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1 Introduction

In the computer science community, the technique of garbage collection [5] is an
automatic process of memory recycling, which refers to those objects in the memory
no longer referenced by programs are called garbage and should be thrown away.
A garbage collector determines which objects are garbage and makes the heap space
occupied by such garbage available again for the subsequent new objects. Garbage
collection plays an important role in Java’s security strategy, however, it adds a large
overhead that can deteriorate the program performances. From related studies which
are summarized in [5], a garbage collector spends between 25 and 40 percent of
execution time of programs for its work in general, and delays caused by such a
garbage collection are obtrusive.

In recent years, generational garbage collection [1, 17, 19, 20] has been popular
with programmers as it can be made more efficiently. Compared with classical tracing
collectors, e.g., reference counting collector, mark-sweep collector, mark-compact
collector, and copying collector, a generational garbage collector is effective in com-
puter programs with the characteristic that it is unnecessary to mark or copy all active
data of the whole heap for every collection, i.e., the collector concentrates effort on
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those objects that are most likely to be garbage. Based on the weak generational
hypothesis [17] which asserts that most objects are short-lived after their allocation,
a generational garbage collector segregates objects by age into two or more regions
called generations or multiple generations. The survival rates of younger generations
are always much lower than those of older ones, which means that younger genera-
tions are more likely to be garbage and can be collected more frequently than older
ones. Although such generational collections cost much shorter time than that of a
full collection, the problems of pointers from older generations to younger ones and
the size of root sets for younger generations become more complicated. For these
reasons, many generational collectors are limited to just two or three generations [5].
This generational technique is now in widespread use for memory management. For
instance, the garbage collector, which is used in Sun’s HotSpot Java Virtual Machine
(JVM), manages heap space for both young and old generations [19]: New objects
space Eden, two equal survivor spaces SS�1 and SS�2 for surviving objects, and
tenured objects space Old (Tenured), where Eden, SS�1 and SS�2 are for younger
generations, and Old (Tenured) is for older ones.

A generational garbage collector uses minor collection and tenuring collection 1

for younger generations and major collection for multi-generations [5]. Most gen-
erational garbage collectors are copying collectors, although it is possible to use
mark-sweep collectors [2]. In this chapter, we concentrate on a generational garbage
collector using copying collection. However, for every garbage collection, the manner
of stop and copy pauses all application threads to collect the garbage. The duration
of time for which the collector has worked is called pause time [5], which is an
important parameter for interactive systems, and depends largely upon the volume
of surviving objects and the type of collections. That is, pause time suffered for minor
collection increases with the number of collections and is less than that of tenuring
collection; major collection pause time is the longest among the three.

With regard to garbage collection modelings, there have been few research papers
that studied analytical expressions of optimal policies for a generational garbage
collector. Most problems were concerned with several ways to introduce garbage
collection methods in techniques and how to tune the garbage collector by simula-
tions, which is more complex and time-consuming due to the random accesses of
programs in the memory in practice [4, 6, 7, 16, 18]. We propose that garbage col-
lection is a stochastic decision making process and should be analyzed by the theory
of stochastic processes from the viewpoints of management. As some applications
of damage models, a garbage collection model for a database in the computer system
[14] was studied, but the theoretical point of garbage collection was not considered
essentially, and optimal policies for a generational garbage collector with tenur-
ing threshold and major collection times according to practical working schemes
[21, 22] were studied recently.

1 Tenuring collection is also a kind of minor collection [5]. We define tenuring collection as distinct
from minor collection because there may be some surviving objects tenured from survivor space
into Old.
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This chapter considers a pause time goal which is called time cost or cost for
simplicity, and our problem is to obtain optimal collection times which minimize
the expected cost rates. Using the techniques of cumulative processes and reliabil-
ity theory [8–10], optimal tenuring collection times and major collection times are
discussed. Furthermore, increase in objects might be unclear at discrete times for
the high frequency of computer processes. According to [1, 19], it would be more
practical to assume that surviving objects that should be copied increase with time
continuously and roughly according to some mathematical laws. Applying the tech-
niques of degradation processes [11, 15] and continuous wear processes [9], optimal
tenuring collection times are discussed analytically and numerically.

2 Working Schemes

In general, the frequency of garbage collections depends on whether the computer
processes are busy or not. Hence, it is practical to assume that garbage collections
occur at a nonhomogeneous Poisson process with an intensity function λ(t) and a
mean-value function R(t) ≡ ∫ t

0 λ(u)du. Then, the probability that collections occur
exactly j times in (s, t] is [12]

Hj (s, t) ≡ [R(t) − R(s)] j

j ! e−[R(t)−R(s)] ( j = 0, 1, 2, . . .).

Letting Fj (s, t) ( j = 1, 2, . . .) denote the probability that collections occur at least
j times in the time interval (s, t],

Fj (s, t) =
∫ t

s
Hj−1(s, u)λ(u)du =

∞∑

i= j

Hi (s, t), (1)

where F0(s, t) ≡ 1 and

Hj (t) ≡ Hj (0, t) = [R(t)] j

j ! e−R(t),

Fj (t) ≡ Fj (0, t) =
∞∑

i= j

Hi (t).

Further, the volume Xi of new objects in Eden at the i th collection has an iden-
tical distribution G(x) ≡ Pr{Xi ≤ x} (i = 1, 2, . . .), and survivor rate αi (0 ≤
αi < 1; i = 1, 2, . . .), where 1 > α1 > α2 > · · · > αi > · · · ≥ 0, means that
new objects will survive 100αi percent at the i th minor collection. That is, detailed
working schemes of a generational garbage collector that have been introduced in
[5, 19, 21, 22] are given as the following steps (Fig. 1):
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Fig. 1 Working schemes of a generational garbage collector

1. New objects X1 are allocated in Eden.
2. When the first minor collection occurs, surviving objects α1 X1 from Eden are

copied into SS�1.
3. When the second minor collection occurs, surviving objects α1 X2 from Eden and

α2 X1 from SS�1 are copied into SS�2.
4. In the fashions of 1–3, minor collections copy surviving objects between SS�1

and SS�2 until they become tenured, i.e., tenuring collection occurs when some
parameter meets the tenuring threshold, and then, the older or the oldest objects
are copied into Old.

5. When Old fills up, major collection of the whole heap occurs, and surviving
objects from Old are kept in Old, while objects from Eden and survivor space are
kept in survivor space.

In practice, tenuring threshold mentioned in step 4 above is adaptive, which is
called adaptive tenuring [5] and can be modified at any time. In this chapter, we pro-
pose two cases of working schemes according to the properties of adaptive tenuring:

Based on [17], new objects can be tenured only if they survive at least one minor
collection, because objects that survive two minor collections are much less than
those that survive just one. In other words, surviving objects are likely to reduce
slightly with the number of minor collections beyond two. That is, for step 4:

4a. When tenuring collection occurs, surviving objects from Eden and survivor space
are copied into the other survivor space and Old, respectively. That is, if tenuring
collection is made at the j th ( j = 1, 2, . . .) collection, surviving objects α1 X j
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and α2 X j−1 + α3 X j−2 + · · · + α j X1 are copied into survivor space and Old,
respectively.

4b. After tenuring collection, the same collection cycle begins with step 1. The
collector works 1 → 2 → 3 → 4a → 4b → 1 → · · · . In this case, tenur-
ing collections can be consider as renewal points of the collection processes,
because Old will be filled with tenured objects slowly and major collection
occurs rarely, especially when the tenuring threshold is high and the survivor
rates are low. Modelings and optimizations of tenuring collection times are dis-
cussed in Sects. 3 and 5.

From [19], the oldest objects can be tenured from survivor space into Old at every
collection time when tenuring collection begins. That is, for step 4:

4c. When tenuring collection occurs, the oldest objects from survivor space are
copied into Old, and the other surviving objects from Eden and survivor space are
copied into the other survivor space. That is, if tenuring collection is made at the
j th ( j = 1, 2, . . .) collection, surviving objects α1 X j +α2 X j−1+· · ·+α j−1 X2
and α j X1 are copied into survivor space and Old, respectively.

4d. When the next collection occurs, the collector works as the same rule as 4c. That
is, when the second tenuring collection occurs, surviving objects α1 X j+1 +
α2 X j + · · · + α j−1 X3 and α j X2 are copied into the other survivor space and
Old, respectively. The collector works 1 → 2 → 3 → 4c → 4d → 5 →
1 → · · · . In this case, major collections can be consider as renewal points of the
collection processes, because there are always some surviving objects tenured
from survivor space into Old at every collection time when tenuring collection
begins, especially when the tenuring threshold is low and the survivor rates are
high. Related optimization problems of major collection times are discussed in
Sect. 4.

From the above discussions, if tenuring collection is made at the j th ( j = 1, 2, . . .)

collection, surviving objects that should be copied at the i th (i = 0, 1, 2, . . . , j − 1)

minor collection, copied objects and tenured objects at the kth (k = 1, 2, . . .) tenuring
collection are, respectively,

i−1∑

n=0

αn+1 Xi−n < K ,

j∑

n=1

αn X j+k−n ≥ K and α j Xk, (2)

where
∑−1

n=0 ≡ 0, and K is tenuring threshold in step 4, which means that the
total volume of surviving objects has exceeded level K . It could be easily seen that
copied objects increase with the number of minor collections and are relatively stable
with the number of tenuring collections. We define that the distribution of the total
surviving objects at the i th minor collection is

Gi (x) ≡ Pr

{
i−1∑

n=0

αn+1 Xi−n ≤ x

}

(i = 0, 1, 2, . . .), (3)
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where Gi (x) decreases with i , and G0(x) ≡ 1 means that there are no objects in the
heap space at time 0. The probability that the total surviving objects exceed exactly
a threshold level K at the (i + 1)th (i = 0, 1, 2, . . .) minor collection is

pi (K ) ≡
∫ K

0
G(K − x)dGi (x) = Gi (K ) − Gi+1(K ), (4)

where V (x) ≡ 1 − V (x) for any distribution V (x).
Letting cS + cM (x) be the cost suffered for every minor collection, where cS is

the constant cost of scanning surviving objects and x is the surviving objects that
should be copied, cM (x) increases with x and cM (0) ≡ 0. Then, the expected cost
of the i th minor collection is

C(i, K ) ≡ 1

Gi (K )

∫ K

0
[cS + cM (x)] dGi (x) (i = 0, 1, 2, . . .), (5)

where C(0, K ) ≡ 0 and C(i, K ) increases with i .

3 Tenuring Collection Times

Suppose that minor collections are made when the garbage collector begins to work,
tenuring collection is made at a planned time T (0 < T ≤ ∞) or at the first collection
time when surviving objects have exceeded a threshold level K (0 < K ≤ ∞),
whichever occurs first. Then, the probability that tenuring collection is made at time
T is

PT =
∞∑

j=0

Hj (T )G j (K ), (6)

and the probability that tenuring collection is made at level K is

PK =
∞∑

j=0

Fj+1(T )p j (K ), (7)

where note that PT + PK ≡ 1. The mean time to tenuring collection is

E1(L) = T
∞∑

j=0

Hj (T )G j (K ) +
∞∑

j=0

p j (K )

∫ T

0
tdFj+1(t)

=
∞∑

j=0

G j (K )

∫ T

0
Hj (t)dt. (8)
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The expected cost suffered for minor collections until tenuring collection is

CM =
∞∑

j=1

j∑

i=1

C(i, K )Hj (T )G j (K ) +
∞∑

j=1

j∑

i=1

C(i, K )Fj+1(T )p j (K )

=
∞∑

j=1

C( j, K )Fj (T )G j (K ). (9)

Then, the expected cost until tenuring collection is

E1(C) = cK − (cK − cT )

∞∑

j=0

Hj (T )G j (K ) +
∞∑

j=1

C( j, K )Fj (T )G j (K ), (10)

where cT and cK (cT , cK > cS + cM (K )) are the costs suffered for tenuring collec-
tions at time T and when surviving objects have exceeded K , respectively. Therefore,
from (8) to (10), by using the theory of renewal reward process [13], the expected
cost rate is

C1(T, K ) =
cK − (cK − cT )

∑∞
j=0 Hj (T )G j (K )

+∑∞
j=1 C( j, K )Fj (T )G j (K )
∑∞

j=0 G j (K )
∫ T

0 Hj (t)dt
. (11)

3.1 Optimal Policies

1. Optimal T∗
1: When tenuring collection is made only at time T ,

C1(T ) ≡ lim
K→∞ C1(T, K ) = 1

T

⎧
⎨

⎩

∞∑

j=1

Fj (T )

∫ ∞

0
[cS + cM (x)] dG j (x) + cT

⎫
⎬

⎭
.

(12)
Letting f j (t) be a density function of Fj (t), i.e., f j (t) ≡ dFj (t)/dt . Then, differ-
entiating C1(T ) with respect to T and setting it equal to zero,

∞∑

j=1

[
T f j (T ) − Fj (T )

]
∫ ∞

0
[cS + cM (x)] dG j (x) = cT . (13)

Letting L1(T ) be the left-hand side of (13),

L1(0) ≡ lim
T →0

L(T ) = 0,
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L ′
1(T ) =λ′(T )T

∞∑

j=0

Hj (T )

∫ ∞

0
[cS + cM (x)] dG j+1(x)

+ λ(T )2T
∞∑

j=0

Hj (T )

∫ ∞

0
p j+1(x)dcM (x).

Thus, if λ(t) increases with t and L1(∞) > cT , there exists a finite and unique
T ∗

1 (0 < T ∗
1 < ∞) which satisfies (13), and the resulting cost rate is

C1(T
∗
1 ) = λ(T ∗

1 )

∞∑

j=0

Fj (T
∗
1 )

∫ ∞

0
p j (x)dcM (x).

In particular, when Hj (t) = [(λt) j/j !]e−λt ( j = 0, 1, 2, . . .), i.e., garbage col-
lections occur at a Poisson process with rate λ, (13) becomes

∞∑

j=1

j Fj+1(T )

∫ ∞

0
p j (x)dcM (x) = cT . (14)

Differentiating the left-hand side of (14) with respect to T ,

λ

∞∑

j=1

j Hj (T )

∫ ∞

0
p j (x)dcM (x) > 0.

Thus, if the left-hand side of (14) is greater than cT , then there exists a finite and
unique T ∗

1 (0 < T ∗
1 < ∞) which satisfies (14).

2. Optimal K∗
1: When tenuring collection is made only at level K ,

C1(K ) ≡ lim
T →∞ C1(T, K ) =

∑∞
j=1

∫ K
0 [cS + cM (x)]dG j (x) + cK

∑∞
j=0 G j (K )

∫∞
0 Hj (t)dt

. (15)

Letting gi (x) be a density function of Gi (x) in (3), i.e., gi (x) ≡ dGi (x)/dx . Differ-
entiating C1(K ) with respect to K and setting it equal to zero,

Q1(K )

∞∑

j=0

G j (K )

∫ ∞

0
Hj (t)dt −

∞∑

j=1

∫ K

0
[cS + cM (x)] dG j (x) = cK , (16)

where

Q1(K ) ≡ [cS + cM (K )]∑∞
j=1 g j (K )

∑∞
j=1 g j (K )

∫∞
0 Hj (t)dt

.
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Letting L1(K ) be the left-hand side of (16),

L1(0) ≡ lim
K→0

L1(K ) = Q1(0)

∫ ∞

0
H0(t)dt,

L ′
1(K ) = Q′

1(K )

∞∑

j=0

G j (K )

∫ ∞

0
Hj (t)dt.

Thus, if Q1(K ) increases with K and L1(0) < cK < L1(∞), then there exists a
finite and unique K ∗

1 (0 < K ∗
1 < ∞) which satisfies (16), and the resulting cost rate

is
C1(K ∗

1 ) = Q1(K ∗
1 ).

In particular, when Hj (t) = [(λt) j/j !]e−λt , (16) becomes

cM (K ) +
∫ K

0
[cM (K ) − cM (x)] dM(x) = cK − cS, (17)

whose left-hand side increases with K from 0 to ∞, where M(x) ≡ ∑∞
j=1 G j (x).

Thus, there exists a finite and unique K ∗
1 (0 < K ∗

1 < ∞) which satisfies (17).

3.2 Numerical Examples

When λ(t) = λ, Xi (i = 1, 2, . . .) has a normal distribution N (μ,σ2), αi =
α/ i (0 ≤ α < 1; i = 1, 2, . . .) and cM (x) = cM x . Then

Fj (t) = 1 −
j−1∑

i=0

(λt)i

i ! e−λt , G j (x) = �

(
x − αμν j

ασ
√

ω j

)

, (18)

where �(x) is the standard normal distribution with mean 0 and variance 1, i.e.,
�(x) ≡ (1/

√
2π)

∫ x
−∞ e−u2/2du, and

ν j ≡
j∑

n=1

1

n
, ω j ≡

j∑

n=1

1

n2 .

Tables 1 and 2 present λT ∗
1 , C1(T ∗

1 )/λ, K ∗
1 and C1(K ∗

1 )/λ for cT = cK = 20,
30, 40, μ = 8, 10 and α = 0.40, 0.45, 0.50, 0.55, 0.60 when cS = 10, cM = 1 and
σ = 1. These show that optimal tenuring collection times λT ∗

1 increase with cost cT

and decrease with both the volume of new objects in Eden at collection time μ and
the survivor rate α, optimal tenuring collection times K ∗

1 increase with all of cK , μ
and α, and C1(T ∗

1 )/λ and C1(K ∗
1 )/λ increase with all of cT or cK , μ and α. We can

explain all the results and obtain some interesting conclusions as follows:
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Table 1 Optimal λT ∗
1 and C1(T ∗

1 )/λ when cS = 10, cM = 1 and σ = 1

μ α cT = 20 cT = 30 cT = 40
λT ∗

1 C1(T ∗
1 )/λ λT ∗

1 C1(T ∗
1 )/λ λT ∗

1 C1(T ∗
1 )/λ

0.40 8.99 19.24 12.48 20.18 15.84 20.89
0.45 8.24 20.11 11.34 21.14 14.35 21.92

8 0.50 7.61 20.95 10.42 22.07 13.15 22.92
0.55 7.08 21.77 9.66 22.98 12.17 23.90
0.60 6.64 22.58 9.03 23.86 11.34 24.85

0.40 7.61 20.95 10.42 22.07 13.14 22.91
0.45 6.96 21.98 9.49 23.20 11.95 24.14

10 0.50 6.44 22.97 8.75 24.30 10.97 25.31
0.55 6.01 23.95 8.13 25.37 10.17 26.47
0.60 5.64 24.91 7.61 26.43 9.49 27.60

Table 2 Optimal K ∗
1 and C1(K ∗

1 )/λ when cS = 10, cM = 1 and σ = 1

μ α cK = 20 cK = 30 cK = 40
K ∗

1 C1(K ∗
1 )/λ K ∗

1 C1(K ∗
1 )/λ K ∗

1 C1(K ∗
1 )/λ

0.40 8.76 18.76 9.61 19.61 10.71 20.71
0.45 9.25 19.25 11.04 21.04 11.57 21.57

8 0.50 9.71 19.71 12.03 22.03 12.39 22.39
0.55 10.12 20.12 12.69 22.69 13.18 23.18
0.60 10.49 20.49 13.32 23.32 13.94 23.94

0.40 10.72 20.72 12.05 22.05 12.41 22.41
0.45 11.24 21.24 12.87 22.87 13.39 23.39

10 0.50 11.64 21.64 13.64 23.64 14.33 24.33
0.55 12.08 22.08 14.37 24.37 15.23 25.23
0.60 12.44 22.44 15.07 25.07 16.09 26.09

• When tenuring collection cost cT or cK increases, it is not economical to make
tenuring collections frequently, then T ∗

1 or K ∗
1 should be postponed.

• When μ or α increases, cost suffered for minor collections will increase in a shorter
time, because of faster increase in copied objects. If cost cT or cK is constant in
this case, T ∗

1 should be advanced. For K ∗
1 , it costs much shorter time to increase

copied objects until level K , then K ∗
1 would increase suitably to decrease both the

frequency of tenuring collections and the total minor collection cost.
• The resulting cost rates C1(T ∗

1 ) or C1(K ∗
1 ) increase with all μ, α and cT or

cK , because the total expected cost of one cycle increases but the expected time
decreases.

• It is interesting that C1(K ∗
1 ) are always less than C1(T ∗

1 ) for the same parameters,
i.e., tenuring collections at level K are better than those at time T . In fact, from
Tables 1 and 2, we know that the expected number of minor collections until tenur-
ing collection for two models are almost the same. That is, from the assumption
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of αi = α/ i , we can derive

1 + 1

2
+ 1

3
+ · · · + 1

[λT ∗
1 ] <

K ∗
1

αμ
< 1 + 1

2
+ 1

3
+ · · · + 1

[λT ∗
1 ] + 1

, (19)

where [x] denotes the greatest integer contained in x . For example, when cT =
cK = 20, μ = 8 and α = 0.4, λT ∗

1 = 8.99 and K ∗
1 = 8.76, and hence

1 + 1

2
+ · · · + 1

8
= 2.55 <

8.76

0.4 × 8
= 2.74 < 1 + 1

2
+ · · · + 1

9
= 2.83.

We can estimate approximate values K ∗
1 from T ∗

1 using the relationship of the two
policies in (19), and vice versa.

4 Major Collection Times

4.1 Model 1

Suppose that minor collections are made before surviving objects exceed a threshold
level K (0 < K < ∞), and when they have exceeded K , tenuring collections are
always made. Further, major collection is made at time T (0 < T ≤ ∞) or at the
N th (N = 1, 2, . . .) collection including minor and tenuring collections, whichever
occurs first. Furthermore, Letting ckT (k = 1, 2, . . .) be the cost suffered for the kth
tenuring collection, where cS + cM (K ) < c1T < c2T < · · · , and cF (cF > ckT ) be
the cost suffered for major collection. Then, the probability that major collection is
made at time T is

PT =
N−1∑

j=0

Hj (T )G( j)(K ) +
N−1∑

j=1

j−1∑

i=1

Hj (T )pi (K ) = 1 − FN (T ), (20)

and the probability that major collection is made at collection N is

PN = FN (T )G(N )(K ) +
N−1∑

j=0

FN (T )p j (K ) = FN (T ), (21)

where note that PT + PN ≡ 1. The mean time to major collection is

E2(L) =
∫ T

0
tdFN (t) + T

N−1∑

j=0

Hj (T ) =
∫ T

0
[1 − FN (t)] dt. (22)
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The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CT M =
N−1∑

j=1

Hj (T )

⎡

⎣
j∑

i=1

C(i, K )G( j)(K ) +
j−1∑

i=1

i∑

k=1

C(k, K )pi (K )

⎤

⎦

=
N−1∑

j=1

Hj (T )

j∑

i=1

C(i, K )G(i)(K ), (23)

CT T =
N−1∑

j=1

Hj (T )

j−1∑

i=0

j−i∑

k=1

ckT pi (K )

=
N−1∑

j=1

Hj (T )

j−1∑

i=0

[
c(i+1)T − c( j−i)T G(i+1)(K )

]
, (24)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CN M = FN (T )

⎡

⎣
N∑

j=1

C( j, K )G(N )(K ) +
N−1∑

j=1

j∑

i=1

C(i, K )p j (K )

⎤

⎦

= FN (T )

N∑

j=1

C( j, K )G( j)(K ), (25)

CN T = FN (T )

N−1∑

j=0

N− j∑

i=1

ciT p j (K )

= FN (T )

N−1∑

j=0

[
c( j+1)T − c(N− j)T G( j+1)(K )

]
. (26)

Thus, the total expected cost until major collection is, summing up from (23) to
(26) and adding the cost cF of major collection,

E2(C)= cF +
N∑

j=1

C( j, K )Fj (T )G( j)(K )

+
N∑

j=1

Fj (T )

⎡

⎣c jT −
j−1∑

i=0

G( j−i)(K )(c(i+1)T − ciT )

⎤

⎦ . (27)
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Therefore, the expected cost rate is, from (22) and (27),

C2(T, N ) = cF +∑N
j=1 Fj (T )A j

∫ T
0 [1 − FN (t)]dt

, (28)

where

A j ≡ c jT +
∫ K

0
[cS + cM (x)] dG( j)(x) −

j−1∑

i=0

G( j−i)(K )(c(i+1)T − ciT ).

It can be easily proved that A j increases with j because

A j+1 − A j = (c1T − cS − cM (K ))p j (K ) +
∫ K

0
p j (x)dcM (x)

+
j∑

i=1

p j−i (K )(c(i+1)T − ciT ) > 0.

1. Optimal T ∗
2 : When major collection is made only at time T ,

C2(T ) ≡ lim
N→∞ C2(T, N ) = 1

T

⎡

⎣
∞∑

j=1

Fj (T )A j + cF

⎤

⎦ . (29)

Differentiating C2(T ) in (29) with respect to T and setting it equal to zero,

∞∑

j=1

A j
[
T λ(T )Hj−1(T ) − Fj (T )

] = cF ,

that is,
∞∑

j=1

A j

∫ T

0
td
[
λ(t)Hj−1(t)

] = cF . (30)

Letting L2(T ) be the left-hand side of (30),

L ′
2(T ) =

∞∑

j=0

A j+1

∫ T

0
tλ′(t)Hj (t)dt +

∞∑

j=0

(A j+2 − A j+1)

∫ T

0
t[λ(t)]2 Hj (t)dt,

L2(∞) =
∞∑

j=1

A j

∫ ∞

0
td[λ(t)Hj−1(t)].
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Thus, if λ(t) increases with t and L2(∞) > cF , then there exists a finite and unique
T ∗

2 (0 < T ∗
2 < ∞) which satisfies (30).

In particular, when λ(t) = λ,

L ′
2(T ) =

∞∑

j=0

( j + 1)Fj+2(T )(A j+2 − A j+1),

L2(∞) =
∞∑

j=1

(A∞ − A j ).

Therefore, if
∑∞

j=1(A∞ − A j ) > cF , then there exists a finite and unique T ∗
2

(0 < T ∗
2 < ∞), and the resulting cost rate is

C2(T ∗
2 )

λ
=

∞∑

j=0

Hj (T
∗
2 )A j+1.

2. Optimal N∗
2 : When major collection is made only at collection N ,

C2(N ) ≡ lim
T →∞ C2(T, N ) =

∑N
j=1 A j + cF

∫∞
0 [1 − FN (t)]dt

(N = 1, 2, . . .). (31)

From the inequality C2(N + 1) − C2(N ) ≥ 0,

N−1∑

j=0

[
AN+1∫∞

0 HN (t)dt

∫ ∞

0
Hj (t)dt − A j+1

]

≥ cF . (32)

Letting L2(N ) be the left-hand side of (32),

L2(N + 1) − L2(N ) =
[

AN+2∫∞
0 HN+1(t)dt

− AN+1∫∞
0 HN (t)dt

]∫ ∞

0

[
1 − FN+1(t)

]
dt.

(33)
Thus, if AN+1/

∫∞
0 HN (t)dt increases with N and L2(∞) > cF , then there exists a

finite and unique minimum N∗
2 (1 ≤ N∗

2 < ∞) which satisfies (32).
In particular, when λ(t) = λ,

L2(N ) =
N∑

j=1

(AN+1 − A j ),

L2(N + 1) − L2(N ) = (N + 1)(AN+2 − AN+1) > 0.
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It is assumed that A∞ ≡ lim j→∞ A j < ∞. Then,

L2(∞) =
∞∑

j=1

(A∞ − A j ).

Further, because
∑N

j=1(AN+1 − A j ) ≥ AN+1 − A1 (N = 1, 2, . . .), if A∞ = ∞,
then L2(∞) = ∞. Therefore, if

∑∞
j=1(A∞ − A j ) > cF , then there exists a finite

and unique minimum N∗
2 (1 ≤ N∗

2 < ∞), and the resulting cost rate is

AN∗
2

≤ C2(N∗
2 )

λ
< AN∗

2 +1.

It is of interest that when collections occur at a Poisson process with rate λ, if∑∞
j=1(A∞ − A j ) > cF , then both finite and unique T ∗

2 and N∗
2 exist.

4.2 Model 2

Suppose that minor collections are made before surviving objects exceed a threshold
level K , and after they have exceeded K , tenuring collections are always made.
Further, major collection is made at time T (0 < T ≤ ∞) or at collection N
(N = 1, 2, . . .) including tenuring collections, whichever occurs first. Then, the
probability that major collection is made at time T is

PT =
∞∑

j=0

N−2∑

i=0

p j (K )

∫ ∞

0
Hi (u, u + T )dFj+1(u), (34)

and the probability that major collection is made at collection N is

PN =
∞∑

j=0

∞∑

i=N−1

p j (K )

∫ ∞

0
Hi (u, u + T )dFj+1(u). (35)

The mean time to major collection is

E3(L) =
∞∑

j=0

p j (K )

∫ ∞

0

[∫ T

0
(u + t)dFN−1(u, u + t)

]

dFj+1(u)

+
∞∑

j=0

N−2∑

i=0

p j (K )

∫ ∞

0
(u + T )Hi (u, u + T )dFj+1(u)
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=
∞∑

j=0

p j (K )

∫ ∞

0
udFj+1(u)

+
∞∑

j=0

p j (K )

∫ ∞

0

{∫ T

0

[
1 − FN−1(u, u + t)

]
dt

}

dFj+1(u). (36)

The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CT M =
∞∑

j=0

j∑

i=1

ci M p j (K )

∫ ∞

0

[
1 − FN−1(u, u + T )

]
dFj+1(u), (37)

CT T =
∞∑

j=0

N−2∑

i=0

i+1∑

k=1

ckT p j (K )

∫ ∞

0
Hi (u, u + T )dFj+1(u), (38)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CN M =
∞∑

j=0

j∑

i=1

ci M p j (K )

∫ ∞

0
FN−1(u, u + T )dFj+1(u), (39)

CN T =
∞∑

j=0

N∑

i=1

ciT p j (K )

∫ ∞

0
FN−1(u, u + T )dFj+1(u). (40)

Thus, the total expected cost until major collection is, summing up from (37) to
(40) and adding the cost cF of major collection,

E3(C)= cF +
∞∑

j=1

j∑

i=1

ci M p j (K )

+
∞∑

j=0

N∑

i=1

ciT p j (K )

∫ ∞

0
Fi−1(u, u + T )dFj+1(u). (41)

Therefore, from (36) to (41), the expected cost rate is

C3(T, N ) = E3(C)

E3(L)
. (42)
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1. Optimal T ∗
3 : When major collection is made only at time T ,

C3(T ) ≡ lim
N→∞ C3(T, N ) =

cF +∑∞
j=1

∑ j
i=1 ci M p j (K )

+∑∞
j=0

∑∞
i=1 ciT p j (K )

× ∫∞
0 Fi−1(u, u + T )dFj+1(u)

∑∞
j=0 p j (K )

∫∞
0 udFj+1(u) + T

. (43)

Differentiating C3(T ) with respect to T and setting it equal to zero,

∞∑

j=0

p j+1(K )

∫ ∞

0
Q3(u, T )dFj+1(u) = cF +

∞∑

j=1

c j M G( j)(K ), (44)

where

Q3(u, T ) ≡
∞∑

i=1

ciT

∫ ∞

0
(l + x) d

[
λ(u + x)Hi−2(u, u + x)

]

=
∞∑

i=1

ciT

∫ ∞

0
(l + x) λ′(u + x)Hi−2(u, u + x)dx

+
∞∑

i=1

(c(i+3)T − c(i+2)T )

∫ ∞

0
(l + x) [λ(u + x)]2 Hi (u, u + x)dx,

and

l ≡
∞∑

j=1

p j (K )

∫ ∞

0
tdFj (t),

which represents the mean time until surviving objects have exceeded K . Letting
L3(T ) be the left-hand side of (44). Thus, if λ(t) increases with t , L3(T ) increases
with T . Therefore, if L3(∞) > cF +∑∞

j=1 c j M G( j)(K ), then there exists a finite
and unique T ∗

3 (0 < T ∗
3 < ∞) which satisfies (44).

In particular, when λ(t) = λ, then l = [1 + M(K )]/λ, and

Q3(u, T )= [1 + M(K )]
∞∑

j=1

Fj (T )(c( j+2)T − c( j+1)T )

+
∞∑

j=1

j Fj+1(T )(c( j+2)T − c( j+1)T ),

L3(∞) =
∞∑

j=1

(c∞T − c( j+1)T ) + [1 + M(K )](c∞T − c2T ).
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Therefore, if

∞∑

j=1

(c∞T − c( j+1)T ) + [1 + M(K )](c∞T − c2T ) > cF +
∞∑

j=1

c j M G( j)(K ),

then there exists a finite and unique T ∗
3 (0 < T ∗

3 < ∞), and the resulting cost rate is

C3(T ∗
3 )

λ
=

∞∑

j=0

Hj (T
∗
3 )c( j+2)T .

2. Optimal N∗
3 : When major collection is made only at collection N ,

C3(N ) ≡ lim
T →∞ C3(T, N ) = cF +∑∞

j=1
∑ j

i=1 ci M p j (K ) +∑N
j=1 c jT

∑∞
j=0 p j (K )

∫∞
0 [1 − Fj+N (t)]dt

(N = 1, 2, . . .). (45)

From the inequality C3(N + 1) − C3(N ) ≥ 0,

Q3(N )c(N+1)T −
N∑

j=1

c jT ≥ cF +
∞∑

j=1

c j M G( j)(K ), (46)

where

Q3(N ) ≡
∑∞

j=0 p j (K )
∫∞

0 [1 − Fj+N (t)]dt
∑∞

j=0 p j (K )
∫∞

0 Hj+N (t)dt.

Letting L3(N ) be the left-hand side of (46),

L3(N+1)−L3(N ) = [
Q̃3(N + 1) − Q̃3(N )

] ∞∑

j=0

p j (K )

∫ ∞

0

[
1 − Fj+N+1(t)

]
dt,

where
Q̃3(i) ≡ c(i+1)T

∑∞
j=0 p j (K )

∫∞
0 Hj+i (t)dt

.

Thus, if Q̃3(i) increases with i , L3(N ) increases with N . Therefore, if L3(∞) >

cF + ∑∞
j=1 c j M G( j)(K ), then there exists a finite and unique minimum N∗

3 (1 ≤
N∗

3 < ∞) which satisfies (46).
In particular, when λ(t) = λ, then Q3(N ) = M(K ) + N , where M(x) ≡∑∞
j=1 G( j)(x) is the expected number of minor collections before surviving objects

exceed x , and
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L3(N ) =
N∑

j=1

(c(N+1)T − c jT ) + M(K )c(N+1)T ,

L3(N + 1) − L3(N ) = [M(K ) + N + 1] (c(N+2)T − c(N+1)T ) > 0.

It is assumed that c∞T ≡ lim j→∞ c jT < ∞. Then,

L3(∞) =
∞∑

j=1

(c∞T − c jT ) + M(K )c∞T .

Clearly, if c∞T = ∞, then L2(∞) = ∞. Therefore, if

∞∑

j=1

(c∞T − c jT ) + M(K )c∞T > cF +
∞∑

j=1

c j M G( j)(K ),

then there exists a finite and unique minimum N∗
3 (1 ≤ N∗

3 < ∞) which satisfies
(46), and the resulting cost rate is

cN∗
3 T ≤ C3(N∗

3 )

λ
< c(N∗

3 +1)T .

4.3 Numerical Examples

It is assumed that ckT = cT + kβ (β > 0; k = 1, 2, . . .), and other assumptions are
the same as in Sect. 3.2. We give numerical examples of each model as follows:

Tables 3–6 present optimal λT ∗
i and Ci (T ∗

i )/λ (i = 2, 3), N∗
i and Ci (N∗

i )/λ (i =
2, 3), when cF = 100, cT = cN = 20, cS = 10, cM = 1, μ = 10 and σ = 1 for
different α and β. These show that both λT ∗

2 and N∗
2 decrease with α or β, both

λT ∗
3 and N∗

3 increase with α and decrease with β, all Ci (T ∗
i )/λ (i = 2, 3) and

Ci (N∗
i )/λ (i = 2, 3) increase with α or β.

It can be explained as follows:

• When α or β increases, it means that the total cost suffered for minor collections
or tenuring collections increases, then optimal major collection times should be
advanced, but even then the expected cost rates increase.

• The differences between Tables 3 and 5, Tables 4 and 6, are that when α increases,
M(K ) decreases, then optimal major collection times should be postponed,
because it is not economic to make major collection frequently.

• Compared Tables 3 with 4, Tables 5 with 6, these show that C2(T ∗
2 ) > C2(N∗

2 ) and
C3(T ∗

3 ) > C3(N∗
3 ) for the same parameters, that is, major collections made at N2

or N3 are better than those at T2 or T3. It is interesting that C2(N∗
2 ) ≈ C3(N∗

3 ) and
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Table 3 Optimal λT ∗
2 and C2(T ∗

2 )/λ when cF = 100, cT = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
λT ∗

2 C2(T ∗
2 )/λ λT ∗

2 C2(T ∗
2 )/λ λT ∗

2 C2(T ∗
2 )/λ

0.3 17.98 24.4699 15.51 25.1134 13.14 26.0229
0.4 14.09 28.1939 10.66 31.5677 7.77 35.1867
0.5 13.80 31.6197 9.95 35.5256 6.60 42.2212
0.6 12.86 32.8499 9.86 37.6922 6.33 46.6393
0.7 12.86 33.6762 9.86 39.2143 6.27 50.0259

Table 4 Optimal N∗
2 and C2(N∗

2 )/λ when cF = 100, cN = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
N∗

2 C2(N∗
2 )/λ N∗

2 C2(N∗
2 )/λ N∗

2 C2(N∗
2 )/λ

0.3 17 24.1785 16 24.3642 15 24.7538
0.4 14 28.6941 11 30.5818 8 32.8485
0.5 14 31.1212 10 34.5257 7 39.7804
0.6 14 32.3506 10 36.6942 6 44.1853
0.7 14 33.1763 10 38.2160 6 47.5548

Table 5 Optimal λT ∗
3 and C3(T ∗

3 )/λ when cF = 100, cT = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
λT ∗

3 C3(T ∗
3 )/λ λT ∗

3 C3(T ∗
3 )/λ λT ∗

3 C3(T ∗
3 )/λ

0.3 1.95 23.9629 0.06 24.1471 0.01 24.3401
0.4 6.92 28.9179 3.42 30.8389 0.57 32.8532
0.5 9.45 31.4559 5.54 35.0679 2.10 40.4869
0.6 10.75 32.7357 6.69 37.3694 3.06 45.3683
0.7 11.60 33.5878 7.48 38.9639 3.80 49.0298

Table 6 Optimal N∗
3 and C3(N∗

3 )/λ when cF = 100, cN = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
N∗

3 C3(N∗
3 )/λ N∗

3 C3(N∗
3 )/λ N∗

3 C3(N∗
3 )/λ

0.3 3 23.9071 2 24.1387 1 24.3365
0.4 8 28.6662 5 30.5026 2 32.5947
0.5 10 31.1223 7 34.4997 3 39.6811
0.6 12 32.3455 8 36.6799 4 44.1223
0.7 13 33.1731 9 38.2105 5 47.4478
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C2(T ∗
2 ) ≈ C3(T ∗

3 ), that is, although the two policies are different, the resulting
expected cost rates are almost the same.

• We can derive the relationship of the two polices, that is,

λT ∗
2 ≈ 1 + M(K ) + λT ∗

3 ,

N∗
2 ≈ M(K ) + N∗

3 .

For example, when α = 0.3 and β = 1, M(K ) = 14.8, then

λT ∗
2 = 17.98, 1 + M(K ) + λT ∗

3 = 1 + 14.8 + 1.95 = 17.75,

N∗
2 = 17, M(K ) + N∗

3 = 14.8 + 3 = 17.8.

Therefore, the concrete performances of the two kinds of policies would depend
on the program engineers and software system structures at the beginning, and so
on.

5 Continuous Models

From the related studies in Sect. 2, we know that the volume of surviving objects
that should be copied increases with the number of minor collections and is relatively
stable with the number of tenuring collections. However, it may be difficult to inspect
the survivor rates exactly at collection times. Hence, in this section, we assume
that the total volume of surviving objects in Eden and survivor space at time t is
Z(t) = A(t)t + σB(t) with distribution Pr{Z(t) ≤ x} = W (t, x), where both A(t)
and B(t) are random variables of time t . Then, the expected cost of minor collection
at time t is

C(t, K ) = 1

W (t, K )

∫ K

0
[cS + cM (x)] dW (t, x), (47)

where C(0, K ) ≡ 0. Letting r(t, x) be the failure rate of W (t, x), i.e., r(t, x) ≡
−[dW (t, x)/dt]/W (t, x) [3]. It is clear that if r(t, x) increases with t for any x ≥ 0,
C(t, K ) increases with t for any K ≥ 0.

Suppose that garbage collections occur at a nonhomogeneous Poisson process
in Sect. 2, minor collections are made when the garbage collector begins to work,
tenuring collection is made at a planned time T (0 < T ≤ ∞), or when surviving
objects have exceeded a threshold level K (0 < K ≤ ∞), whichever occurs first.
Then, the mean time to tenuring collection is

E4(L) = T W (T, K ) +
∫ T

0
tdW (t, K ) =

∫ T

0
W (t, K )dt, (48)

where V (t, x) ≡ 1 − V (t, x) for any distribution V (t, x).
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The expected cost suffered for minor collections until tenuring collection is

CM =W (T, K )

∞∑

j=1

∫ T

0
C(t, K )dFj (t)

+
∫ T

0

⎡

⎣
∞∑

j=1

∫ t

0
C(u, K )dFj (u)

⎤

⎦ dW (t, K )

=
∫ T

0
λ(t)C(t, K )W (t, K )dt. (49)

Then, the expected cost until tenuring collection is

E4(C) = cK − (cK − cT )W (T, K ) +
∫ T

0
λ(t)C(t, K )W (t, K )dt. (50)

Therefore, from (48) to (50), the expected cost rate is

C4(T, K ) =

cK − (cK − cT )W (T, K )

+ ∫ T
0 λ(t)C(t, K )W (t, K )dt

∫ T
0 W (t, K )dt

. (51)

5.1 Optimal Policies

It can be seen that C4(T, K ) includes the following collection polices:

• Tenuring collection is made at time T for a given K , the reason why making such
a policy is cT < cK .

• Tenuring collection is made at level K for a given T . In this case, cK < cT .
• Tenuring collection is made only at time T or only at level K . In these two cases,

cK = cT .

1. Optimal T ∗
4 : When cT < cK , we find an optimal T ∗

4 which minimizes C4(T, K )

in (51) for a given K . Differentiating C4(T, K ) with respect to T and setting it equal
to zero,

(cK − cT )

[

r(T, K )

∫ T

0
W (t, K )dt − W (T, K )

]

+
∫ T

0
[λ(T )C(T, K ) − λ(t)C(t, K )] W (t, K )dt = cT . (52)

Letting L4(T ) be the left-hand side of (52),

L4(0) ≡ lim
T →0

L4(T ) = 0,
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L ′
4(T ) =(cK − cT )r ′(T, K )

∫ T

0
W (t, K )dt

+ [
λ′(T )C(T, K ) + λ(T )C ′(T, K )

]
∫ T

0
W (t, K )dt.

Thus, if both r(t, K ) and λ(t) increase with t , then the left-hand side of (52) increases
with t from 0. Therefore, there exists a unique optimal T ∗

4 (0 < T ∗
4 ≤ ∞) which

satisfies (52), and the resulting cost rate is

C4(T
∗
4 , K ) = (cK − cT )r(T ∗

4 , K ) + λ(T ∗
4 )C(T ∗

4 , K ).

2. Optimal K ∗
4 : When cK < cT , we find an optimal K ∗

4 which minimizes C4(T, K )

in (51) for a given T . Letting w(t, x) be a density function of W (t, x), i.e., w(t, x) ≡
dW (t, x)/dx . Then, differentiating C4(T, K ) with respect to K and setting it equal
to zero,

(cT − cK )

[

Q4(T, K )

∫ T

0
W (t, K )dt − W (T, K )

]

+
∫ T

0

[
Q̃4(T, K ) − λ(t)C(t, K )

]
W (t, K )dt = cK , (53)

where

Q4(T, K ) ≡ w(T, K )
∫ T

0 w(t, K )dt
, Q̃4(T, K ) ≡ [cS + cM (K )] ∫ T

0 λ(t)w(t, K )dt
∫ T

0 w(t, K )dt
.

Letting L4(K ) be the left-hand side of (53),

L4(0) ≡ lim
K→0

L4(K ) = 0,

L ′
4(K ) =(cT − cK )Q′

4(T, K )

∫ T

0
W (t, K )dt + Q̃′

4(T, K )

∫ T

0
W (t, K )dt.

Thus, if both Q4(T, K ) and Q̃4(T, K ) increase with K , then the left-hand side of (53)
increases with K from 0. Therefore, there exists a unique optimal K ∗

4 (0 < K ∗
4 ≤ ∞)

which satisfies (53), and the resulting cost rate is

C4(T, K ∗
4 ) = (cT − cK )Q4(T, K ∗

4 ) + Q̃4(T, K ∗
4 ).

3. Optimal T̃ ∗
4 : When cK = cT , putting that K = ∞ in (51), the expected cost rate

is

C̃4(T ) ≡ lim
K→∞ C4(T, K ) = 1

T

[∫ T

0
λ(t)C(t,∞)dt + cT

]

, (54)
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where

C(t,∞) ≡
∫ ∞

0
[cS + cM (x)] dW (t, x) = cS +

∫ ∞

0
W (t, x)dcM (x).

From (52), if λ(t) increases with t , then an optimal tenuring collection time T̃ ∗
1 which

minimizes (54) is given by a unique solution of the equation

∫ T

0
[λ(T )C(T,∞) − λ(t)C(t,∞)] dt = cT , (55)

and the resulting cost rate is

C̃4(T̃
∗
4 ) = λ(T̃ ∗

4 )C(T̃ ∗
4 ,∞).

In particular, when λ(t) = λ, (55) becomes

∫ ∞

0

{∫ T

0
[W (t, x) − W (T, x)]dt

}

dcM (x) = cT

λ
, (56)

which increases with T , and the resulting cost rate is

C̃4(T̃ ∗
4 )

λ
= cS +

∫ ∞

0
W (T̃ ∗

4 , x)dcM (x).

4. Optimal K̃ ∗
4 : When cK = cT , putting that T = ∞ in (51), the expected cost rate

is

C̃4(K ) = lim
T →∞ C4(T, K ) =

∫∞
0 λ(t)C(t, K )W (t, K )dt + cK

∫∞
0 W (t, K )dt

. (57)

From (53), if Q̃4(∞, K ) increases with K , then an optimal tenuring collection time
K̃ ∗

4 which minimizes (57) is given by a unique solution of the equation

∫ ∞

0

[
Q̃4(∞, K ) − λ(t)C(t, K )

]
W (t, K )dt = cK , (58)

and the resulting cost rate is

C̃4(K̃ ∗
4 ) = Q̃4(∞, K̃ ∗

4 ).

In particular, when λ(t) = λ, (58) becomes

∫ ∞

0

[∫ K

0
W (t, x)dcM (x)

]

dt = cK

λ
, (59)
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Table 7 Optimal T ∗
4 and C4(T ∗

4 , K ) when cT = 10 and cS = λ = μ = σ = 1

K cK cM = 0.1 cM = 0.5 cM = 1.0
T ∗

4 C4(T ∗
4 , K ) T ∗

4 C4(T ∗
4 , K ) T ∗

4 C4(T ∗
4 , K )

20 4.73 0.4723 4.09 0.5462 3.57 0.6324
30 3.25 0.5473 3.06 0.6087 2.87 0.6822

5 40 2.80 0.5891 2.69 0.6453 2.56 0.7133
50 2.57 0.6191 2.49 0.6718 2.40 0.7361

20 7.43 0.2990 5.77 0.4285 4.50 0.5586
30 6.37 0.3160 5.40 0.4339 4.42 0.5596

10 40 5.91 0.3252 5.18 0.4378 4.36 0.5604
50 5.63 0.3320 5.03 0.4408 4.31 0.5612

which increases with K and the resulting cost rate is

C̃4(K̃ ∗
4 )

λ
= cS + cM (K̃ ∗

4 ).

5.2 Numerical Examples

We compute numerical examples of the models discussed above for Z(t) = μt +
σB(t) when B(t) is normally distributed with mean 0 and variance t or for Z(t) =
A(t)t when A(t) is normally distributed with mean μ and variance σ2/t , that is,

W (t, x) = �

(
x − μt

σ
√

t

)

, (60)

where �(x) is the standard normal distribution with mean 0 and variance 1, i.e.,
�(x) ≡ (1/

√
2π)

∫ x
−∞ e−u2/2du.

From Tables 7– 9, we can obtain the following results:

• Optimal tenuring collection times increase with the initial parameters and decrease
with minor or tenuring collection cost, however, the resulting cost rates have the
opposite tendencies, that is, they decrease with the initial parameters and increase
with minor or tenuring collection cost. Take T ∗

4 and C4(T ∗
4 , K ) in Table 7 for an

example: T ∗
4 increase with K and decrease with cK or cM . Increasing in K , cK

or cM means that tenuring collection time made at a given level K is postponed,
tenuring or minor collection cost is increased, respectively, so that tenuring col-
lection times should be postponed for K or be advanced for cK or cM to decrease
the frequency of tenuring collections or to decrease the total minor collection cost.
C4(T ∗

4 , K ) decrease with K and increase with cK or cM for the reason that the
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Table 8 Optimal K ∗
4 and C4(T, K ∗

4 ) when cK = 10 and cS = λ = μ = σ = 1

T cT cM = 0.1 cM = 0.5 cM = 1.0
K ∗

4 C4(T, K ∗
4 ) K ∗

4 C4(T, K ∗
4 ) K ∗

4 C4(T, K ∗
4 )

20 4.35 0.4677 3.77 0.5342 3.23 0.6063
30 3.45 0.5500 3.14 0.6048 2.80 0.6661

5 40 3.01 0.6153 2.79 0.6633 2.54 0.7183
50 2.67 0.6719 2.55 0.7155 2.36 0.7659

20 7.43 0.2973 5.30 0.4209 3.92 0.5328
30 6.37 0.3202 4.93 0.4221 3.80 0.5390

10 40 5.80 0.3372 4.67 0.4318 3.71 0.5448
50 5.42 0.3512 4.48 0.4405 3.62 0.5503

Table 9 Optimal T̃ ∗
4 , C̃4(T̃ ∗

4 ), K̃ ∗
4 and C̃4(K̃ ∗

4 ) when cT = cK = 10 and cS = λ = μ = σ = 1

cM T̃ ∗
4 C̃4(T̃ ∗

4 ) K̃ ∗
4 C̃4(K̃ ∗

4 )

0.1 14.24 0.2424 14.15 0.2413
0.2 10.11 0.3021 9.99 0.2997
0.3 8.28 0.3486 8.15 0.3444
0.4 7.20 0.3882 7.05 0.3820
0.5 6.46 0.4233 6.30 0.4151
0.6 5.91 0.4554 5.75 0.4449
0.7 5.49 0.4851 5.32 0.4722
0.8 5.15 0.5130 4.97 0.4976
0.9 4.86 0.5394 4.68 0.5114
1.0 4.62 0.5546 4.44 0.5239

frequency of tenuring collections is decreased and tenuring or minor collection
cost is increased.

• Compared with Tables 7 and 8, we can derive that T ∗
4 ≈ K ∗

4 , in fact, this means
that μT ∗

4 ≈ K ∗
4 , which corresponds to the assumption of Z(t). C4(T ∗

4 , K ) ≈
C4(T, K ∗

4 ), however, C4(T ∗
4 , K ) are sometimes greater than and sometimes less

than C4(T, K ∗
4 ). That is, we can not compare them exactly.

• C̃4(T ) and C̃4(K ) are the particular cases of C4(T, K ). Take T ∗
4 and T̃ ∗

4 in Tables
7 and 9 for an example, when cM = 0.1, 0.5, 1.0, T̃ ∗

4 should be greater than T ∗
4

and C4(T ∗
4 , K ) should be less than C̃4(T̃ ∗

4 ) when K = 10 and cK = 20.

6 Conclusions

This chapter has discussed the problems of when to make tenuring and major col-
lections for a generational garbage collector to meet the pause time goal. According
to the properties of adaptive tenuring, two cases of working schemes have been
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introduced first, where tenuring and major collections have been considered as
renewal points of the collection processes, respectively. Second, analyses of the
costs suffered for collections, including minor, tenuring and major collections, have
been given. Third, using the techniques of cumulative processes and degradation
processes or continuous wear processes, expected cost rates for the two cases have
been derived, and optimal tenuring collection times and major collection times are
discussed analytically. Fourth, numerical examples have been given and some com-
parisons of the policies have been made. Such theoretical analyses would be applied
to actual garbage collections by suitable modifications and extensions.
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