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Abstract The aim of this chapter is to present dynamical systems evolving in
continuous-time and perturbed by semi-Markov processes (SMP). We investigate
both probabilistic modeling and statistical estimation of such models. This work was
initially developed in order to study cracking problems for the confinement device
in nuclear power plants, where a jump Markov process was used as the perturb-
ing process. The new key element here is the use of SMPs instead of Markov ones
for the randomization of the system. Several numerical illustrations in reliability are
investigated, accompanied with guidelines for a practical numerical implementation.

1 Introduction

In many industrial applications, structures may suffer degradations induced by the
corresponding operating conditions. Degradations may be induced by thermal cyclic
loadings, mechanical loadings, seismic activity, neutron irradiation, thermal sever
transients, etc., which may lead to the failure of the structure.

Mechanisms that cause failures are complex due to their interdependencies and
their different physical time-scales. Besides, these degradation mechanisms cannot
always be described through deterministic models. Thus, a stochastic approach is
often required. As a motivating example, we rely on the widely studied engineering
issue referred to as the “crack-growth” problem [22, 27]: in structural mechanics,
the main degradation process that leads to fatigue aging is due to the propagation
of small defects into cracks in structures subject to small yet cyclic loadings. Many
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industrial fields are concerned, such as aeronautics, nuclear plants, automobile or
bridge building among others. Qualitatively, the process remains the same whatever
the material considered (e.g., aluminum in aeronautics, steel for confinement devices
or pressure vessels, and concrete for bridges). The modeling methodology could be
tackled with the mathematical tools provided in this work.

Even in well-controlled lab experiments supervised with cutting edge technology
[20], crack-growth remains a very unstable phenomenon: deterministic models have
been provided from structural mechanics, e.g., through computationally intensive
finite-elements analysis. Yet, it is now acknowledged that probabilistic modeling are
required to handle such degradation processes. Beyond the uncertainty propagation
approaches offered by the probabilistic mechanics point of view, many authors rather
suggested to completely randomize the modeling through a description relying on
stochastic processes and dynamical systems (the pioneers in that domain being, to
our knowledge, [19, 26]). The present chapter clearly enters this framework, drawing
inspiration from [1, 9, 13, 15, 21] among many others.

As such, the stochastic models developed here do not necessarily aim to provide
an exact physical representation of the phenomenon. We rather suggest to describe
the evolution of an observable variable that characterizes the degradation process
well. Hence, a structure is said to “fail” when its level of degradation exceeds a given
threshold. The time evolution of the observable degradation process is described
by a positive-valued stochastic process Z = (Zt , t ≥ 0) governed by a first order
stochastic differential system:

Żt = C(Zt , Xt ), Z0 = z, (1)

where Żt
.= dZt/dt stands for the first order derivative of Zt , C is a positive function,

and z > 0 is the starting point of Z . The process X = (Xt , t ≥ 0) is a pure jump
process with a countable state space. This model reflects the following physical
point of view: the level of degradation Z increases on continuous sample paths; yet,
its evolution shifts at discrete instants of time due to random shocks with random
intensities induced by the operating conditions. These changes are modeled by the
jump process X .

In the case where X is a jump Markov process, the coupled process (Z , X) =
(Zt , Xt , t ≥ 0) with state space R+ × E owns a well-characterized infinitesimal
generator. Such a modeling belongs to the wider family of stochastic processes
referred to as Piecewise Deterministic Markov Processes. These hybrid processes
are an alternative to diffusion processes [7, 8, 12]. They virtually give a representation
of many stochastic process being the mixture of deterministic motions and random
jumps. A schematic view of three sample paths of the system defined in (1) are given
in Fig. 1, when (Z , X) is observed from the starting point t0 = 0 up to the random
time τ when Z reaches an absorbing point �.

The purpose of this work is to model the perturbing process X by a semi-Markov
process (SMP) and to derive the basic analysis for the associated dynamical system.
We insist on the opportunity of considering X to be a SMP rather than a Markov
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Fig. 1 Modeling degradation paths

process: the more flexible is the randomizing process X , the broader is the model
and the wider is the range of its application.

The main contributions described in this chapter are of two kinds:

(1) First, we investigate the probabilistic characterization of the dynamical system
(1) when X is semi-Markovian through Markov renewal theory, which allows to
calculate the reliability function understood in the following sense: if a threshold
� define an absorbing state of the system or, equivalently, a failure boundary
for the degradation process, the failure time τ is

τ = inf {t ≥ 0 : Zt ≥ �} ,

and the associated reliability function turns to

R(t) = P(Zt < �).

Interpreting (Z , X) as an extended SMP, we build a solvable Markov Renewal
Equation (MRE) for the associated transition function, then deriving a closed-
form. Still, this Markov renewal formulation required numerical resolution:
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we propose a detailed guidelines to compute the reliability and give numerical
example. This issue is addressed in Sect. 3.

(2) Second, we study the statistical inference of the system, that is, the estimation of
the deterministic parameters of function C as well as the estimation of the SMP
X . The degradation process being the only process whose paths can be collected
during laboratory measurements, we only dispose of some sample paths of Z ,
observed before the system fails, and defined on the random time interval [0, τ ].
From these paths, we develop (1) a method to estimate the parameters of the
function C , through an asymptotic analysis of the system (1) followed by a
classical regression analysis; (2) a method to estimate the paths of X (as well
as its state space E), since samples of X are not directly observed; (3) the
construction of the likelihood function associated with the semi-Markov kernel
of X and an approached maximum likelihood estimator for the kernel. This is
developed in Sect. 4.

Meanwhile, let us start by an introductory section devoted to Markov renewal
processes (MRP) theory.

2 Semi-Markov Processes: Background

This section recalls a few basics on SMPs. A larger view can be found for instance in
[6, 11, 12, 17, 21, 24], yet the material provided here should hopefully be sufficient
for the understanding of the main results developed throughout this chapter.

2.1 Notations and Settings

Consider an infinite countable set, say E , and an E-valued pure jump stochastic
process X = (Xt )t∈R+ . Let 0 = S0 ≤ S1 ≤ ... ≤ Sn ≤ Sn+1 ≤ ... be the jump times
of X , and J0, J1, J2, . . . the successively visited states of X . Note that S0 may also
take positive values. Let N be the set of non-negative integers. Then, X is connected
to (Jn, Sn) through

Xt = Jn, i f Sn ≤ t < Sn+1, t ≥ 0 and Jn = X Sn , n ≥ 0.

Definition 2.1. The stochastic process (Jn, Sn)n∈N is said to be a Markov renewal
process (MRP), with state space E , if it satisfies, a.s., the following equality

P(Jn+1 = j, Sn+1 − Sn ≤ t | J0, . . . , Jn; S1, . . . , Sn)

= P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn)

for all j ∈ E , all t ≥ 0, and all n ∈ N. In this case, X is called a SMP.
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Remark 2.1. We assume that the above probability is independent of n and Sn , and
in this case the MRP is called time homogeneous. Only time-homogeneous MRP are
considered in the sequel.

The MRP (Jn, Sn)n∈N is determined by the initial distribution α, with α(i) =
P(J0 = i), i ∈ E and by the transition kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i),

called the semi-Markov kernel of X . The process (Jn) is a Markov chain with state
space E and transition probabilities pi j := Qi j (∞) := limt→∞ Qi j (t), called the
embedded Markov chain (EMC) of X . It is worth noticing that here Qii (t) ≡ 0,
for all i ∈ E , but in general we can consider semi-Markov kernels by dropping this
hypothesis.

An important point is the following decomposition of the semi-Markov kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i) = pi j Fi j (t), t ≥ 0, i, j ∈ E,

where pi j is the transition kernel of the EMC (Jn), and Fi j (t) := P(Sn+1 − Sn ≤
t | Jn = i, Jn+1 = j) is the conditional distribution function of the sojourn time in
the state i given that the next visited state is j , (with j �= i). Let us also, define the
distribution function Hi (t) := ∑

j∈E Qi j (t) and its mean value mi , which is the mean
sojourn time of X in state i . In general, Qi j is a subdistribution, i.e., Qi j (∞) ≤ 1,
hence Hi is a distribution function, Hi (∞) = 1, and Qi j (0−) = Hi (0−) = 0.

Remark 2.2. A special case of semi-Markov processes is the one where Fi j (·) does
not depend on j , i.e., Fi j (t) ≡ Fi (t) ≡ Hi (t), and

Qi j (t) = pi j Fi (t).

Any general semi-Markov process can be transformed into one of this kind (see, e.g.,
[17]).

Example 2.1. A Markov process with state space E = N and generating matrix
A = (ai j )i, j∈E is a special semi-Markov process with semi-Markov kernel

Qi j (t) = ai j

ai
(1 − e−ai t ), i �= j, ai �= 0,

where ai := −aii , i ∈ E , and Qi j (t) = 0, if i = j or ai = 0. In this case,
the transition function of the EMC is pi j = ai j/ai and we recover an exponential
distribution for the conditional distribution function of the sojourn time such as
Fi (t) = 1 − exp(−ai t), with t ≥ 0.

A usual restriction that fits practical applications is to assume a regularity
condition for the SMP of interest. To specify this condition, we introduce the count-
ing process (N (t), t ≥ 0)which counts the number of jumps of X in the time interval
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(0, t], by N (t) := sup {n ≥ 0 : Sn ≤ t}. Also, define Ni (t) to be the number of visits
of X to state i ∈ E in the time interval (0, t]. That is to say,

Ni (t) :=
N (t)∑

n=0

1{Jn=i} =
∞∑

n=0

1{Jn=i,Sn≤t}.

If we consider the (eventually delayed) renewal process (Si
n)n≥0 of successive

times of visits to state i , then Ni (t) is the counting process of renewals. Now, a SMP
X is said to be regular if

Pi (N (t) < ∞) = 1,

for any t ≥ 0 and any i ∈ E .
For regular SMPs we have Sn < Sn+1, for any n ∈ N, and Sn → ∞. In the sequel,

we are concerned with regular SMPs.
Let us also have a brief discussion about the nature of the different states of an

MRP. An MRP is irreducible, if, and only if, its EMC (Jn) is irreducible. A state i is
recurrent (transient) in the MRP, if, and only if, it is recurrent (transient) in the EMC.
For an irreducible finite MRP, a state i is positive recurrent in the MRP, if, and only
if, it is recurrent in the EMC and if for all j ∈ E , m j < ∞. If the EMC of an MRP
is irreducible and recurrent, then all the states are positive-recurrent, if, and only if,
m := νm := ∑

i νi mi < ∞, and null-recurrent, if, and only if, m = ∞ [where
ν is the stationary probability of EMC (Jn)]. A state i is said to be periodic with
period a > 0 if Gii (·) (the distribution function of the random variable Si

2 − Si
1) is

discrete concentrated on {ka : k ∈ N}. Such a distribution is also said to be periodic.
In the opposite case it is called aperiodic. Note that the term period has a completely
different meaning from the corresponding one of the classical Markov chain theory.

2.2 Markov Renewal Equation

An essential tool in semi-Markov theory is the MRE which can be solved using the
so-called Markov renewal function. To unveil this function, we first need to introduce
the convolution in the Stieljes-sense.

For φ(i, t), i ∈ E, t ≥ 0 a real-valued measurable function, the convolution of
φ by Q is defined by

Q ∗ φ(i, t) :=
∑

k∈E

∫ t

0
Qik(ds)φ(k, t − s).

Now, consider the n-fold convolution of Q by itself. For any i, j ∈ E ,
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Q(n)
i j (t) =

⎧
⎨

⎩

∑
k∈E

∫ t
0 Qik(ds)Q(n−1)

k j (t − s) n ≥ 2,
Qi j (t) n = 1,
δi j 1{t≥0} n = 0,

where δi j is the Kronecker delta, that is to say, δi j = 1 if i = j , 0 otherwise.
It is easy to prove (e.g., by induction) the following fundamental equality

Q(n)
i j (t) = Pi (Jn = j, Sn ≤ t),

where, as usual, Pi (·) means P(· | J0 = i), and Ei is the corresponding expectation.
The Markov renewal function ψi j (t), i, j ∈ E, t ≥ 0 is defined by

ψi j (t) := Ei [N j (t)] = Ei

∞∑

n=0

1{Jn= j,Sn≤t}

=
∞∑

n=0

Pi (Jn = j, Sn ≤ t) =
∞∑

n=0

Q(n)
i j (t).

In matrix form, this writes

ψ(t) = (I (t)− Q(t))(−1) =
∞∑

n=0

Q(n)(t).

This can also be written as

ψ(t) = I (t)+ Q ∗ ψ(t), (2)

where I (t) = I (the identity matrix), if t ≥ 0 and I (t) = 0, if t < 0.
Equation (2) is a special case of what is called a MRE. A general MRE is one of

the following form:
	(t) = g(t)+ Q ∗	(t), (3)

where 	(t) = (	i j (t))i, j∈E , g(t) = (gi j (t))i, j∈E are matrix-valued measurable
functions, with 	i j (t) = Li j (t) = 0 for t < 0. The function g(t) is a given while
	(t) is unknown.

The following Theorem bring some results about existence and unicity of a
solution to MRE as (3).

Theorem 2.1. (Markov Renewal Theorem [25]) Let B be the space of all locally
bounded, on R+, matrix functions 	(t), i.e., ‖	(t)‖ = supi, j

∣
∣	i, j (t)

∣
∣ is bounded

on sets [0, ξ ], for every ξ ∈ R+. Also, denote by Hi (t) := 1−Hi (t). Let the following
conditions be fulfilled:
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(1) The EMC (Jn) is ergodic, i.e., irreducible and positive-recurrent, with stationary
probability ν = (νi , i ∈ E).

(2) The mean sojourn time in every state is finite, i.e., for every i ∈ E,

mi :=
∫ ∞

0
Hi (t)dt < ∞, and m :=

∑

i∈E

νi mi > 0.

(3) The distribution functions Hi (t), i ∈ E, are nonperiodic.
(4) The functions Li j (t), t ≥ 0, are direct Riemann integrable, i.e., they satisfy the

following two conditions, for any i, j ∈ E:

∑

n≥0

sup
n≤t≤n+1

∣
∣Li j (t)

∣
∣ < ∞,

and
lim
�↓0

{
�
∑

n≥0

[
sup

n�≤t≤(n+1)�
Li j (t)− inf

n�≤t≤(n+1)�
Li j (t)

]}
= 0.

Then Eq. (3) has a unique solution 	 = ψ ∗ L(t) belonging to B, and

lim
t→∞	i j (t) = 1

m

∑

�∈E

ν�

∫ ∞

0
L�j (t)dt. (4)

Finally, we unveil another very important function to characterize the process,
namely, the semi-Markov transition function

Pi j (t) := P(Xt = j | X0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal law of the process. It can be shown that P verifies
a particular MRE, which will be essential in the development of our probability
assessments in the next section.

Proposition 2.1. The transition function P(t) = (Pi j (t)) satisfies the following
MRE

P(t) = I (t)− H(t)+ Q ∗ P(t),

which, under Conditions (1–3) of Theorem 2.1, has the unique solution

P(t) = ψ ∗ (I (t)− H(t)),

and, for any i, j ∈ E,
lim

t→∞ Pji (t) = νi mi/m =: πi .

Here H(t) = diag(Hi (t)) is a diagonal matrix.
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It is worth noticing that, in general, the stationary distribution π of the SMP X
is not equal to the stationary distribution ν of the EMC (Jn). Nevertheless, we have
π = ν when, for example, mi is independent of i ∈ E .

3 A Dynamical Differential System for Structural
Reliability Study

We now turn back to the main motivation of the chapter, that is, investigating the
following differential system:

Żt = C(Zt , Xt ), Z0 = z. (5)

To ensure that (5) owns a unique solution, we set the usual regularity assumption for
C , that is, C : R+ × E −→ R+ is measurable and Lipschitz w.r.t. the first argument,
uniformly on the second.

We also set some restrictions for the reliability study of (5). Looking toward the
description of what is understood here as the degradation process, the following
assumptions naturally rise from physical considerations:

• the level of degradation is positive and increases across time;
• the failure domain is defined by a threshold � ∈ R

∗+ = (0,∞).

These assumptions require that the function C : (x, i) → C(x, i) is strictly
positive for all x ∈ R+, i ∈ E . Moreover, we set � > z > 0 to ensure that the
system does not starts in a failure state.

Now, to be specific with the reliability analysis of (5), we define U = [z,�) the
set of working states with 0 < z < � and D = [�,∞) the set of down states.
Assuming a nonreparable system and thanks to the continuous, increasing evolution
of Z , failure occurs as soon as point � is reached: this point is an absorbing state of
the system. The failure time can thus be written as a function of the coupled process
(Z , X):

τ = inf {t ≥ 0 : Zt ∈ D} ≡ inf {t ≥ 0 : (Zt , Xt ) ∈ D × E} . (6)

The reliability and the cumulative distribution function (CDF) of τ turn to

R(t) = P((Zt , Xt ) ∈ U × E) = 1 − Fτ (t). (7)

In the remaining of this section, we interpret (Z , X) as an extended MRP. We then
derive a solvable MRE whose solution is the transition function of the (Zt , Xt ). Then,
reliability (7) has a closed-form which can be computed numerically. A numerical
illustration is investigated that confirmed our theoretical results and that hopefully
bring some insights on the understanding of the semi-Markov kernel associated with
(Z , X).
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3.1 The Coupled Process as an Extended Markov
Renewal Process

In a previous work [4], we considered the system (5) with X a jump Markov process.
Here, a more general assumption is made regarding the nature of the perturbing
process: we set X = (Xt , t ≥ 0) a SMP with finite state space E , which describes
random variations in the environment of Z = (Zt , t ≥ 0). The pure jump process X
is defined by its semi-Markov kernel

Qi j (t) = P(Jn+1 = j, Sn+1 − Sn ≤ t |Jn = i), (8)

where i, j ∈ E and t ≥ 0. As from the previous section, the process (Jn, Sn, n ∈ N)

is the embedded MRP of the SMP X , where (Sn, n ∈ N) is the random sequence
describing the jump times. The random sequence Jn = X Sn is the EMC with transi-
tion probabilities (pi j )i, j∈E , such as pi j = Qi j (∞). We also put αi = P(X0 = i)
the initial distribution of X . Besides, we consider with no loss of generality that
the conditional CDF of the sojourn time does not depend on the arrival point j as
in Remark 2.2, that is, Fi j (t) ≡ Fi (t). The semi-Markov kernel of X thus writes
Qi j (t) = pi j Fi (t).

From now, we start to be specific to the couple (Z , X) defined by (5): for any
t < S1, we denote by ϕz,i (t) the deterministic function describing the solution to
(5), when X0 = i . Hence, ϕz,i (t) is the solution before the first jump time of X ,
conditionally on the starting value (Z0, X0) = (z, i). Note that we assume that Z0
and X0 are independent.

We are finally ready to associate to (Z , X) the “extended” MRP (ζn, Jn, Sn, n ∈
N), by extending the “standard” MRP (Jn, Sn) with a third component as follows:

ζn = ZSn , Jn = X Sn , n ∈ N.

As for a usual MRP, we may introduce the appropriate mathematical tools.
Thenceforth, consider the semi-Markov kernel associated with the triplet (ζn, Jn, Sn):
it is denoted by L and defined, for t > 0, by

Li j (z, B, t) := Pz,i (ζ1 ∈ B, J1 = j, S1 − S0 ≤ t), (9)

where B is a subset of B, the Borel σ−field of R+ and Pz,i (·) := P

(·|Z0 = z, X0 = i). The Stieltjes-convolution of L with a measurable function
φ on the space R+ × E , denoted by “∗”, is defined by

(L ∗ φ)i j (z, t) =
∑

k∈E

∫

R+

∫ t

0
Lik(z, dy, ds)φk j (y, t − s),

for i, j ∈ E and z > 0. In the same way, the n-fold convolutions of the semi-Markov
kernel L are defined recursively. For n = 0, 1,
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L(0)i j (z, B, t) = 1{i= j}1B(z)1R+(t), L(1)i j (z, B, t) = Li j (z, B, t),

where 1B(x) is the indicator function, i.e., 1B(x) = 1 if x ∈ B, 0 otherwise. For
n ≥ 2, the n-fold convolution turns to

L(n)i j (z, B, t) := (L ∗ L(n−1))i j (z, B, t).

The Markov renewal function � of the triplet is

�i j (z, B, t) =
∑

n≥0

L(n)i j (z, B, t).

In the case at hand, we consider that (ζn, Jn, Sn) is a normal MRP, that is,
�i j (z, B, t) < ∞ for any fixed t > 0, z > 0, B ∈ B and i, j ∈ E , which implies
also that the SMP Z is regular.

For the process (ζn, Jn, Sn), a MRE has the following form

	i j (z, B, t) = gi j (z, B, t)+ (L ∗	)i j (z, B, t), (10)

where gi j , i, j ∈ E are known functions and 	i j , i, j ∈ E are the unknown
functions. The solution to (10), thanks to the results of the previous section, is

	i j (z, B, t) = (� ∗ g)i j (z, B, t). (11)

3.2 The Transition Function

Consider the transition function P of the couple process (Z , X), defined by

Pi j (z, B, t) := Pz,i (Zt ∈ B, Xt = j), i, j ∈ E, B ∈ B. (12)

We aim at building a MRE suitable for P . For this purpose, we first need a closed-form
expression for L . This is achieved in the following Lemma.

Lemma 3.1. The semi-Markov kernel L of the extended MRP (ζn, Jn, Sn) satisfies,
for i �= j ,

Li j (z, B, dt) = δϕz,i (t)(B)Qi j (dt),

where δx (B) is the Dirac distribution, equal to 1 if x ∈ B, 0 otherwise. When i = j ,
we have Lii (·, ·, ·) = 0.
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Proof. Conditioning on definition (9), and by definition (8) of Q, we get,

Li j (z, B, dt) = Qi j (dt)× Pz,i (ζ1 ∈ B|J1 = j, S1 = t).

Then, Zt is fully characterized by ϕz,i (t) before the first jump time S1, thus Pz,i (ζ1 ∈
B|J1 = j, S1 = t) = Pz,i (Zt ∈ B) = δϕz,i (t)(B), and the result follows. �

Note that, by considering the decomposition Qi j (t) = pi j Fi (t), Lemma 3.1
implies that

Li j (z, B, dt) = δϕz,i (t)(B)pi j fi (t)dt,

where fi (t) = dFi (t)/dt is the conditional probability density function of the sojourn
time.

Example 3.1. Consider the special case of X a jump Markov process as defined in
the Example 2.1. Then,

Li j (z, B, dt) = ai j e
−ai tδϕz,i (t)(B)dt.

We may now proceed to the result on the transition function of the coupled process
(Z , X).

Proposition 3.1. The transition function P satisfies the MRE

Pi j (z, B, t) = gi j (z, B, t)+ (L ∗ P)i j (z, B, t),

whose unique solution is Pi j (z, B, t) = (� ∗ g)i j (z, B, t), with

gi j (t) = [1 − Fi (t)]1B(ϕz,i (t))1{i= j}. (13)

Proof. From (12), it holds that

Pi j (z, B, t) = Pz,i (Zt ∈ B, Xt = j, S1 > t)
︸ ︷︷ ︸

P1

+ Pz,i (Zt ∈ B, Xt = j, S1 ≤ t)
︸ ︷︷ ︸

P2

.

Before the first jump, Xt = X0 and Zt evolves according to ϕz,i (t). Thus, we easily
see that P1 = [1 − Fi (t)]1B(ϕt (z, i))1{i= j}. From Total Probability Theorem, P2
turns to

P2 =
∑

k∈E
k �=i

∫ t

0
Pz,i (Zt ∈ B, Xt = j |J1 = k, S1 = s)Pz,i (J1 = k, S1 ∈ ds).

By definition (8), Pz,i (J1 = k, S1 ∈ ds) = Qik(ds). Noticing that Pz,i (Zt ∈ B,
Xt = j |J1 = k, S1 = s) = Pkj (ϕz,i (s), B, t − s), then P2 is fully known. Thus,
with L given as in Lemma (3.1), expression P1 + P2 turns to
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Pi j (z, B, t) = [1 − Fi (t)]1B(ϕz,i (t))1{i= j}

+
∑

k∈E

∫

R+

∫ t

0
Lik(z, dy, ds)Pkj (y, B, t − s).

This last equation is of the general form of (10), with g equaling (13). Since the
first term into the right-hand side is bounded, its solution is given by (11) and is
unique. �

3.3 Application to Reliability Calculus

Enjoying a closed-form for the transition function P , this section intends to show
its implication for reliability calculus. Recall that U = [z,�) is the set of working
states and D = [�,∞) is the set of down states. The reliability function is easily
expressed as a function of the transition function P of the couple:

R(t) = P((Zt , Xt ) ∈ U × E) =
∑

i, j∈E

αi Pi j (z,U, t).

Through Proposition 3.1, P is known. Hence R (as well as Fτ ) is fully
characterized:

R(t) = 1 − Fτ (t) =
∑

i, j∈E

αi × (� ∗ g)i j (z,U, t).

The computation of R thus requires �, determined by summing the n-fold
convolutions of the kernel L , which is the essential block of the whole process.
We have a closer look to this quantity in the next paragraph.

3.3.1 Insights on the Semi-Markov Kernel

The kernel L can be calculated at a given time point t > 0 for the Borel subset U of
working state, by integrating the expression given in Lemma 3.1. To this hand, we
introduce the quantity

tz,i (�) = inf
{
t ≥ 0 : ϕz,i (t) ≥ �

}
,

which represent the (deterministic) time for the system to enter D when no jump is
observed, and when the system starts from (Z0, X0) = (z, i). Then, the kernel is
easily seen to equals
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Li j (z,U, t) = pi j

∫ t

0
fi (s)1U (ϕz,i (s))ds = pi j Fi

(
min

{
t, tz,i (�)

})
.

Conversely, the same kind of computation holds when considering the set of down
states D, and we have

Li j (z, D, t) = pi j
(
Fi (t)− Fi (tz,i (�)

)
1{t>tz,i (�)}.

To illustrate this, let us consider again the special case of a Markov jump process.

Example 3.2. Assume X is a jump Markov process as defined in Example 2.1. Then,
we have the following closed-form for the kernel L when considering subset U and
D:

Li j (z,U, t) = ai j

ai

(
1 − e−ai min(tz,i (�),t)

)
,

and
Li j (z, D, t) = ai j

ai

(
e−ai t − e−ai tz,i (�)

)
1{t>tz,i (�)}.

These expressions pave the way for the numerical implementation that leads to
the evaluation of the reliability, as detailed in the next paragraph.

3.3.2 Numerical Implementation

The numerical calculation of R successively requires the kernel L , the n-fold
convolutions L(n) for each n ≥ 0, the Markov renewal function� built upon the L(n)

and the transition function P , by a convolution between g and�. Since convolution
products are time-consuming, any simplification would mean a great time-saving.
By Lemma 3.1, the n-fold convolution of L turns to

L(n)i j (z, B, t) =
∑

k∈E
k �=i

pik

∫ t

0
fi (s)L

(n−1)
k j (ϕz,i (s), B, t − s)ds, (14)

hence removing the integral on R+, thanks to the Dirac distribution. Since our main
interest is the reliability, we compute P just for the subset B ≡ U , that is,

Pi j (z,U, t) =
∫

U

∫ t

0
�i j (z, dy, ds) f j (t − s)1U (ϕy, j (t − s)). (15)

Indeed, the sum on E has been removed thanks to the structure of g. Furthermore,
the integration on y ∈ R+ is limited on U since 1U (ϕy, j (t − s)) is zero elsewhere.
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Now, these functions have to be properly discretized to achieve the numerical
computation. In the following, a function with an upper index “#” means its dis-
cretized version. This discretization must be operated on both intervals U = [z,�)
and [0, t], thus we set two numerical partitions

{
z = y0 < y1 < · · · < y� < · · · < yL = �−}

and {0 = t0 < t1 < · · · < tm < · · · < tM = t} .

Both L and M , being the respective numbers of discretization steps for [z,�)
and [0, t], have to be sufficiently large. When L ,M → ∞ each numerical function
tends to the associated “true" one. For instance, when L ,M → ∞, then L# → L
uniformly w.r.t a given matrix norm, for example, ||L|| = maxi, j Li j (z, y, t) with
t, z, B fixed. Hence, the discrete (numerical) version of (15) is

P#
i j (z,U, t) =

∑

y�∈[z,�)

∑

tm∈(0,t]
�yt�

#
i j (z, y�, tm) f j (t − tm)1ϕy�, j (t−tm)(U ),

where �yt�
#
i j (z, y�, tm) is the only unknown, which stands for the numerical

evaluation of �(z, dy, ds) in (15). It can be evaluated through

�yt�
#
i j (z, y�, tm) =

∑

n≥0

�yt L#(n)(z, y�, tm).

The difference �yt L#(n) is calculated by finite differences on y and t :

�yt L#(n)(z, y�, tm) = [L#(n)(z, y�, tm)− L#(n)(z, y�−1, tm)]
− [L#(n)(z, y�, tm−1)− L#(n)(z, y�−1, tm−1)].

Each element in L#(n) is obtained by the discretized version of (14):

L#(n)
i j (z, y�, tm) =

∑

k∈E
k �=i

pik

∑

tm∈(0,t]
fi (tm)L

#(n−1)
k j (ϕz,i (tm), y�, t − tm)�tm,

with�tm = tm −tm−1, the time-step discretization. Finally, we point out that the sum
on the n-fold convolutions of the kernel in the evaluation of�# is truncated from the
rank n∗, provided that ||L#(n∗)|| < ε. We put ε a small real number, chosen closed to
the machine precision. Note that the integer n∗ is finite since L#(n)

i j (z, y, t) −−−→
n→∞ 0

for a normal MRP with fixed values of i, j ∈ E, t > 0, z > 0 and y ∈ [z,�].
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3.4 Numerical Illustration

As an illustration to the results and the methodology presented along this section,
we suggest to study the process Z governed by

Żt = aZt × c(Xt ), Z0 = z, (16)

with a = 0.01, z = 1, � = 10. To fix the idea, we set X a five-state jump Markov
process with E = {1, 2, 3, 4, 5} and a matrix generator given by

A =

⎛

⎜
⎜
⎜
⎜
⎝

−0.2 0.16 0 0.04 0
0.12 −0.2 0.08 0 0
0.14 0 −0.2 0 0.06

0 0.07 0 −0.1 0.03
0 0 0.05 0.05 −0.1

⎞

⎟
⎟
⎟
⎟
⎠

The initial law is α = (1/4 1/2 1/4 0 0).Finally, the function c : {1, 2, 3, 4, 5} →
{0.5, 1, 1.5, 2, 4} is a one-to-one mapping introduced to “control” the randomizing
process X . Note that the multiplicative form of system (16) is reminiscent of stochas-
tic crack-growth modeling and is suitable to describing a wide family of degradation
processes.

Before we carry on reliability computations, we suggest to get a better insight into
the semi-Markov kernel L of (Z , X) as defined in system (16): X being Markov-
ian, the expressions of L on subsets U and D exactly match the Example 3.2 and
can be straightforwardly computed. Rather than plotting L , consider the functions
Hi (z, B, t) = ∑

j∈E Li j (z, B, t) and the CDF

Hi (t) := Pi (S1 ≤ t) = Hi (z,U, t)+ Hi (z, D, t).

The function Hi is the CDF of the sojourn time for the jump process X to be in the
state X0 = i . The function Hi (z, B, ·) is a sub distribution: when B ≡ U , Hi (z,U, t)
represents the probability for the system, starting from (z, i), to remain in a safe state
when X is jumping for the first time. Similarly, Hi (z,U, t) describes the probability
for the system to be in a failure state when the first jump occurs. These remarks are
illustrated in Fig. 2, representing Hi (z, B, ·) for i = 1, 5, respectively on U and D.
The function H1(z, D, ·) is approximately zero, meaning that H1(z,U, ·) ∼= H1(·)
is a CDF. Conversely, starting from (z, 5), this probability is strictly greater than
zero. As a matter of fact, state 5 for Xt corresponds to a “shock” inducing a strong
multiplicative change to the system (16): Z increases a lot faster to the absorbing point
�. Also remark that we graphically establish that H5(t) = H5(z,U, ·)+ H5(z, D, ·)
is a CDF.

Let us now evaluate the reliability of system described by Eq. (16) through a
Markov renewal argument. To do this, the numerical resolution of the MRE is per-
formed with M = L = 100 points of discretization.
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Fig. 2 Function Hi (z, B, ·) associated with the semi-Markov kernel
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Fig. 3 50 randomly simulated paths of Zt

As a comparison, we compute the reliability thanks to the usual Monte-Carlo
method, which consists in simulating a large number of paths of Z and counting
when the state {�} is reached or not. This principle is illustrated in Fig. 3 for K = 50
trajectories. By the way, these trajectories helps to catch the nature of this particular
numerical illustration.

We use the empirical estimator computed on K = 50, 000 paths (Zk
t )k=1,...,K

simulated through Monte-Carlo techniques, that is R̂(t) = 1
K

∑K
k=1 1

{
Zk

t <�
}. This

estimator is compared with the direct calculus of R through the MRE developed
here. Results can be found on Fig. 4 where the Monte-Carlo estimator is used as a
reference for sanity-check of the validity of both theoretical results and numerical
implementation. One can take note of the very good similarity between the reliability
curves obtained via the two methods.

Moreover we represent in Fig. 5 an evaluation of fτ , the probability density
function of the failure time. With the very same kind of argument that we devel-
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Fig. 4 Comparing the Monte-Carlo estimator to the numerically solved Markov renewal equation
for reliability function

Fig. 5 Comparing the Monte-Carlo estimator to the numerically solved Markov renewal equation
for the density function of the failure time

oped, fτ can be obtained by solving a MRE or via Monte-Carlo simulation. This is
done through some routine calculus starting from the basic fact that

fτ (t) = − d

dt
R(t).



Dynamical Systems with Semi-Markovian Perturbations 209

Again, we acknowledge the very good correlation between our proposal and the
Monte-Carlo estimate. Moreover, we observe that our proposal is smoother as com-
pared to the Monte-Carlo approach, which would require a huge number of simulation
to get a similar result.

4 Statistical Inference

This section addresses the estimation issue related to the system described by Eq. (5)
in Sect. 3. It partially follows the exposition given in [5], where we studied the
simpler Markov case for X in a real data study related to crack-growth analysis. The
SMP estimation developed here consists of new material. We also provide statistical
methods which are more robust regarding the estimation of the trajectories of the
jump process, derived from the literature related to the segmentation/clustering of
piecewise constant signals.

Recall the observation scheme, as plotted in Fig. 1: the only data that can
reasonably be made available from experimental feedback are recorded paths of
the degradation process Z . Typically, the process is observed from a starting point
z which represents the smallest level of degradation that can be characterized, until
it reaches the failure threshold � at a random time τ . This is exactly how measure-
ments of crack-growth are acquired in [27]. Thus, the sample training data are only

composed by some K paths
{

Zk
t , t = 0, . . . , τ k

}K
k=1 where τ k is the hitting time for

the k-th path.
Basically, the most ambitious goal that we would like to aim is to successively

estimate (1) the function C and (2) the randomizing SMP Xt , only by considering
paths of Z with right censoring. We propose in this section a first methodological
effort in that sense, which, requires some additional assumptions to carry out the
inference process:

• the observed paths Z are independent and identically distributed;
• the function C ≡ Cθ : (z, i) → C(z, i) is a known parametric function, with

parameters θ remaining unknown;
• there exists a function Gθ giving X as a function of Z and its first derivative, that

is, the function Cθ in the dynamical system (5) may reverse so as

Xt = Gθ

(
Zt , Żt

)
. (17)

The first assumption of i.i.d. paths is quite usual in statistics and well motivated
in the framework of structural reliability. The second assumption (the parametric
modeling of C) clearly eases the inference process. Yet we underline that it has
been initially motivated by application purpose. In fact, the modeling of a particular
degradation process often owns a physical framework in which scientists have an idea
about the general form of Cθ , with θ the parametric adjustment which remains the
only unknown. Finally, concerning the third assumption, it is acknowledged that such
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a function does not always exists, yet it is required to evaluate the paths of the jumping
random component. Indeed, when the stochastic process X is a linear additive or a
multiplicative term in the function C , we may easily find the corresponding function
G, which concerns a broad family of problems. Besides, this is truly the case for most
of the stochastic crack-growth formulations that we met and that initially motivated
this work [19, 22, 27].

The rest of this section splits into two parts:

(1) First, we describe the estimation of C , which relies on the Bogolyubov’s
averaging principle [2]. A regression analysis can be performed on the asymp-
totic, deterministic system so as to estimate the fixed parameter θ in function
C .

(2) Second, we address the estimation of the random component, that is, the jump
SMP X , which is not directly observed. Once some paths of X and its state space
are recovered, we can build the likelihood function, keeping in mind that the
paths are defined on randomly censored time intervals. The semi-Markov kernel
Q of X are then estimated by maximizing an approached likelihood function.

We finally give a numerical application to illustrate the whole estimation scheme.

4.1 Bogolyubov’s Averaging Principle

An approximation of Z is obtained by analyzing the system (5) in a series scheme
as in [12], that is by studying the weak convergence, when ε → 0, of

dZ εt
dt

= Cθ (Z
ε
t , Xt/ε), Z ε0 = z, (18)

where X is assumed to be ergodic and θ are the parameters of C . In fact, the change
of scale t → t/ε is performed for X in order to see the behavior of the dynamical
system when the random component X just adds the information it would add after
a very long time of observation of (18), since t/ε → ∞ when ε → 0. This so-called
averaging approximation was first introduced by Bogolyubov [2] who showed that
(18) converges weakly when ε → 0 to the following deterministic system

d̃zt

dt
= Cθ (̃zt ), z̃0 = z, (19)

with z̃t the limit deterministic process and Cθ a mean function defined by

Cθ (z) = lim
T →∞

1

T

∫ T

0
Cθ (z, Xt )dt, a.s.

An illustration of this principle is provided in Fig. 6, where z̃t is represented among
a set of sample paths of Z .



Dynamical Systems with Semi-Markovian Perturbations 211

Fig. 6 Application of the
Bogolyubov’s averaging prin-
ciple

In the particular case where X is an ergodic SMP with a stationary law π , we have

Cθ (z) =
∑

i∈E

Cθ (z, i)πi .

Through this averaging technique, we have a limit deterministic system (19)
associated with stochastic differential system (5). The fixed parameters θ appear-
ing in the function Cθ are the same as the ones appearing in Cθ but in (19) the
random part was “eliminated”: with the K sample paths Zk

t , we can perform a clas-
sical regression analysis on (19) to estimate the fixed parameters θ .

4.2 The Semi-Markov Process Estimation

The SMP X is fully characterized by its kernel Q and its initial law α. Mean-
while, prior to any estimation of Q or α, some representations of the paths
{

Xk
t , t = 0, . . . , τ k

}K
k=1 are needed.

4.2.1 Trajectories Estimation

Assume that there exists a function Gθ as defined in (17); hence, we may obtain a
first estimation for the Xk

t ’s through

X̃ k
t = Gθ

(

Zk
t ,
̂̇Z

k

t

)

, (20)
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Fig. 7 Illustration of a segmentation/clustering algorithm (Source Picard [23])

where the derivative of Zt can be estimated by various straightforward methods, e.g.,
the secant method

̂̇Z
k

t = Zk
t+�t − Zk

t

�t
,

with �t being the time discretization step of the data set.
Note that the parameters θ are required, whose estimation could be performed

relying on the averaging principle argument just developed above. Hence, by (20),
we basically extract from the trajectories of Z the “random” part that is unexplained
by the averaging, deterministic process in (19). By this mean, we obtain some noisy
paths taking their values in R, in which values may be quite nearby, as illustrated in
Fig. 7. Our model requires a finite state space for the underlying SMP X with some
piecewise-constant shape paths, thus it is appropriate to “regroup” the values which
are very close from each other to an unique state. This problem can be interpreted as
the widely studied segmentation/clustering problem: basically, one wishes to perform
(1) the segmentation of a signal assumed to be piecewise constant into, says, q change-
points corresponding to the jumps of X and (2) the clustering of the q segments into,
says, p clusters corresponding to the states of X .

The segmentation/clustering process is illustrated in Fig. 7 (from Picard [23]): the
segmentation is performed on the x-axis while the clustering is performed in the
y-axis.

Traditionally, this problem has been studied using hidden Markov models. This is
a quite well-studied issue where the segmentation step is usually treated via dynamic
programming and the clustering step may be treated through various algorithms such
as the popular K -means algorithm. We adopt this naive approach for our problem
(see e.g. [5]), yet we want to underline the fact that the segmentation/clustering
problem received much attention recently. As a matter of fact, the treatment of huge
amount of data with signal lengths up to the million of entries has been required for
bioinformatics purpose. Consequently, very powerful variants and implementations
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of the segmentation/clustering problem have been investigated, regarding the analysis
of CGH microarray data. Authors use the traditional HMM modeling (e.g.,[10])
and also mixture modeling (e.g., [14, 23]). They provide very competitive and well
integrated model selection approaches to chose both the number of segment p and the
number of cluster q. Our problem of paths estimation of X is in very small dimension
as compared to the problem of biological data, and can be treated very efficiently.
We thus rely on these approaches to process the noisy paths {X̃ k

t , k = 1 . . . , K } from
(17), thus leading to K piecewise constant approximated paths {X̂ k

t , k = 1, . . . , K }
defined on a finite state space E . The X̂ ks are then used for further estimations linked
to the SMP X , namely for estimating its initial distribution α and its kernel Q. This
issue is addressed in the following paragraph, based upon an approached maximum
likelihood estimator which is equivalent to empirical estimators of the semi-Markov
kernel.

4.2.2 K-Histories Empirical Estimators

For clarity purpose, we drop the “hat” on the X̂ ks an related quantities along this
section. Note that the writing of the likelihood greatly simplifies when writing a path
of X as an ordered sequence:

Hτ = (
(J0,W0), . . . (JN (τ )−1,WN (τ )−1), (JN (τ ),Uτ )

)
,

where

• N (τ ) is the number of jumps on [0, τ ],
• Jn = X Sn , n ∈ N are the visited states,
• Wn = Sn+1 − Sn, n ∈ N are the sojourn times,
• Uτ = τ − SN (τ ).

The density fHτ
of Hτ is function of fτ (t), the density of τ :

fHτ
(ht ) = fHt (ht ) fτ (t),

where ht is a realization of Hτ .
Consider K independent MRPs (J k

n , Sk
n , n ≥ 0), k = 1, . . . , K , defined by the

same kernel Q and initial distribution α, and K copies τk , k = 1, . . . , K of τ . The
same for N k,U k . The likelihood for the K histories writes, for tk a realization of τk ,

L =
K∏

k=1

fHt (h
k
tk ) ·

K∏

k=1

fτ (tk).

As an approximation, we assume τ , H independent. Then, the maximization of
the likelihood does not rely on the term
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K∏

k=1

fτ (tk).

Hence, the approached likelihood function associated with (H k, 1 ≤ k ≤ K )
writes

L̃ (K ) =
K∏

k=1

α(J k
0 )

(

1 −
∑

�∈E

Q J k
Nk (tk )

,�(U
k
tk )

)

×
N k (tk )∏

�=1

pJ k
�−1,J

k
�

d FJ k
�−1 J k

�
(Xk

�),

where we remind the decomposition Qi j (t) = pi j Fi j (t).
It is clear that the MLE of the initial distribution is α̂(i) = ni/K , where ni is the

number of trajectories starting from the state i .
The estimator of the kernel which maximized the approached likelihood is easily

written by introducing the additional following statistics:

• Ni (τ, K ) the number of visits in state i observed on the K censored paths:

Ni (τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n =i} =

∞∑

n=0

1{J k
n =i,Sk

n+1≤τk
},

• Ni j (τ, K ) the number of transitions from state i to state j observed on the K
censored paths:

Ni j (τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n =i,J k

n+1= j
} =

∞∑

n=0

1{J k
n =i,J k

n+1= j,Sk
n+1≤τk

},

• Mi j (t; τ, K ) the number of time the sojourn in i going to j is less than t on the K
censored paths:

Mi j (t; τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n+1= j,J k

n =i,W k
n ≤t}.

We finally get the following estimator by straightforward generalization of Moore
and Pyke, provided that Fτ �= δ0:

Q̂i j (t; τ, K ) = p̂i j (τ, K )F̂i j (t; τ, K ),

with

p̂i j (τ, K ) = Ni j (τ, K )

Ni (τ, K )
and F̂i j (t; τ, K ) = Mi j (t; τ, K )

Ni j (τ, K )
.

In fact, the above estimators are the empirical ones.
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4.3 Numerical Illustration

We now wish to provide an numerical example which integrates the whole process of
estimation, as well as the probabilistic results depicted in the third section. To this aim,
we study the following dynamical system, which is in the same vein as system (16):

Żt = aZt × c(Xt ), Z0 = z. (21)

As compared to (16), changes are of two kinds: first, the values of the parameters
are a = 0.02, z = 5, � = 30. Second, this is the major difference, the randomizing
process X is now a three-state space SMP with E = {1, 2, 3}. The mapping c is such
as c : (1, 2, 3) → (0.5, 1, 2). We also put

α = (1/3 2/3 0)

the initial distribution of X . The associated semi-Markov kernel is such as Qi j (t) =
pi j Fi j (t), with P = (pi j )i, j∈E the transition matrix and F(t) = (Fi j (t))i, j∈E the
distribution of sojourn times, given by

P =
⎡

⎣
0 1 0

0.9 0 0.1
1 0 0

⎤

⎦ , F(t) =
⎡

⎣
0 E1(t) 0

W1(t) 0 W2(t)
E2(t) 0 0

⎤

⎦ .

The notation E1,E2 stands for exponential distributions such that

Ei (t) = 1 − exp {−λi t}, t ≥ 0,

with parameters λ1, λ2 being respectively equal to 0.1 and 0.04. We also denote by
W1,W2 some Weibull distributions such that

Wi (t) = 1 − exp {−(t/αi )
βi }, t ≥ 0,

with parameters (αi , βi )i=1,2 being respectively equal to (8, 2) and (4, 0.5).
The whole estimation process sums-up as follows: denoting by a0 = a × Eπ [Xt ]

with Eπ the expectation regarding the stationary law π of X , the Bogolyubov’s
averaging principle leads to a very simple deterministic process defined by

z̃t = z exp{a0t}.

Taking the log, we perform a simple least-squared analysis to estimate the parameter
a0 (see, [3] for details). Then, paths of X can be extracted, prior to the estimation of the
kernel Q. Once every parameters in system (21) are known, we rely on the very same
strategy as in Sect. 3 to compute the reliability, this time with the estimated kernel
Q̂. The whole learning procedure takes in input some 100 paths of Z simulated
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Fig. 8 Reliability evaluation and comparison to the testing set

according to (21), which consist the learning set. Some 100 other paths of Z are
generated, consisting in the testing set, kept to evaluate the predictive performance
of our inference strategy.

Figure 8 represents the reliability R of the system computed through the Markov
renewal argument developed Sect. 3, using the estimated parameters (the kernel Q
and the initial distribution law) as described in the current section. The empirical
reliability which appears as an element of comparison in Fig. 8 has been computed
on the test set, through

R̂(t) = 1

K

K∑

k=1

1{Zk
t <�}.

A good fit is obtained, since the curves are quite closed: the slight discrepancy
observed is likely to be due to the numerical discretization of the time interval and
of the state space interval [z,�] of Zt .

Remark 4.3. Note that, as future work, we plain to deeply investigate the numerical
consistency of the empirical estimator of the kernel Q. It has been made for the
corresponding estimator of the infinitesimal generator in the jump Markov case for
X (see [3]). We also plan to take into account the dependency in τ in the likelihood
maximization, since a closed-form of fτ can be obtained through Markov renewal
argument as developed in Sect. 3.
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5 Concluding Remarks

Motivated by the fatigue crack-growth propagation problem, the point of view
adopted in this chapter to model degradation processes does not include diffusion
processes. So, we considered that the changes result from small or very small jumps.
We have consequently developed a semi-Markov piecewise deterministic process as
underlying model to achieve this goal.

As stated previously, this study was initially motivated and supported by the
French Nuclear Power Plan Authority where we considered a Markov perturbing
process. Here we considered a semi-Markov perturbing process which is much more
general than the Markov one.

For a detailed modeling of reliability of SMPs the interested reader could find
results in [17], for the discrete state space case, and in [16] for the general state
space case. For estimation results of reliability and more general of dependability of
semi-Markov systems see [18] and references therein.
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