
Chapter 10
Stochastic Models for Environmental
Stress Screening

There are different ways of improving reliability characteristics of manufactured
items. The most common methodology adopted in industry is burn-in, which is a
method of ‘elimination’ of initial failures (infant mortality). As was mentioned
previously, the ‘sufficient condition’ for employing the traditional burn-in is the
initially decreasing failure rate. For example, when a population of items is het-
erogeneous, and therefore consists of subpopulations with ordered failure (hazard)
rates, it obviously contains weaker (with larger failure rates) subpopulations. As
the weakest populations are dying out first, the failure rate of this population is
often initially decreasing and burn-in can be effectively applied.

It should be noted that not all populations of engineering items that contain
‘weaker’ items to be eliminated exhibit this shape of the failure rate. For example,
the ‘weakness’ of some manufactured items can result from the latent defects that
can create additional failure modes. The failure rate in this case is not necessarily
decreasing (see Example 10.1), and therefore traditional burn-in should not be
applied. However, by applying the short-time excessive stress, the weaker items in
the population with increasing failure rate can be eliminated by the environmental
stress screening (ESS), and therefore the reliability characteristics of the popula-
tion of items that have successfully passed the ESS test can still improve. This is
the crucial distinction of this operation from burn-in. In fact, the formal difference
between the ESS and burn-in has not been clearly defined in the literature. In our
discussions, we understand the ESS as the method of elimination of items with
additional (nonconventional) failure modes, whereas burn-in targets elimination of
weaker items with conventional failure modes and it is effective only when the
population failure rate is initially decreasing. Another important distinction of the
proposed model from burn-in is that the ESS can also create new defects in items
that were previously defect-free.

Numerous stochastic models of burn-in have been intensively studied in the
literature during the last decades. Although some practical engineering approaches
to the ESS modeling were reported (e.g., [2, 4]), to the authors’ best knowledge,
there has been little research dealing with adequately advanced stochastic mod-
eling and analysis of the ESS.
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In this chapter, we develop a stochastic model for the ESS, analyze its effect on
the population characteristics of the screened items and describe related optimi-
zation problems. We assume that, due to substandard materials of faulty manu-
facturing process, some of the manufactured items are susceptible to additional
cause of failure (failure mode), i.e., shocks (such as electrical or mechanical
shocks). We define the ESS as a procedure of applying a shock of the controlled
magnitude, i.e., a short-time excessive stress. In practice, for example, a shock can
be understood as a short-time electric impulse. For the ESS to be effective, the
corresponding magnitude should be reasonably larger than the magnitude of
shocks that occur in field usage.

Our modeling is within the framework of the general shock models. We will
consider two different types of ESS models in this chapter. In the first model, the
failure of an item occurs when the magnitude of the stress (shock) exceeds its
strength. The larger magnitude of the ESS shock (within ‘physical limits’) implies
the better reliability characteristics of survived items in field usage but at the same
time, the larger cost of the ESS as more items with defects are discarded. An
important feature of our model is that we assume that the item during field usage is
exposed to the point process of environmental shocks of an ordinary, not excessive
magnitude. These shocks can obviously destroy only defective items that have
passed the ESS or were induced by the ESS. In the second model, an external shock
can either destroy an item with a given probability or increase the ‘size of the defect’
by a random amount. We also analyze the effect of the ESS on the population
characteristics of the screened items and discuss related optimization problems.
We will extensively use the general stress–strength model described in Sect. 9.4.1.

10.1 Stress–Strength Type ESS Model

10.1.1 Stochastic Model for ESS

The description and assumptions of our model are as follows. During the manu-
facturing process, the items with the failure rate rðtÞ and the corresponding life-
time TN (which is only due to ‘normal’ failure mode) and also the defective items
with the lifetime TD are produced. Let the proportion of the nondefective items be
p and that of the defective items be 1� p.

The defective items, in addition to the normal failure mode of the nondefective
items, are characterized by a new additional failure mode. In this chapter, we
assume that this additional failure mode describes susceptibility to external shocks.
For example, consider the case when the normal (nondefective) items, in accor-
dance with specifications, should not be susceptible to electrical or mechanical
shocks. However, due to substandard materials or a faulty manufacturing process,
some of the produced items are susceptible to these shocks [4]. For instance,
during the manufacturing process, the items can be exposed to a strong electric
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shock and this shock may result in some defective items which are even sensitive
to electrical shocks of a ‘normal’ magnitude, whereas the nondefective items are
not sensitive to it [3]. Another example is when a small crack in a material of the
defective item is sensitive to mechanical impulses (e.g., vibration) in field use,
which eventually can result in its failure. Thus, we assume that shocks of a
‘normal’ magnitude also occur in field operation, and therefore the defective items
can fail due to this failure mode. On the other hand, the nondefective items do not
fail from external shocks of this type in field operation as they do not have the
corresponding failure mode.

In accordance with our description, the survival function of TN is

PðTN [ tÞ ¼ expf�
Z t

0

rðuÞdug:

Let the two failure modes of the defective items be independent. Then, the
corresponding survival function is given by the competing risks model (series
system):

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � PðTE [ tÞ; ð10:1Þ

where TE is the lifetime that accounts only for the external shock failure mode.
Suppose that during the field operation, the external shocks occur in accordance

with the NHPP fNðtÞ; t� 0g with rate kðtÞ. Denote by Si the magnitude (stress) of
the ith shock and assume that Si; i ¼ 1; 2; . . . are i.i.d. random variables with the
common Cdf MðsÞ ¼ PrðSi� sÞ �MðsÞ � 1�MðsÞð Þ and the corresponding pdf
mðsÞ. The defective item is characterized by its random strength U, i.e., the
resistance ability to external shocks. Here, the strength is understood as the
‘maximum stress level that the defective item can survive’. The corresponding Cdf,
Sf, pdf, and FR of U are denoted by GUðuÞ; �GUðuÞ; gUðuÞ and rUðuÞ; respec-
tively. For each i ¼ 1; 2; . . ., the operable system survives if Si� U and fails if
Si [ U, ‘independently of everything else’. Then, in accordance with Theorem
9.10, Eq. (10.1) reads now

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug; ð10:2Þ

where

pðtÞ �

R1
0

Rv
0

expf�MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr mðvÞdv

R1
0

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

: ð10:3Þ
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From (10.2), we see that the lifetimes of the nondefective and defective items
are obviously stochastically ordered: TD\frTN , where ‘‘\fr’’denotes, as usual, the
failure (hazard) rate ordering of two random variables.

Denote the population lifetime by T . As it consists of defective and nonde-
fective items with given proportions, the corresponding survival function is the
following mixture

�FðtÞ � PðT [ tÞ

¼ p expf�
Z t

0

rðuÞdug þ ð1� pÞ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug:

ð10:4Þ

Thus, (10.4) defines the survival function of an item in field usage that is chosen
at random from the population of manufactured items.

In what follows, we will describe the impact of the ESS on the population
structure and on the corresponding population lifetime distribution. Therefore, we
must define first the ESS that we consider in this chapter.

ESS Process
During the ESS, all items are exposed to a single shock with the fixed magnitude s.
If the strength of a defective item is larger than s then it survives; otherwise it fails.
Depending on the magnitude s, a proportion of nondefective items, qðsÞ;
0� qðsÞ\1, becomes defective, where qðsÞ is an increasing function of its
argument. The items failed during the ESS are discarded and only the survived
items are put into the field operation.

Thus the ESS, in principle, can induce defects. Furthermore, as those with
induced defects but not failed are not identifiable, they are also put into the field
operation.

Recall that shock’s magnitudes in field operation are i.i.d. random variables.
We assume that the corresponding mean is substantially smaller than the magni-
tude of stress allowed for the ESS (otherwise there is no reason to perform the
ESS). Therefore, the shocks in field operation can hardly ‘produce’ defective items
out of nondefective ones (or this effect is negligible). On the other hand, these
shocks can still destroy the defective item with a given strength.

Denote the population lifetime after the ESS with magnitude s by TESS.

Theorem 10.1 Under the given assumptions, the population distribution and the
corresponding failure rate (after the ESS) are
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�FEðt; sÞ ¼ PðTESS [ tÞ ¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug � qðsÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðs; uÞkðuÞdug �
�GUðsÞð1� pÞ

ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

ð10:5Þ

and

kEðt; sÞ ¼ rðtÞ � pð1Þ �F1ðtÞ
P3
i¼1

pðiÞ �FiðtÞ
þ ½rðtÞ þ pðtÞkðtÞ� � pð2Þ �F2ðtÞ

P3
i¼1

pðiÞ �FiðtÞ

þ ½rðtÞ þ pðs; tÞkðtÞ� � pð3Þ �F3ðtÞ
P3
i¼1

pðiÞ �FiðtÞ
;

ð10:6Þ

respectively.

Proof Observe that there are now three subpopulations after the ESS and we can
define the corresponding frailty variable Z:

(i) the subpopulation with nondefective items (Z ¼ 1); (ii) the subpopulation
with defective items which were originally nondefective (Z ¼ 2); (iii) the sub-
population with defective items which were originally defective but have survived
the ESS (Z ¼ 3). Then, in accordance with our notation, the distribution of Z is
given by

pð1Þ � PðZ ¼ 1Þ ¼ ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

pð2Þ � PðZ ¼ 2Þ ¼ qðsÞp
ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ ;

pð3Þ � PðZ ¼ 3Þ ¼
�GUðsÞð1� pÞ

ð1� qðsÞÞpþ qðsÞpþ �GUðsÞð1� pÞ :

Therefore,

�F1ðtÞ � PðTESS [ tjZ ¼ 1Þ ¼ expf�
Z t

0

rðuÞdug
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and

�F2ðtÞ � PðTESS [ tjZ ¼ 2Þ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðuÞkðuÞdug;

where pðtÞ is given by (10.3).
Derivation of PðTESS [ tjZ ¼ 3Þ is not so straightforward. Indeed, it should be

taken into account that when we apply a shock of the controlled magnitude s
during the ESS, this means that the strength of the defective item that had passed it
is larger than s and, therefore, the distribution of the remaining strength Us (given
that the strength is larger than s) is

GUðujsÞ � PðU� ujU [ sÞ ¼ 1� �GðuÞ=�GðsÞ; u [ s:

Thus, the function pðtÞ in (10.3) should be modified to

pðs; tÞ ¼

R1
0

Rv
0

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrjsÞdr mðvÞdv

R1
0

expf� �MðrÞ
Rt
0

kðxÞdxggUðrjsÞdr

¼

R1
s

Rv
s

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr mðvÞdv

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

;

ð10:7Þ

where, gUðujsÞ is the corresponding pdf of GUðujsÞ, which is given by

gUðujsÞ ¼
0; if u� s

gUðuÞ
�GUðsÞ ; if u [ s

(
:

Finally,

�F3ðtÞ � PðTESS [ tjZ ¼ 3Þ ¼ expf�
Z t

0

rðuÞdug � expf�
Z t

0

pðs; uÞkðuÞdug:

Therefore, Eqs. (10.5) and (10.6) hold.
h

We will now discuss the effect of the ESS on the quality of the population after
the screening by comparing �FEðt; sÞ with the survival function without screening,
FðtÞ defined by Eq. (10.4). As the ESS in our model can create defective items,
theoretically in some cases this operation may have a negative effect on the
population of items.
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Definition 10.1 The severity (stress) level s is said to be inadmissible under the
survival function criterion if

�FðtÞ� �FEðt; sÞ; for all t [ 0:

Otherwise, the severity (stress) level s is said to be admissible.

Obviously, the inadmissible severity levels should not be considered in the ESS
practice as reliability of items in field use is worse than that without the ESS in this
case. Note that the condition for the ‘admissibility’ in Definition 10.1 means that
�FðtÞ\�FEðt; sÞ for some t [ 0 and not for all t [ 0. However, for obvious practical
reasons, we are mostly interested in the latter case. The following definition
addresses this setting.

Definition 10.2 The severity (stress) level s is said to be positively admissible
under the survival function criterion if

�FðtÞ\�FEðt; sÞ; for all t [ 0:

Theorem 10.2 (i) If qðsÞ\ð1� pÞGUðsÞ, then this severity level s is positively
admissible under the survival function criterion.

(ii) If qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞ, then this severity level s is inad-
missible under the survival function criterion.

Proof Denote for convenience, k1ðtÞ � rðtÞ; k2ðtÞ � rðtÞ þ pðtÞkðtÞ; k3ðtÞ �
rðtÞ þ pðs; tÞkðtÞ: Note that Eq. (10.7) can be written in a compact and a mean-
ingful way as

pðs; tÞ ¼
Z1

0

Iðv 2 ½s;1ÞÞhðs; t; vÞmðvÞdv;

where

hðs; t; vÞ �

Rv
s

expf� �MðrÞ
Rt
0

kðxÞdxg � gUðrÞdr

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

:

and Ið�Þ is the corresponding indicator. Observe that, for all fixed t and v,
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o

os
hðs; t; vÞ ¼ 1

R1
s

expf� �MðrÞ
Rt
0

kðxÞdxggUðrÞdr

� �2

� � expf� �MðsÞ
Z t

0

kðxÞdxggUðsÞ�

2
4

Z1

s

expf� �MðrÞ
Z t

0

kðxÞdxggUðrÞdr

þ expf� �MðsÞ
Z t

0

kðxÞdxggUðsÞ �
Zv

s

expf� �MðrÞ
Z t

0

kðxÞdxggUðrÞdr

3
5\ 0;

for all s [ 0. Therefore, the function pðs; tÞ is strictly decreasing in s for each fixed
t. This implies that pðs; tÞ\pðtÞ, for all t [ 0 and s [ 0. Thus we have the fol-
lowing failure rate ordering:

k1ðtÞ\k3ðtÞ\k2ðtÞ; for all t [ 0; ð10:12Þ

and accordingly,

�F1ðtÞ[ �F3ðtÞ[ �F2ðtÞ; for all t [ 0;

where �FiðtÞ � expf�
R t

0 kiðuÞdug; i ¼ 1; 2; 3: Observe that, in accordance with
(10.4),

�FðtÞ ¼ p �F1ðtÞ þ ð1� pÞ�F2ðtÞ;

whereas in accordance with (10.5),

�FEðt; sÞ ¼ pð1Þ�F1ðtÞ þ pð2Þ�F2ðtÞ þ pð3Þ�F3ðtÞ:

Therefore, if pð2Þ þ pð3Þ\1� p, or equivalently, pð1Þ[ p, then

�FEðt; sÞ � �FðtÞ[ ðpð1Þ � pÞ�F1ðtÞ þ ½pð2Þ�F2ðtÞ þ pð3Þ�F2ðtÞ � ð1� pÞ�F2ðtÞ�
¼ ðpð1Þ � pÞ�F1ðtÞ � ðpð1Þ � pÞ�F2ðtÞ[ 0;

for all t [ 0. The condition pð2Þ þ pð3Þ\1� p is equivalent to
qðsÞ\ð1� pÞGUðsÞ. This completes the proof of (i).

By a similar reasoning, if pð2Þ[ 1� p, or equivalently,

qðsÞp[ pð1� pÞ þ ð1� pÞ2 �GUðsÞ, then the severity level s is inadmissible
under the survival function criterion.

h

Remark 10.1
(i) The conditions in Theorem 10.2 do not imply the admissibility/inadmissi-

bility of the corresponding severity level under the failure rate criterion. That is,
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the condition pð2Þ þ pð3Þ\1� p does not imply kTðtÞ[ kEðt; sÞ, for all t [ 0,
where kTðtÞ is the failure rate which corresponds to �FðtÞ defined in (10.4).

(ii) The failure rate ordering (10.8) will be important for our further reasoning.
This ordering implies that the quality of defective items improves after the ESS,
but they are still obviously ‘worse’ than the nondefective items.

Remark 10.2 The effect of applying two consecutive shocks with severity s during
the ESS can be also considered. After this type of the ESS, we also have three
subpopulations with failure rates k1ðtÞ ¼ rðtÞ; k2ðtÞ ¼ rðtÞ þ pðtÞkðtÞ and k3ðtÞ ¼
rðtÞ þ pðs; tÞkðtÞ and the corresponding proportions

pð2Þð1Þ ¼ ð1� qðsÞÞpð1Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

;

pð2Þð2Þ ¼ qðsÞpð1Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

;

pð2Þð3Þ ¼ pð3Þ þ �GUðsÞpð2Þ
ð1� qðsÞÞpð1Þ þ qðsÞpð1Þ þ ½pð3Þ þ �GUðsÞpð2Þ�

:

10.1.2 Optimal Severity

In this subsection, we will consider the problem of determining the optimal
severity level (magnitude) of the ESS. Let s be the mission time of an item in the
field operation. If it does not fail during this time, then the mission is considered to
be successful. Thus, the probability of the mission success needs to be maximized
and we should find the optimal severity level s	 that satisfies

�FEðs; s	Þ ¼ max
s [ 0

�FEðs; sÞ:

Alternatively, let MRLðsÞ be the mean time to failure of an item in the field
operation as a function of s, i.e., MRLðsÞ �

R1
0

�FEðt; sÞdt. Then, the optimal
severity level which maximizes the mean time to failure should be obtained as

MRLðs	Þ ¼ max
s [ 0

MRLðsÞ:

For defining the optimal severity, we should consider the admissible severity
class rather than the positively admissible class as we have to take into account all
admissible severity levels. It is often more convenient to describe the dual inad-
missible class. The following theorem provides the upper bound for the optimal
severity level that maximizes the mission success probability or mean time to
failure in field usage.
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Theorem 10.3 Suppose that qð1Þ � lims!1 qðsÞ[ ð1� pÞ and let

s0 � inf
s� 0
fs : qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞg:

Then the severity levels in ðs0;1Þ are inadmissible. Therefore, s0 is the upper
bound for the optimal severity level.

Proof From Theorem 10.2, the condition for inadmissibility is

qðsÞp [ pð1� pÞ þ ð1� pÞ2 �GUðsÞ:

Here, the function qðsÞp is increasing from 0 to qð1Þp, whereas the function

pð1� pÞ þ ð1� pÞ2 �GUðsÞ decreases from ð1� pÞ to pð1� pÞ. Thus, if
qð1Þp[ pð1� pÞ, or equivalently, qð1Þ[ ð1� pÞ, then there exists s0 2
ð0;1Þ such that the severity levels in ðs0;1Þ are inadmissible. Therefore, s0 is the
upper bound for the optimal severity.

h

Remark 10.3 It is reasonable to assume that in practice, lims!1 qðsÞ ¼ 1 and that
the proportion of the defective items ð1� pÞ is relatively small. Therefore, the
condition qð1Þ[ ð1� pÞ can be satisfied in almost all practical cases.

Example 10.1 Let rðtÞ ¼ 0:1t; t� 0; kðtÞ ¼ 1; t� 0; mðsÞ ¼ 3 expf�3sg;
s� 0; gUðuÞ ¼ 4u expf�2u2g; u� 0; p ¼ 0:7; s ¼ 4:0 and

qðsÞ ¼ 0; 0� s\1;
1� expf�0:05ðs� 1Þg; s� 1

�
:

Note that the failure rate of the population distribution before the ESS, which is
obtained based on (10.4), is given by Fig. 10.1.

Therefore, as kTðtÞ is increasing, the burn-in procedure should not be applied to
this population. On the other hand, as qðsÞ is strictly increasing for s� 1, there
exists a unique solution of the equation

Fig. 10.1 The graph of kT ðtÞ
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qðsÞp ¼ pð1� pÞ þ ð1� pÞ2 �GUðsÞ;

which is the upper bound for the optimal severity level. Therefore, the ESS as a
method of elimination of defective items is justified in this case. Solving this
equation numerically results in s0 
 8:13. Therefore, it is now sufficient to search
for the optimal severity level in the interval ½0; 8:13�. The graph of �FEðs; sÞ is
presented in Fig. 10.2. The optimal severity level in this case is s	 
 1:08 and the
maximum probability of the mission success is �FEðs; s	Þ 
 0:447.

Based on the foregoing results, we can consider now certain cost structures for
determining the cost-based optimal severity level. As previously, an item is chosen
at random from our initial population and is exposed to a shock of magnitude s
during the ESS. If it survives, it is put into the field operation, otherwise the failed
item is discarded and the new one is chosen from the population, etc. This pro-
cedure is repeated until the first survived item is obtained. Let csr be the shop
replacement cost (actually, it is the cost of a new item) and cs be the cost for
conducting the ESS. Let c1ðsÞ, as a function of s, be the expected cost for even-
tually obtaining a component which has survived the ESS. Then

c1ðsÞ ¼
cs þ csr½1� fpþ ð1� pÞ�GUðsÞg�

pþ ð1� pÞ�GUðsÞ
;

where 1=½pþ ð1� pÞ�GUðsÞ� is the total number of trials until the first ‘success’.

Assume that if a mission (of length s) is successful (in field operation), then the
gain K is ‘earned’; otherwise a penalty C is imposed, where K [ C [ 0. Then the
expected gain during the field operation is

c2ðsÞ ¼ �K �FEðs; sÞ þ CFEðs; sÞ ¼ �ðK þ CÞ�FEðs; sÞ þ C ð10:9Þ

and the total expected cost cðsÞ is

Fig. 10.2 The graph of
�FEðs; sÞ
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cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ cs þ csr½1� fpþ ð1� pÞ�GUðsÞg�
pþ ð1� pÞ�GUðsÞ

� ðK þ CÞ�FEðs; sÞ þ C:

The objective is now to find the optimal severity level s	 that satisfies

s	 ¼ arg min
s2½0;1�

cðsÞ:

Similar to Theorem 10.3, if qð1Þ � lims!1 qðsÞ[ ; ð1� pÞ; then the optimal
severity level which minimizes c2ðsÞ [maximizes �FEðs; sÞ, as follows from (10.9)]
does not exists in the interval ðs0;1Þ, where s0 is also defined by Theorem 10.3.
Furthermore, as c1ðsÞ is strictly increasing to infinity, we can conclude that the
optimal severity level s	 should exist in the interval ½0; s0�.

Assume now that during field operation, the gain is proportional to the mean
time to failure. Therefore, the total average cost function in this case is

cðsÞ ¼ cs þ csr½1� ð1� pÞ�GUðsÞ�
ð1� pÞ�GUðsÞ

� K

Z1

0

�FEðt; sÞdt:

By the similar arguments, the optimal severity level s	 should exist in the
interval ½0; s0�:

10.2 ESS Model with Wear Increments

10.2.1 Stochastic Model

In this subsection, we develop a stochastic model for the shock and wear based
ESS. We assume that, during the manufacturing process due to substandard
materials or other faults some defective items with latent defects such as, e.g., a
microcrack may be produced. Such defective items are susceptible to failure from
mechanical or electrical shocks during field operation. Thus the defective items, in
addition to the normal failure mode of the nondefective items, are characterized by
a new additional failure mode. On the other hand, the nondefective items do not
fail from external shocks in field operation as they do not have the corresponding
failure mode.

Denote the lifetime of the nondefective items by TN with the corresponding
failure rate rðtÞ. In accordance with our description, obviously, the survival
function of TN is defined by
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PðTN [ tÞ ¼ expf�
Z t

0

rðuÞdug:

During the field operation, the items are subject to the nonhomogeneous
Poisson process (NHPP) of ‘ordinary’ environmental shocks fNðtÞ; t� 0g with
rate kðtÞ and arrival times Ti; i ¼ 1; 2; . . .. Let, on the ith shock, the defective item
fail with probability pðTiÞ (critical shock), whereas with probability qðTiÞ it
increases the ‘defect size’ by a random amount Wi (noncritical shock). In the
following, for convenience, we will loosely use the term ‘‘wear’’ (or degradation)
for the defect size as well. In accordance with this setting, the random accumulated
wear of a defective item at time t in the field use is given by

WðtÞ ¼
XNqðtÞ

i¼0

Wi þWM;

where NqðtÞ is the number of noncritical shocks in ½0; tÞ and WM [ 0 is the initial
wear (defect size of the latent defect). Let R be the random boundary of the item
which follows an exponential distribution with parameter h. The failure due to
wear occurs when the accumulated wear WðtÞ reaches R. Let TE be the lifetime in
the field use that accounts only for the external shock failure mode of defective
items (i.e., the lifetime without any other causes of failure). Then, as follows from
Eq. (4.4) and the reasoning in Sect. 4.1.2,

PðTE [ tÞ ¼ exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0;

regardless of the distribution of WM . As there are two independent failure modes
for defective items—i.e., the normal failure mode described by rðtÞ and the
additional one due to external shocks, the survival function for the defective items
is given by the competing risks model (a series system):

PðTD [ tÞ ¼ expf�
Z t

0

rðuÞdug � PðTE [ tÞ

¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0:

Let the proportion of the nondefective items be p and that of the defective items
be 1� p, respectively. Denote the population lifetime by T . Given the structure of
our population, the corresponding survival function is the mixture of survival
functions for the defective and nondefective items:
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�FðtÞ � PðT [ tÞ ¼ p expf�
Z t

0

rðuÞdug

þ ð1� pÞ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;; t� 0:

ð10:10Þ

Thus, (10.10) defines the survival function in field usage of the item that is
chosen at random from the population of manufactured items.

In what follows, we will describe the impact of the ESS on the population
distribution. Therefore, we must describe first the ESS that we consider in this
chapter.

ESS Process
During the ESS, a shock with the fixed magnitude s is applied to all items (e.g., the
mechanical shock). The defective items immediately fail with probability aðsÞ,
whereas with probability 1� aðsÞ an additional wear with magnitude Ws is
incurred, where aðsÞ is an increasing function and Ws is stochastically increasing
with s. Furthermore, depending on the magnitude s, a proportion of nondefective
items, qðsÞ; 0� qðsÞ\1, becomes defective, where qðsÞ is an increasing function
of its argument. The failed items are discarded and only the survived items are put
into field operation.

For example, the mechanical shock during the ESS can be executed by the
dropping of an item from some height (the ‘‘dropping shock’’), which can be
considered as the magnitude of the shock. Obviously, the assumptions for aðsÞ, Ws

and qðsÞ are justified in this case. For instance, the larger height corresponds to the
larger wear Ws.

We will now derive the population distribution in field use after the ESS.
Denote the corresponding lifetime by TESS. In the following theorem, the distri-
bution of TESS is obtained.

Theorem 10.4 The survival function of TESS is given by

PðTESS [ tÞ � �FEðt; sÞ

¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;

� qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ sWsÞð1� pÞ ;
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and the corresponding failure rate is

kEðt; sÞ ¼ rðtÞ � wð1Þ �F1ðtÞ
P2
i¼1

wðiÞ �FiðtÞ
þ ½rðtÞ þ ð1�MWð�hÞqðtÞÞkðtÞ� � wð2Þ �F2ðtÞ

P2
i¼1

wðiÞ �FiðtÞ
;

where

wð1Þ � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

and

wð2Þ � qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ :

Proof Observe that there are formally three subpopulations after the ESS and we
can define the corresponding frailty variable Z: (i) the subpopulation with
nondefective items (Z ¼ 1); (ii) the subpopulation with defective items which
were originally nondefective (Z ¼ 2); (iii) the subpopulation with defective items
which have survived the ESS (Z ¼ 3). Then, in accordance with our notation, the
distribution of Z is given by

pð1Þ � PðZ ¼ 1Þ ¼ ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

pð2Þ � PðZ ¼ 2Þ ¼ qðsÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

pð3Þ � PðZ ¼ 3Þ ¼ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

On the other hand, in field use,

�F1ðtÞ � PðTESS [ tjZ ¼ 1Þ ¼ expf�
Z t

0

rðuÞdug;

�F2ðtÞ � PðTESS [ tjZ ¼ 2Þ ¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;;

�F3ðtÞ � PðTESS [ tjZ ¼ 3Þ ¼ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;:
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Therefore, although there formally exist three subpopulations after the ESS, due
to the exponentially distributed boundary, we actually have two subpopulations.
Based on the above results, the population survival function in field use after the
ESS with magnitude s is given by the following mixture

�FEðt; sÞ ¼ PðTESS [ tÞ ¼
X2

i¼1

wðiÞ�FiðtÞ

¼ expf�
Z t

0

rðuÞdug � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ

þ expf�
Z t

0

rðuÞdug � exp �
Z t

0

ð1�MWð�hÞqðxÞÞkðxÞdx

8<
:

9=
;

� qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

where

wð1Þ � ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

and

wð2Þ � qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ :

Then the corresponding failure rate is

kEðt; sÞ

¼

P2
i¼1

wðiÞfiðtÞ

P2
i¼1

pðiÞ�FiðtÞ
¼ 1
P2
i¼1

pðiÞ�FiðtÞ
wð1Þ�F1ðtÞ �

f1ðtÞ
�F1ðtÞ

þ wð2Þ�F2ðtÞ �
f2ðtÞ
�F2ðtÞ

� �

¼ rðtÞ � wð1Þ �F1ðtÞ
P2
i¼1

wðiÞ �FiðtÞ
þ ½rðtÞ þ ð1�MWð�hÞqðtÞÞkðtÞ� � wð2Þ �F2ðtÞ

P2
i¼1

wðiÞ �FiðtÞ
:

h

Therefore, due to the exponential boundary, the ESS in this case does not
essentially change subpopulation distributions but only changes the subpopulation
proportions.

We will discuss now the effect of the ESS on the quality of the population after
the ESS by comparing kEðt; sÞ with the failure rate without the ESS, kTðtÞ, that can
be defined by Eq. (10.10). Note that as the ESS in our model can create defective
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items and theoretically this operation may have a negative effect on the population
of items in some cases. Similar to Definitions 10.1 and 10.2:

Definition 10.3 The severity (stress) level s is said to be inadmissible under the
failure rate function criterion if

kTðtÞ� kEðt; sÞ; for all t [ 0;

where kTðtÞ is the failure rate which corresponds to �FðtÞ. Otherwise, the severity
(stress) level s is said to be admissible.

Obviously, the inadmissible severity levels should not be considered in the
application of the ESS. Note that the condition for ‘admissible’ is that
kTðtÞ[ kEðt; sÞ, for ‘‘some t [ 0’’, not ‘‘for all t [ 0’’. However, for obvious
practical reasons we are mostly interested in the latter case. The following defi-
nition addresses this setting.

Definition 10.4 The severity (stress) level s is said to be positively admissible
under the failure rate function criterion if

kTðtÞ[ kEðt; sÞ; for all t [ 0:

Theorem 10.5 If

1� qðsÞ � p
ð1� pÞð1� aðsÞÞ [ PðR [ WsÞ; ð10:11Þ

then this severity level s is positively admissible under the failure rate function
criterion. Otherwise, this severity level s is inadmissible under the failure rate
function criterion.

Proof Denote for convenience, k1ðtÞ � rðtÞ; k2ðtÞ � rðtÞ þ ð1�
MWð�hÞqðtÞÞkðtÞ: Clearly, we have the following failure rate ordering:

k1ðtÞ\k2ðtÞ; for all t [ 0:

Observe that

kTðtÞ ¼ k1ðtÞ �
p �F1ðtÞ

p �F1ðtÞ þ ð1� pÞ �F2ðtÞ
þ k2ðtÞ �

ð1� pÞ �F2ðtÞ
p �F1ðtÞ þ ð1� pÞ �F2ðtÞ

;

and

kEðt; sÞ ¼ k1ðtÞ �
wð1Þ �F1ðtÞ
P2
i¼1

wðiÞ �FiðtÞ
þ k2ðtÞ �

wð2Þ �F2ðtÞ
P2
i¼1

wðiÞ �FiðtÞ
:
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From this, it can be seen that both kTðtÞ and kEðt; sÞ are the weighted averages
of k1ðtÞ and k2ðtÞ with corresponding weights, respectively. Thus, to compare
kTðtÞ and kEðt; sÞ, it is sufficient to compare the weights which corresponds to
k1ðtÞ, i.e., if the first weight is greater, then the second one is smaller, and vice
versa. Note that

p �F1ðtÞ
p �F1ðtÞ þ ð1� pÞ �F2ðtÞ

¼ 1

1þ ð1�pÞ
p

�F2ðtÞ
�F1ðtÞ

and

wð1Þ �F1ðtÞ
P2
i¼1

wðiÞ �FiðtÞ
¼ 1

1þ 1�wð1Þ
wð1Þ

�F2ðtÞ
�F1ðtÞ

:

Therefore, if wð1Þ[ p, i.e., if

ð1� qðsÞÞp
ð1� qðsÞÞpþ qðsÞpþ ð1� aðsÞÞPðR [ WsÞð1� pÞ [ p; ð10:12Þ

then kTðtÞ[ kEðt; sÞ, for all t [ 0. It is easy to show that the condition in (10.12)
can be reduced to (10.11).

h

Remark 10.4 (i) In the ESS model considered in this section, a level s can only be
positively admissible or inadmissible.

(ii) The condition (10.11) implies the admissibility/inadmissibility of the cor-
responding severity level under the survival function criterion, i.e., �FðtÞ\�FEðt; sÞ,
for all t [ 0.

10.2.2 Optimal Severity

For further analysis, we need to describe a model for Ws as a ‘function’ of the
shock’s magnitude s. It is reasonable to assume first that if s1\s2 then Ws1 � stWs2 .
Let sb be some ‘baseline severity level’ (e.g., sb � 1), with the corresponding
‘baseline distribution’ of Wsb denoted by G0ðwÞ. Therefore,

PðWsb [ wÞ ¼ �G0ðwÞ; w� 0:

Then the assumption of the above stochastic ordering for Ws is equivalent to
assuming the following accelerated life-type model [1]:

PðWs [ wÞ ¼ �G0ð;ðw; sÞÞ; w [ 0; ð10:13Þ
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where /ðw; sÞ is a function with the following properties: it is decreasing in s for
each fixed w, it is increasing in w for each fixed s, /ðw; 0Þ � 1, for all w [ 0;
/ð0; sÞ � 0; /ð1; sÞ � 1; for all s [ 0. Furthermore, clearly, /ðw; sbÞ ¼ w,

w� 0. Therefore, (10.13) implies that if s1\s2 then PðWs1 [ wÞ� PðWs2 [ wÞ,
for all w� 0, which is, obviously, the usual stochastic ordering.

We will consider now the problem of determining the optimal severity level
(magnitude) of the ESS. Let s be the mission time of an item in field operation. If it
does not fail during this time, then the mission is considered to be successful.
Thus, the probability of the mission success needs to be maximized and we should
find the optimal severity level s	 that satisfies

�FEðs; s	Þ ¼ max
s [ 0

�FEðs; sÞ:

Alternatively, let MðsÞ be the mean time to failure of an item in field operation
as a function of s, i.e., MðsÞ �

R1
0

�FEðt; sÞdt. Then, the optimal severity level s	

which maximizes the mean time to failure should be obtained:

Mðs	Þ ¼ max
s [ 0

MðsÞ:

It is clear that, for defining s	, we can consider only the positively admissible
severity class, as the other severity levels are inadmissible. The following theorem
provides the upper bound for the optimal severity level that maximizes the mission
success probability or mean time to failure in field usage.

Theorem 10.6 Suppose that qð1Þ � lims!1 qðsÞ[ ð1� pÞ and let

s0 � inf
s� 0
fs : qðsÞ[ ð1� pÞg:

Then the severities in ðs0;1Þ are inadmissible. Therefore, s0 is the upper bound
for the optimal severity level.

Proof From Theorem 10.5, the condition for inadmissibility is

1� qðsÞ � p
ð1� pÞð1� aðsÞÞ � PðR [ WsÞ;

which can now be stated in detail as

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

Z1

0

�G0ð/ðr; sÞÞh expf�hrgdr: ð10:14Þ

The inequality in (10.14) can be restated as
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Z1

0

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

�G0ð/ðr; sÞÞ
� �

� h expf�hrgdr� 0:

Observe that for all r� 0 and for all fixed s,

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ �

�G0ð/ðr; sÞÞ�
qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ � 1:

Therefore, for a fixed s, if

qðsÞ � ð1� pÞaðsÞ
ð1� pÞð1� aðsÞÞ � 1� 0;

or equivalently, if qðsÞ[ ð1� pÞ, then for this s the condition (10.14) is satisfied,
and accordingly this s is inadmissible. Note that qðsÞ is increasing and, by the
assumption in the theorem, qð1Þ � lims!1 qðsÞ[ ð1� pÞ. Hence, there exists
s0 2 ð0;1Þ such that s0 � infs� 0fs : qðsÞ[ ð1� pÞg and thus the severities in
ðs0;1Þ are inadmissible. Therefore, s0 is the upper bound for the optimal severity.

h

Remark 10.5 It would be practically reasonable to assume that lims!1 qðsÞ ¼ 1
and the proportion of the defective items ð1� pÞ is relatively small. Therefore, the
condition qð1Þ[ ð1� pÞ is practically satisfied in almost all cases.

Example 10.2 Suppose that rðtÞ ¼ 0:1t; t� 0; kðtÞ ¼ 1; t� 0; h ¼ 1; G0ðwÞ
¼ 1� expf�wg; w� 0; sb ¼ 1; /ðw; sÞ � w

s ; w; s [ 0; p ¼ 0:7; aðsÞ ¼ 1�
expf�sg; s� 0; s ¼ 4:0 and

qðsÞ ¼ 0; 0� s\1;
1� expf�0:05ðs� 1Þg; s� 1:

�

Furthermore, pðtÞ ¼ 0:1; t� 0; and the ‘failure rate’ for Wi’s is given by
kWðwÞ ¼ 3, w� 0. In this case, MWð�hÞ ¼ 3=4 and

PðR [ WsÞ ¼ 1�
Z1

0

expf� r

s
g � expf�rgdr ¼ 1

1þ s
:

As qðsÞ is strictly increasing, there exists a unique solution of the equation

qðsÞ ¼ ð1� pÞ;

and this solution is the upper bound, which is given by s0 ¼ �flnð0:9Þ=0:05g
þ1 
 3:11. Therefore, it is now sufficient to search for the optimal severity level in
the interval ½0; 3:11�., The graph of �FEðs; sÞ is given in Fig. 10.3.
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The optimal severity level in this case is obtained by s	 ¼ 1:52 and the max-
imum probability is �FEðs; s	Þ 
 0:43.

Based on the foregoing results, we can also consider now certain cost structures
for determining the optimal severity level. As previously, an item is chosen at
random from our initial population and during the ESS it is exposed to a shock of
magnitude s. If it survives, it is put into field operation, otherwise the failed item is
discarded and a new one is chosen from the population, etc. This procedure is
repeated until the first survived item is obtained. Let csr be the shop replacement
cost (actually, it is the cost of a new item) and cs be the cost for conducting the
ESS. Let c1ðsÞ, as a function of s, be the expected cost for eventually obtaining a
component which has survived the ESS. Then

c1ðsÞ ¼
cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�

pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ ;

where 1=fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg is the total number of trials until the
first ‘success’.

In field operation, assume that if the mission (of length s) is successful, then a
gain K is given; otherwise a penalty C is imposed, where K [ C [ 0. Then the
expected gain during field operation (until failure) is given by

c2ðsÞ ¼ �K �FEðs; sÞ þ CFEðs; sÞ ¼ �ðK þ CÞ�FEðs; sÞ þ C ð10:15Þ

and the total expected cost cðsÞ is

cðsÞ ¼ c1ðsÞ þ c2ðsÞ

¼ cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�
pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ � ðK þ CÞ�FEðs; sÞ þ C:

The objective is to find the optimal severity level s	 that satisfies

s	 ¼ arg min
s2½0;1�

cðsÞ:

Fig. 10.3 The graph of
�FEðs; sÞ
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Similar to Theorem 10.5, if qð1Þ � lims!1 qðsÞ[ ð1� pÞ then the optimal
severity level which minimizes c2ðsÞ (maximizes �FEðs; sÞ, as follows from (10.15))
does not exist in the interval ðs0;1Þ. Furthermore, c1ðsÞ is strictly increasing to
infinity. Therefore, we can conclude that the optimal severity level s	 should exist
in the interval ½0; s0�.

Assume now that during field operation, the gain is proportional to the mean
time to failure. Therefore, the total average cost function in this case is

cðsÞ ¼ cs þ csr½1� fpþ ð1� aðsÞÞPðR [ WsÞð1� pÞg�
pþ ð1� aðsÞÞPðR [ WsÞð1� pÞ � K

Z1

0

�FEðt; sÞdt:

By the similar arguments, the optimal severity level s	 should exist in the
interval ½0; s0�.
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