
Chapter 10
Real-Time Approaches to Computational
Economics: Self Adaptive Economic Systems

Abstract This chapter examines modelling of financial movement direction with
LearnCC by forecasting the daily movement direction of the Dow Jones. The
LearnCC approach is implemented using a multi-layer perceptron as a weak-
learner, where this weak-learner is improved by making use of the LearnCC
algorithm. In addition, the LearnCC algorithm introduces the concept of on-line
incremental learning, which means that the proposed framework is able to adapt to
new data.

10.1 Introduction

This chapter assumes that a complete model is the one that is able to continuously
self-adapt to the changing environment. In this chapter, an on-line incremental
algorithm that classifies the direction of movement of the stock market is described
(Lunga and Marwala 2006a). One very important component of the economic
system is the financial market. The financial market is a complex, evolving, and
non-linear dynamic system. In order to increase the wealth of investors it is vital
to be able to forecast the direction of the financial markets. The field of financial
forecasting is manifested by data intensity, noise, non-stationarity, unstructured
nature, high degree of uncertainty, and hidden relationships (Carpenter et al.
1992; Lunga and Marwala 2006a, b). Various aspects interact in finance, and
these include social forces, political developments, overall economic conditions,
and traders’ expectations. Consequently, predicting market price movements is a
difficult undertaking. Movements of market prices are not entirely random and they
behave in a highly non-linear and dynamic manner. The standard random walk
assumption of future prices is a different manifestation of randomness that hides
a noisy non-linear process (McNelis 2005).
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Incremental learning is a possible solution to such situations and is defined as the
process of extracting new information from the data without losing prior knowledge
from an additional dataset that later becomes available (Lunga and Marwala 2006a).
A number of definitions and interpretations of incremental learning can be found in
the literature, including on-line learning (Freund and Schapire 1997; Lunga and
Marwala 2006b), re-learning of previously misclassified instances, and growing
and pruning of classifier architectures (Bishop 1995). An algorithm possesses
incremental learning capabilities if it meets the following criteria (Lunga and
Marwala 2006b):

• Capability to attain further knowledge when new data are introduced.
• Capability to remember previously learned information about the data.
• Capability to learn new classes of data if introduced by new data.

Some applications of on-line classification problems have been reported recently
(Polikar et al. 2002, 2004; Polikar 2000; Vilakazi et al. 2006; Vilakazi 2007). In
many situations, the extent of accuracy and the acceptability of certain classifica-
tions are measured by the error of misclassified instances. LearnCC has mostly
been applied to classification problems and the choice of LearnCC algorithm
can boost a weak-learner to classify stock closing values with minimum error
and reduced training time (Lunga and Marwala 2006b). For financial markets,
forecasting methods based on minimizing forecasting error may not be sufficient.
Trade driven by a certain forecast with a small forecast error may not be as profitable
as trade guided by an accurate prediction of the direction of movement. This chapter
discusses the ensemble systems, introduces the basic theory of incremental learning
and the LearnCC algorithm, and applies these to financial markets.

10.2 Incremental Learning

An incremental learning algorithm is defined as an algorithm that learns new
information from unseen data, without requiring access to previously observed data
(Polikar et al. 2002, 2004; Polikar 2000). The algorithm is capable of learning
newly available information from the data and to recall the knowledge from the
previously observed data. Furthermore, the algorithm is capable of learning new
classes that are introduced by subsequent data. This kind of learning algorithm is
called an on-line learning procedure. Learning new information without accessing
previously used data invokes the ‘stability-plasticity dilemma’ (Carpenter et al.
1992). A completely stable classifier retains the knowledge from previously learned
data but fails to learn new information while a completely plastic classifier learns
new data but forgets prior knowledge. The problem with neural network techniques
is that they are stable classifiers and cannot learn new information after they have
been trained. Different measures have been applied to capacitate neural networks
with incremental learning capability. One technique of learning new information
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from supplementary data entails eliminating the trained classifier and training a new
classifier using accumulated data. Other approaches such as pruning of networks
or controlled alteration of classifier weight or growing of classifier architectures
are known as incremental learning techniques and they change classifier weights
using only the misclassified instances. These techniques are capable of learning
new information, nevertheless, they suffer from ‘forgetting’ and necessitate access
to old data. One method evaluates the current performance of the classifier
architecture. If the present architecture does not adequately characterize the decision
boundaries being learned, new decision clusters are generated in response to new
pattern. Additionally, this method does not involve access to old data and can
accommodate new classes. Nonetheless, the central inadequacies of this method
are: cluster proliferation and sensitivity to selection of algorithm parameters.
In this chapter, LearnCC is applied for on-line prediction of stock movement
direction.

10.3 Ensemble Methods

The on-line learning technique implemented in this chapter is based on ensemble
learning (Hansen and Salamon 1990; Jordan and Jacobs 1994; Kuncheva et al.
2001). Ensemble learning is a method where multiple models, such as classifiers,
are deliberately created and combined to solve a particular problem (Rogova 1994;
Polikar 2006; Marwala 2012). These techniques combine an ensemble of usually
weak classifiers to exploit the so-called instability of the weak classifier (Polikar
2006). A tactical mixture of these classifiers eradicates the individual errors, creating
a strong classifier. This makes the classifiers build adequately different decision
boundaries for negligible changes in their training parameters and, as a result, each
classifier makes different errors on any given instance. Ensemble systems have
enticed a great deal of attention over the last decade due to their empirical success
over single classifier systems on a variety of applications (Hulley and Marwala
2007; Marwala 2009).

Hannah and Dunson (2012) successfully applied an ensemble method to geo-
metric programming based circuit design whereas Tong et al. (2012) successfully
applied an ensemble of Kalman filters for approximating a heterogeneous con-
ductivity field by integrating transient solute transport data. Austin et al. (2012)
successfully applied ensemble methods for forecasting mortality in patients with
cardiovascular disease whereas Halawani and Ahmad (2012) successfully applied
ensemble methods to predict Parkinson disease and Ebrahimpour et al. (2012)
successfully applied ensemble method to detect epileptic seizure.

In Sect. 10.3 ensemble learning methods are described: bagging, stacking and
adaptive boosting (Marwala 2012). Particularly, the Adaptive Boosting technique
is described because it was the basis for the creation of the LearnCC procedure,
which is the on-line routine, implemented in this chapter (Polikar 2006).
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10.3.1 Bagging

Bagging is a technique which is premised on the combination of models fitted to
randomly chosen samples of a training data set to decrease the variance of the
prediction model (Efron 1979; Breiman 1996; Marwala 2012). Bagging essentially
necessitates randomly choosing a subset of the training data and applying this subset
to train a model and repeating this process. Subsequently, all trained models are
combined with equal weights to form an ensemble.

Louzada and Ara (2012) successfully applied bagging for fraud detection
tool whereas Ghimire et al. (2012) successfully applied bagging for land-cover
classification in Massachusetts. Syarif et al. (2012) successfully applied bagging
to intrusion detection whereas Zhang et al. (2012) successfully applied bagging for
high resolution range profile recognition for polarization radar.

10.3.2 Stacking

A model can be chosen from a set of models by comparing these models using data
that was not used to train the models (Polikar 2006; Marwala 2012). This prior belief
can also be applied to select a model amongst a set of models, based on a single data
set by using a method called cross-validation (Bishop 1995; Marwala 2012). This
is accomplished by dividing the data into a training data set, which is used to train
the models, and a testing data set which is used to test the trained model. Stacking
takes advantage of this prior belief by using the performance from the test data to
combine the models instead of choosing among them the best performing model
when tested on the testing data set (Wolpert 1992).

Sulzmann and Fürnkranz (2011) successfully applied stacking to compress an
ensemble of rule sets into a single classifier whereas Chen and Wong (2011)
successfully applied ant colony optimization method to optimize stacking ensemble.
Lienemann et al. (2009) successfully applied stacking in metabonomic applications.

10.3.3 Adaptive Boosting (AdaBoost)

Boosting is a technique that incrementally generates an ensemble by training each
new model with data that the previously trained model misclassified. Then the
ensemble, which is a combination of all trained models, is used for prediction.
Adaptive Boosting is an extension of boosting to multi-class problems (Freund
and Schapire 1997; Schapire et al. 1998; Marwala 2012). There are many types
of Adaptive Boosting, for instance AdaBoost.M1, where each classifier is assigned
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a weighted error of no more than ½ and AdaBoost.M2 with weak classifiers
with a weighted error of less than ½. Tang et al. (2008) applied successfully
Adaptive Boosting technique for analog circuit fault diagnosis whereas Li and Shen
(2008) successfully applied Adaptive Boosting method for image processing. Nock
et al. (2012) successfully applied boosting to classify natural scenes whereas Xia
et al. (2012) successfully applied boosting for image retrieval. La et al. (2012)
successfully applied boosting for text classification.

For AdaBoost.M1, samples are drawn from a distribution D that is updated in
such a way that successive classifiers concentrate on difficult cases. This is achieved
by adjusting D in such a way that the earlier, misclassified cases are likely to be
present in the following sample. The classifiers are then combined through weighted
majority voting. The distribution begins as a uniform distribution so that all cases
have equal probability can be drawn into the first data subset S1.

As described by Polikar (2006), at each iteration t, a new training data subset is
sampled, and a weak classifier is trained to create a hypothesis ht. The error given
by this hypothesis with regards to the current distribution is estimated as the sum of
distribution weights of the cases misclassified by ht. AdaBoost.M1 requires that this
error is less than ½, and if this requirement is violated then the procedure terminates.
The normalized error ˇt is then calculated so that the error that is in the [0 0.5]
interval is normalized into the [0 1] interval. The transformed error is implemented
in the distribution update rule, where Dt(i) is decreased by a factor of ˇt ; 0 < ˇt < 1,
if xi is correctly classified by ht, or else it is left unaltered. When the distribution is
normalized so that Dt C 1(i) is a proper distribution, the weights of those instances
that are misclassified are increased. This update rule guarantees that the weights of
all instances are correctly classified and the weights of all misclassified instances
add up to ½. The requirement for the training error of the base classifier to be less
than ½ forces the procedure to correct the error committed by the previous base
model. When the training process is complete, the test data are classified by this
ensemble of T classifiers, by applying a weighted majority voting procedure where
each classifier obtains a voting weight that is inversely proportional to its normalized
error (Polikar 2006). The weighted majority voting then selects the class ! allocated
the majority vote of all classifiers. The procedure for Adaptive Boosting is shown in
Algorithm 10.1 (Polikar 2006).

As described by Polikar (2006), the theoretical analysis of the Adaptive Boosting
technique shows that the ensemble training error E is bounded above by:

E < 2T

TY

tD1

p
"t .1 � "t / (10.1)

The "t < 1=2 ensemble error E is reduced when new classifiers are added. The
Adaptive Boosting method is not prone to over-fitting and this is explained by the
margin theory (Schapire 1990; Polikar 2006).
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Algorithm 10.1 The AdaBoost Algorithm.M1

Input:

• Input X D fx1; x2; : : : ; xng and output Y D fy1; y2; : : : ; yng
• Weak-learner algorithm
• Number of classifiers T and distribution D1.i/ D 1=nI i D 1; : : : ; n

For t D 1,2, : : : ,T;

1. Sample a training subset St with a distribution Dt

2. Train Weak-learner with St and create hypothesis ht W X ! Y

3. Estimate the error of ht W "t D
nP

iD1

I Œht .xi / ¤ yi � � Dt .i/ D
P

t Wht .xi /¤yi

Dt .i/

4. If "t >
1

2
terminate

5. Estimate the normalized error ˇt D "t =.1 � "t / ) 0 � ˇt � 1

6. Update the distribution Dt: DtC1.i/ D Dt .i/

Zt

�
(

ˇt ; if ht .xi / yi

1; otherwise
where

Zt is the normalization constant so that DtC1 becomes a proper distribution
function.

Test using majority voting given an unlabeled example z as follows:

• Count the total vote from the classifiers Vj D P
t Wht .z/

log .1 =ˇt /

j D 1; : : : ; C

• Select the class that receives the highest number of votes as the final
classification.

10.4 The Real-Time Method

Real-time learning is suitable for modelling dynamically time-varying systems
where the characteristics of the environment in which the system is operating
changes with time. It is also suitable when the data set existing is inadequate and
does not entirely describe the system and, therefore, this approach incorporates new
conditions that may be presented by newly acquired data.

A real-time computational economics model must have incremental learning
competency if it is to be applied for automatic and continuous real-time prediction.
The basis of real-time learning is incremental learning, which has been studied by
many researchers (Higgins and Goodman 1991; Fu et al. 1996; Yamaguchi et al.
1999; Carpenter et al. 1992; Marwala 2012). The difficulty with real-time learning
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is the tendency of a real-time learner to forget the information learned during the
initial stages of the learning process (McCloskey and Cohen 1989). The real-time
learning technique adopted for this chapter is LearnCC and was proposed by
Polikar et al. (2004).

Vilakazi and Marwala (2007a) applied the real-time incremental learning tech-
nique for monitoring the condition of high voltage bushings. Two incremental
learning techniques were applied to the problem of condition monitoring. The first
technique used was the incremental learning capability of the Fuzzy ARTMAP
(FAM), and they investigated whether the ensemble approach can improve the
performance of the FAM. The second technique applied was LearnCC that imple-
mented an ensemble of multi-layer perceptron classifiers. Both methods performed
well when tested for transformer bushing condition monitoring.

Mohamed et al. (2007) applied incremental learning for the classification of
protein sequences. They used the fuzzy ARTMAP as an alternative machine
learning system with the ability to incrementally learn new data as it becomes
available. The fuzzy ARTMAP was seen to be comparable to many other machine
learning systems. The application of an evolutionary strategy in the selection and
combination of individual classifiers into an ensemble system, coupled with the
incremental learning capability of the fuzzy ARTMAP was shown to be suitable
as a pattern classifier. Their algorithm was tested using the data from the G-Coupled
Protein Receptors Database and it demonstrated a good accuracy of 83 %.

Mohamed et al. (2006) applied fuzzy ARTMAP to multi-class protein sequence
classification. They presented a classification system that used pattern recognition
method to produce a numerical vector representation of a protein sequence and
then classified the sequence into a number of given classes. They applied fuzzy
ARTMAP classifiers and showed that, when coupled with a genetic algorithm
based feature subset selection, the system could classify protein sequences with
an accuracy of 93 %. This accuracy was then compared to other classification
techniques and it was shown that the fuzzy ARTMAP was most suitable because
of its high accuracy, quick training times and ability to learn incrementally.

Perez et al. (2010) applied a population-based, incremental learning approach
to microarray gene expression feature selection. They evaluated the usefulness
of the Population-Based Incremental Learning (PBIL) procedure on identifying
a class differentiating gene set for sample classification. PBIL was based on
iteratively evolving the genome of a search population by updating a probability
vector, guided by the extent of class-separability demonstrated by a combination
of features. The PBIL was then compared to standard Genetic Algorithm (GA)
and an Analysis of Variance (ANOVA) method. The procedures were tested on a
publicly available three-class leukemia microarray data set (n D 72). After running
30 repeats of both GA and PBIL, the PBIL could identify an average feature-
space separability of 97.04 % while the GA achieved an average class-separability
of 96.39 %. The PBIL also found smaller feature-spaces than GA, (PBIL – 326
genes and GA – 2,652) thus excluding a large percentage of redundant features.
It also, on average, outperformed the ANOVA approach for n D 2,652 (91.62 %),
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q < 0.05 (94.44 %), q < 0.01 (93.06 %) and q < 0.005 (95.83 %). The best PBIL run
(98.61 %) even outperformed ANOVA for n D 326 and q < 0.001 (both 97.22 %).
PBIL’s performance was credited to its ability to direct the search, not only towards
the optimal solution, but also away from the worst.

Hulley and Marwala (2007) applied GA-based incremental learning for opti-
mal weight and classifier selection. They then compared LearnCC, which is an
incremental learning algorithm to the new Incremental Learning Using Genetic Al-
gorithm (ILUGA). LearnCC demonstrated good incremental learning capabilities
on benchmark datasets on which the new ILUGA technique was tested. ILUGA
showed good incremental learning ability using only a few classifiers and did
not suffer from catastrophic forgetting. The results obtained for ILUGA on the
Optical Character Recognition (OCR) and Wine datasets were good, with an overall
accuracy of 93 and 94 %, respectively, showing a 4 % improvement over LearnCC.
MT for the difficult multi-class OCR dataset.

Lunga and Marwala (2006a) applied a time series analysis using fractal theory
and real-time ensemble classifiers to model the stock market. The fractal analysis
was implemented as a concept to identify the degree of persistence and self-
similarity within the stock market data. This concept was carried out using the
Rescaled range analysis (R/S) technique. The R/S analysis outcome was then
applied to a real-time incremental algorithm (LearnCC) that was built to classify
the direction of movement of the stock market. The use of fractal geometry in this
study provided a way of determining, quantitatively, the extent to which the time
series data could be predicted. In an extensive test, it was demonstrated that the R/S
analysis provided a very sensitive technique to reveal hidden long runs and short
run memory trends within the sample data. A time series data that was measured to
be persistent was used to train the neural network. The results from the LearnCC
algorithm showed a very high level of confidence for the neural network to classify
sample data accurately.

Lunga and Marwala (2006b) applied incremental learning for the real-time
forecasting of stock market movement direction. In particular, they presented a
specific application of the LearnCC algorithm, and investigated the predictability
of financial movement direction with LearnCC by forecasting the daily movement
direction of the Dow Jones. The framework was implemented using the multi-layer
perceptron (MLP) as a weak-learner. First, a weak learning algorithm, which tried to
learn a class concept with a single input perceptron, was established. The LearnCC
algorithm was then applied to improve the weak MLP learning capacity and thus
introduced the concept of incremental real-time learning. The presented framework
could adapt as new data were introduced and could classify the data well. This
chapter is based on this study by Lunga and Marwala (2006b).

Vilakazi and Marwala (2007b) applied incremental learning to bushing condition
monitoring. They presented a technique for bushing fault condition monitoring
using the fuzzy ARTMAP. The fuzzy ARTMAP was introduced for bushing
condition monitoring because it can incrementally learn information as it becomes
available. An ensemble of classifiers was used to improve the classification accuracy
of the system. The test results showed that the fuzzy ARTMAP ensemble gave an
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accuracy of 98.5 %. In addition, the results showed that the fuzzy ARTMAP could
update its knowledge in an incremental fashion without forgetting the previously
learned information.

Nelwamondo and Marwala (2007) successfully applied a technique for handling
missing data from heteroskedasticity and non-stationary data. They presented a
computational intelligence approach for predicting missing data in the presence
of concept drift using an ensemble of multi-layer feed-forward neural networks.
Six instances prior to the occurrence of missing data were used to approximate the
missing values. The algorithm was applied to a simulated time series data set that
resembled non-stationary data from a sensor. Results showed that the prediction
of missing data in a non-stationary time series data was possible but was still a
challenge. For one test, up to 78 % of the data could be predicted within a 10 %
tolerance range of accuracy.

Khreich et al. (2012) conducted a survey of techniques for incremental learning
of hidden Markov model parameters while Tscherepanow et al. (2011) applied
hierarchical adaptive resonance theory network for the stable incremental learning
of topological structures and associations from noisy data. Bouchachia (2011)
studied incremental learning with multi-level adaptation. The author examined self-
adaptation of classification systems which were natural adaptation of the base
learners to change in the environment, contributive adaptation when combining the
base learners in an ensemble, and structural adaptation of the combination as a form
of dynamic ensemble. The author observed that this technique was able to deal with
dynamic change in the presence of various types of data drift.

Martı́nez-Rego et al. (2011) proposed a robust incremental learning technique
for non-stationary environments. They proposed a method, for single-layer neural
networks, with a forgetting function in an incremental on-line learning procedure.
The forgetting function offered a monotonically increasing significance to new
data. Owing to the mixture of incremental learning and increasing significance
assignment the network forgot quickly in the presence of changes while retaining a
stable behavior when the context was stationary. The performance of the technique
was tested over numerous regression and classification problems and the results
were compared with those of previous works. The proposed procedure revealed
high adaptation to changes while maintaining a low consumption of computational
resources.

Yang et al. (2011) proposed an extreme and incremental learning based single-
hidden-layer regularization ridgelet network which applied the ridgelet function as
the activation function in a feed-forward neural network. The results showed that
the method demonstrated incremental learning capability.

Topalov et al. (2011) successfully applied a neuro-fuzzy control of antilock
braking system using a sliding mode incremental learning procedure. An incre-
mental learning procedure was applied to update the parameters of the neuro-fuzzy
controller. The application of this on the control of anti-lock breaking system model
gave good results.

Folly (2011) proposed a method to optimally tune the parameters of power
system stabilizers for a multi-machine power system using the Population-based
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incremental learning (PBIL) procedure. The PBIL procedure is a method that
combines features of genetic algorithms and competitive learning-based on artificial
neural networks. The results showed that PBIL based power system stabilizers
performed better than genetic algorithm based power system stabilizers over a range
of operating conditions considered.

Other successful implementations of incremental learning techniques include
its use in anomaly detection (Khreich et al. 2009), in human robot interaction
(Okada et al. 2009), for real-time handwriting recognition (Almaksour and Anquetil
2009), for predicting human movement in a vehicle motion (Vasquez et al. 2009),
in visual learning (Huang et al. 2009), in nuclear transient identification (Baraldi
et al. 2011), in object detection and pose classification (Tangruamsub et al. 2012),
in classification of Alzheimer’s disease (Cho et al. 2012), in face recognition (Lu
et al. 2012) as well as in speech recognition (Li et al. 2012).

10.4.1 LearnCC Incremental Learning Method

LearnCC is an incremental learning procedure that was proposed by Polikar and
co-workers (Polikar et al. 2002, 2004; Muhlbaier et al. 2004; Erdem et al. 2005;
Polikar 2006; Marwala 2012). It is based on adaptive boosting procedure and applies
multiple classifiers to capacitate the system to learn incrementally. The procedure
operates on the notion of using many classifiers that are weak-learners to give a
good overall classification. The weak-learners are trained on a separate subset of
the training data and then the classifiers are combined using a weighted majority
vote. The weights for the weighted majority vote are selected using the performance
of the classifiers on the entire training dataset.

Each classifier is trained using a training subset that is sampled in accordance
to a stated distribution. The classifiers are trained using a weak-learner approach.
The condition for the weak-learner procedure is that it must give a classification
rate of less than 50 % firstly (Polikar et al. 2002). For each database Dk that
contains training series, S, where S contains learning examples and their equivalent
classes, LearnCC starts by setting the weights vector, w, according to a specified
distribution DT , where T is the number of hypothesis. Firstly the weights are set to
be uniform giving equal probability for all cases chosen for the first training subset
and the distribution is then given by (Polikar et al. 2002; Marwala 2012):

D D 1

m
(10.2)

Here, m is the number of training examples in S. The training data are then
distributed into training subset TR and testing subset TE to confirm the weak-learner
capability. The distribution is then applied to choose the training subset TR and
testing subset TE from Sk. After training and testing subsets have been chosen, then
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the weak-learner procedure is applied. The weak-learner is trained using subset TR.
A hypothesis, ht, attained from a weak-learner is tested using both the training and
testing subsets to achieve an error (Polikar et al. 2002; Marwala 2012):

"t D
X

t Whi .xi /¤yi

Dt .i/ (10.3)

The error is required to be less than 0.5; a normalized error is computed using
(Polikar et al. 2002; Marwala 2012):

Bt D "t

1 � "t

(10.4)

If the error is greater than 0.5, the hypothesis is rejected and the new training and
testing subsets are chosen according to a distribution DT and another hypothesis is
estimated. All classifiers created are then combined using weighted majority voting
to obtain a combined hypothesis, Ht (Polikar et al. 2002; Marwala 2012):

Ht D arg max
y2Y

X

t Wht .x/Dy

log

�
1

ˇt

�
(10.5)

The weighted majority voting offers higher voting weights to a hypothesis that
performs well on the training and testing data subsets. The error of the composite
hypothesis is calculated as follows (Polikar et al. 2002; Marwala 2012):

Et D
X

t WHi .xi /¤yi

Dt .i/ (10.6)

If the error is greater than 0.5, the current hypothesis is rejected and the new
training and testing data are chosen according to a distribution DT . Or else, if the
error is less than 0.5, then the normalized error of the composite hypothesis is
calculated as follows (Polikar et al. 2002; Marwala 2012):

Bt D Et

1 � Et

(10.7)

The error is applied in the distribution update rule, where the weights of the
correctly classified cases are reduced, accordingly increasing the weights of the mis-
classified instances. This confirms that the cases that were misclassified by the cur-
rent hypothesis have a higher probability of being chosen for the succeeding training
set. The distribution update rule is given by the following equation (Polikar et al.
2002; Marwala 2012):

wtC1 D wt .i / � B
1�ŒjHt .xi /¤yi j�
t (10.8)



184 10 Real-Time Approaches to Computational Economics: Self Adaptive Economic . . .

Fig. 10.1 LearnCC algorithm

After the T hypothesis has been generated for each database, the final hypothesis
is calculated by combining the hypotheses using weighted majority voting as
described by the following equation (Polikar et al. 2002; Marwala 2012):

Ht D arg max
y2Y

KX

kD1

X

t WHt .x/Dy

log

�
1

ˇt

�
(10.9)

The LearnCC algorithm is represented diagrammatically in Fig. 10.1 (Polikar
2006; Marwala 2012).

10.4.2 Confidence Measurement

To approximate the confidence of the LearnCC procedure, a majority of hypotheses
agreeing on given instances is an indicator of confidence on the decision proposed.
If it is assumed that a total of T hypotheses are generated in k training sessions for a
C-class problem, then for any given example, the final classification class, the total
vote class c received is given by (Muhlbaier et al. 2004; Marwala 2012):
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Table 10.1 Confidence
estimation representation
(Lunga and Marwala 2006b)

Confidence range (%) Confidence level

0.9 � �c � 1 Very high (VH)
0.8 � �c � 0.8 High (H)
0.7 � �c � 0.8 Medium (M)
0.6 � �c � 0.7 Low (l)
0 � �c � 0.6 Very low (VL)

�c D
X

t Wht .x/Dc

‰t (10.10)

where ‰t denotes the voting weights of the tth, hypothesis ht.
Normalizing the votes received by each class can be performed as follows

(Muhlbaier et al. 2004; Marwala 2012):

�c D �c

CP
cD1

�c

(10.11)

Here, �c can be interpreted as a measure of confidence on a scale of 0–1 and this
representation is shown in Table 10.1 (Lunga and Marwala 2006b). A high value of
�c shows high confidence in the decision and conversely, a low value of �c shows
low confidence in the decision. It should be noted that the �c value does not represent
the accuracy of the results, but the confidence of the system in its own decision.

10.4.3 Multi-layer Perceptron

In this chapter we use the multi-layer perceptron neural network to create a
weak-learner. The multi-layered perceptrons have been successfully used to model
complex systems (Marwala 2007), missing data estimation (Marwala 2009), inter-
state conflict modelling (Marwala and Lagazio 2011) and condition monitoring
(Marwala 2012). Each connection between inputs and neurons is weighted by
adjustable weight parameters. Furthermore, each neuron has an adjustable bias
weight parameter which is represented by a connection from a constant input
x0 D 1 and z0 D 1 for the hidden neurons and the output neuron, respectively.
This group of two-layer multi-layer perceptron models is capable of estimating
any continuous function with arbitrary accuracy, providing the number of hidden
neurons is appropriately large (Bishop 1995).

The advantage of the multi-layer perceptron network is the interconnected cross-
coupling that occurs between the input variables and the hidden nodes, and the
hidden nodes and the output variables. If we assume that x is the input to the
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multi-layer perceptron and y is the output of the MLP, a mapping function between
the input and the output may be written as follows (Bishop 1995):

y D foutput

0

@
MX

j D1

wj fhidden

 
NX

iD0

wij xi

!
C w0

1

A (10.12)

where N is the number of input units, M is the number of hidden neurons, xi is the ith
input unit, wij is the weight parameter between input i and hidden neuron j and wj is
the weight parameter between hidden neuron j and the output neuron. The activation
function foutput.

�/ is sigmoid and can be written as follows (Bishop 1995):

foutput .a/ D 1

1 C e�a
(10.13)

For classification problems, the sigmoid function is ideal (Bishop 1995). The
activation function fhidden.�/ is a hyperbolic tangent can be written as follows
(Bishop 1995):

fhidden.a/ D tanh.a/ (10.14)

The neural network model in Eq. 10.12 is trained using the scaled conjugate
gradient method, which is described in Bishop (1995).

10.5 Experimental Investigation

This analysis examines the daily changes of the Dow Jones Index. The Dow
Jones averages are particular in that they are price weighted rather than market
capitalization weighted. Their component weightings are consequently impacted
only by changes in the stock prices, in contrast with other indexes’ weightings that
are impacted by both price changes and changes in the number of shares outstanding
(Leung et al. 2000). When the averages were originally generated, their values were
computed by merely totalling up the constituent stock prices and dividing by the
number of constituents. Altering the divisor was started to isolate the consequences
of stock separations and other corporate activities.

The Dow Jones Industrial Average measures the composite price performance of
over 30 highly capitalized stocks trading on the New York Stock Exchange (NYSE),
representing a broad cross-section of industries in the USA. Trading in the index
has gained unparalleled reputation in foremost financial markets around the world.
The increasing diversity of financial instruments associated to the Dow Jones Index
has expanded the dimension of global investment prospect for both individual and
institutional investors. There are two basic explanations for the success of these
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Prediction of 
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direction and if CVt<CVt-1 then downward direction

Compare

Fig. 10.2 Proposed model for real-time stock forecasting

index trading instruments. The first reason is that they afford an effective means
for investors to hedge against potential market risks. The second reason is that they
generate new profit making prospects for market investors. Consequently, it has deep
consequences and importance for researchers and practitioners to correctly forecast
the direction of the movement of stock prices.

Previous research has investigated the cross-sectional relationship between stock
index and macroeconomic variables. Macroeconomic input variables which are
normally implemented for forecasting include term structure of interest rates,
short-term interest rate, long-term interest rate, consumer price index, industrial
production, government consumption, private consumption and gross domestic
product. In this chapter, the closing values of the index were selected as inputs.

A one step forward prediction of the index was performed on a daily basis. The
output of this prediction model was used as input to the LearnCC algorithm for
classification into the correct category that would give an indication of whether the
predicted index value is 1 (indicating a positive increase in next day’s predicted
closing value compared to the previous day’s closing value) or a predicted closing
value of �1, indicating a decrease in next day’s predicted closing value compared
to the previous day’s closing value. Figure 10.2 shows the conceptual model of all
processes needed for this study (Lunga and Marwala 2006a). The first prediction
model can be written as (Lunga and Marwala 2006a):

CVt D F .cvt�1; cvt�1; cvt�1; cvt�1/ (10.15)

where CVt is the predicted close value at time t, cvt � 1 indicates the close value at
day i, where i D 1,2,3, t � 1. The second model takes the output of the first model
as its input in predicting the direction of movement for the index. The classification
prediction stage can be represented as (Lunga and Marwala 2006a):

Directiont D F .CVt/ (10.16)

where CVt is the first model prediction of the fifth day stock closing value when
given the raw data at time t � 1 to t � 4 respectively. Directiont is a categorical
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Table 10.2 Training and
generalisation performance
of LearnCC

Database Class (1) Class (�1) Test performance (%)

S1 132 68 72
S2 125 75 82
S3 163 37 85
S4 104 96 86
Validate 143 57 –

variable to indicate the movement direction of the Dow Jones Index at time t. If the
Dow Jones Index at time t is larger than that at time t � 1, Directiontis 1, otherwise,
Directiontis �1.

The model estimation selection process is then followed by an empirical
evaluation which is based on the out-of-sample data. At this step, the comparative
performance of the model is measured by the classification accuracy of the final
hypothesis chosen for all given databases. The confidence of the algorithm on its
own decision is used to evaluate the accuracy of the predicted closing value category.
The first experiment implements a one step forward prediction of the next day’s
stock closing value. After predicting the next day’s closing value this value is fed
into a classification model to indicate the direction of movement for the stock prices.
As discussed above, the database consisted of 1,476 instances of the Dow Jones
average closing value during the period from January 2000 to November 2005;
1,000 instances are used for training and all the remaining instances are used for
validation (Lunga and Marwala 2006a). The two binary classes are 1, indicating
an upward direction of returns in Dow Jones stock, and �1 to indicate a predicted
fall/downward direction of movement for the Dow Jones stock.

Four datasets S1, S2, S3 and S4, where each dataset included exactly one quarter
of the entire training data, were provided to LearnCC in four training sessions
for incremental learning. For each training session k (k D 1, 2, 3, 4) three weak
hypothesis were produced by LearnCC. Each hypothesis h1, h2, and h3 of the kth
training session was produced using a training subset TRt and a testing subset TEt.
The weak-learner was a single hidden layer multi-layer perceptron with 15 hidden
layer nodes and 1 output node with an MSE goal of 0.1. The testing set of data
consisted of 476 instances that were used for validation purposes. On average,
the multi-layer perceptron hypothesis, weak-learner, performed little over 50 %,
which improved to over 80 % when the hypotheses were combined by making
use of weighted majority voting. This improvement demonstrated the performance
improvement property of LearnCC, as inherited from Adaptive Boosting, on a
given database. The data distribution and the percentage classification performance
are given in Table 10.2 (Lunga and Marwala 2006b). The performances listed are
on the validation data.

Table 10.3 gives an actual breakdown of correctly classified and misclassified
instances falling into each confidence range after each training session. The
trends of the confidence estimates after subsequent training sessions are given in
Table 10.3. The desired outcome on the actual confidences is high to very high
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Table 10.3 Confidence
results

VH H M VL L

Correctly classified S1 96 96 13 15 6

S2 104 104 22 17 14

S3 111 111 6 3 39

S4 101 101 42 12 4

Incorrectly classified S1 23 7 13 3 8

S2 27 0 1 3 4

S3 21 1 2 4 2

S4 24 0 2 2 0

Table 10.4 Confidence
trends for Dow Jones

Increasing steady Decreasing

Correctly classified 119 8
Misclassified 16 24

confidences on correctly classified instances, and low to very low confidences on
misclassified instances. The desired outcome on confidence trends is increasing or
steady confidences on correctly classified instances, and decreasing confidences on
misclassified instances, as new data is introduced.

The performance shown in Table 10.2 indicates that the algorithm is improving
its generalization capacity as new data become available. The improvement is
modest, however, as majority of the new information is already learned in the first
training session. Table 10.4 indicates that the vast majority of correctly classified
instances tend to have very high confidences, with continually improved confidences
at consecutive training sessions (Lunga and Marwala 2006a).

While a considerable portion of misclassified instances also had high confidence
for this database, the general desired trends of increased confidence on correctly
classified instances and decreasing confidence on misclassified ones were notable
and dominant, as shown in Table 10.3 (Lunga and Marwala 2006a).

10.6 Conclusions

In this chapter, an incremental learning procedure, LearnCC, was applied to predict
the financial markets movement direction. LearnCC is found to provide good
results on adapting the weak-learner (MLP) into a strong learning algorithm that
has confidence in all its decisions. The LearnCC procedure was found to evaluate
the confidence of its own decisions. Generally, the majority of correctly classified
cases had very high confidence approximations while lower confidence values
were related with misclassified cases. Consequently, classification cases with low
confidences can be further evaluated. In addition, the procedure also demonstrated
increasing confidences in correctly classified instances and decreasing confidences
in misclassified instances after successive training sessions.
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