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Abstract This chapter deals with Repair strategies for stand-by equipment which
maximises the time until failure when there is a vital need for the equipment, and it
is unable to respond. We model conflict situations where the operating environment
is controlled by an opponent. We develop stochastic game models to determine the
form of the optimal Maintenance/Repair policy under these conditions and present
numerical examples.

1 Introduction

A cold stand-by redundancy is where a unit is only brought into operation when
there is a vital need for it. Hospital emergency power supplies, emergency response
vehicles, and many military weapon systems are typical examples of standby unit.
The cost of such failures is large compared with all other costs and so a cost criterion is
inappropriate. Instead, we maximise the time until a catastrophic event occurs (when
the equipment is needed and is unable to function) for a standby unit in an uncertain
environment. The uncertainty in the environment is reflected in the frequency with
which initiating events (to which the equipment needs to respond) occur. In other
research, changes in the environment and hence the frequency of the initiating events
were modelled as a random process ([7]), but here the environment is controlled by
an opponent and so the solution is modelled as a stochastic game.

When on duty in peace keeping roles countering terrorist threats, troops and their
equipment cannot remain on perpetual standby. The troops have to be given rest
and relaxation, and even if replaced by other forces there will be a learning period
when the new forces will not be able to respond as rapidly as their predecessors.
The equipment has to receive regular maintenance, and where appropriate, repair.
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The terrorists or warring parties wish to initiate events which will require the troops
or equipment to respond. It is assumed that the readiness of the terrorists to initiate
events in the next period of time is partially known by the authorities and is reflected
in their state of alertness level (such as the U.S. DEFCOM levels). The terrorist
player decides how active they will be in the next period, which then determines the
alertness level. This is equivalent to saying that the terrorist player chooses what the
alertness level will be. One also assumes that the terrorists have a good knowledge
of the state of the standby “equipment” or troops, both by calculating how long they
have been on standby and also by open or clandestine inspection of the equipment.
This is then a maintenance model involving two players and such situations can be
modeled as stochastic games.

The literature on Maintenance, Repair and Replacement policies for deteriorating
equipment is long and distinguished. It started with the work of [1], and as the surveys
and bibliographies of Refs. [5, 10, 12, 19, 21, 22, 24] and Wang [25] indicate, it has
continued apace to the present day. Almost all the literature concentrates on policies
which minimise the average discounted cost criterion. The idea of using a catastrophic
event criterion to overcome the problem that failure will result in unquantifiably large
cost was suggested first by Thomas et al. [23], with other instances being considered
by Kim and Thomas [7]. In all these cases, the background environment and hence
the probability of an initiating event is either fixed or follows a random Markovian
process. Other authors such as Refs. [2–4], [9, 20] and [17, 18] have looked at
maintenance in a random environment but in those cases the unit is always in use so
the changes in the environment age the equipment at different rates, but do not affect
when it is needed. Refs. [8, 26–28] and [6] study protective systems, such as circuit
breakers, alarms, and protective relays with non-self-announcing failures where the
rate of deterioration is governed by a random environment. We, on the other hand,
allow the deterioration of the equipment to be independent of the environment, but
the environment affects the need for the equipment. Yeh [29] studied an optimal
maintenance model for a standby system but focused on availability and reliability
as the criteria. Modelling the maintenance process as a game where the opponent
is able to set the environment conditions has not been discussed before. In fact the
application of game theory in the maintenance problem is restricted to warranty
contracts [13, 14]. Here, we model the situation using stochastic games which were
first introduced by Shapley (1953).

It is clear that there has to be some constraint on the activity of the “terrorist”
and hence on the alertness level. Otherwise, the game is trivial—the “terrorist” will
always force the activity level to its highest (most dangerous) state. This then reduces
to a problem with one decision maker and no variation in the external state, which
was the problem considered in [23].

In Sect. 2, we define our notation, set up the basic unconstrained game and confirm
that in such a game it is optimal for the terrorist player to keep the state of alertness at
its highest level. In Sect. 3, we consider the situations where there are constraints on
the frequency with which the terrorist can be sufficiently active to force the alertness
index to its highest level. For ease of notation, we will concentrate on the game where
there are only two alertness states—Peaceful or Dangerous—but the results apply
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in more complicated situations. We investigate two constraints. The first type of
constraint is on the average frequency of dangerous states in the game played so far.
The second constraint discounts the activity of the terrorist, so what he was doing in
the last period is much more important than his activity ( or lack of it) several periods
ago. In Sect. 4, we produce numerical examples and in Sect. 5 we draw conclusions
on how the maintenance/ recuperation strategy depends on the interaction between
the state of the equipment and the alertness level. We believe these models are a
useful step in estimating Repair and Maintenance policies for standby equipment
(and staff) which is used to combat the events initiated by intelligent and malevolent
opponents.

2 Unconstrained Stochastic Game Model

We assume throughout that Player I, is the owner of the standby capability (hereafter
called the equipment) and Player II is the one who seeks to create a catastrophic event–
that is initiates an event to which the equipment fails to respond. The parameters of
the model are

i = 1, 2, . . ., N—the state of the equipment where N is the failed state;
Pi j —probability of equipment moving from state i to state j in one period of time,

if no Repair action is performed.
This is independent of whether it is “used” or not that period. The standby unit

is inspected regularly each period and this gives information on the operational state
of the equipment to Player I. We assume that either through open inspection or by
clandestine means, Player II is also aware of the state of the equipment.

Assume
∑N

j=1 Pi j = 1, PN N = 1 and the Markov chain is such that there exists a
T = min {n ≥ 0; Pn

i N > 0 for all i} so that within T periods, the chance of the equip-
ment failing is positive from all starting states, i.e. (P)T

i N > 0 for all i (equivalent
to mini (P)T

i N = p > 0)..
This ensures that without some maintenance of the equipment it is bound to

fail eventually. The “ordering” of the intermediate states of the equipment reflects
increasing pessimism about their future operability. This corresponds to Pi j satisfying
a first-order stochastic condition namely

∑

j<k

Pi j ≥
∑

j<k

Pi+1, j for all i = 1, . . . , N − 1, k = 1, . . . , N ..

This means if one considers states lower than k to be the “good” ones , one is
more likely to move to a good state from i then from i + 1. The preventive Main-
tenance/Repair action (the former if equipment is in state i = 1, . . ., N − 1, the
latter if the state is N) takes one time period, during which the equipment cannot
be used, if required. Such actions return the equipment to state 1-the good as new
state. The subsequent results also hold if the maintenance action is not perfect, and
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returns the equipment to state i with probability ri , but we will not complicate the
notation by describing this case. a = 1, 2, . . ., M is the level of alertness of Player
I but is really a decision by Player II on how active he intends to be in the next
period. Both sides know that Player I has sufficient information sources to be able to
correctly identify what this activity level will be. When Player II decides on his activ-
ity level, this corresponds to him choosing the “environment” for the next period. ba

is the probability of an initiating event occurring when the environment is a where
b1 ≤ b2 ≤ . . . ≤ bM since the higher the alertness level the more likely that Player
II will seek to initiate an event.

In the basic game, Player I has to decide at each period whether to undertake
preventive Maintenance or Repair on his standby equipment, and Player II has to
decide what the threat level of the environment should be. The game is played repeat-
edly until there is a catastrophic event when Player I cannot respond to an initiating
event either because the equipment is being preventively maintained or because it
has failed. Thus, Player I wants a Repair/Maintenance strategy that maximises the
expected time until a catastrophic event, while Player II wishes to choose effort levels
(environments) to minimise this expected time.

�i , i �= N II
Environmental level 1 Environmental level a Environmental level M

I Do nothing 1 + ∑N
j=1 Pi j� j 1 + ∑N

j=1 Pi j� j 1 + ∑N
j=1 Pi j� j

Repair (1 − b1)(1 + �1) (1 − ba)(1 + �1) (1 − bM )(1 + �1)

(1)

Thus the basic game �) is a two person zero sum stochastic game consisting of
N subgames �i , i = 1, 2, ..N , where �i is the game starting in the situation when
the equipment is in state i. Player I decides whether to perform a maintenance action
or Do Nothing for the next period while Player II decides what the environment will
be. This defines the probability that an initiating event will occur during the period,
and hence if the equipment is down or being repaired, whether there is a catastrophic
event. If the equipment is in state i(�i ) and no maintenance is carried out, it will
move to state j (� j ) for the next period with probability Pi j . The payoff matrix when
the game is in subgame �i is given by

�N II
Environrnental level 1 Environmental level a Environmental level M

Do nothing (1 − b1)(1 + �N ) (1 − ba)(1 + �N ) (1 − bM )(1 + �N )

Repair (1 − b1)(1 + �1) (1 − ba)(1 + �1) (1 − bM )(1 + �1)

(2)

The deterioration assumption guarantees that there is a probability p that the equip-
ment will be down or in repair every T periods. In that period any initiating event
will become a catastrophic event, and the least chance of an initiating event in any
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period is b1. Thus, the time until an initiating event is bounded above by T/bp
1 . So

� is a two person zero-sum stochastic game with a finite number of subgames, each
of which has only a finite number of pure strategies ( 2 × M) and where the total
reward to each player is bounded above. Mertens and Neyman [11] proved that such
games have a solution. The value of the game v(i) starting with equipment in state i
satisfies the following

v(i) = val

[
1 + ∑N

j=1 Pi j v( j) ... 1 + ∑N
j=1 Pi j v( j)

(1 − b1)(1 + v(1)) ... (1 − bM )(1 + v(1))

]

for i �= N (3)

v(N ) = val

[
(1 − b1)(1 + v(N )) ... (1 − bM )(1 + v(N ))

(1 − b1)(1 + v(1)) ... (1 − bM )(1 + v(1))

]

(4)

where val means the value of the game whose payoff matrix follows. Moreover,
this game can be solved using a value iteration approach where the nth iterate vn(i)
(which corresponds to value if only n periods were allowed) satisfies v0(i) = 0 for
all i and then

vn(i) = val

[
1 + ∑N

j=1 Pi j vn−1( j) . . . 1 + ∑N
j=1 Pi j vn−1( j)

(1 − b1)(1 + vn−1(1)) . . . (1 − bM )(1 + vn−1(1))

]

for i �= N

(5)
with a similar equation based on (4) for vn(N ). This allows us to solve the game with
help of the following results.

Theorem 1

(i). vn(i) is non-deceasing in n and non-increasing in i and converges to v(i).
(ii). v(i) is non-increasing in i.

(iii). The optimal strategy in the unconstrained game is: for Player II always to
choose the most dangerous environment ( level M); for Player I to Do Nothing
in states i < i∗, where i∗ ≤ N, and perform maintenance/repair in state i∗ to N.

Proof.

(i). The non-decreasing result in n follows since v1(i) ≥ v0(i) = 0 and then by
induction. Since vn−1(i) ≥ vn−2(i) for all i , the terms in the payoff matrix for
vn(i) are greater than or equal to the terms in the matrix for vn−1(i). Hence
vn(i) ≥ vn−1(i) and the induction step is proved.
Similarly 0 = v0(i + 1) ≤ v0(i) = 0 for all i, so the hypothesis of v(i) non-
increasing in i holds for n = 0. Assume true for vn−1(i) then the stochastic
ordering plus the monotonicity of vn−1(i) implies

∑N
j=1 Pi+1, j vn−1( j) ≤

∑N
j=1 Pi, j vn−1( j). Each entry in (5) of vn(i) is as large if not larger than the

corresponding terms for vn(i + 1), so vn(i + 1) ≤ vn(i) for i = 1, . . . , N − 1.
The same result holds for vn(N ) ≤ vn(N − 1) since for vn(N ) it is clear that
Repair dominates do nothing because vn−1(N ) ≤ vn−1(i). Hence vn(N ) =
min{(1 − b1)(1 + vn−1(i)), (1 − b2)(1 + vn−1(i))} ≤ vn(N − 1) and the
induction step holds.
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(ii). Trivially since vn(i) ≤ vn+1(i), vn(·) converges to v(·) because vn(i) is a
bounded increasing function, bounded above by T/pb1. The monotonicity of
vn(i) then guarantees the monotonicity of v(i).

(iii). Player II’s strategy is obvious since the values for the most dangerous environ-
mental choice (M) always dominates the other strategies. Since v(1) ≥ v(N ),
the repair strategy (for the dangerous environment) is as good if not better than
the do nothing strategy for state N. The monotonicity of v( j) together with the
stochastic ordering of Pi j implies �Pi j v( j) is non-increasing in i and so once
�Pi j v( j) goes below (1 − bM (1 + v(1)) (the definition of i∗ it will remain
below it for all higher states i.

So the unconstrained game is solved by the terrorist player always being at the
highest state of activity. This is both unrealistic and reduces the problem to a single
decision maker problem such as that in [7]. In the next section, we look at a more
realistic assumption, namely that there is some limit on the terrorist’s activity and
hence on the frequency the environment is at its highest danger level. To keep the
situation clear, we will hereafter assume there are only two levels of alertness—which
we will label Dangerous (level 2) and Peaceful (level 1).

3 Models with Constraints on Effort

One reason an enemy cannot continuously create a dangerous environment, is that
it needs time to regroup, plan and rest its forces—which we facetiously describe as
“sleep”. One possible assumption is that in stage n of the game, the enemy can only
have created a dangerous environment for a proportion c of these stages. Thus if it
has created a dangerous situation in d of the n periods that the game has been running,
d ≤ cn then s = cn − d is a measure of the “sleep index”. This “sleep index” relates
to how many consecutive periods of dangerous environment the enemy can create
before it has to rest. If the sleep index is s and at the next period Player II chooses a
Peaceful environment, the index will move to s + c, while if he chooses a dangerous
environment, the index will move to s +c −1 = s − (1−c). In this model, the effect
of the rest induced by a peaceful environment will endure undiminished throughout
all the future. An alternative view is that the c value that the restful period adds to
the “sleep” index should diminish to αc next period, αc2 the period thereafter and
so on. In this case, if the current sleeping index is s, and Player II chooses a Peaceful
environment this period, the index will move to αs + c, while if Player II chooses to
make the environment dangerous the index will move to αs − (1 − c).

We will prove results for the two cases α = 1 (undiscounted) and α < 1 (dis-
counting of the index) in the same model though in the former case the sleep index
could be infinite, while in the latter case it is bounded above by c/(1 −α. In order to
ensure a finite set of subgames, we will always assume in the undiscounted case that
the index cannot exceed S. So the stochastic game � model of this situation consists
of a series of subgame �i,s where i = 1,− − −, N and 0 ≤ s ≤ min S, c/(1 − α).
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Although the sleep index set appears continuous, it is in fact countably infinite, and
in fact finite if only r stages are allowed. If the index starts with s0 then after r stages,
the value can only be αr s0 + c(1 − αr )/(1 − α) − ∑r

i=1 Ziα
r−i where Zi = 1 or 0

depending on where Player II played Dangerous or Peaceful at the i th stage.
Let v(i, s) be the value of the game � starting in �i,s , where the equipment is in

state i and the sleep index is s, then the values satisfy the equations

v(i, s) = val

⎡

⎢
⎣

(1 − δN (i)b1)(1 +
N∑

j=1
Pi j v( j, αs + c)) (1 − δN (i)b2)(1 +

N∑

j=1
Pi j v( j, αs + c − 1))

(1 − b1)(1 + v(1, αs + c)) (1 − b2)(1 + v(1, αs + c − 1))

⎤

⎥
⎦ (6)

where δN (i) = 1 if i = N , 0 otherwise
One can solve this problem as in the previous section using value iteration. The

iterates vn (i, s) satisfy an equation like (6) but with v(i, s) replaced by vn (i, s) on
the left hand side of (6) and v(i, s) replaced by vn−1(i, s) on the right hand side of
(6).

As in Sect. 2, in order to prove results about the optimal policies for the game, �,
one proves results about vn(i, s) and hence v(i, s).

Lemma 1

(i). vn(i, s) is non-deceasing in n and non-increasing in i and s.
(ii). v(i, s) is non-increasing in i and s.

Proof.

(i). All the results follow by induction and the fact that if W1 = val

[
a1 b1
c1 d1

]

and

W2 = val

[
a2 b2
c2 d2

]

then if a1 ≥ a2, b1 ≥ b2, c1 ≥ c2, d1 ≥ d2, W1 ≥ W2.

(ii). Since vn(i, s) is non-deceasing in n and bounded above by T/pb1, then vn(i, s)
is a monotonic bounded sequence and so converges to v(i,s). So the properties,
vn(i + 1, s) ≤ vn(i, s), vn(i, s′) ≤ vn(i, s) if s ≤ s′ hold for the limit function
v(i, s).
This allows one to describe features of the optimal strategies . If the item is
“down (in state N)” then Player I will want to Repair it, while Player II will
want to make the environment dangerous if they can. This ability to make the
environment dangerous can only occur if αs- (1 − c) ≥ 0 or s ≥ (1 − c)/α.
Since if Player II starts with a sleep index of 0, the maximum the index can be
is s < c/(1−α). Player II can only play the Dangerous strategy if c/(1−α) >

(1 − c)/α , i.e. α + c > 1. So if α + c ≤ 1, the resultant game becomes trivial
with Player II only able to play Peaceful and the results of the 1-player situation
in [7], holding.
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Theorem 2 Provided α + c ≥ 1, then in state N

1. if s satisfies s ≥ (1 − c)/α, the optimal strategies are “Repair vs Dangerous”
2. if s satisfies s < (1 − c)/α , the optimal strategies are “Repair vs Peaceful”

Proof. The payoff matrix in the subgame �N ,s is

�N ,s Making peaceful situation Making dangerous situation
Do nothing (1 − b1)(1 + v(N ,αs + c)) (1 − b2)(1 + v(N ,αs + c − 1))

Repair (1 − b1)(1 + v(1,αs + c)) (1 − b2)(1 + v(1,αs + c − 1))

Since by Lemma 1, v(N , s) ≤ v(1, s), it is trivial that the Repair strategy dom-
inates the Do Nothing strategy for Player I. If s < (1 − c)/α, then Player II
can only play the Peaceful strategy and so “Repair versus Peaceful” is optimal.
If s ≥ (1 − c)/α, we need to show that it is better for Player II to play Dangerous
than Peaceful at the first occasion the system is in state N. Assume the system is
currently down and let π∗ be the policy that chooses to play “peaceful” at this period
and plays optimally thereafter so vπ∗

P (N , s) = (1 − b1)(1 + v(1,αs + c)). Let π1 be
the policy that plays “peaceful” in the current period when i = N , and is the same
as π∗ except that at the next down situation it will choose the dangerous environ-
ment. Since playing Dangerous rather than Peaceful cannot increase the time until a
catastrophic event vπ1(N , s) ≤ vπ∗

P (N , s). Let π2 be the policy that plays Dangerous
now and Peaceful at the next down event, but otherwise chooses the same actions as
π∗. Let K be the expected time between now and the next time when i = N under
π∗. Let T be the expected time from the next time i = N to when a catastrophic event
occurs under the π∗ policy, conditional on there being a next down time when i = N .
Then vπ1(N , s) = (1−b1)(K +(1−b2)T ) > (1−b2)(K +(1−b1)T ) = vπ2(N , s)

If π∗
D is the optimal policy for Player II to play against the optimal policy of Player

I provided he chooses dangerous for his period, then vπ∗
D (N , s) ≤ vπ2(N , s) ≤

vπ1(N , s) ≤ vπ∗
P (N , s). So it is best for Player II to choose the “dangerous” envi-

ronment as the best response to Player I’s optimal policy.
If the standby system is working, then one can have any of the four combinations

of pure strategies being chosen or even mixed strategies. What one can show though
is that if the sleeping index is so low, that Player II cannot provoke a dangerous
environment either this period or next period; then Player I will do nothing if the
system is working.

Theorem 3 If s < (1 − αc − c)/α2, then Player I will do nothing in state (i, s)
when i is a working state (i < N ).

Proof. The condition on s means that Player II must let the environment be peaceful
for the next two periods. Consider the possible strategies for Player I over these next
two periods,
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strategy 1 : Repair in both periods
strategy 2 : Repair in period 1 and Do Nothing in period 2
strategy 3 : Do Nothing in period 1 and Repair in period 2

Let W1, W2, W3 be the respective expected times until a catastrophic event if the
optimal policy is used after the first two periods. Then

W1 = (1 − b1)(1 + (1 − b1) + (1 − b1) v (1,α2s + αc + c)

W2 = (1 − b1)(1 + 1 +
N∑

j=1

Pi j v (1,α2s + αc + c)

W3 = 1 + (1 − b1) + (1 − b1) + (1 − b1) v (1,α2s + αc + c)

and trivially W3 ≥ W1and W3 ≥ W2 since v (1, s) ≥ v (j, s) for all j and s. Hence, the
Do Nothing now policy dominates the policies that Repair now and the result holds.

It need not be the case that it is optimal to Do Nothing even if one is in the new
state i = 1 because one may recognise that an opponent has to play peacefully this
period if the sleep index is s where αs + c − 1 < 0. Repairing keeps the item in state
1, while it could degrade under the Do Nothing strategy. This result will be found in
an example in the next section (s = 0.6 in Table 1). Before doing that we will show
that in the undominated case if the system is working, and if s is large enough, then
the players will either play “do nothing” against “peaceful” or they will play mixed
strategies where Player I has a very high chance of playing “do nothing”. To do that,
we need the following limit result.

Lemma 2 In the case α = 1, as s → ∞, vn (i,s) and v(i,s) converge, respectively,
to vn(i) and v(i) where

vn(i) = max

⎧
⎨

⎩
1 +

N∑

j=1

Pi j vn−1( j), (1 − b2)(1 + vn−1(1))

⎫
⎬

⎭

and

v(i) = max

⎧
⎨

⎩
1 +

N∑

j=1

Pi j v( j), (1 − b2)(1 + v(1))

⎫
⎬

⎭

These equations correspond to the situation where Player II is choosing the dan-
gerous environment all the time.

Proof. From Lemma 1, vn (i, s) and v (i, s) are non-increasing sequence in s, and as
they are bounded above, they must converge. In the limit since b1 < b2, Player II’s
Dangerous strategy dominates its Peaceful one, since the payoffs against Do Nothing
are the same, and against repair (1 − b2)(1 + vn−1(1)) < (1 − b1)(1 + vn−1(1)).

We are now in a position to describe what happens in the game when the sleep
index gets very large.
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Theorem 4 In the game with α = 1, if the equipment is in a working state i, then for
any ε > 0, ∃ S so that for s ≥ S, the optimal strategies are either a) Do Nothing versus
Peaceful, or b) mixed strategies where Player I plays Do Nothing with a probability
at least 1 − ε.

Proof. Consider the payoff matrix in the subgame �n
i,s of the game with n periods

to go,

�n
k �=N ,s Making Peaceful Situation Making Dangerous Situation

Do Nothing 1 +
N∑

j=k
Pk j vn−1( j, s + c) : An 1 +

N∑

j=k
Pk j vn−1( j, s + c − 1) : Bn

Repair (1 − b1)(1 + vn−1(1, s + c)) : Cn (1 − b2)(1 + vn−1(1, s + c − 1)) : Dn

and let A, B, C, D be the comparable values in �i,s when vn−1 is replaced by v. From
Lemma 1 and the stochastic ordering property it follows that B > A. We also can
prove B > D. By convergence, we can choose a N and a S so that |vn( j, s)−v( j, s)| <

ε for all j, s if n ≥ N and provided s > S we can choose |v( j, s) − v( j)| < ε for all
j where vn( j) is defined in Lemma 3.2. Then,

1 +
N∑

j=k

Pk j v( j, s) ≥ 1 +
N∑

j=k

Pk j vn+1( j, s) − ε

≥ 1 +
N∑

j=k

Pk j vn+1( j) − 2ε ≥ 1 +
N∑

j=k

Pk j (1 − b2)(1 + vn(1)) − 2ε

= 1 + (1 − b2)(1 + vn(1)) − 2ε ≥ 1 + (1 − b2)(1 + vn(1, s)) − 3ε

≥ 1 + (1 − b2)(1 + v(1, s)) − 4ε ≥ (1 − b2) + (1 − b2)vn(1, s)

provided ε < 1/4

Hence B > D.
If A ≥ C , then the fact B > D, means Do Nothing dominates Repair for Player

I and A < B means that Peaceful dominates Dangerous for Player II. Thus, Do
Nothing versus Peaceful is optimal.

In the case A < C, note that as b2 > b1, then for s large enough C > D since

(1 − b1)(1 + v(1, s + c)) ≥ (1 − b1)(1 + v(1)) − ε

≥ (1 − b2)(1 + v(1)) + ε ≥ (1 − b2)(1 + v(1, s + c − 1))

Hence with C > A, C > D, B > A, B > D, the optimal strategy is a mixed

one with Player I playing
(

C−D
C+B−A−D , B−A

C+B−A−D

)
. For any δ > 0 choose ε so that

δ > 2ε/(b2 − b1) and ε < b2−b1
2(1−b2)

. Then the convergence of v( j, s) in s means one
can choose a S∗ so for s ≥ S ∗ |v(j, s + c − 1) − v( j, s + c)| < ε for all s,≥ S∗
and all j . For such s
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0 ≤ B − A =
N∑

j=k

Pk j [v( j, s + c − 1) − v( j, s + c)] < ε

C + B − A − D ≥ C − D = [(1 − b1)v(1, s + c) − (1 − b2)v(1, s + c − 1)]
+ b2 − b1 ≥ ((1 − b1) − (1 − b2)v(1, s + c)) − (1 − b2)ε + (b2 − b1)

≥ (b2 − b1) − (1 − b2)ε > (b2 − b1)/2

Then Player I plays Repair with probability

B − A

C + B − A − D
≤ ε

(b2 − b1)/2
< δ

and the result holds.

4 Numerical Examples

The actual policies in specific case can be obtained by value iteration calculations. The
following examples have three equipment states-1 (new), 2 (used) and 3 (failed)—and
doing nothing gives the following transition probabilities,

P =
⎛

⎝
0.3 0.4 0.3
0 0.4 0.6
0 0 1

⎞

⎠

The first examples are the non-discounted cases when α = 1. Assume the con-
straint is that c = 0.3 so Player II can only create a dangerous environment 30 % of
the time.

Tables 1 and 2 give the results in the new state (i = 1) first when b1 = 0.1 and
b2 = 0.5 so there is a large difference between the Peaceful and Dangerous states
(Table 1), and then when b1 = 0.4 and b2 = 0.5 (Table 2) so there is little difference
between the two states. Notice in all cases, Player II can only choose the Peaceful
environment if the sleep index s is less than 0.7. Theorem 3 says that for s < 0.4,

Player I does nothing but notice in Table 1 at s = 0.6; Player I will Repair, even though
(perhaps because) Player II can only ensure a Peaceful environment at this period
but at the next period, could move the environment to the dangerous level.

Looking at Table 1, when the b1, b2 are quite different, the optimal strategies are
mixed as s increases, though Player I’s is getting more and more likely to Do Nothing.
When s is large enough, Theorem 4 applies and in Table 1 an ε mixed strategy is
optimal. In Table 2 when b1, b2 are similar, then Do Nothing versus Peaceful is
optimal at all sleep index values since there is no point in repairing equipment in the
best state since the impact of the environment is so small.
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Table 1 The result for i = 1(new), b1 = 0.1, b2 = 0.5

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.545694 0 7.901159 0 8.545694 DN - P -
0.1 7.991002 0 7.244038 0 7.991002 DN - P -
0.2 7.846352 0 7.063115 0 7.846352 DN - P -
0.3 7.779409 0 7.001468 0 7.779409 DN - P -
0.4 7.049254 0 6.966484 0 7.049254 DN - P -
0.5 6.848216 0 6.845989 0 6.848216 DN - P -
0.6 6.771734 0 6.799698 0 6.799698 - R P -
0.7 6.734876 9.258600 6.745477 4.772648 6.740826 0.44 0.56 0.97 0.03
0.8 6.549694 8.756620 6.663171 4.495315 6.606939 0.5 0.5 0.97 0.03
0.9 6.468176 8.610763 6.599401 4.422995 6.533275 0.5 0.5 0.97 0.03
1.0 6.429325 8.545694 6.562935 4.389533 6.495242 0.51 0.49 0.91 0.09
2.0 5.980036 6.429325 6.257458 3.646075 6.020760 0.85 0.15 0.89 0.11
3.0 5.845124 5.980036 6.152195 3.476366 5.859863 0.95 0.05 0.88 0.12
4.0 5.794211 5.845124 6.111484 3.417886 5.800096 0.98 0.02 0.88 0.12
5.0 5.774245 5.794211 6.095469 3.395269 5.776603 0.99 0.01 0.88 0.12
15.0 5.761531 5.761532 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12
27.0 5.761531 5.761531 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12
35.0 5.761531 5.761531 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12

i s=0                                                         s=35
1 DN vs P R vs P Mixed (1-ε, ε) vs Mixed
2 DN vs P R vs P Mixed (1-ε, ε) vs Mixed
3 R vs P R vs D

Fig. 1 Simple Form of the Result in Tables 1, 3 and 4

Tables 3 and 4 are the policies for the used and failed states in the case when
b1 = 0.1 and b2 = 0.5 (which are the same parameters as in Table 1 for the new state).
In state 2, one has Do Nothing vs Peaceful for s < 0.4 (no dangerous environments
for at least two periods), then one has Repair vs Peaceful, at 0.4 ≤ s < 0.7. The
mixed strategies are optimal as s increases and as s → ∞ Player I tends to Do
Nothing with probability 1−ε while Player II tends to (0.62, 0.38). Table 4 confirms
the results of Theorem 2 that when the unit is down it must be repaired and the enemy
will seek to make the environment dangerous if he can.

Figure 1 summarises the results of Tables 1, 3 and 4. If the equipment has failed
one must repair it and the enemy will try to ensure a dangerous environment if
its sleep index is high enough to allow it to. If the equipment is working then for
a low sleep index, the solution is Do Nothing against Peaceful. As the sleep index
increases so the enemy will be able to be dangerous in the next period, the equipment
is repaired ready for that. If the sleep index is high enough that the enemy can ensure
a dangerous environment this period, both sides play a mixed strategy with Player I
more and more likely to Do Nothing and Player II being slightly more likely to play
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Table 2 The result for i = 1 (new, b1 = 0.4, b2 = 0.5)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 6.231987 0 4.212781 0 6.231987 DN - P -
0.1 6.079537 0 4.128808 0 6.079537 DN - P -
0.2 6.036238 0 4.100696 0 6.036238 DN - P -
0.3 6.021390 0 4.090763 0 6.021390 DN - P -
0.4 5.881433 0 4.087023 0 5.881433 DN - P -
0.5 5.834579 0 4.073457 0 5.834579 DN - P -
0.6 5.818203 0 4.066845 0 5.818203 DN - P -
0.7 5.811789 6.394473 4.064020 3.615947 5.811789 DN - P -
0.8 5.789178 6.278914 4.062832 3.539723 5.789178 DN - P -
0.9 5.778158 6.244166 4.060517 3.518074 5.778158 DN - P -
1.0 5.773448 6.231987 4.059103 3.510651 5.773448 DN - P -
2.0 5.761807 5.773448 4.056922 3.382586 5.761807 DN - P -
5.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
15.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
27.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
35.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -

Table 3 The result for i = 2 (not new, but working)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.312322 - 7.901159 - 8.312322 DN - P -
0.3 7.779409 - 7.001468 - 7.779409 DN - P -
0.4 6.458816 - 6.966484 - 6.966484 - R P -
0.5 6.214748 - 6.845989 - 6.845989 - R P -
0.6 6.138669 - 6.779698 - 6.779698 - R P -
0.7 6.103182 7.065249 6.745477 4.772648 6.488706 0.40 0.60 0.87 0.13
1.0 5.708000 8.312322 6.562935 4.389533 6.174224 0.45 0.55 0.82 0.18
2.0 5.265155 5.708540 6.257458 3.646075 5.409183 0.85 0.15 0.68 0.32
5.0 5.059901 5.079677 6.095469 3.395269 5.067430 0.99 0.01 0.62 0.38
15.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38
27.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38
35.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38

Dangerous (but is still likely to play Peaceful most of the time because of the “sleep”
restrictions).

Looking at the same problem b1 = 0.1, b2 = 0.5 but in the discounted case with
α= 0.8 and c = 0.4 (not 0.3) leads to Tables 5, 6 and 7.

Again Table 6 confirms the results of Theorem 2, since Player II can only play
Dangerous if s ≥ 0.75, while Table 5 shows as the sleep index increase the strategies
change from Do Nothing versus Peaceful to Repair versus Peaceful and then to mixed
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Table 4 The result for i = 3 (down)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 7.201043 - 7.901159 - 7.901159 - R P
0.1 7.169558 - 7.244038 - 7.244038 - R P
0.4 5.195171 - 6.966484 - 6.966484 - R P
0.5 4.945585 - 6.845989 - 6.845989 - R P
0.6 4.880504 - 6.779698 - 6.779698 - R P
0.7 4.850395 4.450395 6.745477 4.772648 4.772648 - R D
1.0 4.400580 4.000580 6.562935 4.389533 4.389533 - R D
2.0 4.112814 2.444766 6.257458 3.646075 3.646075 - R D
5.0 3.952436 2.204379 6.095469 3.395269 3.395269 - R D
15.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D
27.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D
35.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D

Table 5 The result for i = 1 (new), c = 0.4, α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 9.119139 0 8.433221 0 9.119139 DN - P -
0.1 8.499747 0 7.655538 0 8.499747 DN - P -
0.4 8.390626 0 7.551563 0 8.390626 DN - P -
0.5 7.517332 0 7.513618 0 7.517332 DN - P -
0.6 7.390844 0 7.492803 0 7.492803 - R P -
0.7 7.332755 0 7.409354 0 7.409354 - R P -
0.8 7.327393 9.760024 7.403906 5.030051 7.366117 0.49 0.51 0.98 0.02
1.1 7.196503 9.206344 7.263204 4.719848 7.225783 0.56 0.44 0.99 0.01
1.2 7.021900 9.120808 7.231623 4.685983 7.116675 0.55 0.45 0.95 0.05
1.5 6.928468 8.474689 7.122899 4.237344 6.996304 0.65 0.35 0.96 0.04
1.6 6.872290 8.392972 7.038725 4.196486 6.930300 0.65 0.35 0.96 0.04
1.7 6.743334 7.525998 6.983073 4.175824 6.795611 0.78 0.22 0.93 0.07
1.8 6.713779 7.396593 6.963334 4.167040 6.762757 0.80 0.20 0.93 0.07
1.9 6.682847 7.351381 6.944154 4.130449 6.733013 0.81 0.19 0.92 0.08
2.0 6.680185 7.330340 6.942264 4.115207 6.729240 0.81 0.19 0.92 0.08

i S=0                                                     s=2.0
1 DN vs P R vs P Mixed
2 DN vs P R vs P Mixed
3 R vs P R vs D

Fig. 2 Simple form of the result in Table 5, 6 and 7

strategies. Note that 2 is the greatest value the sleep index can be when c = 0.4 and
α = 0.8, and in this case both players are playing a mixed strategy.

The results of Tables 5, 6 and 7 are summarised in Fig. 2. The results are very
similar to the undominated case. The only difference is that because discounting
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Table 6 The result for i = 2 (not new, but working), c = 0.4, α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.868031 0 8.433221 0 8.868031 DN - P -
0.1 8.497001 0 7.655538 0 8.497001 DN - P -
0.4 8.390626 0 7.551563 0 8.390626 DN - P -
0.5 6.817920 0 7.513618 0 7.513618 R- P -
0.6 6.611384 0 7.492803 0 7.492803 - R P -
0.7 6.579161 0 7.409354 0 7.409354 - R P -
0.8 6.574326 9.556136 7.403906 5.030051 7.036201 0.44 0.56 0.85 0.15
1.1 6.477364 8.933314 7.263204 4.719848 6.863415 0.51 0.49 0.84 0.16
1.2 6.183837 8.869649 7.231623 4.685983 6.721767 0.49 0.51 0.80 0.20
1.5 6.110053 8.474689 7.122899 4.237344 6.566229 0.55 0.45 0.81 0.19
1.6 6.081463 8.392972 7.038725 4.196486 6.510805 0.55 0.45 0.81 0.19
1.7 5.964562 6.831037 6.983073 4.175824 6.204785 0.76 0.24 0.72 0.28
1.8 5.938792 6.614719 6.963334 4.167040 6.138237 0.81 0.19 0.70 0.30
2.0 5.897602 6.576650 6.942564 4.115207 6.099969 0.81 0.19 0.70 0.30

Table 7 The result for i = 3 (down), c = 0.4,α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 7.679899 0 8.433221 0 8.433221 - R P -
0.1 7.647301 0 7.655538 0 7.655538 - R P -
0.4 7.551563 0 7.551563 0 7.551563 - R P -
0.5 5.415381 0 7.513618 0 7.513618 - R P -
0.6 5.154424 0 7.492803 0 7.492803 - R P -
0.7 5.148572 0 7.409353 0 7.409353 - R P -
0.8 5.144705 4.690239 7.403906 5.030051 5.030051 - R - D
1.1 5.105788 4.297863 7.263204 4.719848 4.719848 - R - D
1.2 4.717435 4.267385 7.231623 4.685983 4.685983 - R - D
1.5 4.667655 4.237344 7.122899 4.237344 4.237344 - R - D
1.6 6.872290 4.196486 7.038725 4.196486 4.196486 - R - D
1.7 6.743334 3.017556 6.983073 4.175824 4.175824 - R - D
1.8 6.713779 2.863917 6.963334 4.167040 4.167040 - R - D
2.0 6.680185 2.859057 6.942564 4.115207 4.115207 - R - D

prevents the sleep index getting too large, Player I’s mixed strategy does not tend
to playing “do nothing” almost all the time but goes to a strategy where one does
nothing 80 % of the time.
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5 Conclusion

These models investigate the Maintenance and Repair policy for a standby system
where the environment of when it is needed is controlled by an opponent. The most
obvious context for this problem is the military one either in conventional or peace
keeping roles. It could also apply to emergency services that need to respond to
terrorist threats. We have shown that if there is no limit on resources available to the
“enemy”, then the problem reduces to one with a single decision maker dealing with
a constantly high risk environment. If more realistically the enemy cannot always be
ready to act, but needs time to recuperate, resupply and plan, the situation is much
more complex, both in the situation where the restful periods have a long-term effect
and when this effect is discounted over time.

One interesting feature is that the optimal policies can be mixed so each period
there is a certain probability one should perform maintenance, and a certain probabil-
ity one does nothing. Clearly if there are a number of such standby units, the mixed
policy can translate into what proportion should be given preventive maintenance at
that time. If the difference between the benign and the dangerous environment (b1,
b2) is small, one tends only to perform maintenance when the equipment is close to
failure, but in other situations one will maintain the equipment when it is in a good
state because one feels the environment is likely soon to be dangerous (especially if
the sleep index is high). One always repairs a failed unit, but the “enemy” will seek
to take advantage of the failure by making the environment as dangerous as it can in
those circumstances.

The models introduced in this chapter are the first to address the question of
maintenance in an environment where failure can be catastrophic and where there
is an enemy seeking such catastrophes. Clearly, more sophisticated models can be
developed but we believe this chapter has indicated that one can get useful insights by
addressing the problem as a stochastic game. Moreover, the game theory approach
may be used to model Maintenance and Repair policies for equipment which are
routinely used to deal with threats such as airport passenger and luggage screening
devices.
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