — iP(Zz =n) =1,
=0

n n=0
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because P(Z; > n) — 1 for Vn > 1 and P(Z; > 0) = 1. From ‘physical consid-
erations’, it is also clear that as increments vanish, their impact on the model also
vanishes.

When n — 0, the mean of the increments tends to infinity and, therefore, the
first shock will kill the system with probability tending to one as 5 — 0. The
infinite sum in the right-hand side in the following equation vanishes in this case:

as P(Zy > 0) =1 and P(Z; > n) — 0 for Vn > 1 when # — 0. Therefore, finally

t

P(Ts > t) — exp —/p(x)v(x)dx exp —/q(x)v(x)dx
0 0

—expd - [ vax b,

0

which is the probability that no shocks have occurred in [0, 7]. This is what we also
expect from general considerations for # — 0, as the system can survive for r < b
only without shocks.

4.2 History-Dependent Termination Probability

Consider first, the orderly point process with the conditional (complete) intensity
function (CIF) v(z|H(z)) [2, 15], where H(t) is the history of the process up to ¢.
This notion is similar to the intensity process defined in (2.12). Whereas the
intensity process is considered as a stochastic process defined by filtration H,_, the
CIF is usually a realization of this process defined by the realization of filtration
H(r). We will use these terms in our book interchangeably. Accordingly, let the
probability of termination under a single shock be adjusted in a similar way and,
therefore, also depend on this history, i.e., p(¢|H(t)). Denote, as previously, by T
the corresponding lifetime. It is clear that in accordance with our assumptions, the
conditional probability of termination in the infinitesimal interval of time can be
written in the following simplified form [17]:

PlTs € [t,t+dt)|Ts > ¢, H(t)] = p(e|H(¢)) v(t|H(¢)) dz.

The only way for p(z|H(t)) v(¢t|H(¢)) to become a ‘full-fledged’ failure rate that
corresponds to the lifetime Ts is when there is no dependence on H(t) for both
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multipliers in the right-hand side. It is obvious that elimination of this dependence
for the second multiplier uniquely leads to the NHPP. In what follows, we will
consider this case. However, specific types of dependence on history in the first
multiplier will be retained and this will give rise to the new classes of extreme
shock models.

Model A. We will consider the NHPP of shocks with rate v(¢) and with the
history-dependent termination probability

pIH(1) = p(IN(s), 0 < s <1).

Let this be the simplest history case, i.e., the number of shocks, N(¢) that our
system has experienced in [0, 7). This seems to be a reasonable assumption, as
each shock can contribute to ‘weakening’ of the system by increasing the prob-
ability p(¢t|H (7)) = p(¢t, N(t)) and, therefore, the function p(¢, N(¢)) is usually
increasing in n(t) (for each realization, N(¢) = n(¢)). To obtain the following
result, we must assume the specific form of this function. It is more convenient to
consider the corresponding probability of survival. Let

q(t, n(t)) = 1 = p(t, n(1)) = q(7) p(n(7)), (4.12)

where p(n(t)) is a decreasing function of its argument (for each fixed 7). Thus the
survival probability at each shock decreases as the number of survived shocks in
[0, t) increases. The multiplicative form of (4.12) will be important for us as it will
be ‘responsible’ for the vital independence to be discussed later.

The survival function of the system’s lifetime Ty is given by the following
theorem.

Theorem 4.3 Lerm(t) = E(N(t)) = f(; v(x)dxand ¥ (n) = [17_, p(i) (p(0) = D).
Suppose that the inverse function m~'(t) exists for t > 0. Then

t

P(Ts > t) = E[¥(Ng(1))] - expq — /p(x) v(x)dx 3, (4.13)
0

where {N,,(t), t > 0} follows the NHPP with rate q(t)v(t).
Proof Obviously, conditioning on the process (in each realization) gives

N()

P(Ts21IN(s), 0 < s < 1) = [ [ a(T)p(0),
i=0

where formally ¢(7p) = 1 and p(0) = 1 corresponds to the case when N(7) = 0.
Also, by convention, [[/_, (-); = 1forn = 0. Then the corresponding expectation is

P(Ts > 1) =E
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As previously, define the stationary Poisson process with rate 1: N*(t) = N(m™!

(1)), t >0, and T; = m(T;), j > 1 are the times of occurrence of shocks in the
new time scale. Let s = m(t). Then

N() N*(s) )

E|[[aT)p@i)| =E|E| ] a(m " (T7)) p()IN*(s)]| |-
i=1 i=1
The joint distribution of (Tl* Iy, L T ) given N*(s) = n is the same as the

joint distribution of (V(l), V(z), ceey V(n)), where V(l) < V(z) < - < V(,,) are
the order statistics of i.i.d. random variables Vi, V5, ..., V,, which are uniformly

distributed in the interval [0, s] = [0, m(z)]. Thus omitting derivations that are
similar, to those in the proofs of Theorems 4.1 and 4.2 (see [6] for more details):

N (s)
E|T] atn (1)) oo ] TTot) (Elator (0]

i=1 i=1

where U = V; /s = Vi /m(t) is a random variable uniformly distributed in the unit
interval [0,1]. Therefore,
1

E[g(m ' (sU))] :/q(m_l(su)) du = /q(m_'(m(t)u)) du
0

[=)

— i‘{’(n) (%/q(x)v(x) dx) .%eﬂn(z)
0
= exp{—/P(X)V(x)dx} -iw(n) -M.
0
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where {N,, (), t >0} follows the NHPP with rate ¢()v(t).

Example 4.1 Let p(i) =p'~ ', i=1,2,.... Then ¥(n) = p"" = 1/? and

P(Tyz0) =3 0 Mp{— / q(x)v(x)dx} -exp{— / p(x)v(x)dx}

n=0 0 0

5 o (a0 exp{_ I dx}.
n=0 :

0

(4.14)

The following discussion will help us in the further presentation of our time-
dependent results. Let {N(#), ¢ >0} be the NHPP with rate v(z). If an event occurs
at time 7, it is classified as a Type I event with probability p(¢) and as a Type II
event with the complementary probability 1 — p(¢), as in our initial p(r) < ¢(1)
model. Then {N;(¢), t>0} and {N,(¢), >0} are the independent NHPP with
rates p(¢) v(¢) and ¢q(¢) v(z), respectively, and N(z) = N;(t) + N,(¢). Accordingly,
e.g., given that there have been no Type I events in [0, ), the process {N(z), t > 0}
reduces to {N,(t), t >0}, as in our specific case when a Type I event (fatal shock)
leads to the termination of the process (failure). Therefore, in order to describe the
lifetime to termination, it is obviously sufficient to consider {N,(#), t >0}, and not
the original {N(z), t > 0}.

We will use a similar reasoning for a more general p(t|H (1)) < q(t|H (1))
model considered above, although interpretation of the types of events will be
slightly different in this case. In the following, in accordance with our previous
notation, N>(f) = N, (f) and the arrival times of this process are denoted by
Tigns Tigus -

The multiplicative form of the specific result in (4.13) indicates that it might be
also obtained and interpreted via the following general reasoning, which can be
useful for probabilistic analysis of various extensions of standard extreme shock
models. Considering the classical p(f) < ¢(t) extreme shock model, assume that
there can be other additional causes of termination dependent either directly on a
history of the point process (as in Model A) or on some other variables, as for the
marked point process, when each event is ‘characterized’ by some variable (e.g.,
damage or wear). Just for the sake of definiteness of presentation, let us call this
‘initial” cause of failure, which corresponds to the p(r) < ¢(t)model, the main or
the critical cause of failure (termination) and the shock that leads to this event—
the critical shock (Type I event). However, distinct from the p(¢) < ¢(r) model,
the Type II events, which follow the Poisson process with rate ¢() v(), can now
also result in failure.



92 4 Advanced Theory for Poisson Shock Models

Let Ec(¢) denote the event that there were no critical shocks until time 7 in the
absence of other causes of failures. Then, obviously,
P(Ts > t, Ec(t)) _P(Ts > 1)

P(TsZt|EC(t)) = P(Ec(t)) - P(EC(I)) ’

and, thus,
P(Ts > t) = P(Ts > t|Ec(t)) P(Ec(1)),

where

P(Ec(r)) = P(N,(t) = 0) = exp{ — /p(x)v(x)dx ) (4.15)
0

Therefore, in accordance with our previous reasoning and notation, we can
describe P(Ts >t|Ec(t)) in terms of the process {Ny, (), t >0} (and not in terms
of the original process{N(z), t >0}) in the following general form to be specified
for the forthcoming model:

P(Ts 2 1|Ec(1)) = E(I(Y(Ng (1), ©) € S)|Ec(1)),

where () is the corresponding indicator, @ is a set of random variables that are
‘responsible’ for other causes of failure (see later), W(N,,(7), ©) is a real-valued
function of (N, (f), ®) which represents the state of the system at time ¢ (given
Ec(t) i.e., no critical shock has occurred), and S is a set of real values which
defines the survival of the system in terms of W(N,,(¢), ©). That is, if the critical
shock has not occurred, the system survives when W(N,, (1), ®) € S.

In order to apply effectively Model A, we have to reinterpret it as follows.
Suppose first, that the system is composed of two parts in series and that each
shock affects only one component. If it hits the first component (with probability
p(1)), it directly causes its (and the systems) failure (the critical shock). On the
other hand, if it hits the second component (with probability ¢(z)), then this
component fails with probability 1 — p(n(z)) and survives with probability p(n(z)).
This interpretation nicely conforms with the two independent causes of failure
model in (4.12). Note that, in fact, we are speaking about the conditional inde-
pendence of causes of failure (on condition that a shock from the Poisson process
with rate v(¢) has occurred).

Another (and probably more practical) interpretation is as follows. Assume that
there are some parts of a system (component 1) that are critical only to, e.g., the
shock’s level of severity, which is assumed to be random. This results in failure
with probability p(). On the other hand, the other parts (component 2) are critical
only to accumulation of damage (failure with probability 1 — p(n(¢))). Assuming
the series structure and the corresponding independence, we arrive at the survival
(on shock) probability (4.12).
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We can define now the function W(N,,(f), ©®) for Model A. Suppose that there
have been no critical shocks in [0, #) and let ¢, = 1 if the second component
survives the ith shock, and ¢, =0, i =1, 2, 3,...N(¢) otherwise. Then

Ngo(t

)
‘I’(qu(t), 0) = H Dis

i=1
and S = {1}. Therefore, as events Ec(r) and (N, (r), ®) € S are ‘related’ only

to the first and the second causes of failure, respectively, and these causes of failure
are independent, we have:

P(Ts > t|Ec(t))
=E(I(Y(Ny(1), ©) € S)|Ec(1))
=E(I(Y(Nu(1), ©) €5))

Combining this equation with (4.15), we arrive at the original result in (4.13).
Model B. Consider now another type of extreme shock model, which is, in fact, a
generalization of Model A. In model A, the second cause of failure (termination)
was due to the number of noncritical shocks, no matter what the severity of these
shocks was. Now, we will count only those shocks (to be called ‘dangerous’) with
severity larger than some level x. Assume that the second cause of failure
‘materializes’ only when the number of dangerous shocks exceeds some random
level M. That is, given M = m, in the absence of critical shocks, the system fails as
soon as it experiences the (m + 1)th dangerous shock.

Assume that the shock’s severity is a random variable with the Cdf G(¢), and the
survival function for M, P(M > 1), 1 =0, 1, 2, .., is also given. Suppose that there
have been no critical shocks until time 7 and let ¢; be the indicator random variable
(¢; = 1 if the ith shock is dangerous and ¢; = 0 otherwise). Then, as previously,

v(7)
‘-I’(N,,v(t), @) =I1M> Y <p,->,

=1

=

and S = {1}. Thus
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~

Thus, similar to the derivations of the previous section

P(Ts> fEc() = [imwzz) ‘ (’})G(xm(x)"”]
n=0 [ [=0

mq(t)n exp{_n’;nq(t)} ,

where m,(t) = |, é q(x)v(x) dx, and finally, we have

t
o0

P(Ts>1) = exp —/p(x)v(x)dx : Z

0 n=0

wexp{—my(1) }
n!

n

S PM>1)- (’;) G(x) G(r)"~ ’]

=0

my(1)

Note that, when the expression for P(Ts>t|Ec(z)) involves not only the
number of shocks N, (f) but also the filtration generated by (N, (s), 0 <s<1),
the computation becomes intensive and the results might not be useful in practice.
The corresponding example with numerical results can be found in [6].

4.3 Shot Noise Process for the Failure Rate
4.3.1 Shot Noise Process Without Critical Shocks

Assume that a system is subject to the NHPP of shocks {N(#), t >0} with rate v(z),
which is the only possible cause of its failure. The consequences of shocks are
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accumulated in accordance with the ‘standard’ shot noise process X(7), X(0) =0
(see e.g., [26], [27] and the previous chapter). Similar to (3.8), but in a slightly
different and more convenient for us here notation, define the level of the cumu-
lative stress (wear) at time ¢ as the following stochastic process:

N(1)
X(1) = Dl ~T)). (4.16)
j=1
where T, is the n-th arrival time in the shock process, D;, j = 1, 2, ... are the i.i.d.

magnitudes of shocks and A(t) is a non-negative, nonincreasing for ¢ >0, deter-
ministic function (h(r) =0 for #<0). The usual assumption for considering
asymptotic properties of X(¢) is that h(¢) vanishes as r — oo and its integral in
[0, co)is finite, however, we formally do not need this rather restrictive assump-
tion here. The shock process {N(r), >0} and the sequence {D, D, ...} are
supposed to be independent.

The cumulative stress eventually results in failures, which can be probabilis-
tically described in different ways. Denote by T, as previously, the failure time of
our system. Lemoine and Wenocur [23, 24], for example, modeled the distribution
of Ts by assuming that the corresponding intensity process is proportional to X(t)
(see (2.12) for a general definition). As we are dealing with the intensity process,
we will rather use the term “stress” instead of “wear”. Proportionality is a rea-
sonable assumption that describes the proportional dependence of the probability
of failure in the infinitesimal interval of time on the level of stress

N(z)
M =kX(t) = kY Dih(t — T)), (4.17)

j=1
where k > 0 is the constant of proportionality. Then
P(TS > t|N(S)7 OSSSIa D17 D2,' EE3) DN(Z))

V) 4.18
= exp —k/ZDjh(x—Tj)dx , (4.18)

o /=1
Therefore, it means that the intensity process (4.17) can be also considered as
the failure rate process [22]. Probability (4.18) should be understood conditionally
on the corresponding realizations of {N(s), 0<s<t} and Dy, D,..., Dy(.
Therefore, ‘integrating them out’,

t
P(Ts > t) = E |exp —k/X(u) du
0

Lemoine and Wenocur [24] had finally derived the following relationship for
the survival probability P(Ts > ?):


http://dx.doi.org/
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t

P(Ts > t) = exp{—m(t)} exp /L(kH(u))v(t — u)du y, (4.19)
0

where m(t) = [(v(u)du, H(f) = [yh(u)du and L() is the operator of the
Laplace transform with respect to the distribution of the shock’s magnitude. In
what follows, we generalize the approach of these authors to the case when a
system can also fail due to a fatal shock with the magnitude exceeding the time-
dependent bound, which is more realistic in practice.

4.3.2 Shot Noise Process with Critical Shocks
and Deterioration

Model 1. In addition to the general assumptions of Lemoine and Wenocur [24]
stated in the previous subsection, let on each shock, depending on its magnitude
D;, j=1,2..., the following mutually exclusive events occur [11]:

(i) If D; > gy(T;), then the shock results in an immediate system’s failure

(ii) If D;<gc(T;), then the shock does not cause any change in the system
(harmless)

(iil) If g.(T;) <D; < gy(T;), then the shock increases the stress by D; h(0),

where gy (¢), g.(¢) are the decreasing, deterministic functions.

The functions of operating time, gy (), g.(¢) define the corresponding upper
and lower bounds. Because they are decreasing, this means that the probability that
the shock arriving at time ¢ results in the system’s failure is increasing in time,
whereas the probability that the shock is harmless is decreasing with time.
Therefore, obviously, a deterioration of our system is described in this way. The
function gy () can also be interpreted as the strength of our system with respect to
shocks, whereas the function g; (), can be interpreted as the ‘sensitivity’ to shocks.
At many instances, they can be defined from the general ‘physical considerations’
on the criterion of failure of a system. For instance, the minimum peak voltage that
can ruin a new electronic item is usually given in its specifications.

Define the following ‘membership function’:

{ 1, gu(Ty) <D;<gu(T;)

(15, by) = (4.20)

0, D;j<gu(T))
Using this notation, the cumulative stress, similar to (4.16), can be written as

N(1)
X(1) =) &T;, D) Dih(t — Ty), (4.21)

=
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provided that the system is operating at time 7 [i.e., the event D; > gy(T;), j =
1, 2,... did not happen in [0, )].

Generalizing (4.17), assume that the conditional failure rate process J: (on
condition that the event D; > gy(T}), j =1, 2,... did not happen in [0, ¢) and
{N(t), Ty, Ta, ..., Ty} and {Dy, D, ..., Dy} are given) is proportional to X (¢)

N()
A =kX(t) =k &T;, D) Djh(t —Tj), k> 0. (4.22)
n=1
It is clear that conditionally on the corresponding history
(i) If D; > gy(T;), for at least one j, then

P(TS>I|N(S)’ OSSSI? DlaD27-~~7DN(t)) = 07

(i) If D; <gy(t), for all j, then

tN(x)
P(Ts > t|N(s), 0<s<t, D.,Dz,...,DN(,))—exp{—k/ D;)Djh(x — T,)dx}
0 f:l

Therefore,
P(T5>l‘ S) 0<s<t, Dy, D,,. ~~7DN(t))

t

Y] N (4.23)
:Hy %, Dj) - exp k/ &(T;, Dj) Dih(x — T;)dx p,
j=1 0 /=1
where
0, D;>gu(T)
w(T;, D) = ) 4 I 4.24
)( J j) { 1, DngU(Tj) ( )

Thus, we have described a rather general model that extends (4.18) to the defined
deterioration pattern. Indeed, if gy(r) = oo; g.(f) =0, then &(T;,D;) = land
(4.23) reduces to (4.18) with the corresponding survival probability (4.19). On the
other hand, let gy (r) = g.(r) = g(r). Then, defining p(r) = P(D; > g(t)) as the
probability of failure under a shock at time 7 (¢(tr) = P(D; < g(t)), we obviously
arrive at the p(t) < ¢(¢) model described by Eq. (4.1).

On the basis of the above described model, we will derive now the (uncondi-
tional) survival function and the corresponding failure rate function. First, we need
the following general lemma (see, [13] for the proof):

Lemma 4. 1 Let X1, X, ..., X, be i.i.d. random variables and Z,, Z,, ..., Z, be
i.i.d. continuous random variables with the corresponding common pdf. Further-
more, let X = (X1, Xp,..., Xp) and Z = (Z1, Z,, . . ., Z,) be independent. Suppose
that the function ¢(x,z) : R* x R" — R satisfies ¢p(X, t) = o(X, n(t)), for
any vector t € R" and for any n-dimensional permutation function (). Then
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o(X, Z) =1 (X, Z"),
where 7" = (Z(1), Z3), - - -, Z(n)) is the vector of the order statistics of Z.
We are ready now to prove the following theorem [11].

Theorem 4.4 Let H(t) = [ h( dv m(t) = = [ov(x)dx and fp(u),
Fp(u) be the pdf and the cdf ofD Dj, j= l7 2, Assume that the inverse
function m~'(t) exists for t > 0. Then the survival function that corresponds to the
lifetime Ty is
t
P(Ts > 1) = exp{ — [ Folgu(w) ) du
0

sl (4.25)

exp / / exp{—kuH(t — $)}fp(u)duv(s)dsy,
0 g(s)

and the corresponding failure rate is
As(1) = P(D > gy (1)) A(t)
t gu(s)
+ / / kuh(t — s) exp{—kuH(t — s)}fp(u)duv(s)ds  (4.26)
0 gr(s)

Proof Observe that

P(Ts >t | N(s), 0<s<t, Dl, Dy, ..., DN(I))

N(r)
=17, ) exp{ kZé j) Dy H(t — T->}

j=1 j=1
N(1)
:eXP{Z(an(ij D;) — k(T;, Dy) D;H(t — T»)}.
j=1
Therefore,

N(@)

P(Ts > 1) —E[exp{Z(an(Tj, D;) — k&(T;, D) DiH(t — T,»))H

j=1

N(t)
=ElE<exp{Z(lnv(T_n Dj) — k&(T;, Dj) DiH(t — j))}IN(t>>

j=1
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As previously, if m’l(t) exists, then the joint distribution of Ty, Ty,..., T,
given N(tf) =n, is the same as the joint distribution of the order statistics
T,y <T <...<T{, of iid. random variables T},T;,...,T,, where the pdf of
the common distribution of 7}’s is given by v(x)/m(t). Thus,

N(1)
E<eXp{Z(an(Tj,Dj) — ke(T;, D)) DiH (1 — Tj))}IN(t) —n>

j=1
:E<exp{z<lm%,q> — k(T(;), D) DH (1 — T’m»})
j=1
Let X = (Dy,D»,...,D,), Z= (T},T},...,T,) and

n

o(X,Z) = Z(m(rj’,pj) — k(T D) DH(t — T))). (4.27)

Note that, as was mentioned, if gy (f) = oo; g.(r) =0, then &(T;,D;) = 1 and
our model reduces to the original model of Lemoine and Wenocur [24], where
each term in ¢(X,Z) is just a simple product of D; and H(t — 7). Due to this

simplicity, the rest was straightforward. Now we have a much more complex form
of ¢(X,Z), as given in (4.27), where the terms in the sum cannot be factorized.
Observe that the function ¢(x, z) satisfies

o(X,1) =1 (X, (1))

for any vector + € R" and for any n-dimensional permutation function 7(-). Thus,
applying Lemma 4.1,

n

Z(lny(’[j,D]) - ké(Tj/aDj) DjH(t - Tj/))

j=1

:dZ(lny(TED,Dj) — k&(T(,, D)) D;H(t — T;)))

j=1
and, therefore,

E(“P{i(an(T{;)»Dj) — k&(T(), Dj) D;H(t — T&)))})

j=1

=E<6Xp{zﬂ:(an(Tf7Dj) — k&(T;, D)) DiH(t — T}))})

= (E(exp{ny(T},D1) — KE(T},D1) Dy H(r — T))}))".
As
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Elexp{Iny(T},D1) — k&(T7, D) DiH(t — T)} | T} = ]
= Elexp{Iny(s,D;) — k&(s,D) Dy H(t — s)}]

gu(s)
— [ expltuti(c ~ 9)fola)du + PIDy<au(9),

(4.28)

gi(s)

where for Dy > gy(s), exp{lny(s, Di) — k&(s,D;)DH(t — s)} =0, for all
s > 0, the unconditional expectation is

Elexp{lny(T|,Dy) — k&(T|,Dy)D1H(t — T})}]

t guls) t
B v(s) v(s)
_ 0/ g 4 exp{ ka1 = )} folu)du o ds + 0/ P(D: < g1(s) Sords
Let
t guls) t
u(t) = / / exp{—kuH(t — $)} fi(u) dui(s) ds + / P(D) < gu.(s)) v(s) ds,
0 gr(s) 0

and we finally arrive at

t

t 1 SU(\)
exp{/w(u} du + / / exp{—kuH(t — s)}fp(u)duv(s)ds+ / P(Dy < gp(u))v(u) du}7
0 0

0

which is obviously equal to (4.25).
The corresponding failure rate can be obtained as

As(t) = —%lnP(TS > 1)

= v(t) — P(gL(t) <D Sgu(t)) V(I)

t gu(s)
—|—/ / kuh(t — s) exp{—kuH(t — s)}fp(u)duv(s)ds — P(D; <g.(t)) v(¢)
0 gl
t guls)
= P(D; > gu(t))v(r) + / / kuh(t — s) exp{—kuH(t — s)}fp(u)duv(s)ds
0 gu(s)

where the Leibnitz rule was used for differentiation of the double integral. O
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Relationship (4.26) suggests that (4.25) can be equivalently written as

' tgu(s)
P(Ts > 1) = exp{—‘/ Fp(gu(u)) v(u) du} exp{—‘/ kuh(t — s) exp{—kuH(t — s)}fp(u)duv(s) ds} .

0 Hlj(»‘)

Therefore, we can again interpret our system as a series one with two inde-
pendent components: one that fails only because of fatal (critical) shocks and the
other that fails because of nonfatal shocks.

Example 4.2 Consider the special case when gy (f) = oo and g.(f) = 0. Then the
survival function in (4.25) is

' 1 gu(s)
P(T >1) = exp{—/FD(gL(u))v(u) du} exp{/ / exp{—kuH(t — s)}fp(u)duv(s) ds}

0 0 gi(s)

= exp{—m(r)} exp{/L(kH(t — 5))v(s) ds} = exp{—m(r)} exp{/L(kH(u))v(t - 1,4)du}7

0 0

where L(+) is the operator of the Laplace transform with respect to fp(u). There-
fore, we arrive at Eq. (4.19) obtained in [24].

Example 4.3 Suppose that v(t) =v, t>0, D;=d, j=1,2,..., and there exist
t, > t; > 0 such that

gu(t) > gi(t) > d, for 0 <r<t; (shocks are harmless);
d > gy(t) > gi(t), for 1, <t (shocks are fatal), and
gu(t) >d>gi(t), for y <t<ty; gr(th) = gu(r) = d.

Let for the sake of further integration, h(r) =1/(1 + ¢), 1>0, and k =1/d
(for simplicity of notation). From Eq. (4.28),
Elexp{lny(T{,D1) — k&(T{,D1)DiH(t — T})} | T} = 5]
=exp{lny(s,d) — ki(s,d)dH(t — s)}

0, if gu(s) >d(s > 1)
=qexp{—-H( — 5)}, if g(s)<d < gy(s)(r1<s<ty)
1, if d<gi(s)(s<n)

— exp{—H(t — s)

D (g(s) > d