
Undergraduate Topics in Computer Science

Autonomic
Computing

Philippe Lalanda
Julie A. McCann
Ada Diaconescu

Principles, Design and Implementation

 Undergraduate Topics in Computer Science

For further volumes:
http://www.springer.com/series/7592

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifi cal Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to fi nal-year topics and applications, UTiCS books take a fresh, concise, and modern
approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fi elds, reviewed by an international advisory board, and contain numerous
examples and problems. Many include fully worked solutions.

 Philippe Lalanda • Julie A. McCann
 Ada Diaconescu

 Autonomic Computing

 Principles, Design and Implementation

 Philippe Lalanda
Laboratoire Informatique de Grenoble
Université Joseph Fourier
 Grenoble , France

 Ada Diaconescu
 Department of Computing and Networking
 Télécom ParisTech
 Paris , France

 Julie A. McCann
 Department of Computing
 Imperial College London
 London , UK

 ISSN 1863-7310
ISBN 978-1-4471-5006-0 ISBN 978-1-4471-5007-7 (eBook)
 DOI 10.1007/978-1-4471-5007-7
 Springer London Heidelberg New York Dordrecht

 Library of Congress Control Number: 2013936543

 © Springer-Verlag London 2013
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

v

 Foreword

 The autonomic computing initiative—the creation of self-managing systems—was
a call to arms from IBM (Paul Horn, 2001) to the industry and academic computing
communities and signifi ed the mainstream adoption of such research fi elds as
intelligent fault management.

 Although IBM set it in the context of coping with the ever-increasing ‘systems of
systems’ complexity and dealing with the total cost of ownership (TCO), researchers
expanded this to next generation of computing and communications, for instance,
pervasive computing, ubiquitous computing, swarm-based computing, agent-based
computing, smart grid, on-demand computing, next-generation Internet, adaptive
communications and the latest trends, green and cloud computing. These streams of
research have found focus through such research conferences as ICAC, EASe,
SEAMS, MUCS and SASO (International Conference on Autonomic Computing,
Engineering of Autonomic and Autonomous Systems, Software Engineering for
Adaptive and Self-Managing Systems, Managing Ubiquitous Communication and
Services and Self-Adaptive and Self-Organizing Systems, respectively). The decade
of research also saw the creation of related initiatives such as Autonomic
Communications and Organic Computing, as well as communities, such as the
IEEE Technical Committee on Autonomous and Autonomic Systems (TCAAS) and
the Autonomic Communications Forum (ACF).

 Due to the complexity of the challenges that this subject brings to the fore, the
Autonomic Computing has to rely on expertise from many fi elds—software engi-
neering, systems engineering, control theory and AI (artifi cial intelligence),
among others. As such it is hard to ‘nail’ down the fi eld which is possibly the
reason there hasn’t emerged a good tutorial text—till now. As with many ‘hot’
research initiatives, the spotlight (and often the funding) moves on, yet the origi-
nal long-term 2020–2030 needs have not. If anything, they have become more
critical. The Software Crisis 2.0 (Fitzgerald 2012) highlighted more than ever
the need to have our software self-managing, due to the demand for data from
digital natives, coupled with the huge volume of data now generated through
ubiquitous mobile devices, sensors and applications.

vi

 The success of the initiative has already been indicated by the notable move of
‘autonomicity’ from the previously mentioned conferences and communities to a
standard topic in almost all computer- and communications-based conferences
and communities. Ironically, the fi nal success of the initiative may be marked as it
no longer exists separately as a specialised fi eld but as a standard, invisible and
integrated part of our systems and software engineering.

 For the autonomic systems research and development to make further leaps
and bounds and move convincingly into the next decade to meet the Software Crisis
2.0 and its other longer term goals requires that it move beyond the research labs
and PhD programmes to our graduate, undergraduate and CPPD (continuous
professional and personal development) courses.

 This book marks the enabler for that next stage.

 University of Ulster, Northern Ireland Roy Sterritt
 12 December 2012

 References

Fitzgerald, B.: Software crisis 2.0. IEEE Comput. 45(4) (2012)
Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. IBM

T.J. Watson Labs, New York (2001)

Foreword

vii

 Preface

 Autonomic computing seeks to render computing systems as self-managed. In other
words, its objective is to enable computer systems to manage themselves so as
to minimise the need for human input. Autonomic computing as an approach is
guaranteed to change the way software systems are developed. Indeed, this new
fi eld is addressing some of the issues resulting from the ever-increasing complexity
of software administration and the growing diffi culty encountered by software
administrators in performing their job effectively.

 This book provides a practical perspective on autonomic computing. Implementing
self-managed systems remains a true challenge today. Thus, beyond giving necessary
explanations about the objectives and interests of autonomic computing, this
book goes through the different software engineering techniques that are currently
available for organising and developing self-managed software systems. In summary,
this book uniquely:
• Provides a structured and comprehensive introduction to autonomic computing

with a software engineering perspective, as far as we are aware this is the fi rst
book to do so

• Presents highly up-to-date information on techniques implementing self-
monitoring, self-knowledge, decision-making and self-adaptation

• Provides a downloadable learning environment and source code that allows students
to develop, execute and test autonomic applications at an associated website
 Authors have created the aforementioned learning environment and placed it

on a web page that will be regularly updated. The environment represents an
autonomic pervasive computing application that simulates a digital home . A dedicated
development environment has been designed around this; it allows the student
to execute autonomic code in a runtime simulation that provides concrete, visual
feedback of the behaviours illustrating what the student has programmed.

 This book is aimed at students and practitioners working on software projects
where system self-management would redress maintenance complexity and cost
issues. Several aspects of this book have been tested in a classroom, which makes
this book ideal for a 10-week lecture programme.

viii

 Content Level : master student/professional

 Keywords : Autonomic computing, Software engineering, Software architectures,
Software monitoring, Software adaptation, Knowledge and reasoning

 Related Subjects : Software engineering

 Authors : Authors are practitioners and recognised researchers in the fi eld. They
have published more than 200 publications in international conferences and
journals.

 Grenoble, France Philippe Lalanda
 London, UK Julie A. McCann
 Paris, France Ada Diaconescu

Preface

ix

 Acknowledgments

 Many useful discussions with colleagues and students helped in the preparation of
this book. The authors would like to thank the following people who, without
reward, reviewed and critiqued the text; their comments and suggestions have been
invaluable in ensuring the quality of this book:

 Luciano Baresi, Charles Consel, Clément Escoffi er, Catherine Hamon, Roman
Kolcun, Pedro Martins, Iulian Neamtiu, Simon O’Keefe, Alessandra Russo, Poonam
Yadav and Shusen Yang.

 We are also grateful to Simon Rees of Springer who encouraged us to write the
book and provided invaluable assistance in the production of the fi nal copy.

 We would also like to thank our colleagues, friends and family for their constant
support, encouragement and patience. Ada thanks Mr. Smith for regularly changing
the subject. Julie thanks husband Grant and son Carter—you can now use my laptop
to watch 1950s cartoons. Philippe thanks his wife, now an expert in autonomic
computing, and his two sons, Grégoire and Arthur—experts to come!

xi

 Contents

 1 Software Engineering to Autonomic Computing 1
 1.1 Software Complexity ... 1
 1.2 The Software Life Cycle ... 5
 1.2.1 Software Development ... 5
 1.2.2 Software Deployment .. 7
 1.2.3 Software Maintenance ... 9
 1.3 Maintenance Challenges .. 11
 1.4 Autonomic Computing .. 14
 1.5 Book Structure ... 17
 1.6 Key Points .. 19
 References ... 20

 2 Autonomic Systems ... 23
 2.1 Autonomic Computing .. 24
 2.1.1 Defi nitions .. 24
 2.1.2 Goals .. 26
 2.1.3 Context ... 28
 2.2 The Origins and Motivations Behind Autonomic

Computing ... 30
 2.3 Self-* Properties and Expected Qualities .. 34
 2.3.1 Autonomic Key Features ... 34
 2.3.2 Fundamental Self-* Features ... 35
 2.3.3 Extended Self-* Capabilities ... 37
 2.4 Benefi ts, Challenges and Degrees of Autonomy 39
 2.4.1 Benefi ts of Autonomic Computing 39
 2.4.2 Challenges of Autonomic Computing 40
 2.4.3 An Incremental Approach to Autonomic Computing 41
 2.5 Similar Initiatives, Current Status and Relation

to Software Engineering ... 43
 2.5.1 Autonomicity in Existing Systems 43
 2.5.2 Top-Down Versus Bottom-Up Approaches 43
 2.5.3 Similar Initiatives ... 44

xii

 2.6 Key Points .. 52
 References ... 54

 3 Sources of Inspiration for Autonomic Computing 57
 3.1 Overview of Infl uences .. 58
 3.1.1 Introduction .. 58
 3.1.2 Natural Systems ... 59
 3.1.3 Adaptive Computing Systems ... 61
 3.2 Biology .. 63
 3.2.1 Overview .. 63
 3.2.2 Introduction to Biological Nervous Systems 64
 3.2.3 Structure of the Human Nervous System 65
 3.2.4 Function of the Human Nervous System 67
 3.2.5 Refl exes and Autonomic Control Loops 70
 3.2.6 Different Nervous System Architectures and Features 71
 3.2.7 Summary of Inspiration from Nervous Systems.................. 72
 3.2.8 Bio-inspiration Beyond Nervous Systems 73
 3.3 Control Systems ... 74
 3.3.1 Introduction .. 75
 3.3.2 Feedback Control ... 77
 3.3.3 The PID Controller .. 78
 3.3.4 Oscillations, Overshooting, Damping and Stability 80
 3.3.5 Control and Autonomic Computing 81
 3.4 Artifi cial Intelligence ... 82
 3.4.1 Introduction to Intelligence .. 82
 3.4.2 Introduction to Software Agents .. 84
 3.4.3 Building Artifi cial Intelligence .. 86
 3.4.4 Summary of AI Relevance for AC 89
 3.5 Complex Systems .. 89
 3.6 Key Points .. 91
 References ... 92

 4 Autonomic Computing Architectures ... 95
 4.1 Autonomic Elements ... 96
 4.2 Architecture of Autonomic Elements .. 98
 4.2.1 IBM Reference Architecture .. 98
 4.2.2 Sensors ... 100
 4.2.3 Effectors ... 102
 4.2.4 Autonomic Manager .. 104
 4.2.5 Architectural Properties of Autonomic Managers 106
 4.3 Autonomic Manager Reference Architecture 109
 4.3.1 The MAPE-K Model ... 109
 4.3.2 Monitoring ... 111
 4.3.3 Analysis ... 113
 4.3.4 Planning ... 115

Contents

xiii

 4.3.5 Execution ... 117
 4.3.6 Summary .. 120
 4.4 Architecture with Multiple Autonomic Elements 121
 4.4.1 Introduction .. 121
 4.4.2 Hierarchical Versus Decentralised Organisation 122
 4.4.3 The ANS Example ... 124
 4.5 Key Points .. 126
 References ... 127

 5 The Monitoring Function ... 129
 5.1 Introduction to Monitoring .. 130
 5.2 Performance Monitoring .. 132
 5.3 Knowing What to Monitor and Monitoring Overheads 134
 5.4 Profi ling ... 137
 5.5 Monitoring Overheads ... 138
 5.6 Monitoring for Free ... 139
 5.7 Building Probes ... 141
 5.8 Examples of Monitoring Tools, Frameworks and Platforms 145
 5.9 Monitoring the Monitors: Adaptive Monitoring 148
 5.10 Key Points .. 149
 References ... 150

 6 The Adaptation Function ... 153
 6.1 Software Adaptation .. 154
 6.2 Code Adaptation .. 156
 6.2.1 Upgrading Code ... 156
 6.2.2 Integrating Code .. 159
 6.3 Code Adaptation Techniques ... 161
 6.3.1 OS-Level Adaptation ... 161
 6.3.2 Program-Level Adaptation... 163
 6.3.3 Component-Level Adaptation .. 168
 6.3.4 Software Services .. 170
 6.4 OSGi .. 173
 6.4.1 Modularity ... 173
 6.4.2 Service ... 175
 6.4.3 Conclusion ... 177
 6.5 iPOJO ... 177
 6.6 Conclusion ... 181
 6.7 Key Points .. 182
 References ... 182

 7 The Decision Function .. 185
 7.1 Introduction to Knowledge .. 186
 7.1.1 Defi nition ... 186
 7.1.2 Forms of Knowledge.. 187
 7.1.3 Knowledge Representation .. 189

Contents

xiv

 7.2 Knowledge in Autonomic Managers ... 190
 7.2.1 Introduction .. 190
 7.2.2 Rule-Based Autonomic Systems 191
 7.2.3 Model-Based Autonomic Systems 193
 7.2.4 Goal-Based Autonomic Systems 194
 7.2.5 Utility-Based Autonomic Systems 196
 7.2.6 Autonomic Systems That Learn .. 197
 7.3 Model-Driven Autonomicity ... 199
 7.3.1 Introduction .. 199
 7.3.2 Model Representation .. 200
 7.3.3 Architectural Models ... 201
 7.4 Reasoning Techniques ... 204
 7.4.1 Programming Languages ... 204
 7.4.2 Search-Based Reasoning ... 205
 7.4.3 Logic-Based Reasoning ... 206
 7.4.4 Classifi ers and Statistical Learning Methods 208
 7.5 Bayesian Networks Example ... 208
 7.6 Key Points .. 213
 References ... 214

 8 Evaluation Issues ... 217
 8.1 Evaluating Autonomic Systems ... 218
 8.2 Evaluation Elements .. 219
 8.2.1 Quality of Service .. 219
 8.2.2 Cost .. 219
 8.2.3 Adaptivity .. 221
 8.2.4 Time to Adapt and Reaction Time 221
 8.2.5 Sensitivity .. 222
 8.2.6 Stabilisation ... 223
 8.2.7 Failure Avoidance (Robustness) and Autonomy 224
 8.2.8 Interfacing to the Outside World 225
 8.2.9 Centralisation Versus Decentralisation 226
 8.2.10 Granularity/Flexibility ... 227
 8.3 Some Evaluation Metrics for Emergent Systems 228
 8.3.1 Price of Anarchy (PoA) ... 229
 8.3.2 Equilibrium .. 229
 8.4 Benchmarking .. 230
 8.5 The Autonomic Computing Benchmark: A Summary 232
 8.6 Key Points .. 233
 References ... 234

 9 Autonomic Mediation in Cilia .. 235
 9.1 Software Integration .. 236
 9.2 Cilia .. 239
 9.3 Autonomic Cilia ... 242
 9.3.1 Overview .. 242
 9.3.2 Cilia Touchpoints ... 243

Contents

xv

 9.3.3 Cilia Meta-level and Base Level 245
 9.3.4 Cilia Dynamic Monitoring ... 247
 9.3.5 Cilia Dynamic Adaptation ... 249
 9.3.6 Knowledge Module .. 251
 9.4 Towards Autonomic Life-Cycle Management

of Cilia Chains ... 251
 9.4.1 Challenges and Motivation .. 251
 9.4.2 Model-Based Solutions .. 253
 9.4.3 The Cube Project ... 254
 9.5 Key Points .. 259
 References ... 260

10 Future of Autonomic Computing and Conclusions 263
 10.1 Autonomic Computing in This Book .. 264
 10.2 Alternative Autonomic Stories .. 265
 10.2.1 Autonomic Communications ... 265
 10.2.2 Autonomic Computing, Right Down to the Metal? 268
 10.3 Autonomic Computing in the Near Future 270
 10.3.1 Engineering Autonomic Systems 271
 10.3.2 Managing Complexity ... 272
 10.3.3 Who Guards the Guards? Trust and Assurances

in Autonomic Computing .. 273
 10.4 Conclusion ... 276
 10.5 Key Points .. 277
 References ... 278

Annex: Learning Environment ... 279

Index .. 285

Contents

1P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_1,
© Springer-Verlag London 2013

 Software, as an artefact, has been tremendously successful. It has pervaded every
aspect of our professional and social life, due mainly to the outstanding advances in
hardware, but also to undeniable progress in software engineering practices that
allow the timely production of high-quality computing products.

 Software is however a victim of its own success. The software systems of
today have to constantly face new and demanding requirements in terms of their
availability, robustness, dynamism and pervasiveness. This is challenging, the
way software systems are produced and managed. In particular, great pressure is
put on the maintenance of software and systems; maintenance tasks are becoming
increasingly diffi cult and correspondingly more time-consuming to carry out.
Today, many believe that we have reached a barrier in terms of complexity and that
innovative practices are needed to ensure the continuous delivery of software-based
services.

 In this introductory chapter, we present how software systems are currently being
developed and managed. We show how the use of software has evolved and how this
has impacted on the software development and maintenance processes. In particular,
we show that much of the complexity involved with the software life cycle has
moved from the development stage to the maintenance stage, which raises formi-
dable challenges for practitioners.

 Finally, we briefl y introduce the fi eld of autonomic computing, a relatively new
spin on the ways we build and maintain software systems and whose purpose is to
overcome some of these aforementioned problems we highlight. This chapter moti-
vates the need for autonomic computing systems.

 1 Software Engineering to Autonomic
Computing

2

1.1 Software Complexity

 Software systems can be amazingly complex. They can be diffi cult to conceive, to
implement, to understand and to maintain. This raises signifi cant challenges that
gave birth to the software engineering approach to creating computing systems a
few decades ago and has motivated the autonomic computing movement today.
But what is a software system, and why is it so complex?

 A software system is a collection of programmes and data deployed on one or
several computers for execution. It is complex for a number of reasons. First, pro-
grammes are heterogeneous constructions. They can be made of a number of interact-
ing computing entities, very diverse in the sense that they have their own structure,
their own state at runtime and, sometimes, their own language. These computing
entities are typically project specifi c. That is, they are created for the purpose of a
single project, and this makes it diffi cult to reuse the experience obtained from one
project to another, in terms of the development and maintenance of these entities
across projects.

 As observed by Frederic Brooks in his famous essay about software issues [1],
as the size of systems increases, the type and number of entities to be assembled
increase exponentially, meaning structural complexity can be amplifi ed.

 Brooks also pointed out that software is intangible. Accurately representing the
computing entities that compose a system and their behaviour is a non-trivial task.
It requires defi ning a number of views at different levels of abstraction and many
relationships between these different views. This separates the software building
process from other more traditional engineering disciplines, where entities are more
concrete and can be represented and understood more easily.

 A software project is not limited to programmes and data though. It also comes
with various software artefacts built throughout the software development process,
including requirements specifi cations, architecture diagrams, documents, code, test
suites and confi gurations specifi cations. There are tight relationships between these
artefacts that are hard to express and to maintain. Most of the time, they are not
entirely completed to perfection and some artefacts can be lost over the course of a
project (such as design rationales). For instance, it is not unheard of that a piece of
code can no longer be directly related to the requirement that motivated it.

 Software artefacts are many, and the sheer number of these artefacts (and their
relationships) adds to the complexity associated with modern software systems.

 Brooks also stated that an essential feature of software systems is their ability to
change. The source of the pressure to change comes from the clients and users, a
phenomenon not normally associated with objects that are traditionally manufac-
tured. For those objects, evolutions are carefully planned and incorporated in subse-
quent releases. In contrast, most software systems have to be regularly updated to
stay relevant. There are of course many good reasons for that: satisfi ed users want
more functions, bugs need to be fi xed, market conditions change, incoming load has
increased, hardware or software resources have evolved, etc. But the bottom line is
that most people do not understand enough about the software to comprehend the
extent of the diffi culty and risks involved with updating existing systems.

1 Software Engineering to Autonomic Computing

3

 This pressure to regularly adapt software to varying conditions has deeply
impacted software engineering in the past, and this remains true today. In recent
years, for instance, software development practices have been made more agile.
Indeed, in many cases, a development project has to be able to start even when some
business and technical aspects have yet to be nailed down. Similarly, market pres-
sures sometimes push companies to release ‘unfi nished’ products, leaving bugs and
missing functionalities for subsequent releases. There are of course advantages in
releasing products early. An example of this is where a product is conceived for some
purpose, but on release its usage changes and then its subsequent development follows
that usage. Flickr is one such example, it was released as part of a multiplayer online
game (from Ludicorp), but users availed of the photo storage capabilities and this
popularity drove the focus to photo storage and exchange. 1

 The requirement for frequent changes continues when the system is deployed
and in operation. Here again, evolutions are necessary to preserve system utility
and relevance. Changing software while it is in use brings additional challenges.
One such challenge could be where the developers, systems analysts and other staff
associated with the creation of the software are now long gone. Another example
is where systems have to be maintained with new resources, and sometimes this
may be required to happen where documentation is poor or non-existent. Also,
where the systems are in active use and cannot be stopped to carry out maintenance,
the computational state, for example, the values of the parameters and the objects
running, has to be preserved. As we will see later in this book, this brings about
non- trivial problems.

 In this context, time and complexity do not mix. As time passes and system evolu-
tions accumulate, the complexity of a software system continues to grow. In fact,
where evolutions have not been anticipated, their implementation can even alter the
logical structure of the system. Invariably, the software system gets more and more
complex: artefacts are more numerous, less coherent and more intricate. System
evolution increases in diffi culty, and each new evolution can make the situation
worse! There may come a point in time where only a complete refactoring of the
system can decrease its complexity. This task is however very costly and, generally,
delayed as long as possible—often triggered when updates simply cannot be accom-
modated. This observation led to Lehman’s law stipulating that when a programme
is modifi ed, its complexity will increase, provided that one does not actively work
against this [2].

 In spite of this considerable complexity, the software community has been tremen-
dously successful. Software systems are everywhere: they have pervaded most
aspects of our working and social life. In industrial societies, most people possess
one or more computers that take different forms such as laptops, tablets and smart
phones. Companies such as Google, Twitter or Facebook are known all over the
planet, and their services are used by millions of people. They have created new
ways to work, to learn and, above all, to communicate. Software systems are also

1 http://www.ludicorp.com/about.php (2012).

1.1 Software Complexity

http://www.ludicorp.com/about.php

4

becoming more distributed, and they are getting larger. Systems counting many mil-
lions of lines of code, and which are subjected to thousands of updates per year, are
a frequent occurrence. They arguably constitute some of the most complex artefacts
ever built by human beings. To give an order of magnitude, David A. Wheeler esti-
mated that version 7.2 of the RedHat Linux operating system is worth 8,000 person
years in terms of development time. 2 As a comparison, the construction the Empire
State Building required only 3,500 person years!

 It seems, however, that the situation is changing. New domains like Internet services,
cloud or pervasive computing are emerging and placing new demands on software
systems. Specifi cally, systems have to be even more distributed, more heteroge-
neous, more dynamic, developed more rapidly, etc. Many think we have reached a
barrier in terms of being able to overcome such complexities. Software engineers
are beginning to feel that they are unable to anticipate, design and maintain such
systems using traditional approaches.

 As a result, there has been a push towards more automated approaches to help
develop and, above all, administrate and maintain software systems. IBM, in order
to refer to this new set of practices, coined the term autonomic computing .

 Autonomic computing is the main topic of this book. It can be viewed as one
approach to the engineering of software systems and, as such, encompasses the broad
scope of sub-disciplines in the computing fi eld, encompassing requirements engineer-
ing, software architectures, design, development, testing, maintenance, confi guration
management and quality. For these reasons, we begin this book by providing a back-
ground introducing ‘traditional’ software engineering approaches. We believe it is of
major importance to be familiar with such practices in order to understand why and how
they have adapted to face new challenges. Inversely, it cannot be denied that most of
these traditional techniques are still required in the implementation of future solutions.
In this introduction, we focus on the notion of customisable software processes to guide
the development and maintenance of software systems for it has had a deep and lasting
impact on software practices. The software engineering processes acknowledge that the
production of software systems can be managed and, in doing so, have encouraged the
controlled production of reliable, high-quality, cost-effective, software systems.

 Software processes describe the activities that are to be performed to enable
software system production. There have been a number of models that describe the
individual activities that occur during this process and how those activities interact,
characterising the methodologies that defi ne best practice. Activities are divided
into development and administration cycles. Development activities deal substan-
tially with the production of programmes meeting specifi ed requirements.
Administration activities are more concerned with system deployment and its
day- to-day management and maintenance. Identifying the commonality of activities
for a number of software development initiatives and then sharing the resulting
knowledge, artefacts, etc. have had a great impact on software practices. That is, it
has allowed the defi nition of the successful, repeatable techniques that are now
taught in universities and widely used by practitioners.

2 http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

1 Software Engineering to Autonomic Computing

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

5

1.2 The Software Life Cycle

1.2.1 Software Development

 Software engineers identifi ed the problem of complexity early in the history of computing.
The famous so-called software crisis appeared in the late 1960s, when the term software
engineering was coined. Put simply, software engineering focuses on how complex
computing projects can be designed and then managed over the life cycle of a project.

 Software engineering can be defi ned as a systematic discipline that aims to
improve the specifi cation, design, implementation and maintenance of software
systems by increasing their quality and cost-effectiveness. Precise defi nitions of
software engineering are not readily found; however, many books introduce the
subject in detail [3 , 4]. Nevertheless, its concepts are derived from the fi elds of
mathematics, computer science and, of course, engineering practice.

 Software engineering has developed successful techniques and processes to help
build programmes and conduct projects. Many techniques rely on the principles of
modularity and separation of concerns. Application of these principles to programming,
for instance, has led to the defi nition of structured programming, object- oriented
programming, software componentisation and so on. The implementation of these
principles to better achieve software projects has resulted in the defi nition of devel-
opment processes.

 Development processes have been defi ned in order to decompose the production
of software into a number of smaller and more controllable activities. Particularly, a
software development process specifi es and organises a set of interrelated activities
that can be followed in order to properly deliver a quality software system. Because
different software systems are required for each specifi c situation, processes are
usually defi ned as models (i.e. defi ned in abstract terms) and then customised,
case- by-case, to meet the specifi c needs of each particular software project.

 Development activities include requirement management, design specifi cation,
implementation and the validation of software systems. A number of process models
have been proposed to coordinate and implement these activities. The Waterfall
model [5], for instance, relies on a sequential approach: requirements fi rst, then
design, coding and testing. However, this approach does not provide the opportunity
to revise or review the work carried out in the initial stages of the life cycle when the
project is in the development process (i.e. one cannot revisit the requirements and
design stages when working in the development and testing phases).

 Such sequential processes are less popular today because of their inability to deal
with change. They are simply not suited to the way in which software is produced
in the current fast-paced, dynamic business environments. Nowadays, the approach
to the development process is incremental. As illustrated by Fig. 1.1 , software systems
are built through successive increments, where at each stage, requirements, design,
coding and testing activities are carried out. This process is repeated until the software
system is ready for delivery.

 Each activity uses and produces software artefacts that are very diverse by nature.
They can include textual documents, structured texts, graphical models, source fi les

1.2 The Software Life Cycle

6

and binary fi les. These artefacts are complex because of their number and their volume.
They can be made of many interacting elements and are consequently hard to
integrate, administer and maintain. They are also characterised by a number of
traceability links. For instance, systems architectural decisions are made to meet
some requirements, so the pieces of code that was used to implement this should be
able to be traced back to an architectural design and then to its requirements, etc.

 These artefacts constitute the base elements of every software project and deter-
mine its success. They must be modular, with strong cohesion and weak coupling. 3
That is, where the cohesion of software artefacts is strong, its readability, maintain-
ability and reuse are maximised. Likewise, minimising the coupling between arte-
facts is also good for readability, maintainability and reusability. These properties
are then of utter importance when it comes to software evolution. Well-structured,
coherent and decoupled artefacts favour evolution and limit the propagation of
uncontrolled side effects. Maintaining relationships between artefacts is highly
important. Not understanding the rationale behind an artefact’s internal structure
and its relationships makes it almost impossible to update a system without the risk
of causing undesirable side effects.

 A simple example could be where a component is used to determine the location
of the user. This component is used to direct music to the nearest speaker to that user.
The code that ships the music around the room uses a location component as a black
box (i.e. the system is not interested in how it calculates location, just the integers that
represent location co-ordinates resulting from executing the code in the component).
This system has the advantage of having its functions and services represented as
components, so it has the advantage of being decoupled and well structured. Therefore,
when we fi nd a better way to get the user’s location, we can take out the old component
and plug in the new. However, side effects can still happen. Perhaps the precision of
the new location component is higher than the old one, so the numbers representing
the co-ordinates adhere to a smaller location grid space. When added to our music
system, this might have the side effect of not mapping to the locations of the speakers,
and therefore, the system will direct music elsewhere.

3 Cohesion is about the functional scope of an artefact (a component, a class, a design diagram, an
analysis diagram, etc.). Coupling is about the number and nature of relationships between
artefacts.

Design Requirements

Implementation Test

Ready for delivery

 Fig. 1.1 Software life cycle

1 Software Engineering to Autonomic Computing

7

1.2.2 Software Deployment

 Deployment starts when a software system has been duly approved for delivery.
Its purpose is to produce a live software system to the user, and this may ensure that
it is deployed and running on the client’s site. It handles the transfer, installation,
confi guration and integration of concrete artefacts therein. It initiates the different
executable components of the software system and deals with subsequent updates.

 Deployment is normally carried out by authorised administrators. It is tradition-
ally decomposed into the following (sub-) activities (Fig. 1.2): release, retire, install,
uninstall, activate, deactivate, update and adapt [6].

 Iterating through this list, the purpose of the release activity is to prepare the
software so that it can be transferred to the client. Simply put, it consists of packag-
ing the constituents of the software with the information required by the deployment
processes that follow. De-release , or retirement , is the inverse activity of release .
It is carried out when a software system is obsolete or is no longer needed.

 The installation activity inserts the software in the target environment and
confi gures it for execution. In the simplest cases, installation is about copying
fi les to a target execution infrastructure. Most of the time, however, it requires a
sequence of operations to be performed such as uncompressing fi les, selecting
locations for installation, getting appropriate permissions, confi guring some
aspects of the software system and integrating the software system in the existing
computing infrastructure.

 The activation activity comes after the software system installation. Its purpose is
to start the executable elements that have been previously installed. In the simplest
cases, activation consists of calling a unique binary fi le (i.e. a programme) with
the appropriate input parameters. In some situations, however, it requires several
programmes to be initiated, and these may be installed on different machines.

 Un-installation is the inverse activity of installation. It is carried out when the
presence of the software system is no longer required. Deactivation is the opposite
activity of activation. It is done when the execution of a software system is no longer

Install

Update

Activate

Release
 Fig. 1.2 Major deployment
activities in the software life
cycle

1.2 The Software Life Cycle

8

required (or the service is no longer offered). Deactivation and de-installation are
complex activities in their own right due to code dependencies. Their implementa-
tion may imply the reconfi guration of components that have a dependency relation-
ship with the element that is being decommissioned.

 The purpose of the update and the adapt activity is to change parts of the (or indeed
the complete) software system that has been previously installed, which may or may
not be activated at this point. This activity is carried out as many times as necessary
during the lifetime of a software system. Updates are traditionally performed on the
client site by an administrator. More regularly, however, updates are initiated
remotely by a third party, for example, an operating system (OS) update from an OS
vendor, who controls delivery dates and update frequencies. Periodic security
updates to the software is a good example of this. Here, code that fi xes security
vulnerabilities is developed and put at the clients’ disposal by software providers.
A security patch can then be inserted by the client administrator or remotely pushed
by the provider, with or without prior authorisation, depending on the vendor–user
agreement.

 Institutively, the update activity would appear to be a simpler task compared
to installation and activation, but is it? Clearly, considerable confi guration and
integration activities have to be carried out during the early phases of the life
cycle. However, a closer look reveals that the update activity is heavily constrained
and often very complex. It has to respect the computing environment that uses or
relies on the software component so as to not introduce new problems. Also, an
update must preserve data, states, intermediary results, etc. Poorly designed
updates can introduce new problems requiring the software to be regressed back
to its previous state.

 Deployment is a key software activity. It is technically very challenging in the sense
that all sorts of operations are required: software artefacts have to be compressed, packaged,
transferred, uncompressed, copied, confi gured, integrated, started, modifi ed, etc. In
addition, software systems can be required to stay in operation while further deployment
activities are executed, which clearly increases the level of diffi culty.

 Deployment has long been underestimated and only now receives due attention.
The recent availability of new tools, like the Chef confi guration management tool, 4
for instance, facilitates the work of administrators, providing higher-level languages
to automate complex infrastructures deployment. However, even with such new
generation tools, the level of complexity remains high.

 The complexity of the deployment activities is actually at the heart of the motiva-
tion for autonomic computing. Performing the various deployment tasks, in fact, is
complex. For instance, the initial confi guration stage can include hundreds of
parameters to be set. Also, software systems may have to be integrated with hetero-
geneous systems, whose lifetimes can be dynamic and can be spread over local or
wide-area networks. It is necessary, in this situation, to identify these systems
and their confi gurations to correctly install and run the software. Over time, as soft-
ware and its underlying execution platform change, some deployment activities,

4 Chef—open-source, systems integration framework: http://www.opscode.com/chef.

1 Software Engineering to Autonomic Computing

http://www.opscode.com/chef

9

including confi guration, must be repeated (see next subsection). This activity comes
at a great cost, the majority of which is not the computing infrastructure, but the time
taken and salaries required for the staff (system administrators, etc.) that are involved
with this process.

1.2.3 Software Maintenance

 Maintenance starts after the software’s initial installation. Its purpose is to modify
the software being used in order to fi x bugs, to improve quality of service or to
address new conditions for execution. Maintenance comprises a number of activities,
ranging from the ‘simple’ reconfi guration of certain parameters to more complex
operations, like the development of new pieces of code or the migration to new
running platforms.

 It is important to understand that maintenance is not limited to minor changes
in operational systems. Maintenance, in fact, has to deal with changing user require-
ments and operating environments (as explained in Sect. 1.1) and sometimes
requires that major updates are carried out. In recognition of this, Lehman termed
the maintenance function as evolutionary development [2].

 Traditionally, maintenance activities are classifi ed into four categories. Corrective
maintenance takes care of faults and errors detected in delivered software. Adaptive
maintenance is concerned with evolving the system to better match user and changes
in the system’s environment. Perfective maintenance deals with evolutions in the
desired functions or related quality of service. Finally, preventive maintenance
targets the detection and correction of latent faults in the delivered software. Contrary
to common perception, correcting misbehaviours accounts for, on average, less
than 20 % of the total maintenance effort [7]. That means that around 80 % of the
maintenance effort is dedicated to software evolution (where adaptive maintenance
accounts for 25 %, perfective maintenance for 50 % and preventive maintenance
for only 5 %).

 It is commonly accepted that maintenance is a complex, time-consuming activity
that can take far more time than the initial development of the software. In fact, it is
today acknowledged that between 50 and 80 % of effort spent on a computer system
will happen after it has been delivered to the customer. As detailed in the previous
sections, updating a software system is inherently complex. It can require changing
unstructured or badly structured code, often in situations where documentation is
lacking. As software ages, the software structure is likely to be altered by successive
updates, and, as a consequence, changes become diffi cult and risky to perform
(since side effects are more likely to occur).

 Maintenance is carried out by one or several system administrators, often called
the ‘sysadmin’. The responsibilities of system administrators are many and vary
according to organisations. In most cases, they require high technical skills in order
to, for instance, confi gure databases, Web servers or networks, in accordance with
what is expected of the system. They also need in-depth expertise to be able to solve
problems affecting the behaviour of a software system: they need to understand

1.2 The Software Life Cycle

10

the purpose and nature of a software system in order to quickly determine what goes
wrong and to fi x it (or to report it to interested parties).

 The administration job has often to be carried out under considerable stress.
As we will see later in this and the next chapter, the complexity and stress faced
by administrators can lead to bad decision-making with, sometimes, undesirable
outcomes.

 As illustrated by Fig. 1.3 , we can distinguish two forms of administrative actions:
the adaptation of software already installed and the integration of newly developed
artefacts. New artefacts can correspond to expected updates or to specifi c answers
to requests initiated by the administrator. In the latter case, the term ‘software patch’
is often used in maintenance terminology.

 Let us develop these two categories of actions. In the fi rst case, the purpose is
essentially to monitor the software systems and to adapt the software artefacts that
are already present. There are a number of ways in which this can be achieved. First,
it can be executed through the appropriate tuning of confi guration parameters,
which can be tricky in some instances. Indeed, many systems are characterised by
hundreds of parameters with tight interrelationships. Finding out the best values and
the right balance between values requires advanced skills and expertise that are not
easy to fi nd. It may often require third party intervention of an expert or consultant.
Complexity is so considerable that in many cases, most parameters remain
unchanged, even at the cost of degraded performance. Adapting existing artefacts
may take other forms. It may require that some programmes or data is moved to
different computers or different middleware. That is, it can also involve the migra-
tion of some parts of the (or the complete) software to a new version of a supporting

 Fig. 1.3 Responsibilities of the system administrator

Design Req.

Implem. Test

Systems administrator

Installed software

MonitoringNew developments

Deployment

1 Software Engineering to Autonomic Computing

11

middleware. Such an achievement may be long and diffi cult and may demand code
rewrites. In general, processes have been defi ned in order to guide such operations
and minimise trouble.

 In certain cases, reconfi guring existing artefacts is not enough to enable the system
to adapt to new conditions. Here, deeper changes motivating system redevelopment
are needed. Note, new developments generally use the same tools and processes as
those used to develop the system initially (with the additional constraint that existing
software has to be accounted for). Also, system administrators use the same deploy-
ment primitives in order to install, integrate and activate updates. In this regard,
initial developments and subsequent maintenance-related developments are very
similar. Their shared purpose is to produce code meeting current requirements and
deploy it on the clients’ site.

 Relatively little effort has been dedicated to the deployment and maintenance
activities (i.e. compared with the relative importance and cost of these phases). For a
long time, the software engineering activity was focused on the development phase.
This predominance is not anecdotal. This focus on the development aspects of soft-
ware engineering is not surprising. Most research effort in the history of software
engineering has sought to improve the way we produce software systems that meet the
clients’ expectations, minimising the chance of misbehaviour at runtime, etc. [8].

 In this context, the software administrator has a diffi cult and sometimes unac-
knowledged task. Software administrators often have to carry out delicate and
sometimes vital operations with poor tools that often are not well integrated or suf-
fi ciently abstract to aid the job. When a problem is detected, system administrators
are often faced with a dilemma. Either they update the system, without all the neces-
sary knowledge to be certain that they can avoid undesirable side effects, or they
limit their actions and only report problems, waiting for problems to be fi xed by
developers (termed as new developments in Fig. 1.3). The latter may receive low
prioritisation from project managers and from developers, and therefore, this task
may take some time.

 Many think that this situation has worsened in recent years. Indeed advances in
hardware and networks, combined with ever growing demands for new features and
the increased pressure on time-to-market, have deeply changed the software industry.
Customers are longing for new software-based services, and companies are striving
to supply these new services as fast as possible. This raises serious challenges since
it means more complexity and more frequent updates, which in turn equates to more
functionality and more code being required to be delivered in increasingly shrinking
delivery times. Ensuring system correctness and dependability in these conditions
becomes a real challenge.

1.3 Maintenance Challenges

 Outstanding advances in hardware, communications and software engineering
have contributed to place software at the heart of our society. This software ‘inva-
sion’ is still going on, and nothing indicates that it will slow down soon. First,

1.3 Maintenance Challenges

12

hardware performance is still increasing exponentially. Though, under reassess-
ment due to the bounds of physics, Moore’s law is still in evidence. That is, we can
still observe that storage capacity and CPU speed will approximately double each
18 months. Also, all sorts of networks are spreading around us. They allow the
connection of a myriad of equipment, some with a relatively small footprint, but
powerful enough to host software-based functions. The pervasive and cloud com-
puting paradigms, that either place computing into the fabric of the environment or
alternatively move storage and heavy computing into the cloud (a virtual computer
whose geographical location can be totally transparent to the user), merely rein-
force this trend.

 However, this constant evolution is not without serious problems. In fact, the
way software systems are currently developed and maintained is called into ques-
tion. In short, the development of software systems has to become faster and more
agile, whereas maintenance has to be able to perform more functions more effi -
ciently in order to remain in line with its environment.

 To meet these demanding requirements, practitioners have adopted new develop-
ment practices. First, the time when software was developed entirely for one project is
over. Instead, due to reduced costs and production delays, software development
is more like assembling external components—called COTS (components off the
shelf)—which are often provided by third parties (such as corporations and
open- source communities) . COTS can generally be confi gured before being executed
and administered during execution. But they are very heterogeneous. They frequently
come with their own confi guration methods, tools and vocabulary. Thus, parts of a
single system can be confi gured via a specifi c XML-based language, for example,
while others by a command line interpreter or via a Web interface. Moreover, COTS
allow the confi guration of many parameters, sometimes several hundreds, and this
facilitates the system being tailored to user preferences as well as helping it fi t with the
current computing infrastructure that will be used to support it. Also, they have diverse
goals and evolution cycles, so, the maintenance of COTS-based systems requires
expertise in numerous technologies and tools. Moreover, it also requires being able to
follow changes of components that are by de facto beyond the user’s control.

 Also, components that make up software applications are often distributed over
networks of different kinds. So, more of the software maintenance activity includes
the confi guration and subsequent monitoring of a number of networks. Here again,
networks are often not under the system administrator’s sole control; they evolve
according to their own strategies and schedules, not specifi cally following the
exclusive needs of the software systems that use it. The proliferation of networks
also brings the development of new software distribution methods.

 With the arrival of cloud computing, many services are now remotely available,
for instance, offi ce automation suites such as Microsoft Offi ce. These new applica-
tions constitute the main business of modern corporations like Google. However,
the externalisation of services and data storage has led to stringent requirements
regarding system availability and performance. Service consumers, especially cor-
porations, may request availability rates of 99.999 %, in the knowledge that service
interruptions imply heavy fi nancial penalties and thus will be minimised. In 2008,

1 Software Engineering to Autonomic Computing

13

for instance, the cost of downtime for a corporation like Amazon came to tens of
thousands dollars per minute. 5

 In order to reach such a quality, speaking in terms of performance and availability,
maintenance operations have to be performed very quickly and reliably. However,
currently, on large heterogeneous software, maintenance operations do not meet
these requirements.

 Thus, software applications have become heterogeneous, networked and vital for
both the economy and the society overall. They are part of sophisticated ecosystems
and evolve in unstable, even unpredictable, contexts. As explained earlier, a direct
outcome is that maintenance has become increasingly complex and administrators
have to face increasing pressure.

 Of course, companies are aware of this issue and a number of counter measures
have been taken. For instance, the heterogeneity and complexity of administration
tools have required the specialisation of administrative staff and the setting up of
specifi c training programmes. CISCO and Oracle, among others, provide qualifi ca-
tion certifi cates to reward system administrators and show that they have success-
fully shown that they can control their specifi c system. Nevertheless, it is clear that
software systems made of networked heterogeneous elements are still diffi cult to
install, confi gure and maintain, not to mention, to optimise. Administrators, as
skilled as they may be, are reaching the limit of human capability. Also, the cost of
hiring experts is not affordable beyond a certain limit.

 At the same time, the human resources needed for the deployment and mainte-
nance of software has greatly increased over the last few years. Human beings are
increasingly more involved in the day-to-day operations of software systems.
However, until recently, human administration mistakes were not really taken into
account. That is, the administrator was not considered as a potential source of errors
during the deployment, updates and, more generally, maintenance and problem fi x-
ing stages of the software life cycle. This assumption is no longer reasonable. At the
beginning of 2000, many surveys have published the causes of errors and repair costs
in the information systems, for example, [9]. Figure 1.4 displays the result of a
6-month survey conducted in 2001 concerning three anonymous medium-sized

 Fig. 1.4 Percentage of errors ordered by cause for three Websites in 2000 [10]

5 http://news.cnet.com/8301-10784_3-9962010-7.html.

1.3 Maintenance Challenges

http://news.cnet.com/8301-10784_3-9962010-7.html

14

Websites. It shows very clearly that most of the errors were caused by the ‘opera-
tions’, that is, the system administrators. Today, it is estimated that the system admin-
istrators themselves cause approximately 40 % of errors resulting in breakdowns.

 It is foreseen that this situation is going to get worse. In 1991, Mark Weiser has
described a world in which computers would be omnipresent and transparent to
users [11]. This vision has given birth to the pervasive computing fi eld that is get-
ting more concrete around us. Soon, non-expert users will have to carry out some
form of software installation, maintenance, etc. The technical skills of such users
may be relatively low, and even if it is reasonable to think that these skills will
increase with experience, it is not likely that it would reach a suffi cient level for
facing the complexity of current and future computing systems. But, more than a
problem of skill sets, the users are not interested in being system administrators;
they simply want the smooth operation of the software.

 On the other hand, the environment in which pervasive applications evolve is
highly fl uctuating and depends, for instance, on the operation of the network infra-
structure, energy availability and other conditions (sound level, temperature, etc.)
that occur at each instant. An extreme example of this dynamism lies at the cyber–
physical interface—the crossing point where the computer system and the environ-
ment meet. This issue pertains mostly to modern embedded computing systems
where the extreme dynamism and interdependency between the critical components
and the physical environment are as yet not well understood. Here, the gap between
software engineering and systems engineering needs to be bridged to allow systems
to adapt to change.

1.4 Autonomic Computing

 As the development, maintenance and operation of computing systems became more
complex, communities began to emerge with a specifi c remit to examine ways to
overcome the problems mentioned in the previous sections. In particular, we have
witnessed in recent years the development of more automated deployment and main-
tenance strategies. Such approaches, based on dedicated tools, are aiming to automate
a number of administrative tasks such as installing packages and modules, defi ning
authorisations and updating confi gurations. Many approaches, however, are based on
low-level script-like specifi cations and still require strong technical system adminis-
tration expertise in order to carry out specifi c operations. Also, these approaches only
address a few aspects of software administration. Essential maintenance tasks, like
architecture evolution, for instance, are still ignored or insuffi ciently supported.

 One major initiative came from IBM, and this sparked off the use of the term
‘autonomic computing’ to characterise the notion of a computer system that is able
to adapt to internal and external changes with minimal intervention from the human.
Autonomic computing is the result of this trend of automating parts of the mainte-
nance task.

1 Software Engineering to Autonomic Computing

15

 Paul Horn—the research director of IBM—detailed this autonomic computing
paradigm in a manifesto in October 2001 [12]. Here he identifi es software complexity
as being the major challenge for computer science for the beginning of the century.
To paraphrase, he describes this complexity as a short-term obstacle to the evolution
of services and software and, in the absence of any systemic change or paradigm
shift, as a long-term threat where the complexity of software keeps increasing until
human resources can no longer cope. In this view, system administrators will have
to solve complicated problems, the causes of which will be diffi cult to comprehend.
Consequently, the performance and reliability of such systems will be endangered,
with, of course, knock on fi nancial impacts.

 With the drive for more profi tability in corporations, it is unlikely that manage-
ment committees will endorse colossal budgets to maintain systems. In addition, a
further problem is that complexity also impacts on security: how can we guarantee
the security of data, in such an open world, if we cannot make guarantees regarding
the software that handles it? Similar statements can be made regarding systems
availability or other non-functional software qualities.

 IBM’s premise is to enhance systems with self-management capabilities.
Systems are thus able to evolve in an autonomous manner, fi xing undesirable
behaviours and adapting to their changing requirements and environment. This
autonomy is introduced in order to soften the complexity of the administration
task, and in doing so, the system administrators delegate a part of their workload
to the system itself. That way, they can focus on the system’s fundamentals and
off-load more mundane tasks to the automatic administration software. Also, it is
expected that administration tasks performed by the systems themselves can be
of higher quality, decreasing the introduction of bugs during the maintenance
phase.

 The level of autonomy given to a system is a product of two aspects. They
relate to the ability to map the administration function to a process executable by
the machine and how easy it is to implant that function into the system. That is,
some administration tasks are diffi cult to defi ne so automating them is corre-
spondingly diffi cult. Further, it may also be diffi cult to inject such automation
code into some legacy systems where the source code is obscure or non-existent.
As we will see later on, different levels of autonomy can thus be targeted.

 The expected benefi ts of autonomic computing are numerous and obviously
include the decrease of maintenance expenditure and risk. The goal is to obtain
systems that are able to confi gure themselves automatically, and with a tendency
towards zero confi guration for the administrator, hence reducing costs. As a conse-
quence, autonomic computing promises to allow a revaluation of the tasks allocated
to the human system administrator, allowing them to focus on more strategic or
poignant aspects of the system support function. Autonomic computing also has the
potential to increase service availability. The anticipation of potential problems and
the automatic system diagnosis can provide increased application dependability and
many non-functional qualities. It can, for instance, increase security, so that the
system can be better prepared to counter malicious acts.

1.4 Autonomic Computing

16

 Of course, these benefi ts are very appealing and have fostered lots of research
work around the world. This endeavour has taught us one thing, however, that
implementing autonomic solutions is also very challenging. That is, autonomic sys-
tems are more diffi cult to design, implement and validate than software systems
without the ability to self-manage. This is quite understandable; complexity cannot
just disappear. Like a computation law of thermodynamics, the complexity is sim-
ply moved from runtime to design time, as a countermeasure to the increasing com-
plexity involved with runtime administration so that it can cope with dynamic,
fl uctuating environments. Therefore, in order to unburden system administrators
and decrease ownership costs, autonomic software systems are certainly more diffi cult
to conceive and implement.

 In fact, implementing autonomic solutions has a profound infl uence on most of
the software engineering activities previously presented in this chapter. Of course,
these activities still have to be used to produce autonomic software systems, but
they have to be refi ned to meet more ambitious goals. In particular, four major new
requirements have to be considered so that a computer system can be administered
with minimal human intervention:
 – A computer system must be able to monitor itself at runtime in order to know its

internal situation. It also has to monitor part of its execution environment in order
to follow relevant evolutions.

 – A computer system must be able to keep some knowledge about its goals, its past
and the current situation. Then, it has to integrate some type of reasoning capa-
bilities to decide on corrective actions whenever needed.

 – A computer system must be able to adapt itself at runtime in order to implement
the corrective administrative actions that are required. Such adaptations must not
endanger or corrupt ongoing operations.

 – A computer system should provide a high-level interface, allowing human
administrators to specify or modify system goals, tune reasoning processes and
observe the system ability to attain its objectives.
 In order to achieve these demanding requirements, most software engineering

activities must be revisited. The requirements phase, for instance, must decide on the
(types of) adaptations and monitoring data that are desired so that the system can self-
manage. Some high-level requirements—the administrative goals—must become
explicit and formally defi ned so as to be interpretable and manoeuvrable by the software
system, at runtime, since these drive the system’s operation. That is, the self-managed,
autonomic system adapts its behaviour to best maintain these sets of goals.

 As a self-managed system must be aware of its own operation, the design phase
must decide not only on the adaptation but also on the monitoring features that
must be incorporated in the software system. This can be complex and tricky.
Since monitoring can be extremely costly, only relevant information has to be col-
lected. If possible, monitoring should also be confi gurable so as to be adapted to
the current needs of the system that strives to meet its goals. In some situations,
monitoring can even be disengaged for performance reasons. Anticipating and
allowing runtime adaptation is also very challenging. It means building up appro-
priate architectural styles and design approaches to enhance fl exibility and enable

1 Software Engineering to Autonomic Computing

17

safe runtime change. It also calls for specifi c mechanisms preserving ongoing
computations during code adaptation. Finally, some part of the implementation
has to be self-described and possibly available online (e.g. from repositories) so
as to enable its automatic instantiation (deployment) or replacement depending on
the runtime needs.

 To some extent, the software engineering phases are progressively pushed into
the runtime. The ultimate goal is then to extend or evolve current software engineering
practices so that they can be partially performed during runtime. That is, a software
system should be able to interpret (or even create) formal requirements (goals) at
runtime, to apply existing designs for adaptation, to create or change implementa-
tions, (re)deploy and (re-)instantiate them, etc.

 Clearly, there is a strong relationship between autonomic computing and
software engineering. Autonomic computing will force software engineering to
come up with new techniques and new approaches to software development and
maintenance. This is truly an exciting challenge but a really diffi cult one indeed.
This observation is one of the early motivations of this book. Beyond necessary
explanations about the objectives and interests of autonomic computing, it seems
important to us to go through the different software engineering techniques that are
currently available for organising and developing self-managed software systems.

 However, a comprehensive study of all modern software engineering techniques
is beyond the scope of this text. Instead, in introducing the fi eld of autonomic com-
puting, we discuss software engineering implicitly; we introduce the elements of
software engineering that are either relevant to a particular capability necessary for
making a system self-managing or that are impacted by the move towards autonomic
computing systems. More precisely, we present the principles and methodologies
applicable to building autonomic computing architectures (Chap. 4), enabling
systems to self-monitor (Chap. 5) and self-adapt (Chap. 6) and then the methods that
systems can use in order to make adaptation decisions (Chap. 7). Finally, we provide
some pointers on how software engineering can intervene for developing evaluation
solutions for self-managed systems (Chap. 8).

 Unclear or immature software engineering techniques with respect to their appli-
cability to autonomic computing are not addressed in this book. For instance, the
problem of discovering and formally representing requirements related to auto-
nomic needs is not covered here for much research is still required in this subject.
However, the more futuristic aspects of this fi eld will be touched upon in the conclusion
and the last sections of Chap. 9 .

1.5 Book Structure

 The structure of this book refl ects the observations made in the previous section.
Specifi cally, this book is made of the following chapters:
• Chapter 2: Autonomic Systems

 The purpose of this chapter is to defi ne the autonomic computing paradigm and
to introduce the related terminology. It discusses the main notions that are

1.5 Book Structure

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_5
http://dx.doi.org/10.1007/978-1-4471-5007-7_6
http://dx.doi.org/10.1007/978-1-4471-5007-7_7
http://dx.doi.org/10.1007/978-1-4471-5007-7_8
http://dx.doi.org/10.1007/978-1-4471-5007-7_9

18

essential to any autonomic computing system, including the concepts of goal,
context and self -* capabilities. It also presents in more detail the initial motiva-
tions behind the autonomic computing initiative.

• Chapter 3: Sources of Inspiration for Autonomic Computing
 The purpose of this chapter is to provide a (certainly biased) overview of the

most relevant sources of inspiration for autonomic computing and to offer pointers
towards more extensive specialty literature. We pay particular attention to biology,
control theory, artifi cial intelligence and complex systems.

• Chapter 4: Autonomic Computing Architectures
 The goal of this chapter is to introduce the main architectural elements of an

autonomic system at a high level of abstraction. It shows how self-managed soft-
ware systems can be developed based on control/feedback loop elements and
how such control/feedback loops can be constructed and integrated with other
feedback loops. To some extent, this chapter sets up the rest of this book in that
the chapters that follow aim to provide answers, partial in some cases, to the
issues raised by this architectural chapter.

• Chapter 5: The Monitoring Function
 This chapter focuses on the monitoring function, which is the systematic collec-

tion of relevant information with the purpose of understanding, evaluating and
controlling the system. Precisely, we look at different ways to design and imple-
ment monitoring. We focus on the establishment of absolute measureable technical
metrics that represent the performance or state of the system.

• Chapter 6: The Adaptation Function
 This chapter focuses on the adaptation function. It defi nes precisely what it

means and what it takes to modify a software system in terms of structure and
behaviour. It also discusses the related challenges and presents a set of tech-
niques that can be used to implement adaptable software systems.

• Chapter 7: The Decision Function
 The purpose of this chapter is to provide a brief outline of the various techniques

that can be used to represent knowledge in autonomic computing systems and to
conduct reasoning. There is a large choice of approaches available to the autonomic
system designer, and the choice will depend on how much resources are available to
represent and process this knowledge. This chapter is not an exhaustive list of tech-
niques; rather, it gives a fl avour of the most popular approaches found in the litera-
ture as well as approaches used in the past by the authors and practitioners.

• Chapter 8: Evaluation Issues
 This chapter presents the challenges to evaluating an autonomic system, what to

look out for and what others have attempted to do. It aims to enable the reader to
be able to design tests and metrics that can be used to compare autonomic com-
puting systems with a particular focus on the aspects that make an autonomic
system different from those without self-management features.

• Chapter 9: Autonomic Mediation in Cilia
 The purpose of this chapter is to show how the Cilia mediation framework has

been rendered autonomic, using many of the techniques presented in this book.
The Cilia framework is essentially used in pervasive settings in order to integrate

1 Software Engineering to Autonomic Computing

19

different forms of data sources and destinations. This chapter also presents ongoing
work offering further management capabilities and aiming to progress towards
endowing the Cilia technology with fully autonomic life-cycle management
capabilities.

• Chapter 10: Future of Autonomic Computing and Conclusions
 The purpose of this fi nal chapter is to recap the key points tackled in this book

and to introduce the reader to the open issues in autonomic computing. Precisely,
this chapter aims to look ahead and foresee the future of autonomic computing.
 The purpose of this book is hence to clarify the software engineering techniques

used by autonomic computing. It is a practical guide to introduce the concepts of
autonomic computing to advanced students, researchers and system managers alike.
Through the combined use of examples and practical projects, the aim is to enable
the reader to rapidly understand the theories, models, design principles and chal-
lenges of this subject while building upon their current knowledge, thus reinforcing
the concepts of autonomic computing and self-management.

 We hope that this book allows the advanced computing student and researcher to
be able to consolidate their programming, artifi cial intelligence, systems architec-
ture and software engineering courses to allow them to better architect robust yet
fl exible software systems capable of meeting the computing demands for today and
in the future.

 We also hope that this book can help those responsible for the development and
maintenance of real world systems currently in operation to understand the benefi ts
that the autonomic computing approach can bring. We hope that the concise nature of
this book allows them to rapidly catch up with the work that has been carried out in
this fi eld as well as to get introduced to some fundamental aspects of self- management
that are beyond the scope of traditional computing training (e.g. control theory).
This should therefore provide a greater grounding in the subject, and when com-
bined with the practical nature of the examples and projects, readers should be in a
better position to design and engineer self-management features into current systems
as well as developing strategies for the development of new systems.

1.6 Key Points

 In this chapter, we have introduced the following important points:
• Software systems are very complex constructions. They are made of a number of

heterogeneous artefacts interacting in complex ways. Furthermore, software
systems are intangible constructions, which make them diffi cult to represent,
manipulate and update.

• Software production is structured into software development, deployment and
maintenance. The purpose of the development phase is to build the software
artefacts making up a software system. The goal of the deployment phase is
essentially to transfer, install, start and update software systems. Finally, the
maintenance phase is concerned with the day-to-day administration of running
systems and their update.

1.6 Key Points

20

• Much of computing engineering research effort has been dedicated to the development
phase of the software life cycle. Relatively little attention has been given so far to
the maintenance phase. Simply put, system administrators observe the systems
at runtime, change minor things when needed and, otherwise, send a request to
developers if something serious happens. However, this is no longer a suitable
approach when software gets complex and its environment ever changing.

• Despite its inherent complexity, software has pervaded our professional and
social life and users want more functions today, accessible anywhere and any-
time. These new demanding requirements change the way software systems
are structured and managed.

• Great emphasis is now put on the runtime aspects of the software life cycle: soft-
ware management gets more complex and ambitious. Engineers are beginning to
feel that they are unable to maintain new systems using traditional approaches.

• Motivated by this problem, a major initiative came from IBM. This sparked off
the use of the term ‘autonomic computing’ to characterise the notion of a computer
system that is able to adapt to internal and external change with minimal con-
scious intervention from the human. In the autonomic computing vision, human
administrators merely specify the computer system’s high-level business goals
or policies, and software takes on this task through self-management.

• Self-managed systems demand us to rethink most software engineering activities
in order to push them into the runtime. This book is structured according to
this statement. It seeks to provide software engineering ideas that are required
to understand and build autonomic systems.

 References

 1. Brooks, F.: No silver bullet: Essence and accidents of software engineering. In: Kugler, H.J.
(ed.) Information Processing 86, pp. 1069–1076. Elsevier, Amsterdam (1986). Reprinted in
Computer, 20, 4 (April 1987), pp. 10–19

 2. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program life
cycle. J. Syst. Softw. 1 , 213–221 (1980)

 3. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley, Boston (2010)
 4. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice Hall,

Englewood Cliffs (1991)
 5. Benington, H.D.: Production of large computer programs. In: Proceedings of the 9th

International Conference on Software Engineering (ICSE), Monterey, CA, USA, pp. 299–310.
IEEE Computer Society Press, Los Alamitos (1987)

 6. Carzaniga, A., Fuggetta, A., Hall, R.S., Van Der Hoek, A., Heimbigner, D., Wolf, A.L.: A
Characterization Framework for Software Deployment Technologies, Technical Report
CU-CS-857-98, Department of Computer Science, University of Colorado. http://serl.cs.colorado.
edu/~carzanig/papers/CU-CS-857-98.pdf , April 1998

 7. Lientz, B.P., Swanson, E.B.: Software Maintenance Management: A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations. Addison-Wesley,
Reading (1980)

 8. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-time,
FSE-18, 7–11 Nov 2010, Santa Fe, New Mexico, USA (2010)

 9. Patterson, D.A.: A simple way to estimate the cost of downtime. In: Proceedings of 16th
Systems Administration Conference, LISA, pp. 185–188. http://roc.cs.berkeley.edu/papers/
Cost_Downtime_LISA.pdf (2002)

1 Software Engineering to Autonomic Computing

http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf
http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf
http://roc.cs.berkeley.edu/papers/Cost_Downtime_LISA.pdf
http://roc.cs.berkeley.edu/papers/Cost_Downtime_LISA.pdf

21

 10. Patterson, D.A.: Availability and maintainability performance: new focus for a new century.
In: Key Note at Conference on File and Storage Technologies (FAST), vol. 2, Monterey,
CA (2002)

 11. Weiser, M.: The computer for the 21st century. Sci. Am. 265 (3), 66–75 (1991)
 12. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technology,

 IBM. http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf (2001)
 13. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE 2006: Proceedings

of the 28th International Conference on Software Engineering, pp. 12–29. ACM, New York
(2006)

References

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

23P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_2,
© Springer-Verlag London 2013

 The purpose of this chapter is to defi ne the notion of autonomic systems and to
introduce related terminology. It discusses the main ideas that are essential to any
autonomic computing system, including the concepts of ‘goal’, ‘context’ and ‘self-*’
capabilities.

 The chapter also presents the initial motivations behind the autonomic computing
initiative. It subsequently discusses the relevance of these motivations in light of
both research and real-world implementations since this initiative was launched in
the early days of the millennium.

 We highlight the most important benefi ts that autonomic computing promises
to bring to the IT domain as well as the equally important challenges that must
be surpassed before computer systems can be endowed with autonomic manage-
ment capabilities. An incremental approach to autonomic computing is presented
in this context, proposing a fi ve-step roadmap for progressively transforming
current IT systems from their current (non-autonomic) status to full autonomic
management support.

 Finally, the chapter aims to position the relatively new autonomic computing
initiative with respect to similar technological fi elds, supported by industry, govern-
ments or academia, as well as with respect to existing computing domains. Further
relevant fi elds are discussed in the following chapter highlighting the inspiration
that autonomic computing has and can draw from existing domains.

 2 Autonomic Systems

24

2.1 Autonomic Computing

2.1.1 Definitions

 Autonomic computing (AC) seeks to render computing systems as self-managed.
In other words, its objective is to enable computer systems to manage themselves so
as to minimise the need for human intervention. In the autonomic computing vision,
human administrators merely specify the computer system’s high-level business
goals. These goals subsequently serve as guidance to the underlying autonomic
processes. In such settings, human administrators can more readily concentrate on
defi ning high-level business objectives, or policies, and are freed from dealing with
the lower-level technical details necessary to achieve such objectives, as these tasks
are now performed by the autonomic system. Moreover, for specifying high-level
systems goals, administrators may employ domain-specifi c concepts and languages,
rather than having to permanently translate such concepts into low-level computer-
specifi c terms (Fig. 2.1).

 As explained in Chap. 1 , autonomic computing is motivated by the increasing
complexity inherent in today’s software systems and the associated total owner-
ship cost (TOC) of software systems. Software complexity mainly stems from the
multitude of interrelated business requirements that systems must meet, from the
signifi cant number of interconnected software and hardware elements involved in
system implementation and from the high distribution and heterogeneity of such
elements. Some noteworthy examples of such complex software systems include
enterprise applications, cloud platforms, grid applications, pervasive or ubiquitous
software systems, management of massive data collections, communication and
processing systems. While software complexity poses diffi culties to system devel-
opment, this complexity brings a further challenge during system execution, when
the user experience and business revenues are at stake.

Autonomic
system

Administrator

Feedback Goals

Computing environment

Operational
Feedback
(state)

System
updates

Usage & environmental context

 Fig. 2.1 Autonomic system

2 Autonomic Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_1

25

 Complexity also comes from the frequent runtime changes that affect both
business requirements and system implementation. Unpredictable change during
system execution is practically guaranteed to occur over the entire lifetime of any
complex system that interacts with our dynamic world. Change can be either inten-
tional and carefully planned or unintentional (due, for instance, to external context
modification or internal failure). Swift interventions are required to warrant
correct, effi cient and uninterrupted system execution. In the context of complex
systems, ensuring such timely interventions raises massive administrative chal-
lenges, incurring signifi cant costs and risks. In these circumstances, the prime goal
of autonomic computing is to enable computing systems to autonomously deal
with (unpredictable) change, so as to fulfi l the objectives they were constructed for.
Many administrative tasks are automated and carried out by autonomic processes
rather than by manual intervention.

 In general, the term autonomic 1 implies occurring involuntarily, unconsciously
or automatically, or resulting spontaneously, from internal causes (e.g. autonomic
refl exes). The term autonomous , originating from the Ancient Greek autonomos
(from auto —‘self’ and nomos —‘law’), signifi es one’s capability of self-governance
or of defi ning one’s own law, also implying self-containment and self-direction. In
the context of biology, autonomic implies being a part of, related to, or controlled
by the autonomic nervous system (ANS). Accordingly, autonomicity signifi es the
state of being autonomic. In the context of philosophy, fi nally, the terms autonomy
[1] 2 or autonomous have been used to signify one’s ability to take one’s own deci-
sions, imposing one’s free will and being independent of external control. In Kantian
philosophy, autonomy is also considered in relation to moral responsibility.

 Automating a system’s management function implies adding further system
complexity overall. Hence, paradoxically, dealing with existing system complexity
compels us to exacerbate this complexity. To escape from this apparent paradox, it
is important to note that the purpose of the autonomic computing paradigm is to
decrease system complexity as perceived by external administrators at the cost of
additional development being required to establish such a system. From this per-
spective, an autonomic computing system will absorb the complexity of commonly
manual administrative tasks and leave simplifi ed, intuitive and high-level interfaces
usable by human system administrators. This approach will indeed increase internal
system complexity overall, but will do so at the added advantage of minimising
perceived system complexity for administrators and users.

1 Defi nitions based on combined, adapted input from Merriam-Webster’s online dictionary, 11th
edition— http://www.merriam-webster.com , American Heritage Dictionary of the English
Language and Oxford Dictionaries— http://oxforddictionaries.com
2 While a discussion on such matters would be well outside the scope of the current publication, it
could raise useful considerations regarding the purposes and limitations of the autonomous systems
we are going to build.

2.1 Autonomic Computing

http://www.merriam-webster.com/
http://oxforddictionaries.com/

26

2.1.2 Goals

 Autonomic computing relies on the notion of high-level business goals or policies
specifi ed by human administrators. Consequently, administrators’ workloads and
stress levels are being eased since they no longer have to deal with the lower-level
technical details necessary to achieve such objectives.

 Goals are the system objectives that must be achieved. Most of the time, they are
expressed as criteria that characterise desirable system states, while the task of fi nd-
ing how those states are to be achieved is left to the autonomic system. For example,
in the context of an enterprise application, a goal can specify that the response time
of the Web server should be under 3 s, while that of the application server less than
1 s. In this example, goals are rather high-level directives so that they can be assigned
by most administrators, even inexperienced ones. At the same time, more precise
goals may also be specifi ed, in order to allow skilled administrators to infl uence the
detailed operation of the autonomic software. That is, the high-level goals are some-
how mapped to low-level processes.

 In this book, as illustrated in Fig. 2.2 , we mean goals to be anything from busi-
ness goals, such as ‘to accrue a higher profi t margin’, to lower-level technical goals,
such as ‘to require that any Web transaction is satisfi ed within one second’. These
then can map to lower-level policies and rules. For example, to ensure the latter goal
is satisfi ed when client workload increases a rule mapping might indicate that a new
computing server is added to the server pool to take on some of the load and speed
up transactions accordingly.

 Goals are at the centre of some interesting development approaches, such as the
i* framework 3 or the Tropos project, 4 whose discussion nonetheless remains beyond
the scope of this book.

ICT

Business process

Business environment

Autonomic
element

World
 Fig. 2.2 Onion diagram
representing goal structures
that infl uence autonomic
management

3 The i* agent- and goal-oriented modelling framework: http://www.cs.toronto.edu/km/istar
4 The Tropos project: http://www.troposproject.org

2 Autonomic Systems

http://www.cs.toronto.edu/km/istar
http://www.troposproject.org/

27

 They may originate directly or indirectly from business process models that have
obvious links to the business environment in terms of service expeditions and to the
world at large. For example, where a Service-Level Agreement (SLA) exists
between software providers and clients, it is usually refi ned into a set of Service-
Level Objectives (SLO) that can be more easily measured and checked during run-
time. Hence, there is a well-defi ned set of states that are required, a time period over
which those states must hold, and clear metrics that are specifi ed.

 Goal-based expressions can be highly complicated. In fact, they express the
administrators’ business expertise at a high level of abstraction. This expertise
guides administrators in their fi rst steps when solving a problem. Figure 2.3
provides a partial example of such goal decomposition for a classic pipe and fi lter
software system, where data are successively transformed by fi lters interconnected
by pipes. We can see, for instance, that the goal ‘Increase throughput’ can be refi ned
into either the subgoal ‘Maximise threads’ or ‘Duplicate fi lters’. These represent the
choices available that will affect throughput increases, by either increasing the num-
ber of threads dealing with incoming data in selected fi lters or by duplicating some
selected fi lters and rearranging the data fl ows or by implementing both actions. In
all cases, parallelism is utilised to improve the performance of the pipe and fi lter
system. Otherwise, administrators have to decrease the data period, as indicated in
the fi gure, in order to avoid unsafe and ineffi cient pipe overfl ows due to memory or
buffer limitations for instance.

 In simple autonomic systems, an administrator can globally specify abstract
goals that can be at different depths in the goal decomposition hierarchy, as depicted
in Fig. 2.3 . However, the situation becomes signifi cantly more complicated when
dealing with autonomic systems comprised of several autonomic elements (this
decomposition is discussed in more detail in Chap. 4). That is, the management
responsibility and function is distributed. Generally, in such cases, goals have to be
refi ned into different subgoals depending on the targeted autonomic elements. If we
return to the pipe and fi lter example, we can imagine that each fi lter is an autonomic
element. Then, each one may receive a different subgoal: one may have to create
new threads and carry out related administration actions, while others may have to

Increase efficiency

Decrease data periodIncrease throughput

OR

OR

Maximize threads Duplicate filters

 Fig. 2.3 Example of a goal hierarchy showing interrelationships

2.1 Autonomic Computing

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

28

duplicate themselves and, again, perform the necessary adjustments that this action
entails.

 If suffi ciently skilled, the administrator may decide on the subgoals for each
autonomic element. Otherwise, it is up to the autonomic system itself to decide on
the subgoal distribution starting from the overall goal specifi ed. Several solutions
may be envisaged. Centralised solutions come down to the creation of a super auto-
nomic element that is able to decide on the goals of the other autonomic elements.
More decentralised solutions demand some sort of collaboration among autonomic
elements that consider themselves as peers. Centralisation, of course, is easier to
implement and to control, but it does not scale. Decentralisation, on the other hand,
scales up more easily but is diffi cult to design, follow and control, even in some of
the simplest cases.

 Finally, administrators can express further directives, including constraints and
strategy specifi cations. Constraints are invariants and have to be maintained during
all system evolutions. Strategies are specifi c directives set by the operator, often via
a domain-specifi c language. They infl uence the way in which a goal has to be
achieved by an autonomic element. More generally, administrators can even change
the directives and knowledge employed by an autonomic element, as necessary over
the system’s lifetime.

2.1.3 Context

 The notion of context has generated much debate, and there are still many schools
of thought examining this notion and its relationship with computing. One school of
thought approaches the subject with an open defi nition of context awareness—
simply the understanding of what the current situation is. Other schools of thought
believe that context should be more formally defi ned as the situation outside of an
autonomic system’s management function. Yet again, others think that the internal
states of the autonomic system are also context.

 In this book, we assume a notion of context that refers to anything that is relevant
to an autonomic system while remaining external to its range of action. In other
words, an autonomic system’s context represents the part of its execution environ-
ment that is signifi cant to its management process. When an autonomic system
wishes to adapt so as to fulfi l a goal, it will typically require an understanding of
both the external world (the context) and its internal self (its state); see Fig. 2.1 .

 Context can be defi ned as any information that can be used to characterise the
situation of an entity that is relevant to an autonomic system [2 – 4]. Hence, such
entity can be a person, an object or a program. An autonomic system uses its under-
standing of an entity’s state to make decisions and achieve its self-management
goals. Obviously, the notion of context is very much application specifi c. Depending
on the autonomic system at hand, different entities and different characterisations
of these entities will be used. For example, an autonomic database management
system will not necessarily use the same contextual information as an autonomic
cellular phone.

2 Autonomic Systems

29

 Within the subject of context, we now make the distinction between computing
context and usage context . The computing context contains the computing resources
that an autonomic system may use to its advantage and those that in some way can
impact the autonomic system’s goal achievement. In the former case, the autonomic
system can request execution of the resource (e.g. via service calls). Such context
resources can include any computing entities that can be used to get information,
perform calculations or contribute to the achievement of the autonomic system’s
goals. It can be, for example, a server, a sensor, an app store, a component reposi-
tory, a network, a legacy application holding important business knowledge, a cloud
infrastructure offering on-demand computing power and so on. In the latter case, the
autonomic system may not have the ability to call the resource directly or to exercise
any explicit infl uence over it (e.g. through negotiation). Nevertheless, the activity of
an autonomic management process affects the administered system and this in turn
can have an impact on other external systems without accessing them directly.
In cases where an autonomic system consists of several autonomic elements, the
state of a certain autonomic element can be considered as part of the internal state
with respect to the global system and at the same time as part of the context with
respect to another autonomic element in the same system.

 The usage context refers to the persons or external systems that interact with
the autonomic system in question and also to the way in which they interact with
the system and to the places where the interactions take place. Human-related
information is diffi cult to capture and to express. It is actually strongly dependent
on the context sensors that measure the environment. Such measurements can be
obtained via virtual sensing, derived from past usage of an artefact to illicit prefer-
ences, for example, or via actual sensing—using a device or service such as the
user’s current GPS location, for example. As such, contextual information can
only be made available through the programming interfaces provided by these
sensors. With the proliferation of smart devices, more and more context information
sources become available. For instance, sensors can be embedded into physical
spaces and provide information about a room’s brightness, temperature and the
movement of people therein.

 Contexts can be characterised by a wide range of properties. Some contexts
may be fully observable. This means that an autonomic system can require any
piece of information at anytime. On the contrary, some contexts are only partially
observable. This means that some information cannot be obtained or that it cannot
be obtained on demand. For example, pervasive contexts are generally partially
observable. This is due, in particular, to volatile components or nonresponsive
devices that can be faulty or simply out of battery power. An autonomic system
has to be aware of such situations and behave accordingly. For instance, an auto-
nomic system may have to build and maintain a representation of the world in a
best effort manner.

 From a different classifi cation perspective, a context can be deterministic or sto-
chastic. This is especially interesting when the autonomic system attempts to infl u-
ence its context, indirectly, as it has no direct control access to it. For example, in a
smart home application, the autonomic system’s objective may be to control the

2.1 Autonomic Computing

30

ambient temperature, even if it only has access to devices such as thermostats and
windows. In a deterministic context, an autonomic system knows perfectly the
effects of its actions given the context. The future state of the context is determined
by its current state and by the actions performed upon it. In a stochastic environ-
ment, the future state depends, of course, on the actions performed on it but also on
some unknown factors that cannot easily be predicted. Pervasive contexts can be
seen as stochastic contexts, since their computing states change regularly due to
unpredictable human-related actions, such as introducing a new smart phone into a
room, or due to physical evolutions, such as sensor failure. However, even in what
would be considered a more deterministic system, there may be less predictive ele-
ments; for example, an operating system has to cope with random key presses when
the user types on the keyboard or when data arrives from the Internet.

 Finally, a context is also characterised by its dynamicity. Namely, a context is
said to be static when it does not change while the autonomic system is analysing
the situation. Conversely, it is said to be dynamic if it can change during the
autonomic system’s reasoning (thinking) time. Pervasive contexts are, by their
embedded nature, dynamic, and an autonomic system therein is governed by this
dynamism.

 The aforementioned context properties also hold for an autonomic system’s
internal state. Most of the time, an autonomic system has to perform in rather unsta-
ble conditions since its external context cannot be directly controlled and its internal
structures and behaviours are also shifting.

2.2 The Origins and Motivations Behind Autonomic
Computing

 IBM launched the autonomic computing initiative in 2001. In a call to action
manifesto, IBM’s senior vice-president Paul Horn, supported by IBM scientists 5
and industry experts, identifi ed complexity as a ‘grand challenge’ facing the IT
industry and heralded self-managed systems as a means to overcome this chal-
lenge [5].

 To emphasise the criticality of dealing with complexity in computing systems,
the autonomic computing manifesto makes analogies with other domains that had
already been confronted with complexity, namely, the telephony and agriculture
industries, and described how automation revolutionised them.

 Indeed, the rapid adoption of private phones in the 1920s was bringing about a
fast expansion of the telephone network, raising worries for companies that had to
administer them, for example, the American Telephone & Telegraph Company
(AT&T). At that time, analysts predicted that if the pace of network growth was

5 One could say that autonomic computing is a marriage of many subjects; therefore, it is no
surprise that many of the early proponents of the fi eld from IBM originated in physics (e.g. Paul
Horn), computer systems (David Chess) and agent-based computing (Jeffrey Kephart).

2 Autonomic Systems

31

sustained, by the 1980s, the demand for human switchboard operators would surpass
the available supply [6]:

 Experts predicted that by 1980, every single woman in North America would have to work
as a telephone operator if growth in telephone usage continued at the same rate. (At that
time, all telephone operators were women).

 AT&T/Bell Systems reacted to this situation by introducing automated switching
protocols, which allowed them to avoid the predicted crisis.

 A similar analogy was made in the autonomic computing manifesto with respect
to the agriculture domain. According to the US Department of Agriculture (USDA)
[7], in 1790, farmers in the USA represented 90 % of the total labour force of a
population of almost 4 million. By the 1990s, this percentage dropped to 2.6 % from
a population of more than 246 million. The report indicates that the dramatic
improvement in the effi ciency of food production was largely due to the technological
innovation and automation of manual labour, compared with the preceding two
centuries. 6

 These examples provide illustrations of the signifi cant impact that task automation
has on the advancement of any societal domain. Alfred North Whitehead’s 7 insight
into the progress of human society concisely highlights this aspect:

 Civilization advances by extending the number of important operations which we can per-
form without thinking about them.

 In line with the general thinking of the time, IBM indicated that it was the IT
domain’s turn to consider the automation of its management processes, as a
necessary step towards ensuring and sustaining its continuous, swift advancement.
In 2001, IBM pointed out that the IT domain was being increasingly challenged
by the complexity that ensued from its rapid and extensive development. As the
advantages of computing systems rendered them increasingly popular, the rate of
their development, integration and insertion into key societal domains conse-
quently accelerated. At the same time, the management of such increasingly
complex computing systems remained a largely manual endeavour, leading to a
soaring demand for skilled and expensive system administrators. Consequently, in
the initial manifesto [5], IBM indicated that ‘… the growing complexity of the IT
infrastructure threatens to undermine the very benefi ts information technology
aims to provide’ .

6 While decreasing numbers of farmers could also be caused by factors other than technology, such
as massive food imports, the US Department of Agriculture (USDA) provides data indicating clear
increases in farming productivity throughout the US history. For example, data available in this
USDA article—National Institute of Food and Agriculture: http://www.csrees.usda.gov/qlinks/
extension.html—points out that producing 100 bushels of corn necessitated around 14 labour
hours and 2 acres of land in 1945, under 3 labour hours and little over 1 acre in 1987 and less than
1 acre of land in 2002. This and a discussion on bioengineered food are well beyond the scope of
this book.
7 Alfred North Whitehead (1861–1947)—English mathematician and philosopher.

2.2 The Origins and Motivations Behind Autonomic Computing

http://www.csrees.usda.gov/qlinks/extension.html%E2%80%94points
http://www.csrees.usda.gov/qlinks/extension.html%E2%80%94points

32

 In short, the IT domain was being prompted to face the complexity brought about
by its own success! IBM’s prediction in 2001 was that within the decade to follow,
the IT domain’s demand for workers would reach as high as 200 million, which is
comparable to the entire labour force of the United States. At the time this prediction
was made, hundreds of thousands of IT jobs in the United States remained unful-
fi lled. The trend at the time was indicating that the existing demand was to further
increase by 100 % over the following years, raising signifi cant concerns about the
capability of a human task force to keep the society’s computer systems running.

 Certainly, one decade later, the situation seems less critical than IBM predicted
in 2001 [8]. Various factors have contributed to this development, including the
economic downturn of 2007–2009 [9], outsourcing and job delocalisation and
reluctance of CEOs to increase enterprise spending by adopting new technology
and hiring IT staff (e.g. [10]). In a possibly vicious circle, the high risks and total
cost of ownership (TCO) associated with computing systems may discourage com-
panies from renewing or extending their technological base. Limits on the numbers of
available systems administration experts may already play a part in preventing the
development of new, more ambitious IT applications. While a deep analysis of the
exact causes behind IT development trends is outside the scope of this book, we
discuss possible reasons in the following sections, drawing from offi cial data on US
employment statistics over the last decade.

 While exact employment data in the particular domain of IT system administra-
tion is diffi cult to pinpoint, current statistics and predictions related to the IT domain
in general do not seem to indicate an extraordinary growth in job openings in this
sector. For example, according to the Bureau of Labour Statistics (US Department
of Labour) 8 [11], the number of employees in ‘computer occupations’ taken together
in 2006 reached around 3.1 million employees, then increased to around 3.4 million
employees in 2010 (6.9 % growth). A further 22.1 % increase was estimated over
the next decade, predicting to reach a total of about 4.2 million employees by 2020
[11]. This places the computer occupational group as the 6th fastest-growing occu-
pational group (out of 22 groups 9).

 A further refi nement of this data [12] highlights the progression of occupations,
such as IT system administration. This refi nement estimates that the number of
employees in Database, Network and Computer System Administrator jobs was
around 458,000 in 2010 and predicts an increase to 588,500 employees by 2020
(i.e. 28.5 % growth). Similarly, the number of computer support specialists is esti-
mated at 607,100 in 2010 and predicted to reach 717,100 by 2020 (i.e. 18.1 %
growth). While these numbers point out a need for a substantial system administra-
tion task force, they remain modest in comparison to the autonomic computing
manifesto’s initial prediction of 200 million required employees.

 Based on this data, one may assume that the expansion of the IT domain may
have already been limited by the lack of system administration support. Yet,

8 Bureau of Labour Statistics—United States Department of Labour: http://www.bls.gov
9 The fastest-growing groups being may be not surprisingly related to healthcare.

2 Autonomic Systems

http://www.bls.gov/

33

existing data and predictions from the US Bureau of Labour Statistics indicate quite
the contrary. From the perspective of business growth and revenue output, the infor-
mation industrial sector is predicted to be the fastest growing compared with other
major sectors. At a 4.7 % per year growth in real output, the information sector is
predicted to reach 1.9$ trillion real output by 2020 [13]. This is higher than the
sector’s previous 2.3 % growth rate from 2000 to 2010 when real output rose from
$950.9 billion to nearly $1.2 trillion. More refi ned data indicates that the expected
growth in the information sector is to be mostly driven by software publishers , data
processing, hosting, related services and computer systems design and related
services industries.

 Industrial growth correlated to employment statistics seem to indicate that even
though the IT industry is experiencing considerable and increasing growth and devel-
opment, employment in the area is to progress at a somewhat slower pace than initially
thought. According to the report in [13], ‘While real output in the information sector is
growing faster than the overall economy, employment in the sector is growing more
slowly than the overall economy’. This may be due to an increased productivity, which
tends to accelerate output while slowing down employment.

 Hence, with respect to system administration, it may be that increasingly auto-
mated management tools are already being introduced, subsequently limiting the
demand for human employees to intervene. At the same time, the situation may also
be due to IT outsourcing overseas and/or to increasing workloads on the existing
task force [10].

 Nonetheless, the increasing complexity of computing systems is starting to sur-
pass the capacity of the human administrators to manage them. When introducing
the autonomic computing vision, IBM was mainly concerned with enterprise systems.
As the number of interconnected, heterogeneous components and layers involved in
such systems increases, a point will be reached where human administrators will no
longer be able to react rapidly enough to ensure continuous system availability,
safety and security. At that point, or ideally before, automation should be introduced
to help or replace such manual interventions.

 As emphasised in the fi rst chapter, computing system administration challenges
are by no means confi ned to the enterprise domain. The recent proliferation of ever
smaller and smarter electronic devices like smart phones, tablets, mini PCs and a
variety of sensor and actuator devices, combined with the introduction of wireless
communication and mobile software technologies, has brought about the construc-
tion of a large variety of pervasive and ubiquitous applications. These have targeted
applications concerning smart buildings, home supervision and healthcare assis-
tance, smart electrical grids or ad hoc social networks, to name but a few. These new
domains introduce additional complexity factors, including low device resources;
energy becoming an extra constraint to consider; signifi cantly higher numbers of
constituent hardware and software elements; increased dynamicity as mobile
elements join, move about and leave the system; and so on.

 Hence, the inherent complexity of such systems, combined with the lack of
technical computing expertise of many of their users, reinforces the need for
autonomic management solutions.

2.2 The Origins and Motivations Behind Autonomic Computing

34

2.3 Self-* Properties and Expected Qualities

 The characteristics of autonomic systems are typically described as some form of
refl ection of the self. In the context of this book, the self is typically the autonomic
element. This section describes the different from of self-refl ection.

2.3.1 Autonomic Key Features

 In its autonomic computing manifesto [5], IBM identifi es eight key characteristics
to defi ne an autonomic system:
 1. To hold self-knowledge and consist of elements which possess system identity.
 2. (Re-)confi gure in reaction to, potentially unpredictable, environmental changes.
 3. Continuously strive to optimise functioning so as to reach predefi ned criteria.
 4. Detect and recover from component failure so as to maintain global dependency.
 5. Anticipate, detect and eschew various threats so as to maintain integrity and

security.
 6. Acquire knowledge of the environment and behave in a context-sensitive

manner.
 7. Implement open standards so as to be able to survive in a heterogeneous

ecosystem.
 8. Hide complexity by bridging the gap between business goals and underlying IT

resources.
 These general properties were subsequently summarised via four fundamental

objectives or features (e.g. [5 , 14 – 20] or [21]):
 1. Self-confi guration : the system sets and resets its internal parameters so as to

conform to initial deployment conditions and to adapt to dynamic environmental
changes, respectively.

 2. Self-healing : the system detects, isolates and repairs failed components so as to
maximise its availability.

 3. Self-optimisation : the system proactively strives to optimise its operation so as to
improve effi ciency with respect to predefi ned goals.

 4. Self-protection : the system anticipates, identifi es and prevents various types of
threats in order to preserve its integrity and security.
 To achieve these objectives, a system must feature several essential attributes and

capabilities. Hence, objectives can be described as the broad system requirements
(what objectives to achieve), while attributes and capabilities as the key features for
meeting those requirements (how to achieve the objectives). Since the autonomic com-
puting initiative was initially launched, numerous such attributes and capabilities have
been progressively identifi ed by researchers in the area and categorised according to
various criteria or domain-specifi c preoccupations. This extended list of self-managing
(sometimes referred to as self-*) considerations forms an increasingly comprehensive
set of crucial and, in some cases, redundant autonomic system properties.

 The four fundamental features of autonomic systems are further discussed in Sect.
 2.3.2 , while the more extensive self-* capabilities list is presented in Sect. 2.3.3 .

2 Autonomic Systems

35

2.3.2 Fundamental Self-* Features

 The four self-* features considered as fundamental for any autonomic system, and
therefore most cited in the autonomic computing domain, are self-confi guration,
self-healing, self-optimisation and self-protection—also referred to in short as
 self- chop . This section discusses these four fundamental features.
 Self-confi guration : an autonomic system confi gures and reconfi gures itself in order
to adapt to various, possibly unpredictable conditions, so as to continuously meet a
set of business objectives. This allows system administrators to merely specify
high-level policies (what is desired) without having to worry about low-level
technical details (how to achieve it). As a relevant example, an autonomic system
would deploy and set itself up, based on predefi ned user objectives and current
platform resources. At runtime, the system would support the dynamic addition/
removal of servers to and from its infrastructure without requiring human intervention
and without disrupting its service. Self-confi guration must not be concerned with
autonomic elements in isolation but the integrated system as a whole. Similarly to
the way a new cell is integrated into a body, a new autonomic element must be able
to integrate itself into a system’s infrastructure, and the existing system must be able
to adapt to the new element. From this perspective, self-confi guration becomes an
important enabler for the other self-* objectives, such as self-optimisation, self-healing
and self-protection.

 Self-healing : an autonomic system detects, diagnoses and recovers from routine or
extraordinary problems while trying to minimise service disruption. Consequently,
fault-tolerance is an important aspect of self-healing behaviour. Moreover, a system
may predict potential problems and take pre-emptive action to prevent their occur-
rence. The purpose of self-healing is to attain overall system resiliency and robust-
ness by being able to deal with the failure of any of the system’s constituent parts.
Self-healing implies that the system must fi rst be able to detect symptoms pointing
out an existing or potential future problem—for example, a bottleneck or an unre-
sponsive system element. Second, it must be able determine a viable solution for
avoiding or recovering from the problem. Discovering the root cause(s) behind
detected or predicted problems (e.g. miss-confi gurations, bugs or failure in software
or hardware elements) may help selecting an appropriate repair solution while
involving more complicated analysis and planning procedures. Recovery methods
may include fi nding alternative resource usage, downloading software updates,
replacing failed hardware components, restarting failed elements or simply throw-
ing an exception to notify a human administrator. Similarly to the way a damaged
brain may use unharmed areas to re-implement lost functions, an autonomic com-
puting system may dynamically integrate redundant or underutilised components to
replace failed parts to maximise its availability. At the same time, it is important to
ensure that the self-healing process does not infl ict further system damage (e.g. by
introducing new bugs).

 Self-optimisation : rather than settling for the status quo, an autonomic system
always seeks ways and seizes opportunities to improve its operation with respect

2.3 Self-* Properties and Expected Qualities

36

to multiple, possibly confl icting, criteria (e.g. business objectives). Self-optimisation
may be executed reactively or proactively, continuously aiming to improve system
performance, cost or quality of service (QoS). For example, a system may con-
tinuously attempt to optimise its performance by adjusting current workloads to
available resources or vice versa. Indeed, certain optimisation criteria may be
confl icting—for example, performance versus security in an enterprise system or
electricity consumption versus user comfort in a smart building. This requires
autonomic systems to make various compromises when establishing optimal system
confi gurations. High-level optimisation objectives may imply the simultaneous
tuning of numerous interdependent parameters. Yet, optimisation of individual system
elements does not guarantee system optimisation overall. Hence, self-optimisation
must be approached from a holistic system perspective, with respect to both its
multiple objectives and its numerous adjustable parameters. Just as an organism’s
muscles become more effi cient with exercise, an autonomic system must be able to
optimise itself over time, by learning and improving the various value combinations
for its internal parameters.

 Self-protection : an autonomic system anticipates, detects, identifi es and protects
itself from internal and external threats, in order to maintain its integrity and achieve
security, privacy and data protection. Security represents one aspect of self-protecting
behaviour, in both software and hardware (e.g. TCG 10). Self-protection addresses
various types of threats, including malicious attacks especially when exposed to
insecure environments, accidental hits when being operated by insuffi ciently skilled
or overly stressed users or cascading failures that persist despite repair attempts
from self-healing mechanisms. In addition to reactive self- protection activities, an
autonomic system may proactively anticipate security threats and take pre-emptive
action to prevent their occurrence. Self-protection actions may include taking
resources offl ine when detecting intrusions, increasing security checks when
suspecting potential threats or generally alerting system administrators. Just as
computer hacker attacks and virus infections are being increasingly automated for
more dramatic impacts and faster spread across systems, defence procedures must
be automated accordingly to enable suitable and timely responses to such incidents.
Similar to a biological immune system, autonomic systems can make use of a ‘digital
immune system’ to protect them while requiring minimum or zero user intervention
or awareness.

 These fundamental mechanisms are undoubtedly interdependent. For example,
self-confi guration represents a supporting feature of all the other self-* objectives.
As another example, failure of a system’s self-healing procedure may trigger the
system’s self-protection reaction in order to isolate and limit the impact of the affected

10 TCG—the Trusted Computing Group TM (http://www.trustedcomputing.org) —a non-profi t organ-
isation formed to develop and promote open, vendor-neutral standards and frameworks for
supporting trusted computing technology. The goal of trusted computing technology is to render
computer systems safer and less prone to viruses, malware and unauthorised access.

2 Autonomic Systems

http://www.trustedcomputing.org)

37

system element. Conversely, a breach through the self-protection mechanism may
affect various system parts, consequently triggering self-healing and self- optimisation
attempts; learning and future avoidance of similar threats may also be achieved by
the self-protection system.

2.3.3 Extended Self-* Capabilities

 Since the launching of the autonomic computing initiative in 2001, the list of self-*
properties for autonomic systems has been substantially extended. It now consists
of a set of interrelated properties that a system should possess in order to achieve
various degrees of autonomicity (Sect. 2.3.3). Most of the extended self-* properties
are necessary for achieving the fundamental self- chop features (Sect. 2.2) and can
therefore be subsumed into those four key objectives.

 Some of the most important self-* properties identifi ed so far are briefl y high-
lighted as follows:
• Self-* : a system’s self-management properties in general.
• Self-anticipating : a system’s ability to predict future events or requirements,

whether with respect to the system’s internal behaviour or to its external context.
An anticipating system should be able to manage itself proactively.

• Self-adapting : a system’s ability to modify itself (self-adjust) in reaction to
 changes in its execution context or external environment, in order to continue to
meet its business objectives despite such changes.

• Self-adjusting : a system’s ability to modify itself during runtime, including mod-
ifi cations to its internal structure, confi guration or behaviour.

• Self-aware : a system’s ability to ‘know itself’, to possess knowledge of its inter-
nal elements, their current status, history, capacity and connections to external
elements or systems. A system may also possess knowledge of the possible
actions it may perform (self-adjustment) and of their probable consequences
(self-anticipating). Such knowledge is essential for achieving the self-chop
objectives.

• Self-chop : the four fundamental self-* properties—self-confi guration, self- healing,
self-optimisation and self-protection.

• Self-confi guring : a system’s ability to (re-)confi gure itself—(re-)setting its internal
parameter values, so as to achieve high-level policies or business goals.

• Self-critical (self-evaluation) : a system’s ability to determine whether or not its
high-level goals are being attained.

• Self-defi ning (communication perspective) : a system’s ability to describe itself to
other systems. A system’s description should represent a subset of the system’s
self-knowledge, as relevant to targeted systems. A description should contain
both data and metadata (data describing that data). Conversely, an autonomic
system may need to understand and interpret other systems’ descriptions.

• Self-defi ning (high-level policies or goals perspective) : a system’s ability to
determine and modify its own objectives.

2.3 Self-* Properties and Expected Qualities

38

• Self-destructing (apoptosis): a system’s embedded capability to destroy itself,
either because it determines that it is no longer capable of reaching its goals
(e.g. a corrupted system shuts itself down in order to prevent affecting user safety
or infecting neighbouring systems) or because it has reached a predefi ned expira-
tion date (e.g. autonomic military systems).

• Self-diagnosis : a system’s ability to analyse itself in order to identify existing
problems or to anticipate potential issues.

• Self-governing (self-managing): a system’s ability to administer itself in order to
achieve high-level policies or business goals.

• Self-healing (self-repair): a system’s ability to recover from the failure of any of
its constituent elements (reactive) or to predict and prevent the occurrence of
such failures (proactive).

• Self-installing : a system’s ability to deploy, confi gure and execute new constituent
elements (e.g. patches or drivers) or to re-execute such operations for updating or
repairing existing elements (e.g. fi xing bugs or recovering after a crash).

• Self-managing : a system’s quality of being autonomous.
• Self-monitoring : a system’s ability to retrieve information on its internal state and

behaviour, whether globally, or for any of its constituent elements. Self- monitoring
is essential for attaining self-awareness and self-chop objectives.

• Self-optimising : a system’s ability to improve its operation with respect to pre-
defi ned goals (e.g. resource management for optimised system effi ciency).

• Self-organised (self-assembled) : a system’s property of being automatically
formed via the decentralised assembly of multiple independent elements, which
become the system’s constituent elements.

• Self-protecting : a system’s ability to protect itself from malicious or inadvertent
attacks.

• Self-recovery (self-healing): a system’s ability to recover from partial or general
failures.

• Self-refl ecting : a system’s ability to determine whether its self-* functionalities
conform to expected operation. This may involve self-simulation operations.
Within an autonomic system, self-refl ection may be considered or implemented
as a higher autonomic management layer (meta-management) that supervises
and adapts the activities of the basic autonomic management layer, which super-
vises and adapts the managed system resources.

• Self-simulation : a system’s ability to test and evaluate scenarios without affect-
ing the executing system (e.g. it should not impact provided services). This
allows replying to ‘what would happen if’ questions and hence facilitate the
selection of self-adjusting actions when pursuing various self-* objectives.

• Self-stabilising : a system’s ability to attain a stable, legitimate state, starting
from an arbitrary state and after a fi nite number of execution steps. This property
has been traditionally linked to fault-tolerance in distributed systems [22], but is
receiving increasing attention from the self-management system community
(e.g. ensuring that self-repair or self-optimisation operations converge towards a
system state that complies with high-level policies).

2 Autonomic Systems

39

 Besides self-* properties, context awareness specifi cally represents an additional
key capability of an autonomic system. Namely, an autonomic system must be
able to detect and adapt to changes in its execution environment. This may include
user behaviour, available resources or interactions with neighbouring systems.
A context- sensitive system may improve its provided services based on knowledge
about service contexts. For example, it can adapt responses to be returned to the
user based on their perceived expertise or the resource capacity of client devices,
ensure reliability under a wide range of predicted or unpredicted circumstances,
discover ‘relevant’ elements in the environment and integrate them to perform
self-repair or self-optimisation operations. Hence, context awareness becomes an
essential system property for ensuring the aforementioned self-chop objectives.

 Certainly, such self-* properties cannot be implemented in separation, or only for
isolated system elements; rather, they must be considered holistically , from a global
system perspective. Hence, a systemic approach is required for integrating and
coordinating self-managed elements across entire computing systems. In addition to
autonomic computing machines, self-management must equally be achieved at the
level of inter-machine communication . Hence, autonomic communications [23 , 24]
should be an integral part of the general autonomic computing paradigm and of the
engendered, self-managed system solutions [8] (further discussed in Chap. 10).

2.4 Benefits, Challenges and Degrees of Autonomy

2.4.1 Benefits of Autonomic Computing

 As explained, the goal of autonomic computing is to address the escalating complexity
of modern computing systems by automating system management and alleviating
demand for skilled administrative interventions. In the short term, autonomic comput-
ing can benefi t the IT domain by reducing both the dependence on human involve-
ment and the system total cost of ownership (TCO). More specifi cally, near- term
benefi ts of autonomic systems include (also introduced in Chap. 1):
• Improved user experience due to better system quality of service
• Facilitated user access to services due to more ‘natural’ human–machine interac-

tion facilities
• Lower maintenance costs due to reduced requirements for human intervention
• Lower usage costs due to better resource management

 In the longer term, achieving autonomicity at a systemic level can create a
whole new range of opportunities for complex computing applications that would
have otherwise been impossible to set in place, due to prohibitive costs or lack of
available expertise. As autonomic capabilities are progressively embedded across
multiple heterogeneous resources, they will cover entire systems or federations of
systems. This would enable the extension of autonomic properties from the level of
individual system resources to the global level of integrated or collaborating
systems.

2.4 Benefi ts, Challenges and Degrees of Autonomy

http://dx.doi.org/10.1007/978-1-4471-5007-7_10
http://dx.doi.org/10.1007/978-1-4471-5007-7_1

40

2.4.2 Challenges of Autonomic Computing

 The importance of autonomic computing is matched by the signifi cant diffi culty
involved in attaining autonomicity. This diffi culty is rooted in the very objective that
autonomic computing is aiming to attain, namely, managing complex computing
systems. Automating the administration procedures of complex systems requires
the development and maintenance of complex autonomic management logic. Indeed,
setting in place autonomous solutions for administering large numbers of highly
heterogeneous, distributed and dynamic system resources is no easy task. Also, taking
into account multiple, possibly confl icting and evolving management goals exacer-
bates the situation.

 In launching the autonomic computing manifesto, IBM recognised that the
development of autonomic systems represents a ‘grand challenge’ for the entire IT
domain. Addressing this challenge requires concerted efforts from numerous IT
companies, businesses, institutions and academic organisations. Since the incep-
tion of the autonomic computing initiative, important progress has been made in
the IT domain towards enhancing the automatic management support of computing
systems. Yet, important progress and innovation remain to be achieved before
autonomous computing systems can become the norm in the IT domain.

 The autonomic computing grand challenge can be decomposed based on various
criteria (yet, any attempt to fully categorise the work on this subject is bound to be
imperfect). Major diffi culties are raised by both scientifi c and technological chal-
lenges, requiring innovations and integration of advances from multiple areas, both
within and beyond traditional computer science. This section provides a mere over-
view of the various challenge types involved.

 First, at a conceptual level, the computing paradigm must change from one based
on implemented functions and processing power to one based on data and high-level
objectives. Recall that the purpose of autonomic computing is to enable administra-
tors to abstract away from system implementation and confi guration details and to
focus instead on business objectives and adaptation policies. Consequently, the con-
ceptual way of thinking about computer systems must evolve from one focused on
technical aspects (how to implement and provide computing services) to one focused
on provided business services and QoS properties (what services to provide and
 what policies to use for adapting them). In this context, for example, the focus of
system performance should shift from resource capabilities and usage to perceived
responsiveness and attained business objectives.

 In order to follow this conceptual shift, the defi nition and design of computing
systems must accordingly change. Autonomic system designers must be able to
identify the necessary abstractions for understanding, specifying, controlling and
implementing autonomic behaviours. Traditional computer science theories and
techniques must be adapted to support dynamic and possibly unpredictable system
change. From an architectural perspective, system designs have to adopt open stan-
dards and support the dynamic integration and collaboration of multiple heteroge-
neous elements. Global performance and dependability objectives have to be

2 Autonomic Systems

41

attained in the presence of continual changes in the system constituent parts and
interconnections.

 From an architectural perspective, the autonomic computing challenge can be
split according to the targeted managed elements and their level of granularity [25].
Self-management challenges must be addressed at the level of both individual auto-
nomic elements and of entire autonomic systems. At a fi ne granularity level, innova-
tions are required for introducing autonomic management capabilities at the level of
specifi c managed elements. At a higher granularity level, achieving autonomicity
requires coordinated interaction among multiple autonomic elements.

 Human–computer interaction (HCI) approaches must also evolve in response to
the conceptual shift in the way in which administrators and users should interact
with autonomic systems. Multiple, possibly confl icting business objectives and user
actions, at both local and global levels, will have to be taken into consideration in
tandem and translated into coherent technical parameters that can be managed via
the self-* processes.

2.4.3 An Incremental Approach to Autonomic Computing

 When introducing the autonomic computing paradigm, IBM promoted an incre-
mental approach for making the transition between existing computing systems and
future autonomic systems. Right from the start, IBM realised that it would be unre-
alistic to attempt to revolutionise the IT domain by seeking to suddenly replace all
existing systems with a new generation of autonomic systems. First, the IT com-
munity is not yet fully au fait with the ideas of autonomicity. Secondly, customers
that have invested signifi cantly in existing IT environments would be reluctant to
completely replace them overnight, especially in the absence of solid reassurances
regarding the value of new self-management systems.

 In contrast, an evolutionary approach addresses both challenges, as self-management
can be progressively phased in and integrated bit by bit into the continuously evolv-
ing IT system. In this context, IBM proposes an Autonomic Computing Adoption
Model [15 , 16 , 19 , 26] describing fi ve incremental levels of system management
(Fig. 2.4):

 Level 1—Basic (Manual) : Represents the starting point, where skilled administra-
tors manually control each system computing element—setting it up, monitoring
and potentially modifying or replacing it. This is the level that IBM considered IT
systems to be at when launching the autonomic computing initiative initially. At this
level, system management is completely non-autonomic or manual.

 Level 2—Managed (Instrumented or Monitored) : Employs monitoring technolo-
gies to collect data from disparate managed resources and presents this intelli-
gently for both offl ine and online system management. This approach improves
productivity and reduces human administrator effort required to manually collect
and synthesise data.

2.4 Benefi ts, Challenges and Degrees of Autonomy

42

 Level 3—Predictive (Analysis) : Employs analysis technologies that can correlate
data from various managed resources, identify a range of patterns, predict optimal
confi gurations and then advise human administrators on the corresponding actions to
take. This reduces dependence on expert management skills, while rendering admin-
istrative decisions more effi cient. As human administrators gain confi dence, manage-
ment can then progress to the next automation level if desired.

 Level 4—Adaptive (Closed Loop) : Enables the system to take automatic action and
adapt the managed system from within itself; this is based on the monitoring infor-
mation available and overall system knowledge. Service-Level Agreements (SLAs)
may guide the automatic system management operation. Namely, an SLA can provide
a formal, machine-readable specifi cation of the high-level business objectives to be
achieved and of the administration policies to be followed by the automated manage-
ment processes. This autonomicity level improves system agility and resiliency
while requiring minimum human intervention.

 Level 5—Autonomic (Closed Loop with Business Priorities) : Enables the system to
self-govern by following high-level policies or business objectives defi ned by the
teams of people responsible for the system reaching its objectives. This frees admin-
istrative staff from performing technical system management operations. Instead,
users merely interact with the autonomic system for monitoring business processes
and possibly for modifying the system objectives.

 Fig. 2.4 (Reproduction of) IBM’s Autonomic Computing Adoption Model x -axis: increasing
autonomic functions; y -axis: increasing scopes over which the autonomic functions can be applied;
and z -axis: service fl ows to which autonomic functions can be applied

2 Autonomic Systems

43

2.5 Similar Initiatives, Current Status and Relation to Software
Engineering

2.5.1 Autonomicity in Existing Systems

 It is important to note that, as in many areas, actions have preceded qualifi cation.
The intense necessity for autonomy is hardly new, and various systems have had
autonomic-like properties well before IBM offered their approach. Some relevant
examples include network algorithms employed for constructing and maintaining
routing tables or protocols based on spanning trees. Many administrative tasks have
also been automated. Among several utilities created for automatic update, we can
cite the example of package managers in UNIX systems, which automatically resolve
package dependencies. USB and network self-confi guration (e.g. UPnP) are examples
of autonomic features that have helped the general public to adopt computing at home.

 More recently, an increasing number of platforms and applications have been
progressively enriched with automatic management capabilities, including auto-
matic application updates, device detection and driver downloads, self-sizing and
self-healing computer clusters or context-sensitive identifi cation procedures for
accessing private accounts (such as email accounts). While the direct infl uence of
the autonomic computing initiative on the development of such capabilities may
prove diffi cult to establish, the important fact remains that automatic management
is becoming an increasing concern for IT system providers. The exemplifi ed admin-
istration solutions, while still relatively simple and focused on a single objective,
should represent fi rst steps towards more complicated autonomic facilities address-
ing broader and more heterogeneous administrative goals.

 Some of the most signifi cant application areas adopting and developing auto-
nomic computing include: power management or ‘smart grids’; industrial systems
such as clusters, grids and data centres; pervasive and ubiquitous computing, such as
smart buildings, medical assistance platforms and sensor networks; and completely
unmanned systems including those necessary for military, space or rescue missions.

2.5.2 Top-Down Versus Bottom-Up Approaches

 As autonomic computing was proposed, related fi elds with similar needs began emerg-
ing in parallel. Research initiatives aiming to render computing systems self- managed
can be categorised with respect to two principal approaches.

 First, top-down approaches aim to enhance the self-management capabilities
of existing systems by essentially introducing various forms of control loops that
can deal with targeted system resources. These approaches require administered
systems to be based on technologies that support runtime monitoring and modifi ca-
tion (Chaps. 5 and 6). These include, for example, technologies that employ dynamic
component models. At the same time, beyond such technological requirements and
their non-negligible impact on system design and implementation, top-down
approaches impose no radical changes in the manner in which software systems
have been traditionally architected and developed.

2.5 Similar Initiatives, Current Status and Relation to Software Engineering

http://dx.doi.org/10.1007/978-1-4471-5007-7_5
http://dx.doi.org/10.1007/978-1-4471-5007-7_6

44

 Conversely, a second family of initiatives address the system complexity
problem from a quite different angle, arguing that self-management must become
inherent via the very manner in which computing systems are being built. Such
initiatives typically adopt a completely decentralised, bottom-up approach to
designing and developing software systems. They essentially rely on self-organisation
and/or emergence principles for obtaining desirable system structures and behav-
iours. The separation between offl ine development and runtime adaptation becomes
blurred as the same core principles apply to ensure both initial system creation and
subsequent self-* capabilities. Hence, self-management capabilities become inher-
ent system properties rather than having to be explicitly coded for. Sometimes these
systems can be called self-adaptive systems.

 Regarding the positioning of autonomic computing, it is important to note that
the main contribution of this initiative consists in introducing a new paradigm into
the computer science domain—rendering computer systems self-managed —rather
than in imposing a precise methodology, architecture or technology for implement-
ing it. The generic architecture initially proposed by IBM (discussed in Chap. 4)
does indeed seem to separate the autonomic management process from the resources
it administers and also to implement this process via a single feedback loop. This
logical architecture, if implemented as such, would correspond to a centralised,
top- down approach, which was actually the case in many of the initial autonomic
application developments. Nonetheless, the actual autonomic computing paradigm
does not in any way constrain the development of self-managed systems to this
approach, leaving open for exploration the entire solution spectrum between top-down
and bottom-up approaches. This point is considered all along this book, as we will
see, for example, in Chap. 4 when discussing autonomic system architectures.

2.5.3 Similar Initiatives

 2.5.3.1 Industry
 In parallel to IBM’s autonomic computing initiative, several major industrial actors
in the IT domain were promoting similar initiatives aimed at enhancing manage-
ment support for complex computing systems [27]. The aim of these initiatives was
to provide enhanced support for managing large-scale, dynamic, networked infra-
structures, most notably including clouds, grids and enterprise systems.
Virtualisation for data centres was a core principle driving most of these initiatives.
Examples include Compaq’s Adaptive Infrastructure 11 vision (2001) and HP’s sub-
sequent Utility Data Center (UDC) (2001–2004) and Converged Infrastructure 12
(2009) initiatives, Sun’s N1 technology 13 (2002), Microsoft’s Dynamic System

11 ‘Compaq Redefi nes IT Landscape with Adaptive Infrastructure’, December 2001— http://www.
hp.com/hpinfo/newsroom/press/2001pmc/pr2001120501.html
12 HP Converged Infrastructure : http://www.hp.com/go/ci
13 ‘Sun Introduces N1 Architecture, Looks To Manage Networks As A Single System’, by Joseph
F. Kovar, CRN, September 2002 – http://www.crn.com/news/channel-programs/18821653/sun-
introduces-n1-architecture-looks-to-manage-networks-as-a-single-system.htm

2 Autonomic Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://www.hp.com/hpinfo/newsroom/press/2001pmc/pr2001120501.html
http://www.hp.com/hpinfo/newsroom/press/2001pmc/pr2001120501.html
http://www.hp.com/go/ci
http://www.crn.com/news/channel-programs/18821653/sun-introduces-n1-architecture-looks-to-manage-networks-as-a-single-system.htm
http://www.crn.com/news/channel-programs/18821653/sun-introduces-n1-architecture-looks-to-manage-networks-as-a-single-system.htm

45

Initiative (DSI) 14 (2003), Cisco’s Data Center 3.0 strategy 15 (2007) and VMware’s
Virtual Data Center Operating System (VDC-OS) paradigm (2008).

 From a different domain perspective, in the ubiquitous system context, the
European Commission Information Society Technologies Advisory Group (ISTAG)
specifi ed the ambient intelligence (AmI) 16 vision (1999), emphasising on more
seamless, effi cient and natural system support for human interaction. Finally, as a more
generic, domain-agnostic vision, Intel’s Proactive Computing [28] (2000) promoted
the necessity for rendering computing systems more reactive, shifting the focus
from traditional, human- centred computing to more autonomous, human- supervised
computing.

 2.5.3.2 Military
 In addition to such industrial initiatives, several self-management research proj-
ects have been launched by DARPA 17 for military applications. A fi rst set of
DARPA projects was launched starting in the late 1990s enabling a new genera-
tion of self- forming, self-repairing, self-defending and heterogeneous networks 18
to provide critical advantages in unpredictable, unstable and dangerous environ-
ments. These included the Small Unit Operations—Situational Awareness System
(SUO-SAS) program, Future Combat Systems Communications (FCS-C) pro-
gram, the Optical RF Combined Link Experiment (ORCLE) program or the
Wireless Networks after Next (WNaN) program.

 A further series of DARPA programmes was subsequently launched for address-
ing additional autonomy issues in battery-powered wireless systems, such as unat-
tended ground sensor (UGS) networks. These included the Connectionless Networks
and the Wolfpack programs. The main goal of these programs was to develop tech-
niques and technologies for enabling randomly deployed or mobile sensor devices
to form highly effi cient, low-power radio networks. Solutions involved support for
forming ad hoc radio networks based on dynamically discovered neighbouring sen-
sors, adapting sensor functioning modes to detected contexts so as to maximise
battery lifetime, reconfi guring network communication in response to predicted
transmission demands and collaborating within neighbouring sensor groups to
equilibrate loads, implement coordinated strategies or track moving targets. Both
initiatives involved individual sensor adaptations and collective collaborations,
requiring adaptations at both processing and networking levels to provide fully
autonomous sensor systems.

14 ‘Microsoft Announces Dynamic Systems Initiative’, March 2003— http://www.microsoft.com/
en-us/news/press/2003/mar03/03-18dynamicsystemspr.aspx
15 http://www.networkworld.com/news/2007/072407-cisco-new-data-center.html
16 Introduction to Ambient Intelligence from ERCIM News 2001: http://www.ercim.eu/publication/
Ercim_News/enw47/intro.html
17 DARPA: Defence Advanced Research Projects Agency— http://www.darpa.mil
18 Henry S. Kenyon, ‘Networks: Adapting to Uncertainty’, DARPA, http://www.darpa.mil/WorkArea/
DownloadAsset.aspx?id=2570

2.5 Similar Initiatives, Current Status and Relation to Software Engineering

http://www.microsoft.com/en-us/news/press/2003/mar03/03-18dynamicsystemspr.aspx
http://www.microsoft.com/en-us/news/press/2003/mar03/03-18dynamicsystemspr.aspx
http://www.networkworld.com/news/2007/072407-cisco-new-data-center.html
http://www.ercim.eu/publication/Ercim_News/enw47/intro.html
http://www.ercim.eu/publication/Ercim_News/enw47/intro.html
http://www.darpa.mil/
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2570
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2570

46

 Another interesting research programme funded by DARPA was the Dynamic
Assembly for System Adaptability, Dependability and Assurance (DASADA),
started in 2000. DASADA was concerned with the development of technology for
ensuring the dependability of mission-critical systems. Research carried out in this
project has initiated architecture-driven solutions for self-managing large-scale
distributed systems. Such solutions rely on extracting runtime software ‘gauges’ for
monitoring system dependability properties (e.g. security, safety or architectural
coherence), analysing collected information for detecting variance from predicted
behaviour (e.g. runtime architecture diverging from prescribed template) and
dynamically adapting the system so as to prevent violations of acceptable behaviour
(e.g. self-repairing running system).

 Still within the mission-critical systems domain, DARPA initiated the Self-
Regenerative Systems (SRS) program in 2004. SRS aimed to develop technologies
for ensuring the continuity of system-critical functionalities, in spite of damages
caused by unintentional errors or sustained attacks. To achieve its goals, the pro-
gram promoted biologically inspired diversity as a means of minimising damage
infl icted by single attacks. This idea implied introducing multiple, functionally
equivalent variants of system components, intended to limit the impact of any single
attack to only a subset of the available variants. In addition, the program promoted
cognitive immunity and regeneration techniques for detecting system parts dam-
aged by successful attacks and implementing regenerative measures that ensured
system recovery.

 More recently, in 2012, DARPA launched the Assured Arctic Awareness (AAA) 19
program soliciting innovative technology for ensuring unmanned, remote, year- round
surveillance of vastly isolated and environmentally extreme environments. Here,
autonomous system operation becomes essential, involving support for unattended
distributed sensing, long-range communication, mobility and energy management,
persistence and survivability capabilities.

 DARPA also planned to launch a Robotic Challenge 20 program (October 2012),
aiming to bring progress to robotics technologies that can help in natural or man-
made disasters. Particular attention is given to robots capable of autonomously driving
trucks, walking through rubble or operating power tools to break walls and perform
repairs. This challenge will capitalise on results obtained from DARPA’s previous
Urban Challenge 21 for autonomic vehicles (2007), which were required to drive in
traffi c and perform complicated operations including overtaking, negotiating inter-
sections and parking.

19 DARPA ‘s Assured Arctic Awareness (AAA) program: http://www.darpa.mil/NewsEvents/Releases/
2012/03/16a.aspx
20 DARPA’s announcement (April 2012) of future Robotic Challenge program (to be launched in
October 2012): http://www.darpa.mil/NewsEvents/Releases/2012/04/10.aspx
21 DARPA’s Urban Challenge, held in November 2007, at the former George Air Force Base in
Victorville, California, USA— http://archive.darpa.mil/grandchallenge

2 Autonomic Systems

http://www.darpa.mil/NewsEvents/Releases/2012/03/16a.aspx
http://www.darpa.mil/NewsEvents/Releases/2012/03/16a.aspx
http://www.darpa.mil/NewsEvents/Releases/2012/04/10.aspx
http://archive.darpa.mil/grandchallenge

47

 2.5.3.3 Space Exploration
 NASA 22 has also been showing interest in developing systems with autonomic
capabilities, due to the nature and requirements of its unmanned space missions
[29]. During such missions, communication between terrestrial control centres and
spacecraft is frequently unavailable and continuously hindered by long round-trip
delays. In such contexts, the success of expensive explorations becomes essentially
dependent on the autonomous capabilities of spacecraft devices, enabling rapid control
decisions to be taken to adapt to extraordinary situations. Self-reconfi guration and
self-repair become equally critical capabilities in such missions, as direct intervention
to replace faulty or damaged elements is utterly impossible. Hence, most such mis-
sions provide good examples of systems that must be autonomous, or self- governed,
on the one hand, since vehicles are unmanned, and most often also autonomic, on
the other hand, since unpredictable situations require vehicles to self-manage in
order to adapt to changing contexts.

 Traditional autonomous abilities in NASA space missions include star-tracking
based self-navigation, self-directing antennas, automatic fault reactions and data
storage and retransmission. For example, the AutoNav 23 autonomous navigation
system [30] was employed on board the Deep Space 1 (DS1) (1999) and Deep Impact
(2005) spacecrafts for enabling high-speed encounter missions to small bodies, such
as comments and asteroids.

 In contrast to space travel, which involves navigation through relatively simple
and well-known environments, planet surface exploration requires autonomous rovers
to fi nd their way through challenging and unknown territories. In such contexts,
autonomic rover software must analyse sensory information and take decisions for
controlling the rover’s driving actuators. The challenge increases as terrains may be
sensed under widely different lighting conditions and sensor data may become
faulty or incomplete. High radiation levels and widely varying temperatures raise
further diffi culties by limiting available computational resources.

 The signifi cance of autonomy for the success of this type of space missions was
highlighted in one of NASA’s 50th anniversary articles (2008) [31], in the context
of Mars exploration programs:

 The vehicles used to explore the Martian surface require a high degree of autonomy to navi-
gate challenging and unknown terrain (sic), investigate targets, and detect scientifi c events.
Increased autonomy will be critical to the success of future missions.

 The autonomic capabilities included in NASA missions have been signifi cantly
enriched over the years and consequently enabled the design of increasingly ambi-
tious space endeavours.

22 NASA: National Aeronautics and Space Administration— http://www.nasa.gov
23 AutoNav: NASA’s autonomous navigation system uses the relative positions of well-known bright
asteroids with respect to a background star for positioning a spacecraft and guiding it to its destina-
tion. AutoNav has been successfully tested for guiding the Deep Space 1 spacecraft (1999) and
Deep Impact (2005).

2.5 Similar Initiatives, Current Status and Relation to Software Engineering

http://www.nasa.gov/

48

 In 1997, NASA’s Mars Pathfi nder mission deployed Sojourner —the fi rst space
rover to autonomously drive on another planet. The vehicle was able to navigate on
fl at rocky Martian terrain in order to reach locations specifi ed by Earth-based opera-
tors. The rover’s autonomic functions were mainly reactive and did not build or
employ a surface map. In 2004, the Mars Exploration Rovers mission deployed
other two autonomous spacecraft— Spirit and Opportunity —for exploring the
Martian surface for a projected 3-month period. Four years later, the two rovers had
covered distances of over 4 and 7 miles, respectively, while well surpassing their
initially predicted lifetime. The rovers possessed enhanced autonomous capabilities
including 3D terrain mapping based on video cameras, selecting best paths to follow
based on detected obstacles, estimating current rover position and orientation and
fi nally approaching and studying designated targets.

 More recently, in November 2011, NASA launched the Mars Science Laboratory
(MSL) 24 mission for studying Martian surface and assessing the planet’s ‘habitability’
(capacity to sustain life). The exploration rover— Curiosity —landed on Mars in
August 2012 and started its autonomous surface exploration, as planned over the
following two years. Curiosity was designed to autonomously detect and approach
‘interesting’ targets and autonomously collect and analyse corresponding samples
for assessing Martian environment. In the near future (2020–2022), a joint mission
between NASA and ESA 25 —Mars Sample Return mission 26 —aims to collect Mars
samples and bring them back to Earth for further analysis. Considering the extended
distance to cover and the limited survival time of the return vehicle on Martian sur-
face, this mission will require an unprecedented level of autonomy from the explo-
ration rover. Such autonomous abilities should allow selecting various navigation
strategies based on rover models, terrain learning and prediction techniques; reusing
learned knowledge to speed up navigation back to the ascent vehicle; learning nor-
mative measures and detecting off-nominal values indicating ‘interesting’ scientifi c
events; and sensing and adjusting drilling positions in order to avoid damage to the
coring tool.

 As a future projection and an alternative approach to more ‘traditional’ missions,
NASA launched the Autonomous Nano Technology Swarm (ANTS) 27 program
(2000) [3]. ANTS proposes a generic architecture for human/robotic space missions
based on an ant colony analogy, in order to ensure outstanding system survivability
and goal achievement capabilities for deep-space unmanned missions. Drawing inspi-
ration from social insect colonies, ANTS projects capitalise on self- specialisation
and self-organisation principles for attaining massively resilient, adaptable and rela-
tively cheap exploration systems. Generally, ANTS architecture involves numerous
miniaturised, autonomous, self-similar, self-confi gurable and addressable elements,

24 NASA’s Mars Science Laboratory (MSL) mission: http://marsprogram.jpl.nasa.gov/msl
25 ESA: European Space Agency— http://www.esa.int
26 Mars Sample Return mission: http://www.esa.int/esaMI/Aurora/SEM1PM808BE_0.html
27 NASA’s Autonomous Nano Technology Swarm (ANTS) program— http://ants.gsfc.nasa.gov

2 Autonomic Systems

http://marsprogram.jpl.nasa.gov/msl
http://www.esa.int/
http://www.esa.int/esaMI/Aurora/SEM1PM808BE_0.html
http://ants.gsfc.nasa.gov/

49

with high social interaction capabilities that enable them to self-organise into various
structures for achieving predefi ned goals.

 As a concrete example of the ANTS application, Prospecting Asteroid Mission
(PAM) 28 aims to analyse an asteroid belt in search for materials of astro-biological
relevance. PAM plans to drive a carrier spaceship into deep space and have it
self- assemble and launch 1,000 small exploration spacecraft (‘picocraft’) that are
to travel through and analyse the asteroid belt. Spacecraft belongs to one of ten
specialist classes, which include processing specialists (leaders), communication
specialists (messengers) and several instrument specialists for diverse measurement
types (workers). Once launched, spacecraft opportunistically self-organise into
several sub-swarms, containing specialists from all classes, and simultaneously
analyse different asteroids over the several years belt traversal. Each sub-swarm can
repeatedly search for, detect and navigate towards ‘interesting’ asteroid targets;
measure and create 3D models of analysed asteroids; and send adequate asteroid
models to an Earth centre.

 2.5.3.4 Academia
 In addition to industrial, military and space exploration initiatives for developing
self-managing computing systems, several similar initiatives have been launched
from within the academic community.

 These research initiatives aim to render computing systems capable of adapting
to their dynamically changing environments, of self-confi guring, self-healing,
self- optimising, self-protecting and possibly self-developing via self-organisation
and self-assembly processes, in order to reach predefi ned business objectives. While
sharing a common goal, each initiative promotes a slightly different paradigm,
focusing on different core principles, for addressing the system autonomicity
challenge. Providing a comprehensive description of all the existing initiatives and
their intricate interrelations could constitute the subject of an entirely different
book. Here, we merely aim to exemplify some of the most relevant programmes,
highlight their core principles and challenges and show how their advancement can
contribute to progress in the autonomic computing domain.

 Organic computing 29 (OC) is probably the most similar initiative to autonomic
computing (AC). OC is based on a vision of future information-processing systems
consisting of myriad autonomous devices, equipped with sensors and actuators,
aware of their execution environments and organising themselves in order to pro-
vide various business services. In this context, the controllability of the emergent

28 NASA’s ANTS Prospecting Asteroid Mission (PAM), expected timeframe: 2020–2025, http://
ants.gsfc.nasa.gov/pam.html
29 Organic computing (OC) initiative: http://www.organic-computing.de . The OC initiative has
been launched by a group of researchers from three German universities (Universität Hannover,
Universität Karlsruhe and Universität Augsburg). In 2012 the initiative comprised more than 70
researchers from many institutions across Germany and other European and non-European countries.
OC has been initially funded by the German Research Foundation (DFG) as part of the priority
programme 1183 organic computing (2004–2011).

2.5 Similar Initiatives, Current Status and Relation to Software Engineering

http://ants.gsfc.nasa.gov/pam.html
http://ants.gsfc.nasa.gov/pam.html
http://www.organic-computing.de/

50

system behaviour becomes an important challenge. The OC community argues that
self-organisation is becoming a fact (e.g. like the Internet) rather than a research
hypothesis [32]:

 It is not the question whether self-organised and adaptive systems will arise but how they
will be designed and controlled.

 Therefore, OC aims to fi rst understand the principles of self-organisation and
emergence as present in many natural systems, in order to be able to develop theories
and techniques that enable controlled self-organisation and emergence in comput-
ing systems. As its name indicates, OC draws inspiration from organic-inspired,
biological systems, such as brains, swarms, social insect colonies or lifeless chemical
compounds. It aims to apply the self-organisation and emergence mechanisms
observed in such natural examples to artifi cial, technical systems.

 The notions of system autonomy and control are central to both organic and
autonomic computing. Autonomic computing concentrates on the feedback control
loop as the main means of introducing system self-* capabilities. The manner in
which multiple control loops can be integrated in order to ensure the coherence of a
more global system is an important problem in autonomic computing (see Chap. 4).
Yet, autonomic computing research has only recently began to focus on this signifi -
cant challenge. Conversely, controlling the emergent structure and behaviour of
self-organising autonomous systems has been the defi ning challenge of the organic
computing (OC) initiative. The OC community also introduces feedback control
loops, interconnecting the managed system with a system observer and controller.
The purpose of the OC control loop is to infl uence the self-organising system ele-
ments in order to steer the emergent system state towards the targeted business or
user objectives. Similarly to autonomic computing, the degree of autonomy of an
OC system is defi ned by the level of automation in the system’s control, ranging
from completely manual (only human intervention) to fully autonomous (only auto-
matic feedback control). In many research projects, the exact borders between auto-
nomic and organic computing become hard to delineate.

 Pushing self-organisation and emergence principles even farther, amorphous
computing 30 aims to develop novel architectures, algorithms and technology for
constructing and programming computational systems based on massively parallel
and identical elements with reduced computational capabilities and limited local
communication [33]. The purpose of amorphous computing is to capitalise on the
availability of cheap information-processing devices while avoiding the need for
extensive device reliability testing and expensive processes for exactly positioning
and interconnecting parts into coherent systems. Hence, amorphous systems should
be relatively cheap and fast to build while featuring important fault-tolerance prop-
erties with respect to individual malfunctioning devices or state perturbations.

 Similarly to organic computing, self-organisation and emergent phenomena
are at the core of the amorphous computing approach. Consequently, the chief

30 Amorphous computing project, defi ned at MIT: http://groups.csail.mit.edu/mac/projects/amorphous

2 Autonomic Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://groups.csail.mit.edu/mac/projects/amorphous

51

challenge remains the identifi cation of organisational principles and programming
methodologies for controlling amorphous systems. Addressing this challenge
requires answering fundamental questions on the manner in which massive num-
bers of programmable, unreliable entities, interconnected in unpredictable ways,
can be observed, directed and organised in order to obtain a coherent global behaviour
that meets predefi ned goals.

 Not surprisingly, amorphous computing draws inspiration from successful coop-
eration found in natural systems. Relevant examples include cells cooperating to
form a multicellular organism, ants in a colony cooperating to build an anthill or
humans in a society cooperating to develop a town or a city. As with organic com-
puting, the common principles guiding such diverse natural systems should be
understood and applied for designing novel technological systems.

 Once achieved, the theoretical foundation of amorphous computing can be reused
across a wide range of system applications, rendering the hardware substrate irrele-
vant, enabling materialisation via silicon chips as well as via living cells, as best suited
for each application. For example, microelectronic mechanical components could be
mixed with bulk materials such as paints, gels or concrete to obtain programmable
materials. Resulting ‘smart paint’ could be smeared over a bridge structure for report-
ing on temperature, traffi c conditions and structural integrity or to colour a building
for detecting fi res or intrusion threats. As a different example, digital circuits could be
developed from biological cells and used as vehicles for drug delivery or for sensing
threatening health conditions and deciding to inject an appropriate drug.

 In addition to the aforementioned initiatives, multiple projects inspired by biol-
ogy or by nature in general have been launched over the last decade, addressing
either the issue of computing system complexity in general or more particular
problems related to specifi c system domains or to precise challenge types. Of fore-
most importance are approaches providing solutions to the control challenge raised
by self-organising or emergent systems. Several such solutions aim to fi nd the right
balance between fl exibility and control, introducing various levels of compromise
between exerting more control on self-organising and emerging systems and intro-
ducing adaptability into ‘traditional’, fully engineered systems. We can only enumer-
ate a few of these initiatives here and show how they relate to previously discussed
projects, principles and applications.

 Multicellular Computing 31 indicates that the fundamental organisational princi-
ples of multicellular systems—including specialisation, messaging, stigmergy and
apoptosis—can be reused for architecting computing systems, in order to surpass
the spiralling control problem posed by their ever-increasing complexity.
Morphogenetic engineering 32 [34] proposes to adopt principles from developmental
biology—notably cellular differentiation and morphogenesis—in order to combine

31 Multicellular Computing Website: http://www.evolutionofcomputing.org
32 ‘Morphogenetic engineering weds bio self-organisation to human-designed systems’, R. Doursat,
PerAda Magazine: Towards Pervasive Adaptation, 18 May 2011— http://www.perada-magazine.
eu/view.php?article=003722-2011-05-18&category=Agents

2.5 Similar Initiatives, Current Status and Relation to Software Engineering

http://www.evolutionofcomputing.org/
http://www.perada-magazine.eu/view.php?article=003722-2011-05-18&category=Agents
http://www.perada-magazine.eu/view.php?article=003722-2011-05-18&category=Agents

52

the advantages of both purely self-organised systems and completely designed
systems. In this approach, a designed genotype —specifi ed as a set of rules, for
example—dictates the self-organisation and self-differentiation procedures fol-
lowed by system elements and guarantees the general structure, behaviour and/or
properties of the emerging phenotype , the fi nal executing system.

 Within the broader organic computing initiative, Chemical Computing 33 pro-
motes the chemical metaphor as a programming paradigm for enabling control
in complex computing systems. Here, programming artifi cial chemical systems
involves defi ning the interacting molecules, their reaction rules and the global
topology and dynamics of their interaction space. The programmed molecular
structures and reactions space set in place for each system element, at ‘microscopic’
level, lead to the emerging behaviour for the overall system, at ‘macroscopic’ level.

 A signifi cant challenge for any approach that relies on self-organisation and
emergence consists in identifying the correct organisational rules, codes or pro-
cesses that can give rise to the desired global states and behaviours. For example, it
is tremendously diffi cult to identify a genome design that produces phenotypes with
desired structural and functional properties. Unsurprisingly, nature provides a sig-
nifi cant source of inspiration for addressing this intricate challenge, notably via the
process of Darwinian evolution . This process relies on genome inheritance, muta-
tion and natural selection to fi nd solutions to the aforementioned problems—deter-
mining the micro rules (genotype) that will develop into macro systems (phenotypes)
that are fi t within a targeted environmental niche. Evolutionary computation has
developed a wide range of algorithms and methodologies inspired by this process,
including various genetic algorithms, evolutionary strategies, learning classifi er
systems, memetic algorithms, cooperative or competitive co-evolution techniques
or combinations of evolutionary and developmental techniques (evo-devo).

 The list of enumerated examples of programmes, projects and products similar
or relevant to autonomic computing is by no means exhaustive. Our main purpose
was to indicate that self-management is becoming a real concern in most IT system
domains, with the exemplifi ed self-management initiatives merely representing a
signifi cant refl ection of this important fact. Further fi elds of interest are discussed in
the following Chap. 3 , which emphasises the infl uences that these areas have on the
development of autonomic computing.

2.6 Key Points

 This chapter has discussed the following important topics:
• Autonomic computing is a relatively new initiative that was launched in response

to the increasing challenges raised by complex software systems. Autonomic com-
puting aims to enable computing systems to manage themselves (self- management),

33 The chemical metaphor as programming paradigm for organic computing: http://users.minet.
uni-jena.de/csb/prj/organic

2 Autonomic Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_3
http://users.minet.uni-jena.de/csb/prj/organic
http://users.minet.uni-jena.de/csb/prj/organic

53

so as to minimise the need for human intervention, while rendering administrative
interfaces more human friendly and less technology intensive.

• The autonomic computing initiative was launched by IBM in 2001. Similar initia-
tives have been launched in parallel by industry, academia and government organisa-
tions, with the purpose of attaining autonomicity in various types of complex
computing systems. Most notably targeted systems include data centres, clusters and
grid systems, ubiquitous and pervasive systems and unmanned robotic systems.

• The notions of ‘goal’ and ‘context’ are essential to any autonomic system. Goals
represent the high-level business objectives or policies that human administra-
tors specify and that the autonomic system must meet or follow, respectively.
Context consists of all the signifi cant facts about the state of entities that are
relevant to an autonomic system but that are external to it and hence that the
autonomic system cannot directly access and modify.

• In the autonomic computing context, system autonomicity is commonly resumed
via four key properties—self-confi guration, self-healing, self-optimisation and
self-protection—sometimes also referred to as self-chop . Achieving such proper-
ties imposes several system capabilities, most notably including self-awareness,
self-knowledge, context awareness, self-monitoring and self-adjustment. Since
the domain’s inception, the list of self-* features has been continuously extend-
ing, in order to explicitly highlight more precise or domain-specifi c capabilities.
However, many of the latter features can be subsumed in the self-chop list.

• Autonomic computing promises many short-term and long-term advantages,
including improved user experience, facilitated system management capabilities,
reduced system ownership costs and new opportunities for computing system
applications.

• The ambitious goals of autonomic computing raise important conceptual,
theoretical and technological challenges, requiring the study and adoption of
concepts from multiple scientifi c domains, the development of novel computer
design paradigms, the introduction of supporting capabilities at various archi-
tectural levels and the integration of multiple autonomic elements into globally
correct and coherent autonomous computing systems.

• The autonomic computing domain proposes a progressive path for introducing
autonomic capabilities in computing systems. The Autonomic Computing
Adoption Model was defi ned for this purpose, comprising fi ve incremental levels
of system management: basic (or manual), managed (or monitored), predictive
(or analysed), adaptive (or closed loop) and autonomic (or closed loop with busi-
ness priorities).

• Well before autonomic computing was defi ned as an individual IT domain, many
computing systems were already featuring capabilities that were similar or
identical to those involved in self-management. Examples include automatic
confi guration and optimisation algorithms, fault-tolerant applications and
communication protocols, dependable, self-adaptive and refl ective applications.
While totally compatible with such existing features, autonomic computing
proposes a new paradigm that explicitly targets autonomicity as an essential
capability of complex computing systems.

2.6 Key Points

54

• Autonomic computing should be best considered as a new paradigm in the
computer science domain, promoting the idea of introducing self-management
capabilities in computing systems rather than imposing a concrete methodology,
architecture or technology for achieving system autonomicity.

 References

 1. Christman, J.: Autonomy in moral and political philosophy. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy (Spring 2011 Edition). http://plato.stanford.edu/archives/spr2011/
entries/autonomy-moral

 2. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness.
In: CHI 2000 Workshop on the What, Who, Where, When, and How of Context-Awareness,
The Hague (2000)

 3. Truszkowski, W., et al.: Autonomous and autonomic systems: a paradigm for future space
exploration missions. IEEE Trans. Syst. Man Cybern. Part C 36 (3), 279–291 (2006)

 4. McCann, J.A., Huebscher, M., Hoskins, A.: Context as autonomic intelligence in a ubiquitous
computing environment. Int. J. Internet Protoc. Technol. (IJIPT), special edition on Autonomic
Computing, Inderscience (2006)

 5. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technology.
New York: IBM T.J. Watson Labs. http://www.research.ibm.com/autonomic/manifesto/auto-
nomic_computing.pdf , October 2001

 6. FitzGerald, J., Dennis, A.: Chapter 1: Introduction to data communications – “a brief history
of communications in North America”. In: Business Data Communications and Networking,
10th edn, pp. 5–7. Wiley (2009). ISBN 978-047005575-5

 7. U.S. Dept. of Agriculture, Economic Research Service.: A History of American agriculture
1776–1990, Washington, DC, 1993. Summaries are also available online as teaching material,
such as from the Library of Congress: http://www.loc.gov/teachers/classroommaterials/con-
nections/hist-am-west/history.html

 8. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfi lling the vision of autonomic computing.
Cover feature. IEEE Comput. Soc. 43 (1), 35–41 (2010)

 9. Sum, A., Khatiwada, I. The Nation’s underemployed in the “Great Recession” of 2007–09.
Monthly Labor Review, Nov 2010, http://www.bls.gov/opub/mlr/2010/11/art1full.pdf

 10. Schwartz, E.: Bureau of Labor Statistics reports big drop in tech jobs – almost 50,000 IT posi-
tions lost in last 12 months. InfoWorld, 6 Aug 2008, http://www.infoworld.com/d/adventures-
in-it/bureau-labor-statistics-reports-big-drop-in-tech-jobs-863

 11. Lockard, C.B., Wolf, M.: Employment outlook: 2010–2020. Occupational employment pro-
jections to 2020. Bureau of Labor Statistics, Occupational Employment, Monthly Labor
Review, Jan 2012, http://www.bls.gov/opub/mlr/2012/01/art5full.pdf

 12. U.S. Bureau of Labour Statistics.: Employment by Occupation. Employment Projections, 1 Feb
2012, http://www.bls.gov/emp/ep_table_102.htm

 13. Henderson, R.: Employment outlook: 2010–2020. Industry employment and output projec-
tions to 2020. Bureau of Labor Statistics, Monthly Labor Review, Industry Employment, Jan
2012, http://www.bls.gov/opub/mlr/2012/01/art4full.pdf

 14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36 , 41–50
(2003)

 15. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Syst. J. 42 (1),
5–18 (2003)

 16. IBM.: An Architectural Blueprint for Autonomic Computing, 3 edn. IBM Whitepaper, June
2005

 17. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Proceedings of the 2004
International Conference on Unconventional Programming Paradigms, pp. 257–269. Springer,
Berlin (2005)

2 Autonomic Systems

http://plato.stanford.edu/archives/spr2011/entries/autonomy-moral
http://plato.stanford.edu/archives/spr2011/entries/autonomy-moral
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.loc.gov/teachers/classroommaterials/connections/hist-am-west/history.html
http://www.loc.gov/teachers/classroommaterials/connections/hist-am-west/history.html
http://www.bls.gov/opub/mlr/2010/11/art1full.pdf
http://www.infoworld.com/d/adventures-in-it/bureau-labor-statistics-reports-big-drop-in-tech-jobs-863
http://www.infoworld.com/d/adventures-in-it/bureau-labor-statistics-reports-big-drop-in-tech-jobs-863
http://www.bls.gov/opub/mlr/2012/01/art5full.pdf
http://www.bls.gov/emp/ep_table_102.htm
http://www.bls.gov/opub/mlr/2012/01/art4full.pdf

55

 18. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural approach
to autonomic computing. In: Proceedings of the First International Conference on Autonomic
Computing, 17–19 May 2004. IEEE Computer Society, New York (2004)

 19. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and
applications. ACM Comput. Surveys. (CSUR) 40 (3) (2008). ISSN: 0360–0300

 20. Wolf, T.D., Holovoet, T.: A taxonomy for self-properties in decentralised autonomic comput-
ing. In: Parashar, M., Hariri, S. (eds.) Autonomic Computing: Concepts, Infrastructure, and
Applications, pp. 101–120. CRC Press/Taylor & Francis Group (2007)

 21. Hinchey, M.G., Sterritt, R.: Self-managing software. Computer 39 (2), 107–109 (2006)
 22. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17 (11),

643–644 (1974). doi: 10.1145/361179.361202 . http://doi.acm.org/10.1145/361179.361202
 23. Smirnov, M.: Autonomic Communication: Research Agenda for a New Communications

Paradigm. Technical report, Fraunhofer FOKUS (2004)
 24. Dobson, S., et al.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst.

 1 (2), 223–259 (2006)
 25. Kephart, J.O.: Research challenges of autonomic computing. In: ACM International

Conference on Software Engineering (ICSE 2005), pp 15–21, St. Louis, MO, USA, May 2005
 26. Miller, B.: The Autonomic Computing Edge: The Role of the Human in Autonomic Systems.

IBM developerWorks, Nov 2005, http://www.ibm.com/developerworks/library/ac-edge7
 27. Murch, R.: Autonomic Computing. IBM Press/Prentice Hall, Englewood Cliffs (2004)

New Jersey (Chapter 14 – Other Vendors)
 28. Tennenhouse, D.: Proactive computing. Commun. ACM 43 (5), 43–50 (2000). doi: 10.1145/

332833.332837 . http://doi.acm.org/10.1145/332833.332837
 29. Sterritt, R., Hinchey, M.: SPAACE IV: Self- properties for an autonomous & autonomic com-

puting environment – Part IV A Newish Hope. In: 7th IEEE International Conference and
Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2010), 22–26 Mar
2010, University of Oxford, England

 30. Riedel, J., Bhaskaran, S., Desai, S., Han, D., Kennedy, B., McElrath, T., Null, G., Ryne, M.,
Synnott, S., Wang, T., Werner, R.: Using autonomous navigation for interplanetary missions:
the validation of Deep Space 1 AutoNav. In: International Conference on Low-Cost Planetary
Missions, Laurel, MD, USA, May 2000, http://hdl.handle.net/2014/14133

 31. Bajracharya, M., Maimone, M.W., Helmick, D.: Autonomy for mars rovers: past, present, and
future. IEEE Comput. 41 (12), 44–50 (2008)

 32. Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-
organisation in organic computing systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T.
(eds.) Organic Computing – A Paradigm Shift for Complex Systems, pp. 5–37. Springer, Basel
(2011). e-ISBN 978-3-0348-0130-0. ISBN 978-3-0348-0129-4

 33. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch,
E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43 (5), 74–82 (2000).
doi: 10.1145/332833.332842 . http://doi.acm.org/10.1145/332833.332842

 34. Doursat, R., Sayama, H., Michel, O.: Morphogenetic engineering. In: Toward Programmable
Complex Systems Series: Understanding Complex Systems. Springer, Berlin/Heidelberg
(2012). ISBN 1244 978-3-642-33901-1

References

http://dx.doi.org/10.1145/361179.361202
http://doi.acm.org/10.1145/361179.361202
http://www.ibm.com/developerworks/library/ac-edge7
http://dx.doi.org/10.1145/332833.332837
http://dx.doi.org/10.1145/332833.332837
http://doi.acm.org/10.1145/332833.332837
http://hdl.handle.net/2014/14133
http://dx.doi.org/10.1145/332833.332842
http://doi.acm.org/10.1145/332833.332842

57P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_3,
© Springer-Verlag London 2013

Autonomic computing can capitalise on advancements available from several
scientific fields, both within and beyond the computer science domain. This chapter
provides an overview of such fields and highlights their possible contributions to
autonomic computing systems. The manner in which concepts, mechanisms and
processes can be adopted and reused as software engineering approaches is high-
lighted across this chapter.

We discuss biology as the first source of inspiration for autonomic computing.
While the bio-inspired autonomicity concept is highly relevant to autonomic com-
puting, the potential of biology to inspire this field largely surpasses this metaphor.
We therefore enlarge our discussion to biological systems in general, especially
nervous systems, highlighting how their implementation in different species can
inspire various solutions to autonomic computing systems.

We also show how autonomic computing shares many of its goals and necessary
underlying constructions with some well-established engineering and computing fields
such as automated control systems, robotics, artificial intelligence and multi- agent
systems. The chapter summarises some of the most relevant concepts and approaches
available from existing fields and indicates the manner in which they can be adopted
to serve the autonomic computing initiative.

A number of interrelated theoretical fields provide a potentially significant link
between natural and artificial autonomic systems. Areas such as complex systems
theory, cybernetics, networked systems theory and artificial life have set out to deci-
pher the inner workings of complex adaptive systems and ultimately to control or to
build artificial ones. We briefly point out the relevance of such fields and the core
concepts that seem most readily applicable to autonomic computing.

Certainly, the chapter cannot provide a comprehensive view of all areas relevant
to autonomic computing. Rather, its purpose is to provide an (probably biased)
overview of the most relevant sources of inspiration and to offer pointers towards
more extensive specialty literature.

3Sources of Inspiration for Autonomic
Computing

58

3.1 Overview of Influences

3.1.1 Introduction

In the first two chapters of this book, we saw that software complexity and its related
costs are the main motivations behind autonomic computing. We also introduced
the fact that many initiatives with similar goals preceded this initiative. Indeed,
autonomic computing can be seen as an attempt at consolidating different domains
[1] that have until now remained mostly isolated. In this chapter, we take a closer
look at the influences that the autonomic computing initiative has had and investi-
gate some of the existing domains that can support the development of autonomic
computing systems.

As indicated in Fig. 3.1, we may distinguish two important realms of influence:
the study of complex natural systems and the development of complex computing
systems. Computing systems come from diverse software and hardware domains
ranging from traditional automation systems to smart systems based on artificial
intelligence techniques. They provide algorithms, architectures, models and tech-
niques that can be directly reused in autonomic computing. In turn, natural systems

Computing Systems

Natural Systems

Biology

Sociology

Economics

Chemistry

Psychology

Physics

Autonomic
Computing

AI

Multi-Agent

Control Systems

Pervasive

Robotics

Cloud & Grid

Artificial life Software Eng.

Theory , paradigms, models, …

Models, architecture, algorithms, platforms …

Games Complexity …

…

Fig. 3.1 Sources of influence and inspiration for autonomic computing

3 Sources of Inspiration for Autonomic Computing

59

are not software; their study can include domains as diverse as economics, biology,
chemistry or physics, but they can also provide significant contributions to auto-
nomic computing in terms of theories and models.

3.1.2 Natural Systems

In the beginning, autonomic computing was inspired by biology. In addition to the
important paradigm of autonomicity, autonomic computing can draw significant
inspiration from many principles and mechanisms driving biological systems. This
is investigated in detail in Sect. 3.2 of this chapter.

Enlarging the system scope from a single autonomic application to several
mutually influencing applications (or application components) brings about fur-
ther significant challenges. These may in turn reveal additional research domains
relevant to autonomic computing. In cases where autonomic components feature
relatively basic behaviours and simple interactions, several disciplines such as physics
and chemistry can provide reliable theories and models for describing the resulting
behaviour and properties of an overall system encompassing such components.
As indicated in Chap. 2 (Sect. 2.4.3), several computing science initiatives have
already been defined relying on inspiration from such fields, including the amor-
phous and chemical computing initiatives.

Things can become more complicated when the autonomic components are data
processing applications, capable of making independent decisions. Here, system
designers must additionally consider the manner in which individually reasoning
applications will impact the possible outcomes of the overall system considered.
The disciplines concerned with societal, political, economic and psychological issues
can offer useful inspiration, especially in regard to strategic decision-making and its
consequences on the system behaviour and outcomes. These include mathematical
models and interactive decision theories that have been developed and applied in the
context of large-scale, dynamic, asynchronous and generally open systems.

In particular, interesting ideas and models for autonomic computing can, and
have been, derived from the microeconomics domain. This branch of economics
examines the way in which local, mutually influencing behaviours and decisions,
channelled by high-level rules and regulations, give rise to different supply and
demand patterns, product prices and production levels in individual markets. In this
context, an interesting application of such models can be envisaged for addressing
resource allocation problems. Indeed, several autonomic computing projects have
introduced virtual currencies as a means of negotiation among computing pro-
cesses competing for limited resources, such as processing cycles, storage space or
communication bandwidth [2]. Autonomic agents have also been proposed for
searching and comparing goods and services in the e-commerce market on behalf
of consumers [3].

Game theory represents another important domain dealing with strategic plan-
ning concerns. Game theory can provide paradigms and mathematical models for
decision-making schemes that can be usefully applied to ‘multiplayer’ autonomic

3.1 Overview of Influences

http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://dx.doi.org/10.1007/978-1-4471-5007-7_2

60

systems. Namely, game theoretical principles can be employed for enabling multiple
autonomic decision-makers to collaborate or to compete, in order to achieve com-
mon optimisations or overcome conflicting objectives, respectively. Based on such
principles, system designers can determine the necessary rules to be set in place so
as to ensure that the global system state will converge towards an equilibrium point
that meets the system’s business objectives. Examples of interesting game theoreti-
cal contributions include Nash equilibrium, Conjectural equilibrium, Best Response
strategies or the Stackelberg leadership model, which we now briefly discuss.

The Nash equilibrium1 is defined as a set of strategies, one for each decision- maker,
where none of the participants can benefit from unilaterally changing their strategy.
In other words, none of the players has an incentive to change its strategy provided
that all other players maintain their strategies. This theory applies well to non-
cooperative games, where each player attempts to maximise its benefit, possibly to
the detriment of the group benefit. In the context of autonomic computing, Nash
equilibrium would mean, for example, that each application takes the best decision
it can while considering the decisions of all the other applications. However, as
indicated above, it may happen that the established Nash equilibrium (or local
optimum) is not a Pareto optimal2 (or global optimum). Ensuring that a multiplayer
system operates at the Pareto boundary generally requires some sort of cooperation
among the players. Also, adopting a Nash equilibrium strategy requires that players
are fully rational and hold perfect knowledge of each other’s strategies. Alternative
variants have been developed for situations where such requirements are impractical
or impossible to attain. Notably, the Stackelberg equilibrium strategy can be applied
when one particular player holds private knowledge of all its competitors and
accordingly optimises its responses. Interestingly, this strategy has been shown to
improve the performance of all participating players even if they continue to behave
myopically. For cases where players cannot obtain perfect knowledge on each other’s
strategies, Conjectural equilibrium has been proposed to replace knowledge with
beliefs, which can be obtained through repeated player interactions with their
environments [4].

Considering the management of system complexity in general brings to the fore
the necessity for understanding fundamental complexity and systemic principles.
More precisely, to manage complexity one would need to first comprehend the key
characteristics, inner workings and resulting behaviours of the targeted (complex)
systems and to understand where the complexity comes from, how it manifests itself
in the system and how it can be influenced or controlled. Hence, from a more theo-
retical perspective, autonomic computing may also benefit from the developments
of general fields that have studied such issues, including systems theory, complex

1 Nash equilibria: named after mathematician John Forbes Nash (1928) who invented the theory
and received the Nobel Prize in Economic Sciences in 1994.
2 Pareto optimality (or efficiency): named after economist Vilfredo Pareto (1848–1923), who
employed the concept in the context of economic systems. In a Pareto efficient allocation, no indi-
vidual can be made better off without rendering at least another individual worse off. In this state,
no Pareto improvements can be made.

3 Sources of Inspiration for Autonomic Computing

61

systems and the related subfield of complex adaptive systems (CAS) [5–7]. Notably,
the many research areas related to the complex (adaptive) system domain can pro-
vide useful theories, models, algorithms and techniques for understanding and
building complex autonomic computing systems. These comprise studies covering
networked systems [8, 9], nonlinear dynamics and chaos theory [10], spontaneous
synchronisation [11] and finally self-organisation, emergence, autopoiesis, adapta-
tion and evolution [7, 12, 13]. Similarly, the field of cybernetics may provide
insightful theories and studies for understanding complex, self-regulating systems
[14–16]. Most existing theories in these domains have been based on, as well as
applied to, scientific fields including biology, sociology, economy, physics, chemistry
or engineering. Autonomic computing represents another challenging domain where
such studies can find useful applications.

3.1.3 Adaptive Computing Systems

From an automatic control perspective, traditional automation systems have influ-
enced autonomic computing right from its inception. Such domains include control
theory and control engineering applications, which have long been studied and
applied to mechanical, electrical, chemical or financial systems. Automatic control
systems are discussed further in Sect. 3.3.

Within the system automation realm, robotics represents another important area
from which autonomic computing can draw valuable inspiration. Indeed, robots
must often operate in highly dynamic environments where adaptation abilities are
essential and opportunities for human intervention are limited or undesirable.
Considering the similar foundations and requirements of these two domains, it is
hardly surprising that autonomic computing has borrowed multiple concepts, archi-
tectures and decision techniques from robotics. Most notably, these include modular
and multilayered designs for complicated and dynamically adaptable reasoning and
behaviour, as needed when operating in uncertain environments.

Additional sources of inspiration can be easily identified when focusing on a
system’s actual control strategies. When such strategies must dynamically adapt to
internal and external changes, the decision logic may no longer be hardwired. On
the contrary, it must be sufficiently generic and flexible to respond correctly to a
wide range of unpredictable situations. This brings about the concept of automatic
system ‘reasoning’, which must rely on an available body of knowledge. Consequently,
autonomic systems start raising very similar issues that the artificial intelligence
(AI) field has been trying to solve. Such issues include the provisioning of support
for abstract representations, automatic decision-making, learning techniques and
reasoning based on incomplete or uncertain information.

The field of multi-agent systems (MAS) has been developed to address many of
the ideas and challenges raised by applications in artificial intelligence and other
scientific fields. The key strength of these systems lies in their capacity to address
complicated computing problems by dividing and distributing them among a set of

3.1 Overview of Influences

62

specialised reasoning3 agents. Carefully designed interactions among context- aware,
adaptive and autonomous agents lead to the global behaviours that address the
targeted problem. Hence, autonomic computing and multi-agent systems share a
number of principles and objectives, including the use of autonomous, context- sensitive
and adaptive entities. Indeed, MAS paradigms have been introduced from the earliest
stages of autonomic computing architecture specifications (Chap. 4), showing that
autonomic systems involving multiple interconnected feedback loops could be
modelled and designed as a set of interacting agents. Section 3.4 provides a brief
introduction to the AI domain and to the notion of rational agents.

Certainly, software engineering (SE) will provide an essential base for developing
autonomic computing systems. From a design and implementation perspective,
autonomic computing can adopt many of the existing paradigms and technologies that
software engineering has introduced in the computing domain for ensuring application
robustness and flexibility in execution contexts susceptible to frequent (dynamic)
change. These include concepts and platforms provided by service- oriented computing,
virtualisation technology, grid computing and the dynamic variants of aspect-oriented
programming or component-oriented software. They also include reusable architec-
tures, frameworks and design patterns that have been conceived considering exten-
sibility, adaptability and evolvability as core requirements. The software engineering
field and its contributions to autonomic computing are emphasised throughout the
book and hence not further detailed in this chapter.

Finally, from a domain-specific perspective, several IT fields have been striving
to address challenges that are similar or identical to those confronting autonomic
systems. These include pervasive and ubiquitous systems, smart buildings and
ambient intelligence, smart grids, self-adaptive and context-aware applications and
middleware, dependable computing systems, reflective applications, mobile ad hoc
networks and cluster infrastructures. Hence, autonomic system designers can adopt
and reuse many of the research results that have been produced in these adjacent
domains. At the same time, it is essential to stress that while information technology
is inspired by, and welcomes approaches and techniques from other fields (includ-
ing other IT fields), these constitute fields in their own right and as such possess
their own ‘difficult points’.

In the following sections we discuss some of the most important influences and
sources of inspiration for autonomic computing—biology (Sect. 3.2), control theory
(Sect. 3.3), artificial intelligence and multi-agent system approaches (Sect. 3.4) and
finally complex systems (Sect. 3.5).

We focus on developing the biology angle on autonomic computing, since biology
represents both the domain that provided the original idea behind the autonomic
computing paradigm and the domain that is the least present in typical computer
science curricula. A disambiguation of some essential principles in autonomous
nervous systems may allow readers to better grasp the autonomic computing para-
digm and to draw richer benefits from its relationship to biology.

3 ‘Reasoning’ is quite loosely defined in the MAS context, as it can range from basic reactive
behaviours to complicated and proactive learning, predicting and planning capacities.

3 Sources of Inspiration for Autonomic Computing

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

63

3.2 Biology

3.2.1 Overview

The term autonomic refers to the autonomic nervous system (ANS), which is
responsible for regulating vital functions. One might think that the complexity of
the human body, given the variety of its parts, could make it impossible to coordi-
nate all the necessary actions to keep the human system in a stable state, which is
essential to its survival. However, in spite of this complexity, living organisms are
prime examples of the power of adaptation to new environments that has yet to be
equalled. These capabilities are possible thanks to internal coordination. It is not
possible for a unique central organ to reign without sharing. Two distinct parts4 must
agree with each other in order to control the organism and ensure its survival: the
brain orders the conscious, purposeful acts, while the autonomic nervous system
(ANS) controls subconscious activities that are beyond wilful control. Both the
brain and the ANS are part of the human nervous system (NS).

The ANS’ main purpose is to ensure homeostasis—a system’s ability to main-
tain internal equilibrium despite changes in its external environment and its internal
state. The ANS5 uses external and internal sensory information to regulate the activ-
ity of internal organs so as to maintain a set of vital parameters (body temperature,
oxygen levels or glucose concentration) within a ‘survivability’ zone.

The ANS extends from the brain to the spinal cord via the brain stem and has
branches to every gland and organ of the human body and is composed of several
subsystems that interact to ensure the functioning of our bodies without our aware-
ness. It is then possible to carry out intellectual activities without worrying about
bodily functions. It is important to emphasise that these systems are interdependent
and that the actions of one may affect the other. For example, the brain, and there-
fore conscious actions, can impact the ANS’ unconscious behaviour. For instance,
a scary thought, which causes stress, may lead to changes in heart rate and increased
sweating to enable one to stay and fight or run away.

Within the biological realm, the ultimate goal of an organism’s autonomic ner-
vous system is to ensure the organism’s survival. Similarly, in the IT domain, the
goal of an autonomic computing system is to ensure the continual provisioning of
the system’s functional services and associated quality of service (QoS) properties
in the presence of external and internal changes. In this scenario, the role of a
human administrator seems to be equivalent to that of the conscious brain. That is,
human administrators merely specify a computing system’s high-level objectives
and then only intervene in case of system failure or for changing system objectives
and behaviour. To do this, system administrators are provided an overview and
summary of the environment in order to make decisions, but a large part of the
burden of administration is in turn managed by a variable amount of autonomous

4 This of course represents a simplification of the human nervous system.
5 Sometimes in conjunction with the endocrine system.

3.2 Biology

64

subordinates. They will have a very localised and detailed view of the situation of
a resource or a particular resource pool. All in all, the sum of their actions defines
the overall system behaviour.

3.2.2 Introduction to Biological Nervous Systems

A nervous system (NS) is an integrated biological system consisting of intercon-
nected, specialised cells—nerve cells (called neurons) and non-neural support cells
(called glial or glue cells). A nervous system has an essential role in controlling an
organism’s inner changes. Most importantly, the neurons of a nervous system are
specialised in sending fast signals between different body parts, hence playing a key
role in coordinating an organism’s actions and reactions.

Nervous systems first appeared in the Cambrian period, around 542 million years
ago. At that time, they represented a key enabler in the emergence of animals—
multicellular, eukaryotic, motile organisms (i.e. capable of moving about in their
environment). Static organisms, like plants or fungi, were rooted in their environ-
ments, hence presenting no stringent need for a nervous system. But motility brings
about change. This represents both a great advantage and a great challenge for sur-
vival. Indeed, any organism enjoying movement can get away from predators and
find more food but must immediately face the consequent disadvantages, namely,
finding itself in ever-changing environments. Active motility implies perpetual
changes in the animal’s environment. In such conditions, the chances of survival of
a motile organism will be greatly enhanced by its capacity to adapt to environmental
changes, not to mention the capacity to avoid moving into fatal environments.

Hence, as a movement enabler, the nervous system can improve an animal’s
motion efficiency by coordinating the actions of its various body parts. Also, as a
‘change manager’, a nervous system helps an animal move in intelligent6 ways—the
more complicated the animal, the more intelligent the movement.

The key underlying functions of a nervous system rely on fast long-range com-
munication and support for data processing. Such functions enable the formation
of swift connections from sensors to actuators, passing through various control
centres. They can also enable the conception of a more or less sophisticated repre-
sentation of the external world, which is essential for predicting the consequences
of actions. This type of model-guided control loops can bring about a wide choice
of adaptations, ranging from simple reflex reactions to more complicated strategic
action suites.

Interestingly, a similar developmental trend can be observed in computer sys-
tems. In this context, programs can be seen as means of controlling the behaviour
of a computing system. Initially, programs were isolated entities, confined to static
environments and performing well-defined calculations. They are now increasingly

6 Intelligent is broadly used here to imply well-adapted behaviour for achieving a set of objec-
tives—for example, the organism’s survival and implied subgoals, like keeping warm, eating and
avoiding being eaten.

3 Sources of Inspiration for Autonomic Computing

65

agile and mobile, operating in often unpredictable environments, possibly in
collaboration with other computing systems. In this context, biological nervous
systems can provide a great source of inspiration to software engineering. They
show how the interconnection of basic system elements into rapid communication
circuits can enable the efficient and coherent adaptation of complex systems.
Furthermore, numerous examples show how diverse nervous system topologies,
with various sizes and degrees of complexity, endow different species with various
characteristics and capabilities.

3.2.3 Structure of the Human Nervous System

The human nervous system (HNS) is the most complex system making up the
human body. As illustrated by Fig. 3.2, it consists of the central nervous system and
the peripheral nervous system [17–19]. The central nervous system (CNS) is the
largest part of the nervous system and principally consists of the brain and the spinal
cord. It integrates information received from the different body parts and sends out
signals (consciously or unconsciously) for controlling and coordinating the body’s
actions. The peripheral nervous system (PNS) connects the CNS to the different
body tissues. It consists of cranial and spinal nerves and of different types of nerve
clusters called ganglia. An intricate network of neural pathways interconnects the
different nervous system parts.

From a theoretical system perspective, the CNS can be viewed as a data
processing centre and the PNS as a data-mediation infrastructure for connecting the
CNS to peripheral sensors and actuators. Data processing in the CNS is performed
at various complexity levels from straightforward spinal connections between input

Fig. 3.2 Human nervous system

3.2 Biology

66

and output PNS paths (forming reflex arcs) to complex data-processing tasks in the
brain (like pattern recognition, planning or learning). In addition to data communi-
cation, the PNS can also transform transmitted signals by amplifying their strengths
or by filtering them out at various levels.

As illustrated in Fig. 3.3, the PNS can be further broken down into several sub-
systems,7 in particular the sensory division and the motor division. The sensory NS
conducts impulses from receptors to the CNS. It can be viewed as a monitoring
infrastructure relaying sensory inputs towards data-processing centres in the CNS.
Input data can originate from both external receptors like eyes, ears, nose or skin
and from internal receptors like chemical concentrations, pressure or temperature
sensors in blood, lymphatic circuits, glands and viscera.

Conversely, the motor division transmits signals from the CNS towards external
and internal effectors. Two types of activator pathways can be distinguished: somatic
and autonomic. The somatic division typically conducts impulses from the CNS to
the skeletal muscles, hence playing an essential role in voluntary motor functions.
Involuntary actions pass by the autonomic division to reach internal organs, includ-
ing cardiac muscles in the heart, smooth muscles in the stomach or hair follicles in
the skin. Hence, the autonomic division affects unconscious activities including
heartbeats, widening and narrowing of blood vessels, breathing, digestion, metabo-
lism and pupil dilation. The autonomic NS (ANS) provides a particularly enticing
source of inspiration for the design of adaptive systems. This is due to its capability
of using sensory information for regulating internal processes, while relying on a
combination of relatively simple, unconscious and mostly hardwired circuits.

As illustrated in Fig. 3.4, the ANS is classically divided into two subsystems8
consisting of circuits with opposing actions. On the one hand, the sympathetic NS
(SNS) is concerned with adaptations that prepare the body for stressful or emer-
gency situations—‘fight or flight’. On the other hand, the parasympathetic NS

Fig. 3.3 Central, sensory and motor nervous system divisions

7 Various neuroscience sources promote different PNS divisions (e.g. placing part of the sensory
division within or outside the ANS), yet a discussion on this topic is well outside the scope of this
publication.
8 Various neuroscience sources also include the Enteric nervous subsystem as part of the ANS, yet
for clarity reasons we avoid presenting this detail here.

3 Sources of Inspiration for Autonomic Computing

67

(PSNS) controls adaptations for ordinary situations—‘rest and digest’. Based on
these opposing circuits, the ANS can react to sensory information, from internal
organs and the environment, by stimulating body processes via the SNS or inhibiting
them via the PSNS.

The two autonomic subsystems (SNS and PSNS) typically work together to con-
trol the same organs. They constantly keep each other in check via stimulatory/inhibi-
tory effects, which form various negative feedback circuits. From an engineering
perspective, it is interesting to note how these two parallel circuits, sensing and acting
upon the same managed elements, and implementing opposite reactions, can perform
regulatory actions and maintain designated parameters within a targeted range.

A simple example is the use of these opposite circuits for autonomously main-
taining blood glucose levels. In this case, the PSNS uses information on sugar
concentration in the blood to detect high concentrations and stimulate the secretion
of insulin hormones—this stimulates the extraction of glucose from the blood and
its storage as glycogen in liver, muscle and fat tissues, hence decreasing glucose
concentration. Conversely, the SNS uses the same information to detect low con-
centrations and secrete glucagon hormones—this stimulates the conversion of gly-
cogen into glucose and its release into the bloodstream, hence increasing sugar
concentration. Additional autonomic regulation examples show the same implicit
coordination between the two opposite processes: the SNS increases blood pres-
sure, heartbeat rate and breathing while the PSNS decreases them.

In order to enforce different actions on the same organs, the two ANS subsys-
tems employ different types of chemical messengers (neurotransmitters)—in gen-
eral, norepinephrine for stimulating effects (SNS) and acetylcholine for inhibitory
effects (PSNS). Similarly, in a computing system, messages of different types can
be employed to induce dissimilar behaviours in the same receiving components.

3.2.4 Function of the Human Nervous System

At the most basic level, the main function of the nervous system (NS) is commu-
nication—rapidly transmitting signals between different body parts (that are not

Fig. 3.4 Sympathetic and parasympathetic divisions of the autonomic nervous system

3.2 Biology

68

necessarily adjacent). An alternative long-range communication mechanism is
also available, relying on the release of hormones into the internal circulation.
Nonetheless, signal transmission by means of hormone diffusion is slower and
less accurate than NS-based transmission. Indeed, nerve circuits can more accu-
rately connect specific target areas, with the fastest nerves transmitting signals at
speeds exceeding 100 m/s.

From a computing perspective, diffusion resembles peer-to-peer broadcasting
while nerve signalling resembles fast, precise, point-to-point communication. In
biological systems, the two communication systems are used in parallel and some-
times combined. The engineering domain could, and already has to some extent,
begin to study the advantages and disadvantages of such means of communication
and the manner in which they could be combined.

At a higher abstraction level, the nervous system (NS) is responsible for control-
ling various body processes. This is achieved by extracting internal and external
information via sensory receptors, processing the information so as to detect poten-
tial problems and to determine suitable responses and finally sending signals to the
muscles or glands that can activate such responses. Not surprisingly, this process is
highly similar to the one implemented by autonomic system control loops (as we
will see in Chap. 4).

NS circuits offer important insights for software system engineering since they
provide efficient means of achieving complex, adaptive control behaviours. At a
basic level, such characteristics are based on several key constructions that enable
neural circuits to simultaneously transmit and transform information (some details
discussed below). From a higher, conceptual perspective, neural circuits can trans-
mit signals of different types and strengths, amplify or decrease signal strength
during transmission and achieve content-based routing based on signal types. On a
neural circuit’s effector end, similar constructions allow converting signal types and
strengths for triggering diverse actions with different intensities. At a global system
level, the integration of parallel circuits with mutually influencing effects leads to
the emergence of complex, adaptive and convergent control behaviours. For exam-
ple, the previous subsection showed how the parallel actions of sympathetic and
parasympathetic circuits can form opposed feedback loops with highly efficient
regulatory behaviours. Finally, in a biological nervous system, the occurrence of
certain signals, whether punctual or repeated, can engender certain modifications in
the functioning of a neural circuit—for example, different routing or increased sig-
nal amplification. This may in turn enable an NS to achieve adaptation and learning.
Such capabilities based on repeated circuit usage and engendered results are also
essential to autonomic systems, which can learn from their experience and adapt as
best as possible to their environment.

Let us now provide a brief description of the main neural principles enabling
biological nervous systems. Here, communication relies on the transmission of
neural signals. Neural signals travel as electrochemical waves via neuron nerve
fibres and pass from one cell to another via synaptic connections. Signal transmission

3 Sources of Inspiration for Autonomic Computing

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

69

across one neuron relies on the formation and propagation of an action potential9
in response to some stimulation. Stimuli can be received concomitantly from dif-
ferent sources—sensors or other neurons. The sum of stimuli on a neuron must cross
a critical threshold in order for the neuron to ‘fire’. According to an ‘all-or-nothing’
principle, once a neuron’s threshold is crossed, the signals transmitted are almost
identical irrespectively of the intensity of the initial stimuli. Nonetheless, while
signals at the neuron level are the same, significant differentiation can be achieved
over neural circuits, by varying neuron interconnections, synapse types and signal
synchronisation.

Most common and most diverse synapses are chemical. In a chemical synapse, the
termination of a ‘sending’ neuron (activated by a signal) will release neurotransmitter
chemicals into the space between the ‘sending’ neuron and the ‘receiving’ neuron.
These chemicals bind to the receptors of the ‘receiving’ neuron. Here, different recep-
tor types will have different effects: excitatory effects contribute to the neuron’s
activation and subsequent signal propagation; inhibitory effects do the opposite.
Alternatively, electrical synapses can also transfer signals between neural cells, the
main difference being the increased speed of signal transmission when compared to
chemical synapses.

Similarly, communication between neurons and effector cell types (e.g. muscle
cells) is also based on synaptic connections. As before, depending on the type of
receptor in the receiving cell, the resulting effect can be excitatory, inhibitory or
modulatory. For example, an excitatory effect on a muscle cell would manifest as
rapid cell contractions. The NS uses over a 100 types of neurotransmitters,10 with
diverse effects on different kinds of receptors. Hence, a single sending neuron may
have both excitatory and inhibitory effects when connected to different receiving
cells with different receptor types.

While signal transmission between cells only lasts for a millisecond’s fraction,
longer-term effects may also occur in the synaptic connection. For example, the
number of receptors in a receiving cell may be multiplied, subsequently increasing
the sensitivity of the synaptic bound. Such changes may last for variable periods,
such as days, weeks or longer. This type of mechanism provides an essential base
for the formation of memory traces and learning. Reward-based learning may also
occur based on the reinforcement of frequently activated neural connections and
conditioned by an extra reward signal (that uses a dopamine neurotransmitter).
These capabilities give the nervous system certain plasticity, enabling it to adapt to
variations in its environment.

9 Action potential (spike or impulse): the sequential polarisation and depolarisation of a neuron’s
membrane, caused by stimuli (in a neuron’s dendrites or soma) and travelling through the neuron
(soma and axon) towards its extremity (axon terminals). Importantly, only stimuli that cross a
certain threshold cause the action potential to travel across the neuron, causing the neuron to ‘fire’.
Once triggered, all signals have the same action potential amplitude.
10 The most common neurotransmitters include acetylcholine, dopamine, GABA, glutamate and
serotonin.

3.2 Biology

70

3.2.5 Reflexes and Autonomic Control Loops

Autonomic computing can draw further inspiration from biological control systems
by looking into the way they can integrate several reflex control circuits with more
extensive control processes in order to achieve adaptive control behaviours, occur-
ring at various time scales.

The simplest type of neural control loop (called a reflex arc) is involved in rapid,
unconscious, reflex actions. It takes input from a sensory neuron, acts using a motor
neuron and passes through a number of connection neurons. The circuits of such
involuntary reflexes are hardwired during an individual’s development. They may
involve both skeletal muscle effectors and visceral effectors [18]. In addition, con-
ditional reflexes may be learned during an individual’s lifetime (e.g. how Pavlov’s
dogs adapt in the famous experiment).

Let us take an example that illustrates the functioning of a single reflex arc as
well as the global behaviour resulting from the integration of several reflex circuits.
We consider the case of a human foot stepping on a sharp object—as soon as this
occurs, the foot lifts up promptly before the brain can consciously realise it [20].
This reflex process starts with a pain receptor sending a signal to a sensory neuron,
which activates another neuron in the spinal cord. Within the spine, a connector
neuron relays the signal to a motor neuron, which induces contractions in the leg
muscle. This simple reflex arc only involves neurons in the peripheral system and
spine, without involving the brain. Generally, the process is typically more compli-
cated, involving the synchronous activation and implicit coordination of several
other reflex circuits. Namely, signals in the spine must also be relayed to the other
leg and torso muscles, balance the person, avoiding them tumbling over as the
injured leg lifts. In addition, the same signal is also projected up the spine and
through the brain stem to reach the sensory cortex. This subsequently excites the
primary motor cortex, which contracts face muscles into contortions that help com-
municate the victim’s distress to the external world.

This simple example shows how one alarm signal can be used to simultaneously
activate several reflex circuits, tuned to act in tandem so as to quickly get an entire
system out of danger.

Conversely, signals from multiple sensors can be aggregated in order to determine
a single reflex’s output or action. The example in [21] indicates how contextual infor-
mation on a cockroach’s current positioning can drastically influence its reaction
when faced with a threat:

Activity in dorsal giant interneurons of the cockroach initiates flight movements if leg
contact with a substrate is prevented. The same interneurons initiate activity associated with
running when leg contact is maintained. Thus, which one of two completely different
behaviours the giant interneurons evoke depends on the presence or absence of leg contact.

In addition to such passive, stimulus–response reactions, the NS of several species
is also capable of controlling the body via intrinsically generated activity patterns,
which do not require external stimuli. From an engineering perspective, this is the
equivalent of comparing reactive processes, such as methods triggered by external

3 Sources of Inspiration for Autonomic Computing

71

calls in object-oriented programs, to proactive processes, such as internal timers and
goal-oriented planners in agent-based systems.

In humans, such proactive behaviour is achieved by means of internal activity
cycles, based on neurons that can generate rhythmic sequence of action potentials,
even in isolation. A good example of such activity is the circadian cycle—a sleep–
awake pattern with about 24 h periods—inducing important behavioural fluctua-
tions. While influenced by light, the circadian cycle continues to operate even when
light intensity is maintained at constant levels (though some studies have shown that
the cycle may get deranged over time in such cases).

Finally, let us have a look into the construction and functioning of control loops
in the autonomic nervous system (ANS). Neurons belonging to the ANS form
autonomic pathways that connect neurons located in the brain stem and spinal cord
to effectors located in the internal organs.11 Such autonomic pathways are activated
by upstream signals from the Sensory NS or by motor signals from the CNS, con-
sequently generating involuntary internal regulation. For example, signals indicat-
ing a high level of activity, such as running, will prompt the ANS to increase
heartbeat and breathing rates and maybe to contract blood vessels for augmenting
blood pressure. Since it is connected to centres in the CNS, the ANS may also be
influenced by conscious processes and emotions. For example, a person’s heart-
beat and sweating may increase when they get angry and slow down as they adopt
a more Zen attitude. Autonomic system designers can draw inspiration from the
way in which autonomic pathways structured as relatively simple control loops can
ensure prompt, unconscious regulatory functions for essential system parameters.
Moreover, the connectivity and mutual influence between the ANS and higher
brain functions in the CNS can provide valuable hints towards layered architec-
tures for system designs.

3.2.6 Different Nervous System Architectures and Features

While most members of the animal kingdom, from jellyfish to humans, posses some
type of nervous system (NS), the complexity of such nervous systems may tremen-
dously vary [17].

Some of the most primitive animals do not possess nervous systems, but are still
able to provoke coordinated movements of their entire bodies. For example, sponges
can trigger whole-body contractions that expel water out of their hollow structures.
This can be considered as a basic example of self-maintenance and context-aware
self-protection.

Most of the more complicated animals possess various kinds of neural systems,
featuring different types of architectures, or organisations. Radiata animals (radially
symmetrical animals such as jellyfish or hydra) possess primitive nervous systems

11 More precisely, the nervous projections of neurons situated in the spinal cord or brain stem con-
nect to neurons located in the autonomic ganglia. To complete the circuit, the nervous fibres of
neurons in the autonomic ganglia reach and connect to the internal organs.

3.2 Biology

72

consisting of a loose nerve net, with no central brain or spine. The interlaced nerve
network of such animals allows them to react to sensory inputs such as light, touch,
temperature or chemical concentrations. However, such uniform, unspecialised nets
provide insufficient accuracy for locating the sources of sensory inputs, hence engen-
dering identical reactions to inputs from different locations.

To improve coordination and movement accuracy, starfish feature a different
organisation of their neural nets—several radial nerves extending through each
arm and a radial nerve ring connecting them all in the middle. Starfish represent
interesting examples of extensive self-repair capacities, being able to fully regen-
erate any of their arms. Even though such capacities are not directly enabled by
the NS, they show how the particular NS topology renders it well-suited to exten-
sive self-repair.

Most complex NS organisation can be found in Bilaterian animals, which repre-
sent most of the vertebrate and invertebrate animal species (including humans). All
Bilaterian animals possess a central nervous system (CNS) comprising a brain, at
least one central cord and numerous nerves. Certainly, the NS size will vary signifi-
cantly across different Bilaterian species, from a few hundred highly specialised neu-
rons and glial cells in simple worms to about a hundred billion adaptive neurons and
glial cells in humans. As can be easily observed, the size and flexibility of an NS have
a critical impact on the complexity and adaptability of its generated behaviour.

Within an NS, some neural circuits are genetically preprogrammed. These most
notably include the neural circuits involved in basic survival mechanisms. At the
same time, most NSs also feature various degrees of plasticity (or neuroplasticity),
which enables them to undergo structural and/or functional changes based on input
from the external environment. Changes may occur at reduced scales, like cellular
changes and new synaptic connections involved in learning; or at larger scales, like
extensive reorganisations of cortical mappings following brain injury.

3.2.7 Summary of Inspiration from Nervous Systems

Autonomic computing, as well as software engineering, can draw great inspiration
from various aspects of biological nervous systems. Most notably, it is interesting to
observe how behaviours that are complex and adaptive, yet coherent and reliable,
can be obtained based on diverse decentralised networks of simple and similarly
structured elements.

At a low, fine-grained level, engineers can look into the way in which relatively
simple processes and constructions in neurons and synaptic connections allow for
simultaneous, parallel and reconfigurable data transmission and transformation.
At a slightly higher structural level, the simplicity and efficiency of autonomic and
reflex control loops provide an immediate source of inspiration for the design of
simple, single-goal, autonomic software. At a more global level, it is interesting to
observe how adaptive behaviours can emerge from the coordinated integration of
mutually influencing neural circuits. Observation at this level should aim to decipher
the manner in which such emergent behaviours can be achieved via the careful

3 Sources of Inspiration for Autonomic Computing

73

interconnection and synchronisation of processes, as well as via higher-level
structural organisation, specialisation and self-organisation capabilities, within a
targeted environment.

From a networked system perspective, understanding NS topologies, at various
scales, can provide a good base when designing control systems adapted to various
contexts. Existing network topologies are worth exploring and range from the
rather uniform, random topology of the jellyfish nerve net, through the more
organised, small-world topology of the C. elegans worm [22] and to the combina-
tion of small- world and scale-free organisation of the complex dynamical system
that makes the human brain [23].

At the periphery of any control system, the types, number and connectivity of sen-
sors and actuators seem worth studying to pinpoint tradeoffs between the resources
employed, engendered NS complexity and richness of supported input and output
facilities enabling context-aware behaviour. To complement sensor- based reactive
processes, inspiration can also be drawn from the use and implementation of proac-
tive, self-triggering neural activities occurring in some biological species.

From an architectural perspective, it is interesting to note the structural separation
of neural functions into several layers and components, as well as the coordination
and cooperation among the different components and layers that ensure an efficient
and coherent control behaviour overall. Most notably, in more complex neural sys-
tems, such architectures can be observed in the separation and interaction between
higher-level neural functions and basic lower-level functions such as reflex arcs.
This separation enables the isolation of different types of control concerns so as to
prevent them from interfering with each other. As previously shown, reflex arcs and
autonomic processes must provide fast, efficient and relatively simple functions.
Conversely, high-level brain functions must engage in more complex data-processing
functions, such as planning and learning, which may be performed over longer periods.
Certainly, the two control types must cooperate so as to best ensure the organism’s
survival over the long term. Reusability of such separated concerns can be another
incentive, as can be observed by studying the evolution of increasingly complicated
biological species.

3.2.8 Bio-inspiration Beyond Nervous Systems

It is important to note that a biological system’s autonomy does not solely rely
entirely on the system’s autonomic nervous system or on the nervous system in
general. Additional, interrelated biological structures and processes can prove tre-
mendously useful as sources of inspiration for engineering autonomic systems.
These may include diffusion-based communication (based on the release of chemicals
into the blood or lymph circuits) or context-sensitive processes taking place inside
individual cells and propagating across groups of cells. A noteworthy process in this
context is the genotype–phenotype transformation that enables the creation of a
fully functional biological system, well-adapted to its environment, by the repli-
cable and context-aware self-organisation of reusable resources collected from that

3.2 Biology

74

environment12 [24]. Such processes can also play a key role in system self- optimisation
(the continuous renewal of constituent parts depending on resource availability and
context), self-repair (by enabling the regeneration of system parts such as the arms
of start fish or the tail of gecko lizards) and even self-protection (by detaching
renewable body parts to avoid capture).

The mechanisms and processes behind species evolution provide great inspira-
tion for engineering automatic solution-search algorithms and infrastructures, such
as has already been shown via genetic algorithms. Such processes mainly capitalise
on the capacity to represent an organism’s blueprint in the form of an efficiently
compressible information code, the possibility of mutating and mixing different
blueprint variants and the capability of selecting the most suitable blueprints from
the new resulting variants, based on the fitness evaluation of individuals.

Overall, the entire biological realm seems to open a wide range of opportunities
for novel, alternative design solutions suitable for sustaining the production and
maintenance of complex, adaptive IT systems. Certainly, caution must be taken
when getting inspiration from the living systems domain. On the one hand, the
underlying environmental restrictions and the targeted objectives can prove quite
dissimilar for biological systems and engineered IT systems. Hence, engineers
should search to merely extract inspiration from the biological realm rather than
blindly attempting to copy its mechanisms without a thorough understanding of
their primary constraints and motivations—for example, [25].

Finally, engineers should take considerable care when considering the long-term
impact of the autonomic IT systems they develop and deploy into the real world.
Indeed, the very advantages of an autonomous system could turn into notable disad-
vantages should an autonomous system no longer serve our purposes—that is, no
need for human intervention. From this perspective, the context and lifespan of an
autonomic system must be considered during its design and suitable solutions
included into its very structure and function. Within this context, the Apoptotic
Computing project has been defined with the goal of developing ‘Programmed
Death by Default for Computer-Based Systems’ [26]. This project aims to introduce
a self-destruct property into autonomic computing systems in order to help prevent
catastrophic scenarios. This approach is inspired by the apoptosis mechanism in
biological systems. Here, programmed cell death intervenes as part of immune
responses in multicellular organisms, for eliminating damaged or diseased cells, in
a controlled and non-toxic manner.

3.3 Control Systems

Automatic control systems have been around for some time to regulate industrial
processes such as power stations and chemical plants. Like autonomic computing
systems, the feedback loop is central to such systems. A control system consists of

12 R. Doursat, ‘Morphogenetic engineering weds bio self-organization to human-designed systems’,
PerAda Magazine, May 2011; http://www.perada-magazine.eu/view.php?source=003722-2011-05-18

3 Sources of Inspiration for Autonomic Computing

http://www.perada-magazine.eu/view.php?source=003722-2011-05-18

75

an interconnection of components specifically configured to achieve a desired pur-
pose. Modern control engineering practice includes the use of control design strate-
gies for improving manufacturing processes, the efficiency of energy use and
advanced automobile control, among others. It is these processes (plant or compo-
nents) that are under the management of the control system.

3.3.1 Introduction

The traditional goal of automatic control systems is to maintain parameters in a
certain threshold without human intervention. These parameters are usually physical
measurements or quantities such as speed and temperature. Control techniques have
been developed to meet these needs [27], which include the use of feedback loops.
As illustrated in Fig. 3.5, below, a feedback loop is composed of three elements: the
system that one wishes to regulate, a set of sensors and a controller. From reference
values set by the user, the controller’s role is to observe the system through the sen-
sors and make changes to ensure both system stability and compliance to the user’s
reference values. To achieve this, it is necessary to have an accurate representation
of the system. That is why regulation techniques use mathematical models of the
environment that define system state and the values of input and output that are pos-
sible. This concept of feedback loop has been present in autonomic computing from
the beginning [28].

For completeness we describe a general process for designing a control sys-
tem. This section provides a very simplistic and brief introduction to the sub-
ject, enough to understand some of the main concepts that tend to affect
autonomic systems. To this end, much of the calculus has been removed; therefore,
we direct the reader to the many introductions to control theory that exist for
more full review.

Typically a representation of the control systems is modelled, and there is a gap
between the complex physical system under investigation and the model used in the
control system synthesis (see Chap. 7—Knowledge, for a more thorough discussion).
Through the use of the feedback loop, the iterative nature of the control process allows
us to effectively handle the design gap while trading-off complexity, performance
and cost in order to meet the system’s goals.

Controller System

Sensor

Reference +
Measured
error

System
input

System
output

Measured output

-

Fig. 3.5 Feedback loop

3.3 Control Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_7

76

One of the earliest examples of a control system is a water control regulator
(Fig. 3.6.) A float is used to measure the water level and ensure that the water tank
does not run out of water to convert to steam. The water is released to the tank when
the float decreases far enough to move the valve.

Figure 3.7 shows the control model for the water regulator depicted in Fig. 3.6.
This can be described as an example of a closed-loop control system whereby the
output (steam) directly affects the input (water) level as the steam ‘consumes’ the
water moving the float.

Building a control system is not unlike building any adaptive or autonomic system.
We need to establish what the goals of the system are (maintaining steam) and the
corresponding variables to control (water level). From this the configuration of the
system needs to be established which includes the sensor and associated actuator
that will change the system to meet its goals. For our example the actuator is the
valve and the float is the sensor. The controller is then specified and the key param-
eters to be adjusted (water level) detailed. Finally, the performance of the control
system needs checking. Here it would be that the float is registering the decrease in
water fast enough for the leaver to move the valve to let water flow: if this is too
slow, which would cause the tank to boil dry, or too fast which would cause flooding.
In this case then the controller needs adjusting.

valve tank

float

water difference steam+

-

Fig. 3.7 Control model for water regulator

steam

water

valve

float

Fig. 3.6 Water control
regulator

3 Sources of Inspiration for Autonomic Computing

77

As mentioned above, the type of controller in our example is that of a closed
feedback loop controller. There are two alternative controllers, feedforward and
open-loop controller. In feedforward control, disturbances (i.e. the aspects of the
environment that cause the error) are detected and, before the resulting change is
detected by the sensors, the actuator is triggered. An example of this is the heating
system of your house that detects a window is open and puts the heater on before the
thermostat detects a fall in temperature.

The open-loop controller calculates the appropriate inputs to feed to the control
system in order to make it produce a desired output by using only the state of the
system and a model of its behaviour. Thus, for this sort of controller to perform appro-
priately, it needs complete prior knowledge of the system. This is very difficult for
systems in non-deterministic, dynamic environments. Therefore, instead of trying to
understand the complex environment, the system uses feedback regarding how well it
is matching its goals (or not) to steer its operation. A simple example of a closed-loop
system is that of power-assisted steering in a car that uses sensors to monitor pressures
on the turning components to increase power to help steer the car. Alternatively, a car
without power-assisted steering is an open-loop system whereby the steering is con-
trolled by the driver and the degree of turning is directly related to the amount of
movement the driver forced on the steering wheel. One could argue that the driver uses
human sensory feedback to compensate and adjust the steering wheel however.

We are more interested in feedback control, where the current output of the managed
system compared to a reference value serves as an input to a controller that will calculate
the appropriate input to send into the system to regulate it. These sorts of controllers do
not require complete knowledge of the managed systems and so can perform well under
dynamic environments or in the presence of unpredicted noise and disturbance. This is
the sort of controller that would mirror the autonomic computing MAPE-K loop more
closely (this is described in Chap. 4). In this case the system would be the managed
system, the sensor would be the sensor touchpoint in the managed system and the con-
troller would be the autonomic manager. The actuator touchpoint would be another
component sitting between the controller and the system.

3.3.2 Feedback Control

Similar to our previous example, we now examine the general case where only one
variable is being managed and another variable controls the managed system, s, such
that the output is correlated to the input. The Input value often represents the value
that is desired to be output. The aim of the feedback system to understand the
difference between the input and output values, and this difference drives the control.
Here when the output settles out to the required value, it is said to be in a steady
state. We can model the system with the circuit in Fig. 3.8.

In order to analyse the feedback controller and how to make it efficient, a typical
technique is to calculate the transfer function of the system. Here, we discuss this by
means of the convention of using capital letters to represent the transformation of
the signals and impulse responses.

3.3 Control Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

78

In this model of a control system, we have the system being controlled, a sensor
that monitors the outputs from the system and a controller that regulates the system.
Assuming the sensor in this system does not change the output value in any way,
that is, F(s) = 1, meaning it has no gain, which is typical of computer-controlled
systems converting analogue signals to digital signals, for example.

The error at a given time, e(t), is the value calculated as the difference between
what was expected from the system (given the initial reference value r(t)) and what
the sensor read as the actual value output. The error is a measure of how well the
system is performing at any instant. If the error is large, this means the measured
output is not matching the desired output. Here, the controller must adjust the input
value to reduce this error and typically if the difference is large then the control
action (also known as gain) is large.

P(s) is the transfer function that goes from input i(t) to output o(t). The advantage
of the feedback controller is that only simple knowledge about the managed compo-
nent, or system, is required and not the environment. The controller’s goal is to
minimise the error. Because the system measures the effective error by subtracting
the output to the reference, the system can directly react to previous system output.

3.3.3 The PID Controller

What we have described in the previous section is essentially a PID (proportional–
integral–derivative) controller. It is one of the most widely used controllers and has
been widely adopted for controlling a single variable in order to make it reach a
desired set point. This controller is composed of a generic feedback loop, as depicted
in Fig. 3.9.

After the error signal is calculated, the controller then applies three distinct operators
to adjust this signal and each signal has a very specific role in the control loop:
• Proportional (P)—The proportional controller, as we have already discussed, simply

applies a multiplicative constant to the error signal. Constant adjustment provides
an input that aims to correct the current error signal. Here we see that K

p
 is the

proportional gain, and e(t) is the error signal, obtained by subtracting the reference
signal (set point) and the present value o(t). The proportional gain affects how

Controller System
P(s)

Sensor
F(s)

Reference

R(t)

Error

e(t)

Input

i(t)

System
Output

o(t)C(S)
Σ

Fig. 3.8 General model of a single-input single-output feedback control system (SISO)

3 Sources of Inspiration for Autonomic Computing

79

much the system should be tweaked in order to respond to an input error, for
example, like an amplifier. Higher gains will make the system adjust quicker.
However, adjusting the proportional gain too high can cause the correction value to
overshoot (Fig. 3.9) which in turn can produce large errors that need compensating
for. Again if the gain is large it will overcompensate and essentially make the
system oscillate more or even become unstable. Proportional control alone will usu-
ally not make the system arrive at its set-point value, but will only approximate it.

• Integral (I)—This controller integrates the error signal and so provides the
response to the past behaviour of the system. It provides a control signal that
attempts to correct the errors that should have been corrected previously, that is,
it aims to eliminate bias. This accumulated error is then multiplied by an integral
gain to weight the contribution of this component to the controller. Here, K

i
 is the

integral gain. The integral term accelerates the system to the desired set point
and, when used in conjunction with the proportional controller, eliminates the
constant error. The gain needs to be carefully tweaked to avoid the system
 over- responding to the previous error and overshooting the desired value. Setting
the integral gain higher will eliminate the error more quickly but with the risk of
a larger overshoot, as every negative error integrated needs to be compensated
for by positive error in order for the system to reach a steady state; see Fig. 3.10.

• Derivative (D)—The derivative component of the controller, as its name implies,
compensates the derivative of the error over time. K

d
 is the derivative gain that

will reduce the signal amplitude when overshooting and so can be very useful for
decreasing the overshoot produced by the PI controller, while retaining the high
speed of adjustment provided by it. However, setting the derivative gain too high
can significantly slow the response.
The PID controller, having all of these components weighted, then produces the

final control signal by adding all their contributions together:

P I D K e t K e K

t
e tp i

t

dout out out d
d

d
+ + = + () +ò() ()t t

0

System
P(s)

Sensor
F(s)

Setpoint Error

e(t) o(t)

Kpe(t)

Kdde(t)/dt

∑ ∑

Fig. 3.9 Proportional–integral–derivative controller (PID controller)

3.3 Control Systems

80

There are many methods for tuning a PID controller in order to ensure that the
system behaves optimally under the desired circumstances. Manual methods usu-
ally start by adjusting the proportional term until it starts to oscillate and then adjust-
ing the integral and derivative terms to make sure the system adapts quickly and
does not overshoot too much or become unstable. This controller is particularly
useful in cases where there is very incomplete knowledge as to how the system will
respond to the control signal. In cases where more complete knowledge of the sys-
tem is available, the PID controller can be combined with feedforward mechanisms
to provide a more suitable control.

3.3.4 Oscillations, Overshooting, Damping and Stability

A very important consideration with control systems is of course stability. In
real- world applications, if the controller forces the system’s output into approaching
infinity, that is a serious issue that must be addressed. Thus, when using more
complicated controllers, it becomes essential to use mathematical techniques to
assess the stability of a system. Because this can be such a serious issue in engineer-
ing applications (where infinity in a system can mean physically dangerous situations),
there has been significant research into this area. Firstly, we need to define what is
meant by stability.

We have mentioned overshooting in the previous sections, depicted in Fig. 3.10.
Overshoot, as the name suggests, is simply where the signal exceeds its steady-state
value. Where the aim is to get the system to a steady state as soon as possible
(i.e. reduce rise time; see Fig. 3.10), yet this causes conflict with the minimisation
of overshoot. That is, typically where we have a steep line to attain steady state
quickly the system will have a tendency to overshoot the set point. The magnitude
of overshoot depends on time and the degree of damping.

Overshoot combined with a correction causing undershoot can in turn cause sub-
sequent over and undershooting. This phenomenon is the system oscillating and is
illustrated in Fig. 3.10. The net effect of this can cause the system to not converge

setpoint

overshoot steady state

rise time

time

oscillations

Fig. 3.10 Overshoot, oscillations and steady state of a system

3 Sources of Inspiration for Autonomic Computing

81

to a steady state, and in an autonomic context, this can be manifested, for example,
as the system binding to different components and unbinding and rebinding again.
This obviously causes problems with performance as the overheads to carry out the
autonomic management are essentially dominating.

Damping is an effect that tends to reduce the amplitude of oscillations (e.g. fric-
tion can be described as a damping force). Figure 3.11 depicts the relationship
between a damping ratio and the percentage overshoot. Obviously the more damping
of a state change we provide, the less overshoot will occur. However, the more damp-
ing of error correction leads to a less responsive system and could increase the time
taken for the system to reach stability.

The stability of a system relates to its response to inputs or disturbances. It can
be described as a system which remains in a constant state unless affected by an
external action and which returns to a constant state when that action is removed.
Therefore, a system is stable if its error correction response approaches zero as time
approaches infinity. Control theory is concerned not only with the stability of a
system but also its degree of stability which can be described as marginal whereby
the system is stable for a time and then when a disturbance is injected, the system
becomes unstable for a time. The degree of stability, therefore, is an indicator of
how close the system is to instability and how much disturbances will affect the
system’s ability to return to its expected output.

3.3.5 Control and Autonomic Computing

To simplify the engineering of managed systems, it is best to reduce the number of
control loops in the system and keep them as independent as possible. The autonomic
feedback loop concept helps this in that it focuses the abstraction to controlling
each managed resource and hence one control loop per element. However, as will be
seen in Chap. 4—Architecture, an autonomic system may comprise many managed

Damping ratio

%

overshoot

100

50

10

0

0.5 0.1 1

Fig. 3.11 Showing the effect
of damping on overshoot

3.3 Control Systems

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

82

elements (or resources) or a hierarchy of managed elements, and these may be
controlled, tuned and managed very separately from each other. In this way, the
ability to understand how the autonomic system is behaving becomes a more trac-
table process.

At the same time, the control processes of autonomic systems can become increas-
ingly difficult to design, track and maintain as targeted systems, and their goals
become increasingly complex, and as several managed systems may have to coexist
in shared environments—such as is the case in smart grids or cloud systems. Here,
the number, heterogeneity and interference among feedback loops can increase con-
siderably as each managed resource in a large-scale dynamic system may simultane-
ously have to address multiple goals, while being constantly impacted by the activities
of other managed resources, which may dynamically join or leave the overall system.
Developments in modern control theory may become useful sources of inspiration
for dealing with such situations in autonomic computing. Such developments most
notably include nonlinear, adaptive, multivariable and robust control theories.

3.4 Artificial Intelligence

3.4.1 Introduction to Intelligence

John McCarthy13 defines artificial intelligence (AI) as a ‘science and engineering of
making intelligent machines, especially intelligent computer programs’ where ‘intel-
ligence is the computational part of the ability to achieve goals in the world’. AI is an
important field that has generated a huge amount of work. Clearly, we do not attempt
here to provide a detailed or comprehensive description of this field but simply seek
to highlight the main aspects of AI that can affect autonomic systems. The interested
reader is referred to the many books addressing this broad topic [29, 30].

The common purpose of all AI research is to construct computing machines that
can solve problems. Autonomic computing can be included in this category if one
considers that the particular problems to solve, as specified by human administra-
tors, centre around the administration of software systems. Within this context,
autonomic computing aspires to a considerably more modest objective than AI.
The minimum level of intelligence required will depend on the complexity of the
targeted computing system to administer and of its execution environment. This
implies that rather than creating intelligence as a goal in itself, autonomic computing
simply aims to endow computing systems with capabilities that render them more
autonomous. Featuring such capabilities may or may not imply a certain level of
artificial intelligence.

In the AI field, achieving intelligence means that artificial systems must be able
to carry out problem-solving activities in order to reach goals. The more

13 John McCarthy (1927–2011): computer scientist and cognitive scientist, considered to have
coined the term ‘artificial intelligence’ (AI). John McCarthy has been a key figure in the development
of the artificial intelligence field, for which he received a Turing award in 1971.

3 Sources of Inspiration for Autonomic Computing

83

complicated and unpredictable the goals and the conditions in which they must be
met, the more intelligence the system must possess. The actual manner in which
problem- solving capabilities are designed and implemented in computing machines
highly depends on the adopted view on the concept of intelligence (briefly discussed
below). Irrespective of the adopted perspective, intelligence cannot develop or
perform in complete isolation from the world in which it must operate. Hence, per-
ception and action on the environment, communication and coordination with other
intelligent systems become key capabilities. Such capabilities are also essential in
autonomic computing.

As highlighted by Russel and Norvig [29], intelligence has been studied from
several perspectives, and this has generated different lines of work. First, while
some concentrate on the thinking processes that seem to enable intelligence, others
focus on the observable behaviour that intelligence renders possible (or that generates
the illusion of intelligence). Second, various schools differ on whether intelligence
is strictly considered with respect to human capabilities or with respect to an ideal
form (also referred to as rationality14).

Cognitive science views intelligence from the perspective of human-like thinking
and consequently focuses on the study of the mind and its processes. This approach
to AI is only relevant to autonomic computing in so far as insight into human cogni-
tion and its physiological support can be used to create knowledge representations,
reasoning models or neural networks that can be implemented in a computing pro-
gram to help render it autonomous.

The rational thinking approach to AI emphasises processes based on logic. Here,
relevant facts and their interrelations are formally represented, and different types of
reasoning are used for inferring new conclusions from existing facts. Based on this
approach, a computer program should, in principle, be able to solve any solvable
problem that is expressed in logical notation. However, serious limitations are
encountered when attempting to develop programs that can solve real problems.
These stem from the difficulty of formally representing knowledge about a complex
and often uncertain environment and of actually executing logical inference within
reasonable timeframes and with available resources. Within autonomic computing,
logic-based approaches can be employed to solve clearly defined problems, such as
straightforward analysis and planning (see Chap. 7).

Adopting a human behaviour perspective, identifying intelligence becomes a
matter of comparing artificial system behaviours to human conducts. Based on this
perspective, Alan Turing15 proposed a test—known today as the Turing test—offering
an operational definition for intelligence. In order for an entity to be considered

14 ‘A system is rational if it does the ‘right thing’, given what it knows’ [29].
15 Alan Turing: English mathematician, logician, cryptanalyst and computer scientist. He can be
considered as one of the key predecessors of artificial intelligence (AI), as he defined a vision of
AI in a 1950 article called ‘Computing Machinery and Intelligence’, where he has introduced the
Turing test, genetic algorithms, machine learning and reinforcement learning. He has also intro-
duced some fundamental AI concepts in a less-known article submitted in 1948 and entitled
‘Intelligent Machinery’, but which remained unpublished during Turing’s lifetime.

3.4 Artificial Intelligence

http://dx.doi.org/10.1007/978-1-4471-5007-7_7

84

‘intelligent’, it has to be able to reply to a human interrogator so as to make it
impossible for him/her to determine whether the answers are coming from a human
or a machine. From an autonomic computing perspective, the mechanisms and
methods required for an entity to feature intelligent behaviour are certainly relevant.
However, while an equivalent of the Turing test could be defined to evaluate system
autonomicity, passing such test shouldn’t be considered as a goal in itself. Just as
the purpose of a plane is to actually fly rather than to fool other birds, the purpose
of an autonomic system is to actually be autonomic rather than to trick other auto-
nomic observers.16

Finally, intelligence can be viewed from the perspective of rational behaviour.
Here, intelligence can represent whether an enabler or a reflection of rational
action. Behaviourist approaches have mainly pursued the development of AI by
employing the concept of rational agent.17 A software agent fulfils the role of a
virtual autonomous entity representing the interests of a human being. To pursue
its goals, it must be able to perceive its environment, carry out autonomous control,
adapt and survive in changing environments and possibly cooperate with other
agents. Software agents seem the most suitable AI paradigm for achieving auto-
nomic systems. We concentrate on introducing this concept and its possible appli-
cations within autonomic computing.

3.4.2 Introduction to Software Agents

An agent is an autonomous entity that perceives and acts in a given environment
in order to achieve predefined goals [29]. An agent’s internal control logic deter-
mines the agent’s response to perceived stimuli or to other triggers, possibly
considering internal states, histories of perceived events and so on. The agent’s
internal function is typically implemented via a computing program. There is a
clear similarity between autonomic systems and software agents. Indeed, both
types of computing systems:
 – Perceive Their External Environment. They are context-aware in the sense that

their behaviour can be affected by evolutions in the computing environment in its
broadest sense. Also, environments can be categorised according to similar cri-
teria. They can be fully or only partially observable, deterministic or stochastic,
episodic or sequential, static or dynamic, discrete or continuous and comprising
a single or multiple agents [20].

 – Pursue Their Own Goals with Minimal Intervention from Human Beings. They
may use different techniques and formalisms to achieve high-level goals,

16 Analogy inspired by Russel and Norvig’s discussion [29] on intelligent machines passing the
Turing test.
17 Agent : from the Latin agens—(noun) advocate or pleader; (adjective) efficient, effective or
powerful; also from the Latin agere—(verb) to act, to urge or to conduct (Latin dictionary—http://
www.latin-dictionary.net.)

3 Sources of Inspiration for Autonomic Computing

http://www.latin-dictionary.net/
http://www.latin-dictionary.net/

85

 predefined or specified by their creators. They utilise their inputs so as to establish
an appropriate course of action that meets their initial requirements.

 – Act Upon Accessible Resources in the Pursuit of Their Goals. While the targets
of actions can be different—agents typically act upon their environments, while
autonomic systems upon their internal resources—the actual action mechanisms
are similar in the two system types.

 – Employ Progressively Sophisticated Control Logics for Achieving Increasingly
Complicated Goals. Hence, both agents and autonomic systems can either rely
on simple reflex designs to promptly react to current situations or utilise more
complicated data acquisition and processing techniques for also reasoning about
the past and the future [31] (Chap. 7). For instance, such systems may build
models of the real world and consider past events in order to make a decision.
They may also be able to anticipate and foresee unsatisfactory situations.

 – Collaborate with Other Entities in Order to Achieve Their Goals and Carry-Out
Concerted Actions. Here, cooperation and competition algorithms developed in
the multi-agent domain can prove highly relevant for integrating multiple auto-
nomic elements or subsystems into coherent autonomic systems [32].

 – Are Organized in Complicated Architectures Based on Various Collaboration
Patterns, which can range from hierarchical organisations to fully decentralised
structures (see Chap. 4).
Compared to software agents, the scope of an autonomic system is more limited.

Autonomic systems are focused on programming structures and configurations and
are interested in the management of artefacts. This is, of course, less ambitious than
agents that could be usable in many domains. At the same time, self-management
imposes some quite stringent specific requirements. In particular, an autonomic
system has to be able to adapt its computing structure, which in turn demands
advances in the supporting execution infrastructure. This aspect has not really been
investigated by the agent field.

To achieve rational behaviour, agents can carry out logical inferences but must
also exhibit some default or exploratory behaviour when uncertainty or limited com-
puting resources prevent logical conclusions. In addition, in emergency situations,
agents must act quickly and cannot spend precious time on lengthy deliberations.
Hence, perfect rationality can become unfeasible in complicated environments. This
point is important in the context of autonomic computing. In complex situations,
even if autonomic management processes can outperform human administrators,
they may, just as humans, take decisions that when analysed in retrospect prove to
not have been the best possible. Technical and societal implications of such limita-
tions must be carefully pondered when developing autonomic systems.

To evaluate an agent’s success, agent designers typically introduce an objective
performance measure. Rational agents always act so as to maximise their performance
measure. Actions considered as rational depend on several factors, including the suc-
cess criteria specified in the performance measure, knowledge of the environment,
available actions and knowledge of their probable impact and history of perceived
events and their impact on internal agent states. Such notions are highly relevant to

3.4 Artificial Intelligence

http://dx.doi.org/10.1007/978-1-4471-5007-7_7
http://dx.doi.org/10.1007/978-1-4471-5007-7_4

86

autonomic systems, which must also be evaluated with respect to their ability to reach
predefined goals.

While the concepts and paradigms related to intelligent agents directly apply to
autonomic computing systems, the actual design and implementation of autonomic
computing elements and systems proves just as difficult as the design and imple-
mentation of agents and multi-agent systems. Indeed, just as with complicated
agent systems, the global architecture of large-scale, distributed, multi-objective,
dynamic autonomic systems can quickly become fuzzy and hard to implement and
maintain.

3.4.3 Building Artificial Intelligence

Several communities have progressively developed within the AI domain, since its
beginnings in the late 1940s and early 1950s, mainly differing in their approaches to
modelling and developing intelligence. In the following we briefly discuss the spec-
ificities of available approaches since we consider that similar choices will have to
be made when developing different autonomic computing systems.

The traditional AI approach relies on the definition and manipulation of symbols
from the problem domain. This symbolic approach follows a top-down strategy,
trying to imagine, model and set in place the processes that can solve problems
within a certain category. If problems are too complex to resolve in one step, a
reductionist approach is adopted to progressively divide them into simpler parts
for which solutions can be found. Partial solutions are then recomposed into a
global solution for the entire problem. The symbolic approach has dominated
most developments in the AI domain. Some notable application examples include
expert systems, specific robotic applications, game playing like IBM’s Deep
Blue18 program, language understanding and problem solving like IBM’s ‘Watson’
Computing System.19

A second, bottom-up approach, referred to as the connectionist model, adopts an
opposite strategy to building intelligence. It starts off with smaller simpler elements,
such as those modelling the functions of brain cells (or neurons) and their intercon-
nections, and attempts to progressively interconnect and combine such capabilities
in order to obtain more complicated problem-solving functions. This approach more
accurately models the actual structure and mechanisms that seem to underlie human
intelligence –that is, brain structure and physiology. The connectionist approach has
been proposed from the beginning of the AI domain, for instance, via Alan Turing’s
B-type neural networks, but has only recently gained popularity, mostly via neural
network-based models. Some notable application examples include computer vision

18 IBM’s Deep Blue computer program managed to defeat the chess champion Garry Kasparov in
May 1997 (http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue).
19 IBM’s ‘Watson’ Computing System challenged and beaten Jeopardy Champions in February
2011 (IBM Jeopardy Challenge: http://techcrunch.com/tag/watson).

3 Sources of Inspiration for Autonomic Computing

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue
http://techcrunch.com/tag/watson

87

and image recognition, for example, identifying objects from video footage; heuristic
classification and decision-making, for example, advising on whether to accept
credit card purchases; or natural language skills, for example, predicting the past
tense of English verbs.20

Symbolic and connectionist approaches feature specific advantages and limita-
tions21 [33]. Symbolic approaches facilitate rich expressiveness, explicit architecture
and procedural versatility, which render them suitable for goal-based reasoning.
They facilitate the conception of processes that use complex knowledge representations
to perform systematic search explorations, parsing and recursive procedures.
Explicit knowledge representation and architecture enable various parts to be reused,
rearranged and modified independently. As a main limitation, symbolic approaches
are highly sensitive to incomplete or incorrect data and perform rather poorly at
‘common sense’ reasoning tasks, where analogies and approximations are more
suitable than precise formal procedures.

Conversely, connectionist approaches can inherently handle fuzziness and adapt
knowledge fragments to specific contexts. They prove particularly well-suited at
addressing ill-defined problems and weakly linked facts such as involved in pattern
recognition, clustering, categorisation, optimisation and knowledge retrieval. Their
main limitations are essentially due to the rigid, uniform and flat structure imposed
by neural networks. Indeed, lack of larger-grain architecture makes it impossible to
isolate a part of the network as a reusable piece of reasoning; to express, extract,
share or reuse acquired knowledge; to address complicated situations by problem
decomposition and integration of partial solutions; to learn to perform new tasks
once trained; or to perform several tasks in parallel.

A radically different approach to building intelligence challenged existing AI
communities by proposing an exclusively behavioural approach to robotic systems
[34]. Namely, Rodney A. Brooks argued that intelligent behaviour can be achieved
while exclusively relying on collections of simple, well-integrated reflexes. This
approach eliminates intelligence as a necessary, explicit element that mediates
between perception and action and rather defines it as a virtual concept induced in
the mind of external observers. To help build complicated robotic systems based on
this vision, Brooks proposes the subsumption architecture, which organises reactive
reflexes into multiple, interdependent layers, representing different abstraction levels
and goal complexities. This is not unlike some of the processes found in the natural
ANS. However, in robotics, goals pursued by reactions in the highest layers, such as
searching for food, must rely on and subsume reactions aiming to achieve simpler

20 A well-known connectionist experiment conducted by David Rumelhart and James McClelland at
the University of California at San Diego and published in 1986 consisted in training a network of 920
artificial neurons (organised in two layers of 460 neurons) to form the past tenses of English verbs.
21 Cognitive sciences studying the human mind are similarly split into different communities.
Cognitive psychology takes a top-down, knowledge-oriented approach, focusing on internal mental
processes and states, including beliefs, desires, knowledge, ideas and motivations. Conversely,
cognitive neuroscience takes a bottom-up approach by studying the biological substrates, or the
brain’s neural network, that underlie and enable cognition.

3.4 Artificial Intelligence

88

goals in the lower layers, like avoiding obstacles. Successful examples of this
approach include the first autonomous spacecraft—Deep Space One—developed as
part of NASA’s Remote Agent program ([29], pp 27).

A more recent AI approach, called Evolutionary AI, uses bio-inspired evolutionary
concepts to develop solutions that can solve predefined problems. An interesting
application example consists in modelling the evolution or growth of a business
within a simulated market place. Notably, Evolutionary AI has been used to model
artificial life forms within the artificial life (A-Life) domain. Among other centres
of interest, artificial life studies the self-organisation processes that lead to swarm
intelligence, such as can be observed in the simple flocking patterns of birds, move-
ment synchronisation of fish schools or more complex constructions of anthills,
honey bee combs and human embryos.

While the debate on the merits of each of these approaches persists in the AI
domain, some AI researchers propose hybrid solutions that can capitalise on the
advantages of both these designs. Notably, Marvin Minsky argues that AI must
employ and be able to integrate many, heterogeneous approaches, each one special-
ised in handling a different type of knowledge representation [33]. This view is
further developed in Minsky’s SOM theory22 [35], where human intelligence is
modelled as a collection of simple agents, each specialised in performing a specific
type of task. The agent interactions lead to the formation of an agent society, or
‘society of mind’, capable of performing complex intellectual tasks.

Last, but not least, learning was proposed and developed by the AI community
as a particularly potent element in creating and maintaining intelligence. Rather
than having external programmers carefully design and implement intelligence
all at once, learning enables intelligence to develop progressively and adap-
tively by automatically modifying a base of existing artefacts, in order to better
achieve problem- solving capabilities within a current environment and with
respect to present goals. Learning can apply to create, disable and tune reflexes
in purely reactive entities, enrich and update knowledge in more sophisticated
designs and finally identify suitable goals or even improve inherent learning
methods.

In addition to initial development, learning constitutes a powerful and essential
adaptation enabler. Most importantly, it allows the reuse of generic designs and
implementations within a wide range of specific execution contexts and for attain-
ing a large spectrum of goals. For example, an intelligent entity (or agent) can be
designed so as to merely detain an initial reflex-based behaviour, enhanced with
learning capabilities that progressively enable it to develop more sophisticated,
knowledge-based behaviours. This renders a common design reusable for enabling
any individual agent to develop, starting from a generic but basic set of capabilities
that match all foreseeable environments to an efficient and sophisticated behaviour
specialised for a certain environment.

22 Society of mind (SOM): a conceptual theory about the workings of the mind and thinking, initiated
by Marvin Minsky with Seymour Papert in the 1970s and later developed and published by Minsky
in the ‘Society of Mind’ book, published in 1988.

3 Sources of Inspiration for Autonomic Computing

89

3.4.4 Summary of AI Relevance for AC

Considering the aforementioned objectives and developments of artificial intelligence
(AI), the field of autonomic computing seems strikingly similar. Initially, some critics
have even accused IBM of having introduced a neologism to lull the reluctance of some
companies to implement techniques inspired from artificial intelligence. This is a base-
less accusation. In fact, artificial intelligence covers far broader areas of use and is
much more ambitious than autonomic computing. First, the original purpose of artifi-
cial intelligence was/is to build machines able to compete intellectually with humans
[29]. The goal of autonomic computing is much more modest since it is ‘simply’ to
give autonomy to computer systems. This notion of autonomy is, in particular, much
more important for autonomic systems than the relative ‘intelligence’ of the system
itself. On the other hand, the level of ‘intelligence’ is difficult to quantify and highly
dependent on the field. The concept of autonomy is much easier to evaluate. Intelligence
is not the end, but a mean of giving autonomy to the system. Finally, an autonomic
system is defined as a system that is subordinate to a human administrator with the
precise goal of assisting with administrative tasks, while this is not necessarily the case
for an intelligent system. However, the work developed in the field of artificial intelli-
gence is clearly crucial to understanding and building autonomic systems. In addition
to the generic, theoretical and developmental approaches promoted by various AI com-
munities, more specific AI works are also relevant to autonomic computing, including
studies on search algorithms, pattern detection and extrapolation, knowledge represen-
tation and inference, learning techniques, planning, epistemology, ontology and heuris-
tics. Yet, autonomic computing remains a stand-alone discipline rather than an AI
branch; the same way AI is a well-defined field rather than a branch of one of the many
disciplines it relies on or gets inspiration from—mathematics, control theory, cybernet-
ics, philosophy, psychology, neuroscience, economy, sociology and linguistics.

3.5 Complex Systems

Complex systems are systems that consist of numerous interconnected parts and
that exhibit properties and behaviours that are not necessarily obvious from study-
ing the properties and behaviours of the individual parts. The study of complex
systems focuses on the way in which interactions among parts give rise to overall
system behaviours and relations to the system environment. Complex system exam-
ples include social systems, involving interrelated humans; weather dynamics, led
by differences in temperature and moisture densities; climate systems, based on
long-term interactions among atmosphere, hydrosphere, cryosphere, land surface
and biosphere; or chemical systems, where interactions among chemical elements
can give rise to cyclical or oscillating reactions. Complexity Theory23 focuses on the

23 Here we refer to Complexity Theory as studied in relation to complex systems. This is not to be
mistaken with the field of Computational Complexity Theory—a branch of the Theory of Computation
(from theoretical computer science and mathematics) that aims to classify computational problems
according to their difficulty and to relate identified classes of problems to each other.

3.5 Complex Systems

90

study of interactions, iterations, emergence and pattern formation, all of which may
prove relevant to advancements in autonomic computing.

Complex adaptive systems (CAS) represent a special category of complex
systems, where in addition to being complex, systems are also adaptive, in the sense
that they modify themselves in response to changes in their environments and
potentially learn based on experience. CAS examples include ecosystems, social
insects and ant colonies, brains and immune systems, cells and developing embryos,
financial systems and stock markets and political and cultural communities.

It is important to note that the term ‘complexity’ is employed across different
research communities in software engineering and computer science with quite
diverse meanings. For example, ‘complexity’ may imply that a system is either
extremely complicated, that the composition of its parts is nonlinear, or that the
resulting overall behaviour is unpredictable. These differences aside, it remains clear
that available CAS research can provide useful concepts and models for designing
complex self-managing computer systems. Some of the most notable CAS concepts
to be considered include self-organisation and emergence.

Moreover, several specific research fields that have emerged from the general
CAS domain may prove particularly relevant with respect to autonomic computing
systems. These include the study of networked systems (small-world and scale-free
networks, dynamic and adaptive networks, graph theory, scalability and robustness
properties), pattern formation (cellular automata, reaction–diffusion systems, self-
replication and differentiation), nonlinear dynamics (attractors, chaos and stability
analysis), evolution and adaptation (genetic algorithms, artificial life, evolutionary
computing, artificial neural networks, machine learning, co-evolution, goal-oriented
behaviour) or collective behaviour (ant colony optimisations, synchronisation,
swarms or phase transitions).

Cybernetics (defined by Norbert Wiener24 in [36], for instance) is another impor-
tant interdisciplinary field specialised in the study of complex systems. Cybernetics
focuses on the understanding and specification of the self-regulatory aspects of
complex systems, where closed signal loops play an essential role. It is fundamentally
concerned with principles such as coordination, communication, information, feed-
back, control and regulation, which can be employed to explain and predict possible
system behaviours and functions. Such principles apply across a wide variety of
complex self-regulatory systems, from IT to physical and social systems. They are
definitely relevant to autonomic computing systems.

A noteworthy example of cybernetics’ relevance to autonomic computing con-
sists in W. Ross Ashby’s25 brain studies within this domain [15, 16]. Ashby regards
the brain as a physiochemical system that reacts to its environment and learns from
its experience to adapt its behaviour. The brain becomes a key adaptation enabler

24 Norbert Wiener (1894–1964): American mathematician, considered as the main originator of
cybernetics.
25 W. Ross Ashby (1903–1972): English psychiatrist, carried-out pioneering work in the cybernetics
domain.

3 Sources of Inspiration for Autonomic Computing

91

and hence an essential contributor to an organism’s survival. More precisely,
adaptation is viewed as a means of keeping an organism in an equilibrium state
within its environment. The organism remains alive for as long as the values of a
set of essential variables are maintained within some ‘physiological’ limits or
viability zone. Hence, change is only important in so far as it ensures the con-
stancy of the essential variables. Beyond the adaptation mechanisms for achieving
such ends, any goal- seeking intelligent behaviour is considered as merely in the
eye of an external observer.

In this context, the brain’s role is to control and adapt the organism’s behaviour—
the way it acts upon its environment—so as to maintain essential variables within
limits. For this purpose, Ashby introduces a double-feedback control system design,
which he refers to as ultra-stable system. A first, reactive feedback loop opposes
external disturbances via a complicated sensor and actuator system. When the value
of an essential variable is pushed towards its viability limit, a triggered reaction
brings it back within the physiological zone. However, default reactions may fail to
do this when more dramatic changes occur in the environment; essential variables
may continue to diverge in this case. The second feedback loop, intervening over a
larger time scale, is introduced to address this issue. It senses when the value of an
essential variable becomes critical (reaches the viability limit) and triggers an adap-
tation in the default reaction behaviour (the initial feedback loop). Hence, an ultra-
stable system reacts to small environmental disturbances on the short term and adapts
its reactive behaviour in response to more significant changes over the longer term.

This approach appears directly applicable to autonomic systems, if administra-
tive goals can be mapped to value ranges for well-defined variables. In this case, the
double-feedback solution can correspond to a multilayer design for autonomic man-
agement processes, where a meta-management layer adapts the behaviour of a basic
management layer, which in turn administers the managed resources. Several such
architectures have already been proposed within the autonomic computing domain.

3.6 Key Points

In this chapter, we have discussed the following important points:
• Since its inception, autonomic computing has been drawing inspiration from several

scientific domains, which share their concern for the study of the inner workings
and control of systems, natural or artificial. Some of these scientific domains include
biology, physics, chemistry, sociology, ecology, economy and psychology and from
the computing science domain: artificial intelligence, multi-agent systems, robotics,
self-adaptive computing systems and artificial life.

• At its core, autonomic computing relies on the concept of autonomicity, which it
has borrowed from biology, or, more precisely, from the human autonomous
nervous system (ANS), which regulates vital internal functions so as to ensure
homeostasis. Additionally, autonomic computing may draw broader inspiration
from the biological realm by analysing the underlying support for diverse control
and regulation capabilities in different species.

3.6 Key Points

92

• Autonomic computing’s goal of regulating parameter values while minimising
human intervention brings it close to the automated and control systems domain.
Namely, control theory provides extensive studies on the design of regulating
feedback loops, which can be readily adopted when engineering feedback-based
autonomic computing systems.

• Autonomic computing’s need for a decision process that links sensory inputs to
actuating outputs brings it close to artificial intelligence (AI). Various AI com-
munities have advanced on complementary approaches for solving complicated
problems in complex environments, which is precisely the task of autonomic
systems. The wide range of available AI learning techniques provides relevant
means for knowledge accumulation and adaptation in autonomic computing.

• Multi-agent systems, initially developed as a subdiscipline of AI, have been
adopted and applied across many disciplines for modelling and implementing
complex systems of various types. Autonomic computing makes no exception,
meaning that agent-based techniques and platforms represent a promising means
for developing and maintaining autonomic software applications.

• Autonomic computing’s goal of rendering machines autonomous brings it close
to the preoccupations of the robotics domain. This is especially the case when
autonomic systems must interact via sensors and actuators with the real environ-
ment and become progressively more mobile and capable to adapt to changing
execution conditions.

• The related research fields of cybernetics, networked systems, complex systems
and artificial life aim to provide a link between the natural and artificial realms:
they use computational resources to simulate and understand natural complex
systems, and they use the obtained knowledge to create and control complex
artificial systems. Such studies can prove highly valuable to autonomic comput-
ing, which aims to develop similar artificial systems.

• Despite its strong similarities and rich inspiration from the aforementioned
research fields, autonomic computing remains a stand-alone discipline rather
than a branch of an existing domain, such as artificial intelligence, multi-agent
systems or automated control systems.

References

 1. Kephart, J.O.: Research challenges of autonomic computing. In: ACM International
Conference on Software Engineering (ICSE 2005), pp 15–21, St. Louis, MO, USA, May 2005

 2. Hansen, J.G., Christiansen, E., Jul, E.: The Laundromat Model for autonomic cluster computing.
In: IEEE International Conference on Autonomic Computing (ICAC ‘06), pp. 114–123,
Dublin, 13–16 June 2006. doi: 10.1109/ICAC.2006.1662389. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=1662389&isnumber=34794

 3. Kephart, J.O., Greenwald, A.R.: Shopbot economics. Autonom. Agent Multi-Agent Syst. 5(3),
255–287 (2002). doi:10.1023/A:1015552306471. http://dx.doi.org/10.1023/A:1015552306471

 4. Su, Y., van der Schaar, M.: Conjectural equilibrium in water-filling games. In: IEEE Global
Telecommunications Conference (GLOBECOM 2009), pp. 1–7, 30 Nov 2009–4 Dec 2009,
doi: 10.1109/GLOCOM.2009.5425333. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu
mber=5425333&isnumber=5425208

3 Sources of Inspiration for Autonomic Computing

http://dx.doi.org/10.1109/ICAC.2006.1662389
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1662389&isnumber=34794
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1662389&isnumber=34794
http://dx.doi.org/10.1023/A:1015552306471
http://dx.doi.org/10.1023/A:1015552306471
http://dx.doi.org/10.1109/GLOCOM.2009.5425333
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5425333&isnumber=5425208
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5425333&isnumber=5425208

93

 5. Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Simon
& Schuster, New York (1992). ISBN 13: 978–0671767891

 6. Holland, J.: Hidden Order: How Adaptation Builds Complexity, 1st edn. Basic Books, New
York (1996). ISBN 13: 978–0201442304

 7. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and
Complexity. Oxford University Press, Oxford (1996). ISBN 13: 978–0195111309

 8. Watts, D.: Six Degrees: The Science of a Connected Age. W. W. Norton & Company, New
York (2004). ISBN 13: 978–0393325423

 9. Barabasi, A.-L.: Linked: How Everything Is Connected to Everything Else and What It Means.
Plume, New York (2003). ISBN 13: 978–0452284395

10. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Studies in Nonlinearity, 1st edn. Westview Press, Cambridge
(2001). ISBN 13: 978–0738204536

11. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order, 1st edn. Hyperion Book,
New York (2003). ISBN 13: 978–0786868445

12. Holland, J.: Emergence: From Chaos to Order. Oxford University Press (Sd), Oxford, UK
(2000). ISBN 13: 978–0192862112

13. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living.
Boston Studies in the Philosophy of Science, vol. 42, 1st edn. D. Reidel Publishing Company,
Dordrecht (1980). ISBN 13: 978–9027710161

14. Wiener, N.: Cybernetics, or the Control and Communication in the Animal and the Machine,
2nd edn. MIT Press, Cambridge (1965) (1st edn published by The Technology Press/Wiley,
New York, 1948). ISBN 13: 978–0262730099

15. Ashby, W.R.: Introduction to Cybernetics. Chapman and Hall Ltd., London (1956)
16. Ashby, W.R.: Design for a Brain: The Origin of Adaptive Behaviour, 2nd edn. Chapman and

Hall Ltd., London (1960) (1st edition published in 1952). ISBN 13: 978–0412200908
17. Nervous System. The Columbia Encyclopaedia. Columbia: Columbia University Press. 6th

edn. (2004) (entry available from Questia online encyclopaedia: http://www.questia.com/
library/encyclopedia/nervous_system.jsp)

18. Leong, S.K.: An Introduction to the Human Nervous System. Singapore University Press,
Kent Ridge (1986) (Reflexes, pp. 155–161; The autonomous nervous system and visceral
afferents, pp. 500–543). ISBN 9971-69-107-8

19. Gray, H.: Chapter IX: Neurology. In: Anatomy of the Human Body (Gray’s Anatomy). Lea
and Febiger, Philadelphia (1918). ASIN: B000TW11G6. Available online from Bartleby.com:
http://www.bartleby.com/107

20. Macaulay, D.: The Way We Work: Getting to Know the Amazing Human Body. Houghton
Mifflin/Walter Lorraine Books, Boston (2008). ASIN: B004TE780I. ISBN 10: 0618233784

21. Ritzmann, R.E., Tobias, M.L., Fourtner, C.R.: Flight activity initiated via giant interneurons of
the cockroach: evidence for bifunctional trigger interneurons. Science 210(4468), 443–445
(1980). doi:10.1126/science.210.4468.443. http://www.sciencemag.org/content/210/4468/443

22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Lett. Nat. (Nature)
393, 440–442 (1998). doi:10.1038/30918

23. van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-
free organization of voxel-based resting-state functional connectivity in the human brain.
NeuroImage 43(3), 528–539 (2008)

24. Doursat, R., Sayama, H., Michel, O.: Morphogenetic engineering. In: Toward Programmable
Complex Systems Series: Understanding Complex Systems. Springer, Berlin/Heidelberg
(2012). ISBN 1244 978-3-642-33901-1

25. Hinchey, M.G., Sterritt, R.: 99% (Biological) inspiration.... In: Proceedings of the Fourth
IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASE
‘07), 26–29 March 2007. IEEE Computer Society, Tucson

26. Sterritt, R.: Apoptotic computing: programmed death by default for computer-based systems.
IEEE Comput. 44(1), 59–65 (2011). doi:10.1109/MC.2011.5. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=5688151&isnumber=5688134

References

http://www.questia.com/library/encyclopedia/nervous_system.jsp
http://www.questia.com/library/encyclopedia/nervous_system.jsp
http://www.bartleby.com/107
http://dx.doi.org/10.1126/science.210.4468.443
http://www.sciencemag.org/content/210/4468/443
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1109/MC.2011.5
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5688151&isnumber=5688134
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5688151&isnumber=5688134

94

27. Golnaraghi, F., Kuo, B.C.: Automatic Control Systems. Wiley, New York (2008). ISBN 13:
9780470048962

28. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. Soc. 36,
41–50 (2003)

29. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall,
Englewood Cliffs (2009). ISBN 10: 0136042597, 13: 978–0136042594

30. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. The Morgan Kaufmann Series in
Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco (1998). ISBN 13:
978–1558604674

31. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing
policies. In: Proceedings of the 5th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY) 2004, 7–9 June 2004, pp. 3–12. IBM Thomas J Watson
Research Center, Yorktown Heights, New York (2004). doi: 10.1109/POLICY.2004.1309145.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1309145&isnumber=29053

32. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev.
19(4), 281–316 (2004)

33. Minsky, M.: Logical vs. analogical, or symbolic vs. connectionist, or neat vs. scruffy. In:
Winston, P.H. (ed.) Artificial Intelligence at MIT, Expanding Frontiers, vol. 1. MIT Press,
Cambridge (1990) (Reprinted in AI Magazine, 1991, http://web.media.mit.edu/~minsky/
papers/SymbolicVs.Connectionist.html)

34. Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI, 1st edn. A Bradford
Book, Cambridge (1999). ISBN 13: 978–0262522632

35. Minsky, M.: The society of mind. Pages Bent edition. Simon & Schuster, New York (1988).
ISBN 13: 978-0671657130

36. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine, 1st
edn. The Technology Press/Wiley, Cambridge/New York (1948). ASIN: B000RJDZXI

3 Sources of Inspiration for Autonomic Computing

http://dx.doi.org/10.1109/POLICY.2004.1309145
http://dx.doi.org/http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%26arnumber=1309145%26isnumber=29053
http://dx.doi.org/http://web.media.mit.edu/%7eminsky/papers/SymbolicVs.Connectionist.html
http://dx.doi.org/http://web.media.mit.edu/%7eminsky/papers/SymbolicVs.Connectionist.html

95P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_4,
© Springer-Verlag London 2013

 Software architecture specifi es the structure of the components of a system,
their interrelationships, principles and the guidlines governing their design and
evolution over time [1]. This is the very purpose of this chapter: defi ning the
main constituents of an autonomic system and understanding their structural and
temporal relations.

 Such exploration of the internal structure of autonomic systems will allow us to
better understand the challenges in building autonomic systems. It will permit us to
identify the major design and implementation barriers and their needs in terms of
techniques, technologies, formalisms and methods.

 This chapter highlights that there are not common agreements as to what an
autonomic system is and what its constituent parts are, yet alone what those parts
actually do. In some way, this chapter sets up the rest of the book in that the chapters
that follow aim to provide answers, partial in some cases where research is still
required, to the issues raised by this architectural chapter.

 4 Autonomic Computing Architectures

96

4.1 Autonomic Elements

 Autonomic systems rely on the notion of an autonomic element. An autonomic
element is an executable software unit that exhibits autonomic properties, that is,
the self-* properties previously introduced in Chap. 2 . To do so, it implements a
control loop in order to constantly meet high-level goals set by authorised entities.

 Specifi cally, an autonomic element regularly senses the possible sources of
change through sensors, reasons about the current situation and arranges adaptations
through actuators when and where it is necessary. An autonomic element is smart in
the sense that it can make its own decisions and is able to modify its internal struc-
tures and behaviours as a response to external or internal events. It is rational in the
sense that any management action it decides to perform is done in order to better
satisfy its base requirements given the available knowledge. Its behaviour at any
point in time can depend on what it perceives, on what it has perceived or on what it
has not perceived.

 As illustrated by Fig. 4.1 , an autonomic element can be seen as a smart software
island that can take care of itself, pursuing its own personal goals. 1 However, it is
not a completely independent island. First, an autonomic element is driven by infor-
mation provided by administrators, human or not, including goals to be pursued,
policies and strategies to be employed and even knowledge to be used. Also, if an
autonomic element has the autonomy to control itself, it still has to report to admin-
istrators. It has to provide them with understandable feedback so that they can be
aware of its internal situation at anytime. Administrators can thus adjust goals or
revise strategies where they deem it appropriate.

 Then, an autonomic element is executed in a context. As explained in Chap. 2 ,
this notion of context has generated much debate in the computing community [2].
In this book we assume the broad notion of context including the computing

Usage
Context

Computing
Context

Autonomic
element

Autonomic software

Goals / feedback

 Fig. 4.1 Autonomic element

1 A Trojan horse program can also be seen as an autonomic element, but this is not in the spirit of
autonomic computing!

4 Autonomic Computing Architectures

http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://dx.doi.org/10.1007/978-1-4471-5007-7_2

97

context, internal and external, and the usage context. Let us remind that the computing
context contains the computing resources that the autonomic element can use and
those that infl uence its actions. The usage context refers to the persons or systems
interacting with the autonomic software. The behaviour at any point in time of an
autonomic element can depend on these two forms of context.

 An autonomic element can form a complete software system. In this case, an
autonomic system and autonomic element are the very same, single software entity.
In most cases, however, an autonomic element is simply a part of the whole auto-
nomic system. Here, the autonomic element is really some sort of smart island taking
its own decision in conformance with high-level directions. Outside of the island,
administrators regain control of software artefact management in the traditional
way, not simply via high-level directives. Unmanaged parts of a system represent
any software or hardware resource that cannot be self-administrated. The reason for
this may be that they are suffi ciently stable regarding the system administration
goals and so do not require runtime management intervention. Another reason may
be that data and/or the means to self-administer these elements are simply lacking.
Unmanaged elements can however provide valuable information to an autonomic
element and clearly belong to the computing context.

 Most of the time, though, the situation is much more complex (see Fig. 4.2). For
scaling and scoping purposes, autonomic systems include a number of autonomic
elements managing well-defi ned software regions or providing well-delimited func-
tions. These autonomic elements may cooperate as they would do with any other
software artefacts, being within or beyond the autonomic system they belong to.

 Building an autonomic system comes down to specifying the features that have
to be self-managed and to defi ning autonomic elements, usually an iterative process.
Depending on their goals and constraints, for example, the time available to react or
the number of events to consider, autonomic elements build upon different tech-
niques and formalisms. Similarly, many interaction patterns can be employed to

Unmanaged
artefact

Unmanaged
artefact

Autonomic system

Usage
Context

Computing
Context

Autonomic
element

Autonomic
element

Autonomic
element

Goals / feedback

 Fig. 4.2 Multiple autonomic elements

4.1 Autonomic Elements

98

ensure cooperation among autonomic elements. Some systems, for instance,
implement hierarchical organisations among the autonomic elements, while others
are based on peer-to-peer interactions. Another challenge, of course, is to give a
simplifi ed vision of these different elements, autonomic or not, to the administra-
tors. In particular, administrators should be able to defi ne and redefi ne goals without
intimate knowledge of the internal structure of the autonomic system.

4.2 Architecture of Autonomic Elements

4.2.1 IBM Reference Architecture

 Autonomic elements are structured according to a simple, widely accepted, archi-
tectural model introduced by IBM [3]. This architecture, depicted in Fig. 4.3 , is
considered by many as the reference architecture. It clearly defi nes two distinct
types of modules: managed resources and autonomic manager. Managed resources
(or managed artefacts) are the software or hardware entities that are automatically
administered in an autonomic element. The autonomic manager is the entity in
charge of the runtime administration of the managed resources. IBM’s reference
architecture should be seen more like a logical architecture , identifying the main
types of entities involved, defi ned via their roles, functions and interactions. For
example, in certain cases, the autonomic manager and the managed resources may
be more intertwined and less clearly separated than shown in this conceptual refer-
ence architecture.

 A managed resource represents any software or hardware resource that is
endowed with autonomic behaviour by coupling it with the autonomic manager.
A managed resource can be a Web or database server, a specifi c software compo-
nent, the operating system or a component therein, a cluster of machines in a grid

Autonomic Manager

sensors

Managed Artefacts

Autonomic element

effectors

 Fig. 4.3 Reference
architecture of an autonomic
element

4 Autonomic Computing Architectures

99

environment, a rack of hard drives, a network, a CPU, a printer, etc. However, all
managed resources share a common feature: they need to be adapted at runtime as
a function of internal or external change where that change impacts on their goals.
Adaptations are needed in order to provide a better quality of service, to take into
account a new element in the context, to better satisfy user expectations, etc. They
can be triggered by anything from someone with a mobile device has moved to a
new room, a device’s availability has changed, the component is not performing as
expected or the size of the environmental data to be processed has changed.

 Managed resources provide specifi c interfaces, called control points or touch
points , for monitoring and adaptation. Two types of control points have to be
differentiated: sensors and effectors . Sensors, often called probes or gauges, provide
information about the managed resources. This could be some information regard-
ing the elements’ state or some idea of their current performance. For a Web server,
for example, that could include the response time to client requests, network and
disk usage fi gures or CPU and memory utilisation. Effectors provide facilities to
adjust the managed resources and, as a consequence, change their behaviour. For
instance, this could be some modifi cation of a confi guration fi le, the instantiation of
new objects, the replacement of some outdated elements, etc.

 The explicit defi nition of sensors and effectors is the proper means to encapsulate
managed resources. In this manner, the internal structures and states of the managed
resources can be kept private and an autonomic manager can only access them via
the interfaces that are provided. This is a way for the managed resources to keep
some level of control. This is also a way for managed resources to remain directly
administrable by a human operator. This is important since it is very hard in practice
to foresee all the runtime situations and it is likely that, under some unexpected
conditions, an autonomic manager would not able to provide an adequate solution.
The autonomic manager may also fail or be deactivated. In such a situation, an
expert human administrator has to be able to take over. Note that it is not expected
that a ‘regular’ administrator would take over in such situations, as deep, intimate
knowledge of the autonomic system is generally necessary.

 The autonomic manager implements the autonomic loop(s). It perceives the cur-
rent situation, internal state and external context, determines desired management
actions and pilots their execution. As previously mentioned, it is driven by admin-
istrative goals, generally expressed in rather abstract terms. The purpose of the
autonomic manager is then to transform these high-level directives into precise,
sometimes obscure actions on the managed resources. A goal can be, for instance,
‘be highly secure’. In this case, the autonomic manager has to create the expected
security conditions through parameter settings, component creation, specifi c pro-
tocol usage and so on. Usually, the precise security approaches, technologies and
techniques used to secure this software element are not known by most software
administrators.

 As explained previously, the autonomic manager also provides regular feedback
to the administrators so that they can remain in the decision loop. Here again, the
feedback should be presented in such a way that it remains intelligible by non- expert
administrators. It is the duty of the autonomic manager to aggregate data, perform

4.2 Architecture of Autonomic Elements

100

translations of format or vocabulary, build synthesis and transmit the appropriately
formatted information to an administration console.

 The autonomic manager heavily depends on the touchpoints provided by the
managed elements. Touchpoints play a major role in autonomic computing indeed.
Without appropriate data representing the system to be administrated and suffi -
cient possibilities to adapt it at runtime, no autonomic management is possible. In
new developments, touchpoints can be carefully prepared in order to reach some
predefi ned autonomic properties. In such a situation, autonomic properties are
actually part of the system requirements and have to be worked out as any other
system requirements. In many cases, however, touchpoints have to be explicitly
added to existing, legacy systems. This often demands a reworking of the original
system and, generally, limits the autonomic possibilities. This may be caused by
many things such as limited support for runtime monitoring, for instance, lack of
runtime information, unavailability of appropriate documentation, insuffi cient
understanding of the system and its interactions and limiting runtime modifi cation
opportunities.

 Ideally, the code of the managed resources and its rationale should be known.
This means that the design decisions and the constraints are well understood. This
is clearly necessary to be able to take corrective actions. However, it has to be admit-
ted that, in modern developments, such justifi cations and explanations are rarely
documented and/or maintained, for budget reasons, ironically.

4.2.2 Sensors

 Sensors are code or components that measure a physical or abstract quantity con-
cerning the managed resource and convert it into a signal for the autonomic man-
ager. Examples of such data would be system performance characteristics, user
context or even server temperature. Such data is presented in a timely fashion via
the sensor interfaces and contains all the information about a running system that is
needed by an autonomic manager. Depending on the target autonomic properties,
different types of data and different forms of presentation may be expected.
Determining the appropriate data to be collected and implementing the correspond-
ing sensors are a diffi cult activity in itself. One of the fi rst steps to be achieved when
building an autonomic system is therefore to defi ne the data that are needed, their
nature and the way they should be collected and presented.

 The data of interest may come from the external context (see Chap. 2) and from
many parts of the system, including, for instance, components, connections, classes,
operations and parameters. Some of these elements are business oriented, while oth-
ers are more concerned with the supporting infrastructure, like database manage-
ment systems (DBMS) or middleware. However, many supporting elements take the
form of components off the shelf (COTS), and, as such, it is diffi cult to obtain
internal data due to their black box nature.

 A distinction has to be made here between desired and accessible data, therefore.
In green fi eld situations, this can be a rather straightforward mapping since the

4 Autonomic Computing Architectures

http://dx.doi.org/10.1007/978-1-4471-5007-7_2

101

interfaces to the desired data are inherently accessible as they are part of the system
design. In other words, new systems are built in such a way that autonomic-related
data can be naturally provided, granted that no major requirement is violated in doing
so. However, dealing with a legacy system or COTS can be a much more complicated
a task. The code of the managed artefacts can be partially hidden, unreachable or
just not modifi able. It can be the case, for instance, when old, non- instrumented
libraries not designed to support monitoring/adaptations are used. Also, some
component code may be too large to be completely monitored. In such complicated
situations, compromises have to be reached in order to balance the targeted
autonomic properties and the complexity of instrumenting the system. In some
cases, certain levels of autonomy cannot simply be reached because of lack of
sensed data availability, and here clearly the point of an autonomic management
solution has to be questioned.

 Therefore, given the complexity and cost of instrumenting a system, the goal is
not to collect just any information that can be obtained about a system but, rather,
get appropriate data that can be used to carry out autonomic actions. ‘Appropriate’
has different meanings here. First, it means that collected data have to be in line with
the autonomic properties that are sought. For instance, when it comes to perfor-
mance management, a number of precise measures are needed to characterise system
performance that can include high-level information like memory consumption or
disk usage.

 Also, more obscure sensor data may be extracted and reasoned about such as the
mean execution time of a software component, the time spent in specifi c parts of
the software, the number of threads and recurrent event patterns. Developers of
autonomic systems have to realise that presenting useless information to an auto-
nomic manager does not come without impact. It has the effect of degrading the
performance of the managed system without improving its autonomic capabilities.
Instrumenting a system always has a cost in terms of code size, memory consump-
tion and overall effi ciency. This issue is acerbated for embedded systems, for
instance, where any addition of code has to be carefully justifi ed due to lack of
resources. The trade-off between autonomy and the engendered loss of effi ciency,
increased code size and memory footprint must always be considered. Finally, col-
lecting data is a dynamic process and the data that is deemed appropriate may
change over the managed systems’ lifetime.

 Likewise, the volumes of data to be collected can be very different: whether it is
raw or elaborated, simple or structured and functional or non-functional. Some data
is raw in the sense that it corresponds to values directly captured in the managed
artefacts. It can be, for instance, the memory consumption at a given time, the avail-
able disk space or any business-related value. In this case, there is no difference
between what is collected and what is presented to the autonomic manager. Some
other data are more elaborate in the sense that they are the result of operations
applied to a number of raw data. It can be, for instance, the mean value of memory
consumption on a given period. Making up aggregated information is necessary in
many situations, for effi ciency reasons or because of network contingencies. Again,
it is clearly not desirable to communicate a huge number of low-level information

4.2 Architecture of Autonomic Elements

102

to an autonomic manager which would need important computing power to process
all the data and deep knowledge to understand and treat the received information.

 So, data can be simple in the sense that it takes the form of an integer, a real, a
fl oat, an enumeration, etc. It can represent, for instance, the size of a disk or avail-
able memory, etc. This favours a decoupling between the autonomic manager and
the sensors. In some cases, however, structured data has to be provided in order to
group a set of simple values in a dedicated structure. For instance, all memory- related
information of a system can be preprocessed into a single rich data structure. This
simplifi es the work of the autonomic manager and is generally less costly. Building
complicated data structures requires computing and time though: it is generally
advantageously done at the managed artefact level.

 Finally, data can be functional or non-functional. Functional data corresponds
to business-oriented values, like intermediary or fi nal outputs of business pro-
cesses. They are typically used by an autonomic manager to verify how close the
current state of the system matches the systems’ goals. Some sensor data is con-
cerned with quality of service metrics, such as performance or reliability. They are
used by the autonomic manager to evaluate the non-functional properties of the
system. Non- functional information is often diffi cult to quantify and typically is
processed and assembled into the aforementioned structured data. An example of
this can be where the overarching goal is to ensure that the system is reliable in a
power-effi cient way. Reliable may equate to a 90 % up-time for the system. CPUs
that are underutilised, say, less than 50 %, are switched into sleep mode for power
effi ciency. These fi gures may be combined in some ways to provide a metric to
represent the overarching goal.

4.2.3 Effectors

 Effectors are code or components that effect change and are provided by the man-
aged elements. The purpose of effectors is to allow the autonomic manager, or any
other authorised entities, to trigger modifi cations to the managed artefacts in a syn-
chronised fashion. That is, the timing or order of the changes makes sense and the
system’s integrity is maintained. Like sensors, it turns out that determining the
effectors required and then implementing them can be a challenging task. It
demands, in particular, the anticipation of possible changes and the provisioning of
the technical means to realise them, especially at the execution platform level.

 Management actions can impact on the different architectural elements, includ-
ing components, connections, classes and operations. Since the autonomic manager
may have to act upon several of them, synchronisation mechanisms have to be
installed to ensure the change makes sense. As a matter of fact, modifying a soft-
ware element is always tricky. In our case, it can have impacts on the other managed
artefacts and also within the autonomic manager itself. For instance, the way infor-
mation is collected may be modifi ed when a change is ongoing.

 Effectors carry out changes to the managed elements in order to modify their
behaviour. Changes can be related to the elements’ functionality or to the quality of

4 Autonomic Computing Architectures

103

service it provides. Some functions may have to be added, removed or replaced in
order to provide better services or to be adapted to changing runtime conditions. For
instance, when a new device appears in a pervasive environment, new functions may
be inserted in order to exploit its capabilities. A notion of quality of service has also
to be carefully followed in order to constantly satisfy service level agreements
(SLA), which are generally specifi ed in the early phases of a project. Adapting the
quality of service may have impacts anywhere in the managed artefacts. In particu-
lar, it can lead to very low-level actions that change the behaviours of the code (e.g.
via parameter changes). Generally speaking, dealing with quality of service often
requires a deep knowledge of the code of the managed artefacts and how this impacts
the targeted non-functional properties.

 Change can be coarse grained, whereby large components are affected, for example,
adding or removing servers in a Web server cluster [4], or fi ne grained where only a
single value is changed, for example, changing confi guration parameters in a Web
server [5 , 6]. Technically speaking, the simplest adaptation is the change of confi gu-
ration parameters. They correspond to programming variables or to symbolic values
and are generally specifi ed in specifi c fi les, an XML-based language, for instance.
Global confi guration parameters have to be treated very carefully since several ele-
ments can be impacted by a single modifi cation. This is known as external coupling,
which is not considered good software engineering design practice. This is because
it leads to uncontrolled side effects upon modifi cation. Confi guration parameters
can also be specifi c to an object, a function, a component, etc. In this case, the scope
of change is more tractable. It is, however, good practice to provide an API to
manage these parameters. This kind of adaptation has been heavily used in order to
self-confi gure complex middleware such as EJB application servers. Similarly, in
autonomic security software, security parameters can be self-adjusted to adapt a
system to evolving security conditions. For example, the security system may be
monitoring accesses to a Web server from a single user connection. At some point
it may notice the number of connections increase above a predefi ned threshold and
the security component then uses connection parameters to throttle the speed at
which it allows those connections to be made to the Web server. At a further point
the numbers of incoming connections may be increasing at a rate that the security
system believes this to be a ‘denial of service’ attack, and it stops all connections
from that client address.

 More complex actions relate to changes in the topology of the managed artefacts.
As mentioned earlier, managed artefacts are usually made of software modules,
objects or components that can be created, suppressed, started, stopped, resumed,
replaced and deployed at runtime. The complete life cycle of these modules can be
controlled by the autonomic manager. For instance, depending on the available
physical resources and their availability, software modules may be moved from a
server to another one. This requires creating or modifying code dealing with com-
munication and non-functional aspects like security. New modules may be created
in order to deal with context changes. It is common in pervasive environments, for
instance, to create or suppress software modules in order to handle dynamic devices
or to deal with evolving user goals. Modules can also be replaced to change the

4.2 Architecture of Autonomic Elements

104

behaviour of a system with respect to a given aspect. Finally, connections between
modules can also be added or updated. Connections are architectural concepts that
represent the fl ow of control and/or of data through the system and, as such, are also
sensitive to context evolutions.

 Runtime updates do not happen by magic, however. Software systems cannot be
built so as to be fully adaptable, at any time and by any means. In autonomic systems,
runtime fl exibility is part of the requirements. The types of adaptations that may be
demanded by an autonomic manager have to be understood in advance in order to
be carefully prepared. This approach can be compared to the product-line philoso-
phy where the variability in products is made explicit at every development stage,
including during the requirement and design phase.

 The managed elements of an autonomic system have then to be designed with
adaptation in mind. As in product lines, fl exible architectures clearly defi ning both
variable and infl exible points have to be defi ned. A variation point can be a confi gu-
ration fi le, a component, a connection, etc. The insertion of variation points has,
however, a cost. They often rely on indirection mechanisms and, as a consequence,
have a cost in terms of execution time and memory consumption. Inserting too
many variation points may have disastrous impacts on the overall effi ciency of a
system. Compromises have to be reached between runtime fl exibility and perfor-
mance all along the software life cycle.

 Variability has then to be supported by the execution infrastructure. The best
crafted architecture is useless if the execution infrastructure does not allow architec-
tural updates. In some cases, adaptations may only be done after the managed arte-
facts are allowed to reach a quiescent state and their execution is interrupted. This is
especially the case when managed components maintain an internal state that can be
rendered incoherent if adaptations are not carefully implemented. Here, specifi c
interfaces are provided to manage the life cycle of the artefacts. Such interfaces may
correspond to one or several effectors. Other domains demand the dynamic update
of the managed elements. This means that these elements cannot be stopped to be
changed and usually require some form of middleware support to transfer the state
of the process safely over to the reconfi gured process.

4.2.4 Autonomic Manager

 The autonomic manager implements the autonomic loops. As explained in Chap. 3 ,
thus, loop is similar to, and probably inspired by, some of the work on control the-
ory, robotics and agent models. However, it targets different goals. Robots collect
information on the environment to adapt their behaviour while pursuing their goals.
Intelligent agents perceive their environment, interact with other agents and use this
to achieve a wide range of goals. Control systems monitor their environment in real
time in order to maintain a physical system within acceptable conditions, through
the assignment of well-defi ned state variables. Autonomic managers, however, are
completely focused on the administration of software systems. In order to relieve
administrators from more and more complex tasks, their purpose is to timely adapt

4 Autonomic Computing Architectures

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

105

the software in order to meet high-level management goals. These tasks, demanding
some level of intelligence, therefore seek to assist or replace human administrators
in their management tasks.

 The purpose of an autonomic manager is to apply domain-specifi c knowledge in
order to gracefully adapt a set of software artefacts at runtime when internal or
external changes are detected. It is structured around a collect/decide/act control
loop, as summarised by Fig. 4.4 . As indicated, the autonomic manager makes use of
monitored data and combines this with its internal knowledge of the system to plan
and implement management tasks, that is, execute the low-level actions that are
necessary to achieve the aforementioned goals. Diverse changes can be triggered on
the managed artefacts and, in some limited cases, on the computing context.

 The knowledge handled by an autonomic manager concerns the techniques that
are used to structure and implement software and the rationale under which these
decisions are made. The ontology used by an autonomic manager includes objects
like components, data structures, events, fi les, libraries, operating systems and func-
tions relating these different objects in some points in time. But it also contains
concepts like requirements, traceability links and deployment strategies, pertaining
to the initial phases of software development. A major challenge when building an
autonomic manager is certainly to relate decisions pertaining to different phases of
software development and use to make decisions.

 The decision part of the autonomic manager has to reason about the present,
perhaps the past and possibly even the future. Indeed, in order to correctly compre-
hend a present situation, an autonomic manager may benefi t from being able to
reason about previous experiences or historic events, to identify trends and recurring
patterns, to better put the current situation into context and to take more appropriate
action. A more sophisticated autonomic manager may be able to foresee the conse-
quences of its various actions on the managed resources (e.g. via self- simulation)
and accordingly decide on the most appropriate ones to take at any one time. Some
level of future prediction may also enable an autonomic manager to take pre-emptive

Administrative goals / directives

Decision

ActCollect

Usage context Computing context Cooperate Modify artefacts

 Fig. 4.4 Autonomic manager

4.2 Architecture of Autonomic Elements

106

action in order to solve foreseeable problems before they occurred. Finally, an
autonomic manager may even understand its own behaviour so it too can adjust its
internal logic and future activity. To achieve these capabilities, the decision part
makes use of specifi c knowledge created at design time and possibly evolved during
runtime. The more sophisticated the decision logic, the richer the required knowledge
needs to be. Enriching and updating acquired knowledge at runtime can be helped
with learning techniques. These can be put in place in order to improve the correctness
and relevance of the available knowledge and the way it impacts on the decisions
that the autonomic manager makes. Generally speaking, the decision part of the
autonomic manager can make use of very diverse reasoning techniques, many of
which are borrowed from the fi eld of artifi cial intelligence.

 Data that drives autonomicity originates from many sources. The managed arte-
facts constitute, of course, a privileged source of data. They are obviously in the best
position to provide accurate information about the state of the running systems in
terms of internal functions, quality of service, programming structures, etc. These
are precisely the entities that the autonomic manager has to administer. Also, this
information can be presented in a synthesised way to ease the work of the autonomic
manager. This is especially true for new systems where autonomic managers and
managed artefacts are conceived jointly. Other relevant data originates from the sur-
rounding environment, that is, from the computing context and the usage context.
Here, data is not structured to meet the specifi c needs of a particular autonomic
manager. Mediation operations, automatic or not, are generally required to present
the information in an appropriate way to the autonomic manager.

 As stated before, taking the environment into consideration is important for mod-
ern software systems. Many applications are inserted in a dynamic, complex and
open world and have to exhibit opportunistic behaviour. That is, they have to take
into account the changeable nature of their surroundings in order to correctly
self- adapt. The autonomic manager has to be aware of all these evolutions in order
to correctly adapt the managed artefacts. Here, its role is to keep some kind of
synchronisation between an evolving environment and the code it administers.
Let us not forget that contextual information is also getting more and more impor-
tant and growing in size. In sensor-stuffed environments, size and complexity of
contextual models become increasingly exponential.

 The way autonomic managers can be implemented is presented in coming sec-
tions and, also, in Chap. 7 .

4.2.5 Architectural Properties of Autonomic Managers

 At the architectural level, autonomic managers are defi ned through their capabilities,
that is to say their functions, and their properties. Even if the functions provided
are approximately the same for all autonomic managers, properties may vary a lot.
In particular, an autonomic manager can be optional or mandatory, changeable or
fi xed, fully or partially autonomic.

4 Autonomic Computing Architectures

http://dx.doi.org/10.1007/978-1-4471-5007-7_7

107

 As previously mentioned, autonomic management comes at a cost. In systems
with stringent resource constraints, one must seriously consider whether an auto-
nomic element is desirable or not. Under certain conditions, it is worth spending
some time on advanced autonomic functions, while in others it is an unacceptable
waste of time and resources. Autonomic managers may thus be seen as optional
software components. In some rare systems [7], autonomic managers can be added
and removed dynamically. Such an advanced feature provides a high degree of fl ex-
ibility that can be used, for instance, to autonomically tune a system at a given
moment and leave it alone afterwards. A less ambitious property, but still very useful,
is the ability to change some features of an autonomic manager instead of the whole
manager. It is advantageous in many situations to update some internal expertise or
knowledge of an autonomic manager. This permits control over the life cycle of an
autonomic manager. Here again, modifi cations can be made dynamically—with or
without system interruption.

 The level of instrumentation of the managed resources may also be dynamically
adjusted. This can help reach the best compromise between induced overheads and
monitoring accuracy, considering each situation. For example, a limited number of
sensors (and corresponding monitoring and analysis functions) may be continuously
maintained active to supervise the good functioning of managed resources. When
an anomaly is detected, additional sensors can be dynamically injected as necessary
to obtain fi ner-grained information and help better diagnose the anomaly. Once the
identifi ed problem is fi xed, the additional sensors can be deactivated or completely
removed from the managed resources to restore their initial effi ciency.

 Recently, researchers have been working on autonomic autonomic managers .
These are autonomic managers that can administrate themselves, changing their
internal rules in order to stop or remedy an unsatisfactory situation. One method is
to use reinforcement learning and learn policies by trying actions in various system
states and reviewing the consequences of each action [8]. The advantage of rein-
forcement learning is that it does not require an explicit model of the system being
managed, hence its use in autonomic computing [9 , 10]. However, it suffers from
poor scalability in trying to represent large state spaces, which also impacts on its
time to train. To this end, a number of hybrid models have been proposed which
either speed up training or introduce domain knowledge to reduce the state space,
for example, [11 , 12].

 Autonomic managers can be reactive or proactive. Reactive managers only trigger
their decision logic in reaction to some external event, such as new monitoring data
becoming available and being sent to it. Conversely, proactive managers may addi-
tionally take the initiative of analysing present, past or predicted situations and
adjusting the managed resources without being prompted by an external event (e.g.
periodically or based on some other internal schedule or mechanism).

 Finally, an autonomic manager can be refl ex based or deliberative. Refl ex- oriented
managers are typically stateless managers that react to external events as a
refl ex, non-deliberative manner. In general, such managers are essentially made of
event–condition–action (ECA) rules that directly produce adaptation plans from
specifi c event and condition combinations, taking current goals into account in so

4.2 Architecture of Autonomic Elements

108

far as the ECA rules have been derived from the goals. Stateless means that such
managers do not maintain any history about past events and actions. They only
consider recent events, occurring in a defi ned period of time. Stateless approaches
minimise complexity, are quite lightweight and, in short, are very effective in
uncomplicated situations requiring rapid decisions. They are also very limited, that
is, the autonomic manager keeps no information regarding the state of the managed
element and relies solely on the current sensor data readings to decide whether to
enact an adaptation plan. Some managers may use simple or more complicated
learning process to change their refl exes over time. This may be benefi cial, for
example, for rendering refl exes better suited for the most frequently occurring situ-
ations or to temporarily block a refl ex after it has just been triggered in order to
avoid state oscillations (i.e. switching from state to state and not getting on with the
purpose of the system). However, in refl ex-based managers, it is not possible to
perform advanced reasoning about the situation and, as a consequence, it is hard to
deal with complex situations, especially when the nature of these situations is bound
to evolve over time. In particular, in refl ex-oriented approaches, it is very diffi cult to
realise that past actions have failed.

 Alternatively deliberative managers keep and reason about state information
regarding the managed element. This information can be updated progressively and
dynamically through fresh sensor readings. Accumulated state information allows
the manager to improve any existing knowledge it may have, based, for example, on
trend analysis, pattern detection and so forth. Better knowledge allows the manager
to carry out more complex reasoning and analysis of candidate solutions to identifi ed
problems, subsequently increasing its chances of taking the most appropriate action.
In addition, recorded state information allows the system to be either more sensitive
or less sensitive to the sensor readings, in order to avoid the phenomenon of oscillat-
ing forward and backwards between states. This undesirable phenomenon is also
known as state fl apping that occurs particularly in complex systems such as networks
(we describe this phenomenon in more detail later on). Such stateful approaches also
permit some self-learning, as previously introduced. A deliberative manager can
learn from its previous decisions and actions by continuously evaluating and poten-
tially modifying itself. Such capability is, of course, more costly as it requires more
resources than refl ex-based solutions. This renders deliberative approaches not appli-
cable for certain systems, such as real-time or embedded systems.

 Mixed approaches have also been studied, essentially in artifi cial intelligence.
Applied in the autonomic world, such approaches defi ne an autonomic manager as
being composed of two complementary parts: a reactive, refl ex-based one, in close
interaction with the environment, and a proactive, deliberative one, supervising and
adjusting the refl ex-based functions. The reactive part is in charge of implementing
rapid actions in response to some well-defi ned conditions in the environment. The
proactive part, which can be executed on remote, more suitable resources, deals
with state conservation and complex reasoning. Based on its fi ndings, this delibera-
tive part can update the reactive part. For instance, it can change some parameters,
change refl ex rules or even add or remove rules. This approach retains advantages
of both worlds but is diffi cult to realise.

4 Autonomic Computing Architectures

109

4.3 Autonomic Manager Reference Architecture

4.3.1 The MAPE-K Model

 IBM defi ned a reference architecture to structure autonomic managers [13], usually
called the MAPE-K loop. It is a logical architecture, not a blueprint, that defi nes the
different activities to be carried out in order to realise autonomic loops. It is being
used more and more to communicate the architectural concepts of autonomic sys-
tems and has the added advantage that it is a clear way to identify and classify areas
of particular focus. MAPE-K is acronymic for monitor, analyse, plan, execute and
knowledge, which are aspects involved within any autonomic loop. This approach
is analogous to the clinical practices of observation, diagnostics, solution and
treatment.

 Depending on the targeted system’s complexity and degree of autonomicity,
different levels of knowledge and reasoning are required to drive autonomic man-
agement. As knowledge about the system and its context is shared among all the
phases of the loop, it is shown as a cross-cutting aspect. This architecture, illustrated
by Fig. 4.5 , can be used to implement both reactive/refl ex and proactive/delibera-
tive loops.

 The fi rst activity defi ned in the MAPE-K loop is that of monitoring. Its purpose
is to build a model, more or less sophisticated, of the managed artefacts and of the
execution context. To do so, it collects or receives information from the sensors
provided by the managed artefacts and from the context. The monitoring activity
generally has to fi lter, transform, aggregate and synthesise the collected information
in order to build a focused and comprehensive model.

 The analysis activity uses the representation of the world built by the monitoring
activity in order to assess the situation and determine any anomalies or problems

Monitor Analyse Plan Execute

Knowledge and goals

Autonomic Manager

sensors

Managed Artefacts

Autonomic element

effectors

 Fig. 4.5 The IMB reference architecture [13]

4.3 Autonomic Manager Reference Architecture

110

that would necessitate corrective action. In such a case, it may represent the desired
states as a model of the managed artefacts. Once again, as in any model, such a
model is a focused, simplifi ed representation of the desired state of the managed
artefacts. Detected problems and any associated analysis models are sent to planner,
potentially decorated with different attributes, such as the relative importance or the
urgency of the problem.

 The planning activity logically comes after analysis. Its purpose is to determine
a set of management actions allowing the passage from a current state to a desired
state, as defi ned by the monitoring and analysis activities. Action sets are partially
ordered and can handle several failures or malfunctions at a time since problems can
be intertwined. The planning activity is carried out with some assumptions about
the context and the managed artefacts. This has a profound impact on the feasibility
of the adaption plans.

 The execution activity, fi nally, has to carry out the plans, instantiating partially
ordered management actions. This activity directly interacts with the effectors pro-
vided by the managed artefacts.

 The MAPE-K logical architecture has profoundly impacted the autonomic fi eld,
providing a structuring framework to start with when building an autonomic system.
It is a modular architecture making sense for practitioners and combining properties
like the separation of concerns or scalability. The different activities, defi ned in
rather abstract terms, take care of focused, well-defi ned, complementary aspects.
Standardising communication interfaces of these activities, as advocated by IBM,
would even allow easier integration of various techniques developed by different
providers. The architecture is also scalable since activities can be executed on dif-
ferent machines, assuming that this is correlated with network latency and does not
affect reactivity.

 It is important to note that the MAPE-K loop represents a logical architecture
and is not intended to be literally implemented as is in all autonomic systems.
Rather, its purpose is to indicate the main functions an autonomic manager must
support for administering a system and the main interdependencies between these
functions, that is, analysis depending on monitoring, planning on analysis, execution
on planning and all on knowledge. It also shows the manner in which the autonomic
manager interacts with managed resources (via sensor and effector touchpoints).
Various concrete designs and implementations are possible to instantiate this refer-
ence architecture.

 Indeed, the MAPE-K proposal is not always directly applicable. Going through
the well-defi ned standardised interfaces of the four defi ned activities has a perfor-
mance cost that cannot be always afforded. Timeliness is extremely important in
autonomic computing and sometimes constitutes one of the fi rst requirements to be
met. A corrective action, in order to make sense, may be required to be carried out
within some time limit, and this cannot be negotiated. Thus, in some cases, group-
ing together some management activities, like analysis and planning, for instance,
can be required to meet a given deadline. Hence, the logical division advocated by
IBM is a high-level model; its merit is to provide high-level guidance facilitating

4 Autonomic Computing Architectures

111

the design of an autonomic manager. But, it is only a fi rst step in building a real
autonomic manager for a particular managed system.

 Certainly, the major limit of this model is that it does not address the behavioural
dimension of an autonomic manager. Most of the time, an autonomic manager
does not implement a direct, straightforward monitor/analyse/plan/execute loop.
Interactions between the different activities are much more complex than that.
Backtracks are often needed when, for instance, a task needs additional information to
perform its computation. Breaks are also needed when, for instance, a task has to wait
for more data to be obtained or for some effects of adaptation to be measured. Also,
synchronisations are necessary when knowledge is shared by several activities.

4.3.2 Monitoring

 We now consider the monitoring component of the MAPE-K loop. Monitoring
involves capturing properties (either physical or virtual) that are of signifi cance to
the self-managing properties of the system. For example, network latency and band-
width can be used as a measure of the performance of a Web server, while remaining
battery life of a laptop is a measure of its future utility, all of which can be moni-
tored. Information is collected through sensors or gauges, provided by the managed
artefacts or through specifi c interfaces provided by the computing environment. The
autonomic manager requires appropriate monitored data to be able to recognise the
autonomic artefact’s failure or suboptimal performance. It can then decide to make
appropriate changes. The types of monitored properties, and the sensors used, will
often be application specifi c, just as the mechanisms used to execute changes are
also application, system and programming language specifi c (Fig. 4.6).

Monitor AnalyseAnalyse PlanPlan ExecuteExecute

Knowledge and goals

Current stateMonitoring directives

SensorsContext

 Fig. 4.6 The monitoring activity

4.3 Autonomic Manager Reference Architecture

112

 We identify two types of monitoring in autonomic systems: passive and active
monitoring.

 Passive monitoring is where the managed artefact and its components are moni-
tored using a third party monitoring component. This component may consist of
existing performance management tools. For example, in Linux the top command
returns information about CPU utilisation by each process. Another common com-
mand that returns memory and CPU utilisation statistics is vmstat . Furthermore,
Linux provides the /proc directory, which is a pseudo-fi le system (this directory does
not store actual fi les on a hard disk) containing runtime system information, for
example, system memory, CPU information and per-process information including
memory utilisation, devices mounted and hardware confi guration. Similar passive
monitoring tools exist for most operating systems. Armed with the process identifi er
of the managed element or its components, the autonomic manager is able to establish
the element’s performance profi le in real time. Such situation can be encountered
when using COTS components. Some of them actually come with their monitoring
tool directly usable by the autonomic manager. This can be an important move in
the realm of component-based software engineering since the very nature of soft-
ware components is to come with non-functional properties and capacities. For
instance, components can be delivered with built-in testing capacities. Being packaged
with built-in autonomic abilities is certainly one of the very next steps in the evolu-
tion of software engineering.

 Active monitoring means direct interaction between the monitoring part of the
autonomic manager and its surroundings, in particular with the sensors, or probes,
provided by the managed artefacts. As said earlier, there is a close relationship
between the autonomic manager and the managed artefacts, particularly obvious in
the relationship between monitoring and sensors. The autonomic manager may
require the ability to add probes, for example, to the managed artefact’s software.
This may entail modifying and adding code to the implementation of the managed
element or its components to capture function or system calls or the times they were
initiated and completed. This can also be automated to some extent. For instance,
ProbeMeister 2 can insert probes into compiled Java byte code. This information can
be combined with passive monitoring solutions to provide the autonomic manager
with richer state information.

 There is a trade-off where we wish to have as much data to understand the state
of the system and make appropriate action, but this data is costly to obtain and more-
over store and process. Much work in the autonomic computing research community
has focused precisely on how to decide which subset of the many performance
metrics collected from a dynamic environment can be obtained from the many
performance tools available to it. Interestingly some have observed that a small
subset of well-chosen metrics can provide 90 % accuracy in terms of classifying
application states [14]. Further, a more dynamic approach to the monitoring of
systems to facilitate autonomicity can be taken. For example, Agarwala et al. [15]

2 ProbeMeister home page: http://http://www.objs.com/ProbeMeister/

4 Autonomic Computing Architectures

http://http//www.objs.com/ProbeMeister/

113

propose QMON, an autonomic monitor that adapts the monitoring frequency and
therefore monitoring data volume to minimise the overhead of continuous monitoring
while maximising the utility of the performance data. It could be described as an
autonomic monitor for autonomic systems.

 Also, data to be collected depend on the goals and on the state of the solving
process. Goals set by the administrators clearly affect the way the monitoring should
be done. Emphasis evolves as a function of the interest of the human administrators.
Similarly, intermediary results about the situation of the managed artefacts regard-
ing the goals can infl uence data to be monitored and the way to collect them.

 The monitoring phase provides information to the other management activities,
building a representation, or a model, of the present context and managed artefacts.
Once again, this model depends on the current goals and is very application depen-
dent. To create it, the monitoring activity transforms the information collected into
an appropriate format, that is, a format that can be manipulated by the other activi-
ties. Such transformations can be complicated: they may involve a number of timely
operations like fi ltering, analysing and aggregating. In general, temporal windows
will have to be explicitly defi ned as some information makes sense only when
observed during given time periods. Knowing the right period can however be
diffi cult in some situations.

 The output model can take different forms: a list of facts or observations, a graph
of objects, a state machine, a software architecture, etc. For instance, when handling
the battery life of a laptop, a three-state machine can be created and updated on
event occurrences. These three distinct states characterise the level of charge: under
1 % of charge, between 1 and 20 % and over 20 % of charge. Changing state can
provoke actions from the autonomic manager (analyse/plan/execute loop).

4.3.3 Analysis

 We now focus on the analysis component of the MAPE-K loop. Analysing involves
evaluating the current state of the context and of the managed artefacts and specify-
ing a target state if problems are identifi ed. To do so, analysis relies on application
specifi c knowledge that can be hard to obtain. Let us remind that problems are
defi ned here as failures in the managed artefacts or suboptimal behaviour. Also, we
use the term ‘state’ in its more general defi nition, readily acknowledging that various
formalisms can be used to defi ne a state.

 It is not the purpose of the analysis aspect to provide details about the identifi ed
shortcomings but rather to specify the desirable states. It is then the job of the plan-
ning phase to come up with the best way to reach a desirable state (Fig. 4.7).

 Analysis thus deals with the ability to understand the current context and to
determine a better state for the managed artefacts.

 A wide variety of algorithms and techniques can be used in order to detect
misbehaviours and shortcomings, establish correlations, anticipate situations,
diagnose problems and defi ne more desirable, and reachable, situations. This can
be anything from a model providing an evaluation of the situation to classifi cation

4.3 Autonomic Manager Reference Architecture

114

systems that identify whether or not a constraint or goal has been breached.
Prediction systems typically monitor trends and also identify if a constraint or
goal will be broken in the near or further future. This can be implemented using
anything from simple regression analysis of a window of historical probe data to
using hidden Markov models that represent temporal states of the system and can
be used to model the outcomes of a plan.

 The second purpose of analysis is to determine an improved situation for the
managed artefacts. This can be achieved using anything from a set of high-level
goals, expressed in a symbolic way, to more sophisticated models such as target
software architectures or property graphs. But, whatever the formalism, desired
situations have to be expressed in a focused, synthesised way. This is the very pur-
pose of the MAPE-K loop that defi nes the specialised autonomic components that
intercommunicate. In the case of the analysis component, the goal is to feed the
planning phase with an abstract situation that is required to be reached from the cur-
rent situation—this data is also focused and abstracted.

 In the autonomic fi eld, three policies have been heavily used to implement the
analysis expertise: event–condition–action (ECA) policies, utility function policies
and goal policies [16].

 Event–condition–action rules are a clear and straightforward way to express
domain expertise. ECA policies can take the form:

 when event occurs and condition holds, then execute action .

 That is, ‘when 95 % of a Web servers’ response time begins to exceed 3 s and there
are available resources, then increase number of communication ports’. In this exam-
ple, the action is the defi nition of a state to be reached, that is, a state where the num-
ber of communication ports better suits the needs of the managed system. ECA rules
and policy driven adaptation have been intensely studied for the autonomic manage-
ment of distributed systems. However, a diffi culty with ECA policies is that when a
number of policies are specifi ed, confl icts between policies can arise that are hard to
detect. For example, when different tiers of a multi-tier system (e.g. Web and

MonitorMonitor Analyse PlanPlan ExecuteExecute

Knowledge and goals

Target stateCurrent state

 Fig. 4.7 The analysis activity

4 Autonomic Computing Architectures

115

application server tiers) require an increased amount of resources, but the available
resources cannot fulfi l the requests of all tiers, a confl ict arises. In such a case, it is
unclear how the system should react, and so in many cases an additional confl ict reso-
lution mechanism is necessary, for example, that would give higher priority to the
Web server. As a result, a considerable amount of research on confl ict resolution has
arisen; the real challenge here is that confl ict may only become apparent at runtime. A
pragmatic conclusion is that ECA rules are very effective when dealing with a small
number of policies or when concerns are orthogonal. When too many confl icts arise,
other formalisms have to be examined in order to avoid a debugging nightmare.

 Utility functions rely on the defi nition of a quantitative level of desirability of a
given system state and any subsequent actions upon that state. This measure of util-
ity is expressed as a function and takes as input a number of parameters and outputs
a desirability rating of this state. Thus, as an example, the utility function could take
as input the current or predicted response time for a set of Web and application serv-
ers available to choose from, thus returning the relative utility of each combination
of Web and application server response times. This way, when insuffi cient resources
are available, the most desirable combination of available resources among Web and
application servers can be found. The major problem with utility functions is that
they can be extremely hard to defi ne, as every aspect that infl uences the decision
must be quantifi ed and combined into a single fi gure. Nevertheless, utility functions
have been found to be very useful and have been used in automatic resource alloca-
tion [17], adaptation of data streams to network conditions [18] to name two exam-
ples. They are also very useful in very dynamic environments where devices, for
instance, come and go. Utility functions are here used in intelligent homes to allow
the autonomic manager to decide whether or not to select a given device to run a
media stream [19].

 Goal policies require planning on the part of autonomic manager and are thus
more resource intensive than ECA policies. However, they still suffer from the prob-
lem that all states are classifi ed as either desirable or undesirable. Thus, when a
desirable state cannot be reached, the system does not know which among the unde-
sirable states is least bad.

4.3.4 Planning

 Let us now take a look at the planning aspect of the MAPE-K autonomic loop. In its
broadest sense, planning involves making a decision regarding the changes and
adaptations to assemble and implement on the managed artefacts in order to move
from a current to a desired state. To do so, a planner relies on a set of actions that
can be performed on the managed artefacts. Once again, we see the importance of
the link between the autonomic manager and the managed artefacts: action plans
depend on the effectors and effectors are put in place to carry out some desired
action plans. The planner should not consider the implementation details of the
actions. It is the purpose of the execution component to implement these actions,
which are often realised in dynamic computing environment (Fig. 4.8).

4.3 Autonomic Manager Reference Architecture

116

 A plan of action can be static or more dynamic. One plan could consist of a static
set of steps that must be carried out when a particular condition has occurred. Let us
take the example of a large grid system. If the monitoring side of an autonomic
manager detects that a node has died, the simple steps may be to inform the user and
then automatically reboot the node or if that does not work, then inform the workload
dispatcher to reroute the load away from this node. More sophisticated and dynamic
solutions may model the behaviour of the components that compose the managed
artefact and then choose a plan (from the number of plans that already exist) on the
fl y or even generate a plan at real time by iterating through the model of different
paths or scenarios and choosing the best. To do so, a planner make hypothesis about
the effects of the scheduled actions on the managed artefacts.

 In autonomic computing, we also often make the assumption that the autonomic
manager is the only entity acting on the managed artefacts. This is not always true.
In pervasive applications, in particular, many things impacting the managed arte-
facts happen in the computing and usage contexts. The autonomic manager has to
regularly check its predictions about the effect of its actions and about the state of
the managed artefacts in order to verify the adequacy of the plan. In extreme cases,
it can be necessary to redo a complete MAPE-K loop in order to determine a new
objective and a way to reach it.

 In any case, a planner has to anticipate the future and predict the effect of a given
course of actions and, furthermore, the data that should be monitored in order to
verify its predictions.

 We then have two approaches to planning in autonomic computing: domain
specifi c or generic. Domain-specifi c approaches rely heavily on the administrators’
expertise. Typically, the planning module is made of a number of rules taking the
form ‘when target and condition state holds, then create plan’ where the plan is
entirely specifi ed, or instantiated, in the rule. An example of such a rule would be
‘when the number of communication ports has to be increased and there are avail-
able resources, then consume all the available resources and distribute them opti-
mally’. In this example, the action is the opening of new communication ports for
each of the Web servers. These rules are typically written by system administrators

MonitorMonitor AnalyseAnalyse Plan ExecuteExecute

Knowledge and goals

Actions planCurrent and target states

 Fig. 4.8 The planning activity

4 Autonomic Computing Architectures

117

derived from system and business goals. Writing adaptation policies is fairly
straightforward but can become a tedious task for larger complex systems, espe-
cially when confl icts have to be dealt with.

 Generic approaches are much more ambitious. The idea here is to formally
express the problem, that is, the notion of state, and to defi ne action operators acting
on the states. Operators are generally defi ned with preconditions and effects on the
state. Planning then comes down to determining a sequence of operators allowing
the passage from the current state to the target state. It generally takes the form of a
graph search, either with or without heuristics.

 An architectural model of either a focused part of, or indeed the entire managed
system, is often used to formalise the current state. This architectural model refl ects
the system’s behaviour, its requirements and the system states required to reach its
goals. The model may also include aspects of the operating environment in which
the managed elements are deployed. Here, the model is updated through sensor data
and used to reason about the managed system to plan valid and appropriate adapta-
tions. A great advantage of the architectural model-based approach to planning is
that under the assumption that the model correctly mirrors the managed system, the
architectural model can be used to verify that system integrity is preserved when
applying an adaptation. That is, we can guarantee that the system will continue to
operate correctly after the planned adaptation has been executed. This is because
changes are planned and applied to the model fi rst, which will show the resulting
system’s state including any violations of system constraints or requirements pres-
ent in the model. If the new system state is acceptable, the plan can then be executed
on the managed system.

 Building a model of the system under question is however a non-trivial task.
It assumes that the architect understands the components, their interaction and
behaviours to ensure accuracy. Further, the model needs to be able to run through
the different adaptation scenarios to check that an update is both useful and safe.
Given the number of states and each state’s interaction, the search of all interactions
is a highly complex problem of exponential proportions. This may mean that the
model and the system are highly decoupled. For example, the model may run on a
different machine so as to not impact the managed systems’ operation. This pro-
cessing can potentially incur heavy execution costs. The timeliness of the solution
to the adaptation is important so to speed up the time model takes to reach an opti-
mum solution heuristics may be used, which may or may not add error to the model.

4.3.5 Execution

 Let us now examine the fourth and last activity of the MAPE-K loop. The purpose
of the execution activity is to implement the management actions determined by
the planning activity. Management actions essentially concern the managed arte-
facts, not the computing context. The purpose of an autonomic element, indeed, is
not to modify the environment but to react to its evolutions when they affect its
behaviour.

4.3 Autonomic Manager Reference Architecture

118

 Planning and execution are complementary activities. Planning focuses on high-
level actions to be undertaken, on their logical dependencies and, possibly, on their
order. Execution is much more concrete; it has to schedule the implementation of the
plans as they directly affect the artefacts currently running. It also has to examine in
real time the effects of its own actions in order to perform some adjustments if neces-
sary (Fig. 4.9).

 Dissociating planning and execution has been heavily investigated in artifi cial
intelligence but also in more traditional domains, like manufacturing execution
systems (MES), for instance, in order to deal with complex environments. Separating
out these activities is an effi cient way to handle dynamic, stochastic or poorly
observable computing contexts. The principle adopted here is to work at two com-
plementary levels of abstraction. A plan, for instance, could specify a set of param-
eters to be changed, with no ordering constraints. The execution activity, then, has
to determine how and when the parameters have to be changed. It is a matter of
timeliness and synchronisation where a number of functional and non-functional
dependencies have to be considered. Usually, a parameter can be changed only if some
conditions hold. When several parameters have to be modifi ed, ordering constraints
have usually to be respected.

 Planning has to make simplifying assumptions about the dynamicity and
predictability of the world in order to be able to produce plans at a reasonable
cost. It is then the purpose of the execution module to get back to reality and carry
out the plans in the real word. That means that it has to transform more or less
abstract directives into concrete interventions in the real word. It also may make use
of available sensors to get feedback about its actions. In this way, the execution
module implements a control loop of its own. Of course, the purpose here is not to
replace the global MAPE-K loop but rather to make sure that the management
actions decided by the planner are carried out as expected. If not, corrections have

Monitor Analyse Plan Execute

Knowledge and goals

ResultActions plan

EffectorsContext

 Fig. 4.9 The execution activity

4 Autonomic Computing Architectures

119

to be made perhaps reengaging the planner, or even executing the whole MAPE-K
loop again.

 Clearly, time management is at the heart of the execution activity. In order to
avoid unstable or incorrect situations, management actions have to be undergone at
the right time and in the right order. This is made more complicated in dynamic
environments where the computing environment has to be constantly surveyed
while corrective actions are under execution. For example, in pervasive environ-
ments, the way some management actions are realised may have to be changed
because of context evolution. Some actions may even have to be cancelled when
important changes occur in the environment. One way to deal with this is to use a
fi nite-state machine to orchestrate plan execution in dynamic environments. Such
machines allow for explicit and effi cient coordination between corrective actions,
and also with ongoing operations. This approach has been used successfully for the
self-administration of industrial devices.

 Another way for the execution module to deal with dynamicity and uncertainty
is to demand fl exible plans from the planner so that it can recover from unex-
pected events. Analogy can be drawn here with the fi eld of autonomous robots
immersed in uncertain environments. Here, static plans of actions turned out to
not be exploitable. Robots are then loaded with related partial plans that are
completed at runtime depending on the situations encountered. Reactive plans
have also been introduced after the failure of early static approaches like STRIPS
[20]. Reactive plans include branches in order to deal with uncertain events or
events that can only be known at runtime. Reactive plans can also be combined.
Thus, the directives sent to the execution module can take the form of a number
of reactive plans, including runtime contingencies.

 By defi nition, the execution module interacts with the effectors of the managed
elements and should have no real control over external entities. But, it may also
interact with some other accessible entities in the computing environment. The
interactions can go from an authorised modifi cation, through a simple setter inter-
face, for instance, to some complex negotiations. Thus, to meet its self-management
objectives, the autonomic manager has to request for some modifi cation to other
entities. This can include other autonomic managers controlling some other parts of
the software at hand. For example, some managed artefacts using threads may need
additional threads to improve their performance. Typically, threads are global con-
cerns and are generally managed by the operating system, for example.

 A fi nal point is that effectors, like any other computing entities, can fail. This
means that the actions requested by the autonomic manager are not carried out. This
can happen because of a bug, local to the effectors, or because of the global situation
of the managed artefacts. Ironically, such a failure can be very well related to the
issue that the manager tries to solve. For example, if the reason the artefact was per-
forming poorly was due to lack of memory resource available to it, perhaps this too
will affect the autonomic manager being able to run a new process to effect change.

 Thus, the implementation of the execution activity often turns out to be very
complex and tricky. For all these reasons, current solutions are essentially domain
specifi c. Of course, they can rely on generic mechanisms, usually provided by the

4.3 Autonomic Manager Reference Architecture

120

underlying execution machine, in order to control the artefacts life cycle. But, complex
timing and synchronisation issues are generally handled case by case.

4.3.6 Summary

 The MAPE-K model has had a big impact on the autonomic computing fi eld and is
still very relevant. It has to be understood, though, as a logical architecture defi ning
the main architectural blocks to be defi ned when building an autonomic manager.
From that, depending on the specifi cs of each application, different implementa-
tions of the MAPE-K model are possible: from a monolithic approach to widely
distributed ones.

 In any case, the MAPE-K model gives no indication about the way the aforemen-
tioned tasks should be implemented nor on the way they should be organised and
controlled. Similarly, this model does not address the way the knowledge is repre-
sented and shared between the different tasks.

 Let us consider knowledge fi rst. The way knowledge is shared among the different
activities is not specifi ed in the MAPE-K loop, and it leaves open many solutions,
including a global shared database or completely distributed solution based on the
exchange of events. So knowledge is essentially represented in the models that
correspond to the following: the managed element and its interactions; the classifi -
cation and feature extraction systems; the effectors or actions that have to be
performed (and when they are performed); the plans, etc. Knowledge lies also in
recording the changes to the system that occurred when the system is adapted, and
some systems may or may wish to close the loop in this respect to allow for further
more sophisticated analysis and planning strategies that can improve their operation
based on past experiences. Information is required to fl ow through the system.
This means that the managed element must be able to export interfaces to allow the
fl ow of attributes that represent both functional behaviours and control procedures.
As can be seen from the examples above, autonomic management operates at many
levels of abstraction. Therefore, the MAPE-K loop can be a combination of loops
and loops of loops, as we shall see later in this chapter. The knowledge in an
autonomic system can come from sources as diverse as the human expert (in static
policy-based systems [21]) to logs that accumulate data from probes charting the
day-to-day operation of a system to observe its behaviour, which is then used to
train predictive models [22 , 23].

 Control is clearly a hard point. Complex control strategies are often needed to
allow the right coordination and an effective synchronisation between the monitor/
analyse/plan/execute activities. These strategies depend on the application domain.
They can go from a simple state machine controlling the activation of the activities
to an AI-based controller allowing opportunistic activation of these activities [24].

 As we can see, using the MAPE-K model is a good starting point to defi ne one’s
autonomic manager. However, its structure and design are not prescriptive, and
therefore, the designer may fi nd that they tailor the MAPE-K concepts to best fi t the
system they are designing; the rest of this chapter gives some examples.

4 Autonomic Computing Architectures

121

4.4 Architecture with Multiple Autonomic Elements

4.4.1 Introduction

 As previously introduced, autonomic systems may form sophisticated architectures
made of a number of autonomic elements. The autonomic elements manage parts of
the global autonomic system. The decoupling is domain specifi c: it can be based on
functional considerations, on architectural considerations or on both.

 The autonomic elements can act independently. In such cases, there is no correla-
tion between their respective management actions. Most of the time, though, the situ-
ation is much more complicated and autonomic elements have to cooperate to achieve
common goals. Each element is in charge of a given administration aspect and has no
rights over the rest of the software. In order to have a global impact, agreements and
possibly negotiations have to be initiated in order to produce concerted plans.

 For instance, servers in a cluster may optimise the allocation of resources to
applications to minimise the overall response time or execution time of the applica-
tions they support. Thus, autonomic managers may need to be aware not only of the
condition of their own managed artefacts but also of their environment, in particular
how they relate to other autonomic elements in the network. This situation is illus-
trated by Fig. 4.10 hereafter.

 This notion of cooperation of individual elements to achieve a common goal is a
fundamental aspect of multi-agent systems (see Chap. 3). It is therefore not surpris-
ing that considerable research has investigated how multi-agent systems can imple-
ment cooperating autonomic elements. Like agents, autonomic elements can be
organised in complex architectures based on various collaboration patterns, which
can range from hierarchical organisations to fully decentralised structures. These

Autonomic
element

Autonomic
element

Autonomic system

Autonomic
element

Goals / feedback

Cooperation between elements

 Fig. 4.10 Cooperating
autonomic elements

4.4 Architecture with Multiple Autonomic Elements

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

122

two architectural patterns, heavily studied in the multi-agent fi eld, are presented in
the next sections with examples from the autonomic fi eld.

4.4.2 Hierarchical Versus Decentralised Organisation

 An approach to multi-agent cooperation is a hierarchical structuring of agents [25].
This organisation can be advantageously applied to the design of autonomic systems,
as illustrated by Fig. 4.11 . Autonomic elements are organised into a hierarchy where
elements can set goals to the elements of lesser level, which, in turn, provide feed-
back about their behaviour.

 Hierarchical autonomic management allows the composition of many managed
elements with their intelligent control loops effecting change to that element and no
other. However, a managed element may impact on another element and this too
must be managed. The advantage of the hierarchical model is that this will be handled
by a higher-level control loop and manager. Here, we minimise unexpected side
effects by pushing the decision making up a level of abstraction. Eventually we
reach a high-level autonomic manager that governs the system as a whole.

 An example scenario of this is where an autonomic media manager is monitor-
ing the use of bandwidth for a multimedia TV application in the home and pro-
vides at 512 kbps bandwidth to the application. In parallel the home has an
autonomic health-system manager that monitors the heart rate of an older gentle-
man and sends a report if the heart rate hits a certain threshold for a given duration
(say 100 beats per second for more than 3 min). When this event occurs, the policy
is to monitor the patient in fi ner detail and relay this to the hospital. However,
given that most of the bandwidth is currently being used by the TV, the TV

Autonomic
element

Autonomic
element

Autonomic system

Autonomic
element

Goals / feedback

Goals / feedback Goals / feedback

 Fig. 4.11 Hierarchical
organisation

4 Autonomic Computing Architectures

123

autonomic manager needs to be overridden. Therefore, the next level autonomic
manager understands the concept of priority and is able to do this cleanly. In sum-
mary, in hierarchical architectures all events travel bottom-up and effectors are
triggered from the top-down.

 This hierarchical approach has been advocated by a number of authors. In a
seminal paper (ref), Magee and Kramer draw an analogy between autonomic com-
puting and robotics arguing that, like robots, autonomic systems can be organised
around three types of control loops: one for refl ex actions, one for short-term action
planning and a third one for deliberative actions. Another work in the domain of
home automation makes uses of a hierarchy of autonomic elements to self-manage
applications running on Internet gateways and competing for resources (ref).

 An alternative to the hierarchical approach is where all autonomic elements in
the system can communicate directly, as illustrated by Fig. 4.12 . Agent like and
emergent autonomic systems tend to have this format whereby each autonomic
element is almost autonomous and uses both external data and internal readings
to make its decisions. Inter-autonomic element communication is more complex
here. The notion of an all-governing solution does not exist, meaning there are no
centralised elements in the architecture that may adversely affect scale and robustness,
but this is at a cost of the lack of global management.

 The particular challenge here lies in guaranteeing that the behaviour emerging
from the individual goals of each agent will truly result in the common goal being
achieved [13 , 26 – 28].

 An example scenario here might be where a number of atmospheric sensing
devices are monitoring the environmental conditions of a museum. Each consists
of sensing components, processor and transceiver that can relay data to a sink
device. Here the main policy is to monitor the environment and send a summarised
reading every 5 min. However, some of those sensing devices may have the

Autonomic
element

Autonomic
element

Autonomic system

Autonomic
element

Goals / feedback

Cooperation Cooperation

Cooperation

 Fig. 4.12 Decentralised
organisation

4.4 Architecture with Multiple Autonomic Elements

124

knowledge to understand that a fi re has broken out, and it wishes to relay the mes-
sage to the appropriate people. This may require it to quickly negotiate a wireless
route to the sink (away from the fi re) via all the other sensing devices by appro-
priating their respective transceivers. To do this, they must communicate directly
and negotiate with all the neighbourhood autonomic managers and agree to serve
this data route.

 As autonomic management solutions become more decentralised and less deter-
ministic, we may begin to observe emergent features. That is, even though the inter-
actions between autonomic components are simple, the systems’ complexity
increases considerably and we begin to observe the evolution of patterns that can
either be desirable or not. To harness this, there have been moves to engineer this
emergence. Taking the bio-inspiration of autonomic systems further than the origi-
nal defi nition, the idea of engineered emergence can be described as the ‘purposeful
design of interaction protocols so that a predictable, desired outcome or set of out-
comes are achieved at a higher level’ [29]. It is a highly distributed approach to
building autonomicity into systems. The main benefi ts are that of scale, robustness
and stability. This is because there is no central management function; each man-
aged component acts on its own behalf. Therefore, if one managed component dies,
then the system should be able to cope gracefully. Likewise if a new, better component
arrives, the system should evolve to make use of this. The other benefi t of such
approaches is that they do not require precise knowledge of lower-level activity or
confi guration. In such systems the solution emerges at the level of systems or appli-
cations, while at lower levels the specifi c behaviour of individual components is
unpredictable.

 Here, typically a small set of rules operates on limited amounts of locally avail-
able information concerning the components execution context and its local envi-
ronment. This differs from traditional algorithmic design of distributed applications
that typically focuses on strict protocols, message acknowledgments and event
ordering. In traditional systems each message and event is considered important and
randomness is generally undesirable, imposing sequenced or synchronised behav-
iour, which is generally deterministic. However, natural biological systems are fun-
damentally non-deterministic, and there are many examples of large-scale systems
that are stable and robust at a global level, the most commonly cited examples being
drawn from cellular systems and insect colonies [29]. The main drawback to such
systems is that they need regular messaging between components to be able to com-
prehend their state and adapt if necessary. Furthermore, guarantees are not as solid
in such emergent systems, and timely convergence to a desired state may take time.

4.4.3 The ANS Example

 An example of engineered emergence is that of the ANS ubiquitous networking
protocol. This protocol in itself makes use of both utility functions and decentral-
ised management. As previously introduced, utility is an abstract measure of ‘use-
fulness’ or benefi t to, for example, a user. Typically a system’s operation expresses

4 Autonomic Computing Architectures

125

its utility as a measure of things like the amount of resources available to the user
(or user application programs) and the quality, reliability or accuracy of that
resource. For example, in an event processing system allocating hardware resources
to users wishing to run transactions, the utility will be a function of allocated rate,
allowable latency and number of consumers, for example, [30]. Another example is
in a resource provisioning system where the utility is derived from the cost of redis-
tribution of workloads once allocated or the power consumption as a portion of
operating cost [31 , 32].

 The (autonomic networked services) ANS protocol was designed to allow fully
distributed autonomic decision making where there are more than one alternative
state to be able to adapt to. In the ANS a computing system is completely composed
as services (not unlike services in service-oriented architectures—see Chap. 6).
Each service is called a context and is able to say what it does and to what degree it
is able to do this. This ability is termed its quality of context.

 The protocol was designed for pervasive computing devices and wireless sensor
networks. Constrained resources pose the greatest challenge to the use of such sys-
tems. Power availability is severely constrained due to the capacity of current bat-
tery technology. Sending and receiving wireless communication is the greatest
consumer of power in these systems, and so must be limited as much as possible.
The applications also impose other constraints such as robustness, scalability, sta-
bility despite confi guration change and low communication latency.

 So the application may wish to have location information. This can be obtained
from a number of devices. The notion of quality of context (QoC) is used by ANS
to choose which of these devices will be used when a request is made by a requester
node. A process called ‘tendering’ is used to select the node. The information
requester node will broadcast a ‘request’ command containing the name of a sens-
ing service (like location) and preferences for the QoC attributes (which is essen-
tially the degree of precision the application can tolerate). Every node within range
and able to fulfi l the service must respond. The nodes use a utility function to calcu-
late its ability to fulfi l the request if it matches the requested QoC. The result from
the utility function is a signed integer called ‘closeness’ and is used as the nodes’
response to the information request. The sensor node with the QoC closest to that
requested wins the tender and becomes the sensor supplying its data to the informa-
tion requester. Frequent ‘retendering’ allows the requester nodes to autonomously
adapt to the best source available, discover new devices in the network and recover
from node failure. Figure 4.13 shows message diagrams illustrating how the proto-
col fulfi ls the typical autonomic aspects.

 The fi gure also shows the system that requires a service being turned on and its
fi rst task is to tender a message. Any sensors (service providers) that are on and able
to service that request reply with a ‘can_provide’ message; the service with the best
utility in terms of quality of context is selected (if there are more than one). For self-
healing, we can see that the requestor carries out periodic tenders. If the node that it
is currently bound to says that it can no longer carry out the task to the requested
level of service, or it dies (i.e. no reply is received from that node), then reconfi gura-
tion should happen. This happens by default as all nodes in the system have the

4.4 Architecture with Multiple Autonomic Elements

http://dx.doi.org/10.1007/978-1-4471-5007-7_6

126

opportunity to reply to the request indicating their performance levels, then the
requestor can just select the next best service. Likewise, if the requestor receives a
better offer when carrying out its periodic tender process, it will take it. This sort of
protocol is highly decentralised and using lightweight tender messages can ensure
autonomic properties.

4.5 Key Points

 In this chapter, we have introduced the following important points:
• The architecture of an autonomic system is a dual architecture, comprising a

number of autonomic elements managing well-defi ned software regions. This
may include well-delimited functions and some programming artefacts without
autonomic capabilities. Non-autonomic parts are typically unaware of the auto-
nomic dimension within the overall architecture.

• Organising a number of autonomic elements is an architectural challenge. A popular
approach is to adopt a hierarchical structuring of elements. An alternative is
where all autonomic elements in the system can communicate directly. The
particular challenge in the latter lies in guaranteeing that the behaviour emerging
from the individual goals of each element will result in the common goal being
achieved.

• An autonomic element is made of two, intertwined, parts: the autonomic man-
ager and the managed artefacts. Managed artefacts are hardware and software
resources that can be manipulated through provided interfaces, called sensors
and effectors, more generally known as touchpoints . The autonomic manager is
in charge of the management of these artefacts through the touchpoints.

• The purpose of an autonomic manager is to apply domain-specifi c knowledge in
order to gracefully adapt a set of software artefacts at runtime when internal or
external changes are detected that deviate the operation of the system away from
its goals.

Environment
Application

Temperature
Service
Requestor

High
precision
Temperature
Sensor

Medium
precision
Temperature
Sensor

Environment
Application

Temperature
Service
Requestor

High
precision
Temperature
Sensor

Medium
precision
Temperature
Sensor

Environment
Application

Temperature
Service
Requestor

Temperature
Sensor

Self-configuring Self-healing Self-optimisation

tender

can_provide

select

ok

tender

can_provide

select

ok

tender

can_provide

select

ok

not OK

tender

select

ok

tender

can_provide

 Fig. 4.13 ANS typical autonomic aspects

4 Autonomic Computing Architectures

127

• Autonomic managers are structured according to a widely accepted architectural
model introduced by IBM, usually called the MAPE-K loop. This is a logical
architecture that defi nes the different activities to be carried out in order to realise
autonomic loops. MAPE-K is acronymic for monitor, analyse, plan, execute and
knowledge, which are aspects involved within any autonomic loop.

• The MAPE-K model gives no indication about the way the tasks should be
implemented nor on the way they should be organised and controlled. Similarly,
this model does not address the way the knowledge is represented and shared
between the different tasks.

• There is actually often confusion between autonomic managers and autonomic
elements. Autonomic managers are certainly central to the approach since they
contain most of the knowledge and expertise necessary to exhibit self-* proper-
ties. However, an autonomic manager is only one component out of many in an
autonomic element. Given the design and implementation of an autonomic man-
ager is a challenging task; however, the diffi culty of defi ning and implementing
the sensors and effectors of the managed artefacts should not be underestimated.

 References

 1. Garlan, D., Perry, D.E.: Introduction to the special issue on software architecture. IEEE Trans.
Softw. Eng. 21 (4), 269–274 (1995)

 2. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5 (1), 4–7 (2001)
 3. IBM.: An Architectural Blueprint for Autonomic Computing, 3rd edn. IBM Whitepaper, June

2005
 4. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proceedings of

the First Workshop on Self-Healing Systems. ACM Press, Charleston, SC (2002)
 5. Sterritt, R., Smyth, B., Bradley, M.: PACT: personal autonomic computing tools. In:

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS), pp. 519–527. IEEE Computer Society, Washington, DC,
USA (2005)

 6. Bigus, J.P., Schlosnagle, D.A., Pilgrim III, J.R., Mills, W.N., Diao, Y.: ABLE: a toolkit for
building multiagent autonomic systems. IBM Syst. J. 41 (3), 350–371 (2002)

 7. Maurel, Y., Lalanda, P., Diaconescu, A.: Towards a service-oriented component model for
autonomic management. In: IEEE International Conference on Services Computing (SCC
2011), 4–9 July2011. IEEE Computer Society, Washington, DC, USA (2011)

 8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA (1998)

 9. Littman, M.L., Ravi, N., Fenson, E., Howard, R.: Reinforcement learning for autonomic net-
work repair. In ICAC: Proceedings of the First International Conference on Autonomic
Computing, pp. 284–285, Washington, DC (2004)

 10. Dowling, J., Curran, E., Cunningham, R., Cahill, V.: Building autonomic systems using col-
laborative reinforcement learning. Knowl. Eng. Rev. 21 , 231–238 (2006). Journal Special
issue on Autonomic Computing, Cambridge University Press

 11. Tesauro, G., Das, R., Jong, N., Bennani, M.: A hybrid reinforcement learning approach to
autonomic resource allocation. In: Proceedings of 3rd IEEE International Conference on
Autonomic Computing (ICAC), pp. 65–73, Dublin, Ireland (2006)

 12. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement learning.
J. Mach. Learn. Res. 7 , 877–917 (2006)

 13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36 (1), 41–50
(2003)

References

128

 14. Zhang, J., Figueiredo, R.: Autonomic feature selection for application classifi cation. In:
Proceedings of the International Conference on Autonomic Computing (ICAC), Dublin (2006)

 15. Agarwala, S., Chen, Y., Milojicic, D., Schwan, K.: QMON: QoS- and Utility- aware monitor-
ing in enterprise systems. In: Proceedings of the 3rd IEEE International Conference on
Autonomic Computing (ICAC), Dublin, Ireland (2006)

 16. Kephart, J.O., Walsh, W.E.: An artifi cial intelligence perspective on autonomic computing
policies. In: Proceedings of the 5th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY) 2004, 7–9 June 2004, pp. 3–12. IBM Thomas J Watson
Research Center, Yorktown Heights, New York (2004). doi: 10.1109/POLICY.2004.1309145 .
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1309145&isnumber=29053

 17. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic systems. In:
Proceedings of the First International Conference on Autonomic Computing, 17–19 May
2004, IEEE Computer Society, New York (2004)

 18. Bhatti, S.N., Knight, G.: Enabling QoS adaptation decisions for internet applications. Comput.
Netw. 31 (7), 669–692 (1999)

 19. Bourcier, J., Diaconescu, A., Lalanda, P., McCann, J.: AutoHome: an autonomic management
framework for pervasive home applications. ACM Trans. Auton. Adapt. Syst. 6 (1) (2011)

 20. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to prob-
lem solving. Artif. Intell. 2 , 189–208 (1971). doi: 10.1016/0004-3702(71)90010-5

 21. Bougaev, A.A.: Pattern recognition based tools enabling autonomic computing. In: Proceedings
of 2nd IEEE International Conference on Autonomic Computing, 13–16 June 2005, pp. 313–
314. IEEE Computer Society, Seattle (2005)

 22. Manoel, E., Nielsen, M.J., Salahshour, A., Sampath, S.: Problem Determination Using Self-
Managing Autonomic Technology. IBM Redbooks, San Jose (2005). ISBN 073849111X

 23. Shivam, P., Babu, S., Chase, J.: Learning application models for utility resource planning. In:
Proceedings of 3rd IEEE International Conference on Autonomic Computing (ICAC), pp.
255–264, Dublin, Ireland (2006)

 24. Maurel, Y., Lalanda, P., Diaconescu, A.: Towards a Service-Oriented Component Model for
Autonomic Management. IEEE SCC, Washington, DC, USA (2011)

 25. Wise, A., Cass, A.G., Lerner, B.S., Call, E.K.M., Osterweil, L.J., Sutton, Jr, S.M.: Using Little-
JIL to coordinate agents in software engineering. In: Automated Software Engineering
Conference, 11–15 September 2000. IEEE Computer Society, Grenoble (2000)

 26. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117 (2), 277–296 (2000)
 27. Gleizes, M.-P., Link-Pezet, J., Glize, P.: An adaptive multi-agent tool for electronic commerce.

In: Proceedings of the IEEE 9th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 14–16 June 2000. NIST, USA, IEEE Computer
Society (2000)

 28. Kumar, S., Cohen, P.R.: Towards a fault-tolerant multi-agent system architecture. In:
Proceedings of the Fourth International Conference on Autonomous Agents. ACM Press,
Barcelona (2000)

 29. Anthony, R.: Emergent graph colouring. In: Engineering Emergence for Autonomic Systems
(EEAS), First Annual International Workshop at the Third International Conference on
Autonomic Computing (ICAC), June 2006, pp. 2–13. IEEE Computer Society, Dublin (2006)

 30. Bhola, S., Astley, M., Saccone, R., Ward, M.: Utility-aware resource allocation in an event
processing system. In: Proceedings of 3rd IEEE International Conference on Autonomic
Computing (ICAC), pp. 55–64, Dublin, Ireland (2006)

 31. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: Analysis of cycle stealing with switching
times and thresholds. Perform. Eval. 61 (4), 347–369 (2005)

 32. Sharma, V., Thomas, A., Abdelzaher, T., Skadron, K., Lu, Z.: Power-aware qos management
in web servers. In: RTSS’03: Proceedings of the 24th IEEE International Real-Time Systems
Symposium, p. 63. IEEE Computer Society, Washington, DC, USA (2003)

4 Autonomic Computing Architectures

http://dx.doi.org/10.1109/POLICY.2004.1309145
http://dx.doi.org/http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%26arnumber=1309145%26isnumber=29053
http://dx.doi.org/10.1016/0004-3702(71)90010-5

129P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_5,
© Springer-Verlag London 2013

 Monitoring can be seen as putting the self into self-management. Just as in psychology,
the self is the representation of one’s experience or one’s identity; in autonomic computing,
the data obtained from monitoring contributes to the representation of the system’s
experience or current state, self-knowledge if you like. Knowing the system state both
from a functional and non-functional perspective is fundamental to being able to
perform the operations necessary to achieve system goals at the desired level.

 To maintain the analogy, just as a human can become self-conscious, that is,
excessively conscious of one’s appearance or manner leading to suboptimal
functioning, so too can an autonomic system. Here where there is too much
 monitored data or the understanding of that data is erroneous or unclear which
means the system is trying to change but does not know how to. Therefore, there
have been a number of approaches to the monitoring of autonomic computing
systems, the aim being to minimise the intrusiveness of the monitoring function
while ensuring suffi cient system self-awareness to optimise decision-making.

 This section will focus on the monitoring function. To this end, we focus on the
establishment of absolute measureable technical metrics that represent the perfor-
mance or state of the system. This data can then be processed and these conclusions
used to derive whether or not a system is meeting its quality levels or fulfi lling a
contractual obligation at the much higher levels of abstraction.

 5 The Monitoring Function

130

5.1 Introduction to Monitoring

 Monitoring 1 generally refers to the systematic collection of relevant information
with the purpose of understanding, evaluating and/or controlling a targeted sys-
tem. Within the autonomic computing context, monitoring represents an essential
initial activity in the self-management cycle of any autonomic system. Here, mon-
itoring ensures the runtime acquisition of information that is relevant to auto-
nomic administration processes. This information can represent either data related
to the autonomic system’s context (or external environment) or data related to the
internal state of its managed resources. The former is essential to the autonomic
system’s context awareness and the latter to its self-awareness characteristics (as
defi ned in Chap. 2). Finally, to close the self-management loop, the system’s self-
adjusting capability enables it to adapt to changing conditions (developed in
Chap. 6).

 Monitoring data collected over a longer term helps develop various models of the
managed artefacts and of their execution context. Additionally, monitoring data
 collected at a certain instant indicates the present state of such entities. Basic auto-
nomic managers can simply react in response to currently reported system states.
More sophisticated ones can compare current states with desirable states and
accordingly determine and execute self-adjusting plans. Moreover, they can rely on
models and historical information to predict future states considering the current
situation and the envisaged effects of possible actions; this renders system adapta-
tion more viable and effi cient.

 Let us now take a few concrete examples that illustrate how different forms of
monitoring can actually contribute to achieving the most important self-capabilities
of autonomic systems. First, monitors for software component instances and their
interconnections can be introduced to determine the runtime architecture of an
administered application. Such architectural model can be subsequently used for
self-repair, when the current state indicates, for example, a missing component or
connection. It can also be used for self-optimisation, where the current architecture
can be replaced with a better performing one. Similarly monitoring can be
 implemented to model the hardware system topology and detect, via ‘heartbeat’ or
‘keep- alive’ messages or pulses, when a machine or connection becomes defective
and needs self-repair. More fi ne-grained monitors can dynamically trace functional
calls through interconnected computing entities, determining frequent execution
paths and detecting potential performance bottlenecks or design anti-patterns that
require self-optimisation. Various performance parameters such as response time
and resource consumption can be monitored to evaluate the system’s current perfor-
mance and whether consequent self-optimisation is a necessity. Finally, autonomic
managers themselves can be monitored by higher-level meta-management pro-
cesses, to adapt their structures and behaviours.

1 To monitor (vb): “to watch, keep track of, or check usually for a special purpose” (Merriam- Webster
online dictionary— http://www.merriam-webster.com/dictionary/monitoring); “to watch and check a
situation carefully for a period of time in order to discover something about it” (Cambridge Advanced
Learner’s dictionary— http://dictionary.cambridge.org/dictionary/british/monitor_5).

5 The Monitoring Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://dx.doi.org/10.1007/978-1-4471-5007-7_6
http://www.merriam-webster.com/dictionary/monitoring
http://dictionary.cambridge.org/dictionary/british/monitor_5

131

 Considering the actual architecture of an autonomic manager, the monitoring func-
tion requires at least two types of components: sensor touchpoints for extracting the
actual data and monitor components for integrating the data into self- management
control loops. Chapter 4 introduced essential sensing and monitoring concepts and
showed how these functionalities integrate into the logical MAPE-K architecture.

 An important remaining question relates to the manner in which raw monitoring
data is actually transformed into information and knowledge that are relevant to the
manager’s reasoning processes. Depending on the constructed model types and the
reasoning processes that use them, information may be required from the monitoring
function in different formats or levels of abstraction. For example, managing the
 performance of a computer cluster may require fi ne-grained measurements of each
server’s resource consumption as well as aggregated measurements of the cluster’s
overall load. Moreover, such information may be provided either in a system-specifi c
format, such as the concrete CPU consumption, or as a domain- specifi c indicator, like
a critical state signal. In such cases, the monitoring function must additionally process
collected data so as to deliver it to the decision processes with the expected format and
semantics. Similarly, correlating causes and effects in order to form an effi cient feed-
back loop may require the monitoring function to associate data of different natures
and over various periods, for example, it could confi rm that an action has been suc-
cessfully executed at a certain instant and observe the outcome effects at a later time.

 Hence, in addition to collecting and delivering raw information, the monitoring
function may initiate various data-processing and scheduling operations, including
aggregation, fi ltering and synchronisation, for obtaining more abstract, domain
 specifi c indicators. Here, the boundaries between the monitoring and analysis com-
ponents of the logical MAPE-K architecture may become blurred, depending on the
concrete architectural solution for each particular system. In some cases, monitor-
ing and analysis can remain as clearly separated as indicated in the MAPE-K design.
Other systems may employ data-mediation solutions to simultaneously perform
monitoring and analysis operations and provide state information from different
perspectives and at various abstraction levels. Chapter 9 provides an example data
 mediation framework—Cilia mediation—that can be employed for such purposes.
Finally, certain solutions may prefer to use external analysis services [1], 2 for process-
ing large amounts of collected information. Indeed, effi ciently extracting and man-
aging logging information can represent a research topic in itself [2].

 Monitoring represents a vast topic encapsulating various subjects and raising
requirements that differ quite signifi cantly depending on the administered system
and targeted objectives. In this chapter, we generally concentrate on performance
monitoring, as an important QoS concern commonly specifi ed in Service-Level
Agreements (SLAs). This provides an illustrative example of the main concerns
raised by system monitoring.

2 An increasing number of log management services are becoming available to deal with the
 progressively high amount of system monitoring data. These include open-source solutions,
such as GrayLog2 (http://graylog2.org), LogStash (http://logstash.net) or Sentry (http://sentry.
readthedocs.org/en/latest), and commercial services, including LogEntries (https://logentries.com),
Sumologic (http://www.sumologic.com), Loggly (http://loggly.com) or Splunk Storm (https://
www.splunkstorm.com).

5.1 Introduction to Monitoring

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_9
http://graylog2.org/
http://logstash.net/
http://sentry.readthedocs.org/en/latest
http://sentry.readthedocs.org/en/latest
https://logentries.com/
http://www.sumologic.com/
http://loggly.com/
https://www.splunkstorm.com/
https://www.splunkstorm.com/

132

5.2 Performance Monitoring

 Computer performance monitoring is an activity that has been carried out since the
invention of computing and, put simply, is the measurement of how well the system
is doing what it was designed to do. Traditionally performance data was available to
those interested via system performance logs, and a large range of performance
analysis tools were developed to allow the user to make sense of those logs, mostly
using statistical analysis techniques. In the early days of autonomic computing,
these logs were also used to help drive autonomic management, for example, IBMs
Log Trace Analyzer (LTA) that was part of the autonomic computing toolkit [3].

 Many computer performance metrics have been established to allow us to
 communicate the system’s non-functional state, and benchmarks have been developed
to allow us to compare different systems or versions of a given system or algorithms.
Initially the processing speed was deemed as the most important performance metric,
but as more components were added to the computing infrastructure, new metrics that
better represent their performance, or some notion of end-to-end performance, have
since been derived. The major metrics are those that provide a notion of throughput
(work done over time), component utilisation, or the time to carry out a particular task
(response time is one example). The most popular general performance metrics are:
• Instructions per second (IPS) —This is essentially a measure of processing speeds;

this metric represents the number of predefi ned (usually artifi cial) instruction
sequences that can be run over a given unit of time for a particular CPU. This
metric is useful to compare CPUs; however, it has been criticised because the
instruction sequences may not be representative of the work load that that CPU
will undertake. Further, other components that interact with the processor may
have a large impact on that processor’s performance, and therefore this decou-
pling of CPU measurements of performance and performance metrics relating to
other components may mean IPS becomes meaningless. Perhaps the most used
metric in this class is MIPS, millions of instructions per second, which has been
used to describe the capacity of a machine since its inception in the 1970s.

• Floating-point operations per second (FLOPS) —This metric is similar to the
IPS, above, as it also represents a notion of processing throughput. It was pri-
marily designed to make comparisons between machines designed to carry out
the heavy mathematics required by scientifi c applications, hence the focus on
fl oating- point operations in particular. Like with IPS, a predefi ned set of
 instructions compose a benchmark that, in some cases, have been standardised,
to permit fair comparisons. Interestingly, this metric is used to compare super-
computers in the yearly Top500 competition. Currently the top machines are
running in the petaFLOPS (1015 FLOPS) region of performance.

• Response time —This metric represents the length of time a system takes in carry-
ing out a functional unit of processing. It is a measurement of the time duration
taken to react to a given input and is predominately used in interactive systems.
Therefore, one example would be the time instant at which the fi rst character of
the response is received on the computer screen when the user hit ‘return’ to initi-
ate some processing; a computer game would become unplayable if the user were

5 The Monitoring Function

133

to experience response time lag. Responsiveness is also a metric used in measur-
ing real-time systems. Here the elapsed time between the moment the real-time
task (or thread) is ready to execute until the moment it fi nished is measured.

• Latency —This is a measure of time delay experienced in a system and is
 generally used when describing the elements of the computer that concern
 communication. For example, to establish an idea of network performance, one
could measure round-trip delay whereby the time for a packet to be sent until it
is received back at the same machine is measured, for example. Latency takes
into account not only the CPU (or CPUs) that processes that packet but, more
importantly, the queuing delays that incur during the trip that the packet took.

• Utilisation and load —These metrics are intertwined and primarily used to
understand the resource management function. Utilisation metrics provide a
notion of how well a given system component is being used and is described as
a percentage utility. For example, a CPU running at 90 % utilisation means that
over a given Window of time, the CPU was used for 90 % of that time. Load too
is a measure of work performed by the system and is usually reported as a load
average for a given period of time. The load metric is typically calculated as a
weighted average of the processes in the operating system’s run queue over time;
so it does not only measure the work carried out by the CPU but gives an indicator
of how well that CPU is serving the jobs scheduled for it. For example, one could
have a CPU that is 99 % utilised but no tasks ready and waiting to run; however
another could also be 99 % utilised but have a large number of tasks in the run
queue, which represents a much heavier load.
 There are many more performance metrics that can be used. Some may focus on

costs, such as transactions per unit cost or a function of reliability (length of time the
system has been in operation without crashing) or a function of availability to
 indicate that the system is ready to be used when needed. Others may focus on size
or the weight of the system; this indicates how portable the device is; smart phones
or laptops are compared using such metrics.

 With the recent interest in green computing, other cost metrics are coming to the
fore in the form of measures of energy effi ciency. In particular, performance per watt
is being measured and represents the rate of computation delivered by a machine for
each watt of power consumed. The computation rate is typically the number of
FLOPS or MIPS achievable for each watt. However, given the cost of cooling larger
systems, the total energy cost may also be included. Correspondingly the heat gener-
ated by machine components is also being used as a performance metric. Like with
other performance indices, a benchmark may be developed for comparative pur-
poses. One such benchmark is the GCPI (Green Computing Performance Index) that
has evolved from the high-performance computing community’s industry standard
performance benchmarks. These performance metrics mostly focus on the perfor-
mance of larger server systems and systems housed in data centres; however, at the
mobile and laptop end of the computing fi eld energy, consumption has been a focus
for some time due to such devices being battery powered.

 There are many raw performance metrics that enable us to better understand the
non-functional state of the system, or provide a measurable means to allow us to

5.2 Performance Monitoring

134

detect an event that has occurred in the system that has changed its non-functional
behaviours. However single metrics measured in isolation may not be enough to
understand the system, instead performance may be required to be derived from
combinations of such metrics. An example would be where an autonomic system is
required to balance the confl icting goals of maximising performance while mini-
mising energy consumption. This system may have a rule that says if the CPU is
saturated (exhibits a high utilisation), start a new virtual machine by bringing up a
new physical machine, move some of the jobs to the new machine and then carry out
load balancing between the two. If the system sees that its CPU is 99 % utilised, it
may think that the CPU is saturated. However on examining the load average where
it was found to be low, bringing up a new physical machine in this instance would
be costly in terms of energy consumption (and performance), so CPU saturation in
isolation is not a good indication of current performance. Therefore combinations
of metrics are required to be used to better understand what is going on in the
 system and to make more informed decisions.

5.3 Knowing What to Monitor and Monitoring Overheads

 One of the main challenges in building an autonomic system is to determine which
information best represents the system’s behaviour and when and how it should be
obtained. This section concentrates on how one decides on what to monitor.
Subsequent sections focus on how to obtain that data.

 In most autonomic systems, we monitor both changes in state and/or event occur-
rences, and these may be measured for different system components at differing
levels of abstraction. The monitoring cycles of each of these two may be heteroge-
neous in that one state may be measured once per hour and another every second;
typically refl ecting the granularity of each feedback cycle designed into the auto-
nomic monitor.

 Approaches to understanding what to monitor very much depend on the system
in question. A legacy system may have performance monitoring tools readily avail-
able that have been monitoring and reporting performance for many years. In this
scenario, a performance analyst may have a great deal of experience in what exactly
to look for in the usually large amounts of performance statistics and how to process
this to recommend meaningful actions. Harnessing this knowledge and experience
is key to being able to evolve a legacy system into an autonomic system. Here we
are essentially automating the performance analyst and technical support roles,
replacing their functions with the automatic manager. Mapping the logic of these
roles, though not straightforward, is relatively tractable. However, for a system that
is being designed from scratch, we may not have this experience and knowledge
readily. Of course, one may have access to performance and technical experts who
can help the development of the autonomic manager’s logic. Here, such domain
experts, specialists in running banking systems or Web services are able to apply
their knowledge to the new autonomic system.

5 The Monitoring Function

135

 One starting point is to understand the goals of the autonomic manager. If its job
is to ensure the system will be running with a 90 % uptime, then one would start by
identifying the possible causes of failure. This means that we need detailed
 understanding of the system’s components and their interaction. Some of those
components may indeed be legacy systems themselves, and some may be under the
jurisdiction of another business concern and provide a service to the system under
focus. Therefore the software that has the potential to fail is embedded throughout
potentially many subsystems.

 Therefore it is paramount that some form of model of the system is established
so that this problem can be tackled through a divide and conquer approach.
Hierarchical-based performance monitoring and diagnoses are a concept that has
been around for some time [4 , 5], as far back as 1991 architectural models were
being used to simplify this process. Some hierarchical models that can be used
today are state transition or other architecture models [6 , 7] or use cases [8]. Both
represent the fl ow of logic, data and process activations. They represent both the
structure and behaviour of the system. From this, one can identify where potential
failures may occur. However, in larger systems, it is a more diffi cult task to identify
the source(s) of error even when using such modelling tools. However, it is valuable
to be able to identify failure early so that amends can be made.

 An example of a hierarchical approach comes from Haydarlou et al. (see
Fig. 5.1). Here they use a combination of abstraction and use cases to establish what
to monitor and when [8]. They divide the system into levels, which helps with large
and/or complex systems. At the highest level, the application is described as being
composed of a number of communicating subsystems, which they call runnables.
At the next, lower level, each subsystem is composed of a number of components,
and fi nally, each component is composed of a number of classes and methods. The
use cases then represent the fl ow of logic or interactions between runnables. An
example [8] is a secure portal authentication request, and this is described at the
application level of abstraction below.

 In the example in Fig. 5.1 , a portal application is accessed by business users via
a Web browser who provide their certifi cates to the Access Manager subsystem
using HTTPS negotiation. When the certifi cate has been received, the Access
Manager verifi es it and passes it to the Business Integrator subsystem over a JRMI

 Fig. 5.1 Autonomic element

5.3 Knowing What to Monitor and Monitoring Overheads

136

connection which in turn communicates with the Database Manager subsystem via
JDBC. In the Business Integrator component, the user’s identity is extracted and
matched against the user’s password to produce login information which is sent to
the Business Manager subsystem (a legacy back-end system using a SOAP connec-
tion). The Business Manager authenticates the user and returns the result of the
authentication to the Business Integrator. From this, the Business Integrator passes
the result of the authentication through the Access Manager back to the browser.

 In this example, the architecture is modelled, at a level of abstraction that shows
the interactions between components; see Fig. 5.1 . They then move down a level of
abstraction in the hierarchy to focus on these interactions because this is where the
potential for failure resides, for example, a broken connection, an incorrect start-up
sequence of runnables or excessive heap usage. Therefore in this example, the mon-
itoring task will be positioned to report connections between these runnables, for
example, in this case sensor code is automatically generated to monitor the output
state of the invocation between the components. Another example that is supported
by this approach is at a further lower level of abstraction. Here the occurrence of a
given event (e.g. a NullPointerException) can be monitored, in a similar way to how
we carry out exception handling. Here the self-monitoring engine again generates
sensor code that gathers information (such as time-stamp, stack trace, name and line
number) about the exception which in turn is passed to the analysis element of the
MAPE-K loop. To monitor state changes, the system may choose to sense a value
before and after the instantiation of a component for comparative purposes. The
system that Haydarlou et al. propose is one that automatically places sensors within
the managed element’s (i.e. the runnables) code; they also permit complementary
user-specifi ed sensor placement.

 In addition to varying the level of abstraction, the reporting period and amount of
sensor data measured can vary. As mentioned previously, the amount of data moni-
tored can not only directly affect the autonomic manager’s ability to understand
what is going on in the system but also affect the autonomic manager’s ability to
compute conclusions and take action in a timely manner. To improve this, one could
reduce the amount of data measured; however, this may increase the likelihood of
missing an event or cause the adaptivity to lag—meaning the system is not agile
enough to adapt quickly to change. Moreover, given that sensors are lines of code
that run with the system components (usually within the system components), they
too consume system resources, thus directly affecting the performance of managed
elements. This is in terms of the resources being used to run the sensing code but
also in terms of the dynamic scheduling decisions the operating system may make
when deciding to run that code. This situation can be overcome through adapting
the monitoring function to the context, that is, depending on the situation, more
monitoring data may be gathered and in other cases less—further the number of
components monitored can be likewise adapted.

 The data values read from a sensor obviously must be augmented with a mecha-
nism to identify that sensor. Also data regarding the moment that the observation
occurred is also required therefore quantitative temporal information, usually in the
form of a time-stamp, is added to the message communicating the sensed value.

5 The Monitoring Function

137

In a distributed system, this method of identifying the time of the observation may
be problematic due to different hardware clocks not being synchronised resulting in
the observation moment being represented by different times.

5.4 Profiling

 There are a number of self-awareness data gathering techniques that can be combined
to obtain a view or profi le of the system. These we call profi ling tools, and their
primary aim is to obtain runtime information to characterise the behaviour of the
system. There are a number of approaches to this summarised below, from [13]:
• Manual instrumentation —One of the most direct ways to obtain information

about the runtime behaviour of a program is to manually inject monitoring code
into a program. However, this can be a complex approach and potentially error-
prone, intrusive and impractical in complex applications. This is not only because
both knowledge of the managed element and its interfaces are required, but there
may be side effects due to altering code that can affect both the monitored ele-
ment and other elements that rely on it.

• Compiler-based instrumentation —Profi le code may be introduced automatically
by some compilers. This obviously occurs at compile time which assumes one
has access to the source code to be able to compile it. Nevertheless this approach
has the potential to be less error-prone than manual injection of profi le points;
assuming the complier’s profi ling action has been well reasoned in advance by
those who supply the compiler. Though compiler-based instrumentation can
ensure that the profi ling code is syntactically correct, one is limited to only the
features that come with that compiler. Furthermore, semantic errors can occur
even here, or temporal side effects as, again, extra code are being added to the
managed element. Once the program has been compiled with profi ling features
enabled, extraction tools can be used to capture the profi led data for analysis.
This is the approach used by GNU gprof. 3

• Interception-based instrumentation —Languages, like Java or Python, that can be
interpreted or executed in virtual environments, can also provide instrumentation
at the virtual machine level. In many cases, hooks are used, that is, predefi ned points
in the execution where monitoring code can be attached to report performance
data or generate event notifi cations. This technique is dynamic and minimises
intrusiveness in that it does not require changes to the managed element’s code.
It also permits the development of the monitored program code to be decoupled
and abstracted from the monitoring code. For many of these systems, the
types of hooks are predefi ned by the virtual environment, for example, JVMTI 4
(JVM Tools Interface), .NET and the Python profi ling module. More recently
aspect-oriented approaches have been deployed [9]. Here the programmer can

3 GNU gprof profi ler: http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
4 JVM Tool Interface: http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

5.4 Profi ling

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

138

defi ne pointcuts as points where the execution fl ow can be intercepted by an
aspect code and the aspect is programmed separately and weaved into the appli-
cation code at compile time. This approach is fl exible in that custom monitoring
code can be developed in an independent way.

• Statistical profi ling —Statistical profi lers use regular sampling at the hardware
and/or operating system level while leaving the code binaries untouched. The
hardware or operating system kernel is probed to provide an approximate view
of the behaviour of the application. The precision of the data gathered may
depend on the frequency of the sampling, though intrusiveness is still relatively
low. The fl exibility of this technique is limited, however, as the information
obtained is mostly general and not easily associated with specifi c parts of a given
monitored element. Examples of such tools are Intel VTune, 5 AMD CodeAnalyst
[10] and Apple’s Shark. 6
 In the next section, we discuss the advantages of profi ling in terms of monitoring

costs.

5.5 Monitoring Overheads

 The cost of adding autonomic capabilities must be outweighed by the benefi ts of
either a self-optimising system that performs better or a self-healing system that
runs reliably for a considerable lifetime. 7 The cost of the analysis components of
the MAPE-K loop and the reconfi guration or adaptation mechanisms obviously
contribute to the overheads of an autonomic system. However, as we have seen,
monitoring alone can have a large impact on this overhead also.

 Let’s illustrate how this cost can escalate. Take a simple measurement of system
load as defi ned by the UNIX operating system for a single-processor machine. Load
is a metric generated by the operating system; in fact it generates three load average
numbers in the kernel. By issuing the uptime command in the shell, one can
access these numbers. The following example was taken from one of this book’s
author’s machines while typing this page:

 vm-shell1% uptime
 17:35:51 up 11 days, 22:38, 9 users, load average:

0.08, 0.03, 0.05
 The exact meaning of load varies between UNIX-like systems; however, tradi-

tionally if a computer is idle, it has a load number of 0. Each process, whether it is

5 Intel (R) VTune TM Amplifi er—Performance Profi ling Tools: http://software.intel.com/en-us/
intel-vtune-amplifi er-xe
6 Shark User Guide: https://developer.apple.com/legacy/mac/library/documentation/Developer
Tools/Conceptual/SharkUserGuide/SharkUserGuide.pdf
7 Or a self-protecting system that can react to detected threats or a self-confi guring system that can
dynamically integrate new components, etc.

5 The Monitoring Function

http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://developer.apple.com/legacy/mac/library/documentation/DeveloperTools/Conceptual/SharkUserGuide/SharkUserGuide.pdf
https://developer.apple.com/legacy/mac/library/documentation/DeveloperTools/Conceptual/SharkUserGuide/SharkUserGuide.pdf

139

using the CPU (i.e. it is in the run queue) or is waiting for the CPU (in the ready
queue), increases the load number by 1. The average load itself is calculated using
an exponentially damped/weighted moving average of this load number. Therefore
the load averages refl ect the system utilisation that occurred over the past 1, 5 and
15 min of system operation.

 The load fi gure is usually obtained by periodically sampling the state of the
scheduler. An alternative would be to carry out calculations at a fi ner grain, that is,
when the scheduler enforces a change of state. However, this would be impossible
to realise as the scheduler is central to the operating system function, and so its
effi ciency impacts signifi cantly on the overall system’s performance. Note that in
the scheduler, events are plentiful and frequent, processes can move from run to
ready or wait states , etc. every 100 ms. There is a slight disadvantage to the periodic
sampling approach—it may not exactly refl ect actual system behaviour. Let’s drill
down a little further as an example. The clock tick that determines how Linux sys-
tems run the load calculation function is based on the clock frequency at 5 Hz,
which equates to the load code running every 5 s [11].

 As the reader can hopefully see, to just understand the load of a single CPU,
albeit not even a 100 % accurate representation of load, will cost the system at least
in terms of reading the current load (active_tasks), reading the older averages from
the three time period arrays (EXP_n), then carrying out the updating calculations of
the three moving averages (avenrun) and then writing out the updated values back
to the three time period arrays. This has to happen every 5 s! This is a trivial exam-
ple; imagine how much the monitoring functions alone would cost in terms of a full
autonomic system’s overheads.

5.6 Monitoring for Free

 The monitoring function can be seen as active or passive. Here, active monitoring
involves the placement of probes into the system to monitor its function. We discuss
this more in the next section. Alternatively passive monitoring is where state infor-
mation is captured by an external monitoring element or service and this data is
provided to the autonomic manager. The code to do this can be developed as part of
the autonomic system architecture. However, there exist a number of tools that carry
out this function, and some of these come with the operating system—for free.

 We describe the monitoring function as being for ‘free’ in this example because
typically the autonomic system is placed on one or many machines that run an oper-
ating system and all modern operating systems (bar some embedded systems) come
fully instrumented and very able to provide performance statistics concerning sys-
tem operation. The load average example presented in the last section is an example
of some of the statistics being recorded automatically. Since the operating system
has to constantly probe its performance anyway, the autonomic manager may as
well make use of that information.

 Typically the autonomic manager will wish to monitor the ‘health’ of the system.
Runtime information such as CPU utilisation, memory and network usage can be

5.6 Monitoring for Free

140

obtained directly from the operating system. The length of time the system has been
running is useful to understand how reliable the system is and is also a metric that
can be obtained from the operating system.

 Not only can runtime and accumulative information be obtained for ‘free’ but
other relatively more static data such as the names of the nodes in the system,
the processor capacity of each, memory sizes, communications bandwidth and
disk meantime before failures may be available. Tables 5.1 and 5.2 show a very

 Table 5.1 vmstat and top performance reporting tools that report operating system and virtual
memory statistics; it obtains its data from the UNIX virtual fi le system /proc

 Sample UNIX performance statistics

 Vmstat : memory statistics Top : process statistics

 The number of processes waiting for runtime
or in uninterruptible sleep

 Process priority

 Memory: the amount of virtual memory used or idle
memory left and of memory used as buffers or cache.
Amount of inactive and active memory

 Last used processor

 Swap: the mount of memory swapped in from
disk or to disk

 %CPU usage and % memory
usage

 IO: the rate of data blocks received and sent
to/from the block device

 CPU time the task has used
since it started

 System: the number of interrupts per second (which includes
the clock) and the number of context switches per second

 Virtual image used by the
task

 CPU percentage of the CPU spend running
non-kernal code, kernel code, idle, waiting for
IO and stolen from a virtual machine

 The swapped out portion of
a task’s total virtual memory
image

 Successful reads/writes, time spend reading/writing Code size, Data+Stack size

 Page fault count

 Dirty pages count
 Process status

 Table 5.2 Sample of Windows statistics, originating from the WMI

 Sample of Windows performance statistics

 Win32_PerfFormattedData_OS_System:
operating system statistics

 Win32_PerfFormattedData_PerfOS_Memory
Class: memory statistics

 ContextSwitchesPerSec; AvailableMBytes;
 FileControlBytesPerSec; CacheBytes;
 FileDataOperationsPerSec; CacheBytesPeak;
 FileReadBytesPerSec; FileWriteBytesPerSec; CacheFaultsPerSec;
 PercentRegistryQuotaInUse; PageFaultsPerSec
 Processes; PageReadsPerSec;
 ProcessorQueueLength; PagesInputPerSec; PagesOutputPerSec;
 SystemCallsPerSec;
 SystemUpTime;

5 The Monitoring Function

141

brief overview of the sorts of performance information provided by the two
major fl avours of operating system used in enterprises today: UNIX-like systems
and Windows.

 As described by Table 5.1 , many of the statistics used by UNIX-like systems’
management tools come from /proc. This virtual fi le system presents performance
information about the machine components such as memory and processes as a
hierarchical fi le directory-like structure and is mounted at boot time. Likewise, as
depicted in Table 5.2 , the Windows-like operating systems also provide such ser-
vices. Windows Management Instrumentation (WMI) provides an operating system
interface that permits the ability to instrument the system.

 Essentially the ultimate aim is to design an autonomic architecture such that
the autonomic function itself has as low an impact on the system that is being
monitored. Some approaches use third-party monitors; however, if those moni-
tors are using the same computing resource as the monitored element, then
the aforementioned goal is unattainable as the probes and data messages will
consume the same CPU, memory and communications channels as the moni-
tored element. On the other hand, there is an advantage to decoupling the auto-
nomic functionality, in terms of reaping the benefi ts of abstraction in software
engineering terms. That is, an autonomic system is less diffi cult to develop,
debug and maintain if it is less complex; as a result, the separation of the moni-
toring concern from the main function of the monitored system is therefore
advantageous.

5.7 Building Probes

 So far we have described the trade-off between information richness and accurate
autonomic problem determination. Essentially the ideal is an optimisation that min-
imises the number of sensors or probes that are required to sample system state and
report it somewhere (a task that perhaps includes expensive disk saves) and yet
maximises the autonomic manager’s notion of current system operation. To this
end, the developer must establish what sensor types are required and the scope that
they cover. Some of these come from the ‘free’ monitoring systems described in the
last section. At the other extreme is the purposeful placement of code that records
system state values or sets a trace on values that compose a set of operations. For
example, while system load can be obtained from the operating system, the response
time of a particular transaction or complex task within the system will require some
code embedded at the start and end of that transaction to establish time differences.
This not only impacts on the performance of the system in terms of the overheads
that are now attributed to the monitoring process but also contributes to the com-
plexity of the system. Intuitively one would wish to develop simple sensors that
cover a well-defi ned minimal scope so that debugging the autonomic system’s inter-
face to the managed system and the autonomic system’s function is less complex.
However to establish a richer understanding of the managed system, we would
require a larger number of sensors, and this means that the system is required to

5.7 Building Probes

142

have more probes or to carry out more probing of the managed system. As stated
before, a balance is required.

 Once we have established the sensors that are required, the observation points
need to be identifi ed, and obviously both are closely coupled. From this, the probes
can be placed.

 At this point, raw data extracted by probes must be integrated into the auto-
nomic management process. Two main functions are generally required in this
regard: information communication and, potentially, information preprocessing.
Communication is compulsory as data extracted by sensors must be sooner or later
transmitted to the autonomic managers’ monitor components. Preprocessing is
optional and may be executed either by sensors (before communication), by moni-
tors (after communication) or by both. On the sensor side, some analysis code can
be added to enable the preprocessing of the information gathered by the probes to
reduce sensing communication costs. For example, the sensing function may
obtain response times every 5 s but only report the average response time per min-
ute to the autonomic manager. This is essentially trading-off processing time
against the volume of data that is sensed, where some form of preprocessing of
sensed data can be carried out and only the result of this sent to the autonomic
manager. On the autonomic manager’s monitor side, similar analysis code can be
introduced for preprocessing raw data into more relevant information, such as
higher-level domain-specifi c indicators. As previously indicated (in Sect. 5.1), pre-
processing functions on the autonomic manager’s side can be attributed to both
monitoring and/or analysis components, with respect to the generic MAPE-K
architecture.

 So probes generally consist of code that instruments the managed software system
and its execution environment to provide information about system and context
state. In addition, physical probes can be introduced to monitor hardware resources
or environmental parameters, such as temperature sensors in enterprise clusters or
pervasive systems. Collected state data may be periodically communicated to the
autonomic manager’s reasoning processes, which then make decisions about how to
change the system and implement self-properties (improve system performance for
example). Certainly, in addition to input for the managers’ decision-making logic,
monitoring information can be used for knowledge-acquisition purposes. In all
cases, when data aggregation or fi ltering is enabled, only preprocessed data or
events are sent to the autonomic manager’s information processing logic. That is,
the probe touchpoints, monitoring and analysis components of the MAPE-K loop
may be more closely coupled.

 Alternatively, the monitoring functions may contain event-reaction rules or policies,
for example, that not only trigger an event interesting to the autonomic manager but
also indicate when to send the monitored data. The decision of when to communicate
this data is important, however. One example could be where the state value may
reach (or exceed) a threshold, and this triggers an action to pass on this information
to the autonomic manager; this would be like the autonomic manager saying I only
want performance data when the average response time is less than 10 ms for the
last minute, for example. This communication may or may not contain the raw data

5 The Monitoring Function

143

that caused the event to be triggered. However, for most cases, it will contain temporal
data to say either what time the event was triggered or after which instructions
within a sequence the event occurred. Also, the time lag between the probe’s
measurement and its subsequent communication may also be important; if the lag is
large, there could be a situation whereby the autonomic manager is acting on
out-of-date information. Further, it is important to know where the event was triggered
within the architecture of the system, both in terms of the software architecture and
the hardware itself. For example, it might report a response time violation event if a
probe read and calculated that response time for a given task was greater than a
given threshold. It would report this violation to the autonomic manager with
information about degree of violation in terms of time, what time it occurred
information about what task (or tasks) was involved and on what node in the system
this was running, etc.

 The monitoring infrastructure, both at the probe and the monitor component
levels, may be hierarchical in that data probed from lower layers in the system
are passed to higher-level layers for correlation and analysis. This is typically the
case when the autonomic manager system is also organised in a hierarchical
fashion. As discussed in previously, the intermediate layers analyse and, perhaps,
fi lter data which is then passed to the autonomic manager functions at each layer
of the hierarchy. It may be sent to the layer above to take action upon the man-
aged element. Correlation or corroboration is an important part of this process.
This may compare readings from probes to ensure that the reading is accurate
or reasonable within bounds. To do this, either moving Windows of historical
readings are maintained and trends observed, or probe readings from similar
processes running in the same environment may be compared to see if the current
value is an outlier. The system then may decide to ignore the erroneous result or
store it for later. Perhaps here, higher levels will be informed when a number
of these unusual results occur. Beyond error detection, correlation and corrobo-
ration can be used to reduce the amount of data communicated from probes to
monitoring and analysis functions and fi nally to the autonomic manager’s
decision logic.

 The movement of monitoring data may not necessarily be in a hierarchical fash-
ion. In more complicated systems where raw probe data is aggregated and passed
around the system, a publish–subscribe mechanism may be used. Here, sensors sup-
ply or publish their results to a pool of such data. Then the autonomic managers that
are interested in this data subscribe to receive notifi cations of changes in this data.
Other sensors or monitoring components that have analytical capabilities may also
subscribe to this to use for comparative or correlation purposes. An example of this
is where some autonomic managers in the system react to specifi c aspects of system
performance (e.g. transaction throughput) values, and therefore they subscribe to be
notifi ed regarding the throughput of a particular component. Therefore it will pub-
lish its interest as say ‘current throughput of Web server 4 on node 9’. As one can
imagine in a large enterprise-wide autonomic system, the amount of raw probe data
can be immense. Therefore abstraction may be used to categorise notifi cations into
themes, and the autonomic manager can then narrow the fi eld of performance data

5.7 Building Probes

144

that it is interested in to be of a particular theme, for example, throughput problems
or responsiveness problems. Data from a number of probes may have combined
their knowledge to produce the data that feeds the published stream of notifi cations,
in this instance.

 The assumption thus far has been that the code to monitor the autonomic
system is placed on the same hardware as the autonomic system itself (Fig. 5.2a).

 Fig. 5.2 (a) Autonomic function resides on the same machine as the managed artefacts. (b) Managed
artefacts and autonomic functions reside on different physical machines. (c) A large-scale autonomic
system consisting of many managed artefacts residing on numerous computers or devices

5 The Monitoring Function

145

However if economic costs are not prohibitive, there is nothing to prevent the
system’s architecture being composed of nodes dedicated solely to the monitoring
and management of the system, while the remaining nodes are the nodes that run
the monitored system (Fig. 5.2b). In such systems, a separate CPU and associated
memory hierarchy is essentially carrying out the autonomic function. This kind of
architecture is more common in systems that require either very complex analysis
of the monitored data, and so a dedicated CPU is required, or they require the com-
plex monitoring of very large-scale systems (1,000’s of nodes).

 An example of the former case, where the analysis is complex, is where
Kalman fi lters are used to establish a model of the monitored system’s state.
This technique produces estimates of monitored values based on a series of
measurements observed in the past, ensuring that noise, for example, has been
fi ltered out. From this, the planning phase can better understand potential future
state and better make decisions regarding how and when to adapt the system.
Such an approach can require a large number of inputs, depending on the moni-
tored system size, and as the processing consists of recursively iterating on this
potentially noisy data, its processing is correspondingly complex, possibly con-
suming more CPU and other resources than the actual managed system could
tolerate. Hence, it is best to place this analysis on another machine, perhaps even
a supercomputer!

 An example of the latter, the large-scale system, is InfoScope, 8 which continu-
ously monitors planet-wide systems and consists of distributed monitoring facili-
ties for thousands of nodes. Here mechanisms are used that improve the performance
of the monitoring system through both tailoring and compressing the monitored
data to best suit the current states of the system and the requirements of the auto-
nomic function at that a given time. The probes remain with the managed system
and communicate state and performance data to the separate computing entities
that analyse the data. However, in an extremely large system, this too impacts on
the performance of the system as the bottleneck becomes the communications
infrastructure and the machine, or set of machines, that carry out the analysis; see
Fig. 5.2c . Schemes to reduce the amount of monitored data that is communicated
are favoured therefore.

5.8 Examples of Monitoring Tools, Frameworks and Platforms

 In the previous sections, we saw that the monitoring functions of autonomic systems
rely both on sensors embedded into relevant artefacts and on monitor components
included in the autonomic managers’ MAPE-K loops. Communication functions

8 NCSU’s InfoScope: Continuous Information Monitoring for Large-Scale Distributed Systems:
 http://dance.csc.ncsu.edu/projects/infoscope

5.8 Examples of Monitoring Tools, Frameworks and Platforms

http://dance.csc.ncsu.edu/projects/infoscope

146

are required to feed necessary information into the autonomic management process.
Additionally, analysis functions, such as aggregation, fi ltering and scheduling, can
be mixed with monitoring functions and placed within either sensors or monitors to
provide preprocessed data into the autonomic managers’ reasoning logic. Various
architectural and technological solutions are possible for achieving such monitoring
and analysis functions, depending on the specifi c requirements of each autonomic
system. In this section, we illustrate a few examples of available solutions in order
to provide an overall fl avour of this vast domain.

 First, numerous monitoring utilities are available for collecting different data
types from various managed resources and context artefacts. For instance, for moni-
toring Java applications, the JVM TM Tool Interface 9 (JVMTI) provides a means for
both extracting information and controlling applications running in a Java virtual
machine (JVM). Targeting the performance management of component-based appli-
cations based on Java EE, the COMPAS 10 open-source framework was developed to
support portable, extensible and adaptable EJB component instrumentation and
monitoring. Also for enterprise systems, QMON [12] provides utility-aware QoS
monitoring, for different Service-Level Agreement (SLA) classes. For the performance
management of distributed systems at the resource level, the CLIF 11 open- source
project provides a testing platform which includes both load-injection facilities and
a wide range of resource monitoring probes (including CPU, memory and network
bandwidth). For larger-scale systems like cloud and grid applications, the ganglia 12
open-source project relies on a hierarchical design for offering a scalable dis-
tributed monitoring system. Additional freeware monitoring facilities providing
support for hierarchical organisation in grid and cloud environments include the
Clomon 13 and Supermon 14 systems. On the industrial side, similar examples include
the Paramon cluster monitoring, the Big Brother 15 Web-based network monitoring
or IBM’s Tivoli® Monitoring software 16 for managing operating systems, databases
and servers.

 Most of these tools represent mature, scalable and effi cient monitoring solutions
for the specifi c system types they were designed for. In addition, they are often
bundled with complementary visualisation, analysis and control facilities providing
a rich support for domain-specifi c system management.

9 JVMTI homepage: http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti ; JVMTI replaces
previous utilities that provided similar functions, namely, the Java Virtual Machine Profi ler
Interface (JVMPI) and the Java Virtual Machine Debug Interface (JVMDI).
10 COMPAS project: http://compas.sourceforge.net
11 CLIF project : http://clif.ow2.org
12 Ganglia project: http://ganglia.sourceforge.net
13 Clumon project: http://clumon.ncsa.illinois.edu
14 Supermon project: http://supermon.sourceforge.net
15 Big Brother® Software homepage: http://bb4.com
16 Tivoli Monitoring software: http://www-01.ibm.com/software/tivoli/products/monitor

5 The Monitoring Function

http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti
http://compas.sourceforge.net/
http://clif.ow2.org/
http://ganglia.sourceforge.net/
http://clumon.ncsa.illinois.edu/
http://supermon.sourceforge.net/
http://bb4.com/
http://www-01.ibm.com/software/tivoli/products/monitor

147

 Increased demand for customisation and fl exibility in certain managed systems
fuelled the provisioning of reusable platforms and frameworks that facilitate the
in- house construction of monitoring and analysis solutions. Notably, the concepts
and architectures featured by data-mediation approaches appear as particularly
suited for developing highly fl exible and extensible applications for data collec-
tion, processing and delivery. Generally, data-mediation frameworks can be
employed to develop directed graph-like structures, taking as input monitoring
data from multiple heterogeneous sources and providing as output various
domain-specifi c indicators, for multiple heterogeneous destinations or informa-
tion consumers.

 For example, within the application management realm, the Composite Probes
framework prototype was developed to help handle the massive amounts of
data extracted via CLIF monitoring 17 from distributed platforms. Composite
Probes provided reusable support for the construction of fl exible data-analysis
hierarchies, similar to data-mediation graphs, capable of preprocessing informa-
tion via customisable functions and at different abstraction levels. Subsequently,
Cilia mediation 18 (or Cilia) was developed as a general-purpose data-mediation
framework, highly adaptable to different application domains. Cilia can inte-
grate an extensible set of probing and communication technologies and include
diverse data-processing, scheduling and content-based routing functions. These
features enabled Cilia-based data-mediation graphs to be developed for
applications as diverse as pervasive monitoring and analysis, highly adaptable
decision-making processes [13] and adaptive human-computer interaction solu-
tions [14] [15].

 Finally, another noteworthy development platform for monitoring and analysis
solutions is provided by the Eclipse Test and Performance Tools Platform (TPTP)
Project. 19 TPTP offers an open platform with several frameworks and services for
enabling developers to build customised testing and performance tools. Existing
tools include runtime application monitoring, tracing, profi ling, log analysis, cor-
relation and evaluation support.

 As previously indicated, monitoring and analysis are vast subjects, and a myriad
of open and commercial tools, frameworks and platforms are available to suit
diverse systems and management requirements. Here, we have merely provided a
few illustrative examples aiming to cover some of the most important categories of
available utilities and solutions.

17 Composite Probes and CLIF (http://clif.ow2.org) projects were developed at Orange Labs,
France, and based on the Fractal component technology (http://fractal.ow2.org)
18 CiliaMediation project (https://github.com/AdeleResearchGroup/Cilia) was developed by the
Adèle team at University of Grenoble in collaboration with Orange Labs, France, and based on
based on a dynamic service-oriented component technology—iPOJO/OSGi (www.ipojo.org)
(discussed in Chap. 9).
19 The Eclipse Test and Performance Tools Platform (TPTP) Project: http://www.eclipse.org/tptp

5.8 Examples of Monitoring Tools, Frameworks and Platforms

http://clif.ow2.org/
http://fractal.ow2.org/
https://github.com/AdeleResearchGroup/Cilia
http://www.ipojo.org/
http://dx.doi.org/10.1007/978-1-4471-5007-7_9
http://www.eclipse.org/tptp

148

5.9 Monitoring the Monitors: Adaptive Monitoring

 Balancing the amount of information required to understand a monitored system
is non-trivial and can change as the system or its environment changes. Therefore
to overcome this complexity, adaptive automatic monitoring systems have
been proposed. These essentially adapt their monitoring frequency and data
volumes and adjust the number and placement of probes/sensors to minimise the
overhead of continuous monitoring while maximising the utility of the perfor-
mance data.

 There have been a number of schemes that aim to dynamically adjust the
amount of monitored data being communicated around the system. For example,
they may prioritise the events therefore ensuring that the autonomic manager is
able to handle the important notifi cations fi rst. This may also have the advantage
that some of the other events triggered by the probes may disappear due the more
important problem being solved. Alternatively, compression mechanisms have
been used; monitored values are averaged to represent a given scope of the sys-
tem’s performance. In the aforementioned InfoScope approach, the monitoring
system exploits knowledge on node’s temporal correlations and distributed spa-
tial correlations to reduce the amount of monitoring data required to be commu-
nicated to the autonomic manager. That is, if the system understands the
relationship between the expected performance of a number of nodes (whose
values correlate), then the monitored data value can be predicted; therefore, the
communication of all the raw node data can be suppressed. Further, in a cluster
of nodes, only one node may be required to send its raw monitored data where
the data from the other nodes in the cluster can be inferred from that value. The
approach is also adaptive in that both the monitored value predictors and the
clusters can be adapted to match the variations in correlation patterns. As men-
tioned earlier, a further advantage of using correlations to reduce the communi-
cations overheads of monitoring systems is that correlations can also highlight
where perhaps there is an error in the reported performance value(s) and if an
error is detected, a message can fl ag this to the user (system manager) or it can
be suppressed and not used by the autonomic manager. Alternatively, an adaptive
monitor can adapt the sampling function when it sees potential problems with the
samples to better understand if there is an error or a system glitch that requires
the autonomic system to adapt to. Here the sample rate can increase, producing
more performance data to enable the autonomic manager to receive more detailed
performance data to better understand the anomaly. Some such systems focus on
understanding the root cause of the problem through machine learning and data
mining techniques. Here, the monitoring function can be adjusted to feed these
techniques. The volume of monitored data can then be reduced when it is no
longer needed.

 For many autonomic systems, condition-action rules or policies have pre-
defi ned triggers. These thresholds are, for many systems, hardwired. That is, their
values have been defi ned at the time the autonomic system was architected and

5 The Monitoring Function

149

remain constant until they are discovered to be not so useful. Here they may well be
updated manually. This approach is clean and simple but has obvious implications
for the autonomic manager’s ability to react to the system as it changes over time,
that is, its environment changes or its purpose changes. To better ‘future proof’
the system, alternatives to the hardwiring approach are coming to the fore. Here,
a feedback loop, dedicated to understanding how useful the parameters to mea-
sure and adapt in the autonomic system, is added. The autonomic manager too can
change the parameters to ensure that the autonomic system as a whole better
meats its goals.

 Other more abstract approaches do not require the understanding of the
monitored system but view the autonomic system in terms of its feedback
loops—the aim being to maintain stability in the system via the adjustment of
these feedback loops. One example of this is in AdaptGuard [16]. This system
builds adaptation graphs by essentially ‘sniffing’ the monitored values coming
from the probes to the autonomic manager. It is able to use this data to detect
whether or not the system is likely to remain stable or not. If not, then stability
recovery policies are put into action which may involve the user to intervene.
These, like many of the systems presented in this subsection, are essentially
autonomic, autonomic monitors!

5.10 Key Points

• This chapter has presented the many different methods and techniques that can
be used to achieve the monitoring function in autonomic computing.

• Here we see that the monitoring function can have an important impact on the
autonomic system’s ability to understand its non-functional behaviours, its abil-
ity to perform, as well as impacting on the monitored element’s performance.
This can be in terms of probe code and perhaps even analysis code competing for
the same resources as the monitored element itself!

• The numbers of, and the placement of, probes is an important issue therefore.
• We learned that the monitoring function of the autonomic system may double up

as the performance reporting function for some systems. More commonly,
operating system produced statistics are used to report performance and feed the
autonomic monitoring function.

• Non-performance data that measures aspects such as the numbers of times a
piece of code runs or uses specialist probes that determine some form of qualita-
tive measure of the managed element’s behaviour may also be used.

• We learned that there may be large volumes of such data produced and, depending
on the kind of data gathered performance data, may be relayed to users in differ-
ent ways. This may take the form of a call graph, detailing dependencies between
method calls; statistical summaries, detailing resource consumption per method
or unit of computation; or an execution trace, detailing sequence of method calls
and performance related information, for example.

5.10 Key Points

150

• We reiterated that the monitoring function is another component that adds
complexity to the autonomic system. This function can also be adaptive in its
own right by either adapting the focus of what is being monitored—deciding on
which components are monitored and when or adapting the amount of times or
numbers of samples that are required.

• We also discussed the irony that in situations where fi ner-grained monitoring is
required during an ‘interesting situation’ to better understand the performance of
what is going on at that time that extra monitoring has the potential to exacerbate
the performance problem!

 References

 1. Biyani, V.: Log management as a service. What & why: Log management in cloud. Cloudspring,
Nov. 2012. http://cloudspring.com/log-management-as-a-service

 2. Chuvakin, A.A., Schmidt, K.J.: Logging and Log Management: The Authoritative Guide to
Understanding the Concepts Surrounding Logging and Log Management, 1st edn. Syngress,
Waltham (2012). 460 p. ISBN 1597496359

 3. IBM.: Autonomic computing toolkit: Developer’s guide. Technical Report SC30-4083-02,
IBM. Available at http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm .
Aug 2004

 4. Mozetic, I.: Hierarchical model-based diagnosis. Int. J. Man-Mach. Stud. 35 (3), 329–362
(1991)

 5. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: WOSS ’02:
Proceedings of the 1st Workshop on Self-Healing Systems, pp. 27–32, New York, 2002

 6. Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B.R., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure . In: Proceedings of the 1st IEEE International
Conference on Autonomic Computing ICAC, pp. 276–277, New York, 2004

 7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-based verifi cation
of web service compositions and choreography. In: ICSE 2006, pp. 771–774, Shanghai,
China (2006)

 8. Haydarlou, A.R., Oey, M.A., Overeinder, B.J., Brazier, F.M.T.: Use case driven approach to
self-monitoring in autonomic systems. In: Proceedings of the Third International Conference
on Autonomic and Autonomous Systems (ICAS07), IEEE Computer Society Press, Athens,
Greece 2007

 9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: ECOOP'97—Object-Oriented Programming, pp. 220-242.
Springer, Jyväskylä (1997)

 10. Drongowski, P.J., AMD CodeAnalyst Team, Boston Design Center.: An introduction to analysis
and optimization with AMD CodeAnalyst Performance Analyzer. Advanced Micro Devices,
Inc, Sunnyvale (2008)

 11. Hughes, P., Navratilova, V.: Linux for Dummies Quick Reference, 3rd edn. IDG Books
Worldwide, Foster City (2000). 256 p. ISBN 0764507605

 12. Agarwala, S., Chen, Y., Milojicic, D.S., Schwan, K.: QMON: Qos- and utility-aware monitoring
in enterprise systems. In: Proceedings of the 3rd IEEE International Conference on Autonomic
Computing (ICAC'06), Dublin, Ireland, June 2006

 13. Maurel, Y.: PhD thesis, CEYLON: a framework for creating extensible autonomic managers
and dynamics or CEYLAN: Un canevas pour la creation de guestionnaires autonomiques
extensibles et dynamiques’, University of Grenoble (2010)

 14. Avouac, P.A., Lalanda, P., Nigay, L.: Autonomic management of multimodal interaction:
DynaMo in action. In: Proceedings of the 4th International Conference on Engineering
Interactive Computing Systems, EICS’2012, June 25–28, pp. 35–44. ACM, Copenhagen (2012)

5 The Monitoring Function

http://cloudspring.com/log-management-as-a-service
http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

151

 15. Avouac, P.A., Lalanda, P., Nigay, L.: Service-oriented autonomic multimodal interaction in a
pervasive environment. In: Proceedings of the 13th International Conference on Multimodal
Interfaces, ICMI’2011, 14–18 November 2011, Alicante, Spain, ACM, pp. 369–376 (2011)

 16. Heo, J., Abdelzaher, T.: AdaptGuard: guarding adaptive systems from instability. In: The
6th International Conference on Autonomic Computing and Communications (ICAC ‘09),
Barcelona, Spain, 15–19 June 2009

References

153P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_6,
© Springer-Verlag London 2013

 Software adaptation is at the heart of autonomic computing. Indeed self- management
cannot be reached without the ability to modify the structure and behaviour of a
system. Unfortunately, software adaptation remains a particularly complex task.
It requires changing low-level code, an act that is often complicated and intricate.
Side effects that succeed an update are diffi cult to anticipate and to fi x. An addi-
tional challenge specifi c to autonomic computing is that the code to be modifi ed has
already been run or is currently executing, meaning that computational state has to
be identifi ed and preserved.

 The purpose of this chapter is to defi ne precisely the notion of software adaptation
and discuss the related challenges. It is also to present a set of techniques that can
be used to implement self-managed software systems. As we will see, adaptation
can be realised at different levels of abstraction, and very diverse approaches can be
implemented. This diversity of technique is welcome. As said in previous chapters,
a self-managed system is made of a number of collaborating autonomic elements
with different requirements in terms of reactivity, scope, precision, etc. Different,
complementary approaches are needed to meet these demands.

 In this chapter, we will focus on techniques allowing dynamic updates. Indeed,
more and more, users require updates to be dynamic, at runtime, as downtime is not
an option; service interruption can be very costly and has to be avoided as much as
possible. This is especially true for critical systems that may have to be updated tens
or hundreds of times every year and that cannot be stopped that often.

 6 The Adaptation Function

154

6.1 Software Adaptation

 In the context of autonomic computing, software adaptation is a discrete process
allowing a software system to continuously meet its goals in a changing environ-
ment. As explained in Chap. 4 about architecture, this process is conducted by a set
of collaborating autonomic managers.

 Specifi cally, autonomic managers have to modify the structure or behaviour of a
system. These notions of structure and behaviour take on many forms in software,
and this has nourished a number of endless debates in the software engineering
community. This is due to the fact that a software system can be perceived and
manipulated at different levels of abstraction, which is a necessary instrument to
allow us to handle complexity. As we will see later on, this allows software engi-
neers (and autonomic managers!) to adapt a software system in many ways, using
different techniques and levels of abstraction.

 In concrete terms, the structure and behaviour of a software system resides in its
binary code, its confi guration data and the resources it uses (Fig. 6.1). Resources can be
internal or external. Internal resources refer to services and facilities provided by the
supporting execution infrastructure, like an operating system (OS), a virtual machine
(VM) or more sophisticated middleware. External resources include services and data
provided by remote facilities. Using such remote resources, like Web services for
instance, is becoming increasingly popular in software engineering. This of course
decreases the cost of code ownership and can improve performance, availability, etc.

 So, for an autonomic manager, adapting a software system comes down to:
 – Modifying the binary code
 – Modifying data, local or remote
 – Modifying resources, local or remote

Local resources (OS, VM, …)

External resources (services, data)

0100110011
0
1
1
0
1

0100110011
10
11
11
10
11

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

Binary code

A = 1

A = 1

A = 1
B = 2
C = 3
D = 4

Local Data

Software system

 Fig. 6.1 Software structure

6 The Adaptation Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

155

 If the binary code is under your jurisdiction, you can change it (if you are the
initial developer) or update it when new versions or patches are available and when-
ever you decide to; this is a bit different with external resources. At best, you can
change some confi guration parameters or switch to different services. But there is
usually no way to change the internals of a service or the pace of its evolution since
a third party controls it.

 Adaptability is an essential requirement of software systems. This is not only due
to the evolving nature of both the requirements and the execution environments but
also due to the diffi culties we encounter to build correct software systems. By cor-
rect, we mean software systems providing the services or capabilities demanded by
users along with expected qualities like performance, resilience and availability.
Since many systems are not perfectly correct in this sense at installation time, adap-
tations are obviously necessary.

 By nature, an adaptation is carried out while the system is under operation.
This means that the software system already has been running for some time when
 something is required to adapt. Let us refi ne that something . First, it can refer to a
change in the computing environment. In this case, the software system has to be
updated in order to integrate changes regarding its resources. The purpose is to
maintain the systems’ functionality while remaining in sync with its environ-
ment. Also, adaptation may be needed because the context decides it is time to do
so. For instance, for an embedded system when the battery is low, it may be neces-
sary to operate in a low-power mode that might, in turn, decrease computational
precision.

 Adaptation can also be triggered to provide functional evolutions. The goal here
is to bring new services or capabilities or to modify the existing ones in order to
better satisfy users or to take into account new running conditions (and related
opportunities). Similarly, adaptation can bring non-functional evolutions. The pur-
pose here is to modify the properties attached to the provided services or capabilities
(again, to better satisfy users or to exploit new possibilities). For instance, changes
can be brought to improve performance or security.

 Last, but not least, fi xing a bug is a good reason to perform an adaptation.
 Software adaptation is a real challenge. As a subject, it has been studied for

decades in the realms of software engineering, but for the most part, it still relies
too often on ad hoc solutions. The bottom line is that most systems are not con-
ceived to be easily adaptable. They are merely designed and coded to meet the
requirements at hand, with little projection into the future. Some development
methodologies, like agile approaches, even argue that explicitly preparing a soft-
ware system for evolution is counterproductive, resulting in fat and slow code for
uncertain, illusive gains. The consequence, and problem, is that adapting a soft-
ware system can turn into a scary, uncontrolled process, requiring much expertise
and huge effort.

 Software adaptation is thus an open issue in many regards. It is however at the
heart of autonomic computing. And the requirements here are very high! Adaptations
have to be carried out on software that is already in operation, and well-defi ned
support has to be explicitly provided so that autonomic managers can trigger safe and
controlled adaptations in programmatic ways.

6.1 Software Adaptation

156

6.2 Code Adaptation

6.2.1 Upgrading Code

 As explained before, adapting a software system comes down to modifying code,
data or resources. Many of the current autonomic systems focus on data and
resources. Technically speaking, it is much easier to change these elements, even if
side effects still must be controlled, as for any modifi cation. More and more, how-
ever, autonomic managers are used to carry out changes in the code structure.

 The focus of this chapter is primarily on code adaptation, which is arguably a
very complex activity. It generally takes the form of a two-phase process: fi rst, the
updated code is produced and then injected into the code under execution.

 Code adaptations can intervene anywhere. They can affect any programming
structure, whatever its level of abstraction, its role, its granularity, etc. In a
component- based system, for instance, an adaptation may concern a complete com-
ponent, some encapsulated data, a method of an encapsulated object, a connection
between encapsulated objects, etc. Also, an adaptation can take any form. Returning
to our component-based example, a new component can be created; an existing
component can be modifi ed, suppressed, duplicated and moved to another machine,
and connections between components can be rebound.

 An adaptation is generally not limited to a single, well-identifi ed programming
structure. It often affects a number of coupled structures that cannot be changed
independently. In this context, controlling side effects becomes a major challenge.
The impact of an adaptation is actually not directly related to software granularity
or size but to its coupling . Coupling is a qualitative property measuring the depen-
dencies between software elements. It is based on the number of links between ele-
ments and the complexity of these links. Thus, changing a confi guration parameter,
such as a simple integer, can potentially have a tremendous effect on a system. On
the other hand, upgrading the supporting DBMS of a database can be almost trans-
parent due when decoupling is well implemented (this is unfortunately not always
the case [1]).

 To understand how an autonomic manager can upgrade code, it is useful to know
how this code is produced. As illustrated by Fig. 6.2 , binary code is generally
obtained through a number of transformations. The goal of this transformational
approach is to break down complexity through decomposition into ‘simple’ struc-
tures that are manageable by human developers.

 Thus, software systems are developed with programming languages providing
notations and semantics. High-level structures are thus defi ned and composed to
make up programs. The result, the source code, is then transformed into executable
code by a compiler (and a linker) or by an interpreter. The code thus obtained is then
deployed, loaded and launched on the target machine (see Chap. 1). Only then is the
software system up and running!

 There are actually many ways for an autonomic manager to modify binary code
that has been already developed. First, when the software system to be modifi ed has

6 The Adaptation Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_1

157

been developed in-house, a natural approach is to go back to source code, modify it
and regenerate the binary code. This strategy best fi ts current software engineering
practices. It is convenient in the sense that programmers in charge of adaptations
can use a high-level programming language and generally benefi t from advanced
development environments. To be handled by an autonomic manager, the new code
has to be placed on some facility (a repository for instance) from where it can be
uploaded and integrated into the existing code.

 However, existing binary code can be modifi ed without returning to source fi les.
Specifi cally, a way to obtain upgraded binary code is to recompile, or re-link, exist-
ing source code. This approach relies on conditional directives included in the
source code. A preprocessor is then used to insert instructions or calls to specifi c
libraries. For instance, the source code may have the following instructions that
allow a piece of code to be tailored to a particular operating system (MSDOS in this
example):

 This approach is very convenient since upgraded code is obtained through ‘simple’
compilation. It is to be noted, however, that all possible runtime conditions have to
be anticipated in the source code through conditional directives. The range of possible
adaptations is de facto limited to expected situations therefore. Also, the source code
has to be accessible by the autonomic managers so that they can recompile it.

Local resources (OS, VM, …)

External resources (services, data)

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

Binary code

A = 1
B = 2
C = 3
D = 4

A = 1

B = 2C = 3
D = 4

A = 1
B = 2
C = 3
D = 4

Local Data

Software system

Configuration
Deployment

Compilation
Link edition

Source code

 Fig. 6.2 Binary code modifi cation

6.2 Code Adaptation

158

 Following the same principles, existing binary code can be customised through
the modifi cation of some confi guration parameters. Those parameters can be defi ned
and assigned in a text fi le. They can also be specifi ed (and evaluated) when launching
an application. In this latter case, restarting some modules is necessary in order to
update binary code. This approach is often used today, notably in pervasive comput-
ing applications, for instance, where a process is being transferred between devices
(e.g. a phone to a PC with a TV screen). In this situation, the binary code is not
really impacted (where programming languages and CPUs permit). It remains the
same; only a few variables impacting the behaviour are changed, for example, to
adjust the text rendering to better suit the output device.

 In order to ease adaptation and avoid side-effect issues, the source code can be
prepared for evolution in advance. It is an approach advocated by the software product
lines community that promote the production of collections of similar software
systems from shared assets where software reuse is proactively engineered for. 1 Here,
software artefacts that are likely to be context aware (i.e. able to adjust to their envi-
ronment) are designed and implemented with adaptation in mind. Specifi cally, varia-
tion points are explicitly introduced in the source code in order to make room for late
modifi cations. Variability is a property of software artefacts allowing them to be
extended, modifi ed, personalised or customised in order to meet some specifi c needs.
A variation point embodies a delayed design decision. It can be complemented by
possible choices, called variants. In the product-line approach, development is seen as
a two-phase process. The purpose of the fi rst phase is to develop the software archi-
tecture and a number of software artefacts with reuse and adaptation in mind. Facilities
can be provided in order to ease the creation of adaptable artefacts. The purpose of the
second phase is to reuse and adapt the artefacts produced during the fi rst phase in
order to obtain a software system in line with the requirements at hand. Here also,
tools are generally provided to bring adaptations based on the variation points.

 This approach can be used advantageously in autonomic computing. That is, it
can be useful to determine and implement variation points in the code and let auto-
nomic managers act on them when necessary. If variants are associated with varia-
tion points, modifi cations triggered by autonomic managers are safer and more
controlled. Also, relationships between variation points can be established, meaning
that a modifi cation on a given point has to be followed by modifi cations on other
points in order to leave the system in a coherent state.

 As explained, autonomic managers can change confi guration parameters, recom-
pile some or modify source code. In any case, however, programmatic interfaces have
to be provided and some variability has to be integrated, like options in a compilation
for instance. This is especially true for modifi cations in the source code; an auto-
nomic manager needs tools and interfaces to adapt the variation points. The bottom
line here is that, whatever the approach, adaptations have to be prepared during the
initial development phase. Otherwise, only the (human) developer can go through the
code, at whatever abstraction level, and introduce the necessary modifi cations.

1 http://www.sei.cmu.edu/productlines

6 The Adaptation Function

http://www.sei.cmu.edu/productlines

159

6.2.2 Integrating Code

 Once the new binary code that is better suited to the current runtime conditions has
been produced by an autonomic manager or released by the maintenance organisa-
tion, it has to be installed and activated in the computing environment. To do so,
it has to be integrated with the existing code: this means that ‘new’ and ‘old’ code
must interact safely, preserving correctness.

 Updates can be static or dynamic. Static update means that the software to be
adapted is stopped and then restarted after modifi cation. This is the simplest and
most traditional method of integration. Here, the autonomic manager has to decide
on the best moment to stop and restart the software. This is exactly what happens
when your computer downloads the latest version of your preferred Internet browser.
In some cases, however, the software system can decide by itself to reboot. This is
for instance the case for major operating system upgrades. Static update is rather
easy to implement, but it can be costly since it decreases the availability of the soft-
ware. This can have very negative impacts in domains, such as in pervasive comput-
ing, where continuous services are needed. In addition, we are moving to a world
where updates, easily made available on a Website, are more and more frequent.
It is unacceptable that the system would halt for every update.

 When interruptions are not permitted, the adaptation is said to be dynamic. A
dynamic adaptation is always a delicate operation and must be conducted with care.
The operation is complex for the simple reason that the software system to be modi-
fi ed is still running! This raises a number of specifi c issues related to code integra-
tion per se but also to software correctness and to the preservation of data and
control fl ows, that is, state.

 Indeed, the fact that the software has already been running before, this new acti-
vation completely changes the situation. A major issue is that internal computational
states are often lost between two activations. In addition to that, the mere defi nition
of state between two activations may be different, even incompatible (e.g. perhaps
due to the use of new programming structures). Similarly, advanced transactions
and isolation mechanisms may be needed to maintain state with regard to consistent
interaction with other external software that has a dependency relationship with
the software that is being integrated. However, this does not prevent these other soft-
ware systems being placed in a pending state, which may imply that they suffer
downtime or loss of quality in some way as a result.

 Thus, for technical and business reasons, a number of software systems today
require dynamic upgrades and without service interruption. However, dynamic
updates should not endanger the correctness and robustness of software [2].

 Correctness is an absolute. An updated software system often has to meet new or
modifi ed requirements. Regression tests and tests accounting for new features must
then be somehow combined to make sure that the newly specifi ed requirements are
met. Test strategies are clearly impacted by the fact that the system continues to run.
Verifi cations have to be conducted while the system is active and executing and, in
general, cannot be performed as in traditional design-time testing.

6.2 Code Adaptation

160

 Further, the ability to carry out dynamic updates should not alter the quality of a
software system. Crashes, loss of data, ineffi ciency and so on are obviously not
acceptable during the course of an update. The problem is that such bugs are very
likely to occur if dynamic modifi cations are not perfectly controlled. A number of
recurrent issues must be handled with care, especially those related to the preserva-
tion of the computational state (once again!). In particular, data and control fl ows
must not be lost or altered after an update. Taking the classic example of a merchant
Website, the active carts have to remain unchanged when a software update is carried
out. Regarding control fl ows, connections between structures (e.g. class instances)
must remain valid. That means, in particular, that a structure cannot be suppressed
if another is using it (i.e. connections in an active control thread must not be invali-
dated). On the other hand, a structure not involved in the main control fl ow is said
to be in a quiescent state and can be safely updated.

 In general, it is not possible to upgrade active code. Active code corresponds to
code being run or referenced in the execution stack. At best, the system can wait for
the code to become inactive, which unfortunately is not always possible. For instance,
some parts of code may always be referenced and the window to allow an update may
never open. A common technique is to implement a quiescence protocol. The principle
here is to intercept calls to the code to be changed and to wait for the code to become
inactive. When this happens, the object is upgraded and the blocked callers are then
resumed. The main issue here is that dependencies between the updated objects could
result in very complex situations (such as deadlock, livelock and starvation).

 If possible, a safe way to proceed is to carry out non-destructive updates, mean-
ing that the structure of the software that existed before adaptation is not lost or,
worse, unrecoverable. For instance, some programming languages allow the cohab-
itation of different versions of the same structure and provide an elegant solution to
this so-called versioning problem. Destructive updates are easier to implement but,
of course, can be rather hazardous. Let us take the example of Web services. Here,
services provided by the system are regularly updated, including at the interface
level. A non-destructive approach is to maintain the old interface for some time
when creating new versions. Thus, clients can progressively adopt the new inter-
faces. In a more destructive philosophy, old interfaces would be immediately sup-
pressed! This is easier to manage, of course, but the risk of compatibility problems
at the client side is higher.

 A very popular approach to implement dynamic updates, known as rolling
upgrades , is to use hardware redundancy, especially in mission-critical, software
intensive or enterprise systems. Essentially, the principle is to deploy the upgraded
version of a software system on a new or alternative machine and to activate it. In the
meantime, the software to be updated continues to run and to provide full services.
A load balancer is used to redirect all the requests that were sent to the original soft-
ware to its new version. At some point in time, the original software becomes idle
and the swap between old and new versions can be made. This approach is costly
since additional hardware has to be used and maintained. In addition, it demands the
synchronisation of states between old and new versions of the software. This is
however an approach used today in cloud computing (coupled with virtualisation
techniques) where resources are added on demand or the load gets too high.

6 The Adaptation Function

161

 An alternative approach is to use redundant software, at the operating system or
virtual machine levels. Here, when an application has to be updated, a second OS or
VM is started on the same machine and an upgraded version of the application is
installed and activated. As before, requests are redirected to the new software ver-
sion as long as necessary. The replacement is made when the software to be changed
becomes idle.

 This approach is popular and effective but…not so simple! First, state transfer
remains a potentially complex operation. It requires defi ning the notion of state on
both sides and synchronising states. In some cases, the alignment is not direct and
transformations between the two forms of state have to be made, using mapping
proxies for instance. Second, the time the swap occurs is often hard to defi ne.
Simply waiting for everything to be released from the old version can be insuffi cient
since dependencies between updated objects have to be considered. Finally, fi ne-
grained control may be needed when new and old systems use the same resources;
otherwise, some incoherent situations may occur. For instance, in the pervasive
domain, old and new software systems must not modify the same effectors in
incompatible ways.

6.3 Code Adaptation Techniques

 Due to its complexity, it has become necessary to provide some support that con-
trols the dynamic adaptation of software applications. Too many parameters have to
be considered (coupling, side effects, timeliness, etc.), and requirements are just too
high to adapt a system in a dynamic fashion without tools that abstract away some
of the complexity.

 In this section, we give an overview of approaches that are commonly used in
particular domains and that make sense in the context of autonomic computing. To
do so, we consider three different levels of abstraction:
 – The operating system level where resources and services used by a software

system can be adjusted
 – The programs level where algorithms or quality of service can be modifi ed
 – The component level where the high-level structure of software systems can be

changed
 The bottom line is that, in most autonomic systems, adaptations have to be made

at different levels. Complementary techniques are needed to intervene at different
levels of abstraction and at different places. Thus, some modifi cations are to be
done at the operating system level, other changes have to change an instruction in
a program and, in other cases, it is more appropriate to update a whole chunk of
code (a component).

6.3.1 OS-Level Adaptation

 The operating system (OS) community has studied the issue of dynamic adaptation
for a long time. Robust and relevant techniques have been developed and can be

6.3 Code Adaptation Techniques

162

advantageously used by autonomic systems. These techniques are not intrusive in
the sense that they do not change the internals of the programs being run. They
change the resources and services provided by the operating system.

 Specifi cally, the purpose of an operating system is to abstract away hardware
resources and provide a set of common services to ease the development and execu-
tion of software applications. Much research has been conducted in order to allow the
dynamic integration of resources and services. This is a major requirement that aims
at improving the stability and availability of applications. Obviously, you do not want
your laptop to reboot, stopping all applications every time you plug in a USB key!

 Most operating systems are thus capable of integrating new resources on the fl y,
that is, without interruption of services. A number of successful techniques have
been developed to do so, for instance many of the plug and play technologies used
in pervasive networks today come from operating systems. This is the case of the
UPnP standard (www.upnp.org), originally developed by Microsoft.

 Similarly, operating systems also allow the dynamic deployment of new ser-
vices. Deployment, here, has to be taken in its broadest sense (see Chap. 1) includ-
ing activities like installation, activation and deactivation. In order to install a new
shell command on Linux, for instance, one simply copies the executable (binary fi le
or script) into the ‘/bin’ directory. The service is launched by typing its name, and it
is then dynamically made available to the OS computing environment.

 Operating systems can thus constitute a supporting infrastructure in autonomic
computing in order to dynamically adapt software systems. As illustrated by
Fig. 6.3 , new resources and new code can be added in a relatively easy way by an
autonomic manager. New code, however, is not fi nely integrated into the existing
code. In fact, it is packaged and deployed as a stand-alone service in the OS fi le
system and made available. Some running code can then call this new service and
thus be upgraded.

Operating System

External resources (services, data)

Binary code Local Data

Software system

Autonomic
Manager

Update

0100110011

0100110011
10
11
11
10
11

10
11
11
10
11

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

A = 1

A = 1

A = 1

B = 2

C = 3

D = 4

 Fig. 6.3 OS-level autonomic manager

6 The Adaptation Function

http://www.upnp.org/
http://dx.doi.org/10.1007/978-1-4471-5007-7_1

163

 However, in spite of this valuable ability to dynamically integrate new code,
building a dynamic application on top of an operating system is complex and often
based on ad hoc mechanisms set up by the application itself. The example of the shell
command cited above is based on the introspection of directories specifi ed in a global
environment variable. In addition, it is extremely diffi cult to establish an infrastruc-
ture for the interception and redirection of messages exchanged between two internal
structures of the application code (two objects for instance). As seen before, such
infrastructures are often necessary for the management of application dynamism.

 To sum up, OS-based techniques can be very useful to implement autonomic
properties. They however remain very technical and complex. They have to be com-
plemented with other, certainly more abstract, approaches to deal with a range of
self-management properties.

6.3.2 Program-Level Adaptation

 6.3.2.1 Programming Languages
 Programming languages provide notations to form programs, which are specifi cations
of a computation. Programming languages rely on the notion of building blocks,
often called modules. Over the years, many forms of modules have been proposed
such as functions or classes. A module defi nes a set of symbols associated with code
fragments. For instance, a class defi nes a set of methods, where each of them has a
symbolic name (called its signature or profi le) and some associated code. Modules
can be compiled and assembled to form executable code (binary code). A special
program, called a ‘linker’, builds this assembly. A link editor combines the code of
different modules and resolves references to external symbols. Resolving references
simply means that symbols are associated with an address in the code.

 Programming languages provide a number of techniques allowing dynamic adap-
tation that can be leveraged to build autonomic systems. This is illustrated by Fig. 6.4
where it appears that an autonomic manager can bring adaptation directly in the
binary code of a software system. This is a complex but very powerful approach.

 Some techniques, like refl ection, can be quite complex and are very tricky to employ
in practice. Others, like dynamic linking, are much more popular and simpler to use.

 In this section, we focus on two very useful techniques, dynamic linking and
code interception, that are regularly put into practice today.

 6.3.2.2 Dynamic Linking
 Putting together the code of different modules and resolving references to external
symbols are an essential phase when building a program. This can be done statically
or dynamically. Static linking is the traditional approach. Its purpose is to assemble
modules and to allow the modular development of applications. All external refer-
ences are to be resolved before the execution of a program.

 Many programming languages support dynamic linking. This means that external
references are not completely resolved before execution and that some of them can
be changed at runtime. It is then possible to bring in new code at runtime, therefore
dynamically adapting the software system.

6.3 Code Adaptation Techniques

164

 Dynamic linking usually relies on indirection and ‘plug-in’ mechanisms. Let us
look at indirection fi rst. Two approaches are employed generally. The fi rst one
consists of compiling all the external references of a module in a table that can be
progressively fi lled in and even updated at runtime. This allows client code to trans-
parently call a new piece of code. The second approach is based on ‘code rewriting’
in the sense that specifi c instructions are introduced into the binary code to allow
runtime adaptation. Specifi cally, variation points are introduced at places where
external symbols are referenced. The precise calls, which employ the address of
the code to be triggered, can then be changed at runtime. Erlang and C use this
table-based approach to implement dynamic linking. Linux employs the rewriting
option to dynamically load modules in the kernel.

 A plug-in can be defi ned as an extension module bringing additional functional-
ity to an existing software system. Plug-in mechanisms impose typing constraints.
Modules that are loaded dynamically must conform to predefi ned signatures that are
expected by the running code. Of course, some fl exibility in the signature defi nition
can be accepted. But, the bottom line is that extensions are prepared and must con-
form to a predefi ned shape. Such an approach requires the code to be adapted to
have the appropriate structures explicitly in place accordingly: for instance, abstract
interfaces should be defi ned to allow fl exibility in the plug-in-based extensions.

 6.3.2.3 C Language
 In the C language, modules that can be linked dynamically are packaged in specifi c
libraries. Their implementation depends on the operating system. These specifi c
libraries are called dynamic-link libraries (.dll) in Windows and shared libraries
(.so) in Linux.

Operating System

Binary code Local Data

Software system

Autonomic
Manager

Update

External resources (services, data)

0100110011

0100110011
10
11
11
10
11

10
11
11
10
11

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

A = 1

A = 1

A = 1

B = 2

C = 3

D = 4

 Fig. 6.4 Programme-level autonomic manager

6 The Adaptation Function

165

 The following example shows how to load a library with the dlopen () function,
how to get the address of a symbol defi ned in a shared (dynamic) library with the
 dlsym() function and, fi nally, how to unload the shared library with the dlclose()
function:

 As illustrated by this example, managing dynamism in C is complex. It can also
be risky in the sense that there is almost no supporting mechanism to limit program-
ming errors. In particular, dynamic libraries are loaded with no verifi cation about
the correctness of the new code, regarding the typing system for instance. Also,
there is no notion of scope in the libraries. Thus, one cannot defi ne explicitly what
is shared and what is not shared with other modules. This limitation rapidly raises
security issues. Finally, there is no preventive verifi cation when a module is
unloaded. This frequently results in so-called dangling pointer issues. References to
nonexisting objects are one of the major causes of system crashes.

 Also, replacing a function is extremely complex since it demands the unloading
of the ‘old’ function. There is no easy way to do that in C. A common technique to
implement this is to always reference functions that are likely to be replaced via
pointers. Thus, changing a function amounts to change a pointer (if the interfaces
are compatible of course) [2].

 6.3.2.4 Java Language
 The Java language presents a very different picture. In Java, source code is always
transformed into some intermediary code, called byte code, in order to be executed
by a virtual machine. A virtual machine is a software framework that isolates appli-
cations from computer specifi cs such as the operating system or the physical hard-
ware architecture. This abstraction layer allows application developers to ignore
low-level aspects and permits applications to be run on different computers, mini-
mising the effort involved in porting software between different systems. Virtual
machines are today rather common. The Java virtual machine and Microsoft. NET
virtual machine are the best-known examples. They are not alone, though. Virtual
machines like Parrot, supporting dynamic languages including JavaScript, PHP and
Perl 6, are becoming increasingly popular.

 In Java, thus, there is no static linking. Loading a class is done on demand when
the class is needed for execution when a running class has referenced it. Specifi cally,
the action of loading classes in a virtual machine at runtime is done by specifi c

6.3 Code Adaptation Techniques

166

entities called ‘class loaders’. The purpose of a class loader is to resolve external
references. To do so, it has to locate libraries containing the appropriate classes in
the system resources and load them into the virtual machine. Several class loaders
can be used in the same virtual machine. Their use is based on the following rules:
 – Every class loader but the initial one (bootstrap) has a parent.
 – Every class loader delegates the task of class loading to its parent before doing

so itself.
 By default, a Java virtual machine possesses three hierarchical class loaders:

 – The initial class loader whose purpose is to load standard Java classes (rt.jar)
 – The extension class loader which loads classes of the extension directory (jre/lib/

ext)
 – The application class loader that loads archives defi ned by the CLASSPATH

 More class loaders can be added to load specifi c aspects in a modular way. Each
class loader then has its own name scope. This is a powerful approach applying the
separation of concerns principle to dynamic class loading. In particular, it allows the
loading of two implementations of the same class as soon as they are loaded by two
different class loaders. Such an approach brings fl exibility since two versions of a
class can be used by different parts of a system. In addition, backtracking to a previous
state is made possible. However, the class loader concept is not one that is always
mastered by programmers. This results in tricky, buggy situations where unexpected
classes are used in a programme.

 In contrast to the C approach, verifi cation is done before loading a Java library.
In particular, type system compatibility is checked. The following example shows
how to dynamically load a Java class:

 As in C, unloading modules raises an issue. A class loader cannot unload a class.
Unloading a class requires unloading the class loader itself! This is why programmers,
even experienced ones, tend to defi ne several class loaders (with all the potential
problems mentioned previously).

 Dynamic adaptation is at the core of many programming languages. A number of
techniques have been proposed to allow code evolution at runtime. Dynamic linking
that has been presented here is one of them. Many others do exist. For instance,
programming languages like Smalltalk are dynamically typed and refl ective. Some
script languages like JavaScript are weakly typed and dynamic in the sense that
programming variables can change types. A language like Erlang allows developers
to dynamically load new code and to explicitly manage code replacement.

 These are all powerful techniques that can be used by autonomic managers to
bring dynamic code adaptation. The essential issue, though, is that it is often hard to
master and control these techniques. An excessive use of programming-level tech-
niques may result in buggy code, extremely hard to test and maintain. Another thing

6 The Adaptation Function

167

is that employing such programming-level techniques has often a strong impact of
the code itself. For instance, in order to dynamically load C libraries, extension
points (variation points) have to be introduced. This results in complex code and
requires limiting the possible dynamic extensions. Variation points cannot be intro-
duced everywhere in the code; otherwise, it just gets unmaintainable!

 As a conclusion, dynamic code loading is an essential feature allowing the intro-
duction of new code in the scope (name space) of some code already running without
interrupting it. The ability to discharge code, though, is not as well supported and
generally requires one to develop additional code on top of the virtual machine.
Unloading code becomes necessary when one wants to replace a programming
structure like a class for instance. In this case, it is necessary to be able to deploy,
load and instantiate the new structure. Also, the structure to be replaced is then
required to vanish. It has to be unloaded from the virtual memory, and clients of the
old structure are routed to the new one.

 6.3.2.5 Interception Mechanisms
 Interception is an essential mechanism in many programming languages that can be
leveraged to implement self-management. The purpose of this technique is the
explicit manipulation of connections between programming structures (functions,
methods, messages, etc.) by intercepting their communication. It is thus possible to
block and reroute messages during dynamic adaptation or to modify the content of
a message. It is also possible to add some code that modifi es the behaviour or QoS
of the software system.

 Several approaches can be used to implement interception; many are based on
meta-object protocols [3]. The principle of such a protocol is to provide some means
to observe and manipulate the structures of a running program. For instance, some
virtual machines provide interfaces to observe running code and to dynamically create
proxies designed to intercept messages exchanged between two structures. Such
facility is very useful since low-level; complex code is required to provide refl ection
(to observe running code and react to changes).

 Indeed, interception mechanisms can be implemented without a virtual machine,
but it rapidly gets extremely complex. In C for instance, interception points can be
inserted in the code. Most techniques rely on the manipulation of the function’s
entry points. That is, the entry point of a function can be altered (rerouted) so that
some additional code is called before the execution of the function. In some cases,
the original function can be merely ignored. The function is not unloaded but not
called anymore or called by other structures.

 Interception can be implemented at design time or at runtime. In the fi rst case, the
executable code is usually modifi ed by an extended compiler (or some sort of post-
compiler). In the second case, a software system has to provide means to change the
very fi rst few code instructions of a target function to jump to an injected code.

 This approach somehow continues the idea of variation point (see Sect. 6.2.2) in
applying it to the code and not only to an abstract design. Its main limit is its com-
plexity since it requires to physically modify some binary code. It relies then on
tools producing non-standard code, that is, code different from the one produced by

6.3 Code Adaptation Techniques

168

a ‘regular’ compiler. This raises the usual issue of conformity and maintenance of
these often ad hoc tools.

6.3.3 Component-Level Adaptation

 The introduction of software components in the late 1990s aimed at providing a new
level of abstraction and new facilities to software developers [4]. Developing large
software systems solely using fi ne-grained programming concepts like objects or
functions does not scale very well. This is because the granularity is too fi ne and a
number of global aids to development and maintenance are not supported. In most pro-
gramming languages, for instance, there is no provision that supports non- functional
qualities or code dependency management for instance. That is, there is no global
view of applications, which is a sticking point to implementing adaptations. In many
cases, code upgrade is limited to small sets of instructions because of this lack of
global perspective [5].

 Components provide a very useful level of abstraction for self-managed systems
[6]. As a matter of fact, a number of self-managed systems are today based on the
component granularity for adaptation. As illustrated by Fig. 6.5 , autonomic managers
directly manipulate components to adapt the system and are not aware of low- level
details. This leads of course to coarse-grained adaptations.

 A software component is a unit of composition that can be independently deployed
and executed. A component model defi nes a common structure for components
and rules to assemble them. Many component models are based on the notion of
provided and required interfaces expressing what a component can do and what it
needs in order to be executed. Many component models also introduce a set of
non-functional properties that are used to characterise the overall behaviour of a

Operating System

Binary code Local Data

Software system

Autonomic
Manager

Update

A
rc

hi
te

ct
ur

e

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

A = 1
B = 2
C = 3
D = 4

A = 1

B = 2
C = 3
D = 4

A = 1
B = 2
C = 3
D = 4

External resources (services, data)

 Fig. 6.5 Component-level autonomic manager

6 The Adaptation Function

169

component. These properties are usually specifi ed in a descriptive metadata fi le
that can be used during deployment, instantiation or composition.

 Components usually come with development environments and execution envi-
ronments. Development environments provide facilities to produce (source and
binary) code. A framework then provides online support services that allow the
deployment, composition, execution and administration of software components.
Programmers and administrators manipulate an application through its architecture,
not through low-level programming structures. Generally, the framework allows the
management of two artefacts: component implementations and component instances.

 Adaptation, here, is usually termed ‘architecture reconfi guration’. The architec-
ture of an application, consisting of a number of components in interaction, can be
modifi ed (or reconfi gured) at runtime. This is made possible since the constituents
of an architecture, components and bindings, can be explicitly manipulated through
the execution framework. Reconfi guration may take various forms: modifying the
interface of components, modifying the bindings between components, replacing a
component by another one, adding and removing components, etc. This is illus-
trated by Fig. 6.6 where the binding between components A and B is suppressed and
replaced by a binding between components A and C .

 Binding modifi cation is often implemented with proxies placed between compo-
nents in interaction. This is of course the implementation of the interception mecha-
nism presented in Sect. 6.3.2 in the component world. A proxy is a variation point:
it is changed in order to update the communication QoS or to replace one component
involved in the communication.

 Bear in mind, however, that such proxies cost as they are an indirect requiring
more messages and processing and are therefore generally avoided when perfor-
mance is important!

 Generic component models supporting adaptations generally require important
work from programmers to preserve state, perform reconfi guration at the right time,
maintain control fl ows and so on. In contrast, domain-specifi c component models
can provide a much higher level of support. Domain-specifi c component models
focus on well-defi ned and limited domains. They bring high-level compositional
capabilities and may provide advanced dynamic features. For instance, replacing a
component can be simply made through an API. The associated runtime is then able
to save and restore states that are explicitly defi ned in the domain, to block client
calls, to synchronise updating actions, etc.

A

B

C

A

B

C

 Fig. 6.6 Example of architectural reconfi guration

6.3 Code Adaptation Techniques

170

6.3.4 Software Services

 Service-oriented computing (SOC) is a relatively new trend in software engineering
[7]. It is a compositional approach where applications are built through the late
composition of independent software elements, called services. A service is charac-
terised by the functions it provides. Services are not software components, but they
can be implemented as one or several components.

 The service-oriented approach offers excellent opportunities to achieve software
application dynamism and is used more and more to build autonomic software
systems.

 A service is a software resource that is described and published by a provider in
a service registry , sometimes called a service broker. The registry acts as an inter-
mediary between service providers and consumers. More precisely, service providers
publish service descriptions in the registry. Then, service consumers can send queries
to the registry to get the available services meeting their requirements. Once a service
has been selected, consumer and provider can in some cases negotiate a contract
specifying how the service is to be used. Today, there are very few automated methods
to verify that a contract is actually respected. The next step, of course, is the service
invocation. Here, the consumer can use (call) the selected service. The SOC base
pattern is illustrated in Fig. 6.7 .

 The overall approach is made possible by a supporting infrastructure, called a
service-oriented architecture (SOA). An SOA provides all the necessary mechanisms
to describe, publish, discover and invoke services. It can also provide additional
features related to non-functional requirements like security, transaction and quality
of service. In particular, mechanisms related to contract defi nition, establishment
and verifi cation belong to these additional (and optional) features.

 Dynamic SOAs are architectures that have been extended with specifi c features
allowing the dynamic management of services. Essentially, this means that a service
provider can un-register a service if it is no longer able to deliver it. In addition,
notifi cations are sent to inform consumers when new services arrive and when a
service is removed from the registry.

 Depending on runtime conditions, a consumer has then the ability to release a
service currently selected and choose (and invoke) a new one. This can be triggered

Service
consumer

Service
provider

2. Discovery

3. Binding & invocation

1. Publication

Service
Registry

 Fig. 6.7 SOC base pattern

6 The Adaptation Function

171

by the appearance of a new, perhaps better, service in the architecture (in the registry)
or because the current service does not provide the expected functionality or functions
rated at the quality level required (this quality-level requirement can be expressed in
a service contract).

 A number of implementations of the SOA concept have been proposed, some-
times for different purposes. Web services, 2 for instance, represent a solution of
choice for software integration. UPnP 3 and DPWS (Devices Profi le for Web Services)
are heavily used in pervasive applications in order to expose volatile devices.

 As illustrated by Fig. 6.8 , these technologies are very useful to implement and
dynamically integrate resources. Service orientation is therefore of great interest
for autonomic computing. The loose coupling between service providers and con-
sumers facilitates architectural evolutions. Architecture is an important word
here: services are large-grained artefacts, and they target large-grained evolutions.
Changing services means changing big chunks of code. It is then perfectly adapted
to adaptations at the architecture level, not at the instruction level.

 Service orientation is so promising that it has been extended to handle more than
resources. Cervantes and Hall introduced the notion of service-oriented component
in 2004 [8]. Their main motivation was to combine the advantages of two different
paradigms into a single programming model, that is, the architectural dimension of
software components and the inherent fl exibility of services. The essential

2 www.w3c.org
3 www.upnp.org

 Fig. 6.8 Service-level autonomic manager

Operating System

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

0100110011
0100110010
0010101011
0100110011
0100110010
0010101011

Binary code

A = 1
B = 2
C = 3
D = 4

A = 1
B = 2
C = 3
D = 4

A = 1
B = 2
C = 3
D = 4

Local Data

Software system

Resource
as a service

Resource
as a service

Resource
as a service

Autonomic
Manager

Update

6.3 Code Adaptation Techniques

http://www.w3c.org/
http://www.upnp.org/

172

innovation of service-oriented components resides in the way bindings are estab-
lished. In traditional component-oriented composition, components are selected
and bound at design time. Afterwards, reconfi guration is driven by an administrator
or by a global autonomic manager in a centralised fashion. By contrast, the selection
process for a service-oriented composition occurs at runtime as component instances
are created. It is the purpose of the execution framework to bind the service-oriented
components together. To do so, service-oriented components come with a descrip-
tion of their provided and required functions. Depending on the available compo-
nents, the execution framework binds the appropriate service-oriented components
together (i.e. it binds provided services to required services).

 Building a software system using a service-oriented component approach comes
down to decomposing the system into a collection of modular interacting services.
These services are described in a specifi c fi le, separately of any implementation.
By doing so, it is possible to develop service-oriented components independently of
each other. It is also possible of course to provide variant implementations for the
services that can be interchanged, even at runtime. Variant implementations can be
used, for example, to support different non-functional requirements.

 The execution of the software system based on service-oriented components
starts when all the dependencies are satisfi ed. The fi nal topology of a system
depends of course on the available components. Components can be pushed
down in the execution platform or pulled from repositories by the platform. A
composition can be seen as an abstract architectural description that could be
used by an autonomic manager to deploy components that satisfy the service
specifi cations required by the composition. The resulting system may vary
dynamically at runtime.

 A service-oriented component is characterised by the following information:
 – A set of provided service interfaces.
 – A set of required service interfaces, declared by the component and handled by the

execution platform (i.e. the dependencies are resolved by the execution platform).
 – Management interfaces. They allow direct management of the service-oriented

component and are of major importance when it comes to dynamism.
 – Required and exported resources. These are references to (code) resources that

have to be provided by other components or used by other components.
 This approach facilitates the work of programmers in many aspects, especially the

management of dynamism. Somehow, service-oriented components infuse auto-
nomic computing concepts into traditional component model. Reconfi guration is
not decided by a global manager but, locally, by autonomic managers attached to com-
ponents. That is, depending on the available components, bindings can be regularly
evaluated and possibly changed.

 Several implementations of service-oriented components have been proposed,
including OSGi (www.osgi.org) and iPOJO (http://felix.apache.org/site/apache-
felix-ipojo.html) which is built on top of OSGi. These two technologies are today
used to aid the building of dynamic (sometimes autonomic) systems through their

6 The Adaptation Function

http://www.osgi.org/
http://felix.apache.org/site/apache-felix-ipojo.html
http://felix.apache.org/site/apache-felix-ipojo.html

173

ability to support dynamism at the architecture level and are therefore presented in
more detail in the latter sections of this chapter.

6.4 OSGi

 OSGi (Open Services Gateway initiative) is an execution framework developed
on top of Java [9]. It was initially employed in pervasive environments to build
home automation boxes or energy management boxes capable of hosting dynamic
and sometimes autonomic applications. It builds on Java’s dynamic features (on
demand class loading, multiple class loaders, typing verifi cation before loading,
etc.) to provide a coarse-grained level of modularity. Today OSGi is the solution
of choice when building dynamically adaptable applications in the Java world. It is
used in Eclipse (www.eclipse.org) and a number of J2EE application servers like
Jonas (www.jonas.org) in order to allow the dynamic integration of new modules
or services.

 OSGi is very useful regarding autonomic computing in the sense that it both sup-
ports the notions of modularity and services. In other words, it provides means to
dynamically load new code on a platform and to integrate it with existing code.

6.4.1 Modularity

 Firstly, OSGi defi nes a form of modularity for Java, beyond the modularity provided
by classes and objects. It allows developers to modularise their applications.
Modules are called bundles in OSGi (the two terms, modules and bundles, are often
used without distinctions by practitioners).

 The notion of a bundle is pivotal to OSGi; specifi cally, a bundle is a Java archive.
It can contain, in addition to Java classes, a number of resources including .gif and
 .png fi les, properties fi les, containers like .jar or .zip fi les and libraries of native code
such as .dll or .so fi les. In other words, all the fi les that are required to implement a
module. A module can be defi ned as a set of coherent, collaborating classes grouped
together. The purpose is to organise Java applications into a set of loosely coupled,
highly coherent interacting modules.

 A bundle is both a deployment unit and a composition unit. Regarding deploy-
ment, bundles are used to package classes and resources so that they can be deployed
on one or more execution platforms. Bundles are thus tangible artefacts that can be
copied or transferred by software administrators.

 But bundles are also used as composition units at the application level. That
means that they are used as building blocks to form modular Java applications. Note
that this double role played by bundles often leads to confusion since differences
between the notions of deployment and composition are not always well understood
by programmers. Regarding the compositional aspect, bundles allow the defi nition

6.4 OSGi

http://www.eclipse.org/
http://www.jonas.org/

174

of what can be shared and what is private to the bundle. This aspect is defi ned in a
metadata fi le included in a bundle.

 OSGi uses the Java manifest facility to specify metadata (manifest.mf in Fig. 6.9).
A manifest is a fi le defi ning high-level properties called metadata. By default, Java
defi nes a set of metadata, such as the vendor name and the version of the associated
archive. Most metadata depends on the execution context or on the nature of the
archive. However, the OSGi standard defi nes a complete list of metadata. 4 Two of
them are especially important:
 – Export-Package defi nes packages of the bundle that are exported (made available

to the other parts of an application).
 – Import-Package defi nes packages required by the bundle for its execution.

 One of the main assets of OSGi is related to modularity management, which
allows the installation and deinstallation of Java modules without the interruption of
services. This capability is made possible by the advanced use of Java class loaders.

 Specifi cally, a class loader is defi ned for each bundle. Then, OSGi introduces
visibility between bundles via the notions of public and private packages. Public
packages can be imported or exported, specifi ed through the use of metadata. A
bundle then has access to the classes of its own packages and to the classes of the
imported public packages belonging to other bundles. This defi nes the bundle Class
Space . Having a class loader per bundle allows several versions of a class to coexist

4 http://www.osgi.org/download/r4v43/r4.core.pdf

 Fig. 6.9 Bundle structure

6 The Adaptation Function

http://www.osgi.org/download/r4v43/r4.core.pdf

175

in the same program. The only constraint is that a given bundle can only access a
single version.

 Bundles have a life cycle of their own. Specifi cally, a bundle can be:
 – Installed . The bundle is said to be valid, and it is assigned with a unique identi-

fi er by the running platform. Installation is an atomic and persistent operation.
A bundle object is created and is used for every upcoming administration
operation.

 – Uninstalled . The physical representation of a bundle has been deleted, and its
different resources have been correctly released or discharged from the
platform.

 – Resolved. All the dependencies of the bundle (packages, capacities, etc.) have
been satisfi ed.

 – Starting . The bundle is initialized through a call to its start method. A notifi cation
is sent upon bundle activation.

 – Activated . The bundle has been successfully activated and is running.
 – Stopping . When a bundle is deactivated, all services and resources being used

have to be released, all the threads of the bundle are stopped and all services
provided by the bundle are deleted from the platform.
 Thus a bundle goes through different states from its installation up to its retire-

ment. This is illustrated by Fig. 6.10 which summarises the different states and
transitions.

6.4.2 Service

 OSGi allows the dynamic management of deployment and composition units, also
known as bundles, meaning that the execution platform does not have to be rebooted
to instantiate the change to its architecture. However, this dynamicity only concerns
classes. However, the dynamic management of bundles does not imply the dynamic
management of applications. To do so, a bundle exposes its functions (services) to

InstalledUninstalled Resolved

Starting

Stopping

Activated

Uninstalls

Installs

Resolves

Updates

Updates

Starts

Stops

 Fig. 6.10 Bundle states

6.4 OSGi

176

the other bundles and, conversely, is able to use functions (services) offered by the
other bundles. These functions are concerned with the instance level: they corre-
spond to running classes.

 As introduced previously, a major aspect of service-oriented computing is the
notion of a contract. This notion defi nes what is expected (service specifi cation) and
what is effectively used (concrete service). Clients use service specifi cations in
order to select a service provider and invoke a concrete service. This two-phase
protocol also gives clients the ability to change concrete services when the currently
used ones are not satisfactory (for whatever reason).

 OSGi relies on the defi nition of a service register containing the services avail-
able on the platform at a given time. Services correspond to running classes that
belong to a bundle and are where their interfaces are explicitly exported. Bundles
are then concerned with instances of classes that can be shared by all other bundles.
A bundle therefore contains a number of service consumers and providers.

 Regarding service provision, a bundle has to provide the following elements to
the registry:
 – A description of the provided service (Java interface)
 – The invocation point of the provided services (a reference to the implementation

class)
 – The non-functional properties

 When a bundle registers a service, the register gets a reference to the record
(ServiceRegistration) which is used to administer the service, which is also used for
its deregistration. In particular, a bundle has to deregister its declared services when
it is deactivated. Some OSGi implementations automate this aspect, however.

 To use a service, a consumer has to look for it. Two modes are available to do
this: active mode and the passive one. In active mode, the potential consumer
explicitly accesses the register to get one or several references to services running at
that moment, using the following:

 In passive mode, the consumer subscribes to events corresponding to the arrival,
departure or modifi cation of specifi c services. Thus, a consumer can discover, select
and invoke a service when it becomes available. It can also select and use a new
service when the previous one becomes unavailable. Here is a code example illus-
trating this:

6 The Adaptation Function

177

6.4.3 Conclusion

 OSGi is one of the few industrial-strength platforms explicitly designed to run
dynamic applications. It is based on the notions of bundles (modules) and services.
An exciting point is that OSGi tackles the two main challenges of dynamic applica-
tions, that is, the integration of code in both the execution environment and in the
running application. More precisely, bundles are used to dynamically integrate code
on the platform through the advanced use of class loaders, while services are used
to dynamically upgrade applications.

 However, while class sharing is managed by the platform itself, this is not the
case for function sharing. That is, managing service-level dependencies within a
bundle is left to the developer. It is necessary to capture the different events emitted
by the platform in order to discover, select, use, and change services. This turns out
to be an error-prone approach that can endanger the dynamic nature of the applica-
tion. For instance, references can become stale, events can be missed, incompatible
class versions can be called, etc.

 Several approaches have been investigated to improve OSGi in terms of depen-
dency management. In the section, we will focus on the iPOJO component model
approach. One of the main goals of iPOJO is to simplify the creation of dynamic,
service-oriented applications in OSGi.

6.5 iPOJO

 Very early, OSGi appeared to be a powerful but complex framework. In particular,
one of the major concerns in OSGi is that service management is entirely left to
applications programmers. That is, programmers have to insert specifi c instructions
in their code in order to follow the arrival and departure of services of interest and
to react accordingly. This code is complex and highly error-prone.

 Several approaches have then been investigated in order to make dependency
management easier and more automated. Service Binder was one of the earliest
works in that direction. A similar approach, called Declarative Services, appeared
in the fourth release of the OSGi compendium. This specifi cation defi nes how a
framework can manage service publications and service dependencies in order to
signifi cantly lower business code complexity. Other component-based approaches
have been proposed on top of OSGi, including Google Guice peaberry, 5 Scala 6 and
iPOJO. 7 In this section, we focus on the latter for it is today more and more used in
order to implement autonomic software systems.

 iPOJO is a service-oriented component model complemented with a support-
ing execution framework [10]. One of the main goals of iPOJO is to make the

5 http://code.google.com/p/peaberry/
6 http://wiki.github.com/weiglewilczek/scalamodules/
7 http://felix.apache.org/site/apache-felix-ipojo.html

6.5 iPOJO

http://code.google.com/p/peaberry/
http://wiki.github.com/weiglewilczek/scalamodules/
http://felix.apache.org/site/apache-felix-ipojo.html

178

development of dynamic applications as simple as possible. To this end, the overall
approach is to keep a component as close to a ‘plain old Java object’ (POJO) as
possible. The code of a component should focus on business logic, not on mecha-
nisms for dynamism or other non-functional requirements.

 iPOJO relies on the ‘inversion of control’ pattern and provides an extensible
component container that manages all issues regarding dynamism. In particular, it
manages all the service-oriented interactions: service publication, service instantia-
tion, service selection and service discovery. The container can be extended in order
to support other non-functional concerns such as confi guration, persistence and
security.

 As illustrated by Fig. 6.11 , each aspect is managed by a special element called a
 handler . Thus, containers are not monolithic constructions but are made of a num-
ber of handlers. Some handlers like the ‘service dependency handler’ are mandatory
and always part of a container, whereas others are optional. The ‘service depen-
dency handler’ and the ‘life-cycle management handler’ are examples of mandatory
handlers. The latter is called when an iPOJO instance changes state (as explained
further in more details).

 The most commonly used handlers are available on Apache. Custom handlers
can be developed for iPOJO, using framework facilities, allowing developers to
handle other more specifi c non-functional concerns.

 The purpose of the container is thus to wrap a plain Java object and provide non-
functional features. The link between the ‘POJO’ and its container (and the handlers
in fact) is transparently created by the supporting framework through analysis and
manipulation of the POJO byte code. Code injection is done at compilation time by
the framework. At that time, the framework also creates bundles (essentially the
 manifest part of the bundle) containing iPOJO components and related metadata.
Bundles are used as the deployment unit to resolve package dependencies, as it is
normally carried out by OSGi.

 Concretely, a component is connected to the iPOJO supporting framework by
confi guring the component instance container, which consists of declaring metadata
that will be used by the container for runtime management. Handlers are plugged
into the component instance container at runtime. Only the required handlers are
plugged into the container. The resulting container manages the interaction between
the POJO and the external world.

POJO

handler

ha
nd

le
r

ha
nd

le
r

container Fig. 6.11 iPOJO extensible
container

6 The Adaptation Function

179

 First thing when an ‘iPOJO bundle’ is deployed is to create iPOJO instances.
Instances life cycle is very simple: an instance is valid or invalid. That is, once cre-
ated, an instance is valid if and only if all dependencies (expressed by the handlers)
are satisfi ed. In particular, all the service dependencies must be resolved (see
Fig. 6.12). Life-cycle handlers are called when an instance becomes valid (validate
callback) and when it becomes invalid (invalidate callback). States and associated
transitions are illustrated by Fig. 6.13 .

 The complete specifi cation of an iPOJO component includes the declaration of
provided services, required services, callback functions related to the life-cycle
management (upon activation and deactivation of instances) and all non-functional
aspects implemented by specifi c handlers.

POJO

handler

ha
nd

le
r

ha
nd

le
r

Required service handler

POJO

handler

ha
nd

le
r

ha
nd

le
r

Provided service handler

binding

 Fig. 6.12 Service-based interaction between two iPOJO instances

 Fig. 6.13 State diagram of an iPOJO instance

6.5 iPOJO

180

 An iPOJO component can be created in three different ways:
 – With specifi c annotations added in the Java source code
 – With a compositional model to describe an architectural view of dynamic service

assemblies
 – With a specifi c API provided by the supporting execution framework

 The following example illustrates the annotation-based creation of a simple
iPOJO component, providing the « HelloService » service:

 The same result can be obtained through the use of a metadata fi le:

 As said earlier, the specifi cation includes the required services (@requires), the
provided services (@Provides) and optional life-cycle-related callbacks (@Validate,
@InValidate). These elements are then interpreted during execution: component
instances are created, service dependencies are dynamically injected and callbacks are
called depending on the instance state.

 Finally, a useful aspect of iPOJO is the possibility to defi ne hierarchical composi-
tions. Here, instances can be regrouped into separate name spaces called composites .
This notion of composite allows the isolation of services in an execution platform.

 iPOJO composites can be created in a declarative way in a description fi le,
just like iPOJO instances. The following example illustrates the creation of such a
composite:

6 The Adaptation Function

181

6.6 Conclusion

 The ability to update a running software system is at the heart of autonomic
computing. We believe that a self-managed system has to be designed with this in
mind. That is, the supporting running platform has to be conceived with the adapta-
tion in mind, and the autonomic properties have to be defi ned with the platform
possibilities in mind.

 An important output of this chapter is that there is no generic method guarantee-
ing correct and consistent dynamic updates. The techniques that are used today are
mainly application specifi c. Implementing them can be a real challenge, especially
when carried out by the programmers that were not involved in the initial software
development. Fortunately, there are some favourable situations. For instance, state-
less and loosely coupled software systems are much easier to adapt. There may be
no state to preserve and very few internal connections to maintain. Otherwise, it is
up to programmers to do the tedious, error-prone tasks like state encoding and
decoding, state alignment and state synchronisation.

 The good news is that autonomic computing can take advantage of the different
techniques investigated so far. Indeed, as explained in Chap. 3 , autonomic systems
are made of a number of autonomic elements acting at different levels of abstrac-
tion. Some autonomic elements are close to the execution machine (OS, VM), while
others are more concerned with high-level, business-related code (classes, compo-
nents, services). Adaptation techniques required by these different elements are of
course different, with various requirements in terms of granularity and QoS. For
instance, a ‘low-level’ autonomic element can rely, for instance, on a ‘meta-object
protocol’ to manage the confi guration of the virtual machine at runtime. Service- level
approaches, on the other hand, can be used to deal with the dynamic integration of
new business algorithms.

 The bad news is that autonomic systems tend to be complex, more complex than
traditional systems. The point is that they have to use sophisticated techniques to

6.6 Conclusion

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

182

self-manage some of their parts. Of course, this additional complexity is the price to
pay to reach the desired level of autonomy.

 Good sense (and the use of strong software engineering principles!) can hide this
additional complexity as much as possible. The adaptation code, whatever the tech-
nique it uses, should be encapsulated and only changed when required by an expert.

6.7 Key Points

 In this chapter, we have introduced the following important points:
• Software adaptation is key to modern computing. It remains however very complex

and is often based on ad hoc techniques. A major reason for this is that software
systems are not built so that they can be easily evolved, due to the diffi culties and
costs in being able to anticipate a wide enough range of evolutions that would be
required in advance.

• Two activities constitute the core of software adaptation process—providing new
code, possibly based on existing code, and integrating this new code into the
existing, running code. Providing a new piece of code requires the code to be
(re-) written or modifi ed via directives related to the code’s compilation or linkage.
This is much easier when extension points (variation points) have been explicitly
inserted into the original code. To reiterate, the latter requires anticipation of
possible changes, which is extremely diffi cult. Domain-specifi c approaches, like
software product lines, can provide such a level of support.

• Integrating new pieces of code into an existing one is a challenging task, especially
when the existing code has already been executed. A major issue in this situation
is to preserve the internal computational states.

• Integration can be performed statically or dynamically. Static integration is simpler
(relatively!). Dynamic integration is very complex but more and more in demand
in order to avoid costly service interruptions.

• Many techniques have been proposed to handle dynamic integration. They operate
at different levels of abstraction and are complementary. We believe that service
orientation is particularly useful. This is why we have presented the OSGi tech-
nology in some detail. OSGi is a dynamic execution framework developed on
top of Java. It improves modularity and facilitates fl exibility.

• iPOJO is a service-oriented component model facilitating the use of OSGi,
automating a number of features. iPOJO already presents some autonomic prop-
erties that turn it into a candidate to build modular, component-based autonomic
software systems. It is for this reason that we use it to illustrate the practicalities
of building autonomic systems in this book.

 References

 1. Lin, D.-L., Neamtiu, L.: Collateral evolution of applications and databases. In: ERCIM
Workshop on Software Evolution/International Workshop on Principles of Software Evolution
(IWPSE-Evol'09), Amsterdam, Aug 2009

6 The Adaptation Function

183

 2. Neamtiu, I.: Practical dynamic software updating. Ph.D. dissertation, University of Maryland,
Aug 2008

 3. Kiczales, G.: The Art of Meta-Object Protocol. MIT Press, Cambridge, MA (1991)
 4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison Wesley/

Longman Publishing Co., Inc., Boston (1997)
 5. Krakowiak, S.: Middleware architecture with patterns and frameworks http://sardes.inrialpes.

fr/~krakowia/MW-Book/ (2007)
 6. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software

Engineering, pp. 259–268. IEEE Computer Society, Washington, DC (2007)
 7. Papazoglou, M.: Service-oriented computing: concepts, characteristics and directions. In:

Proceedings of Web Information Systems Engineering, Los Alamitos, CA, 2003
 8. Cervantes, H., Hall, R.: Autonomous adaptation to dynamic availability in service-oriented

component model. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 614–623. IEEE Computer Society, Washington, DC (2004)

 9. Hall, R., Pauls, K., McCulloch, S., Savage, D.: OSGi in Action: Creating Modular Applications
in Java. Manning Publications, Greenwich (2011)

 10. Escoffi er, C.: iPOJO: a fl exible service-oriented component model. Ph.D. dissertation,
University Joseph Fourier. http://defense.pdf . Dec 2008

References

http://sardes.inrialpes.fr/~krakowia/MW-Book/
http://sardes.inrialpes.fr/~krakowia/MW-Book/
http://defense.pdf/

185P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_7,
© Springer-Verlag London 2013

In the previous chapters, we saw how self-managed systems could accumulate
information about their execution context and how they could adapt their own internal
structures. We now focus on the decision function that links sensory inputs to actuating
outputs. This function heavily relies on the notion of knowledge (knowledge about
the system internals, knowledge about the computing environment, knowledge about
ways to solve problems) and as well as the ability to reason about this knowledge.
There are many different ways to represent knowledge in computing science, and a
wide range of reasoning techniques have been proposed, in particular in the artificial
intelligence community.

The purpose of this section is to present different knowledge representations
and associated reasoning techniques well suited to autonomic systems. It is not
meant to be exhaustive. In fact, there is no such thing as a general knowledge
representation of reasoning approach for autonomic management. Depending on
the requirements, different formalisms and techniques with different properties can
be selected.

7The Decision Function

186

7.1 Introduction to Knowledge

7.1.1 Definition

Knowledge is a central notion in autonomic computing. Indeed, in order to exhibit
self-administration properties, autonomic systems must rely on some form of knowl-
edge about themselves, about the computing environment and about ways to solve
problems. The more sophisticated the autonomic capacities required, the more
advanced the knowledge.

We have seen that autonomic systems are made of a number of interacting auto-
nomic managers. From a logical point of view, these managers are organised around
administrative tasks, the MAPE tasks, which are used to monitor the managed arte-
facts, analyse the situation, plan countermeasures when necessary and eventually
execute courses of action. As illustrated by Fig. 7.1, the MAPE tasks strongly rely
on knowledge, for example, the K in the MAPE-K pattern.

The general notion of knowledge is very complex, to such an extent that its study
gave birth to a philosophical domain of its own called epistemology.1 The mere defi-
nition of knowledge is still a matter of intense debate, and, in fact, there is no single
agreed definition today. The classical definition of knowledge traces back to antiq-
uity: Socrates2 stated that knowledge is true belief that has been justified.3 This
theory means that someone knows something if:
 – He/she believes it.
 – This something is true.
 – It is explained in some way.

1 From the Greek epistēmē meaning ‘knowledge’ and logos for ‘study of’.
2 Socrates (469 BC–399 BC) was one of the classical Greek philosophers who laid the foundation
of western philosophy. His work was transcribed by Plato, his student (428–427 BC–348–
347 BC).
3 In the Theaetetus, one of Plato’s dialogues about the nature of knowledge.

Fig. 7.1 Type of knowledge needed to perform autonomic tasks

Knowledge of the
Comp. environment

Knowledge of the
running artefacts

Domain knowledge
Design rationale
and constraints

Problem-solving
knowledge

7 The Decision Function

187

This classical definition is sufficient for this book. In our scope, it puts forward
the fact that an autonomic system must rely on justified beliefs about itself, its envi-
ronments and the effects of its actions. These beliefs have to be true; otherwise,
autonomic actions may be inappropriate.

The notion of truth has also been the subject of intense debates and numerous
research works. Once again, for the purpose of this book, we retain the classical
definition, also tracing back to the Greek philosophers, which defines truth as the
real states of things. A statement about something is true if it reflects the state of this
something at some level of abstraction.

7.1.2 Forms of Knowledge

Since the time of Aristotle,4 it is understood that there are different forms of
knowledge and different ways to acquire knowledge. It is noteworthy to mention
here the distinction between ‘knowledge by acquaintance’ and ‘knowledge by
description’. Knowledge by acquaintance is the result of a direct interaction with a
person or with an object. For instance, knowledge about snow can be obtained by
touching it and throwing snowballs. Knowledge by description is not based upon
direct experience. It is a familiarity with someone or something that is acquired
indirectly, by education, for instance. Knowledge about snow can thus be obtained
through discussions with people living in cold countries.

Knowledge can also be a priori. We say here that this knowledge is ‘innate’.
Simply put, the idea here is that someone possesses knowledge before acquiring
knowledge by acquaintance or by description. Again, this statement traces back to
Socrates who believed in the reminiscence of souls and in the transmission of
knowledge. The notion of category, introduced by Aristotle and formalised by Kant,
can also be mentioned here. According to Emmanuel Kant,5 in the Critique of Pure
Reason, we naturally see the world through existing schemas and we use them to
reason. Categories allow us to organise the world and create objects.

These different forms of knowledge are encountered when building autonomic
systems. Typically, knowledge related to the running managed artefacts can be
seen as knowledge by acquaintance. Such knowledge is acquired through direct
interaction with touchpoints provided by the artefacts or by the computing environ-
ment. By contrast, knowledge about the initial design objectives and about the way
problems should be solved can be seen as innate knowledge. Indeed, this knowledge
is specified by a number of persons (designers, architects, developers, domain
experts, etc.) when the autonomic system is yet to be built. This knowledge is
engraved in the system during its implementation and already exists when the system
is run for the first time.

There is also a more recent distinction between descriptive and prescriptive
knowledge. Descriptive knowledge, also called declarative knowledge, is general,
theoretical knowledge about a domain or about a given software system. It is often

4 Aristotle (384 BC–322 BC) was a classical Greek philosopher. He was a student of Plato.
5 Emmanuel Kant (1724, 1804) was a German philosopher.

7.1 Introduction to Knowledge

188

expressed with propositions. By contrast, prescriptive knowledge focuses on the
way some tasks are to be performed. This form of knowledge is also known as
imperative knowledge or ‘know-how’, for example, it can take the form of details of
how some goals or behaviours can be achieved. Where descriptive knowledge
would relate to problem solving, procedural knowledge is used to direct the solving
of problems. Procedural knowledge is practical, domain or even task specific and
generally less general than descriptive knowledge. Problem solving is of course at
the heart of autonomic computing and these two forms of knowledge are often used
in autonomic systems (in the different MAPE tasks).

Knowledge can be augmented by different forms of reasoning. Deductive rea-
soning allows knowledge to be obtained from a set of findings or observations and
prior or acquired knowledge. Deduction is an inference from general observations
to specific arguments. Inductive reasoning is similar to deductive reasoning in the
sense that it also starts from observations but it aims at reaching more general con-
clusions. Induction is then an inference from observations to general statements.
The truth of the conclusion is not certain and is generally associated with a probabil-
ity. Abduction is a form of inductive reasoning whose purpose is to explain or justify
an observation rather than generation of new concepts through generalisation.
Abduction is not guaranteed to be true and can also be associated with a probability.
Finally, let us mention analogical reasoning which is an inference from a specific
observation to some specific finding.

The acquaintance theorists argue that knowledge based on reasoning, whatever
its nature, cannot be certain, even if generally valid and much used in practice. That
goes back to the notion of belief introduced in the previous section. We will see later
on that the use of probabilities to qualify statements obtained through reasoning is
an interesting way to take this observation into account.

Another important source of debate in epistemology deals with the notion of
partial knowledge. Some philosophers argue that we never truly know a person or
an object. We only have a partial understanding for a number of reasons. First, in
order to deal with complexity, the human mind abstracts, simplifies and selects
information. Second, we have no direct access to the inner parts of someone or
something. The only knowledge we can acquire is the one that is presented by the
subject itself, consciously or not. Children, for instance, have often a hard time to
express and localise the notion of pain. Thus, in order to solve real problems, we
generally dispose of partial knowledge and make decisions accordingly. Some
knowledge, of course, is non-required to solve a problem but some non-available
knowledge would be useful in some cases.

This applies to autonomic systems. Self-management decisions have to often be
made with incomplete knowledge, and, in some cases, probabilities have to be used
to handle this aspect. Managed artefacts are complex software constructions that
cannot be completely known. They are apprehended through the touchpoints they
offer, and only a limited amount of information can be collected. This is clearly the
very same for the computing environment, which is often only partially known. This
brings us back to the epistemological relationship between managed artefacts and
autonomic managers presented in Chap. 4, autonomic system architecture.

7 The Decision Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

189

It is then of utter importance for the autonomic managers to align the problems
to be solved with the knowledge at their disposal (see Chap. 5 about dynamic moni-
toring). An autonomic manager has to be proactive and fetch the information that is
necessary to solve the problems at hand. It is also necessary to evaluate autonomic
actions to make sure of their appropriateness. Chapter 8 is dedicated to this thorny
problem, which requires that the system has knowledge about the possible effects of
an action and is able to log the different actions taken so far.

7.1.3 Knowledge Representation

An essential matter regarding knowledge is the way it is represented and
 communicated. There are several ways to transfer knowledge, including verbal
exchanges, audio and video recordings and symbolic representations. The latter, of
course, is the preferred form of representation used in computer science. In
 autonomic computing, specifically, it is necessary to devise languages in order to
represent such things as objects, components, services, properties, relationships,
events, states, time, causes and effects and many more.

In philosophy, the study of things and their interrelationships is called ontology.
Categories, as introduced before, are also called ontological predicates by Kant. The
term ontology has been borrowed by computer science to refer to the definition of a
domain in terms of concepts and relationships between those concepts. In order to
build an autonomic system, it is then necessary to build an ontology defining the
concepts that have to be reified, manipulated, tracked, reasoned about, etc. It is even
one of the first tasks to be achieved since it determines the touchpoints to be imple-
mented and the possible forms of reasoning associated with the entities.

In fact, knowledge representation and reasoning are deeply related. Reasoning
can be made easier and more relevant by an appropriate choice of knowledge
 representation. Depending on how knowledge is represented, certain problems are
easier to solve and others more complicated. The problem in our case (and in many
others) is that autonomic managers are very diverse in scope and, also, in terms of
abstraction, types of actions to be undergone, timing constraints to be met, etc.

There is no single way to represent knowledge. However, there are some driving
characteristics to be considered when devising a knowledge representation. Generally
speaking, a ‘good’ knowledge representation should exhibit the following properties:
 – Appropriate expressiveness. Knowledge representation should allow expression

of all the concepts and relationships of interest in the domain.
 – Computationally tractable. The knowledge representation format can be read

and used by a machine.
 – Suitable reasoning support. Knowledge representation should allow the system

to reason about concepts and relationships without ambiguity. A representation
is said to be consistent when all the inferences are true and complete when all the
possible deductions can be made. Reasoning should be doable with the processing
capabilities available today.

7.1 Introduction to Knowledge

http://dx.doi.org/10.1007/978-1-4471-5007-7_5
http://dx.doi.org/10.1007/978-1-4471-5007-7_8

190

 – Structured. A knowledge representation should support modularity and abstraction
appropriate for its usage and evolution.
A key feature of knowledge representation is its expressivity. A highly expressive

representation technique allows rich information to be defined and manipulated.
But, at the same time, such expressive knowledge representations tend to be difficult
and give rise to complex reasoning algorithms, not always doable by computers
within an appropriate time. Conversely, less expressive knowledge representations
may be simpler in terms of how they are manipulated and controlled, even if some
concepts are hard, or impossible, to express.

The matter of knowledge representation has been intensively discussed in the
early days of artificial intelligence. John McCarthy, at Stanford University, focused
on descriptive knowledge and investigated formal logic to express and solve general
problems. In contrast, researchers at the MIT like Marvin Minsky concentrated on
prescriptive knowledge, arguing that there was no single principle for knowledge
representation and reasoning.

This scientific and philosophical debate seems to be over, and it is today admitted
that both forms of knowledge are needed (see Chap. 3). Let us quote Marvin Minsky:

In the 1960s and 1970s, students frequently asked, “Which kind of representation is best?”
and I usually replied that we’d need more research. … But now I would reply: To solve really
hard problems, we'll have to use several different representations. This is because each par-
ticular kind of data structure has its own virtues and deficiencies, and none by itself would
seem adequate for all the different functions involved with what we call common sense.

This of course also holds for autonomic systems. A major issue when building a
self-managed system is then to find out how to represent the different forms of knowl-
edge (and how to acquire them). In most cases, different formalisms are needed to
represent the different pieces of information to be expressed. Intuitively, it may seem
natural that prescriptive knowledge will often be at the heart of the MAPE tasks and
that, by contrast, descriptive knowledge will often be used to express information
related to design and domain constraints. But it is not so simple. For instance, propo-
sitional knowledge can be used to ‘automate’ analysis or planning, and, by contrast,
procedural knowledge can be needed to express complex constraints verifications.

7.2 Knowledge in Autonomic Managers

7.2.1 Introduction

As said earlier, knowledge and reasoning are very much related. Depending on the
expected adaptations, different forms of knowledge will be required in autonomic
systems. Various representations, used to handle different aspects, can coexist in a
same system. For instance, different knowledge representations may be used to reason
about and implement self-reparation and self-configuration.

The issue, for each self-property targeted by a system, is then to identify and rep-
resent the different forms of knowledge that are needed: the acquaintance knowledge

7 The Decision Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

191

that is captured via touchpoints on the managed artefacts, the innate knowledge that
is engraved in the heart of autonomic managers and that captures the domain exper-
tise and, in some case, the description knowledge collected by tier parties.

Many knowledge representations used in current autonomic systems found their
inspiration in artificial intelligence (see Chap. 3). Indeed, knowledge representation
has always been central to AI. In order to act as a person, and incidentally to pass
the Turing test [1], an intelligent machine has to be able to interact with its environ-
ment, to acquire and store knowledge, to conduct reasoning based on that knowl-
edge and to learn.

There have been numerous debates in the AI community about the way knowl-
edge and reasoning should be implemented. In short, the question is: should a
machine have to think like a human or not? (Granted, this would depend on what
that we know how a human thinks, another source of debate.) Answering this ques-
tion leads to different ways to represent knowledge. As explained in Chap. 3, the
‘thinking has a human’ theorists explored domains as diverse as step-by-step logical
inferences, neural networks, psychology, etc. Opponents of this theory sought to
leverage the machines outstanding processing power and proposed solutions based,
for instance, on space searches. In all the cases, the division between reasoning and
knowledge is quite fuzzy, as one would expect. This is the very same when it comes
to the division between planning (reasoning) and knowledge used to effect adapta-
tion in the autonomic MAPE-K loop.

In this section, we use a classification commonly adopted in AI to distinguish
between intelligent systems [2] depending on the adopted knowledge representation
and associated reasoning:
 – Rule-based systems implement knowledge through simple event–condition–action

rules and are capable of quick, simple reflex adaptations.
 – Model-based systems maintain models of the managed artefacts and of the com-

puting environment in order to produce more thoughtful actions.
 – Goal-based systems introduce and use an explicit definition of goals in order to

guide reasoning.
 – Utility-based systems introduce utility functions in order to compare and rank

states satisfying goals.

7.2.2 Rule-Based Autonomic Systems

The simplest way to build an autonomic system is certainly to define reflex actions,
which are essentially sets of event–condition–action (ECA) rules. In general, such
systems determine plans of actions on the basis of their current perceptions and
some internal policies. These rules, typically written by system administrators, are
derived from system and business goals and describe the adaptation plans of the
system. Knowledge acquired from the touchpoints is expressed as statements
modelling the current state of the managed artefacts. The expertise to solve problems,
the know-how, is entirely encoded in the production rules.

Rule-based autonomic systems are not that smart but can be very effective in
many situations. For instance, ignoring the past considerably reduces the amount of

7.2 Knowledge in Autonomic Managers

http://dx.doi.org/10.1007/978-1-4471-5007-7_3
http://dx.doi.org/10.1007/978-1-4471-5007-7_3

192

knowledge to be expressed and maintained. It also allows very quick reactions to be
implemented on the managed artefacts (at least, the decision part is taken very rap-
idly). This approach is illustrated by Fig. 7.2. Let us note, however, that there is
work in ECA rules that are dependent on historical data or past state, which allows
more complex reasoning.

Writing adaptation policies is fairly straightforward but can become a tedious task
for larger complex systems. Yet its simplicity remains its biggest strength. However, an
issue with ECA rules is the problem of conflicts: an event might satisfy the conditions
of two different ECA rules, yet each rule may dictate an action that conflicts with the
other. Worse, these conflicts cannot always be detected at the time of writing the poli-
cies; some are only detected at runtime. This means that a human may remain in the
loop to solve policy conflicts when they arise. There is however promising work on
analysis of ECA rules to minimise conflicts and, then, reduce human intervention.

Here is a simple example of such rules:

<policy>disaster prediction – Client code
<condition> When disaster horizon is < buffer disaster
threshold

<action> Reduce QoS
</policy>

<policy>throughput prediction – Server Code
<condition> When average throughput peak is > throughput
required for next QoS upgrade

<action> Increase QoS
</policy>

Fig. 7.2 Rule-based
autonomic systems

AM

sensors effectors

Managed Artefacts

Administration policies

Autonomic Element

Problem solver (rules)

7 The Decision Function

193

Here we have a system that delivers audio data to differing quality of service
levels. When the perceived network bandwidth is plentiful, the quality of the data
can be increased. Conversely, when the bandwidth is less, the data is compressed
and sent at a lower quality. The aim is to constantly deliver audio at the highest qual-
ity possible. This example shows two policies. The first one calculates the time that
the client data buffer will be empty—meaning it cannot play the audio clip, some-
thing the system wants to avoid—and, if the threshold indicates this, tell the server
to compress the data. The second one takes a bandwidth measurement from the
server’s point of view, and if it sees that the bandwidth is getting better, it increases
the quality of the audio file. The conflict here is that networks are somewhat asym-
metrical, and therefore the bandwidth available at either the client or server could be
different resulting in the client wanting compressed data and the server wanting to
increase the quality at the same time.

In the broadest sense, reasoning in autonomic systems involves making a decision
regarding the changes and adaptations to assemble and implement on the managed
element taking monitoring data as input. In the simplest case, we could define
event–condition–action (ECA) rules that directly produce adaptation plans from
specific event combinations. However, while applying this approach in a stateless
manner minimises complexity and is quite lightweight, it is also very limiting. That
is, the autonomic manager does not have to keep any information regarding the state
of the managed element but relies solely on the current sensor data readings to
decide whether to trigger an adaptation plan.

7.2.3 Model-Based Autonomic Systems

Alternatively the autonomic manager may keep information on the state of the man-
aged element that can be updated progressively through fresh sensor readings and
then reasoned about. This allows the manager to carry out predictions of what is
coming next through trend analysis; it allows complex reasoning and analysis of the
candidate solutions to the problem and then takes appropriate action. It also allows
the system to be either more sensitive or less sensitive to the readings to avoid the
phenomenon of oscillating forward and backwards between states and is also known
as state flapping, in complex systems such as networks (we describe this phenom-
ena in more detail in Chap. 8).

The information about a managed element is called a model. A model is a simpli-
fied, biased view of some reality or some intention. It is made of related concepts,
devised by human beings in an attempt to intellectualise existing or possible things.
Concepts must come with clear semantics that, in addition, has to be unique in order
to avoid misunderstandings and confusion. Models are built with a specific purpose
in mind. They are generally established in order to simplify as much as possible
some sort of problem solving. That is, a model is created so that someone or some-
thing (i.e. a machine) can solve a certain problem or perform a specific task.

Many different models can be built to express the same reality or the same inten-
tion. For instance, a huge number of models of the world have been built in order

7.2 Knowledge in Autonomic Managers

http://dx.doi.org/10.1007/978-1-4471-5007-7_8

194

to serve different purposes (estimate the time of a trip, forecast the weather, predict
long-time climate evolution, etc.). And no single model can capture all the infor-
mation needed to solve all sorts of problems. The variety of goals then lead to the
variety of models.

Several models of the same thing, but handling different aspects, can be used
jointly to support problem solving. This is a way to separate out concerns and get
simpler and more focalised models based on different representation ontologies.
Synchronising the different models at runtime may be an issue. One way to do so is
to use a central model and to relate all the other models to it.

Models have always played a major role in science. They are in fact an essential
means (if not the only one in certain cases) to reason about complex phenomenon
that cannot be observed in detail or totally embraced by the human mind. In spite of
considerable computing power, the situation is the same in computer science.
Software systems have to use models in many situations because the domain problem
is too complex or impossible to catch completely. For instance, models have been
heavily used to represent the different structures of software systems (see Chap. 1)
like their topology, behaviour and deployment units.

Numerous model representation languages have been devised in AI but also in
software engineering. This is still a subject of intense research. Today, there is no
agreement on a single general representation. Current research efforts concentrate
on the definition of domain or aspect-specific modelling languages (DSL). Later, we
will illustrate representations currently used to model pervasive applications and
their associated environment.

In autonomic computing, models can be used to represent knowledge by acquain-
tance, which is acquired from the touchpoints, but also innate knowledge like refer-
ence architecture, devised at design time, for the managed artefacts. The expertise to
solve problems, on the other hand, is encoded in a dedicated module, called problem
solver in Fig. 7.3, which is kept separated from the models. Of course, the reasoning
techniques employed by the problem solver heavily depend on the nature of models.

Although very useful, it should always be remembered that models are incomplete
knowledge. Regardless of the representation language, the very purpose of models
is to present a partial or abstract (or both) view of the managed artefacts because
they are partially observable or because more advanced views would not be usable.
Decisions based on such models have to be backed up by human beings, as it is
anticipated in all definitions of autonomic computing.

7.2.4 Goal-Based Autonomic Systems

The model-based approach allows an autonomic manager to reason about the past
and possibly about the future. That means that an action can be justified by the
current state of the managed artefacts but also by trend analysis, by anterior events,
by observed patterns, etc. This, of course, is not the case with reflex-based systems
that only react to a given sequence of events (Fig. 7.4).

Like the rule-based approach, the model-based approach is driven by administra-
tion policies set by the administrators. These high-level goals are business or domain

7 The Decision Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_1

195

oriented and remain rather abstract. Detailed goals pursued by the system, in terms
of expected states of the managed artefacts, are not made explicit. They are in fact
embedded in the problem solver, and, as a consequence, they cannot be explicitly
manipulated. Changing such detailed goals requires changing the code of the problem
solver, which is always a daring task.

In goal-based autonomic systems, some part of the knowledge supporting man-
agement decisions is made explicit. Goals that are pursued by the system are repre-
sented separately from the problem solver. As said earlier, the notion of a goal has

Fig. 7.3 Model-based
autonomic systems

AM

sensors effectors

Managed Artefacts

Administration policies

Autonomic Element

Problem solver

Model(s)

Fig. 7.4 Goal-based
autonomic systems

AM

sensors effectors

Managed Artefacts

Administration policies

Autonomic Element

Problem solver

Model(s) Goal

7.2 Knowledge in Autonomic Managers

196

to be understood as the expected state of the managed artefacts, not like high-level
administrative directives.

Making explicit this notion of a goal allows the definition of more flexible and
more generic problem solvers. In this approach, a problem solver takes as inputs the
current state of the managed artefacts, a goal (that can be expressed as target state
of the managed artefacts) and the set of actions that can be triggered through the
effectors to achieve the target state. It can then rely on generic, reusable algorithms
to handle the current issue since the problem is now to align two state representa-
tions using a number of available operations. Search-based algorithms, forward and
backward, have been very much used in this context.

Flexibility is a major advantage. We have seen throughout this book how dyna-
mism is important in modern computing. This of course applies to autonomic sys-
tems. Being able to finely tune the target system states in a dynamic way is certainly
a major property for many systems.

7.2.5 Utility-Based Autonomic Systems

In goal-based autonomic systems, the desirable states of the managed artefacts are
made explicit. Such information is not always enough to decide on the right course
of actions to solve a problem. Indeed, several states may be satisfactory and the
problem solver has to choose between them.

In order to compare alternative states, a specific function allowing states to be
ranked can be introduced. Such a function is called a utility function. Utility is
an abstract measure of ‘usefulness’ or benefit to, for example, a user. Typically a
system’s operation expresses its utility as a measure of things, like the amount of
resources available to the user (or user application programs), and the quality,
reliability or accuracy of that resource (Fig. 7.5).

The notion of utility, or how useful something is, is indeed key to many auto-
nomic systems. This drives the decision-making components of the system to
allow it to decide between alternatives or to plan future configurations. Utility
functions are the equations that allow us to combine the parameters that represent
usefulness into a single metric. A very simple example is where we have through-
put as a measure of usefulness and the server energy consumed as something we
wish to minimise; then our utility function could be the throughput metric minus
the cost of energy. Techniques, such as in decision networks, can then use utility
functions to decide between choices. They can also be used in game theory whereby
an agent representing some part of the system wants to maximise their utility but
not at the cost of the other agents in the system, for example, and they trade off
strategies to reach that state where a significant number of (or all) participants are
happy (they reach a Nash equilibrium, e.g. see Chap. 2). Another example is in a
resource provisioning system where the utility is derived from the cost of redistribu-
tion of workloads once allocated or the power consumption as a portion of operating
cost [3, 4].

7 The Decision Function

http://dx.doi.org/10.1007/978-1-4471-5007-7_2

197

7.2.6 Autonomic Systems That Learn

The most ambitious autonomic systems are those that comprise learning capabilities.
The purpose of such systems is to learn about their actions and to change the knowl-
edge supporting the reasoning accordingly and, in some cases, the reasoning itself.
That means that models can be changed, as well as utility functions used to compare
desirable states.

A learning system relies on the ability to evaluate the usefulness of an action and
to modify its knowledge based on that evaluation. Learning can take many different
forms depending on the goals pursued by the autonomic systems and on the knowl-
edge that needs to be updated as a function of the action’s usefulness. Many methods
have been defined in the AI community to better support learning, including neural
networks. Most of them remain extremely complex. Another interesting approach is
to use domain-specific algorithms to implement less ambitious but more focused
learning capabilities (Fig. 7.6).

Many autonomic computing systems make use of reinforcement as a learning
mechanism. Essentially, if the autonomic system is modelled as sets of agents, each
agent’s aim is to maximise its accumulative reward. These awards are given in
response to the decisions made by the agent. Reinforcement learning crosscuts the
AI techniques. It has been used to learn from expert domain knowledge and then
derive the policies that would then be acted upon by the autonomic system. Its main
usefulness is in its ability to carry out unsupervised learning. That is, its ability to
derive relationships or structures between agents or components that hitherto were
unknown and to do so where there is an absence of explicit system models or
domain-specific knowledge.

Fig. 7.5 Utility-based
autonomic systems

AM

effectorssensors

Managed Artefacts

Administration policies

Autonomic Element

Model(s) Goal

Pb solver Utility fct.

7.2 Knowledge in Autonomic Managers

198

A very simple example is where we have an autonomic system supporting a
mobile application that sends its output to the ‘best’ screen in the space where the
user currently is. This makes use of data concerning the user’s location and infor-
mation about the screens that exist in that location. Such information can be the size
of the screen or its frame rates or the colour encoding, etc. Some form of utility
function can be derived that represents the best fit of data for a given screen (e.g. a
movie would prefer a large high-definition screen, whereas text might want the
closest screen to the use at this time). The system would need to trade off between
the different utilities, and this may be difficult when all things are even. Therefore
the system might decide to ask the user if it is doing a good job. It will send a message
to ask if the decision was good and take tally of the times when it made a good deci-
sion and use this to reinforce that decision. That reinforcement will add weight to
the decision process, influencing how it carries out the trade-offs in future.

Closely related to reinforcement is the use of stigmergy. Stigmergy is the trace
left in the environment to allow two agents to help them make decisions. It comes
from the study of how insects self-organise. Specifically ant colonies lay down a
pheromone (scent) trace when they are returning to the next from gathering food.
The routes taken by the ants may vary, but the ‘best’ route (which may be a function
of distance and safety) is the one that the majority of ants travelled and therefore
placed the largest scent on. This way, when they leave the nest, they pick the stron-
gest route. In computing systems, we can increment (decrement) a value that
increases (decreases) when something good (or bad) happens to represent the value
of a decision biasing that decision for the future. Ant colony optimisation is an
example of a decentralised self-organising technique that uses stigmergy to find
solutions to complex problems [5].

Fig. 7.6 Learning autonomic
systems

AM

sensors effectors

Managed Artefacts

Administration policies

Autonomic Element

Model(s) Goal

Pb solver Utility fct.Le
ar

ni
ng

7 The Decision Function

199

7.3 Model-Driven Autonomicity

7.3.1 Introduction

Let us now focus on the notion of model, which is arguably central to advanced
autonomic systems (i.e. those not solely based on reflex rules). An important question
arises when it comes to models: what should be explicitly represented with models?
(And, conversely, what should be kept in the problem solver?)

Potentially, all the knowledge obtained by acquaintance and part of the innate
knowledge could be made available in explicit models. Concretely, the currently
preferred strategy of researchers and practitioners is to build a number of separate
models, including a model of the running software architecture, a model of the com-
puting environment and models focusing on relevant non-functional properties like
security and performance. To properly implement the principle of separation of con-
cern, these models are kept distinct, but they are often closely linked. For instance,
security concerns can be traced to architectural elements [6]. The explicit separation
of models favours their independent evolution. Depending on the situation and the
problems to be solved, some models can be refined more than others. However, the
models to be represented, their level of abstraction, their formalisation, etc. are still
defined on a case-by-case basis today.

Generally speaking, the more information is made explicit in models, the better
for autonomic software evolution. This allows the MAPE tasks to focus on the
computation (the know-how) and not on the data representation and collection.
Furthermore, several tasks can use the same data representation. This makes the
code leaner, more focused and easier to change.

Making models a key concern in autonomic computing is today a strong tendency.
This is also a major trend in software engineering where an ambitious research
field exclusively dedicated to the study of models has been recently established.
Specifically, the model-driven engineering (MDE) community advocates the cre-
ation and exploitation of models to entirely drive the development and maintenance
of software systems. Initially, models were essentially used to drive software devel-
opment. The main principle was to bridge the gap between the specification of a
problem and its solution through successive model transformations (representing a
same system at different levels of abstraction). This was to hide the technological
complexity of the implementation and allow a better communication between the
different actors involved in software development.

Models used in MDE are said to be productive in the sense that they lead to an
implementation in a programming language after a certain number of transforma-
tions. Otherwise, models are said to be contemplative and are solely used to improve
communication between stakeholders and drive development informally.

Models are now seen as strategic artefacts that can be used all along software life
cycle and not only at design time. France and Rumpe [7] introduced the idea of
model at runtime (model@runtime) to abstractly capture runtime phenomenon.
Such model is in synchronisation with an operational system and can be used to get
synthetic information about the system operations. This is clearly in line with the

7.3 Model-Driven Autonomicity

200

autonomic purposes, and it is no surprise that the model orientation brings together
scientific communities working on autonomic computing and software engineering
at runtime (as outlined in the introductory chapter).

7.3.2 Model Representation

In the MDE community, models are often presented as graphs. A node is a concept
(a file, a programming structure, a property, etc.), and a link is a relationship between
concepts. Cardinalities can be added to represent the number of concept instances
than can be implied in a relationship. UML is an example of language for graph-
based representation of models [8].

In order to be productive, a model has to be usable by a machine. To do so, models
must be formalised in a specification language that has to be clear, precise and
non-ambiguous. Since all the aspects of such a specification language have to be
modelled, the language itself can be seen as a model. This introduces the notion of
meta-model, which is a model that defines the language for expressing a model [9].
Just like a model, a meta-model can be expressed as a graph. In the specific case of
UML, a meta-model is represented as a class diagram (Fig. 7.7).

A meta-model is used to define a grammar and a vocabulary allowing the creation
of models that are conformed and coherent. To ensure conformity, models are cre-
ated through instantiation of the meta-model.

As said earlier, a system can be represented by several models focusing on dif-
ferent aspects, possibly at different levels of abstraction. For these models to be
productive, it is necessary to compose them in order to have a global view of a
system. Model composition can be defined as the mechanism of combining two
models into a new one [10].

Model composition can be expressed at a meta-level, since meta-models are models.
Specifically, a composition of meta-models is the union of several meta- models,

Fig. 7.7 Models and meta-models

Meta-model Meta-model
Meta-links

Model Model
Links

Instance Instance
Links

Conforms to

Conforms to

Conforms to

Conforms to

Conforms to

Conforms to

7 The Decision Function

201

which sometimes requires integrating, bridging rules. Links between meta-models
are called meta-links. Model composition is difficult and is still the subject of
numerous research initiatives. Yet nevertheless it constitutes a great technique to
express knowledge in autonomic systems. As said earlier, there are different aspects
to be represented in self-managed systems: design models, domain models, models
abstracting away runtime phenomenon, etc. It is good practice to separate these
different aspects. It allows a better understanding and better testing and leads to
better evolution. In addition, all the pieces of information are not needed all the
time. If models are separated, they can be loaded or updated at different moments in
a context-aware fashion.

7.3.3 Architectural Models

In the architectural model-driven approach, a model of either a focused part of or
indeed the entire managed system is understood by the autonomic manager. This
architectural model reflects the system’s structure and behaviour, its requirements
and the system states required to match its goals. The model may also represent
some aspect of the operating environment in which the managed elements are
deployed. The operating environment can be understood as any observable property
(detected by the sensors) that can impact the managed element’s execution, for
example, end-user input, hardware devices and network connection properties (see
discussion about context in Chap. 2). The model is updated through sensor data and
used to reason about the managed system to plan valid and appropriate adaptations.
A great advantage of the architectural model-based approach to planning is that,
under the assumption that the model correctly mirrors the managed system, the
architectural model can be used to verify that system integrity is preserved when
applying an adaptation, that is, we can guarantee that the system will continue to
operate correctly after the planned adaptation has been executed. This is because
changes are planned and applied to the model first, which will show the resulting
system state including any violations of constraints or requirements of the system
present in the model. If the new state of the system is acceptable, the plan can then
be executed on the actual managed system, thus ensuring that the model and imple-
mentation are consistent with respect to each other.

Building a model of the system under question is a non-trivial task. It assumes
that the architect understands the components, their interaction and behaviours to
ensure accuracy. Further, the model needs to be able to run through the different
adaptation scenarios to check that an update is both useful and safe. Given the
number of states and each state’s interaction, the search of all interactions is a highly
complex problem of exponential proportions. This may mean that the model and the
system are highly decoupled. For example, the model may run on a different
machine so as to not impact the managed systems’ operation. Also to improve on
the time the model reaches an optimum solution, heuristics may be used, which may
or may not add error to the model. Either way, this processing may incur heavy
execution costs.

7.3 Model-Driven Autonomicity

http://dx.doi.org/10.1007/978-1-4471-5007-7_2

202

Repair strategies of the architecture model may be specified as ECA rules, for
example, where an event is generated when the model is invalidated by sensor
updates, and an appropriate rule specifies the actions necessary to return the
model to a valid state. In practice, however, there is always a delay between the
time when a change occurs in the managed system and this change is applied to
the model. Indeed, if the delay is sufficiently high and the system changes fre-
quently, an adaptation plan may be created and sent for execution under the belief
that the actual system was in a particular state, for example, a Web server over-
loaded, when in fact the environment has already changed in the meantime and
the system no longer requires this adaptation anymore (or it requires a different
adaptation plan) [11]. To overcome this, in many of the model-driven adaption
systems, the model is stored and executed on a separate machine from the com-
puters that host the managed elements and the resulting parallelism improves the
processing of the model.

Architectural models tend to share the same basic idea of the model being a
graph of components and connectors. The components represent some unit of con-
current computing task, whereas the connectors represent the communication
between components. Usually, there is no restriction as to the level of granularity of
a component: it could be a complete Web server, an application on a Web server or
a component of an application. The architectural model does not describe a precise
configuration of components and connectors that the managed element must con-
form to. Instead, it sets a number of constraints and properties on the component
and connectors, so that it can be determined when the managed element violates the
model and needs adaptation. Let us now continue our description of architectural
model-based planning in the MAPE-K loop by taking a look at some of the most
notable architectural description languages (ADLs), which can be used to specify an
architectural model of a managed system.

Let us start with Darwin, one of the first ADLs that was the result of seminal
work by Magee et al. [12]. In Darwin, the architectural model is a directed graph
in which nodes represent component instances and arcs specify bindings between
a service required by one component and the service provided by another. Further,
the allow object modelling notation [13] has been applied to Darwin components
to be able to specify constraints on the components [14]. For instance, consider the
scenario where there are a number of server components offering services and a
number of client components requiring services. Each service of a component is
typed so that different services offered by a server or requested by a client can be
distinguished and properly matched. In this scenario, the architectural model can
guarantee that there are enough servers to service the clients. Should that not be the
case, new server components must be started that offer the unavailable service
types in order to return the model to a valid state. In this approach, each component
keeps a copy of the architectural model. In other words, each component in the
architectural model is an autonomic element with a managed element and an auto-
nomic manager that holds the architectural model to the entire system. This
approach avoids the presence of a central architectural model management service,

7 The Decision Function

203

which would otherwise introduce the problem of detecting and handling the failure
of this central component. Where such a decentralised approach is taken, there is
however the problem of keeping the architectural model up to date and consistent
across all copies in the autonomic managers. This can be achieved with fully
ordered atomic broadcasts, which work as long as no communication partitions
occur between the components.

Figure 7.8 shows how to represent a component in Darwin. To initially construct
and subsequently change systems, we need a set of operations on components.
These are typically to create, delete, bind components to a port, unbind, and set
mode to a value. A system constructed in this way will have a configuration or man-
agement state consisting precisely of the set of components instances, the set of
connections between components and the set component mode values.

Other architectural models have since been developed, we show only two of the
many as they summarise many of the styles that are available. The Acme adaptation
framework [11, 15, 16] is a software architecture that uses an architectural model
for monitoring and detecting the need for adaptation in a system. The components
and connectors of their architectural model can be annotated with a property list and
constraints for detecting the need for adaptation. A first-order predicate language
(called Armani) is used in Acme to analyse the architectural model and detect viola-
tions in the executing system. An imperative language is then used to describe repair
strategies, much like the policy-based approach. The difference lies in how the need
for adaptation is detected and the appropriate adaptation rule selected. Whereas in
policies it is explicitly described in the rules, with an architectural model, the need
for adaptation implicitly emerges when the running system violates constraints
imposed by the architectural model.

Similarly in C2/xADL [17, 18], an important contribution lies in starting with an
old architectural model and a new one based on recent monitoring data and then
computing the difference between the two in order to create a repair plan. Given the
architecture model of the system, the repair plan is analysed to ascertain that the
change is valid (at least at the architectural description level). The repair plan is then
executed on the running system without restarting it.

Fig. 7.8 Darwin component model

7.3 Model-Driven Autonomicity

204

7.4 Reasoning Techniques

7.4.1 Programming Languages

Models are built to support reasoning. Simply put, they have to enable administration
task to analyse the situation and plan eventual courses of actions. The information
they contain is a necessary element to make the right decisions with the available
resources (time and computation power).

As said many times, models and associated reasoning are however closely tied.
This is illustrated by Fig. 7.9. In fact, models representation and reasoning techniques
are designed jointly. These complex design decisions are driven by the complexity of
the problems to be tackled, the needed forms of reasoning, the available data, the time
and computing resources available, the expected software qualities like reusability or
flexibility, etc.

The purpose of this section is to present reasoning techniques well suited to auto-
nomic systems. It is not meant to be exhaustive. In fact, there is not such a thing as a
general reasoning approach for autonomic management. Depending on the require-
ments, different techniques with different properties can be selected.

In computer science, a natural way to reason about a model (or more generally
speaking a knowledge base) is certainly to write a program with a classic program-
ming language like C or Java, for instance. Although this is not always the easiest
way, it is certainly the most widely applicable approach implemented so far.
Programming languages provide rich notations for the specification of computations
(algorithms) manipulating complex data structures. Data can be the result of the
computation or be acquired from a database, a model, etc. Programming languages
are also complemented with supporting tools facilitating program specification,
compiling, debugging, execution tracing, etc.

The AI community, however, pointed out some limitations of general-purpose
programming languages. First, programs are essentially domain specific. That is,
they are written by programmers to deal with a specific problem. Programs can be
extremely effective and relevant to the problem at hand, but they are hardly reusable
and often lack flexibility. Also, programming languages do not possess automatic
inference capabilities, allowing the on-the-fly creation of new knowledge. Obviously,
this constraint is not an issue for most systems. It can be seen as a limitation when
creating general problem-solving techniques, which is precisely an important goal
in AI.

Component

Required
services
(ports)

Provided
services
(ports)

mode

Fig. 7.9 Epistemological
relationships between models
and reasoning

7 The Decision Function

205

7.4.2 Search-Based Reasoning

Some approaches, often originating from AI, thus put forward general-purpose
algorithms that can be used to solve classes of problems. This is the case, in particular,
of search-based techniques that can be applied to deal with some autonomic man-
agement issues.

Indeed, knowledge in autonomic computing systems can be described as a problem
space where we want to find either a good or the best solution. That is, the system is
characterised by a current state, captured via touchpoints, and one or several possible
target states. The problem is then to find out a path from the current state to a satisfac-
tory state.

In the context of autonomic computing, a search problem can be defined by:
 – The description of the initial state, corresponding to the current situation of the

managed artefacts.
 – The description of the acceptable target states (the goals), also in terms of the

managed artefacts.
 – The set of actions that can be realised on the managed artefacts. These actions

correspond to the effectors provided by the managed artefacts.
 – A transition model defining the actions to be realised to change states.

Historically, search-based problem solving has been one of the first fields heavily
explored in AI. Many algorithms have been devised and successfully used in many
domains. The most successful algorithms are known under the names of breadth-
first, depth-first or iterative deepening. These algorithms defer on the space explora-
tion strategy that is implemented: depth-first algorithms expand the node further
away first, breadth-first algorithms expand the closest node first, and iterative deep-
ening uses depth-first strategy but with a depth limit that can be augmented if no
solution is found. These general-purpose algorithms can be extremely costly,
depending on the number of nodes and the branching factor. They can be comple-
mented with domain-specific heuristics to improve their performance.

Let us note that abstraction is key here. States and actions are described abstractly.
As already emphasised, it is not possible to describe in detail every aspect of the
managed artefacts. A model focusing on the necessary information is then built to
support reasoning (search based in this case). Similarly, actions are also described
abstractly. The details are kept in the touchpoints (effectors) and not explicitly
manipulated by the problem solver.

An example of a search-based autonomic system may be one that has to maximise
the processing throughput of a mobile computing device, say, but at the same time
has to save energy (see Fig. 7.10). The problem space that is searched to find an
optimum solution covers the parameters or settings that affect throughput, and this is
conjoined to a further space that covers how those parameters affect energy usage.

Therefore we need to search through both those spaces to find possible solutions
where the optimal of one does not impact negatively of the other. This may involve
searching through trees of goals or bounded areas to find localised solutions; the
search also may be the result of logical step-by-step analysis of rules that deduce the
solution. Some approaches start with an initial idea of where in the search space a

7.4 Reasoning Techniques

206

potential solution to the problem lies, and then this initial idea is iteratively refined
until no better solution can be found. Where the search space is large or unwieldy,
or worse impossible to cover, heuristics are used to reduce the amount of area that
is required to be searched. Heuristics are methods and rules that help us to guide the
search, and these can originate from human knowledge about the problem. The
ultimate aim is to reduce the search space, to reach the solution quickly, but with
techniques that cause minimal impact on the solution optimality.

Evolutionary approaches to optimisation, which can sometimes be described as
bio-inspired, carry out the search for the optimal solution by representing the space
of potential solutions as organisms. In, for example, genetic algorithms, the organ-
isms mutate and recombine, and only those organisms that are described as ‘fit’, that
is, they are part of the algorithm parameters that bring the search closer to the solu-
tion, survive to the next round or iteration of the algorithm. Another example of a
bio-inspired approach is those one that exploits swarm intelligence (e.g. network
routing with stigmergy, as mentioned earlier). Here storage areas are used to mark
good solutions or to reinforce good routes, so that packets will be sent down the
better routes available to them at a given time.

7.4.3 Logic-Based Reasoning

Logic can be used as a means to represent knowledge, and different types of logic
programming can be used to learn from the past or to derive examples and
 knowledge from past data. A formal logic system defines a set of primitive sym-
bols, axioms and rules allowing the formation of sentences by inference. An
axiom is a proven sentence, that is to say one not obtained through inference. The
system thus consists of any number of sentences built up through finite combina-
tions of the primitive symbols—combinations that are formed from the axioms in
accordance with the stated rules.6 A number of formal logic systems with different
levels of expressiveness, and with differing costs for their associated reasoning
algorithms, have been devised.

Model(s)

Reasoning

Fig. 7.10 Example of search
space

6 http://www.britannica.com/EBchecked/topic/213751/formal-system

7 The Decision Function

http://www.britannica.com/EBchecked/topic/213751/formal-system

207

In logic systems, knowledge and inference are separate, which allows inference
to be domain independent. This is undoubtedly a major property. It means that once
axioms and rules are properly defined, you just have to feed the systems with facts
about the running systems and then actions to be undergone can be inferred. One
issue is that even a ‘simple’ logic system, like propositional logic or first-order
logic, can have complexities for some problems that demand important resources
(propositional logic is decidable in polynomial time).

Logic systems can also represent facts, or fuzzy representations of facts, where
the value of a statement is allocated a value between 0 and 1 or a probabilistic scale
rather than simply being true or false.

There are in fact many formal logic approaches. Propositional logic is a simple
declarative language allowing the definition of sentences from proposition symbols
(facts) and operators. A sentence combines symbols (and other sentences recursively)
with negation, conjunction, disjunction, equivalence and implication operators.
Propositional logic has sufficient expressiveness to deal with partial information, using
disjunction and negation. First-order logic is more expressive than propositional logic.
It extends the syntax of propositional logic with universal and existential quantifiers in
order to express sentences about some or all the objects of the world. The expressive-
ness of first-order logic has however a cost in term of inference complexity. In simple
cases, problems expressed with first-order logic can be reduced to propositional logic
problem when the domain of discourse is finite or can be discretised. More complex
problems require complex algorithms to be used, which may not be compatible with
the usual resources of an autonomic system.

Finally, let us mention constraint logic programming which can be applied to
autonomic computing [19]. Constraint logic programming aims to satisfy constraints
to prove the problem, that is, the solution lies in an answer that satisfies all the con-
straints. It is used for systems with many constraints such as timetabling and air
traffic control-type problems.

Most of these techniques require a model of the world to be represented in the
problem space. However this is extremely difficult to do and to do so accurately.
Therefore some techniques that have been inspired by economics and probability
theory have been devised that are applied when we have either incomplete or uncer-
tain information. One such class of reasoning method that is popular with autonomic
systems is that of Bayesian networks which have been used for inference, learning
optimisation and decision-making. Hidden Markov models and Kalman filters are
other examples of probabilistic approaches to perceive processes over time, ignoring
useless data (noise) and aiding the prediction of events in the future.

Using logic to express models is always a challenge. It requires defining sym-
bols representing the world (the managed artefacts and computing environment
in our case), axioms and inference rules in order to capture some domain exper-
tise. The transition from informal know-how knowledge and logic-based formal-
ism is rarely straightforward. Also, inference algorithms can be extremely costly
and largely exceed the available resources. Indeed many attempts to use formal
systems in computer science fell short because of exceeding complexity of infer-
ence algorithms.

7.4 Reasoning Techniques

208

7.4.4 Classifiers and Statistical Learning Methods

Knowledge can be obtained through the grouping of data into classes or noticing
groupings or patterns in data. Classification algorithms scrutinise examples or observa-
tions of phenomena, and by identifying patterns in this data, they derive sets of classes.
At this point, the system has been ‘trained’ to classify the data so that when new data is
given to the classification algorithms, they are in a good position and place that data in
one of those classes and perhaps with a percentage representing the confidence in doing
so. This placement of a piece of data in a class is the knowledge. For example, when an
autonomic system has observed a high response time for a task and at the same time the
CPU utilisation is quite low, then it can use this data to place the task’s activity into a
particular class—the class most likely being that the job is experiencing deadlock, for
example. Essentially, this approach is making current decisions based on previous expe-
rience. Using our simple example, the system would have been trained with parameters
that represented the characteristics about many previous tasks run on the computer.
These would have been those that had a high response times and high CPU utilisation,
low response times and low utilisation, high response times and low utilisation, etc. In
turn, perhaps with the aid of the system administrator, the system would be told that the
first set was typical of complex CPU bound jobs, the second set of high IO bound jobs
and the final set would typify tasks in a deadlock situation. By classifying the data, one
can feed a condition action (EA) rule which acts upon the detection of deadlock to bring
the task back to its starting point releasing any resources it may have.

There are many examples of such approaches. Neural networks are used by many
autonomic computing systems. Here the characteristics are modelled as neurons
and links, or connections are made between these neurons to represent relation-
ships. Classification occurs by varying parameters, weights on connections, etc.
These values may change as the system ‘learns’. Neural networks are used for time
series prediction, fitness approximation, pattern and sequence recognition and
anomaly detection in autonomic systems. Other approaches to classification are:
support vector machines which have been used for reputation systems; naive Bayes
classifiers which have been used to mine systems log files to derive knowledge for
the autonomic manager; and K-nearest neighbour algorithms which have been used
in decentralised pattern recognition for context awareness. Choosing the appropriate
classifier for a given application is a tricky business.

7.5 Bayesian Networks Example

The purpose of this section is to provide an example using logic for knowledge
representation and reasoning. We have chosen an example based on Bayesian tech-
niques for they are very popular today to deal with uncertain environments. Bayesian
networks are based on formal logic. In this section, we explain the basics of Bayesian
networks by way of an example that can be applied to many systems that use utility
as a means of decision-making in autonomic computing architectures. The example
used is an amended version of the work on autonomic middleware from [20].

7 The Decision Function

209

In this example, we have an intelligent home that has a number of sensors that
determine what the person in the home is doing. Each sensor is providing data
regarding the person, such as the person’s location or whether or not they are sitting
or standing. This we call context, and each sensor is therefore a Context Provider
(CP). Each sensor is also able to provide a quantitative value as to how well it can
measure that context; this we call probability of correctness (poc).

To be able to derive the user’s activity in this example, we need to combine data from
different sources of the same type of context. That is, there may be more than one sensor
(CP) that can provide us with the user’s activity (e.g. pressure pad on the floor and/or a
video camera in the room). Combining sensor data will increase the chances of correctly
reporting the user’s context. In our system, we wish the combination to deliver an output
with a probability of correctness that takes into account the level of agreement between
the different CPs given their individual advertised probability of correctness. From this,
the autonomic manager can select the best combination of CPs to choose.

In this example, the goal is to take the context of all the Context Provider services
for the context type ‘activity’ (in the sense of ‘standing’, ‘sitting’, etc.) and output a
final context value that takes into account the value of all contest providers for this
type and their probability of correctness each. This approach is applicable to any con-
text with a finite set of discrete context values. The final output is based on probabili-
ties; therefore, we use a probabilistic reasoning technique to solve this problem.

Bayesian networks are one approach to this problem and are frequently used in
reasoning about autonomic management and decision-making. Further, efficient
algorithms exist to perform inference and learning in Bayesian networks adding to
its usefulness. Bayesian networks model sequences of variables and allow us to
represent the relationship between the activity, the output of the CPs sensing the
activity and the final output as a Bayesian network.

Figure 7.11 shows the Bayesian network of what we have just described. It is
essentially a directed acyclic graph, where the nodes of the graph represent random

State

Throughput = …
Consomption= …

State

Throughput = …
Consomption= …

actions

State

Throughput = …
Consomption= …

Fig. 7.11 Example of Bayesian network for autonomic service selection

7.5 Bayesian Networks Example

210

variables, while the directed links represent the influential relationship that the par-
ent node has on the child node. In our example, the activity being monitored has a
direct influence on the Context Providers that are trying to determine the activity
through their sensors. Further, the output of the CPs has a direct influence on the
final output. To this end, we must define for each node its conditional probability
given its parents. Thus, we define the probabilities P(A), P(CP1|A), P(CP2|A)… and
P(O|CP1, CP2,…). For simplicity, let us assume that there are only two possible
values of activity: ‘sitting’ (si) and ‘standing’ (st). The probability of either sitting
or standing is represented as the probability of an activity given the inputs from the
sensors as P(A), and this can be estimated by observing the frequency of the differ-
ent final outputs (numbers of si or st representing sitting or standing, respectively).

Initially, we can assume that all outcomes are equiprobable; therefore, we set the
probability of A given si as equal to the probability of A given st:

 P A P A() () . .= = = =si st 0 5

Let’s also assume that we only have two Context Providers. The probability of the
first Context Provider given the activity, P(CP1|A) is the probability of correctness as
advertised by CP1. If there is only one advertised probability of correctness, then we
use that value for all possible context values (si and st in our example). However, we
assume that in reality, different context values have a different probability of being
correct, and therefore a single probability of correctness value is an approximation
for the probability of correctness value of a specific context value. So, if on the other
hand we have a specific probability of correctness value for each context value, then
we can use these values for P(CP1|A), that is, in our example:

 P(CP1 = si | A = si) = poc(si)
 P(CP1 = st | A = si) = 1 − poc(si)
and
 P(CP1 = st | A = st) = poc(st)
 P(CP1 = si | A = st) = 1 − poc(st)

Now, the same can be applied to P(CPi|A) for any CP of this context type. Once
we have chosen a definition for P(O|CP1, CP2), this describes the strategy we use
to combine the Context Providers to produce the final output, as we then select the
output value with maximum probability P(O|CP1, CP2). Finally, given P(O|CP1,
CP2), we can use the Bayesian network to find the most likely activity given the
final output and its probability:

P A x O x P A x P O x c c

P c A x
c c C

(|) (| ,)

(|
,

= = = =() å = = =

= =
Î

a
1 2

1 1 2 2

1 1

CP CP

CP)) (|)P c a xCP2 2= =

where C represents the set of all possible context values (x ∈ C) and α is a scaling
factor that normalises the resulting probabilities P(A|O) such that they sum up to 1.
This result is obtained by applying the general form of Bayesian’ rule with normali-
sation: P(Y|X) = αP(X|Y)P(Y).

7 The Decision Function

211

P(A|O) can be used as a measure of the probability of correctness of the final
output, and the definition of P(O|CP1, CP2) determines how the final output depends
on the output of the CPs.

Let’s see how we can use this by constructing a conditional probability table for
four Context Providers; see Table 7.1. Now we add the extra context of lying down
(ld). The activities that the person in the intelligent home can perform (M) are stand-
ing (st), sitting (si) and lying down (ld). Then we can work through an example.

Table 7.1 shows the conditional probability table (CPT) for the CPs where we
assume each CP always outputs the correct value (Sensors are notoriously unreliable,
but for this first example, we assume they are new and with fresh batteries and therefore
accurate). Table 7.2 then shows CPT for the output by applying the definition P(O|CP1,
CP2, CP3, CP4) (only combinations of CP that are at all possible are shown).

Now let’s be more realistic. Table 7.3 shows the CPTs for the CPs. Now, each CP is
80 % accurate, that is, all CPs output the correct context with probability 0.8. Table 7.4
shows an extract of the resulting probabilities for the output. As you can see in the case
where CPs output (st, st, st, st), if all CPs agree on the same context value, O’s probabil-
ity of correctness is very close to 1, far higher than the probability of correctness of each
single Context Provider. This is the behaviour we want. After all, intuitively, it is far
more likely that the output has a certain value if four Context Providers with high accu-
racy output this value (independently) than if we only have one CP that outputs this

Table 7.1 Conditional probability table, for example, with |CP| = 4 and M = {st, si, ld}

A = st CP
1

CP
2

CP
3

CP
4

st 1 1 1 1
si 0 0 0 0
ld 0 0 0 0
A = si
st 0 0 0 0
si 1 1 1 1
ld 0 0 0 0
A = ld
st 0 0 0 0
si 0 0 0 0
ld 1 1 1 1

Table 7.2 Output for CP’s CPT as in Table 7.1

CP
1

CP
2

CP
3

CP
4

O A = st

st st st St st 1
st st st St si 0
st st st St ld 0
si si si Si st 0
si si si Si si 1
si si si Si ld 0
ld ld ld Ld st 0
ld ld ld Ld si 0
ld ld ld Ld ld 1

7.5 Bayesian Networks Example

212

value. Note also that in the case where CPs have output (ld, ld, st, st), that is, half the CPs
output context c and half context a, these two values are equally likely of being output,
whereas si, while possible, is extremely unlikely. This is also the desired behaviour.

Consider now a more complicated example. Table 7.4 shows the CPTs for the
CPs in this example.

Numbers in bold represent the probability of a CP’s output given the real context,
that is, the probability of the most likely value. Table 7.4 shows an extract of the
output when we apply the definition P(O|CP1, CP2).

Table 7.3 Conditional probability table, for example, with poc smaller than
1 and where all CPs agree on output

A = st CP
1

CP
2

CP
3

CP
4

st 0.8 0.8 0.8 0.8
si 0.1 0.1 0.1 0.1
ld 0.1 0.1 0.1 0.1
A = si
st 0.1 0.1 0.1 0.1
si 0.8 0.8 0.8 0.8
ld 0.1 0.1 0.1 0.1

A = ld
st 0.1 0.1 0.1 0.1
si 0.1 0.1 0.1 0.1
ld 0.8 0.8 0.8 0.8

Table 7.4 Extract of final output given CP CPT in Table 7.3

CP
1

CP
2

CP
3

CP
4

O A = st

st st st st st 0.9995
st st st st si 0.0002
st st st st ld 0.0002
si st st st st 0.9827
si st st st si 0.0154
si st st st ld 0.0019
…
ld si st st st 0.8
ld si st st si 0.1
ld si st st ld 0.1
…
ld ld st st st 0.4961
ld ld st st si 0.0078
ld ld st st ld 0.4961
…
ld ld ld ld st 0.0002
ld ld ld ld si 0.0002
ld ld ld ld ld 0.9995

7 The Decision Function

213

Here, given the combination of output from CPs (st, si, ld, st), the most likely
final output is O = st. This reflects the fact that, in Table 7.4, given an activity A = st,
the most likely value of each CP is (st, si, ld, st) as emphasised by the probabilities
in bold. This behaviour is also obtained in the cases (si, si, si, si) and (ld, si, ld ld)
for the activities A = si and A = ld, respectively, as expected. Further, the probability
of correctness of the final output is greater than the poc of any single Context
Provider, so taking all four Context Providers into account does give us an advan-
tage to using a single CP.

In summary, this example shows that through using a probabilistic reasoning
approach, we are able to combine outputs from Context Providers with different
values and probability of correctness and produce an output that has its own
measure of uncertainty, which is determined by the uncertainty in the Context
Providers. Further, taking multiple Context Providers into account produces better
results than taking only a single CP.

7.6 Key Points

In this chapter, we have introduced the following important points:
• In order to exhibit self-administration properties, autonomic systems must rely

on some form of knowledge about themselves, about the computing environment
and about ways to solve problems.

• The general notion of knowledge is very complex. Its study gave birth to a philo-
sophical domain of its own called epistemology. The classical definition of
knowledge, adopted in this book, traces back to antiquity: knowledge is true
belief that has been justified.

• We made a distinction between knowledge by acquaintance and knowledge by
description. Knowledge by acquaintance is the result of a direct interaction with
a person or with an object. Knowledge by description is a familiarity with some-
one or something that is acquired indirectly, by education, for instance.
Knowledge can also be innate in the sense that someone possesses knowledge
before acquiring it by acquaintance or by description.

• Self-management decisions have to often be made with incomplete knowledge.
Managed artefacts are complex software constructions that cannot be completely
known. They are apprehended through the touchpoints they offer, and only a
limited amount of information can be collected. This is the same for the comput-
ing environment, which is often only partially known.

• Rule-based systems implement knowledge through simple event–condition–action
rules and are capable of quick, simple reflex adaptations. Model-based systems
maintain models of the managed artefacts and of the computing environment in
order to produce more thoughtful actions. Goal-based systems introduce and use an
explicit definition of goals in order to guide reasoning. Utility-based systems intro-
duce utility functions in order to compare and rank states satisfying goals.

• Making models a key concern in autonomic computing is today a strong tendency.
In particular, architectural models are built to drive many self- management

7.6 Key Points

214

actions. These models reflect the system’s structure and behaviour, its require-
ments and the system states required to match its goals.

• A great advantage of the architectural model-based approach to planning is that,
under the assumption that the model correctly mirrors the managed system, the
architectural model can be used to verify that system integrity is preserved when
applying an adaptation.

• Models are built to support reasoning. There are a number of reasoning techniques
well suited to autonomic systems. This includes programming languages, search-
based reasoning and logic-based reasoning, which are discussed in this chapter.

References

 1. Turing, A.: Computing machinery and intelligence. Mind LIX(36), 433–460 (1950)
 2. Russel, S., Norvig, P.: Artificial Intelligence, a Modern Approach. Prentice Hall, Englewood

Cliffs (2010)
 3. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: Analysis of cycle stealing with switching

times and thresholds. Perform. Eval. 61(4), 347–369 (2005)
 4. Sharma, V., Thomas, A., Abdelzaher, T., Skadron, K., Lu, Z.: Power-aware qos management

in web servers. In: RTSS’03: Proceedings of the 24th IEEE International Real-Time Systems
Symposium, p. 63. IEEE Computer Society, Washington, DC (2003)

 5. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3),
243–278 (2005). doi:10.1016/j.tcs.2005.05.020. http://dx.doi.org/10.1016/j.tcs.2005.05.020

 6. Chollet, S., Lalanda, P.: An extensible Abstract Service Orchestration Framework. In:
Proceedings of the IEEE 7th International Conference on Web Services (ICWS 09), Los
Angeles, CA, 6 July 2009

 7. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap.
In: FOSE’07: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer Society,
Washington, DC (2007)

 8. OMG.: Unified Modeling Language (UML). http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#UML. Feb 2009

 9. OMG.: Meta-Object Facility (MOFTM) specification, version 1.4. http://www.omg.org/cgi- bin/
doc?formal/2002-04-03. Apr 2002

 10. Herrmann, C., Holger Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view on
the semantics of model composition. In: Model Driven Architecture – Foundations and
Applications. Lecture Notes in Computer Science, vol. 4530, pp. 99–113. Springer, Berlin/
Heidelberg (2007)

 11. Garlan, D., Schmerl, B., Chang, J.: Using gauges for architecture-based monitoring and adap-
tation. In: Working Conference on Complex and Dynamic Systems Architecture, Brisbane,
Australia (2001)

 12. Magee, J., Dulay, N., Eisenbach, S., Kramer, J. (eds.).: Specifying distributed software archi-
tectures. In: Proceedings of 5th European Software Engineering Conference (ESEC ‘95),
Sitges. LNCS 989, pp. 137–153. Springer, Berlin/Heidelberg (1995)

 13. Jackson, D.: Alloy: a lightweight object modelling notation. Softw.Eng. Methodol. 11(2),
256–290 (2002)

 14. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for distributed
systems. In: Proceedings of the First Workshop on Self-Healing Systems, Charleston,
South Carolina, USA (2002)

 15. Garlan, D., Schmerl, B.: Exploiting architectural design knowledge to support self- repairing
systems. In: Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering, 15–19 July, Ischia Island, Italy (2002)

7 The Decision Function

http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/cgi-bin/doc?formal/2002-04-03
http://www.omg.org/cgi-bin/doc?formal/2002-04-03

215

 16. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proceedings of
the First Workshop on Self-Healing Systems, Charleston, South Carolina, USA (2002)

 17. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution.
In: ICSE’98: Proceedings of the 20th International Conference on Software Engineering,
pp. 177–186. IEEE Computer Society, Washington, DC (1998)

 18. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-healing
systems. In: Proceedings of the First Workshop on Self-Healing Systems, Charleston, South
Carolina, USA (2002)

 19. Dearle, A., Kirby, G.N.C., McCarthy, A.J.: A framework for constraint-based development
and autonomic management of distributed applications. In: Proceedings of International
Conference on Autonomic Computing, 2004, pp. 300–301, 17–18 May 2004

 20. McCann, J.A., Huebscher, M., Hoskins, A.: Context as autonomic intelligence in a ubiquitous
computing environment. Int. J. Internet Protocol Technol. (IJIPT) special edition on Autonomic
Computing 2(1), 30–39, Inderscience Publishers, Geneva, Switzerland

References

217P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_8,
© Springer-Verlag London 2013

 Computer scientists, and the computing industries, rely on the ability to build systems
and iteratively evaluate the design and implementational decisions that they have
made during that process. As we have seen in previous chapters, an autonomic
computing system can take many forms and as a consequence their evaluation, and
moreover comparison, can be diffi cult. The very nature of some systems that emerge
solutions adds further complexity to their evaluation. This chapter presents the chal-
lenges to evaluating an autonomic system, what to look out for and what others have
attempted to do to aid this activity.

 The chapter’s aim is to enable the reader to be able to design tests and metrics
that can be used to evaluate autonomic computing systems with a particular
focus on the aspects that makes an autonomic system different from those without
self-management features. As you will see, there is no single defi nitive metric that
can be used in assessing the mechanisms of all autonomic computing systems.

 8 Evaluation Issues

218

8.1 Evaluating Autonomic Systems

 We can assume that an autonomic system consists of a number of components that
interact with each other and their environment. There may be a single autonomic
manager that governs a large part of the system, or it may consist of a number of
more localised managers that make decisions that emerge a global solution to maintain
a goal (see Chap. 4). Either way, an autonomic manager must adapt to stimuli that
originate from both within the system it governs and from outside that system (what
we called its context in Chap. 2). Kaddoum et al. [1] describe these sources of
stimuli as the dynamics that come from exogenous or endogenous changes.
Endogenous changes are perturbations caused by entities within the system, whereas
exogenous disturbances originate outside the system.

 As discussed in previous chapters, autonomic features can be either designed as
part of a new system build or retrofi tted to a current or legacy computing system.
The reasons for this addition are to ensure that the system meets certain goals, either
more effi ciently or more robustly or in a more cost-effective way. In designing an
autonomic system, the aim is to have an operational system that essentially is able
to reach a stable state, that is, to reach homeostasis . Homeostasis is an indicator of
how well the ideal (or acceptable) state, as defi ned by the system goals, can be
maintained given the exogenous or endogenous stimuli that act upon it. That is, it is
a measure of how well the system can return to a stable state when disturbances,
faults or perturbations have occurred.

 It is already diffi cult to design a true evaluation for general computer systems,
whether it is to understand the behaviour of a given system or to compare versions
of the same system in terms of core functional capabilities. However, it is now nec-
essary to also compare the autonomic components of the system. For example, there
may have been a number of alternatives to the approach taken to build a given auto-
nomic manager; differing intelligence algorithms will yield different results—some
more accurate than others and some taking longer to compute. Therefore, an evalu-
ation scheme would need to be designed to highlight both of these differences and
not just the speed of the algorithm. That is, the metrics must be applicable and rel-
evant—perhaps cost is no issue for some systems, for example, and so does not
require reporting.

 Further, other aspects of how a particular autonomic manager’s logic fi ts with
the system’s overall architecture may need assessing or how this particular
approach will scale, or is able to be reused by other system components, may also
require evaluation.

 This chapter will introduce the topic of evaluation from the viewpoint of the
concepts of autonomic system appraisal rather than come up with defi nitive met-
rics. We assume that the reader has some basic idea of performance measurement
in terms of standard measures of responsiveness and throughput of the functional
aspects of the system. Nevertheless, Chap. 5 on monitoring introduces perfor-
mance measurement metrics for general computing systems and is a useful
refresher.

8 Evaluation Issues

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://dx.doi.org/10.1007/978-1-4471-5007-7_5

219

8.2 Evaluation Elements

8.2.1 Quality of Service

 Service qualities may have been specifi ed in a Service-Level Agreement. As introduced
 in Chap. 2.1.2 , the goals of the system can be distilled from business process model
and become manifest in a Service-Level Agreement (SLA). This is an agreement
that exists between the software providers and clients, refi ned into Service- Level
Objectives (SLO) that can be more easily monitored during runtime.

 In terms of abstract ways to view the systems as a whole, quality of service
(QoS) is possibly the highest level means to compare modern systems. It refl ects the
degree to which the system is reaching its primary goals. It is typically composed of
a number of quantitative metrics, for example, percentage number of transactions
that have a sub-second response time or decoding accuracy thresholds. More quali-
tatively, it can be a measure of user satisfaction that can then be distilled into user
latency fi gures, numbers of users that continue using the system, etc.

 QoS is a highly important metric in autonomic systems given they are typically
designed to improve some aspect of a service. Most of the research in this fi eld is
looking at using autonomicity to improve performance (usually speed or effi ciency).
 However, where systems wish to improve something less quantitative, for example,
where a more personalised GUI is required for disabled people, or the requirements
is to minimise the need for technical support staff, traditional metrics are found
lacking. The notion of the degree to which an autonomic system is meeting its QoS
parameters is therefore tightly coupled to the application area or service that is
expected of the system. It can be measured as a single global goal metric (if the goal
is as simple as that) or at the subservice or component level where each unit’s ability
to meet its local goals is measured. Most approaches to measure this for current
autonomic systems have essentially taken the goals and refi ned them into more
measurable, quantifi able, metrics.

 The metrics that represent a service can involve systems effi ciencies, response
times, costs and usability. However, the ways autonomic systems are built bring
other aspects of the system that can be measured that represent how well the auton-
omicity is measured. These metrics measure the system’s ability to adapt to change,
how well it maintains stability and how agile the system is to unexpected change. In
the subsequent sections, we introduce these metrics.

8.2.2 Cost

 Autonomicity costs, the degree of this cost and its measurement are not clear-cut.
Currently, most performance studies of autonomic systems have measured the
system’s ability to reach its goal. However, more appropriately, the amount of
communication, actions performed and cost of the actions required to reach that
goal need to be noted.

8.2 Evaluation Elements

220

 For many commercial systems, the aim is to improve the cost of running an infra-
structure, which primarily includes people costs in terms of system administrators
and maintenance. This means that the reduction in cost for such systems cannot be
measured immediately but over time and as the system becomes more and more
self-managing. Therefore, measuring such costs, and in turn savings, is complex.
However, using standard capacity planning techniques, there may be ways to esti-
mate these savings to give a relative fi gure which can be used to compare approaches.

 Cost comparison is further complicated by the fact that adding autonomicity means
adding intelligence, monitors and adaptation mechanisms—and these cost in terms of
not only processing time but also storage and memory (and all the maintenance costs
typically associated with a computing system). For example, a Web server could have
had autonomic features added to allow it to cope with fl uctuating and sudden high
demand (fl ash crowds) without lowering the user experience of the Web service. One
would not only be interested in how well the system was able to cope with demand,
but we would want a measure of the cost of adding these particular features (and a
measure to allow us to compare approaches). It may be the case, as in [2], that the
costs of adding both monitors to observe incoming Web traffi c, and the mechanisms
to analyse the resulting data and effect change, are outweighed by their benefi ts under
 normal operation only. As the so-called normal operation is the majority of time and
is fairly predictable, it would appear that adding autonomicity is hardly worthwhile.
However, perhaps there could be a case where loss of service under extreme condi-
tions, for example, disaster recovery servers, would be so damaging that the cost was
justifi able. So in some cases, the addition of autonomic features might even impact
negatively on the system. However, under duress, the system would simply fail with-
out the autonomic features, and it is there where the real benefi t lies. Therefore, a
measure of the added functionality that would otherwise not be achieved in a non-
autonomic system would be useful. In the example above, the added functionality is
obvious and is also the actual goal of the autonomic system. However, fi nding other
added benefi ts might not be obvious and may be found in a serendipitous fashion, so
it could be diffi cult to predict what to test for in advance in such cases.

 The system’s physical architecture also has an obvious impact on the cost of a
self-managing system. For example, most solutions consist of a service that has
autonomic features added as separate components that are interfaced to the man-
aged element. For many of these, the analysis and planning is either hierarchical or
even centralised; that is, the monitors or gauges are external to what they are mea-
suring and the decision to adapt, and its supervision, is external to the managed
element. Here the question is: is it fair to compare systems that use external comput-
ing hardware to run the autonomic services with those who run the autonomic ser-
vices on the same system? With the former, costs could be in terms of the extra
hardware and communications to that hardware. The saving is that the AI process-
ing and autonomic data is residing on a separate system and therefore does not
impede on the running system being managed. Extra processors dedicated to the
autonomic services mean that they could be more intelligent, for example, checking
the validity of a given reconfi guration in advance of that reconfi guration, or provide
open intelligence where the autonomic decisions themselves are adaptive. So these
benefi ts, and their future potential, versus their extra costs could be considered.

8 Evaluation Issues

221

 In more emergent, decentralised or agent-based autonomic systems, the intelli-
gence can be tightly coupled with the functional logic of the main managed element
and usually contained within the component or agent itself. Therefore, the self-
management overhead is perhaps indistinguishable from the agent’s core function,
and therefore it is more diffi cult to separate out the costs of autonomicity—if that is
sensible at all.

8.2.3 Adaptivity

 To discuss this, we separate out the act of adaptation from the monitoring and intel-
ligence that cause the system to adapt. Adaptivity can be something as simple as a
parameter being changed, for example, changing the buffer size thresholds in
self-confi guration systems. Here the adaptation does not impact the system so much
as for a component-based architectural reconfi guration. In the latter, a component
may need to be hot-swapped where state is saved, the new component located and
then bound into the system. Some systems are designed to continue execution while
reconfi guring, while others cannot. Furthermore, the location of such components
again impacts the performance of the adaptivity process. That is, a component
object, which is currently local to the system versus a component (such as a printer
driver), being retrieved over the Internet, will have signifi cantly differing performance.
Perhaps more future systems will have the equivalent of a prefetch of components
that are likely to be of use and are preloaded to speed up the reconfi guration process.
Intuitively standard metrics that measure responsiveness should be able highlight
whether or not the time is being spent in adapting the system because the system
becomes less responsive.

 Adaptability can also be seen as a measure of how well the system can confi gure
to cope with policy or goal changes after initial deployment. For example, over
time, the goals of the business can change subtly, and this has a direct impact on the
autonomic systems’ requirements. This, therefore, has implications for the rules and
policies that are derived from these changes. Not only does the autonomic system
need to allow this change, those changes will have impact on the behaviour of the
autonomic managers. How these managers will enable, and furthermore cope, with
this is something that can be evaluated. What one should be interested in here is how
those changes affect the systems’ behaviour and whether this behaviour is what is
both expected and welcome. This is a relatively straightforward process if the
changes can be predicted in any way. However, there are many classes of system
whereby their goal or usage may not be so predictable, and so testing the system for
its ability to adapt in a meaningful way is non-trivial.

8.2.4 Time to Adapt and Reaction Time

 Related to cost and sensitivity are the measurements concerned with the system
reconfi guration and adaptation. The time to adapt is a measurement of the time a
system takes to adapt to a change in the environment. That is, the time lag taken

8.2 Evaluation Elements

222

between the identifi cation that a change is required until the change has been
effected safely and the system moves to a ready state. Reaction time can be seen to
partly envelop the adaptation time. This is the time between when an environmental
element has changed and the system recognises that change, decides on what recon-
fi guration is necessary to react to the environmental change and getting the system
ready to adapt. Further, the reaction time affects the sensitivity of the autonomic
system to its environment (see next section).

8.2.5 Sensitivity

 The aim of an autonomic system is to reach homeostasis, given disturbances, faults
or perturbations. The degree to which the system is sensitive to its exogenous or
endogenous stimuli is a measurement of how well the autonomic system fi ts with
the environment it is currently sitting in. At one extreme, a highly tuned system will
notice a subtle change as it happens and adapt (perhaps subtly) to improve itself
based on that change.

 Highly sensitive systems are also sensitive to system delays. For example, there
may be a delay in the delivery of data from the monitors that indicate some part of the
environment has changed. This could mean that a highly sensitive system would be
currently adapting to system state data that is already out of date. Furthermore, the
monitored data can represent a highly changing environment. Therefore, if a system is
highly sensitive to its environment, it has the potential that it can cause the system to be
constantly changing confi guration, and the net result of this could be that the system is
not getting on with the job at hand. We return to this in the stability discussion later.

 To illustrate this, returning to our audio-server example (Chap. 4), there could be a
number of parameters that affect the sensitivity of the system. For example, one could
vary the disaster horizon which is a parameter that represents a threshold. The audio
system used this as a means to calculate how soon it would fail based on how much
audio data was currently in the player’s buffer and how fast the data was coming in from
the network. Fail in this case meant that the audio would go silent; the user lost sound.
If it calculated that it was soon, corrective action would happen (it would ask that data is
compressed more to speed up communication at the cost of sound quality). This adapta-
tion costs in terms of performance also which needs to be taken into account. So if we
have a less changeable network bandwidth, then that cost would be worth it. However,
in more bursty networks, where the bandwidth is changing suddenly and many times,
the system could cause an adaption that was not really required. Related to this, the
audio system’s bandwidth monitoring sample rates can also be varied. This indicates
how much environmental data to monitor and store to predict changes in the bandwidth
between the client and server. Lowering this value means that there is less monitoring
data to be stored and processed, which in turn lowers the overheads of the autonomic
system itself. However, lowering the amount of monitoring can also have the impact that
it also lowers the sensitivity of the system and its ability to adapt to its environment.

 Figure 8.1 shows the bandwidth observed by the autonomic audio player over
time (blue line). We also plot two versions of the autonomic audio player. The fi rst
(red line) is the sensitive autonomic manager that takes many samples of the

8 Evaluation Issues

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

223

environment (i.e. bandwidth measurements) and has low deviation thresholds such
that the system tries to track the bandwidth and maximise the overall quality of
sound delivered to the user over time. The green line represents a less sensitive ver-
sion of the autonomic audio player. Here the sample frequencies are less and also
the thresholds that indicate when to adapt are looser; therefore, the system confi g-
ures less over time. The trade-off here is that sound quality is not optimal, but the
cost of the autonomic system is actually signifi cantly lower.

8.2.6 Stabilisation

 Another metric related to sensitivity is stabilisation. That is the time taken for the
system to learn its environment and stabilise its operation. This is particularly inter-
esting for open adaptive systems that learn how to best reconfi gure the system.
For closed autonomic systems, the sensitivity would be a product of the static rule/
constraint set and the stability of the underlying environment the system must adapt
to. It is the time to reach homeostasis that is important here. To test this, one would
ensure that the test environment contained parameters that cover edge conditions,
values that are beyond the normal expected values of the system. From this, the
tester can observe the behaviour of the system as it tries to adapt to best maintain
goals under these extreme conditions. What the tester is wishing to observe is
whether or not the system can get back to a steady state and how long this takes (see
Fig. 8.2). As with every living organism, as the system ages, it may lose its ability
to maintain homeostatic balance.

N
et

w
or

k
ba

nd
w

id
th

Less sensitive settings with less numbers of state
changes

time

Sensitive settings with many state changes

Actual Bandwidth
between player and
audio source

 Fig. 8.1 Audio example showing how reducing samples and sensitivity equates to less state
changes and highlighting that this equates to less bandwidth utilisation

8.2 Evaluation Elements

224

8.2.7 Failure Avoidance (Robustness) and Autonomy

 Typically, many autonomic systems are designed to avoid failure at some level.
Many are designed to cope with hardware failure such as a node in a cluster that is
no longer responding. Some avoid such a failure by stopping and rebooting; others
seek an alternative perhaps retrieving a missing component and installing it. Either
way, the predictability of failure is an aspect that can require consideration when
comparing autonomic systems. Some systems will be designed for their ability to
cope with predicted failure but unable to handle failures that they are not pro-
grammed to identify or rectify. Systems that typically refi ne policies from goals
are excellent at coping with predicable failure, as the methods to overcome this are
programmed in the policies’ associated actions. For example, a goal may be to ensure
that transactions do not take over one second. Here the resulting policy could have
the condition ‘if node utilisation reaches > = 70%’ with the action being to ‘bring up
a new server node’. However, such mechanisms typically fail in unpredictable cases,
and when they come across a situation (assuming they even recognise the situation
at all), they can resort to some default action, such as informing the user. Other
systems are designed to be able to cope with unpredictability. These tend to be sys-
tems that embed the autonomic features at the fi ner-grained lower levels and here
typically the logic is highly distributed. Examples of such systems are those that
perform routing functions in the Internet, for example. Here nodes in the system
maintain routing tables to enable them to route around a node failure. Note that the
notion of unpredictability is relative here; even the most autonomous system
requires some programming of what to do when failure is detected.

 Let us illustrate this by returning to our audio-server example. Recall that the
purpose of this system was to adapt its audio encoding code depending on how it
perceived the link between the audio server and the user at a moment in time. The

disruption

Stable state
Return to stable
state

 Fig. 8.2 Illustration of stability, disruptions and the return to stability. Compare this with control
example in ctrl chapter

8 Evaluation Issues

225

overall goal is that there should never be a moment of audio silence during playback.
To test how well this system is able to achieve this, we placed the system in a controlled
environment. Here we would artifi cially mimic the communications link between
the user and the server and vary the bandwidth available over the link. We would
also change how quickly the bandwidth varied. This would test its ability to avoid
periods of silence given differing environmental circumstances. The intuition is that
the system would most probably be able to cope in situations where the bandwidth
only varied slightly or in a predictable way. That is, the changes in bandwidth would
fi t obvious trends, and the variation in bandwidth would be minimal enough to allow
the system to have time to identify the trend and quickly reconfi gure to ensure per-
fect playback. One would expect that the system would adapt more gracefully compared
with its operation in a more bursty network. We increased the parameters that refl ected
the environment to more stressful levels. In this case, the environment represented
bandwidth fl uctuation with extreme variation between high and low values. This
experiment showed us that the system continued to operate correctly but was adapting
up and down the codecs constantly, sometimes even missing an opportunity to adapt
because it did not notice an instance of environmental change as it was still handling
the previous adaptation [3]!

 Therefore, one may wish to see how well the system is able to cope with less
predictive situations. Tests would be designed with this in mind. One could choreograph
a situation where nodes are switched off to mimic failure or a workload is ramped
up to extreme heights and injected into the system. The use of randomness or distri-
butions of values can be stretched to beyond expected limits to enable the tester to
examine pathological cases. The measurement of the system’s ability to cope could
simply be in terms of how well certain quality of service metrics are met, which is
obviously close to the application domain.

 Related to this is the ability to compare how autonomous a system is. This would
be a measure of not only how well the system can cope in less predictable situations
but how much it relies on the outside world to do this. For example, the NASA
pathfi nder must cope with unpredicted problems and learn to overcome them with-
out direct external help. Decreasing the degree of predictability in the environment
and seeing how the system copes could measure this. Lower predictability could
even mean it having to cope with things that it was not designed for. A degree of
proactivity could also compare these features. The notion autonomy is also related
to the conversation about how centralised and fully decentralised approaches to
autonomic computing differ which we have later in this chapter.

8.2.8 Interfacing to the Outside World

 Most autonomic systems that exist at the moment of writing are of a partially auto-
nomic type, also described as the basic , managed and predictive levels in the
Autonomic Maturity Model [4] (see Chap. 2.4.3). This means that some form of
user interaction remains in the MAPE-K loop. Therefore, one needs to evaluate the
systems’ ability to communicate with external entities such as the technical support

8.2 Evaluation Elements

http://dx.doi.org/10.1007/978-1-4471-5007-7_2

226

team, confi guration managers, performance staff or even other extraneous pieces
of management software (e.g. the operating system).

 Autonomic systems also can have profound effects on how the user perceives the
system. To illustrate this, we again return to our audio-player example. The goal of
the system is to ensure that music is constantly delivered to the listener while maxi-
mising the music quality. To do this, the autonomic manager reacts to measures of
network bandwidth by changing the encoding type (codec) of the music data to
ensure this. If the bandwidth is bursty, the autonomic manager will swap from one
encoder to another and then another and perhaps back again. This can form oscilla-
tions (see Chap. 3 on control), which means the system is state fl apping back and
forth between encoding components. The original goals to deliver music and to
maximise the music quality still hold; the user will hear audio. However, to the
human ear, this would sound dreadful, moving from high-fi delity sound to lower
duller sound qualities and back again, like an old long wave radio. Therefore, a
system that permits some damping of adaptation may be of more use. Nevertheless,
a measurement of the user’s perception is required beyond the more functional
metrics representing the system’s goal.

8.2.9 Centralisation Versus Decentralisation

 Throughout this chapter, we have compared how different aspects of autonomous
systems can be compared and have mentioned cases where the autonomicity is
relatively centralised or more distributed. This section will focus on that divide
more specifi cally as it is essentially a measure of the decision process within an
autonomic system and an indication of which components are involved in that
process. It also gives us an understanding of how local the decision-making process
is or how a local decision affects external components that are also part of the same
system. This is like measuring the butterfl y effect discussed in complex systems.
For example, in the situation where local decision-making relies on both data from
other components and is required to communicate state to other components (e.g. a
heartbeat), we wish to understand how much this communication can affect the
other components. This can be in terms of performance, whereby the shared
communication bandwidth is being saturated with housekeeping (control) messages,
meaning the network is unable to get on with its core function which was to deliver
application data (the goodput). It can also be in terms of behaviour where other
nodes in the system are making decisions based on the outcome of a local node’s
behaviour and this permeates across the network; the impact ripples outwards, and
this may not always be good.

 In an emergent system, emphasis is focused on decentralisation, whereby the
problem-solving power results not from the local actions but from the interac-
tions of a group of autonomous entities instead. Here, the focus of autonomic
behaviour is not local or node-based but lies in the structures representing an
aspect of the system as a whole. This is sometimes described as the macroscopic

8 Evaluation Issues

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

227

properties of the system (rather than the microscopic local or node-based pro-
perties). Metrics would now be required to compare the system or the structure’s
ability to quickly and seamlessly adapt, for example, add or delete a new node to/
from the system.

 The common example regularly used to illustrate this is found in autonomic
communications systems. A communications network is designed to route data
packets from a source node to a sink node (e.g. similar to that found in Internet
routing or sensing network routing). The elements of the network are nodes (which
are computers and routers) and arcs (which represent the communications infra-
structure, wired or wireless radio links). The network communications is multi-
staged whereby data hops over the arcs to the nodes. Each node has local knowledge
regarding what it should do with that packet, but its logic is such that the structure
(routing tree) emerges, to ensure reliable delivery of the data packet, and that the
packet would be delivered over the shortest or quickest route to its destination.
Here the system does not need to know about all the nodes in the network, just its
neighbours. If it knows its best neighbour to send the packet too, then one can
imagine that that packet will be sent over all the best links in the network to the
sink. Therefore, optimising the delivery of that packet, that is, the route, emerges.

 Evaluating such a system would involve its ability to cope with disturbances,
malicious or not and temporary or permanent. In this example, there could be a
node failure which means that the current fastest known route is no longer viable
and the data is required to be rerouted around the dead node to ensure data delivery.
Metrics to measure this would be throughput and latency based. Latency will high-
light that the data had to be rerouted away from the shortest path and therefore the
extra hops involved which will incur temporal costs. Likewise, if a new node is
added to the system, this too will affect the structure in that many of the shortest
routes may need recalculating; otherwise, the new node will be underutilised. The
adaptation is to the structure of the system as a whole and not necessarily changing
the behaviour of the local nodes themselves, though they need to have logic that
knows to look for new nodes and route around nodes they no longer have contact
with. For a fully distributed system, this would mean each node sending identifi ca-
tion messages to each neighbour node to see who is there and then collectively
build up routes. This is obviously an expensive activity increasing the numbers of
control messages and limiting the ability to route the actual data. Therefore, when
measuring such a distributed system, it is necessary to measure the goodput rela-
tive to the throughput as a result. This then highlights how much data is being sent
over the network and how much is overheads.

8.2.10 Granularity/Flexibility

 Similar to sensitivity, the granularity of autonomicity is an important issue when
comparing autonomic systems. Fine-grained components with specifi c adaptation
rules will be highly fl exible and perhaps adapt to situations better; however, this

8.2 Evaluation Elements

228

may cause more overhead in terms of the global system. That is, if we assume that
each fi ner-grained component requires environmental data and is providing some
form of feedback on its performance, then potentially there is more monitoring data,
or at least environmental information, fl owing around the global system. Of course,
this may not be the case in systems where the intelligence is more centralised or the
monitored data is stored in a shared repository.

 Granularity is important; take the example in [2]. Here the authors found that
unbinding, loading and rebinding a component took a few seconds. These few sec-
onds could be tolerable in a thick-grained component-based architecture where the
overheads can be hidden in the system’s overall operation and where change is not
that regular. However, in fi ner-grained architectures, such as an operating system or
ubiquitous computing where change is either more regular or the components
smaller, the hot-swap time is potentially too much.

 One question we may ask is: can systems that provide the same service be
compared with each other if the granularity of autonomicity is different? Perhaps
at a high level, yes. But let us unpick this a little further. If both approaches pro-
vide the same quality of service, the same ability to reduce costs, the same capac-
ity to satisfy users, etc., is there a further cost? Of course, this further cost lies in
the systems’ ability to be maintained—an autonomic system and its autonomic
features require maintenance too, just like traditional systems. If the granularity
is fi ne grained, it usually means that there is tight coupling between the managed
element and the management software. This adds extra burden in terms of debug-
ging, updating and improving the overall system and therefore should be
accounted for.

8.3 Some Evaluation Metrics for Emergent Systems

 Emergent behaviours are those that arise from a number of (simple) processes
cooperating to achieve a goal. Emergence has been proven in nature as an agile
way to solve problems that involve many components as it has the ability and
fl exibility to adapt to situations that were unplanned. A natural example of emergent
behaviour is found when birds fl ock; the fl ock is an entity that is used to transport
numbers of birds for migration or to make the unit appear larger so that the indi-
viduals can be defended. Another advantage of emergence is that the rule base for
the individuals is typically quite simple. It is for these reasons that the autonomic
computing community has developed and adapted emergent algorithms to make
the system more robust to failure, and change. One example of this is where gossip
algorithms can be used to move heartbeats around the network of components.
Here each node, component or entity in the network sends a message of its heartbeat
to its neighbour and then that is passed on. When the network converges, it has a
common understanding of the systems’ heartbeat as a result. Emergent algorithms’
behaviour also needs evaluating, and there are a number of metrics that can be used
to do this; we list some below.

8 Evaluation Issues

229

8.3.1 Price of Anarchy (PoA)

 In many emergent systems, its components may collaborate by playing a game to
solve a problem or evolve a solution. In such systems, the PoA is a measurement
of the degree that the system degrades due to the selfi sh behaviour of one of the
components. It is a gauge of how effi cient these kinds of systems are at reaching a
solution measuring the impact of ‘selfi shness’ on the system as a whole. For example,
consider the routing example given earlier. Here we wish to route data from one
node to another. Our effi ciency measure would be the average communications
latency, the time for a message to reach its destination. Imagine we had two alter-
natives to determine the routes. The fi rst approach would be the centralised one
that takes the network’s current details and uses algorithms that produce optimal
routes for all nodes sending data to all other nodes in the system. Here the central
authority will enforce every node along the computed optimal path to cooperatively
forward the data packets. Alternatively, a decentralised version could exist (the
more emergent version) whereby some nodes may not be willing to forward the
data. This could be via gossip protocols as mentioned above. If we know or are
able to reason about the performance of both approaches, the price of anarchy is
then the ratio between the average communications latencies of each. Therefore,
it is a measure of how well the system is able to evolve an optimal solution when
some entities in the system show selfi sh/greedy behaviour or are not willing to
participate.

8.3.2 Equilibrium

 Equilibrium is a measurement of balance. It differs from stability in that we can
have a system that is highly unstable but is currently in a state of equilibrium. For
example, if we place a pin, sharp end down on a table, it is in a state of equilibrium
(all the forces on the pin are balanced—the rightward forces are balanced by the
leftward forces, the upward forces are balanced by the downward forces, etc.).
However, the pin is unstable. Understanding this metric allows the tester to understand
the degree to which the system under test has reached its objectives and how close
to the optimum solution it has evolved.

 One very popular example, named after John Forbes Nash who proposed it, is
Nash equilibrium. The system is said to be in a Nash equilibrium when it has
reached a state, again in a collaborative system, where each entity is assumed to
know the equilibrium strategies of the other entities, and no entity can gain by
changing only his own strategy unilaterally. This means that if a node or cell in a
distributed autonomic system has decided on an autonomic management strategy to
maximise its performance (say) and no other node can benefi t by changing its own
strategy (while the other nodes keep their strategies unchanged), then the current set
of strategy choices (and the performance improvements that will result) constitute a
Nash equilibrium. There are many variants of this metric and other equilibria, but
these discussions are beyond the scope of this book.

8.3 Some Evaluation Metrics for Emergent Systems

230

8.4 Benchmarking

 Finally, it may become necessary to bring these metrics together to form some sort
of benchmark. There are two approaches this can take: either we can derive new
autonomic systems benchmarks or we can augment current benchmarks to incorporate
metrics that measure autonomic characteristics.

 Benchmarking is the process whereby a system that is being tested is subjected
to a synthetic (controllable) workload and its performance is measured given that
workload. Therefore, the components of a benchmarking process are the system
under test, the workload, the performance metrics, the component that measures the
performance of the operational benchmark and the test results, as seen in Fig. 8.3 .
The design of the workload is central to benchmarking as it is this that ‘tests’ the
system. It can represent what the system was designed to do, and thus, the results
from the benchmarking process will show how well it is able to do that job. Here the
workload will be designed to represent the typical use of the system. The workload
can also test aspects such as how well the system can scale and work under stress.
Here, the workload would be beyond the expected use of the system (as known at
design time or under current usage), and the results will show where the system
could potentially fail in the future .

 An example of general benchmark is the Standard Performance Evaluation
Corporation’s (SPEC) benchmarking suites. SPEC is a not-for-profi t organisation
that produces standardised sets of performance benchmarks to evaluate computer
systems. The results of running such benchmarks are sometimes referred to as

 Fig. 8.3 The benchmarking cycle

Trace

Goals WORKLOAD

Disruption

Autonomic
Manager

System
Under
Test

Standard
Benchmarks

Environment

Performance
Results

8 Evaluation Issues

231

 SPECmarks . SPEC supplies a number of benchmarks that are a measure of the
different aspects of computing from testing integer arithmetic in compilers
(SPECint) to evaluating server energy effi ciencies (SPECpower_ssj2008).
Another popular example comes from the Transaction Processing Performance
Council (TPC). These benchmarks evaluate the different fl avours of database
transaction processing applications. Interestingly, both SPEC and TPC were
founded in 1988.

 Benchmarking can be distinguished from the other evaluation techniques in this
chapter, in that a form of technical agreement is made, perhaps between the industry
and the user community, and this agreement represents mechanism to capture and
report behaviours for comparative purposes .

 Designing a benchmark for autonomic systems is not that straightforward. Given
that the primary purpose of adopting the autonomic approach is to minimise the
complexity in the development and moreover maintenance of complex systems,
mere performance metrics driven by workloads are not enough. That is, other
complexities exist that need testing.

 One such example is ‘confi guration complexity’ which is a measure of the
level of complication involved with the confi guration process of a system. Here,
the confi guration process could be the human confi guration process, where the
cost of the human whose job it is to support a system is given. Such a metric
essentially measures how well the autonomic system can self-confi gure or better
still how much we save by having the system self-confi gure over the human sup-
port. Therefore, the confi guration process will typically involve computing, busi-
ness and human systems’ processes. However, the involvement, mapping and
mimicking of these processes are inherently diffi cult to capture in a quantifi able
way. Some approaches have combined automated methods (key traces and mouse
movement tracking [5] of the humans involved); others use manual observation
to produce the benchmark suite. Some benchmarks are also built by domain
experts.

 Benchmarks are supposed to be both reproducible and robust. That is, the
benchmark should not be so open to interpretation or manipulation that would
render systems incomparable. Worse, the benchmark should not make it easy for
systems to be designed with the sole purpose of getting good benchmark scores.
Though in reality, this is diffi cult to control and is an issue with benchmarking in
general.

 Runtime reconfi guration is carried out to maintain goals such as those pertain-
ing to performance, security and failure avoidance. Benchmarks will then consist
of datasets and associated background workloads that stress the system or
inject disruption. It is important to note that that a workload for autonomic sys-
tems cannot be static. For example, instead of stating that the input load will be
100 connections/s, a benchmark for autonomic systems will have a ramped up
load, such as 100–1,000 connections/s stepping up at 100 at a time, or a load that
fi ts a distribution with a given mean, standard deviation, etc. The load is then run
with the system under focus, and its ability to maintain its goal is monitored and
evaluated accordingly.

8.4 Benchmarking

232

8.5 The Autonomic Computing Benchmark: A Summary

 There has been little progress in defi ning a defi nitive benchmark for autonomic
systems, bar a small set of publications that very much come to the same inconclu-
sive conclusions. In this section, we discuss the Autonomic Computing Benchmark
as this is perhaps the most mature approach available at the time of writing.

 To match the autonomic computing investment by IBM, a benchmark, aptly
named the Autonomic Computing Benchmark, was released in 2008. This benchmark
is described as using a ‘fault injection methodology and fi ve categories of faults or
disturbances’. Though they describe the word ‘fault’ to imply an invalid operation
and the word ‘disturbance’ as having the broader meaning covering invalid opera-
tions, intrusions, interruptions, events, etc., anything that alters system state, they
use the words interchangeably. Two metrics are used to evaluate the system: the
throughput index and the maturity index. The latter is a measure of autonomicity
(as described in Chap. 2.4.3) indicating the degree of human intervention required
in the task. Throughput measures the impact on quality of service expectations due
to the injected disturbances.

 As recommended in our early paper on autonomic system evaluation [6], the
Autonomic Computing Benchmark essentially extends current representative
benchmarking suites with mechanisms that pertain to autonomic features. To this
end, the benchmark suite mimics a typical B2B (business-to-business application)
and is designed essentially to wrap around current business application benchmarks
such as the SPECjAppServer2004 Performance Benchmark, a popular J2EE per-
formance benchmark from the SPEC organisation [7]. It covers a multicomponent
application architecture and also takes administrative duties into account. The
benchmark has three states: baseline , test and check . Essentially, the system must
ramp up to a steady state to represent the baseline performance of that application
under the given conditions. From this, disturbances are injected in a predefi ned
sequence and the system is thus test ed. Finally, the check state double-checks
that the changes the system made to maintain stability have had no other nega-
tive impacts on the system, such as transactions or updates lost and missing
data. In between disturbance sequences, the system is allowed to ‘recover’ to a
steady state to enable the user to trace the cause and effects of the disturbances
more clearly.

 Among the measurements that determine the notion of autonomic maturity is
quantifi cation of the quality of a self-healing action. Some self-healing actions can
consist of mechanisms to avert the problem caused by a disturbance by routing
around it or creating ways to bypass that process. After that, the system may insti-
gate mechanisms to heal the problem, and the repaired system is reintegrated back
into the system under test. Now given that self-healing systems have excised since
before the term autonomic has been used and many systems have some sort of
self- healing nature to them, one may not notice any change to the system because
a component was able to continue operation with the fault injected into it. The
example given is that of a RAID redundant disk array that is able to continue
operation after a disk failure. That component is still operational, albeit in a reduced

8 Evaluation Issues

http://dx.doi.org/10.1007/978-1-4471-5007-7_2

233

way that might cause problems in the future. This is what they mean by quality of
repair. The system has not failed and is continuing to deliver data in, but it is not
ideal or operating in an optimal way. To represent these phenomena, The Autonomic
Benchmark judges that bypassing a problem does not constitute a full recovery and
attributes a value to this and a score of any repair action taken. The intuition is
that if no repair occurs (even if the system is running and stable), the resources
available to the system are reduced. It allows those aiming to evaluate the system
to get a better idea of the capability that the system has when facing any subsequent
changes upon it. This metric was derived from The Autonomic Benchmark’s
authors, inspired by working with autonomic systems. It is a metric they found to
be valuable and highlights both the complexity of deriving metrics for autonomic
systems and that they can be metrics that are important to some users but not neces-
sarily to all.

8.6 Key Points

• Autonomic computing is an engineering concept that has found its way in a
myriad of computing fi elds. This chapter is a review of some typical examples of
the sorts of aspects that would contribute to the evaluation of an autonomic
computer system.

• We have illustrated the complexities in trying to measure the performance of
such systems and compare them.

• We have presented the common components found in each of these types of
system and from this derived a set of metrics and methods which we believe are
a good starting point to compare autonomic computing systems.

• These we summarise as quality of service, cost, granularity/fl exibility, failure
avoidance (robustness), degree of autonomy, adaptivity, time to adapt and reaction
time, sensitivity and stabilisation.

• We realise that some of these metrics are more general than others and some
pertain to some autonomic systems and not to others.

• We also show that deriving new measurement systems or benchmarks from
scratch is not necessarily the best way forward. Instead, due to the diverse appli-
cation of autonomic systems, it may seem better to augment application-specifi c
benchmarks to include metrics which evaluate the autonomic features of that
system, for example, robustness, reaction speed and stability. Therefore, tradi-
tional benchmarks, such as the TPC benchmarks are now being used to measure
autonomic DBMSs, but have been extended to test the specifi c autonomous
nature of the system; for example the reaction times of the system are charted.

• It is interesting that to alleviate the maintenance and operation overheads of our
modern increasingly complex computing systems, we require the addition of
even more complexity. It is our argument that this complexity makes such sys-
tems much more diffi cult to evaluate than before, and therefore the need to
derive correct robust repeatable methods and benchmarks is highly important
and interesting.

8.6 Key Points

234

 References

 1. Kaddoum, E., Gleizes, M.-P., Georgé, J.-P., Picard, G.: Characterizing and evaluating problem
solving self-* systems. In: Proceedings of the 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 137–145. IEEE Computer
Society, Washington, DC (2009)

 2. McCann, J.A., Jawaheer, G.: Experiences in building the Patia autonomic webserver. In: 1st
International Workshop “Autonomic Computing Systems”, DEXA 2003, September 1–5,
Prague, Czech Republic (2003)

 3. McCann, J.A., Howlett, P., Crane, J.S.: Kendra: adaptive Internet system. J. Syst. Softw. 55 (1),
3–17 (2000). Elsevier Science

 4. IBM Data Governance Council Maturity Model. http://www-935.ibm.com/services/uk/cio/pdf/
leverage_wp_data_gov_council_maturity_model.pdf (2007)

 5. 47RC23146 (W0403-071) March 10, 2004 Computer Science IBM Research Report. An
approach to benchmarking confi guration complexity Aaron B. Brown, Joseph L. Hellerstein

 6. McCann J.A., Huebscher M.C.: Evaluation issues in autonomic computing. In: The International
Workshop on Agents and Autonomic Computing and Grid Enabled Virtual Organizations
(AAC-GEVO’04), 3rd International Conference on Grid and Cooperative Computing, Wuhan,
China, 21–24 Oct 2004. Springer-Verlag, Heidelberg

 7. http://www.spec.org/jAppServer2004/ , url dated 26 Sept 2011

8 Evaluation Issues

http://www-935.ibm.com/services/uk/cio/pdf/leverage_wp_data_gov_council_maturity_model.pdf
http://www-935.ibm.com/services/uk/cio/pdf/leverage_wp_data_gov_council_maturity_model.pdf
http://www.spec.org/jAppServer2004/

235P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_9,
© Springer-Verlag London 2013

 Software integration is a well-known and very demanding activity. The purpose of
this activity is to allow the interoperation of software applications that have been
developed independently and often at different times. Such integrations are fre-
quently required in software organisations in order to improve the existing comput-
ing infrastructures and provide new services.

 Today, modular architectures are often used to design and implement integration
solutions. Many are based on the notion of mediation, which focuses on the timely
integration of disparate information sources and destinations. Most current solutions,
however, are not autonomic. Updates are generally prepared offl ine by experienced
developers and administrators and committed all at once in a static fashion. This
requires some downtime and the availability of skilled administrators to deal with
technical, low-level administration aspects.

 Cilia is an autonomic mediation framework essentially developed by the Adele
team 1 and currently used in collaborative initiatives like the Medical project. 2
This framework, designed with autonomicity in mind, allows the autonomic admini-
stration of mediation solutions. The purpose of this chapter is to show how the
Cilia framework has been made autonomic, using many of the techniques presented
in this book. This chapter also presents ongoing work offering further management
capabilities, aiming to progress towards Cilia technology endowed with fully auto-
nomic life-cycle management capabilities.

 9 Autonomic Mediation in Cilia

1 Adele team, Grenoble University: http://www-adele.imag.fr
2 The Medical project (http://medical.imag.fr) is funded by the OSEO and the Conseil Général de
l’Isère . It is led by the Orange Labs.

http://www-adele.imag.fr/
http://medical.imag.fr/

236

9.1 Software Integration

 Software integration has always been a recurring, expensive, time-consuming activity.
Its purpose is to allow software applications developed independently, often at different
times, and run on different computing infrastructures to interoperate. Integration is
in escapable; the need arises as soon as an organisation looks for ways to extend or
update its computing infrastructure. Existing applications, which cannot be redeveloped
for obvious economic and operational reasons, have to be used by the new develop-
ments. These applications are usually called legacy applications. They can correspond
to a program, a database, a device, etc.

 Integration is a complex activity, but for a simple reason, the applications or
devices to be integrated have not been designed and implemented for that purpose.
As a result, data are represented in widely different ways, interfaces are mismatch-
ing, communication protocols are unlikely to be compatible, synchronisation mech-
anisms are absent, etc. In addition, software systems to be integrated have their own
evolution pace, which reawakens integration problems very often.

 Integration is a crucial issue in modern computing. Today’s information systems
are required to be very fl exible in order to favour the rapid and frequent creation of
new services. Integration is also key to pervasive applications. Such applications
are run on distributed infrastructures, from small, communication-limited devices
up to powerful servers connected via wide area networks. Building pervasive
applications therefore requires integrating diverse devices embedded in concrete
environments and also a number of services and resources made available via net-
works, like the Internet. This form of integration, which is prominent today, is
made more complicated by the fact that the elements to be integrated are dynamic
and heterogeneous.

 As illustrated in Fig. 9.1 , a commonly adopted solution is to encapsulate the
integration code into software dedicated to this purpose. This centralised approach
implements good software engineering practice. That is, technical code related to
integration is kept separate from the applications that are required to be combined.
The integration software provides a unique access point (often called an endpoint in
the integration domain) for each application. Also, isolating the integration code can

 Fig. 9.1 Centralised integration architecture

Integration
software

Application Application

Databases

Devices

9 Autonomic Mediation in Cilia

237

facilitate change management. For instance, it is certainly easier to modify QoS
properties (like security or persistency) of the integration since related code is kept
in a single, well-identifi ed place.

 The integration issue has been around for decades. Through the years, various
solutions have been proposed. The early ones, for example, those based on
message-oriented middleware (MOM), were very technical and focused on data
transport and communication. Enterprise application integration (EAI) systems
are later, more general solutions that introduce the notion of adapted processes
and business organisations. EAI can be seen as large integration frameworks
based on the hub and spoke architectural pattern. This distribution architecture is
illustrated in Fig. 9.2 .

 EAIs have been an undeniable market success, essentially in big companies.
However, they have more recently faced criticism due to their operational cost and
size. EAIs are often run by specialised, centralised departments, which can lead to
heavy and slow business processes. Such departments are known to be overloaded
with work and not able to swiftly meet project demands.

 Researchers at Stanford University [1 , 2] introduced a few years ago the notion
of mediation . The mediation activity corresponds to the timely integration of dispa-
rate information sources. It has been used historically to integrate data stored in
IT resources like databases, knowledge bases, fi le systems, digital libraries or elec-
tronic mail systems. Since then, the principles have been reused and applied to the
integration of various software applications [3]. In the rest of this chapter, we will
focus on this approach to design and implement integration solutions.

 A mediation solution is generally implemented as a mediation chain. A mediation
chain is decomposed into lightweight components called mediators that implement sim-
ple integration operations. Classically, mediators are used to implement operations like:
 – Communication alignment . The purpose of this operation is to enable applications

using different communication protocols to interoperate. It requires implementing
protocol transformations such as those found in a network bridge .

 – Syntactic alignment . The purpose of this operation is to homogenise data formats.
It can rely on an intermediary format, often called a pivot .

Application Application

Databases

Devices

 Fig. 9.2 Hub and spoke architecture (physical view)

9.1 Software Integration

238

 – Semantic alignment . The purpose of this function is to align data semantics.
In the absence of recognised and used standards in a domain, applications develop
different ontologies to represent (static and dynamic) knowledge.

 – Non-functional property alignment . The purpose of this operation is to ensure
certain quality properties for the integration, like security or availability.

 – Persistency . The purpose here is to keep track of all exchanges between applications.
The mediation layer can provide logging support for all requests, responses and data.

 – Monitoring . The purpose of this function is to collect data for monitoring
systems that verify that the expected quality of service is being achieved.
 A mediation operation is usually performed by a single mediator. Many opera-

tions naturally lead to the chaining of a number of such mediators. Mediators can be
executed on a single machine or distributed. In the latter case, communication
middleware is needed to connect the mediators. Middleware can be based on RPC-
like communication, on message-based interaction, etc. Figure 9.3 provides an
illustration of a mediation chain with alternative paths.

 Mediation solutions are required to be:
 – Effi cient . Time needed to perform integration operations should not impact the

quality of the overall service provided by the integrated system.
 – Manageable . The installation, confi guration and management of mediation

solutions have to be as simple as possible in order to reduce costs and risks.
 – Flexible . Applications that have to interoperate change and their integration

requirements evolve accordingly. Then, it should be easy to modify or add media-
tion operations in order to adapt at runtime the way applications are integrated.

 – Easy to use . Programming and runtime models have to be simple. Once again,
the point is to avoid complex solutions where integration code is hard to understand,
fi x and evolve.
 In addition, today’s solutions are often required to be deployable in various con-

texts, with disparate execution resources.
 Many tools have been proposed in recent years. But, in most cases, mediation

solutions are very technical and technology driven. Mediation chains still remain
hard to build, deploy and maintain. They are diffi cult to change and reuse and this
has an important business impact. This is because staff resources are required to
ensure that changes are rolled out along the chain and the system might have to be
taken offl ine thus lowering its availability.

Application Application

Endpoint

Mediator

 Fig. 9.3 Example of a mediation chain (logical view)

9 Autonomic Mediation in Cilia

239

 Autonomic computing can obviously have a tremendously benefi cial impact in
this domain. The following sections introduce an approach to using an autonomic
principles to system integration—the Cilia mediation framework.

9.2 Cilia

 The Cilia framework 3 is an autonomic, open-source mediation framework [4 , 5]
developed by the Adele team. Its purpose is to simplify the work of integrators by
offering a well-defi ned and limited set of abstractions to support design, composition,
deployment and execution of a variety of mediation chains.

 The Cilia framework takes the form of a domain-specifi c component model,
including a specifi cation language and a fl exible execution environment. A Cilia
component is called a mediator. Its purpose is to realise a single mediation operation
like a data transformation, a security function and an aggregation. A Cilia component
is characterised by a number of typed input and output ports. Input ports receive the
data to be treated whereas the output ports forward the results of the mediation pro-
cessing. Ports are the means to connect mediators and, thus, form mediation chains.

 The content of the mediators is divided into three elements: a scheduler , a pro-
cessor and a dispatcher . The purpose of the scheduler is to store the data received in
the input ports and to apply a triggering condition. Simply put, the scheduler deals
with all the synchronisation issues. When the condition held by the scheduler
becomes true, all the data retained by the scheduler are sent to the processor. The
processor applies the mediation operation to the transmitted data. The result of this
operation is sent to the dispatcher, whose purpose is to place the results in the output
ports. The dispatcher handles the routing aspect in the mediation chains (Fig. 9.4).

 Schedulers, processors and dispatchers are Java classes that are developed inde-
pendently. They are defi ned in a Java development environment and kept in a dedicated
repository. In order to ease their development, abstract classes for schedulers,
processors and dispatchers have been defi ned. Abstract classes defi ne the methods
to be implemented and, for some of them, templates to be used for the implementa-
tion. Cilia also supports the reuse of classes that have already been defi ned. This
includes periodic schedulers, fi ltering processors, aggregation-oriented processors
and content-based dispatchers.

 Defi ning a mediator then comes down to assembling three Java classes (scheduler,
processor, dispatcher) in a component envelope. This envelope is defi ned in terms
of input and output ports and confi guration parameters. A domain-specifi c language
called DSCilia, based on XML, is provided for that purpose.

 A composition of Cilia mediators is called a mediation chain. As previously said,
the intent of a mediation chain is to perform all the mediation operations that are nec-
essary to allow well-specifi ed applications or resources to interoperate. A mediation
chain is formed by a set of connected adapters and mediators. Adapters connect the
resources to integrate to the mediators (see the ‘endpoints’ in Fig. 9.3). Their purpose

3 The Cilia framework is available at https://github.com/AdeleResearchGroup/Cilia

9.2 Cilia

https://github.com/AdeleResearchGroup/Cilia

240

is to feed the mediators (and the destination resources) with data in the appropriate
format and with the appropriate timing. Mediators constitute the heart of the chain
since they implement the effective mediation operations. This is illustrated in Fig. 9.5 .

 Mediators (and adapters) are connected via bindings . A binding describes a con-
nection between an output port and an input port. At execution time, a binding is
realised by a communication protocol transferring data from a mediator (or adapter)
to another mediator (or adapter). This protocol can be specifi ed at deployment time
but also at development time. Cilia supports local and distant communication proto-
cols, including several message-oriented protocols.

 A mediation chain is data-fl ow driven. Specifi cally, the computation model is the
following. An adapter gets data from an application or a resource (using an appropri-
ate protocol) and sends the collected data to one or several mediators. These media-
tors apply their operation to the received data as soon as the triggering conditions
provided by their scheduler are met. Results are put in the output ports by the
dispatcher and propagated to the next mediators. At the end, an adapter feeds an
application or a resource (using an appropriate protocol) with the transformed data.

 The DSCilia language permits straightforward defi nition of the mediation
chains. Specifi cally, defi ning a mediation chain consists in specifying mediators
and bindings between those mediators. This is done via domain-specifi c terms that
are familiar to domain developers (integrators). Also, DSCilia permits the easy
defi nition of the most commonly used enterprise integration patterns [6], which are
part of the baseline knowledge for every integration engineer. Indeed, these patterns
are often based on synchronisation and dispatching functions.

P
ro

ce
ss

or

D
is

pa
tc

he
r

S
ch

ed
ul

er

Input
Ports

Output
Ports

Administration interface

 Fig. 9.4 Cilia mediator architecture

 Fig. 9.5 Example of mediation chain

Mediator A

Mediator B

Binding AB

Mediator C

Binding AC

Binding BD

Binding CD

Mediator C Adapter
(out)

Adapter
(in)

9 Autonomic Mediation in Cilia

241

 The Cilia execution framework is built on top of OSGi and iPOJO (see Chap. 6
about adaptation). It also includes RoSe, an open-source communication middle-
ware that is able to dynamically import and export services. 4

 A mediation chain is created in the following manner (Fig. 9.6): a specifi cation
fi le, based on DSCilia, is transmitted to the Cilia runtime. These specifi cations are
transformed into a number of iPOJO components defi nitions. At least fi ve iPOJO
components are created for each mediator: one component for the scheduler, one
component for the processor, one component for the dispatcher and two compo-
nents for the in and out communication ports (more components are created if
different protocols are used by different ports). The defi ned iPOJO components are
then instantiated and executed. From this point, the mediation chain is operational
(and the desired integration is achieved).

 Let us remind here that iPOJO relies on byte code manipulation to create extensible
containers encapsulating the execution of Java classes. A container can host a number
of handlers implementing non-functional aspects (handlers are triggered before or after
a method call). As we will explain in detail, this feature is particularly convenient for
implementing dynamic monitoring functions attached to a component.

 To sum up, Cilia is a recent framework meeting the stringent requirements on
software integration and well adapted to the implementation of commonly
accepted integration patterns. The use of domain-specifi c concepts simplifi es
the creation and understanding of mediation chains. However, adapting Cilia
chains to new runtime conditions still depends on skilled administrators and
generally requires some downtime. In many domains, administrators are not
available or service interruption is not an option. Autonomic approaches are
therefore needed. This is why the Cilia framework has been partly redesigned
with autonomicity in mind.

 In the rest of this chapter, we concentrate on the autonomic features exhibited
by Cilia, as needed in the context of this book. Above all, we focus on the way in
which Cilia has been implemented in order to illustrate some of the techniques and

OSGi/iPOJO/RoSe
Application Application

Cilia Runtime

DSCilia file

 Fig. 9.6 Cilia overview

4 The RoSe framework is available at https://github.com/AdeleResearchGroup/ROSE

9.2 Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_6
https://github.com/AdeleResearchGroup/ROSE

242

approaches described in this book. For interested readers, extensive information
about Cilia can be found on the Website (https://github.com/AdeleResearchGroup/
Cilia) .

9.3 Autonomic Cilia

9.3.1 Overview

 Specifi cally, support for the following adaptations has been demanded during
Cilia’s requirement elicitation phase:
 – A mediation chain can be dynamically added or removed.
 – Confi guration parameters of a mediation chain can be dynamically updated.
 – A mediator can be dynamically removed from a running chain.
 – A mediator can be dynamically added to a running chain.
 – A mediator can be dynamically replaced within a running chain (hot-swapping).
 – Confi guration parameters of a mediator can be dynamically updated.
 – Confi guration parameters of the execution machine can be dynamically updated.
 – An adapter can be dynamically replaced.
 – Confi guration parameters of an adapter can be dynamically changed.

 These adaptations are required to address functional evolutions or to fi x nonop-
timal behaviours. Triggering an adaptation, however, requires a good knowledge of
the running chains both in terms of specifi cation and runtime behaviour. It also
requires facilities to implement structural and behavioural modifi cations without
data losses or broken control fl ows.

 As illustrated in Fig. 9.7 , the Cilia framework now provides a set of touchpoints
to dynamically monitor and adapt the mediation chains under execution and some
aspects of the supporting execution platform (essentially the service discovery func-
tions). It also allows the construction of a confi gurable knowledge-base storing
design and runtime information about the mediation chains and the platform under
operation. This knowledge base provides a model of runtime phenomena, with trends
and past data, and is intended for use by autonomic managers. This model is causal
in the sense that modifi cations made on the model representation are refl ected on the
Cilia runtime and vice versa. Using this knowledge module is a very convenient way
for domain engineers to create autonomic managers. Managers use high- level APIs
provided by the knowledge module to get relevant information and trigger adapta-
tions. Such approach does not demand to be familiar with the intricacies of Cilia;
domain-specifi c mediation knowledge suffi ces to manage Cilia-based systems.

 Many of the Cilia features are fl exible and confi gurable. Monitoring, in particu-
lar, can be controlled in a dynamic way. This means that Cilia monitoring can be
activated or deactivated globally. It also means that the elements to be monitored,
and the way they are monitored, can be confi gured without interruption of service.
Similarly, the knowledge base can be loaded or not, used or not, executed on a dif-
ferent machine (through REST interfaces) or not, etc. This allows developers and
administrators to use Cilia features in accordance with their needs and objectives.

9 Autonomic Mediation in Cilia

https://github.com/AdeleResearchGroup/Cilia)
https://github.com/AdeleResearchGroup/Cilia)

243

Expectations can obviously vary according to the runtime situation and to the prob-
lems that may arise, which is a typical property of administration systems.

 It is important to remember that Cilia is a framework , which means that domain
developers are in charge of the development of the mediation chains. To do so, they
create mediators, bindings, chains, etc., in order to meet their requirements. But
domain developers are also responsible for the development of the autonomic man-
agers. In this context, the purpose of the framework is to provide facilities (touch-
points, design and runtime knowledge) to ease the work of the domain engineers.

 As said earlier, the Cilia runtime, and the mediation chains, may be distributed
across several machines. However, autonomic decisions are centralised in the sense
that a unique autonomic manager is responsible for the management of the running
mediation chains. We will see later in this chapter that more decentralised solutions
involving multiple autonomic managers are also being investigated.

 To implement the touchpoints and the knowledge base, the Cilia framework uses
many of the techniques presented in this book (Chaps. 4 , 5 , 6 , and 7). This is
presented in the next sections.

9.3.2 Cilia Touchpoints

 Now, let us see the interfaces that the Cilia framework provides to monitor the
mediation chains and to adapt them dynamically. The Cilia framework offers a
unique entry point called a CiliaContext . This interface is a façade, as defi ned in [7].
It provides general information about the Cilia framework and gives access to the
 Builder and Application Runtime objects.

 For creation and modifi cation purposes, the CiliaContext provides a Builder
object. Builder is another well-known design pattern defi ned in [7] and often used
in object-oriented frameworks for the creation of complex heterogeneous structures.

OSGi/iPOJO/RoSe

Cilia Runtime

Knowledge

Monitoring
directives

Adaptation
directives

M
A P

E

Touchpoints

Autonomic
Manager

Provided by the framework
(configurable)

Developed by domain
engineers

ApplicationApplication

 Fig. 9.7 Overview of autonomic Cilia

9.3 Autonomic Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_5
http://dx.doi.org/10.1007/978-1-4471-5007-7_6
http://dx.doi.org/10.1007/978-1-4471-5007-7_7

244

In our case, the Builder object allows the construction and update of the mediation
chains and any of their constituents. Such creations and modifi cations can be made
through a DSCilia fi le or directly in Java via what is usually called a Java DSL 5
(where domain-specifi c concepts are exposed through regular Java interfaces).

 The Application Runtime object allows the management of the monitoring func-
tion for the mediation chains and any of their constituents. It provides methods to
dynamically defi ne the elements to be monitored, the information to be collected or
received and the way to do so (monitoring policies).

 An extract of the CiliaContext interface is provided hereafter in Listing 9.1 .
 Monitoring relies on the notion of state variables that are used to model the

dynamics of the running chains. This approach draws its inspiration from control
theory, as presented in Chap. 3 . State variables are attached to global mediation
chains but also to their constituents (mediators, adapters and bindings). Their values,
called measures , are kept in circular lists in order to keep records of the past. The size
of the lists is confi gurable and can be changed at runtime.

 Measures can be kept in the knowledge base. Several policies are available to
do so. For instance, values can be regularly sent to the knowledge module or simply
provided on demand. Also, warnings and alarms can be defi ned on the state vari-
ables. When a measure exceeds a ‘low’ or ‘high’ threshold, a warning is emitted.
When a measure exceeds a ‘very low’ or ‘very high’ threshold, an alarm is emitted
by the Cilia runtime.

 Specifi cally, the state variables attached to each mediator are the following:
 – Scheduler start time
 – Scheduler incoming data
 – Processor start time
 – Processor incoming data
 – Processor outgoing data
 – Processor end time

 Listing 9.1 The CiliaContext interface (extract)

5 Domain-specifi c language (DSL).

9 Autonomic Mediation in Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_3

245

 – Value of a processor fi eld annotated by the developer
 – Dispatcher start time
 – Dispatcher incoming data
 – Mediator execution time
 – Number of messages sent out by a mediator

 The monitoring and the modifi cation functions require navigation facilities
across the mediation chains. The Cilia framework provides such facilities to retrieve
running chains and to browse them. LDAP fi lters can be used to search specifi c
mediators (or adapters) in one or several chains. Once a mediator (or adapter) is
selected, life-cycle management actions or monitoring directives can be applied.

 To reiterate, touchpoints are of utmost importance. They have to provide ways to
access the key elements of a running software system in order to observe it and to
change it whenever needed. This challenge has been met in Cilia. Through the
notion of state variable, it is possible to model the dynamics of mediation chains at
a rather high level of abstraction, allowing problem solving to be conducted accord-
ingly. Also, distinguishing adaptation and monitoring at the interface level, as well
as at the code level, is important. It clearly separates concerns and leads to good
decoupling, which is good for evolution.

9.3.3 Cilia Meta-level and Base Level

 As previously indicated, Cilia is implemented based on iPOJO service-oriented
components in its entirety. Domain-specifi c concepts specifi ed with the DSCilia
language (mediators, adapters, bindings, etc.) are transformed into a number of
iPOJO components for execution. Model transformation, which is at the heart of
many domain-specifi c approaches, often introduces an important semantic gap
between what is specifi ed and what is executed. In general, such approaches raise
major administration challenges, especially when the links between specifi cation
and code-level artefacts are not preserved or are diffi cult to rebuild.

 To cope with this issue, the Cilia framework internally maintains two levels (see
Fig. 9.8): a meta- level and a base level [8] to follow the vocabulary introduced by
the meta-object protocols (Chap. 6). Cilia’s meta-level is made of interrelated Java
objects representing the specifi ed domain-specifi c concepts, such as chains, media-
tors, schedulers, processors and bindings. These objects can be seen as a direct
transposition in Java of the domain concepts expressed in the DSCilia fi les. Cilia’s
base level contains the iPOJO components implementing and executing the media-
tion chains de facto.

 The purpose of the meta-level is to represent abstract domain concepts and to
link them to the code corresponding to their implementation. This level also pro-
vides a means to observe and manipulate the concepts and subsequently, their
implementation. As illustrated by Fig. 9.8 , the meta-level is a causal model: modi-
fi cations to the meta-level are refl ected in the base level and vice versa.

 Of course, building and maintaining such an additional level of representation
has a cost. On the other hand, it greatly enhances code monitoring and evolution

9.3 Autonomic Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_6

246

support. The meta-level allows the dynamic defi nition of monitoring and adaptation
strategies in domain-specifi c terms, which is essential when it comes to complex
administration problem solving.

 The base level thus contains the iPOJO components implementing the schedulers,
the processors, the dispatchers, the bindings, etc. These low-level objects are never
presented by Cilia through public interfaces. Yet these are the objects holding the
runtime information that is needed to administrate the Cilia framework. They are
also the objects to be manipulated when it comes to modifying a running chain.

 The Cilia framework ensures synchronisation between the two levels. The base
level follows what is specifi ed in the meta-level, and the meta-level includes infor-
mation coming from the objects at base level. The implementation relies on the
 observer pattern, as defi ned in [7], and on the notion of controller. As illustrated in
Fig. 9.9 , the specifi cation of a mediator leads to the creation of three components:
 – Specifi cationModelManager stores the specifi cation of a mediator at the meta-level.
 – MediatorManager , at base level, creates and manages the iPOJO components

implementing a mediator, that is, the scheduler (S in Fig. 9.9), the processor (P),
the dispatcher (D) and the communication components (C).

 – MediatorControler handles the causal relation between the model in the
 Specifi cationModelManager and the implementation controlled by the
 MediatorManager.
 MediatorControler is an observer of Specifi cationModelManager . When register-

ing as an observer, it provides Specifi cationModelManager with a callback method
that has to be called when the mediator specifi cation is changed. MediatorControler

Cilia Runtime

Synchronized (causal relation)

Meta level

Base level

Domain concepts
(Java)

Running mediation chains
(iPOJO components)

DSCilia file

 Fig. 9.8 Cilia meta- and base levels

9 Autonomic Mediation in Cilia

247

also transforms mediator specifi cations into management directives intended for the
 MediatorManager . The latter can be seen as a factory [7]. It creates all the necessary
components and manages their life cycle.

9.3.4 Cilia Dynamic Monitoring

 The monitoring functions are implemented at the base level and controlled by the
meta-level. That is, the meta-level is in charge of activating/deactivating the moni-
toring activity, selecting the state variables that are needed, collecting the values of
those state variables and deciding on the storage policy.

 The base level implements the monitoring functions per se. It tracks and gets the
relevant state variables and makes their values (measures) available to the meta-
level. Implementation is based on the following principles (see Figs. 9.10 and 9.11):
 – Each iPOJO component is augmented with a specifi c administration handler.
 – Components of type MediatorManager have a monitoring API and must pass

monitoring directives down to the iPOJO components they manage.

S P D

Mediator
Manager

Mediator
Controler

SpecificationModel
Manager

Observation/Notification

Lifecycle management

C C

Meta level

Base level

Mediator

Specifications

Mediation Chain

 Fig. 9.9 Implementation of the synchronisation mechanisms

9.3 Autonomic Cilia

248

 – Components of type RuntimeModelManager are linked to each MediatorModel .
They contain the current measures of the relevant state variables of the monitored
mediator.
 Let us examine these three aspects in more detail. As previously explained, Cilia

concepts are transformed into iPOJO components for execution purposes. As any
iPOJO component, these components are executed in an extensible container where
 handlers can be installed. Put simply, a handler is a piece of code that can be exe-
cuted automatically before or after a method call.

 A specifi c administration handler, containing monitoring capabilities, has been
added to every base-level iPOJO component. Thus, all the components representing
a scheduler, a processor or a dispatcher are now equipped with monitoring features
that can be activated, deactivated and confi gured. Concretely, every time a method
is called, the monitoring handler is awakened. Its purpose is to capture all sorts of
information about incoming and outgoing messages, like their size, their treatment
time and their required resources. Monitoring handlers are also able to track domain-
specifi c information. Such information is to be kept in a fi eld of the POJO (like a
processor) and marked as monitored by the developers of the POJO. The notion of
administration handler is illustrated by Fig. 9.10 .

 The MediatorManager components, presented in the previous subsection, are
responsible for controlling in a homogeneous way the monitoring of their
attached components, which by defi nition pertain to the same mediator. The
purpose of a MediatorManager is then to transmit coherent monitoring direc-
tives to schedulers, processors and dispatchers and to appropriately combine
data collected from these objects.

 Finally, a RuntimeModelManager component stores all the measures that are
emitted by the MediatorManager . Recall there are several strategies to send those
values: periodically, threshold-based, unconditionally, etc. RuntimeModelManager
components have a limited memory. They can store several measures for a given
state variable but not an extensive history.

 The global monitoring architecture is illustrated by Fig. 9.11 .
 To sum up, monitoring is managed in a hierarchical way. The needs are expressed

at the meta-level, through APIs provided by the Specifi cationModelManager com-
ponent. Then, directives are observed by the MediatorControler and, fi nally, passed
on to the MediatorManager components. State variables values are collected by the

POJO

Admin

 P
ro

vi
de

d

R
eq

ui
re

d

 Fig. 9.10 Administration
handler in iPOJO components

9 Autonomic Mediation in Cilia

249

 Fig. 9.11 Cilia monitoring

S P D

Mediator
Manager

Mediator
Controler

SpecificationModel
Manager

Observation/Notification

Lifecycle management

C C

Mediator

RuntimeModel
Manager

Monitoring
events and measures

Specifications Runtime

Mediation Chain

and monitoring

administrative handlers of the low-level components. Those values are consolidated
by the MediatorManager component and sent up to the RuntimeModelManager
component via the OSGi EventAdmin facility, a simple communication bus pro-
vided by OSGi.

9.3.5 Cilia Dynamic Adaptation

 Regarding adaptations, the most ambitious goal of Cilia is to allow the dynamic
modifi cation of the chains topology. This requires preserving control fl ows and saving
the data being processed, the messages in our case. Just like monitoring, adaptation

9.3 Autonomic Cilia

250

directives come from the meta-level. Concretely, the meta-level decides on the
mediators to be modifi ed, added, suppressed or swapped. Decisions are imple-
mented by modifying specifi cations in the meta-level, using a domain-specifi c language
(the DSCilia language or the Java DSL). Directives are transmitted down to the base
level that has to realise modifi cations in the code.

 The base level implements the adaptation functions per se. To do so, it imple-
ments a quiescence protocol, as discussed in Chap. 6 , allowing the safe adaptations
or replacements of mediators. Precisely, implementation is based on the following
principles:
 – All messages entering a mediator can be saved outside of the mediator.
 – Components of type MediatorManager can be locked or unlocked.
 – Specifi cationModelManager provides a life-cycle management API, including

start, stop, resume and remove directives.
 Let us now detail these different implementation aspects. The administration

handler of the iPOJO components that implement schedulers has been modifi ed in
order to store the data received by the schedulers outside of the components.
Specifi cally, incoming messages (data) are fi rst saved in a dedicated component
called DataPersistency and then transmitted to the scheduler. This function is
confi gurable: it can be activated or not. It is illustrated by Fig. 9.12 .

 In addition to that, a mediator can be locked. This operation is proposed at the
 MediatorManager level. When a mediator is locked, incoming messages are redirected
to the DataPersistency component but are not transmitted to the scheduler POJO. This
mechanism is used to put a mediator in a ‘quiet’ state, that is, a state where no computa-
tion is going on. When a mediator is quiet, that is, when it is locked and all the started
computations are done, then it can be removed, and the stored messages can be sent to
another mediator (a brand new one or an existing one). This prevents data losses during
mediator hot-swapping or chain topology change operations.

 Once again, implementing such a mechanism has a cost. Messages transmitted
between mediators are intercepted, stored, managed, etc. However, this is the price
to pay to be able to update a mediation chain without data losses or broken control

 Fig. 9.12 Message
management in Cilia
schedulers

POJO
(scheduler)

Admin

P
ro

vi
de

d

R
eq

ui
re

d

DataPersistency

Incoming messages

9 Autonomic Mediation in Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_6

251

fl ows. The mechanism can be controlled however. In particular, messages can be
saved or not depending on the context, the importance of mediators, the past problems,
the current issues, etc.

9.3.6 Knowledge Module

 The purpose of the knowledge module in Cilia is to describe the running Cilia artefacts
(chains, mediators, adapters, bindings, etc.) in terms of specifi cation and runtime models.
It can be seen as the ‘K’ in the MAPE-K approach presented in Chap. 4 , architecture.

 This ‘K’ is directly built by the Cilia framework and can be confi gurable (even
disengaged if desired). It contains a selection of measures and events characterising
a mediation solution over time that is corresponding to past and present runtime
situations. For instance, it may record topological changes of the mediation chains,
signifi cant past values of specifi ed state variables and current values of specifi ed
state variables. The defi nition of the information to be kept can be specifi ed by auto-
nomic managers through dedicated APIs. The autonomic managers can also directly
use the touchpoints provided by the Cilia framework, but in this case, they have to
build and maintain their own knowledge base.

 Interactions between the knowledge base and the runtime are bidirectional. The
knowledge base can explicitly fetch data through the monitoring touchpoints and
subscribe to events originating in the Cilia runtime. Also, the knowledge can trigger
adaptations on the runtime and get feedback.

 As previously indicated, the model provided by the knowledge base—the ‘K’—
is causal. Modifi cations made on that model are automatically propagated down to
the running chains and vice versa. For instance, suppressing a mediator in the model
implies suppressing the corresponding implementation under execution in the Cilia
runtime. Of course, a delay is necessary for an adaptation to be completed and for
the results to be observable back in the K model. This has to be taken into account
when measuring the effects of an adaptation, as explained in Chap. 8 .

 As illustrated by Fig. 9.13 , the role of domain engineers is then to implement the
mediation chains and the autonomic managers providing self-management features.
If they decide to use the knowledge module for monitoring and adaptation purposes,
they can concentrate on decision-making algorithms (see Chap. 7). Simply put, they
‘just’ have to dynamically confi gure the monitoring function, get runtime information
and apply adaptations onto the knowledge module.

9.4 Towards Autonomic Life-Cycle Management
of Cilia Chains

9.4.1 Challenges and Motivation

 Life-cycle management comprises all operations necessary for getting an applica-
tion from its specifi cation stage to its execution stage. Often, life-cycle management
must extend into the runtime for performing maintenance operations including

9.4 Towards Autonomic Life-Cycle Management of Cilia Chains

http://dx.doi.org/10.1007/978-1-4471-5007-7_4
http://dx.doi.org/10.1007/978-1-4471-5007-7_8
http://dx.doi.org/10.1007/978-1-4471-5007-7_7

252

updates, optimisations, repairs and extensions (see Chap. 1). In its current form,
the Cilia framework supports the autonomic life-cycle management of mediation
chains. It provides monitoring and adaptation touchpoints at two abstraction
levels. First, mediation domain concepts such as chains, mediators and bindings
can be manipulated through a confi gurable knowledge base. Second, the concepts
from the underlying implementation technology (iPOJO) can be manipulated
through the Cilia runtime. Autonomic managers can be built on top of these
touchpoints.

 However, in some situations, developing autonomic managers may require
signifi cant effort. Indeed, when mediation chains and their execution environment
become complex, the corresponding life-cycle management logic is also complex,
requiring expertise in both autonomic computing and mediation domains. Advanced
solutions could facilitate the development and maintenance of autonomic management
systems in the mediation domain. The main challenges to address for providing
such solutions stem from key questions such as:
 1. How to express the business-level objectives of autonomic life-cycle managers at

a high level of abstraction? (See discussion on goals in Chap. 2 .)
 2. How to develop the system management logic that automatically attains the

objectives?
 3. How to develop the decision logic that uses monitoring information and enforces

adaptation operations in order to attain the objectives in the presence of runtime
change? (See Chap. 7 .)

 Fig. 9.13 Cilia knowledge base

OSGi/iPOJO/RoSe

Cilia Runtime

Knowledge

Data access &
Subscription
management

Adaptation
and feedback

Monitoring
directives

Adaptation
directives

M

A P

E

System
Developer

Specify and code
the mediation chains

Implement the
autonomic features

9 Autonomic Mediation in Cilia

http://dx.doi.org/10.1007/978-1-4471-5007-7_1
http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://dx.doi.org/10.1007/978-1-4471-5007-7_7

253

 4. How to ensure that the decision logic can handle a large spectrum of changes?
 5. How to render autonomic managers extensible in order to easily add new objec-

tives and decision functions able to pursue them?
 6. How to ensure the scalability of autonomic managers with the size, number and

distribution of mediation chains and with the frequency of dynamic changes to
adapt to?

 7. How to ensure the life-cycle management of the autonomic managers so that
they can follow the deployment of mediation chains and survive failures in the
underlying platforms?

9.4.2 Model-Based Solutions

 As introduced in Chap. 7 , knowledge- and model-based approaches have been
employed for facilitating various life-cycle management operations. Here we depict
the applicability of some of these solutions to the life-cycle management of Cilia
mediation chains. We show how increasingly evolved approaches can progressively
address the aforementioned challenges.

 Initially, model-based approaches were mainly devised for the deployment
phase. Here, architectural models formally specify the application architecture, the
available distributed platforms and the mapping of application components onto the
platforms (e.g. [9]). An automatic deployment facility uses the model to deploy,
instantiate and confi gure components onto the corresponding platforms. However,
in these solutions, automatic deployment is executed off-line and subsequent model
changes require full application redeployment. This type of solution can automate
the deployment of Cilia mediation chains (challenges 1 and 2).

 Having to deal with dynamic changes progressively pushed these initial solu-
tions into the runtime and forced them to evolve in order to deal with a wider range
of changes (challenges 3 and 4). This requires more sophisticated reasoning processes,
which in turn requires more substantial knowledge of managed resources. Naturally,
the use of architectural models was extended to enable the formal representation of
system knowledge. Architectural refl exion was introduced to ensure that available
knowledge constantly refl ects the managed system state [10 , 11].

 Figure 9.14 depicts the general architecture of this solution type. It relies on two
architectural models: a reference architecture formally specifi es management objectives,
and a runtime architecture maintains a causal relation with the managed system.
In this context, the autonomic manager must ensure that the runtime architecture
conforms to the reference architecture (goals). This approach has been defi ned as a
stand-alone paradigm identifi ed as models at runtime (known as M@R) [12 , 13].

 As the scale, desired adaptability and extensibility of the managed system
increase, the aforementioned solutions must be further refi ned. Two important limi-
tations must be addressed for this purpose. First, ‘traditional’ reference architectures
may prove too restrictive. Indeed, defi ning concrete model elements, such as unique
mediator component implementations, exact numbers of mediator instances,
precise interconnections and strict platform mappings, severely limits possible system

9.4 Towards Autonomic Life-Cycle Management of Cilia Chains

http://dx.doi.org/10.1007/978-1-4471-5007-7_7

254

adaptations. Second, solutions that employ a centralised process for implementing
life-cycle management eventually reach their scalability limits.

 To address these limitations, an increasing number of research initiatives have
started to explore the introduction of more abstract modelling for increased fl exibility
at runtime and decentralised control [14 – 17]. In some approaches, the centralised
model interpreter is replaced by multiple independent processes, executing in parallel
and interacting with each other so as to meet common goals. Coordination among
decentralised processes relies either on a shared template, such as an abstract archi-
tectural model [14 – 16] or on a shared recipe, such as a set of rules [17].

9.4.3 The Cube Project

 The Cube research project 6 aims to develop an autonomic life-cycle management
solution that addresses the aforementioned challenges and that is applied to Cilia
mediation systems. This subsection presents the main ideas behind the Cube initiative
and indicates the subset of features that have been implemented in existing Cube
prototypes.

 Cube adopts an architectural model-based approach for managing software
systems life cycle, as presented above, and introduces several extensions. Namely,
Cube uses an abstract architectural model , called archetype , to defi ne objectives
formally, while leaving suffi cient runtime fl exibility to the life-cycle management

OSGi/iPOJO/RoSe

Cilia Runtime

Knowledge
(runtime architecture)

Monitoring / lifecycle management

Autonomic
Manager

ApplicationApplication

Reference architecture

Compare and adjust

 Fig. 9.14 Model-based autonomic life-cycle management

6 Cube project is developed by the Adele team at University of Grenoble in collaboration with the
S3 team at Telecom Paris Tech (Cube homepage: http://cube.imag.fr).

9 Autonomic Mediation in Cilia

http://cube.imag.fr/

255

process (challenge 4). More specifi cally, administrators only specify general
constraints that must hold in any runtime confi guration of the managed system. This
provides an increased adaptation leeway, as choices corresponding to archetype
constraints can be postponed until runtime, when the actual system state and execu-
tion context can be known.

 To ensure increased scalability, adaptability and robustness challenges (6 and 7),
Cube’s autonomic management process is decentralised and implemented as a set
of self-organising agents; each agent manages a distinctive system part. The runtime
model is accordingly split among the agents; each agent only maintains the model
fragment refl ecting its managed system part. The role of Cube’s agents is to coop-
eratively create and continuously adapt an executing application whose overall
runtime model conforms to the reference model (archetype).

 Let’s take a closer look at Cube’s most signifi cant characteristics. First, a Cube
archetype is an abstract architectural model. This means that it includes several
types of generic elements and alternative connectivity and deployment options. For
example, mediator components are specifi ed in terms of their abstract types rather
than their concrete implementations. This means that the life-cycle manager (agents)
can dynamically choose from a variety of alternative implementations when
mapping a reference component type to an executing mediator instance. Suitable
implementations can be discovered at runtime and introduced at any time during the
managed system’s life cycle. Similarly, abstract types can be used to defi ne compo-
nent interconnections and deployment platforms. For example, a deployment
platform can be specifi ed in terms of its minimum CPU performance and memory
availability. At runtime, any available platform that features these properties can be
used. If new platforms become available, Cube agents can discover and integrate
them. In case of platform crashes or when energy consumption must be minimised,
Cube agents can similarly migrate mediator instances to remaining devices. Cilia’s
support for safe mediator adaptations (without data losses) provides a valuable base
that agents can rely on.

 Consider now Cube’s decentralised management process. Cube agents feature
identical implementations and differentiate their behaviours at runtime depending
on their role in the overall management process. Each agent receives an identical
copy of the archetype and resolves an archetype part (or fraction) so as to create and
maintain a corresponding application part (Fig. 9.15). At the same time, agents
must coordinate their actions and self-organise in order to join their application
parts into a coherent application.

 Various agent design choices can be made notably with respect to the agent life
cycles (challenge 7) and assignment of archetype parts. Regarding life cycle, agents
can mutually create each other at runtime [18] or be created statically by an external
process [19]. Regarding archetype partitioning, each agent may be assigned an
archetype part that represents [18] (a) a component type, (b) a component instance
[18], (c) a predefi ned part or (d) a dynamically determined part [19]. The current
Cube prototype creates all agents via an external process; one agent is placed on
each platform pertaining to the managed system (Fig. 9.15). Further details on the
archetype specifi cation, agent coordination and management process are available

9.4 Towards Autonomic Life-Cycle Management of Cilia Chains

256

from [18 – 21]. Additional coordination solutions can be investigated based, for
example, on gossip-based [22] or emergent coordination approaches [23].

9.4.3.1 Example
 Let us consider an illustrative example of a Cube archetype and its life-cycle man-
agement process, in the context of a theoretical mediation application. Here, data
collected from any source (Cilia Adapter in) must fi rst be aggregated (via a Cilia
mediator) and then transmitted to a destination (Cilia Adapter out). To improve
performance, an aggregator may only accept data from a maximum of three
sources. As sources join the system dynamically, the mediation chains must
accordingly adjust their composition in order to integrate them. Figure 9.16 lists
this example’s archetype.

 The archetype defi nes three types of mediator components (lines 6–8): S (source),
A (aggregator) and D (destination). It also defi nes a number of constraints on
these types. Namely, any data source must be connected to an aggregator (line 18),
and any aggregator must be connected to a destination (line 19). When attempting
to acquire an aggregator for a certain source, the agents in charge must fi rst try to
fi nd an existing one (line 21) and then, if none is available, to create one (line 23).
The same policy is specifi ed for acquiring destination components. A fi nal con-
straint limits to three the number of input connections that each aggregator may
accept (line 26).

 Figure 9.17 depicts the runtime model 7 of the mediation chains created by the
agents after the dynamic insertion of eight data sources. The sources were added
manually, triggering the agents to instantiate and interconnect of the necessary

Cube Agent

Knowledge

Archetype

Cube Agent

Knowledge

Cube Agent

Knowledge

Application Part Application Part Application Part

Archetype Archetype

Platform Platform Platform

 Fig. 9.15 Self-organising Cube agents controlled by a unique archetype

7 Cube’s graphical interface shown here is based on the Prefuse visualisation toolkit— http://
prefuse.org

9 Autonomic Mediation in Cilia

http://prefuse.org/
http://prefuse.org/

257

mediator components—aggregators and destination—in order to conform to the
archetype. Mediators in the fi gure are labelled to indicate their types (S (source),
A (aggregators) and D (destinations)) and their sequence number in the agent-based
instantiation process (0 (fi rst instantiated) to 11 (last instantiated)).

 This example was kept simple for comprehensibility reasons. In a real scenario,
the archetype would most likely be extended with additional component types—
both mediators and platforms—and corresponding constraints (e.g. impose a single
destination (D) instance for the entire application). Further examples and details on
the archetype specifi cation and agent-based management process can be obtained
from the Cube project’s Website— http://cube.imag.fr .

 Fig. 9.16 Cube archetype
example

 Fig. 9.17 Example of
Cube-based self-grown
mediation chains

9.4 Towards Autonomic Life-Cycle Management of Cilia Chains

http://cube.imag.fr/

258

9.4.3.2 Discussion
 By design, the Cube approach promises several advantages over related life-cycle
management solutions. Conversely, the same design features that provide these
advantages can also introduce certain drawbacks. In short, abstract reference mod-
els (archetypes) allow more runtime fl exibility but provide less statically verifi able
guarantees over the automatically determined solutions. The right level of abstrac-
tion must be found for each system in order to ensure the necessary balance between
adaptability and control.

 Similarly, decentralising the life-cycle management process and fragmenting the
runtime model can provide clear scalability and robustness advantages. At the same
time, decentralised control makes it diffi cult or sometimes impossible to obtain
management solutions that are globally optimal. Furthermore, communication
overheads required by agent coordination may impact global system performance;
system development must consider additional challenges including convergence
and stability. As before, the right compromise between complete, centralised con-
trol and long-term scalability and survivability must be determined depending on
each managed system. Generally, Cube is mainly applicable to cases where the
robustness of mediation chains in the long term is more important than instant system
performance, even though a certain baseline performance level may be ensured.
Conversely, the Cube approach should be avoided in cases where strong guarantees
can be guaranteed via centralised control.

 Concerning positioning with respect to related work, the Cube approach fi nds
itself at the intersection of several research fi elds and subfi elds, of which we only
mention a few at this point. For example, from a purely autonomic computing per-
spective, Cube can be seen as a solution for the autonomic life-cycle management
for large-scale, distributed and highly dynamic mediation systems [18 , 20]. With
respect to the model-based software engineering fi eld, Cube introduces a particular
combination of design features, including model abstraction and control decentrali-
sation, for providing increased runtime fl exibility and scalability. Also, Cube is
similar to the problem-centred approach presented, for example, in [24] or[25],
where specifying a Cube archetype corresponds to posing a problem. From a bio-
inspired system engineering perspective, Cube can be related to morphogenesis—
the development process of biological organisms [21]. From this standpoint,
Cube’s archetype can be viewed as the equivalent of a biological genotype and the
resulting application instances as the equivalent of biological phenotypes. From a
self- organising and self-adaptive system perspective, Cube can be seen as a compro-
mise between top-down and bottom-up approaches, where the archetype provides
the means of controlling the global result of decentralised self-organising processes
[19]. From a constraint programming perspective, Cube can be considered as a
constraint- oriented solution, where the constraints are defi ned via the archetype and
the constraint resolver is decentralised, allowing partial solutions to combine into
globally conformant resolutions.

 As a fi nal note, it is important to note that most of the features presented for the
Cube approach represent envisaged capabilities associated to the generic Cube
proposal and have not yet been fully implemented or validated. Developments so far

9 Autonomic Mediation in Cilia

259

have focused on the initial instantiation of mediation applications from relatively
simple archetypes. Two Cube prototypes have been developed for experimenting
with possible design options within the general Cube approach. Both prototypes
rely on iPOJO service-oriented component technology and target mediation sys-
tems as application domains. The latest prototype at this date, as presented in [19],
is available from the project’s Website. Future developments will become available
at the same location.

9.5 Key Points

 In this chapter, we have introduced the following important points:
• Cilia is an autonomic mediation framework that is made available for use and

consultation at http://wikiadele.imag.fr/index.php/Cilia . The framework has
been designed with autonomicity in mind. It is based on many of the techniques
presented in this book.

• An autonomic system like Cilia is more complex than an equivalent system without
autonomic features. As already said (Chap. 1 in particular), absorbing complexity
cannot be achieved without any impact on the complexity of the software itself.

• Cilia mediation chains can be distributed across several machines, but the auto-
nomic decisions are centralised since a unique autonomic manager deals with the
management of all the running mediation chains.

• Cilia implementation is based on a meta-level and a base level. The meta-level
contains Java objects representing domain-specifi c concepts like mediators,
bindings and chains. The base level contains the iPOJO components implement-
ing these concepts.

• Monitoring in Cilia is confi gurable and dynamic. Monitoring directives are
expressed at the meta-level and are implemented at the base level. Monitoring is
based on the notion of state variables (borrowed from control theory) that are used
to model system dynamics. Adaptation in Cilia is also dynamic. This is made pos-
sible by the implementation of a quiescence protocol at the base mediator level.

• Cilia comes with a knowledge base that can be confi gured dynamically. The
knowledge base contains information about the running chains and past events
like topology evolutions. The knowledge base is a model providing a biased,
partial view of the running artefacts.

• Cilia can be extended to support fully autonomic life-cycle management
capabilities, facilitating the deployment, installation, instantiation, confi gura-
tion, adaptation and repair of mediation chains. A related research project called
Cube is being developed to provide such capabilities (http://cube.imag.fr). Cube
relies on several important concepts, including model-based management, archi-
tectural refl exion and self-organising multi-agent systems.

• In Cube, management objectives are formally specifi ed via an abstract architectural
model, called archetype. Cube autonomic management aims to create and adapt
application instances that conform to the archetype. This process is decentralised
and implemented via multiple self-organising agents.

9.5 Key Points

http://wikiadele.imag.fr/index.php/Cilia
http://dx.doi.org/10.1007/978-1-4471-5007-7_1
http://cube.imag.fr/

260

• Cube agents feature identical implementations and detain an identical copy of
the archetype. They must collaborate in order to dynamically split the archetype
among themselves. Each agent’s archetype part defi nes its local objective; attaining
this objective implies creating and adapting an application part that conforms to
the archetype part. Agents must then self-organise so as to create matching appli-
cation parts and combine them into coherent global applications.

• Cube’s reliance on an abstract model (archetype) increases the runtime fl exibility
of applications that must conform to this model. Cube’s decentralised manage-
ment process (agents) increases the effi ciency of local adaptations and repairs
and reinforces overall system robustness and survivability.

 References

 1. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25 (3),
38–49 (1992)

 2. Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services. IEEE Expert
 12 (5), 38–47 (1997)

 3. Lalanda, P., Bellissard, L., Balter, R.: Asynchronous mediation for integrating business and
operational processes. IEEE Internet Comput. 10 (1), 56–64 (2006)

 4. Garcia, I., Pedraza, G., Debbabi, B., Lalanda, P., Hamon, C.: Towards a service mediation
framework for dynamic applications. In: Proceedings of the IEEE 2010 Asia-Pacifi c Services
Computing Conference, Hangzhou, China, 6 Dec 2010

 5. Morand, D., Garcia, I., Lalanda, P.: Autonomic enterprise service bus. In: Proceedings of the
Service Oriented Architectures in Converging Networked Environments (SOCNE), Toulouse,
France, 5 Sept 2011

 6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns; Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, Boston (2003)

 7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (1995)

 8. Garcia, I., Morand, D., Debbabi, B., Lalanda, P., Bourret, P.: A refl ective framework for media-
tion applications. In: Proceedings of the 10th International Middleware Workshop on Adaptive
and Refl ective Middleware, Lisbon, Portugal, 12 Dec 2011

 9. OMG.: Deployment and confi guration of component-based distributed applications specifi ca-
tion. http://www.omg.org/spec/DEPL . Apr 2006

 10. Cazzola, W., Savigni, A., Sosio, A., Tisato, F.: Architectural refl ection: bridging the gap
between a running system and its architectural specifi cation. In: Proceedings of 6th IEEE
Reengineering Forum (REF’98), pp. 12-1–12-6, Firenze, Italia, 8–11 Mar 1998

 11. Cazzola, W., Savigni, A., Sosio, A., Tisato, F.: Architectural refl ection: concepts, design,
and evaluation. Technical Report RI-DSI 234–99, DSI, Università degli Studidi Milano,
May 1999

 12. IEEE Comput, Special issue on “Models @ Run.Time”, 42 (10) (2009)
 13. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap.

In: Future of Software Engineering, pp. 259–268. IEEE Computer Society Washington, DC,
USA (2007)

 14. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for distributed
systems. In: Workshop on Self-Healing Systems, pp. 33–38, Charleston, SC, 2002

 15. Sykes, D., Magee, J., Kramer, J.: FlashMob: distributed adaptive self-assembly. In: Proceedings
of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 100–109, Honolulu, 2011

9 Autonomic Mediation in Cilia

http://www.omg.org/spec/DEPL

261

 16. Nafz, F., Seebach, H., Steghöfer, J.-P., Anders, G., Reif, W.: Constraining self-organisation
through corridors of correct behaviour: the restore invariant approach. In: Organic
Computing—A Paradigm Shift for Complex Systems. Autonomic Systems, vol. 1, Part 1,
pp. 79–93. Springer, Basel (2011)

 17. Ulieru, M., Doursat, R.: Emergent engineering: a radical paradigm shift. Int. J. Auton. Adapt.
Commun. Syst. (IJAACS) 4 (1), 39–60 (2011)

 18. Diaconescu, A., Lalanda, P.: Self-growing applications from abstract architectures an applica-
tion to data-mediation systems. In: IEEE Symposium Series on Computational Intelligence
(SSCI 2011) – IEEE Workshop on Organic Computing (OC 2011), Paris, France, 11–15 Apr
2011

 19. Debbabi, B., Diaconescu, A., Lalanda, P.: Controlling self-organising software applications
with archetypes. In: 6th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2012), Lyon, France, 10–14 Sept 2012

 20. Diaconescu, A., Lalanda, P.: A decentralised, architecture-based framework for self-growing
applications. In: Proceedings of the 6th ACM/IEEE International Conference on Autonomic
Computing and Communications (ICAC 2009), Barcelona, Spain, 15–19 June 2009

 21. Diaconescu, A., Debbabi, B., Lalanda, P.: Self-growing software from architectural blueprints.
In: 3rd Morphogenetic Engineering Workshop (MEW 2011), satellite of the 20th European
Conference on Artifi cial Life (ECAL 2011), Paris, France, 8–12 Aug 2011

 22. Anthony, R.J.: Emergence: a paradigm for robust and scalable distributed applications.
In: International Conference on Autonomic Computing ICAC, New York, 2004

 23. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst. 23 (3), 219–252 (2005)

 24. Landauer, C., Bellman, K.L.: Knowledge-based integration infrastructure for complex systems.
Int. J. Intell. Control Syst. 1 (1), 133–153 (1996)

 25. Landauer, C.: Problem posing as a software engineering paradigm. In: Proceedings of
the 21st International Conference on Systems Engineering (ICSENG’11), 16–18 August,
Las Vegas, USA, pp. 346–351 (2011). http://dx.doi.org/10.1109/ICSEng.2011.69

References

http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

263P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7_10,
© Springer-Verlag London 2013

 The purpose of this last chapter is twofold. First, it draws together the lessons we have
learned about autonomic computing and the techniques that are used, at the time of
writing, to design and implement self-managed software systems. Our purpose is
clearly to help readers to understand, develop and maintain autonomic systems.

 The second objective of this concluding chapter is to look ahead and foresee the
future of autonomic computing, while also attempting to point out some of the most
important challenges to address in order to attain the full autonomic computing
vision. To achieve this risky exercise, we view the topic from the perspective of how
autonomic systems will be engineered and how assurances regarding their behav-
iours can be made. We acknowledge that targeting system-level autonomy will
presumably necessitate integrated solutions, incorporating multiple autonomic ele-
ments, each one dealing with different management concerns and operating at various
granularity levels. In this context, we provide some examples of the more specialised
fi elds of autonomic networking and autonomic machines. We also have a discussion
about next-generation software engineering techniques, approaches and tools that
would be required to meet future computing system requirements.

 10 Future of Autonomic Computing
and Conclusions

264

10.1 Autonomic Computing in This Book

 We believe that autonomic computing is bound to change the way software systems
are developed. This new fi eld is addressing some of the issues resulting from the
ever-increasing complexity of software administration and the growing diffi culty
encountered by software administrators in performing their job effectively.
Undeniably, properly managing software systems is a considerable challenge for
society and has to be handled urgently. The lack of appropriate responses to this
issue could force us to reconsider our reliance on software to support our businesses
and daily activities.

 Autonomic computing can rely on advances in several scientifi c fi elds, some-
times very different from each other. In particular, autonomic computing is rooted
in several (surprisingly) complementary fi elds, most notably including control theory
and biology. To some extent, these two fi elds have paved the way to the classical
autonomic architectures where a number of cooperating context-aware control
loops can bring about a wide range of adaptations. Autonomic computing also relies
heavily on software engineering best practices to dynamically structure, monitor
and change software systems. In some way, software engineering provides the nec-
essary techniques to implement the multiple control loop vision, and this can be said
to be derived from biology in some instances. Further, autonomic computing is
highly dependent on knowledge representation, reasoning techniques and learning
as defi ned in various computer science fi elds like artifi cial intelligence or more
distant domains like economics and psychology. From a certain perspective, these
latter fi elds provide the means to reason about particular situations and make deci-
sions regarding the possible courses of administrative actions to be undergone.

 Yet, despite these infl uences, we believe that autonomic computing is a fi eld in
its own. Indeed, the runtime administration of software systems requires the defi ni-
tion of specifi c methods and techniques, still to be improved and explored. This is a
formidable challenge, exacerbated by the complexity and variety of today’s soft-
ware systems and their execution environments, that will demand intensive research
for the years to come.

 In fact, because they seek to unburden system administrators and improve overall
effectiveness, autonomic software systems are certainly more diffi cult to conceive
and implement than systems without autonomic capabilities. Autonomic systems
are expected to absorb the complexity of usually manual administrative tasks and
provide intuitive, high-level interfaces for human administrators. Meeting this
requirement leads to increased system complexity overall, albeit with the added
advantage of minimising perceived system complexity for administrators and users.

 This observation is certainly the main motivation of this book. Indeed, along
with necessary explanations about the goals and origins of autonomic computing,
we believe that it is of major importance to present, in a coherent way, the different
techniques that are available today to design and implement autonomic software
systems. Of course, given the large number of techniques that exist, as well as the
high-quality projects in the autonomic computing area, we had to make tough
choices regarding what we include and what we cannot possibly cover in one book.
Decisions were guided by the rapid applicability of the techniques. In particular, we

10 Future of Autonomic Computing and Conclusions

265

dedicated quite an important part of this book to review software engineering tech-
niques and principles for architecting, monitoring, reasoning and adapting sys-
tems—for they are keys to software production in general. The rest of this chapter
is concerned with longer term lines of work.

10.2 Alternative Autonomic Stories

 In parallel to the general focus on autonomic computing, there have been a number
of groups who have isolated a section of the general computing fi eld and focused
on self-management within those fi elds. Such work is more specifi c to the nature
of the fi elds themselves but also overlaps somewhat with the general notion of
autonomic computing that we present in this book. Two specifi c areas are auto-
nomic communications and autonomic machines. The former is examining the
subject from a more topological point of view, where the network is a graph that
self-heals. The latter examines how one can imagine autonomicity right down to
the very metal of the machine itself. To be autonomic, a large-scale distributed
system will most likely have to integrate aspects of several fi elds, including auto-
nomic communications, autonomic machines and autonomic software.

10.2.1 Autonomic Communications

 The Internet is the interconnecting fabric that supports today’s distributed computing
resources. Interestingly, even before this current Internet was conceived, routing sys-
tems over the Internet’s predecessor, Arpanet, had autonomic characteristics in terms
of a form of feedback loop and implicitly monitored internal and external conditions.
In 1969, Will Crowther, from BBN technologies, the company who won the initial
Arpanet contract, used mathematical graph theory to design the Arpanet routing pro-
tocols. Using distance vectors, Crowther’s protocol was both distributed and adaptive,
designed to adapt to quickly changing network characteristics. External conditions
were monitored in terms of delays, which were estimated by queue lengths at each
link and a cost equated to those delays. Then routing decisions were made based on
the end-to-end estimated costs of packet transfer; the theory being that traffi c distribu-
tion should be balanced fairly on all outgoing links to a given destination as a result.

 In 1983, Arpanet gave way to the Internet protocol suite we use today, TCP/IP.
The fl ow and congestion control mechanisms used in this modern protocol work in
a similar fashion to the Arpanet routing scheme (the reader is directed to the many
sources of information on TCP/IP that describe in detail how this works). To this
end, the protocols that compose the Internet can be described as self-organising,
self-managing, self-optimising, etc., though they were designed long before the
term autonomic computing was coined.

 The autonomic capabilities of communication protocols such as TCP/IP manage
to hide from programmers the complexity of the underlying network infrastructure.
However, new-generation networks seem to raise additional challenges, as they

10.2 Alternative Autonomic Stories

266

develop in an increasingly hectic and decentralised manner, potentially integrating
numerous protocols, technologies and administrative goals [1 , 2]. In ubiquitous or
pervasive systems, in addition to hardware and software heterogeneity, network
dynamics increases dramatically as various communication-enabled equipments
may frequently join, leave or move through the network. This signifi cantly impacts
the emerging network topology and usage patterns and can challenge traditional
routing and discovery protocols. Finally, as network control becomes increasingly
decentralised, traditional approaches to network confi guration and security manage-
ment become progressively inadequate.

 While the potential benefi ts of new-generation networks are signifi cant, addressing
the ensuing challenges require redesigning many of the existing communication
models and architectures, in order to render network services more fl exible and
dynamically adaptable, at the infrastructural, application and user levels. Meanwhile,
global network dependability, trustworthiness and performance must be maintained.
Therefore, autonomic communications research strives to endow next-generation
networks with self-*capabilities that can handle signifi cant heterogeneity, dyna-
mism and decentralised control.

 It is no surprise that a massively complex, planet-scale system like the Internet
would be one of the fi rst to truly embrace the principles of self-* as we know it
today. Specifi cally, if one were to examine any text on autonomic networking, one
would see that modern autonomic communications cover the areas that would gen-
erally map to those of self-knowledge, policy management, confi guration manage-
ment and network defence and security, and at this level, this approach resembles
the approaches we present in this book. However, there is an obvious communica-
tions focus, which looks at the system in terms of its nodes and links (a graph view
of the network topology), rather than components, services, software engineering,
etc. Having said this, there is not a great deal of difference between the general and
communications viewpoints—other than the devil being in the detail.

 Obviously, core to the autonomic communications system is the knowledge that
it obtains. As before, the internal and external environments are understood by
sensing or probing; however, here it focuses on individual network elements, and
therefore, self-knowledge can be obtained from switches and network interfaces.
Confi guration, both in terms of current and historic system state information, can
also be derived from traffi c fl ows or performance data. Self-knowledge then feeds
the self-managing components, and the higher-level network goals then guide the
runtime system in allowing it to control the network and to protect it from the many
forms of attack.

 The topological aspects of the communications system, such as the organisation
and maintenance of the components of the computer network, can be managed in an
autonomic way. This is typically driven through a database containing details, for
example, network addresses, program versions and updates, and allows a form of
automated confi guration management. Currently, network administrators use tools
or scripts to interface or maintain this resource. Historic data is also stored so that if
a change leads to an undesirable state, the system should be able to rollback changes
to the state the system was in prior to issuing the changes. Needless to say,

10 Future of Autonomic Computing and Conclusions

267

confi guration management interfaces with all of the other autonomic components in
the communications subsystem.

 The rules that govern the topological confi guration management and how the self-
knowledge is used are represented by the policy management subsystem. Policy
management systems are used in general autonomic computing also. However, here
it includes the specifi cation, deployment, enforcement and reasoning about the poli-
cies that govern the activities that concern security, resource allocations and network
confi guration management. They are a means to defi ne the relationships between
network components, establish degrees of trust and defi ne performance constraints,
priorities, etc. They drive the mechanisms that respond to network attacks. Further,
these defence components can also be dynamic and adaptive, proactively assessing
the network infrastructure for risks and deriving defensive responses accordingly.
Here, current network states must be dynamically understood and, where required,
corrections to perceived risk taken, quickly! For example, this may mean that certain
network packets may be dropped or ports temporarily closed on demand. Related to
this are the components that defi ne access to the different resources in the communi-
cations system. To ensure we trust the components wishing to have access to the
network, authorization policies defi ne what the component is allowed to do and how
this will be implemented. Again this may be adaptive in that a component may be
authorised to access something under some conditions, or contexts, but not others.

 The ability for a network to scale is of paramount importance. This can be in
terms of its ability to host many nodes and propagate data around a company or can
even span a planetwide network, for example, the Internet. The intuition regarding
how best to scale a network comes from ensuring that much of its operation is
decentralised. Therefore, the main difference between autonomic computing in the
general and autonomic communications approaches is that there tends to be a focus
on more distributed and bottom-up methodologies.

 Taking this a step further, currently there are many initiatives examining how bio-
inspired paradigms might be applied to these aspects of the communications archi-
tecture. To enable this, the traditional tree-like hierarchical approaches to network
architectures is giving way to a more compartmentalised approach whereby bound-
aries, based on technological and/or administrative aspects, are specifi ed and the
management function relates to the components and systems that reside within this
boundary. Likewise, there is a move to make network functions behave like compo-
nents that can be composed and recomposed in a fl exible way. From this, control
loops can be made to allow the system to become autonomic, fl exible and adaptive.

 Core to this ability is the opening of routers to become more fl exibly controlled by
software. This is known as software defi ned networking (SDN), and it seeks to make
the network control plane remotely accessible and remotely modifi able via third-party
software. Open protocols, such as OpenFlow, are an example of SDN. Previous net-
works viewed the network as a highly self-organising system that has been ideal in
terms of allowing the Internet to both scale and be agile to environmental changes.
 However, this approach has a number of drawbacks in terms of being able to identify
destinations by more semantic means (For example, I would rather send a fi le to my
home computer wherever it is rather than having to know it is computer 176.27.230.111;

10.2 Alternative Autonomic Stories

268

when the computer moves the address may change and I do not want to have to deal
with that. Another example is that I would prefer to view the data in the network as
having an entity, e.g. its a particular video stream rather than just a set of packets).
Essentially, SDN decouples network control (routing and forwarding decisions)
from the network topology (nodes and how they are linked). This means that these
different aspects can be implemented using different distribution models whereby the
control elements can become more sophisticated and can even be run on a different
platform from the traditionally low-powered switch or router technologies of the past.

 Finally, cloud computing, with its dynamics and complexity, brings increased
network resource demands in terms of fast reconfi gurations and fl exible resource
deployments brought about by the introduction of machine virtualization. Therefore,
it is not surprising to see that the vast majority of research on autonomic computing
remains with cloud and large data centre computing.

 The topic of autonomic communications is very briefl y introduced here; for
fuller discussion of the topic, we direct the reader to comprehensive surveys of the
subject [1 , 3] or [2].

10.2.2 Autonomic Computing, Right Down to the Metal?

 Described in the Autonomic Computing Blueprint [4], the Autonomic Computing
Adoption Model outlined the architectural steps towards more highly autonomic
capabilities of a system (Chap. 2). This spectrum ranged from the manual level, instru-
ment and monitor level, analysis level, closed loop level for the IT environment and
fi nally, the further closed loop level that includes the business processes. Crosscutting
this is the scope which the autonomic functionalities cover. These range from the
subcomponent level, instance level, multiple components of the same type and mul-
tiple components of different types, right up to the business level. Of course, they left
open the defi nition of what a subcomponent would be, but it was assumed it would be
a well-contained tractable software component with limited scope. However, there is
evidence now that the notion of autonomic computing can be applied right down to
the lowest edge of the software continuum where it meets the hardware.

 One current example of this is the MIT-led Angstrom project. 1 To embrace chal-
lenges of extreme-scale computing, the Angstrom project’s goal is to create the
fundamental technologies necessary to overcome the primary challenges of energy
effi ciency, scalability, programmability and dependability. This project combines
basic hardware and software research with chip and system fabrication research. It
has two core foundations: a fully distributed factored architecture for both hardware
and software and, more applicable to our discussion, a self-aware computational
model called SEEC. 2 As such, it can be viewed as a system promoting autonomics
down to the metal.

1 Angstrom project (MIT)—Universal Technologies for Exascale Computing : http://projects.csail.
mit.edu/angstrom
2 SEEC: SElf-awarE Computational model.

10 Future of Autonomic Computing and Conclusions

http://dx.doi.org/10.1007/978-1-4471-5007-7_2
http://projects.csail.mit.edu/angstrom
http://projects.csail.mit.edu/angstrom

269

 Their assumption is that this system will run on energy-effi cient multicore com-
puters scalable to 1,000’s of cores. Here they have taken a factored approach to both
the hardware and low-level software and operating systems. For example, they use
embedded memories consisting of low-voltage SRAMs capable of greater voltage
and frequency scaling to signifi cantly save energy. Dynamic cache-coherency
schemes that can grow with the system have been developed and are again energy
effi cient, being able to adapt to system usage patterns. They describe this as a 4D
approach to cache-coherency, which combines policy support and optimisations
that depend on the operating context of the system at runtime. SEFOS 3 is the
self-aware, operating system specially designed for such systems composed of
1,000 + cores. Given this assumption, they also provide support for ‘helper threads’,
which assist the application’s main threads of computation.

 Using this factored hardware and systems software, the SEEC system relies on a
goal-oriented computational model that abstracts traditional procedural program-
ming into goals that are actuated in the self-aware, factored multicore system. SEEC
explicitly incorporates energy and resiliency into the hardware, operating system,
compiler and languages. In this way, the programmer defi nes goals such as ‘corre-
late the weather and room temperature streams burning less than 10W’, and the
system should follow. Using methods based on machine learning and control theory,
they are already able to show how their approach performs at orders of magnitude
more energy-effi cient and dependable architectures.

 Key to this is the Angstrom support that exposes sensors and adaptations that
traditionally would have been managed independently by hardware. This allows
SEEC to control and coordinate hardware behaviours with actions specifi ed by
other parts of the system, allowing the SEEC runtime system to meet application
goals while reducing costs (e.g. power consumption).

 SEEC forms an observe–decide–act loop, much like the MAPE-K loop discussed
in previous chapters. Here it continuously monitors its goals and resources using
intelligence to map resources to meet goals given current system state. Every com-
ponent of the Angstrom system, from applications to hardware, is designed to be
autonomic in that all contribute to the specifi cation of the observe–decide–act loop
via an interface to specify goals and separate interfaces to specify actions (e.g. allo-
cating processing cores or cache allocation).

 To make this tractable, they simplify the systems monitoring function in terms
of three application specifi ed areas (goals): performance, accuracy and power.
Performance is defi ned in terms of a target heart rate or latency between heartbeats.
Accuracy is a measure of distortion from an application-defi ned nominal value over
a given set of heartbeats. Then power and energy is specifi ed as target average power
for a given heart rate or between heartbeats. Actuation is then actions that happen in
as low as the systems software and even hardware level as the associated interfaces
of these are exposed. The most interesting part of this system is its decision-making
capacity. It is required to make decisions about actions with which it has had no

3 SEFOS: SElf-aware Factored OS.

10.2 Alternative Autonomic Stories

270

prior experience and yet be able to react quickly, at runtime, to dynamic changes in
application loads and resource fl uctuation.

 As stated in this book, we do not get autonomic computing for free; monitoring
and decision-making are additional to the main computational load of the system
and must either consume the same set of recourses or be off-loaded to additional
computing resources. The Angstrom approach is to exploit the large number of
processors in the system and combine this with its ability to control the power that
those cores use. That is, to help reduce the costs of runtime decision-making, it pairs
each main processor with a specialised, low-power core called the partner core. The
partner core can inspect and manipulate state (e.g. performance counters) within the
main core and has access to the event queues fed by event probes, and thus the auto-
nomic decision-making is off-loaded.

 In a similar fashion, the SpiNNaker project from Manchester University makes
use of bio-inspired techniques, mainly from the human brain, to structure and orga-
nise billions of simple computing elements. 4 Their aim is to build a highly scalable
parallel processing engine that is energy effi cient. As multiprocessor and multicore
systems have become the norm, we can imagine these approaches becoming main-
stream in the future.

10.3 Autonomic Computing in the Near Future

 ‘Prediction is very diffi cult, especially about the future’. 5 While this statement applies
to any subject, it is especially true if that subject is fast moving like computing or if
it has yet to be fully defi ned, as with autonomic computing. The danger with auto-
nomic computing has always been that it might be seen as a fad and fade away to be
remembered as something that got lots of funding around the turn of the millennium.
The question that has to be asked is, has autonomic computing made an impact? Was
the focus too broad (or too narrow)? Was the term overused or abused in some way?

 ICT soothsayers describe a future where technology is highly pervasive. Sensors,
actuators, RFID tags, etc., will be embedded in smart objects, people and their sur-
rounding space. Networks will envelope these devices creating a decentralised
cyber-physical world of systems of systems. All is dynamic, heterogeneous and
complex yet tasked with one thing—to deliver reliable, effi cient services. This
world is much too complex for humans to manage. Automated system management
is exactly what autonomic computing is about; therefore, it looks like there is a
healthy outlook for this subject.

 To examine what the future of autonomic computing will look like and what will
impact the subject, we view the topic from the perspective of how such systems will
be engineered and how assurances regarding their behaviours can be made. We also
predict that the more specialist notions of autonomic communications and low-level
systems, as discussed in the previous sections, will converge in a more tightly cou-
pled way producing a much more complex yet agile sets of systems.

4 http://rsif.royalsocietypublishing.org/content/4/13/193.full.pdf
5 Niels Bohr, Danish physicist (1885–1962).

10 Future of Autonomic Computing and Conclusions

http://rsif.royalsocietypublishing.org/content/4/13/193.full.pdf

271

10.3.1 Engineering Autonomic Systems

 Businesses no longer make proprietary software, yet businesses are supposed to
manage, support and maintain software systems.

 The effectiveness of autonomic computing is a product of new artefacts, such as
languages, architectures, frameworks and standards, to support the development of
autonomic systems. It requires new software engineering techniques to ensure that
autonomic capabilities are easily and robustly integrated. This is because current
software engineering techniques are designed and work well in the engineering of
systems that exhibit a signifi cant degree of predictability. Recall in Chap. 8 ,
Evaluation, we mentioned the desirability to have an autonomic system that adapts
or is at least able to cope with less predictable situations. Furthermore, autonomic
systems and adaptive systems in general have the pertinacity to bring an element of
change and uncertainty to the system, yet uncertainty is something we are still
struggling with in the software engineering world.

 Software requirements capture systems, such as KAOS [5],can aid the develop-
ment of autonomic systems as they have been designed to extract system require-
ments from goals (see Chap. 4), but such systems have no explicit support for
uncertainty. The challenge here is to be able to articulate what designers, or clients,
would like the system to do but in a more ‘fuzzy’ way. That is, instead of saying ‘the
system must do…’, analysts must be able to say ‘the system could do this…’or
alternatively ‘try to achieve that…’, ‘as long as it maintains the following goals....’,
etc. Therefore, there is a need to be able to better specify requirements and be able
to change these easily as the system develops and runs.

 The ability to meet such fuzzy requirements implies on the one hand a clear sepa-
ration between requirements specifi cation and system implementation and, on the
other hand, the ability of the system implementation to adapt to various changes
in order to fulfi l specifi ed requirements. This further implies a need for formal
requirement specifi cations (allowing autonomic managers to interpret them) and for
self-describing implementation resources, such as software services or execution
platforms (allowing autonomic managers to discover and integrate them).

 Extensive system adaptation can be facilitated by the ability to seamlessly inte-
grate parts that already exist into various system confi gurations. System integration
has traditionally represented an important issue in software engineering. Static inte-
gration had to deal with diffi cult problems such as technological heterogeneity, dis-
tribution and syntactic and semantic interface mismatches between integrated
elements. Dynamic integration must address additional issues, including resource
discovery, dynamic binding and state management. Enabling autonomic managers
to achieve extensive system adaptations by means of dynamic resource integration
imposes consequent requirements on the design and implementation of system
resources (e.g. support for open protocols, generic interfaces and self-description
via public metadata).

 Generally, having to deal with runtime changes, especially unpredictable
changes, may mean that most software engineering activities, which were tradition-
ally static, would have to progressively move into the runtime. Hence, requirement
defi nitions may be provided, updated or extended at runtime. Autonomic managers

10.3 Autonomic Computing in the Near Future

http://dx.doi.org/10.1007/978-1-4471-5007-7_8
http://dx.doi.org/10.1007/978-1-4471-5007-7_4

272

must accordingly adapt the underlying system implementation so as to ensure the
new requirements. Different system architectures and designs may be more suitable
for meeting various requirements in diverse execution environments. Autonomic
managers would have to identify and set in place the system architecture suitable in
each context. Similarly, the system’s component implementation, confi guration and
deployment would have to be reconsidered at runtime in response to changes in
requirements, resource availability or user loads. Finally, and maybe most impor-
tantly, certain testing and validation activities may equally have to be carried out
online in order to provide some indication of the system’s current capacity to reach
or approach given requirements. Indeed, addressing unpredictable changes would
most likely imply dynamically implementing unpredictable solutions, which, by
defi nition, could not be exhaustively tested and validated offl ine. Hence, runtime
activities, such as testing, evaluation, reporting or rolling back to a previous stable
state, may become increasingly essential in such dynamic settings.

 The aforementioned considerations on dynamic change and adaptation concern
both the managed resources and the autonomic managers administering them.
Indeed, the autonomic management logic necessary for administering a certain set
of resources, in a certain context, for reaching a certain goal, may also have to adapt
to changes in those managed resources, their context or goals. Hence, the goals,
implementation and deployment of autonomic managers may equally have to
change during runtime. As before, dynamic integration of autonomic resources into
complete autonomic managers could be applied here to increase management
adaptability.

 Interestingly, an autonomic manager that adapts a managed system may have to
consequently change itself to manage the new system. For example, integrating a
new component into the managed system may require adding new monitors and
analysers to the autonomic manager. If the new component is placed on a remote
platform, new autonomic decision logic may be necessary to fi nd the best placement
in the current environment. In such settings, the managed system and its autonomic
management logic can mutually infl uence each other’s adaptation and evolve incre-
mentally towards a complete autonomic system solution. Layered architectures,
similar to those proposed, for example, in [6 , 7], seem suitable for supporting this
sort of behaviour. Hence, additional layers of high-level autonomic managers can be
introduced to control and adapt more basic managers, which interact directly with
managed resources.

10.3.2 Managing Complexity

 As autonomic systems grow, so does the complexity of the system. System com-
plexity stems from the numbers of components to be managed and also from the
potential heterogeneity and distribution of such components. Recall, adding auton-
omicity adds components and therefore complexity. One consequence of this is the
sheer volume of data (e.g. metadata about the system’s operation), which can also
be highly heterogeneous and distributed. Data-mediation solutions can be adopted

10 Future of Autonomic Computing and Conclusions

273

in such cases to implement monitoring and analysis functions based on hierarchical
data processing and transport, such as discussed in Chap. 9 , Autonomic Mediation
in Cilia. The system’s permutations of component interaction further complicate
things, since components can no longer be managed in isolation without risking
undesirable side effects; holistic management relying on integrate knowledge of
the system’s inner workings is required instead. Another diffi cult issue represents
the growing numbers of constraints that represent the system’s goals that have to be
optimised. Goals may also be confl icting, requiring autonomic managers to defi ne
and optimise utility functions that account for such goals. Finally, the problem is
exacerbated by dynamism, as managed systems are increasingly updated and
extended at runtime. Autonomic managers must hence be able to administer systems
as they dynamically change.

 Overall, the ever larger scale, heterogeneity, distribution and dynamism of soft-
ware systems render them increasingly complex. Managing complex software sys-
tems requires complex autonomic managers. There has been an increase in the body
of research looking into this from a number of fi elds. New distributed optimisation
techniques are coming forward, for example, control engineering, which is close to
the heart of autonomic computing, which has been advancing. Here the problems of
scale and complexity are being eased through the exploitation of hierarchical
approaches to control. This way, the control loop interactions can be decoupled and
their interactions, and subsequent interference, minimised. This limits the potential
for damage from unexpected or unwelcome interactions that have not been
accounted for. Control engineering has developed standard approaches to model
and reason about feedback such as the Model Reference Adaptive Control (MRAC)
[8] and the Model Identifi cation Adaptive Control (MIAC) [9]. The decoupling
hierarchical nature of a control system has many advantages, but there is a need to
ensure well-defi ned links between the decoupled elements.

 In addition to hierarchical solutions, approaches based on completely decentral-
ised designs have been investigated for building complex autonomic managers.
Research projects such as [10 – 12] aim to identify the key software engineering
challenges involved in constructing complex autonomic managers and propose hier-
archical or decentralised models, architectures and frameworks for alleviating these
challenges. Notably such approaches can draw inspiration from fi elds such as multi-
agent systems, proposing various techniques for agent collaboration or competition,
and self-organising systems, studying the opportunistic self-assembly of systems
from simpler elements. Finally, multi-criteria optimisation techniques can be
adopted to manage multiple and possibly confl icting goals.

10.3.3 Who Guards the Guards? Trust and Assurances
in Autonomic Computing

 When computing moved towards systems that were well connected via networks
(e.g. using the Internet), or open systems and services, there was a step change in the
notion of understanding and trusting the system and ensuring it is secure and safe.

10.3 Autonomic Computing in the Near Future

http://dx.doi.org/10.1007/978-1-4471-5007-7_9

274

Autonomicity has the capacity to bring about a further step change. Here, concern-
ing security, one can imagine a third party falsifying the parameters fed into the
autonomic manager to make it adapt or change its operation in an inappropriate
way. For example, if we had an autonomic audio player that operated like the one
that we present in this book (see Chap. 4), there could be malicious third-party soft-
ware sitting on the client machine, purposefully slowing down the packets being
received in the audio client software, giving it the perception that the bandwidth was
quite low. Then the system would adapt to this by lowering its compression codec.
In turn, this lessens the quality of the audio playing but also frees up the bandwidth,
which the malicious software could make use of.

 This example shows that because the autonomic system is fed with environmen-
tal data and data from the managed resources, this open point is a place where
vulnerabilities lie. Environmental complexity and system dynamism can render an
autonomic system vulnerable even in the absence of explicit malicious behaviour.
For example, even in a closed loop system, if the autonomic system cannot per-
ceive the environment correctly, it will not behave well. So any self-managing
system that is embedded in a dynamic environment has to deal with uncertainty.
This is especially so if that environment is the physical world we live in. For exam-
ple, this would especially apply to sensor networks embedded in a building or in a
grape fi eld or even just a system that has humans in the loop. Physical environ-
ments are by defi nition unpredictable; hence, at any point in time, there could be a
mismatch between the models of the environment understood by the autonomic
system and the actual environment. Furthermore, an autonomic system may have
no control over other processes that infl uence its environment. Therefore, there is
a movement to look at self-organising systems that exploit emergence to improve
their ability to remain robust to dynamic operating conditions. Exploiting these
principles is a promising direction to deal with uncertainty in decentralised auto-
nomic systems.

 This leads us to a conversation about what monitors the behaviour of the self-
monitoring system? As we mentioned earlier, there is a movement, inspired by the
emerging fi elds of distributed control theory that encourages the decoupling of the
autonomic system into either hierarchies or collaborations of distributed systems.
Yet, even in a distributive collaborative setting, sharing complete knowledge
among decentralised adaptation managers constrains the scalability of the system.
The alternative is to not share complete knowledge, but this means that each of the
decoupled components only has partial knowledge of the system. That is, they are
only interested in, and able to control, the bits they are responsible for. This limits
the types of decision-making techniques that can be used to implement the knowl-
edge component of the MAPE-K loop. For example, nonlinear programming and
queuing network models rely on the availability of system-wide knowledge. With
distribution, the lack of complete knowledge forces each self-adaptive unit to reach
potentially suboptimal solutions when taken from the system-wide view.
Nevertheless, we are beginning to see the development of algorithms that converge
to optimal (or near optimal) solutions. However, in practice, engineering

10 Future of Autonomic Computing and Conclusions

http://dx.doi.org/10.1007/978-1-4471-5007-7_4

275

real-world solutions in this manner has shown to be extremely diffi cult, especially
at scale. The extra complexity of such systems, coupled with decentralisation, dic-
tating that no central authority exists, can make the behaviour of the system less
predictable, and in turn, this may mean that the system is less trusted. In turn, as a
potential advantage, inspiration from self-organising and emergent systems can be
considered for enabling the construction of globally robust systems from a myriad
of unreliable elements. Amorphous computing is one example initiative investigat-
ing this approach (Chap. 3). Yet, engineering such systems remains diffi cult and
the current applicability of such approaches limited. Much more research is
required in this area.

 Another option is to introduce autonomic managers capable of administering
other autonomic managers. This can be implemented as a higher layer of auto-
nomic management that can monitor and adapt the basic layer of autonomic man-
agement. This new layer may also decide on the goals to be pursued and their
priorities. The basic management layer represents a managed resource for the
higher management layer. Overall, such autonomic system would be able to refl ect
upon its own autonomic behaviour and consequently adjust its decision logic. This
enables the system to alleviate faulty conducts and adapt to external changes in
order to best maintain itself within the viability limits defi ned by its goals. For
example, supposing that an external environmental change renders the current
management behaviour ineffi cient or dangerous, the higher management layer can
detect the problem and adapt the basic layer so as to employ a different behaviour
or strategy. This approach is compatible with Ross Ashby’s ultra-stable system
architecture (discussed in Chap. 3).

 Gaining the trust of human users in what concerns autonomic systems is another
important issue. Beyond psychological and sociological considerations, which are
well beyond the scope of this discussion, autonomic systems could be endowed with
several facilities that may help reassure their human clients. These mainly include a
certain level of system transparency and the assurance that manual control can be
effi ciently re-established at any time. System transparency implies keeping human
users informed of the system’s state and success in reaching the goals via easy to
understand domain-specifi c languages. Users should also be allowed to formulate
customised inquiries on the system’s historical information, including past faulty
states, or the reasons for which a certain decision was taken. The ability to take
manual control, and override various layers of autonomic management logic, may
provide certain guarantees on the worst-case administration scenarios.

 Finally, autonomic systems directly interacting with, or impacting on, human
activity should have to be made more aware of human presence, core values and
safety principles. Such capabilities will become essential for ensuring human
safety even in the most unpredictable of situations. System self-awareness and
human- awareness can help avoid catastrophic decisions being made by blindly
following management strategies in reaction to a badly understood situation. As a
complementary measure, Apoptotic Computing (Chap. 3) proposes a last resort for
disabling autonomic systems that have gone out of control.

10.3 Autonomic Computing in the Near Future

http://dx.doi.org/10.1007/978-1-4471-5007-7_3
http://dx.doi.org/10.1007/978-1-4471-5007-7_3
http://dx.doi.org/10.1007/978-1-4471-5007-7_3

276

10.4 Conclusion

 To return to our question, asking if autonomic computing was a fad of the new
millennium. Given that data centres and systems that compose cloud computing
infrastructures are already entirely instrumented and many of the management func-
tions are now automated, we can say that there has certainly been an impact. At the
software level, most component and service-oriented models, frameworks and
technologies developed today provide inherent support for dynamic monitoring and
adaptation, including hot-deployment, hot-swapping, dynamic bindings and con-
fi gurations. These represent basic touchpoints which are essential for enabling
the autonomic management of applications that rely on such platforms. Additionally,
platforms provide an increasing variety of basic autonomic capabilities including
automatic confi guration, connectivity management, instance replication or down-
sizing. Indeed, as previously exemplifi ed, several technologies had already started
providing automatic management functions before the autonomic computing domain
was explicitly defi ned. This only strengthens the position of autonomic computing,
showing the progressive emergence of self-management issues in our ICT systems
and the necessity to recognise and address them as fi rst-order concerns in a dedi-
cated domain. So, like most things that make sense, we can conclude that autonomic
computing is subtly being added, as a natural solution, without celebration or pomp.
It is here to stay and has a strong future [3].

 How this future manifests is a product of the work that we present here in this
book, combined with the growing body of work either described as self-managing,
self-optimising, context-aware, self-adaptive or even simply autonomic. Further, as
technologies and computer science as a whole grow, these new ideas can be infl u-
enced by and inspire the autonomic computing area. For example, we have seen in
this book the degree of adaptability, agility and ‘intelligence’ an autonomic system
has is closely tied to the improvements, heuristics and speed of computation of arti-
fi cial intelligence systems. As machine leaning gets more sophisticated, faster to
run, smart, etc., we will see more online adaptation, and this will also become more
sophisticated. More system ‘intelligence’, combined with improved system awareness
of administrative objectives and human values, will bring about more predictable
and safe behaviours, which in turn will breed trust and reliability.

 As another example, a complementary approach to traditional artifi cial intelligence
is one that exploits self-organisation and emergent behaviour. A better understand-
ing and capacity to govern this type of phenomena can equally provide a means of
ensuring predictable results at the system level (even in the presence of unpredict-
ability at the fi ner-grain levels). Hence, progress in these research areas can also
benefi t autonomic computing and enable the construction of dependable and trust-
worthy autonomic systems. After all, trust and reliability are core to the uptake of
autonomic computing as we gradually take the human out of the loop.

 Surely, as emphasised throughout this book, it is essential that humans can
remain in control of their autonomic systems. System autonomy should allow them
to do so, even if it is merely modifying high-level objectives or management policies,
rather than repetitively intervening to fi x low-level technical issues. Hence, there
will also be a necessity to rethink human interactions with autonomic computing

10 Future of Autonomic Computing and Conclusions

277

systems. Novel interfaces will have to be designed to refl ect the autonomic system’s
capacity to follow higher management directives and to provide insights into its
success status and reasoning process.

 Signifi cantly more research is needed to achieve the full vision of autonomic man-
agement in our increasingly complex computing systems [3]. Comprehensive solutions
will require the integration of results from several research domains, investigating both
natural and artifi cial systems. The necessity for cross-domain research provides a great
opportunity for computer science advancements. Notably, it can help enrich software
engineering with novel paradigms, algorithms and architectures inspired from other
disciplines, which have already been confronted with the management of complexity
and unpredictability (e.g. biology, ecosystems, economy, artifi cial intelligence or
cybernetics). As indicated in the defi ning motivation of autonomic computing, the
ability to introduce self-management capabilities in ICT systems is essential if we are
to pursue the current trend of system development and computer embodiment within
our society. Software engineering must evolve accordingly in order to provide the
means to reason about, develop and maintain autonomic computing systems.

10.5 Key Points

 This chapter discussed the following concluding points on autonomic computing:
• Autonomic computing will change the way software systems are developed. On

the one hand, the change must be such so as to ensure that our increasing reliance
on ever more complex computing systems remains safe and secure. On the other
hand, the change must be such so as to preserve the current trend in the develop-
ment of increasingly more complex computing systems providing ever better and
more innovative services to our society.

• This book aimed to provide a coherent overview of software engineering prin-
ciples and techniques that can be currently adopted for developing autonomic
computing systems. Considering the overwhelming number and diversity of con-
tributions to this domain, the presentation was necessarily partial. Included
approaches were selected based on their maturity and rapid applicability.

• Many challenges remain before the full autonomic computing vision can be attained.
More research is needed in autonomic computing and its related scientifi c domains.

• Software engineering must evolve in order to offer the necessary artefacts for
facilitating the development of autonomic systems. The main challenges stem
from the complexity of autonomic systems, exacerbated by the unpredictability
of their execution environments. Most software engineering processes may have
to be increasingly automated and/or pushed into the runtime.

• Self-management raises serious concerns with respect to the reliance and trust-
worthiness that can be placed on autonomic systems. Security and safety are here
of utmost importance. In addition to necessary advancements in the autonomic
processes themselves, acceptable solutions will most likely include additional
safety-ensuring functions including a certain level of system transparency,
support for external intervention and dynamic adaptation of its behaviour and
possibly better ‘awareness’ of human objectives and values.

10.5 Key Points

278

• Progress in autonomic computing seems tightly linked to advancements in its related
domains, notably including artifi cial intelligence, self-organising and emergent
systems. These can provide key contributions for ensuring the predictability,
reliability and trustworthiness of autonomic behaviour.

• Existing management interfaces must evolve so as to enable the new types of
human–machine interactions brought about by the autonomicity paradigm. Such
aspects are tightly linked to progress in sociology, psychology and cognitive
science.

• The important challenges raised by autonomic computing encourage interdisci-
plinary research opening valuable opportunities for computer science advance-
ments. Inspiration from control theory and biology brought the feedback loop to
the heart of the autonomic systems’ architecture. Multi-agent systems promised
inspiration for integrating multiple feedback loops into coherent systems. Further
inspiration seems within reach from additional scientifi c domains, including
economy, sociology or complex systems in general.

• Despite its notable inspiration from numerous existing domains, autonomic
computing represents a well-defi ned research area with its specifi c challenges
and dedicated solutions. Abundant research contributions and observable changes
in system development practices clearly indicate the importance and perseverance
of the autonomic computing domain.

 References

 1. Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton.
Adapt. Syst. (TAAS) 1 (2), 223–259 (2006)

 2. Sestini, F.: Situated and autonomic communications: an EC FET European initiative. ACM
Comput. Commun. Rev. 36 (2), 14–17 (2006)

 3. Kephart, J.: Autonomic computing: the fi rst decade. In: Keynote at the 8th International
Conference on Autonomic Computing (ICAC), Germany, 2011

 4. An architectural blueprint for autonomic computing. IBM Whitepaper, June 2005
 5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.

Comput. Program. 20 (1–2), 3–50 (1993)
 6. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software

Engineering, pp. 259–268. IEEE Computer Society, Washington, DC, USA (2007)
 7. Brooks, R.A.: A robust layered control system for a mobile robot. In: Cambrian Intelligence:

The Early History of the New AI, pp. 3–26. MIT Press, Cambridge (1999). ISBN 10:
0262024683

 8. Astrom, K., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley, Reading (1995)
 9. Soderstrom, T., Stoica, P.: System Identifi cation. Prentice-Hall, Englewood Cliffs (1989)
 10. Bourcier, J., Diaconescu, A., Lalanda, P., McCann, J.A.: AutoHome: an Autonomic

Management Framework for Pervasive Home Applications. ACM Trans. Auton. Adapt. Syst.
(TAAS) 6 (1), 8:1–8:10 (2011)

 11. Maurel, Y., Lalanda, P., Diaconescu, A.: Towards a service-oriented component model for
autonomic management. In: 8th IEEE International Conference on Services Computing (SCC
2011), Washington, DC, USA, 4–9 July 2011

 12. Frey, S., Diaconescu, A., Demeure, I.: Architectural integration patterns for autonomic management
systems. In: 9th IEEE International Conference and Workshops on the Engineering of
Autonomic and Autonomous Systems (EASe 2012), Novi Sad, Serbia, 11–13 Apr 2012

10 Future of Autonomic Computing and Conclusions

279P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7,
© Springer-Verlag London 2013

 Annex: Learning Environment

 We have stated numerous times throughout this book that autonomic computing is
a fast-growing and ever-changing fi eld. Therefore, in true component-based
 software engineering fashion, we have abstracted out most of the dynamic compo-
nents of the book that refer to the learning environment and exercises and placed
these in an environment better suited to managing this dynamism—that is, they can
be found on a Web page! We hope this Web environment will grow with the book,
learning from the feedback that we receive from practitioners and students alike.

280

 iCASA Autonomic Computing Learning Support Tool

 We have designed a learning environment that allows students to develop, execute
and test autonomic applications. This environment represents an autonomic
 pervasive computing application that simulates a smart home. A dedicated IDE
(integrated development environment) has been designed around this, which
allows the student to execute autonomic code in a runtime simulation that pro-
vides concrete, visual feedback of the behaviours that the student has programmed.
We believe that the pervasive domain is very illustrative and easy to grasp for
students in computer science. Also, it characterises requirements, such as device
volatility, evolving QoS, mobility and environmental change that often motivate
self-management.

 Our challenge was to provide a learning environment that allows students to
tackle the different challenges related to self-* applications that we discuss in this
book. In doing so, we have defi ned a set of exercises illustrating the salient concepts
that typify autonomic computing. These exercises are provided with explanations
and complete corrected code. Interested students then can have the opportunity to
develop a great number of applications beyond the exercises in a robust, dedicated
environment designed to explore various aspects of autonomic applications.

 Our learning environment is based on three elements:
 – A dynamic execution infrastructure based on iPOJO (see Chap. 6)
 – A simulation environment, called iCASA, simulating a pervasive house equipped

with smart, volatile devices
 – An integrated development environment based on Eclipse and facilitating the

development of pervasive applications in iPOJO in the context of the simulated
house.
 In this learning environment, a student can develop autonomic applications in

iPOJO in a well-defi ned domain (the pervasive house), download them to the execu-
tion infrastructure, start them and see the effects of their execution in the simulation
environment. Evaluating the autonomic capabilities of an application is very
straightforward since most actions, or absence of actions, appear in the simulation
environment’s graphical interface. For instance, a light is automatically switched on
or off or nothing happens!

 The learning environment is available on a Website associated with the book:
 self-star.net

 It is packaged in such a way that it can be very easily installed on a students’
workstation or laptop. However, these machines must be able to run (comfortably)
Java and Eclipse.

 In order to be reactive and to be able to provide regular updates, exercise sets are
defi ned and corrected on the Website. Exercises descriptions and associate answers,
including code, are then made available on the site only. Our purpose is to regularly
update the site with new exercises and news versions of the learning environment
(enhanced simulation capabilities, for instance).

 The following sections briefl y introduce the learning environment.

Annex: Learning Environment

http://dx.doi.org/10.1007/978-1-4471-5007-7_6
self-star.net

281

 Execution Environment, iPOJO

 The execution environment is based on OSGi/Felix and the iPOJO service-oriented
component model. As explained in Chap. 6 (software adaptation), a major goal of
iPOJO is to make the development of dynamic applications as simple as possible.
To this end, the overall approach is to keep each of the code components as similar
to a ‘plain old Java object’ (POJO) as possible. The code of a component (in Java)
focuses on business logic, not on mechanisms for dynamism or other non-functional
requirements so as to not confuse the student. We have chosen a Java platform due
to the proliferation of Java courses in many undergraduate degrees.

 iPOJO relies on the ‘inversion of control’ pattern 1 and provides an extensible
component container that manages all issues regarding dynamism. In particular, it
manages all the service-oriented interactions. Concretely, the container is respon-
sible for publishing the services provided by a component and, conversely, for dis-
covering, selecting and binding required services together at runtime.

 Services used by a component can be selected anytime and changed in a context
aware fashion. The binding policy is defi ned in abstract terms by the component
developer (or the administrator) and implemented by the container. In that sense,
a container implements an autonomic loop (it perceives the environment, decides on
actions, executes actions) and can be seen as an autonomic element, as defi ned in
Chap. 4 (autonomic architectures) (Fig. A.1).

 Autonomic loops can thus be defi ned at the level of the component bindings.
Programmers can explicitly defi ne other control loops in an application. For
instance, an autonomic manager can be simply defi ned as an iPOJO component able
to monitor the other components and change them when needed. iPOJO provides
the necessary programmatic APIs to dynamically load or unload new components,
modify components features, etc. This means components playing the role of auto-
nomic managers can adapt another component’s life cycle.

 The fi rst exercises that we propose permit students to get familiarised with the
iPOJO technology (additional material can be found on the iPOJO Apache Web

 Fig. A.1 iPOJO dependency handler

1 This is a software engineering practice where the component coupling, or object coupling in this
case, occurs at runtime by the assembler object and not known at compile time.

Execution Environment, iPOJO

http://dx.doi.org/10.1007/978-1-4471-5007-7_6
http://dx.doi.org/10.1007/978-1-4471-5007-7_4

282

page 2). Then, subsequent exercises focus on the development of self-managed
applications in iPOJO in the proposed pervasive environment.

 iPOJO IDE

 Learning OSGi/iPOJO technologies may take some time, even for good JAVA
developers. Students need to get familiar with new concepts like components or
services, but they also have to learn new development environments (including
XML confi guration fi les and annotations).

 In order to allow students to more rapidly focus on autonomic concepts, we have
developed an iPOJO IDE (integrated development environment) allowing the rapid
and simplifi ed development of iPOJO applications. This environment provides a set
of facilities to assist the developer in the creation and deployment of iPOJO compo-
nents. In particular, a number of classes and fi les are (partially) generated. Also,
deployment can be fully automated. In that context, we had to make tough choices
for the sake of simplicity. However, the IDE keeps all the iPOJO key concepts, and
the projects managed by the environment are standard OSGi projects. Developers
are free to access and edit them directly, making the tool an ideal transition tool to
writing more complex OSGi applications.

 The IDE is provided as an Eclipse plug-in. Eclipse is a very popular standard
IDE for developing JAVA applications. Eclipse comes with many features support-
ing development through the use of plug-ins. For instance, it is possible to run appli-
cations on an embedded OSGi platform within Eclipse. In this way, it is natural and
easy to use the Eclipse debugger.

 The IDE assists developers in the different development phases:
 – At design time for defi ning iPOJO components, their confi gurations and depen-

dencies. Several wizards are provided to specify component types, provided and
required services, service properties, confi gurations, etc. Also, the iPOJO con-
fi guration fi les are automatically generated.

 – At implementation time for implementing components and the provided ser-
vices. The IDE can generate template implementation classes to facilitate cod-
ing. Also, at any time, validity between component specifi cation and their
implementation can be verifi ed. Finally, the IDE is able to refl ect changes in the
component specifi cation onto the implementations without impacting the exist-
ing code.

 – At compilation time when building the OSGi bundles and managing project
dependencies. The IDE automatically manages most library and Eclipse project
dependencies. In particular, it knows the iCASA dependencies and can import
them automatically.

 – At confi guration time for confi guring each component instances. The use of a
wizard ensures that the confi gured properties have indeed been declared in the

2 http://felix.apache.org/site/apache-felix-ipojo.html

Annex: Learning Environment

http://felix.apache.org/site/apache-felix-ipojo.html

283

component defi nition. This prevents a common problem when using OSGi where
properties are identifi ed by a single String that is disseminated across the code
and confi guration fi les—causing a lot of typos.

 – At deployment time by making the deployment a one-click process. The user
has the choice to deploy the application in an OSGi platform embedded
within Eclipse or in a remote platform. If an application has already been
deployed, the IDE does the necessary update. This makes application testing
more straightforward.

 iCASA, Smart Home Simulation Environment

 The pervasive domain has been mentioned many times in this book—using it as a
teaching support too in the real world would raise a number of practical challenges.
First, sensors and devices are expensive, fragile and hard to install and maintain.
Also, reproducing a scenario in a real-world environment is especially diffi cult as it
depends on ground conditions and will take much of the student’s time to confi gure.
As this would not enable the student to learn about autonomic computing, this is not
compatible with a classroom exercise.

 For these reasons, we have provided a simulated environment enabling complete
control of the environment and time. This is the very purpose of iCASA, a smart
home simulator developed in the context of the Medical project ((http://medical.
imag.fr). iCASA is based on OSGi and iPOJO and takes advantage of their versatility
and dynamism. iCASA is provided as a set of modules and components (e.g.
bundles and iPOJO components) that are deployed on a OSGi/iPOJO framework.

 Using the iCASA, a smart home simulator, students have full control over:
 – Time: it is possible to slow down, speed up or stop time during the simulation. It

is therefore possible to simulate long-term actions such as energy consumption
and skip to important actions.

 – Environment: iCASA allows the defi nition of different ‘zones’ in a house. It also
provides an administration interface to modify different physical properties such
as temperature or luminosity of the different zones.

 – Inhabitants: iCASA offers the possibility to insert or remove inhabitants from the
environment. Inhabitants, who can be moved from zone to zone, may carry phys-
ical devices.

 – Devices: they are accessible through standard service interfaces, and their con-
fi guration can be dynamically changed. They can be discovered and used dynam-
ically by an application through the OSGi service registry. Devices can be
simulated or real. At any time, the user can add or remove new simulated devices
and modify their localisation in the rooms.
 Specifi cally, iCASA provides:

 – A graphical user interface: simulations are run on top of an OSGi platform and
displayed in a Web browser. The interface displays a map of the house and the
localisation of the different devices. It allows students to create and confi gure
devices, create and move physical users and watch their actual confi gurations.

iCASA, Smart Home Simulation Environment

http://medical.imag.fr/
http://medical.imag.fr/

284

Synchronisation is automatically maintained between the GUI and the running
platform ensuring that the interface is kept up to date.

 – Scripting facilities: iCASA supports the scripts writing to control the environ-
ment. Scripts provide a convenient way to test the applications under reproduc-
ible conditions.

 – Notifi cation facilities: iCASA is event-based and is able to notify subscribers of
any modifi cations in the environment.
 Finally, iCASA is extensible: new types of devices (simulated or real) can be

easily added. This enables teaching activities to be customised depending on the
targeted domain. The current distribution is provided with a set of predefi ned simu-
lated devices pertaining to the home-automation domains like light devices, pres-
ence sensors or sound devices. These devices are used in the exercises delivered
with this book. This also means that the only limitation to the students’ creativity is
their imagination.

 Full documentation about iCASA is provided on the Website.

 Annex: Learning Environment

285

 A
 Active monitoring , 111, 112, 140
 Adaptive maintenance , 9
 Adaptive monitoring , 148–149
 Administrator , 7–16, 20, 23–28, 31–33, 35, 36,

40, 41, 52, 63, 83, 85, 89, 96, 97,
99, 104, 112, 116, 169, 172, 173,
191, 195, 208, 219, 235, 241, 242,
255, 263, 264, 266, 280

 Adoption model , 41, 42, 253, 268
 Agents , 26, 57, 104, 196, 220,

255, 273
 Amorphous computing , 50, 51, 275
 Analysis (in MAPE-K) , 113–115
 Angstrom project , 268
 Apoptotic computing , 74, 275
 Architecture , 2, 4, 14, 17–19, 44–46, 48,

50, 53, 58, 61, 62, 71–73, 81,
85–87, 91, 95–126, 130, 131,
135, 136, 140–144, 147, 153,
158, 165, 169–173, 188, 194,
199, 202, 203, 208, 218, 220,
227, 232, 235–237, 240, 249,
251, 253, 264–268, 272, 273,
275, 277, 278, 281

 Architecture defi nition language , 202
 Arpanet , 265
 Artifi cial intelligence , 18, 19, 57, 58, 61, 62,

82–89, 92, 105, 108, 117, 185, 190,
264, 276, 277

 Autonomic manager , 107
 Autonomic communications , 39, 226,

265–268, 270
 Autonomic computing

 benchmark , 231–232
 infl uences , 58–62

 Autonomic element , 27–29, 33, 35, 40, 53, 85,
95–108, 117, 120–126, 135, 153,
181, 202, 263, 281

 Autonomic manager , 77, 97–120, 122, 123,
126, 130, 134, 136, 140, 142–144,
146, 148, 149, 153–159, 162–164,
166, 168, 171, 172, 185, 188–198,
201–203, 208, 209, 217, 218, 221,
222, 225, 242, 243, 251–253, 259,
271–273, 275, 281

 B
 Bayesian techniques , 208
 Benchmarking , 229–232
 Binary code , 154–159, 163, 164, 167, 169
 Biology , 18, 25, 51, 57, 59, 61–74, 91, 264,

277, 278

 C
 Central nervous system (CNS) , 65, 66,

71, 72
 Cilia , 18, 19, 131, 147, 235–260, 272
 Classifi ers , 52, 208
 CNS. See Central nervous system (CNS)
 Code

 integration , 159
 upgrade , 168

 Components off the shelf (COTS) ,
12, 100, 111

 Computing context , 28, 53, 96, 97, 104, 106,
117, 129

 Connectionist , 86, 87
 Context , 3, 23, 59, 96, 129, 153, 189, 217,

238, 263

 Index

P. Lalanda et al., Autonomic Computing: Principles, Design and Implementation,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-5007-7,
© Springer-Verlag London 2013

286

 Control
 feedback loop , 18, 50, 77
 systems , 50, 57, 61, 68, 70, 73–82, 91, 92,

104, 273
 Corrective maintenance , 9
 Cost , 3–5, 8, 10–13, 15, 16, 24, 25, 31, 35, 39,

53, 58, 75, 100, 101, 103, 104, 106,
108, 110, 112, 117, 118, 123, 124,
133, 134, 138, 140, 142, 144, 153,
154, 159, 160, 169, 182, 196, 201,
205–207, 218–222, 227, 228, 231,
233, 236, 238, 245, 250, 265, 269

 COTS. See Components off the
shelf (COTS)

 Coupling , 6, 98, 103, 156, 161, 171,
228, 280

 Cube , 254–260

 D
 Decentralized autonomic managers , 27, 38,

43, 72, 85, 121–125, 198, 202,
208, 220, 225–228, 243, 254,
255, 258–260, 265–267, 270,
273, 274

 Deductive reasoning , 188
 Deliberative managers , 108
 Descriptive knowledge , 187, 190
 Dynamic adaptation , 159, 161, 163, 166, 167,

249–251, 277
 Dynamic libraries , 165
 Dynamic linking , 163–164, 166

 E
 Effectors , 66, 68–71, 98, 99, 102–104, 109,

110, 115, 119, 120, 122, 126, 161,
196, 205

 Equilibrium , 60, 63, 91, 196, 229
 Evolutionary computation , 52
 Execution (in MAPE-K) , 117–119

 G
 Game theory , 59, 60, 196
 Goal-based reasoning , 87
 Goals , 12, 23, 57, 95, 129, 153, 187, 217,

249, 264

 H
 Heuristics , 87, 89, 116, 117, 121, 205, 276
 Hierarchical , 85, 97, 121–124, 126, 135, 140,

143, 144, 146, 166, 180, 220, 249,
267, 272, 273

 Hierarchical based monitoring , 135
 Homeostasis , 63, 91, 218, 221, 223

 I
 IBM

 manifesto , 14, 30, 31, 33, 40
 reference architecture , 97–100

 Inductive reasoning , 188
 Intelligence , 18, 19, 45, 57, 58, 61, 62, 82–89,

91, 92, 104, 105, 108, 117, 185,
190, 206, 218–220, 227, 264, 269,
276, 277

 iPOJO , 147, 173, 177–182, 241, 245–250,
252, 259, 279–283

 J
 Java class loader , 174

 K
 Knowledge , 4, 28, 60, 95, 129, 185, 226,

237, 263
 by acquaintance , 187, 194, 213
 by description , 187, 213
 representation , 83, 87–89, 185, 189–191,

208, 264

 L
 Learning , 36, 48, 52, 61, 62, 66, 68, 69,

83, 88–90, 92, 105, 107, 108,
149, 197, 198, 207–209, 264,
269, 279–283

 Linker , 156, 163
 Logic-based reasoning , 206–207, 214

 M
 Managed artefact , 98, 100–106, 109, 111–117,

119, 121, 126, 130, 145, 185,
187, 188, 190, 191, 194–196,
205, 207, 213

 MAPE-K model , 108–110, 119, 120, 126
 Meta-model , 200, 201
 Meta object protocol , 167, 181, 245
 Models , 4, 26, 58, 97, 130, 168, 191,

218, 238
 Monitoring

 in MAPE-K , 110–113
 overhead , 134–140
 probes , 146
 tools , 111, 134, 146–148

 Moore’s law , 11

Index

287

 N
 NASA autonomic projects ,

46–49
 Nervous system , 25, 57, 62–74, 91

 O
 OC. See Organic computing (OC)
 Ontology , 89, 104, 189, 194, 238
 Open services gateway initiative (OSGi) ,

147, 173–178, 182, 241, 249,
280, 282, 283

 Operating system (OS) , 3, 8, 29, 44, 98,
104, 111, 119, 133, 136,
138–142, 147, 149, 154,
157, 159, 161–165, 181,
225, 227, 268, 269

 Organic computing (OC) , 49–51
 OS. See Operating system (OS)
 OSGi. See Open services gateway initiative

(OSGi)
 OSGi bundles , 173, 178, 282

 P
 Partial knowledge , 188, 274
 Passive monitoring , 111, 112, 140
 Perfective maintenance , 9
 Performance metrics , 112, 132, 133, 229, 231
 Performance monitoring , 131–135
 Peripheral nervous system (PNS) ,

65, 66
 PID controller , 78–80
 Planning (in MAPE-K) , 115–117
 PNS. See Peripheral nervous

system (PNS)
 Prescriptive knowledge , 187, 190
 Preventive maintenance , 9
 Programming languages , 111, 156–158,

160, 163, 164, 166–168, 199,
203–204, 214

 Propositional logic , 207

 Q
 Quality of service , 9, 35, 39, 63, 98, 101, 102,

105, 161, 170, 192, 218–219, 225,
228, 232, 233, 238

 Quiescence , 160, 250, 259

 R
 Reaction time , 221, 233
 Refl ex arc , 66, 70, 73
 Refl ex-based managers , 107

 Rolling upgrades , 160
 Rules , 26, 51, 52, 59, 60, 107, 108, 114,

116, 124, 134, 143, 149, 166,
168, 191–193, 195, 199, 201–208,
211, 213, 221, 223, 227, 228,
254, 266

 S
 Search based reasoning , 204–206, 214
 SEEC , 268, 269
 Self-* , 17, 23, 33–39, 41, 44, 50, 53, 95, 126,

266, 279
 Self-confi guration , 34–37, 43, 53, 190, 220
 Self-healing , 34–38, 43, 49, 53, 125, 138, 232
 Self-optimisation , 34–39, 53, 74, 130
 Self-protection , 34–37, 53, 71, 74
 Sensitivity , 69, 221–223, 227, 233
 Sensors , 28, 63, 95, 130, 193, 269
 Service level agreement (SLAs) , 26, 41, 42,

102, 131, 146, 218
 Service level objectives (SLOs) , 26, 218
 Service-oriented components , 147, 172, 173,

177, 182, 245, 259, 280
 SLAs. See Service level agreement (SLAs)
 SLO. See Service level objectives (SLO)
 Software

 adaptation , 153–155, 182, 280
 artefacts , 2, 6, 8, 10, 19, 96, 97, 104, 112,

126, 158
 complexity , 1–4, 14, 24, 58
 component , 5, 8, 98, 101, 106, 111, 130,

168–170, 172, 268
 deployment , 6–8
 development , 1, 2, 4–6, 12, 17, 19, 105,

181, 199
 engineering , 1–20, 57, 62, 65, 72, 90,

103, 111, 112, 142, 154, 155,
157, 170, 182, 194, 199, 200,
236, 258, 263, 264, 266, 271,
273, 277, 279, 280

 evolution , 6, 9, 199
 intangibility , 2, 19
 integration , 171, 235–239, 241
 maintenance , 9–12
 mediation , 18, 65, 106, 131, 147,

235–260, 272
 monitoring , 147
 process , 4
 system , 1–13, 15–20, 24, 26, 43, 52, 68, 82,

96, 103, 104, 106, 143, 153–156,
158–164, 167, 168, 170, 172, 177,
181, 182, 187, 194, 199, 236, 245,
254, 263, 264, 269, 270, 273, 277

 update , 19, 35, 160

Index

288

 Stabilisation , 222–223
 Stability , 75, 80–81, 90, 123, 125, 149, 162,

219, 222–224, 229, 232, 233, 258
 Stigmergy , 51, 198, 206
 Symbolic , 86, 87, 102, 114, 163, 189
 System profi ling , 137–138

 T
 Touchpoint (Cilia) , 242–245, 251, 252
 Touchpoints , 77, 99, 110, 126, 130, 143,

187–191, 194, 205, 213, 276
 Trust , 36, 266, 267, 273–277

 U
 Ultra stable systems , 91, 275
 Usage context , 28, 29, 96, 106, 116
 Utility functions , 114, 115, 124, 125, 191,

196–198, 213, 273

 V
 Variability , 103, 104, 158

Index

	Foreword
	References

	Preface
	Acknowledgments
	Contents
	1: Software Engineering to Autonomic Computing
	1.1	 Software Complexity
	1.2	 The Software Life Cycle
	1.2.1	 Software Development
	1.2.2	 Software Deployment
	1.2.3	 Software Maintenance

	1.3	 Maintenance Challenges
	1.4	 Autonomic Computing
	1.5	 Book Structure
	1.6	 Key Points
	References

	2: Autonomic Systems
	2.1	 Autonomic Computing
	2.1.1	 Definitions
	2.1.2	 Goals
	2.1.3	 Context

	2.2	 The Origins and Motivations Behind Autonomic Computing
	2.3	 Self-* Properties and Expected Qualities
	2.3.1	 Autonomic Key Features
	2.3.2	 Fundamental Self-* Features
	2.3.3	 Extended Self-* Capabilities

	2.4	 Benefits, Challenges and Degrees of Autonomy
	2.4.1	 Benefits of Autonomic Computing
	2.4.2	 Challenges of Autonomic Computing
	2.4.3	 An Incremental Approach to Autonomic Computing

	2.5	 Similar Initiatives, Current Status and Relation to Software Engineering
	2.5.1	 Autonomicity in Existing Systems
	2.5.2	 Top-Down Versus Bottom-Up Approaches
	2.5.3	 Similar Initiatives
	2.5.3.1 Industry
	 2.5.3.2 Military
	 2.5.3.3 Space Exploration
	 2.5.3.4 Academia

	2.6	 Key Points
	References

	3: Sources of Inspiration for Autonomic Computing
	3.1	 Overview of Influences
	3.1.1	 Introduction
	3.1.2	 Natural Systems
	3.1.3	 Adaptive Computing Systems

	3.2	 Biology
	3.2.1	 Overview
	3.2.2	 Introduction to Biological Nervous Systems
	3.2.3	 Structure of the Human Nervous System
	3.2.4	 Function of the Human Nervous System
	3.2.5	 Reflexes and Autonomic Control Loops
	3.2.6	 Different Nervous System Architectures and Features
	3.2.7	 Summary of Inspiration from Nervous Systems
	3.2.8	 Bio-inspiration Beyond Nervous Systems

	3.3	 Control Systems
	3.3.1	 Introduction
	3.3.2	 Feedback Control
	3.3.3	 The PID Controller
	3.3.4	 Oscillations, Overshooting, Damping and Stability
	3.3.5	 Control and Autonomic Computing

	3.4	 Artificial Intelligence
	3.4.1	 Introduction to Intelligence
	3.4.2	 Introduction to Software Agents
	3.4.3	 Building Artificial Intelligence
	3.4.4	 Summary of AI Relevance for AC

	3.5	 Complex Systems
	3.6	 Key Points
	References

	4: Autonomic Computing Architectures
	4.1	 Autonomic Elements
	4.2	 Architecture of Autonomic Elements
	4.2.1	 IBM Reference Architecture
	4.2.2	 Sensors
	4.2.3	 Effectors
	4.2.4	 Autonomic Manager
	4.2.5	 Architectural Properties of Autonomic Managers

	4.3	 Autonomic Manager Reference Architecture
	4.3.1	 The MAPE-K Model
	4.3.2	 Monitoring
	4.3.3	 Analysis
	4.3.4	 Planning
	4.3.5	 Execution
	4.3.6	 Summary

	4.4	 Architecture with Multiple Autonomic Elements
	4.4.1	 Introduction
	4.4.2	 Hierarchical Versus Decentralised Organisation
	4.4.3	 The ANS Example

	4.5	 Key Points
	References

	5: The Monitoring Function
	5.1	 Introduction to Monitoring
	5.2	 Performance Monitoring
	5.3	 Knowing What to Monitor and Monitoring Overheads
	5.4	 Profiling
	5.5	 Monitoring Overheads
	5.6	 Monitoring for Free
	5.7	 Building Probes
	5.8	 Examples of Monitoring Tools, Frameworks and Platforms
	5.9	 Monitoring the Monitors: Adaptive Monitoring
	5.10	 Key Points
	References

	6: The Adaptation Function
	6.1	 Software Adaptation
	6.2	 Code Adaptation
	6.2.1	 Upgrading Code
	6.2.2	 Integrating Code

	6.3	 Code Adaptation Techniques
	6.3.1	 OS-Level Adaptation
	6.3.2	 Program-Level Adaptation
	6.3.2.1	Programming Languages
	 6.3.2.2	Dynamic Linking
	 6.3.2.3	C Language
	 6.3.2.4	Java Language
	 6.3.2.5	Interception Mechanisms

	6.3.3	 Component-Level Adaptation
	6.3.4	 Software Services

	6.4	 OSGi
	6.4.1	 Modularity
	6.4.2	 Service
	6.4.3	 Conclusion

	6.5	 iPOJO
	6.6	 Conclusion
	6.7	 Key Points
	References

	7: The Decision Function
	7.1	 Introduction to Knowledge
	7.1.1	 Definition
	7.1.2	 Forms of Knowledge
	7.1.3	 Knowledge Representation

	7.2	 Knowledge in Autonomic Managers
	7.2.1	 Introduction
	7.2.2	 Rule-Based Autonomic Systems
	7.2.3	 Model-Based Autonomic Systems
	7.2.4	 Goal-Based Autonomic Systems
	7.2.5	 Utility-Based Autonomic Systems
	7.2.6	 Autonomic Systems That Learn

	7.3	 Model-Driven Autonomicity
	7.3.1	 Introduction
	7.3.2	 Model Representation
	7.3.3	 Architectural Models

	7.4	 Reasoning Techniques
	7.4.1	 Programming Languages
	7.4.2	 Search-Based Reasoning
	7.4.3	 Logic-Based Reasoning
	7.4.4	 Classifiers and Statistical Learning Methods

	7.5	 Bayesian Networks Example
	7.6	 Key Points
	References

	8: Evaluation Issues
	8.1	 Evaluating Autonomic Systems
	8.2	 Evaluation Elements
	8.2.1	 Quality of Service
	8.2.2	 Cost
	8.2.3	 Adaptivity
	8.2.4	 Time to Adapt and Reaction Time
	8.2.5	 Sensitivity
	8.2.6	 Stabilisation
	8.2.7	 Failure Avoidance (Robustness) and Autonomy
	8.2.8	 Interfacing to the Outside World
	8.2.9	 Centralisation Versus Decentralisation
	8.2.10	 Granularity/Flexibility

	8.3	 Some Evaluation Metrics for Emergent Systems
	8.3.1	 Price of Anarchy (PoA)
	8.3.2	 Equilibrium

	8.4	 Benchmarking
	8.5	 The Autonomic Computing Benchmark: A Summary
	8.6	 Key Points
	References

	9: Autonomic Mediation in Cilia
	9.1	 Software Integration
	9.2	 Cilia
	9.3	 Autonomic Cilia
	9.3.1	 Overview
	9.3.2	 Cilia Touchpoints
	9.3.3	 Cilia Meta-level and Base Level
	9.3.4	 Cilia Dynamic Monitoring
	9.3.5	 Cilia Dynamic Adaptation
	9.3.6	 Knowledge Module

	9.4	 Towards Autonomic Life-Cycle Management of Cilia Chains
	9.4.1	 Challenges and Motivation
	9.4.2	 Model-Based Solutions
	9.4.3	 The Cube Project
	9.4.3.1	 Example
	9.4.3.2	 Discussion

	9.5	 Key Points
	References

	10: Future of Autonomic Computing and Conclusions
	10.1	 Autonomic Computing in This Book
	10.2	 Alternative Autonomic Stories
	10.2.1	 Autonomic Communications
	10.2.2	 Autonomic Computing, Right Down to the Metal?

	10.3	 Autonomic Computing in the Near Future
	10.3.1	 Engineering Autonomic Systems
	10.3.2	 Managing Complexity
	10.3.3	 Who Guards the Guards? Trust and Assurances in Autonomic Computing

	10.4	 Conclusion
	10.5	 Key Points
	References

	Annex: Learning Environment
	iCASA Autonomic Computing Learning Support Tool
	 Execution Environment, iPOJO
	 iPOJO IDE
	 iCASA, Smart Home Simulation Environment

	Index

