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Reliability prediction of new components, products, and systems is a difficult task
due to the lack of well-designed test plans that yield “useful” information during
the test and due to the stochastic nature of the normal operating conditions. The
accuracy of the reliability prediction has a major effect on the warranty cost and
repair and maintenance strategies. Therefore, it is important to design efficient test
plans. In this chapter, we present an overview of reliability testing with emphasis on
accelerated testing and address issues associated with the design of optimal test plans,
stress application methods, and reliability prediction models. We further discuss the
concept of equivalence of test plans and how it could be used for test time reduction.
Finally, we present accelerated degradation modeling and the design of accelerated
degradation test plans.

1 Introduction

The high rate of technological advances and innovations are spurring the continu-
ous introduction of new products and services. Moreover, the intensity of the global
competition for the development of new products in a short time has motivated
the development of new methods such as robust design, just-in-time manufactur-
ing, and design for manufacturing and assembly. More importantly, both producers
and customers expect the product to perform the intended functions satisfactorily
for extended periods of time. Hence, extended warranties and similar assurances of
product reliability have become standard features of the product and serve as implied
indicators of the product’s reliability. Likewise, recalls of products and recent fail-
ures of systems, such as air traffic control systems and autos (sudden acceleration
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and brake failures) and products have emphasized the importance of testing. For
example, a recent recall of a popular car is attributed, by the manufacturer, to lack
of thoroughness in testing new cars and car parts under varying weather conditions,
as demonstrated by the recently recalled gas-pedal mechanism that tended to stick
more as humidity increased [40].

Careful reliability testing of systems, products, and components at the design
stage is crucial to achieving the desired reliability at the field operating conditions.
During the design stage of many products, especially those used in military, the
elimination of design weaknesses inherent to intermediate prototypes of complex
systems is conducted via the test, analyze, fix, and test (TAFT) process. This process
is generally referred to as “reliability growth.” Specifically, reliability growth is the
improvement in the true but unknown initial reliability of a developmental item as a
result of failure mode discovery, analysis, and effective correction. Corrective actions
generally assume the form of fixes, adjustments, or modifications to problems found
in the hardware, software, or human error aspects of a system [20]. Likewise, field
test results are used in improving product design and consequently its reliability.

The above examples and requirements have magnified the need for providing more
accurate estimates of reliability by performing testing of materials, components, and
systems at different stages of product development.

There is a wide variety of reliability testing methodologies and objectives. They
include testing to determine the potential failure mechanisms, reliability demonstra-
tion testing, reliability acceptance testing, reliability prediction testing using acceler-
ated life testing (ALT), and others. This chapter focuses on ALT, reliability prediction
models and the design of the ALT plans.

Testing under normal operating conditions requires a very long time especially for
components and products with long expected lives, and it requires extensive number
of test units, so it is usually costly and impractical to perform reliability testing under
normal conditions.

In many cases, ALT might be the only viable approach to assess whether the prod-
uct meets the expected long-term reliability requirements. ALT experiments can be
conducted using three different approaches. The first is conducted by accelerating
the “use” of the unit at normal operating conditions such as in cases of products
that are used only a fraction of a time in a typical day which includes home appli-
ances and auto tires. The second is conducted by subjecting a sample of units to
stresses severer-than-normal operating conditions in order to accelerate the failure.
The third is conducted by subjecting units that exhibit some type of degradation such
as stiffness of springs, corrosions of metals, and wear out of mechanical components
to accelerated stresses. The last approach is referred to as accelerated degradation
testing (ADT).

The reliability data obtained from the experiments are then utilized to construct
a reliability model for predicting the reliability of the product under normal operat-
ing conditions through a statistical and/or physics-based inference procedure. The
accuracy of the inference procedure has a profound effect on the reliability esti-
mates and the subsequent decisions regarding system configuration, warranties, and
preventive maintenance schedules. Specifically, the reliability estimate depends on
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two factors, the ALT model and the experimental design of the ALT test plans.
A “good” model can provide an appropriate fit to testing data and results in achiev-
ing accurate estimates at the normal conditions. Likewise, an optimal design of the
test plans, which determines the stress loadings (constant-stress, ramp-stress, cyclic-
stress, . . .), allocation of test units number stress level, optimum test duration, and
other experimental variables, can indeed improve the accuracy of the reliability esti-
mates. Indeed, without an optimum test plan, it is likely that a sequence of expensive
and time-consuming tests results in inaccurate reliability estimates. This might also
cause delays in product release, or the termination of the entire product as has been
observed by the author.

We describe briefly the methods of stress application, types of stresses, and focus
on the reliability prediction models that utilize the failure data at stress conditions to
obtain reliability information at normal conditions. We begin by describing the three
important methods including two of the most commonly used prediction models
that relate the test results at stress conditions to failure rate at the normal operating
conditions.

2 Reliability Prediction Models Using ALT Data

Many ALT models have been developed and successfully implemented in a variety
of engineering applications. The important assumption for relating the accelerated
failures to those at normal operating conditions is that the components/products oper-
ating at the normal conditions experience the same failure mechanisms as those at
the accelerated conditions. Elsayed [14] classifies the existing ALT models into three
categories: statistics-based models, physics-statistics-based models, and physics-
experimental-based models, as shown in Fig. 1. In particular, the statistics-based
models are generally used when the relationship between the applied stresses and
the failure time of the product is difficult to determine based on physics or chemistry
principles. In this case, accelerated failure times are used to determine the model
parameters statistically after assuming either a linear or nonlinear life-stress rela-
tionship.

The statistics-based models can be further classified into parametric models and
semiparametric/nonparametric models. The most commonly used failure time dis-
tributions in the parametric models are the exponential, Weibull, normal, lognormal,
gamma, and extreme value distributions. The underlying assumption of these mod-
els is that the failure times of the products follow the same distributions at different
stress levels. In reality, however, when the failure process involves complex and/or
inconsistent failure time distributions, the parametric models may not interpret the
data satisfactorily and the reliability prediction will be far from accurate. Conse-
quently, semiparametric or nonparametric models appear to be attractive and more
suitable for reliability estimation due to their “distribution-free” property. We briefly
review the two most commonly used ALT models as they will be used in the design
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Fig. 1 Classification of ALT models [14]

of the ALT plans and describe a third model which relaxes the assumptions of the
two models.

2.1 Proportional Hazards Model

Multiple regression models can be used to predict the time to failure (TTF) of a com-
ponent under multiple covariates. A similar regression-based model that is widely
used is the proportional hazards (PH) model introduced by Cox [8]. The PH model
is generally expressed as:

λ(t; z) = λ0(t) exp(βz)

where z = (z1, z2, ...zp)
T is a column vector of covariates (for ALT, it is the

column vector of stresses and/or their interactions that components experience).
β = (β1, β2, ...βp) is a row vector of the unknown coefficients. λ0(t) is a baseline
hazard rate function. Unlike standard regression models, the PH models assume that
the applied stresses act multiplicatively, rather than additively, on the hazard rate—a
much more realistic assumption in many cases [11, 16, 18]. The PH model is a class
of models with the property that the hazard functions of two units at two different
stress levels z1 and z2 are proportional to each other. In other words, the ratio of their
hazard rates does not vary with time.

One of the advantages of the PH model is the ability to include time-dependent
covariates. Let zi (t) be the covariate vector at time t for the ith individual unit under
study, then the associated hazard rate function can be expressed as:

λ(t; zi (t)) = λ0(t) exp(βzi (t))

where the hazard rate at time t depends only on the current stress level zi (t), and
there is no effect caused by the previous stress history.
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2.2 Accelerated Failure Time Models

Another widely used class of ALT models is accelerated failure time (AFT) models.
For many products, there are well-established acceleration models that perform satis-
factorily over the desired range of stresses. For instance, for temperature accelerated
testing, the Arrhenius model has gained acceptance because of its many successful
applications and general agreement of laboratory test results with long-term field
performance. In an AFT model, it is assumed that for a unit under the applied stress
vector z, the log-lifetime Y = log T has a distribution with a location parameter
μ(z) depending on the stress vector z, and a constant scale parameter σ > 0 in the
form of:

Y = log T = μ (z) + σε

where ε is a random variable whose distribution does not depend on z. The location
parameter μ(z) follows some assumed life-stress relationship, e.g., μ(z1, z2) = θ0 +
θ1z1 + θ2z2, where z1 and z2 are some known functions of stresses. The popular
Inverse Power law and Arrhenius model are special cases of this simple life-stress
relationship. The AFT models assume that the covariates act multiplicatively on
the failure time, or linearly on the log failure time, rather than multiplicatively on
the hazard rate. The hazard function in the AFT model can be written in terms of the
baseline hazard function λ0(·) as:

λ(t; z) = λ0(e
βzt)eβz

The main assumption of the AFT models is that the TTFs are inversely propor-
tional to the applied stresses, e.g., the TTF at high stress is shorter than the TTF at
low stress. It also assumes that the failure time distributions are of the same type. In
other words, if the failure time distribution at the higher stress is exponential then
the distribution at the low stress is also exponential. Therefore, a general cumulative
distribution function CDF for a two-parameters Weibull distribution under an applied
stress vector z is

F(t; z) = 1 − exp

(
−

(
t

θ (z)

)β
)

where β is the shape parameter and θ(z) is the scale parameter as a function of applied
stresses which can be expressed as θ(z) = θ0 + ∑n

i=1 θi zi , where θi is a coefficient
of the covariate zi . We illustrate the use of Weibull distribution for the true linear
acceleration case in which the scale parameter at normal conditions θo is linearly
related to the scale parameters at accelerated conditions θs using an acceleration
factor AF . The relationship between the failure time distributions at the accelerated
and normal conditions can be derived as

Fs(t) = 1 − e−( t
θs

)βs
t ≥ 0, βs ≥ 1, θs > 0 (1)
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where βs is the shape parameter of the Weibull distribution at stress conditions.
The CDF at normal operating conditions is:

Fo(t) = Fs

(
t

AF

)
= 1 − e

−
(

t
AF θs

)βs

= 1 − e
−

(
t
θo

)βo

(2)

As stated earlier, the underlying failure time distributions at both the accelerated
stress and operating conditions have the same shape parameters, i.e., βs = βo,
and θo = AFθs . If the shape parameters at different stress levels are significantly
different, then either the assumption of true linear acceleration is invalid or the
Weibull distribution is inappropriate to use for analysis of such data.

Let βs = βo = β ≥ 1. Then the probability density function at normal operating
conditions is

fo(t) = β

AFθs

(
t

AFθs

)β−1

e
−

(
t

AF θs

)β

t ≥ 0, θs ≥ 0 (3)

The MTTF at normal operating conditions is

MT T Fo = θ
1
β

o �

(
1 + 1

β

)
(4)

The failure rate at normal operating conditions is

λo(t) = β

AFθs

(
t

AFθs

)β−1

= λs(t)

Aβ
F

(5)

2.3 Extended Linear Hazard Regression Model

The PH and AFT models have very different assumptions (failure rate proportional-
ity or failure time proportionality, respectively). The only model that satisfies both
assumptions is the Weibull model. Assuming PH or AFT for a particular data set may
lead to different results. Therefore, a simultaneous treatment of the two is of practical
importance especially when the assumption regarding the PH or AFT is difficult to
justify or does not hold. Ciampi and Etezadi-Amoli [6] propose the extended hazard
regression (EHR) model which encompasses both the PH and AFT models as special
cases. To further enhance the capability of modeling ALT, Elsayed et al. [18] propose
a more generalized model - the extended linear hazard regression (ELHR) model
by incorporating the time-varying coefficient effect into the EHR model. The ELHR
model is expressed as:

λ(t; z) = λ0(te
(β0+β1t)z)e(α0+α1t)z (6)
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The ELHR model encompasses all previous models—PH, AFT, and EHR as special
cases. It incorporates the time-changing effects, proportional hazard effects, as well
as time-varying coefficient effects into one model. The ELHR model outperforms the
PH model and other extended models (e.g., Shyur et al. [35]) in that it can better inter-
pret physical failure processes thus providing a better model fit to the corresponding
failure time data. Furthermore, the ELHR model is essentially “distribution-free”,
and thus has a significant potential of dealing with complex failure processes. For
example, by assuming the baseline hazard function λ0(·) to be a quadratic function
λ0(u) = γ0 + γ1u + γ2u2, the model can be expressed as:

λ(t; z) = γ0e(α0+α1t)z + γ1te(θ0+θ1t)z + γ2t2e(ω0+ω1t)z (7)

where θ0 = α0 + β0, θ1 = α1 + β1, ω0 = α0 + 2β0, ω1 = α1 + 2β1. Then, the
associated reliability is given by

R(t; z) = exp(−�(t; z))

= exp

(
−

∫ t

0
γ0e(α0+α1t)z + γ1te(θ0+θ1t)z + γ2t2e(ω0+ω1t)zdu

)

where �(t; z) is the cumulative hazard rate function. One of the drawbacks of the
ELHR model is the number of parameters of the model. As the number increases it
is likely that the accuracy of the estimated parameters decreases which might result
in inaccurate reliability prediction at normal operating conditions. This drawback
becomes more acute when the failure time data are small.

3 Accelerated Life Testing Plans

A detailed test plan is usually designed before conducting an accelerated life test.
The plan requires determination of the type of stress, methods of applying stress,
stress levels, the number of units to be tested at each stress level, and an applicable
ALT model that relates the failure times at accelerated conditions to those at normal
conditions. Of course, a clear objective of the test plan needs to be defined. We begin
by the type of stresses followed by methods of stress loading.

3.1 Types of Stresses

In order to determine the type of stresses to be applied in ALT it is important to
understand the potential failures of the components and the causes of such failures.
This is usually based on engineering knowledge of the component’s materials, func-
tion, and the stresses that induce such failures. A simplified design of experiments
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approach is usually conducted to study the effect of the type of stresses by using two
levels of each stress (low and high). The high level of stress is the highest level that
can be applied without causing a different failure mechanism other than that likely to
occur at normal operating conditions. Therefore, a clear understanding of the physics
of failure is necessary and testing such as highly accelerated life testing (HALT) is
conducted to verify the failure mechanism and the magnitude of the highest stress.
HALT subjects the test unit to vibration with random mode of frequency coupled
with high temperature and shock in order to induce failures. The failure mechanism
is investigated and the stress type and its maximum applied levels are determined
accordingly.

In general, the type of applied stresses depends on the intended operating condi-
tions of the product and the potential cause of failure.

We classify the types of stresses as:

1. Mechanical Stresses: Fatigue stress is the most commonly used accelerated test
for mechanical components. Fatigue is the cause of failures of all rotating mechan-
ical components. When the components are subject to elevated temperature, then
creep testing (which combines both temperature and static or dynamic loads)
should be applied. Shock and vibration testing is suitable for components or prod-
ucts subject to such conditions as in the case of bearings, shock absorbers, cell
phones, tires, and circuit boards in airplanes and automobiles. Corrosion is another
cause of failure of most ferrous material and is induced due to humidity and cor-
rosive environment. Units that are subject to corrosion should then be tested using
humidity and other corrosive environments as a stress. Wear out is another cause
of moving mechanical parts. Depending on the actual use of the unit at normal
operating conditions an accelerated test that mimics these conditions needs to be
designed but with increased loads to cause significant wear out of the unit.

2. Electrical Stresses: These include power cycling, electric field, current density, and
electromigration. Electric field is one of the most common electrical stresses as it
induces failures in relatively short times as well as its effect is significantly higher
than other types of stresses. Thermal fatigue which is induced by temperature
cycling is another major cause of failure of electronic components.

3. Environmental Stresses: Temperature and thermal cycling are commonly used for
most products. As stated earlier, it is important to use appropriate stress levels
that do not induce different failure mechanisms than those at normal conditions.
Humidity is as critical as temperature but its application usually requires a very
long time before its effect is noticed. Other environmental stresses include ultra-
violet light which affects the strength of elastomers, sulfur dioxide which causes
corrosion in circuit boards, salt and fine particles and alpha rays which cause
the failure of the read access memory (RAM) and similar components. Likewise,
high levels of ionizing can cause electrons in outer orbits to be free which results
in electronic noise and signal spikes in digital circuits. Therefore, radiation is an
environmental stress that should be applied to the units subject to deployment in
space and other similar environments.
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3.2 Stress Loadings

Traditionally, ALT is conducted under constant stresses during the entire test dura-
tion. The test results are used to extrapolate the product life at normal conditions.
In practice, constant-stress tests are easier to carry out but need more test units and
a long time at low stress levels to yield sufficient degradation or failure data. How-
ever, in many cases the available number of test units and test duration are extremely
limited. This has prompted the industry to consider different types of stress loading.
Figure 2 shows examples of various stress loadings as well as their adjustable para-
meters. Some of these stress loadings have been widely utilized in ALT experiments.
For instance, static-fatigue tests and cyclic-fatigue tests [23] have been frequently
performed on optical fibers to study their reliability; dielectric-breakdown of thermal
oxides [18] have been studied under elevated constant electrical fields and tempera-
tures; the lifetime of ceramic components subject to slow crack growth due to stress
corrosion have been investigated under cyclic stress by NASA [7]. These stress load-
ings are selected because of the ease and convenience of statistical analyses and
familiarity of the existing analytical tools and industrial routines without following
a systematic refinement procedure. Due to tight budgets and time constraints, there
is an increasing need to determine the best stress loading in order to shorten the test
duration and reduce the total cost while achieving an accurate reliability estimate. In
the literature, most research has been focused on the design of optimum test plans
when the stress loadings are given. However, until recently, fundamental research
on the equivalency of these tests has not yet been investigated in reliability engi-
neering literature. Without the understanding of such equivalency, it is difficult, if
not impossible, for a test engineer to determine the best experimental settings before
conducting actual ALT.

Furthermore, as is often the case, products are usually exposed to multiple stresses
in actual use such as temperature, humidity, electric current, electric field, and various
types of shocks and vibration. A typical example is automotive electronics located
under the hood, where significant temperature fluctuation, vibration, corrosive gases,
and dust contribute to various types of degradation leading to failures, such as cracks
in solder joints, loss of connection of connectors, and sensor degradation. It is of
interest to know with high confidence what the mileage of normal driving conditions
is equivalent to each hour on test under accelerated conditions. Likewise, cellular
phones are subject to different environmental conditions, shocks, and vibration. To
study the reliability of such products, it is required to subject test units to multiple
stresses simultaneously in ALT experiments. For constant-stress tests, it might not
be difficult to extend the statistical methods for the design of optimum test plans for
single stress to multiple stress scenarios. However, many practical and theoretical
issues have to be dealt with when time-varying stresses such as step-stresses are
considered. In a multi-stress multi-step test, when and in what order the levels of
the stresses should be changed become challenging and unsolved problems. Figure 3
illustrates two example experimental settings out of thousands of choices as one can
imagine in conducting a multi-stress multi-step ALT. In general, an arbitrary selection
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e Triangular-cyclic-stress. f Ramp-soak-cyclic-stress
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Fig. 3 Two example settings of an ALT involving temperature, humidity, and electric current.
a Setting 1. b Setting 2

from combinations of multiple stress profiles may not result in accurate reliability
estimates, especially when the effects of the stresses on the reliability of the product
are highly correlated. Therefore, methods for tuning the high-dimensional decision
variables under the constraints in time and cost need to be carefully researched and
investigated.
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3.3 Design of ALT Plans

An ALT plan requires the determination of the type of stress, method of applying
stress, stress levels, the number of units to be tested at each stress level, and an
applicable ALT model that relates the failure times at accelerated conditions to those
at normal conditions.

When designing an ALT, we need to address the following issues: (a) Select the
stress types to use in the experiment; (b) Determine the stress levels for each stress
type selected; and (c) Determine the proportion of devices to be allocated to each
stress level Elsayed and Jiao [17] and Elsayed [15]. In this chapter, we present an
approach for designing test plans. We refer the reader to Meeker and Escobar [25],
Escobar and Meeker [19] and Nelson [28–30] for other approaches for the design of
ALT plans.

We consider the selection of the stress level zi and the proportion of units pi

to allocate for each zi such that the most accurate reliability estimate at use con-
ditions zD can be obtained. We consider two types of censoring: Type I censor-
ing involves running each test unit for a prespecified time. The censoring times
are fixed and the number of failures is random. Type II censoring involves simul-
taneously testing units until a prespecified number fails. The censoring time is
random while the number of failures is fixed. We define the following notations:
ln natural logarithm
ML maximum likelihood
n total number of test units
zH , zM , zL high, medium, low stress levels, respectively
zD specified design stress
p1, p2, p3 proportion of test units allocated to zL , zM and zL , respectively
T prespecified period of time over which the reliability estimate is of

interest at normal operating conditions
R(t; z) reliability at time t , for given z
f (t; z) PDF at time t, for given z
F(t; z) CDF at time t, for given z
�(t; z) cumulative hazard function at time t, for given z
λ0(t) unspecified baseline hazard function at time t
We assume the baseline hazard function λ0(t) to be linear with time:

λ0(t) = γ0 + γ1t

Substituting λ0(t) into the PH model described above, we obtain:

λ(t; z) = (γ0 + γ1t) exp(βz)

We obtain the corresponding cumulative hazard function �(t; z), and the variance
of the hazard function as
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�(t; z) =
(

γ0t + γ1t2

2

)
eβz

V ar [(γ̂0 + γ̂1t)eβ̂Z D ] = (V ar [γ̂0] + V ar [γ̂1]t2)e2(βz+V ar [β̂]z2)

+ e2βz+V ar [β̂]z2
(eV ar [β̂]z2 − 1)(γ0 + γ1t)2

3.3.1 Formulation of the Test Plan

Under the constraints of available test units, test time, and specification of the min-
imum number of failures at each stress level, the objective of the problem is to
optimally allocate stress levels and test units so that the asymptotic variance of the
hazard rate estimate at normal conditions is minimized over a prespecified period
of time T. If we consider three stress levels, then the optimal decision variables
(z∗

L , z∗
M , p∗

1, p∗
2, p∗

3) are obtained by solving the following optimization problem
with a nonlinear objective function and both linear and nonlinear constraints [15].

Min

T∫
0

V ar [(γ̂0 + γ̂1t)eβ̂zD ]dt

Subject to∑
∼

= F−1

0 < pi < 1, i = 1, 2, 3
3∑

i=1

pi = 1

zD < zL < zM < zH

npi Pr[t ≤ τ |zi ] ≥ MNF, i = 1, 2, 3

where, MNF is the minimum number of failures and
∑
∼

is the inverse of the Fisher’s

information matrix.
Other objective functions can be formulated which result in different designs of

the test plans. These functions include the D-Optimal design that provides efficient
estimates of the parameters of the distribution. It allows relatively efficient determi-
nation of all quantiles of the population, but the estimates are distribution dependent.
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3.3.2 Numerical Example

An accelerated life test is to be conducted at three temperature levels for MOS
capacitors in order to estimate its life distribution at a design temperature of 50 ◦C.
The test needs to be completed in 300 h. The total number of items to be placed
under test is 200 units. To avoid the introduction of failure mechanisms other than
those expected at the design temperature, it has been decided, through engineering
judgment, that the testing temperature should not exceed 250 ◦C. The minimum
number of failures for each of the three temperatures is specified as 25. Furthermore,
the experiment should provide the most accurate reliability estimate over a 10-year
period of time [15].

Consider three stress levels, then the formulation of the objective function and
the test constraints follow the same formulation given in the above section. The plan
derived that optimizes the objective function and meets the constraints is shown as
follows:

zL = 160 ◦C, zM = 190 ◦C, zH = 250 ◦C

The corresponding allocations of units to each temperature level are:

p1 = 0.5, p2 = 0.4, p3 = 0.1

3.3.3 Equivalent Accelerated Life Testing Plans

In design of ALT plans, estimate of one or more reliability characteristics, such as the
model parameters, hazard rate, and the mean TTF at certain conditions are common.
Accordingly, different optimization criteria might be considered. For instance, if the
estimate of the model parameters is the main concern, D-optimality which maxi-
mizes the determinant of the Fisher information matrix is considered an appropriate
criterion. When estimate of the time to quantile failure is of interest then the vari-
ance optimality that minimizes the asymptotic variance of time to quantile failure
at normal operating conditions is commonly used. Meanwhile, different methods,
e.g., maximum likelihood estimate (MLE) or Bayesian estimator can be used for
estimation of the model parameters. However, each method has its inherent statisti-
cal properties and efficiencies. In light of this, we discuss equivalent test plans with
respect to the same reliability characteristics and optimization criterion then deter-
mine equivalent test plans using the same inference procedure. In this chapter, we
propose two possible definitions of equivalency as follows:

Definition 1 Two test plans are equivalent if the absolute difference of the objectives
for reliability prediction is less than under the same set of constraints on the number
of test units, expected number of failures, or total test time.
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Definition 2 Two test plans are equivalent if they achieve the same objective for
reliability prediction under the same constraints on the number of test units, expected
number of failures, or total test time within a margin.

According to the above definitions, the equivalent test plans are not unique. There-
fore, we recommend the following procedures for constructing equivalent plans [46].

The first step of the approach is to obtain an optimal baseline test plan. Since
constant-stress test is the most commonly conducted ALT in industry and its statistical
inference has been extensively investigated, we propose to use an optimal constant-
stress plan as a baseline [45].

Suppose an optimal baseline test plan can be determined from the following
general formulation:

Min fB (x)

s.t. Lb ≤ x ≤ Ub (8)

C (x) ≤ 0, Ceq (x) = 0

where fB (x) is the objective function (e.g., the asymptotic variance of mean TTF)
and x is its decision variable which can be expressed as either a vector or a scalar,
Lb and Ub are the corresponding lower and upper bounds of x. C (x) ≤ 0 and
Ceq (x) = 0 are the possible inequality and equality constraints, respectively.

The second step is to determine the equivalent test plan based on Definitions 1 or
2 using formulations (8) or (9), respectively. Formulation (9) is given as follows:

Min i (y)

s.t. | fB (x) − fE (y)| ≤ δ

 j (x) −  j (y) = 0 (9)

Lb′ ≤ y ≤ Ub′

C ′ (y) ≤ 0, Ceq ′(y) = 0

where fB (x) and fE (y) are the base and equivalent objective functions on reliability
prediction, respectively, and y is the decision variable of the equivalent test plan.
(·) represents the constraint of the total number of test units, expected number of
failures, or the test time. When  j (y) is the total number of test units, i (y) can
be the censoring time under Type-I censoring or expected number of failures under
Type-II censoring and vice versa. The idea is to set the allowed difference between
objective values as a constraint as well as seek other merits.

Similarly, based on Definition 2, the optimal equivalent test plan can be determined
as,
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Min i (y)

s.t. fB (x) − fE (y) = 0∣∣ j (x) −  j (y)
∣∣ ≤ δ (10)

Lb′ ≤ y ≤ Ub′

C ′ (y) ≤ 0,

Ceq ′ (y) = 0

An example that demonstrates these methods and develops equivalent step-stress and
ramp-stress test plans and the baseline constant-stress test plan is given in Zhu and
Elsayed [46].

4 Accelerated Degradation Testing (ADT)

In this section, we present the concept of degradation, degradation modeling, and
the design of accelerated degradation test plans.

4.1 Degradation Models

There are many instances where few or no failures are observed even under accel-
erated conditions making reliability inference via failure-time analysis significantly
inaccurate, if not impossible. However, if a product’s performance indices related
to failure mechanism experience degradation over time, degradation analysis may
be a viable alternative to traditional failure-time analysis and ALT. Indeed, degra-
dation data may provide more reliability information than would be available from
traditional censored failure-time data.

In general, degradation testing can be conducted by observing the degradation of
the units at normal operating conditions and use appropriate models to predict the
reliability of such units. Alternatively, if the degradation rate is “small” then an ADT
is conducted instead. Again, an appropriate prediction model is needed to relate
degradation data at stress conditions to reliability estimate of the units at normal
operating conditions.

Moreover, to save time and cost, ADT experiments are commonly conducted
to provide immediate degradation data for predicting the reliability under normal
operating conditions. However, in ADT analysis, an inaccurate prediction will result
unless an appropriate degradation model and a carefully designed test plan are used.

An appropriate ADT model is the one that accurately accounts for the influences
of the stresses (covariates) on the degradation process based on the product’s physical
properties and the associated probability distributions. Nelson [27] briefly surveys
the degradation behavior of various products and materials subject to degradation,
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ADT models, and inference procedures. He also presents basic accelerated degra-
dation models under constant stress. Meeker and Escobar [25] provide a review
of degradation and describe the applications of ADT models. They propose math-
ematical models to analyze ADT data and suggest methods for estimating failure
time distributions, distribution quantiles, and their confidence intervals. A part of the
following is based on Liao [21].

Elsayed [14] provides a review of the degradation models and classifies ADT mod-
els into two types: physics-statistics-based models and statistics-based model. Fur-
thermore, he classifies statistics-based model into two categories: parametric models
and nonparametric/semiparametric models. This classification is summarized as fol-
lows.

1. Physics-statistics-based models
Nelson [26] analyzes the degradation of an insulation material at different stress
levels. He assumes that the temperature is the only acceleration factor that deter-
mines the degradation profile over time and presents a relationship among the
absolute temperature, the median breakdown voltage, and time. He then esti-
mates the lifetime distribution based on the performance degradation model.
Based on Carey and Tortorella [4], Carey and Koenig [3] utilize ADT at higher
temperature levels to infer the reliability of an integrated logic family, a compo-
nent of a generation of submarine cables, at normal operating condition. They
assume that the maximum propagation time delay (maximum degradation) and
the absolute temperature are related by the Arrhenius law. The maximum like-
lihood estimator is then utilized to estimate the parameters of the Arrhenius
relation, which is used for predicting the maximum degradation at normal oper-
ating conditions. Whitmore and Schenkelberg [41] model accelerated degrada-
tion process by a Brownian motion with a timescale transformation. The model
incorporates the Arrhenius law for high stress testing. Inference methods for
the model parameters based on ADT data are presented. Meeker et al. [24]
use the Arrhenius law to describe the impact of temperature on the rate of a
simple first-order chemical reaction and obtain a scale accelerated failure time
model (SAFT). Approximate maximum likelihood estimation [33] is used to
estimate model parameters. Confidence intervals for time-to-failure distribution
are obtained by simulation-based methods. Chang [5] presents a generalized
Eyring model to describe the dependence of performance aging on accelerated
stresses in a power supply. The tests considered involve multiple measurements
in a two-way design. The mean TTF of the power supply at the normal operat-
ing condition is estimated. Sometimes, the degradation indices (or rates) can be
measured directly or by using surrogate indicators or by conducting destructive
testing on the units.

2. Statistics-based models
Statistics-based models consist of parametric models and nonparametric mod-
els. The parametric models assume that the degradation path of a unit follows a
specific functional form with random parameters, or the degradation measure fol-
lows an assumed distribution with time-dependent parameters. Moreover, these
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models assume that there is only a scaling transformation of the degradation paths
or the degradation measure distributions at different stress levels but their forms
remain unchanged. The nonparametric models relax the assumption about the
form of the degradation paths or distribution of degradation and establish them
in a nonparametric way. The models have greater flexibility in contrast to the
parametric regression models, but they may not have explicit physical meaning.

a. Parametric models
Based on the degradation paths, Crk [9] extends the methodology of the
general degradation path approach to the development of the multivariate,
multiple regression analysis of function parameters with respect to applied
stresses.
Tang and Chang [36] model nondestructive accelerated degradation data
as a collection of stochastic processes for which the parameters depend
on the stress levels. The model adopts the independent increment concept
by assuming the incremental degradation within a time interval �t is i.i.d
random variable with mean μi�t and variance σ 2

i �t . The constants μi

and σ 2
i are the parameters under the ith stress level, which are linked with

applied stresses by a linear regression approach. The actual degradation path
is the summation of these increments, whose first passage time to a threshold
level D follows Birnbaum-Saunders distribution when D � μi�t . If the
independent increment is s-normally distributed, then an inverse Gaussian
distribution is used as it is a statistically more accurate model as discussed
by Bhattacharyya and Fries [1] and Desmond [10].
Among the approaches of degradation modeling by Brownian motion,
Doksum and Hoyland [12] discuss ADT models for the variable-stress
case and introduce a flexible class of models based on the concept of
accumulated decay. The variable-stresses considered are simple-step-stress,
multiple-step-stress, and progressive stress. The proposed model is a time-
transformed Brownian motion with drift model, which assumes that certain
deterministic stress level imposes the same scaling effect on drift and Brown-
ian motion terms. Pieper et al. [32] propose a different model for the first
passage time distribution under simple-step-stress condition. They also dis-
cuss an interesting extension that the time change point is random variable.
However, the expression for the first passage probability density in this case
cannot be obtained in an explicit form.

b. Nonparametric models
Shiau and Lin [34] present a Nonparametric Regression Accelerated Life-
stress (NPRALS) model for some groups of accelerated degradation curves
(paths). They assume that various stress levels only influence the degradation
rate but not the shape of the degradation curve. An algorithm is proposed
to estimate the components of NPRALS such as the acceleration factor. By
investigating the relationship between the acceleration factors and the stress
levels, the mean TTF estimate of the product under the normal condition is
obtained.
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The nonparametric regression models bear the degradation-path-free prop-
erty in contrast to the parametric models. They relax the specification of
the form of the degradation path and perform much better than paramet-
ric models, if the assumed path function is far from true in the parametric
modeling. However, nonparametric models require more data to obtain the
same accuracy as that of the parametric models assuming that the parametric
models are correct. In other words, the efficiency of nonparametric models
is relatively low. Moreover, the time scaling assumption is important since it
is required for predicting the form of degradation curve under normal oper-
ating conditions, but this assumption is rather weak. Moreover, to utilize
the nonparametric regression model, the span of degradation curve under
normal condition has to be covered by that of the accelerated degradation
data after time scaling, and ADT must be conducted until test units fail.
Another nonparametric/semiparametric approach is to utilize the degrada-
tion hazard function. Eghbali [13] proposes an ADT model called propor-
tional degradation hazards model (PDHM) assuming the logarithm of the
degradation hazard is a linear function of the stress covariates z, that is,

s(x; t, z) = s0(x; t) exp(β ′z)

where s0(x; t) = g0(x)q0(t) can be expressed as two positive separable
functions g0(x) and q0(t) of the degradation measure and the time, respec-
tively. MLEs are utilized to obtain the model parameters. The model is
applied to the ADT data of light emitting diode (LED) subject to accelerated
temperature and current to predict reliability at normal operating conditions.

4.2 Design of ADT Plans

Design of ADT plans is similar to the design of ALT plans as both require the determi-
nation of the stress type, stress level, and allocation of test units to stresses. However,
ADT plans require the identification of the degradation indicators, the frequency of
measurements (sometimes the degradation can only be assessed via destructive test-
ing). Of course, both ADT and ALT plans require the identification of the decision
variables, constraints, and an optimization criterion such as the asymptotic variance
of time to failure (TTF) estimate, variance of the reliability estimate, or variance of
the estimated 100pth percentile of the lifetime distribution, etc. Although the opti-
mization problem may be feasible, the obtained optimum test plan cannot correct the
bias of a degradation model, therefore, a test plan is inappropriate if the degradation
model is not accurate. We briefly discuss the common test plans.
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4.2.1 Constant–Stress Degradation Test Plans

Boulanger and Escobar [2] present a method to determine the stress levels, sam-
ple size at each level, and observation times. However, their method is discussed
under a predetermined termination time. Tseng and Yu [39] propose an intuitively
appealing method for choosing the time to terminate a degradation test by analyzing
the asymptotic convergence property of MTTF estimate but the termination rule is
approximate since no constraint has been considered. Park and Yum [31] develop
an optimal ADT plan under the assumptions of destructive testing and the simple
constant rate relationship between the stress and the product performance. By solv-
ing a constrained nonlinear programming problem, the stress levels, the proportion
of test units allocated to each stress level, and the inspection times are determined
such that the asymptotic variance of the MLE of the MTTF at the normal operating
conditions is minimized. Yu and Tseng [44] design an optimal degradation experi-
ment under the constraint of the total experimental cost. They assume the degradation
path can be transformed to a simple form. The optimal decision variables, sample
size, inspection frequency, and termination time are determined by minimizing the
variance of the estimated 100pth percentile of the lifetime distribution. As an appli-
cation, Yu and Chiao [43] design an optimal degradation experiment for improving
LED reliability. Wu and Chang [42] investigate the Nonlinear Mixed-effect Model
and propose a step-by-step enumeration algorithm to determine the optimal sample
size, inspection frequency, and termination time under the cost constraint. The vari-
ance of the estimator of percentile of the failure time distribution is minimized. They
also study the sensitivity of the optimal plan to the changes of model parameters
and cost. It shows that the optimal solution is slightly sensitive to the changes in the
values of model parameters. Recently, Liao and Elsayed [22] propose the Geometric
Brownian Motion Degradation Rate (GBMDR) model and inference procedure to
estimate field reliability for a population and a specific individual unit.

4.2.2 Variable–Stress Degradation Test Plans

Since conducting a constant-stress ADT is costly due to the test duration, it may not be
applicable for assessing the lifetime of a newly developed product because typically
only a few test units are available. To overcome this difficulty, a variable-stress such
as step-stress ADT experiment can be carried out. Tseng and Wen [38] provide an
illustration of a statistical inference procedure for a step-stress ADT using a case
study of LEDs. However, in the literature, variable-stress degradation test plans are
rare. Tang et al. [37] investigates planning of an optimum step-stress ADT experiment
where the test stress is increased in steps from a lower stress to a higher stress during
the test. Based on the maximum likelihood theory, the asymptotic variance of TTF
estimate at the normal operating conditions is then derived and used as a constraint
instead of an objective function. The optimum testing plan which minimizes the
testing cost gives the optimal sample size, number of inspections at each stress level,
and number of total inspections. It is important to note that in such step-stress testing
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the sequence of load application has a significant impact on the reliability prediction
at normal operating conditions, a fact that is rarely considered by researchers.

5 Summary

Reliability prediction of new components, products, and systems is a difficult task
due to the lack of well-designed test plans that yield “useful” information during the
test and due to the stochastic nature of normal operating conditions. The accuracy
of the reliability prediction has a major effect on the warranty cost and repair and
maintenance strategies. Therefore, it is important to design efficient test plans. In
this chapter, we present an overview of reliability testing with emphasis on accel-
erated testing and address issues associated with the design of optimal test plans,
stress application methods, and reliability prediction models. We further discuss the
concept of equivalence of test plans and how it could be used for test time reduction.
Finally, we present accelerated degradation modeling and the design of accelerated
degradation test plans.

Dedication

This chapter is dedicated to my colleague and friend Dr. Shunji Osaki on his 70th
Birthday for his contributions and leadership in the field of Reliability Engineering.
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