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Abstract We introduce a flexible family of generalized logit-based regression
models for survival and reliability analyses. We present its parametric as well as
its semiparametric versions. The method of maximum likelihood and the partial
likelihood approach are applied to estimate the parameters of the parametric and
semiparametric models, respectively. This new family of models is illustrated with
male laryngeal cancer data and compared with Cox regression.

1 Introduction

Data arising from survival and reliability analyses often consist of a response variable
that measures the duration of time until the occurrence of a specific event and a
set of variables (covariates) thought to be associated with the event-time variable.
These data arise in a number of applied fields, such as medicine, biology, public
health, epidemiology, engineering, economics, and demography, and they have some
features that pose difficulties to traditional statistical methods. The first is that the data
are generally asymmetrically distributed, while the second feature is that lifetimes
are frequently censored (the end-point of interest has not been observed for that
individual). Regression models for survival and reliability data have traditionally
been based on the proportional hazards model of Cox [3] which is defined through
the hazard function h (t | x) of the form

h (t | x) = h0 (t) exp
(
x′β
)
,

N. Balakrishnan(B)

Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario, Canada
e-mail: bala@univmail.cis.mcmaster.ca

M.C. Pardo · M.L. Avendaño
Department of Statistics and Operational Research I,
Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain

T. Dohi and T. Nakagawa (eds.), Stochastic Reliability and Maintenance Modeling, 1
Springer Series in Reliability Engineering 9, DOI: 10.1007/978-1-4471-4971-2_1,
© Springer-Verlag London 2013



2 N. Balakrishnan et al.

where h0 (t) is an arbitrary function of time called baseline hazard function,
x′ = (

x1, . . . , x p
)

is a vector of covariates for the individual at time t , and
β′ = (

β1, . . . ,βp
)

is a vector of unknown parameters to be estimated. In the
case when the baseline hazard function is treated nonparametrically, then this model
becomes a semiparametric model. Instead, if we assume that the baseline hazard func-
tion is specified up to a few unknown parameters, which is usually accomplished with
a specific parametric distribution such as Weibull distribution, we obtain a parametric
proportional hazards model.

Some recent research has focused on developing extended regression models that
include Cox model as a special case. In this line, we can find the model introduced
by Etezadi-Amoli and Ciampi [4] of the form

h (t | α,β, x) = exp
(
x′α
)

h0
(
t exp

(
x′β
))

,

where α and β are vectors of regression parameters. For β = 0, we deduce the Cox
model, while for α = β we obtain the accelerated failure time (AFT) model which
is also a popular model in the analysis of survival and reliability data. These authors
then show that a better fit is obtained with this new model than with the Cox and
AFT models in two examples based on artificial and real data. Nevertheless, the main
emphasis of their work is on a spline approximation for the baseline hazard function.

A different family of models with smooth background hazard or survival functions
have been proposed by Younes and Lachin [10] and Royston and Parmar [9], which
includes the proportional hazards and proportional odds models as special cases. The
class of these models is based on transformation of the survival function by a link
function g(·) of the form

g(S (t | β, x)) = g(S0 (t)) + x′β,

where S0 (t) = S (t | 0, x) is the baseline survival function. The former tackled the
estimation problem by using B-splines to estimate the baseline hazard function while
the latter utilized natural cubic splines to model g(S0 (t)). Here, again the main focus
of the work was to check the advantage of a smooth modeling of the background
hazard or survival functions, respectively.

An alternative model to the Cox model is based on the hazard function

h (t | β, x) = h0 (t)
exp

(
x′β
)

1 + exp (x′β)
, (1)

where the covariate effects are modeled on the logarithmic scale rather than on the
log odds scale. In spite of the simplicity of this model, it has not been studied much
in the literature. Recently, MacKenzie [7, 8] has considered this logit link-based
model with a constant baseline survival function and nonproportional hazards and
displayed its applicability, which is given by
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h (t | α,β, x) = h
exp

(
tα + x′β

)

1 + exp (tα + x′β)
.

The flexibility shown by MacKenzie’s model gives us an impetus to extend the
Cox model in a similar manner. First of all, to assume that the baseline hazard model
is a constant is to limit the flexibility the model. In fact, the aim of the previous papers
was to estimate in a proper way the baseline hazard function. Secondly, to measure
the influence of the unknown parameters on a generalized log-odds scale instead of a
log-odds scale. Therefore, this model is a particular case of our models introduced in
Sect. 2 without time-dependence. The reason for not considering time-dependence
is to start with a very general family of models but then focus on its simplest form.
We hope to consider in our future study time-dependence and also to estimate the
background hazard with splines.

In this chapter, we not only study the logit link-based model in (1), but also
generalize it to a flexible parametric family of proportional hazards model based
on a generalization of the logistic distribution (see Balakrishnan [1]) called Type-I
generalized logistic model. The formulation of the model and estimation methods
for parametric and semiparametric models are then discussed in Sect. 2. Measures of
fitting this model are discussed in Sect. 3. Next, an illustrative example is presented
in Sect. 4. Finally, some concluding remarks are made in Sect. 5.

2 The Generalized Logit Link Proportional Hazards Model

The logit link-based model in (1) can be generalized by replacing the logistic
distribution function in (1) by a generalization of the logistic distribution called
Type-I generalized logistic which is given by

F (y) = 1
(
1 + e−y

)a , −∞ < y < ∞, a > 0;

see Balakrishnan [1].
By utilizing this form, we propose a proportional hazards model defined through

the hazard function
h (t | β, a, x) = h0 (t) K (β, a, x), (2)

with

K (β, a, x) = 1

{1 + exp (−x′β)}a , a > 0.

For two covariate profiles xi and x j , the hazards are proportional and the relative
risk does not depend on t as
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ρ
(
t | β, a, xi , x j

) = h (t | β, a, xi )

h
(
t | β, a, x j

)

=
⎛

⎝
1 + exp

(
−x′

jβ
)

1 + exp
(−x′

iβ
)

⎞

⎠

a

.

Note that in the special case when a = 1, we deduce the proportional hazards model
with a logit link function in (1).

The survival function corresponding to the hazard model in (2) is

S (t | β, a, x) = exp {−K (β, a, x) H0 (t)} , (3)

where H0(t) = ∫ t
0 h0(u)du is the baseline cumulative hazard function.

Equation (2) characterizes the generalized logit link proportional hazards model
with density given by

f (t | β, a, x) = exp {−H (t | β, a, x)} h (t | β, a, x) ,

where H(t |β, a, x) is the cumulative hazard function.
At this point, we have not made any assumption about the baseline hazard function

h0(t), so that the model is parametric only for the covariate effect, and consequently
the model is semiparametric. Instead, if we assume a parametric form for the function
h0(t), the model becomes parametric. Now, we will describe the statistical inferential
methods for both these cases.

2.1 Parametric Model

We may assume that the baseline hazard function is specified up to a few unknown
parameters. This is usually accomplished with a specific parametric distribution
such as the Weibull distribution. In this case, we get a Weibull generalized logit link
proportional hazards model WGLPH with hazard function

h (t | λ, γ,β, a, x) = λγtγ−1 K (β, a, x) (4)

which is fully parametric in form. This model contains as a special case the
generalized logit link exponential proportional hazards model for the case when
γ = 1.
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Then, the cumulative hazard is given by

H (t | λ, γ,β, a, x) = λK (β, a, x) tγ

and Eq. (4) characterizes the WGLPH with density given by

f (t | λ, γ,β, a, x) = λK (β, a, x) γtγ−1 exp
{−λK (β, a, x) tγ

}
.

Note that this is a Weibull density function with parameters γ and λK (β, a, x) .

When we assume such a fully parametric form for the distribution of survival
times, the estimation of the unknown parameters of the model is by full maxi-
mum likelihood method. Consider a sample of n independent individuals with data
(ti , xi , δi ), where δi = 1 for an event and 0 otherwise, for i = 1, . . . , n. Accord-
ingly, under the assumption that the censoring mechanism is non-informative, the
full likelihood for a random sample of n individuals is given by

L (β, a) =
n∏

i=1

{h (ti | β, a, xi )}δi {S (ti | β, a, xi )} .

For the Weibull baseline hazard, the log-likelihood function simply becomes

l (λ, γ,β, a) = ln (L (λ, γ,β, a))

=
n∑

i=1

[
δi ln

{
λγtγ−1

i K (β, a, xi )
}

− λK (β, a, xi ) tγi

]
. (5)

To obtain the maximum likelihood estimates, the log-likelihood function in (5)
must be maximized numerically by using a procedure for constrained optimization.
In order to maximize (5), we obtain its first derivatives with respect to all the para-
meters which are presented in Appendix A.

Observe that in this case, the corresponding survival function can then be estimated
as

S(t |λ̂, γ̂, β̂, â, x) = exp
{
−K

(
β̂, â, x

)
λ̂t γ̂
}

.

2.2 Semiparametric Model

On the other hand, when we assume an unknown functional form for the baseline
survival function, the estimation of the unknown parameters of the model is done by
maximum partial likelihood method. Consider a sample of n independent individuals
with data (ti , xi , δi ) as before and when the censoring mechanism is non-informative.
In this case, the partial likelihood for a random sample of n individuals can be
written as
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L (β, a) =
n∏

i=1

⎡

⎢
⎣

K (β, a, xi )∑

l∈R(ti )
K (β, a, xl)

⎤

⎥
⎦

δi

,

where R(ti ) is the risk set at time ti .
Then, the partial log-likelihood function is given by

l (β, a) = ln (L (β, a))

=
n∑

i=1

δi

⎡

⎣ln (K (β, a, xi )) − ln

⎛

⎝
∑

l∈R(ti )

K (β, a, xl)

⎞

⎠

⎤

⎦ . (6)

For the purpose of maximizing (6) and obtaining the partial maximum likelihood
estimates, we use numerical methods for carrying out the required constrained opti-
mization. Its first derivatives with respect to all the parameters are presented in
Appendix B.

Once we have fitted a generalized likelihood proportional hazards model, it may be
of interest to estimate the survival probability. The estimator of the survival function is
based on Breslow’s estimator of the baseline cumulative hazard rate, which proceeds
as follows:

Let the full likelihood function be

L (β, a, h0(t)) =
n∏

i=1

{h0 (ti ) K (β, a, xi )}δi {exp [−K (β, a, xi ) H0 (ti )]}

=
D∏

j=1

{
h0
(
t j
)

K (β, a, x j )
} n∏

i=1

{exp [−K (β, a, xi ) H0 (ti )]} ,

where j = 1, . . . , D correspond to the times without censoring. We then obtain

L (β, a, h0(t)) =
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

{

−
n∑

i=1

K (β, a, xi ) H0 (ti )

}

.

Defining H0(t) = ∑

t∗<t
h0(t∗), and supposing that β and a are fixed, we have

L (h0(t)) =
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

⎧
⎨

⎩
−

n∑

i=1

K (β, a, xi )

⎛

⎝
∑

t∗i <ti

h0(t
∗
i )

⎞

⎠

⎫
⎬

⎭
.

Taking h0(t) = 0 when the event is censored, then we get
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L (h0(t)) =
⎡

⎣
D∏

j=1

h0
(
t j
)

K (β, a, x j )

⎤

⎦ exp

⎧
⎨

⎩
−

D∑

j=1

h0(t j )
∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

=
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
,

so that

L (h0(t1), · · · , h0(tD)) ∝
D∏

j=1

h0
(
t j
)

exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
.

For the determination of the maximum likelihood estimate, we take the derivative
with respect to h0(t j ) which is given by

∂L

∂h0(t j )
= exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

+ h0(t j ) exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

⎧
⎨

⎩
−
∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
.

Upon equating this to zero, we obtain the maximum likelihood estimate to be

ĥ0(t j ) = 1
∑

i∈R(t j )

K (β, a, xi )
,

and consequently

Ĥ0(t) =
∑

t∗<t

1

w(t∗)
,

where w(t∗) = ∑

l∈R(t∗)
K (β, a, xl).

Since
Ŝ0(t) = exp

[
−Ĥ0(t)

]

is the estimator of the survival function of an individual with covariate vector x = 0,
for estimating the survival function of an individual with covariate vector x = x∗,
we use the estimator

Ŝ(t |β̂, â, x = x∗) =
{

Ŝ0(t)
}K
(
β̂,â,x=x∗

)

. (7)
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In both cases of parametric and semiparametric setting, the variance of the
estimated parameters θ̂ = (λ̂, γ̂, β̂, â) and θ̂ = (β̂, â) obtained by maximizing
Eqs. (5) and (6), respectively, can be estimated as

var
(
θ̂
)

= diag
(

I −1
(
θ̂
))

,

where I is the observed information matrix.

3 Measures of Fit

After fitting several possible models for a given data, we will need to compare the
fit of each model for selecting the best one. When we fit several non-nested models,
we may use the Akaike information criterion (AIC) to choose the best one among
them. The AIC is defined as

−2l
(
θ̂
)

+ 2(number of model parameters).

Essentially, we compare the AIC scores for different models and then select the one
with the smallest AIC score.

Another popular criterion for model selection among parametric models is the
Bayesian information criterion (BIC). The BIC is given by

−2l
(
θ̂
)

+ (number of model parameters) log(sample size),

and in the same way as with AIC scores, we select the one with the smallest BIC
value.

On the other hand, to describe how well a model fits the observed data, we can
do tests of goodness-of-fit for the estimated survival function. Such tests summarize
the discrepancy between observed values and the expected values for the survival
function under the model. We will use two well-known statistics for this purpose,
the first one is the lack of fit sum of squares (SS) given by

∑

i

(observed valuei − fitted valuei )
2,

and the second is the Kolmogorov–Smirnov statistic (KS) defined as

max
i

|observed valuei − fitted valuei |.
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4 Numerical Illustration

We illustrate the use of the family of proposed models by analyzing death times of
male laryngeal cancer patients. Kardaun [5] reported data on 90 males diagnosed
with cancer of the larynx during the period 1970–1978 at a Dutch hospital. Times
recorded were the intervals (in years) between the first treatment and either death or
the end of the study. Also recorded were the patient’s age at the time of diagnosis
and the stage of the patient’s cancer, wherein the stage is a factor of four levels.
The larynx data have been used by Klein and Moeschberger [6] to illustrate some
techniques in survival analysis. The larynx data can be obtained from the MKsurv
Package of the R software package.

4.1 Fit of a Fully Parametric Model

First, we fit the fully parametric proportional hazards model by means of three specific
models, namely, the Weibull proportional hazards model (WPH), the Weibull logit
link proportional hazards model (WLPH), and the WGLPH. To get a good fit of
these models, we do a grid {0.5, 1.0, . . . , 4.5, 5.0} × {0.5, 1.0, . . . , 4.5, 5.0} for the
initial values of the parameters λ and γ for the required maximization of the three
specified models. Moreover, a = 1 is used as the initial value for the parameter a of
the WGLPH model.

In the fitting of the WGLPH model, we found that the numerical methods, used to
determining the maximum, in fact, find local maxima that can be far away from the
global maximum. We therefore adopt a profile full log-likelihood method to solve
this problem.

Let the profile log-likelihood function be

p l (a) = sup
λ,γ,β

l (λ, γ,β, a) .

We then calculate this function for a ∈ {5.0, 6.0, 7.0, 8.0, 9.0} and the same grid for
initial points of λ and γ as mentioned earlier. Finally, we found the value of a = 8
to be the choice of a that maximized the profile full log-likelihood (WGLPHaF).
The parameter estimates (Est) and their standard errors (SE) so obtained for the four
fitted models are presented in Table 1.

Now, we compare the empirical survival function with the estimated survival
function for each of the four fitted models. The empirical survival function was
calculated by Kaplan–Meier estimator, while the survival function of the WLPH,
WGLPHaF, and WGLPH models were estimated with the corresponding function
(3) of the parametric model. In Fig. 1, we have shown a plot of these estimated survival
functions. To assess the goodness-of-fit of these models, we calculated the SS and KS
statistics to compare the empirical survival function with the corresponding estimated
survival function for all four models (WPH, WLPH, WGLPHaF, and WGLPH).
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Table 1 Fit of the four fully parametric models

WPH WLPH WGLPHaF (a = 8 fixed) WGLPH
Variable Est SE Est SE Est SE Est SE

λ 0.01855 0.01893 0.32468 0.11235 3.16696 4.94242 2.56534 6.59244
γ 1.13020 0.13843 1.09364 0.13413 1.13038 0.13832 1.13034 0.13847
Age 0.01973 0.01420 -0.01638 0.00810 0.00740 0.00751 0.00785 0.00755
Stage II 0.16633 0.46111 -0.04115 0.60885 0.04320 0.15510 0.04406 0.16261
Stage III 0.66255 0.35545 0.75535 0.56191 0.23229 0.16294 0.24550 0.21569
Stage IV 1.74530 0.41471 11.26756 96.80031 0.73511 0.41099 0.79024 0.75908
a — — — — — — 7.74186 3.94820

Fig. 1 Survival functions of the four fitted parametric models and the Kaplan–Meier estimator

In Table 2, the values of the SS and KS statistics obtained for these four fitted
models are presented.

Also, in Table 3, two comparisons of these four models are made based on the
(AIC) and the BIC.

All these results show that the WGLPH, with the parameter a determined by the
profile likelihood method, provides overall the best fitting model for the considered
data.

Table 2 Goodness-of-fit statistics for the four fitted fully parametric models

WPH WLPH WGLPHaF WGLPH

SS 0.035 1.034 0.034 0.034
KS 0.057 0.289 0.071 0.073
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Table 3 AIC and BIC values for the four fitted parametric models

WPH WLPH WGLPHaF WGLPH

AIC 294.8468 300.4143 294.7641 296.7652
BIC 309.8456 315.4131 309.7630 314.2639

4.2 Fit of a Semiparametric Model

Now, we fit the proportional hazards model (PH), the logit link proportional hazards
model (LPH), and the generalized logit link proportional hazards model (GLPH) in
a semiparametric framework. In order to get the best fit for the GLPH model, we do
a grid for the initial value of the parameter a in {0.5, 1.0, 1.5, 2.0} and we look for
the maximum value of the partial log-likelihood function in (6).

As in the parametric case, we consider a profile partial log-likelihood method
maximizing the function

p l (a) = sup
β

l (β, a) .

We calculate this function for a ∈ {1, 2, . . . , 8, 9, 10} in GLPH with a fixed and
we get a = 8 that maximizes the profile partial log-likelihood function (GLPHaF).
In Table 4, we present the parameter estimates (Est) and their standard errors (SE)
for the four fitted models. Note that we obtain similar estimation for GLPHaF (a = 8
fixed) and GLPH models, but we reduce substantially the SE in GLPHaF, as the para-
meter a is fixed in this case. Furthermore, we compare the empirical survival function
and the estimated survival function for each of the four models. The empirical sur-
vival function was calculated by Kaplan–Meier estimator, the Breslow’s estimator
was used to estimate the survival function in Cox PH model, while the survival func-
tion of LPH, GLPHaF, and GLPH models were estimated with the corresponding
function S(t) of the semiparametric model in (7). In Fig. 2, we have presented a plot
of these estimated survival functions. In Table 5 we present the values of the SS and
KS statistics to compare the empirical survival function and the estimated survival
function for each of the four fitted models (PH, LPH, GLPHaF and GLPH).

Table 4 Fit of the four semiparametric models

PH LPH GLPHaF (a = 8 fixed) GLPH
Variable Est SE Est SE Est SE Est SE

Age 0.01890 0.01425 -0.01568 0.00828 0.00570 0.00565 0.00574 0.02170
Stage II 0.13856 0.46231 -0.07464 0.61227 0.03047 0.12829 0.03060 0.14502
Stage III 0.63835 0.35608 0.75403 0.57134 0.18337 0.12140 0.18453 0.67040
Stage IV 1.69306 0.42221 7.93424 19.34429 0.55128 0.23583 0.55537 2.35490
a — — — — — — 8.95955 22.95138
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Fig. 2 Survival functions of the four fitted semiparametric models and the Kaplan–Meier estimator

Table 5 Goodness-of-fit statistics for the four fitted semiparametric models

PH LPH GLPHaF GLPH

SS 0.014 0.517 0.008 0.011
KS 0.029 0.182 0.033 0.033

Table 6 AIC and BIC values for the four fitted semiparametric models

PH LPH GLPHaF GLPH

AIC 384.3589 389.2912 384.3173 386.3173
BIC 394.3581 399.2905 394.3165 398.8163

In Table 6, the comparisons of the four fitted models are made based on the
AIC and the BIC. From all these results, we draw the general conclusion that the
generalized logit-link proportional hazards models are good competitors for the Cox
model.

5 Final Remarks

The family of proposed models is quite flexible and seems to provide a good
competitor for the Cox model. We derive the likelihood function and the partial
likelihood function for the parametric and semiparametric models, respectively, for
obtaining the parameter estimates and their standard errors. The estimated survival
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function of a member of the proposed family of models fits the empirical sur-
vival function better than the Cox model. Furthermore, this generalized logit-based
proportional hazards model is the one with minimum AIC and BIC.

There are still some unresolved issues in this regard. First of all, the asymptotic
properties of the parameter estimates have to be established, and associated statistical
inferential issues need to be studied in detail. Another problem of interest is to intro-
duce time-dependence in the models. In this case, the proposed models will provide
an extension of [7, 8] models in two ways, with one coming from the non-constant
hazard function and the other arising from the generalized logit-link function.

Appendix A: Derivatives of the Log-Likelihood Function
in a Fully Parametric Model

To maximize (5), we obtain its first derivatives with respect to all the parameters as

∂l (λ, γ,β, a)

∂λ
=

n∑

i=1

[
δi

λ
− K (β, a, xi ) tγi

]
,

∂l (λ, γ,β, a)

∂γ
=

n∑

i=1

[
δi

(
1

γ
+ ln(ti )

)
− λK (β, a, xi ) tγi ln(ti )

]
,

∂l (λ, γ,β, a)

∂β j
=

n∑

i=1

[
axi j

(
δi − λK (β, a, xi ) tγi

)

1 + exp(x′
iβ)

]

,

for j = 1, . . . , p, and

∂l (λ, γ,β, a)

∂a
=

n∑

i=1

[
ln
(
1 + exp

(−x′
iβ
)) (

λK (β, a, xi ) tγi − δi
)]

.

To obtain the corresponding information matrix I (λ, γ,β, a), we need the
Hessian matrix H(λ, γ,β, a) which is the matrix of second derivatives of the log-
likelihood function in (5) with respect to its parameters.

We obtain them readily as follows:

∂2l (λ, γ,β, a)

∂λ2 = − 1

λ2

[
n∑

i=1

δi

]

,

∂2l (λ, γ,β, a)

∂λ∂γ
= −

n∑

i=1

K (β, a, xi ) tγi ln(ti ),
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∂2l (λ, γ,β, a)

∂λ∂β j
= −a

n∑

i=1

K (β, a, xi ) tγi xi j

1 + exp(x′
iβ)

, with j = 1, · · · , p,

∂2l (λ, γ,β, a)

∂λ∂a
=

n∑

i=1

K (β, a, xi ) tγi ln
(
1 + exp(−x′

iβ)
)
,

∂2l (λ, γ,β, a)

∂γ2 =
n∑

i=1

[
− δi

γ2 − λK (β, a, xi ) tγi (ln(ti ))
2
]

,

∂2l (λ, γ,β, a)

∂γ∂β j
= −aλ

n∑

i=1

K (β, a, xi ) tγi ln(ti )xi j

1 + exp(x′
iβ)

, with j = 1, · · · , p,

∂2l (λ, γ,β, a)

∂γ∂a
= λ

n∑

i=1

K (β, a, xi ) tγi ln(ti ) ln
(
1 + exp(−x′

iβ)
)
,

for j = 1, . . . , p and l = j, · · · , p,

∂2l (λ, γ,β, a)

∂β j∂βl
= −a

n∑

i=1

×
[
δi exp(x′

iβ)xi j xil + λK (β, a, xi ) tγi xi j xil
(
a − exp(x′

iβ)
)

(
1 + exp(x′

iβ)
)2

]

,

∂2l (λ, γ,β, a)

∂β j∂a
=

n∑

i=1

[
δi xi j − λK (β, a, xi ) tγi xi j

{
1 − a ln

(
1 + exp(−x′

iβ)
)}

1 + exp(x′
iβ)

]

,

∂2l (λ, γ,β, a)

∂a2 = −λ

n∑

i=1

K (β, a, xi ) tγi
{
ln
(
1 + exp(−x′

iβ)
)}2

.

Appendix B: Derivatives of the Partial Log-Likelihood
Function in the Semiparametric Model

To maximize (6), we obtain its first derivatives with respect to all the parameters as

∂l (β, a)

∂β j
= a

n∑

i=1

δi

⎡

⎢
⎣

xi j

1 + exp(x′
iβ)

− 1
∑

l∈R(ti )
K (β, a, xl)

∑

l∈R(ti )

xl j K (β, a, xl)

1 + exp(x′
lβ)

⎤

⎥
⎦

for j = 1, . . . , p, and
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∂l(β, a)

∂a
=

n∑

i=1

δi
[− ln

(
1 + exp

(−x′
iβ
))

+ 1
∑

l∈R(ti )
K (β, a, xl)

∑

l∈R(ti )

K (β, a, xl) ln
(
1 + exp

(−x′
lβ
))
⎤

⎥
⎦ .

Now, to obtain the information matrix, we need the second derivatives of the
partial log-likelihood function (6) for j = 1, · · · , p and m = j, · · · , p, which are
as follows:

∂2l (β, a)

∂β j∂βm
= a

n∑

i=1

δi

[
− exp(x′

iβ)xi j xim
(
1 + exp(x′

iβ)
)2 − avm(ti )v j (ti ) − w(ti )y jm(ti )

(w(ti ))2

]

,

∂2l (β, a)

∂β j∂a
=

n∑

i=1

δi

[
xi j

1 + exp(x′
iβ)

− v j (ti )

w(ti )
− a

v j (ti )u(ti )

(w(ti ))2 + a
z j (ti )

w(ti )

]
,

∂2l (β, a)

∂a2 =
n∑

i=1

δi

⎡

⎢⎢
⎣

− (u(ti ))2

(w(ti ))2 +

∑

l∈R(ti )
K (β, a, xl)

{
ln
(
1 + exp(−x′

lβ)
)}2

w(ti )

⎤

⎥⎥
⎦ ,

where

w(t) =
∑

l∈R(t)

K (β, a, xl) ,

v j (t) =
∑

l∈R(t)

K (β, a, xl) xl j

1 + exp(x′
lβ)

,

y jm(t) =
∑

l∈R(t)

K (β, a, xl) xl j xlm
(
a − exp(x′

lβ)
)

(
1 + exp(x′

lβ)
)2 ,

u(t) =
∑

l∈R(t)

K (β, a, xl) ln
(
1 + exp(−x′

lβ)
)
,

z j (t) =
∑

l∈R(t)

K (β, a, xl) xl j
{
ln
(
1 + exp(−x′

lβ)
)}

1 + exp(x′
lβ)

.
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