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Abstract This chapter revisits modelling of warranty/maintenance costs under the
assumption that both, the warranty repairs and the maintenance actions, require non-
negligible completion time. We provide an intuition on this topic by summarising
our previous results, as well as the published work of other authors. We closely
examine a case study that provides an excellent motivation for extending the research
in this area. Also, again assuming non-negligible repair and maintenance times,
we propose a simulation model for the expected warranty costs that integrates the
concepts of reliability improvement and warranty. We conclude with a discussion on
new directions for future research.

1 Introduction

A product warranty is an agreement offered by a producer to a consumer to repair
or replace a faulty item, or to partially or fully reimburse the consumer in the event
of a product failure. From the buyer’s viewpoint, the product warranty assures free
(partially or fully) of charge replacement or repair of a faulty product. It also provides
information on the reliability and quality of the product. On the other hand, from
the producer’s viewpoint, the product warranty plays a protectional as well as a
promotional role.
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Maintenance is an operation that involves fixing the product should it become
faulty or out of order. It also includes performing routine actions which keep the
product in working condition (a scheduled maintenance) or prevent operational prob-
lems from occurring (a preventive maintenance). Overall, maintenance consists of
all actions that aim to retain or restore the product (or system) to a state in which it
can perform the functions it is designed for.

In most published work on warranty and maintenance, the warranty repair times
(and the maintenance times) are assumed to be negligible, i.e. the expected duration of
the repair is small (negligible) compared to the expected lifetime of the product. And,
yes, in many cases this is a reasonable assumption. But there are situations where the
length of the repair (or the duration of the maintenance action) impacts significantly
the operational cost. For example, if the maintenance is performed on an assembly
line, which produces the main components of a system, the whole production process
might be affected, e.g. put on hold, and it could lead to significant losses. If a taxi
driver has to wait a couple of weeks until his car (taxi) undergoes a warranty repair,
his loss of income could be quite high.

Why is it important to study models with non-negligible warranty repairs or
maintenance times? First, the warranty period is a finite interval of time and the total
repair time could be a significant portion of it. The total length of the repair time could
be of importance in the warranty contract. Moreover, lengthy repairs/maintenance
actions may lead to high penalty costs that have to be taken into account in the cost–
benefit analysis. Therefore, taking into account the length and the type of the warranty
repairs and the duration of the maintenance action is an important component in the
warranty/maintenance cost modelling.

In this chapter, some results (see [2, 3]) regarding the evaluation of the expected
warranty cost under non-renewing and renewing free replacement warranty policies
over the warranty period and over the product life cycle are summarised. We allow
for non-zero warranty repair time and assign costs, which are dependent on the
length of the repair. Moreover, we review the advances in this area of modelling
presented in [9] and [4]. We provide an insight into the importance of this type
of modelling by summarising a case study presented in [6]. Lastly, again assuming
non-negligible repair and maintenance times, we propose a simulation model for the
expected warranty costs that integrates the concepts of reliability improvement and
warranty. We conclude with a discussion on new directions for future research.

The outline of this chapter is as follows: In Sect. 2 we recall some basic war-
ranty/maintenance terminology. In Sects. 3 and 4 we summarise the models for
non-zero warranty repairs under non-renewing and renewing warranty policies.
Sections 5 and 6 review two maintenance models with non-zero maintenance times.
A case study is summarised in Sect. 7. In Sect. 8 we propose a new simulation model
and Sect. 9 concludes this chapter.
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2 Miscellaneous

This section provides the terminology used in warranty and maintenance analysis,
that we need for our write-up.

2.1 Warranty Policy

The typical warranty coverage used in the industry can be classified as follows:

• Non-renewing warranty: The expenses associated with the failure of the product
during the warranty period of length T are covered (fully or partially) by the
warranter.

• Renewing warranty: The expenses associated with the failure of the product during
the warranty period of length T are covered (fully or partially) by the warranter.
In addition, after each warranty repair, the repaired item is warranted anew for a
period T .

2.2 Maintenance Policy

The two classical models mostly studied in the maintenance literature are:

• Block-based model—In this model, a preventive maintenance action is performed
periodically over a fixed time interval τ , i.e. at calendar times τ , 2τ , 3τ , . . . , a
maintenance action is invoked. The block-based policy is proposed for a calendar-
time-based maintenance model. At failure, the corrective maintenance is carried
out.

• Age-based model—In this model, a preventive maintenance action is performed as
soon as the product (system) reaches a pre-specified age κ. In addition, corrective
maintenance is executed at failure.

2.3 Degree of Repair

In our presentation we consider different types of repairs. Pham and Wang [5] classi-
fied repairs according to the degree to which they restore the product. They propose
the following classification:

• Improved Repair: A repair brings the product to a state better than when it was
initially purchased. This is equivalent to the replacement of the faulty item by a
new and improved item.



66 S. Chukova and Y. Hayakawa

• Perfect (or Complete) Repair: A repair completely resets the performance of
the product so that upon restart the product operates as a new one. This type of
repair is equivalent to a replacement of the faulty item by a new one, identical to
the original.

• Imperfect Repair: A repair contributes to some noticeable improvement of the
product. It effectively sets back the clock for the repaired item. After the repair the
performance and expected lifetime of the item are as they were at an earlier age.

• Minimal Repair: A repair has no impact on the performance of the item. The repair
brings the product from a ’down’ to an ’up’ state without affecting its performance.

• Worse Repair: A repair contributes to some noticeable worsening of the product.
It effectively sets forward the clock for the repaired item. After the repair the
performance of the item is as it would have been at a later age.

• Worst Repair: A repair accidentally leads to the product’s destruction.

In the following two sections, we summarise our results on modelling non-zero
warranty repair times (as given in [2, 3]) based on the alternating renewal process.

3 Non-Renewing Warranty: Non-zero Repair Times

This section is concerned with the non-renewing warranty and incorporates non-zero
warranty repair times.

3.1 The Model

We consider the following model: At the beginning the item is in operating (‘on’)
condition for a time X1. Then the repair (‘off’) condition starts and the item remains
in it for a time Y1. After the repair completion, the item is operative for a time X2,
which is followed by Y2 long repair and so on.

The time between two consecutive returns of the virtual age, V (t), of the item
to 0 forms a renewal cycle, see Fig. 1. We suppose that both sequences of random

V(t)

X XY Y1 1 2 2
t

Fig. 1 The virtual age of the item
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variables {Xi }∞1 and {Yi }∞1 are independent and identically distributed. Moreover,
we assume that Xi and Yi are independent for i = 1, 2, . . .. The above model is
the well-known model of alternating renewal process [7] and we use it to model the
warranty cost.

We assume that the cost of the i th repair is random and with form Ci = A + δYi ,

where A, and δ are known constants.
Moreover, we suppose that the cost is incurred at the end of the renewal cycle.

Also, if the warranty coverage expires during a repair period, the corresponding
repair is completed and its cost is fully incurred by the warranter. In this case we
have a complete renewal cycle. If the warranty expires during an operating period,
the cost of the following repair is not included in the total costs and we have an
incomplete renewal cycle.

Life cycle of a product is defined as a time while the product is still usable and
contemporary. It is assumed that during the life cycle, after the expiration of the
warranty period for the initially purchased item, at the time of the first off warranty
failure, the consumer purchases an identical item to the initial one with the same
warranty coverage. We will assume that a life cycle can end only at off warranty
time. The latter assumption is reasonable because the length of the life cycle is
mainly determined by the consumer.

We aim to evaluate: (1) the warranty expenses under non-renewing free replace-
ment warranty of duration T and (2) the expected total warranty costs over the life
cycle L of the item. To achieve these goals, as a preliminary, we obtain some results
regarding the alternating renewal process.

3.2 Alternating Renewal Process in Finite Horizon

Consider the length of a renewal cycle X + Y with the cumulative distribution func-
tion (cdf) FX+Y . Consider the alternating renewal process with “on” time distribution
FX and “off” time distribution FY . Denoting

Sn =
n∑

i=1

(Xi + Yi ) and S0 = 0

it follows that Sn is the time of the completion of the nth repair and corresponding

N (t) = max {n : Sn ≤ t}

is the number of complete renewal cycles before time t (cf. [7]). Denote by
m X+Y (y) = E(N (t)) the corresponding renewal function. It is known (cf. [7])
that
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P (on at t) = F̄X (t) +
∫ t

0
F̄X (t − y) dm X+Y (y), (1)

which is the probability of having operating item at time t . It is easy to see that
P (off at t) = 1 − P (on at t) is equivalent to

P (off at t) =
∫ t

0
F̄Y (t − u) d FX (u)

+
∫ t

0

∫ t−u

0
F̄Y (t − u − v) d FX (v) dm X+Y (u). (2)

Theorem 3.1

P(SN (T ) ≤ t | on at T ) = F̄X (T ) + ∫ t
0 F̄X (T − u)dm X+Y (u)

F̄X (T ) + ∫ T
0 F̄X (T − u)dm X+Y (u)

, 0 ≤ t ≤ T (3)

Proof:

P(SN (T ) ≤ t | on at T )P(on at T )

= P(on at T | SN (T ) = 0)P(SN (T ) = 0)

+
∫ t

0
P(on at T | SN (T ) = u) d FSN (T )

(u)

= P(X1 + Y1 > T, X1 > T )

P(X1 + Y1 > T )
P(X1 + Y1 > T )

+
∫ t

0
P(on at T | Xn + Yn > T − u) F̄X+Y (T − u) dm X+Y (u)

= F̄X (T ) +
∫ t

0
P(Xn > T − u | Xn + Yn > T − u) F̄X+Y (T − u) dm X+Y (u)

= F̄X (T ) +
∫ t

0

F̄X (T − u)

F̄X+Y (T − u)
F̄X+Y (T − u) dm X+Y (u)

= F̄X (T ) +
∫ t

0
F̄X (T − u) dm X+Y (u)

Therefore, using (1), the proof is completed. �

Corollary 3.2

P(SN (T ) = 0 | on at T ) = F̄X (T )

F̄X (T ) + ∫ T
0 F̄X (T − u) dm X+Y (u)

(4)
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V(s)

X Y2 2
0 s

T

X 1 Y1

Fig. 2 SN (T ) = 0

Theorem 3.3 For T ≤ t ,

P(SN (T ) + X N (T )+1 ≤ t | on at T )

= F̄X (T ) − F̄X (t)

F̄X (T ) + ∫ T
0 F̄X (T − u) dm X+Y (u)

+
∫ T

0

(
F̄X (T − u) − F̄X (t − u)

)
dm X+Y (u)

F̄X (T ) + ∫ T
0 F̄X (T − u) dm X+Y (u)

The proof is similar to that of Theorem 3.1, hence it is omitted.
We sketch another proof of Theorem 3.3 by utilising the multiplication rule

and the total probability rule. Namely, by conditioning on SN (T ), we consider the
following two cases:

1. SN (T ) = 0, (Fig. 2).
The following events are equivalent.

{SN (T ) + X N (T )+1 ≤ t, SN (T ) = 0, on at T } ⇐⇒ {T < X ≤ t}.

The probability of the latter is equal to

FX (t) − FX (T ). (5)

2. SN (T ) = w �= 0, (Fig. 3).
The following events are equivalent {SN (T ) + X N (T )+1 ≤ t, SN (T ) = w �=
0, on at T } ⇔ {there is a renewal before T } say at time w with probability
dm X+Y (w) and {T − w < X < t − w}, which will occur with probability
FX (t − w) − FX (T − w). The probability of the second event is

∫ T

0
(FX (t − w) − FX (T − w)) dm X+Y (w) (6)
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N(T)+1
X YN(T)+2 N(T)+2

sw w+u w+u+v

V(s)

T

X N(T)+1 Y

Fig. 3 SN (T ) = w �= 0

Adding (5) and (6) evaluates P(SN (T ) ≤ t, on at T ). Then, the result of the theorem
follows from the multiplication rule and (1). �

Theorem 3.4

P(SN (T )+1 + X N (T )+2 ≤ t | off at T )

= 1

P(off at T )
×

(∫ T

0

∫ t−u

T −u
FX (t − u − v) d FY (v) d FX (u)

+
∫ T

0

∫ T −w

0

∫ t−w−u

T −w−u
FX (t − w − u − v) d FY (v) d FX (u) dm X+Y (w)

)

(7)

The proof of this theorem is similar to that given in Theorem 3.3, hence it is
omitted.

3.3 Warranty Cost Analysis

Here we derive the expected warranty cost for non-renewing warranty over warranty
period of length T and over the life cycle of length L . By assumption, the random
variables Ci are independent and identically distributed and E(C) = A + δE(Y ).

3.3.1 Expected Costs Over (0, T )

Denote by C(t) the total warranty cost accumulated up to time t . We have to distin-
guish two cases: first the warranty expires during an “off” time, then the total cost is
accumulated over N (T ) + 1 complete renewal cycles. Second, the warranty expires
during an “on” time, so that only N (T ) complete renewal cycles contribute to the
cost. Then
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C(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N (T )∑

i=1

Ci , if the item is “on” at time T

N (T )+1∑

i=1

Ci , if the item is “off” at time T

(8)

and the following result holds:

Theorem 3.5

E(C(T )) = (m X+Y (T ) + 1) E(C) − E(CN (t)+1| on at T )P(on at T ).

Proof: Using that N (t) + 1 is a stopping time for the sequence {Ci }∞1 and Wald’s
equation (see [7]) we have

E(C(T )) = E

⎛

⎝
N (T )∑

i=1

Ci |on at T

⎞

⎠ P(on at T ) + E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci − CN (T )+1|on at T

⎞

⎠ P( on at T )

+ E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci |on at T

⎞

⎠ P(on at T ) + E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

− E(CN (T )+1|on at T )P(on at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci

⎞

⎠ − E(CN (T )+1|on at T ) P(on at T )

= (m X+Y (T ) + 1) E(C) − E(CN (t)+1|on at T ) P(on at T )

�

We need to find E(CN (t)+1 | on at T ) P(on at T ). The latter probability is given
by (1). Since CN (T )+1 = A + δYN (T )+1, we need to evaluate E(YN (t)+1 | on at T ).
The following result holds:

Theorem 3.6

E(C(T )) = (A + δE(Y )) (m X+Y (T ) + P(off at T ))

The following lemma will be needed for the proof of the theorem:
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Lemma 3.7
E(YN (t)+1 | on at T ) = E(Y )

Proof: By conditioning on SN (T ), and using Theorem 3.1 and Corollary 3.2 we
obtain

E(YN (t)+1|on at T )

= E(YN (t)+1|SN (T ) = 0, on at T ) P(SN (T ) = 0|on at T )

+
T∫

0

E(YN (t)+1|SN (T ) = s, on at T ) d P(SN (T ) ≤ s|on at T )

= E(Y1 | X1 > T )
F̄X (T )

F̄X (T ) + ∫ T
0 F̄X (T − u) dm X+Y (u)

+
T∫

0

E(Yn | Xn > T − s)
F̄X (T − s) dm X+Y (s)

F̄X (T ) + ∫ T
0 F̄X (T − u) dm X+Y (u)

=
T∫

0

E(Y ) d FSN (T ) | on at T (s) = E(Y )

Using Lemma 3.7 it is easy to complete the proof of Theorem 3.6.

Proof: Indeed

E(C(T )) = E

⎛

⎝
N (T )+1∑

n=1

Ci

⎞

⎠ − E(CN (T )+1 | on at T ) P(on at T )

= (m X+Y (T ) + 1) E(C) − E(C) P(on at T )

= E(C) (m X+Y (T ) + P(off at T )).
�

3.3.2 Expected Costs Over (0, L)

Now we will focus on the evaluation of the expected warranty costs over the life
cycle of an item. Let us consider the time between two consecutive purchases made
by the consumer. Denote this time by ξ. It is a positive continuous random variable
such that:

ξ =
{

SN (T ) + X N (T )+1, if the item is “on” at time T

SN (T )+1 + X N (T )+2, if the item is “off” at time T
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Then, the expected costs over (0, L) are expressed in terms of ξ in the following
way:

E(C(L)) = E(N∗(L) + 1) E(C(T )),

where N∗(t) is a renewal process with interevent time equal to ξ. Denote by m∗
ξ (t)

the renewal function of N∗(t). Then

E(C(L)) = (m∗
ξ (L) + 1)E(C(T )). (9)

In what follows we derive the distribution of the interevent time ξ.

Theorem 3.8

P(ξ ≤ t) = F̄X (T ) − F̄X (t)

+
∫ T

0
(F̄X (T − u) − F̄X (t − u)) dm X+Y (u)

+
∫ T

0

∫ t−u

T −u
FX (t − u − v) d FY (v) d FX (u)

+
∫ T

0

∫ T −w

0

∫ t−w−u

T −w−u
FX (t − w − u − v) d FY (v) d FX (u) dm X+Y (w)

Proof:

P(ξ ≤ t) = P(SN (T ) + X N (T )+1 ≤ t | on at T )P(on at T )

+ P(SN (T )+1 + X N (T )+2 ≤ t | off at T ) P(off at T )

Applying Theorems 3.3 and 3.4 and using (1) and (2) completes the proof. �

3.4 Example

As an illustration of the ideas we will consider an example assuming that the lifetime
of the item and the repair time are exponentially distributed random variables with
parameters λ and μ.

3.4.1 Expected Costs Over (0, T )

In order to evaluate the expected warranty costs over (0, T ), we need to find the
corresponding renewal function. Using Laplace transforms it can be shown that the
renewal function for the renewal process with interevent time X + Y is
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Table 1 Expected warranty cost over a warranty period, μ = 92

T
λ 0.5 1.0 1.5 2.0 2.5 3.0

2 2.958815 5.916262 8.873708 11.831155 14.788602 17.746049
3 4.392487 8.781961 13.171434 17.560908 21.950382 26.339855

Table 2 Expected warranty cost over a warranty period, μ = 122

T
λ 0.5 1.0 1.5 2.0 2.5 3.0

2 2.968527 5.936269 8.904011 11.871752 14.839494 17.807236
3 4.417737 8.833737 13.249737 17.665737 22.081737 26.497737

m X+Y (t) = λμ

λ + μ

(
t − 1

λ + μ

(
1 − e−(λ+μ)t

))
.

Using (2), we get P(off at t) = λ
λ+μ (1− e−(λ+μ)T ). Then, the expected warranty

cost for non-renewing free replacement warranty policy with duration T is equal to

E(C(T )) =
(

A + δ

μ

) (
λ

λ + μ

) (
μT + λ

λ + μ

(
1 − e−(λ+μ)T

))
. (10)

For selected values of T and λ and for A = 3 and δ = 2, numerical values for the
expected warranty cost are calculated and summarised in Tables 1 and 2.

The comparison between the two tables shows that it is better to have a longer
average repair time (4 days for Table 1 against 3 days for Table 2). A possible reason
for this result is the fact that for the fixed values of T and λ the value of μ will
reflect on the number of renewal cycles per warranty period. Indeed, larger values
of μ will increase the number of renewal cycles within the warranty period, which
will increase the value of the expected warranty cost over (0, T ). Providing that the
penalty cost δ is not too high, this is a reasonable strategy. On the other hand if δ is
high and low expected warranty costs are targeted, it will require a reduction of the
average repair time.

3.4.2 Expected Costs Over (0, L)

Even in this simple case of exponential lifetime and exponential repair time we
encounter difficulties in evaluating the expected warranty cost over the life cycle of
the item. The standard approach of finding the renewal function of the renewal process
generated by the random variable ξ led to an expression with a limited value. The
attempt to use MAPLE or MATHEMATICA to simplify the result was also not very
successful. Hence, we used a numerical procedure. Based on the ideas of Xie [10], a
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Table 3 Expected warranty cost over a life cycle, λ = 2, μ = 122

T
L 0.5 1.0 1.5 2.0 2.5 3.0

3 10.75976 15.28904 17.36461 22.13644 24.21849 17.80759
5 16.69591 23.07293 26.60188 30.76411 29.57897 35.28823
7 22.66831 30.99828 35.74898 39.24450 43.15709 46.17403
10 31.53661 42.86935 49.25831 54.04590 57.49978 59.12158
15 46.36995 62.65530 71.51108 77.50511 82.34271 86.33264

Table 4 Expected warranty cost over a life cycle, λ = 6, μ = 122

T
L 0.5 1.0 1.5 2.0 2.5 3.0

3 43.36922 51.46913 51.76007 68.92752 84.11078 51.75959
5 69.29022 83.65021 92.53079 102.91867 86.26324 103.51294
7 95.74140 112.94833 125.45428 135.87711 129.39141 154.36811
10 133.98574 156.33294 169.55625 172.45343 172.52479 203.51039
15 198.68439 230.64985 249.49196 255.03050 258.75241 258.7822

renewal equation solver has been written by Dr Richard Arnold in programming lan-
guageR. The solver evaluates the renewal function under known cdf (in closed form),
known pdf, or data for the renewal points. The last option is an extension of [10].

Using (9) and assuming A = 3 and δ = 2, the expected warranty cost for selected
values of L were evaluated. The comparison between Tables 3 and 4, with the given
values of λ and μ, shows that the improvement of the reliability and quality of the
product, reflecting on the increase of its average operating time, will highly reduce
the expected warranty cost.

4 Renewing Warranty: Non-zero Repair Times

The alternating renewal process described in Sect. 3.2 is also assumed here. However,
now we consider renewing warranty policy with perfect warranty repairs. Again, the
cost of the i th repair is assumed to be Ci = A + δYi , and the random variables Ci

are independent and identically distributed and their expected value is A + δE(Y )

(Fig. 4).
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XY Y1 1 2 2

V(t)

tX 3

T T T

X

Fig. 4 Renewing warranty

4.1 The Model

We model the functioning of the item as in Sect. 3.1. Taking into account the impact
of the renewing warranty, we adjust the model as follows: at the end of the repair
time, the item is warranted anew for a period of length T , i.e. after each repair
the item is assumed to be as good as new. If the warranty period ends during an
operating period, the cost of the following repair is not incurred by the warranter and
the warranty coverage expires. Here we will distinguish between warranty coverage
WT , which is a random variable, and warranty period, which is a predetermined
constant T .

4.2 Warranty Cost Analysis

Here we derive the expected warranty cost for renewing warranty over warranty
period of length T and over the life cycle of length L .

4.2.1 Expected Cost Under Renewing Warranty Coverage

Due to the mechanism of the renewing warranty, WT is equal to:

WT =
{

T, if X1 > T

T + ∑n
i=1(Xi + Yi ), if X1 ≤ T, · · · , Xn ≤ T, Xn+1 > T for some n.

Then, the warranty cost C(WT ) over the warranty coverage is a random variable
and its distribution is:
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*

T TTTTTT

ξ

V(t)

t

ξ1 2

L
ξk L

Fig. 5 Life cycle over (0, L)

C(WT ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, with 1 − FX (T )

C1, with FX (T )(1 − FX (T ))
...∑n

i=1 Ci , with FX (T )n(1 − FX (T )).
...

(11)

Thus, C(WT ) has a geometric distribution with parameter (1 − FX (T )) and

E(C(WT )) = FX (T )

1 − FX (T )
(A + δE(Y )). (12)

Therefore, provided that the distributions of X and Y are known, using (12), the
expected cost under renewing warranty coverage can easily be evaluated. Otherwise,
(12) should be used with appropriate estimations of FX (T ) and E(Y ).

4.2.2 Expected Costs Under Renewing Warranty Coverage Over Life Cycle

Let L∗ be a prespecified time during which a product is considered to be contemporary
and competitive with similar products in the market. Let L be the time of the first
off warranty failure of the product after L∗. Then, we call (0, L) the life cycle of the
item. The idea of life cycle and the relationship between L and L∗ are represented
in Fig. 5.

In what follows we evaluate the expected warranty costs over (0, L), where the
value of L∗ is known. Let us consider the continuous positive random variable, ξ,
representing the time between two consecutive product purchases. By definition,

ξ =
{

X1 if X1 > T
∑n

i=1(Xi + Yi ) + Xn+1 if X1 ≤ T, . . . , Xn ≤ T, Xn+1 > T for some n.

Then, the expected costs over (0, L), denoted by E(C(L)), are expressed in terms
of ξ in the following way:
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E(C(L)) = (m∗
ξ (L) + 1) E(C(WT )),

where m∗
ξ (t) is the renewal function of the renewal process generated by ξ.

Now, let us introduce the age parameter for ξ denoted by τ , i.e. τ is the time origin
where ξ is measured from. We will derive the probability density function (pdf) of
ξ, gξ(τ , t), given τ . The following theorem holds:

Theorem 4.9 The pdf, gξ(τ , t), satisfies the following integral equation:

gξ(τ , t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fX (t) + ∫ t−T
0

∫ t−T −u
0 gξ

(τ + u + v, t − u − v) fY (v) fX (u) dvdu if T < t < 2T

fX (t) + ∫ T
0

∫ t−T −u
0 gξ

(τ + u + v, t − u − v) fY (v) fX (u) dvdu if t ≥ 2T .

(13)

Proof: Using the definition of pdf, namely,

gξ(τ , t)�t ≈ P(ξ ∈ (t, t + �t))

for small �t , we will condition on X1. There are two scenarios under which the event
{ξ ∈ (t, t +�t)} can occur. Their pictorial representations are given in Figs. 6 and 7.

• Scenario 1 (Fig. 6)
X1 > T , thus ξ = X1. Then {ξ ∈ (t, t + �t)} ≡ {X1 ∈ (t, t + �t)}.

• Scenario 2 (Fig. 7)
X1 ≤ T .

Here our main idea is to find a relationship between gξ(τ , t) and gξ(τ + s, t − s),
where s is the point of the first warranty renewal. We need to consider two cases:

1. T < t < 2T .
Due to the definition of ξ, 0 < s < t − T . (Recall that ξ will terminate only if
Xk > T for some k.) Then,

Fig. 6 X1 > T
V(t)

t
T

τ τ + t
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T

τ 

V(t)

τ +s τ +t t

TT

Fig. 7 X1 < T

Fig. 8 T < t < 2T,

t − T < T v

T − t T u

0 < s < t − T < 2T − T = T ⇒ 0 < s < T

and (see Fig. 8)

{X1 + Y1 ∈ (s, s + �s)} ⊂ {X1 ∈ (u, u + �u)} for any 0 < u ≤ s < T .

Hence, using Scenario 1, we obtain

gξ(τ , t) = fX (t) +
∫ t−T

0

∫ t−T −u

0
gξ(τ + u + v, t − u − v) fY (v) fX (u) dv du.

2. t > 2T .
Again, 0 < s < t − T , but now t − T > T , (see Fig. 9), {ξ ∈ (t, t + �t)} is
equivalent to the event: there is a failure at time u (measured from the origin τ )
and u < T (i.e. failure within the warranty period) which occurs with probability
fX (u)du, and repair lasting v, which occurs with probability fY (v)dv and {ξ ∈
(t − u − v, t − u − v + �(t − u − v))} with initial age τ + u + v, which occurs
with probability gξ(τ +u +v, t −u −v)�(t −u −v). Then, taking into account
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Fig. 9 t − T > T

t − TT u

v

Scenario 2, we have

gξ(τ , t) = fX (t) +
∫ T

0

∫ t−T −u

0
gξ(τ + u + v, t − u − v) fY (v) fX (u) dv du,

which completes the proof of the theorem.

4.2.3 Numerical Procedure for Calculating the pdf of ξ

Let us denote S = X1 + Y1. It is easy to notice that:

1. The support of S is (0, t − T ) for any t .
2. The differences in the limits of integration in (13) are due to the restriction

X1 < T .

Equation (13) can be rewritten in terms of S in the following way:

gξ(τ , t) = fX (t) +
∫ t−T

0
gξ(τ + s, t − s) fT (s)ds, t > T, τ ≥ 0 (14)

where fT (s) = ∫ T ∧s
0 fX (u) fY (s − u)du. The sub-density fT (s) reflects the com-

ments at the beginning of this section.
Let us consider a grid of step h in the two-dimensional plane (τ , t). Let N L be

the number of points on both τ and t axes. Note that, for convenience, the count of
the points starts from 1.

Using the definition of Riemann–Stiltjes integral, gξ(τ , t) can be approximated by:
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Fig. 10 Grid in (τ , t) plane

T τ

t

1

2 3 4
1

4

3

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi1 = 0, i = 1, 2, · · · , N L;
gi2 = fX (T + h);
g1 j = fX (T + ( j − 1)h) + h

∑ j−2
k=1 g1+k, j−k fT (kh), j = 3, 4, . . . , N L;

gi j = g1 j , i = 2, 3, . . . , N L .

The reasoning for this algorithm is the following: The sum approximating the inte-
gration in (14) consists of only values of gξ(·, ·) calculated over the diagonals of the
grid, i.e. if gi j is to be calculated, then the previous values of gξ(,̇·) needed are only
those gi+k, j−k for k = 1, . . . , j − k. These values are calculated at points located
on the diagonal consisting of (i, j). In each step of the procedure, once g1 j is evalu-
ated, the remaining values gi j , i = 2, 3, . . . , N L are assigned to equal to g1 j . This
is because the meaning of the first parameter is the age and the distribution of ξ is
independent of the age. The parameter τ was introduced only for convenience in an
attempt to simplify the notations and the reasoning of the computational procedure
(Fig. 10).

Fig. 11 λ = 2,μ = 10, T =
0.25
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Fig. 12 λ = 0.5,μ =
52, T = 0.25

We used MATHEMATICA to write a code for the numerical procedure for obtain-
ing the density gξ(t). The graphs of the pdf of ξ show that the distribution of ξ is
skewed to the right. It is unimodal and the value of its maximum decreases when T
increases. For fixed value of T , the shape of the density depends on λ, μ (Figs. 11–12).
For more details on gξ(t), see [3].

4.2.4 Estimating the Renewal Function of ξ

Our next step is to use the suggested numerical procedure to evaluate the renewal
function generated by ξ. Again, we used the renewal equation solver written by
Dr. Richard Arnold.

4.3 Example

As an illustration we consider an example assuming that the lifetime of the item and
the repair time are exponentially distributed random variables with parameters λ
and μ. The same procedure is valid for general distribution of the operating time X
and the repair time Y .

4.3.1 Expected Costs Over (0, WT )

Using (12) for selected values of T and λ and for A = 3 and δ = 2, numerical values
for the expected warranty cost were calculated and summarised in the following two
tables. We measure the time in years.

In the first row of Table 5 λ = 2, which means that on average there is a failure
of the product every 6 months. The length of the following repair, again on average,
is set to be equal to approximately four days. As expected the expected warranty
cost is an increasing function of the length of the warranty period. The second row
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represents the values of the expected warranty cost for λ = 4/3, which means that
on average, there is a failure of the product every nine months. The values of the
remaining parameters are kept the same as for the first row. By comparing the rows
in Table 5, it is easy to see that the shorter mean operating time leads to higher
expected warranty cost, which is in agreement with our intuition. These conclusions
are similar to the ones we have reached for non-renewing warranty in [2].

In Table 6, the length of the repair, again on average, is set to be equal to approx-
imately 1 week. The same as for Table 5 comments apply for Table 6 which is: the
expected warranty cost is an increasing function of the length of the warranty period
T , i.e. row-wise increasing values of the expected warranty cost and it is a decreas-
ing function of the mean operating time, i.e. column-wise increasing values of the
expected warranty cost.

The comparison between Tables 5 and 6 shows that it is better to have a shorter
average repair time (four days for Table 5 against 1 week for Table 6). This conclusion
is opposite to the one we reached in [2]. This is due to the differences between
renewing and non-renewing warranty policies. The comparison between Tables 6
and 7, (all parameters are kept the same, only the value of δ is different) does not
lead to surprising conclusions. The expected warranty cost is an increasing function
of δ. In [2], the expected warranty cost over a warranty period as a function of δ had
a maximum. This is because the warranty coverage WT is a random variable, against
fixed length T of the warranty in a non-renewing scenario.

4.3.2 Expected Costs Over (0, L)

Using the computational procedure for (13) and assuming A = 3 and δ = 2, the
expected warranty cost for selected values of L were evaluated. The comparison
between these values shows that the improvement of the reliability and quality of the
product, reflecting on the increase of its average operating time, will highly reduce
the expected warranty cost. For numerical results and graphical summary, the reader
is referred to [3].

5 Maintenance: Non-zero Periodic Preventive Repairs

Next, we summarise the results presented in Wang and Zhang [9]. The authors con-
sider a simple deteriorating system. After a failure the system is replaced at a high

Table 5 Expected warranty
cost over a warranty period,
μ = 122, δ = 2

T
λ 1/12 1/4 1/2 1

2 0.547054 1.9568 5.18301 19.2719
4/3 0.354484 1.19332 2.85874 8.4268
1 0.262137 0.856732 1.9568 5.18301
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Table 6 Expected warranty
cost over a warranty period,
μ = 52, δ = 2

T
λ 1/12 1/4 1/2 1

2 0.551057 1.97111 5.22093 19.4129
4/3 0.357077 1.20205 2.87965 8.48845
1 0.264055 0.863 1.97111 5.22093

Table 7 Expected warranty
cost over a warranty period,
μ = 52 and δ = 22

T
λ 1/12 1/4 1/2 1

2 0.620811 2.22062 5.88181 21.8702
4/3 0.402277 1.35421 3.24417 9.56294
1 0.297479 0.972241 2.22062 5.88181

cost. To extend the operating lifetime and to reduce the operating cost, at the time the
system lifetime reaches a constant level B, the system could be repaired preventively,
through an imperfect repair. The following scenario is considered: the successive
operating times of the system after preventive repair form a stochastically decreas-
ing geometric process, while the consecutive non-zero preventive repair times of
the system form a stochastically increasing geometric process. The objective of this
study is to determine an optimal bivariate replacement policy such that the average
cost rate (the long-run average cost per unit time) is minimised.

5.1 The Model

The model is constructed under the following assumptions:

• At the beginning, a new system with preventive repairs (PR) is installed. At some
point of time the system will be replaced by a new one and the replacement time
is negligible.

• The PR will be adopted as soon as the operating time of the system reaches level
B, and the PR is imperfect. Henceforth, the following notations will be used:

– Xn - the operating time of the system after the (n − 1)th PR with cdf
Fn(t) = F(an−1t), a ≥ 1; E X1 = λ. {Xn}, n = 1, 2, 3, . . . form a stochas-
tically decreasing geometric process with ratio a.

– Yn - the repair time of the system in the nth cycle with cdf Gn(t) = G(bn−1t),
0 < b ≤ 1; μ = EY1. {Yn}, n = 1, 2, 3, . . . form a stochastically increasing
geometric process with ratio b.

– {Xn} and {Yn}, n = 1, 2, 3, . . . are independent.
– A bivariate replacement maintenance policy (B, N ) is adopted, i.e. B is a fixed

period of time between consecutive PR and N is the number of PR’s before
the system is replaced. In other words, if the system is free of failure until the
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(N + 1)st PR, then it is replaced instead of performing a PR. At failure the
system brings failure cost η and it is instantaneously replaced.

– The time between two consecutive system replacements τ{.} is called a renewal
cycle. {τ1, τ2, τ3, . . .} form a renewal process, where τ1 is the time to first
replacement.

5.2 The Average Cost Rate

All results and their derivations follow the presentation in [9]. Before the main result
regarding the average cost rate C(B, N ) is provided, we need a list of preliminary
results, so as to facilitate the understanding and utilisation of the main result.

1. We start with the distribution of M , the number of PR before system replacement.
It is easy to see that:

P(M = 0) = F(B) and P(M = k) =
k−1∏

i=0

F̄(ai B)F(ak B). (15)

2. The system total operating time T (B, N ) before renewal can be expressed as
follows:

T (B, N ) =
{

M B + {X M+1|X M+1 ≤ B}, if M ≤ N
(N + 1)B, if M > N .

(16)

3. The total PR time S(B, N ) in a renewal cycle is:

S(B, N ) =
{

Y1 + Y2 + . . . + YM , if M ≤ N
Y1 + Y2 + . . . + YN , if M > N .

(17)

4. The total cost function �(B, N ) in a renewal cycle is given by:

�(B, N ) =
(

−cw(M B + X M+1|X M+1 ≤ B) + cr

M∑

k=1

Yk + η

)
I{M≤N }

+
(

−cw(N + 1)B + cr

N∑

k=1

Yk

)
I{M>N } + c, (18)

where I{.} is an indicator function, cw is the system’s working reward rate, cr is
the system’s PR cost rate, c is the system’s replacement cost, η is the system’s
invalidation cost.

Thus, now having the expressions (16), (17) and (18) and noticing that
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E[Xk |Xk ≤ B] = 1

F(ak−1 B)

∫ B

0
xd F(ak−1x),

allow to derive the expectations of the above random variables as follows:

1. E[T (B, N )] =
∫ B

0
xd F(x) +

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]
(19)

×
k−1∏

i=0

F̄(ai B)F(ak B) + (N + 1)B
N∏

i=0

F̄(ai B);

2. E[S(B, N )] =
N∑

k=1

[
F(ak B)

k−1∏

i=0

F̄(ai B)

k∑

i=1

μ

bi−1

]
(20)

+
N∑

i=1

μ

bi−1

N∏

k=0

F̄(ak B);

3. E[�(B, N )] = −cw

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]
(21)

× (−cw)

[
k−1∏

i=0

F̄(ai B)F(ak B) +
∫ B

0
xd F(x)

]

+ F(b)Eη +
N∑

k=1

[
cr

k∑

i=1

μ

bi−1 + Eη

]

×
k−1∏

i=0

F̄(ai B)F(ak B) − cw(N + 1)B

×
N∏

i=0

F̄(ai B) + cr

N∑

i=1

μ

bi−1

N∏

i=0

F̄(ai B) + c.

For more details on the derivation of (19), (20) and (21) the reader is referred to [9].
Now, using these results it can be shown that the average cost rate of the system
C(B, N ) is given by:

C(B, N ) = E[ costs in renewal cycle]

E[length of a renewal cycle]
= E[�(B, N )

E[T (B, N ) + S(B, N )
(22)

= −cwφ1 + crφ2 + φ3 Eη + c

φ1 + φ2
,

where
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• φ1 =
∫ B

0
xd F(x) +

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]

×
k−1∏

i=0

F̄(ai B)F(ak B) + (N + 1)B
N∏

i=0

F̄(ai B);

• φ2 =
N∑

k=1

[
F(ak B)

k−1∏

i=0

F̄(ai B)

k∑

i=1

μ

bi−1

]
+

N∑

i=1

μ

bi−1

N∏

k=0

F̄(ak B);

• φ3 = F(B) +
N∑

k=1

[
F(ak B)

k−1∏

i=0

F̄(ai B)

]
.

Hence, the next step is to identify the optimal replacement policy (B∗, N∗) that
minimises the average cost rate of the system C(B, N ) given in (22).

5.3 Example

The following example is taken from [9]. Let us assume that the distribution of the
nth operating time Xn is Weibull with parameters β and α, i.e.

Fn(t) = 1 − e
−

(
an−1t

β

)α

, for t > 0.

Then, the average cost rate of the system C(B, N ) simplifies to

C(B, N ) = crμl1 + l2 Eη − cwl3 + c

l1 + l3
,

where

• l1 =
N∑

k=1

k∑

i=1

1

bi−1 e
−∑k−1

i=0

(
ai B
β

)α

−
N−1∑

k=1

k∑

i=1

1

bi−1 e
−∑k

i=0

(
ai B
β

)α

;

• l2 = 1 +
N∑

k=2

e
−∑k−1

i=0

(
ai B
β

)α

−
N∑

k=1

e
−∑k

i=0

(
ai B
β

)α

;

• l3 =
∫ B

0
e−( x

β )αdx +
N∑

k=1

e
−∑k−1

i=0

(
ai B
β

)α ∫ B

0
e−( ak x

β )αdx .

Assigning specific values to the parameters, such as a = 1.05, b = 0.95, μ = 8,
Eη = 1500, cr = 20, cw = 50, c = 2000, β = 1000 and α = 2, and after using a
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numerical procedure, it is shown that the optimal strategy is (B∗, N∗) = (380, 10).
In other words, for a system with characteristics, as given in the example, the optimal
fixed period of time between consecutive PR is B∗ = 380 and if the system is free
of failure until the 11th PR, then at the time scheduled for this PR, the system has to
be replaced. This maintenance strategy assures the minimum average cost rate of the
system of C(B∗, N∗) = −47.5977. For more comments and details on the example,
please see [9].

6 Maintenance: Markovian Model for Non-zero Preventive
Repair Times

In this section, we summarise the Markovian approach proposed in Fang and Liu
[4] to model for non-zero preventive repair times. The main objective of this study
is to design a maintenance policy (B, N ), so that the steady-state profit rate of the
system is maximised, with B being the interval of preventive maintenance (repairs)
and N being the number of failure-free preventive repairs to system replacement.
The parameters of this strategy have the same meaning as in [9]. Also, the settings
considered here are close to the settings in Sect. 5, but have some specifics and we
discuss these below.

6.1 The Model

The model is built-up upon the following assumptions:

• At the beginning, a new system with preventive repairs (PR) is installed. At failure
the system is repaired and the repair is imperfect with non-zero repair time.

• The times between two consecutive system failures are called cycles.
• The system failure in cycle N is catastrophic and the system is replaced by a new,

identical system. The replacement requires negligible time.
• The PR will be adopted as soon as the operating time of the system reaches level

B, and within a cycle the PR is perfect and the PR times are i.i.d. Moreover, the
imperfect failure repair affects the first lifetime of the follow-up cycle and the
lifetimes within a cycle are i.i.d. Henceforth, the following notations will be used:

– X (n)
i - the operating time of the system after the nth PR within the i th cycle

with cdf Hi (x), pdf hi (x), failure rate function ai (x), and E[X (n)
i ] = λi , i =

1, 2, . . . ; n = 0, 1, 2, . . .. Moreover, {X (0)
i } form a decreasing stochastic

process.
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– Z (n)
i - the preventive repair time of the system in cycle i after n PR with cdf

Fi (z), pdf fi (z), hazard function bi (z), and E[Z (n)
i ] = bi , i = 1, 2, . . . ; n =

0, 1, 2, . . .. Moreover, {Z (0)
i } form an increasing stochastic process.

– Yi - the failure repair time of the system in cycle i cdf Gi (y), pdf gi (y), hazard
function μi (y), and E[Yi ] = μi , i = 1, 2, . . . ; n = 0, 1, 2, . . .. Moreover,
{Yi } form a monotonically increasing stochastic process.

– {X (n)
i }, {Z (n)

i } and {Yi }, i = 1, 2, . . . ; n = 0, 1, 2, . . . are independent.

• The working reward per unit time is C1, failure repair cost per unit time is C2,
preventive repair cost per unit time is C3, and the system replacement cost is C .

The state of the system is modelled as follows:

• (i, 0, n) - the system is working after the nth PR in cycle i , n = 0, 1, 2, . . .;
i = 1, 2, . . . , N .

• (i, 1, n) - the system is under PR after the nth PR in cycle i , n = 0, 1, 2, . . .;
i = 1, 2, . . . , N .

• (i, 2) - the system is under failure repair in cycle i , i = 1, 2, . . . , (N − 1).

The modelling is reduced to a vector Markov process, so that it allows for the
derivation of the state probability density equations. For more details on the modelling
and results see [4].

6.2 Steady-State PR-Replacement Policy

Next we summarise the results regarding the steady-state performance measures of
the system and use them to identify the optimal steady-state maintenance strategy as
described in Sect. 6.1.

The authors show that:

• the steady-state replacement frequency Mr is given by

Mr = 1
∑N

i=1

∫ B
0 H̄(x)dx

Hi (B)
+ ∑N

i=1
bi H̄(B)
Hi (B)

+ ∑N−1
i=1 μi

; (23)

• the steady-state availability A is equal to

A = Mr

N∑

i=1

∫ B
0 H̄(x)dx

Hi (B)
; (24)

• the steady-state PR frequency M1 is given by
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M1 = Mr

N∑

i=1

bi H̄(B)

Hi (B)
; (25)

• the steady-state failure repair probability P is

P = Mr

N−1∑

i=1

μi . (26)

Therefore, using (23), (24), (25) and (26) the steady-state average profit rate
C(B, N ) of the system is obtained to be equal to:

C(B, N ) = C1
∑N

i=1

∫ B
0 H̄(x)dx

Hi (B)
− C2

∑N−1
i=1 μi − C3

∑N
i=1

H̄(B)
Hi (B)

− C

∑N
i=1

∫ B
0 H̄(x)dx

Hi (B)
+ ∑N

i=1
bi H̄(B)
Hi (B)

+ ∑N−1
i=1 μi

. (27)

It is easy to see that the steady-state average profit rate C(∞, N ) of the system
without PR is given by

C(B, N ) = C1
∑N

i=1 λi − C2
∑N−1

i=1 μi − C
∑N

i=1 λi + ∑N−1
i=1 μi

. (28)

Therefore, it is worth to perform PR only if C(∞, N ) < C(B∗, N∗), where (B∗, N∗)
are the parameters of the optimal maintenance strategy. A possible approach in
finding the parameters of the optimal strategy is first, to find B∗

N for every N , so that
C(B∗

N , N ) reaches maximum for N = 1, 2, 3, . . . and second, find the maximum
among these values to determine C(B∗

N , N∗), so that (B∗
N , N∗) are the parameters

of the optimal maintenance policy. For more on this approach, see [11].

6.3 Example

As in [4], assume that C1 = 4, 900, C2 = 2, 100, C3 = 20, 000 and C = 2, 200, 000.
Also let Hi (x) = 1 − e(0.0001×1.04i−1x)2

, for x ≥ 0, i = 1, 2, . . . , N . Moreover,
bi = 5 × 1.05i−1, i = 1, 2, . . . , N and {Yi , i = 1, 2, . . . , N − 1} is a geometric
process with μi = 150 × 1.1i−1, i = 1, 2, . . . , N − 1. For these parameter values,
it is shown that

C(B, N ) = 4900 − A

B
, (29)

where

•
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A =
N∑

i=1

(24500 × 1.05i−1 + 20000)e−(0.0001×1.04i−1 B)2

1 − e−(0.0001×1.04i−1 B)2

+ 10500000(1.1N−1 − 1) + 2200000

• B =
N∑

i=1

∫ B
0 e−(0.0001×1.04i−1x)2

dx

1 − e−(0.0001×1.04i−1 B)2

+
N∑

i=1

5 × 1.05i−1e−(0.0001×1.04i−1 B)2

1 − e−(0.0001×1.04i−1 B)2 + 1500(1.1N−1 − 1).

By using numerical computations, the parameters of the optimal maintenance policy
are found to be equal to: B∗ = 1, 727.343 and N∗ = 3 with maximum steady-state
average profit reaching C(B∗, N∗) = 4, 847.148 per unit time. For more details and
comments, see [4].

7 A Case Study: Maintenance Optimisation for Age-Based
Replacement Policy

In this section, a case study of maintenance optimisation introduced by Pintelon, van
Puyvelde, and Gelders [6] is summarised. An age-based replacement model, which
allows for non-zero (preventive and corrective) repair times is used to determine an
optimal replacement policy. This study sheds some light on problems that need to
be dealt with when mathematical models are applied to solve practical problems.

7.1 Description of the Case Study

In the case study of Pintelon et.al. [6], an optimal age-based maintenance policy is
sought for the bottleneck machine of a manufacturing plant of beverage cans. Cans
are produced through several phases of the production lines. The bottleneck phase of
the production lines is associated with the cupper by which each cup is formed with
sheets of metal. The cupper capacity influences the output level of the production
heavily.

The company was using a classical block replacement policy under which pre-
ventive maintenance was conducted every ten days in addition to corrective main-
tenance at failure. A new replacement policy is desired to efficiently maintain the
equipment by incorporating the data collected by its maintenance information system
and making use of mathematical models.
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7.2 The Model

Here, an age-based model with a modification of non-negligible maintenance times
is applied. It is referred to as an extended age-based model. The following list sum-
marises notations and assumptions with some justification.

• At the beginning, the cupper is new. When the operation time of the cupper reaches
Ta (in days), a preventive maintenance (PM) with cost p [in Belgian Franc (BF)]
is carried out. In addition, at each failure (before the operation time reaches Ta) a
corrective maintenance (CM) with cost c (in BF) is executed.

• The duration of CM is fixed at tr (in days). Likewise, the duration of PM is pre-
specified at tm (in days). The classical age-based model assumes negligible main-
tenance time, but in the settings of this case study non-zero maintenance times are
appropriate. Moreover, the property of production process justifies deterministic
durations of CM and PM times.

• The times between two consecutive maintenance completion times, either correc-
tive or preventive, is said to be a cycle.

• Let T denote the time to failure of the cupper in each cycle with the cumulative
distribution function F(t), density function f (t) and failure rate function z(t).

• Single component machine: Since cupper failures are mostly caused by one com-
ponent, this assumption is appropriate.

• The system has two states (“on” or “off”): The production process is required to
be with high speed and high accuracy and allows for no deterioration. Hence, it is
either working denoted by “on” or not working denoted by “off”.

• Failure-based versus use-based maintenance: An optimal balance between the
frequencies of corrective and preventive maintenance is sought.

• As-good-as-new repairs: In each maintenance action, the cupper is repaired to be
as-good-as-new.

• Model approach: (1) continuous time, (2) infinite horizon, (3) stochastic model
• Continuous production process: The cupper is working continuously.
• Failure distribution is not known: The classical age-based model assumes a known

failure distribution, but in this case study, it was not the case. A few appropriate
failure distributions are applied for a sensitivity analysis.

• Maintenance times: No consensus was formed in regard to independence of main-
tenance times. Two scenarios are considered. (1) optimistic (maintenance times
are independent) (2) pessimistic (maintenance times are dependent).

• Optimisation of objective functions: (1) minimisation of the long-run maintenance
cost per unit time; (2) maximisation of the average availability of the cupper (this
would not be an objective function for the model with negligible maintenance
time).
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7.3 The Extended Age-Based Policy-Objective Functions
and Properties

Using the renewal reward arguments (Barlow and Hunter [1], Tijms [8]), the follow-
ing objective functions are obtained in [6].

• the average availability of the cupper is equal to

E(availability) = E(on time in a cycle)

E(cycle length)

=
∫ Ta

0 t d F(t) + Ta(1 − F(Ta))
∫ Ta

0 t d F(t) + tr F(Ta) + (Ta + tm)(1 − F(Ta))
(30)

• the long-run maintenance cost per unit time is given by

E(cost) = E(cost per cycle)

E(cycle length)

= cF(Ta) + p(1 − F(Ta))
∫ Ta

0 t d F(t) + tr F(Ta) + (Ta + tm)(1 − F(Ta))
(31)

The former is to be maximised, while the latter is to be minimised.
Some properties of the extended age-based model given below are discussed in [6].

• If the maintenance times are negligible, then the model concerned reduces to
a classical age-based model for minimising the long-run maintenance cost per
unit time.

• Under the assumption that the failure time T is exponentially distributed, the opti-
mal Ta for both objective functions become infinite, i.e. preventive maintenance
is unnecessary.

7.4 Example

Numerical methods and results presented in [6] are summarised in this subsection.
The preventive maintenance time is set at tm = 3 h. As for the corrective maintenance
time, two values are used: (1) tr = 10 h (pessimistic scenario) and (2) tr = 5 h
(optimistic scenario). A global cost of 125,000 BF/h (approximately 4,000 dollars/h)
including wages and materials is assumed. The case makes both maintenance times
and global costs predictable, so using deterministic values for them is justified.

Based on the data collected by the company, the mean time between failures
(MTBF) for the cupper is 12 days. For the sake of sensitivity analysis, a few different
failure distributions are used with the MTBF of 12 days. The two-parameter Weibull
distribution is selected as the failure distribution with f (t) = ατ (τ t)α−1e−(τ t)α ,
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F(t) = 1 − e−(τ t)α and z(t) = ατ (τ t)α−1, where α and τ are shape and scale
parameters, respectively. The managers’ knowledge suggests that α = 4.0. Using
the expression for the first moment μ of T , given by

μ = 1

τ
�

(
1 + 1

α

)

together with MTBF of 12 days (i.e., 1.714286 wk) and α = 4.0, the corresponding
τ can be obtained.

With the Weibull failure distribution the objective functions (30) and (31) contain
integrals which cannot be evaluated analytically. If τTa < 1, then (30) and (31) can
be computed via an appropriate numerical method. Otherwise, a simulation method
can be used to evaluate them. For details, see [6]

Under the pessimistic scenario tr = 10 h, both objective functions (30) and (31)
are optimised at Ta = 1.190 wk [corresponding to 8 days and a shift (8h)] with values
0.979713 and 426020 BF/wk, respectively. It is observed that as Ta increases the CM
cost increases, whereas the PM cost decreases.

A comparison is made between the current model, i.e. the block-based model
with preventive maintenance conducted every Tb = 10 days (1.428571 wk), and
the extended age-based model. At optimality the former has average availability of
0.976234, while the latter has 0.979713. Contrary to the intuition, this difference may
lead to a significant increase in income due to the fact that the cupper is a bottleneck
machine. For details, the reader is referred to [6].

Under the optimistic scenario tr = 5 h, the optimal preventive maintenance inter-
val Ta is 1.571 wk with average availability of 0.984698 and the long-run cost of per
unit time 321237 BF/wk.

A sensitivity analysis is carried out for the pessimistic scenario. In addition to
the case α = 4.0, α is set at 1, 1.5, 2.0, and 2.5 and optimal values of Ta , average
availability and long-run maintenance cost per unit time are compared. It is observed
that (1) the higher the shape parameter α the shorter the Ta , but the higher the
optimal average availability; (2) the higher the α , the clearer the optimum; (3) it
is confirmed that when α = 1 (the exponential failure distribution), the average
availability increases without bound as Ta → ∞.

8 A Simulation Model

In what follows we propose a simple simulation warranty model. We extend our
study [2] by assuming imperfect warranty repairs. We model the “on” times of the
system using a decreasing geometric process with parameters (X1, a) and the “off”
times (the warranty repair times) by an increasing geometric process with parameters
(Y1, b). Our goal is not only to estimate the expected warranty cost over a prespecified
warranty period, but also to formulate and solve an optimisation problem regarding
the length of the warranty period and provide some sensitivity analysis on the results.
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• The expected warranty cost
The evaluation of the expected warranty cost is straightforward and follows the
standard approach. We assign a cost Ci = A + cYi to the “off” times, as in sect.
3.3. First, we generate the two geometric processes, the “ON” process and the
“OFF” process, each with prespecified parameters. Based on the “OFF” process
and the parameter values of the cost function, for a fixed value of the warranty
period T , taking into account whether the warranty ends in an “on” or “off” period,
the warranty cost is computed. For a fixed value of T at least 100 realisations of
the “ON” and “OFF” processes are considered and the warranty cost for these
realisations are averaged to obtain the expected warranty cost for the chosen value
of T .

• Optimisation problem on T
Next, we aim to formulate and justify an optimisation problem for determining the
optimal warranty period for our model. Our objective function is the probability
of product’s sale P(T ) and we aim to maximise it. We assume that P(T ) is an
increasing function of the difference D(T ), which has the following representation:

D(T ) = v {total “on” time in T } − c {total “off” time in T },

where c ≥ 0 and v ≥ 0. Of course, the probability P(T ) might depend on other
factors, but in this study we focus only on the above difference. What could be the
interpretation of the parameters v and c ? One possible interpretation is as follows:
the parameter v could be thought of as the rate of customer satisfaction due to the
proper product functioning, and c as the rate of customer dissatisfaction due to the
product failure. Next, let

r = v

c

be the ratio of the two rates. Now, if the warranty expires in an “off” period, i.e.
the last “off” period is included in the warranty period, and the warranty coverage
consists of total of d complete cycles, our optimisation criterion becomes

max D(T ) = v

d∑

i=0

Xi − c
d∑

i=0

Yi = v (T −
d∑

i=0

Yi ) − c
d∑

i=0

Yi (32)

= v T − (v + c)
d∑

i=0

Yi = c (r T − (1 + r)

d∑

i=0

Yi ).

If the warranty expires in an “on” period, i.e. there is an incomplete cycle at the
end of the warranty with d complete cycles before it, our optimisation criterion
becomes:
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max D(T ) = v (T −
d∑

i=0

Yi ) − c
d∑

i=0

Yi = v T − (v + c)
d∑

i=0

Yi

= c (r T − (1 + r)

d∑

i=0

Yi ). (33)

Therefore, according to (32) and (33), the difference D(T ) is expressed equiva-
lently in both cases. Of course, in the simulation we need to keep track whether
the warranty expires during “on” or “off” time.
Next we present several illustrations of the model. In these illustrations the “on”

times follow a geometric process with F1(x) = 1 − e
−

(
t
β

)α

, for t > 0, i.e.
the underlying distribution is Weibull with parameters (αon,βon) and a > 1, and
the “off” times follow a geometric process with G1(x), which is also Weibull
with parameters (αof f ,βof f ) and 0 < b < 1. In Fig. 13, the remaining model
parameters have the following values: A = 0, r = 0.01, (αon,βon) = (2, 1500)

and a = 1.05, (αof f ,βof f ) = (2, 10) and b = 0.95, and the optimal value of
the warranty period is T ∗ = 5900. In Fig. 14, the dependence of D(T ) on r
is depicted for r = 0.01; 0.0075; 0.005, with corresponding optimal values
T ∗ = 5900, 2000, 650. As expected, T ∗ also decreases as r decreases.
In Figs. 15 and 16, we vary the ratio r and obtain the two limiting cases T ∗ = 0
and T ∗ = ∞. As expected, when r is very small, i.e. the dissatisfaction rate is
much higher that the satisfaction rate, the warranty period is zero, which will lead
to P(T ) = 0. Hence, the product has to be significantly improved before being
introduced into the market. On the other hand, if r is relatively high, so that the
two rates are comparable, the warranty period could be large and the probability
for product sale will tend to one.

• sensitivity analysis
Figures 13–16 provide an insight that the optimal value of T , if it exists, depends on
the ratio r = v

c . Figure 17 depicts D(T )’s (and the optimal value of T ) dependence
on the parameter βof f of G1 with the values of all of the remaining parameters as
in Fig. 13. The upper curve shows D(T ) from Fig. 13 and the lower curve is D(T )

for βof f = 15, which leads, as expected, to a lower optimal value of T ∗ = 1050.

Fig. 13 r = 0.01; T ∗ = 5900
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Fig. 14 r = 0.01;
0.0075; 0.005

Fig. 15 r = 0.001; T ∗ = 0

Fig. 16 r = 0.1; T ∗ = ∞

Fig. 17 (β1;of f ,β2;of f ) =
(10, 15)

Lastly, Fig. 18 depicts D(T )’s (and the optimal value of T ) dependence on the
parameter b of the “off” times geometric process, keeping all remaining parameters
as in Fig. 13. The upper curve is appropriately scaled curve from Fig. 13 and the
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Fig. 18 (b1, b2) =
(1.05, 1.25)

lower curve is D(T ) for b = 0.80, which leads, again as expected, to a lower
optimal value of T ∗ = 2600.

Currently, we are working on the extension of the periodic preventive repair-
replacement model presented in [9] (see Sect. 5). In this new simulation model, we
introduce product warranty, and aim to solve an optimisation problem that will result
in an optimal maintenance-warranty strategy with parameters (B∗, N∗, T ∗). The
detailed description and illustration of this model will be presented elsewhere.

9 Conclusions

In this chapter, we have reviewed several published studies with a common theme to
emphasise the importance of taking into account the non-zero length of rectification
actions. Our goal was to show that while modelling the product performance and
related cost analysis, it is important to include in the model the non-zero times
of warranty repairs, as well as the preventive/corrective maintenance repairs and
the “cost” associated with them. In most situations it is acceptable to consider the
repairs to be instantaneous, especially if they are not associated with high penalties,
losses, or dissatisfaction. At the same time, it is well known that the harm to the
producer/manufacturer’s reputation due to one dissatisfied customer is much higher
than the positive impact of this reputation due to a group of satisfied customers.
A faulty product could lead to a high customer dissatisfaction and could have a
significant negative impact on the producer’s market standing. Hence, if the rate of
this dissatisfaction, i.e. the “cost” of the “off” times, is taken into account, then better
maintenance/warranty strategies from manufacturers’ as well as customers’ point of
view could be designed.
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