
Chapter 3
Shocks and Degradation

This chapter is mostly devoted to basic shock models and their simplest appli-
cations. Along with discussing some general approaches and results, we want to
present the necessary material for describing our recent findings on shocks mod-
eling of the next chapter. As in the other chapters of this book, we do not intend to
perform a comprehensive literature review of this topic, but rather concentrate on
notions and results that are vital for further presentation.

We understand the term ‘‘shock’’ in a very broad sense as some instantaneous,
potentially harmful event (e.g., electrical impulses of large magnitude, demands
for energy in biological objects, insurance claims in finance, etc.). Shock models
are widely used in practical and theoretical reliability and in the other disciplines
as well. They can also constitute a useful framework for studying aging properties
of distributions [2, 3]. It is important to analyze the consequences of shocks to a
system (object) that can be basically two fold. First, under certain assumptions, we
can consider shocks that can either ‘kill’ a system, or be successfully survived
without any impact on its future performance. The corresponding models are
usually called the extreme shock models, whereas the setting when each shock
results in an additive damage (wear) to a system is often described in terms of the
cumulative shock models ([18–20] to name a few). In the latter case, the failure
occurs when the cumulative effect of shocks reaches some deterministic or random
level, and therefore, this setting is useful for modeling of degradation (wear)
processes. The combination of these two basic models has been also considered in
the literature [5, 6, 19].

In Sect. 3.1, we first briefly discuss several simplest stochastic models of wear
that are helpful in describing basic cumulative shock models. In the rest of this
chapter, we mostly consider the basic results with respect to the extreme and
cumulative shock models, and also describe several meaningful modifications, and
applications of the extreme shock model. For instance, in Sect. 3.8, a meaningful
safety at sea application is considered and in Sect. 3.9, the famous in demography
Strehler–Mildvan model of human mortality is discussed from our view point.
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3.1 Degradation as Stochastic Process

Stochastic degradation in engineering, ecological, and biological systems is nat-
urally modeled by increasing (decreasing) stochastic processes. The additive
nature of the cumulative shock models implies that the corresponding degradation
should be strictly monotone. However, it is well-known (e.g., [3] that, for example,
the Wiener process with drift (see Definition 3.1) with the nonmonotone realiza-
tions under certain assumptions can be also considered as a useful tool for mod-
eling the monotone degradation. In the previous chapter, several point processes
were discussed that can be used for modeling degradation induced by shocks in the
corresponding cumulative shock models. We will consider now the simplest
continuous-time stochastic processes, and will be interested in modeling stochastic
degradation as such and in obtaining the corresponding distributions for the first
passage times when this degradation reaches the predetermined or random level D
for the first time. When D defines some critical safety boundary, the latter inter-
pretation can be useful for risk and safety assessment. For instance, when degra-
dation in some structures results in the decreasing resistance to loads, it can result
not just in an ‘ordinary’ failure, but in a severe catastrophic event.

We will briefly define now several approaches, which are most often used in
engineering practice for degradation modeling. The simplest and the widely used
one is the path model. Its stochastic nature is described either by the additive or by
the multiplicative random variable in the following way:

Wt ¼ g tð Þ þ Z; ð3:1Þ

Wt ¼ g tð ÞZ; ð3:2Þ

where fWt; t � 0g denotes our stochastic process, g tð Þ is an increasing, contin-
uous function (g 0ð Þ ¼ 0; limt!1 g tð Þ ¼ 1) and Z is a nonnegative random
variable with the Cdf GðzÞ. Therefore, the sample paths (realizations) for these
models are monotonically increasing. The ‘nature’ of this stochastic process is
simple and meaningful: let the failure (catastrophe) be defined as reaching by
fWt; t� 0g the degradation threshold D [ 0 and TD be the corresponding time to
failure random variable with the Cdf FDðtÞ. It follows, e.g., for the model (3.2)
that:

FD tð Þ ¼ P Wt� Dð Þ ¼ Pr Z � D

g tð Þ

� �
¼ 1� G

D

g tð Þ

� �
: ð3:3Þ

Example 3.1 Let g tð Þ ¼ t and assume that Z is described by the Weibull distri-

bution, i.e., G zð Þ ¼ 1� exp � k zð Þk
n o

, k; k [ 0. Then, in accordance with (3.3),

FD tð Þ ¼ exp � kD

t

� �k
( )

;
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which is often called the Inverse-Weibull distribution [1]. Specifically, when
k ¼ 1; k ¼ 1 :

FD tð Þ ¼ exp �D

t

� �
:

It is clear that the value at t ¼ 0 for this distribution should be understood as

FD 0ð Þ ¼ lim
t!0

FD tð Þ ¼ 0:

The Inverse-Weibull distribution is a convenient simple tool for describing
threshold models with a linear function g tð Þ.

Assume now that the threshold D is a random variable with the Cdf F0 dð Þ ¼
Pr D� dð Þ and let, at first, degradation be modeled by the deterministic, increasing
function W tð Þ (W 0ð Þ ¼ 0; limt!1W tð Þ ¼ 1). Equivalently, the problem can be
reformulated in terms of the fixed threshold and random initial value of degra-
dation. Denote by T the random time to failure. As events T � t and W tð Þ are
equivalent, similar to (3.3) [12],

F tð Þ � P T � tð Þ ¼ P D� W tð Þð Þ ¼ F0 W tð Þð Þ; ð3:4Þ

where the last equality is due to the fact that the Cdf of D is F0 dð Þ. Substituting d
by W tð Þ, finally results in (3.4).

Let now the deterministic degradation W tð Þ in (3.4) be replaced by a stochastic
process Wt; t� 0. In order to derive the corresponding distribution of the time to
failure in this case we must obtain the expectation of F0ðWtÞ with respect to the
process Wt; t� 0:

F tð Þ ¼ E F0 Wð Þt
� �

: ð3:5Þ

This equation is too general, as the stochastic process is not specified. The
following example considers the multiplicative path model for Wt; t� 0.

Example 3.2 Let, e.g., F0 dð Þ ¼ 1� exp �kdf g and Wt ¼ gðtÞZ, where Z is also
exponentially distributed with parameter l. Direct integration in (3.5) gives:

F tð Þ ¼E 1� exp �kg tð ÞZf g½ �

¼
Z1

0

1� exp �kg tð Þzf gð Þl exp �lzf g

¼1� l
lþ kg tð Þ :
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The path model can be very useful for illustration. However, obviously, the real
life stochastic processes are much more complex. Probably, the most popular in
applications and well investigated from the formal point of view stochastic process
is the Wiener process. The Wiener process with drift is often used for modeling
wear although its sample paths are not monotone (but the mean of the process is a
monotonically increasing function).

Definition 3.1 Stochastic process Wt; t� 0f g is called the Wiener process with
drift

Wt ¼ lt þ X tð Þ;

where l [ 0 is a drift parameter and X tð Þ is a standard Wiener process: for the
fixed t� 0, the random variable X tð Þ is normally distributed with zero mean and
variance r2t.

It is well-known (see, e.g., Cox and Miller [8] that the first passage time TD, i.e.,

TD ¼ inf
t

t;Wt [ Df g

for this process is described by the inverse Gaussian distribution:

FD tð Þ ¼ Pr TD [ tð Þ ¼ U
D� ltffiffi

t
p

r

� �
� exp �2Dlf gU Dþ ltffiffi

t
p

r

� �
ð3:6Þ

and

E TD½ � ¼
D

l
; Var TDð Þ ¼

Dr2

l3
;

where, as usual, UðtÞ, denotes the Cdf of the standard normal random variable.
Another popular process for modeling degradation is the gamma process (see,

e.g., the perfect survey by Van Nortwijk [30]). Although, parameter estimation for
the degradation models driven by the gamma process is usually more complicated
than for the Wiener process, it better captures the desired monotonicity.

Definition 3.2 The gamma process is a stochastic process ðWt; t � 0Þ, W0 ¼ 0
with independent nonnegative increments having a gamma Cdf with identical scale
parameters. The increment Wt �Ws has a gamma distribution with a shape
parameter v tð Þ � v sð Þ and a scale parameter u, where v tð Þ is an increasing function
(m 0ð Þ ¼ 0).

Thus Wt for each fixed t is gamma-distributed with shape parameter v tð Þ and
scale parameter u, whereas

E Wt½ � ¼
v tð Þ

u
; Var Wtð Þ ¼

v tð Þ
u2

:

The first passage time TD, is described in this case by the following distribution
[30]
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FDðtÞ ¼ PrðTD� tÞ ¼ PrðWt� DÞ ¼ CðvðtÞ;DuÞ
CðvðtÞÞ ;

where C a; xð Þ ¼
R1

x ta�1e�tdt is an incomplete gamma function for x [ 0. Thus,
deterioration with independent increments can be often modeled by the gamma
process.

3.2 Shocks and Shot Noise Process

A natural way of modeling additive degradation is via the sum of random vari-
ables, which represent the degradation increments:

Wt ¼
Xn

1

Xi;

where Xi; i ¼ 1; 2; . . .; n are positive i.i.d. random variables with a generic vari-
able denoted by X, and n is an integer.

The next step to a more real stochastic modeling is to view n as a random variable
N (the compound random variable) or a point process Nt; t � 0f g. The latter is
counting the point events of interest in ½0; tÞ; t � 0 (the compound point process):

Wt ¼
XNt

1

Xi: ð3:7Þ

Denote by Yi; i ¼ 1; 2; . . . a sequence of inter-arrival times for Nt; t� 0f g. If
Yi; i ¼ 1; 2; . . . are i.i.d (and this case will be considered in what follows) with a
generic variable Y , then the Wald’s equation [26] immediately yields

E Wt½ � ¼ E Nt½ �E X½ �;

where, specifically for the compound Poisson process with rate m: E Nt½ � ¼ mt.
Note that [9] under certain assumptions the stationary gamma process (v tð Þ ¼ vt)
can be viewed as a limit of a specially constructed compound Poisson process.

Relationship (3.7) has a meaningful interpretation via shocks, as Xi; i ¼ 1; 2; . . .
can be interpreted as an amount of damage caused by the ith shock. An important
modification of this additive model is given by the shot noise process [25, 26]. In a
shot noise point process, an additive input of a shock of magnitude Xi is decreased
in accordance with some decreasing (nonincreasing) response function h t � sð Þ.
Therefore, Eq. (3.7) turns to

Wt ¼
XNt

1

Xih t � sið Þ; ð3:8Þ

where s1\s2\s3; . . . is the sequence of the corresponding arrival (waiting) times
in the point process. This setting has a lot of applications in electrical engineering,
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materials science, health sciences, risk, and safety analysis. For instance, cracks
due to fatigue in some materials tend to close up after the material has borne a
load, which has caused the cracks to grow. Another example is the human heart
muscle’s tendency to heal after a heart attack [27]. Thus, the inputs of each shock
in the accumulated damage decrease with time.

Equivalently, (3.8) can be written as:

Wt ¼
Z t

0

Xh t � uð ÞdNu;

where dNu ¼ N u; u þ duð Þ denotes the number of shocks in ½u; uþ duÞ.
First, we are interested in the mean of the defined process. Assume that

E X½ �\1. As Xi; i ¼ 1; 2; . . . are independent from the point process fNt; t� 0g,

E½Wt� ¼ E½X�
Z t

0

hðt � uÞdNu ¼ E½X�
Z t

0

hðt � uÞmðuÞdu; ð3:9Þ

where m uð Þ ¼ dE Nu½ �=du is the rate (intensity) of the point process. For the
Poisson process, mðuÞ ¼ m and:

E½Wt� ¼ mE½X�
Z t

0

hðuÞdu: ð3:10Þ

Therefore, asymptotically the mean accumulative damage is finite, when the
response function has a finite integral, i.e.,

lim
t!1

E½Wt�\1 ; if

Z1

0

hðuÞdu\1:

This property has an important meaning in different engineering and biological
applications. It can be shown directly that, if E X2½ �\1:

Cov Wt1 ;Wt2ð Þ ¼ mE X2
� � Zt1

0

hðt1 � uÞhðt2 � uÞdu; t1� t2:

The central limit theorem for the sufficiently large m also takes place in the
following form [23, 24]:

Wt � E½Wt�
Var Wtð Þð Þ1=2

!D Nð0; 1Þ; t!1 ; ð3:11Þ
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where the sign ‘‘D’’ means convergence in distribution and Nð0; 1Þ denotes the
standard normal distribution. The renewal case with the interarrival time denoted
by X gives similar results

lim
t!1

E½Wt� ¼
1

E½X�

Z1

0

hðuÞdu:

Example 3.3 Consider a specific exponential case of the response function hðuÞ
and the Poisson process of shocks with rate m:

Wt ¼
XNt

1

Xi exp a t � sið Þf g:

By straightforward calculations [26], using the technique of the moment gen-
erating functions, it can be shown that the stationary value of Wt for t sufficiently
large is described by the gamma distribution with mean m=ka and variance m=k2a.
Moreover, the distribution of the first passage time is given by

FDðtÞ ¼ PrðTD� tÞ ¼ PrðWt � DÞ ¼ Cðm=a;DkÞ
Cðm=aÞ :

It is well-known from the properties of the gamma distribution that as m=k
increases, it converges to the normal distribution and, therefore, there is no con-
tradiction between this result and asymptotic relation (3.11).

In the next chapter, we will consider another shot noise model where the shot-
noise process models the failure rate of an object. Some meaningful generaliza-
tions will be also considered.

3.3 Asymptotic Properties

In many applications, the number of shocks in the time interval of interest is large,
which makes it possible to apply the corresponding asymptotic methods.

Consider a family of nonnegative, i.i.d, two-dimensional random vectors Xi;Yi

	 

;

�
i � 0g;X0 ¼ 0; Y0 ¼ 0, where

Pn
1 Xi is the accumulated damage after n shocks and

Yi; i ¼ 1; 2; . . . is the sequence of the i.i.d inter-arrival times of the corresponding
renewal process. Recall that the renewal process is defined by the sequence of the
i.i.d inter-arrival times. Specifically, when these times are exponentially distributed,
the renewal process ‘reduces’ to the Poisson process. We will assume for simplicity
that X and Y are independent, although the case of dependent variables can be also
considered [19]. Let 0\E½X�; E½Y �\1; 0\VarðXÞ; VarðYÞ\1. It follows
immediately from (3.7) and the elementary renewal theorem [26] that
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lim
t!1

E½Wt�
t
¼ lim

t!1

E½Nt�E½X�
t

¼ E½X�
E½Y � : ð3:12Þ

The corresponding central limit theorem can be proved using the theory of
stopped random walks [19]

Wt � ðE½X�=E½Y �Þt
E½Y �ð Þ�3=2r t1=2

! Nð0; 1Þ; t!1: ð3:13Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var E½Y �X � E½X�Yð Þ

p
.

Relationship (3.13) means that for large t, the random variable Wt is approxi-
mately normally distributed with expected value E½X�=E½Y �ð Þt and variance

E½Y �ð Þ�3 r2 E½X�ð Þ2 t. Therefore, we need only E½X�, E½Y� and r for the corre-
sponding asymptotic analysis, which is very convenient in practice.

Similar to (3.12),

lim
t!1

E½TD�
D
¼ lim

D!1

E½ND�E½Y�
D

¼ E½Y �
E½X� ; ð3:14Þ

where ND denotes a random number of shocks to reach the cumulative value D.
Equation (3.13) can be now rewritten for the distribution of the first passage time
TD as [19]

TD � ðE½Y �=E½X�ÞD
ðE½X�Þ�3=2 r D1=2

! Nð0; 1Þ; D!1:

This equation means that for large threshold D the random variable TD can be
approximately described by a normal distribution with expected value

E½Y �=E½X�ð ÞD, and variance E½X�ð Þ�3 r2 D. Therefore, the results of this section
can be easily and effectively used in safety and reliability analysis.

3.4 Extreme Shock Models

Let the shocks occur in accordance with a renewal process or a nonhomogeneous
Poisson process. Each shock independently of the previous history leads to a
failure of a system with probability p and is survived with the complementary
probability q ¼ 1� p. Assume, that a shock is the only cause of failure. We see
that there is no accumulation of damage and the fatal ‘damage’ can be a conse-
quence of a single shock. Numerous problems in reliability, risk, and safety
analysis can be interpreted by means of this model. This setting is often referred to
as an extreme shock model [12, 18]. Our main interest in the rest of this chapter
will be in different settings, and applications that are described within the
framework of the extreme shock model. We will use these results and reasoning in
the rest of this book.
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Consider first, a general point process Tnf g; T0 ¼ 0; Tnþ1 [ Tn; n ¼ 0; 1; 2; . . .,
where Tn is the time to the nth arrival of an event with the corresponding
cumulative distribution function FðnÞðtÞ. Therefore, FðnÞðtÞ � Fðnþ1ÞðtÞ is the
probability of exactly n events in ½0; tÞ; Fð0ÞðtÞ � 1; Fð1ÞðtÞ � FðtÞ. Let G be a
geometric variable with parameter p (independent of fTngn� 0) and denote by T a
random variable with the following survival function

PðtÞ ¼
X1
k¼0

qk FðkÞðtÞ � Fðkþ1ÞðtÞ
� 

: ð3:15Þ

Thus PðtÞ is the system’s survival probability for the described extreme shock
model. We can also interpret the setting in terms of the terminating point process
when 1� PðtÞ is the probability of its termination in ½0; tÞ.

Obtaining probability PðtÞ is an important problem in various reliability and
safety assessment applications. It is clear that in this general form, Eq. (3.15) does
not allow for explicit results that can be used in practice, and therefore, assump-
tions on the type of the point process of shocks should be made. Two specific point
processes are mostly used in reliability applications, i.e., the Poisson process and
the renewal process. For the homogeneous Poisson process with rate k, the deri-
vation is trivial

PðtÞ ¼
X1

0

qk exp �ktf g ktð Þk

k!
¼ exp �pk tf g: ð3:16Þ

It follows from (3.16) that the corresponding constant failure rate, which
describes the lifetime of our system T , is given by a simple and meaningful
relationship

kS ¼ p k: ð3:17Þ

Thus, the rate of the underlying Poisson process k is decreased by the factor
p� 1.

This result can be generalized to the case of the NHPP with rate kðtÞ and time-
dependent probability pðtÞ. It is clear that the Brown–Proschan model of Chap. 2
described by Eqs. (2.17–2.19) can be interpreted in terms of our extreme shock
model, and therefore,

PðtÞ ¼ 1� exp �
Z t

0

pðuÞkðuÞdu

8<
:

9=
; ð3:18Þ

with the corresponding failure rate

kSðtÞ ¼ pðtÞkðtÞ:

Numerous generalizations of these results under the assumption of the under-
lying NHPP of shocks will be considered further in this chapter and in the next
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chapter as well. In spite of its relative simplicity, the renewal process of shocks does
not allow for the similar explicit relationships. However, it is well-known (see, e.g.,
[21]) that, as p! 0, the following convergence in distribution takes place:

PðtÞ ! exp � pt

l

� �
; 8t 2 ð0;1Þ ; ð3:19Þ

where l is the mean that corresponds to the governing distribution. Thus, (3.19)
constitutes a very simple asymptotic exponential approximation. In practice, how-
ever, parameter p is not usually sufficiently small for using effectively this
approximation, and therefore, the corresponding bounds for PðtÞ can be very helpful.

The simplest and useful in practice but a rather crude bound for the survival
function can be obtained via the following identity:

E qNt
� �

¼
X1
k¼0

qk FðkÞ ðtÞ � Fðkþ1Þ ðtÞ
� 

:

Finally, using Jensen’s inequality [12]:

PðtÞ ¼ E qNt
� �

� qE½Nt �:

In the next three sections, the extreme shock model with the homogeneous
Poisson process of shocks will be generalized to different settings that can occur in
practice [13]. For instance, the probability of a failure of an operable system under
a shock, which is in conventional models either a constant or depends only on
chronological time t, can depend also on a state of a system. This is a natural
assumption, as resistance to shocks, e.g., in multistate systems (discrete or con-
tinuous) often depends on the current state of a system. Another extension of
conventional models to be considered is when the failure occurs if two successive
shocks ‘are too close’ to each other. A system in this case cannot recover from the
consequences of the previous shock. This setting is similar to that of the r -shock
model considered in the literature [22, 28], however, our method allows for more
general and flexible results. The main analytical tool allowing for the explicit
solutions for all mentioned settings is the method of integral equations developed
in Finkelstein [12]. These equations can be effectively solved in terms of the
Laplace transform and explicitly inverted for the sufficiently simple cases.

3.5 State-Dependent Probability of Termination

Consider first, the Poisson process of shocks with rate k and probability of failure
(termination) on each shock, p. In this case, the survival probability is given by
Eq. (3.16). In order, to illustrate the method of integral equations to be used further
[13] we will describe how it works for this simplest case. It is easy to see that the
following integral equation with respect to PðtÞ holds
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PðtÞ ¼ e�k t þ
Z t

0

ke�kxq Pðt � xÞdx : ð3:20Þ

The first term, on the right hand side is the probability that there are no shocks
in ½0; tÞ and the integrand defines the probability that the first shock that have
occurred in ½x; x þ dxÞ was survived and then the system have survived in ½x; tÞ.
Due to the properties of the homogeneous Poisson process, the probability of the
latter event is Pðt � xÞ.

We have now a simple integral equation with respect to the unknown function
PðtÞ. Applying the Laplace transform to both sides of Eq. (3.20) results in

ePðsÞ ¼ 1
s þ k

þ kq

s þ k
ePðsÞ ) ePðsÞ ¼ 1

s þ kp
;

where ePðsÞ denotes the Laplace transform of PðtÞ. The corresponding inversion
results in exp �pk tf g.

Consider now a repairable system with instantaneous, perfect repair that starts
functioning at t ¼ 0. Let its lifetime be described by the Cdf FðtÞ , which is a
governing distribution for the corresponding renewal process with the renewal
density function to be denoted by hðtÞ. Assume, that the quality of performance of
our system is characterized by some deterministic for simplicity function of per-
formance QðtÞ to be called the quality function. The considered approach can be
generalized to the case of a random QðtÞ. It is often a decreasing function of time, and
this assumption is quite natural for degrading systems. In applications, the function
QðtÞ can describe some key parameter of a system, e.g., the decreasing in time
accuracy of the information measuring system or effectiveness (productivity) of
some production process. As repair is perfect, the quality function is also restored to
its initial value Qð0Þ. It is clear that the quality function of our system at time t is now
random and equal to QðYÞ, where Y is a random time since the last (before t) repair.

The system is subject to the Poisson process of shocks with rate k. As previ-
ously, each shock can terminate the performance of the repairable system and we
are interested in obtaining the survival probability PðtÞ. Note, that the repaired
failure of the system does not terminate the process and only a shock can result in
termination. Assume, that the probability of termination depends on the system’s
quality at the time of a shock. This is a reasonable assumption meaning that the
larger value of quality implies the smaller probability of termination. Let the first
shock arrive before the first failure of the system. Denote by p� QðtÞð Þ the corre-
sponding probability of termination in this case. Now we are able to obtain pðtÞ—
the probability of termination of the operating system by the first shock at time
instant t. Using the standard ‘renewal-type reasoning’ [13], the following rela-
tionship for pðtÞ can be derived

pðtÞ ¼ p�ðQðtÞÞFðtÞ þ
Z t

0

hðxÞFðt � xÞ p�ðQðt � xÞÞdx ; ð3:21Þ

where FðtÞ � 1� FðtÞ.
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The first term on the right-hand side of Eq. (3.21) gives the probability of
termination during the first cycle of the renewal process, whereas hðxÞF ðt � xÞdx
defines the probability that the last failure (renewal) of the system before t had
occurred in ½x; x þ dxÞ (as hðxÞdx is the probability that a failure (renewal) had
occurred in ½x; x þ dxÞ and Fðt � xÞ is the probability that no failure had occurred
in x þ dx; t½ �. Therefore, the corresponding probability of termination at t is equal
to p�ðQðt � xÞÞ.

Thus, the probability of termination under the first shock pðtÞ, which is now
time-dependent, has been derived. Assume, now that the survived shock can be
interpreted as an instantaneous, perfect repair of the system (the ‘repaired shock’ is
survived, the ‘non-repaired’ results in termination). Therefore, the instants of
survived shocks can be also considered as the renewal points for the system.
Having this in mind, we can now proceed with obtaining the survival probability
PðtÞ. Using the similar reasoning as when deriving Eq. (3.20)

PðtÞ ¼ e�k t þ
Z t

0

ke�kx qðxÞPðt � xÞdx ; ð3:22Þ

where qðxÞ � 1� pðxÞ.
Applying the Laplace transform to Eq. (3.22):

ePðsÞ ¼ 1
sþ k

þ keqðsþ kÞePðsÞ
) ePðsÞ ¼ 1

ðsþ kÞð1� keqðsþ kÞÞ :
ð3:23Þ

Given the functions FðtÞ and p�ðQðtÞÞ, Eqs. (3.21) and (3.23) can be solved
numerically, but we can still proceed with the Laplace transforms under an
additional assumption that the underlying distribution is exponential, i.e.,
FðtÞ ¼ 1� exp �htf g. In this case, hðxÞ ¼ h and the Laplace transform of
Eq. (3.21) results in [13]

epðsÞ ¼ ep�ðsþ hÞ 1þ h

s

� �
; ð3:24Þ

where ep�ðsÞ ¼ R10 e�sxp�ðQðxÞÞdx denotes the Laplace transform of the function
p�ðQðtÞÞ. Substituting (3.24) into (3.23) and taking into account thateqðsÞ ¼ ð1=sÞ � epðsÞ

ePðsÞ ¼ 1
sþ k ep�ðsþ hþ kÞðsþ hþ kÞ : ð3:25Þ

To proceed further with inversion, we must make some assumptions on the
form of the function p�ðQðtÞÞ. Let p�ðQðtÞÞ ¼ 1� expf�atg ; a� 0. This is a
reasonable assumption (as the probability of termination increases as QðtÞ
decreases with t) that allows for a simple Laplace transform. Then
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ePðsÞ ¼ sþ hþ kþ a
s2 þ sðkþ hþ aÞ þ ak

and the inversion gives

PðtÞ ¼ s1 þ kþ a
s1 � s2

expfs1tg � s2 þ kþ a
s1 � s2

expfs2tg ;

where

s1;2 ¼
�ðhþ kþ aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ kþ aÞ2 � 4ka

q
2

:

An important specific case is when the system is absolutely reliable (h ¼ 0) but
is characterized by the quality function QðtÞ. Then s1 ¼ �k; s2 ¼ �a; a 6¼ k and

PðtÞ ¼ k
k� a

expf�atg � a
k� a

expf�ktg : ð3:26Þ

If, for instance, p�ðQðtÞÞ ¼ 1, which means that a!1, then PðtÞ ¼ expf�ktg
as expected, the probability that there are no shocks in ½0; tÞ. On the contrary, if
a ¼ 0, which means that p�ðQðtÞÞ ¼ 0, the survival probability is equal to 1.
Another marginal case is defined by the value of the rate k. If k ¼ 0, then again, as
expected, PðtÞ ¼ 1. On the other hand, it follows from (3.26) that as k!1,

PðtÞ ! expf�atg ; ð3:27Þ

which can be confusing at first sight, as one would expect that when the rate of a
shock process tends to infinity, the probability of survival in ½0; tÞ should tend to 0,
but this is not the case because the function p�ðQðtÞÞ ¼ 1� expf�atg is close to 0
for small t and each survived shock is the renewal point for our system. Therefore,
as the number of shocks increases, due to the properties of exponential function,
relationship (3.27) holds.

3.6 Termination with Recovery Time

In the previous sections, the only source of termination was an immediate effect of
a shock. Consider now another setting that can be often encountered in practical
reliability and safety analysis. Let, as previously, each shock from the Poisson
process with rate k terminate the process with probability p and be survived with
probability q ¼ 1� p. Assume, now that termination additionally can also occur
when the consecutive shocks are ‘too close’, which means that the system cannot
recover from the consequences of a previous shock. Therefore, the time for
recovering should be taken into account. It is natural to assume that it is a random
variable s with the Cdf RðtÞ (different values of damage need different time of
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recovering and this fact is described by RðtÞ). Thus, if the shock occurs while the
system still has not recovered from the previous non-terminating shock, it termi-
nates the process. It is the simplest criterion of termination of this kind. Other
criterions can be also considered. As previously, we want to derive PðtÞ—the
probability of survival of our system in ½0; tÞ.

First, assume that a shock had occurred at t ¼ 0 and has been survived. Denote
the probability of survival under this condition by P�ðtÞ. Then the corresponding
supplementary integral equation is

P�ðtÞ ¼ e�k t þ
Z t

0

ke�kxqRðxÞP�ðt � xÞdx ; ð3:28Þ

where the multiplier RðxÞ in the integrand is the probability that the recovery time
after the first shock at t ¼ 0 (and before the next one at t ¼ x) is sufficient (smaller
than x).

Applying, the Laplace transform to both sides of (3.28) results in the following
relationship for the Laplace transform of P�ðtÞ:

eP�ðsÞ ¼ 1

ðsþ kÞð1� kqeRðsþ kÞÞ
; ð3:29Þ

where eRðsÞ is the Laplace transform of the Cdf RðtÞ.
Using probability P�ðtÞ, we can derive now the following equation:

PðtÞ ¼ e�k t þ
Z t

0

ke�kxqP�ðt � xÞdx: ð3:30Þ

As previously, the first term on the right-hand side of this equation is the
probability of shocks absence in ½0; tÞ, ke�kxqdx is the probability that the first
shock has occurred and was survived in ½x; xþ dxÞ. Finally, P�ðt � xÞ is the
probability that the system survives in ½x; tÞ.

We can obtain PðtÞ, applying the Laplace transform to both sides of (3.30), i.e.,

ePðsÞ ¼ 1
sþ k

þ kq

sþ k
eP�ðsÞ ;

where eP�ðsÞ is defined by (3.29). This gives the general solution of the problem
under the stated assumptions in terms of the Laplace transforms. In order to be able

to invert ePðsÞ, assume additionally that the Cdf RðtÞ is exponential, i.e.,
RðtÞ ¼ 1� expf�c tg; c [ 0. Performing simple algebraic transformations

ePðsÞ ¼ sþ 2kþ c� pk

s2 þ sðcþ 2kÞ þ k2 þ ckp
: ð3:31Þ
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Inversion of (3.31) gives

PðtÞ ¼ s1 þ cþ 2k� pk
s1 � s2

expfs1tg � s2 þ cþ 2k� pk
s1 � s2

expfs2tg ; ð3:32Þ

where

s1;2 ¼
�ðcþ 2kÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ 2kÞ2 � 4ðk2 þ ckpÞ

q
2

:

Equation (3.32) presents the exact solution for PðtÞ. In applications, it is con-
venient to use simple approximate formulas. Consider the following meaningful
assumption [13]:

1
k
	 s �

Z1

0

ð1� RðxÞÞdx ; ð3:33Þ

where s denotes the mean time of recovery.
Relationship (3.33) means that the mean inter-arrival time in the shock process

is much larger than the mean time of recovery, and this is often the case in
practice. In the study of repairable systems, the similar case is usually called the
fast repair condition. Using this assumption, the equivalent rate of termination for
our process for ks! 0, kt 	 1 can be written as

kðtÞ ¼ B kð1þ oð1ÞÞ; ð3:34Þ

where B is the probability of termination for the occurred shock due to two causes,
i.e., the termination immediately after the shock and the termination when the next
shock occurs before the recovery is completed. Therefore, for sufficiently large
t t 	 sð Þ the integration in the following integral can be performed to1 and the
approximate value of B is

B ¼ hþ ð1� hÞ
Z1

0

ke�kxð1� RðxÞÞdx:

Assuming, as previously, that RðtÞ ¼ 1� exp �ctf g; c[ 0 gives

B ¼ kþ hc
kþ c

:

Finally, the fast repair approximation for the survival probability is

PðtÞ 
 exp � kþ pc
kþ c

kt

� �
: ð3:35Þ
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It can be easily seen that when c!1 (instant recovery), Relationship (3.35)
reduces to Eq. (3.16). The accuracy of the fast repair approximation (3.35)
with respect to the time of recovery can be analyzed similar to Finkelstein and
Zarudnij [14].

3.7 Two Types of Shocks

Assume now that there are two types of shocks [13]. As in the previous section,
potentially harmful shocks (to be called redshocks) result in termination of the
process when they are ‘too close’, i.e., when the time between two consecutive red
shocks is smaller than a recovery time with the Cdf RðtÞ. Therefore, in this case,
the system does not have enough time to recover from the consequences of the
previous red shock. Assume for simplicity that the probability of immediate ter-
mination on red shock’s occurrence is equal to 0 p ¼ 0ð Þ. The model can be easily
generalized to the case when p 6¼ 0. On the other hand, our system is subject to the
process of ‘good’ (blue) shocks. If the blue shock follows the red shock, termi-
nation cannot happen no matter how soon the next red shock will occur. Therefore,
the blue shock can be considered as a kind of an additional recovery action.

Denote by k and b the rates of the independent Poisson processes of red and
blue shocks, respectively. First, assume that the first red shock has already
occurred at t ¼ 0. An integral equation for the probability of survival in ½0; tÞ,
P�ðtÞ for this case is as follows:

P�ðtÞ ¼ e�ktþ
Z t

0

be�bxe�kx
Zt�x

0

ke�k yP�ðt � x� yÞdydx

þ
Z t

0

e�bxke�kxRðxÞP�ðt � xÞdx;

ð3:36Þ

where

• The first term on the right-hand side is the probability that there are no other red
shocks in ½0; tÞ;

• be�bxe�kxdx is the probability that a blue shock occurs in ½x; xþ dxÞ and no red
shocks occur in ð0; xÞ;

• ke�kydy is the probability that the second red shock occurs in
½xþ y; xþ yþ dyÞ;

• P�ðt � x� yÞ is the probability that the system survives in ½xþ y; tÞ given the
red shock has occurred at time xþ y;

• e�bxke�kxdx is the probability that there is one red shock (the second) in ð0; tÞ
and no blue shocks in this interval of time;
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• RðxÞ is the probability that the recovery time x is sufficient and, therefore, the
second red shock does not terminate the process;

• P�ðt � xÞ is the probability that the system survives in ½x; tÞ given the red shock
has occurred at time x.

Using P�ðtÞ that can be obtained from Eq. (3.36), as previously, we can now
construct an equation with respect to PðtÞ—the probability of survival without
assuming occurrence of the red shock at t ¼ 0. Thus

PðtÞ ¼ e�k t þ
Z t

0

ke�kxP�ðt � xÞdx : ð3:37Þ

Applying the Laplace transform to Eq. (3.36) results in

eP�ðsÞ ¼ sþ bþ k

ðsþ bþ kÞðsþ kÞ � bk� kðsþ bþ kÞðsþ kÞeRðsþ bþ kÞ
: ð3:38Þ

Applying the Laplace transform to Eq. (3.38) gives

ePðsÞ ¼ 1
sþ k

þ k
sþ k

eP�ðsÞ:
This equation gives a general solution of the problem under the stated

assumptions in terms of the Laplace transforms. In order to be able to invert ePðsÞ,
as in the previous section, assume that the Cdf RðtÞ is exponential
RðtÞ ¼ 1� expf�ctg; c[ 0. Performing simple algebraic transformations

ePðsÞ ¼ sþ cþ bþ 2k

s2 þ sðcþ bþ 2kÞ þ k2 : ð3:39Þ

Inversion of (3.39) results in

PðtÞ ¼ s1 þ cþ bþ 2k
s1 � s2

expfs1tg � s2 þ cþ bþ 2k
s1 � s2

expfs2tg ; ð3:40Þ

where

s1;2 ¼
� cþ 2kþ bð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ bÞ2 þ 4kðcþ bÞ

q
2

:

When c ¼ 0, there is no recovery time and the process is terminated when two
consecutive red shocks occur.

Equation (3.40) gives an exact solution for PðtÞ. Similar to the previous section,
it can be simplified under certain assumptions. Assume that the fast repair con-
dition (3.33) holds. The first red shock cannot terminate the process. The proba-
bility that the subsequent shock can result in termination is
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B ¼
Z t

0

ke�kx

Zt�x

0

ke�kye�byð1� RðyÞÞdydx:

For the exponentially distributed time of recovery

B ¼ k
kþ bþ c

� k
bþ c

e�kt þ k2

ðkþ bþ cÞðbþ cÞ e
�ðkþbþcÞt:

For the sufficiently large t, B 
 k=kþ bþ c and this approximate value can be
used for subsequent shocks as well. Therefore, the relationship

PðtÞ 
 exp � k2

kþ bþ c
t

� �
:

is the fast repair approximation in this case.
The considered in Sects. 3.5-3.7 method of integral equations, which is applied

to deriving the survival probability for different shock models is an effective tool
for obtaining probabilities of interest in situations where the object under con-
sideration has renewal points. As the considered process of shocks is the homo-
geneous Poisson process, each shock (under some additional assumptions)
constitutes these renewal points. When a shock process is the NHPP, there are no
renewal points, but the integral equations usually can also be derived. For the
illustration, consider the corresponding generalization of Eq. (3.20). Denote by
Pðt � x; xÞ the survival probability in ½x; tÞ; x \ t for the ‘remaining shock pro-
cess’ that has started at t ¼ 0 and was not terminated by the first shock at time x.
Note that this probability depends now not only on x� t as in the homogeneous
case, but on x as well. Equation (3.20) is modified now to

PðtÞ ¼ exp �
Z t

0

kðuÞdu

8<
:

9=
;þ

Z t

0

kðxÞ exp �
Zx

0

kðuÞdu

8<
:

9=
;qPðt � x; xÞdx:

It can be seen by substitution that

Pðt � x; xÞ ¼ exp �p

Z t

x

kðuÞdu

8<
:

9=
;; 0� x; t

is the solution to this equation.
One can formally derive integral equations for other models (with the NHPP

process of shocks) considered in this section, however, the corresponding solutions
can be obtained only numerically, as the explicit inversions of the Laplace
transforms are not possible in these cases.

The method of integral equations can be also obviously applied to the renewal
process of shocks, as in this case we also have ‘pure renewal points’. For instance,
the simplest Eq. (3.20) turns into
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PðtÞ ¼ ð1� FðtÞÞ þ
Z t

0

f ðxÞ qPðt � xÞdx ;

where FðtÞ and f ðtÞ are the Cdf and the pdf of the inter-arrival times, respectively.
Applying the Laplace transform gives

ePðsÞ ¼ 1� ef ðsÞ
sð1� qef ðsÞÞ ;

which is a formal solution to our problem in terms of the Laplace transforms. Note
that it can be usually inverted only numerically.

3.8 Spatial Extreme Shock Model

In this section, we consider a two-dimensional model of spatial survival [10, 12]. It
is a meaningful generalization of the univariate extreme shock model to the case of
the spatial Poisson process of shocks. The random obstacles along the route of a
moving object will play the role of these shocks. Although the initial setting is
bivariate, the constructed failure rate is an univariate function and, therefore, our
previous one-dimensional results can be used.

The setting of the problem is as follows: a sufficiently small normally or tan-
gentially oriented interval is moving along a fixed route in the plane, crossing
points of the spatial Poisson random process. Each crossing leads to a termination
of the process (failure, accident) with a predetermined probability. As previously,
the probability of passing the route without termination is of interest. An imme-
diate application of the method to be considered is the safety at sea assessment.
Our approach takes into account the fixed obstacles (e.g., shallows), which can
lead to foundering and the moving obstacles (e.g., other ships), which can lead to
collisions. The latter setting is not considered in this section and can be found in
Finkelstein [12].

The field of fixed obstacles is considered to be random. In this application, there
are two types of fixed obstacles: obstacles with known coordinates, marked in the
corresponding navigational sea charts (and, therefore, not random), and obstacles
with unknown coordinates, which following the subjective approach can be con-
sidered random. It turns out that, owing to the accuracy of navigation and motion
control systems of a ship, weather influences, currents, etc., the obstacles with the
known coordinates can also be modeled as random points in the plane. The
‘geometric densities’ of these obstacles, which can be obtained from the naviga-
tional charts, define the rates of the corresponding planar point processes to be
used in the model [12].

The values of probabilities of accidents in ‘‘safety at sea’’ analysis are usually in
the range 10�4 to 10�6. Such estimates are often meaningless since there are not
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enough data to justify them. Therefore, simple relations for comparison of these
probabilities can be very helpful in practice.

The developed approach can also be used for obtaining solutions that are
optimal, for example, for finding a route with maximal probabilities of safe per-
formance with or without specific restrictions (time on the route, fuel consumption,
etc.). In what follows we consider the two-dimensional setting, but the general-
ization to n ¼ 3 is straightforward and can be applied to assessing air traffic safety.

Denote by fNðBÞg an orderly point process in the plane, where NðBÞ is a
number of points in some domain B � <2. We shall consider points of the process
as prospective point influences (shocks) on our system (shallows for a ship, for
instance). Similar to (2.12), the rate of this process kf ðnÞ can be formally defined as

kf ðnÞ ¼ lim
S dðnÞð Þ!0

E N dðnÞð Þ½ �
S dðnÞð Þ ; ð3:41Þ

where B ¼ dðnÞ is the neighborhood of n with the area S dðnÞð Þ and the diameter
tending to zero. The subscript f stands for ‘‘fixed’’ obstacles.

Definition 3.3 The spatial nonhomogeneous Poisson process is defined similar to
the one-dimensional case by the following relations [7]:

P N dðnÞð Þ ¼ 1jHdðnÞ
	 


¼ kf ðnÞS dðnÞð Þ þ o S dðnÞð Þð Þ;

P N dðnÞð Þ[ 1jHdðnÞ
	 


¼ o S dðnÞð Þð Þ;

where HdðnÞ denotes the configuration of all points outside dðnÞ.

It can be shown for an arbitrary B that NðBÞ has a Poisson distribution with
mean

Z
B

kf ðnÞdn

and that the numbers of points in nonoverlapping domains are mutually inde-
pendent random variables [7].

Our goal is to obtain a generalization of Eq. (3.18) to the bivariate case. The
main feature of this generalization is a suitable parameterization allowing us to
reduce the problem to the one-dimensional case [12]. Assume for simplicity that
kf ðnÞ is a continuous function of n in an arbitrary closed circle in <2. Let Rn1;n2

be
a fixed continuous curve connecting two distinct points in the plane, n1 and n2. We
will call Rn1;n2

a route. A point (a ship in our application) is moving in one
direction along the route. Every time it ‘crosses the point’ of the process fNðBÞg
(see later the corresponding regularization), an accident (failure) can happen with a
given probability. We are interested in assessing the probability of moving along
Rn1;n2

without accidents. Let r be the distance from n1 to the current point of the
route (coordinate) and kf ðrÞ denote the corresponding rate. Thus, the one-
dimensional parameterization is considered. For defining the corresponding
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Poisson measure, the dimensions of objects under consideration should be taken
into account.

Let cþn ðrÞ; c�n ðrÞ
	 


be a small interval of length cnðrÞ ¼ cþn ðrÞ þ c�n ðrÞ in a
normal direction to Rn1;n2

at the point with the coordinate r, where the upper index
denotes the corresponding direction (cþn ðrÞ is on one side of Rn1;n2

, whereas c�n ðrÞ
is on the other). Let R � jRn1n2

j be the length of Rn1;n2
and assume that the interval

is small compared with the length of the route, i.e.,

R [ [ cnðrÞ;8r 2 ½0;R�:

The interval cþn ðrÞ; c�n ðrÞ
	 


is moving along Rn1;n2
, crossing points of a random

field. For ‘‘safety at sea’’ applications, it is reasonable to assume the symmetrical
cþn ðrÞ ¼ c�n ðrÞ
	 


structure of the interval with length cnðrÞ ¼ 2ds þ 2doðrÞ, where
2ds; 2doðrÞ are the diameters of the ship and of an obstacle, respectively. For
simplicity, we assume that all obstacles have the same diameter. Thus, the ship’s
dimensions are already ‘included’ in the length of our equivalent interval. There
can be other models as well, e.g., the diameter of an obstacle can be considered a
random variable.

Taking Eq. (3.41) into account, the equivalent rate of occurrence of points,
ke;f ðrÞ is defined as

ke f ðrÞ ¼ lim
Dr!0

E N Bðr;Dr; cnðrÞð ÞÞ½ �
Dr

; ð3:42Þ

where NðBðr;Dr; cnðrÞÞ is the random number of points crossed by the interval
cnðrÞ when moving from r to r þ Dr. Thus, the specific domain in this case is
defined as an area covered by the interval moving from r to r þ Dr.

When Dr ! 0, cnðrÞ ! 0, and taking into account that kf ðnÞ is a continuous
function [12],

E N Bðr;Dr; cnðrÞÞð Þ½ � ¼
Z

B r;Dr;cnðrÞð Þ

kf ðnÞdS dðnÞð Þ

¼ cnðrÞkf ðrÞdr 1þ oð1Þ½ �;

which leads to the relationship for the equivalent rate of the corresponding one-
dimensional nonhomogeneous Poisson process, i.e.,

ke f ðrÞ ¼ cnðrÞkf ðrÞ 1þ oð1Þ½ � ; Dr ! 0; cnðrÞ ! 0:

As the radius of curvature of the route RcðrÞ is sufficiently large compared with
cnðrÞ, i.e.,

cnðrÞ � RcðrÞ ;

the domain covered by the interval cþn ðrÞ; c�n ðrÞ
	 


when it moves from r to r þ Dr
along the route, is asymptotically (D r ! 0) rectangular with area cnðrÞD r. Hence,
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the performed r -parameterization along the fixed route reduces the problem to the
one-dimensional setting.

Assume now, as in the previous sections of this chapter, that the crossing of a
point with a coordinate r leads to an accident (termination) with probability pf ðrÞ
and to the survival with the complementary probability qf ðrÞ ¼ 1� pf ðrÞ. Denote
by R the random distance from the initial point of the route n1 to a point of the
route where an accident has occurred. Similar to (3.18), the probability of passing
the route Rn1;n2

without accidents can be derived in the following way:

PðR [ RÞ ¼ exp �
ZR

0

ka f ðrÞdr

8><
>:

9>=
>;; ð3:43Þ

where

ka f ðrÞ � hf ðrÞke f ðrÞ ð3:44Þ

is the corresponding failure (accident) rate. As previously, Eq. (3.43) and (3.44)
constitute a simple and convenient tool for obtaining probabilities of safe (reliable)
performance of our object. Thus, the univariate extreme shock model can be
effectively applied to this initially two-dimensional setting.

3.9 Shock-Based Theory of Biological Aging

As a remarkable application to health sciences, we will show how the extreme
shock model ‘works’ for obtaining the law of mortality of human populations. For
this reason, we discuss and generalize the famous result by Strehler and Mildvan
[29]. Our reasoning will mostly follow Finkelstein [15]. In this section, in
accordance with the demographic and actuarial terminology, we will use the term
‘‘the force of mortality’’ (mortality rate) instead of the failure rate.

The Strehler–Mildvan [29] model suggests the justification of an exponential
increase in the force of mortality lðtÞ, and describes some formal properties of the
Gompertz mortality curve [17]:

lðtÞ ¼ aebt: ð3:45Þ

The conventional generalization is the Gompertz–Makeham model, which adds
a constant term c to the right-hand side of (3.45) in order to account for the
‘background’ mortality. In the current section, as in the original publication, we
will assume that this term is negligible. Equation (3.45) usually provides a satis-
factory fit to human mortality data for ages since maturity to the upper limit of
around 90–100 years.

The goal of this section is to discuss the underlying assumptions of the Strehler–
Mildvan (SM) shock model and the SM-correlation, which defines a negative
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correlation between parameters a and b. For several decades, the SM-correlation
was believed to be a universal demographic law valid both for period and cohort
mortality data [32].

The SM-model relies on the notion of vitality, i.e., an organism is characterized
by its vitality function VðtÞ; Vð0Þ � V0, which decreases with age t. In the rest of
this book, we will come back several times to the notion of vitality or its equiv-
alents and will suggest a more mathematically advanced modeling of the vitality-
related problems. Specifically, several strength–stress models will be considered
when the failure (death) occurs if the magnitude of the stress (shock) exceeds the
value of the strength (vitality).

According to Strehler and Mildvan [29], an organism is subject to stresses of
internal or external nature that cause demands for energy. Those are shocks in our
terminology. Let ðTi; YiÞ; i ¼ 1; 2; . . . be the sequence of pairs of i.i.d. random
variables (therefore, the notation will be ðT; YÞ), characterizing the times at which
stress events (demands for energy) occur, and the value of the demand for energy
that is needed to recover from these stresses, respectively. Let KðtÞ be the rate of
the corresponding counting process describing arrival times of stress events. The
following assumptions were made in the original paper:

Assumption 1 Yi are exponentially distributed:

P Y [ yð Þ ¼ e�
y
D; ð3:46Þ

where, D is the mean value of this demand.

Assumption 2 An organism is characterized by its vitality function VðtÞ; Vð0Þ �
V0 which decreases with age t. Yashin et al. [33], as in the original paper, called
this function the maximum capacity of energy supply for an organism at age t. It
can be also obviously interpreted as the stress resistance of an organism. Death
occurs at age t when, for the first time, Y [ VðtÞ. We discuss this assumption in
conjunction with the last one.

Assumption 3 The rate KðtÞ ¼ K is a constant and the force of mortality is
defined as [compare with Eq. (3.18)]

lðtÞ ¼ KPðY [ VðtÞÞ ¼ Ke�
VðtÞ

D : ð3:47Þ

Equation (3.47) is called ‘‘a postulate’’ in Strehler and Mildvan [29]. However,
it follows from the theory of point processes that (3.47) (see Chap. 2 and Sect. 3.4)
is true only when the underlying point process fTigi� 1 is the homogeneous
Poisson process and, therefore, that the inter-arrival times of events (stresses) are
exponentially distributed. This is a rather stringent condition, which was not
pointed out in the original and subsequent papers discussing the SM-model. It
should also be noted that, while (3.47), similar to (3.18), can be generalized to the
case of the nonhomogeneous Poisson process with the age-dependent rate KðtÞ,

3.9 Shock-Based Theory of Biological Aging 73

http://dx.doi.org/10.1007/978-1-4471-5028-2_2


the Poisson property of the underlying process is crucial for the product in the
right-hand side of (3.47).

The following remark should be also made: as the force of mortality is a
population characteristic, the vitality VðtÞ should also be understood in this sense.
However, it is obviously introduced by Assumption 1 as an individual (stochastic)
characteristic. Therefore, we cannot simply substitute it with the corresponding
expectation, as the exponential function is not linear:

E½e�
VðtÞ

D � 6¼ e�
E½VðtÞ�

D :

Thus, while there are a few important deficiencies in the original formulation of
the model, it formally leads to the justified in practice properties of mortality rates.

Now we are ready to equate (3.45) and (3.47). As in the original paper, we will
show using elementary derivations that VðtÞ is linearly declining with age. It
should be noted that this ‘shape’ is in consensus with the current understanding of
the decline in the essential biological markers and the corresponding data, at least,
for the human middle-age span [16]. Thus

lðtÞ ¼ aebt ¼ Ke�
VðtÞ

D ð3:48Þ

and taking logarithms of both sides (Vð0Þ � V0):

VðtÞ ¼ V0ð1� ðb=V0ÞtÞ ¼ V0ð1� BtÞ; ð3:49Þ

where formally, B ¼ b= lnðK=aÞ ¼ Db=V0, and this quantity is usually called the
individual rate of aging (in contrast with the population rate of aging b). Substi-
tuting (3.49) into (3.48):

lðtÞ ¼ aebt ¼ Ke�
V0ð1�BtÞ

D ¼ Ke�
V0
D e

V0Bt
D ð3:50Þ

and thus

a ¼ Ke�
V0
D ; b ¼ V0B=D: ð3:51Þ

Comparing two equations for the force of mortality, we see the dependence
between a and b (negative correlation): the larger a results in the smaller b. From
(3.51), this dependence can be written as

ln a ¼ ln K � 1
B

b; ð3:52Þ

which is known in the literature as SM-correlation. This correlation has been
observed empirically in various human populations. It follows from (3.52) that

ln lðtÞ ¼ ln aþ bt ¼ ln K þ bðt � 1=BÞÞ; ð3:53Þ

meaning that the logarithms of mortality rates for different populations (e.g., with
different a) intersect in one point with coordinates ðln K; 1=BÞ. This has been
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experimentally observed and reported in the literature, although some criticism
and violations of this rule were also discussed (see e.g., [32, 33]).

At first sight, it seems intriguing that the SM-correlation, which is derived using
some general, partially unjustified assumptions, complies with the real mortality
data. However, recently a certain departure from this pattern has been observed. A
possible explanation is in consideration of the vitality-independent approach. It is
based on the concept of lifesaving: i.e., that the environment not only supplies
additional energy under stress, but due to the crucial advances in healthcare in
recent decades, saves lives that previously would have been lost. The stochastic
‘lifesaving model’ (with a discussion of necessary assumptions) was developed in
Finkelstein [11, 12]. It should be noted that Vaupel and Yashin [31] assumed that
there can be a finite number of lifesavings, whereas we are dealing with a random
number of these events.

Consider a lifetime that is characterized by the force of mortality lðtÞ and the
corresponding Cdf FðtÞ. Assume that a stress event affecting an organism, which
occurs in accordance with this Cdf at age t1 is fatal with probability pðt1Þ and is
‘cured’ with probability 1� pðt1Þ. The next stress occurs at age t2 [ t1 in
accordance with the Cdf ðFðt þ t1Þ � FðtÞÞFðt1Þ and it is fatal with probability
pðt2Þ and ‘is cured’ with probability 1� pðt2Þ, etc. It should be noted that the
decreasing in age vitality of an organism can be still part of this model, if we
assume that 1� pðtÞ is a decreasing function of age. In this case, 1� pðtÞ has a
meaning of probability that the magnitude of a stress is smaller then the value of
vitality at age t (probability of survival under a single shock). Therefore, in
accordance with the lifesaving model [11], the initial nonhomogeneous Poisson
process of stress events with rate lðtÞ is terminated (i.e., each event terminates the
process with probability pðtÞ and is ‘harmless’ with probability 1� pðtÞ) and the
Cdf of time to termination is characterized by the force of mortality pðtÞlðtÞ. Thus,
we again arrive at our extreme shock model (3.18)!

In order to explain the departures from the Srtehler–Mildvan correlation that
were observed in recent decades, assume now that probability pðtÞ in the described
lifesaving model is not age-dependent any more, i.e., pðtÞ � p. Obviously, the state
of an organism (vitality) can ‘affect’ this probability, However, today it is mostly
defined by the new ‘technical’ abilities of treating, e.g., medical conditions that
could not be treated before or performing medical operations that were not pos-
sible before. Therefore, we can consider this probability as approximately con-
stant. Our assumption also means that the proportion of conditions that can be now
cured does not depend on age. Thus, the resulting force of mortality plðtÞ follows
the proportional hazards (PH) model. In order to illustrate our further reasoning,
consider the following example. Let Eq. (3.45) define the baseline force of mor-
tality for a developed country at, e.g., chronological time xb ¼ 1950. Then it can
be modified for time x [ xb to

lsðtÞ ¼ psaebt; ð3:54Þ

3.9 Shock-Based Theory of Biological Aging 75



where s ¼ x� xb and ps is constant in age for the fixed s. Thus, the environment,
due to lifesaving and in accordance with the extreme shock model, ‘decreases’
only parameter a without affecting the slope of the logarithmic mortality rate b.
This perfectly complies with the Gompertz shift model of Bongaarts and Feeney
[4] and with other experimental studies. It also can explain the change in the
rectangularization pattern (that is usually attributed to the Strehler–Mildvan cor-
relation) to shifts in the corresponding survival curves (which can be explained by
the PH model). The mortality data for developed countries in recent decades
support these claims. It should be noted that the assumption of the underlying
Gompertz law is essential for the described change in the pattern, which can be
easily seen from Eq (3.54), as ps ¼ eln ps (ln ps\0) creates shifts in age for the
baseline mortality rate. It is also worth mentioning that, although the method of
constructing the resulting force of mortality in the SM model, which is captured by
Eq (3.47), formally resembles our lifesaving approach, the difference lies in the
fact that the corresponding probabilities are ‘applied’ to each stress event (with a
constant rate) in the former case and to events occurring in accordance with the
nonhomogeneous Poisson process with rate lðtÞ, in the latter case.
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