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Preface

In Honor and Celebration of Professor Osaki’s 70th Birthday
and Retirement

Dr. Shunji Osaki is an internationally recognized researcher in the field of system
reliability engineering spanning over four decades. In 2001–2011, he worked in
Nanzan University, Nagoya, as Professor in the Department of Mathematical and
Information Engineering. Prior to 2001, Dr. Osaki was Professor (1986–2001) and
Associate Professor (1970–1986) in the Department of Industrial and Systems
Engineering, Hiroshima University from 1970 to 2001. Dr. Osaki earned a Doctor
of Engineering, a.k.a, a Ph.D. from Kyoto University in 1970. We have provided
his academic accomplishments over the last four decades, following this preface.

Thanks to Dr. Osaki’s endless contributions, system reliability engineering has
made significant advancements in Japan. Active in both research and academic, he
has built a wealth of technical networks through publications and technical
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discussions with international colleagues, scholars, friends, and students. He
published over 20 books and over 400 papers in the area of system reliability
engineering since joining the graduate program in Kyoto University in mid-1960.
He also helped and supported 8 Ph.D. students, 72 M.S. students, and 223 B.S.
students during his tenure at Nanzan University and Hiroshima University.

In honor and celebration of Dr. Osaki’s 70th birthday and retirement, this book
represents a collection of recent research topics by numerous distinguished
researchers, all of whom have been inspired by Dr. Osaki’s great contributions.
The topics include system reliability and maintenance modeling, dependable
computing, system performance analysis, and software engineering.

This book, containing both his legacy and the state-of-the-art contributions in
the technical field, will help readers explore new ideas and topics on stochastic
reliability and maintenance modeling. It will also serve as a useful guide for
researchers to apply reliability and maintenance theory to computer and commu-
nication systems.

Our special thanks to all the authors and reviewers of the respective articles
involved in this book. We would also like to thank Professor Hoang Pham,
Rutgers, The State University of New Jersey, USA, the Editor of Springer Series in
Reliability Engineering, Ms. Claire Protherough and Ms. Grace Quinn, Springer
Senior Editorial Assistants (Engineering), and Dr. Kazu Okumoto, Alcatel-Lucent
Technologies, USA. We would not have completed this book without their kind
supports and encouragements.

Once again, Happy 70th Birthday to Professor Shunji Osaki and Congratulations
and Best Wishes for a very successful retirement.

Professor Shinji Osaki’s Academic Achievements

• Earned a Ph.D. from Kyoto University in 1970. His Ph.D. thesis is ‘‘Studies on
system analysis and synthesis by Markov renewal process.’’

• Joined Hiroshima University in 1970 as Lecturer and became Associate Pro-
fessor that same year in the Department of Industrial Engineering. Full Professor
in 1986, where he was responsible for research and teaching in applied proba-
bility, quality control and reliability engineering.

• Took a two-year leave of absence in 1970 to join the University of Southern
California as a Post-Doctoral Research Fellow to pursue a joint research on
applied stochastic modeling with Professor Richard Bellman.

• Returned from USC and established a laboratory in the Department of Industrial
Engineering, Hiroshima University to help and support graduate and under-
graduate students.

• Visited the Manchester University, UK in 1976–1977 as a Simon Visiting
Research Fellow.

• Joined Nanzan University, Nagoya in 2002 as Professor in the Faculty of
Mathematical and Information Engineering, in anticipation of the retirement age
at Hiroshima University.
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In addition, Dr. Osaki exhibited a wide range of research interests and con-
tinued to publish books and technical papers in the field. The following is a
summary of his research contributions.

• As a Ph.D. candidate, co-authored with Professor Hisashi Mine a well-refer-
enced book, ‘‘Morkovian Decision Processes,’’ American Elsevier Publishing
Company Inc. Also published three key papers on Markov decision processes in
Journal of Mathematical Analysis and Applications.

• Based on his Ph.D. thesis in 1970, published 11 papers in Japanese technical
journals and 10 papers in international journals, including IEEE Transactions on
Reliability, Management Science, and Journal of Applied Probability.

• One of his key contributions was a reliability analysis of two-unit standby
redundant systems based on Markov renewal processes. A series of work in this
technically exciting area was pursued with Dr. Toshio Nakagawa and his stu-
dents in Hiroshima University.

• Was the winner of the fourth Ohnishi Memorial Best Paper Award in 1971,
which is the most prestigious research award in the Operations Research Society
of Japan.

• These research accomplishments constitute as the fundamental theory and were
then applied to fault-tolerant computer systems. They resulted in:

– A heavily cited monograph, ‘‘Reliability Evaluation of Some Fault-Tolerant
Computer Architectures’’, Lecture Notes in Computer Science, Springer-
Verlag, co-authored with his M.S. student, Toshihiko Nishio. It became a
technical base for probabilistic analyses in modern dependable computing.

• Authored two well-known textbooks:

– ‘‘Stochastic System Reliability Modeling,’’ World Scientific
– ‘‘Applied Stochastic System Modeling,’’ Springer-Verlag.

Dr. Osaki also worked on a large number of stochastic maintenance models
such as replacement models, inspection models, order-replacement models, and
shock models. In late 1970, he worked in these research areas with support from
Dr. Toshio Nakagawa and several students such as Dr. Kazuhira Okumoto and Dr.
Naoto Kaio. In early 1980, he started a research project on software reliability
modeling with his student, Dr. Shigeru Yamada, and developed several well-
known software reliability growth models such as the delayed S-shaped model,
which is often called the Yamada, Ohba, and Osaki Model. Over the last 20 years,
he was a co-author of numerous papers in this well-established research area. His
research interest in the 1990s moved on to other research topics such as financial
engineering, production/inventory analysis, neuro computing, quality control,
dynamic power management, etc. He was very sensitive and instrumental to new
research trends in applied stochastic modeling, and generated many ideas and hints
that are helpful to other researchers and students.
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He founded several international workshops during the last three decades.

• Organized the Reliability Symposium on Stochastic Models in Reliability
Theory, on April 1984, in Nagoya, Japan, with the co-chair, Dr. Yukio
Hatoyama, who was the Japanese Prime Minister during September 2009 to
June 2010.

• Served as the General Co-Chair with Professor Jinhua Cao for The China–Japan
Reliability Symposium in China in September 1987 and realized the so-called
‘‘Moving-Events’’ by bringing many Chinese and Japanese colleagues in three
different places, Shanghai, Xi’an and Beijing.

• In 1993 and 1996, initiated Australia–Japan Workshop on Stochastic Model in
Engineering, Technology and Management, with Professor D. N. Pra Murthy,
and continued until the third event in 1999.

• Worked with Professors A. H. Christer, L. C. Thomas, N. Balakrishnan,
Nikolaos Limnios and Katsushige Sawaki to found the following workshops.
Effectively bridged Japanese researchers in applied stochastic modeling and
European/American researchers.

– UK-Japanese Research Workshop on Stochastic Modelling in Innovative
Manufacturing in 1995

– Euro-Japanese Workshops on Stochastic Risk Modelling for Finance, Insur-
ance, Production and Reliability in 1998 and 2002

– International Workshops on Recent Advances in Stochastic Operations
Research in 2005 and 2007.

As demonstrated above, Dr. Osaki enjoys organizing relatively small work-
shops to stimulate pure academic discussions with his colleagues/friends, apart
from politics in big academic societies.

Dr. Osaki has been a key member of several academic societies such as The
Operations Research Society of Japan, The Institute of Electronics, Information
and Communication Engineers, The Institute of Systems, Control and Information
Engineers, Japan Industrial Management Association, Information Processing
Society of Japan, Reliability Engineering Association of Japan, and IEEE Reli-
ability Society. He served as an Associate Editor or an Editorial Board Member of
several international journals such as Journal of Mathematical Analysis and
Applications, International Journal of Policy and Information, Applied Stochastic
Models and Data Analysis, Computers & Mathematics with Applications, Revue
Francaise d’Automatique, d’Informatique et Rechereche Operationelle Recherche
Operationnelle, International Journal of Reliability, Quality and Safety Engi-
neering, IIE Transactions on Quality and Reliability Engineering, Communica-
tions in Applied Analysis, Applied Stochastic Models in Business and Industry,
among others.

Japan, August 2012 Tadashi Dohi
Toshio Nakagawa
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Generalized Logit-Based Proportional
Hazards Models and Their Applications
in Survival and Reliability Analyses

N. Balakrishnan, M. C. Pardo and M. L. Avendaño

Abstract We introduce a flexible family of generalized logit-based regression
models for survival and reliability analyses. We present its parametric as well as
its semiparametric versions. The method of maximum likelihood and the partial
likelihood approach are applied to estimate the parameters of the parametric and
semiparametric models, respectively. This new family of models is illustrated with
male laryngeal cancer data and compared with Cox regression.

1 Introduction

Data arising from survival and reliability analyses often consist of a response variable
that measures the duration of time until the occurrence of a specific event and a
set of variables (covariates) thought to be associated with the event-time variable.
These data arise in a number of applied fields, such as medicine, biology, public
health, epidemiology, engineering, economics, and demography, and they have some
features that pose difficulties to traditional statistical methods. The first is that the data
are generally asymmetrically distributed, while the second feature is that lifetimes
are frequently censored (the end-point of interest has not been observed for that
individual). Regression models for survival and reliability data have traditionally
been based on the proportional hazards model of Cox [3] which is defined through
the hazard function h (t | x) of the form

h (t | x) = h0 (t) exp
(
x′β
)
,
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where h0 (t) is an arbitrary function of time called baseline hazard function,
x′ = (

x1, . . . , x p
)

is a vector of covariates for the individual at time t , and
β′ = (

β1, . . . ,βp
)

is a vector of unknown parameters to be estimated. In the
case when the baseline hazard function is treated nonparametrically, then this model
becomes a semiparametric model. Instead, if we assume that the baseline hazard func-
tion is specified up to a few unknown parameters, which is usually accomplished with
a specific parametric distribution such as Weibull distribution, we obtain a parametric
proportional hazards model.

Some recent research has focused on developing extended regression models that
include Cox model as a special case. In this line, we can find the model introduced
by Etezadi-Amoli and Ciampi [4] of the form

h (t | α,β, x) = exp
(
x′α
)

h0
(
t exp

(
x′β
))

,

where α and β are vectors of regression parameters. For β = 0, we deduce the Cox
model, while for α = β we obtain the accelerated failure time (AFT) model which
is also a popular model in the analysis of survival and reliability data. These authors
then show that a better fit is obtained with this new model than with the Cox and
AFT models in two examples based on artificial and real data. Nevertheless, the main
emphasis of their work is on a spline approximation for the baseline hazard function.

A different family of models with smooth background hazard or survival functions
have been proposed by Younes and Lachin [10] and Royston and Parmar [9], which
includes the proportional hazards and proportional odds models as special cases. The
class of these models is based on transformation of the survival function by a link
function g(·) of the form

g(S (t | β, x)) = g(S0 (t)) + x′β,

where S0 (t) = S (t | 0, x) is the baseline survival function. The former tackled the
estimation problem by using B-splines to estimate the baseline hazard function while
the latter utilized natural cubic splines to model g(S0 (t)). Here, again the main focus
of the work was to check the advantage of a smooth modeling of the background
hazard or survival functions, respectively.

An alternative model to the Cox model is based on the hazard function

h (t | β, x) = h0 (t)
exp

(
x′β
)

1 + exp (x′β)
, (1)

where the covariate effects are modeled on the logarithmic scale rather than on the
log odds scale. In spite of the simplicity of this model, it has not been studied much
in the literature. Recently, MacKenzie [7, 8] has considered this logit link-based
model with a constant baseline survival function and nonproportional hazards and
displayed its applicability, which is given by
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h (t | α,β, x) = h
exp

(
tα+ x′β

)

1 + exp (tα+ x′β)
.

The flexibility shown by MacKenzie’s model gives us an impetus to extend the
Cox model in a similar manner. First of all, to assume that the baseline hazard model
is a constant is to limit the flexibility the model. In fact, the aim of the previous papers
was to estimate in a proper way the baseline hazard function. Secondly, to measure
the influence of the unknown parameters on a generalized log-odds scale instead of a
log-odds scale. Therefore, this model is a particular case of our models introduced in
Sect. 2 without time-dependence. The reason for not considering time-dependence
is to start with a very general family of models but then focus on its simplest form.
We hope to consider in our future study time-dependence and also to estimate the
background hazard with splines.

In this chapter, we not only study the logit link-based model in (1), but also
generalize it to a flexible parametric family of proportional hazards model based
on a generalization of the logistic distribution (see Balakrishnan [1]) called Type-I
generalized logistic model. The formulation of the model and estimation methods
for parametric and semiparametric models are then discussed in Sect. 2. Measures of
fitting this model are discussed in Sect. 3. Next, an illustrative example is presented
in Sect. 4. Finally, some concluding remarks are made in Sect. 5.

2 The Generalized Logit Link Proportional Hazards Model

The logit link-based model in (1) can be generalized by replacing the logistic
distribution function in (1) by a generalization of the logistic distribution called
Type-I generalized logistic which is given by

F (y) = 1
(
1 + e−y

)a , −∞ < y < ∞, a > 0;

see Balakrishnan [1].
By utilizing this form, we propose a proportional hazards model defined through

the hazard function
h (t | β, a, x) = h0 (t) K (β, a, x), (2)

with

K (β, a, x) = 1

{1 + exp (−x′β)}a , a > 0.

For two covariate profiles xi and x j , the hazards are proportional and the relative
risk does not depend on t as
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ρ
(
t | β, a, xi , x j

) = h (t | β, a, xi )

h
(
t | β, a, x j

)

=
⎛

⎝
1 + exp

(
−x′

jβ
)

1 + exp
(−x′

iβ
)

⎞

⎠

a

.

Note that in the special case when a = 1, we deduce the proportional hazards model
with a logit link function in (1).

The survival function corresponding to the hazard model in (2) is

S (t | β, a, x) = exp {−K (β, a, x) H0 (t)} , (3)

where H0(t) = ∫ t
0 h0(u)du is the baseline cumulative hazard function.

Equation (2) characterizes the generalized logit link proportional hazards model
with density given by

f (t | β, a, x) = exp {−H (t | β, a, x)} h (t | β, a, x) ,

where H(t |β, a, x) is the cumulative hazard function.
At this point, we have not made any assumption about the baseline hazard function

h0(t), so that the model is parametric only for the covariate effect, and consequently
the model is semiparametric. Instead, if we assume a parametric form for the function
h0(t), the model becomes parametric. Now, we will describe the statistical inferential
methods for both these cases.

2.1 Parametric Model

We may assume that the baseline hazard function is specified up to a few unknown
parameters. This is usually accomplished with a specific parametric distribution
such as the Weibull distribution. In this case, we get a Weibull generalized logit link
proportional hazards model WGLPH with hazard function

h (t | λ, γ,β, a, x) = λγtγ−1 K (β, a, x) (4)

which is fully parametric in form. This model contains as a special case the
generalized logit link exponential proportional hazards model for the case when
γ = 1.
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Then, the cumulative hazard is given by

H (t | λ, γ,β, a, x) = λK (β, a, x) tγ

and Eq. (4) characterizes the WGLPH with density given by

f (t | λ, γ,β, a, x) = λK (β, a, x) γtγ−1 exp
{−λK (β, a, x) tγ

}
.

Note that this is a Weibull density function with parameters γ and λK (β, a, x) .

When we assume such a fully parametric form for the distribution of survival
times, the estimation of the unknown parameters of the model is by full maxi-
mum likelihood method. Consider a sample of n independent individuals with data
(ti , xi , δi ), where δi = 1 for an event and 0 otherwise, for i = 1, . . . , n. Accord-
ingly, under the assumption that the censoring mechanism is non-informative, the
full likelihood for a random sample of n individuals is given by

L (β, a) =
n∏

i=1

{h (ti | β, a, xi )}δi {S (ti | β, a, xi )} .

For the Weibull baseline hazard, the log-likelihood function simply becomes

l (λ, γ,β, a) = ln (L (λ, γ,β, a))

=
n∑

i=1

[
δi ln

{
λγtγ−1

i K (β, a, xi )
}

− λK (β, a, xi ) tγi

]
. (5)

To obtain the maximum likelihood estimates, the log-likelihood function in (5)
must be maximized numerically by using a procedure for constrained optimization.
In order to maximize (5), we obtain its first derivatives with respect to all the para-
meters which are presented in Appendix A.

Observe that in this case, the corresponding survival function can then be estimated
as

S(t |λ̂, γ̂, β̂, â, x) = exp
{
−K

(
β̂, â, x

)
λ̂t γ̂
}

.

2.2 Semiparametric Model

On the other hand, when we assume an unknown functional form for the baseline
survival function, the estimation of the unknown parameters of the model is done by
maximum partial likelihood method. Consider a sample of n independent individuals
with data (ti , xi , δi ) as before and when the censoring mechanism is non-informative.
In this case, the partial likelihood for a random sample of n individuals can be
written as
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L (β, a) =
n∏

i=1

⎡

⎢
⎣

K (β, a, xi )∑

l∈R(ti )
K (β, a, xl)

⎤

⎥
⎦

δi

,

where R(ti ) is the risk set at time ti .
Then, the partial log-likelihood function is given by

l (β, a) = ln (L (β, a))

=
n∑

i=1

δi

⎡

⎣ln (K (β, a, xi )) − ln

⎛

⎝
∑

l∈R(ti )

K (β, a, xl)

⎞

⎠

⎤

⎦ . (6)

For the purpose of maximizing (6) and obtaining the partial maximum likelihood
estimates, we use numerical methods for carrying out the required constrained opti-
mization. Its first derivatives with respect to all the parameters are presented in
Appendix B.

Once we have fitted a generalized likelihood proportional hazards model, it may be
of interest to estimate the survival probability. The estimator of the survival function is
based on Breslow’s estimator of the baseline cumulative hazard rate, which proceeds
as follows:

Let the full likelihood function be

L (β, a, h0(t)) =
n∏

i=1

{h0 (ti ) K (β, a, xi )}δi {exp [−K (β, a, xi ) H0 (ti )]}

=
D∏

j=1

{
h0
(
t j
)

K (β, a, x j )
} n∏

i=1

{exp [−K (β, a, xi ) H0 (ti )]} ,

where j = 1, . . . , D correspond to the times without censoring. We then obtain

L (β, a, h0(t)) =
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

{

−
n∑

i=1

K (β, a, xi ) H0 (ti )

}

.

Defining H0(t) = ∑

t∗<t
h0(t∗), and supposing that β and a are fixed, we have

L (h0(t)) =
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

⎧
⎨

⎩
−

n∑

i=1

K (β, a, xi )

⎛

⎝
∑

t∗i <ti

h0(t
∗
i )

⎞

⎠

⎫
⎬

⎭
.

Taking h0(t) = 0 when the event is censored, then we get
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L (h0(t)) =
⎡

⎣
D∏

j=1

h0
(
t j
)

K (β, a, x j )

⎤

⎦ exp

⎧
⎨

⎩
−

D∑

j=1

h0(t j )
∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

=
D∏

j=1

h0
(
t j
)

K (β, a, x j ) exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
,

so that

L (h0(t1), · · · , h0(tD)) ∝
D∏

j=1

h0
(
t j
)

exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
.

For the determination of the maximum likelihood estimate, we take the derivative
with respect to h0(t j ) which is given by

∂L

∂h0(t j )
= exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

+ h0(t j ) exp

⎧
⎨

⎩
−h0(t j )

∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭

⎧
⎨

⎩
−
∑

i∈R(t j )

K (β, a, xi )

⎫
⎬

⎭
.

Upon equating this to zero, we obtain the maximum likelihood estimate to be

ĥ0(t j ) = 1
∑

i∈R(t j )

K (β, a, xi )
,

and consequently

Ĥ0(t) =
∑

t∗<t

1

w(t∗)
,

where w(t∗) = ∑

l∈R(t∗)
K (β, a, xl).

Since
Ŝ0(t) = exp

[
−Ĥ0(t)

]

is the estimator of the survival function of an individual with covariate vector x = 0,
for estimating the survival function of an individual with covariate vector x = x∗,
we use the estimator

Ŝ(t |β̂, â, x = x∗) =
{

Ŝ0(t)
}K
(
β̂,â,x=x∗

)

. (7)
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In both cases of parametric and semiparametric setting, the variance of the
estimated parameters θ̂ = (λ̂, γ̂, β̂, â) and θ̂ = (β̂, â) obtained by maximizing
Eqs. (5) and (6), respectively, can be estimated as

var
(
θ̂
)

= diag
(

I −1
(
θ̂
))

,

where I is the observed information matrix.

3 Measures of Fit

After fitting several possible models for a given data, we will need to compare the
fit of each model for selecting the best one. When we fit several non-nested models,
we may use the Akaike information criterion (AIC) to choose the best one among
them. The AIC is defined as

−2l
(
θ̂
)

+ 2(number of model parameters).

Essentially, we compare the AIC scores for different models and then select the one
with the smallest AIC score.

Another popular criterion for model selection among parametric models is the
Bayesian information criterion (BIC). The BIC is given by

−2l
(
θ̂
)

+ (number of model parameters) log(sample size),

and in the same way as with AIC scores, we select the one with the smallest BIC
value.

On the other hand, to describe how well a model fits the observed data, we can
do tests of goodness-of-fit for the estimated survival function. Such tests summarize
the discrepancy between observed values and the expected values for the survival
function under the model. We will use two well-known statistics for this purpose,
the first one is the lack of fit sum of squares (SS) given by

∑

i

(observed valuei − fitted valuei )
2,

and the second is the Kolmogorov–Smirnov statistic (KS) defined as

max
i

|observed valuei − fitted valuei |.



Generalized Logit-Based Proportional Hazards Models 9

4 Numerical Illustration

We illustrate the use of the family of proposed models by analyzing death times of
male laryngeal cancer patients. Kardaun [5] reported data on 90 males diagnosed
with cancer of the larynx during the period 1970–1978 at a Dutch hospital. Times
recorded were the intervals (in years) between the first treatment and either death or
the end of the study. Also recorded were the patient’s age at the time of diagnosis
and the stage of the patient’s cancer, wherein the stage is a factor of four levels.
The larynx data have been used by Klein and Moeschberger [6] to illustrate some
techniques in survival analysis. The larynx data can be obtained from the MKsurv
Package of the R software package.

4.1 Fit of a Fully Parametric Model

First, we fit the fully parametric proportional hazards model by means of three specific
models, namely, the Weibull proportional hazards model (WPH), the Weibull logit
link proportional hazards model (WLPH), and the WGLPH. To get a good fit of
these models, we do a grid {0.5, 1.0, . . . , 4.5, 5.0} × {0.5, 1.0, . . . , 4.5, 5.0} for the
initial values of the parameters λ and γ for the required maximization of the three
specified models. Moreover, a = 1 is used as the initial value for the parameter a of
the WGLPH model.

In the fitting of the WGLPH model, we found that the numerical methods, used to
determining the maximum, in fact, find local maxima that can be far away from the
global maximum. We therefore adopt a profile full log-likelihood method to solve
this problem.

Let the profile log-likelihood function be

p l (a) = sup
λ,γ,β

l (λ, γ,β, a) .

We then calculate this function for a ∈ {5.0, 6.0, 7.0, 8.0, 9.0} and the same grid for
initial points of λ and γ as mentioned earlier. Finally, we found the value of a = 8
to be the choice of a that maximized the profile full log-likelihood (WGLPHaF).
The parameter estimates (Est) and their standard errors (SE) so obtained for the four
fitted models are presented in Table 1.

Now, we compare the empirical survival function with the estimated survival
function for each of the four fitted models. The empirical survival function was
calculated by Kaplan–Meier estimator, while the survival function of the WLPH,
WGLPHaF, and WGLPH models were estimated with the corresponding function
(3) of the parametric model. In Fig. 1, we have shown a plot of these estimated survival
functions. To assess the goodness-of-fit of these models, we calculated the SS and KS
statistics to compare the empirical survival function with the corresponding estimated
survival function for all four models (WPH, WLPH, WGLPHaF, and WGLPH).
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Table 1 Fit of the four fully parametric models

WPH WLPH WGLPHaF (a = 8 fixed) WGLPH
Variable Est SE Est SE Est SE Est SE

λ 0.01855 0.01893 0.32468 0.11235 3.16696 4.94242 2.56534 6.59244
γ 1.13020 0.13843 1.09364 0.13413 1.13038 0.13832 1.13034 0.13847
Age 0.01973 0.01420 -0.01638 0.00810 0.00740 0.00751 0.00785 0.00755
Stage II 0.16633 0.46111 -0.04115 0.60885 0.04320 0.15510 0.04406 0.16261
Stage III 0.66255 0.35545 0.75535 0.56191 0.23229 0.16294 0.24550 0.21569
Stage IV 1.74530 0.41471 11.26756 96.80031 0.73511 0.41099 0.79024 0.75908
a — — — — — — 7.74186 3.94820

Fig. 1 Survival functions of the four fitted parametric models and the Kaplan–Meier estimator

In Table 2, the values of the SS and KS statistics obtained for these four fitted
models are presented.

Also, in Table 3, two comparisons of these four models are made based on the
(AIC) and the BIC.

All these results show that the WGLPH, with the parameter a determined by the
profile likelihood method, provides overall the best fitting model for the considered
data.

Table 2 Goodness-of-fit statistics for the four fitted fully parametric models

WPH WLPH WGLPHaF WGLPH

SS 0.035 1.034 0.034 0.034
KS 0.057 0.289 0.071 0.073
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Table 3 AIC and BIC values for the four fitted parametric models

WPH WLPH WGLPHaF WGLPH

AIC 294.8468 300.4143 294.7641 296.7652
BIC 309.8456 315.4131 309.7630 314.2639

4.2 Fit of a Semiparametric Model

Now, we fit the proportional hazards model (PH), the logit link proportional hazards
model (LPH), and the generalized logit link proportional hazards model (GLPH) in
a semiparametric framework. In order to get the best fit for the GLPH model, we do
a grid for the initial value of the parameter a in {0.5, 1.0, 1.5, 2.0} and we look for
the maximum value of the partial log-likelihood function in (6).

As in the parametric case, we consider a profile partial log-likelihood method
maximizing the function

p l (a) = sup
β

l (β, a) .

We calculate this function for a ∈ {1, 2, . . . , 8, 9, 10} in GLPH with a fixed and
we get a = 8 that maximizes the profile partial log-likelihood function (GLPHaF).
In Table 4, we present the parameter estimates (Est) and their standard errors (SE)
for the four fitted models. Note that we obtain similar estimation for GLPHaF (a = 8
fixed) and GLPH models, but we reduce substantially the SE in GLPHaF, as the para-
meter a is fixed in this case. Furthermore, we compare the empirical survival function
and the estimated survival function for each of the four models. The empirical sur-
vival function was calculated by Kaplan–Meier estimator, the Breslow’s estimator
was used to estimate the survival function in Cox PH model, while the survival func-
tion of LPH, GLPHaF, and GLPH models were estimated with the corresponding
function S(t) of the semiparametric model in (7). In Fig. 2, we have presented a plot
of these estimated survival functions. In Table 5 we present the values of the SS and
KS statistics to compare the empirical survival function and the estimated survival
function for each of the four fitted models (PH, LPH, GLPHaF and GLPH).

Table 4 Fit of the four semiparametric models

PH LPH GLPHaF (a = 8 fixed) GLPH
Variable Est SE Est SE Est SE Est SE

Age 0.01890 0.01425 -0.01568 0.00828 0.00570 0.00565 0.00574 0.02170
Stage II 0.13856 0.46231 -0.07464 0.61227 0.03047 0.12829 0.03060 0.14502
Stage III 0.63835 0.35608 0.75403 0.57134 0.18337 0.12140 0.18453 0.67040
Stage IV 1.69306 0.42221 7.93424 19.34429 0.55128 0.23583 0.55537 2.35490
a — — — — — — 8.95955 22.95138
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Fig. 2 Survival functions of the four fitted semiparametric models and the Kaplan–Meier estimator

Table 5 Goodness-of-fit statistics for the four fitted semiparametric models

PH LPH GLPHaF GLPH

SS 0.014 0.517 0.008 0.011
KS 0.029 0.182 0.033 0.033

Table 6 AIC and BIC values for the four fitted semiparametric models

PH LPH GLPHaF GLPH

AIC 384.3589 389.2912 384.3173 386.3173
BIC 394.3581 399.2905 394.3165 398.8163

In Table 6, the comparisons of the four fitted models are made based on the
AIC and the BIC. From all these results, we draw the general conclusion that the
generalized logit-link proportional hazards models are good competitors for the Cox
model.

5 Final Remarks

The family of proposed models is quite flexible and seems to provide a good
competitor for the Cox model. We derive the likelihood function and the partial
likelihood function for the parametric and semiparametric models, respectively, for
obtaining the parameter estimates and their standard errors. The estimated survival
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function of a member of the proposed family of models fits the empirical sur-
vival function better than the Cox model. Furthermore, this generalized logit-based
proportional hazards model is the one with minimum AIC and BIC.

There are still some unresolved issues in this regard. First of all, the asymptotic
properties of the parameter estimates have to be established, and associated statistical
inferential issues need to be studied in detail. Another problem of interest is to intro-
duce time-dependence in the models. In this case, the proposed models will provide
an extension of [7, 8] models in two ways, with one coming from the non-constant
hazard function and the other arising from the generalized logit-link function.

Appendix A: Derivatives of the Log-Likelihood Function
in a Fully Parametric Model

To maximize (5), we obtain its first derivatives with respect to all the parameters as

∂l (λ, γ,β, a)

∂λ
=

n∑

i=1

[
δi

λ
− K (β, a, xi ) tγi

]
,

∂l (λ, γ,β, a)

∂γ
=

n∑

i=1

[
δi

(
1

γ
+ ln(ti )

)
− λK (β, a, xi ) tγi ln(ti )

]
,

∂l (λ, γ,β, a)

∂β j
=

n∑

i=1

[
axi j

(
δi − λK (β, a, xi ) tγi

)

1 + exp(x′
iβ)

]

,

for j = 1, . . . , p, and

∂l (λ, γ,β, a)

∂a
=

n∑

i=1

[
ln
(
1 + exp

(−x′
iβ
)) (

λK (β, a, xi ) tγi − δi
)]

.

To obtain the corresponding information matrix I (λ, γ,β, a), we need the
Hessian matrix H(λ, γ,β, a) which is the matrix of second derivatives of the log-
likelihood function in (5) with respect to its parameters.

We obtain them readily as follows:

∂2l (λ, γ,β, a)

∂λ2 = − 1

λ2

[
n∑

i=1

δi

]

,

∂2l (λ, γ,β, a)

∂λ∂γ
= −

n∑

i=1

K (β, a, xi ) tγi ln(ti ),
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∂2l (λ, γ,β, a)
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1 + exp(x′
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, with j = 1, · · · , p,
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(
1 + exp(−x′
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)
,

for j = 1, . . . , p and l = j, · · · , p,
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×
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δi exp(x′
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,
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(
1 + exp(−x′

iβ)
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.

Appendix B: Derivatives of the Partial Log-Likelihood
Function in the Semiparametric Model

To maximize (6), we obtain its first derivatives with respect to all the parameters as

∂l (β, a)

∂β j
= a

n∑

i=1

δi

⎡

⎢
⎣

xi j

1 + exp(x′
iβ)

− 1
∑

l∈R(ti )
K (β, a, xl)

∑

l∈R(ti )

xl j K (β, a, xl)

1 + exp(x′
lβ)

⎤

⎥
⎦

for j = 1, . . . , p, and
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∂l(β, a)
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Now, to obtain the information matrix, we need the second derivatives of the
partial log-likelihood function (6) for j = 1, · · · , p and m = j, · · · , p, which are
as follows:

∂2l (β, a)

∂β j∂βm
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where

w(t) =
∑

l∈R(t)

K (β, a, xl) ,
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.
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Design of Reliability Test Plans: An Overview

E. A. Elsayed

Reliability prediction of new components, products, and systems is a difficult task
due to the lack of well-designed test plans that yield “useful” information during
the test and due to the stochastic nature of the normal operating conditions. The
accuracy of the reliability prediction has a major effect on the warranty cost and
repair and maintenance strategies. Therefore, it is important to design efficient test
plans. In this chapter, we present an overview of reliability testing with emphasis on
accelerated testing and address issues associated with the design of optimal test plans,
stress application methods, and reliability prediction models. We further discuss the
concept of equivalence of test plans and how it could be used for test time reduction.
Finally, we present accelerated degradation modeling and the design of accelerated
degradation test plans.

1 Introduction

The high rate of technological advances and innovations are spurring the continu-
ous introduction of new products and services. Moreover, the intensity of the global
competition for the development of new products in a short time has motivated
the development of new methods such as robust design, just-in-time manufactur-
ing, and design for manufacturing and assembly. More importantly, both producers
and customers expect the product to perform the intended functions satisfactorily
for extended periods of time. Hence, extended warranties and similar assurances of
product reliability have become standard features of the product and serve as implied
indicators of the product’s reliability. Likewise, recalls of products and recent fail-
ures of systems, such as air traffic control systems and autos (sudden acceleration
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and brake failures) and products have emphasized the importance of testing. For
example, a recent recall of a popular car is attributed, by the manufacturer, to lack
of thoroughness in testing new cars and car parts under varying weather conditions,
as demonstrated by the recently recalled gas-pedal mechanism that tended to stick
more as humidity increased [40].

Careful reliability testing of systems, products, and components at the design
stage is crucial to achieving the desired reliability at the field operating conditions.
During the design stage of many products, especially those used in military, the
elimination of design weaknesses inherent to intermediate prototypes of complex
systems is conducted via the test, analyze, fix, and test (TAFT) process. This process
is generally referred to as “reliability growth.” Specifically, reliability growth is the
improvement in the true but unknown initial reliability of a developmental item as a
result of failure mode discovery, analysis, and effective correction. Corrective actions
generally assume the form of fixes, adjustments, or modifications to problems found
in the hardware, software, or human error aspects of a system [20]. Likewise, field
test results are used in improving product design and consequently its reliability.

The above examples and requirements have magnified the need for providing more
accurate estimates of reliability by performing testing of materials, components, and
systems at different stages of product development.

There is a wide variety of reliability testing methodologies and objectives. They
include testing to determine the potential failure mechanisms, reliability demonstra-
tion testing, reliability acceptance testing, reliability prediction testing using acceler-
ated life testing (ALT), and others. This chapter focuses on ALT, reliability prediction
models and the design of the ALT plans.

Testing under normal operating conditions requires a very long time especially for
components and products with long expected lives, and it requires extensive number
of test units, so it is usually costly and impractical to perform reliability testing under
normal conditions.

In many cases, ALT might be the only viable approach to assess whether the prod-
uct meets the expected long-term reliability requirements. ALT experiments can be
conducted using three different approaches. The first is conducted by accelerating
the “use” of the unit at normal operating conditions such as in cases of products
that are used only a fraction of a time in a typical day which includes home appli-
ances and auto tires. The second is conducted by subjecting a sample of units to
stresses severer-than-normal operating conditions in order to accelerate the failure.
The third is conducted by subjecting units that exhibit some type of degradation such
as stiffness of springs, corrosions of metals, and wear out of mechanical components
to accelerated stresses. The last approach is referred to as accelerated degradation
testing (ADT).

The reliability data obtained from the experiments are then utilized to construct
a reliability model for predicting the reliability of the product under normal operat-
ing conditions through a statistical and/or physics-based inference procedure. The
accuracy of the inference procedure has a profound effect on the reliability esti-
mates and the subsequent decisions regarding system configuration, warranties, and
preventive maintenance schedules. Specifically, the reliability estimate depends on
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two factors, the ALT model and the experimental design of the ALT test plans.
A “good” model can provide an appropriate fit to testing data and results in achiev-
ing accurate estimates at the normal conditions. Likewise, an optimal design of the
test plans, which determines the stress loadings (constant-stress, ramp-stress, cyclic-
stress, . . .), allocation of test units number stress level, optimum test duration, and
other experimental variables, can indeed improve the accuracy of the reliability esti-
mates. Indeed, without an optimum test plan, it is likely that a sequence of expensive
and time-consuming tests results in inaccurate reliability estimates. This might also
cause delays in product release, or the termination of the entire product as has been
observed by the author.

We describe briefly the methods of stress application, types of stresses, and focus
on the reliability prediction models that utilize the failure data at stress conditions to
obtain reliability information at normal conditions. We begin by describing the three
important methods including two of the most commonly used prediction models
that relate the test results at stress conditions to failure rate at the normal operating
conditions.

2 Reliability Prediction Models Using ALT Data

Many ALT models have been developed and successfully implemented in a variety
of engineering applications. The important assumption for relating the accelerated
failures to those at normal operating conditions is that the components/products oper-
ating at the normal conditions experience the same failure mechanisms as those at
the accelerated conditions. Elsayed [14] classifies the existing ALT models into three
categories: statistics-based models, physics-statistics-based models, and physics-
experimental-based models, as shown in Fig. 1. In particular, the statistics-based
models are generally used when the relationship between the applied stresses and
the failure time of the product is difficult to determine based on physics or chemistry
principles. In this case, accelerated failure times are used to determine the model
parameters statistically after assuming either a linear or nonlinear life-stress rela-
tionship.

The statistics-based models can be further classified into parametric models and
semiparametric/nonparametric models. The most commonly used failure time dis-
tributions in the parametric models are the exponential, Weibull, normal, lognormal,
gamma, and extreme value distributions. The underlying assumption of these mod-
els is that the failure times of the products follow the same distributions at different
stress levels. In reality, however, when the failure process involves complex and/or
inconsistent failure time distributions, the parametric models may not interpret the
data satisfactorily and the reliability prediction will be far from accurate. Conse-
quently, semiparametric or nonparametric models appear to be attractive and more
suitable for reliability estimation due to their “distribution-free” property. We briefly
review the two most commonly used ALT models as they will be used in the design
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ALT models

Physics-statistics
based models

Statistics based models
Physics-experimental

based models

Parametric models
Semiparametric/

Nonparametric models

Accelerated failure
time models

Proportional hazards
(PH) models

Generalized models

Fig. 1 Classification of ALT models [14]

of the ALT plans and describe a third model which relaxes the assumptions of the
two models.

2.1 Proportional Hazards Model

Multiple regression models can be used to predict the time to failure (TTF) of a com-
ponent under multiple covariates. A similar regression-based model that is widely
used is the proportional hazards (PH) model introduced by Cox [8]. The PH model
is generally expressed as:

λ(t; z) = λ0(t) exp(βz)

where z = (z1, z2, ...zp)
T is a column vector of covariates (for ALT, it is the

column vector of stresses and/or their interactions that components experience).
β = (β1, β2, ...βp) is a row vector of the unknown coefficients. λ0(t) is a baseline
hazard rate function. Unlike standard regression models, the PH models assume that
the applied stresses act multiplicatively, rather than additively, on the hazard rate—a
much more realistic assumption in many cases [11, 16, 18]. The PH model is a class
of models with the property that the hazard functions of two units at two different
stress levels z1 and z2 are proportional to each other. In other words, the ratio of their
hazard rates does not vary with time.

One of the advantages of the PH model is the ability to include time-dependent
covariates. Let zi (t) be the covariate vector at time t for the ith individual unit under
study, then the associated hazard rate function can be expressed as:

λ(t; zi (t)) = λ0(t) exp(βzi (t))

where the hazard rate at time t depends only on the current stress level zi (t), and
there is no effect caused by the previous stress history.
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2.2 Accelerated Failure Time Models

Another widely used class of ALT models is accelerated failure time (AFT) models.
For many products, there are well-established acceleration models that perform satis-
factorily over the desired range of stresses. For instance, for temperature accelerated
testing, the Arrhenius model has gained acceptance because of its many successful
applications and general agreement of laboratory test results with long-term field
performance. In an AFT model, it is assumed that for a unit under the applied stress
vector z, the log-lifetime Y = log T has a distribution with a location parameter
μ(z) depending on the stress vector z, and a constant scale parameter σ > 0 in the
form of:

Y = log T = μ (z)+ σε

where ε is a random variable whose distribution does not depend on z. The location
parameter μ(z) follows some assumed life-stress relationship, e.g., μ(z1, z2) = θ0 +
θ1z1 + θ2z2, where z1 and z2 are some known functions of stresses. The popular
Inverse Power law and Arrhenius model are special cases of this simple life-stress
relationship. The AFT models assume that the covariates act multiplicatively on
the failure time, or linearly on the log failure time, rather than multiplicatively on
the hazard rate. The hazard function in the AFT model can be written in terms of the
baseline hazard function λ0(·) as:

λ(t; z) = λ0(e
βzt)eβz

The main assumption of the AFT models is that the TTFs are inversely propor-
tional to the applied stresses, e.g., the TTF at high stress is shorter than the TTF at
low stress. It also assumes that the failure time distributions are of the same type. In
other words, if the failure time distribution at the higher stress is exponential then
the distribution at the low stress is also exponential. Therefore, a general cumulative
distribution function CDF for a two-parameters Weibull distribution under an applied
stress vector z is

F(t; z) = 1 − exp

(

−
(

t

θ (z)

)β)

whereβ is the shape parameter and θ(z) is the scale parameter as a function of applied
stresses which can be expressed as θ(z) = θ0 + ∑n

i=1 θi zi , where θi is a coefficient
of the covariate zi . We illustrate the use of Weibull distribution for the true linear
acceleration case in which the scale parameter at normal conditions θo is linearly
related to the scale parameters at accelerated conditions θs using an acceleration
factor AF . The relationship between the failure time distributions at the accelerated
and normal conditions can be derived as

Fs(t) = 1 − e−( t
θs
)βs

t ≥ 0, βs ≥ 1, θs > 0 (1)
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where βs is the shape parameter of the Weibull distribution at stress conditions.
The CDF at normal operating conditions is:

Fo(t) = Fs

(
t

AF

)
= 1 − e

−
(

t
AF θs

)βs

= 1 − e
−

(
t
θo

)βo

(2)

As stated earlier, the underlying failure time distributions at both the accelerated
stress and operating conditions have the same shape parameters, i.e., βs = βo,
and θo = AFθs . If the shape parameters at different stress levels are significantly
different, then either the assumption of true linear acceleration is invalid or the
Weibull distribution is inappropriate to use for analysis of such data.

Let βs = βo = β ≥ 1. Then the probability density function at normal operating
conditions is

fo(t) = β

AFθs

(
t

AFθs

)β−1

e
−

(
t

AF θs

)β

t ≥ 0, θs ≥ 0 (3)

The MTTF at normal operating conditions is

MT T Fo = θ
1
β

o �

(
1 + 1

β

)
(4)

The failure rate at normal operating conditions is

λo(t) = β

AFθs

(
t

AFθs

)β−1

= λs(t)

AβF
(5)

2.3 Extended Linear Hazard Regression Model

The PH and AFT models have very different assumptions (failure rate proportional-
ity or failure time proportionality, respectively). The only model that satisfies both
assumptions is the Weibull model. Assuming PH or AFT for a particular data set may
lead to different results. Therefore, a simultaneous treatment of the two is of practical
importance especially when the assumption regarding the PH or AFT is difficult to
justify or does not hold. Ciampi and Etezadi-Amoli [6] propose the extended hazard
regression (EHR) model which encompasses both the PH and AFT models as special
cases. To further enhance the capability of modeling ALT, Elsayed et al. [18] propose
a more generalized model - the extended linear hazard regression (ELHR) model
by incorporating the time-varying coefficient effect into the EHR model. The ELHR
model is expressed as:

λ(t; z) = λ0(te
(β0+β1t)z)e(α0+α1t)z (6)
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The ELHR model encompasses all previous models—PH, AFT, and EHR as special
cases. It incorporates the time-changing effects, proportional hazard effects, as well
as time-varying coefficient effects into one model. The ELHR model outperforms the
PH model and other extended models (e.g., Shyur et al. [35]) in that it can better inter-
pret physical failure processes thus providing a better model fit to the corresponding
failure time data. Furthermore, the ELHR model is essentially “distribution-free”,
and thus has a significant potential of dealing with complex failure processes. For
example, by assuming the baseline hazard function λ0(·) to be a quadratic function
λ0(u) = γ0 + γ1u + γ2u2, the model can be expressed as:

λ(t; z) = γ0e(α0+α1t)z + γ1te(θ0+θ1t)z + γ2t2e(ω0+ω1t)z (7)

where θ0 = α0 + β0, θ1 = α1 + β1, ω0 = α0 + 2β0, ω1 = α1 + 2β1. Then, the
associated reliability is given by

R(t; z) = exp(−�(t; z))

= exp

(
−

∫ t

0
γ0e(α0+α1t)z + γ1te(θ0+θ1t)z + γ2t2e(ω0+ω1t)zdu

)

where �(t; z) is the cumulative hazard rate function. One of the drawbacks of the
ELHR model is the number of parameters of the model. As the number increases it
is likely that the accuracy of the estimated parameters decreases which might result
in inaccurate reliability prediction at normal operating conditions. This drawback
becomes more acute when the failure time data are small.

3 Accelerated Life Testing Plans

A detailed test plan is usually designed before conducting an accelerated life test.
The plan requires determination of the type of stress, methods of applying stress,
stress levels, the number of units to be tested at each stress level, and an applicable
ALT model that relates the failure times at accelerated conditions to those at normal
conditions. Of course, a clear objective of the test plan needs to be defined. We begin
by the type of stresses followed by methods of stress loading.

3.1 Types of Stresses

In order to determine the type of stresses to be applied in ALT it is important to
understand the potential failures of the components and the causes of such failures.
This is usually based on engineering knowledge of the component’s materials, func-
tion, and the stresses that induce such failures. A simplified design of experiments
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approach is usually conducted to study the effect of the type of stresses by using two
levels of each stress (low and high). The high level of stress is the highest level that
can be applied without causing a different failure mechanism other than that likely to
occur at normal operating conditions. Therefore, a clear understanding of the physics
of failure is necessary and testing such as highly accelerated life testing (HALT) is
conducted to verify the failure mechanism and the magnitude of the highest stress.
HALT subjects the test unit to vibration with random mode of frequency coupled
with high temperature and shock in order to induce failures. The failure mechanism
is investigated and the stress type and its maximum applied levels are determined
accordingly.

In general, the type of applied stresses depends on the intended operating condi-
tions of the product and the potential cause of failure.

We classify the types of stresses as:

1. Mechanical Stresses: Fatigue stress is the most commonly used accelerated test
for mechanical components. Fatigue is the cause of failures of all rotating mechan-
ical components. When the components are subject to elevated temperature, then
creep testing (which combines both temperature and static or dynamic loads)
should be applied. Shock and vibration testing is suitable for components or prod-
ucts subject to such conditions as in the case of bearings, shock absorbers, cell
phones, tires, and circuit boards in airplanes and automobiles. Corrosion is another
cause of failure of most ferrous material and is induced due to humidity and cor-
rosive environment. Units that are subject to corrosion should then be tested using
humidity and other corrosive environments as a stress. Wear out is another cause
of moving mechanical parts. Depending on the actual use of the unit at normal
operating conditions an accelerated test that mimics these conditions needs to be
designed but with increased loads to cause significant wear out of the unit.

2. Electrical Stresses: These include power cycling, electric field, current density, and
electromigration. Electric field is one of the most common electrical stresses as it
induces failures in relatively short times as well as its effect is significantly higher
than other types of stresses. Thermal fatigue which is induced by temperature
cycling is another major cause of failure of electronic components.

3. Environmental Stresses: Temperature and thermal cycling are commonly used for
most products. As stated earlier, it is important to use appropriate stress levels
that do not induce different failure mechanisms than those at normal conditions.
Humidity is as critical as temperature but its application usually requires a very
long time before its effect is noticed. Other environmental stresses include ultra-
violet light which affects the strength of elastomers, sulfur dioxide which causes
corrosion in circuit boards, salt and fine particles and alpha rays which cause
the failure of the read access memory (RAM) and similar components. Likewise,
high levels of ionizing can cause electrons in outer orbits to be free which results
in electronic noise and signal spikes in digital circuits. Therefore, radiation is an
environmental stress that should be applied to the units subject to deployment in
space and other similar environments.
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3.2 Stress Loadings

Traditionally, ALT is conducted under constant stresses during the entire test dura-
tion. The test results are used to extrapolate the product life at normal conditions.
In practice, constant-stress tests are easier to carry out but need more test units and
a long time at low stress levels to yield sufficient degradation or failure data. How-
ever, in many cases the available number of test units and test duration are extremely
limited. This has prompted the industry to consider different types of stress loading.
Figure 2 shows examples of various stress loadings as well as their adjustable para-
meters. Some of these stress loadings have been widely utilized in ALT experiments.
For instance, static-fatigue tests and cyclic-fatigue tests [23] have been frequently
performed on optical fibers to study their reliability; dielectric-breakdown of thermal
oxides [18] have been studied under elevated constant electrical fields and tempera-
tures; the lifetime of ceramic components subject to slow crack growth due to stress
corrosion have been investigated under cyclic stress by NASA [7]. These stress load-
ings are selected because of the ease and convenience of statistical analyses and
familiarity of the existing analytical tools and industrial routines without following
a systematic refinement procedure. Due to tight budgets and time constraints, there
is an increasing need to determine the best stress loading in order to shorten the test
duration and reduce the total cost while achieving an accurate reliability estimate. In
the literature, most research has been focused on the design of optimum test plans
when the stress loadings are given. However, until recently, fundamental research
on the equivalency of these tests has not yet been investigated in reliability engi-
neering literature. Without the understanding of such equivalency, it is difficult, if
not impossible, for a test engineer to determine the best experimental settings before
conducting actual ALT.

Furthermore, as is often the case, products are usually exposed to multiple stresses
in actual use such as temperature, humidity, electric current, electric field, and various
types of shocks and vibration. A typical example is automotive electronics located
under the hood, where significant temperature fluctuation, vibration, corrosive gases,
and dust contribute to various types of degradation leading to failures, such as cracks
in solder joints, loss of connection of connectors, and sensor degradation. It is of
interest to know with high confidence what the mileage of normal driving conditions
is equivalent to each hour on test under accelerated conditions. Likewise, cellular
phones are subject to different environmental conditions, shocks, and vibration. To
study the reliability of such products, it is required to subject test units to multiple
stresses simultaneously in ALT experiments. For constant-stress tests, it might not
be difficult to extend the statistical methods for the design of optimum test plans for
single stress to multiple stress scenarios. However, many practical and theoretical
issues have to be dealt with when time-varying stresses such as step-stresses are
considered. In a multi-stress multi-step test, when and in what order the levels of
the stresses should be changed become challenging and unsolved problems. Figure 3
illustrates two example experimental settings out of thousands of choices as one can
imagine in conducting a multi-stress multi-step ALT. In general, an arbitrary selection
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Fig. 2 Various loadings of a single type of stress; the vertical axis shows the amplitude of the
applied stress. a Constant-stress. b Sinusoidal-cyclic-stress. c Step-stress. d Ramp-step-stress.
e Triangular-cyclic-stress. f Ramp-soak-cyclic-stress
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Fig. 3 Two example settings of an ALT involving temperature, humidity, and electric current.
a Setting 1. b Setting 2

from combinations of multiple stress profiles may not result in accurate reliability
estimates, especially when the effects of the stresses on the reliability of the product
are highly correlated. Therefore, methods for tuning the high-dimensional decision
variables under the constraints in time and cost need to be carefully researched and
investigated.
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3.3 Design of ALT Plans

An ALT plan requires the determination of the type of stress, method of applying
stress, stress levels, the number of units to be tested at each stress level, and an
applicable ALT model that relates the failure times at accelerated conditions to those
at normal conditions.

When designing an ALT, we need to address the following issues: (a) Select the
stress types to use in the experiment; (b) Determine the stress levels for each stress
type selected; and (c) Determine the proportion of devices to be allocated to each
stress level Elsayed and Jiao [17] and Elsayed [15]. In this chapter, we present an
approach for designing test plans. We refer the reader to Meeker and Escobar [25],
Escobar and Meeker [19] and Nelson [28–30] for other approaches for the design of
ALT plans.

We consider the selection of the stress level zi and the proportion of units pi

to allocate for each zi such that the most accurate reliability estimate at use con-
ditions zD can be obtained. We consider two types of censoring: Type I censor-
ing involves running each test unit for a prespecified time. The censoring times
are fixed and the number of failures is random. Type II censoring involves simul-
taneously testing units until a prespecified number fails. The censoring time is
random while the number of failures is fixed. We define the following notations:
ln natural logarithm
ML maximum likelihood
n total number of test units
zH , zM , zL high, medium, low stress levels, respectively
zD specified design stress
p1, p2, p3 proportion of test units allocated to zL , zM and zL , respectively
T prespecified period of time over which the reliability estimate is of

interest at normal operating conditions
R(t; z) reliability at time t , for given z
f (t; z) PDF at time t, for given z
F(t; z) CDF at time t, for given z
�(t; z) cumulative hazard function at time t, for given z
λ0(t) unspecified baseline hazard function at time t
We assume the baseline hazard function λ0(t) to be linear with time:

λ0(t) = γ0 + γ1t

Substituting λ0(t) into the PH model described above, we obtain:

λ(t; z) = (γ0 + γ1t) exp(βz)

We obtain the corresponding cumulative hazard function�(t; z), and the variance
of the hazard function as
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�(t; z) =
(
γ0t + γ1t2

2

)
eβz

V ar [(γ̂0 + γ̂1t)eβ̂Z D ] = (V ar [γ̂0] + V ar [γ̂1]t2)e2(βz+V ar [β̂]z2)

+ e2βz+V ar [β̂]z2
(eV ar [β̂]z2 − 1)(γ0 + γ1t)2

3.3.1 Formulation of the Test Plan

Under the constraints of available test units, test time, and specification of the min-
imum number of failures at each stress level, the objective of the problem is to
optimally allocate stress levels and test units so that the asymptotic variance of the
hazard rate estimate at normal conditions is minimized over a prespecified period
of time T. If we consider three stress levels, then the optimal decision variables
(z∗

L , z∗
M , p∗

1, p∗
2, p∗

3) are obtained by solving the following optimization problem
with a nonlinear objective function and both linear and nonlinear constraints [15].

Min

T∫

0

V ar [(γ̂0 + γ̂1t)eβ̂zD ]dt

Subject to
∑

∼
= F−1

0 < pi < 1, i = 1, 2, 3
3∑

i=1

pi = 1

zD < zL < zM < zH

npi Pr[t ≤ τ |zi ] ≥ MNF, i = 1, 2, 3

where, MNF is the minimum number of failures and
∑

∼
is the inverse of the Fisher’s

information matrix.
Other objective functions can be formulated which result in different designs of

the test plans. These functions include the D-Optimal design that provides efficient
estimates of the parameters of the distribution. It allows relatively efficient determi-
nation of all quantiles of the population, but the estimates are distribution dependent.
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3.3.2 Numerical Example

An accelerated life test is to be conducted at three temperature levels for MOS
capacitors in order to estimate its life distribution at a design temperature of 50 ◦C.
The test needs to be completed in 300 h. The total number of items to be placed
under test is 200 units. To avoid the introduction of failure mechanisms other than
those expected at the design temperature, it has been decided, through engineering
judgment, that the testing temperature should not exceed 250 ◦C. The minimum
number of failures for each of the three temperatures is specified as 25. Furthermore,
the experiment should provide the most accurate reliability estimate over a 10-year
period of time [15].

Consider three stress levels, then the formulation of the objective function and
the test constraints follow the same formulation given in the above section. The plan
derived that optimizes the objective function and meets the constraints is shown as
follows:

zL = 160 ◦C, zM = 190 ◦C, zH = 250 ◦C

The corresponding allocations of units to each temperature level are:

p1 = 0.5, p2 = 0.4, p3 = 0.1

3.3.3 Equivalent Accelerated Life Testing Plans

In design of ALT plans, estimate of one or more reliability characteristics, such as the
model parameters, hazard rate, and the mean TTF at certain conditions are common.
Accordingly, different optimization criteria might be considered. For instance, if the
estimate of the model parameters is the main concern, D-optimality which maxi-
mizes the determinant of the Fisher information matrix is considered an appropriate
criterion. When estimate of the time to quantile failure is of interest then the vari-
ance optimality that minimizes the asymptotic variance of time to quantile failure
at normal operating conditions is commonly used. Meanwhile, different methods,
e.g., maximum likelihood estimate (MLE) or Bayesian estimator can be used for
estimation of the model parameters. However, each method has its inherent statisti-
cal properties and efficiencies. In light of this, we discuss equivalent test plans with
respect to the same reliability characteristics and optimization criterion then deter-
mine equivalent test plans using the same inference procedure. In this chapter, we
propose two possible definitions of equivalency as follows:

Definition 1 Two test plans are equivalent if the absolute difference of the objectives
for reliability prediction is less than under the same set of constraints on the number
of test units, expected number of failures, or total test time.
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Definition 2 Two test plans are equivalent if they achieve the same objective for
reliability prediction under the same constraints on the number of test units, expected
number of failures, or total test time within a margin.

According to the above definitions, the equivalent test plans are not unique. There-
fore, we recommend the following procedures for constructing equivalent plans [46].

The first step of the approach is to obtain an optimal baseline test plan. Since
constant-stress test is the most commonly conducted ALT in industry and its statistical
inference has been extensively investigated, we propose to use an optimal constant-
stress plan as a baseline [45].

Suppose an optimal baseline test plan can be determined from the following
general formulation:

Min fB (x)

s.t. Lb ≤ x ≤ Ub (8)

C (x) ≤ 0, Ceq (x) = 0

where fB (x) is the objective function (e.g., the asymptotic variance of mean TTF)
and x is its decision variable which can be expressed as either a vector or a scalar,
Lb and Ub are the corresponding lower and upper bounds of x. C (x) ≤ 0 and
Ceq (x) = 0 are the possible inequality and equality constraints, respectively.

The second step is to determine the equivalent test plan based on Definitions 1 or
2 using formulations (8) or (9), respectively. Formulation (9) is given as follows:

Min i (y)

s.t. | fB (x)− fE (y)| ≤ δ

 j (x)− j (y) = 0 (9)

Lb′ ≤ y ≤ Ub′

C ′ (y) ≤ 0, Ceq ′(y) = 0

where fB (x) and fE (y) are the base and equivalent objective functions on reliability
prediction, respectively, and y is the decision variable of the equivalent test plan.
(·) represents the constraint of the total number of test units, expected number of
failures, or the test time. When  j (y) is the total number of test units, i (y) can
be the censoring time under Type-I censoring or expected number of failures under
Type-II censoring and vice versa. The idea is to set the allowed difference between
objective values as a constraint as well as seek other merits.

Similarly, based on Definition 2, the optimal equivalent test plan can be determined
as,
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Min i (y)

s.t. fB (x)− fE (y) = 0
∣∣ j (x)− j (y)

∣∣ ≤ δ (10)

Lb′ ≤ y ≤ Ub′

C ′ (y) ≤ 0,

Ceq ′ (y) = 0

An example that demonstrates these methods and develops equivalent step-stress and
ramp-stress test plans and the baseline constant-stress test plan is given in Zhu and
Elsayed [46].

4 Accelerated Degradation Testing (ADT)

In this section, we present the concept of degradation, degradation modeling, and
the design of accelerated degradation test plans.

4.1 Degradation Models

There are many instances where few or no failures are observed even under accel-
erated conditions making reliability inference via failure-time analysis significantly
inaccurate, if not impossible. However, if a product’s performance indices related
to failure mechanism experience degradation over time, degradation analysis may
be a viable alternative to traditional failure-time analysis and ALT. Indeed, degra-
dation data may provide more reliability information than would be available from
traditional censored failure-time data.

In general, degradation testing can be conducted by observing the degradation of
the units at normal operating conditions and use appropriate models to predict the
reliability of such units. Alternatively, if the degradation rate is “small” then an ADT
is conducted instead. Again, an appropriate prediction model is needed to relate
degradation data at stress conditions to reliability estimate of the units at normal
operating conditions.

Moreover, to save time and cost, ADT experiments are commonly conducted
to provide immediate degradation data for predicting the reliability under normal
operating conditions. However, in ADT analysis, an inaccurate prediction will result
unless an appropriate degradation model and a carefully designed test plan are used.

An appropriate ADT model is the one that accurately accounts for the influences
of the stresses (covariates) on the degradation process based on the product’s physical
properties and the associated probability distributions. Nelson [27] briefly surveys
the degradation behavior of various products and materials subject to degradation,
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ADT models, and inference procedures. He also presents basic accelerated degra-
dation models under constant stress. Meeker and Escobar [25] provide a review
of degradation and describe the applications of ADT models. They propose math-
ematical models to analyze ADT data and suggest methods for estimating failure
time distributions, distribution quantiles, and their confidence intervals. A part of the
following is based on Liao [21].

Elsayed [14] provides a review of the degradation models and classifies ADT mod-
els into two types: physics-statistics-based models and statistics-based model. Fur-
thermore, he classifies statistics-based model into two categories: parametric models
and nonparametric/semiparametric models. This classification is summarized as fol-
lows.

1. Physics-statistics-based models
Nelson [26] analyzes the degradation of an insulation material at different stress
levels. He assumes that the temperature is the only acceleration factor that deter-
mines the degradation profile over time and presents a relationship among the
absolute temperature, the median breakdown voltage, and time. He then esti-
mates the lifetime distribution based on the performance degradation model.
Based on Carey and Tortorella [4], Carey and Koenig [3] utilize ADT at higher
temperature levels to infer the reliability of an integrated logic family, a compo-
nent of a generation of submarine cables, at normal operating condition. They
assume that the maximum propagation time delay (maximum degradation) and
the absolute temperature are related by the Arrhenius law. The maximum like-
lihood estimator is then utilized to estimate the parameters of the Arrhenius
relation, which is used for predicting the maximum degradation at normal oper-
ating conditions. Whitmore and Schenkelberg [41] model accelerated degrada-
tion process by a Brownian motion with a timescale transformation. The model
incorporates the Arrhenius law for high stress testing. Inference methods for
the model parameters based on ADT data are presented. Meeker et al. [24]
use the Arrhenius law to describe the impact of temperature on the rate of a
simple first-order chemical reaction and obtain a scale accelerated failure time
model (SAFT). Approximate maximum likelihood estimation [33] is used to
estimate model parameters. Confidence intervals for time-to-failure distribution
are obtained by simulation-based methods. Chang [5] presents a generalized
Eyring model to describe the dependence of performance aging on accelerated
stresses in a power supply. The tests considered involve multiple measurements
in a two-way design. The mean TTF of the power supply at the normal operat-
ing condition is estimated. Sometimes, the degradation indices (or rates) can be
measured directly or by using surrogate indicators or by conducting destructive
testing on the units.

2. Statistics-based models
Statistics-based models consist of parametric models and nonparametric mod-
els. The parametric models assume that the degradation path of a unit follows a
specific functional form with random parameters, or the degradation measure fol-
lows an assumed distribution with time-dependent parameters. Moreover, these
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models assume that there is only a scaling transformation of the degradation paths
or the degradation measure distributions at different stress levels but their forms
remain unchanged. The nonparametric models relax the assumption about the
form of the degradation paths or distribution of degradation and establish them
in a nonparametric way. The models have greater flexibility in contrast to the
parametric regression models, but they may not have explicit physical meaning.

a. Parametric models
Based on the degradation paths, Crk [9] extends the methodology of the
general degradation path approach to the development of the multivariate,
multiple regression analysis of function parameters with respect to applied
stresses.
Tang and Chang [36] model nondestructive accelerated degradation data
as a collection of stochastic processes for which the parameters depend
on the stress levels. The model adopts the independent increment concept
by assuming the incremental degradation within a time interval �t is i.i.d
random variable with mean μi�t and variance σ 2

i �t . The constants μi

and σ 2
i are the parameters under the ith stress level, which are linked with

applied stresses by a linear regression approach. The actual degradation path
is the summation of these increments, whose first passage time to a threshold
level D follows Birnbaum-Saunders distribution when D � μi�t . If the
independent increment is s-normally distributed, then an inverse Gaussian
distribution is used as it is a statistically more accurate model as discussed
by Bhattacharyya and Fries [1] and Desmond [10].
Among the approaches of degradation modeling by Brownian motion,
Doksum and Hoyland [12] discuss ADT models for the variable-stress
case and introduce a flexible class of models based on the concept of
accumulated decay. The variable-stresses considered are simple-step-stress,
multiple-step-stress, and progressive stress. The proposed model is a time-
transformed Brownian motion with drift model, which assumes that certain
deterministic stress level imposes the same scaling effect on drift and Brown-
ian motion terms. Pieper et al. [32] propose a different model for the first
passage time distribution under simple-step-stress condition. They also dis-
cuss an interesting extension that the time change point is random variable.
However, the expression for the first passage probability density in this case
cannot be obtained in an explicit form.

b. Nonparametric models
Shiau and Lin [34] present a Nonparametric Regression Accelerated Life-
stress (NPRALS) model for some groups of accelerated degradation curves
(paths). They assume that various stress levels only influence the degradation
rate but not the shape of the degradation curve. An algorithm is proposed
to estimate the components of NPRALS such as the acceleration factor. By
investigating the relationship between the acceleration factors and the stress
levels, the mean TTF estimate of the product under the normal condition is
obtained.
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The nonparametric regression models bear the degradation-path-free prop-
erty in contrast to the parametric models. They relax the specification of
the form of the degradation path and perform much better than paramet-
ric models, if the assumed path function is far from true in the parametric
modeling. However, nonparametric models require more data to obtain the
same accuracy as that of the parametric models assuming that the parametric
models are correct. In other words, the efficiency of nonparametric models
is relatively low. Moreover, the time scaling assumption is important since it
is required for predicting the form of degradation curve under normal oper-
ating conditions, but this assumption is rather weak. Moreover, to utilize
the nonparametric regression model, the span of degradation curve under
normal condition has to be covered by that of the accelerated degradation
data after time scaling, and ADT must be conducted until test units fail.
Another nonparametric/semiparametric approach is to utilize the degrada-
tion hazard function. Eghbali [13] proposes an ADT model called propor-
tional degradation hazards model (PDHM) assuming the logarithm of the
degradation hazard is a linear function of the stress covariates z, that is,

s(x; t, z) = s0(x; t) exp(β ′z)

where s0(x; t) = g0(x)q0(t) can be expressed as two positive separable
functions g0(x) and q0(t) of the degradation measure and the time, respec-
tively. MLEs are utilized to obtain the model parameters. The model is
applied to the ADT data of light emitting diode (LED) subject to accelerated
temperature and current to predict reliability at normal operating conditions.

4.2 Design of ADT Plans

Design of ADT plans is similar to the design of ALT plans as both require the determi-
nation of the stress type, stress level, and allocation of test units to stresses. However,
ADT plans require the identification of the degradation indicators, the frequency of
measurements (sometimes the degradation can only be assessed via destructive test-
ing). Of course, both ADT and ALT plans require the identification of the decision
variables, constraints, and an optimization criterion such as the asymptotic variance
of time to failure (TTF) estimate, variance of the reliability estimate, or variance of
the estimated 100pth percentile of the lifetime distribution, etc. Although the opti-
mization problem may be feasible, the obtained optimum test plan cannot correct the
bias of a degradation model, therefore, a test plan is inappropriate if the degradation
model is not accurate. We briefly discuss the common test plans.
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4.2.1 Constant–Stress Degradation Test Plans

Boulanger and Escobar [2] present a method to determine the stress levels, sam-
ple size at each level, and observation times. However, their method is discussed
under a predetermined termination time. Tseng and Yu [39] propose an intuitively
appealing method for choosing the time to terminate a degradation test by analyzing
the asymptotic convergence property of MTTF estimate but the termination rule is
approximate since no constraint has been considered. Park and Yum [31] develop
an optimal ADT plan under the assumptions of destructive testing and the simple
constant rate relationship between the stress and the product performance. By solv-
ing a constrained nonlinear programming problem, the stress levels, the proportion
of test units allocated to each stress level, and the inspection times are determined
such that the asymptotic variance of the MLE of the MTTF at the normal operating
conditions is minimized. Yu and Tseng [44] design an optimal degradation experi-
ment under the constraint of the total experimental cost. They assume the degradation
path can be transformed to a simple form. The optimal decision variables, sample
size, inspection frequency, and termination time are determined by minimizing the
variance of the estimated 100pth percentile of the lifetime distribution. As an appli-
cation, Yu and Chiao [43] design an optimal degradation experiment for improving
LED reliability. Wu and Chang [42] investigate the Nonlinear Mixed-effect Model
and propose a step-by-step enumeration algorithm to determine the optimal sample
size, inspection frequency, and termination time under the cost constraint. The vari-
ance of the estimator of percentile of the failure time distribution is minimized. They
also study the sensitivity of the optimal plan to the changes of model parameters
and cost. It shows that the optimal solution is slightly sensitive to the changes in the
values of model parameters. Recently, Liao and Elsayed [22] propose the Geometric
Brownian Motion Degradation Rate (GBMDR) model and inference procedure to
estimate field reliability for a population and a specific individual unit.

4.2.2 Variable–Stress Degradation Test Plans

Since conducting a constant-stress ADT is costly due to the test duration, it may not be
applicable for assessing the lifetime of a newly developed product because typically
only a few test units are available. To overcome this difficulty, a variable-stress such
as step-stress ADT experiment can be carried out. Tseng and Wen [38] provide an
illustration of a statistical inference procedure for a step-stress ADT using a case
study of LEDs. However, in the literature, variable-stress degradation test plans are
rare. Tang et al. [37] investigates planning of an optimum step-stress ADT experiment
where the test stress is increased in steps from a lower stress to a higher stress during
the test. Based on the maximum likelihood theory, the asymptotic variance of TTF
estimate at the normal operating conditions is then derived and used as a constraint
instead of an objective function. The optimum testing plan which minimizes the
testing cost gives the optimal sample size, number of inspections at each stress level,
and number of total inspections. It is important to note that in such step-stress testing
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the sequence of load application has a significant impact on the reliability prediction
at normal operating conditions, a fact that is rarely considered by researchers.

5 Summary

Reliability prediction of new components, products, and systems is a difficult task
due to the lack of well-designed test plans that yield “useful” information during the
test and due to the stochastic nature of normal operating conditions. The accuracy
of the reliability prediction has a major effect on the warranty cost and repair and
maintenance strategies. Therefore, it is important to design efficient test plans. In
this chapter, we present an overview of reliability testing with emphasis on accel-
erated testing and address issues associated with the design of optimal test plans,
stress application methods, and reliability prediction models. We further discuss the
concept of equivalence of test plans and how it could be used for test time reduction.
Finally, we present accelerated degradation modeling and the design of accelerated
degradation test plans.

Dedication

This chapter is dedicated to my colleague and friend Dr. Shunji Osaki on his 70th
Birthday for his contributions and leadership in the field of Reliability Engineering.
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Maintenance Outsourcing: Issues
and Challenges

D. N. P. Murthy, N. Jack and U. Kumar

Abstract All products and systems are unreliable in the sense that they degrade and
fail. Corrective maintenance (CM) restores a failed item to an operational state and
effective preventive maintenance (PM) reduces the likelihood of failure. These main-
tenance actions can be done either in-house or can be outsourced to an external agent.
We focus on the maintenance being outsourced and look at the issues involved from
the perspectives of the owner of the asset and the agent providing the maintenance
service.

1 Introduction

Every business (mining, processing, manufacturing, and service-oriented businesses
such as transport, health, utilities, communication) needs a variety of equipment to
deliver its outputs. Equipment is an asset that is critical for business success in the
fiercely competitive global economy. Equipment degrades with age and usage and
ultimately becomes non-operational. Rapid changes in technology have resulted in
equipment becoming larger, more complex, and expensive. Businesses incur heavy
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losses when their equipment is not in full operational mode—delays in delivery of
goods lead to higher customer dissatisfaction and loss of goodwill.

Maintenance activities are actions to reduce the likelihood of equipment becoming
non-operational and to restore non-operational units to operational state. For most
businesses, it is no longer economical to carry out the maintenance in-house. There
are a variety of reasons for this including the need for a specialist workforce and
diagnostic tools that often require constant upgrading. In these situations, it is more
economical to outsource the maintenance (in part or total) to an external agent through
a service contract. Campbell [7] gives details of a survey where it was reported
that 35 % of North American companies had considered outsourcing some of their
maintenance.

Governments (local, state, or national) and private businesses own infrastructure
(roads, rail, and communication networks, public buildings, dams, etc) that were
traditionally maintained by in-house maintenance departments. Here also, there is a
growing trend toward outsourcing these maintenance activities to external agents so
that the owners can focus on their core activities.

In maintenance outsourcing the maintenance of an asset (equipment or infrastruc-
ture) owned by the first party (the owner or customer) is carried out by the second
party (the service agent who is also referred to as the “contractor” in many technical
papers) under a service contract. In this chapter, we look at maintenance outsourcing
from both the owner and service agent perspectives and discuss the issues involved,
review the literature, and discuss some of the challenges for future research.

The outline of the chapter is as follows. We start with a brief discussion of
maintenance and of outsourcing in Sects. 2 and 3, respectively. Section 4 reviews
the current status of maintenance outsourcing and gives a brief literature review.
In Sect. 5 we propose a framework to study maintenance outsourcing and discuss
several relevant issues. Section 6 deals with the game theoretic approach to main-
tenance outsourcing and Sect. 7 looks at Agency Theory and its relevance to main-
tenance outsourcing. We deal with the criteria for the selection of service agents to
carry out maintenance in Sects. 8 and 9 deals with some topics for future research.
We conclude with some comments in Sect. 10.

2 Maintenance

Maintenance actions can be broadly divided into two categories.
Corrective Maintenance (CM): These are maintenance actions performed when
the asset has a failure (in the case of equipment) or has degraded sufficiently (in the
case of infrastructure). The most common form of CM is “minimal repair” where the
state of the asset after repair is nearly the same as that just before failure. The other
extreme is “as good as new” repair and this is seldom possible unless one replaces
the failed asset with a new one. Any repair action that restores the asset state to
better than that before failure and not as good as that of a new asset is referred to as
“imperfect repair”.
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Preventive Maintenance (PM): These are actions carried out to fix minor problems
in case of infrastructure (e.g., small potholes in a section of a road) or components
that have degraded in the case of equipment due to age and/or usage. The policy used
for initiating such actions can be age, usage, and/or condition. As a result, there are
several different kinds of PM policies and in the context of equipment some of the
well-known ones are the following:

• Age-based maintenance
• Clock-based maintenance
• Opportunistic maintenance
• Condition-based maintenance

The more investment made in PM actions the more likely CM costs are reduced.
But, for any asset there is an optimal level of PM effort that will achieve a proper
balance between these costs. Most books on maintenance [4, 26, 28] include models
to obtain the optimal PM effort.

Maintenance of an asset involves carrying out several activities as indicated in
Fig. 1 (adapted from Dunn [9]).

The three key issues are:

• (D-1): What (components) need to be maintained?
• (D-2): When should the maintenance be carried out?
• (D-3): How should the maintenance be carried out?

3 Outsourcing

Businesses (producing products and/or services) need to come up with new solutions
and strategies to develop and increase their competitive advantage. Outsourcing is
one of these strategies that can lead to greater competitiveness [11]. It can be defined
as a managed process of transferring activities performed in-house to some external
agent. The conceptual basis for outsourcing (see, Campbell [7]) is as follows:

1. Domestic (in-house) resources should be used mainly for the core competencies
of the company.

WORK
IDENTIFICATION

WORK
PLANNING

WORK
SCHEDULING

WORK
EXECUTION

DATA
RECORDING

DATA
ANALYSIS

Fig. 1 Activities in asset maintenance
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2. All other (support) activities that are not considered strategic necessities and/or
whenever the company does not possess the adequate competences and skills
should be outsourced (provided there is an external agent who can carry out these
activities in a more efficient manner).

However, there are some disadvantages of outsourcing the maintenance and these
are indicated below.

• Dependency on the external party carrying out the activities.
• Cost of outsourcing.
• Loss of maintenance knowledge (and personnel).
• Becoming locked into a single external party when the cost of switching is high.

4 Maintenance Outsourcing: Current Status
and Literature Review

Outsourcing of maintenance involves some or all of the maintenance actions (PM
and/or CM) being carried out by an external service agent under a service contract.
The contract specifies the terms of maintenance and the cost issues. It can be simple
or complex and can involve penalty and incentive terms. We look at the issues in
outsourcing from both the owner and service agent perspectives.

4.1 Owner Perspective

4.1.1 Outsourcing Equipment Maintenance

The advantages of outsourcing maintenance are as follows:

• Better maintenance due to the expertise of the service agent.
• Access to high-level specialists on an “as and when needed” basis.
• Fixed cost service contract removes the risk of high costs.
• Service providers respond to changing customer needs.
• Access to latest maintenance technology.
• Less capital investment for the customer.
• Managers can devote more resources to other facets of the business by reducing

the time and effort involved in maintenance management.

For very specialized (and custom built) products, the knowledge to carry out
the maintenance and the spares needed for replacement must be obtained from the
original equipment manufacturer (OEM). In this case, the customer is forced into
having a maintenance service contract with the OEM and this may result in a non-
competitive market. In the USA, Section II of the Sherman Act [16] deals with this
problem by making it illegal for OEMs to act in this manner.



Maintenance Outsourcing: Issues and Challenges 45

When the maintenance service is provided by an agent other than the OEM often
the cost of switching prevents customers from changing their service agent. In other
words, customers get “locked in” and are unable to do anything about it without a
major financial consequence.

4.1.2 Outsourcing of Infrastructure Maintenance

As mentioned above, it used to be the case that infrastructures were owned and
operated by governments. Recently, there has been a growing trend toward selling
these assets to private businesses that either lease them back to the government or
to the operator of the asset. The maintenance of the asset is often outsourced as it
is again viewed as not being the core activity of the business that owns the asset.
A complicating factor is the additional parties involved and these are shown in Fig. 2.

For example, in the case of a rail network, the operators are the different rail com-
panies that use the track and the maintenance is outsourced to specialist contractors.
The government plays a critical role in terms of providing loans to and/or acting as
a guarantor for the owner and the regulators are independent authorities responsible
for ensuring public safety. The role of maintenance now becomes important in the
context of safety and risk. For further discussion, see Vickerman [38].

4.1.3 Decision Problems

There are three different outsourcing scenarios that depend on which of the three
activities in maintenance (D-1, D-2, and D-3) are being outsourced. These are indi-
cated in Table 1.

ASSET
[INFRASTRUCTURE]

OWNER

OPERATOR

SERVICE  AGENT
[MAINTENANCE]

REGULATOR

GOVERNMENT

PUBLIC

Fig. 2 Different parties involved in the maintenance of infrastructure
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Table 1 Different contract
scenarios

Scenarios Decisions
Customer Service agent

S-1 D-1, D-2, D-3 -
S-2 D-1 D-2, D-3
S-3 - D-1, D-2, D-3

In scenario S-1, the service agent is only providing the resources (workforce
and material) to execute the work. This corresponds to the minimalist approach to
outsourcing. In scenario S-2, the service agent decides on how and when and what
is to be done is decided by the customer. Finally, in scenario S-3 the service agent
makes all three decisions.

For the owners of both equipment and infrastructure the decision problems are
(i) whether to outsource or not, (ii) what maintenance activities to outsource, and
(iii) how to implement and manage the process.

4.2 Service Agent Perspective

The service agent who provides the maintenance needs to operate as a service
business. This implies that issues such as return on investment (ROI), number of
customers to service (market share), location of operations, and range of service
contracts to offer are some of the variables that are important in the context of strate-
gic management of the business. The type of contract depends on the needs of the
customers and this can be either standard or customized. At the operational level,
the service agent needs to deal with issues such as scheduling of maintenance tasks,
spare part inventory control, etc.

The pricing of the different service contracts offered is critical for business
profitability. If the price is too low, the service agent might end up making a loss
instead of a profit. On the other hand, if it is too high there might be no customers for
the service. The price of a contract must cover the maintenance costs and estimating
the cost is a challenge due to information uncertainties.

4.3 Literature Review

The literature on maintenance outsourcing deals mainly with the owner perspective
and is focussed on management issues. More specifically, attempts are made to
address one or more of the following questions in a qualitative manner.

• Does outsourcing make sense?
• Are the objectives achievable?
• Is the organization ready?
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• What are the outsourcing alternatives?
• What maintenance activities should be outsourced?
• How should the best service agent be selected?
• What are the negotiating tactics for contract formation?

Some of the relevant papers are Campbell [7], Judenberg [15], Martin[23], Levery
[20] and Sunny [32]. Stremersch et al. [31] look at the industrial maintenance market.

Unfortunately, cost has been the sole basis used by businesses for making mainte-
nance outsourcing decisions. Sunny [32] looks at what activities are to be outsourced
by looking at the long strategic dimension (core competencies) as well as the short-
term cost issues.

Bertolini et al. [5] took a quantitative approach and used the analytic hierarchy
process (AHP) to make decisions regarding the outsourcing of maintenance. On the
application side, Armstrong and Cook [2] look at clustering of highway sections for
awarding maintenance contracts to minimize the cost and use a fixed-charge goal
programming model to determine the optimal strategy. Bevilacqua and Braglia [6]
illustrate their AHP model in the context of an Italian brick manufacturing business
having to make decisions regarding maintenance outsourcing.

Tarakci et al. [33] investigated the coordination issues between an equipment
owner and a service agent in a long-term maintenance outsourcing contract scenario.
The equipment has an increasing failure rate and the agent performs both CM and
PM. Incentive contracts that induce the agent to choose the maintenance policy that
optimizes the expected total profit for both parties are studied. It is shown that a
contract based on a combination of a target uptime level and a bonus produces the
desired win–win situation. Tarakci et al. [34] extend the analysis to the situation
where the owner has multiple pieces of equipment and uses multiple service agents
to perform the maintenance.

Tarakci et al. [35] study the effects of learning when the contract between an owner
and an agent consists of a fixed fee plus a cost subsidy for each maintenance action
(CM and PM) performed. Learning occurs on the part of the agent which leads to cost
and time reductions for PM actions. They demonstrate that a well-designed payment
scheme can induce the agent to use a maintenance strategy which maximizes the
owner’s expected total profit.

Tseng et al. [36] look at a maintenance outsourcing problem where, in the contract
terms, one or more time points are specified at which the owner can replace the
equipment with new technology if it becomes available. If a replacement occurs then
the agent has the flexibility to change the maintenance schedule for the remaining
part of the contract period. The value of these switch points is analyzed for different
types of contract payment methods.

In Almeida [1], the owner has more than one objective to optimize and is faced
with choosing a contract from a set of alternatives. Each contract alternative speci-
fies different values for response time, service quality, dependability, and cost. The
best alternative is selected using the ELECTRE I method for multi-criteria decision
making combined with utility functions. Lisnianski et al. [21] consider aging equip-
ment with an increasing failure rate. With a piecewise constant approximation for
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the failure rate, a Markov process is used to model the operating times and repair
times. The service agent offers a number of options involving different repair rates
and costs to the owner and the optimal choice is made by comparing expected costs
over a specified contract period.

A few game-theoretic models have also been proposed and these are discussed in
a later section.

5 Framework for Maintenance Outsourcing Study

A proper framework to study maintenance outsourcing needs to include both owner
and service agent perspectives and involves several interlinked elements. This is
indicated in Fig. 3 for the case of single owner and service agent. Section 4 looked
at two of the elements— namely, the owner (customer for the maintenance service)
and the service agent (provider of maintenance service).

The number of owners and service agents can be one, few, or many and these lead
to different markets for maintenance outsourcing (see Sect. 5.3). In Sects. 5.1 and 5.2
we look at the remaining elements and related issues. Also, the owner population
can be homogeneous or heterogeneous in relation to factors such as usage profiles,
attitude to risk, etc. Similarly, the service agents can be either homogeneous or
heterogeneous in relation to factors such as size, competency, quality of service,
reputation, risk profile, etc.

ASSET STATE AT THE
START OF CONTRACT

PAST USAGE PAST
MAINTENANCE

OWNER
(CUSTOMER)

SERVICE
AGENT

CONTRACT

NOMINATED
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NOMINATED
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ACTUAL
USAGE RATE
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PENALTIES /
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Fig. 3 Framework for study of maintenance outsourcing
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5.1 Asset and Asset State

In the case of a new asset, the initial state is determined by the decisions made during
its design and construction (or manufacture). The asset reliability characterizes the
probability of no failure and decreases with age. The field reliability also depends
on the operating stress (load) on the asset and the operating environment. The stress
can be thermal, mechanical, electrical, etc., and the reliability decreases as the stress
increases and/or the environment gets harsher.

The asset state at any given time (subsequent to it being put into operation) is a
function of its inherent reliability and past history of usage and maintenance. This
information is important in the context of maintenance service contracts for used
assets. The information that the service agent (and the customer) has can vary from
very little to a lot (if detailed records of past usage and maintenance have been kept).

Finally, for some assets, the delivery of maintenance requires the service agent to
visit the site where the asset is located (for example, lifts in buildings and roads) and
for others (mainly industrial equipment) the failed asset can be brought to a service
center to carry out the maintenance actions.

5.2 Contract

The contract is a legal document that is binding on both parties (customer and service
agent) and it needs to deal with technical, economic, and other issues.

5.2.1 Technical Issues

There is a growing trend toward functional guarantee contracts. Here, the contract
specifies a level for the output generated from equipment, for example, the amount
of electricity produced by a power plant, or the total length of flights and number
of landings and takeoffs per year for aircraft. The service agent has the freedom to
decide on the maintenance needed (subject to operational constraints) with incentives
and/or penalties whether the target levels are exceeded or not. For more on this, see
Kumar and Kumar [18].

In the context of infrastructures, there is a trend toward giving the service agent
the responsibility for ongoing upgrades or the responsibility for the initial design
resulting in a Build, Own, Operate, and Maintain (BOOM) contract.

5.2.2 Economic Issues

There are a number of alternative contract payment structures. The following list is
from Dunn [9]:
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• Fixed or Firm price
• Variable Price
• Price ceiling incentive
• Cost plus incentive fee
• Cost plus award fee
• Cost plus fixed fee
• Cost plus Margin

Each of these price structures represents different levels of risk sharing between
the customer and the service agent. According to Vickerman [38], an increasing issue
in privatized infrastructure is the appropriate incentives needed to ensure adequate
maintenance of the infrastructure as a public resource.

5.2.3 Other Issues

Some other issues are as follows:
Requirements: Both parties might need to meet some stated requirement. For

example, the customer needs to ensure that the usage intensity and operating loads
of the asset do not exceed the levels specified in the contract. These can lead to greater
degradation (due to higher stresses on the components) and higher servicing costs to
the service agent. Similarly, the service agent needs to ensure proper data recording.

Contract Duration: This is usually fixed with options for renewal at the end of
the contract.

Cheating: In maintenance outsourcing cheating by both owner and service agent
are issues that need to be addressed. Cheating by the owner occurs when the nomi-
nated usage is higher than the actual usage and the service agent is not able to observe
this. Similarly, cheating by the service agent occurs when the actual maintenance is
below the nominated maintenance and the owner cannot observe this. Information,
monitoring, and penalties/incentives can reduce and eliminate the potential for cheat-
ing.

Dispute Resolution: This specifies the avenues to follow when there is a dispute.
The dispute can involve going to a third party (legal courts).

Unless the contract is written properly and relevant data (relating to equipment and
collected by the service agent) are analyzed properly by the customer the long-term
costs and risks will escalate.

5.3 Maintenance Outsourcing Market

Whether the maintenance outsourcing market is competitive or not depends on the
number of customers and service agents. Table 2 indicates the different market sce-
narios. These have an impact on issues such as the types of service contracts available
to customers and the pricing of the contracts.
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Table 2 Maintenance
outsourcing market scenarios

Number of customers Number of service agents
One Few

One A-1 B-1
Few A-2 B-2
Many A-3 B-3

6 Game Theoretic Approach

Game theory is a set of ideas and principles that provide an effective guide to strategic
business decision making. Any game must have at least two players (individuals
or businesses) with the payoffs to the players being interdependent. The optimal
decision by a particular player depends on what that player expects the other players
involved to do. An important assumption of game theory is that players will always
act rationally (choose their best action).

In a static game, the players have a single ‘move’ and do not know the actions
taken by their rivals. This may be because the players move simultaneously. The
players in a dynamic (sequential move) game make their decisions in a well-defined
order and the game proceeds in a sequence of stages. In any type of game, an action
is the decision that a player makes at a particular move. A strategy specifies what
actions a player takes at each move in the game and so is a complete and exact plan,
detailing what the player will do in any contingency that may arise.

In games with complete information, the payoffs are common knowledge among
all the players. In games of incomplete information, some players do not know the
payoffs of some of the other players. In a dynamic game with perfect information,
all the players know the entire history of the game when it is their turn to move.
Imperfect information implies that some players have only a partial idea of the history
of the game. Games may be either cooperative or non-cooperative. In cooperative
games players can communicate and, most importantly, make binding agreements.
In non-cooperative games players may communicate, but binding agreements are
not possible.

The most well-known and widely used solution concept in game theory is Nash
equilibrium (NE). An NE is a set of strategies for all the players such that no player
has an incentive to change their strategy unilaterally, given the strategies chosen
by the other players. Dynamic games are solved using the technique of backward
induction where optimal strategies are determined while proceeding from the final
stage to the initial stage of the game.

Various applications of game theory can be found in Chatterjee and Samuelson
[8], Osborne [27] and Watson [40]. The game theoretic approach allows maintenance
outsourcing to be studied from both the customer and service agent perspectives. The
information available to each player and their attitudes to uncertainty and risk also
need to be taken into account.
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6.1 One Customer and One Service Agent

First consider the case where there are only two players—one customer and one
service agent. This is scenario A-1 from Table 2. When there is a dominant player
then we have a leader–follower situation where the actions of the follower depend
on the actions taken by the leader. This situation can be formulated as a two-stage
dynamic or ‘Stackelberg’ game.

Let the service agent be the leader in this particular formulation. Given a set of
options {A1, A2, ...., An} offered by the agent (with the value of the decision vari-
able for option i beingθi ), the customer chooses the option which optimizes his/her
objective. This generates the customer’s best response function A∗(θ1, θ2, . . . , θn) as
shown in Fig. 4. Using this response function, the service agent then optimally selects
the values of the decision variables θ1, θ2, ...., θn to optimize his/her objective.

Murthy and Ashgarizadeh [24] use this type of formulation for the case where the
equipment has a useful life L , failures occur according to a homogeneous Poisson
process and repair times are exponentially distributed. The two options offered by
the service agent are

• Repair all failures over the useful life L for a fixed fee P but also incur a penalty
cost of α for each unit of equipment downtime that is incurred above the value τ

• Repair each failure over the useful life L at cost Cs for each repair

Murthy and Ashgarizadeh [24] give a complete characterization of the agent’s
optimal pricing strategy

(
P∗, C∗

s

)
and also discuss the effect of varying the model

parameters on the optimal strategy.

6.2 Multiple Customers and One Service Agent

Murthy and Ashgarizadeh [25] again use the Stackelberg game formulation with the
same two pricing options offered by the agent. They extend their earlier model by
assuming that the agent has also to decide the number of customers M to service.
This is scenario A-2 from Table 2. In this case, a customer’s failed equipment will
have to wait for repair if one or more other pieces of equipment from other customers
have already failed. M is now an extra decision variable for the agent and a complete
characterization of the agent’s optimal strategy

(
P∗, C∗

s , M∗) is again given.

SERVICE AGENT CUSTOMER

( ),1i iA i nθ ≤ ≤

*
1 2( , , , )nA θ θ θ

Fig. 4 Stackelberg game formulation
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Ashgarizadeh and Murthy [3] extend the model further by assuming that the agent
uses S repair facilities to service the M customers. This is scenario A-3 from Table 2.
The agent’s optimal strategy

(
P∗, C∗

s , M∗, S∗)with respect to pricing structure, num-
ber of customers to service, and number of repair facilities to use is specified.

6.3 Multiple Service Agents

So far, there are no game theory models in the literature which deal with the
competition between service agents for the outsourcing of equipment maintenance.
This is an open area for research.

6.4 Nash Formulation

If there is no dominant player and players choose their actions either in a cooperative
or non-cooperative manner, then a static or ‘Nash’ game formulation is required.

Jackson and Pascual [14] consider a service contract for aging equipment with
terms which specify the frequencies for PM actions and equipment replacement.
In their model, the optimal price for the contract is determined by negotiation
between the owner and the agent (a Nash bargaining solution) instead of by solving
a Stackelberg game. Wang [39] looks at a maintenance contract problem for large
and expensive equipment (aircraft, ships, power plant) where the OEM is the only
possible service provider. The delay-time concept is used to model the failure behav-
ior of the equipment. Three different contract options are considered, one where the
agent is responsible solely for the maintenance and two which involve specified tasks
being performed by the owner. Each option requires certain levels of reliability and
availability to be satisfied and the optimal parameters for each are again found by
negotiation. The cases where both parties have perfect information and where there
is information asymmetry are also discussed.

7 Agency Theory

Agency Theory deals with the relationship that exists between two parties (a principal
and an agent) where the principal delegates work to the agent which performs that
work and a contract defines the relationship. Agency theory is concerned with resolv-
ing two problems that can occur in agency relationships. The first problem arises when
the two parties have conflicting objectives and it is difficult or expensive for the prin-
cipal to verify the actual actions of the agent and whether the agent has behaved
properly or not. The second problem involves the risk sharing that takes place when
the principal and agent have different attitudes to risk (due to various uncertainties).
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According to Eisenhardt [10], the focus of the theory is on determining the optimal
contract, behavior versus outcome, between the principal and the agent. Many dif-
ferent cases have been studied in-depth in the principal–agent literature and these
deal with the range of issues indicated in Fig. 5. Agency theory has also been applied
in many different disciplines. For an overview, see Acekere [37].

7.1 Issues in Agency Theory

Moral hazard: Moral hazard refers to the agent’s lack of effort in carrying out the
delegated tasks. The two parties in the relationship have different objectives and the
principal cannot assess the effort level that the agent has actually used.

Adverse Selection: Adverse selection refers to the agent misrepresenting their
skills to carry out the tasks and the principal being unable to completely verify this
before deciding to hire them.

Information: To avoid adverse selection, the principal can try to obtain information
about the agent’s ability. One way of doing is contacting people for whom the agent
has previously provided service.

Monitoring: The principal can counteract the moral hazard problem by closely
monitoring the agent’s actions.

Information Asymmetry: The overall outcome of the relationship is affected by
several uncertainties. In general, the two parties will have different information to
make an assessment of these uncertainties.

Risk: This results from the different uncertainties that affect the outcome of the
relationship. For a variety of reasons, the risk attitude of the two parties will differ
and a problem arises when they disagree over the allocation of the risk.

Costs: Both parties have various kinds of costs. Some of these depend on the
outcome of the relationship (which is influenced by uncertainties), on acquiring
information, monitoring, and on the administration of the contract.

PRINCIPAL

AGENT

ADVERSE SELECTIONMORAL HAZARD

RISK PREFERENCES INFORMATIONAL
ASYMMETRY

INCENTIVES
MONITORING

COSTS

CONTRACT

Fig. 5 Agency theory issues
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The focus of principal–agent theory lies in the trade-off between (1) the cost of
monitoring the agent’s actions and (2) the cost of measuring the outcomes of the
relationships and of transferring the risk to the agent.

7.2 Relevance to Maintenance Outsourcing

All of the above issues in Agency Theory are relevant to maintenance outsourcing
problems. The customer is the principal and the maintenance service provider is the
agent. The key factor is the contract which specifies what, when, and how mainte-
nance is to be carried out. This contract needs to be designed taking account of all
the relevant issues.

The customer and service agent both potentially face moral hazard. This can occur
for the customer when the service agent does not do proper maintenance in order
to reduce costs and it can occur for the agent when the customer uses the asset in
a manner different to that stated in the contract. Adverse selection can also occur
when the customer makes an inappropriate choice from an available pool of potential
maintenance service providers (the B scenarios in Table 2). Both parties also possess
different information about asset state, usage level, care and attention of the asset,
and quality of maintenance used and this asymmetry affects the outcome of their
relationship.

Scenario A-1 of Table 2 corresponds to the classical principal–agent model with
a single principal (customer) and a single agent (maintenance provider). The inter-
action that takes place between the principal and the agent can be modeled as a
multi-stage dynamic game with the principal as the dominant player. In stage1 of
the game, the principal offers a contract to the agent. The agent decides whether to
accept or reject this contract in stage 2. If the decision is accepted then, in stage 3,
the agent chooses a ‘work level’ (e.g., service quality or capacity) for the contract
period from a set of alternatives. The extra player ‘Nature’ is also involved during
the contract period (the equipment is subject to random failure). What Nature does,
together with the effort used by the agent, determines the outcome for the principal
for the period (e.g., total equipment downtime and hence total profit).

If the principal cannot assess the agent’s effort (moral hazard) then the contract
offered must contain incentives for the agent to provide quality service. An exam-
ple might be where the contract consists of a fixed fee plus penalties for exces-
sive downtime. Kim et al. [17] discuss this type of principal–agent model involving
performance-based contracting for equipment subject to infrequent Poisson failures.
Plambeck and Zenios [29] use dynamic programming to solve a principal–agent prob-
lem where the equipment is used over a finite number of periods. In each period, the
equipment can be in one of two states (working or failed) and the transitions between
states are influenced by the actions taken by the agent. The agent performs both CM
and PM and can exert high or low effort for each type of action. An optimal payment
scheme is derived which induces the agent to maximize the principal’s expected
total discounted profit over the entire planning horizon. So far, Kim et al. [17] and
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Plambeck and Zenios [29] are the only cases from the literature where appropriate
stochastic formulations are used to model equipment failures.

In the remaining five scenarios of Table 2, there are multiple principals and/or
multiple agents involved. In scenarios A-2 and A-3, the equipment under consider-
ation could be a particular brand of lift installed in different buildings within a city.
In this case, all the equipment is maintained either by the OEM or an agent of the
OEM. There is an extensive literature dealing with the design of contracts for multi-
ple principal/multiple agent problems (Macho-Stadler and Perez-Castrillo [22], and
Laffont and Martimort [19] is a small sample of the papers from this literature) and
all the Agency Theory issues are still relevant.

The results from the literature on multiple principal/multiple agent problems
cannot be applied directly in the maintenance outsourcing context. Thus, new models
which contain the required stochastic formulation for equipment failures need to be
developed for this application area.

8 Criteria for Rating and Selection of Service Agents

A business is often faced with the strategic decision of whether to develop its own
resources to perform maintenance or purchase the required skill and performance
from external service agents. To make this decision the business needs to analyze
whether maintenance forms a part of its core competencies or whether it only makes
a minor contribution to the value chain. Once the business has decided to outsource
it also needs to decide on the criteria to select the best service agents.

The selection criterion needs to be governed by the strategic intent of the business
and the use of the outsourcing process to meet its goal. Therefore, the selection of
the service agent is influenced by the reasons for outsourcing. These reasons can be
one or more of the following:

• Concentrating on core activities
• Reducing the maintenance costs
• Spreading the business risk
• Downsizing the organization
• Supplementing the knowledge to achieve the business goals
• Bringing strategic knowledge to meet its requirement
• Facilitating the building up of competence outside the organization

In many contract situations with a large number of service agents participating,
the selection of contractors is usually made in two phases (1) the pre-selection phase
and (2) the final selection phase. We discuss these briefly and for more details, see,
Straub and van Mossel [30].
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8.1 Pre-selection Phase

In the pre-selection phase of a service contract process, the selection criteria are
based on the following:

• Technical capabilities: The service agent must have the knowledge, the
organizational structure, and the resource capabilities to meet the contractual
agreements. That is, the service agent must have the correct organization (number
of people and their competence) and equipment, etc., to carry out the maintenance
as stated in the contract on time and correctly. Often, service agents enter a contract
but lack the organizational capability to deliver the agreed performance and this
creates bottleneck problems for the owner of the asset.

• Experience with similar equipment: Although the service agent might have the
required manpower and competence, the agent may have had no experience in
maintaining the asset under consideration. This can result in problems with the
delivery and quality of service. Often it takes some time for the service agent
to understand all the factors that can cause equipment downtime and this causes
bottlenecks when the agent is dealing with a specific asset for the first time.

• Financial health of the service agent: Often owners are influenced by the reputation
and capabilities of the service agent and fail to do a thorough analysis of the service
agent’s financial health. If the service agent is financially weak there is a risk that
the agent might not be able to fulfill the contract or even go bankrupt due to cash
flow problems.

• Innovative capability of service agent: In recent times, the innovative capability
of the service agent has become a dominant factor in an agent being awarded the
contract. If the agent has the reputation for being innovative, it provides assurance
to the owners of the assets that new and innovative maintenance solutions will
ensure better performance, higher quality, and/or reduced costs.

• Demonstrated good governance/moral integrity of the service agent: Good
governance is reflected in factors such as transparency in action and moral integrity.
Service agents who exhibit these characteristics are preferred to those who lack
them.

8.2 Final Selection Phase

The final selection procedure involves a detailed and in-depth analysis of the criteria
used in the pre-selection phase. Some of these are listed below.

• Business plan, vision for implementation of new and proven technology: The
owners of assets should demand and examine the business plan of the service
agents and assess these plans in terms of the implementation of new technologies,
training of personnel, and other actions to facilitate innovations.

• Special focus should be given to evaluating the service agent’s quality assurance
process and its implementation.
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• Past experience and performance of the service agent should be assessed by talking
to previous customers of the service agent.

• Once short-listed, the owner of the asset must evaluate the team members that will
be involved in carrying out the maintenance activities. This assessment is based on
the qualification and experiences of each member with respect to the maintenance
of similar assets.

• Proper data collection system for monitoring and reporting: The owner needs to
pay special attention to this and use the information collected to improve the
effectiveness of maintenance.

8.3 Selection of Service Agents: Practice at Swedish Rail
Administration

In order to increase the effectiveness and efficiency of the maintenance process, the
railway administration (Trafikverket), started to open up its maintenance contract for
market competition [12, 13]. That is, anyone with the capability to deliver the contract
could participate in the contract tendering process. Since railway maintenance is
specialized and needs special tools and skills, there were only a few service agents
in Sweden who could perform the service. This provided an opportunity for service
agents from other European countries to bid for the contract. Today at least four
service agents have been awarded contracts, based on their competence, capability,
and price, for carrying out maintenance in different regions.

The selection of service agents at Trafikverket, in general, involves the following
steps [12]:

1. Pre-qualification of contractors: This is performed at the Head office level and
all the contractors or service agents planning to bid for a contract must register
and be approved by the committee based on their capability, past performance,
ethics, etc.

2. Announcement of contract: The contract is advertised in most of the listed major
newspapers with a short description of the job and the contact details of the
persons responsible for the contract.

3. Contract procurement process: During this step, potential contractors are informed
about the type, scope, duration, and other relevant descriptions of the contract.
Based on this information, interested contractors submit bids for the contract.

4. Pre-selection: Based on the details of the submitted bid and other relevant
information about contractor, the client (infrastructure manager) selects 2–3
contractors to initiate the contract negotiation process.

5. Contract negotiations: During this step, the contract together with the scope of
the work and the related price tags, etc., are discussed in detail with the selected
potential service agents. This step also leads to the final selection of the service
agent most suitable for the contract.
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6. Study and analysis of contract: After selecting the service agent, the client and
service agent both study and analyze the contract and enter into agreement
whereby the contract is defined at a detailed level.

7. Signing of contract and its implementation as per the time and delivery plan.

9 Topics for New Research

As mentioned earlier, most of the literature on maintenance outsourcing is qualitative
with only a small number of papers taking a quantitative approach. A proper study
of maintenance outsourcing requires (1) an interdisciplinary approach involving sci-
ence, engineering, technology, mathematics, and management and (2) a more quan-
titative approach to evaluate different maintenance contracts and identify the best
contract taking into account the interests of the different parties involved.

Game theory and Agency Theory provide the foundations for building models
to study maintenance outsourcing. However, most of the literature on game theory
and Agency Theory consists of models that have very basic stochastic formulations.
We suggest a multi-step approach to conduct new research of relevance to mainte-
nance outsourcing.

Step 1: Develop a comprehensive framework that deals with the science,
engineering, technology, and management issues in an integrated manner for a proper
study of maintenance outsourcing.

Step 2: Identify the key elements, the variables to characterize these elements,
and the interaction between the variables.

Step 3: Develop a simple model. This would imply a single stage (so that from a
game theory perspective a static game formulation is used) and only two players—
the owner of the asset and a single service agent. The objective functions for the
two players would involve stochastic model formulations for failures and costs over
a pre-specified contract period. The model formulation needs to look at contract
specification (tasks to be carried out, incentives and penalties, monitoring schemes
to detect cheating, etc.). Alternate scenarios can be considered which lead to different
Stackelberg and Nash game formulations. The aim is to devise and evaluate contracts
which ensure there are no incentives for cheating and that both parties reveal full
information.

Step 4: Improve on the model of Step 3. This implies a multi-stage formulation
and more than two players. This introduces new issues such as the owner having the
option to change the service agent, competition between the agents, etc. These models
need to incorporate learning effects and other factors such as customer satisfaction
and loyalty (which lead to the renewal of contracts) and many other issues.

One further area where considerable research needed is a study of the role of data
and information and their impact on the optimal strategies of the different players
involved.
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9.1 Maintenance Outsourcing in Railways

The rolling stock (engines, bogies, and wagons) interacts with the track and the
degradation of the track and rolling stock is influenced by the interaction between
them. It is affected by the condition of the rolling stock and of the infrastructure and
by several other factors such as load, speed of travel, etc.

The owners of the infrastructure and the rolling stock can each outsource their
maintenance so that there are several service agents involved. The different contracts
between the owners and service agents are indicated in Fig. 6. This scenario implies
several different players and the decision making needs to take into account the
interaction between the different variables.

The need for an interdisciplinary approach to solve the maintenance outsourcing
problem is highlighted through the following observations:

• Science: The degradation process due to the interaction between the track and the
rolling stock.

• Engineering and Technology: The assessment of the condition of the track and the
rolling stock (and for other variables such as axle load, etc.).

• Economic: The evaluation of the cost of maintenance; the consequence of failure
resulting in the rolling stock and/or track being out of action, etc.

• Management: The drafting of the contract and the setting up of systems to collect
relevant data and information.

The authors are currently looking at the structures of different contracts and
models to evaluate each type of contract and to choose the best option.

INFRASTRUCTURE 
MAINTENANCE 
CONTRACTOR

CONDITION OF 
ROLLING STOCK

ROLLING STOCK 
OPERATORS

ROLLING STOCK USAGE 
PROFILE

CONDITION OF 
INFRASTRUCTURE

OWNER OF 
INFRASTRUCTURE

REWARDS AND PENALTIES TO 
INFRASTRUCTURE OWNER

REWARDS AND PENALTIES 
TO OPERATORS

ROLLING STOCK 
MAINTENANCE 
CONTRACTORS

CONTRACT

CONTRACT

CONTRACT

Fig. 6 Key elements and their interaction
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10 Conclusions

We have looked at maintenance outsourcing and the issues that need to be addressed in
the maintenance outsourcing context. A proper study and evaluation of maintenance
outsourcing requires a quantitative approach. Game theory and Agency Theory pro-
vide good starting points to build new models which look at maintenance from both
the owner and the service agent perspectives. This chapter gives a brief introduction
to these two topics and defines some areas for possible future research.

Acknowledgments Dedicated to Professor Shunji Osaki on his seventieth birthday in recognition
of his contributions and leadership of research in reliability and maintenance in Japan.
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Warranty/Maintenance: On Modeling
Non-zero Rectification Times

Stefanka Chukova and Yu Hayakawa

Abstract This chapter revisits modelling of warranty/maintenance costs under the
assumption that both, the warranty repairs and the maintenance actions, require non-
negligible completion time. We provide an intuition on this topic by summarising
our previous results, as well as the published work of other authors. We closely
examine a case study that provides an excellent motivation for extending the research
in this area. Also, again assuming non-negligible repair and maintenance times,
we propose a simulation model for the expected warranty costs that integrates the
concepts of reliability improvement and warranty. We conclude with a discussion on
new directions for future research.

1 Introduction

A product warranty is an agreement offered by a producer to a consumer to repair
or replace a faulty item, or to partially or fully reimburse the consumer in the event
of a product failure. From the buyer’s viewpoint, the product warranty assures free
(partially or fully) of charge replacement or repair of a faulty product. It also provides
information on the reliability and quality of the product. On the other hand, from
the producer’s viewpoint, the product warranty plays a protectional as well as a
promotional role.
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Maintenance is an operation that involves fixing the product should it become
faulty or out of order. It also includes performing routine actions which keep the
product in working condition (a scheduled maintenance) or prevent operational prob-
lems from occurring (a preventive maintenance). Overall, maintenance consists of
all actions that aim to retain or restore the product (or system) to a state in which it
can perform the functions it is designed for.

In most published work on warranty and maintenance, the warranty repair times
(and the maintenance times) are assumed to be negligible, i.e. the expected duration of
the repair is small (negligible) compared to the expected lifetime of the product. And,
yes, in many cases this is a reasonable assumption. But there are situations where the
length of the repair (or the duration of the maintenance action) impacts significantly
the operational cost. For example, if the maintenance is performed on an assembly
line, which produces the main components of a system, the whole production process
might be affected, e.g. put on hold, and it could lead to significant losses. If a taxi
driver has to wait a couple of weeks until his car (taxi) undergoes a warranty repair,
his loss of income could be quite high.

Why is it important to study models with non-negligible warranty repairs or
maintenance times? First, the warranty period is a finite interval of time and the total
repair time could be a significant portion of it. The total length of the repair time could
be of importance in the warranty contract. Moreover, lengthy repairs/maintenance
actions may lead to high penalty costs that have to be taken into account in the cost–
benefit analysis. Therefore, taking into account the length and the type of the warranty
repairs and the duration of the maintenance action is an important component in the
warranty/maintenance cost modelling.

In this chapter, some results (see [2, 3]) regarding the evaluation of the expected
warranty cost under non-renewing and renewing free replacement warranty policies
over the warranty period and over the product life cycle are summarised. We allow
for non-zero warranty repair time and assign costs, which are dependent on the
length of the repair. Moreover, we review the advances in this area of modelling
presented in [9] and [4]. We provide an insight into the importance of this type
of modelling by summarising a case study presented in [6]. Lastly, again assuming
non-negligible repair and maintenance times, we propose a simulation model for the
expected warranty costs that integrates the concepts of reliability improvement and
warranty. We conclude with a discussion on new directions for future research.

The outline of this chapter is as follows: In Sect. 2 we recall some basic war-
ranty/maintenance terminology. In Sects. 3 and 4 we summarise the models for
non-zero warranty repairs under non-renewing and renewing warranty policies.
Sections 5 and 6 review two maintenance models with non-zero maintenance times.
A case study is summarised in Sect. 7. In Sect. 8 we propose a new simulation model
and Sect. 9 concludes this chapter.
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2 Miscellaneous

This section provides the terminology used in warranty and maintenance analysis,
that we need for our write-up.

2.1 Warranty Policy

The typical warranty coverage used in the industry can be classified as follows:

• Non-renewing warranty: The expenses associated with the failure of the product
during the warranty period of length T are covered (fully or partially) by the
warranter.

• Renewing warranty: The expenses associated with the failure of the product during
the warranty period of length T are covered (fully or partially) by the warranter.
In addition, after each warranty repair, the repaired item is warranted anew for a
period T .

2.2 Maintenance Policy

The two classical models mostly studied in the maintenance literature are:

• Block-based model—In this model, a preventive maintenance action is performed
periodically over a fixed time interval τ , i.e. at calendar times τ , 2τ , 3τ , . . . , a
maintenance action is invoked. The block-based policy is proposed for a calendar-
time-based maintenance model. At failure, the corrective maintenance is carried
out.

• Age-based model—In this model, a preventive maintenance action is performed as
soon as the product (system) reaches a pre-specified age κ. In addition, corrective
maintenance is executed at failure.

2.3 Degree of Repair

In our presentation we consider different types of repairs. Pham and Wang [5] classi-
fied repairs according to the degree to which they restore the product. They propose
the following classification:

• Improved Repair: A repair brings the product to a state better than when it was
initially purchased. This is equivalent to the replacement of the faulty item by a
new and improved item.
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• Perfect (or Complete) Repair: A repair completely resets the performance of
the product so that upon restart the product operates as a new one. This type of
repair is equivalent to a replacement of the faulty item by a new one, identical to
the original.

• Imperfect Repair: A repair contributes to some noticeable improvement of the
product. It effectively sets back the clock for the repaired item. After the repair the
performance and expected lifetime of the item are as they were at an earlier age.

• Minimal Repair: A repair has no impact on the performance of the item. The repair
brings the product from a ’down’ to an ’up’ state without affecting its performance.

• Worse Repair: A repair contributes to some noticeable worsening of the product.
It effectively sets forward the clock for the repaired item. After the repair the
performance of the item is as it would have been at a later age.

• Worst Repair: A repair accidentally leads to the product’s destruction.

In the following two sections, we summarise our results on modelling non-zero
warranty repair times (as given in [2, 3]) based on the alternating renewal process.

3 Non-Renewing Warranty: Non-zero Repair Times

This section is concerned with the non-renewing warranty and incorporates non-zero
warranty repair times.

3.1 The Model

We consider the following model: At the beginning the item is in operating (‘on’)
condition for a time X1. Then the repair (‘off’) condition starts and the item remains
in it for a time Y1. After the repair completion, the item is operative for a time X2,
which is followed by Y2 long repair and so on.

The time between two consecutive returns of the virtual age, V (t), of the item
to 0 forms a renewal cycle, see Fig. 1. We suppose that both sequences of random

V(t)

X XY Y1 1 2 2
t

Fig. 1 The virtual age of the item
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variables {Xi }∞1 and {Yi }∞1 are independent and identically distributed. Moreover,
we assume that Xi and Yi are independent for i = 1, 2, . . .. The above model is
the well-known model of alternating renewal process [7] and we use it to model the
warranty cost.

We assume that the cost of the i th repair is random and with form Ci = A + δYi ,

where A, and δ are known constants.
Moreover, we suppose that the cost is incurred at the end of the renewal cycle.

Also, if the warranty coverage expires during a repair period, the corresponding
repair is completed and its cost is fully incurred by the warranter. In this case we
have a complete renewal cycle. If the warranty expires during an operating period,
the cost of the following repair is not included in the total costs and we have an
incomplete renewal cycle.

Life cycle of a product is defined as a time while the product is still usable and
contemporary. It is assumed that during the life cycle, after the expiration of the
warranty period for the initially purchased item, at the time of the first off warranty
failure, the consumer purchases an identical item to the initial one with the same
warranty coverage. We will assume that a life cycle can end only at off warranty
time. The latter assumption is reasonable because the length of the life cycle is
mainly determined by the consumer.

We aim to evaluate: (1) the warranty expenses under non-renewing free replace-
ment warranty of duration T and (2) the expected total warranty costs over the life
cycle L of the item. To achieve these goals, as a preliminary, we obtain some results
regarding the alternating renewal process.

3.2 Alternating Renewal Process in Finite Horizon

Consider the length of a renewal cycle X + Y with the cumulative distribution func-
tion (cdf) FX+Y . Consider the alternating renewal process with “on” time distribution
FX and “off” time distribution FY . Denoting

Sn =
n∑

i=1

(Xi + Yi ) and S0 = 0

it follows that Sn is the time of the completion of the nth repair and corresponding

N (t) = max {n : Sn ≤ t}

is the number of complete renewal cycles before time t (cf. [7]). Denote by
m X+Y (y) = E(N (t)) the corresponding renewal function. It is known (cf. [7])
that
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P (on at t) = F̄X (t)+
∫ t

0
F̄X (t − y) dm X+Y (y), (1)

which is the probability of having operating item at time t . It is easy to see that
P (off at t) = 1 − P (on at t) is equivalent to

P (off at t) =
∫ t

0
F̄Y (t − u) d FX (u)

+
∫ t

0

∫ t−u

0
F̄Y (t − u − v) d FX (v) dm X+Y (u). (2)

Theorem 3.1

P(SN (T ) ≤ t | on at T ) = F̄X (T )+ ∫ t
0 F̄X (T − u)dm X+Y (u)

F̄X (T )+ ∫ T
0 F̄X (T − u)dm X+Y (u)

, 0 ≤ t ≤ T (3)

Proof:

P(SN (T ) ≤ t | on at T )P(on at T )

= P(on at T | SN (T ) = 0)P(SN (T ) = 0)

+
∫ t

0
P(on at T | SN (T ) = u) d FSN (T ) (u)

= P(X1 + Y1 > T, X1 > T )

P(X1 + Y1 > T )
P(X1 + Y1 > T )

+
∫ t

0
P(on at T | Xn + Yn > T − u) F̄X+Y (T − u) dm X+Y (u)

= F̄X (T )+
∫ t

0
P(Xn > T − u | Xn + Yn > T − u) F̄X+Y (T − u) dm X+Y (u)

= F̄X (T )+
∫ t

0

F̄X (T − u)

F̄X+Y (T − u)
F̄X+Y (T − u) dm X+Y (u)

= F̄X (T )+
∫ t

0
F̄X (T − u) dm X+Y (u)

Therefore, using (1), the proof is completed. �

Corollary 3.2

P(SN (T ) = 0 | on at T ) = F̄X (T )

F̄X (T )+ ∫ T
0 F̄X (T − u) dm X+Y (u)

(4)
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Fig. 2 SN (T ) = 0

Theorem 3.3 For T ≤ t ,

P(SN (T ) + X N (T )+1 ≤ t | on at T )

= F̄X (T )− F̄X (t)

F̄X (T )+ ∫ T
0 F̄X (T − u) dm X+Y (u)

+
∫ T

0

(
F̄X (T − u)− F̄X (t − u)

)
dm X+Y (u)

F̄X (T )+ ∫ T
0 F̄X (T − u) dm X+Y (u)

The proof is similar to that of Theorem 3.1, hence it is omitted.
We sketch another proof of Theorem 3.3 by utilising the multiplication rule

and the total probability rule. Namely, by conditioning on SN (T ), we consider the
following two cases:

1. SN (T ) = 0, (Fig. 2).
The following events are equivalent.

{SN (T ) + X N (T )+1 ≤ t, SN (T ) = 0, on at T } ⇐⇒ {T < X ≤ t}.

The probability of the latter is equal to

FX (t)− FX (T ). (5)

2. SN (T ) = w �= 0, (Fig. 3).
The following events are equivalent {SN (T ) + X N (T )+1 ≤ t, SN (T ) = w �=
0, on at T } ⇔ {there is a renewal before T } say at time w with probability
dm X+Y (w) and {T − w < X < t − w}, which will occur with probability
FX (t − w)− FX (T − w). The probability of the second event is

∫ T

0
(FX (t − w)− FX (T − w)) dm X+Y (w) (6)
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Fig. 3 SN (T ) = w �= 0

Adding (5) and (6) evaluates P(SN (T ) ≤ t, on at T ). Then, the result of the theorem
follows from the multiplication rule and (1). �

Theorem 3.4

P(SN (T )+1 + X N (T )+2 ≤ t | off at T )

= 1

P(off at T )
×

(∫ T

0

∫ t−u

T −u
FX (t − u − v) d FY (v) d FX (u)

+
∫ T

0

∫ T −w

0

∫ t−w−u

T −w−u
FX (t − w − u − v) d FY (v) d FX (u) dm X+Y (w)

)

(7)

The proof of this theorem is similar to that given in Theorem 3.3, hence it is
omitted.

3.3 Warranty Cost Analysis

Here we derive the expected warranty cost for non-renewing warranty over warranty
period of length T and over the life cycle of length L . By assumption, the random
variables Ci are independent and identically distributed and E(C) = A + δE(Y ).

3.3.1 Expected Costs Over (0, T )

Denote by C(t) the total warranty cost accumulated up to time t . We have to distin-
guish two cases: first the warranty expires during an “off” time, then the total cost is
accumulated over N (T )+ 1 complete renewal cycles. Second, the warranty expires
during an “on” time, so that only N (T ) complete renewal cycles contribute to the
cost. Then
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C(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N (T )∑

i=1

Ci , if the item is “on” at time T

N (T )+1∑

i=1

Ci , if the item is “off” at time T

(8)

and the following result holds:

Theorem 3.5

E(C(T )) = (m X+Y (T )+ 1) E(C)− E(CN (t)+1| on at T )P(on at T ).

Proof: Using that N (t)+ 1 is a stopping time for the sequence {Ci }∞1 and Wald’s
equation (see [7]) we have

E(C(T )) = E

⎛

⎝
N (T )∑

i=1

Ci |on at T

⎞

⎠ P(on at T )+ E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci − CN (T )+1|on at T

⎞

⎠ P( on at T )

+ E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci |on at T

⎞

⎠ P(on at T )+ E

⎛

⎝
N (T )+1∑

i=1

Ci |off at T

⎞

⎠ P(off at T )

− E(CN (T )+1|on at T )P(on at T )

= E

⎛

⎝
N (T )+1∑

i=1

Ci

⎞

⎠ − E(CN (T )+1|on at T ) P(on at T )

= (m X+Y (T )+ 1) E(C)− E(CN (t)+1|on at T ) P(on at T )

�

We need to find E(CN (t)+1 | on at T ) P(on at T ). The latter probability is given
by (1). Since CN (T )+1 = A + δYN (T )+1, we need to evaluate E(YN (t)+1 | on at T ).
The following result holds:

Theorem 3.6

E(C(T )) = (A + δE(Y )) (m X+Y (T )+ P(off at T ))

The following lemma will be needed for the proof of the theorem:
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Lemma 3.7
E(YN (t)+1 | on at T ) = E(Y )

Proof: By conditioning on SN (T ), and using Theorem 3.1 and Corollary 3.2 we
obtain

E(YN (t)+1|on at T )

= E(YN (t)+1|SN (T ) = 0, on at T ) P(SN (T ) = 0|on at T )

+
T∫

0

E(YN (t)+1|SN (T ) = s, on at T ) d P(SN (T ) ≤ s|on at T )

= E(Y1 | X1 > T )
F̄X (T )

F̄X (T )+ ∫ T
0 F̄X (T − u) dm X+Y (u)

+
T∫

0

E(Yn | Xn > T − s)
F̄X (T − s) dm X+Y (s)

F̄X (T )+ ∫ T
0 F̄X (T − u) dm X+Y (u)

=
T∫

0

E(Y ) d FSN (T ) | on at T (s) = E(Y )

Using Lemma 3.7 it is easy to complete the proof of Theorem 3.6.

Proof: Indeed

E(C(T )) = E

⎛

⎝
N (T )+1∑

n=1

Ci

⎞

⎠ − E(CN (T )+1 | on at T ) P(on at T )

= (m X+Y (T )+ 1) E(C)− E(C) P(on at T )

= E(C) (m X+Y (T )+ P(off at T )).
�

3.3.2 Expected Costs Over (0, L)

Now we will focus on the evaluation of the expected warranty costs over the life
cycle of an item. Let us consider the time between two consecutive purchases made
by the consumer. Denote this time by ξ. It is a positive continuous random variable
such that:

ξ =
{

SN (T ) + X N (T )+1, if the item is “on” at time T

SN (T )+1 + X N (T )+2, if the item is “off” at time T
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Then, the expected costs over (0, L) are expressed in terms of ξ in the following
way:

E(C(L)) = E(N∗(L)+ 1) E(C(T )),

where N∗(t) is a renewal process with interevent time equal to ξ. Denote by m∗
ξ (t)

the renewal function of N∗(t). Then

E(C(L)) = (m∗
ξ (L)+ 1)E(C(T )). (9)

In what follows we derive the distribution of the interevent time ξ.

Theorem 3.8

P(ξ ≤ t) = F̄X (T )− F̄X (t)

+
∫ T

0
(F̄X (T − u)− F̄X (t − u)) dm X+Y (u)

+
∫ T

0

∫ t−u

T −u
FX (t − u − v) d FY (v) d FX (u)

+
∫ T

0

∫ T −w
0

∫ t−w−u

T −w−u
FX (t − w − u − v) d FY (v) d FX (u) dm X+Y (w)

Proof:

P(ξ ≤ t) = P(SN (T ) + X N (T )+1 ≤ t | on at T )P(on at T )

+ P(SN (T )+1 + X N (T )+2 ≤ t | off at T ) P(off at T )

Applying Theorems 3.3 and 3.4 and using (1) and (2) completes the proof. �

3.4 Example

As an illustration of the ideas we will consider an example assuming that the lifetime
of the item and the repair time are exponentially distributed random variables with
parameters λ and μ.

3.4.1 Expected Costs Over (0, T )

In order to evaluate the expected warranty costs over (0, T ), we need to find the
corresponding renewal function. Using Laplace transforms it can be shown that the
renewal function for the renewal process with interevent time X + Y is
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Table 1 Expected warranty cost over a warranty period, μ = 92

T
λ 0.5 1.0 1.5 2.0 2.5 3.0

2 2.958815 5.916262 8.873708 11.831155 14.788602 17.746049
3 4.392487 8.781961 13.171434 17.560908 21.950382 26.339855

Table 2 Expected warranty cost over a warranty period, μ = 122

T
λ 0.5 1.0 1.5 2.0 2.5 3.0

2 2.968527 5.936269 8.904011 11.871752 14.839494 17.807236
3 4.417737 8.833737 13.249737 17.665737 22.081737 26.497737

m X+Y (t) = λμ

λ+ μ

(
t − 1

λ+ μ

(
1 − e−(λ+μ)t)

)
.

Using (2), we get P(off at t) = λ
λ+μ (1− e−(λ+μ)T ). Then, the expected warranty

cost for non-renewing free replacement warranty policy with duration T is equal to

E(C(T )) =
(

A + δ

μ

) (
λ

λ+ μ

) (
μT + λ

λ+ μ

(
1 − e−(λ+μ)T ))

. (10)

For selected values of T and λ and for A = 3 and δ = 2, numerical values for the
expected warranty cost are calculated and summarised in Tables 1 and 2.

The comparison between the two tables shows that it is better to have a longer
average repair time (4 days for Table 1 against 3 days for Table 2). A possible reason
for this result is the fact that for the fixed values of T and λ the value of μ will
reflect on the number of renewal cycles per warranty period. Indeed, larger values
of μ will increase the number of renewal cycles within the warranty period, which
will increase the value of the expected warranty cost over (0, T ). Providing that the
penalty cost δ is not too high, this is a reasonable strategy. On the other hand if δ is
high and low expected warranty costs are targeted, it will require a reduction of the
average repair time.

3.4.2 Expected Costs Over (0, L)

Even in this simple case of exponential lifetime and exponential repair time we
encounter difficulties in evaluating the expected warranty cost over the life cycle of
the item. The standard approach of finding the renewal function of the renewal process
generated by the random variable ξ led to an expression with a limited value. The
attempt to use MAPLE or MATHEMATICA to simplify the result was also not very
successful. Hence, we used a numerical procedure. Based on the ideas of Xie [10], a
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Table 3 Expected warranty cost over a life cycle, λ = 2, μ = 122

T
L 0.5 1.0 1.5 2.0 2.5 3.0

3 10.75976 15.28904 17.36461 22.13644 24.21849 17.80759
5 16.69591 23.07293 26.60188 30.76411 29.57897 35.28823
7 22.66831 30.99828 35.74898 39.24450 43.15709 46.17403
10 31.53661 42.86935 49.25831 54.04590 57.49978 59.12158
15 46.36995 62.65530 71.51108 77.50511 82.34271 86.33264

Table 4 Expected warranty cost over a life cycle, λ = 6, μ = 122

T
L 0.5 1.0 1.5 2.0 2.5 3.0

3 43.36922 51.46913 51.76007 68.92752 84.11078 51.75959
5 69.29022 83.65021 92.53079 102.91867 86.26324 103.51294
7 95.74140 112.94833 125.45428 135.87711 129.39141 154.36811
10 133.98574 156.33294 169.55625 172.45343 172.52479 203.51039
15 198.68439 230.64985 249.49196 255.03050 258.75241 258.7822

renewal equation solver has been written by Dr Richard Arnold in programming lan-
guageR. The solver evaluates the renewal function under known cdf (in closed form),
known pdf, or data for the renewal points. The last option is an extension of [10].

Using (9) and assuming A = 3 and δ = 2, the expected warranty cost for selected
values of L were evaluated. The comparison between Tables 3 and 4, with the given
values of λ and μ, shows that the improvement of the reliability and quality of the
product, reflecting on the increase of its average operating time, will highly reduce
the expected warranty cost.

4 Renewing Warranty: Non-zero Repair Times

The alternating renewal process described in Sect. 3.2 is also assumed here. However,
now we consider renewing warranty policy with perfect warranty repairs. Again, the
cost of the i th repair is assumed to be Ci = A + δYi , and the random variables Ci

are independent and identically distributed and their expected value is A + δE(Y )
(Fig. 4).
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Fig. 4 Renewing warranty

4.1 The Model

We model the functioning of the item as in Sect. 3.1. Taking into account the impact
of the renewing warranty, we adjust the model as follows: at the end of the repair
time, the item is warranted anew for a period of length T , i.e. after each repair
the item is assumed to be as good as new. If the warranty period ends during an
operating period, the cost of the following repair is not incurred by the warranter and
the warranty coverage expires. Here we will distinguish between warranty coverage
WT , which is a random variable, and warranty period, which is a predetermined
constant T .

4.2 Warranty Cost Analysis

Here we derive the expected warranty cost for renewing warranty over warranty
period of length T and over the life cycle of length L .

4.2.1 Expected Cost Under Renewing Warranty Coverage

Due to the mechanism of the renewing warranty, WT is equal to:

WT =
{

T, if X1 > T

T + ∑n
i=1(Xi + Yi ), if X1 ≤ T, · · · , Xn ≤ T, Xn+1 > T for some n.

Then, the warranty cost C(WT ) over the warranty coverage is a random variable
and its distribution is:
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Fig. 5 Life cycle over (0, L)

C(WT ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, with 1 − FX (T )

C1, with FX (T )(1 − FX (T ))
...∑n

i=1 Ci , with FX (T )
n(1 − FX (T )).

...

(11)

Thus, C(WT ) has a geometric distribution with parameter (1 − FX (T )) and

E(C(WT )) = FX (T )

1 − FX (T )
(A + δE(Y )). (12)

Therefore, provided that the distributions of X and Y are known, using (12), the
expected cost under renewing warranty coverage can easily be evaluated. Otherwise,
(12) should be used with appropriate estimations of FX (T ) and E(Y ).

4.2.2 Expected Costs Under Renewing Warranty Coverage Over Life Cycle

Let L∗ be a prespecified time during which a product is considered to be contemporary
and competitive with similar products in the market. Let L be the time of the first
off warranty failure of the product after L∗. Then, we call (0, L) the life cycle of the
item. The idea of life cycle and the relationship between L and L∗ are represented
in Fig. 5.

In what follows we evaluate the expected warranty costs over (0, L), where the
value of L∗ is known. Let us consider the continuous positive random variable, ξ,
representing the time between two consecutive product purchases. By definition,

ξ =
{

X1 if X1 > T
∑n

i=1(Xi + Yi )+ Xn+1 if X1 ≤ T, . . . , Xn ≤ T, Xn+1 > T for some n.

Then, the expected costs over (0, L), denoted by E(C(L)), are expressed in terms
of ξ in the following way:
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E(C(L)) = (m∗
ξ (L)+ 1) E(C(WT )),

where m∗
ξ (t) is the renewal function of the renewal process generated by ξ.

Now, let us introduce the age parameter for ξ denoted by τ , i.e. τ is the time origin
where ξ is measured from. We will derive the probability density function (pdf) of
ξ, gξ(τ , t), given τ . The following theorem holds:

Theorem 4.9 The pdf, gξ(τ , t), satisfies the following integral equation:

gξ(τ , t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fX (t)+ ∫ t−T
0

∫ t−T −u
0 gξ

(τ + u + v, t − u − v) fY (v) fX (u) dvdu if T < t < 2T

fX (t)+ ∫ T
0

∫ t−T −u
0 gξ

(τ + u + v, t − u − v) fY (v) fX (u) dvdu if t ≥ 2T .

(13)

Proof: Using the definition of pdf, namely,

gξ(τ , t)�t ≈ P(ξ ∈ (t, t +�t))

for small�t , we will condition on X1. There are two scenarios under which the event
{ξ ∈ (t, t +�t)} can occur. Their pictorial representations are given in Figs. 6 and 7.

• Scenario 1 (Fig. 6)
X1 > T , thus ξ = X1. Then {ξ ∈ (t, t +�t)} ≡ {X1 ∈ (t, t +�t)}.

• Scenario 2 (Fig. 7)
X1 ≤ T .

Here our main idea is to find a relationship between gξ(τ , t) and gξ(τ + s, t − s),
where s is the point of the first warranty renewal. We need to consider two cases:

1. T < t < 2T .
Due to the definition of ξ, 0 < s < t − T . (Recall that ξ will terminate only if
Xk > T for some k.) Then,

Fig. 6 X1 > T
V(t)

t
T

τ τ + t
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Fig. 7 X1 < T

Fig. 8 T < t < 2T,
t − T < T v

T − t T u

0 < s < t − T < 2T − T = T ⇒ 0 < s < T

and (see Fig. 8)

{X1 + Y1 ∈ (s, s +�s)} ⊂ {X1 ∈ (u, u +�u)} for any 0 < u ≤ s < T .

Hence, using Scenario 1, we obtain

gξ(τ , t) = fX (t)+
∫ t−T

0

∫ t−T −u

0
gξ(τ + u + v, t − u − v) fY (v) fX (u) dv du.

2. t > 2T .
Again, 0 < s < t − T , but now t − T > T , (see Fig. 9), {ξ ∈ (t, t + �t)} is
equivalent to the event: there is a failure at time u (measured from the origin τ )
and u < T (i.e. failure within the warranty period) which occurs with probability
fX (u)du, and repair lasting v, which occurs with probability fY (v)dv and {ξ ∈
(t − u − v, t − u − v+�(t − u − v))} with initial age τ + u + v, which occurs
with probability gξ(τ +u +v, t −u −v)�(t −u −v). Then, taking into account
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Fig. 9 t − T > T

t − TT u

v

Scenario 2, we have

gξ(τ , t) = fX (t)+
∫ T

0

∫ t−T −u

0
gξ(τ + u + v, t − u − v) fY (v) fX (u) dv du,

which completes the proof of the theorem.

4.2.3 Numerical Procedure for Calculating the pdf of ξ

Let us denote S = X1 + Y1. It is easy to notice that:

1. The support of S is (0, t − T ) for any t .
2. The differences in the limits of integration in (13) are due to the restriction

X1 < T .

Equation (13) can be rewritten in terms of S in the following way:

gξ(τ , t) = fX (t)+
∫ t−T

0
gξ(τ + s, t − s) fT (s)ds, t > T, τ ≥ 0 (14)

where fT (s) = ∫ T ∧s
0 fX (u) fY (s − u)du. The sub-density fT (s) reflects the com-

ments at the beginning of this section.
Let us consider a grid of step h in the two-dimensional plane (τ , t). Let N L be

the number of points on both τ and t axes. Note that, for convenience, the count of
the points starts from 1.

Using the definition of Riemann–Stiltjes integral, gξ(τ , t) can be approximated by:
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Fig. 10 Grid in (τ , t) plane
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t

1
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1

4

3

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi1 = 0, i = 1, 2, · · · , N L;
gi2 = fX (T + h);
g1 j = fX (T + ( j − 1)h)+ h

∑ j−2
k=1 g1+k, j−k fT (kh), j = 3, 4, . . . , N L;

gi j = g1 j , i = 2, 3, . . . , N L .

The reasoning for this algorithm is the following: The sum approximating the inte-
gration in (14) consists of only values of gξ(·, ·) calculated over the diagonals of the
grid, i.e. if gi j is to be calculated, then the previous values of gξ(,̇·) needed are only
those gi+k, j−k for k = 1, . . . , j − k. These values are calculated at points located
on the diagonal consisting of (i, j). In each step of the procedure, once g1 j is evalu-
ated, the remaining values gi j , i = 2, 3, . . . , N L are assigned to equal to g1 j . This
is because the meaning of the first parameter is the age and the distribution of ξ is
independent of the age. The parameter τ was introduced only for convenience in an
attempt to simplify the notations and the reasoning of the computational procedure
(Fig. 10).

Fig. 11 λ = 2,μ = 10, T =
0.25
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Fig. 12 λ = 0.5,μ =
52, T = 0.25

We used MATHEMATICA to write a code for the numerical procedure for obtain-
ing the density gξ(t). The graphs of the pdf of ξ show that the distribution of ξ is
skewed to the right. It is unimodal and the value of its maximum decreases when T
increases. For fixed value of T , the shape of the density depends onλ,μ (Figs. 11–12).
For more details on gξ(t), see [3].

4.2.4 Estimating the Renewal Function of ξ

Our next step is to use the suggested numerical procedure to evaluate the renewal
function generated by ξ. Again, we used the renewal equation solver written by
Dr. Richard Arnold.

4.3 Example

As an illustration we consider an example assuming that the lifetime of the item and
the repair time are exponentially distributed random variables with parameters λ
and μ. The same procedure is valid for general distribution of the operating time X
and the repair time Y .

4.3.1 Expected Costs Over (0, WT )

Using (12) for selected values of T and λ and for A = 3 and δ = 2, numerical values
for the expected warranty cost were calculated and summarised in the following two
tables. We measure the time in years.

In the first row of Table 5 λ = 2, which means that on average there is a failure
of the product every 6 months. The length of the following repair, again on average,
is set to be equal to approximately four days. As expected the expected warranty
cost is an increasing function of the length of the warranty period. The second row
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represents the values of the expected warranty cost for λ = 4/3, which means that
on average, there is a failure of the product every nine months. The values of the
remaining parameters are kept the same as for the first row. By comparing the rows
in Table 5, it is easy to see that the shorter mean operating time leads to higher
expected warranty cost, which is in agreement with our intuition. These conclusions
are similar to the ones we have reached for non-renewing warranty in [2].

In Table 6, the length of the repair, again on average, is set to be equal to approx-
imately 1 week. The same as for Table 5 comments apply for Table 6 which is: the
expected warranty cost is an increasing function of the length of the warranty period
T , i.e. row-wise increasing values of the expected warranty cost and it is a decreas-
ing function of the mean operating time, i.e. column-wise increasing values of the
expected warranty cost.

The comparison between Tables 5 and 6 shows that it is better to have a shorter
average repair time (four days for Table 5 against 1 week for Table 6). This conclusion
is opposite to the one we reached in [2]. This is due to the differences between
renewing and non-renewing warranty policies. The comparison between Tables 6
and 7, (all parameters are kept the same, only the value of δ is different) does not
lead to surprising conclusions. The expected warranty cost is an increasing function
of δ. In [2], the expected warranty cost over a warranty period as a function of δ had
a maximum. This is because the warranty coverage WT is a random variable, against
fixed length T of the warranty in a non-renewing scenario.

4.3.2 Expected Costs Over (0, L)

Using the computational procedure for (13) and assuming A = 3 and δ = 2, the
expected warranty cost for selected values of L were evaluated. The comparison
between these values shows that the improvement of the reliability and quality of the
product, reflecting on the increase of its average operating time, will highly reduce
the expected warranty cost. For numerical results and graphical summary, the reader
is referred to [3].

5 Maintenance: Non-zero Periodic Preventive Repairs

Next, we summarise the results presented in Wang and Zhang [9]. The authors con-
sider a simple deteriorating system. After a failure the system is replaced at a high

Table 5 Expected warranty
cost over a warranty period,
μ = 122, δ = 2

T
λ 1/12 1/4 1/2 1

2 0.547054 1.9568 5.18301 19.2719
4/3 0.354484 1.19332 2.85874 8.4268
1 0.262137 0.856732 1.9568 5.18301
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Table 6 Expected warranty
cost over a warranty period,
μ = 52, δ = 2

T
λ 1/12 1/4 1/2 1

2 0.551057 1.97111 5.22093 19.4129
4/3 0.357077 1.20205 2.87965 8.48845
1 0.264055 0.863 1.97111 5.22093

Table 7 Expected warranty
cost over a warranty period,
μ = 52 and δ = 22

T
λ 1/12 1/4 1/2 1

2 0.620811 2.22062 5.88181 21.8702
4/3 0.402277 1.35421 3.24417 9.56294
1 0.297479 0.972241 2.22062 5.88181

cost. To extend the operating lifetime and to reduce the operating cost, at the time the
system lifetime reaches a constant level B, the system could be repaired preventively,
through an imperfect repair. The following scenario is considered: the successive
operating times of the system after preventive repair form a stochastically decreas-
ing geometric process, while the consecutive non-zero preventive repair times of
the system form a stochastically increasing geometric process. The objective of this
study is to determine an optimal bivariate replacement policy such that the average
cost rate (the long-run average cost per unit time) is minimised.

5.1 The Model

The model is constructed under the following assumptions:

• At the beginning, a new system with preventive repairs (PR) is installed. At some
point of time the system will be replaced by a new one and the replacement time
is negligible.

• The PR will be adopted as soon as the operating time of the system reaches level
B, and the PR is imperfect. Henceforth, the following notations will be used:

– Xn - the operating time of the system after the (n − 1)th PR with cdf
Fn(t) = F(an−1t), a ≥ 1; E X1 = λ. {Xn}, n = 1, 2, 3, . . . form a stochas-
tically decreasing geometric process with ratio a.

– Yn - the repair time of the system in the nth cycle with cdf Gn(t) = G(bn−1t),
0 < b ≤ 1; μ = EY1. {Yn}, n = 1, 2, 3, . . . form a stochastically increasing
geometric process with ratio b.

– {Xn} and {Yn}, n = 1, 2, 3, . . . are independent.
– A bivariate replacement maintenance policy (B, N ) is adopted, i.e. B is a fixed

period of time between consecutive PR and N is the number of PR’s before
the system is replaced. In other words, if the system is free of failure until the
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(N + 1)st PR, then it is replaced instead of performing a PR. At failure the
system brings failure cost η and it is instantaneously replaced.

– The time between two consecutive system replacements τ{.} is called a renewal
cycle. {τ1, τ2, τ3, . . .} form a renewal process, where τ1 is the time to first
replacement.

5.2 The Average Cost Rate

All results and their derivations follow the presentation in [9]. Before the main result
regarding the average cost rate C(B, N ) is provided, we need a list of preliminary
results, so as to facilitate the understanding and utilisation of the main result.

1. We start with the distribution of M , the number of PR before system replacement.
It is easy to see that:

P(M = 0) = F(B) and P(M = k) =
k−1∏

i=0

F̄(ai B)F(ak B). (15)

2. The system total operating time T (B, N ) before renewal can be expressed as
follows:

T (B, N ) =
{

M B + {X M+1|X M+1 ≤ B}, if M ≤ N
(N + 1)B, if M > N .

(16)

3. The total PR time S(B, N ) in a renewal cycle is:

S(B, N ) =
{

Y1 + Y2 + . . .+ YM , if M ≤ N
Y1 + Y2 + . . .+ YN , if M > N .

(17)

4. The total cost function �(B, N ) in a renewal cycle is given by:

�(B, N ) =
(

−cw(M B + X M+1|X M+1 ≤ B)+ cr

M∑

k=1

Yk + η

)

I{M≤N }

+
(

−cw(N + 1)B + cr

N∑

k=1

Yk

)

I{M>N } + c, (18)

where I{.} is an indicator function, cw is the system’s working reward rate, cr is
the system’s PR cost rate, c is the system’s replacement cost, η is the system’s
invalidation cost.

Thus, now having the expressions (16), (17) and (18) and noticing that
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E[Xk |Xk ≤ B] = 1

F(ak−1 B)

∫ B

0
xd F(ak−1x),

allow to derive the expectations of the above random variables as follows:

1. E[T (B, N )] =
∫ B

0
xd F(x)+

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]
(19)

×
k−1∏

i=0

F̄(ai B)F(ak B)+ (N + 1)B
N∏

i=0

F̄(ai B);

2. E[S(B, N )] =
N∑

k=1

[

F(ak B)
k−1∏

i=0

F̄(ai B)
k∑

i=1

μ

bi−1

]

(20)

+
N∑

i=1

μ

bi−1

N∏

k=0

F̄(ak B);

3. E[�(B, N )] = −cw

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]
(21)

× (−cw)

[
k−1∏

i=0

F̄(ai B)F(ak B)+
∫ B

0
xd F(x)

]

+ F(b)Eη +
N∑

k=1

[

cr

k∑

i=1

μ

bi−1 + Eη

]

×
k−1∏

i=0

F̄(ai B)F(ak B)− cw(N + 1)B

×
N∏

i=0

F̄(ai B)+ cr

N∑

i=1

μ

bi−1

N∏

i=0

F̄(ai B)+ c.

For more details on the derivation of (19), (20) and (21) the reader is referred to [9].
Now, using these results it can be shown that the average cost rate of the system
C(B, N ) is given by:

C(B, N ) = E[ costs in renewal cycle]

E[length of a renewal cycle]
= E[�(B, N )

E[T (B, N )+ S(B, N )
(22)

= −cwφ1 + crφ2 + φ3 Eη + c

φ1 + φ2
,

where
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• φ1 =
∫ B

0
xd F(x)+

N∑

k=1

[
k B + 1

F(ak B)

∫ B

0
xd F(ak x)

]

×
k−1∏

i=0

F̄(ai B)F(ak B)+ (N + 1)B
N∏

i=0

F̄(ai B);

• φ2 =
N∑

k=1

[

F(ak B)
k−1∏

i=0

F̄(ai B)
k∑

i=1

μ

bi−1

]

+
N∑

i=1

μ

bi−1

N∏

k=0

F̄(ak B);

• φ3 = F(B)+
N∑

k=1

[

F(ak B)
k−1∏

i=0

F̄(ai B)

]

.

Hence, the next step is to identify the optimal replacement policy (B∗, N∗) that
minimises the average cost rate of the system C(B, N ) given in (22).

5.3 Example

The following example is taken from [9]. Let us assume that the distribution of the
nth operating time Xn is Weibull with parameters β and α, i.e.

Fn(t) = 1 − e
−

(
an−1t
β

)α

, for t > 0.

Then, the average cost rate of the system C(B, N ) simplifies to

C(B, N ) = crμl1 + l2 Eη − cwl3 + c

l1 + l3
,

where

• l1 =
N∑

k=1

k∑

i=1

1

bi−1 e
−∑k−1

i=0

(
ai B
β

)α

−
N−1∑

k=1

k∑

i=1

1

bi−1 e
−∑k

i=0

(
ai B
β

)α

;

• l2 = 1 +
N∑

k=2

e
−∑k−1

i=0

(
ai B
β

)α

−
N∑

k=1

e
−∑k

i=0

(
ai B
β

)α

;

• l3 =
∫ B

0
e−( x

β )
α

dx +
N∑

k=1

e
−∑k−1

i=0

(
ai B
β

)α ∫ B

0
e−( ak x

β )αdx .

Assigning specific values to the parameters, such as a = 1.05, b = 0.95, μ = 8,
Eη = 1500, cr = 20, cw = 50, c = 2000, β = 1000 and α = 2, and after using a
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numerical procedure, it is shown that the optimal strategy is (B∗, N∗) = (380, 10).
In other words, for a system with characteristics, as given in the example, the optimal
fixed period of time between consecutive PR is B∗ = 380 and if the system is free
of failure until the 11th PR, then at the time scheduled for this PR, the system has to
be replaced. This maintenance strategy assures the minimum average cost rate of the
system of C(B∗, N∗) = −47.5977. For more comments and details on the example,
please see [9].

6 Maintenance: Markovian Model for Non-zero Preventive
Repair Times

In this section, we summarise the Markovian approach proposed in Fang and Liu
[4] to model for non-zero preventive repair times. The main objective of this study
is to design a maintenance policy (B, N ), so that the steady-state profit rate of the
system is maximised, with B being the interval of preventive maintenance (repairs)
and N being the number of failure-free preventive repairs to system replacement.
The parameters of this strategy have the same meaning as in [9]. Also, the settings
considered here are close to the settings in Sect. 5, but have some specifics and we
discuss these below.

6.1 The Model

The model is built-up upon the following assumptions:

• At the beginning, a new system with preventive repairs (PR) is installed. At failure
the system is repaired and the repair is imperfect with non-zero repair time.

• The times between two consecutive system failures are called cycles.
• The system failure in cycle N is catastrophic and the system is replaced by a new,

identical system. The replacement requires negligible time.
• The PR will be adopted as soon as the operating time of the system reaches level

B, and within a cycle the PR is perfect and the PR times are i.i.d. Moreover, the
imperfect failure repair affects the first lifetime of the follow-up cycle and the
lifetimes within a cycle are i.i.d. Henceforth, the following notations will be used:

– X (n)i - the operating time of the system after the nth PR within the i th cycle

with cdf Hi (x), pdf hi (x), failure rate function ai (x), and E[X (n)i ] = λi , i =
1, 2, . . . ; n = 0, 1, 2, . . .. Moreover, {X (0)i } form a decreasing stochastic
process.
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– Z (n)i - the preventive repair time of the system in cycle i after n PR with cdf

Fi (z), pdf fi (z), hazard function bi (z), and E[Z (n)i ] = bi , i = 1, 2, . . . ; n =
0, 1, 2, . . .. Moreover, {Z (0)i } form an increasing stochastic process.

– Yi - the failure repair time of the system in cycle i cdf Gi (y), pdf gi (y), hazard
function μi (y), and E[Yi ] = μi , i = 1, 2, . . . ; n = 0, 1, 2, . . .. Moreover,
{Yi } form a monotonically increasing stochastic process.

– {X (n)i }, {Z (n)i } and {Yi }, i = 1, 2, . . . ; n = 0, 1, 2, . . . are independent.

• The working reward per unit time is C1, failure repair cost per unit time is C2,
preventive repair cost per unit time is C3, and the system replacement cost is C .

The state of the system is modelled as follows:

• (i, 0, n) - the system is working after the nth PR in cycle i , n = 0, 1, 2, . . .;
i = 1, 2, . . . , N .

• (i, 1, n) - the system is under PR after the nth PR in cycle i , n = 0, 1, 2, . . .;
i = 1, 2, . . . , N .

• (i, 2) - the system is under failure repair in cycle i , i = 1, 2, . . . , (N − 1).

The modelling is reduced to a vector Markov process, so that it allows for the
derivation of the state probability density equations. For more details on the modelling
and results see [4].

6.2 Steady-State PR-Replacement Policy

Next we summarise the results regarding the steady-state performance measures of
the system and use them to identify the optimal steady-state maintenance strategy as
described in Sect. 6.1.

The authors show that:

• the steady-state replacement frequency Mr is given by

Mr = 1
∑N

i=1

∫ B
0 H̄(x)dx

Hi (B)
+ ∑N

i=1
bi H̄(B)
Hi (B)

+ ∑N−1
i=1 μi

; (23)

• the steady-state availability A is equal to

A = Mr

N∑

i=1

∫ B
0 H̄(x)dx

Hi (B)
; (24)

• the steady-state PR frequency M1 is given by
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M1 = Mr

N∑

i=1

bi H̄(B)

Hi (B)
; (25)

• the steady-state failure repair probability P is

P = Mr

N−1∑

i=1

μi . (26)

Therefore, using (23), (24), (25) and (26) the steady-state average profit rate
C(B, N ) of the system is obtained to be equal to:

C(B, N ) = C1
∑N

i=1

∫ B
0 H̄(x)dx

Hi (B)
− C2

∑N−1
i=1 μi − C3

∑N
i=1

H̄(B)
Hi (B)

− C

∑N
i=1

∫ B
0 H̄(x)dx

Hi (B)
+ ∑N

i=1
bi H̄(B)
Hi (B)

+ ∑N−1
i=1 μi

. (27)

It is easy to see that the steady-state average profit rate C(∞, N ) of the system
without PR is given by

C(B, N ) = C1
∑N

i=1 λi − C2
∑N−1

i=1 μi − C
∑N

i=1 λi + ∑N−1
i=1 μi

. (28)

Therefore, it is worth to perform PR only if C(∞, N ) < C(B∗, N∗), where (B∗, N∗)
are the parameters of the optimal maintenance strategy. A possible approach in
finding the parameters of the optimal strategy is first, to find B∗

N for every N , so that
C(B∗

N , N ) reaches maximum for N = 1, 2, 3, . . . and second, find the maximum
among these values to determine C(B∗

N , N∗), so that (B∗
N , N∗) are the parameters

of the optimal maintenance policy. For more on this approach, see [11].

6.3 Example

As in [4], assume that C1 = 4, 900, C2 = 2, 100, C3 = 20, 000 and C = 2, 200, 000.
Also let Hi (x) = 1 − e(0.0001×1.04i−1x)2 , for x ≥ 0, i = 1, 2, . . . , N . Moreover,
bi = 5 × 1.05i−1, i = 1, 2, . . . , N and {Yi , i = 1, 2, . . . , N − 1} is a geometric
process with μi = 150 × 1.1i−1, i = 1, 2, . . . , N − 1. For these parameter values,
it is shown that

C(B, N ) = 4900 − A

B
, (29)

where

•
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A =
N∑

i=1

(24500 × 1.05i−1 + 20000)e−(0.0001×1.04i−1 B)2

1 − e−(0.0001×1.04i−1 B)2

+ 10500000(1.1N−1 − 1)+ 2200000

• B =
N∑

i=1

∫ B
0 e−(0.0001×1.04i−1x)2 dx

1 − e−(0.0001×1.04i−1 B)2

+
N∑

i=1

5 × 1.05i−1e−(0.0001×1.04i−1 B)2

1 − e−(0.0001×1.04i−1 B)2
+ 1500(1.1N−1 − 1).

By using numerical computations, the parameters of the optimal maintenance policy
are found to be equal to: B∗ = 1, 727.343 and N∗ = 3 with maximum steady-state
average profit reaching C(B∗, N∗) = 4, 847.148 per unit time. For more details and
comments, see [4].

7 A Case Study: Maintenance Optimisation for Age-Based
Replacement Policy

In this section, a case study of maintenance optimisation introduced by Pintelon, van
Puyvelde, and Gelders [6] is summarised. An age-based replacement model, which
allows for non-zero (preventive and corrective) repair times is used to determine an
optimal replacement policy. This study sheds some light on problems that need to
be dealt with when mathematical models are applied to solve practical problems.

7.1 Description of the Case Study

In the case study of Pintelon et.al. [6], an optimal age-based maintenance policy is
sought for the bottleneck machine of a manufacturing plant of beverage cans. Cans
are produced through several phases of the production lines. The bottleneck phase of
the production lines is associated with the cupper by which each cup is formed with
sheets of metal. The cupper capacity influences the output level of the production
heavily.

The company was using a classical block replacement policy under which pre-
ventive maintenance was conducted every ten days in addition to corrective main-
tenance at failure. A new replacement policy is desired to efficiently maintain the
equipment by incorporating the data collected by its maintenance information system
and making use of mathematical models.
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7.2 The Model

Here, an age-based model with a modification of non-negligible maintenance times
is applied. It is referred to as an extended age-based model. The following list sum-
marises notations and assumptions with some justification.

• At the beginning, the cupper is new. When the operation time of the cupper reaches
Ta (in days), a preventive maintenance (PM) with cost p [in Belgian Franc (BF)]
is carried out. In addition, at each failure (before the operation time reaches Ta) a
corrective maintenance (CM) with cost c (in BF) is executed.

• The duration of CM is fixed at tr (in days). Likewise, the duration of PM is pre-
specified at tm (in days). The classical age-based model assumes negligible main-
tenance time, but in the settings of this case study non-zero maintenance times are
appropriate. Moreover, the property of production process justifies deterministic
durations of CM and PM times.

• The times between two consecutive maintenance completion times, either correc-
tive or preventive, is said to be a cycle.

• Let T denote the time to failure of the cupper in each cycle with the cumulative
distribution function F(t), density function f (t) and failure rate function z(t).

• Single component machine: Since cupper failures are mostly caused by one com-
ponent, this assumption is appropriate.

• The system has two states (“on” or “off”): The production process is required to
be with high speed and high accuracy and allows for no deterioration. Hence, it is
either working denoted by “on” or not working denoted by “off”.

• Failure-based versus use-based maintenance: An optimal balance between the
frequencies of corrective and preventive maintenance is sought.

• As-good-as-new repairs: In each maintenance action, the cupper is repaired to be
as-good-as-new.

• Model approach: (1) continuous time, (2) infinite horizon, (3) stochastic model
• Continuous production process: The cupper is working continuously.
• Failure distribution is not known: The classical age-based model assumes a known

failure distribution, but in this case study, it was not the case. A few appropriate
failure distributions are applied for a sensitivity analysis.

• Maintenance times: No consensus was formed in regard to independence of main-
tenance times. Two scenarios are considered. (1) optimistic (maintenance times
are independent) (2) pessimistic (maintenance times are dependent).

• Optimisation of objective functions: (1) minimisation of the long-run maintenance
cost per unit time; (2) maximisation of the average availability of the cupper (this
would not be an objective function for the model with negligible maintenance
time).
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7.3 The Extended Age-Based Policy-Objective Functions
and Properties

Using the renewal reward arguments (Barlow and Hunter [1], Tijms [8]), the follow-
ing objective functions are obtained in [6].

• the average availability of the cupper is equal to

E(availability) = E(on time in a cycle)

E(cycle length)

=
∫ Ta

0 t d F(t)+ Ta(1 − F(Ta))
∫ Ta

0 t d F(t)+ tr F(Ta)+ (Ta + tm)(1 − F(Ta))
(30)

• the long-run maintenance cost per unit time is given by

E(cost) = E(cost per cycle)

E(cycle length)

= cF(Ta)+ p(1 − F(Ta))
∫ Ta

0 t d F(t)+ tr F(Ta)+ (Ta + tm)(1 − F(Ta))
(31)

The former is to be maximised, while the latter is to be minimised.
Some properties of the extended age-based model given below are discussed in [6].

• If the maintenance times are negligible, then the model concerned reduces to
a classical age-based model for minimising the long-run maintenance cost per
unit time.

• Under the assumption that the failure time T is exponentially distributed, the opti-
mal Ta for both objective functions become infinite, i.e. preventive maintenance
is unnecessary.

7.4 Example

Numerical methods and results presented in [6] are summarised in this subsection.
The preventive maintenance time is set at tm = 3 h. As for the corrective maintenance
time, two values are used: (1) tr = 10 h (pessimistic scenario) and (2) tr = 5 h
(optimistic scenario). A global cost of 125,000 BF/h (approximately 4,000 dollars/h)
including wages and materials is assumed. The case makes both maintenance times
and global costs predictable, so using deterministic values for them is justified.

Based on the data collected by the company, the mean time between failures
(MTBF) for the cupper is 12 days. For the sake of sensitivity analysis, a few different
failure distributions are used with the MTBF of 12 days. The two-parameter Weibull
distribution is selected as the failure distribution with f (t) = ατ (τ t)α−1e−(τ t)α ,



94 S. Chukova and Y. Hayakawa

F(t) = 1 − e−(τ t)α and z(t) = ατ (τ t)α−1, where α and τ are shape and scale
parameters, respectively. The managers’ knowledge suggests that α = 4.0. Using
the expression for the first moment μ of T , given by

μ = 1

τ
�

(
1 + 1

α

)

together with MTBF of 12 days (i.e., 1.714286 wk) and α = 4.0, the corresponding
τ can be obtained.

With the Weibull failure distribution the objective functions (30) and (31) contain
integrals which cannot be evaluated analytically. If τTa < 1, then (30) and (31) can
be computed via an appropriate numerical method. Otherwise, a simulation method
can be used to evaluate them. For details, see [6]

Under the pessimistic scenario tr = 10 h, both objective functions (30) and (31)
are optimised at Ta = 1.190 wk [corresponding to 8 days and a shift (8h)] with values
0.979713 and 426020 BF/wk, respectively. It is observed that as Ta increases the CM
cost increases, whereas the PM cost decreases.

A comparison is made between the current model, i.e. the block-based model
with preventive maintenance conducted every Tb = 10 days (1.428571 wk), and
the extended age-based model. At optimality the former has average availability of
0.976234, while the latter has 0.979713. Contrary to the intuition, this difference may
lead to a significant increase in income due to the fact that the cupper is a bottleneck
machine. For details, the reader is referred to [6].

Under the optimistic scenario tr = 5 h, the optimal preventive maintenance inter-
val Ta is 1.571 wk with average availability of 0.984698 and the long-run cost of per
unit time 321237 BF/wk.

A sensitivity analysis is carried out for the pessimistic scenario. In addition to
the case α = 4.0, α is set at 1, 1.5, 2.0, and 2.5 and optimal values of Ta , average
availability and long-run maintenance cost per unit time are compared. It is observed
that (1) the higher the shape parameter α the shorter the Ta , but the higher the
optimal average availability; (2) the higher the α , the clearer the optimum; (3) it
is confirmed that when α = 1 (the exponential failure distribution), the average
availability increases without bound as Ta → ∞.

8 A Simulation Model

In what follows we propose a simple simulation warranty model. We extend our
study [2] by assuming imperfect warranty repairs. We model the “on” times of the
system using a decreasing geometric process with parameters (X1, a) and the “off”
times (the warranty repair times) by an increasing geometric process with parameters
(Y1, b). Our goal is not only to estimate the expected warranty cost over a prespecified
warranty period, but also to formulate and solve an optimisation problem regarding
the length of the warranty period and provide some sensitivity analysis on the results.
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• The expected warranty cost
The evaluation of the expected warranty cost is straightforward and follows the
standard approach. We assign a cost Ci = A + cYi to the “off” times, as in sect.
3.3. First, we generate the two geometric processes, the “ON” process and the
“OFF” process, each with prespecified parameters. Based on the “OFF” process
and the parameter values of the cost function, for a fixed value of the warranty
period T , taking into account whether the warranty ends in an “on” or “off” period,
the warranty cost is computed. For a fixed value of T at least 100 realisations of
the “ON” and “OFF” processes are considered and the warranty cost for these
realisations are averaged to obtain the expected warranty cost for the chosen value
of T .

• Optimisation problem on T
Next, we aim to formulate and justify an optimisation problem for determining the
optimal warranty period for our model. Our objective function is the probability
of product’s sale P(T ) and we aim to maximise it. We assume that P(T ) is an
increasing function of the difference D(T ), which has the following representation:

D(T ) = v {total “on” time in T } − c {total “off” time in T },

where c ≥ 0 and v ≥ 0. Of course, the probability P(T ) might depend on other
factors, but in this study we focus only on the above difference. What could be the
interpretation of the parameters v and c ? One possible interpretation is as follows:
the parameter v could be thought of as the rate of customer satisfaction due to the
proper product functioning, and c as the rate of customer dissatisfaction due to the
product failure. Next, let

r = v

c

be the ratio of the two rates. Now, if the warranty expires in an “off” period, i.e.
the last “off” period is included in the warranty period, and the warranty coverage
consists of total of d complete cycles, our optimisation criterion becomes

max D(T ) = v

d∑

i=0

Xi − c
d∑

i=0

Yi = v (T −
d∑

i=0

Yi )− c
d∑

i=0

Yi (32)

= v T − (v + c)
d∑

i=0

Yi = c (r T − (1 + r)
d∑

i=0

Yi ).

If the warranty expires in an “on” period, i.e. there is an incomplete cycle at the
end of the warranty with d complete cycles before it, our optimisation criterion
becomes:



96 S. Chukova and Y. Hayakawa

max D(T ) = v (T −
d∑

i=0

Yi )− c
d∑

i=0

Yi = v T − (v + c)
d∑

i=0

Yi

= c (r T − (1 + r)
d∑

i=0

Yi ). (33)

Therefore, according to (32) and (33), the difference D(T ) is expressed equiva-
lently in both cases. Of course, in the simulation we need to keep track whether
the warranty expires during “on” or “off” time.
Next we present several illustrations of the model. In these illustrations the “on”

times follow a geometric process with F1(x) = 1 − e
−

(
t
β

)α

, for t > 0, i.e.
the underlying distribution is Weibull with parameters (αon,βon) and a > 1, and
the “off” times follow a geometric process with G1(x), which is also Weibull
with parameters (αof f ,βof f ) and 0 < b < 1. In Fig. 13, the remaining model
parameters have the following values: A = 0, r = 0.01, (αon,βon) = (2, 1500)
and a = 1.05, (αof f ,βof f ) = (2, 10) and b = 0.95, and the optimal value of
the warranty period is T ∗ = 5900. In Fig. 14, the dependence of D(T ) on r
is depicted for r = 0.01; 0.0075; 0.005, with corresponding optimal values
T ∗ = 5900, 2000, 650. As expected, T ∗ also decreases as r decreases.
In Figs. 15 and 16, we vary the ratio r and obtain the two limiting cases T ∗ = 0
and T ∗ = ∞. As expected, when r is very small, i.e. the dissatisfaction rate is
much higher that the satisfaction rate, the warranty period is zero, which will lead
to P(T ) = 0. Hence, the product has to be significantly improved before being
introduced into the market. On the other hand, if r is relatively high, so that the
two rates are comparable, the warranty period could be large and the probability
for product sale will tend to one.

• sensitivity analysis
Figures 13–16 provide an insight that the optimal value of T , if it exists, depends on
the ratio r = v

c . Figure 17 depicts D(T )’s (and the optimal value of T ) dependence
on the parameter βof f of G1 with the values of all of the remaining parameters as
in Fig. 13. The upper curve shows D(T ) from Fig. 13 and the lower curve is D(T )
for βof f = 15, which leads, as expected, to a lower optimal value of T ∗ = 1050.

Fig. 13 r = 0.01; T ∗ = 5900
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Fig. 14 r = 0.01;
0.0075; 0.005

Fig. 15 r = 0.001; T ∗ = 0

Fig. 16 r = 0.1; T ∗ = ∞

Fig. 17 (β1;of f ,β2;of f ) =
(10, 15)

Lastly, Fig. 18 depicts D(T )’s (and the optimal value of T ) dependence on the
parameter b of the “off” times geometric process, keeping all remaining parameters
as in Fig. 13. The upper curve is appropriately scaled curve from Fig. 13 and the
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Fig. 18 (b1, b2) =
(1.05, 1.25)

lower curve is D(T ) for b = 0.80, which leads, again as expected, to a lower
optimal value of T ∗ = 2600.

Currently, we are working on the extension of the periodic preventive repair-
replacement model presented in [9] (see Sect. 5). In this new simulation model, we
introduce product warranty, and aim to solve an optimisation problem that will result
in an optimal maintenance-warranty strategy with parameters (B∗, N∗, T ∗). The
detailed description and illustration of this model will be presented elsewhere.

9 Conclusions

In this chapter, we have reviewed several published studies with a common theme to
emphasise the importance of taking into account the non-zero length of rectification
actions. Our goal was to show that while modelling the product performance and
related cost analysis, it is important to include in the model the non-zero times
of warranty repairs, as well as the preventive/corrective maintenance repairs and
the “cost” associated with them. In most situations it is acceptable to consider the
repairs to be instantaneous, especially if they are not associated with high penalties,
losses, or dissatisfaction. At the same time, it is well known that the harm to the
producer/manufacturer’s reputation due to one dissatisfied customer is much higher
than the positive impact of this reputation due to a group of satisfied customers.
A faulty product could lead to a high customer dissatisfaction and could have a
significant negative impact on the producer’s market standing. Hence, if the rate of
this dissatisfaction, i.e. the “cost” of the “off” times, is taken into account, then better
maintenance/warranty strategies from manufacturers’ as well as customers’ point of
view could be designed.
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Repair-Time Limit Replacement Policies

Won Young Yun and Naoto Kaio

Abstract This article concerns repair-limit replacement problems and review the
existing stochastic models in which repair times are random variables. If a system
fails, we should decide whether we repair the failed system (repair option) or replace
it by new one (replacement option with a lead time). We classify the existing repair-
time limit models based on available information amount of repair times (perfect,
partial, and no information), repair type (perfect and imperfect repair), and objective
functions (expected cost and profit with and without discounting). We summarize the
modeling assumptions and explain how to obtain the optimal repair-limit replacement
policies. Finally, we propose some interesting topics for future studies.

1 Introduction

For repairable systems, the maintenance plan during life cycle is important and affects
the life cycle cost. Usually we can repair the failed system or sometimes replace it
by new one. The maintenance engineer estimates repair cost (time) and if the repair
cost (time) is relatively cheap (short), the failed system is repaired. Otherwise, it
is replaced by new one. A lot of papers deal with replacement problems based on
repair limit. In the existing literature, the proposed models may be classified into two
main types: repair-cost limit and repair-time limit models. In the repair-cost limit
models, when a unit fails, the repair cost is estimated and repair is undertaken if the
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estimated cost is less than a pre-specified cost limit. Otherwise, the unit is replaced
(refer Wang and Pham [46]). In the repair-time limit models, a unit is repaired at
failure: if the repair is completed within a pre-specified time, it is put into operation
again. Otherwise, it is replaced by a new one and the new one is used.

This chapter concerns mainly repair-time limit replacement problems and reviews
the existing stochastic models. The repair-limit replacement problems are consid-
ered by Drinkwater and Hastings [18]. Hastings [19–21] and Lambe [33] formulate
the repair-limit replacement problems by applying the dynamic programming. Love
et al. [35] and Love and Guo [36] consider repair-limit problems in vehicle replace-
ment cases. Nakagawa and Osaki [40], Kaio and Osaki [24, 25], Muth [37], and
Nguyen and Murthy [41, 42] derive the optimal repair-time limits minimizing the
expected cost rates with and without discounting. Osaki and Okumoto [43], Kapil and
Sinha [27], and Kapur and Kapoor [28] introduce the repair-limit suspension policies
for two-unit systems, and discuss the similar maintenance optimization problems to
the repair-limit replacement ones. Kapur et al. [29, 30] consider the combined models
with the repair-limit policy and the other maintenance options, and propose extended
repair replacement policies. L’Ecuyer and Haurie [34], White [47], and Segawa and
Ohnishi [44] develop the Markov and semi-Markov decision processes in repair-limit
models. Jiang [22, 23] proves the optimality of repair-cost limit replacement policies
and consider repair-limit replacement problems under general repair models.

Dohi et al. [1–4, 6, 8–10, 12–15, 17] deal with cost and profit models in
repair-time limit problems with and without discounting. In particular, Dohi et al.
[1, 4, 12, 13] consider stochastic profit models recently under an earning rate criteri-
ons. Dohi et al. [1, 6, 8, 12–16] introduced the concept of subjective repair-time dis-
tribution and considered graphical optimization problems to minimize the expected
cost in estimation of the optimal decision. Dohi et al. [2, 3, 8, 10, 13, 15] also study
imperfect repair models. For an excellent survey of repair-time limit replacement
problems, see Dohi and Kaio [5]. In the most models related to repair-time limit
policies, the exact repair times are not known before completing the repair. Kim and
Yun [31] consider a repair-time limit model with estimation error.

This chapter concerns repair-time limit replacement problems and reviews the
existing stochastic models. We describe the modeling assumptions and derive the
objective functions (cost and profit functions) in the repair-time limit models. Basi-
cally, we consider a single unit system and assume that we have two options to
recover the failed system; repair and replacement. Repair time is a random vari-
able and replacement needs a new unit provided only by an order after a lead time.
When the unit has failed, we decide to start repair or order a new unit. In this review
chapter, we classify the existing repair-time limit models and explain the models and
optimization problems. Finally, we propose some promising research topics in this
area.

The remaining part of this chapter is organized as follows. The perfect repair
models are summarized in Sect. 2. The imperfect repair models are studied in Sect. 3.
Some miscellaneous topics are dealt in Sect. 4. Finally, Sect. 5 concludes this chapter.
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Notation

t0: Repair-time limit
F(t), f (t): cdf, pdf of time to failure of a part
Fir (t): cdf of time to failure after imperfect repair
G(t), g(t), r(t): cdf, pdf, and failure rate function of repair time
k: Penalty cost per unit time when the production machine is in down state
e0: Earning rate per unit operation time
er : Per unit time
c: Fixed cost associated with the ordering of a new unit
h: Holding cost per unit time
L: Lead time for delivery of a new unit
Z: Order time point
β: Discount rate
ϕ(·) = 1 − ϕ(·)

2 Perfect Repair Models

In this section, we consider perfect repair models in which the unit after repair is
same as the new one. Consider a simple production machine with a part where each
failed part is repairable but may be provided after a lead time L if it is replaced by
a new one. The machine starts to operate at time 0. The time to failure of each part
X is a non-negative random variable having the mean life μ f whose distribution
function and probability density function are F(x) and f (x), respectively. Once the
machine failed, the maintenance engineers wish to decide whether to repair it or
order a new unit. Basically, the repair times are different and can be considered as a
random variable.

2.1 No Information Case

In this basic model, we assume that we have no information about repair time and
know only general information (distribution function of repair time) about repair
time. When the unit has failed, the repair is started immediately. If the repair is
completed up to the time limit for repair t0 (repair time limit), then the unit is installed
at that time. It is assumed that the unit once repaired is presumed as good as new
(perfect repair). However, if the repair time is greater than t0, i.e., the repair is not
completed after the time t0, then the failed unit is scrapped, and a new unit is ordered
immediately and delivered after the lead time L. It is assumed that the time required for
replacement is negligible. The repair time for each unit has an arbitrary distribution
G(t) with the density g(t) and finite mean μr . Under these model assumptions, we
consider the interval from the start of the operation to the next start as one renewal
cycle. For an infinite planning horizon, it is appropriate to adopt the expected cost
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per unit time in the steady-state (expected cost rate) as an optimization criterion. The
total expected cost for one cycle is given by the following three costs:

(1) The expected repair cost is

er

{∫ t0

0
tdG(t)+ t0G(t0)

}
= er

∫ t0

0
G(t)dt

(2) The expected shortage cost is

k

⎧
⎨

⎩

t0∫

0

tdG(t)+ (t0 + L)G(t0)

⎫
⎬

⎭
= k

⎧
⎨

⎩

t0∫

0

G(t)dt + LG(t0)

⎫
⎬

⎭

(3) The expected ordering cost is cG(t0).

The expected duration of one cycle is given by

μ f +
t0∫

0

G(t)dt + LG(t0).

The total expected cost per unit time in the steady-state(expected cost rate) is ,

TC p1(t0) = (k + er )
∫ t0

0 G(t)dt + (c + kL)G(t0)

μ f + ∫ t0
0 G(t)dt + LG(t0)

(1)

Two special cases are the following

TC p1(0) = c + kL

μ f + L
, TC p1(∞) = (k + er )μr

μ f + μr
.

Theorem 1: Suppose that er L < c.

(1) If the repair-time distribution G(t) is increasing hazard rate (IHR), the optimal
repair-time limit is 0 (always repair case) or infinite (always ordering case).

(2) If the repair-time distribution G(t) is strictly decreasing hazard rate (DHR), there
exists a finite and unique optimal repair-time limit t∗01(0 < t∗01 < ∞) under some
conditions (refer to Dohi and Kaio [5]) and the corresponding minimum expected
cost rate is given by

TC p1(t
∗
01) = er + k − (kL + c)r(t∗01)

1 − Lr(t∗01)
(2)

Theorem 1 gives a sufficient condition for existence of the finite and unique
optimal repair time limit. As a special case (L=0), Eq. 1 is equal to the expected cost
rate in Nakagawa and Osaki [40].
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2.2 Perfect Information Case

In this subsection, we assume that we can estimate the repair time perfectly. When
the system is failed, the repair time can be estimated and known. In this case, we
consider the following repair and replacement policy. If the estimated repair time is
less than t0, we start to repair the failed system. Otherwise, we order a new unit and
replace the system after the unit is delivered after a lead time. Then

(1) The expected cost of a renewal cycle is

er

t0∫

0

tdG(t)+ k

⎧
⎨

⎩

t0∫

0

tdG(t)+ LG(t0)

⎫
⎬

⎭
+ cG(t0).

(2) The expected duration of one cycle is given by

μ f +
t0∫

0

tdG(t)+ LG(t0).

Then, the expected cost rate is

TC p2(t0) = (er + k)
∫ t0

0 tdG(t)+ (c + kL)G(t0)

μ f + ∫ t0
0 tdG(t)+ LG(t0)

(3)

In a similar way in Theorem 1, we can obtain the optimal repair-time limit t∗02. If
there exists a finite and unique optimal repair-time limit t∗02(0 < t∗02 < ∞), the
corresponding minimum expected cost rate is given by

TC p2(t
∗
02) = (er + k)t∗02 − (kL + c)

t∗02 − L
(4)

The optimal cost rate (4) with perfect information of repair times is not greater than
one without information. The difference between Eqs. 2 and 4 is the expected value
of perfect information per unit time (EVPI) and

EVPI = TC p2(t
∗
02)− TC p1(t

∗
01)

= er + k − (kL + c)r(t∗01)

1 − Lr(t∗01)
− (er + k)t∗02 − (kL + c)

t∗02 − L
(5)

Thus, the cost to get the perfect information should be less than EVPI to use the
perfect information.
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2.3 Partial Information Case

In this subsection, we assume that we can estimate the actual repair time Ta but
there is the estimation error in repair-time estimation. Once the machine is failed
(failure time; X), we can estimate the repair time but the estimation error occurs. If
the estimated repair time is greater than a pre-specified limit t0, then we order a new
unit. After the new unit is delivered after the lead time L, the failed unit is replaced
by the new one and the machine starts operating at time t = X + L again, where
the replacement time can be negligible. Otherwise we repair the failed part and the
machine operates at t = X + Ta . In case that the actual repair time is less than t0
but the repair time is estimated greater thant0, a replacement is carried out. In the
reverse case, a repair is performed over t0. After the completion of repair operation,
the repaired part becomes as good as new (perfect repair). Thus, the time interval
from the start of operation to the next starting point can be defined as one cycle. The
estimated repair time, Te is a function of the actual repair time and estimation error,
i.e., Te = Ta + ε. Given the actual repair time Ta = t , the estimated repair time is
Te|t , whose conditional probability density function is denoted as h(u|t).

To obtain the expected duration of a renewal cycle, we first consider conditional
expected duration and cost, and then obtain the unconditional ones. If the actual repair
time is given as t, then the estimated value of repair time for a given actual repair
time is a random variable with conditional distribution function, Pr{Te ≤ y |Ta =
t} = ∫ y

−∞ h(u |t )du = H(y |t ). Since the starting point of machine operation can
be regarded as a renewal point, the expected duration of a renewal cycle for a given
actual repair time is given by

μ f + t H(t0 |t )+ L H(t0 |t )

Also, the expected cost of a renewal cycle for a given actual repair time becomes

(e1 + k)t H(t0 |t )+ (kL + c)H(t0 |t)

Thus, the unconditioned expected duration and cost of a renewal cycle are given by

TL1(t0) = μ f +
∫ ∞

0

[
t H(t0 |t )+ H(t0 |t )L]

dG(t)

= μ f + L +
∫ ∞

0
(t − L)H(t0 |t )dG(t) (6)

VL1(t0) =
∫ ∞

0

[
(er + k)t H (t0 |t )+ (kL + c)H(t0 |t) ]dG(t)

= (kL + c)+
∫ ∞

0
[(er + k)t − (kL + c)] H(t0 |t )dG(t)



Repair-Time Limit Replacement Policies 107

From the renewal reward argument, the expected cost rate is given by TC p3(t0)=VL1
(t0)/TL1(t0). The problem is to derive the optimal repair-time limit, t∗03 satisfying

TC p3
(
t03

∗) = max
0≤t0<∞ TC p3 (t0) . (7)

In general case, it is difficult to obtain analytically the optimal solutions of the Eq. 7.
We consider a special case where the expected cost rate over an infinite time horizon
can be derived as a closed form. The estimated repair time, Te is a function of the actual
repair time and estimation error, i.e., Te = Ta +ε where the estimation error assumed
to be an independent and normally distributed random variable with mean 0 and
variance σ 2

e . We also assume that given the actual repair time Ta = t , the estimated
repair time Te|t , has an independent identical normal distribution with mean t and
variance σ 2

e , i.e. Te|t∼N(t,σ 2
e). This assumption is reasonable in practice, as first

the estimated repair times are usually symmetrically distributed around the actual
repair time t and second the estimated repair times are typically accurate enough to
be close to the actual repair time with higher probability. Second, the actual repair
times are assumed to be independent and follow approximately a normal distribution.
In addition, we assume that the probability that the repair time has negative value is
too small and can be negligible. Thus, the actual repair time, Ta follows a normal
distribution with mean, μa and variance, σ 2

a . To obtain the expected cost rate we use
the following results;

(1)
∫ ∞
−∞ H(t0 |t) dG (t) = �(

t0−μa√
σ 2

a +σ 2
e
)

(2) When U ∼ N (μa, σ
2
a + σ 2

e ), m(t) = ∫ t0
−∞ ug(u)du = μa�(

t0−μa√
σ 2

a +σ 2
e
) −

√
σ 2

a + σ 2
e φ(

t0−μa√
σ 2

a +σ 2
e
)

(3)
∫ ∞
−∞ t H(t0 |t )dG(t) = μa�(

t0−μa√
σ 2

a +σ 2
e
)− σ 2

a√
σ 2

a +σ 2
e
φ(

t0−μa√
σ 2

a +σ 2
e
)

The expected duration and cost of a renewal cycle are given by

TL1(t0) = μ f + L + (μa − L)�(
t0 − μa√
σ 2

a + σ 2
e

)− σ 2
a√

σ 2
a + σ 2

e

φ(
t0 − μa√
σ 2

a + σ 2
e

)

VL1(t0) = (kL + c)− (kL + c − (e1 + k)μa)�(
t0 − μa√
σ 2

a + σ 2
e

)− (e1 + k)σ 2
a√

σ 2
a + σ 2

e

φ(
t0 − μa√
σ 2

a + σ 2
e

)

For detail derivation, refer Kim and Yun [31]. It is difficult to obtain the optimal
repair time limit to minimize the expected cost rate but we can find the approximate
optimal solutions numerically.
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3 Imperfect Repair Models

In Sect. 2, we studied perfect repair models and in this section we consider imperfect
repair models. When the unit fails, then we should determine to start repair or to
order new unit. The mean failure times after repair and replacement are μ f and μir ,
respectively. If the new one unit is ordered, then it is delivered after the lead time L.
it is assumed that the replacement time is negligible.

3.1 No Information Case

In this subsection, we assume that we have no information about repair time and
we know only general information (distribution function of repair time) about repair
time. When the unit fails, the repair is started immediately. If the repair is completed
within the repair-time limit t0, then the unit start to operate again. On the other hand,
if the repair is not completed after the time t0, then the failed unit is scrapped, and the
new unit is ordered immediately. For this repair-time limit model, the total expected
cost for one cycle is given as follows;

The expected repair cost is er

{∫ t0
0 tdG(t)+ t0G(t0)

}
= er

∫ t0
0 G(t)dt

The expected shortage cost is k
{∫ t0

0 tdG(t)+ (t0 + L)G(t0)
}

= k
{∫ t0

0 G(t)dt+
LG(t0)

}

The expected ordering cost is cG(t0).
The expected duration of one cycle is given by

∫ t0

0
(μir + t)dG(t)+

∫ ∞

t0
(μ f + t0 + L)dG(t) = μir

+
∫ t0

0
G(t)dt + (L + μ f − μir )G(t0).

The expected cost rate is,

TC p4(t0) = (k + er )
∫ t0

0 G(t)dt + (c + kL)G(t0)

μir + ∫ t0
0 G(t)dt + (L + μ f − μir )G(t0)

. (8)

Theorem 2: Suppose that er L + (k + er )(μr − μi p) < c.

(3) If the repair-time distribution G(t) is IHR, the optimal repair-time limit is 0
(always repair case) or infinite (always ordering case).

(4) If the repair-time distribution G(t) is strictly DHR, there exists a finite and unique
optimal repair-time limit t∗04(0 < t∗04 < ∞) under some conditions(refer to Dohi
and Kaio [5]) and the corresponding minimum expected cost rate is given by



Repair-Time Limit Replacement Policies 109

TC p4(t
∗
04) = (er + k)− (kL + c)r(t∗04)

1 − (L + μr − μir )r(t∗04)
(9)

From Eqs. 2 and 9, the expected profit of perfect repair per unit time is given by

EPPR = TC p4(t
∗
04)− TC p1(t

∗
01)

= (er + k)− (kL + c)r(t∗04)

1 − (L + μr − μir )r(t∗04)
− er + k − (kL + c)r(t∗01)

1 − Lr(t∗01)

3.2 Perfect Information Case

In this subsection, we assume that we can estimate the repair times perfectly. Thus
if the system is failed, we estimate the repair time. If the estimated time is less than
t0, we repair the failed system. Otherwise, we order the new unit and replace the
system. Then, the expected cost of a renewal cycle is

er

∫ t0

0
G(t)dt + k

{∫ t0

0
tdG(t)+ LG(t0)

}
+ cG(t0)

The expected duration of one cycle is given by

μ f +
∫ t0

0
tdG(t)+ LG(t0)

Then, the expected cost rate is

TC p5(t0) = (er + k)
∫ t0

0 tdG(t)+ (c + kL)G(t0)

μir + ∫ t0
0 tdG(t)+ (L + μr − μir )G(t0)

. (10)

In a similar way in Theorem 2, we can obtain the optimal repair-time limit t∗05.
If there exists a finite and unique optimal repair-time limit t∗05(0 < t∗05 < ∞), the
corresponding minimum expected cost rate is given by

TC p5(t
∗
05) = (er + k)t∗05 − (kL + c)

t∗05 − (L + μr − μir )
. (11)

3.3 Partial Information Case

In this subsection, we consider the imperfect repair model and all assumptions about
partial information in repair estimation are same as in Sect. 2.3. Once the machine is
failed, we estimate the repair time but the estimation error occurs. If the estimated
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imperfect repair time is greater than a pre-specified limit t0, then we order a new
unit. After the new unit is delivered after the lead time L, the failed part is replaced
by the new one and the machine starts operating at time again. Otherwise we repair
the failed part and the machine operates after imperfect repair.

The expected duration of a renewal cycle for a given actual repair time is given
by

(t + μir )H(t0 |t )+ (L + μ f )H(t0 |t ).

Also, the expected cost of a renewal cycle for a given actual repair time is same as

(e1 + k)t H(t0 |t )+ (kL + c)H(t0 |t).

Thus the unconditioned expected duration and cost of a renewal cycle are given by

TL2(t0) =
∫ ∞

0

[
(t + μir )H(t0 |t )+ (L + μ f )H(t0 |t )]dG(t)

= μ f + L +
∫ ∞

0
(t + μir − L − μ f )H(t0 |t )dG(t) (12)

VL2(t0) =
∫ ∞

0

[
(e1 + k)t H (t0 |t )+ (kL + c)H(t0 |t) ]dG(t)

= (kL + c)+
∫ ∞

0
[(e1 + k)t − (kL + c)] H(t0 |t )dG(t).

From the renewal reward argument, the expected cost rate is given by TC p6(t0)=VL2
(t0)/TL2(t0). The problem is to derive the optimal repair-time limit, t∗06 satisfying

TC p6
(
t06

∗) = max
0≤t0<∞ TC p6 (t0) (13)

As special cases, we can obtain the closed form of the expected cost rate and find
the optimal solution numerically.

4 Miscellaneous Models

In this section, we consider some extended and modified models in repair-time limit
problems. In particular, some studies consider different optimization criteria from the
expected cost rate. Stochastic profit and discounting models are derived in Sects. 4.1
and 4.2. Most of existing models in repair-time limit problems consider the ordering
option after failure. In Sect. 4.3, we consider a simple preventive ordering model.
Finally, we review simply the estimation problem of model parameters.
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4.1 Profit Models

In Sect. 3, we considered three cost terms (repair, shortage, and ordering costs) to
determine the optimal repair-time limit. In this subsection, we consider earning rate
during operating period and derive the expected profit models.

Perfect Repair Case

In this subsection, we consider an expected profit model with perfect repair and all
model assumptions are same as in Sect. 2.1 The total profit for a cycle consists of the
expected repair cost and total earning amount. The expected cost is same as

(k + er )

∫ t0

0
G(t)dt + (c + kL)G(t0).

The total earning amount for a cycle is μ f e0.
The expected duration of one cycle is same as

μ f +
∫ t0

0
G(t)dt + LG(t0).

The total expected profit per unit time in the steady-state is,

TP p1(t0) = μ f e0 − (k + er )
∫ t0

0 G(t)dt − (c + kL)G(t0)

μ f + ∫ t0
0 G(t)dt + LG(t0)

. (14)

In a similar way in Theorem 1, we can obtain the optimal repair-time limit t∗07.
If there exists a finite and unique optimal repair-time limit t∗07(0 < t∗07 < ∞), the
corresponding minimum expected profit per unit time is given by

TP p1(t
∗
07) = −(er + k)+ (kL + c)r(t∗07)

1 − Lr(t∗07)
(15)

As a similar model, the expected profit model with perfect repair and perfect infor-
mation is studied in Dohi et al. [12].

Imperfect Repair Case

In this subsection, we consider an expected profit model with imperfect repair and
all model assumptions are same as in Sect. 3.1 The total profit for a cycle consists of
the expected repair cost and total earning amount. The expected cost is same as

(k + er )

∫ t0

0
G(t)dt + (c + kL)G(t0).
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The total earning amount for a cycle is
(
e0

(
μir G(t0)+ μ f G(t0)

))
.

The expected duration of one cycle is same as

μir +
∫ t0

0
G(t)dt + (L − μ f − μir )G(t0).

The total expected profit per unit time in the steady-state is,

TP p2(t0) = e0μ f − (k + er )
∫ t0

0 G(t)dt − (e0(μ f − μir )+ c + kL)G(t0)

μir + ∫ t0
0 G(t)dt + (L + μ f − μir )G(t0)

(16)

In a similar way in Theorem 2, we can obtain the optimal repair-time limit t∗08.
If there exists a finite and unique optimal repair-time limit t∗08(0 < t∗08 < ∞), the
corresponding minimum expected profit per unit time is given by

TP p2(t
∗
08) = −(er + k)+ (

e0(μ f − μir )+ kL + c
)

r(t∗08)

1 − (L + μir − μ f )r(t∗08)
(17)

As a similar model, the expected profit model with imperfect repair and perfect
information is studied in Dohi et al. [4].

Partial Information Model

In this subsection, we consider an expected profit model with perfect repair and all
model assumptions are same as in Sect. 2.3 The expected profit for a cycle consists
of the expected cost for a cycle and total earning amount. Thus, the unconditioned
expected duration and profit of a renewal cycle are given by

TL3(t0) = μ f +
∫ ∞

−∞
[
t H(t0 |t )+ H(t0 |t )L]

dG(t)

= μ f + L +
∫ ∞

−∞
(t − L)H(t0 |t )dG(t) (18)

VL3(t0) = e0μ f −
∫ ∞

−∞
[
(er + k)t H (t0 |t )+ (kL + c)H(t0 |t) ]dG(t)

= e0μ f − (kL + c)−
∫ ∞

−∞
[(er + k)t − (kL + c)] H(t0 |t )dG(t)

From the renewal reward argument, the expected profit per unit time is given by

TP p3
(
t09

∗) = max
0≤t0<∞ TP p3 (t0) = VL3(t0)

L L3(t0)
. (19)
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As special cases, we can obtain the closed form of the long-run average profit function
by similar way in Sect. 2.3

4.2 Discounting Models

In this subsection, we consider some typical cases in which the cost is discounted
with the discount rate over an infinite horizon.

Perfect Repair Model

The perfect repair model in Sect. 2.1 is studied again but we consider the repair-limit
replacement problem under discounted cost criterion. The present value of a unit
cost for one cycle is

δ1(t0) =
∫ ∞

0

∫ t0

0
e−β(t+x)dG(t)d F(t)+

∫ ∞

0

∫ ∞

t0
e−β(t+x+L)dG(t)d F(t).

The expected total discounted cost for one cycle is

V1(t0) =
∫ ∞

0

∫ t0

0

∫ t

0
cr e−β(t+x)dydG(t)d F(t)

+
∫ ∞

0

∫ ∞

t0

∫ t0

0
cr e−β(t+x)dydG(t)d F(t)

+
∫ ∞

0

∫ t0

0

∫ t

0
ke−β(t+x)dydG(t)d F(t)

+
∫ ∞

0

∫ ∞

t0

∫ t0+L

0
ke−β(t+x)dydG(t)d F(t)

+
∫ ∞

0

∫ ∞

t0
ce−β(t0+x+L)dG(t)d F(t)

Then the expected total discounted cost for an infinite time horizon is given by

TDC1(t0) =
∞∑

n=0

V1(t0)δ1(t0)
n = V1(t0)

δ(t0)
(20)

Thus, we should obtain the optimal repair-time limit minimizing the Eq. 20.

Theorem 3: Suppose thater
∫ L

0 e−βt dt < ce−βL .
If the repair-time distribution G(t) is IHR, the optimal repair-time limit is 0

(always repair case) or infinite (always ordering case).
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If the repair-time distribution G(t) is strictly DHR, there exists a finite and unique
optimal repair-time limit t∗010(0 < t∗010 < ∞) under some conditions(refer to Dohi
and Kaio [5]) and the corresponding minimum total discounted cost is given by

TDC1(t
∗
010) = er + k − k

β
(1 − e−βL)

(
β + r(t∗010)

)

(
β + r(t∗010)

)
e−βL − r(t∗010)

(21)

Theorem 3 gives a sufficient condition for existence of the finite and unique optimal
repair-time limit.

Imperfect Repair Model

In this subsection, we formulate the imperfect repair model with discounting under
the expected total discounted cost over an infinite time horizon. The present value of
a unit cost for one cycle is

δ2(t0) =
∫ t0

0

∫ ∞

0
e−β(t+x)d Fir (x)dG(t)+

∫ ∞

t0

∫ ∞

0
e−β(t0+x+L)d F(x)dG(t)

The expected total discounted cost is given by

V2(t0) =
∫ t0

0

∫ t

0
(cr + k)e−βx dxdG(t)+

∫ ∞

t0

∫ t0

0
(cr + k)e−βx dxdG(t)

+ G(t0)

[∫ L

0
ke−β(t0+x)dx + ce−β(t0+L)

]

Then the expected total discounted cost for an infinite time horizon is given by

TDC2(t0) =
∞∑

n=0

V2(t0)δ2(t0)
n = V2(t0)

δ2(t0)
(22)

Thus, we obtain the optimal repair-time limit minimizing the Eq. 22.

Theorem 4: Suppose that

(er + k)e−βL [
∫ ∞

0
e−βt d F(t)−

∫ ∞

0
e−βt d Fir (t)]

− er [1 − e−βL ]
∫ ∞

0
e−βt d Fir (t)+ cβe−βL

∫ ∞

0
e−βt d Fir (t) > 0

(1) If the repair-time distribution G(t) is IHR, the optimal repair time limit is 0
(always repair case) or infinite (always ordering case).
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(2) If the repair-time distribution G(t) is strictly DHR, there exists a finite and unique
optimal repair-time limit t∗011(0 < t∗011 < ∞) under some conditions(refer Dohi
and Kaio [5]) and the corresponding minimum total discounted cost is given by

TDC2(t
∗
011) = er + ke−βL − k

β

(
1 − e−βL

)
r(t∗011)− ce−βL

[
β + r(t∗011)

]

∫ ∞
0 e−βt d F(t)e−βL

[
β + r(t∗011)

] − ∫ ∞
0 e−βt d Fir (t)r(t∗011)

(23)

Theorem 4 gives a sufficient condition for existence of the finite and unique
optimal repair-time limit.

Partial Information Case

We consider the partial information case where the profit is discounted with the
discount rate β over an infinite time horizon. To find the expected total discounted
cost over an infinite time horizon, we obtain the expected total discounted cost during
one cycle firstly. Then, the expected total discounted cost during one cycle is given by

V3(t0) =
∫ ∞

0

∫ ∞

0
[H(t0

∣∣∣
∣t)

∫ t

0
(er + k)e−β(x+y)dy

+ H(t0

∣∣∣∣t)[ce−β(x+L) +
∫ L

0
ke−β(x+y)dy ]]dG(t)d F(x)

= 1

β

∫ ∞

0
e−βx [

∫ ∞

0
[H(t0

∣∣t)(er + k)(1 − e−βt )

+ H(t0
∣∣∣t)[cβe−βL + k(1 − e−βL )]dG(t)]d F(x)]

Since the expected present value of the unit cost just after one cycle is given by

δ3(t0) =
∫ ∞

0

∫ ∞

0
[H(t0

∣
∣∣t)e−β(x+t) + H t0

∣
∣∣t)e−β(x+L) ]dG(t)d F(x)

=
∫ ∞

0
e−βx [

∫ ∞

0
[H(t0

∣∣t)e−βt + H( t0
∣∣∣t)e−βL ]dG(t)]d F(x).

Thus the expected total discounted cost over an infinite time horizon becomes

TDC3(t0) =
∞∑

j=0

V3(t0)δ3(t0)
j = V3(t0)

δ3(t0)
(24)

The problem is to derive the optimal repair-time limit, t∗012 satisfying

TDC3
(
t∗012

) = max
0≤t0<∞ TDC3 (t0) . (25)
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As a special case, all model assumptions are same as in Sect. 2.3 We also assume
that the failure time follows an exponential distribution with rate λ=1/μ f . Using the
below result,

∫ ∞

−∞
e−βt H(t0 |t )dG(t) = exp

[
−2βμa − β2σ 2

a

2

]
�

(
t0 − (μa − βσ 2

a )√
(σ 2

a + σ 2
e )

)

The expected total discounted cost during one cycle and the expected present
value of the unit cost just after one cycle are given by

βVD(t0) =
∫ ∞

0
e−βx

[
(er + k)

[
�

(
t0 − μa√
σ 2

a + σ 2
e

)

− exp

[
− 2βμa − σ 2

a β
2

2

]
�

(
t0 − (μa − σ 2

e β)√
(σ 2

e + σ 2
a )

)]

+
[

cβe−βL + k(1 − e−βL)

][
1 −�(

t0 − μa√
σ 2

a + σ 2
e

)

]]
d F(x)

=
[
(er + k)

[
�

(
t0 − μa√
σ 2

a + σ 2
e

)

− exp

[
− 2βμa − σ 2

a β
2

2

]
�

(
t0 − (μa − σ 2

a β)√
(σ 2

e + σ 2
a )

)]

+ [cβe−βL + k(1 − e−βL)]
[

1 −�

(
t0 − μa√
σ 2

a + σ 2
e

)]]
λ

λ+ β

δ(t0) =
∫ ∞

0

∫ ∞

0

[
H(t0

∣
∣∣t)e−β(x+t) + H( t0

∣
∣∣t)e−β(x+L)

]
dG(t)d F(x)

=
[

exp

[
− 2βμa − σ 2

a β
2

2

]
�

(
t0 − (μa − σ 2

a β)√
(σ 2

e + σ 2
a )

)

+ e−βL
(

1 −�(
t0 − μa√
σ 2

a + σ 2
e

)]
λ

λ+ β

For detail derivation, refer Kim and Yun [31]. Thus, we can obtain the closed form
of the expected total discounted profit over an infinite time horizon.

4.3 Preventive Order Model

In previous models, after the system is failed, we consider whether to order or repair.
In this subsection, we consider a preventive order of a new unit before failure. If the
system does not fail up to a pre-specified time Z, the order for a spare is made at the
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time Z and after a lead time L the spare unit is delivered. In this case, if the unit fails
after Z, we replace the unit by the spare unit delivered. On the other hand, if the unit
is failed before Z, the repair is started immediately. If the repair is completed up to
the time limit for repairt0(repair time limit), then the unit is installed at that time. It
is assumed that the unit once repaired is presumed as good as new (perfect repair).
However, if the repair time is greater than t0, i.e. the repair is not completed after the
time t0, then the failed unit is scrapped, and the spare unit is ordered immediately and
delivered after the lead time L. It is assumed that the time required for replacement
is negligible. Under these model assumptions, we consider the interval from the start
of the operation to the next start as one renewal cycle. The total expected cost for
one cycle is given by the following three costs:

The expected cost of a renewal cycle is

∫ Z

0
[(k + er )

∫ t0

0
G(t)dt + (c + kL)G(t0)]d F(x)

+
∫ Z+L

z
[c + k(Z + L − x)]d F(x)

+
∫ ∞

Z+L
[c + (t − Z − L)h] d F(x).

The expected duration of one cycle is given by

∫ Z

0

[
x +

∫ t0

0
G(t)dt + LG(t0)

]
d F(x)+

∫ Z+L

z
(Z + L)d F(x)+

∫ ∞

Z+L
xd F(x).

The total expected cost rate is given by,

TC p7(t0, Z) =

∫ Z
0

[
(k + er )

∫ t0
0 G(t)dt + (c + kL)G(t0)

]
d F(x)

+ ∫ Z+L
z [c + k(Z + L − x)]d F(x)

+ ∫ ∞
Z+L [c + (t − Z − L)h] d F(x)

μ f + ∫ Z
0

[∫ t0
0 G(t)dt + LG(t0)

]
d F(x)

+ ∫ Z+L
z (Z + L − x)d F(x)

. (26)

Under this model, we should obtain the optimal repair-time limit and ordering
time minimizing the expected cost rate.

Remark: This subsection has dealt with a simple order and repair/replacement prob-
lem. These models can be extended from various viewpoints. Thomas and Osaki [45]
and Dohi et al. [7] presented continuous models with stochastic lead times.
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4.4 Estimation Problem

In repair-time limit models, we should know the distributions of repair, failure distri-
bution, and cost terms to obtain the optimal repair-time limit minimizing the expected
cost rate or maximizing the expected total profit. Accurate statistical estimation of
cost terms and or repair-time distributions is definitely needed to execute the repair-
limit replacement program. Dohi et al. [1–4, 6, 8, 12–15] and Koshimae et al.,
[32] proposed graphic optimization methods and non-parametric estimation meth-
ods in the optimal repair-limit replacement policies. Under the assumption that the
repair-time distribution is unknown but the complete repair data are available, non-
parametric estimators of the optimal repair-time limits or repair-cost limits mini-
mizing the expected cost and profit functions have been obtained. The basic idea
is to utilize the total time on test (TTT) concept and Lorenz transform approach.
TTT transform and plot have been applied to maintenance optimization problems
by some researchers in reliability area (refer Nakagawa[38]) but Lorenz transform
approach has been used to optimize the repair-time limits recently by Dohi et al. [3,
9, 12, 13]. Additionally, the graphical methods and non-parametric estimation with
the complete repair data showed that the resulting estimator were strongly consistent,
i.e., the estimates asymptotically approach to the real (but unknown) optimal solu-
tions as the number of failure data increases. The property on consistency seems to
be very attractive because it is not so easy to guarantee the goodness-of-fit of prob-
ability distributions estimated from the field data. In other words, engineers may
skip statistical procedures of parameter estimation, goodness-of-fit test, etc., if the
resulting estimate of the optimal repair-limit replacement policy is satisfactory. Dohi
et al., [1–3, 6, 8, 14] and Koshimae et al., [32] investigated asymptotic properties
of the estimated repair-limit replacement policies through Monte Carlo simulations
and showed that the reasonable data size such as 30–50 was enough to estimate the
minimum expected cost with higher accuracy.

5 Conclusions

In this chapter, we have reviewed repair-time limit replacement problems. In repair-
time limit models, we have two options to recover the system failure; repair and
replacement. The repair time is a random variable but the replacement time with a
new unit is negligible. The new unit should be ordered and is delivered after a lead
time L. If a system fails, we should decide to start to repair or to order a new unit.
Based on the available information of repair times, we can choose one among repair
and replacement options and we estimate the repair time to recover the system failure.
If the estimated repair time is less than the pre-specified limit, then we start to repair
the failed system. Otherwise we order the new item and finally replace the system.
We considered three models based on available information amount (no, perfect
and partial information) and two types of repair (perfect and imperfect repairs).
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As modified models, profit and discounting models were also reviewed. Additionally,
an ordering model with inventory cost was studied. Finally, we discussed estimation
problems. For further studies, the following topics will be promising ones in repair-
time limit models;

(1) Repair-time limit models with different repair types: we can consider minimal
repair or other imperfect repair models, for example, age reduction and failure
reduction models (refer Nakagawa [38] and Wang and Pham [46]).

(2) Repair-time limit models with preventive maintenance: age-based preventive
maintenance (PM) can be also made before failure and PM interval will be also
another decision variable (refer Kapur et al. [30], Wang and Pham [46]).

(3) Repair-time limit models with finite time horizon: We can study the repair-time
limit optimization problems with finite or random time horizon (refer Nakagawa
and Mizutani [39]).

(4) Integrated models with repair time and cost limits: Repair time and cost limits
can be determined to minimize the expected cost rate together.

(5) Repair-time limit models with general inventory policies: General inventory
policies, for example, (Q,r) policy, can be applied to the repair-time limit models
(refer Dohi et al. [16]).
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Repair Strategies in an Uncertain Environment:
Stochastic Game Approach

Y.-H. Kim and Lyn C. Thomas

Abstract This chapter deals with Repair strategies for stand-by equipment which
maximises the time until failure when there is a vital need for the equipment, and it
is unable to respond. We model conflict situations where the operating environment
is controlled by an opponent. We develop stochastic game models to determine the
form of the optimal Maintenance/Repair policy under these conditions and present
numerical examples.

1 Introduction

A cold stand-by redundancy is where a unit is only brought into operation when
there is a vital need for it. Hospital emergency power supplies, emergency response
vehicles, and many military weapon systems are typical examples of standby unit.
The cost of such failures is large compared with all other costs and so a cost criterion is
inappropriate. Instead, we maximise the time until a catastrophic event occurs (when
the equipment is needed and is unable to function) for a standby unit in an uncertain
environment. The uncertainty in the environment is reflected in the frequency with
which initiating events (to which the equipment needs to respond) occur. In other
research, changes in the environment and hence the frequency of the initiating events
were modelled as a random process ([7]), but here the environment is controlled by
an opponent and so the solution is modelled as a stochastic game.

When on duty in peace keeping roles countering terrorist threats, troops and their
equipment cannot remain on perpetual standby. The troops have to be given rest
and relaxation, and even if replaced by other forces there will be a learning period
when the new forces will not be able to respond as rapidly as their predecessors.
The equipment has to receive regular maintenance, and where appropriate, repair.
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The terrorists or warring parties wish to initiate events which will require the troops
or equipment to respond. It is assumed that the readiness of the terrorists to initiate
events in the next period of time is partially known by the authorities and is reflected
in their state of alertness level (such as the U.S. DEFCOM levels). The terrorist
player decides how active they will be in the next period, which then determines the
alertness level. This is equivalent to saying that the terrorist player chooses what the
alertness level will be. One also assumes that the terrorists have a good knowledge
of the state of the standby “equipment” or troops, both by calculating how long they
have been on standby and also by open or clandestine inspection of the equipment.
This is then a maintenance model involving two players and such situations can be
modeled as stochastic games.

The literature on Maintenance, Repair and Replacement policies for deteriorating
equipment is long and distinguished. It started with the work of [1], and as the surveys
and bibliographies of Refs. [5, 10, 12, 19, 21, 22, 24] and Wang [25] indicate, it has
continued apace to the present day. Almost all the literature concentrates on policies
which minimise the average discounted cost criterion. The idea of using a catastrophic
event criterion to overcome the problem that failure will result in unquantifiably large
cost was suggested first by Thomas et al. [23], with other instances being considered
by Kim and Thomas [7]. In all these cases, the background environment and hence
the probability of an initiating event is either fixed or follows a random Markovian
process. Other authors such as Refs. [2–4], [9, 20] and [17, 18] have looked at
maintenance in a random environment but in those cases the unit is always in use so
the changes in the environment age the equipment at different rates, but do not affect
when it is needed. Refs. [8, 26–28] and [6] study protective systems, such as circuit
breakers, alarms, and protective relays with non-self-announcing failures where the
rate of deterioration is governed by a random environment. We, on the other hand,
allow the deterioration of the equipment to be independent of the environment, but
the environment affects the need for the equipment. Yeh [29] studied an optimal
maintenance model for a standby system but focused on availability and reliability
as the criteria. Modelling the maintenance process as a game where the opponent
is able to set the environment conditions has not been discussed before. In fact the
application of game theory in the maintenance problem is restricted to warranty
contracts [13, 14]. Here, we model the situation using stochastic games which were
first introduced by Shapley (1953).

It is clear that there has to be some constraint on the activity of the “terrorist”
and hence on the alertness level. Otherwise, the game is trivial—the “terrorist” will
always force the activity level to its highest (most dangerous) state. This then reduces
to a problem with one decision maker and no variation in the external state, which
was the problem considered in [23].

In Sect. 2, we define our notation, set up the basic unconstrained game and confirm
that in such a game it is optimal for the terrorist player to keep the state of alertness at
its highest level. In Sect. 3, we consider the situations where there are constraints on
the frequency with which the terrorist can be sufficiently active to force the alertness
index to its highest level. For ease of notation, we will concentrate on the game where
there are only two alertness states—Peaceful or Dangerous—but the results apply
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in more complicated situations. We investigate two constraints. The first type of
constraint is on the average frequency of dangerous states in the game played so far.
The second constraint discounts the activity of the terrorist, so what he was doing in
the last period is much more important than his activity ( or lack of it) several periods
ago. In Sect. 4, we produce numerical examples and in Sect. 5 we draw conclusions
on how the maintenance/ recuperation strategy depends on the interaction between
the state of the equipment and the alertness level. We believe these models are a
useful step in estimating Repair and Maintenance policies for standby equipment
(and staff) which is used to combat the events initiated by intelligent and malevolent
opponents.

2 Unconstrained Stochastic Game Model

We assume throughout that Player I, is the owner of the standby capability (hereafter
called the equipment) and Player II is the one who seeks to create a catastrophic event–
that is initiates an event to which the equipment fails to respond. The parameters of
the model are

i = 1, 2, . . ., N—the state of the equipment where N is the failed state;
Pi j —probability of equipment moving from state i to state j in one period of time,

if no Repair action is performed.
This is independent of whether it is “used” or not that period. The standby unit

is inspected regularly each period and this gives information on the operational state
of the equipment to Player I. We assume that either through open inspection or by
clandestine means, Player II is also aware of the state of the equipment.

Assume
∑N

j=1 Pi j = 1, PN N = 1 and the Markov chain is such that there exists a
T = min {n ≥ 0; Pn

i N > 0 for all i} so that within T periods, the chance of the equip-
ment failing is positive from all starting states, i.e. (P)Ti N > 0 for all i (equivalent
to mini (P)Ti N = p > 0)..

This ensures that without some maintenance of the equipment it is bound to
fail eventually. The “ordering” of the intermediate states of the equipment reflects
increasing pessimism about their future operability. This corresponds to Pi j satisfying
a first-order stochastic condition namely

∑

j<k

Pi j ≥
∑

j<k

Pi+1, j for all i = 1, . . . , N − 1, k = 1, . . . , N ..

This means if one considers states lower than k to be the “good” ones , one is
more likely to move to a good state from i then from i + 1. The preventive Main-
tenance/Repair action (the former if equipment is in state i = 1, . . ., N − 1, the
latter if the state is N) takes one time period, during which the equipment cannot
be used, if required. Such actions return the equipment to state 1-the good as new
state. The subsequent results also hold if the maintenance action is not perfect, and
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returns the equipment to state i with probability ri , but we will not complicate the
notation by describing this case. a = 1, 2, . . .,M is the level of alertness of Player
I but is really a decision by Player II on how active he intends to be in the next
period. Both sides know that Player I has sufficient information sources to be able to
correctly identify what this activity level will be. When Player II decides on his activ-
ity level, this corresponds to him choosing the “environment” for the next period. ba

is the probability of an initiating event occurring when the environment is a where
b1 ≤ b2 ≤ . . . ≤ bM since the higher the alertness level the more likely that Player
II will seek to initiate an event.

In the basic game, Player I has to decide at each period whether to undertake
preventive Maintenance or Repair on his standby equipment, and Player II has to
decide what the threat level of the environment should be. The game is played repeat-
edly until there is a catastrophic event when Player I cannot respond to an initiating
event either because the equipment is being preventively maintained or because it
has failed. Thus, Player I wants a Repair/Maintenance strategy that maximises the
expected time until a catastrophic event, while Player II wishes to choose effort levels
(environments) to minimise this expected time.

�i , i �= N II
Environmental level 1 Environmental level a Environmental level M

I Do nothing 1 + ∑N
j=1 Pi j� j 1 + ∑N

j=1 Pi j� j 1 + ∑N
j=1 Pi j� j

Repair (1 − b1)(1 + �1) (1 − ba)(1 + �1) (1 − bM )(1 + �1)

(1)

Thus the basic game �) is a two person zero sum stochastic game consisting of
N subgames �i , i = 1, 2, ..N , where �i is the game starting in the situation when
the equipment is in state i. Player I decides whether to perform a maintenance action
or Do Nothing for the next period while Player II decides what the environment will
be. This defines the probability that an initiating event will occur during the period,
and hence if the equipment is down or being repaired, whether there is a catastrophic
event. If the equipment is in state i(�i ) and no maintenance is carried out, it will
move to state j (� j ) for the next period with probability Pi j . The payoff matrix when
the game is in subgame �i is given by

�N II
Environrnental level 1 Environmental level a Environmental level M

Do nothing (1 − b1)(1 + �N ) (1 − ba)(1 + �N ) (1 − bM )(1 + �N )

Repair (1 − b1)(1 + �1) (1 − ba)(1 + �1) (1 − bM )(1 + �1)

(2)

The deterioration assumption guarantees that there is a probability p that the equip-
ment will be down or in repair every T periods. In that period any initiating event
will become a catastrophic event, and the least chance of an initiating event in any
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period is b1. Thus, the time until an initiating event is bounded above by T/bp
1 . So

� is a two person zero-sum stochastic game with a finite number of subgames, each
of which has only a finite number of pure strategies ( 2 × M) and where the total
reward to each player is bounded above. Mertens and Neyman [11] proved that such
games have a solution. The value of the game v(i) starting with equipment in state i
satisfies the following

v(i) = val

[
1 + ∑N

j=1 Pi j v( j) ... 1 + ∑N
j=1 Pi j v( j)

(1 − b1)(1 + v(1)) ... (1 − bM )(1 + v(1))

]
for i �= N (3)

v(N ) = val

[
(1 − b1)(1 + v(N )) ... (1 − bM )(1 + v(N ))
(1 − b1)(1 + v(1)) ... (1 − bM )(1 + v(1))

]
(4)

where val means the value of the game whose payoff matrix follows. Moreover,
this game can be solved using a value iteration approach where the nth iterate vn(i)
(which corresponds to value if only n periods were allowed) satisfies v0(i) = 0 for
all i and then

vn(i) = val

[
1 + ∑N

j=1 Pi j vn−1( j) . . . 1 + ∑N
j=1 Pi j vn−1( j)

(1 − b1)(1 + vn−1(1)) . . . (1 − bM )(1 + vn−1(1))

]
for i �= N

(5)
with a similar equation based on (4) for vn(N ). This allows us to solve the game with
help of the following results.

Theorem 1

(i). vn(i) is non-deceasing in n and non-increasing in i and converges to v(i).
(ii). v(i) is non-increasing in i.

(iii). The optimal strategy in the unconstrained game is: for Player II always to
choose the most dangerous environment ( level M); for Player I to Do Nothing
in states i < i∗, where i∗ ≤ N, and perform maintenance/repair in state i∗ to N.

Proof.

(i). The non-decreasing result in n follows since v1(i) ≥ v0(i) = 0 and then by
induction. Since vn−1(i) ≥ vn−2(i) for all i , the terms in the payoff matrix for
vn(i) are greater than or equal to the terms in the matrix for vn−1(i). Hence
vn(i) ≥ vn−1(i) and the induction step is proved.
Similarly 0 = v0(i + 1) ≤ v0(i) = 0 for all i, so the hypothesis of v(i) non-
increasing in i holds for n = 0. Assume true for vn−1(i) then the stochastic
ordering plus the monotonicity of vn−1(i) implies

∑N
j=1 Pi+1, j vn−1( j) ≤

∑N
j=1 Pi, j vn−1( j). Each entry in (5) of vn(i) is as large if not larger than the

corresponding terms for vn(i + 1), so vn(i + 1) ≤ vn(i) for i = 1, . . . , N − 1.
The same result holds for vn(N ) ≤ vn(N − 1) since for vn(N ) it is clear that
Repair dominates do nothing because vn−1(N ) ≤ vn−1(i). Hence vn(N ) =
min{(1 − b1)(1 + vn−1(i)), (1 − b2)(1 + vn−1(i))} ≤ vn(N − 1) and the
induction step holds.
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(ii). Trivially since vn(i) ≤ vn+1(i), vn(·) converges to v(·) because vn(i) is a
bounded increasing function, bounded above by T/pb1. The monotonicity of
vn(i) then guarantees the monotonicity of v(i).

(iii). Player II’s strategy is obvious since the values for the most dangerous environ-
mental choice (M) always dominates the other strategies. Since v(1) ≥ v(N ),
the repair strategy (for the dangerous environment) is as good if not better than
the do nothing strategy for state N. The monotonicity of v( j) together with the
stochastic ordering of Pi j implies�Pi j v( j) is non-increasing in i and so once
�Pi j v( j) goes below (1 − bM (1 + v(1)) (the definition of i∗ it will remain
below it for all higher states i.

So the unconstrained game is solved by the terrorist player always being at the
highest state of activity. This is both unrealistic and reduces the problem to a single
decision maker problem such as that in [7]. In the next section, we look at a more
realistic assumption, namely that there is some limit on the terrorist’s activity and
hence on the frequency the environment is at its highest danger level. To keep the
situation clear, we will hereafter assume there are only two levels of alertness—which
we will label Dangerous (level 2) and Peaceful (level 1).

3 Models with Constraints on Effort

One reason an enemy cannot continuously create a dangerous environment, is that
it needs time to regroup, plan and rest its forces—which we facetiously describe as
“sleep”. One possible assumption is that in stage n of the game, the enemy can only
have created a dangerous environment for a proportion c of these stages. Thus if it
has created a dangerous situation in d of the n periods that the game has been running,
d ≤ cn then s = cn − d is a measure of the “sleep index”. This “sleep index” relates
to how many consecutive periods of dangerous environment the enemy can create
before it has to rest. If the sleep index is s and at the next period Player II chooses a
Peaceful environment, the index will move to s + c, while if he chooses a dangerous
environment, the index will move to s +c −1 = s − (1−c). In this model, the effect
of the rest induced by a peaceful environment will endure undiminished throughout
all the future. An alternative view is that the c value that the restful period adds to
the “sleep” index should diminish to αc next period, αc2 the period thereafter and
so on. In this case, if the current sleeping index is s, and Player II chooses a Peaceful
environment this period, the index will move to αs + c, while if Player II chooses to
make the environment dangerous the index will move to αs − (1 − c).

We will prove results for the two cases α = 1 (undiscounted) and α < 1 (dis-
counting of the index) in the same model though in the former case the sleep index
could be infinite, while in the latter case it is bounded above by c/(1 −α. In order to
ensure a finite set of subgames, we will always assume in the undiscounted case that
the index cannot exceed S. So the stochastic game � model of this situation consists
of a series of subgame �i,s where i = 1,− − −, N and 0 ≤ s ≤ min S, c/(1 − α).
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Although the sleep index set appears continuous, it is in fact countably infinite, and
in fact finite if only r stages are allowed. If the index starts with s0 then after r stages,
the value can only be αr s0 + c(1 −αr )/(1 −α)− ∑r

i=1 Ziα
r−i where Zi = 1 or 0

depending on where Player II played Dangerous or Peaceful at the i th stage.
Let v(i, s) be the value of the game � starting in �i,s , where the equipment is in

state i and the sleep index is s, then the values satisfy the equations

v(i, s) = val

⎡

⎢
⎣
(1 − δN (i)b1)(1 +

N∑

j=1
Pi j v( j,αs + c)) (1 − δN (i)b2)(1 +

N∑

j=1
Pi j v( j,αs + c − 1))

(1 − b1)(1 + v(1,αs + c)) (1 − b2)(1 + v(1,αs + c − 1))

⎤

⎥
⎦ (6)

where δN (i) = 1 if i = N , 0 otherwise
One can solve this problem as in the previous section using value iteration. The

iterates vn (i, s) satisfy an equation like (6) but with v(i, s) replaced by vn (i, s) on
the left hand side of (6) and v(i, s) replaced by vn−1(i, s) on the right hand side of
(6).

As in Sect. 2, in order to prove results about the optimal policies for the game, �,
one proves results about vn(i, s) and hence v(i, s).

Lemma 1

(i). vn(i, s) is non-deceasing in n and non-increasing in i and s.
(ii). v(i, s) is non-increasing in i and s.

Proof.

(i). All the results follow by induction and the fact that if W1 = val

[
a1 b1
c1 d1

]
and

W2 = val

[
a2 b2
c2 d2

]
then if a1 ≥ a2, b1 ≥ b2, c1 ≥ c2, d1 ≥ d2,W1 ≥ W2.

(ii). Since vn(i, s) is non-deceasing in n and bounded above by T/pb1, then vn(i, s)
is a monotonic bounded sequence and so converges to v(i,s). So the properties,
vn(i + 1, s) ≤ vn(i, s), vn(i, s′) ≤ vn(i, s) if s ≤ s′ hold for the limit function
v(i, s).
This allows one to describe features of the optimal strategies . If the item is
“down (in state N)” then Player I will want to Repair it, while Player II will
want to make the environment dangerous if they can. This ability to make the
environment dangerous can only occur if αs- (1 − c) ≥ 0 or s ≥ (1 − c)/α.
Since if Player II starts with a sleep index of 0, the maximum the index can be
is s < c/(1−α). Player II can only play the Dangerous strategy if c/(1−α) >
(1 − c)/α , i.e. α+ c > 1. So if α+ c ≤ 1, the resultant game becomes trivial
with Player II only able to play Peaceful and the results of the 1-player situation
in [7], holding.
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Theorem 2 Provided α+ c ≥ 1, then in state N

1. if s satisfies s ≥ (1 − c)/α, the optimal strategies are “Repair vs Dangerous”
2. if s satisfies s < (1 − c)/α , the optimal strategies are “Repair vs Peaceful”

Proof. The payoff matrix in the subgame �N ,s is

�N ,s Making peaceful situation Making dangerous situation
Do nothing (1 − b1)(1 + v(N ,αs + c)) (1 − b2)(1 + v(N ,αs + c − 1))
Repair (1 − b1)(1 + v(1,αs + c)) (1 − b2)(1 + v(1,αs + c − 1))

Since by Lemma 1, v(N , s) ≤ v(1, s), it is trivial that the Repair strategy dom-
inates the Do Nothing strategy for Player I. If s < (1 − c)/α, then Player II
can only play the Peaceful strategy and so “Repair versus Peaceful” is optimal.
If s ≥ (1 − c)/α, we need to show that it is better for Player II to play Dangerous
than Peaceful at the first occasion the system is in state N. Assume the system is
currently down and let π∗ be the policy that chooses to play “peaceful” at this period
and plays optimally thereafter so vπ

∗
P (N , s) = (1 − b1)(1 + v(1,αs + c)). Let π1 be

the policy that plays “peaceful” in the current period when i = N , and is the same
as π∗ except that at the next down situation it will choose the dangerous environ-
ment. Since playing Dangerous rather than Peaceful cannot increase the time until a
catastrophic event vπ1(N , s) ≤ vπ

∗
P (N , s). Let π2 be the policy that plays Dangerous

now and Peaceful at the next down event, but otherwise chooses the same actions as
π∗. Let K be the expected time between now and the next time when i = N under
π∗. Let T be the expected time from the next time i = N to when a catastrophic event
occurs under the π∗ policy, conditional on there being a next down time when i = N .
Then vπ1(N , s) = (1−b1)(K +(1−b2)T ) > (1−b2)(K +(1−b1)T ) = vπ2(N , s)

If π∗
D is the optimal policy for Player II to play against the optimal policy of Player

I provided he chooses dangerous for his period, then vπ
∗
D (N , s) ≤ vπ2(N , s) ≤

vπ1(N , s) ≤ vπ
∗
P (N , s). So it is best for Player II to choose the “dangerous” envi-

ronment as the best response to Player I’s optimal policy.
If the standby system is working, then one can have any of the four combinations

of pure strategies being chosen or even mixed strategies. What one can show though
is that if the sleeping index is so low, that Player II cannot provoke a dangerous
environment either this period or next period; then Player I will do nothing if the
system is working.

Theorem 3 If s < (1 − αc − c)/α2, then Player I will do nothing in state (i, s)
when i is a working state (i < N ).

Proof. The condition on s means that Player II must let the environment be peaceful
for the next two periods. Consider the possible strategies for Player I over these next
two periods,
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strategy 1 : Repair in both periods
strategy 2 : Repair in period 1 and Do Nothing in period 2
strategy 3 : Do Nothing in period 1 and Repair in period 2

Let W1, W2, W3 be the respective expected times until a catastrophic event if the
optimal policy is used after the first two periods. Then

W1 = (1 − b1)(1 + (1 − b1)+ (1 − b1) v (1,α2s + αc + c)

W2 = (1 − b1)(1 + 1 +
N∑

j=1

Pi j v (1,α2s + αc + c)

W3 = 1 + (1 − b1)+ (1 − b1)+ (1 − b1) v (1,α2s + αc + c)

and trivially W3 ≥ W1and W3 ≥ W2 since v (1, s) ≥ v (j, s) for all j and s. Hence, the
Do Nothing now policy dominates the policies that Repair now and the result holds.

It need not be the case that it is optimal to Do Nothing even if one is in the new
state i = 1 because one may recognise that an opponent has to play peacefully this
period if the sleep index is s where αs + c − 1 < 0. Repairing keeps the item in state
1, while it could degrade under the Do Nothing strategy. This result will be found in
an example in the next section (s = 0.6 in Table 1). Before doing that we will show
that in the undominated case if the system is working, and if s is large enough, then
the players will either play “do nothing” against “peaceful” or they will play mixed
strategies where Player I has a very high chance of playing “do nothing”. To do that,
we need the following limit result.

Lemma 2 In the case α = 1, as s → ∞, vn (i,s) and v(i,s) converge, respectively,
to vn(i) and v(i) where

vn(i) = max

⎧
⎨

⎩
1 +

N∑

j=1

Pi j vn−1( j), (1 − b2)(1 + vn−1(1))

⎫
⎬

⎭

and

v(i) = max

⎧
⎨

⎩
1 +

N∑

j=1

Pi j v( j), (1 − b2)(1 + v(1))

⎫
⎬

⎭

These equations correspond to the situation where Player II is choosing the dan-
gerous environment all the time.

Proof. From Lemma 1, vn (i, s) and v (i, s) are non-increasing sequence in s, and as
they are bounded above, they must converge. In the limit since b1 < b2, Player II’s
Dangerous strategy dominates its Peaceful one, since the payoffs against Do Nothing
are the same, and against repair (1 − b2)(1 + vn−1(1)) < (1 − b1)(1 + vn−1(1)).

We are now in a position to describe what happens in the game when the sleep
index gets very large.
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Theorem 4 In the game withα = 1, if the equipment is in a working state i, then for
any ε > 0, ∃ S so that for s ≥ S, the optimal strategies are either a) Do Nothing versus
Peaceful, or b) mixed strategies where Player I plays Do Nothing with a probability
at least 1 − ε.

Proof. Consider the payoff matrix in the subgame �n
i,s of the game with n periods

to go,

�n
k �=N ,s Making Peaceful Situation Making Dangerous Situation

Do Nothing 1 +
N∑

j=k
Pk j vn−1( j, s + c) : An 1 +

N∑

j=k
Pk j vn−1( j, s + c − 1) : Bn

Repair (1 − b1)(1 + vn−1(1, s + c)) : Cn (1 − b2)(1 + vn−1(1, s + c − 1)) : Dn

and let A, B,C, D be the comparable values in�i,s when vn−1 is replaced by v. From
Lemma 1 and the stochastic ordering property it follows that B > A. We also can
prove B > D. By convergence, we can choose a N and a S so that |vn( j, s)−v( j, s)| <
ε for all j, s if n ≥ N and provided s > S we can choose |v( j, s)− v( j)| < ε for all
j where vn( j) is defined in Lemma 3.2. Then,

1 +
N∑

j=k

Pk j v( j, s) ≥ 1 +
N∑

j=k

Pk j vn+1( j, s)− ε

≥ 1 +
N∑

j=k

Pk j vn+1( j)− 2ε ≥ 1 +
N∑

j=k

Pk j (1 − b2)(1 + vn(1))− 2ε

= 1 + (1 − b2)(1 + vn(1))− 2ε ≥ 1 + (1 − b2)(1 + vn(1, s))− 3ε

≥ 1 + (1 − b2)(1 + v(1, s))− 4ε ≥ (1 − b2)+ (1 − b2)vn(1, s)

provided ε < 1/4

Hence B > D.
If A ≥ C , then the fact B > D, means Do Nothing dominates Repair for Player

I and A < B means that Peaceful dominates Dangerous for Player II. Thus, Do
Nothing versus Peaceful is optimal.

In the case A < C, note that as b2 > b1, then for s large enough C > D since

(1 − b1)(1 + v(1, s + c)) ≥ (1 − b1)(1 + v(1))− ε

≥ (1 − b2)(1 + v(1))+ ε ≥ (1 − b2)(1 + v(1, s + c − 1))

Hence with C > A, C > D, B > A, B > D, the optimal strategy is a mixed

one with Player I playing
(

C−D
C+B−A−D ,

B−A
C+B−A−D

)
. For any δ > 0 choose ε so that

δ > 2ε/(b2 − b1) and ε < b2−b1
2(1−b2)

. Then the convergence of v( j, s) in s means one
can choose a S∗ so for s ≥ S ∗ |v(j, s + c − 1) − v( j, s + c)| < ε for all s,≥ S∗
and all j . For such s
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0 ≤ B − A =
N∑

j=k

Pk j [v( j, s + c − 1)− v( j, s + c)] < ε

C + B − A − D ≥ C − D = [(1 − b1)v(1, s + c)− (1 − b2)v(1, s + c − 1)]
+ b2 − b1 ≥ ((1 − b1)− (1 − b2)v(1, s + c))− (1 − b2)ε+ (b2 − b1)

≥ (b2 − b1)− (1 − b2)ε > (b2 − b1)/2

Then Player I plays Repair with probability

B − A

C + B − A − D
≤ ε

(b2 − b1)/2
< δ

and the result holds.

4 Numerical Examples

The actual policies in specific case can be obtained by value iteration calculations. The
following examples have three equipment states-1 (new), 2 (used) and 3 (failed)—and
doing nothing gives the following transition probabilities,

P =
⎛

⎝
0.3 0.4 0.3
0 0.4 0.6
0 0 1

⎞

⎠

The first examples are the non-discounted cases when α = 1. Assume the con-
straint is that c = 0.3 so Player II can only create a dangerous environment 30 % of
the time.

Tables 1 and 2 give the results in the new state (i = 1) first when b1 = 0.1 and
b2 = 0.5 so there is a large difference between the Peaceful and Dangerous states
(Table 1), and then when b1 = 0.4 and b2 = 0.5 (Table 2) so there is little difference
between the two states. Notice in all cases, Player II can only choose the Peaceful
environment if the sleep index s is less than 0.7. Theorem 3 says that for s < 0.4,
Player I does nothing but notice in Table 1 at s = 0.6; Player I will Repair, even though
(perhaps because) Player II can only ensure a Peaceful environment at this period
but at the next period, could move the environment to the dangerous level.

Looking at Table 1, when the b1, b2 are quite different, the optimal strategies are
mixed as s increases, though Player I’s is getting more and more likely to Do Nothing.
When s is large enough, Theorem 4 applies and in Table 1 an ε mixed strategy is
optimal. In Table 2 when b1, b2 are similar, then Do Nothing versus Peaceful is
optimal at all sleep index values since there is no point in repairing equipment in the
best state since the impact of the environment is so small.
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Table 1 The result for i = 1(new), b1 = 0.1, b2 = 0.5

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.545694 0 7.901159 0 8.545694 DN - P -
0.1 7.991002 0 7.244038 0 7.991002 DN - P -
0.2 7.846352 0 7.063115 0 7.846352 DN - P -
0.3 7.779409 0 7.001468 0 7.779409 DN - P -
0.4 7.049254 0 6.966484 0 7.049254 DN - P -
0.5 6.848216 0 6.845989 0 6.848216 DN - P -
0.6 6.771734 0 6.799698 0 6.799698 - R P -
0.7 6.734876 9.258600 6.745477 4.772648 6.740826 0.44 0.56 0.97 0.03
0.8 6.549694 8.756620 6.663171 4.495315 6.606939 0.5 0.5 0.97 0.03
0.9 6.468176 8.610763 6.599401 4.422995 6.533275 0.5 0.5 0.97 0.03
1.0 6.429325 8.545694 6.562935 4.389533 6.495242 0.51 0.49 0.91 0.09
2.0 5.980036 6.429325 6.257458 3.646075 6.020760 0.85 0.15 0.89 0.11
3.0 5.845124 5.980036 6.152195 3.476366 5.859863 0.95 0.05 0.88 0.12
4.0 5.794211 5.845124 6.111484 3.417886 5.800096 0.98 0.02 0.88 0.12
5.0 5.774245 5.794211 6.095469 3.395269 5.776603 0.99 0.01 0.88 0.12
15.0 5.761531 5.761532 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12
27.0 5.761531 5.761531 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12
35.0 5.761531 5.761531 6.085306 3.380726 5.761531 1 − ε ε 0.88 0.12

i s=0                                                         s=35
1 DN vs P R vs P Mixed (1-ε, ε) vs Mixed
2 DN vs P R vs P Mixed (1-ε, ε) vs Mixed
3 R vs P R vs D

Fig. 1 Simple Form of the Result in Tables 1, 3 and 4

Tables 3 and 4 are the policies for the used and failed states in the case when
b1 = 0.1 and b2 = 0.5 (which are the same parameters as in Table 1 for the new state).
In state 2, one has Do Nothing vs Peaceful for s < 0.4 (no dangerous environments
for at least two periods), then one has Repair vs Peaceful, at 0.4 ≤ s < 0.7. The
mixed strategies are optimal as s increases and as s → ∞ Player I tends to Do
Nothing with probability 1−εwhile Player II tends to (0.62, 0.38). Table 4 confirms
the results of Theorem 2 that when the unit is down it must be repaired and the enemy
will seek to make the environment dangerous if he can.

Figure 1 summarises the results of Tables 1, 3 and 4. If the equipment has failed
one must repair it and the enemy will try to ensure a dangerous environment if
its sleep index is high enough to allow it to. If the equipment is working then for
a low sleep index, the solution is Do Nothing against Peaceful. As the sleep index
increases so the enemy will be able to be dangerous in the next period, the equipment
is repaired ready for that. If the sleep index is high enough that the enemy can ensure
a dangerous environment this period, both sides play a mixed strategy with Player I
more and more likely to Do Nothing and Player II being slightly more likely to play
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Table 2 The result for i = 1 (new, b1 = 0.4, b2 = 0.5)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 6.231987 0 4.212781 0 6.231987 DN - P -
0.1 6.079537 0 4.128808 0 6.079537 DN - P -
0.2 6.036238 0 4.100696 0 6.036238 DN - P -
0.3 6.021390 0 4.090763 0 6.021390 DN - P -
0.4 5.881433 0 4.087023 0 5.881433 DN - P -
0.5 5.834579 0 4.073457 0 5.834579 DN - P -
0.6 5.818203 0 4.066845 0 5.818203 DN - P -
0.7 5.811789 6.394473 4.064020 3.615947 5.811789 DN - P -
0.8 5.789178 6.278914 4.062832 3.539723 5.789178 DN - P -
0.9 5.778158 6.244166 4.060517 3.518074 5.778158 DN - P -
1.0 5.773448 6.231987 4.059103 3.510651 5.773448 DN - P -
2.0 5.761807 5.773448 4.056922 3.382586 5.761807 DN - P -
5.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
15.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
27.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -
35.0 5.761531 5.761531 4.056871 3.380726 5.761531 DN - P -

Table 3 The result for i = 2 (not new, but working)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.312322 - 7.901159 - 8.312322 DN - P -
0.3 7.779409 - 7.001468 - 7.779409 DN - P -
0.4 6.458816 - 6.966484 - 6.966484 - R P -
0.5 6.214748 - 6.845989 - 6.845989 - R P -
0.6 6.138669 - 6.779698 - 6.779698 - R P -
0.7 6.103182 7.065249 6.745477 4.772648 6.488706 0.40 0.60 0.87 0.13
1.0 5.708000 8.312322 6.562935 4.389533 6.174224 0.45 0.55 0.82 0.18
2.0 5.265155 5.708540 6.257458 3.646075 5.409183 0.85 0.15 0.68 0.32
5.0 5.059901 5.079677 6.095469 3.395269 5.067430 0.99 0.01 0.62 0.38
15.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38
27.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38
35.0 5.047299 5.047299 6.085306 3.380726 5.047299 1 − ε ε 0.62 0.38

Dangerous (but is still likely to play Peaceful most of the time because of the “sleep”
restrictions).

Looking at the same problem b1 = 0.1, b2 = 0.5 but in the discounted case with
α= 0.8 and c = 0.4 (not 0.3) leads to Tables 5, 6 and 7.

Again Table 6 confirms the results of Theorem 2, since Player II can only play
Dangerous if s ≥ 0.75, while Table 5 shows as the sleep index increase the strategies
change from Do Nothing versus Peaceful to Repair versus Peaceful and then to mixed
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Table 4 The result for i = 3 (down)

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 7.201043 - 7.901159 - 7.901159 - R P
0.1 7.169558 - 7.244038 - 7.244038 - R P
0.4 5.195171 - 6.966484 - 6.966484 - R P
0.5 4.945585 - 6.845989 - 6.845989 - R P
0.6 4.880504 - 6.779698 - 6.779698 - R P
0.7 4.850395 4.450395 6.745477 4.772648 4.772648 - R D
1.0 4.400580 4.000580 6.562935 4.389533 4.389533 - R D
2.0 4.112814 2.444766 6.257458 3.646075 3.646075 - R D
5.0 3.952436 2.204379 6.095469 3.395269 3.395269 - R D
15.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D
27.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D
35.0 3.942610 2.190339 6.085306 3.380726 3.380726 - R D

Table 5 The result for i = 1 (new), c = 0.4, α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 9.119139 0 8.433221 0 9.119139 DN - P -
0.1 8.499747 0 7.655538 0 8.499747 DN - P -
0.4 8.390626 0 7.551563 0 8.390626 DN - P -
0.5 7.517332 0 7.513618 0 7.517332 DN - P -
0.6 7.390844 0 7.492803 0 7.492803 - R P -
0.7 7.332755 0 7.409354 0 7.409354 - R P -
0.8 7.327393 9.760024 7.403906 5.030051 7.366117 0.49 0.51 0.98 0.02
1.1 7.196503 9.206344 7.263204 4.719848 7.225783 0.56 0.44 0.99 0.01
1.2 7.021900 9.120808 7.231623 4.685983 7.116675 0.55 0.45 0.95 0.05
1.5 6.928468 8.474689 7.122899 4.237344 6.996304 0.65 0.35 0.96 0.04
1.6 6.872290 8.392972 7.038725 4.196486 6.930300 0.65 0.35 0.96 0.04
1.7 6.743334 7.525998 6.983073 4.175824 6.795611 0.78 0.22 0.93 0.07
1.8 6.713779 7.396593 6.963334 4.167040 6.762757 0.80 0.20 0.93 0.07
1.9 6.682847 7.351381 6.944154 4.130449 6.733013 0.81 0.19 0.92 0.08
2.0 6.680185 7.330340 6.942264 4.115207 6.729240 0.81 0.19 0.92 0.08

i S=0                                                     s=2.0
1 DN vs P R vs P Mixed
2 DN vs P R vs P Mixed
3 R vs P R vs D

Fig. 2 Simple form of the result in Table 5, 6 and 7

strategies. Note that 2 is the greatest value the sleep index can be when c = 0.4 and
α = 0.8, and in this case both players are playing a mixed strategy.

The results of Tables 5, 6 and 7 are summarised in Fig. 2. The results are very
similar to the undominated case. The only difference is that because discounting
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Table 6 The result for i = 2 (not new, but working), c = 0.4, α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 8.868031 0 8.433221 0 8.868031 DN - P -
0.1 8.497001 0 7.655538 0 8.497001 DN - P -
0.4 8.390626 0 7.551563 0 8.390626 DN - P -
0.5 6.817920 0 7.513618 0 7.513618 R- P -
0.6 6.611384 0 7.492803 0 7.492803 - R P -
0.7 6.579161 0 7.409354 0 7.409354 - R P -
0.8 6.574326 9.556136 7.403906 5.030051 7.036201 0.44 0.56 0.85 0.15
1.1 6.477364 8.933314 7.263204 4.719848 6.863415 0.51 0.49 0.84 0.16
1.2 6.183837 8.869649 7.231623 4.685983 6.721767 0.49 0.51 0.80 0.20
1.5 6.110053 8.474689 7.122899 4.237344 6.566229 0.55 0.45 0.81 0.19
1.6 6.081463 8.392972 7.038725 4.196486 6.510805 0.55 0.45 0.81 0.19
1.7 5.964562 6.831037 6.983073 4.175824 6.204785 0.76 0.24 0.72 0.28
1.8 5.938792 6.614719 6.963334 4.167040 6.138237 0.81 0.19 0.70 0.30
2.0 5.897602 6.576650 6.942564 4.115207 6.099969 0.81 0.19 0.70 0.30

Table 7 The result for i = 3 (down), c = 0.4,α = 0.8

s Value GV I II
DN vs P DN vs D R vs P R vs D v DN R P D

0.0 7.679899 0 8.433221 0 8.433221 - R P -
0.1 7.647301 0 7.655538 0 7.655538 - R P -
0.4 7.551563 0 7.551563 0 7.551563 - R P -
0.5 5.415381 0 7.513618 0 7.513618 - R P -
0.6 5.154424 0 7.492803 0 7.492803 - R P -
0.7 5.148572 0 7.409353 0 7.409353 - R P -
0.8 5.144705 4.690239 7.403906 5.030051 5.030051 - R - D
1.1 5.105788 4.297863 7.263204 4.719848 4.719848 - R - D
1.2 4.717435 4.267385 7.231623 4.685983 4.685983 - R - D
1.5 4.667655 4.237344 7.122899 4.237344 4.237344 - R - D
1.6 6.872290 4.196486 7.038725 4.196486 4.196486 - R - D
1.7 6.743334 3.017556 6.983073 4.175824 4.175824 - R - D
1.8 6.713779 2.863917 6.963334 4.167040 4.167040 - R - D
2.0 6.680185 2.859057 6.942564 4.115207 4.115207 - R - D

prevents the sleep index getting too large, Player I’s mixed strategy does not tend
to playing “do nothing” almost all the time but goes to a strategy where one does
nothing 80 % of the time.
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5 Conclusion

These models investigate the Maintenance and Repair policy for a standby system
where the environment of when it is needed is controlled by an opponent. The most
obvious context for this problem is the military one either in conventional or peace
keeping roles. It could also apply to emergency services that need to respond to
terrorist threats. We have shown that if there is no limit on resources available to the
“enemy”, then the problem reduces to one with a single decision maker dealing with
a constantly high risk environment. If more realistically the enemy cannot always be
ready to act, but needs time to recuperate, resupply and plan, the situation is much
more complex, both in the situation where the restful periods have a long-term effect
and when this effect is discounted over time.

One interesting feature is that the optimal policies can be mixed so each period
there is a certain probability one should perform maintenance, and a certain probabil-
ity one does nothing. Clearly if there are a number of such standby units, the mixed
policy can translate into what proportion should be given preventive maintenance at
that time. If the difference between the benign and the dangerous environment (b1,
b2) is small, one tends only to perform maintenance when the equipment is close to
failure, but in other situations one will maintain the equipment when it is in a good
state because one feels the environment is likely soon to be dangerous (especially if
the sleep index is high). One always repairs a failed unit, but the “enemy” will seek
to take advantage of the failure by making the environment as dangerous as it can in
those circumstances.

The models introduced in this chapter are the first to address the question of
maintenance in an environment where failure can be catastrophic and where there
is an enemy seeking such catastrophes. Clearly, more sophisticated models can be
developed but we believe this chapter has indicated that one can get useful insights by
addressing the problem as a stochastic game. Moreover, the game theory approach
may be used to model Maintenance and Repair policies for equipment which are
routinely used to deal with threats such as airport passenger and luggage screening
devices.
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Maintenance Modeling and Policies

Yaping Wang and Hoang Pham

Abstract The systems used in production, transportation services, and communica-
tion services constitute the majority part of not only industrial activities but also our
daily life. Most of them have many units or components with various structure that
will degrade with time or usage, and even suffer from a sudden failure due to the ran-
dom shocks. For some systems, such as military systems, aircrafts, and nuclear power
plants, they are of great importance and cannot afford to any failure. A machine in
industrial plant failing to work properly will interpret the whole production assembly
line and cost a large amount of capital and labor, while the failure of the aircraft will
endanger the life of all the passengers. Therefore, maintenance on these systems is
necessary due to the two aspects: (1) prolong the service life of the products; (2)
improve the system reliability to avoid unnecessary failure.

The development of maintenance theory is experiencing a long history:

A. At first, most studies about maintenance are focussed on the repair and replace-
ment. All of the actions are perfect to renew the system as good as new.

B. Then, people think that the system should not be maintained only when the system
fails. As a result, the preventive maintenance come to our attention to consider
the proactive maintenance actions before the system failure.

C. Also, imperfect maintenance including imperfect repair, imperfect monitoring,
and imperfect preventive maintenance becomes a hot issue in maintenance issue.

D. Because system will suffer from more than one failure modes, maintenance
model for deterioration systems, complex systems subject to competing risks,
multi-component systems, or systems with redundancy have been extensively
investigated in the past several decades.

E. Furthermore, the maintenance model only minimizing the cost rate or maximizing
the system availability cannot satisfy the requirements of more and more complex
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maintenance problems in our real life. We need to pay attention to multiattribute
of maintenance issues, including cost, availability, reliability, profit and so on.

F. Many of them also care about the maintenance polices under the warranty.

This chapter aims to provide a literature review on maintenance aspects for various
maintenance models and policies including repair maintenance, age replacement,
block replacement, periodic replacement, imperfect maintenance, preventive main-
tenance, inspection policy, optimal maintenance model for complex systems, multi-
objective maintenance, maintenance policy under warranty, and other related results
on this subject.

1 Repair Maintenance

Delia and Rafael [1] analyze the maintenance policies with two types of repair modes,
including preventive and corrective repairs, and phase-type distributed repair times
for a cold standby system subject to multistage degradation. Delia and Rafael [2]
examine the replacement policy for a Markovian degraded system submitted to inter-
nal or external failures with holding time on various system levels, external repair
time and internal repair time, all of which follow the phase-type distribution. A later
work of Delia and Rafael [3] considers a maintenance model with failure and inspec-
tion following arrival processes and two types of repair modes, minimal and perfect,
distributed as different phase-type distributions for a deteriorating system suffering
from both internal and external failures. Tang and Lam [4] study a δ-shock mainte-
nance model for a deteriorating system with shocks occurring according to a renewal
process, where the interarrival time of shocks follows a Weibull or gamma distribu-
tion. Because the system is deteriorating, the deadlock threshold for the δ-shock is
geometrically nondecreasing after each repair, and the repair time is modulated by
an increasing geometric process.

Finkelstein [5] introduces a generalized Strehler-Mildvan model to estimate the
first passage time of the survival function for the system subject to cumulative damage
due to biological aging and sudden killing event. The asymptotic aging properties for
the repairable system are discussed. Vaurio [6] develops the advanced models to the
general recursive equations for the availability and mission-failure probability of the
standby structure system by considering different durations for testing and repairs,
as well as various failure types, including start-up, standby, and during mission
failures, and two additional human errors. Ram and Singh [7] study the availability,
mean time to failure (MTTF), transition state probability, and cost analysis for the
complex system consisting of two repairable subsystems with "1-out-of-2: F" and
"1-out-of-n: F" structure under the "preemptive-resume repair discipline" by using
Gumbel–Hougaard copula in repair.
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2 Age Replacement

Qian et al. [8] focus on the analysis of maintenance policies for an extended cumu-
lative shock model with shocks occurring at a nonhomogeneous Poisson process.
The system will be maintained when cumulative shock do not exceeds the failure
threshold, repaired when cumulative shock exceeds the threshold, and replaced at
failure N or time T. Jiang and Ji [9] study a multi-attribute value maintenance model
with age replacement policy to consider cost, availability, reliability, and lifetime as
objectives by using weighted average mean method. Pandey et al. [10] considered an
age replacement policy for the gamma deterioration model where the component is
replaced when the system fails or reaches a specific age, whichever occurs first. Sheu
et al. [11] propose an age-dependent replacement policy with two types of failure,
type I failure removed by minimal repairs, and type II failure removed by replace-
ment. The replacement will be performed under three conditions that the number
of type I failure reaches N or at age T or first type II failure happens, whichever
occurs first. Ozekici [12] studies the optimal age repair and replacement policies in
the presence of random environments characterized as the semi-Markov chain, in
which the measurement of the device age in the maintenance analysis is based on
the intrinsic clock but not the real age.

Dayanik and Gurler [13] utilize two adaptive Bayesian decision model with var-
ious levels of information to analyze the optimal age replacement policy for the
maintained system which will suffer from a critical failure with a given probability.
Dekker and Plasmeijer [14] develops an opportunity age replacement policy with
two parameters based on the marginal cost approach by modeling as the regenerative
process: (1) control limit, which indicates the age when replacement is done pre-
ventively; (2) planned replacement time, which indicates the time when replacement
should be done if it has not happened yet.

3 Block Replacement

Nguyen and Murthy [15] put forward a replacement policy combining the repair
limit and block replacement to determine the replacement interval T and the replace-
ment threshold cost x. Murthy [16] extends the block replacement by considering
the penalty cost for the inventory shortage. Marathe and Nair [17] compare two
multistage planned replacement strategies of block replacement and age replace-
ment with the one stage replacement strategy to consider failure cost and economic
gain. Nakagawa and Mizutani [18] extend three usual maintenance models of simple
replacement, block replacement, and periodic replacement from an infinite time span
to a finite time span and also consider the optimal solutions for periodic time and
sequential actions of PM. Sheu [19] derives the expressions of expected long-run
replacement cost rate and total α-discounted cost for a system subject to nonhomo-
geneous Poisson process shock with two failure types, minor failure removed by
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minimal repair or catastrophic failure restored by unscheduled replacement, under
both age replacement and block replacement policies. Satow et al. [20] focus on
a replacement policy for a unit that suffers from cumulative damage due to aging
process and shocks in order to obtain the optimal replacement level k* which mini-
mizes the expected cost rate.

Sheu and Griffith [21] present an extended block replacement policy with two
types of failures, where the maintenance action is decided based on the shock num-
ber upon last replacement. Anisimov [22] studies the asymptotic results of block
replacement policies with periodic inspection for a multi-component system under
fast Markov switches and provides the simplified result for the system with exponen-
tial failures. Scarf and Cavalcante [23] develop a novel hybrid replacement polices
combing the block replacement and age-based inspection maintenance for the series
system consisting of heterogeneous nature components with successive replacement.

4 Periodic Replacement

Nakagawa and Kijima [24] propose a periodic replacement policy with minimal
repair at failure for the cumulative shock model in order to obtain the optimal solution
for the time T*, shock N*, and damage Z* at which time point the replacement is
done. Chaudhuri and Suresh [25] put forward an algorithm based on fuzzy set theory
to develop a periodic replacement maintenance policy with three maintenance action
types of minor, medium, and major to determine the optimal replacement schedule.
Sim and Endrenyi [26] consider a Markov process to model the maintenance policy
with periodically minimal maintenance and major maintenance after a number of
minimal maintenances for a continuously operating system subject to degradation and
Poisson failures. The optimal solution to minimize either cost rate or unavailability is
derived. Because in real world, not only the inspection, repair, and replacement costs
and times, but also the system operating cost, will increase with the system aging,
Chiang and Yuan [27] present a state-dependent maintenance policy Ri, j (T, N , α)
for a continuously deteriorating system subject to degradation and fatal shocks using
a continuous-time Markov process, where T is the system inspection interval, N is
the system boundary for replacement, and α is the probability that repair will restore
the system to a better state.

5 Imperfect Maintenance

Sheu and Chang [28] put forward a generalized extended periodic preventive mainte-
nance in the presence of imperfect maintenance characterized as improvement factor
by effective age and hazard rate distribution for the system with age-dependent failure
type of minor failure and catastrophic failure. Liu and Huang [29] apply the non-
homogeneous continuous time Markov model (NHCTMM) to model the optimal
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replacement policy for the multi-state system with the imperfect maintenance that
utilizes the quasi-renewal process to describe the stochastic behavior of the multi-
state aging element after each imperfect repair. Cassady et al. [30] explore the imper-
fect repair based on the Kijima’s first virtue age model by validating the simulation
results using 23 factorial experiment and converting reliability and maintainability
parameters into coefficients of availability model using metamodels to determine
the optimal replacement interval according to the system average cost. Satow and
Kawai [31] present an imperfect inspection with upper and lower inspection thresh-
old for a bivariate failure distribution. Flammini et al. [32] take into account the
imperfect maintenance for computer systems with N-modular redundant using the
multi-formalism modeling which allows for two independent models: a maintenance
model based on state-based formulism and a failure model based on Bayesian net-
works. You et al. [33] put forward two types of control-limit PM polices of reliability
limit PM (RLPM) policy and hazard rate limit PM policy based on extended pro-
portional hazards model (EPHM) with the joint effects from the imperfect PM and
time-varying operation conditions.

Doyen and Gaudoin [34] introduce two kinds of imperfect repair treatment meth-
ods: one is that upon each repair, the failure intensity is reduced; the other is upon
each repair, the virtual age is reduced. Park et al. [35] present a periodic mainte-
nance policy for a repairable system, where instead of restoring the system level,
the imperfect PM will slow down the system degradation rate while upon each PM
the system hazard rate still increases monotonically. Kallen [36] puts forward an
imperfect maintenance model based on the superposition of renewal processes and
approximate the distribution of inter-repair time. In the model, all of the failure cells
are repaired only when a fraction of cells are damaged. Kahle [37] considers optimal
maintenances with incomplete repair using the treatment in Kijima [38, 39], which
assumes that the imperfect repair will impact the system failure intensity by reducing
the system virtual age. Tsai et al. [40] focus on the optimal preventive maintenance
model combining the minimal repairs for each failures and imperfect maintenance
at some prespecific time for the repairable products and derive the maintenance time
to minimize the total expected cost.

Soro et al. [41] apply the continuous-time Markov chain to model the preventive
maintenance policy for the multi-state system in the presence of imperfect mainte-
nance and minimal repair and evaluate the three performance indicators of reliability
function, production rate, and system availability in the maintenance problem. Wang
et al. [42] combine the imperfect maintenance into the delay time model (DTM)
to model the optimal inspection-maintenance policies of maximizing the long-run
availability by Genetic algorithm (GA). Makis and Jardine [43] consider the optimal
replacement policy for a general model incorporating imperfect repair which will
restore the system to a functioning state just prior to system failure, or "as good as
new" state, or lead to a scrap required for an addition replacement.
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6 Preventive Maintenance

6.1 Condition-Based Maintenance

Compared with the time-based replacement policy, Huynh et al. [44] introduce
a condition-based maintenance model for the degradation-threshold-shock (DTS)
model to take the dependence between degradation process and shock process into
account. Wang et al. [45] consider a novel maintenance model combing the condition-
based replacement, periodical inspections, and (S, s) type provisioning policy, noted
as (T, S, s, Lp) policy, where T denotes the inspection interval, S the maximum
inventory level, s the reorder point, and Lp the replacement threshold. Furthermore,
a simulation model is established to modulate the uncertain deterioration process
and finally the maintenance scheduling is optimized to minimize the cost rate using
genetic algorithm. The study of Camci [46] aims to design a comprehensive main-
tenance tool to combine the corrective maintenance, preventive maintenance, and
condition-based maintenance with regard of prognostic information to balance the
two objectives of cost and availability by using Genetic algorithm. Grall et al. [47]
propose a condition-based maintenance model including both the inspection and
replacement policies based on a multilevel control-limit rule for a stochastically
deteriorating system for the purpose of obtaining the optimal replacement threshold
and inspection scheduling to minimize the long run expected cost.

Van Noortwijk and Frangopol [48] describe two maintenance models of condition-
based maintenance and reliability-based maintenance for the deteriorating civil
infrastructures for the purpose of minimizing the life cycle cost under the constraint of
adequate reliability level. Deloux et al. [49] propose a maintenance policy that com-
bines the statistical process control (SPC) and condition-based maintenance (CBM)
for a continuously deteriorating system with two kinds of failure mechanisms, dete-
riorating and random shocks. The system failure is governed by deteriorating process
as a function of the deterioration level and the system time but an associated fail-
ure acceleration factor due to stress is taken into account when the stress intensity
exceeds some critical level. Van der Weide et al. [50] derive the reliability estimation
and the optimal solution for calculating the discounted cost based on both condition-
based and age-based policy for a maintained system that deteriorates due to both
transient shocks and cumulative degradation process governed by a stochastic point
process. Van der Weide and Pandey [51] present a periodic inspection condition-
based maintenance policy for the systems subject to shock and cumulative stochastic
damage in the presence of hidden or latent failures. Instead of using renewal process,
nonhomogeneous poisson process (NHPP) is applied to model the nonlinear damage
increments.
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6.2 Other PM Models

Curcuru et al. [52] put forward a predictive maintenance policy in the presence of
imperfect monitoring, in which the stochastic degradation process is characterized by
a first-order autoregressive model with drift and the a priori information of monitoring
system is provided by Bayesian approach. Wu and Clements-Croome [53] consider
three optimal maintenance policies for the system whose failure processes can be
modulated by Geometric process (GP) with different costs for the up- and down-
time : (1) only corrective maintenance (CM); (2) imperfect PM and CM; and (3)
periodic PM and CM. Amari [54] discusses the bounds and approximation methods
for the mean time between failures (MTBF) for repairable systems with preventive
maintenance at periodic intervals under different scenarios of various failure rate
distribution.

Yeh et al. [55] present the two periodical PM policies with reduction age for the
second-hand products to determine the optimal PM number and each PM degree
by minimizing the expected maintenance cost, where the initial age is known and
the prespecific length of usage is Weibull distributed. Casto et al. [56] suggest an
age-based PM policy for the gradually degraded critical structures characterized by
gamma process to determine the optimal replacement time and derive the analytical
optimal solutions to minimize the expected maintenance cost rate. Zhao [57] presents
a preventive maintenance policy for a deteriorating system with a critical reliability
level to satisfy the preference of field managers where the imperfect PM effect is
modulated by a parameter of degradation ratio.

Sun et al. [58] introduce a preventive maintenance policy for the systems with
failure interaction by using a new technique of extended Split System Approach.
Panagiotidou and Tagaras [59] investigate the optimal preventive maintenance policy
for production equipments submitted to deterioration in presence of two quality
states of in-control state and out-of-control state with different income. In the model,
both the failure distribution and shift distribution of the system states are dependent
on the equipment age and system actual state. Roux et al. [60] model the optimal
preventive maintenance policy for the multi-component systems in the industrial
production problems by means of combination techniques of PDEVs and timed Petri
nets and derive the optimal simulated solutions via Nelder–Mead method. Nguyen
and Murthey [61] study the two types of optimal preventive maintenance policies
for repairable systems whose failure rate will increase with the repair number to
minimize the cost rate for an infinite time span.

7 Inspection Policy

Apeland and Scarf [62] discuss an inspection maintenance modeling with time-delay
by using fully Bayesian approach, which is different from the classic probabilis-
tic approach in the probability distribution assumption and uncertainty treatment.
Hariga [63] develops an inspection scheduling for one single machine with random
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failure and also extends the heuristic procedure to find the optimal inspection intervals
of maximizing the expected profit for the exponential distributed failure. Wortman
et al. [64] examine the maintenance strategy with the inspection time modulated by
a renewal process for a nonself-announcing failure system subject to deterioration
governed by random shocks. Chelbi and Ait-Kadi [65] develop the expression of
the time-stationary availability for a hidden failure system subject to the transient
shocks with a predetermined inspection time in order to generate an optimal solu-
tion for the target availability level with limit resources. Kiessler et al. [66] examine
the limiting average availability of a hidden-failure deterioration system with the
periodic inspections where deterioration rate is governed by a Markov model. Yang
and Klutke [67] characterize the properties of the lifetime distribution for the Levy
degradation process and then illustrate the implement of the results to inspection
scheduling for the maintained system with nonself-announcing failures.

A generalized Petri Net is proposed by Hosseini et al. [68] to formulate a new
condition-based maintenance model for a system subject to deterioration failures and
Poisson failures. In order to maximize the system throughout, an optimal inspection
policy based on minimal maintenance, major maintenance, and major repairs is
obtained. Kharoufeh et al. [69] utilize the Laplace-Stieltjes transform to explicitly
derive the lifetime distribution as well as the limiting availability for a periodically
inspected single-unit system with hidden failure, which is subject to the degradation
wear due to its random environment characterized by a continuous Markov chain, and
random shocks modulated by a homogeneous Poisson process. Klutke and Yang [70]
present a maintenance policy for the periodically inspected systems with nonself-
announcing failure, submitted to cumulative damage due to both graceful degradation
and random shocks for the purpose of optimizing the system performance from
the limiting average availability point of view. Wang [71] determines an optimal
inspection interval time in terms of an cost function for a three-stage failure system
of normal, minor, and severe detective stages with two model options: one is upon
inspection when we found the minor detective, we will replace or repair immediately;
the other is instead of instant maintenance, we will shorten the inspection interval
to half.

Chan and Wu [72] apply the cumulative count of conforming chart (CCC chart)
to develop the inspection and maintenance policies for the production systems with
fractions of conforming and nonconforming products under different scenarios of
minor/major inspection and minor/major maintenance. Kurt and Kharoufeh [73]
model the optimal periodic inspection-maintenance policies by the infinite-horizon
Markov decision process to minimize the expected discounted cost rate due to opera-
tion, failure, inspection, repair, and maintenance. In the model, upon each inspection,
three maintenance actions should be chosen from: (1) leave it as it were till the next
inspection time, (2) replace it with a new one, and (3) repair the system.
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8 Optimal Maintenance Models for Complex Systems

8.1 Multi-Degraded Systems

Gurler and Kaya [74] approximate the explicit expression of the long-run average cost
rate in a maintenance control policy for a multi-component system each with several
stages, which can be further divided as good, doubtful, PM, and down, by using the
multidimensional Markov process. Flores-Colen and Brito [75] discuss a symmetric
maintenance schedule of preventive and predictive maintenance for the building
facades based on different simulated maintenance scenarios for the performance-
degradation models by using life cycle cost analysis. Huang and Yuan [76] propose
a two-stage PM policy with imperfect maintenance under periodic inspection for
the multi-state Markova deterioration system, where the transition probabilities and
risks of imperfect maintenance are updated upon completing of each PM.

Saassouh et al. [77] propose a two-mode stochastically deteriorating model with
a sudden change point in the degradation path, where the increments of deterioration
follow a gamma law when the system is in the first mode, and the mean deterioration
rate increases when it flips into the second mode. Based on the definition of the
model, the decision rules for an online maintenance policy are determined to opti-
mize the system performance from the angle of asymptotic unavailability. Ponchet
et al. [78] compare two condition-based maintenance (CBM) models for a gradu-
ally deteriorating system submitted to random change in its degradation rate. In the
first CBM model, the decision is based only on the degradation level, while in the
second model, the maintenance decision depends on both the degradation level and
degradation rate. Chen et al. [79] utilize the Geometric process (GP) to model the
maintenance problem of the repairable deteriorating systems and derive the Bayesian
inference of parameters in GP using the combination method of Gibbs sampler and
Metropolis algorithm. Zhao et al. [80] discuss the condition-based maintenance pol-
icy with inspection and replacement for a deteriorating system characterized as a
nonmonotone stochastic process with environmental covariates modeled by a finite
state Markov chain in order to minimize the expected maintenance cost rate. Van der
Wang [81] compares the various maintenance polices for the deteriorating systems
with both single unit and multiple units.

8.2 Competing Risk Systems

Frostig and Kenzin [82] derive the limiting average availability in a maintenance
model for a hidden-failure system that suffers from the wear out and cumulative
shock damage with a Poisson process. Two models are discussed: Model 1 assumes
the wear out process and shock will not receive any impact from the external envi-
ronment; In Model II, the shock magnitude, the rate of shock and wear out process
depend on the external environment modulated by a Markov process. Lam and Zhang
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[83] study a replacement policy for two systems embedded in the δ-shock model:
One is deteriorating system with a nondecreasing threshold after repair times and
geometrically increasing repair times; the other is improving system with decreasing
threshold after repair and geometrically deceasing repair times. Chen and Li [84]
analyze a deteriorating system subject to extreme shock. The deterioration process
is governed by both the external shocks and internal loading from the point of views:
(1) the magnitude of the random shock the system can bear will be decreasing with the
numbers of repairs; (2) the repair time will be increasing after each repair. Finally, an
optimal replacement policy N*, at which failure number the system will be repaired,
is determined by minimizing the long-run average cost.

Zequeria and Berenguer [85] study a maintenance policy, considering three types
of actions: minimal repairs, preventive maintenance, and replacement, for a system
with two dependent competing failure modes of maintenance and nonmaintenance by
minimizing the system cost rate during an infinite time. In the model, the improvement
factor for the failure rate upon preventive maintenance actions depend on the time
when the actions are performed. Zhu et al. [86] examine the maintenance model for a
competing risk of degradation and sudden failure, in which the unit is renewed when
it reaches a predetermined degradation level or comes to a sudden failure within the
limit of certain degradation threshold. Also a preventive maintenance (PM) is done at
the scheduled time. The maintenance scheduling variables of degradation threshold
and scheduled time to preventive maintenance are determined by maximizing the
system availability with the constraint of repair cost.

Li and Pham [87] focus on the condition-based maintenance model for a general-
ized multi-state degradation system subject to multiple competing failure processes,
consisting of two degradation processes and cumulative random shock to minimize
the average long-run cost rate function by Nelder–Mead downhill simplex method.
Wu et al. [88] propose two types of multi-state system maintenance policies of pre-
ventive replacements and corrective replacements based on the expected discounted
maintenance cost rate to determine two threshold variables, consisting of threshold
level on current system state and threshold level on residual life, under the case
of finite life cycle by using Laplace transform and inversion approach as well as
approximation method.

8.3 Multi-Unit Systems

Barros et al. [89] concern the problem of imperfect monitoring in a maintenance
policy, in which each unit have a given probability to be detected failure, for a
two-unit parallel system with stochastic dependency. A new delay time model for
a multi-component system with multiple failure modes is proposed by Wang et al.
[90]. In the model, each component is modeled separately based on its failure mode
and then a common inspection schedule is made for the large subsystem according
to individual component analysis. Zhang and Wang [91] consider the replacement
policy for a cold standby system with two components both following a geometric
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repair. In the model, component 1 is given a use priority and the replacement is
performed when the failure number of the component 1 reaches N. Marseguerra
et al. [92] propose a condition-based maintenance model for a continuously mon-
itored multi-component system subject to stress-dependent degradation process by
using the coupled methods of Genetic Algorithm and Monte Carlo Simulation to
derive the optimal solution for the multi-objective maintenance problem considering
the interest, availability and profit as the objectives.

Tian and Liao [93] focus on the study of condition-based maintenance model
based on proportional hazards model for the multi-component systems with economic
dependency. Taghipour and Banjevic [94] propose a maintenance optimization model
for a multi-component repairable system submitted to hidden failure in order to
determine the optimal periodical inspection intervals. In the work by Tian et al.
[95], a condition-based maintenance model with two failure probability threshold is
introduced for the wind power generating systems consisting of multiple components
with economic dependency to minimize the total operational and maintenance cost
by using the Artificial neural network (ANN). Bouvard et al. [96] present a dynamic
method to develop the condition-based maintenance model for the commercial heavy
vehicles, where there exist multiple components with grouped maintenance policies
and each maintenance action upon inspection is determined upon the individual
degradation level for each component. In Wang and Lin [97], an improved particle
swarm optimization (IPSO) is introduced to minimize the total maintenance cost with
preventive maintenance and replacement for the series-parallel systems. Mahmoud
and Moshref [98] derive the explicit expressions for the mean time to failure (MTTF),
steady state availability, buy periods, and system profit gain for a stochastic model
of a two-unit cold standby system subject to human error failures, hardware failures,
and preventive maintenance (PM).

Laggoune et al. [99] consider an opportunistic preventive maintenance policy
for a multi-component system, where the age-based policy is used to analyze the
maintenance model for individual components and then multi-grouping approach is
applied to derive the cost function for the whole system. The optimal solutions are
derived by Monte Carlo simulation combining with the informative search method.
Cepin [100] determines the optimal scheduling to improve the safety of equipment
outages in nuclear power plants by minimizing the mean value of the selected time-
dependent risk measure. The large uncertainty in the safety assessment is considered.

9 Multi-Objective Maintenance

Martorell et al. [101] propose a new integrated Multi-Criteria Decision-making
(IMCDM) method to determine the parameters in the technical specifications and
maintenance (TSM) of Safety-related Equipment using multi-objective GA based on
the reliability, availability, and maintenance (RAM) criterion. An example of emer-
gency diesel generator system illustrates the application and viability of the proposed
method. Martorell et al. [102] addressed the multi-objective problem of surveillance
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requirements at Nuclear Power Plants with dependable variables of Testing Intervals
(TI) and Testing Planning using a novel double-loop multiple objective evolutionary
algorithm.

In Quan et al. [103] a new approach, which combines the preference with evo-
lutionary algorithm by using utility theory to search the Pareto frontier rather than
conducting a dominated Pareto search, was developed to find the optimal solutions
for a multi-objective preventive maintenance scheduling. Sanchez et al. [104] put for-
ward a genetic algorithm based approach using distribution free tolerance intervals
to address a multi-objective optimization of unavailability and cost model embedded
within the uncertainty of the imperfect maintenance. Okasha and Frangopol [105]
considered two strategies of selecting maintenance actions, maintenance scheduling,
and maintenance structural components for optimization programs to design and con-
struct structural systems in terms of system reliability, redundancy, and life cycle cost
as criterion by multi-objective GA. Two numerical examples are used to illustrate
these two strategies. Marseguerra and Zio [106] introduce a multi-objective opti-
mization approach to determine the optimal surveillance Test Interval (STI) based on
genetic algorithm search toward solutions of optimal performance with high assur-
ance. Wang and Pham [107] studied a multi-objective maintenance optimization
embedded within the imperfect PM and replacement for one single-unit system
subject to the dependent competing risk of degradation wear and random shocks
by simultaneously maximizing the system asymptotic availability and minimizing
the system cost rate using the fast elitist nondominated Sorting Genetic Algorithm
(NSGA-II).

Nosoohi and Hejazi [108] propose a novel multi-objective maintenance optimiza-
tion model simultaneous considering the four different objectives of cost, corrective
failure number per cycle, residual lifetime, and investment cost in order to deter-
mine preventive replacement times and the numbers of spare parts using ε-constraint
method. Bocchini and Frangopol [109] utilize the Genetic Algorithm (GA) to achieve
the multi-objective optimization of minimizing the total maintenance cost and maxi-
mizing the maintenance performance indicators to determine the schedule of the PM
implement. Papakostas et al. [110] describe a multiple criteria analysis, consisting
of cost, operational risk, remaining lifetime, and flight delays, for a set of aircraft
maintenance planning alternatives with economic and operational constraints.

10 Maintenance Policy Under Warranty

Chen and Popova [111] consider a new maintenance policy combining the minimal
repair and replacement under the two-dimension warranty of maximum warranty
usage limits and maximum warranty period time by using optimization approach
based on Monte Carlo simulation. Pan and Thomas [112] extend the research by
Zuo et al. [113] by considering a larger state space with time-dependent parameters
for the multistage deteriorating products with a free repair warranty (FRW) policy
by using the continuous time Markov Chain. Wu et al. [114] study a periodic PM
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policy considering two parts: (1) maintenance cost model include the preventive
maintenance and minimal repair, in which the first PM is triggered at the time chosen
by the buyer till the end of the cycle; (2) the value of the maintenance is reflected as
the system aging losses by PM actions.

Vahdani et al. [115] develop the optimal replacement-repair policy under the
renewal free replacement warranty (RFRW) for the multi-state deteriorating systems
to minimize the warranty service cost. Yeh and Lo [116] derive the optimal preven-
tive maintenance schedule under warranty policy, including the PM numbers and
maintenance degree, for the repairable products to minimize the total warranty cost.

Sahin and Polatoglu [117] minimize the warranty costs under both the renewing
and nonrenewing polices for the unit with increasing failure rate (IFR) when two types
of replacements policies are considered. Jung and Park [118] propose the periodic
PM policies to minimize the expected long-run maintenance cost rate following the
post-warranty period when two warranty policies are considered: renewing warranty
and nonrenewing warranty. Jung et al. [119] compare the expected maintenance cost
based on the various expected life cycles under the product user’s view from two post-
warranty policies: (1) replacement model proposed by Sahin and Polatoglu [117],
and (2) optimal PM model proposed by Jung and Park [118].
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Abstract Due to imperfect fault coverage, the reliability of redundant systems can-
not be enhanced unlimitedly with the increase of redundancy. Many works have been
done on the reliability modeling and optimization of systems subjected to imperfect
fault coverage. The methodologies adopted mainly include combinatorial approach,
ordered binary decision diagram and universal generating function. Depending on
the type of fault tolerant techniques used, there are mainly three kinds of fault cov-
erage models: (1) element level coverage (ELC). (2) fault level coverage (FLC).
and (3) performance-dependent coverage (PDC). This chapter reviews the litera-
tures on the reliability of systems subjected to imperfect fault coverage and shows
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1 Introduction

Redundancy is widely used to enhance system reliability, especially for systems with
stringent reliability requirements, such as nuclear power controllers and flight con-
trol systems [24, 41, 46]. Usually, the fault tolerance is implemented by providing
sufficient redundancy and using automatic fault and error handling mechanisms
(detection, location, and isolation of faults/failures). However, as the fault and error
handling mechanisms themselves can fail, some failures can remain undetected or
uncovered, which can lead to the total failure of the entire system or its subsystems
[4, 11, 51]. Examples of this effect of uncovered faults can be found in computing sys-
tems, electrical power distribution networks, pipelines carrying dangerous materials
etc [8, 14]. The probability of successfully covering a fault (avoiding fault propa-
gation) given that the fault has occurred is known as the coverage factor [11]. The
models that consider the effects of imperfect fault coverage are known as imperfect
fault coverage models or simply fault coverage models or coverage models [5].

Many works have been done on the reliability modeling and optimization of
systems subjected to imperfect fault coverage. The methodologies adopted mainly
include combinatorial approach, binary decision diagram, and universal generating
function (UGF). Combinatorial modeling techniques, such as graph theoretic tech-
nique, digraphs, reliability logic diagrams, and particularly fault trees, have long
been used for reliability analysis because of their concise representation of system
failure combinations [1, 2, 45]. Before the paper [17], combinatorial models were
thought to be inadequate to capture the dynamic system behavior associated with
fault and error recovery. For this reason, Markov chains were used for reliability
assessment of fault-tolerant systems. Markov chains are extremely flexible and can
capture the fault coverage mechanisms quite well [11, 19]. However, Markov chains
also have some disadvantages. In addition to the computational complexity, it is also
difficult to determine the correct Markov model for a given system, because the oper-
ational configuration of the system must be specified explicitly and the rate at which
the system state changes must be determined. The relative advantages of fault tree
and Markov models have been exploited by using behavioral decomposition [47],
and converting the fault tree to a Markov chain automatically [9, 48]. The Simple and
Efficient Algorithm presented in [6] enables reliability engineers to use their favorite
software package for computing system reliability which includes the consideration
of fault coverage. Though the inclusion-exclusion method and the sum of disjoint
products method have been used by many researchers for evaluating the system avail-
ability (reliability), ordered binary decision diagram (OBDD) is shown to be very
efficient in terms of computational time and accuracy [22, 23, 53]. For this reason,
OBDD has been used to model imperfect fault coverage in some recent papers [37,
50, 52]. The UGF introduced in [49] has also been used in some recent papers to
model imperfect fault coverage and it is shown to be very flexible [27, 31].

Depending on the type of fault tolerant techniques used, there are mainly three
kinds of fault coverage models: (1) Element level coverage (ELC). A particular cov-
erage factor value is associated with each element. This value is independent of the
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status of other elements. (2) Fault level coverage (FLC). The coverage factor value
depends on the number of good elements that belong to a specific group (i.e., the
status of other elements). (3) Performance-dependent coverage (PDC). The coverage
factor value depends on the cumulative performance of the available group elements
at the moment when the failure occurs. The ELC model is appropriate when the
selection among the redundant elements is made on the basis of a self-diagnostic
capability of the individual elements. Such systems typically contain a built-in test
capability. The FLC model is appropriate for modeling systems in which the selec-
tion among redundant elements varies between initial and subsequent failures. In the
HARP (Hybrid Automated Reliability Predictor) terminology [10], ELC models are
known as single-fault models, whereas FLC models are known as multi-fault models.
Multi-fault models have the ability to model a wide range of fault-tolerant mecha-
nisms. An example is a majority voting system among the currently known working
elements, see Myers and Rauzy [38]. The performance-dependent coverage consid-
ered in Levitin and Amari [29] takes place when the fault detection and recovery
functions are performed by system elements in parallel with their main functions.
The proposed model is suitable for systems that cannot change the states during
task execution, such as alarm systems and data processing systems performing short
tasks. The systems usually remain in idle mode, thus fault detection and coverage
can be performed only during task execution. When the task arrives, the system can
be in one of various states, depending on availability of its elements. Therefore, the
coverage probability depends only on the performance available at the moment of
task arrival and does not depend on the history of failures.

This chapter reviews the literatures on reliability modeling and optimization
of systems subjected to imperfect fault coverage and presents an extended work.
Section 2 focuses on the works which employ the combinatorial approach to study
imperfect fault coverage. Section 3 focuses on the study of imperfect fault coverage
with ordered binary decision diagram. Section 4 focuses on the study on imperfect
fault coverage with UGF. Section 5 shows the extended work.

2 Combinatorial Approach

Dugan [18] presented a Dugan fault tree solution (DFTS) algorithm which computes
the exact unreliability of systems with incorporation of imperfect coverage using only
a fault tree model of the system. The DFTS algorithm determines the unreliability
of the system during the enumeration of the operational states that correspond to the
fault tree. As the state space is generated, the fault handling behavior is automatically
incorporated, and the leakage from each state to the failure state is calculated. The
general coverage model used in Dugan [18] is incorporated into the system state
transition as shown in Fig. 1

The general coverage model describes the behavior of the system in response to a
fault. From a particular operational state m1, suppose that the combined failure rate
of transient, intermittent, and permanent faults is λ. If the failure of a component



162 G. Levitin et al

FEHM
m1 m2

near coin-
cident

single 
point

r
c

n 
s 

Fig. 1 Incorporating coverage model into state transition

(at constant rate λ) leads to an operational state m2, a fault/error handling model
(FEHM) is inserted on the corresponding arc. The transient restoration exit of the
coverage model leads back to the original state m1. The permanent coverage exit
of the coverage model leads to the target state m2 in which the system functions
with at least one fewer component. The two other exits lead to the states single point
failure and near-coincident faults. A major advantage of DFTS algorithm is that the
generation/solution of the model can be halted as soon as the desired accuracy is
achieved. However, the equations needed to solve the system are unwieldy, which
hampers their understanding and implementation.

Pham and Pham [44] discussed the problem of determining the optimum num-
ber of spares in the dynamic redundant systems. The optimum value of spares that
maximizes the reliability of the system with imperfect coverage has been obtained.
Pham [42] addressed the design issue for the optimal number of spare units in a
triple-modular-redundancy system with spare units, including fault coverage and
common-cause failure. Pham [43] examined a model of a high voltage system con-
sisting of a power supply and two transmitters with imperfect coverage in which the
failure rate of the fault coverage is constant. This work was extended in Moustafa
[33] to a k-out-of-n system with imperfect coverage. Akhtar [3] studied the reliability
of k-out-of-n systems with imperfect fault coverage. It is assumed that failures not
covered can lead to an absorbing failure state with no transition possible to a function
state. Recursive expressions for mean time between failures and mean time to failures
are obtained for repairable systems. Newton [39] commented on the method proposed
in Akhtar [3]. An alternative probability argument is used to obtain the mean time
between failures and mean time to failures for k-out-of-n: G systems. This has the
advantage that higher moments of such failure times can also be determined.

Since the DFTS is rather complicated for implementation, a simple alterna-
tive solution that uses cut-set solution methods was proposed in Doyel et al. [17].
The Doyel, Dugan, Patterson (DDP) algorithm presented in Doyel et al. [17] com-
bines aspects of behavioral decomposition, sum-of-disjoint products, and multi-state
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solution methods. Different from Dugan, only three exits are considered: the tran-
sient restoration exit, the permanent coverage exit, and the single-point failure exit.
The DDP algorithm first obtains all the minimal cut-sets and then produces a sum
of disjoint products from the set of cut-sets to determine the system unreliability.
For example, one considers a redundant system consisting of 3 units A, B, and C
that is operational as long as 1 unit is up, provided that no uncovered failures occur.
The minimal cut-sets are C1 = {A}, C2 = {B}, C3 = {C}, and C4 = {A, B, C},
where X(X) labels the basic event that component X fails and the failure is uncovered
(covered). The system unreliability can be formulated as

Unreliability = Pr{
⋃4

i=1
Ci } = Pr{C1} + Pr{¬C1C2}

+ Pr{¬C1¬C2C3} + Pr{¬C1¬C2¬C3C4}
(1)

where ¬Ci denotes the logical negation of event Ci .
The DDP algorithm was further developed and generalized in Amari et al. [6],

which presented a SEA (Simple and Efficient Algorithm) to find the unreliability of
systems subjected to imperfect fault coverage. The SEA separates the modeling of
fault coverage failures into two terms that are multiplied to compute the system reli-
ability. The first term, a simple product, represents the probability that no uncovered
fault occurs. The second term comes from a combinatorial model which includes
the covered faults that can lead to system failure. The major contribution of SEA
is that reliability engineers can use their favorite software package for computing
reliability, and can adjust the input and output of that program slightly to produce a
result which includes the consideration of fault coverage. Further, SEA is concep-
tually simpler and more efficient than earlier approaches. Amari et al. [7] studied
the optimal reliability of systems subjected to imperfect fault coverage. It is shown
that the reliability of systems subjected to imperfect fault coverage decreases with
an increase in redundancy after a particular limit. Using the SEA, Amari et al. [7]
also computed the reliability expressions of some common systems subjected to
imperfect fault coverage. The systems considered include parallel, parallel-series,
series-parallel, k-out-of-n, and k-out-of-(2k−1) systems. Amari et al. [8] studied the
optimal design of k-out-of-n: G subsystems subjected to imperfect fault coverage. It
is assumed that there exists a k-out-of-n: G subsystem in a nonseries-parallel system
and, except for this subsystem, the redundancy configurations of all other subsystems
are fixed. The overall system reliability is evaluated using the SEA algorithm. Proce-
dures are proposed to solve the optimal cost-effective design policies for k-out-of-n:
G subsystems and the optimal design policies which maximize the overall system
reliability.

All the above works assume that each system element has a specific coverage,
that is, ELC is assumed. The ELC is most appropriate when the selection among
redundant elements is made on the basis of a self-diagnostic capability of the indi-
vidual elements. However, if the redundancy management implementation results
in coverage being a function of the fault sequence within the redundant set, the
FLC is more appropriate. Myers [34] studied the reliability of k-out-of-n: G systems
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considering four different coverage models: perfect fault coverage, element level
coverage, fault level coverage, and one-on-one level coverage. The one-on-one level
coverage is actually a special case of FLC in which faults prior to the one-on-one
fault are considered to have perfect coverage. Techniques are presented for both
combinatorial and recursive function calculation of k-out-of-n: G system reliability
considering imperfect fault coverage. Based on the algorithm presented in Myers [34,
35] studied the achievable limits on the reliability of k-out-of-n: G systems subjected
to imperfect fault coverage, with consideration of both ELC and FLC. The system
is assumed to consist of n identical and independent elements. The reliability of the
system in the case of ELC and FLC is calculated with the combinatorial approach as

RiidELC(k, p, c) =
n∑

i=k

(
n
k

)
pi (q · c)n−i (2)

RiidFLC(k, p, c) =
n∑

i=k

(
n
k

)
pi q(n−i)

n−k∏

i=1

ci (3)

where p is the reliability of each system element, q equals to 1−p, c is the coverage
probability of each element in the case of ELC, ci is the coverage probability of
i-th failure in the case of FLC, and c denotes the vector {c1,…cn}. It is shown, over
a wide range of realistic coverage values and relative high component reliabilities,
that the optimal redundancy level is 2 for ELC systems and 4 for FLC systems. Over
this same range of system characteristics, optimal FLC systems outperform ELC
systems, in terms of failure probability, by several orders of magnitude. Myers [36]
studied the probability of survival for redundant systems utilizing a mission abort
policy. Systems having both perfect and imperfect fault coverage are addressed.

3 Ordered Binary Decision Diagram Approach

The binary decision diagram was initially developed as a tool for validating VLSI
circuitry design by Bryant [12]. A binary decision diagram is a rooted, directed, and
acyclic graph used to represent a Boolean function. It consists of decision nodes and
two terminal nodes called 0-terminal and 1-terminal. Each decision node is labeled
by a Boolean variable and has two child nodes called low child and high child. As
the path descends to a low child (high child) from a node, then that node’s variable is
assigned to 0 (1). A path from the root node to the 1-terminal represents a (possibly
partial) variable assignment for which the represented Boolean function is true. Such
a binary decision diagram is called ’ordered’ if different variables appear in the same
order on all paths from the root.

Xing and Dugan [50] analyzed the reliability of a generalized phased-mission
system with consideration of combinatorial phase requirements and imperfect fault
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coverage. The SEA is used to incorporate the effect of imperfect fault coverage into
a binary decision diagram based algorithm to compute the system reliability. The
coverage factor of each component is assumed to be constant in each phase, that is,
the ELC model is used. This work was extended in Xing [51], which studied the
reliability of a general phased-mission system with consideration of both imperfect
fault coverage and common-cause failures.

Chang et al. [13] presented an OBDD based algorithm for the calculation of the
time-specific as well as the steady-state failure frequency of a repairable system. The
algorithm is also extended to incorporate imperfect fault coverage into the system
availability evaluation. Markov chains are used to model the state of the components
and the conditional probabilities from SEA are used to incorporate imperfect fault
coverage. The coverage factor of each system component is assumed to be constant
or time dependent. Chang et al. [14] proposed a model for multi-state systems with
imperfect fault coverage. An OBDD based approach for the evaluation of multi-state
system reliability and the Griffith’s importance measure has also been proposed.

Xing [52] proposed an efficient approach for fully incorporating both imperfect
fault coverage and common-cause failures into network reliability and sensitivity
analysis. The consideration of imperfect coverage and common-cause failures is
separated from the combinatorics of the solution based on reduced OBDD. It is
shown that the reduced OBDD-based algorithm requires less memory than other
traditional methods (such as inclusion–exclusion and sum of disjoint products) and
is more efficient in reliability evaluation.

Myers and Rauzy [37] derived a table-based algorithm to compute the unreliability
of k-out-of-n: F systems with imperfect fault coverage, from a principle proposed by
Dutuit and Rauzy [20]. The encoding procedures of ELC and FLC models by means
of classical fault tree gates are shown, followed by the binary decision diagram
representation based on the Shannon decomposition. A digital flight control system
test case is shown to illustrate the importance of the effect of imperfect fault coverage
and the efficiency of the proposed algorithm. Myers and Rauzy [38] proposed a more
efficient algorithm than the algorithm in Myers and Rauzy [37]. It also explained in
detail the difference between ELC and FLC. In order to show the binary decision
diagram representation of systems subjected to imperfect fault coverage and the
difference between ELC and FLC, we consider a 1-out-of-3: G system for perfect
coverage, ELC, and FLC models. If the reliabilities of the three components are
denoted as p1, p2, and p3, the binary decision diagram for the perfect coverage
model is as shown in Fig. 2 The 0-terminal node is omitted in order to make the
binary decision diagram more compact.

The reliability of this system is the sum of all paths from the terminal node labeled
1 to the top node, p1, with the components subsequent to a connection by a dashed
line being complemented. The reliability of the 1-out-of-3: G system shown in Fig. 2
is then

Rperfect = p1 + p2(1 − p1) + p3(1 − p1)(1 − p2) (4)
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Fig. 2 Binary decision dia-
gram for the perfect coverage
model
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Fig. 3 Binary decision dia-
gram for the ELC model
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The binary decision diagram for the ELC model is as shown in Fig. 3, where c is the
fault coverage factor. The reliability of the 1-out-of-3: G system shown in Fig. 3 is
then

RELC = p1[p2 + (1 − p2)c][p3 + (1 − p3)c]
+ (1 − p1)c{p2[p3 + (1 − p3)c] + p3[p2 + (1 − p2)c]} (5)

The binary decision diagram for the FLC model is as shown in Fig. 4, where
ci (i = 1, 2) is the fault coverage factor for the i-th failure. The reliability of the
1-out-of-3: G system shown in Fig. 4 is then
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Fig. 4 Binary decision dia-
gram for the FLC model
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RFLC = p1[p2(p3 + (1 − p3)c1) + (1 − p2)c1(p3 + (1 − p3)c2)]
+ (1 − p1)c1[p2 p3 + (1 − p2)c2 p3 + (1 − p3)c2 p2] (6)

4 Universal Generating Function Approach

The UGF was introduced in Ushakov [49] and proved to be extremely effective
in evaluating reliability of complex multi-state systems. Much research has been
done on incorporating UGF into reliability analysis of various k-out-of-n systems,
series-parallel systems, weighted voting systems, acyclic information networks, and
manufacturing systems [16, 26, 32, 54, 55]. The UGF of a discrete random value X
is defined as a polynomial

u X (z) =
H∑

h=0

εhzxh , (7)

where the variable X has H+1 possible values and εh = Pr{X = xh}.
To obtain the UGF representing the pmf of a function of two independent random

variables ϕ(X, Y ), the following composition operator is used:
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Uϕ(X,Y )(z) = u X (z)⊗
ϕ

uY (z)

=
(

H∑

h=0

εhzxh

)

⊗
ϕ

(
D∑

d=0

εdzyd

)

=
H∑

h=0

D∑

d=0

εhεdzϕ(xh ,yd )
(8)

Levitin [27] presented an efficient UGF-based approach for reliability analysis of
complex multi-state systems taking into account imperfect fault coverage. In Levitin
and Xing [31], the approach was extended to the case when each element has specific
subset of other elements affected by the uncovered propagated failure. In both works,
the uncovered failure is incorporated by assuming that state 0 of each system com-
ponent corresponds to uncovered failure. A subsystem fails as long as one single
component in this subsystem is in state 0. This approach allows obtaining the per-
formance distribution of complex multi-state systems using a generalized reliability
block diagram method (recursive aggregating multi-state elements and replacing
them by single equivalent ones). Since the probability for each component to be in
state 0 is assumed to be constant and independent from the states of other elements,
this approach is only suitable for modeling ELC.

A more general approach proposed in Levitin and Amari [30] is able to evaluate
the reliability of multi-state systems with FLC. In the case of FLC, one needs to
incorporate the coverage probabilities depending on the number of failed elements
into the performance distribution of each group affected by FLC. Thus one has to
know not only entire group performance but also the total number of failed elements
in each state of this group (combination of states of its elements). To obtain both
these indices, the performance distribution for system elements is described by a
modified UGF as

∼
u j (z) =

k j∑

h=0

p jhzs jh ,g jh , (9)

where s jh represents the realization of the random number of failed elements in state
h. The UGF of the entire system is done by recursively aggregating the UGF of
system elements and replacing them by single equivalent ones. The computational
complexity of the proposed algorithm for solving multi-state systems with FLC is the
same as the computational complexity of an equivalent multi-state system without
consideration of imperfect fault coverage.

Levitin and Amari [29] suggested the PDC model for the case when the effective-
ness of recovery mechanisms in a subsystem depends on the entire performance level
of this subsystem. The UGF of each PDC group is obtained by first obtaining the
UGF representing the conditional group performance distribution given that all the
faults are covered and then incorporating the performance-dependent fault coverage
factors to get the UGF representing the unconditional group performance distribu-
tion. For example, if the conditional performance distribution of PDC group k in a
system given that all the faults are covered is represented by
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Uwk (z) =
nk∑

h=0

Pkhzgkh , (10)

the UGF representing the unconditional performance distribution of PDC group k
can be obtained as

Ũwk (z) =
nk∑

h=0

Pkhck(gkh)zgkh + [1 −
nk∑

h=0

Pkhck(gkh)]zgk0 (11)

where ck(·) is the fault coverage probability function depending on the group per-
formance.

Levitin [28] presented a model of series-parallel multi-state systems with two
types of task parallelization: parallel task execution with work sharing, and redun-
dant task execution. It is assumed that the elements in each subsystem can be dis-
tributed into different work sharing groups in order to achieve both performance and
reliability requirement. A framework to solve the optimal balance of the two kinds
of parallelization which maximizes the system reliability is proposed based on the
assumption that the ELC applies in each work sharing group. It is shown that the
greatest system reliability can be achieved by proper balance between two kinds
of parallelization. Considering the different types of fault handling mechanisms in
practice, the ELC model alone cannot adapt to all the cases. The optimal system
structure problem can be extended to consider different kinds of fault coverage mod-
els. Section 5 shows an extension of the optimal structure problem to the case of FLC
presented in [40].

5 Optimal System Structure in the Case of FLC

5.1 Model Description and Problem Formulation

The fault tolerant structure is very common in task processing and data-
transmission systems. An example is a multichannel data transmission sys-
tem in which data packages are divided into subpackages transmitted through
different channels. If some channels fail, the automatic data exchange manage-
ment is able to distribute the transmission task among the available channels.
In this case, the system remains operating, though with a lower performance.
However, when a failure of any channel is undetected (uncovered failure), the
management system cannot make proper reconfiguration and still assigns some
subpackages to the unavailable channel. In this case, some information is lost
and the entire data transmission task fails.
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Consider a system consisting of M subsystems connected in series. Each subsystem
m contains Em different elements connected in parallel. The performance rate G j

of element j at any time instant is a random variable that takes its values from
g j = {g j0, g j1, . . . , g jk j }. The probability associated with different states of any
system element j can be represented by the set p j = {p j0, p j1, . . . , p jk j }, where
p jh = Pr{G j = g jh}. The state 0 corresponds to the total element failure, and other
k j states correspond to the working states with full or partial performance.

We assume that the states of multi-state system elements are mutually inde-
pendent. The elements belonging to the same subsystem can be separated into
independent work sharing groups. The available elements belonging to a work shar-
ing group share their work in an optimal way that maximizes the performance of the
entire group. In the case of detected failures of some elements, the task is able to
be redistributed among the available elements. An undetected failure of any element
belonging to a work sharing group cannot be covered within this group, and causes
the failure of the entire group. Different work sharing groups belonging to the same
subsystem perform the same task in parallel providing the task execution redundancy.

Assume that the entire system has K + 1 different states, and that vi is the entire
system performance rate in state i. The multi-state system performance rate is a
random variable V that takes values from the set {v0, . . ., vK }. The system structure
function V = φ(G1, . . ., Gn), which maps the spaces of the elements’ performance
rates into the space of the system’s performance rates, is determined by the system
structure. The elements’ distribution among work sharing groups in each subsystem
m can be represented by the vector αm = {αmj , 1 ≤ j ≤ Em}, where αmj is the index
of the subset to which element j belongs. Concatenation of vectors α = {α1, . . .,αM }
determines the distribution of elements among the work sharing group for the entire
system. For any given α, and given pmf of the system elements, one can obtain the
pmf of the entire system performance V in the form

Qi , vi , 0 ≤ i ≤ K , where Qi = Pr{V = vi }. (12)

The multi-state system reliability is defined as the probability that the multi-state
system satisfies the demand Levitin [26]. For example, in applications where the
system performance is defined as its productivity/capacity, and θ∗ is the minimum
allowed capacity, the multi-state system reliability takes the form

R(θ∗) =
K∑

i=1

Qi 1(vi>θ∗) (13)

The multi-state system structure optimization problem is formulated as follows. Find
vector α = {α1, . . .,αM }, which maximizes multi-state system reliability R(θ∗) for
a given demand θ∗,

α = arg max{R(α, θ∗)}. (14)
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5.2 System Reliability Evaluation and Structure
Optimization

The performance distribution for system elements is described by a modified UGF as

ũ j (z) =
k j∑

h=0

p jhzs jh ,g
jh, (15)

where s jh represents the realization of the random number of failed elements in state
h. The UGF of an individual element takes the form

ũ j (z) = p j0z1,g j0 +
k j∑

h=1

p jh j z
0,g jh , (16)

where g j0 corresponds to the case of failure of the element (1 failure), g jh(1 ≤
j ≤ k j ) corresponds to the h-th working state of element j (0 failure). Applying the
operator

Ũ{i, j}(z) = ũi (z)⊗
ω

ũ j (z) =
ki∑

h=0

k j∑

d=0

pih p jdzsih+s jd ,ω(gih ,g jd ) (17)

recursively one can obtain the UGF of the entire work sharing group i in subsystem
m in the form.

Ũmi (z) =
nmi∑

h=0

Pmihzsmih ,gmih (18)

that represents the distribution of the number of failed elements and the corresponding
performance of the work sharing group. Here ω is the performance composition
function for elements connected in parallel with work sharing, Pmih is the probability
that work sharing group i in subsystem m contains exactly smih failed elements and
functions at the performance level gmih , given all the failures are covered (gmi0
correspond to the failures of all the elements in the group).

A. The UGF of a work sharing group in the case of FLC

In the case of FLC, the coverage probability of a failure is determined by the total
number of elements in the work sharing group and the number of failed elements
in this group (which affects the load on the monitoring system). Let cm(|Φmi |, j)
be the fault coverage probability in the case of jth failure in work sharing group i
in subsystem m (when j − 1 elements are already unavailable), and rmi (k) be the
probability that the group does not fail after k failures have consecutively occurred.
It can be seen, that
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rmi (k) =
k∏

j=0

cm(|Φmi |, j) (19)

By definitionrmi (0) = cm(|Φmi |, 0) = 1 and cm(|Φmi |, |Φmi |) = 0.
The uncovered failures can be incorporated into the UGF by applying the follow-

ing operator ε:

Umi (z) = ε(
∼
U
mi

(z)) = ε

( nmi∑

h=0

Pmihzsmih ,gmih

)

=
nmi∑

h=0

Pmihr(smih)zgmih +
[

1 −
nmi∑

h=0

Pmihr(smih)

]

zgmi0

(20)

This UGF represents the unconditional distribution of performance of entire work
sharing group i in subsystem m.

B. The UGF of the entire system

Applying U{mi,mj}(z) = Umi (z)⊗



mj (z) recursively one can obtain the UGF of sub-

system m in the form Um(z) =
nm∑

h=0
Pmhzgmh . Here 
 is the performance com-

position function for elements connected in parallel without work sharing, Pmh

is the probability that the performance of subsystem m equals to gmh . Applying
U{m,l}(z) = Um(z)⊗

π
Ul(z) recursively one can obtain the UGF of the entire system

in the form Us(z) =
ns∑

h=0
Phzgh . Here π is the performance composition function for

elements connected in series, Ph is the probability that the performance of the entire
system equals to gh . From the UGF Us(z), representing the pmf of the entire multi-
state system performance (12), the system reliability can be obtained using (13).

C. Performance composition functions

The choice of functions ϕ depends on the type of connection between the elements,
and on the type of the system. Consider, for example, a data transmission system
with performance defined as transmission capacity (bandwidth). Assume that each
element j has a random data transmission capacity G j . If two elements i and j transmit
the same data, providing data transmission redundancy, the transmission capacity of
the pair of elements is determined by 
(Gi , G j ) = max(Gi , G j ). If the parallel
elements share their work, then the entire capacity that they provide is given by
ω(Gi , G j ) = Gi + G j . If data flow is transmitted by two consecutive elements, the
performance of the two elements is determined by π(Gi , G j ) = min(Gi , G j ).
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D. System structure optimization

The optimal system structure determination problem formulated by (14) is an NP
complete set partitioning problem. An exhaustive examination of all possible solu-
tions is not realistic, considering reasonable time limitations. The genetic algorithm
has proven to be an effective optimization tool for a large number of complicated
problems in reliability engineering [15, 21, 25]. In our genetic algorithm, solutions
are represented by integer strings S = {s1, s2, . . .sn}, where each si belongs to the

range (1,
M

max
m=1

Em).

The following procedure determines the fitness value for an arbitrary solution
defined by integer string S = {s1, s2, . . .sn}.

1. For each subsystem m=1,…,M:
1.1. Determine the number of WSG for each element of the mth component:

αmj = 1 + modEm (sx+ j ), 1 ≤ j ≤ Em, (21)

where x =
m−1∑

k=1
Ek .

1.2. For each WSG i(1 ≤ i ≤ Em), create set �mi using the recursive
procedure

Φmi = ∅, for i = 1, . . ., Em :
if αmj = i, Φmi = Φmi ∪ {x + j}.

2. Determine the UGF of the entire system and calculate system reliability
using (13). Assign the obtained system reliability to the solution fitness.

5.3 Illustrative Examples

Consider a data transmission system consisting of two consecutive multichannel
communication lines. Each channel can have failure state with zero transmission
capacity and two working states with full and reduced transmission capacity. The
system is able to work properly if the system capacity is greater than the minimal
allowed capacity C∗. The distributions of the performances (transmission capacities)
of channels are presented in Table 1

As an illustration, we assume that the coverage probability of the jth failure in
work sharing group i in any subsystem m decreases with |�mi | and increases with j
as given in Table 2

Table 3 contains the optimal system configurations for C∗ = 20 Kb/sec, C∗ =
30 Kb/sec, and C∗ = 40 Kb/sec obtained using the GA and characteristics of the
corresponding transmission systems.
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Table 1 Performance distributions of data transmission channels

Sub-system Element Performance levels

Probability Capacity Probability Capacity Probability Capacity
p j0 g j0 p j1 g j1 p j2 g j2

1 1 0.15 0 0.7 10 0.15 20
2 0.15 0 0.65 12 0.20 20
3 0.20 0 0.60 15 0.20 25
4 0.15 0 0.60 18 0.25 25
5 0.15 0 0.70 14 0.15 20
6 0.10 0 0.80 11 0.10 24
7 0.20 0 0.50 20 0.30 30

2 8 0.20 0 0.60 12 0.20 25
9 0.20 0 0.60 14 0.20 24
10 0.20 0 0.70 15 0.10 25
11 0.15 0 0.65 20 0.20 30
12 0.15 0 0.70 12 0.15 20
13 0.10 0 0.80 18 0.10 30
14 0.25 0 0.65 10 0.10 20

Table 2 Coverage probability of the j-th failure in a work sharing group with |Φmi | elements

|Φmi | 1 2 3 4 5 6 7

j = 1 0 0.99 0.63 0.36 0.22 0.15 0.08
j = 2 – 0 0.99 0.63 0.36 0.22 0.15
j = 3 – – 0 0.99 0.63 0.36 0.22
j = 4 – – – 0 0.99 0.63 0.36
j = 5 – – – – 0 0.99 0.63
j = 6 – – – – – 0 0.99
j = 7 – – – – – – 0

Table 3 Parameters of solutions

No sharing C∗ = 20 C∗ = 30 C∗ = 40 No redundancy

Max capacity 30 60 65 74 164
R(0) ≈1.0 0.9998 0.9998 0.9894 0.0952
R(20) 0.3640 0.9772 0.9733 0.9375 0.0952
R(30) 0.0 0.8461 0.9405 0.8656 0.0952
R(40) 0.0 0.2393 0.2650 0.7526 0.0952

(1),(2), (1,2,5), (1,2,3), (1,4,5), (1,2,3,4,
Subsystem (3),(4), (3,7), (4,5), (2,6,7), 5,6,7)
1 (5),(6), (4,6), (6,7) (3)

(7)
Structure (8),(9), (8),(9), (8,9,14), (8,9,13) (8,9,10,11,
Subsystem (10),(11), (10,12,14), (11,12), (10,11,12), 12,13,14)
2 (12),(13), (11,13) (10,13) (14)

(14)
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6 Conclusions

Computer systems that are used in life-critical applications and designed with suf-
ficient redundancy are vulnerable to uncovered failures, which foil the automatic
recovery mechanism. Many works have been developed to model the reliability
of systems subjected to imperfect fault coverage. The DFTS algorithm is able to
determine the unreliability of a system subjected to imperfect fault coverage dur-
ing enumeration of the operational states that correspond to the fault tree. A simple
alternative, the DDP algorithm, uses existing cut-set solutions methods and combines
aspects of behavioral decomposition, sum-of-disjoint products, and multi-state solu-
tion method. The DDP algorithm was further developed into SEA, which can be used
with any combinatorial solution technique. Recently, some OBDD-based algorithms
have been proposed to study the reliability of systems subjected to imperfect fault
coverage. The OBDD technique is used because of its high efficiency compared to
other techniques, such as inclusion-exclusion and sum of disjoint products. Some
recent papers have also proposed UGF-based algorithms to study imperfect fault
coverage. The UGF is shown to be very flexible in modeling different kinds of fault
coverage. This chapter also presents an extension of the optimal system structure
problem formulated in Levitin [28] to the case of FLC.

References

1. Abraham JA (1979) An improved algorithm for network reliability. IEEE Trans Reliab
28(1):58–61

2. Aggarwal KK, Misra KB, Gupta JS (1975) A fast algorithm for reliability evaluation. IEEE
Trans Reliab 24(1):83–85

3. Akhtar S (1994) Reliability of k-out-of- n: G systems with imperfect fault-coverage. IEEE
Trans Reliab 43(1):101–106

4. Arnold TF (1973) The concept of coverage and its effect on the reliability model of a repairable
system. IEEE Trans Comput 22(3):325–339

5. Amari S (1997) Reliability, risk and fault-tolerance of complex systems. PhD Thesis, Indian
Institute of Technology, Kharagpur

6. Amari SV, Dugan JB, Misra RB (1999a) A separable method for incorporating imperfect
fault-coverage into combinatorial models. IEEE Trans Reliab 48(3):267–274

7. Amari SV, Dugan JB, Misra RB (1999b) Optimal reliability of systems subject to imperfect
fault-coverage. IEEE Trans Reliab 48(3):275–284

8. Amari S, Pham H, Dill G (2004) Optimal design of k-out-of- n: G subsystems subjected to
imperfect fault-coverage. IEEE Trans Reliab 53(4):567–575

9. Bavuso SJ, Dugan JB, Trivedi KS, Rothmann EM, Smith WE (1987) Analysis of typical fault-
tolerant architectures using HARP. IEEE Transactions on Reliability 36(2):176–185

10. Bavuso SJ et al. (1994) HiRel: hybrid automated reliability predictor (HARP) integrated reli-
ability tool system (Version 7.0), 4 vols, NASA TP 3452

11. Bouricius WG, Carter V, Schneider PR (1969) Reliability modeling techniques for self-
repairing computer systems. In: Proceedings of the 24th national conference, ACM, pp 295–309

12. Bryant R (1986) Graph based algorithms for Boolean function manipulation. IEEE Trans
Comput 35(8):677–691



176 G. Levitin et al

13. Chang YR, Suprasad VA, Kuo SY (2004) Computing system failure frequencies and reliability
importance measures using OBDD. IEEE Trans Comput 53(1):2004

14. Chang YR, Amari SV, Kuo SY (2005) OBDD-based evaluation of reliability and importance
measures for multistate systems subject to imperfect fault coverage. IEEE Trans Dependable
Secure Comput 2(4):336–347

15. Coit D, Smith A (1996) Reliability optimization of series-parallel systems using genetic algo-
rithm. IEEE Trans Reliab 45(2):254–266

16. Ding Y, Zuo MJ, Lisnianski A, Li W (2010) A framework for reliability approximation of
multi-state weighted k-out-of- n systems. IEEE Trans Reliab 59(2):297–308

17. Doyel SA, Dugan JB, Patterson-Hine FA (1995) A combinatorial approach to modeling imper-
fect coverage. IEEE Trans Reliab 44(1):87–94

18. Dugan JB (1989) Fault trees and imperfect coverage. IEEE Transactions on Reliability
38(2):177–185

19. Dugan JB, Trivedi KS (1989) Coverage modeling for dependability analysis of fault-tolerant
systems. IEEE Transactions on Computers 38(6):775–787

20. Dutuit Y, Rauzy A (2001) New insights in the assessment of k-out-of-n and related systems.
Reliability Engineering and System Safety 72(3):303–314

21. Huang HZ, Qu J, Zuo MJ (2009) Genetic-algorithm-based optimal apportionment of reliability
and redundancy under multiple objectives. IIE Trans 41(4):287–298

22. Kuo SY, Lu SK, Yeh FM (1999) Determining terminal-pair reliability based on edge expansion
diagrams using OBDD. IEEE Trans Reliab 48(3):234–246

23. Kuo SY, Yeh FM, Lin HY (2007) Efficient and exact reliability evaluation for networks with
imperfect vertices. IEEE Trans Reliab 56(2):288–300

24. Lee YJ, Na MG (2009) Design of delay-tolerant controller for remote control of nuclear reactor
power. Nuclear Eng Technol 41(1):71–78

25. Levitin G, Lisnianski A, Beh-Haim H, Elmakis D (1998) Redundancy optimization for series-
parallel multi-state systems. IEEE Trans Reliab 47(2):165–172

26. Levitin G (2005) Universal generating function in reliability analysis and optimization.
Springer, London

27. Levitin G (2007) Block diagram method for analyzing multi-state systems with uncovered
failures. Reliab Eng Syst Saf 92(6):727–734

28. Levitin G (2008) Optimal structure of multi-state systems with uncovered failures. IEEE Trans
Reliab 57(1):140–148

29. Levitin G, Amari SV (2008a) Multi-state systems with static performance-dependent fault
coverage. Proc Inst Mech Eng, Part O J Risk Reliab 222(2):95–103

30. Levitin G, Amari SV (2008b) Multi-state systems with multi-fault coverage. Reliab Eng Syst
Saf 93(11):1730–1739

31. Levitin G, Xing LD (2010) Reliability and performance of multi-state systems with propagated
failures having selective effect. Reliab Eng Syst Saf 95(6):655–661

32. Li CY, Chen X, Yi XS, Tao JY (2010) Heterogeneous redundancy optimization for multi-state
series-parallel systems subject to common cause failures. Reliab Eng Syst Saf 95(3):202–207

33. Moustafa M (1997) Reliability of K-out-of- N: G systems with dependent failures and imperfect
coverage. Reliab Eng Syst Saf 58(1):15–17

34. Myers AF (2007) k-out-of- n: G system reliability with imperfect fault coverage. IEEE Trans
Reliab 56(3):464–473

35. Myers A (2008) Achievable limits on the reliability of k-out-of- n: G systems subject to imper-
fect fault coverage. IEEE Trans Reliab 57(2):349–354

36. Myers A (2009) Probability of loss assessment of critical k-out-of- n: G systems having a
mission abort policy. IEEE Trans Reliab 58(4):694–701

37. Myers A, Rauzy A (2008a) Assessment of redundant systems with imperfect coverage by
means of binary decision diagrams. Reliab Eng Syst Saf 93(7):1025–1035

38. Myers A, Rauzy A (2008b) Efficient reliability assessment of redundant system subject to
imperfect fault coverage using binary decision diagrams. IEEE Trans Reliab 57(2):336–348



Reliability of Systems Subjected to Imperfect Fault Coverage 177

39. Newton J (1995) Comment on: Reliability of k-out-of- n: G systems with imperfect fault-
coverage. IEEE Trans Reliab 44(1):137–138

40. Peng R, Levitin G, Xie M, Ng SH (2011) Reliability modeling and optimization of multi-
state systems with multi-fault coverage. submitted to the Seventh International Conference on
mathematical methods in reliability-theory. Methods. Applications

41. Perhinschi MG, Napolitano MR, Campa G, Seanor B, Burken J, Larson R (2006) Design
of safety monitor schemes for a fault tolerant flight control system. IEEE Trans Aerospace
Electron Syst 42(2):562–571

42. Pham H (1992a) Optimal cost-effective design of triple-modular-redundancy-with-spares sys-
tems. IEEE Transactions on Reliability 42(3):369–374

43. Pham H (1992b) Reliability analysis of a high voltage system with dependent failures and
imperfect coverage. Reliab Eng Syst Saf 37(1):25–28

44. Pham H, Pham M (1992) Reliability analysis of dynamic redundant systems with imperfect
coverage. Reliab Eng Syst Saf 35(2):173–176

45. Schneeweiss W (1987) Approximate fault-tree analysis with prescribed accuracy. IEEE Trans-
actions on Reliability 36(2):250–254

46. Tian ZG, Zuo MJ, Huang HZ (2008) Reliability-redundancy allocation for multi-state series-
parallel systems. IEEE Trans Reliab 57(2):303–310

47. Trivedi KS, Geist R (1983) Decomposition in reliability analysis of fault-tolerant systems.
IEEE Trans Reliab 32(5):463–468

48. Trivedi KS, Dugan JB, Geist R, Smotherman M (1984) Hybrid reliability modeling of fault-
tolerant computer-systems. Comput Electr Eng 11(2–3):87–108

49. Ushakov I (1987) Optimal standby problems and a universal generating function. Soviet J
Comput Syst Sci 25(4):79–82

50. Xing LD (2002) Analysis of generalized phased-mission system reliability, performance, and
sensitivity. IEEE Trans Reliab 51(2):199–211

51. Xing LD (2007) Reliability evaluation of phased-mission systems with imperfect fault coverage
and common-cause failures. IEEE Trans Reliab 56(1):58–68

52. Xing LD (2008) An efficient binary-decision-diagram-based approach for network reliability
and sensitivity analysis. IEEE Trans Syst Man Cybern Part A Syst Humans 38(1):105–115

53. Yeh FM, Lu SK, Kuo SY (2002) OBDD-Based evaluation of k-terminal network reliability.
IEEE Trans Reliab 51(4):443–451

54. Yeh WC (2009) A convolution universal generating function method for evaluating the symbolic
one-to-all-target-subset reliability function of acyclic multi-state information networks. IEEE
Trans Reliab 58(3):476–484

55. Youssef AMA, ElMaraghy MA (2008) Performance analysis of manufacturing systems com-
posed of modular machines using the universal generating function. J Manuf Syst 27(2):55–69



Replacement and Maintenance Policies
of Devices: A Review

Mohamed Abdel-Hameed

Abstract In this chapter, we discuss the contributions of the author to replacement
and maintenance of devices. Some related works are also discussed.

1 Introduction

During the past decades, the research on maintenance of engineering structures and
devices has increased continuously. A characteristic feature of the maintenance and
replacement policies is that decisions often must be made under uncertainty (such as
in deterioration and cost). In maintenance management, the most important uncer-
tainty is generally the uncertainty in the time to failure (lifetime), and/or the rate of
deterioration. Up to the early 1990s, most mathematical maintenance models were
based on describing the uncertainty in aging using a lifetime distribution. A disadvan-
tage of a lifetime distribution, however, is that it only quantifies whether a component
is functioning or not. In order to represent aging on the basis of lifetime distributions,
the celebrated failure rate function can be applied. The failure rate, however, is only
useful for making inferences for a large population of components rather than for a
single component.

For engineering structures and infrastructures it is generally more attractive to
base a failure model on the physics of failure and the characteristics of the oper-
ating environment. Therefore, it is recommended to model deterioration in terms
of a time-dependent stochastic process. Markov processes properly model the tem-
poral variability of deterioration. Such processes include stochastic processes with
independent increments like the Brownian motion with drift, the compound Poisson
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process, and the gamma process. For the stochastic modeling of monotonic and
gradual deterioration, the gamma process is most appropriate.

In this chapter, we review some of the work done by the author on maintenance
models, using lifetime distribution as well as observing the amount of degradation
the device is subject to over time.

Section 2 deals with maintenance models based on the life distribution. Section 3
deals with maintenance models based on observing the amount of degradation the
device is subjected to over time.

2 Periodic Maintenance Policies and Periodic Maintenance
Policies with Imperfect Repairs

Model 1

Abdel-Hameed [6] considers a periodic replacement policy for a device. The device is
replaced every T units of time (planned replacement), each at cost c0 . At failure, the
device is either restored to its condition prior to failure (minimal repair) or replaced
(unplanned replacement). If the device failed at age t, it is replaced with probability
p(t) or minimally repaired with probability q(t) = 1− p(t). The cost of the ith
minimal repair of a failed device at age t is ci (t), and the cost of each unplanned
replacement is c∞. This procedure repeats itself after each replacement, planned or
unplanned.

We define F to be the distribution function of the failure time,
−
F = 1 − F to

be the survival function, and R = −ln
−
F be the cumulative hazard function. Let

S = (Sn, n = 1, 2, . . .) be the process describing the times of successive failures.
For n ≥ 1, let S∗

n be the age of the device that replaced the nth failed device.
Furthermore, we let (N (t), t > 0) be the stochastic process denoting the number
of unplanned replacements; when T = ∞. Assuming τ to be the time of first jump
of the process N , throughout, we will denote the renewal function of the process N
by M . It is seen that τ has a distribution function G with survival probability

−
G(t) = exp[−Rp(t)]

where

Rp(t) =
∫ t

0
p(y)R(dy)

Let
∧
N = (

∧
N (t), t > 0) be the process describing the number of minimal repairs.

If A(T ) denotes the long-run average cost per unit of time, from standard renewal
argument it follows that,
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A(T ) = T −1[c0 + c∞M(T )+ E

∧
N (T )∑

i=1

cn(S
∗
n )].

Define f (t) to be equal to the expected cost of minimal repairs in [0, t), and let
v = min(τ, T ). Let

V (T ) = E

∧
N (v)∑

i=1

cn(S
∗
n ).

We have the following

Theorem 2.1 The expected cost of minimal repairs in [0, T ), f (T ), satisfies the
following integral equation:

f (T ) = V (T )+ M ∗ V (T )

where M ∗ V is the convolution of M and V .
The following theorem establishes the optimal value of the periodic replacement

time, and gives conditions for its uniqueness.

Theorem 2.2 (a) Let f be as given in Theorem 2.1, m be the renewal density of the
renewal function M, and f ′ be the derivative of f .

Then the optimal periodic replacement time is the unique solution of the equation

c∞[T m(T )− M(T )] + [T f ′(T )− f (T )] = c0.

(b) The solution in (a) is unique if both M(t) and f (t) are convex functions, in their
respective arguments.
For proofs of the above theorems and more detailed investigations the reader is
referred to the above-mentioned reference.

Model 2 ( see Ref. [4])

A system is subject to shocks, the normal cost of running the system per unit of time
is denoted by a > 0, and each shock to the system increases the running cost by
an amount c > 0, per unit of time. The cost of completely replacing the system is
co. The system is to be completely replaced at times T, 2T, . . . at a cost co > 0.
The value T is known as the period of the policy. In practice, reliability analysts are
often asked to find the optimal value of the period, that is to say, the value of T that
minimizes some functional of the cost. Such functional is normally taken to be the
long-run average cost per unit of time or the discounted total cost.

Let N = {N (t), t ≥ 0} be the process describing the number of shocks that
the system is subject to during the interval [0, t). Throughout we assume N as a
counting process whose jumps are of one unit magnitude. For t ≥ 0, we define M(t)
as the expected number of shocks in [0, t). From Fubini’s theorem it follows that the
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expected total cost of running the system per period is given by

aT + c
∫ T

0
M(t)dt + co

From standard renewal theory argument it follows that the long-run average cost per
unit of time is given by

A(T ) = [aT + c
∫ T

0
M(t)dt + co]/T .

The following theorem gives the form of the optimal periodic replacement time.

Theorem 2.3 The optimal value of the periodic replacement time always exists and
is equal to the unique solution of the integral equation

∫ T

0
[M(T )− M(t)]dt = c0/c.

Moreover, it is finite if and only if

lim
T −→∞

∫ T

0
[M(T )− M(t)]dt > c0/c.

Now we discuss the case when the maintenance and replacement costs are time
dependent. Let (τn, n = 1, 2, . . .) be the sequence describing the successive jump
times of the shock process N. The normal cost of running the system per unit of time
is a > 0 and the cost of completely replacing the system is co. For t ∈ [τn, τn+1),
cn(t) is the additional cost of operating the system per unit of time. Let

h(t) = E(cN ((t) (t)).

The following is the theorem analogous to the one above in this general case.

Theorem 2.4 If h is continuous, increasing, then the optimal value of the periodic
replacement time exists and is the unique solution of the integral equation

∫ T

0
[h(T )− h(t)]dt = co.

Moreover, it is finite if and only if

lim
T −→∞

∫ T

0
[M(T )− M(t)]dt > c0.
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For a more detailed examination of the above model and the proofs of the above
theorem the reader is referred to the above-mentioned reference. In the mentioned
reference, the special cases when the shock process is a non-homogeneous birth and
death process, as well as a renewal process are discussed.

3 Replacement and Maintenance Policies of Devices
Subject to Degradation

In 1975, Abdel-Hameed [1] proposed to use the gamma process as a model for
degradation occurring randomly in time. During the past 3 decades, gamma processes
were satisfactorily fitted to data on creep of concrete, fatigue crack growth, corroded
steel gates, thinning due to corrosion, and chloride ingress into concrete. On the basis
of the gamma degradation processes, case studies have been performed to determine
optimal maintenance decisions for steel coatings, and optimal inspection intervals
for high-speed railway. (see Refs. [9, 10] and [11] for more detailed investigations
of these topics).

In 1977 [2] the author discussed the case where a device is subject to a non-
homogeneous gamma process. He considers the cases where the degradation is
monitored continuously or monitored periodically. The device is replaced at failure
[corrective maintenance (CM)] or when the deterioration level exceeds a predeter-
mined level [preventive maintenance (PM)]. The cost of CM is fixed, while the cost
of PM depends on the deterioration level at the time when the maintenance is per-
formed. He obtains an explicit formula for the long-run average cost per unit of time.
van Noortwijk [11] applies this result to maintenance of a cylinder on a swing bridge.

In 1984 [3] the author extended the above results to the case where the degradation
is an increasing Levy process.

Abdel-Hameed [5] studied condition-based maintenance of a system subject
to stochastic degradation, where the degradation process is assumed to be a non-
decreasing jump process, denoted by X . The system has a threshold Y and it fails
once the deterioration exceeds or equals the threshold. We assume G to be the dis-
tribution function of Y and we define G = 1 − G. Examples of pure jump processes
are: (1) compound Poisson processes with positive jumps, (2) gamma processes, (3)
pure-birth processes, (4) stable processes, as well as Levy processes. The degradation
level is monitored periodically at times kτ, k = 1, 2, . . . , τ > 0. The two decision
variables are the inspection interval and the PM level. In the operations research
literature, such a policy is called a “control-limit policy” with the PM level called the
“control limit”. A failure is defined as the event in which the degradation exceeds
a failure random threshold (failure level). A failure is detected only by inspection.
The system is renewed when an inspection reveals either that the PM level is crossed
while no failure has occurred (preventive replacement) or that the failure level Y is
crossed (corrective replacement). If a replacement occurs before failure, when the
degradation level is x , the device is replaced by a new and identical one at a cost of
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cl(x). A failure is discovered only by inspection; upon detection of failure the device
must be replaced by a new and identical one at a cost of k = c1(∞). We assume that
c1() is an increasing function in its argument, and c1(0) = 0. The regular cost of
operating the system per unit of time, when the deterioration level is x, is denoted by
c2(x), and is assumed to be an increasing function in its argument. A renewal brings
the system back to its “as good as new” condition. The cost of preventive replace-
ment is a function of the degradation and the cost of corrective replacement is fixed,
where the former is less than or equal to the latter. Also, the cost of inspection per
unit time is a function of the inspection interval and the cost of system operation per
unit time is a function of the deterioration. Inspection does not degrade the system
and is perfect in the sense that deterioration will be observed with certainty and g(τ )
is the cost of inspection per unit of time; we assume that g is a decreasing function
in its argument. Both inspection and replacement take negligible time. The optimal
maintenance decision is determined by minimizing the long-term average cost per
unit time. This cost is computed by applying renewal reward theory. He finds the
‘optimal inspection policy’, where by optimal inspection policy is meant the policy
that minimizes the long-run average cost per unit of time. Moreover, he determines
appropriate conditions on the cost functions and the parameters of the deterioration
process which ensure that the optimal inspection policy is a control-limit policy. Let
ς be the failure time of the device, i.e.,

ς = inf{t > 0 : Xt ≥ Y }.

Furthermore, let N (τ ) be the inspection time index at which a failure is detected,
i.e.,

N (τ ) = inf{n : nτ ≥ ς}.

Define � to be the smallest sigma-algebra generated by {X (nτ), n ≤ N (τ )}. An
inspection policy is defined as any stopping time with respect to �; we denote
the class of such inspection policies by κ . Observe that any inspection policy has
{τ, 2τ, . . .} as its support.

Below we summarize the main results obtained in this paper, without proofs. Let

c0
1(x) = cl(x)− k if x < ∞

= 0 if x = ∞.

Then it follows from standard renewal theory arguments that the long-run average
cost of replacement per unit time when using an inspection policy T ∈ κ is

ψ(T )
def= [E(T )]−1[E

T∫

0

c2(Xt )+ Ec0
1(XT )+ k] + g(τ )].
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He proves that under appropriate assumptions on the parameters of the degradation
process and its infinitesimal generator, the optimal maintenance policy is a control-
limit policy.

Abdel-Hameed and Nakhi [8] treat the maintenance policy for devices sub-
ject to degradation, when the degradation process is an increasing semi-Markov
process. Specifically, let the degradation process (Z ) be an increasing semi-Markov
process with embedded Markov renewal process (X, T ) = (Xn, Tn; n ∈ N ), where
Xn = Z(Tn). Let Q = {Q(x, A, t), x, t ∈ R+, A ⊂ R+} be the semi-Markov kernel
associated with (X, T ), that is Q(x, A, t) = Pr{Xn+1 ∈ A, Tn+1 − Tn ≤ t |Xn = x},
and Markov renewal kernel R = {R(x, A, t), x, t ∈ R+, A ⊂ R+}, where
R(x, A, t) = ∑∞

n=0 Q(n)(x, A, t). The system has a resistance level (denoted by
random variable Y ), and the device fails once the degradation level crosses the resis-
tance level. The resistance level and the degradation process are assumed to be inde-
pendent. We denote the failure time by ρ. Let Ẑ be the degradation process, obtained
by killing the process Z at the failure time, that is, Ẑ = (Zt , t < ρ). Define Q̂ and R̂
as the corresponding semi-Markov kernel and Markov renewal kernel, respectively.
The system can be replaced before or at failure, and is maintained continuously. The
maintenance and non-failure costs are state dependent. They determine the optimal
maintenance policy, using the total discounted as well as the long-run average cost
per unit of time. Let g : R+ → R be the function describing the maintenance rate.
In the case, where the state space is countable, we define, for degradation levels i, j
in the state space,

q(i, j) = P{Xn+1 = j |Xn = i},
m(i) = Ei (T ),

q̂(i, j) = q(i, j)
Ḡ( j)

Ḡ(i)
;

ĥ(i) = Pi {T1 = ρ}.

Assume that the costs of a preventative (corrective) maintenance are c1 and
c2, (c2 > c1), respectively, and define the matrix Q = (q(i, j)). The optimal replace-
ment policy that minimizes the long-run average cost per unit time can be summarized
in the following algorithm. For more detailed explanations the reader is referred to
the reference above.

Algorithm. Assume that the degradation level at time zero is equal to i , normally
taken equal to zero.

Step 1. let j = i.
Step 2. Compute the matrix R̂, using the well known relationship R̂ = [I − Q̂]−1,

where I is the identity matrix of proper dimensions.
Step 3. For i, j let r̂(i, j) = R̂(i, j)− R̂(i, j − 1).
Step 4. Compute
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b j (k) = c2[m(k)ĥ( j)

m( j)
− ĥ(k)] + m(k)(g( j)− g(k))

for k = i, . . . , j .
Step 5. Compute

F( j) =
j∑

i

r̂(i, j)b j (k).

Step 6. If F( j) ≥ c1, then j is the optimum replacement level, otherwise j = j+1
and go to step 2.

Abdel-Hameed [7] considers the optimal maintenance policy for a system subject
to degradation. The degradation level is only observed at successive inspection times.
It is assumed that the degradation levels at inspections, and the times of successive
inspections form a Markov renewal process. Failure is detected only by inspection,
at this point in time the system goes through a CM. The system is also maintained
when the degradation exceeds a predetermined level (PM). He determines the optimal
maintenance policy using both the total discounted as well as long-run average cost

criteria. The system has a nominal life Y, with right tail probability
−
G and once the

degradation exceeds Y , the system fails. The states of the system are only observed
by inspection, also failures are only detected by inspection.

Let
∧
T = {∧

T n, n = 1, 2, . . .} be the times of successive inspections. Define the

process,
∧
X = {∧

Xn, n = 1, 2, . . .} as the process describing the degradation levels at
the successive inspection times. The system is replaced when a failure is detected
(CM), or once the observed degradation exceeds level M (PM). If at inspection the
system did not fail and the degradation is below level M , the system is left alone.
Each PM costs c1 and each CM costs c1 + d; d ≥ 0. The system is as good as new
after each maintenance (Corrective or Preventive), and maintenance is instantaneous.
If at inspection the degradation level is x , an inspection cost c(x) occurs. The process

(
∧
X ,

∧
T ) = {(∧

Xn,
∧
T n), n = 1, 2, . . .} is assumed to be a Markov renewal process with

state space [0,∞). Let
∧
Q and

∧
R be the semi-Markov kernel and Markov renewal

function corresponding to (
∧
X ,

∧
T ). Define

L1 = inf{n : ∧
X > Y } and

L2 = inf{n : ∧
X > M}.

Then
∧
T L1 and

∧
T L2 are the times of first corrective and PMs, respectively. We denote

these times by ζ , TM , respectively, and we define L = L1 ∧ L2 . Let (
∧
X
(1)

,
∧
T
(1)

) =
{(∧

Xn,
∧
T n), n < L1}. It follows that (

∧
X
(1)

,
∧
T
(1)

) is a Markov renewal process with
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state space [0,M). Furthermore, for x < M , y < M and t ∈ R+, their corresponding

semi-Markov and Markov renewal functions (denoted by
∧
Q (1)and

∧
R
(1)

) are given
by

∧
Q
(1)

(x, dy, t) = ∧
Q(x, dy, t)

−
G(y)
−
G(x)

for y ≥ x

= 0 for y < x,

∧
R
(1)

(x, dy, t) = ∧
R(x, dy, t)

−
G(y)
−
G(x)

for y ≥ x

= 0 for y < x .

Let S be the time of first maintenance. For k ≥ 2, let
∧
X
(k)

,
∧
T
(k)

, S(k) be independent

copies of
∧
X
(1)

,
∧
T
(1)

, S, respectively; let S(1) = S, τ0 = 0, L0 = 0, and for k ≥ 1,
define

τk =
k∑

j=1

S( j),

Nk = {n : ∧
Tn

(k)

= τk − τk−1},

Lk =
k∑

j=1

N j .

Then for k ≥ 1, τk and Nk are the time of the kth maintenance and the index at which
such maintenance is performed, respectively.

We define the processes (X, T ) = ((Xn, Tn), n = 1, 2, . . .} as follows:

Xn =
∞∑

k=n−Lk−1

∧
X
(k)

n−Lk−1
I (Lk−1 ≤ n < Lk), X Lk = 0 for k ≥ 1,

Tn =
∞∑

k=1

∧
T
(k)

n−Lk−1
+ τk I (Lk−1 < n ≤ Lk), TLk = τk for k ≥ 1.

We note that the process (X, T ) describes the degradation levels and the inspec-
tion times (over the infinite horizon), when maintenances are done at respective
minuteness times (τ1, τ2, . . .). Furthermore, this process is regenerative with the
maintenance times as the successive regeneration points; this process has state
space [0,M).

In [7] the total discounted as well as the long-run average costs are computed.
Here we will summarize the basic formulas for the long-run average cost only, for the
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formulas using the total discounted cost the reader is referred to this reference. Since
the process (X, T ) is a regenerative process, it follows that the long-run average cost
of running the system is given by (denoted by C(M))

C(M) = E0(c(Xn), n < L)+ c1 P0{S = TM } + (c1 + d)P0(S = ζ )

E0(S)

= E0(c(Xn), n < L)+ d P0(S = ζ )+ c1

E0(S)

=

M∫

0

∧
R
(1)

(0, dy,∞)c(y)+ d P0(S = ζ )+ c1

E0(S)
.

Let m(y) = Ey(
ˆ

T1), from Theorem 3 and Corollary 1 of [7] it follows that

P0(S = ζ ) =
M∫

0

∧
R
(1)

(0, dy,∞)[1 − ∧
Q
(1)

(y, [0,∞),∞)]

and

E0(S) =
M∫

0

∧
R
(1)

(0, dy,∞)m(y).

4 Conclusion and Perspectives

We discussed above several replacement, maintenance, and degradation models. It
is worth noting that the gamma degradation model and maintenance policies for
devices subject to such degradation process have attracted the attention of mainte-
nance engineers more than any other models. Perhaps the reason behind this is that
the gamma degradation process is the easiest to understand from a mathematical
point of view. One would hope that other degradation processes and maintenance
policies of devices subject to such degradation processes will be explored by safety
and maintenance practitioners. For example, the inverse Gaussian process can be
used to model degradation, the results obtained for the gamma degradation process
can be easily extended to this case. Furthermore, maintenance policies based on
semi-Markov degradation processes, given in Ref. [8], can provide a more accurate
model for degradation and maintenance.
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Dynamical Systems with Semi-Markovian
Perturbations and Their Use in Structural
Reliability

Julien Chiquet and Nikolaos Limnios

Abstract The aim of this chapter is to present dynamical systems evolving in
continuous-time and perturbed by semi-Markov processes (SMP). We investigate
both probabilistic modeling and statistical estimation of such models. This work was
initially developed in order to study cracking problems for the confinement device
in nuclear power plants, where a jump Markov process was used as the perturb-
ing process. The new key element here is the use of SMPs instead of Markov ones
for the randomization of the system. Several numerical illustrations in reliability are
investigated, accompanied with guidelines for a practical numerical implementation.

1 Introduction

In many industrial applications, structures may suffer degradations induced by the
corresponding operating conditions. Degradations may be induced by thermal cyclic
loadings, mechanical loadings, seismic activity, neutron irradiation, thermal sever
transients, etc., which may lead to the failure of the structure.

Mechanisms that cause failures are complex due to their interdependencies and
their different physical time-scales. Besides, these degradation mechanisms cannot
always be described through deterministic models. Thus, a stochastic approach is
often required. As a motivating example, we rely on the widely studied engineering
issue referred to as the “crack-growth” problem [22, 27]: in structural mechanics,
the main degradation process that leads to fatigue aging is due to the propagation
of small defects into cracks in structures subject to small yet cyclic loadings. Many
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industrial fields are concerned, such as aeronautics, nuclear plants, automobile or
bridge building among others. Qualitatively, the process remains the same whatever
the material considered (e.g., aluminum in aeronautics, steel for confinement devices
or pressure vessels, and concrete for bridges). The modeling methodology could be
tackled with the mathematical tools provided in this work.

Even in well-controlled lab experiments supervised with cutting edge technology
[20], crack-growth remains a very unstable phenomenon: deterministic models have
been provided from structural mechanics, e.g., through computationally intensive
finite-elements analysis. Yet, it is now acknowledged that probabilistic modeling are
required to handle such degradation processes. Beyond the uncertainty propagation
approaches offered by the probabilistic mechanics point of view, many authors rather
suggested to completely randomize the modeling through a description relying on
stochastic processes and dynamical systems (the pioneers in that domain being, to
our knowledge, [19, 26]). The present chapter clearly enters this framework, drawing
inspiration from [1, 9, 13, 15, 21] among many others.

As such, the stochastic models developed here do not necessarily aim to provide
an exact physical representation of the phenomenon. We rather suggest to describe
the evolution of an observable variable that characterizes the degradation process
well. Hence, a structure is said to “fail” when its level of degradation exceeds a given
threshold. The time evolution of the observable degradation process is described
by a positive-valued stochastic process Z = (Zt , t ≥ 0) governed by a first order
stochastic differential system:

Żt = C(Zt , Xt ), Z0 = z, (1)

where Żt
.= dZt/dt stands for the first order derivative of Zt , C is a positive function,

and z > 0 is the starting point of Z . The process X = (Xt , t ≥ 0) is a pure jump
process with a countable state space. This model reflects the following physical
point of view: the level of degradation Z increases on continuous sample paths; yet,
its evolution shifts at discrete instants of time due to random shocks with random
intensities induced by the operating conditions. These changes are modeled by the
jump process X .

In the case where X is a jump Markov process, the coupled process (Z , X) =
(Zt , Xt , t ≥ 0) with state space R+ × E owns a well-characterized infinitesimal
generator. Such a modeling belongs to the wider family of stochastic processes
referred to as Piecewise Deterministic Markov Processes. These hybrid processes
are an alternative to diffusion processes [7, 8, 12]. They virtually give a representation
of many stochastic process being the mixture of deterministic motions and random
jumps. A schematic view of three sample paths of the system defined in (1) are given
in Fig. 1, when (Z , X) is observed from the starting point t0 = 0 up to the random
time τ when Z reaches an absorbing point �.

The purpose of this work is to model the perturbing process X by a semi-Markov
process (SMP) and to derive the basic analysis for the associated dynamical system.
We insist on the opportunity of considering X to be a SMP rather than a Markov
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Fig. 1 Modeling degradation paths

process: the more flexible is the randomizing process X , the broader is the model
and the wider is the range of its application.

The main contributions described in this chapter are of two kinds:

(1) First, we investigate the probabilistic characterization of the dynamical system
(1) when X is semi-Markovian through Markov renewal theory, which allows to
calculate the reliability function understood in the following sense: if a threshold
� define an absorbing state of the system or, equivalently, a failure boundary
for the degradation process, the failure time τ is

τ = inf {t ≥ 0 : Zt ≥ �} ,

and the associated reliability function turns to

R(t) = P(Zt < �).

Interpreting (Z , X) as an extended SMP, we build a solvable Markov Renewal
Equation (MRE) for the associated transition function, then deriving a closed-
form. Still, this Markov renewal formulation required numerical resolution:
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we propose a detailed guidelines to compute the reliability and give numerical
example. This issue is addressed in Sect. 3.

(2) Second, we study the statistical inference of the system, that is, the estimation of
the deterministic parameters of function C as well as the estimation of the SMP
X . The degradation process being the only process whose paths can be collected
during laboratory measurements, we only dispose of some sample paths of Z ,
observed before the system fails, and defined on the random time interval [0, τ ].
From these paths, we develop (1) a method to estimate the parameters of the
function C , through an asymptotic analysis of the system (1) followed by a
classical regression analysis; (2) a method to estimate the paths of X (as well
as its state space E), since samples of X are not directly observed; (3) the
construction of the likelihood function associated with the semi-Markov kernel
of X and an approached maximum likelihood estimator for the kernel. This is
developed in Sect. 4.

Meanwhile, let us start by an introductory section devoted to Markov renewal
processes (MRP) theory.

2 Semi-Markov Processes: Background

This section recalls a few basics on SMPs. A larger view can be found for instance in
[6, 11, 12, 17, 21, 24], yet the material provided here should hopefully be sufficient
for the understanding of the main results developed throughout this chapter.

2.1 Notations and Settings

Consider an infinite countable set, say E , and an E-valued pure jump stochastic
process X = (Xt )t∈R+ . Let 0 = S0 ≤ S1 ≤ ... ≤ Sn ≤ Sn+1 ≤ ... be the jump times
of X , and J0, J1, J2, . . . the successively visited states of X . Note that S0 may also
take positive values. Let N be the set of non-negative integers. Then, X is connected
to (Jn, Sn) through

Xt = Jn, i f Sn ≤ t < Sn+1, t ≥ 0 and Jn = X Sn , n ≥ 0.

Definition 2.1. The stochastic process (Jn, Sn)n∈N is said to be a Markov renewal
process (MRP), with state space E , if it satisfies, a.s., the following equality

P(Jn+1 = j, Sn+1 − Sn ≤ t | J0, . . . , Jn; S1, . . . , Sn)

= P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn)

for all j ∈ E , all t ≥ 0, and all n ∈ N. In this case, X is called a SMP.
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Remark 2.1. We assume that the above probability is independent of n and Sn , and
in this case the MRP is called time homogeneous. Only time-homogeneous MRP are
considered in the sequel.

The MRP (Jn, Sn)n∈N is determined by the initial distribution α, with α(i) =
P(J0 = i), i ∈ E and by the transition kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i),

called the semi-Markov kernel of X . The process (Jn) is a Markov chain with state
space E and transition probabilities pi j := Qi j (∞) := limt→∞ Qi j (t), called the
embedded Markov chain (EMC) of X . It is worth noticing that here Qii (t) ≡ 0,
for all i ∈ E , but in general we can consider semi-Markov kernels by dropping this
hypothesis.

An important point is the following decomposition of the semi-Markov kernel

Qi j (t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i) = pi j Fi j (t), t ≥ 0, i, j ∈ E,

where pi j is the transition kernel of the EMC (Jn), and Fi j (t) := P(Sn+1 − Sn ≤
t | Jn = i, Jn+1 = j) is the conditional distribution function of the sojourn time in
the state i given that the next visited state is j , (with j �= i). Let us also, define the
distribution function Hi (t) := ∑

j∈E Qi j (t) and its mean value mi , which is the mean
sojourn time of X in state i . In general, Qi j is a subdistribution, i.e., Qi j (∞) ≤ 1,
hence Hi is a distribution function, Hi (∞) = 1, and Qi j (0−) = Hi (0−) = 0.

Remark 2.2. A special case of semi-Markov processes is the one where Fi j (·) does
not depend on j , i.e., Fi j (t) ≡ Fi (t) ≡ Hi (t), and

Qi j (t) = pi j Fi (t).

Any general semi-Markov process can be transformed into one of this kind (see, e.g.,
[17]).

Example 2.1. A Markov process with state space E = N and generating matrix
A = (ai j )i, j∈E is a special semi-Markov process with semi-Markov kernel

Qi j (t) = ai j

ai
(1 − e−ai t ), i �= j, ai �= 0,

where ai := −aii , i ∈ E , and Qi j (t) = 0, if i = j or ai = 0. In this case,
the transition function of the EMC is pi j = ai j/ai and we recover an exponential
distribution for the conditional distribution function of the sojourn time such as
Fi (t) = 1 − exp(−ai t), with t ≥ 0.

A usual restriction that fits practical applications is to assume a regularity
condition for the SMP of interest. To specify this condition, we introduce the count-
ing process (N (t), t ≥ 0)which counts the number of jumps of X in the time interval
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(0, t], by N (t) := sup {n ≥ 0 : Sn ≤ t}. Also, define Ni (t) to be the number of visits
of X to state i ∈ E in the time interval (0, t]. That is to say,

Ni (t) :=
N (t)∑

n=0

1{Jn=i} =
∞∑

n=0

1{Jn=i,Sn≤t}.

If we consider the (eventually delayed) renewal process (Si
n)n≥0 of successive

times of visits to state i , then Ni (t) is the counting process of renewals. Now, a SMP
X is said to be regular if

Pi (N (t) < ∞) = 1,

for any t ≥ 0 and any i ∈ E .
For regular SMPs we have Sn < Sn+1, for any n ∈ N, and Sn → ∞. In the sequel,

we are concerned with regular SMPs.
Let us also have a brief discussion about the nature of the different states of an

MRP. An MRP is irreducible, if, and only if, its EMC (Jn) is irreducible. A state i is
recurrent (transient) in the MRP, if, and only if, it is recurrent (transient) in the EMC.
For an irreducible finite MRP, a state i is positive recurrent in the MRP, if, and only
if, it is recurrent in the EMC and if for all j ∈ E , m j < ∞. If the EMC of an MRP
is irreducible and recurrent, then all the states are positive-recurrent, if, and only if,
m := νm := ∑

i νi mi < ∞, and null-recurrent, if, and only if, m = ∞ [where
ν is the stationary probability of EMC (Jn)]. A state i is said to be periodic with
period a > 0 if Gii (·) (the distribution function of the random variable Si

2 − Si
1) is

discrete concentrated on {ka : k ∈ N}. Such a distribution is also said to be periodic.
In the opposite case it is called aperiodic. Note that the term period has a completely
different meaning from the corresponding one of the classical Markov chain theory.

2.2 Markov Renewal Equation

An essential tool in semi-Markov theory is the MRE which can be solved using the
so-called Markov renewal function. To unveil this function, we first need to introduce
the convolution in the Stieljes-sense.

For φ(i, t), i ∈ E, t ≥ 0 a real-valued measurable function, the convolution of
φ by Q is defined by

Q ∗ φ(i, t) :=
∑

k∈E

∫ t

0
Qik(ds)φ(k, t − s).

Now, consider the n-fold convolution of Q by itself. For any i, j ∈ E ,
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Q(n)
i j (t) =

⎧
⎨

⎩

∑
k∈E

∫ t
0 Qik(ds)Q(n−1)

k j (t − s) n ≥ 2,
Qi j (t) n = 1,
δi j 1{t≥0} n = 0,

where δi j is the Kronecker delta, that is to say, δi j = 1 if i = j , 0 otherwise.
It is easy to prove (e.g., by induction) the following fundamental equality

Q(n)
i j (t) = Pi (Jn = j, Sn ≤ t),

where, as usual, Pi (·) means P(· | J0 = i), and Ei is the corresponding expectation.
The Markov renewal function ψi j (t), i, j ∈ E, t ≥ 0 is defined by

ψi j (t) := Ei [N j (t)] = Ei

∞∑

n=0

1{Jn= j,Sn≤t}

=
∞∑

n=0

Pi (Jn = j, Sn ≤ t) =
∞∑

n=0

Q(n)
i j (t).

In matrix form, this writes

ψ(t) = (I (t)− Q(t))(−1) =
∞∑

n=0

Q(n)(t).

This can also be written as

ψ(t) = I (t)+ Q ∗ ψ(t), (2)

where I (t) = I (the identity matrix), if t ≥ 0 and I (t) = 0, if t < 0.
Equation (2) is a special case of what is called a MRE. A general MRE is one of

the following form:
	(t) = g(t)+ Q ∗	(t), (3)

where 	(t) = (	i j (t))i, j∈E , g(t) = (gi j (t))i, j∈E are matrix-valued measurable
functions, with 	i j (t) = Li j (t) = 0 for t < 0. The function g(t) is a given while
	(t) is unknown.

The following Theorem bring some results about existence and unicity of a
solution to MRE as (3).

Theorem 2.1. (Markov Renewal Theorem [25]) Let B be the space of all locally
bounded, on R+, matrix functions 	(t), i.e., ‖	(t)‖ = supi, j

∣∣	i, j (t)
∣∣ is bounded

on sets [0, ξ ], for every ξ ∈ R+. Also, denote by Hi (t) := 1−Hi (t). Let the following
conditions be fulfilled:
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(1) The EMC (Jn) is ergodic, i.e., irreducible and positive-recurrent, with stationary
probability ν = (νi , i ∈ E).

(2) The mean sojourn time in every state is finite, i.e., for every i ∈ E,

mi :=
∫ ∞

0
Hi (t)dt < ∞, and m :=

∑

i∈E

νi mi > 0.

(3) The distribution functions Hi (t), i ∈ E, are nonperiodic.
(4) The functions Li j (t), t ≥ 0, are direct Riemann integrable, i.e., they satisfy the

following two conditions, for any i, j ∈ E:

∑

n≥0

sup
n≤t≤n+1

∣∣Li j (t)
∣∣ < ∞,

and
lim
�↓0

{
�
∑

n≥0

[
sup

n�≤t≤(n+1)�
Li j (t)− inf

n�≤t≤(n+1)�
Li j (t)

]}
= 0.

Then Eq. (3) has a unique solution 	 = ψ ∗ L(t) belonging to B, and

lim
t→∞	i j (t) = 1

m

∑

�∈E

ν�

∫ ∞

0
L�j (t)dt. (4)

Finally, we unveil another very important function to characterize the process,
namely, the semi-Markov transition function

Pi j (t) := P(Xt = j | X0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal law of the process. It can be shown that P verifies
a particular MRE, which will be essential in the development of our probability
assessments in the next section.

Proposition 2.1. The transition function P(t) = (Pi j (t)) satisfies the following
MRE

P(t) = I (t)− H(t)+ Q ∗ P(t),

which, under Conditions (1–3) of Theorem 2.1, has the unique solution

P(t) = ψ ∗ (I (t)− H(t)),

and, for any i, j ∈ E,
lim

t→∞ Pji (t) = νi mi/m =: πi .

Here H(t) = diag(Hi (t)) is a diagonal matrix.
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It is worth noticing that, in general, the stationary distribution π of the SMP X
is not equal to the stationary distribution ν of the EMC (Jn). Nevertheless, we have
π = ν when, for example, mi is independent of i ∈ E .

3 A Dynamical Differential System for Structural
Reliability Study

We now turn back to the main motivation of the chapter, that is, investigating the
following differential system:

Żt = C(Zt , Xt ), Z0 = z. (5)

To ensure that (5) owns a unique solution, we set the usual regularity assumption for
C , that is, C : R+ × E −→ R+ is measurable and Lipschitz w.r.t. the first argument,
uniformly on the second.

We also set some restrictions for the reliability study of (5). Looking toward the
description of what is understood here as the degradation process, the following
assumptions naturally rise from physical considerations:

• the level of degradation is positive and increases across time;
• the failure domain is defined by a threshold � ∈ R

∗+ = (0,∞).

These assumptions require that the function C : (x, i) → C(x, i) is strictly
positive for all x ∈ R+, i ∈ E . Moreover, we set � > z > 0 to ensure that the
system does not starts in a failure state.

Now, to be specific with the reliability analysis of (5), we define U = [z,�) the
set of working states with 0 < z < � and D = [�,∞) the set of down states.
Assuming a nonreparable system and thanks to the continuous, increasing evolution
of Z , failure occurs as soon as point � is reached: this point is an absorbing state of
the system. The failure time can thus be written as a function of the coupled process
(Z , X):

τ = inf {t ≥ 0 : Zt ∈ D} ≡ inf {t ≥ 0 : (Zt , Xt ) ∈ D × E} . (6)

The reliability and the cumulative distribution function (CDF) of τ turn to

R(t) = P((Zt , Xt ) ∈ U × E) = 1 − Fτ (t). (7)

In the remaining of this section, we interpret (Z , X) as an extended MRP. We then
derive a solvable MRE whose solution is the transition function of the (Zt , Xt ). Then,
reliability (7) has a closed-form which can be computed numerically. A numerical
illustration is investigated that confirmed our theoretical results and that hopefully
bring some insights on the understanding of the semi-Markov kernel associated with
(Z , X).
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3.1 The Coupled Process as an Extended Markov
Renewal Process

In a previous work [4], we considered the system (5) with X a jump Markov process.
Here, a more general assumption is made regarding the nature of the perturbing
process: we set X = (Xt , t ≥ 0) a SMP with finite state space E , which describes
random variations in the environment of Z = (Zt , t ≥ 0). The pure jump process X
is defined by its semi-Markov kernel

Qi j (t) = P(Jn+1 = j, Sn+1 − Sn ≤ t |Jn = i), (8)

where i, j ∈ E and t ≥ 0. As from the previous section, the process (Jn, Sn, n ∈ N)

is the embedded MRP of the SMP X , where (Sn, n ∈ N) is the random sequence
describing the jump times. The random sequence Jn = X Sn is the EMC with transi-
tion probabilities (pi j )i, j∈E , such as pi j = Qi j (∞). We also put αi = P(X0 = i)
the initial distribution of X . Besides, we consider with no loss of generality that
the conditional CDF of the sojourn time does not depend on the arrival point j as
in Remark 2.2, that is, Fi j (t) ≡ Fi (t). The semi-Markov kernel of X thus writes
Qi j (t) = pi j Fi (t).

From now, we start to be specific to the couple (Z , X) defined by (5): for any
t < S1, we denote by ϕz,i (t) the deterministic function describing the solution to
(5), when X0 = i . Hence, ϕz,i (t) is the solution before the first jump time of X ,
conditionally on the starting value (Z0, X0) = (z, i). Note that we assume that Z0
and X0 are independent.

We are finally ready to associate to (Z , X) the “extended” MRP (ζn, Jn, Sn, n ∈
N), by extending the “standard” MRP (Jn, Sn) with a third component as follows:

ζn = ZSn , Jn = X Sn , n ∈ N.

As for a usual MRP, we may introduce the appropriate mathematical tools.
Thenceforth, consider the semi-Markov kernel associated with the triplet (ζn, Jn, Sn):
it is denoted by L and defined, for t > 0, by

Li j (z, B, t) := Pz,i (ζ1 ∈ B, J1 = j, S1 − S0 ≤ t), (9)

where B is a subset of B, the Borel σ−field of R+ and Pz,i (·) := P

(·|Z0 = z, X0 = i). The Stieltjes-convolution of L with a measurable function
φ on the space R+ × E , denoted by “∗”, is defined by

(L ∗ φ)i j (z, t) =
∑

k∈E

∫

R+

∫ t

0
Lik(z, dy, ds)φk j (y, t − s),

for i, j ∈ E and z > 0. In the same way, the n-fold convolutions of the semi-Markov
kernel L are defined recursively. For n = 0, 1,
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L(0)i j (z, B, t) = 1{i= j}1B(z)1R+(t), L(1)i j (z, B, t) = Li j (z, B, t),

where 1B(x) is the indicator function, i.e., 1B(x) = 1 if x ∈ B, 0 otherwise. For
n ≥ 2, the n-fold convolution turns to

L(n)i j (z, B, t) := (L ∗ L(n−1))i j (z, B, t).

The Markov renewal function � of the triplet is

�i j (z, B, t) =
∑

n≥0

L(n)i j (z, B, t).

In the case at hand, we consider that (ζn, Jn, Sn) is a normal MRP, that is,
�i j (z, B, t) < ∞ for any fixed t > 0, z > 0, B ∈ B and i, j ∈ E , which implies
also that the SMP Z is regular.

For the process (ζn, Jn, Sn), a MRE has the following form

	i j (z, B, t) = gi j (z, B, t)+ (L ∗	)i j (z, B, t), (10)

where gi j , i, j ∈ E are known functions and 	i j , i, j ∈ E are the unknown
functions. The solution to (10), thanks to the results of the previous section, is

	i j (z, B, t) = (� ∗ g)i j (z, B, t). (11)

3.2 The Transition Function

Consider the transition function P of the couple process (Z , X), defined by

Pi j (z, B, t) := Pz,i (Zt ∈ B, Xt = j), i, j ∈ E, B ∈ B. (12)

We aim at building a MRE suitable for P . For this purpose, we first need a closed-form
expression for L . This is achieved in the following Lemma.

Lemma 3.1. The semi-Markov kernel L of the extended MRP (ζn, Jn, Sn) satisfies,
for i �= j ,

Li j (z, B, dt) = δϕz,i (t)(B)Qi j (dt),

where δx (B) is the Dirac distribution, equal to 1 if x ∈ B, 0 otherwise. When i = j ,
we have Lii (·, ·, ·) = 0.
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Proof. Conditioning on definition (9), and by definition (8) of Q, we get,

Li j (z, B, dt) = Qi j (dt)× Pz,i (ζ1 ∈ B|J1 = j, S1 = t).

Then, Zt is fully characterized by ϕz,i (t) before the first jump time S1, thus Pz,i (ζ1 ∈
B|J1 = j, S1 = t) = Pz,i (Zt ∈ B) = δϕz,i (t)(B), and the result follows. �

Note that, by considering the decomposition Qi j (t) = pi j Fi (t), Lemma 3.1
implies that

Li j (z, B, dt) = δϕz,i (t)(B)pi j fi (t)dt,

where fi (t) = dFi (t)/dt is the conditional probability density function of the sojourn
time.

Example 3.1. Consider the special case of X a jump Markov process as defined in
the Example 2.1. Then,

Li j (z, B, dt) = ai j e
−ai tδϕz,i (t)(B)dt.

We may now proceed to the result on the transition function of the coupled process
(Z , X).

Proposition 3.1. The transition function P satisfies the MRE

Pi j (z, B, t) = gi j (z, B, t)+ (L ∗ P)i j (z, B, t),

whose unique solution is Pi j (z, B, t) = (� ∗ g)i j (z, B, t), with

gi j (t) = [1 − Fi (t)]1B(ϕz,i (t))1{i= j}. (13)

Proof. From (12), it holds that

Pi j (z, B, t) = Pz,i (Zt ∈ B, Xt = j, S1 > t)
︸ ︷︷ ︸

P1

+ Pz,i (Zt ∈ B, Xt = j, S1 ≤ t)
︸ ︷︷ ︸

P2

.

Before the first jump, Xt = X0 and Zt evolves according to ϕz,i (t). Thus, we easily
see that P1 = [1 − Fi (t)]1B(ϕt (z, i))1{i= j}. From Total Probability Theorem, P2
turns to

P2 =
∑

k∈E
k �=i

∫ t

0
Pz,i (Zt ∈ B, Xt = j |J1 = k, S1 = s)Pz,i (J1 = k, S1 ∈ ds).

By definition (8), Pz,i (J1 = k, S1 ∈ ds) = Qik(ds). Noticing that Pz,i (Zt ∈ B,
Xt = j |J1 = k, S1 = s) = Pkj (ϕz,i (s), B, t − s), then P2 is fully known. Thus,
with L given as in Lemma (3.1), expression P1 + P2 turns to
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Pi j (z, B, t) = [1 − Fi (t)]1B(ϕz,i (t))1{i= j}

+
∑

k∈E

∫

R+

∫ t

0
Lik(z, dy, ds)Pkj (y, B, t − s).

This last equation is of the general form of (10), with g equaling (13). Since the
first term into the right-hand side is bounded, its solution is given by (11) and is
unique. �

3.3 Application to Reliability Calculus

Enjoying a closed-form for the transition function P , this section intends to show
its implication for reliability calculus. Recall that U = [z,�) is the set of working
states and D = [�,∞) is the set of down states. The reliability function is easily
expressed as a function of the transition function P of the couple:

R(t) = P((Zt , Xt ) ∈ U × E) =
∑

i, j∈E

αi Pi j (z,U, t).

Through Proposition 3.1, P is known. Hence R (as well as Fτ ) is fully
characterized:

R(t) = 1 − Fτ (t) =
∑

i, j∈E

αi × (� ∗ g)i j (z,U, t).

The computation of R thus requires �, determined by summing the n-fold
convolutions of the kernel L , which is the essential block of the whole process.
We have a closer look to this quantity in the next paragraph.

3.3.1 Insights on the Semi-Markov Kernel

The kernel L can be calculated at a given time point t > 0 for the Borel subset U of
working state, by integrating the expression given in Lemma 3.1. To this hand, we
introduce the quantity

tz,i (�) = inf
{
t ≥ 0 : ϕz,i (t) ≥ �

}
,

which represent the (deterministic) time for the system to enter D when no jump is
observed, and when the system starts from (Z0, X0) = (z, i). Then, the kernel is
easily seen to equals
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Li j (z,U, t) = pi j

∫ t

0
fi (s)1U (ϕz,i (s))ds = pi j Fi

(
min

{
t, tz,i (�)

})
.

Conversely, the same kind of computation holds when considering the set of down
states D, and we have

Li j (z, D, t) = pi j
(
Fi (t)− Fi (tz,i (�)

)
1{t>tz,i (�)}.

To illustrate this, let us consider again the special case of a Markov jump process.

Example 3.2. Assume X is a jump Markov process as defined in Example 2.1. Then,
we have the following closed-form for the kernel L when considering subset U and
D:

Li j (z,U, t) = ai j

ai

(
1 − e−ai min(tz,i (�),t)

)
,

and
Li j (z, D, t) = ai j

ai

(
e−ai t − e−ai tz,i (�)

)
1{t>tz,i (�)}.

These expressions pave the way for the numerical implementation that leads to
the evaluation of the reliability, as detailed in the next paragraph.

3.3.2 Numerical Implementation

The numerical calculation of R successively requires the kernel L , the n-fold
convolutions L(n) for each n ≥ 0, the Markov renewal function� built upon the L(n)

and the transition function P , by a convolution between g and�. Since convolution
products are time-consuming, any simplification would mean a great time-saving.
By Lemma 3.1, the n-fold convolution of L turns to

L(n)i j (z, B, t) =
∑

k∈E
k �=i

pik

∫ t

0
fi (s)L

(n−1)
k j (ϕz,i (s), B, t − s)ds, (14)

hence removing the integral on R+, thanks to the Dirac distribution. Since our main
interest is the reliability, we compute P just for the subset B ≡ U , that is,

Pi j (z,U, t) =
∫

U

∫ t

0
�i j (z, dy, ds) f j (t − s)1U (ϕy, j (t − s)). (15)

Indeed, the sum on E has been removed thanks to the structure of g. Furthermore,
the integration on y ∈ R+ is limited on U since 1U (ϕy, j (t − s)) is zero elsewhere.
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Now, these functions have to be properly discretized to achieve the numerical
computation. In the following, a function with an upper index “#” means its dis-
cretized version. This discretization must be operated on both intervals U = [z,�)
and [0, t], thus we set two numerical partitions

{
z = y0 < y1 < · · · < y� < · · · < yL = �−}

and {0 = t0 < t1 < · · · < tm < · · · < tM = t} .

Both L and M , being the respective numbers of discretization steps for [z,�)
and [0, t], have to be sufficiently large. When L ,M → ∞ each numerical function
tends to the associated “true" one. For instance, when L ,M → ∞, then L# → L
uniformly w.r.t a given matrix norm, for example, ||L|| = maxi, j Li j (z, y, t) with
t, z, B fixed. Hence, the discrete (numerical) version of (15) is

P#
i j (z,U, t) =

∑

y�∈[z,�)

∑

tm∈(0,t]
�yt�

#
i j (z, y�, tm) f j (t − tm)1ϕy�, j (t−tm)(U ),

where �yt�
#
i j (z, y�, tm) is the only unknown, which stands for the numerical

evaluation of �(z, dy, ds) in (15). It can be evaluated through

�yt�
#
i j (z, y�, tm) =

∑

n≥0

�yt L#(n)(z, y�, tm).

The difference �yt L#(n) is calculated by finite differences on y and t :

�yt L#(n)(z, y�, tm) = [L#(n)(z, y�, tm)− L#(n)(z, y�−1, tm)]
− [L#(n)(z, y�, tm−1)− L#(n)(z, y�−1, tm−1)].

Each element in L#(n) is obtained by the discretized version of (14):

L#(n)
i j (z, y�, tm) =

∑

k∈E
k �=i

pik

∑

tm∈(0,t]
fi (tm)L

#(n−1)
k j (ϕz,i (tm), y�, t − tm)�tm,

with�tm = tm −tm−1, the time-step discretization. Finally, we point out that the sum
on the n-fold convolutions of the kernel in the evaluation of�# is truncated from the
rank n∗, provided that ||L#(n∗)|| < ε. We put ε a small real number, chosen closed to
the machine precision. Note that the integer n∗ is finite since L#(n)

i j (z, y, t) −−−→
n→∞ 0

for a normal MRP with fixed values of i, j ∈ E, t > 0, z > 0 and y ∈ [z,�].
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3.4 Numerical Illustration

As an illustration to the results and the methodology presented along this section,
we suggest to study the process Z governed by

Żt = aZt × c(Xt ), Z0 = z, (16)

with a = 0.01, z = 1, � = 10. To fix the idea, we set X a five-state jump Markov
process with E = {1, 2, 3, 4, 5} and a matrix generator given by

A =

⎛

⎜⎜⎜⎜
⎝

−0.2 0.16 0 0.04 0
0.12 −0.2 0.08 0 0
0.14 0 −0.2 0 0.06

0 0.07 0 −0.1 0.03
0 0 0.05 0.05 −0.1

⎞

⎟⎟⎟⎟
⎠

The initial law is α = (1/4 1/2 1/4 0 0).Finally, the function c : {1, 2, 3, 4, 5} →
{0.5, 1, 1.5, 2, 4} is a one-to-one mapping introduced to “control” the randomizing
process X . Note that the multiplicative form of system (16) is reminiscent of stochas-
tic crack-growth modeling and is suitable to describing a wide family of degradation
processes.

Before we carry on reliability computations, we suggest to get a better insight into
the semi-Markov kernel L of (Z , X) as defined in system (16): X being Markov-
ian, the expressions of L on subsets U and D exactly match the Example 3.2 and
can be straightforwardly computed. Rather than plotting L , consider the functions
Hi (z, B, t) = ∑

j∈E Li j (z, B, t) and the CDF

Hi (t) := Pi (S1 ≤ t) = Hi (z,U, t)+ Hi (z, D, t).

The function Hi is the CDF of the sojourn time for the jump process X to be in the
state X0 = i . The function Hi (z, B, ·) is a sub distribution: when B ≡ U , Hi (z,U, t)
represents the probability for the system, starting from (z, i), to remain in a safe state
when X is jumping for the first time. Similarly, Hi (z,U, t) describes the probability
for the system to be in a failure state when the first jump occurs. These remarks are
illustrated in Fig. 2, representing Hi (z, B, ·) for i = 1, 5, respectively on U and D.
The function H1(z, D, ·) is approximately zero, meaning that H1(z,U, ·) ∼= H1(·)
is a CDF. Conversely, starting from (z, 5), this probability is strictly greater than
zero. As a matter of fact, state 5 for Xt corresponds to a “shock” inducing a strong
multiplicative change to the system (16): Z increases a lot faster to the absorbing point
�. Also remark that we graphically establish that H5(t) = H5(z,U, ·)+ H5(z, D, ·)
is a CDF.

Let us now evaluate the reliability of system described by Eq. (16) through a
Markov renewal argument. To do this, the numerical resolution of the MRE is per-
formed with M = L = 100 points of discretization.
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Fig. 2 Function Hi (z, B, ·) associated with the semi-Markov kernel
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Fig. 3 50 randomly simulated paths of Zt

As a comparison, we compute the reliability thanks to the usual Monte-Carlo
method, which consists in simulating a large number of paths of Z and counting
when the state {�} is reached or not. This principle is illustrated in Fig. 3 for K = 50
trajectories. By the way, these trajectories helps to catch the nature of this particular
numerical illustration.

We use the empirical estimator computed on K = 50, 000 paths (Zk
t )k=1,...,K

simulated through Monte-Carlo techniques, that is R̂(t) = 1
K

∑K
k=1 1

{
Zk

t <�
}. This

estimator is compared with the direct calculus of R through the MRE developed
here. Results can be found on Fig. 4 where the Monte-Carlo estimator is used as a
reference for sanity-check of the validity of both theoretical results and numerical
implementation. One can take note of the very good similarity between the reliability
curves obtained via the two methods.

Moreover we represent in Fig. 5 an evaluation of fτ , the probability density
function of the failure time. With the very same kind of argument that we devel-
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Fig. 4 Comparing the Monte-Carlo estimator to the numerically solved Markov renewal equation
for reliability function

Fig. 5 Comparing the Monte-Carlo estimator to the numerically solved Markov renewal equation
for the density function of the failure time

oped, fτ can be obtained by solving a MRE or via Monte-Carlo simulation. This is
done through some routine calculus starting from the basic fact that

fτ (t) = − d

dt
R(t).
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Again, we acknowledge the very good correlation between our proposal and the
Monte-Carlo estimate. Moreover, we observe that our proposal is smoother as com-
pared to the Monte-Carlo approach, which would require a huge number of simulation
to get a similar result.

4 Statistical Inference

This section addresses the estimation issue related to the system described by Eq. (5)
in Sect. 3. It partially follows the exposition given in [5], where we studied the
simpler Markov case for X in a real data study related to crack-growth analysis. The
SMP estimation developed here consists of new material. We also provide statistical
methods which are more robust regarding the estimation of the trajectories of the
jump process, derived from the literature related to the segmentation/clustering of
piecewise constant signals.

Recall the observation scheme, as plotted in Fig. 1: the only data that can
reasonably be made available from experimental feedback are recorded paths of
the degradation process Z . Typically, the process is observed from a starting point
z which represents the smallest level of degradation that can be characterized, until
it reaches the failure threshold � at a random time τ . This is exactly how measure-
ments of crack-growth are acquired in [27]. Thus, the sample training data are only

composed by some K paths
{

Zk
t , t = 0, . . . , τ k

}K
k=1 where τ k is the hitting time for

the k-th path.
Basically, the most ambitious goal that we would like to aim is to successively

estimate (1) the function C and (2) the randomizing SMP Xt , only by considering
paths of Z with right censoring. We propose in this section a first methodological
effort in that sense, which, requires some additional assumptions to carry out the
inference process:

• the observed paths Z are independent and identically distributed;
• the function C ≡ Cθ : (z, i) → C(z, i) is a known parametric function, with

parameters θ remaining unknown;
• there exists a function Gθ giving X as a function of Z and its first derivative, that

is, the function Cθ in the dynamical system (5) may reverse so as

Xt = Gθ

(
Zt , Żt

)
. (17)

The first assumption of i.i.d. paths is quite usual in statistics and well motivated
in the framework of structural reliability. The second assumption (the parametric
modeling of C) clearly eases the inference process. Yet we underline that it has
been initially motivated by application purpose. In fact, the modeling of a particular
degradation process often owns a physical framework in which scientists have an idea
about the general form of Cθ , with θ the parametric adjustment which remains the
only unknown. Finally, concerning the third assumption, it is acknowledged that such
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a function does not always exists, yet it is required to evaluate the paths of the jumping
random component. Indeed, when the stochastic process X is a linear additive or a
multiplicative term in the function C , we may easily find the corresponding function
G, which concerns a broad family of problems. Besides, this is truly the case for most
of the stochastic crack-growth formulations that we met and that initially motivated
this work [19, 22, 27].

The rest of this section splits into two parts:

(1) First, we describe the estimation of C , which relies on the Bogolyubov’s
averaging principle [2]. A regression analysis can be performed on the asymp-
totic, deterministic system so as to estimate the fixed parameter θ in function
C .

(2) Second, we address the estimation of the random component, that is, the jump
SMP X , which is not directly observed. Once some paths of X and its state space
are recovered, we can build the likelihood function, keeping in mind that the
paths are defined on randomly censored time intervals. The semi-Markov kernel
Q of X are then estimated by maximizing an approached likelihood function.

We finally give a numerical application to illustrate the whole estimation scheme.

4.1 Bogolyubov’s Averaging Principle

An approximation of Z is obtained by analyzing the system (5) in a series scheme
as in [12], that is by studying the weak convergence, when ε → 0, of

dZ εt
dt

= Cθ (Z
ε
t , Xt/ε), Z ε0 = z, (18)

where X is assumed to be ergodic and θ are the parameters of C . In fact, the change
of scale t → t/ε is performed for X in order to see the behavior of the dynamical
system when the random component X just adds the information it would add after
a very long time of observation of (18), since t/ε → ∞ when ε → 0. This so-called
averaging approximation was first introduced by Bogolyubov [2] who showed that
(18) converges weakly when ε → 0 to the following deterministic system

d̃zt

dt
= Cθ (̃zt ), z̃0 = z, (19)

with z̃t the limit deterministic process and Cθ a mean function defined by

Cθ (z) = lim
T →∞

1

T

∫ T

0
Cθ (z, Xt )dt, a.s.

An illustration of this principle is provided in Fig. 6, where z̃t is represented among
a set of sample paths of Z .
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Fig. 6 Application of the
Bogolyubov’s averaging prin-
ciple

In the particular case where X is an ergodic SMP with a stationary law π , we have

Cθ (z) =
∑

i∈E

Cθ (z, i)πi .

Through this averaging technique, we have a limit deterministic system (19)
associated with stochastic differential system (5). The fixed parameters θ appear-
ing in the function Cθ are the same as the ones appearing in Cθ but in (19) the
random part was “eliminated”: with the K sample paths Zk

t , we can perform a clas-
sical regression analysis on (19) to estimate the fixed parameters θ .

4.2 The Semi-Markov Process Estimation

The SMP X is fully characterized by its kernel Q and its initial law α. Mean-
while, prior to any estimation of Q or α, some representations of the paths
{

Xk
t , t = 0, . . . , τ k

}K
k=1 are needed.

4.2.1 Trajectories Estimation

Assume that there exists a function Gθ as defined in (17); hence, we may obtain a
first estimation for the Xk

t ’s through

X̃ k
t = Gθ

(
Zk

t ,
̂̇Z

k

t

)
, (20)
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Fig. 7 Illustration of a segmentation/clustering algorithm (Source Picard [23])

where the derivative of Zt can be estimated by various straightforward methods, e.g.,
the secant method

̂̇Z
k

t = Zk
t+�t − Zk

t

�t
,

with �t being the time discretization step of the data set.
Note that the parameters θ are required, whose estimation could be performed

relying on the averaging principle argument just developed above. Hence, by (20),
we basically extract from the trajectories of Z the “random” part that is unexplained
by the averaging, deterministic process in (19). By this mean, we obtain some noisy
paths taking their values in R, in which values may be quite nearby, as illustrated in
Fig. 7. Our model requires a finite state space for the underlying SMP X with some
piecewise-constant shape paths, thus it is appropriate to “regroup” the values which
are very close from each other to an unique state. This problem can be interpreted as
the widely studied segmentation/clustering problem: basically, one wishes to perform
(1) the segmentation of a signal assumed to be piecewise constant into, says, q change-
points corresponding to the jumps of X and (2) the clustering of the q segments into,
says, p clusters corresponding to the states of X .

The segmentation/clustering process is illustrated in Fig. 7 (from Picard [23]): the
segmentation is performed on the x-axis while the clustering is performed in the
y-axis.

Traditionally, this problem has been studied using hidden Markov models. This is
a quite well-studied issue where the segmentation step is usually treated via dynamic
programming and the clustering step may be treated through various algorithms such
as the popular K -means algorithm. We adopt this naive approach for our problem
(see e.g. [5]), yet we want to underline the fact that the segmentation/clustering
problem received much attention recently. As a matter of fact, the treatment of huge
amount of data with signal lengths up to the million of entries has been required for
bioinformatics purpose. Consequently, very powerful variants and implementations
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of the segmentation/clustering problem have been investigated, regarding the analysis
of CGH microarray data. Authors use the traditional HMM modeling (e.g.,[10])
and also mixture modeling (e.g., [14, 23]). They provide very competitive and well
integrated model selection approaches to chose both the number of segment p and the
number of cluster q. Our problem of paths estimation of X is in very small dimension
as compared to the problem of biological data, and can be treated very efficiently.
We thus rely on these approaches to process the noisy paths {X̃ k

t , k = 1 . . . , K } from
(17), thus leading to K piecewise constant approximated paths {X̂ k

t , k = 1, . . . , K }
defined on a finite state space E . The X̂ ks are then used for further estimations linked
to the SMP X , namely for estimating its initial distribution α and its kernel Q. This
issue is addressed in the following paragraph, based upon an approached maximum
likelihood estimator which is equivalent to empirical estimators of the semi-Markov
kernel.

4.2.2 K-Histories Empirical Estimators

For clarity purpose, we drop the “hat” on the X̂ ks an related quantities along this
section. Note that the writing of the likelihood greatly simplifies when writing a path
of X as an ordered sequence:

Hτ = (
(J0,W0), . . . (JN (τ )−1,WN (τ )−1), (JN (τ ),Uτ )

)
,

where

• N (τ ) is the number of jumps on [0, τ ],
• Jn = X Sn , n ∈ N are the visited states,
• Wn = Sn+1 − Sn, n ∈ N are the sojourn times,
• Uτ = τ − SN (τ ).

The density fHτ
of Hτ is function of fτ (t), the density of τ :

fHτ
(ht ) = fHt (ht ) fτ (t),

where ht is a realization of Hτ .
Consider K independent MRPs (J k

n , Sk
n , n ≥ 0), k = 1, . . . , K , defined by the

same kernel Q and initial distribution α, and K copies τk , k = 1, . . . , K of τ . The
same for N k,U k . The likelihood for the K histories writes, for tk a realization of τk ,

L =
K∏

k=1

fHt (h
k
tk ) ·

K∏

k=1

fτ (tk).

As an approximation, we assume τ , H independent. Then, the maximization of
the likelihood does not rely on the term



214 J. Chiquet and N. Limnios

K∏

k=1

fτ (tk).

Hence, the approached likelihood function associated with (H k, 1 ≤ k ≤ K )
writes

L̃ (K ) =
K∏

k=1

α(J k
0 )

(

1 −
∑

�∈E

Q J k
Nk (tk )

,�(U
k
tk )

)

×
N k (tk )∏

�=1

pJ k
�−1,J

k
�

d FJ k
�−1 J k

�
(Xk

�),

where we remind the decomposition Qi j (t) = pi j Fi j (t).
It is clear that the MLE of the initial distribution is α̂(i) = ni/K , where ni is the

number of trajectories starting from the state i .
The estimator of the kernel which maximized the approached likelihood is easily

written by introducing the additional following statistics:

• Ni (τ, K ) the number of visits in state i observed on the K censored paths:

Ni (τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n =i} =

∞∑

n=0

1{J k
n =i,Sk

n+1≤τk
},

• Ni j (τ, K ) the number of transitions from state i to state j observed on the K
censored paths:

Ni j (τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n =i,J k

n+1= j
} =

∞∑

n=0

1{J k
n =i,J k

n+1= j,Sk
n+1≤τk

},

• Mi j (t; τ, K ) the number of time the sojourn in i going to j is less than t on the K
censored paths:

Mi j (t; τ, K ) =
K∑

k=1

N k (τk )−1∑

n=0

1{J k
n+1= j,J k

n =i,W k
n ≤t}.

We finally get the following estimator by straightforward generalization of Moore
and Pyke, provided that Fτ �= δ0:

Q̂i j (t; τ, K ) = p̂i j (τ, K )F̂i j (t; τ, K ),

with

p̂i j (τ, K ) = Ni j (τ, K )

Ni (τ, K )
and F̂i j (t; τ, K ) = Mi j (t; τ, K )

Ni j (τ, K )
.

In fact, the above estimators are the empirical ones.



Dynamical Systems with Semi-Markovian Perturbations 215

4.3 Numerical Illustration

We now wish to provide an numerical example which integrates the whole process of
estimation, as well as the probabilistic results depicted in the third section. To this aim,
we study the following dynamical system, which is in the same vein as system (16):

Żt = aZt × c(Xt ), Z0 = z. (21)

As compared to (16), changes are of two kinds: first, the values of the parameters
are a = 0.02, z = 5, � = 30. Second, this is the major difference, the randomizing
process X is now a three-state space SMP with E = {1, 2, 3}. The mapping c is such
as c : (1, 2, 3) → (0.5, 1, 2). We also put

α = (1/3 2/3 0)

the initial distribution of X . The associated semi-Markov kernel is such as Qi j (t) =
pi j Fi j (t), with P = (pi j )i, j∈E the transition matrix and F(t) = (Fi j (t))i, j∈E the
distribution of sojourn times, given by

P =
⎡

⎣
0 1 0

0.9 0 0.1
1 0 0

⎤

⎦ , F(t) =
⎡

⎣
0 E1(t) 0

W1(t) 0 W2(t)
E2(t) 0 0

⎤

⎦ .

The notation E1,E2 stands for exponential distributions such that

Ei (t) = 1 − exp {−λi t}, t ≥ 0,

with parameters λ1, λ2 being respectively equal to 0.1 and 0.04. We also denote by
W1,W2 some Weibull distributions such that

Wi (t) = 1 − exp {−(t/αi )
βi }, t ≥ 0,

with parameters (αi , βi )i=1,2 being respectively equal to (8, 2) and (4, 0.5).
The whole estimation process sums-up as follows: denoting by a0 = a × Eπ [Xt ]

with Eπ the expectation regarding the stationary law π of X , the Bogolyubov’s
averaging principle leads to a very simple deterministic process defined by

z̃t = z exp{a0t}.

Taking the log, we perform a simple least-squared analysis to estimate the parameter
a0 (see, [3] for details). Then, paths of X can be extracted, prior to the estimation of the
kernel Q. Once every parameters in system (21) are known, we rely on the very same
strategy as in Sect. 3 to compute the reliability, this time with the estimated kernel
Q̂. The whole learning procedure takes in input some 100 paths of Z simulated
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Fig. 8 Reliability evaluation and comparison to the testing set

according to (21), which consist the learning set. Some 100 other paths of Z are
generated, consisting in the testing set, kept to evaluate the predictive performance
of our inference strategy.

Figure 8 represents the reliability R of the system computed through the Markov
renewal argument developed Sect. 3, using the estimated parameters (the kernel Q
and the initial distribution law) as described in the current section. The empirical
reliability which appears as an element of comparison in Fig. 8 has been computed
on the test set, through

R̂(t) = 1

K

K∑

k=1

1{Zk
t <�}.

A good fit is obtained, since the curves are quite closed: the slight discrepancy
observed is likely to be due to the numerical discretization of the time interval and
of the state space interval [z,�] of Zt .

Remark 4.3. Note that, as future work, we plain to deeply investigate the numerical
consistency of the empirical estimator of the kernel Q. It has been made for the
corresponding estimator of the infinitesimal generator in the jump Markov case for
X (see [3]). We also plan to take into account the dependency in τ in the likelihood
maximization, since a closed-form of fτ can be obtained through Markov renewal
argument as developed in Sect. 3.
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5 Concluding Remarks

Motivated by the fatigue crack-growth propagation problem, the point of view
adopted in this chapter to model degradation processes does not include diffusion
processes. So, we considered that the changes result from small or very small jumps.
We have consequently developed a semi-Markov piecewise deterministic process as
underlying model to achieve this goal.

As stated previously, this study was initially motivated and supported by the
French Nuclear Power Plan Authority where we considered a Markov perturbing
process. Here we considered a semi-Markov perturbing process which is much more
general than the Markov one.

For a detailed modeling of reliability of SMPs the interested reader could find
results in [17], for the discrete state space case, and in [16] for the general state
space case. For estimation results of reliability and more general of dependability of
semi-Markov systems see [18] and references therein.
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Customer-Perceived Software Reliability
Predictions: Beyond Defect Prediction
Models

Kazu Okumoto

Abstract In this chapter, we propose a procedure for implementing
customer-perceived software reliability predictions, which address customer’s con-
cern about service-impacting outages and system stability. Data requirements are
clearly defined in terms of test defects and field outages to ensure a good data
collection process. We incorporate the effect of operational profile to demonstrate
the changes in defect find rate from internal tests through precutover test and in-
service operation. A software reliability growth model is a necessary key step, but
not sufficient for addressing customer-perceived reliability measures. The proposed
approach is a result of in-depth investigations of test defect data and field outage data
over many years. It has been successfully demonstrated with actual field data and
applied to a variety of software development projects.

1 Introduction

In recent years, many product suppliers have been implementing complex
software-controlled systems with a large number of software functions or features
for delivery on a short development schedule. A majority of field problems are asso-
ciated with software. Although software does not physically break or wear out over
time in a persistent way that can be easily examined with an optical or electron
microscope, it does fail or crash. While hardware wears out over time, software does
not. Customers are concerned about service-impacting outages and system stability.
Customer-perceived software reliability and availability have become the common
practice to be included in customer reviews and internal project reviews as key
product quality metrics.

One of the critical customer operational issues has been on system performance,
especially in terms of system outages impacting the service availability for their end
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users. It is becoming a common practice for service providers to ask their product
suppliers for quality measurements and predictions such as software reliability and
availability, representing customer views. For example, five-nines system availability
(or equivalently 5.26 min/year/system) may be required.

For telecommunication products, TL 9000 [9] specifically requires outage
measurements in the field to meet a customer’s concern about service-impacting
outages and system stability. The TL 9000 is a quality management system standard
(QMS) which standardizes the quality system requirements for the design, devel-
opment, delivery, installation, and maintenance of telecommunication products and
services. It defines the customer-perceived reliability in terms of SO3 (service outage
frequency) and SO4 (service outage duration) metrics.

As a product supplier, there is a need for predicting software field performance
in terms of outage frequency and duration prior to software delivery. Analogous to
hardware reliability predictions, we can look for a software product with similar
functionality, complexity, and size. Unfortunately, most of the time field data do
not match with the predictions. This happens mainly because every software devel-
opment is different from others. It is essential to institutionalize internal software
quality metrics through requirement/design document review, code inspection, and
test defect density, so that appropriate corrective and preventive actions can be taken
to improve the software quality. We will be using test defect data for predicting
software field reliability.

The proposed approach is relatively new and based on customer views. It has
been validated with actual data for release over release and successfully applied to
various telecommunication products such as base station controller, radio network
controller, and core network. It is not only a practical approach for tracking software
reliability through defect data from internal test and field, but also a valuable tool
for determining whether a software product is ready for delivery. It helps assure the
delivery of highly reliable software products.

To build a common understanding of the subject, we can consider the following
scenario as illustrated in Fig. 1, where a team of system engineers, developers, testers,
project managers, and quality/reliability engineers is producing a set of software
features to meet customers’ need. As various new features are integrated into one
software release, it goes through an intensified test program. Toward the end of the test
program, approaching the committed delivery date, our management and customers
typically start to ask “Are we done yet?” As a quality/reliability engineer, we need
to answer the question based on quality versus delivery commitment [8].

In the following sections, we will clarify our objectives and assumptions, followed
by an overview of our proposed customer-perceived reliability process.

1.1 Objectives

A key objective of this chapter is to establish a practical software reliability program
for predicting customer-perceived software reliability and availability based on test
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• System Engineering
• Development
• Test
• Project Management
• Quality / Reliability Engineering

Customer & Executive
Test Progress Review Are we done yet?

Quality vs. 
Delivery 

Commitment

Release R
• Feature A
• Feature B
• Feature C
• . . .
• Delivery Date

Fig. 1 A typical scenario of software reliability prediction

defect data. As a critical first step for the proposed approach, data requirements are
clearly specified to distinguish test defects and field outages. A defect prediction
model is used to predict the number of residual defects at the software delivery.

We will demonstrate that the defect find rate changes from internal test through
precutover test and in-service operation due to the changes in operational profile.
Additional steps beyond the traditional defect prediction model are needed to derive
customer-perceived software reliability metrics. With the proposed approach, we can
predict both outage frequency and duration prior to product delivery. The prediction
results are validated with actual field data which are collected for each release for
many years.

1.2 Assumptions

The following terms are used interchangeably here for simplicity: outages = failures
and defects = faults = errors. A software failure is defined as a system outage caused
by a software defect. Software reliability is defined as the rate of software failures
(e.g., outages/year/system) and software availability is defined in terms of service
downtime (e.g., minutes/year/system) due to software failures.

Software defect prediction models, which are typically called software reliability
growth models, assume that there are a finite number of software defects in a release
that can be exposed when subjected to a particular operational profile. Thus, as
residual defects are discovered and removed, there are fewer defects left to be exposed
in a particular operational profile. Fewer critical residual software defects should
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Outages = Failures
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Defects  
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& Fixed
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Outages

Defects (not found 
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Fig. 2 Software defect flow diagram through test and field

be encountered less frequently in normal operation, and thus should yield a lower
software failure rate. All defects found in a release are assumed to be fixed in the
same release. This is referred to as software reliability growth through a find-fix
process during test.

A diagram of defect flow through various test phases into the field is depicted
in Fig. 2. At the start of test, there are a certain number of new defects introduced
through software design and construction for a set of new features and functions in a
release, plus old or base defects which were not found in a previous release and carried
over into the current release. Although some defects are found and removed during
development test, they are typically not reported precisely. In our analysis, we focus
on defects found by testers. It is often called a formal test, which includes network
element test, feature test, deliverable test, system test, cluster test, and network level
test, stability test, and performance test, just name a few, since many different test
names are used by different projects. Most of the defects are expected to be found and
removed during formal test. Some residual defects at the end of formal test will be
found in the field and a few of them will result in outages causing system downtime.
There are always some defects which will not be found in the release. They will
become old or base problems in the next release.

We focus on high severity defects representing severity 1 and 2 defects, as defined
in TL 9000. Figure 3 provides further detail descriptions of high severity definitions.
They are highly correlated to system stability and may trigger a failover or a reboot.
Software failure rate is a function of residual high severity defects, known but not
yet fixed high severity defects, and operational profile and configuration of deployed
systems.

1.3 Software Reliability Tests

There are typically two types of software reliability testing (robustness and stability
tests) to be performed to ensure highly reliable software prior to software delivery.
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TL 9000 High Severity Definitions
Severity 1 (Critical):  Conditions that severely affect the primary functionality of the
product and because of the business impact to the customer requires non-stop 
immediate corrective action, regardless of time of day or day of the week as viewed by 
a customer on discussion with the organization such as 

product inoperability (total or partial outage), 
a reduction in the capacity capability, that is, traffic/data handling 
capability, such that expected loads cannot be handled, 

any loss of emergency capability (for example, emergency 911 calls), or 
safety hazard or risk of security breach. 

Severity 2 (Major):  Product is usable, but a condition exists that seriously degrades 
the product operation, maintenance or administration, etc., and requires attention during 
pre-defined standard hours to resolve the situation. The urgency is less than in critical 
situations because of a lesser immediate or impending effect on problem performance, 
customers and the customer’s operation and revenue such as 

reduction in product’s capacity (but still able to handle the expected load),
any loss of administrative or maintenance visibility of the product and/or 
diagnostic capability, 

repeated degradation of an essential component or function, or 
degradation of the product’s ability to provide any required notification of 
malfunction. 

Fig. 3 TL 9000 high severity definitions

Results of robustness and stability tests should contribute to the validation of relia-
bility requirements and the predictions of system availability and reliability.

Robustness testing (also called ‘negative testing’, ‘adversarial testing’, or ‘fault
insertion testing’) confronts systems with plausible failure scenarios to assure that
automatic failure detection, isolation, and recovery mechanisms work rapidly and
reliably. Some examples of categories of robustness tests are:

• Software-related failures

– Memory exhaustion/failure
– Process/thread failure
– File system exhaustion failure
– Database/data structures
– Application/platform software failures
– Local and remote interprocess communication
– Network communication failure
– Timer failure
– Overload condition

• Hardware-related failures

– Disk system failure
– Board level hardware fault insertion and recovery



224 K. Okumoto

– Insertion and removal of field replaceable unit (FRU)
– Cluster/processor/blade

• Procedure-related failures

– Management and provisioning errors and failures
– Software upgrade/install failures-Rollback/backouts

Stability (or ‘endurance’) testing uses a heavy, mixed traffic load against a system
for an extended period, typically at least 72 hours. The stability run is performed
to track whether new software features and code have impacted the overall net-
work/solutions stability. Stability tests should be performed on final software release
and after all feature testing is complete. This will assure that testing is against final
product. A best practice is to simulate both heavy end user and Operation, Admin-
istration, Maintenance and Provisioning (OAM&P) activity. It is important to select
the operational profile to replicate the actual operating environment in testing. Quan-
titative estimation of parameters is only meaningful if the operational profile during
testing is representative of the field environment. In Sect. 3.3.1, we will discuss more
details of defect data resulting from stability test.

1.4 Overview of Software Reliability Prediction Process

An overview of the proposed software reliability prediction process is illustrated in
Fig. 4. Two sets of high severity defect data are needed from internal tests and field.

Software Reliability Prediction
- Overview  -

Step 2: Software Reliability Growth Model

Fig. 4 Software reliability prediction-overview
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Using test defect data and a software reliability growth model, we can identify the
total number of high severity defects in a release. And, historical defect data from
previous releases are used to derive the number of high severity defects to be found
during an in-service operational phase. Combining field outage data and high severity
defects found in an operational phase, we can also identify a defect conversion factor
(i.e., outages per defect), which is used to convert high severity defects into outages.
We can then derive software failure rate and downtime, and compare the predictions
against TL 9000 frequency (SO3) and downtime (SO4).

In the following sections, we will address each of the steps in details.

2 Data Requirements and Analysis

A lack of high-quality data on test defects and field outages has been a main obstacle
in implementing a software reliability program. In this section, we will address data
requirements and provide some basic data analysis.

2.1 Defect Data

2.1.1 Defect Data from Stability Test

Software defect data should be normalized against test effort (e.g., stability run
duration hours, tester-days) rather than calendar time, as pointed out first by Musa
[5]. It will eliminate nonuniform effort over test interval, variations in staffing levels,
weekends, holidays, etc.

Typical software defect data are shown in Fig. 5, where defect data are plotted
against stability run duration in hours and calendar time in days, respectively. The
data were taken from a relatively large-scale software development with over 2 mil-
lion lines of code for a next generation radio network control system. The defect
data and run hours were collected on a weekly basis. We can observe the defect find
rate continuously leveling off with stability run hours as expected. This is referred
to as software reliability growth through a find-fix process. As residual defects are
discovered and removed, there are fewer defects left to be exposed. However, con-
tinuously leveling off behavior is not obvious for the calendar time-based defect find
rate. It will be shown in Sect. 3 that the defect data based on stability run duration
hours can be well represented by an exponential model.

Further examination of the test effort data is illustrated in Fig. 6, where the test
execution rate is low at the startup period. This is mainly due to system stability
problems or tools/lab environment problems. Once the early critical issues were
removed, the execution rate became constant. Toward the end of the stability test,
the effect is diminishing, i.e., the defect find rate is sufficiently low, indicating the



226 K. Okumoto

Software Defects vs. Stability Test 
Duration

0

Cumulative Stability Run Duration 
(Calendar days)

C
um

ul
at

iv
e 

N
o.

 o
f D

ef
ec

ts

Software Defects vs. Stability Test 
Duration

0

Cumulative Stability Run Duration (Hours)

C
um

ul
at

iv
e 

N
o.

 o
f D

ef
ec

ts

Software Delivery Software Delivery

Fig. 5 Defect data based on calendar time versus test run duration hours
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Fig. 6 Stability run duration hours versus calendar time

readiness of the software delivery. In fact, the project decided to move most of the
test resources to the next release.

2.1.2 Defect Data from Formal Test

From a practical view point, test defect data are usually sorted by calendar time.
Since not all new features are ready for test at the startup of test phase, defect rate is
usually low in the beginning. This is the main reason why a cumulative defect find
curve often exhibits an S-shaped curve. However, there are no specific trends in early
test phase even within the same project, as illustrated in Fig. 7. Each release contains
a different set of features, complexity, resource allocations, and test plans. We will
address how to deal with the situation later in this section.
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Fig. 7 Sample defect data from various releases within a same project

As described in Sect. 1.2, we need high severity defect data. Software defects
should be unique, found in a release, and sorted by each test phase such as formal
test, precutover test, and in-service operation. There are often multiple solutions,
including carry-forward and carry-backward, in fixing a defect. In this analysis, we
will count only unique defects, not solutions, found in the same release. Duplicate
defects will not be counted here.

In addition, only defects found by testers, not by developers, should be counted.
The defect data from precutover test, customer acceptance test, or in-service operation
should also be tracked separately, so that we will be able to identify the percent of
defects to be found during in-service based on release-over-release data.

Figure 8 illustrates the above requirements for defect data. It should be pointed
out that not all features are ready for test in the beginning for typical projects. It
results in a slow increase in defect find rate at the startup of test phase. This is the
main reason why a cumulative defect find curve often exhibits an S-shaped curve. In
this example, actual defects found after software delivery are mostly found through
internal test. There are a very small portion of defects found during in-service. To
meet customer’s need, we often deliver a few more features after the first delivery.

Note that the defect find rate slows down as it moves from formal test, precutover
test, and to in-service. This is due to the changes in operational profile where the
intensity of test significantly changes. Test cases are developed to induce potential
defects in the formal test in a highly simulated test environment or a heavy traffic
condition. The precutover tests are designed to validate the functional requirements
at customer sites. Lastly, in-service is in a normal operation environment.

Figure 9 further illustrates the effect of the operational profile changes in terms
of weekly defect find rate from formal test to precutover, and to in-service phases.
The concept of operational profile was first introduced by Musa [5] and applied by
many others later, e.g., Okamura et al. [7], Jeske et al. [3], Zhang and Pham [14].
However, it is not an easy task to accurately predict operational software reliability
based on test defect data, as reported.



228 K. Okumoto

Project X Unique High Severity Defects - Release R
(Formal Test, Pre-Cutover, In-Service)

0
0 Weeks After Formal Test Start

C
u

m
u

la
ti

ve
 N

o
. o

f 
D

ef
ec

ts

Formal Test Plus Pre-Cutover Plus In-Service

(a) Defects found in formal test after Delivery
(b) Defects found in Pre-Cutover
(c) Defects found during In-Service

Delivery

(a)

(c)

(b)

Not all new features 
are ready for test at the 
startup of test phase

Fig. 8 Weekly high severity defect data in formal test, precutover, and in-service
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Fig. 9 Weekly defect find rate from formal test to precutover and in-service phases

Most of the projects under study demonstrated a trend similar to Fig. 9 with the
significant changes in these phases. It also generally shows a constant defect rate in
precutover and in-service phases, respectively. It means very little reliability growth
in these phases mainly because only critical fixes are delivered during these phases.
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In Sect. 2.1.2, we will further demonstrate the constant failure rate in the field based
on outage data. This is the main reason why defect prediction models cannot appro-
priately describe the failure trend in the operational phase.

2.2 Field Outage Data

Software failure rate depends on operational profile and configuration of deployed
systems. Operational profile is characterized by the system and solution configura-
tion, usage and traffic mix, and other operational context that the system operates
within. A particular system can often be used in several different operational pro-
files, each of which may stress the system in slightly different ways, thus exposing
somewhat different residual defects. System test should reflect the operational pro-
file(s) that the deployed system will experience to assure that the vast majority of
design and residual defects are discovered and corrected before the field deployment.
Differences between tested operational profiles and field operational profiles present
gaps in testing that undiscovered software defects can escape to the field through. In
addition, not all high severity defects will result in software failures in the field.

As part of TL 9000 metrics, the following outage data should be readily available in
terms of the number of outages per month, prorated outage duration per incident, and
the number of in-service systems per month. Figure 10 illustrates monthly service
outage rate (commonly known as SO3 in terms of TL 9000 metrics), where the
number of outages is normalized by the number of systems in service for each month.
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Fig. 10 Monthly failure rate and release-based failure rate
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It typically displays a constant outage rate for each release with some variation from
month to month.

In order to determine the outage rate for each release, we can take an average
over the time period in which each release is actually deployed in the field. Multiple
failures caused by the same defect are occasionally observed. We can perform a
similar analysis for outage duration in minutes/year/system (commonly known as
SO4 in terms of TL 9000 metrics), where outage duration is prorated based on the
impact. According to the TL 9000 counting rules, an outage can be excluded if its
impact is less than 10 %.

2.3 Other Reliability Related Data

2.3.1 Defect Conversion Factor

A defect conversion factor (i.e., outages per high severity defect) is used to convert
high severity software defects into failure rate. The conversion factor can be derived
from historical release data on high severity defects and field outages. Since it varies
from project to project in the range of 0.4–0.9, use of historical data is highly
recommended for each project. That is,

[Defect Conversion Factor] = [No. of In-service Outages]/
[No. of In-service Defects]

2.3.2 Coverage Factor

A coverage factor is used to properly separate uncovered failures and covered failures.
It is defined as the probability that the system diagnostic mechanism detects a failure,
and therefore automatic recovery (typically through a reboot or a switch-over to a
standby system) is triggered to bring the system back to normal operation. Some
failures escape the system diagnoses, and are known as silent failures or uncovered
failures. Silent failures usually take a longer time to be detected, which lead to
longer outage durations. Figure 11 illustrates the impact of a coverage factor. In the
test environment, coverage factor can be measured through a fault insertion test;
however, it would be desirable if this parameter could be estimated from field data.
It is typically in the range of 90–99 %, depending on the product maturity.

2.3.3 Outage Recovery Time

Outage recovery time per incident is an important measurement in calculating the
system downtime or system availability. According to TL 9000 counting rules,
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Fig. 11 Illustration of a coverage factor

outages with less than 15 s duration are excluded in the downtime calculation.
“100 %” service availability may be declared despite critical software failures, but
they were all automatically detected, isolated, and recovered by the system in sec-
onds, so no outage was reported. Note that this counting rule may not be applicable
to some customers.

3 Software Defect Prediction Models

In this section, we describe a method for predicting the number of high severity
defects to be found during in-service.

3.1 Historical Model Development

Software defect prediction models are known as software reliability growth models.
A large number of prediction models have been proposed and investigated over the
last four decades. There are many references documenting and comparing various
models in detail (e.g., Musa et al. [6], Lyu [4], Wallace and Coleman [12]), so we
will not go into a comprehensive discussion here.

As defects are found and removed, encountering additional severe defects is less
likely. Goel and Okumoto [1] first formulated this defect find process as a stochastic
process in terms of defect find interval or time-varying defect find rate. Since we count
defects as they are exposed, it seems logical to statistically formulate the number of
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high severity defects found during test as a Poisson process with a time-varying mean
value function, which is known as a nonhomogeneous Poisson process (NHPP). That
is, for a defect find process, N(t), the probability of finding n high severity defects
by time t is expressed as a Poisson distribution with the mean value function, m(t),
as:

P{N(t) = n} = m(t)nexp{−m(t)}/n! (1)

It is typically assumed that there are a finite number of severe defects in any piece of
software. Most of those frequently used models can be systematically sorted in terms
of the shape of the mean value functional (i.e., an exponential curve or an S-shaped
curve).

3.2 Exponential Models Versus S-Curve Models

Some representatives of an exponential curve are Jelinski and Morand [2],
Schneidewind [11], Musa basic execution-time [5], Goel and Okumoto [1] while
those of an S-shaped curve are Schick and Wolverton [10], Yamada et al. S-shaped
[13], Weibull, Gamma, and logistic. S-curve models have flexibility in describing
different shapes of the trend since they have more than two parameters. On the other
hand, exponential models are simple with only two parameters. In next sections, we
will present the reason why an exponential model is used in the proposed approach.

3.3 Software Defect Predictions

In this section we use an exponential model, which is simple and proven to provide
predictions as accurate as, if not more than, S-shaped models. This will be also
confirmed in the following analyses.

An exponential model is usually represented as an NHPP with the mean value
function:

m(t) = a{1 − exp(−b ∗ t)}, (2)

where m(t) = cumulative number of defects found at time t, a = total defects in the
software, and b = rate at which each defect is exposed or found.

The corresponding defect intensity function or defect rate can be derived as the
derivative of the mean value function:

λ(t) = a b exp(−b ∗ t). (3)

The maximum likelihood method is a commonly used statistical method for
estimating the parameters, a and b, for a given set of defect data. A specific estimation
procedure is described in Appendix A.
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Fig. 12 Stability defect data with the defect prediction model

3.3.1 Execution Time Data

Using the stability run duration data shown in Fig. 5, we have obtained the maximum
likelihood estimates for a and b, substituted them in the exponential function (2),
and overlaid the predicted curve with the actual data, as illustrated in Fig. 12. It
demonstrates a remarkably good representation of the defect data. Using the Poisson
distribution, we also provided the 90 % lower and upper limits. It helps validate
that actual defect data follows a Poisson process with the exponential mean value
function.

Similarly, substituting the maximum likelihood estimates for a and b into (3),
we can obtain the predicted defect rate. The 90 % limits can be easily converted
from the cumulative curves. The defect intensity was estimated based on the actual
defect data. Each data interval contained sufficiently large number of defects to avoid
possible small sample size problems.

The estimated defect intensity data are shown in Fig. 3, along with the predicted
defect rate with the 90 % limits. It demonstrates that the actual defect rate point
estimates are within the 90 % limits.

In addition, following the procedure in Appendix A we have derived 90 %
confidence limits for a and b. In Fig. 13, we illustrate the confidence limits along with
the maximum likelihood estimates and the relationship between a and b, where we
can observe they are negatively related in a nonlinear way. The normal approximation
seems reasonable.

3.3.2 Calendar Time Data

In Sect. 3.3.1, we demonstrated that defect data based on stability run duration is
a better measure for defect predictions. From a practical view point, however, test
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Fig. 13 90 % confidence intervals for a and b

defect data is usually collected by calendar time such as daily or weekly. In this
section, we discuss how to deal with defect data based on calendar time.

In addition to early stability problems, not all new features are ready for test at
the startup of test phase, and hence, defect rate is usually low in the beginning. This
is the main reason why a cumulative defect find curve often exhibits an S-shaped
curve as illustrated in Fig. 7.

Defect prediction should be based on the software release with a complete set of
new features delivered for testing, i.e., based on defects found closer to the software
delivery. The most recent data points are the most valuable. The earlier the data point,
the less valuable it is as there are many factors contributing to defect discovery. This is
the reason why we are removing defects found at a startup of test phase. By removing
early defects from the analysis, the defect curve will look like an exponential curve
rather than an S-curve. One of our goals for reliability prediction is to accurately
predict the number of defects after the delivery date, not to accurately describe
the defect trend during the entire test phase. Some experience will be required to
determine where the start of the curve fitting will be.

It should be pointed out that a main reason why the find rate drops off is due
to a lessening in test intensity (i.e., the find rate is related to test hours rather than
calendar hours), and also because there are fewer bugs to find, so it takes longer to
find them. An opposite effect could be said when we have increase in testing (people
working overtime as we approach the delivery date, for example). However, it is
worth stating that by combining the different test phases up to the delivery date, the
overall intensity remains approximately constant up to the delivery date and that is
why we project the curve at the delivery date, even though the find rate often drops
significantly after the delivery date (due to the change in test intensity).

As described above, we are typically removing defects found at a startup of test
phase. The mean value function (2) will be modified by adding another parameter,
t0, which is often referred to as a shift parameter, allowing the curve to be shifted
to the right by t0. In practice, t0 is chosen slightly after the inflection point of the
cumulative curve. It often requires some experience to identify the starting point, t0.
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The modified curve is expressed as:

m0(t) = a{1 − exp[−b ∗ (t − t0)]}. (4)

The maximum likelihood method is commonly used for estimating the parameters,
a and b, for a give set of weekly defect data. Specific equations for deriving the
maximum likelihood estimates of a and b are provided in Appendix A.

Solving Eqs. (A.1) and (A.3) in Appendix A for the data set shown in Fig. 8,
we have derived the estimates for a and b and substituted them in the modified
exponential function. In Fig. 14, we overlaid the predicted curve with the actual data.
It also indicates the total number of high severity defects in the release, and hence
residual defects at the software delivery. As explained earlier, we used the defect
data slightly after the inflection point of the cumulative curve for this analysis.

When we overlay actual defect data after the delivery date, we generate Fig. 15.
We should always see a gap between total defects expected and actual defects found.
This gap represents the number of defects to be carried over to the next release as
base problems.

Next, we need to determine the percent of each defect category based on release
over release data. Sample breakdown numbers are provided in Fig. 16 for illustration
purposes. They significantly vary from project to project.

The percent of high severity in-service defects will be useful for determining the
number of high severity defects to be found during in-service for this release. That
is, once the number of residual defects is predicted at the delivery date from the
reliability growth model, we can derive the following:

[No. of High Severity Defects to Be Found During In-Service]
= [No. of Residual High Severity Defects at Delivery]

× [%High Severity Defects In-Service] (5)
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3.3.3 Residual Defects at Software Delivery

In Sect. 3.3.2, we described how to predict high severity defects to be found during in-
service using a software reliability growth model. In addition, we also need to assure
that all defects found in a release are fixed in the same release, so that no known
defects will be delivered. This is one of the assumptions described in Sect. 1.2.
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To confirm this assumption, it is a commonly used practice to track the number
of defects found versus fixed during the formal test. Figure 17 illustrates the find-fix
trends, where the fix rate is closely keeping up with the find rate at the delivery date.
It is another indication that the release is ready for delivery. Most projects with tight
development schedule show a similar trend as shown. In Sect. 6.5, we will address
how to build confidence limits to monitor a gap between found and fixed defects.

4 Customer-Perceived Software Reliability Predictions

In Sect. 3.3.2, we described a method for predicting the number of high severity
defects to be found during in-service. This section will address how to convert the
high severity defects into field outages, i.e., customer-perceived software reliability
and availability.

4.1 Software Failure Rate Predictions

One of the data requirements specified in Sect. 2.3.1 is a defect conversion factor. It
is used to map the number of high severity defects into the number of field outages.
That is,

[No. of Outages] = [No. of High Severity Defects during in-service]
× [Defect Conversion Factor]. (6)
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The number of outages can then be normalized by the number of systems in
service and the number of months for the software release in service. The software
failure rate is derived as the number of outages per year per system, as described in
TL 9000.

4.2 Software Downtime and Availability Predictions

The failure rate derived in Sect. 4.1 is called an uncovered (or observed) failure rate,
since it is based on reported outages. A coverage factor is used to properly separate
uncovered failures and covered failures. As described in Sect. 2.3.2, it is defined as
the probability that the system detects a failure and therefore automatic recovery,
typically a reboot or a switch-over to a standby system, is triggered to bring the
system back to normal operation. The coverage factor plays an important role if
the recovery time (via either a reboot or a switch-over) is not trivial. It could be
a significant contributor to the system downtime. In this section, we will illustrate
how to incorporate the coverage factor in the software reliability and availability
predictions.

Once the software failure rate is identified, we can calculate the system downtime
using the average recovery time per incident. A coverage factor needs to be included
in the calculation for a system without a redundant configuration, since the reboot
time due to autorecovery is typically not negligible.

Customer-perceived software downtime can be calculated as follows:

[Software Downtime] = [Uncovered Software Failure Rate]

× [
Manual Recovery Time

]

+ [Covered Software Failure Rate] × [Reboot Time]
(7)

Note that the covered and uncovered software failure rates are defined as:

[Covered Software Failure Rate]
= [Overall Software Failure Rate] × [Coverage Factor], (8)

and

[Uncovered Software Failure Rate]
= [Overall Software Failure Rate] × (1 − [Coverage Factor]). (9)

This will provide annual software downtime in minutes per year per system, which
can then be converted to software availability as:
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Table 1 Sample calculation of customer-perceived software availability

Software availability calculation
Software metrics Formula Unit

Failure rate (a) Failures/year
Probability of successful

auto-detection (b) Percentage
Auto-detection time (c) Seconds
Manual detection/recovery time (d) Minutes
Software reboot time or

failover time (e) Minutes
Mean time to restore (f) = (b) ∗ ((c)/60 + (e))+ (1 − (b)) ∗ (d) Minutes/Failure
Software downtime (g) = (a) ∗ (f) Minutes/Year
Software availability (h) = 1 − (g)/(60 ∗ 24 ∗ 365) Percentage

[Software Availability] = 1 − [Software Downtime]/(60 × 24 × 365). (10)

Table 1 illustrates the above availability calculation, where the system is recovered
through either a failover to a standby system or a system reboot.

This predicted software availability is now compared against a customer
requirement such as five-nines availability (or 99.999 %). It will help identify poten-
tial areas for improvement if it does not meet the requirement. In the next section, we
will discuss a procedure for validating reliability and availability predictions against
actual data.

5 Validation of Reliability Predictions with Field Outage Data

Having successfully predicted software reliability and availability, we will now
demonstrate that the predictions based on the proposed approach are remarkably
in line with actual field measurements.

To accomplish this task we will have to perform the reliability prediction procedure
for several releases as shown in Fig. 18.

We have applied the validation process to our projects and summarized the results
from one project as shown in Fig. 18. It overlays predicted values against actual field
outage data for each release. We can observe predictions remarkably in line with TL
9000 metrics in terms of outage rate (SO3) and the prediction accuracy continues
to improve as we incorporate more recent data. This results from our continuous
refinement of the model parameters from release to release as the product becomes
mature. The data set was chosen to show a more realistic situation. For example, one
release encountered multiple outages resulting from the same defect, which distorted
the data. In fact, if we remove the multiple outages from the data, actual data is now
in line with the prediction. Predicting multiple outages like these is not an easy task.
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Fig. 18 Validation process for software reliability predictions versus outage data

A similar analysis was performed for software downtime data. The results are also
shown in Fig. 19, where predictions are again remarkably in line with actual data.
Note that actual data is consistently below the predictions even though the model
parameters were continuously refined with recent data. This is due to the recovery
time being consistently improved more than the previous release. It is one of the
benefits resulting from periodic reviews of the quality metrics with project team. It
turns out that the support team was making a special effort for reducing the recovery
time to improve the metrics.
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6 Practical Uses of Software Reliability Models

In this section, we will introduce confidence limits for tracking and monitoring test
defects to ensure the predicted reliability in the field. We also address how to estimate
a defect curve at an early test phase where only a few data points are available. In
addition, a few other practical uses of this approach will be discussed.

6.1 Tracking and Monitoring Test Defect Data

As discussed in Sect. 3.3, the defect prediction is a critical step for assuring the
accuracy of customer-perceived reliability and availability predictions. During the
course of various test phases in formal test, we need to provide a way for continuously
tracking and monitoring actual defect data against the predicted curve.

To accomplish this monitoring process, we will build confidence limits around
the mean value function, which was estimated based on previous few months data.

Assume te represents the last time at which the model parameters (a and b) were
estimated, where t0 is the starting data point. That is, the mean value function is
provided as:

m0(t) = a{1 − exp[−b ∗ (t − t0)]}. (11)

The future trend from te can be described as a conditional NHPP for t > te.
Assuming me(t) represents the incremental mean value function from m0(te), i.e.,

me(t) = m0(t) − m0(te), (12)

we can describe the conditional NHHP as follows:

Pr{N(t) = n|N(t)e = ne} = me(t)
(n−ne)exp{−me(t)}/(n − ne)! (13)

For example, using this property, we can calculate 90 % limits. If the underlying
defect find process follows the NHHP with the estimated mean value function, actual
data should fall within the limits with 90 % confidence. If actual data starts falling
outside the limits, we will have to refine the mean value function with the data set.

Figure 20 illustrates this defect tracking and monitoring process. Actual data
shows close to the lower limit most of the time and then started to go up to the
mean value function the last few data points. Once actual data starts to fall outside
of the limits, we will need to refine the predictions with the new data set.

6.2 Predictions in Early Test Phase

Although more data points yield more accuracy in prediction, we often need to
start predicting the defect find process with early limited data. After examining
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Fig. 21 Values of “b” versus test effectiveness

defect data from several releases, we recognize some consistency in the value of the
parameter, b, which represents per-defect find rate. It is related to test effectiveness. It
seems reasonable, considering that the test environment and test plans are relatively
consistent from release to release for the same project.

In Fig. 21, we illustrate the above statement based on the project data used in
Sect. 5, where “b” values are relatively consistent for a few releases until major
changes took place in test plan in terms of improvements in lab environment and test
scenarios.
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Fig. 22 Predictions in early test phase

In the following example, we assumed that there are no major changes in test
plan from the previous release. Figure 22 illustrates the reasonable assumption of a
constant value for b, where only four data points were used in estimating the total
defects, a, and the shift parameter, t0, while the value for b is taken from the previous
release. The 90 % confidence limits are also shown to demonstrate the validity of the
early prediction against actual data. The release over release data plays an important
role in predicting defect trends in early test phase.

6.3 Determination of Model Parameters Stability

In this section, we will address how to determine whether the estimates are stable
enough to be used for predictions. Estimates of the model parameters are typically
updated as a new data set becomes available.

To illustrate the procedure, we used stability test defect data based on run duration,
shown in Fig. 5. We calculated parameter estimates (a and b) every week and moni-
tored the changes in the estimates for every new data point, as shown in Fig. 23.

In order to illustrate a way to determine the stability of the parameter estimates,
we used the parameter, a, and calculated the median of the estimates from the begin-
ning to the latest data point. The median was used to avoid the influence by possible
outliers. Figure 24 shows the median over the sample size, overlaid with actual esti-
mates. It can be easily seen that the median of the estimates became stable when
actual estimates stabilized.
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6.4 Determination of Additional Tests Needed

In addition to predicting the residual defects, we also need to know how much more
testing is needed to meet the required reliability. As mentioned in Sect. 2.3.1, not
all defects will result in failures or outages. Once the reliability requirement is set
in terms of failures per year, it can be easily determined the corresponding weekly
defect rate using the defect conversion factor. In this analysis, we assume that all
defects found in stability testing will be fixed prior to release in order to meet the
reliability requirement.

To illustrate the procedure, we used the same stability data set as used in Sect. 6.3
for consistency. Substituting the estimates of a and b into the defect intensity
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function (3), we can derive the required test duration hours to reach the required
defect rate, as shown in Fig. 25.

From (3) we can derive the run duration to achieve the required defect rate, λr , as
follows:

tr = −ln {λr/(a ∗ b)}/b (14)

The additional run duration is thus obtained as tr − te , where the prediction was
made at te.

6.5 Tracking and Monitoring “Not Fixed” Defects

In Sect. 3.3.3, we discuss the importance of tracking the number of defects found
versus fixed during formal test. It helps to assure that all defects found in a release
are fixed in the same release, so that no known defects will be delivered. We will
now address how to track and monitor defects which are found but not yet fixed.

To illustrate our approach, we will use the data shown in Fig. 17, where both defects
found and closed are available. We are proposing to use an exponential model for
defects closed after having investigated several other projects. We have applied the
model to defects closed, similar to what we did for defects found. Both actual and
predicted curves are overlaid in Fig. 26, where we can see the two curves are getting
closer as the software delivery time approaches. In reality, the gap represents the
time required to fix new defects although it is relatively small.

Next, we will explain how to develop a control chart (similar to a hardware quality
control chart) for monitoring actual open defects on a weekly basis. A control chart
will help the gap get smaller and actual data will be within the limits. For this
purpose, we assume that defects between created and closed will follow a Poisson
distribution with the mean, provided by [the predicted created curve]–[the predicted
closed curve]. Then, we can easily construct confidence limits as shown in Fig. 27.
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Fig. 26 Defects created versus closed with predicted curves
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Fig. 27 Sample control chart for tracking “not yet closed” defects

7 Conclusions

We have demonstrated the proposed software reliability program with clear definition
of data requirements. The specific procedures were illustrated with many years of
actual defect and outage data. The proposed approach was designed to meet cus-
tomer’s expectations on software reliability in terms of field outages. It is not a simple
extension of the traditional software reliability growth model, but it involves addi-
tional steps to predict customer-perceived reliability prior to software delivery. The
proposed approach has been extensively applied to various software development
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projects over the several years. One of key lessens learned is that every software
development is different from others, so that most of the model parameters have to
be adjusted accordingly.

A large number of software reliability growth models have been proposed in
the last four decades. There are still some hesitation and reluctance in applying to
actual projects. This is mainly due to a lack of data requirement specification and not
focusing on field outages as expected by most customers. The proposed approach
is not a mathematical exercise but to address customer’s reliability expectations
through many years of in-depth analysis on test defect and field outage data from
various software development projects.
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Appendix A: Derivation of Maximum Likelihood Estimates
for an Exponential Model

In this section, we will consider a case where defect data are available on a grouped
basis such as weekly. The equations for deriving estimates of a and b for an expo-
nential model will be provided using the maximum likelihood estimation method.
Additional details are available from Musa et al. [6].

Let yi (i = 1, . . . , p) be the number of defects found in (0, xi ). Then the likelihood
function of a and b, given the defect data set yi (i = 1, . . . , p), is derived from (1)
as:

L(a,b; y1, . . . , yp) =
p∏

i=1

m(xi − xi−1)
yi −yi−1 exp{−m(xi − xi−1)}/(yi − yi−1)!

(A.1)
where x0 = y0 = 0, and, the mean value function m(t) is given by (2). After some
algebra by taking partial derivatives of the log-likelihood function of (A.1) with
respect to a and b and setting to zeros, we have the following two equations:

a = yp/[1 − exp(−bx p)] (A.2)

and
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p∑

i=1

(Ai/Bi )− C = 0 (A.3)

where Ai ,Bi , and C are, respectively, given by:

Ai = (yi − yi−1)[xi exp(−bxi )− xi−1exp(−bxi−1)] (A.4)

Bi = exp(−bxi−1)− exp(−bxi ) (A.5)

C = x p yp/[exp(bx p)− 1]. (A.6)

Maximum likelihood estimates of a and b can be obtained by solving Eqs. (A.2)
and (A.3). Note that Eq. (A.2) implies a and b satisfy the last data point (x p, yp).
That is, the mean value function with the maximum likelihood estimates of a and b
always goes through the first data point (x0, y0) and last data points point (x p, yp).
It should be pointed out that Eq. (A.3) is nonlinear but can be easily implemented in
a spreadsheet with the use of a built-in function such as “solver”.

In order to obtain confidence intervals for a and b, we take a second derivative
with respect to b and substitute the estimate of b into the negative of the second
derivative. Since the inverse of the above quantity is considered as the variance of
estimate b, the 90 % confidence interval for b can be constructed using a normal
approximation. The 90 % confidence interval for a can be obtained using (A.2) for
each limit of b.

References

1. Goel AL, Okumoto K (1979) Time-dependent error-detection rate model for software reliability
and other performance measures. IEEE Trans Reliab 206–211

2. Jelinski Z, Moranda PB (1972) Software reliability research. In: Feiberger W (ed) Statistical
computer performance evaluation. Academic, New York, pp 465–484

3. Jeske DR, Zhang X, Pham L (2005) Adjusting software failure rates that are estimated from
test data. IEEE Trans Reliab 107–114

4. Lyu MR (1995) Handbook of Software Reliability Engineering. Computer Society Press,
McGraw-Hill, Los Alamitos, New York

5. Musa JD (1993) Operational profiles in software-reliability engineering. IEEE Softw 14–32
6. Musa JD, Iannino A, Okumoto K (1987) Software Reliability: Measurement, Prediction, Appli-

cation. McGraw-Hill, New York
7. Okamura H, Dohi T, Osaki S (2001) A reliability assessment method for software products

in operational phase—proposal of an accelerated life testing model. Electron Commun Japan
25–33

8. Okumoto K (2010) Software reliability predictions—Are we done yet? QuEST Americas best
practices conference, Atlanta, GA

9. QuEST Forum’s TL 9000 (2007) Measurements Handbook Release 4.0
10. Schick GJ, Wolverton RW (1973) Assessment of software reliability. In: Proceedings of oper-

ations research, Physica-Verlag, Wurzburg-Wien, pp 395–422



Customer-Perceived Software Reliability Predictions 249

11. Schneidewind NF (1975) Analysis of error processes in computer software. In: Proceedings of
the international conference on reliable software, IEEE Computer Society, pp 337–346

12. Wallace D, Coleman C (2001) Application and improvement of software reliability models.
Hardware and software reliability. Software Assurance Technology Center (SATC), pp 323–08

13. Yamada S, Ohba M, Osaki S (1983) S-shaped reliability growth modeling for software error
detection. IEEE Trans Reliab 475–478

14. Zhang X, Pham H (2006) Software field failure rate prediction before software deployment.
J Syst Softw 291–300



Recent Developments in Software
Reliability Modeling and its Applications

Shigeru Yamada

Abstract Management technologies for improving software reliability are very
important for software total quality management (TQM). The quality characteristics
of software reliability are that computer systems can continue to operate regularly
without the occurrence of failures on software systems. In this chapter, we describe
several recent developments in software reliability modeling and its applications
as quantitative techniques for software quality/reliability measurement and assess-
ment. That is, a quality engineering analysis of human factors affecting software
reliability during the design review phase, which is the upper stream of software
development, and software reliability growth models based on stochastic differential
equations (SDEs) and discrete calculus during the testing-phase, which is the lower
one, are discussed. Finally, we discuss quality-oriented software management analy-
sis by applying the multivariate analysis method and the existing software reliability
growth models to actual process monitoring data.

1 Introduction

At present, it is important to assess the reliability of software systems because of
increasing demands on quality and productivity in social systems. Moreover, they
may cause serious accidents affecting people’s lives. Against such a background, soft-
ware reliability technologies for the purpose of producing quality software systems
efficiently, systematically, and economically have been developed and researched
energetically. Especially, comprehensive use of technologies and methodologies in
software engineering is needed for improving software quality/reliability.
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A computer-software is developed by human work, therefore many software faults
may be introduced into the software product during the development process. These
software faults often cause breakdowns in computer systems. Recently, it has become
more difficult for developers to produce highly reliable software systems efficiently
because of the diversified and complicated software requirements. Therefore, it is
necessary to control the software development process in terms of quality and relia-
bility. Note that software failure is defined as an unacceptable departure of program
operation caused by a software fault remaining in the software system.

First, in this chapter, we focus on a software design-review process which is
more effective than other processes in the upper stream of software development
for elimination and prevention of software faults. Then conducting a design-review
experiment, we discuss a quality engineering approach for analyzing the relationships
among the quality of the design-review activities, i.e., software reliability, and human
factors to clarify the fault-introduction process in the design-review process.

Basically, software reliability can be evaluated by the number of detected faults
or the software failure-occurrence time in the testing-phase which is the last phase
of the development process, and it can be also estimated in the operational phase.
Especially, software reliability models which describe software fault-detection or
failure-occurrence phenomena in the system testing-phase are called software reli-
ability growth models (SRGMs). The SRGMs are useful to assess the reliability for
quality control and testing-process control of software development. Most of the
SRGMs proposed till date treat the event of fault-detection in the testing and oper-
ational phases as a counting process. However, if the size of the software system is
large, the number of faults detected during the testing-phase become large, and the
change in the number of faults which are detected and removed through debugging
activities becomes sufficiently small compared with the initial fault content at the
beginning of the testing phase.

Then, in this chapter, we model the fault-detection process as a stochastic process
with a continuous state space for reliability assessment in an open source solu-
tion developed under several open source softwares (OSSs) to consider the active
state of the open source projects and the collision among the open source compo-
nents. We propose a new SRGM describing the fault-detection process by applying
a mathematical technique of stochastic differential equations of Itô-type.

Further, based on discrete analogs of nonhomogeneous Poisson process (NHPP)
models as SRGMs, which have exact solutions in terms of solving the hypothesized
differential equations, we propose two discrete models described by difference equa-
tions derived by transforming the continuous testing-time into a discrete one. Thus
we show that such a difference calculus enables us to assess software reliability more
accurately than conventional discrete models.

Finally, we discuss quality-oriented software management through statistical
analysis of process monitoring data. Based on the desired software management
models, we obtain the significant process factors affecting quality, cost, and deliv-
ery (QCD) measures. At the same time, we propose a method of software relia-
bility assessment as process monitoring evaluation with actual data for the process
monitoring progress ratio and the pointed-out problems (i.e., detected faults).
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2 Human Factors Analysis

In this chapter, we discuss an experiment study to clarify human factors [1–3] and
their interactions affecting software reliability by assuming a model of human factors
which consist of inhibitors and inducers. In this experiment, we focus on the software
design-review process which is more effective than the other processes in the elim-
ination and prevention of software faults. For an analysis of experimental results, a
quality engineering approach base on a signal-to-noise ratio (defined as SNR) [4] is
introduced to clarify the relationships among human factors and software reliabil-
ity measured by the number of seeded faults detected by review activities, and the
effectiveness of significant human factors judged by the design of experiment [5] is
evaluated. As a result, applying the orthogonal array L18(21×37) to the human factor
experiment, we obtain the optimal levels for the selected inhibitors and inducers.

2.1 Design-Review and Human Factors

The inputs and outputs for the design-review process are shown in Fig. 1. The design-
review process is located in the intermediate process between design and coding
phases, and have software requirement-specifications as inputs and software design-
specifications as outputs. In this process, software reliability is improved by detecting
software faults effectively [6].

The attributes of software designers and design process environment are mutually
related to the design-review process (see Fig. 1). Then, influential human factors for
the design-specifications as outputs are classified into two kinds of attributes in the
following [7–9] (see Fig. 2):

(1) Attributes of the design reviewers (Inhibitors): Attributes of the design reviewers
are those of software engineers who are responsible for design-review work.
For example, they are the degree of understanding of software requirement-
specifications and software design-methods, the aptitude of programmers, the

(input)

(input)

Review feed-back

Design-review results

(output)

User requirement
      Requirement-specification

Intermediate product
        Design-specification

Design oversights
Design faults are detected

Requirement Analysis

Design

Coding Testing

Requirement-specification
Design-specification

Design-Review

Fig. 1 Inputs and outputs in the software design process
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experience and capability of software design, the volition of achievement of
software design, etc. Most of them are psychological human factors which are
considered to contribute directly to the quality of software design-specification.

(2) Attributes of environment for the design-review (Inducers): In terms of design-
review work, many kinds of influential factors are considered such as the edu-
cation of software design-methods, the kind of software design methodologies,
the physical environmental factors in software design work, e.g., temperature,
humidity, noise, etc. All of these influential factors may affect indirectly the
quality of software design-specification.

2.2 Design-Review Experiment

In order to find the relationships among the reliability of software design-specification
and its influential human factors, we have performed the design of experiment by
selecting five human factors as shown in Table 1.

In this experiment, we conduct an experiment to clarify the relationships among
human factors affecting software reliability and the reliability of design-review work
by assuming a human factor model consisting of inhibitors and inducers as shown in
Fig. 2. The actual experiment has been performed by 18 subjects based on the same
design-specification of a triangle program which receives three integers representing
the sides of a triangle and classifies the kind of triangle such sides form [10]. We
measured the 18 subjects’ capability of both the degrees of understanding of design-
method and requirement-specification by the preliminary tests before the design of
experiment. Further, we seeded some faults in the design-specification intentionally.
Then, we have executed such a design-review experiment in which the 18 subjects
detect the seeded faults.

Table 1 Human factors in the design-review experiment

Human factor Level
1 2 3

Ab BGM of classical music in the review
work environment

A1:yes A2:no -

Bb Time duration of software design work
(minute)

B1:20 min B2:30 min B3:40 min

Ca Degree of understanding of the
designmethod (R-Net technique)

C1:high C2:common C3:low

Da Degree of understanding of
requirement-specifications

D1:high D2:common C3:low

Eb Check kist (indicating the matters that
require attention in review work)

E1:detailed E2:common E3:nothing

aInhibitors
bInducers
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Human Factors

Inhibitors Inducers

Input

 Requirement-specification

Output

 Design-specification
 Detected faults

Development Activities

(Design-Review)

(Attributes of environment for the design-review)(Attributes of the design reviewers)

Fig. 2 A human factor model including inhibitors and inducers

We have performed the experiment by using the five human factors with three
levels as shown in Table 1, which are assigned to the orthogonal-array L18(21 × 37)

of the design of experiment as shown in Table 3. We distinguish the design parts as
follows to be pointed out in the design-review as detected faults into the descriptive-
design and symbolic-design parts.

• Descriptive-design faults The descriptive-design parts consist of words or technical
terminologies which are described in the design-specification to realize the
required functions. In this experiment, the descriptive-design faults are algorith-
mic ones, and we can improve the quality of design-specification by detecting and
correcting them.

• Symbolical-design faults The symbolical-design parts consist of marks or symbols
which are described in the design-specification. In this experiment, the symbolical-
design faults are notation mistakes, and the quality of the design-specification
cannot be improved by detecting and correcting them.

For the orthogonal-array L18(21 × 37) as shown in Table 3, setting the classification
of detected faults as outside factor R and the human factors A, B, C, D, and E as inside
factors, we perform the design-review experiment. Here, the outside factor R has two
levels such as descriptive-design parts (R1) and symbolical-design parts (R2).

2.3 Analysis of Experimental Results

We define the efficiency of design-review, i.e., the reliability, as the degree that
the design reviewers can accurately detect correct and incorrect design parts for the
design-specification containing seeded faults. There exist the following relationships
among the total number of design parts, n, the number of correct design parts, n0,
and the number of incorrect design parts containing seeded faults, n1:

n = n0 + n1. (1)
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Table 2 Input and output tables for two kinds of error

Output
0 (true) 1 (false) Total

Input

(i)Observed values
0 (true) n00 n11 n0

1 (false) n1 n01 n10

Total r0 r1 n
(ii)Error rates
0 (true) 1 − p p 1
1 (false) q 1 − q 1
Total 1 − p + q 1 − q + p 2

Therefore, the design parts are classified as shown in Table 2 by using the following
notations:

n00 = the number of correct design parts detected accurately as correct

design parts,

n01 = the number of correct design parts detected by mistake as incorrect

design parts,

n10 = the number of incorrect design parts detected by mistake as correct

design parts,

n11 = the number of incorrect design parts detected accurately as incorrect

design parts,

where two kinds of error rates are defined by

p = n01

n0
, (2)

q = n10

n1
. (3)

Considering the two kinds of error rates, p and q, we can derive the standard error
rate, p0, [4] as

p0 = 1

1 +
√(

1
p − 1

) (
1
q − 1

) . (4)

Then, the SNR based on Eq. (4) is defined by (see Ref. [4])

η0 = −10log10

{
1

(1 − 2p0)2
− 1

}
. (5)
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The standard error rate, p0, can be obtained by transforming Eq. (5) using the SNR
of each control factor as

p0 = 1

2

⎧
⎨

⎩
1 − 1

√
10

(− η0
10

)
+ 1

⎫
⎬

⎭
. (6)

The method of experimental design based on orthogonal-arrays is a special one
that requires only a small number of experimental trials to help us discover main
factor effects. On traditional researches [7, 11], the design of experiment has been
conducted using orthogonal-array L12(211). However, since the orthogonal-array
L12(211) has only two levels for grasp of factorial effect to the human factors exper-
iment, the middle effect between two levels cannot be measured. Thus, in order to
measure it, we adopt the orthogonal-array L18(21 × 37) that can lay out one fac-
tor with 2 levels (1, 2) and 7 factors with 3 levels (1, 2, 3) as shown in Table 3,
and dispense with 21 × 37 trials by executing experimental independent 18 experi-
mental trials with each other. For example, as for the experimental trial No. 10, we
executed the design-review work under the conditions A2, B1,C1, D3, and E3, and
obtained the computed SNRs as 0.583 (dB) for the descriptive-design faults from the
observed values n00 = 52, n01 = 0, n10 = 10, and n11 = 4, and as 4.497 (dB) for
the symbolical-design faults from the observed values n00 = 58, n01 = 1, n10 = 1,
and n11 = 3.

Table 3 The orthogonal array L18(21 × 37) with assigned human factors and experimental data

No. Human factors Observed values SNR (dB)
R1 R2

A B C D E n00 n01 n10 n11 n00 n01 n10 n11 R1 R2

1 1 1 1 1 1 52 0 2 12 58 1 0 4 7.578 6.580
2 1 1 2 2 2 49 3 8 6 59 0 2 2 −3.502 3.478
3 1 1 3 3 3 50 2 12 2 59 0 4 0 8.769 2.342
4 1 2 1 1 2 52 0 2 12 59 0 0 4 7.578 8.237
5 1 2 2 2 3 50 2 4 10 57 2 0 4 1.784 4.841
6 1 2 3 3 1 45 7 8 6 59 0 3 1 −7.883 0.419
7 1 3 1 2 1 52 0 2 12 59 0 2 2 7.578 3.478
8 1 3 2 3 2 47 5 6 8 59 0 2 2 −3.413 3.478
9 1 3 3 1 3 52 0 10 4 58 1 1 3 0.583 4.497
10 2 1 1 3 3 52 0 10 4 58 1 1 3 0.583 4.497
11 2 1 2 1 1 47 5 1 13 59 0 3 1 3.591 0.419
12 2 1 3 2 2 46 6 8 6 59 0 4 0 6.909 2.342
13 2 2 1 2 3 46 6 10 4 59 0 0 4 −10.939 8.237
14 2 2 2 3 1 49 3 11 3 59 0 4 0 8.354 2.342
15 2 2 3 1 2 46 6 10 4 59 0 0 4 −10.939 8.237
16 2 3 1 3 2 50 2 2 12 59 0 0 4 4.120 8.237
17 2 3 2 1 3 50 2 4 10 57 2 0 4 1.784 4.841
18 2 3 3 2 1 44 8 6 8 59 0 3 1 −5.697 0.419
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2.4 Investigation of Analysis Results

We analyze the simultaneous effects of outside factor R and inside human factors A,
B, C, D, and E. As a result of the analysis of variance by taking account of correlation
among inside and outside factors discussed in Sect. 2.2, we obtain Table 4. There are
two kinds of errors in the analysis of variance: e1 is the error among experiments of the
inside factors, and e2 the mutual correlation error between e1 and the outside factor.
In this analysis, since there was no significant effect by performing F-test for e1 with
e2, F-test for all factors was performed by e2. As a result, significant human factors
such as the degree of understanding of the design-method (Factor C), the degree
of understanding of requirement-specification (Factor D), and the classification of
detected faults (Factor R) were recognized. Figure 3 shows the factor effect for each
level in the significant factors which affect design-review work.

As a result of analysis, in the inside factors, only Factors C and D are significant
and the inside and outside factors are not mutually interacted. That is, it turns out that
reviewers with the high degree of understanding of the design-method and the high
degree of understanding of requirement-specification can exactly review the design-
specification efficiently regardless of the classification of detected faults. Moreover,
the result that outside factor R is highly significant, and the descriptive-design faults
are detected less than the symbolic-design faults, can be obtained. That is, although it
is a natural result, it is difficult to detect and correct the algorithmic faults which lead
to improvement in quality rather than the notation mistakes. However, it is important

Table 4 The result of analysis of variance by taking account of correlation among inside and
outside factors

Factor f S V F0 ρ(%)

A 1 37.530 37.530 2.497 3.157
B 2 47.500 23.750 1.580 3.995
C 2 313.631 156.816 10.435b 26.380
D 2 137.727 68.864 4.582a 11.584
E 2 4.684 2.342 0.156 0.394
A×B 2 44.311 22.155 1.474 3.727
e1 6 38.094 6.460 0.422 3.204

R 1 245.941 245.941 16.366b 20.686
A×R 1 28.145 28.145 1.873 2.367
B×R 2 78.447 39.224 2.610 6.598
C×R 2 36.710 18.355 1.221 3.088
D×R 2 9.525 4.763 0.317 0.801
E×R 2 46.441 23.221 1.545 3.906
e2 8 120.222 15.028 3.870 10.112

T 35 1188.909 100.0
a5 % level of significant
b1 % level of significant
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Fig. 3 The estimation of significant factors with correlation among inside and outside factors

to detect and correct the algorithmic faults as an essential problem of the quality
improvement for design-review work. Therefore, in order to increase the rate of
detection and correction of the algorithmic faults which lead to the improvement of
quality, it is required before design-review work to make reviewers fully understand
the design techniques used for describing design-specifications and the contents of
requirement-specifications.

3 Stochastic Differential Equation Modeling

The software development environment has been changing into new development
paradigms such as concurrent distributed development environment and the so-called
open source project by using network computing technologies. Especially, such OSS
systems which serve as key components of critical infrastructures in the society are
still ever-expanding now [12].

The successful experience of adopting the distributed development model in such
open source projects includes GNU/Linux operating system, Apache Web server,
and so on [12]. However, the poor handling of the quality and customer support
prohibits the progress of OSS. We focus on problems in the software quality, which
prohibit the progress of OSS.

Especially, SRGMs [6, 13] have been applied to assess the reliability for quality
management and testing-progress control of software development. On the other
hand, the effective method of dynamic testing management for new distributed devel-
opment paradigms as typified by the open source project has been presented by only
a few works [14–17]. In case of considering the effect of the debugging process on
the entire system for the development of a method of reliability assessment for OSS,
it is necessary to grasp the situation of registration for bug tracking system, degree
of maturation of OSS, and so on.

In this chapter, we focus on an open source solution developed under several OSSs.
We discuss a useful software reliability assessment method in open source solution
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as a typical case of next-generation distributed development paradigm. Especially,
we propose a software reliability growth model based on stochastic differential equa-
tions (SDEs) in order to consider the active state of the open source project and the
component collision of OSS. Then, we assume that the software failure intensity
depends on the time, and the software fault-report phenomena on the bug tracking
system keeps an irregular state. Also, we analyze the actual software fault-count data
to show numerical examples of software reliability assessment for the open source
solution. Moreover, we compare our model with the conventional model based on
SDEs in terms of goodness-of-fit for actual data. Then, we show that the proposed
model can assist improvement of quality for an open source solution developed under
several OSSs.

3.1 Stochastic Differential Equation Model

Let S(t) be the number of detected faults in the open source solution by testing-time
t (t ≥ 0). Suppose that S(t) takes on continuous real values. Since latent faults in
the open source solution are detected and eliminated during the operational phase,
S(t) gradually increases as the operational procedures go on. Thus, under common
assumptions for software reliability growth modeling, we consider the following
linear differential equation:

d S(t)

dt
= λ(t)S(t), (7)

where λ(t) is the intensity of inherent software failures at operational time t and is
a non-negative function.

Generally, it is difficult for users to use all functions in open source solution,
because the connection state among open source components is unstable in the
testing-phase of open source solution. Considering the characteristic of open source
solution, the software fault-report phenomena keeps an irregular state in the early
stage of testing-phase. Moreover, the addition and deletion of software components
are repeated under the development of an OSS system, i.e., we consider that the
software failure intensity depends on the time.

Therefore, we suppose that λ(t) and μ(t) have irregular fluctuation. That is, we
extend Eq. (7) to the following SDE [18, 19]:

d S(t)

dt
= {λ(t)+ σμ(t)γ (t)}S(t), (8)

where σ is a positive constant representing a magnitude of the irregular fluctuation,
γ (t) a standardized Gaussian white noise, and μ(t) the collision level function of
open source component.

We extend Eq. (8) to the following SDE of an Ito type:

d S(t) =
{
λ(t)+ 1

2
σ 2μ(t)2

}
S(t)dt + σμ(t)S(t)dω(t), (9)
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where ω(t) is a one-dimensional Wiener process which is formally defined as an
integration of the white noise γ (t) with respect to time t . The Wiener process is a
Gaussian process and it has the following properties:

Pr [ω(0) = 0] = 1, (10)

E[ω(t)] = 1, (11)

E[ω(t)ω(t ′)] = Min[t, t ′]. (12)

By using Ito’s formula [18, 19], we can obtain the solution of Eq. (8) under the initial
condition S(0) = ν as follows [20]:

S(t) = ν · exp

(∫ t

0
λ(s)ds + σμ(t)ω(t)

)
, (13)

where ν is the number of detected faults for the previous software version. Using
solution process S(t) in Eq. (13), we can derive several software reliability measures.

Moreover, we define the intensity of inherent software failures, λ(t), and the
collision level function, μ(t), as follows:

∫ t

0
λ(s)ds = (1 − exp[−αt]), (14)

μ(t) = exp[−βt], (15)

where α is an acceleration parameter of the intensity of inherent software failures,
and β the growth parameter of the open source project.

3.2 Method of Maximum-Likelihood

In this section, the estimation method of unknown parameters α, β, and σ in Eq. (13)
is presented. Let us denote the joint probability distribution function of the process
S(t) as

P(t1, y1; t2, y2; . . . ; tK , yK ) ≡ Pr[S(t1) ≤ y1, . . . , S(tK ) ≤ yK | S(t0) = ν],
(16)

where S(t) is the cumulative number of faults detected up to the operational time
t (t ≥ 0), and denote its density as

p(t1, y1; t2, y2; . . . ; tK , yK ) ≡ ∂K P(t1, y1; t2, y2; · · · ; tK , yK )

∂y1∂y2 . . . ∂yK
. (17)

Since S(t) takes on continuous values, we construct the likelihood function l for the
observed data (tk, yk)(k = 1, 2, . . . , K ) as follows:

l = p(t1, y1; t2, y2; . . . ; tK , yK ). (18)
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For convenience in mathematical manipulations, we use the following logarithmic
likelihood function:

L = log l. (19)

The maximum-likelihood estimates α∗, β∗, and σ ∗ are the values making L in
Eq. (19) to maximize. These can be obtained as the solutions of the following simul-
taneous likelihood equations [20]:

∂L

∂α
= ∂L

∂β
= ∂L

∂σ
= 0. (20)

3.3 Expected Number of Detected Faults

We consider the expected number of faults detected up to operational time t . The
density function of ω(t) is given by:

f (ω(t)) = 1√
2π t

exp

{
−ω(t)

2

2t

}
. (21)

Information about the cumulative number of detected faults in the OSS system
is important to estimate the situation of the progress on the software operational
procedures. Since it is a random variable in our model, its expected value and variance
can be useful measures. We can calculate the expected number of faults detected up
to time t from Eq. (13) as follows [20]:

E[S(t)] = ν · exp

(∫ t

0
λ(s)ds + σ 2μ(t)2

2
t

)
. (22)

3.4 Numerical Illustrations

We focus on a large-scale open source solution based on the Apache HTTP Server
[21], Apache Tomcat [22], MySQL [23], and JavaServer Pages (JSP). The fault-count
data used in this chapter are collected in the bug tracking system on the website of
each open source project. The estimated expected cumulative number of detected
faults in Eq. (22) is shown in Fig. 4. Also, the sample path of the estimated numbers
of detected faults in Eq. (13) is shown in Fig. 5, approximately.

We show the reliability assessment results for the other SDE model in terms of the
performance evaluation of our model. The sample path of the estimated cumulative
numbers of detected faults in the conventional SDE model for OSS [24] are shown
in Fig. 6. Also, Fig. 7 is the sample path of the estimated numbers of remaining faults
in the conventional SDE model [25]. From Figs. 6 and 7, we have found that the
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Fig. 4 The estimated cumulative number of detected faults, E[S(t)]

Fig. 5 The estimated path of the estimated number of detected faults

magnitude of the irregular fluctuation in the early phase of the proposed model is
larger than those of the conventional SDE models, i.e., the irregular fluctuation in the
proposed model depends on the time. Then, for the large-scale open source solution
[26, 27], we may utilize the proposed model for assisting improvement of quality,
in which it can describe actual fault-detection phenomena.

4 Discrete NHPP Modeling

In recent researches, Satoh [28] proposed a discrete Gompertz curve model, and Satoh
and Yamada [29] suggested parameter estimation procedures for software reliability
assessment of a discrete logistic curve model, and compared these models by using



264 S. Yamada

Fig. 6 The sample path of the estimated cumulative number of detected faults for SDE model for
OSS

Fig. 7 The sample path of the estimated number of remaining faults for the conventional SDE
model

a new proposed criterion. They reported that the discrete models as statistical data
analysis models enable us to obtain accurate parameter estimates even with a small
amount of observed data for particular applications.

In this chapter, we discuss the discrete NHPP models [6] derived by employing
a difference method which conserves the gauge invariance from above results and
high applicability of NHPP models point of view. The discrete NHPP models, that
is, the discrete exponential SRGM and the discrete inflection S-shaped SRGM, have
exact solutions. The difference equations and their exact solutions tend to the differ-
ential equations and their exact solutions. Therefore, the proposed models conserve
the characteristics of the continuous NHPP models. The proposed models can be
easily applied to regression equations to get accurate parameter estimates, and have
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more advantages in terms of numerical calculations than the maximum-likelihood
estimation [30].

We assume a discrete counting process {Nn, n ≥ 0}(n = 0, 1, 2, . . .) representing
the cumulative number of faults detected by nth period from the test beginning. Then,
the NHPP model with mean value function Dn representing the expected cumulative
number of faults is formulated by

Pr{Nn = x} = [Dn]x

x ! exp[−Dn] (n, x = 0, 1, 2, . . .). (23)

We employ a difference method which conserves the gauge invariance because the
proposed discrete NHPP models have to conserve the characteristic of the continuous
NHPP models, i.e., the continuous NHPP models have exact solutions. With regard
to parameter estimations, the difference equations can be easily applied to regres-
sion equations to get accurate parameter estimates, and these models have some
advantages in terms of numerical calculations. Therefore, we can estimate unknown
parameters by adopting the method of ordinary least-square procedures from the
regression equations.

4.1 Discrete Exponential SRGM

We propose a discrete analog of the original exponential SRGM whose mean value
function is of the simplest form in the SRGMs. The difference equation for this
model has an exact solution. Let Hn denote the expected cumulative number of
software faults detected by nth period from the test beginning. Then, we derive a
discrete analog of the exponential SRGM from the hypotheses of the continuous
NHPP model as follows:

Hn+1 − Hn = δb(a − Hn). (24)

Solving the above equation, an exact solution Hn in Eq. (24) is given by

Hn = a[1 − (1 − δb)n] (a > 0, 0 < b < 1), (25)

where δ represents the constant time-interval, a the expected total number of potential
software failures occured in an infinitely long duration or the expected initial fault
content, and b the fault-detection rate per fault. As δ → 0, Eq. (25) converges to an
exact solution of the original exponential SRGM which is described by the differential
equation.

We can derive a regression equation from Eq. (24) to estimate the model para-
meters. The regression equation is obtained as

Yn = A + B Hn, (26)
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where ⎧
⎨

⎩

Yn = Hn+1 − Hn

A = δab
B = −δb.

(27)

Using Eq. (26), we can estimate Â and B̂ by using the observed data, which are the
estimates of A and B. Therefore, we can obtain the parameter estimates â and b̂ from
Eq. (27) as follows: {

â = − Â/B̂
b̂ = −B̂/δ.

(28)

Yn in Eq. (26) is independent of δ because δ is not used in calculating Yn in Eq. (26).
Hence, we can obtain the same parameter estimates of â and b̂, respectively, when
we choose any value of δ.

4.2 Discrete Inflection S-Shaped SRGM

We also propose a discrete analog of the original inflection S-shaped SRGM which
is the continuous one. Let In denote the expected cumulative number of software
faults detected by nth period from the test beginning. Then, we can derive a discrete
analog of the inflection S-shaped SRGM from the hypotheses of the continuous
NHPP model as follows:

In+1 − In = δabl + δb(1 − 2l)

2
[In + In+1] − δb(1 − l)

a
In In+1. (29)

Solving the above difference equation, an exact solution In in Eq. (29) is given by

In =
a

[
1 −

(
1− 1

2 δb

1+ 1
2 δb

)n]

1 + c

(
1− 1

2 δb

1+ 1
2 δb

)n (a > 0, 0 < b < 1, c > 0, 0 ≤ l ≤ 1), (30)

where δ represents the constant time-interval, a the expected total number of potential
software failures occured in an infinitely long duration or the expected initial fault
content, b the fault-detection rate per fault, and c the inflection parameter. The inflec-
tion parameter is specified as follows: c = (1 − l)/ l where l is the inflection rate
which indicates the ratio of the number of detectable faults to the total number of
faults in the software system. As δ → 0, Eq. (30) converges to an exact solution of the
original inflection S-shaped SRGM which is described by the differential equation.

Defining the difference operator as

�In ≡ In+1 − In

δ
. (31)
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We show that the inflection point occurs when

n̄ =
{
< n∗ > (if �I<n∗> ≥ �I<n∗>+1)

< n∗ > +1 (otherwise),
(32)

where

n∗ = − logc

log

(
1− 1

2 δb

1+ 1
2 δb

) − 1, (33)

< n∗ > = {n|max(n ≤ n∗), n ∈ Z}. (34)

Moreover, we define t∗ as
t∗ = n∗δ. (35)

When n∗ is an integer, we can show that t∗ converges the inflection point of the
inflection S-shaped SRGM which is described by the differential equation as δ → 0
as follows:

t∗ = −δ logc

log

(
1− 1

2 δb

1+ 1
2 δb

) − δ → logc

b
as δ → 0. (36)

By the way, the inflection S-shaped SRGM is regarded as a Riccati equation. Hirota
[31] proposed a discrete Riccati equation which has an exact solution. A Bass model
[32] which forecasts the innovation diffusion of products is also a Riccati equation.
Satoh [33] proposed a discrete Bass model which can overcome the shortcomings of
the ordinary least-square procedures in the continuous Bass model.

We can derive a regression equation to estimate the model parameters from
Eq. (29). The regression equation is obtained as

Yn = A + BKn + C Ln, (37)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yn = In+1 − In

Kn = In + In+1

Ln = In In+1

A = δabl

B = δb(1 − 2l)/2

C = −δb(1 − l)/a.

(38)

Using Eq. (37), we can estimate Â, B̂, and Ĉ by using the observed data, which are
the estimates of A, B, and C , respectively. Therefore, we can obtain the parameter
estimates â, b̂, and l̂ from Eq. (38) as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

â = Â/(
√

B̂2 − ÂĈ − B̂)

b̂ = 2
√

B̂2 − ÂĈ/δ

l̂ = (1 − B̂/
√

B̂2 − ÂĈ)/2.

(39)

Yn , Kn , and Ln in Eq. (37) are independent of δ because δ is not used in calculating
Yn , Kn , and Ln in Eq. (37). Hence, we can obtain the same parameter estimates â, b̂,
and l̂, respectively, when we choose any value of δ.

4.3 Model Comparisons

We show the result of goodness-of-fit comparisons in this section. We compare
the four discrete models by using four data sets (DS1–DS4) observed in actual
software testing. The four discrete models are as follows: two discrete NHPP models
that were discussed in Sects. 4.1 and 4.2, a discrete logistic curve model [29, 30],
and a discrete Gompertz curve model [28]. The data sets of DS1 and DS2 indicate
exponential growth curves, and those of DS3 and DS4 indicate S-shaped growth
curves, respectively. We employ the predicted relative error [6], the mean square
errors (MSE) [6], and Akaike’s Information Criterion (AIC) [6] as criteria of the
model comparison in this chapter.

The predicted relative error is a useful criterion for indicating the relative errors
between the predicted number of faults discovered by termination time of testing by
using the part of observed data from the test beginning and the observed number of
faults discovered by the termination time. Let Re[te] denote the predicted relative
error at arbitrary testing-time te. Then, the predicted relative error is given as b

Re[te] = ŷ(te; tq)− q

q
, (40)

where ŷ(te; tq) is the estimated value of the mean value function at the termination
time tq using the observed data by the arbitrary testing-time te(0 ≤ te ≤ tq), and q is
the observed cumulative number of faults detected by the termination time. We show
Figs. 8, 9 and 10 which are the results of the model comparisons based on the predicted
relative error for DS1 and DS3. MSE is obtained by using the sum of squared errors
between the observed and estimated cumulative numbers of detected faults, yk and
ŷ(tk) during (0, tk], respectively. Getting N data pairs (tk, yk)(k = 1, 2, . . . , N ),
MSE is given by

MSE = 1

N

N∑

k=1

[yk − ŷ(tk)]2, (41)

where ŷ(tk)denote the estimated value of the expected cumulative number of faults by
using exact solutions of each model by the arbitrary testing-time tk(k = 1, 2, . . . , N ).
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Fig. 8 The predicted relative for DS1

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Pr
ed

ic
te

d 
R

el
at

iv
e 

E
rr

or
s

Ratio of Testing Progress (%)

Discrete exponential SRGM
Discrete inflection S-shaped SRGM

Discrete logistic curve model
Discrete Gompertz curve model

Fig. 9 The predicted relative error for DS3

Table 5 shows the result of model comparison based on MSE for each model. From
Table 5, we conclude that the discrete inflection S-shaped SRGM fits better to all
data sets except for DS2. However, the result of model comparison based on MSE
depends on the number of model parameters of each model, e.g., the discrete expo-
nential SRGM has two parameters and the discrete inflection S-shaped one has three
parameters. Therefore, as a criterion of goodness-of-fit comparison for the two dis-
crete models, i.e., the discrete exponential SRGM and the discrete inflection S-shaped
one, we adopt the value of AIC. Table 6 shows the result of model comparison based
on AIC. From Table 6, we can validate the above evaluation for MSE.

From these three results of goodness-of-fit comparison, we conclude that the
discrete exponential SRGM is a more useful model for software reliability assess-
ment for the observed data which indicate an exponential growth curve, and the
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Fig. 10 The model comparison based on the predicted relative error for DS3 focusing on the
discrete Gompertz curve model and the discrete inflection S-shaped SRGM

Table 5 The result of model comparison based on MSE

Data set Discrete exponential Discrete inflection Discrete logistic Discrete Gompertz
SRGM S-shaped SRGM curve model curve model

DS1 39.643 12.141 101.92 72.854
DS2 1762.5 2484.0 27961 13899
DS3 25631 9598.1 149441 19579
DS4 11722 438.59 49741 27312

Table 6 The result of model comparison between the discrete exponential SRGM and discrete
inflection S-shaped SRGM based on AIC

Data set Discrete expo-nential Discrete inflection Absolute value of
SRGM S-shaped SRGM difference

DS1 110.031 109.195 0.836
DS2 115.735 118.752 3.017
DS3 617.434 606.132 11.30
DS4 315.069 274.818 40.25

discrete inflection S-shaped SRGM is a more useful one for assessment after 60 %
of the testing progress ratio for the observed data which indicate an S-shaped growth
curve.

4.4 Software Reliability Assessment

We show useful quantitative measures for software reliability assessment by using
the discrete NHPP models proposed in this chapter. We adopt DS1, i.e., the observed
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Fig. 11 The estimated discrete mean value function, Ĥn , for DS1
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Fig. 12 The estimated discrete mean value function, În , for DS3

Table 7 The estimated parameters of Ĥn for DS1 and În for DS3

â b̂(δ = 1) ĉ n∗ < n∗ > n̄

Hn 139. 956 0.113
I n 5217.88 0.0906 2.350 8.383 8 9

25 pairs (tk, yk)(k = 1, 2, . . . , 25 ; t25 = 25, y25 = 136) for the discrete exponen-
tial SRGM, and DS3, i.e., the observed 59 pairs (tk, yk)(k = 1, 2, . . . , 59 ; t59 =
59, y59 = 5, 186) for the discrete inflection S-shaped SRGM, where yk is the cumu-
lative number of faults detected by the execution of testing time tk . The observation
time unit of DS1 is CPU hours, and that of DS3 the number of weeks. We show the
estimated mean value functions of Hn in Eq. (25) and In in Eq. (30) in Figs. 11 and
12, respectively, where several quantities are shown in Table 7.
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We can derive the software reliability function which is a useful measure for
software reliability assessment. The software reliability function is obtained by
Eq. (23) as follows:

R(n, h) ≡ Pr{Nn+h − Nn = 0|Nn = x}
= exp[−{Dn+h − Dn}]. (42)

Letting δ = 1, the software reliability function for Hn after the termination time
n = 25 (CPU hours), and for In after the termination time n = 59 (weeks), are
shown in Figs. 13 and 14, respectively. After releasing the software systems at these
time points, assuming that the software users operate these software systems under
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the same environment as the software testing one, we can estimate the software
reliability R̂(25, 1.0) for Hn to be about 0.46. Also, we can estimate one R̂(59, 1.0)
for In to be about 0.0.

5 Quality-Oriented Software Management Analysis

In this chapter, first, we conduct multivariate linear analyses by using process
monitoring [34] data, derive effective process factors affecting the final products’
quality, and discuss the significant process factors with respect to software manage-
ment measures of QCD [35, 36]. Then, we analyze actual process monitoring data
based on the derivation procedures of a process improvement model, i.e., software
management model [37, 38] (as shown in Fig. 15). Then, we discuss project manage-
ment on the significant process factors affecting the QCD measures, and show their
effect on them. Second, we analyze the process monitoring data in a viewpoint of
software reliability measurement and assessment in the process monitoring activities.

Fig. 15 Derivation procedures of software management model
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5.1 Process Monitoring Data

We predict software management measures of QCD by using the process monitoring
data as shown in Table 8. Five variables measured in terms of the number of faults
(QCD problems) detected through the process monitoring, i.e., the contract review,
the development planning review, the design completion review, the test planning
review, and the test completion review phases are used as explanatory variables. The
observed values of these five factors are normalized by each project development
size (KLOC, 103LOC) in this chapter. Three variables, i.e., the number of faults
detected during customer acceptance testing, the cost excess rate, and the number of
delivery-delay days, are used as objective variables.

5.2 Factor Analysis Affecting QCD

Based on the canonical correlation analysis and the correlation analysis in Fig. 15,
X3 is selected as an important factor for estimating a software quality prediction
model. Then, a single regression analysis is applied to the process monitoring data
as shown in Table 8. Then, using X3, we have the estimated single regression equa-
tion predicting the number of software faults, Ŷq , given by Eq. (43) as well as the
normalized single regression expression, Ŷ N

q , given by Eq. (44):

Ŷq = 11.761 · X3 + 0.998, (43)

Ŷ N
q = 0.894 · X3, (44)

where the squared multiple correlation coefficient adjusted for degrees of freedom
(adjusted R2) is given by 0.758, and the derived linear quality prediction model is
significant at 1 % level.

In a similar discussion to factor analysis affecting the number of faults above, as the
result of canonical correlation analysis, correlation analysis, and principal component
analysis, we can select X1 and X5 as the important factors for estimating the cost
excess rate and delivery-delay days. Then, using X1 and X5, we have the estimated
multiple regression equation predicting cost excess rate, Ŷc, given by Eq. (45) as well
as the normalized multiple regression expression, Ŷ N

c , given by Eq. (46):

Ŷc = 0.253 · X1 + 1.020 · X5 + 0.890, (45)

Ŷ N
c = 0.370 · X1 + 0.835 · X5, (46)

where the adjusted R2 is given by 0.917, and the derived cost excess prediction model
is significant at 1 % level.

By the same way as the cost excess rate, using X1 and X5, we have the estimated
multiple regression equation predicting the number of delivery-delay days, Ŷd , given
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by Eq. (47) as well as the normalized multiple regression expression, Ŷ N
d , given by

Eq. (48):

Ŷd = 24.669 · X1 + 55.786 · X5 − 9.254, (47)

Ŷ N
d = 0.540 · X1 + 0.683 · X5, (48)

where the adjusted R2 is given by 0.834, and the derived delivery-delay prediction
model is significant at 5 % level.

5.3 Analysis Results of Software Management Models

We have derived software management models by applying the methods of
multivariate linear analysis to actual process monitoring data. Quantitative evalu-
ation based on the derived prediction models about final product quality, cost excess,
and delivery-delay, has been conducted with high accuracy. Then, it is very effective
to promote software process improvement under Plan, Do, Check, Act (PDCA) man-
agement cycle by using the derivation procedures of software management models
as shown in Fig. 15.

Further, the design completion review has an important impact on software quality.
Then, it is possible to predict software product quality in the early-stage of software
development project by using the result of the design completion review in process
monitoring activities.

Next, the contract review and the test completion review processes have important
impacts on the cost excess rate and the delivery-delay days. That is, it is difficult
to predict cost excess and delivery-delay measures at the early stage of software
development project, and it is found that the cost excess and delivery-delay measures
can be predicted according to the same process monitoring factors.

5.4 Implementation of Project Management

5.4.1 Continuous Process Improvement

From the result of software management model analyses and factor analyses, it is
found that the contract review has an important relationship with cost and delivery
measures. Then, in order to improve the cost excess and delivery-delay, we perform
suitable project management for the problems detected in the contract review.

The project management practices to be performed for the important problems
detected in the contract review are:

• Early decision of the specification domain.
• Improvement of requirement specification technologies.
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Fig. 16 Relationship between risk ratio and problem solving effort

• Early decision of development schedule.
• Improvement of project progress management.
• Improvement of testing technology.

As a result of carrying out project management and continuous process
improvement, the relationship between the risk ratio measured at the initial stage of
a project and the amount of problem solving effort (man-day) in the contract review
become as shown in Fig. 16 where Projects 8–21 were monitored under process
improvement based on the analysis results for Projects 1–7, and the risk ratio is
given by

R =
∑

i

{risk item(i)× weight(i)}. (49)

In Eq. (49), the risk estimation checklist has weight(i) in each risk item(i), and the
risk ratio ranges between 0 and 100 points. Project risks are identified by interviewing
based on the risk estimation checklist. From the identified risks, the risk ratio of a
project is calculated by Eq. (49).

From Fig. 16, it is found that by performing suitable project management for the
important problems in the contract review from Projects 8–15, the problem can be
solved at the early stage of the software project even if the risk ratio is high.

5.4.2 Implementation of Design Quality Evaluation

In a similar fashion to cost and delivery measures, it is found that the design
completion review has an important relationship with software quality. Then, in
order to improve software quality, we decide to perform suitable project manage-
ment called design evaluation in the design completion review.
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The design evaluation assesses the following items based on the risk estimation
checklist by the project manager, the designer, and the members of quality con-
trol department. Through the following design evaluation, we have to judge if the
development can proceed to the next stage:

• After the requirements analysis, how many requirements are included in the
requirement specifications? Are the requirements (function requirements and non-
function requirements) suitably defined?

• After the elementary design, have the requirements (function requirements and
non-function requirements) been taken over from the user requirements to the
design documents without omission of the description items in the requirement
specification?

• As for elementary design documents, is the elementary design included?

After implementation of the design evaluation, we have found that by performing
design evaluation in the design completion review from Projects 17–21, the software
quality has improved, and the cost excess rate and the delivery-delay days are also
stable.

5.5 Software Reliability Assessment

Next, we discuss software reliability measurement and assessment based on the
process monitoring data. A software reliability growth curve in process monitoring
activities shows the relationship between the process monitoring progress ratio and
the cumulative number of faults (QCD problems) detected during process monitoring.
Then, we apply SRGMs based on an NHPP [6]. Table 9 shows the process monitoring
data which are analyzed to evaluate software reliability, where Table 8 is derived
from Table 9 for Projects 1–7, and Projects 8–21 were monitored under process
improvement based on the analysis results for Projects 1–7. However, the collected
process monitoring data have some missing values in metrics. Therefore, we apply
collaborative filtering to the observed data to complement the missing values for
assessing software reliability. The underlined values in Table 9 are the metrics values
complemented by collaborative filtering.

We discuss software reliability growth modeling based on an NHPP because an
analytic treatment of it is relatively easy. Then, we choose the process monitoring
progress ratio as the alternative unit of testing-time by assuming that the observed
data for testing-time are continuous.

In order to describe a fault-detection phenomenon at processing monitoring
progress ratio t (t ≥ 0), let {N (t), t ≥ 0} denote a counting process representing the
cumulative number of faults detected up to progress ratio t . Then, the fault-detection
phenomenon can be described as follows:

Pr{N (t) = n} = {H(t)}n

n! exp[−H(t)] (n = 0, 1, 2, . . .), (50)
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where H(t) represents the expected value of N (t) called a mean value function of
the NHPP. Pr{A} in Eq. (50) means the probability of event A. In this chapter, we
apply three NHPP models [6], i.e., the exponential SRGM, the delayed S-shaped
SRGM, and the logarithmic Poisson execution time model.

Software reliability assessment measures play an important role in quantitative
software reliability assessment based on an SRGM. The expected number of remain-
ing faults, n(t), represents the number of faults latent in the software system by
arbitrary testing-time t, and is formulated as

n(t) ≡ E[N (∞)− N (t)] = E[N (∞)] − H(t), (51)

where E[A] represents the expected value for random variable A. And an
instantaneous mean time between software faults (MTBF) is formulated as

MTBFI (t) = 1

dH(t)/dt
, (52)

which is one of the substitute measures of the MTBF for the NHPP model.
Further, a software reliability function represents the probability that a software

failure does not occur in the time-interval (t, t + x] (t ≥ 0, x ≥ 0) given that the
testing or the user operation has been going up to time t . Then, if the counting process
{N (t), t ≥ 0} follows the NHPP with mean value function H(t), the software
reliability function is derived as

R(x | t) = exp[−{H(t + x)− H(t)}]. (53)

We have found that the logarithmic Poisson execution time model shows the
best goodness-of-fit in Projects 11–14 in which the test completion review’s missing
values are complemented by collaborative filtering. We have also found that the

Fig. 17 The estimated mean
value function for Project 1
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Fig. 18 The estimated instantaneous MTBF for Project 1

Fig. 19 The estimated software reliability function for Project 1

delayed S-shaped SRGM shows suitability in all projects. Therefore, if we select the
process monitoring progress ratio as the unit of testing-time for SRGMs based on an
NHPP, then the delayed S-shaped SRGM becomes a very useful one for quantitative
software reliability assessment based on the process data derived from software
process monitoring activities.

Further, we show numerical illustration of software reliability assessment by using
the delayed S-shaped SRGM for Project 1. Figure 17 shows the estimated mean value
function and its 95 % confidence limits, where the parameter estimates are obtained
as â = 39.67 and b̂ = 0.0259. We can find that there are 10 remaining faults at the end
of test completion review phase. Figure 18 shows the estimated instantaneous MTBF
in Eq. (52). From Fig. 18, we can estimate the instantaneous MTBF at the finishing
test completion review phase to be about 5 days. Figure 19 shows the estimated
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software reliability at process monitoring progress ratio t = 100 (%). From Fig. 19,
if the process monitoring progress ratio is 120 %, we can find that a software failure
will occur with high probability.

6 Concluding Remarks

In this chapter, we have discussed several recent developments in software reliability
modeling and its applications, i.e., quality engineering approach based on the human
factor model in design-review process, SDE modeling for OSS projects, NHPP mod-
eling with discrete calculus, and software project evaluation based on quality-oriented
software management models. The first human factor analysis is very important to
promote software quality/reliability management during the upper stream of devel-
opment process by controlling the effective inhibitors and inducers. The latter two
SRGMs enable us to obtain plausible results of software reliability assessment more
than ever. The last quality-oriented software management analysis enables us to man-
age software projects quantitatively for successful project management in terms of
QCD.

Acknowledgments The author is very grateful to Professor Shunji Osaki who stimulated his
interest in software reliability theory through many interesting discussions.

References

1. Basili VR, Reiter RW Jr (1979) An investigation of human factors in software development.
IEEE Comput Mag 12(12):21–38

2. Curtis B (ed) (1985) Tutorial : Human factors in software development. IEEE Computer Society
Press, Los Alamitos, CA

3. Nakajo T, Kume H (1991) A case history analysis of software error cause-effect relationships.
IEEE Trans Softw Eng 17(8):830–838

4. Taguchi G (ed) (1998) Signal-to-Noise raito for quality evaluation (in Japanese). Japanese
Standards Association, Tokyo

5. Taguchi G (1976) A method of design of experiment (the First volume (2nd edn)) (in Japanese).
Maruzen, Tokyo

6. Yamada S (2011) Elements of software reliability : modeling approach (in Japanese). Kyoritsu-
Shuppan, Tokyo

7. Esaki K, Yamada S, Takahashi M (2001) A quality engineering analysis of human factors
affecting software reliability in software design review process (in Japanese). Trans IEICE
Japan J84–A(2):218–228

8. Yamada S (2008) Early-stage software product quality prediction based on process measure-
ment data. In: Misra KB (ed) Springer handbook of performability engineering. Springer,
London, pp 1227–1237 chapter 74

9. Yamada S (2006) A human factor analysis for software reliability in design-review process.
Intern J Performability Eng 2(3):223–232

10. Miyamoto I (1982) Software engineering—Current status and perspectives- (in Japanese). TBS
Publishing, Tokyo



Recent Developments in Software Reliability 283

11. Esaki K, Takahashi M (1997) A software design review on the relationship between human
factors and software errors classified by seriousness (in Japanese). J Qual Eng Forum 5(4):30–
37

12. E-Soft Inc., Internet Research Reports. (Online). Available:http://www.securityspace.com/s_
survey/data/index.html

13. Yamada S (2002) Software reliability models. In: Osaki S (ed) Stochastic models in reliability
and maintenance. Springer, Berlin, pp 253–280 chapter 10

14. MacCormack A, Rusnak J, Baldwin CY (2006) Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Inf J Manage Sci 52(7):1015–
1030

15. Kuk G (2006) Strategic interaction and knowledge sharing in the KDE developer mailing list.
Inf J Manage Sci 52(7):1031–1042

16. Zhoum Y, Davis J (2005) Open source software reliability model: an empirical approach. In:
Proceedings workshop on open source software engineering (WOSSE), vol 30(4), pp 67–72

17. Li P, Shaw M, Herbsleb J, Ray B, Santhanam P (2004) Empirical evaluation of defect projection
models for widely-deployed production software systems. In: Proceedings of 12th international
symposium foundations of software engineering (FSE-12), pp 263–272

18. Arnold L (1974) Stochastic differential equations-theory and applications. Wiley, New York
19. Wong E (1971) Stochastic processes in information and systems. McGraw-Hill, New York
20. Yamada S, Kimura M, Tanaka H, Osaki S (1994) Software reliability measurement and assess-

ment with stochastic differential equations. IEICE Trans Fundam E77–A(1):109–116
21. The Apache HTTP Server Project, The Apache Software Foundation. (Online). Available:

http://httpd.apache.org/
22. Apache Tomcat, The Apache Software Foundation. (Online). Available: http://tomcat.apache.

org/
23. PostgreSQL, PostgreSQL Global Development Group. (Online). Available: http://www.

postgresql.org/
24. Tamura Y, Yamada S (2007) Software reliability growth model based on stochastic differential

equations for open source software. In: Proceedings of 4th IEEE international conference on
mechatronics, CD-ROM (ThM1-C-1)

25. Tamura Y, Yamada S (2006) A flexible stochastic differential equation model in distributed
development environment. Eur J Operl Res 168(1):143–152

26. Tamura Y, Yamada S (2009) Optimisation analysis for reliability assessment based on stochastic
differential equation modeling for open source software. Int J Syst Sci 40(4):429–438

27. Tamura Y, Yamada S (2011) Reliability assessment based on hazard rate model for an embedded
OSS porting phase. Softw Test, Verification Reliab, vol 21, to be published

28. Satoh D (2000) A discrete Gompertz equation and a software reliability growth model. IEICE
Trans Inf Syst E83–D(7):1508–1513

29. Satoh D, Yamada S (2001) Discrete equations and software reliability growth models. In:
Proceedings of 12th international symposium on software reliability engineering (ISSRE’01),
pp 176–184

30. Inoue S, Yamada S (2007) Generalized discrete software reliability modeling withe effect of
program size. IEEE Trans Sys, Man, Cybern (Part A) 37(2):170–179

31. Hirota R (1979) Nonlinear partial difference equations. V. Nonlinear equations reducible to
linear equations. J Phys Soc Japan 46(1):312–319

32. Bass FM (1969) A new product growth model for consumer durables. Manage Sci 15:215–227
33. Satoh D (2001) A discrete Bass model and its parameter estimation. J Oper Res Soc Japan

44(1):1–18
34. Kasuga K, Fukushima T, Yamada S (2006) A practical approach software process monitoring

activities (in Japanese). In: Proceedings of 25th JUSE software quality symposium, pp 319–326
35. Yamada S, Fukushima T (2007) Quality-oriented software management (in Japanese).

Morikita-Shuppan, Tokyo
36. Yamada S, Takahashi M (1993) Introduction to software management model (in Japanese).

Kyoritsu-Shuppan, Tokyo

http://www.securityspace.com/s_survey/data/index.html
http://www.securityspace.com/s_survey/data/index.html
http://httpd.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.postgresql.org/
http://www.postgresql.org/


284 S. Yamada

37. Yamada S, Kawahara A (2009) Statistical analysis of process monitoring data for software
process improvement. Int J Reliab, Qual Saf Eng 16(5):435–451

38. Yamada S, Yamashita T, Fukuta A (2010) Product quality prediction based on software process
data with development-period estimation. Int J Syst Assur Eng Manage 1(1):69–73



Application of EM Algorithm
to NHPP-Based Software Reliability
Assessment with Ungrouped Failure
Time Data

Hiroyuki Okamura and Tadashi Dohi

Abstract This chapter presents computation procedures for maximum likelihood
estimates (MLEs) of software reliability models (SRMs) based on nonhomogeneous
Poisson processes (NHPPs). The idea behind our methods is to regard usual failure
time data as incomplete data. This leads to quite simple computation procedures
for NHPP-based SRMs based on the EM (expectation–maximization) algorithm,
and these algorithms overcome a problem arising in practical use of SRMs. In this
chapter, we discuss the algorithms for 10 types of NHPP-based SRMs. Numerical
examples show that the proposed EM algorithms help us to reduce computational
efforts in the parameter estimation of NHPP-based SRMs.

1 Introduction

Since Jelinski and Moranda [12] and Goel and Okumoto [8] exhibited software
reliability models (SRMs) based on stochastic processes, a number of SRMs
have been proposed to quantitatively assess the reliability of software products
[19, 21, 22, 31, 36]. In particular, nonhomogeneous Poisson processes (NHPPs) have
much popularity for the software reliability modeling based on observed software
failure data due to their mathematical tractability.

In general, NHPPs are defined by mean value functions, which are the expected
numbers of failures with respect to testing time or efforts. Therefore, NHPP-based
SRMs are classified by types of mean value functions. Goel and Okumoto [8], Goel
[6], Musa and Okumoto [23], Ohba [25, 26], Yamada, Ohba and Osaki [38], Zhao and
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Xie [39] and Pham [32] proposed NHPP-based SRMs whose mean value functions
represent typical nonlinear curves. Their formulation of NHPP-based SRMs is based
on only the dynamics of mean value functions. That is, they derived differential
equations for the mean value functions from several modeling assumptions, and
developed NHPP-based SRMs by solving the differential equations. In this modeling
framework, the number of failures can be divided into two essential components; a
trend curve and a noise process. This framework is almost same as those of regression
models.

On the other hand, almost all NHPP-based SRMs can be described by the
stochastic frameworks based on Markov processes. In recent years, many researchers
focus on the stochastic classification and unification of NHPP modelings rather than
differential equation-based modeling. These provide rich properties from statistical
point of view. Shanthikumar [34] provided a bridge between a time-homogeneous
Markov processes and NHPPs based on a binomial distribution. Langberg and
Singpurwalla [18] also presented that a class of NHPP-based SRMs could be unified
from the Bayesian point of view. Chen and Singpurwalla [3] showed that almost
all SRMs belonged to subclasses of self-exiting point processes. Gokhale et al. [9]
proposed the similar unification approach to Langberg and Singpurwalla [18], the
framework was introduced from the concept of test coverage. Joe [14] and Miller
[20] also proposed a modeling framework based on exponential order statistics, and
the modeling framework can be classified as an extension of Langberg and Singpur-
walla’s work. In fact, all the NHPP-based SRMs can be described by either general
order statistics or record value statistics of the software failure time data under the
assumption that the failure times are mutually independent random variables [17].

This chapter focuses on model parameter estimation of NHPP-based SRMs. The
estimation of model parameters is needed to quantitatively assess the software re-
liability from observed failure data. The commonly used method is the maximum
likelihood (ML) estimation. The ML estimation is to find the maximum of likeli-
hood function of observed software failure data. Since ML estimates (MLEs) have
rational properties like asymptotic efficiency, MLEs are expected to be suitable even
in the parameter estimation for NHPP-based SRMs. Knafl and Morgan [16] pre-
sented a method to solve systematically the likelihood equations of SRMs with two
model parameters. Joe [14] also discussed confidence intervals of MLEs. Zhao and
Xie [39] derived the MLEs for an extended Goel and Okumoto model. Jeske and
Pham [13] discovered empirically that the MLEs in Goel and Okumoto model are
not statistically consistent.

Although ML estimation allows us to compute statistically proper estimates for
model parameters, we occasionally encounter several difficulties for the parameter
estimation. In general, MLEs are obtained by maximizing log-likelihood functions
(LLFs) or by solving nonlinear equation called likelihood equation which is derived
from the first derivative of LLF. However, even for Goel and Okumoto model, we can-
not obtain closed forms of MLEs. In other words, we employ numerical approaches
to find MLEs based on LLFs.

The common approaches to find MLEs are Newton’s method, quasi-Newton’s
method and Nelder-Mead method. In fact, they were applied to obtain MLEs of



Application of EM Algorithm to NHPP-Based Software Reliability 287

NHPP-based SRMs in many chapters. As is well-known, though Newton’s method
is a powerful tool to calculate MLEs, it has the local convergence property and may
fail to get the solution due to unsuitable initial guesses. The Nelder-Mead method
is one of the direct search methods, which is more stable for initial guesses than
Newton’s method, but a few design parameters, such as expansion rate, must be
manually adjusted before executing the algorithm.

These are fatal problems when we develop and implement the software reliability
assessment tool. In general, users of software reliability assessment tools are not
expert at numerical optimization. Then tools must not ask the users to select appro-
priate initial guesses and appropriate design parameters, since most of the tool users
or practitioners cannot judge if the resulting estimates are reliable or not. In fact,
much effort will be wasted to obtain the reliable solutions in parameter estimation.
Unfortunately, such a computational problem has not been studied sufficiently in the
software reliability engineering community.

Recently, we developed an alternative parameter estimation algorithm based on the
expectation–maximization (EM) principle [5, 35] and applied it to the software reli-
ability assessment based on the NHPP-based SRMs [27–30]. As another examples of
EM algorithms in SRMs, Kimura and Yamada [15], and Ando et al. [2] attempt to use
the EM algorithms to estimation of imperfect debugging models [7] and architecture-
based SRMs [4]. Their models are based on the continuous-time Markov chain, and
are closely related to Markov-modulated Poisson processes and/or Markovian ar-
rival processes. Thus, their EM algorithms are developed on the completely different
ideas from this chapter. Our key idea here is to regard the underlying software fail-
ure data as incomplete data. It was shown that the EM algorithm can be applied to
typical NHPP-based SRMs and can give much advantages on global convergence
and reduction of computation efforts. It is worth noting that the EM algorithm has
to be carefully designed for individual SRM. The main purpose of this chapter is to
figure out the EM algorithms for some typical NHPP-based SRMs as well as their
variations. Here, we deal with 10 NHPP-based SRMs under ungrouped failure data,
i.e., failure time data, and design the concrete EM algorithms. This chapter sum-
marizes the earlier results by the same authors [27–30] and extends them with aim
of practical use. We believe that the results in this chapter are directly applicable
to the actual software reliability assessment practice and useful to implement in the
software reliability assessment tools [33].

This chapter is organized as follows. In Sect. 2, we describe the basic concept of
software reliability modeling and introduce 10 typical NHPP-based SRMs. In Sect. 3,
we derive the fundamental formulas of our EM algorithm for NHPP-based SRMs.
Section 4 focuses on the specific EM algorithms for ten NHPP-based SRMs. Some
practical remarks in use of the EM algorithms are given in Sect. 5, where termination
condition in numerical calculation, initial guesses, model selection, and extension
to maximum a posterior estimation are discussed. A numerical experiment is given
in Sect. 6. We compare the proposed EM algorithm and Newton’s method from the
viewpoint of convergence properties. Finally, we conclude the chapter with remarks
in Sect. 7.
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2 NHPP-Based SRMs

2.1 Model Description

Let {X (t), t ≥ 0} denote the number of software failures experienced before time t .
According to Langberg and Singpurwalla [18], this chapter considers the following
model assumptions:

Assumption A: Software failures occur at mutually independent random times. The
probability distributions of all failure times are identical. The probability density
and cumulative distribution functions (p.d.f. and c.d.f.) are given by f (t) and F(t),
respectively.
Assumption B: The number of inherent software faults causing failures is given by
a Poisson random variable.

Under the assumption that the number of inherent faults is fixed as N , the probability
mass function (p.m.f.) of the cumulative number of failures experienced by time t is
given by

P(X (t) = n) =
(

N

n

)
F(t)n F(t)N−n, (1)

where F(·) = 1 − F(·). When N is a Poisson random variable with mean ω, the
cumulative number of software failures before time t has the following p.m.f.

P(X (t) = n) = (ωF(t))n

n! e−ωF(t). (2)

Equation (2) is equivalent to the probability mass function of NHPP with mean value
function ωF(t).

2.2 Specific Models

In the modeling framework of Eq. (2), NHPP-based SRMs are defined as respective
failure time distributions. This chapter deals with typical five types of failure time
distributions; gamma distribution, normal distribution, logistic distribution, and max-
imum/minimum extreme value distributions. In addition, two different failure time
distributions are derived from each of normal, logistic, and maximum/minimum ex-
treme value distributions. Concretely, these distributions are defined on the range
(−∞,∞), and thus we apply truncation and logarithm techniques to change their
domain to the range [0,∞). Table 1 presents NHPP-based SRMs and corresponding
failure time distributions treated in this chapter.
GAMMA (EXP): GAMMA is the NHPP model whose failure time distribution is
the following gamma distribution:
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Table 1 NHPP-based SRMs and their failure time distributions

Model abbr. Failure time dist. References

GAMMA (EXP) Gamma [1, 8, 38, 39]
TNORM Truncated normal —
LNORM Log normal [1]
TLOGIS Truncated logistic [25, 28]
LLOGIS Log logistic [10, 28]
TEVMAX Truncated maximum extreme value [27, 37]
LEVMAX Log maximum extreme value [27]
TEVMIN Truncated minimum extreme value [27]
LEVMIN Log minimum extreme value [6, 27]

F(t) =
∫ t

0

βαuα−1 exp(−βu)

Γ (α)
du, α > 0, β > 0, (3)

where α and β are shape and scale (rate) parameters for gamma distribution, and
Γ (·) is the standard gamma function. GAMMA was discussed as the delayed S-
shaped model [38] and its generalized models [39]. In particular, since the gamma
distribution includes the exponential distribution, GAMMA also includes Goel and
Okumoto model (EXP).
TNORM: The failure time distribution of TNORM is given by the truncated normal
distribution:

F(t) = Φ

(
t − μ

σ

)
/ {1 −Φ(−μ/σ)} , −∞ < μ < ∞, σ > 0, (4)

where Φ(·) is the c.d.f. of the standard normal distribution function

Φ(t) =
∫ t

−∞
φ(u) du, (5)

φ(t) = 1√
2π

exp

(
−1

2
t2
)
. (6)

LNORM: LNORM was built from the log-normal distribution:

F(t) = Φ

(
log t − μ

σ

)
, −∞ < μ < ∞,σ > 0. (7)

Achcar et al. [1] introduced LNORM as the log-normal order statistics model.
TLOGIS: TLOGIS is the model whose failure time distribution is given by the
truncated logistic distribution:
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F(t) = Ψ

(
t − μ

ψ

)
/ {1 − Ψ (−μ/ψ)} , −∞ < μ < ∞, ψ > 0, (8)

where Ψ (·) is the c.d.f. of standard logistic distribution

Ψ (t) = 1

1 + exp(−t)
. (9)

TLOGIS is same as the inflection S-shaped SRM by Ohba [25]. Although Ohba [25]
derived TLOGIS from differential equations, Okamura and Dohi [28] revealed that
TLOGIS can also be built from the logistic order statistics model.
LLOGIS: LLOGIS is the model whose failure time distribution is the log-logistic
distribution:

F(t) = Ψ

(
log t − μ

ψ

)
, −∞ < μ < ∞, ψ > 0. (10)

LLOGIS was proposed by Gokhale and Trivedi [10].
TEVMAX: TEVMAX is built from the truncated maximum extreme value type I
distribution (Gumbel distribution):

F(t) = Θ

(
t − μ

θ

)
/ {1 −Θ(−μ/θ)} − ∞ < μ < ∞, θ > 0, (11)

where Θ(·) is the c.d.f. of standard Gumbel distribution is defined as

Θ(t) = exp{− exp(−t)}. (12)

TEVMAX is same as the modified Gompertz model by Yamada [37] and its mean
value function draws Gompertz curve.
LEVMAX: LEVMAX is derived by exponentially transformed Gumbel random
variables, so-called samples from a log-Gumbel distribution:

F(t) = Θ

(
log t − μ

θ

)
, −∞ < μ < ∞, θ > 0. (13)

It is well-known that the above c.d.f. can be reduced to Fréchet distribution with
positive support.
TEVMIN: TEVMIN is the model whose failure time distribution is the truncated
minimum extreme value type I distribution. By using the survival function of standard
Gumbel distribution, we have

F(t) = Θ

(
t + μ

θ

)
/
{
1 −Θ(μ/θ)

} − ∞ < μ < ∞, θ > 0, (14)

where Θ(t) = 1 −Θ(−t).
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LEVMIN: LEVMIN is the model whose failure time distribution is the Weibull
distribution. It is known that logarithmic transformation of Weibull random variables
provides Gumbel random variables. For the notational convenience, this chapter uses
the survival function of standard Gumbel distribution to express the failure time
distribution of LEVMIN:

F(t) = Θ

(
log t + μ

θ

)
− ∞ < μ < ∞, θ > 0. (15)

Since the above failure time distribution is equivalent to Weibull distribution,
LEVMIN gives the generalized exponential model by Goel [6].

3 EM Algorithm for NHPP-Based SRMs

3.1 Maximum Likelihood Estimation

In the software reliability assessment, we should estimate model parameters of
NHPP-based SRMs from observed data. The most commonly used technique to pa-
rameter estimation is ML estimation. Let DT = (t1, . . . , tK ) be a set of failure times
experienced by time T . Without loss of generality, we assume 0 < t1 < · · · < tK .
For the observed data DT , the LLF for NHPP-based SRMs is given by

L(ω,λ; DT ) = log p(DT ;ω,λ), (16)

p(DT ;ω,λ) = ωK
K∏

k=1

f (tk;λ) exp (−ωF(T ;λ)) , (17)

where λ is a parameter vector for the failure time distribution, f (·;λ) is a density
function of F(·;λ) and p(·) is an appropriate probability mass or density func-
tion. The MLE is to find the parameters maximizing the LLF, so-called maximum
likelihood estimates (MLEs). In general, MLEs of NHPP-based SRMs cannot be ex-
pressed as closed forms, even for the simplest model, i.e., Goel and Okumoto model.
That is, we need to utilize any iterative methods for numerical optimization such
as Newton’s method, quasi-Newton’s method, Fisher’s scoring method, and Nelder-
Mead method. However, it is well-known that it is difficult to choose appropriate
initial parameters in these iterative methods. In addition, some methods require ap-
propriate design parameters such as reflection and expansion rates in Nelder-Mead
method. This property adversely affects making software reliability assessment tools.
In the reliability assessment tool with Newton’s or quasi-Newton’s method, the users
should change initial parameters and other design parameters depending on observed
failure data.
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3.2 EM Algorithm

The EM algorithm is an iterative method for computing ML estimates with incomplete
data [5, 35]. Let D and Z be observable and unobservable data vectors, respectively,
and we generally estimate a model parameter vector λ from only the observable data
vector D. In the context of ML estimation, the problem corresponds to finding a
parameter vector that maximizes a marginal LLF:

λ̂M L = argmax
λ

L(λ; D), (18)

L(λ; D) = log p(D;λ) = log
∫

p(D, Z;λ)d Z , (19)

where p(·) is any probability density or mass function.
Taking account of the posterior distribution of unobservable data vector with the

parameter vector λ′ and Jensen’s inequality, we have

L(λ; D) = log
∫

p(D, Z;λ)d Z

= log
∫

p(D, Z;λ)

p(Z |D;λ′)
p(Z |D;λ′)d Z

≥
∫

p(Z |D;λ′) log
p(D, Z;λ)

p(Z |D;λ′)
d Z

≡ Z(λ;λ′). (20)

The posterior distribution for unobservable data can be obtained from Bayes theorem:

p(Z |D;λ′) = p(D, Z;λ′)
∫

p(D, Z;λ′)d Z
. (21)

Equation (20) yields

L(λ; D)− Z(λ;λ′) = DK L(p(Z |D;λ′)||p(Z |D;λ)), (22)

where DK L(P||Q) is the Kullback-Leibler distance from the distribution P to the
distribution Q. Hence the difference L(λ; D)− L(λ′; D) is given by

L(λ; D)− L(λ′; D) = Z(λ;λ′)− Z(λ′;λ′)+ DK L(p(Z |D;λ′)||p(Z |D;λ)).
(23)

Since DK L(·||·) ≥ 0, Eq. (23) implies that the maximization of lower bound results
in the maximization of marginal LLF.

Let Q(λ|λ′) denote the conditional expected LLF with respect to the complete
data vector (D, Z) using the posterior distribution for unobservable data vector with
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provisional parameter vector λ′:

Q(λ|λ′) = E[log p(D, Z;λ)|D;λ′]
=
∫

p(Z |D;λ′) log p(D, Z;λ)d Z . (24)

Then Eq. (20) is rewritten in the form:

Z(λ;λ′) = Q(λ|λ′)−
∫

p(Z |D;λ′) log p(Z |D;λ′)d Z . (25)

Since the second term of the above equation is constant, the maximization of Q(λ|λ′)
with respect to λ is directly reduced to the maximization of Z(λ;λ′) with respect
to λ.

Based on the above discussion, the EM algorithm consists of E-step and M-step.
E-step computes the conditional expected LLF with respect to the complete data
vector (D, Z) using the posterior distribution for unobservable data vector with
provisional parameter vector λ′, i.e., Q(λ|λ′). In M-step, we find a new parameter
vector λ′′ that maximizes the expected LLF:

λ′′ := argmax
λ

Q(λ|λ′), (26)

and λ′′ becomes a provisional parameter vector at the next E- and M-steps. These
steps surely increase the marginal LLF. The E- and M-steps are repeatedly executed
until the parameters converge to ML estimates.

3.3 Fundamental EM-Step Formulas for NHPP-Based SRMs

Consider the EM algorithm for NHPP-based SRMs with the following p.m.f.

P(N (t) = x) = (ωF(t;λ))x

x ! exp (−ωF(t;λ)) . (27)

It is obvious that failure times after time T are not observable. Then we define the
complete data as 0 < T1 < T2 < . . . < TN , where N is the total number of inherent
faults and Tk is the k-th ordered failure time. In this case, ZT = (TK+1, . . . , TN , N )
is unobserved data. Since N is a Poisson distributed random variable and Tk obeys
F(·;λ), the complete LLF is given by

log p(DT , ZT ;ω,λ) = N logω − ω +
N∑

k=1

log f (Tk;λ). (28)
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From the standard argument of MLEs, the MLEs of ω and λ can be derived as

ω̂ = N (29)

and

λ̂ = argmax
λ

N∑

k=1

log f (Tk;λ), (30)

respectively. This implies that the estimation problem of NHPP-based SRMs under
the complete data can be decomposed into separate data fitting problems for Poisson
distribution and failure time distribution with independent and identically distributed
(IID) samples.

From Eq. (26), we have the following M-step formulas

ω: = E[N |DT ;ω′,λ′] (31)

and

λ: = argmax
λ

E

[ N∑

i=1

log f (Ti ;λ)

∣∣∣
∣DT ;ω′,λ′

]
, (32)

where ω′ and λ′ are provisional parameters. On the other hand, by applying Bayes
theorem, we have

p(N |DT ;ω,λ) ∝ ωK e−ω
K∏

k=1

f (tk;λ), N = K (33)

and

p(N |DT ;ω,λ) ∝ ωN e−ω
K∏

k=1

f (tk;λ)

×
∫ ∞

TN−1

· · ·
∫ ∞

T

N∏

k=K

f (Tk;λ)dTK+1 · · · dTN , N ≥ K + 1. (34)

Then the posterior distribution of N becomes the Poisson p.m.f. with meanωF(T ;λ):

p(N |DT ;ω,λ) =
(
ωF(T ;λ)

)N−K

(N − K )! exp
(−ωF(T ;λ)

)
, N ≥ K . (35)

Therefore, the EM-step formula for ω can be obtained as
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ω: = K + ω′F(T ;λ′). (36)

4 Concrete EM-Step Formulas for NHPP-Based SRMs

4.1 EM-Step Formulas for EXP

The failure time distribution of EXP is given by the following exponential distribution:

F(t;β) = 1 − e−βt . (37)

Also, since the MLE of exponential distribution under IID ordered samples
T1, . . . , TN is given by

β̂ = N
∑N

k=1 Tk
. (38)

Thus, from Eq. (32), we have the following M-step formula

β := E
[
N |DT ;ω′,β′]

E
[∑N

k=1 Tk |DT ;ω′,β′
] . (39)

In general, for a measurable function h(·), the expected value with the posterior
distribution can be computed as follows (see Appendix).

E

[ N∑

k=1

h(Tk)

∣∣∣∣DT ;ω,λ
]

=
K∑

k=1

h(tk)+ ω

∫ ∞

T
h(u)d F(u;λ). (40)

Applying the above formula, the EM-step formula for parameter β is given by

β := K + ω′e−β′T
∑K

k=1 tk + ω′(T + 1/β′)e−β′T
. (41)

4.2 EM-Step Formulas for GAMMA

The failure time distribution of GAMMA is the following gamma distribution:

F(t;α,β) =
∫ t

0

βαuα−1 exp(−βu)

Γ (α)
du. (42)
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According to the ordinary ML estimation for gamma distribution, the MLEs for
complete data are given by parameters satisfying the following likelihood equations:

log α̂− ψ(α̂) = log

(
1

N

N∑

i=1

Ti

)

− 1

N

N∑

i=1

log Xi , (43)

β̂ = α̂N
∑N

k=1 Tk
, (44)

where ψ(·) is the digamma function, i.e., ψ(α) = d log γ(α)/dα. Thus, the EM-step
formulas are given by

α := inf

{
α > 0; logα− ψ(α) = log

(
T (1)

N (1)

)

− T (2)

N (1)

}
, (45)

β := αN (1)

T (2)
, (46)

where

N (1) = K + ω′F(T ;α′,β′), (47)

T (1) =
K∑

k=1

tk + ω′
∫ ∞

T
ud F(u;α′,β′)

=
K∑

k=1

tk + ω′α′

β′ F(T ;α′ + 1,β′), (48)

T (2) =
K∑

k=1

log tk + ω′
∫ ∞

T
log u d F(u;α′,β′). (49)

Note that numerical root-finding and integration algorithms are required for Eqs. (45)
and (49), respectively. As a special case, GAMMA with fixed shape parameter in-
cludes several important NHPP-based SRMs such as the delayed S-shaped SRM.
The EM-step for GAMMA with fixed shape parameter becomes simpler than that
for general GAMMA. Given the shape parameter α, the EM-step formulas can be
more simplified to

β := αN (1)

T (1)
, (50)

N (1) = K + ω′F(T ;α,β′), (51)

T (2) =
K∑

k=1

tk + ω′ α
β′ F(T ;α+ 1,β′). (52)
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4.3 EM-Step Formulas for TNORM

For the EM-step formulas, we suppose that samples generated before time 0 are also
unobserved. Let T−Ñ < · · · < T−1 < 0 be unobserved failure times before time 0,

where Ñ is the number of failures already experienced by t = 0. Then unobserved
data can be rewritten by ZT = (T−Ñ , . . . , T−1, TK+1, . . . , TN , Ñ , N ). Under the
assumption, we obtain the M-step formulas from EM principle.

ω̃ := E[N + Ñ |DT ; ω̃′,λ′], (53)

λ := argmax
λ

E

[ N∑

k=−Ñ

log f (Tk;λ)

∣∣
∣∣DT ; ω̃′,λ′

]
, (54)

where ω̃ is a Poisson parameter for the total number of failures on the range (−∞,∞).
Then we should change ω̃ into the mean number of failures experienced on the
positive support [0,∞) after the EM algorithm is finished, i.e., ω := ω̃F(0).

Similar to the posterior distribution of N , we have

E[N + Ñ |DT ; ω̃′,λ′] = K + ω̃′F(T ;λ′)+ ω̃′F(0;λ′). (55)

Also, for any measurable function h(·), the following equation holds (see Appendix):

E

[ N∑

k=−Ñ

h(Tk)

∣∣
∣∣DT ; ω̃′,λ′

]

=
K∑

k=1

h(tk)+ ω̃′
∫ 0

−∞
h(u)d F(u;λ′)+ ω̃′

∫ ∞

T
h(u)d F(u;λ′). (56)

It is worth noting that the above equation includes a left-truncated term as well as a
right-truncated term.

According to the standard argument of parameter estimation of normal distribu-
tion, MLEs of TNORM under the complete data are given by

ˆ̃ω = N + Ñ , (57)

μ̂ =
∑N

k=−Ñ
Tk

Ñ + N
, (58)

σ̂ =

√√√√
∑N

k=−Ñ
T 2

k

Ñ + N
− μ̂2. (59)

Define the following functions based on the standard normal distribution:
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Φ
(1)
(z) = 1

σ

∫ ∞

σz+μ
uφ(u)du = σφ(z)+ μΦ(z), (60)

Φ
(2)
(z) = 1

σ

∫ ∞

σz+μ
u2φ(u)du = (σ2z + 2μσ)φ(z)+ (σ2 + μ2)Φ(z). (61)

By using Φ
(1)
(z) and Φ

(2)
(z), the EM-step formulas for TNORM can be obtained

as follows.

ω̃ := N (1), (62)

μ := T (1)

N (1)
, (63)

σ :=
√

T (2)

N (1)
−
(

T (1)

N (1)

)2

, (64)

where

N (1) = K + ω̃′
(

1 −Φ

(
−μ′

σ′

)
+Φ

(
T − μ′

σ′

))
, (65)

T (1) =
K∑

k=1

tk + ω̃′
(
μ′ −Φ

(1)
(

−μ′

σ′

)
+Φ

(1)
(

T − μ′

σ′

))
, (66)

T (2) =
K∑

k=1

t2
k + ω̃′

(
σ′2 + μ′2 −Φ

(2)
(

−μ′

σ′

)
+Φ

(2)
(

T − μ′

σ′

))
. (67)

After the EM algorithm converges to MLEs, we take ω := ω̃Φ(−μ/σ).

4.4 EM-Step Formulas for LNORM

The idea behind the EM-step formulas for LNORM is to take logarithm of samples,
i.e., we consider samples log T1 < · · · < log TK instead of original samples. Since
log T1 < · · · < log TK follow a normal distribution, we obtain the EM-step formulas
for LNORM in a similar manner to TNORM:

ω := N (1), (68)

μ := T (1)

N (1)
, (69)

σ :=
√

T (2)

N (1)
−
(

T (1)

N (1)

)2

, (70)
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where

N (1) = K + ω′Φ
(

log T − μ′

σ′

)
, (71)

T (1) =
K∑

k=1

log tk + ω′Φ(1)
(

log T − μ′

σ′

)
, (72)

T (2) =
K∑

k=1

(log tk)
2 + ω′Φ(2)

(
log T − μ′

σ′

)
. (73)

4.5 EM-Step Formulas for TLOGIS

Similar to TNORM, we suppose that failure times are observed only on the range
[0, T ]. Each of failure time in TLOGIS follows a logistic distribution:

F(t;μ,ψ) = Ψ

(
t − μ

ψ

)
, (74)

Ψ (t) = 1

1 + exp(−t)
. (75)

Let T−Ñ < · · · < T−1 < 0 and TK+1 < · · · < TN denote unobservable failure times
experienced before time 0 and after time T , respectively, under the observed data
T1 < · · · < TK . For the complete samples T−Ñ < · · · < T−1 < T1 < · · · < TN ,
MLEs of logistic distribution are given by the parameters satisfying the following
likelihood equation:

N∑

k=−Ñ

Ψ

(
Tk − μ̂

ψ̂

)

= Ñ + N

2
, (76)

N∑

k=−Ñ

Tk − μ̂

ψ̂

(

1 − 2Ψ

(
Tk − μ̂

ψ̂

))

= Ñ + N . (77)

The above equations are heuristically solved by the iterative manner:

μ := μ− ψ log

⎧
⎨

⎩
1

Ñ + N

N∑

k=−Ñ

2Ψ

(
tk − μ

ψ

)
⎫
⎬

⎭
, (78)

ψ := ψ

Ñ + N

N∑

k=−Ñ

Tk − μ

ψ

(
1 − 2Ψ

(
Tk − μ

ψ

))
. (79)
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Define

Ψ
(1)
(z) = 1

ψ

∫ ∞

ψz+μ
2Ψ (u)dΨ (u) = 1

(1 + exp(z))2
, (80)

Ψ
(2)
(z) = 1

ψ

∫ ∞

ψz+μ
u
(
1 − 2Ψ (u)

)
dΨ (u) = 1 + (1 + z) exp(z)

(1 + exp(z))2
. (81)

By using Ψ
(1)
(z) and Ψ

(2)
(z), the EM-step formulas for TLOGIS can be obtained

as follows.

ω̃ := N (1), (82)

μ := μ′ − ψ′ log

(
T (1)

N (1)

)

, (83)

ψ := ψ′ T (2)

N (1)
, (84)

where

N (1) = K + ω̃′
(

1 − Ψ

(
−μ′

ψ′

)
+ Ψ

(
T − μ′

ψ′

))
, (85)

T (1) =
K∑

k=1

2Ψ

(
tk − μ′

ψ′

)
+ ω̃′

(
1 − Ψ

(1)
(

−μ′

ψ′

)
+ Ψ

(1)
(

T − μ′

ψ′

))
, (86)

T (2) =
K∑

k=1

tk − μ′

ψ′

(
1 − 2Ψ

(
tk − μ′

ψ′

))

+ ω̃′
(

1 − Ψ
(2)
(

−μ′

ψ′

)
+ Ψ

(2)
(

T − μ′

ψ′

))
. (87)

After finishing the EM algorithm, ω := ω̃Ψ (−μ′/ψ).

4.6 EM-Step Formulas for LLOGIS

Consider logarithm of complete samples: log T1 < · · · < log TN , which obey a
logistic distribution. When applying the fundamental EM formulas, we have the
concrete EM-step formulas for LLOGIS:

ω := N (1), (88)
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μ := μ′ − ψ′ log

(
T (1)

N (1)

)

, (89)

ψ := ψ′ T (2)

N (1)
, (90)

where

N (1) = K + ω′Ψ
(

log T − μ′

ψ′

)
, (91)

T (1) =
K∑

k=1

2Ψ

(
log tk − μ′

ψ′

)
+ ω′Ψ (1)

(
log T − μ′

ψ′

)
, (92)

T (2) =
K∑

k=1

log tk − μ′

ψ′

(
1 − 2Ψ

(
log tk − μ′

ψ′

))

+ ω′Ψ (2)
(

log T − μ′

ψ′

)
. (93)

In the above formulas, we also use the heuristic parameter update formulas, Eqs. (78)
and (79).

4.7 EM-Step Formulas for TEVMAX

Suppose that failure times are truncated at both sides t = 0 and t = T . From similar
arguments to TNORM and TLOGIS, we get the likelihood equation for maximum
extreme value distribution parameters under the complete samples T−Ñ < · · · <
T−1 < T1 < · · · < TN :

θ̂ = 1

Ñ + N

N∑

k=−Ñ

Tk −
∑N

k=−Ñ
Tk exp(−Tk/θ̂)

∑N
k=−Ñ

exp(−Tk/θ̂)
, (94)

μ̂ = −θ̂ log

⎛

⎝ 1

Ñ + N

N∑

k=−Ñ

exp(−Tk/θ̂)

⎞

⎠ . (95)

Since, the above likelihood equation cannot be explicitly solved, we employ the
following heuristic method to compute the MLEs:

μ := μ− θ log

⎛

⎝ 1

Ñ + N

N∑

k=−Ñ

exp

(
−Tk − μ

θ

)⎞

⎠ , (96)
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θ := θ

Ñ + N

N∑

k=−Ñ

(
Tk − μ

θ

)(
1 − exp

(
−Tk − μ

θ

))
. (97)

Define the following functions calculated by integral operation on the standard
extreme value distribution at maximum:

Θ
(1)
(z) = 1

θ

∫ ∞

θz+μ
exp(−u)dΘ(u)

= 1 − (1 + exp(−z)) exp(− exp(−z)), (98)

Θ
(2)
(z) = 1

θ

∫ ∞

θz+μ
u(1 − exp(−u))dΘ(u)

= 1 − exp(− exp(−z))(1 − z exp(−z)). (99)

By usingΘ
(1)
(z) andΘ

(2)
(z), the EM-step formulas for TEVMAX can be obtained

as follows.

ω̃ := N (1), (100)

μ := μ′ − θ′ log

(
T (1)

N (1)

)

, (101)

θ := θ′ T (2)

N (1)
, (102)

where

N (1) = K + ω̃′
(

1 −Θ

(
−μ′

θ′

)
+Θ

(
T − μ′

θ′

))
, (103)

T (1) =
K∑

k=1

exp

(
− tk − μ′

θ′

)
+ ω̃′

(
1 −Θ

(1)
(

−μ′

θ′

)
+Θ

(1)
(

T − μ′

θ′

))
,

(104)

T (2) =
K∑

k=1

tk − μ′

θ′

(
1 − exp

(
− tk − μ′

θ′

))

+ ω̃′
(

1 −Θ
(2)
(

−μ′

θ′

)
+Θ

(2)
(

T − μ′

θ′

))
. (105)

After the EM algorithm converges to MLEs, we take ω := ω̃Θ(−μ/θ).
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4.8 EM-Step Formulas for LEVMAX

By taking logarithm of complete samples, we obtain the EM-step formulas for
LEVMAX:

ω := N (1), (106)

μ := μ′ − θ′ log

(
T (1)

N (1)

)

, (107)

θ := θ′ T (2)

N (1)
, (108)

where

N (1) = K + ω′Θ
(

log T − μ′

θ′

)
, (109)

T (1) =
K∑

k=1

exp

(
− log tk − μ′

θ′

)
+ ω′Θ(1)

(
log T − μ′

θ′

)
, (110)

T (2) =
K∑

k=1

log tk − μ′

θ′

(
1 − exp

(
− log tk − μ′

θ′

))

+ ω′Θ(2)
(

log T − μ′

θ′

)
. (111)

4.9 EM-Step Formulas for TEVMIN

In general, if a random variable X obeys a minimum extreme value distribution, the
random variable −X becomes a maximum extreme value random variable. That is,
the parameter estimation for TEVMIN can be developed by considering the sign
reversed failure time data.

ω̃ := N (1), (112)

μ := μ′ − θ′ log

(
T (1)

N (1)

)

, (113)

θ := θ′ T (2)

N (1)
, (114)
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where

N (1) = K + ω̃′
(

1 −Θ

(
−T + μ′

θ′

)
+Θ

(
−μ′

θ′

))
, (115)

T (1) =
K∑

k=1

exp

(
tk + μ′

θ′

)
+ ω̃′

(
1 −Θ

(1)
(

−T + μ′

θ′

)
+Θ

(1)
(

−μ′

θ′

))
,

(116)

T (2) = −
K∑

k=1

tk + μ′

θ′

(
1 − exp

(
tk + μ′

θ′

))

+ ω̃′
(

1 −Θ
(2)
(

−T + μ′

θ′

)
+Θ

(2)
(

−μ′

θ′

))
. (117)

After the EM algorithm converges to MLEs, we take ω := ω̃Θ(−μ/θ).

4.10 EM-Step Formulas for LEVMIN

Consider sign inversion of logarithm of original samples. Then we have the EM-step
formulas for LEVMIN.

ω̃ := N (1), (118)

μ := μ′ − θ′ log

(
T (1)

N (1)

)

, (119)

θ := θ′ T (2)

N (1)
, (120)

where

N (1) = K + ω′Θ
(

− log T + μ′

θ′

)
, (121)

T (1) =
K∑

k=1

exp

(
log tk + μ′

θ′

)
+ ω′

(
1 −Θ

(1)
(

− log T + μ′

θ′

))
, (122)

T (2) = −
K∑

k=1

log tk + μ′

θ′

(
1 − exp

(
log tk + μ′

θ′

))

+ ω′
(

1 −Θ
(2)
(

− log T + μ′

θ′

))
. (123)
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5 Remarks on EM Algorithm for NHPP-Based SRMs

5.1 Termination Condition

In general, it is proved that the estimates by EM algorithms gradually approach to
the MLEs as the number of steps increases. However, the convergence speed of EM
algorithms is relatively slower than those of Newton’s and quasi-Newton’s methods.
Hence, it is important to decide the timing when the algorithm stops, i.e., termination
condition.

Intuitively, reasonable conditions for termination condition are based on the
differences of likelihood and estimates. Let λ′ and λ denote parameter vectors before
and after one EM-step, respectively. Then, the conditions based on the differences
of likelihood and estimates are given by

∣∣∣∣
LLF(λ)− LLF(λ′)

LLF(λ′)

∣∣∣∣ < εl and
||λ − λ′||

||λ′|| < εp, (124)

respectively, where || · || is a norm, εl and εp are error tolerances. The condition
based on estimates is empirically more effective than the difference of likelihood.

5.2 Initial Guesses

Unlike the classical estimation procedures such as Newton’s and quasi-Newton’s
methods, the proposed EM algorithms are not sensitive to the starting parameters,
i.e., initial guesses of the algorithms, because of the global convergence property of
EM algorithm. However, even if we apply the EM algorithm, initial guesses affect
the performance of estimation. The simple adjustment is to use the data information.
Table 2 presents typical initial guesses for NHPP-based SRMs. Although several scale
parameters should depend on the maximum failure time tK , the other parameters are
given by suitable constants independent from data statistics. This is the advantage of
using the EM algorithm.

5.3 Model Selection

The model selection is one of the most practical problems in utilizing NHPP-
based SRMs. In general, information criteria are available to select the NHPP-based
SRMs after computing the MLEs. The information criteria consist of the maximum
log-likelihood and the penalty term concerning the number of free parameters, and
different penalty terms are different information criteria. The well-known informa-
tion criteria are AIC (Akaike’s Information Criterion) and BIC (Bayesian Information
Criterion), which are defined as follows.
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Table 2 Typical initial
guesses for model parameters

Model Initial guesses

EXP ω = K , β = 1/tK

GAMMA ω = K , α = 1, β = 1/tK

TNORM ω = K , μ = 0, σ = tK

LNORM ω = K , μ = 0, σ = log(tK )

TLOGIS ω = K , μ = 0, ψ = tK

LLOGIS ω = K , μ = 0, ψ = log(tK )

TEVMAX ω = K , μ = 0, θ = tK

LEVMAX ω = K , μ = 0, θ = log(tK )

TEVMIN ω = K , μ = 0, θ = tK

LEVMIN ω = K , μ = 0, θ = log(tK )

AIC(n) = −2(maximum log-likelihood) + 2p, (125)

and
BIC(n) = −2(maximum log-likelihood) + p log n, (126)

where p and n denote the number of free parameters and the number of data records
used in estimating the parameters. In most application, the model which has the least
information criterion is selected as the best model fitted to the observation. However,
since ML estimation of NHPP-based SRMs is not always regular condition [24], AIC
and BIC do not work well in the case where there are few samples of failure time.
The model selection still has several theoretical problems and is the future work in
the software reliability assessment.

5.4 Local Maximum Problem

In general, the local maximum problem arises in the EM algorithm as well as
Newton’s method. It is not guaranteed that the proposed EM algorithm converges to
the global maxima. However, the LLF of NHPP-based SRMs presented in the chapter
becomes an unimodal function if we have the data consisting of the number of fail-
ures experienced is sufficient to provide ML estimates. For example, the uniqueness
of MLEs of EXP is proved if the parameters satisfy the following condition [11]:

tK >
2

K

K∑

k=1

tk . (127)

Similar to EXP, it is expected that the MLEs are also unique for other NHPP-based
SRMs, if there exist. Thus in the practical situation, we do not need to pay attention
to the local maximum problem in the context of EM algorithms.
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5.5 Maximum a Posterior

We extend the EM procedure for ML estimation to the procedure for maximum a
posterior (MAP) estimation. As shown in 5.4, there are the cases where MLEs do not
exist in finite domain. Even in such a case, MAP estimation gives finite estimates of
model parameters by applying appropriate prior distributions. In the case of parameter
estimation of NHPP-based SRMs, the parameter ω is essentially estimated from only
one sample. Therefore, it is effective to apply the prior distribution for the parameter
ω in order to derive finite estimates even in the case where there are few failure times.

Let p(ω) be a gamma prior density for the parameter ω with hyper parameters a
and b, i.e.,

p(ω) = ba+1ωae−bω

Γ (a)
, ω ≥ 0. (128)

Then the problem is to find the parameter maximizing;

log p(DT ;ω,λ)p(ω). (129)

Based on EM principle, M-step formulas of Eqs. (31) and (32) can be rewritten in
the form:

ω := E[N |DT ;ω′,λ′] + a

b + 1
(130)

λ := argmax
λ

E

[ N∑

i=1

log f (Ti ;λ)

∣∣∣∣DT ;ω′,λ′
]
. (131)

On the other hand, since the prior density p(ω) does not include unobserved values,

the expected values E[N |DT ;ω′,λ′] and E
[∑N

i=1 log f (Ti ;λ)|DT ;ω′,λ′] can be

computed by the same formulas presented in Sects. 3 and 4. That is, by modifying
only the M-step formulas, we have the EM algorithms to obtain MAP estimates for
NHPP-based SRMs.

6 Numerical Example

We investigate the numerical characteristics of the EM algorithms in practical
situation, and first present the difference with the classical Newton’s method in the
viewpoint of updating estimates.

Figure 1 shows the locus of estimates for EXP by the EM algorithm and Newton’s
method from the same initial points. In the figure, the contour plot indicates the LLF
of EXP with the failure data collected from the existing software project [19]. The
failure data consist of 136 software failure times. The color in the figure becomes
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Fig. 1 Behavior of esti-
mates updated in EXP;
initial parameters are
(ω,β) = (100, 6.0e−5)
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Fig. 2 Behavior of esti-
mates updated in EXP;
initial parameters are
(ω,β) = (100, 8.0e−5)
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bright as the log-likelihood increases. In Fig. 1, the initial parameters are set as
(ω,β) = (100, 6.0e−5). In this case, both estimates converge to the MLE, (ω̂, β̂) =
(141.93, 3.48e−5). From the figure, we find that Newton’s method needs less updates
of parameters until the estimates converge to the MLE than the EM algorithm does.
That is, the convergence speed of Newton’s method is faster than the EM algorithm.
Figure 2 shows the similar loci of both methods. In this case, the initial parameters are
set as (ω,β) = (100, 8.0e−5). Although the EM algorithm converges to the MLE,
Newton’s method fails and oversteps the implicit parameter constraints, ω > 0 and
β > 0 at the first step. In such case, the numerical exception occurs at the first step.

These figures present the difference between the local convergence property of
Newton’s method and the global convergence property of the EM algorithm. In
this example, Newton’s method fails to estimating the parameters by changing
β = 6.0e−5 to 8.0e−5. Therefore, in practical application, it is quite difficult to
determine the initial parameters of Newton’s method. On the other hand, the EM
algorithm converges to the MLEs without numerical exception in both cases.
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7 Conclusions

This chapter has considered the problem on ML estimation for NHPP-based SRMs
and has introduced an iterative scheme to estimate MLEs. In particular, we have
developed the estimation procedures based on EM algorithm, and have presented
concrete EM-step formulas for 10 typical NHPP-based SRMs. In the numerical
experiment, we have compared the EM algorithm and Newton’s method from the
viewpoint of convergence properties. As a result, the proposed EM algorithm is
effective to reduce the computation effort including selection of initial guesses.

In future, we develop an integrated EM procedure for NHPP-based SRMs even
for grouped data. In addition, we will develop a software reliability assessment tool
on spreadsheet application, which involves the developed EM algorithm.
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Appendix

Derivation of Eq. (40)

For notational simplification, E[·|DT ;ω,λ] is written by E[·|DT ]. From the left-hand
side of Eq. (40), we have

E

[ N∑

k=1

h(Tk)

∣∣
∣∣DT

]
= E

[ K∑

k=1

h(Tk)

∣∣
∣∣DT

]
+ E

[ N∑

k=K+1

h(Tk)

∣∣
∣∣DT

]

=
K∑

k=1

E[h(Tk)|DT ] + E

[ N∑

k=K+1

h(Tk)

∣∣∣∣DT

]

=
K∑

k=1

h(tk)+ E

[ N∑

k=K+1

h(Tk)

∣∣
∣∣DT

]
. (132)

Since T1, . . . , TN are IID samples, the first term of right-hand side of the above
equation can be easily obtained. Then we focus on the derivation of the second term
of right-hand side of Eq. (40). From the posterior distribution of N , we obtain
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E

[ N∑

k=K+1

h(Tk)

∣∣∣∣DT

]

=
( ∞∑

r=0

e−ωωK+r
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∑

j=1

h(u j )

r∏

j=1

f (u j )dur · · · du1

)

/( ∞∑

r=0

e−ωωK+r
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∏

j=1

f (u j )dur · · · du1

)
, (133)

where r corresponds to the number of failures experienced after time T . The integrals
in Eq. (133) can be changed to

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∑

j=1

h(u j )

r∏

j=1

f (u j )dur · · · du1

= r

r !
∫ ∞

T
h(u) f (u)du

(∫ ∞

T
f (u)du

)r−1

, (134)

and

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∏

j=1

f (u j )dur · · · du1 = 1

r !
(∫ ∞

T
f (u)du

)r

. (135)

By canceling the constants of numerator and denominator, Eq. (133) is reduced to

E

[ N∑

k=K+1

h(Tk)

∣∣∣∣DT

]

=
( ∞∑

r=1

ωr 1

(r − 1)!
∫ ∞

T
h(u) f (u)duF(T )r−1

)/( ∞∑

r=0

ωr 1

r ! F(T )r
)

= ω

∫ ∞

T
h(u) f (u)du. (136)

Derivation of Eq. (56)

From the left-hand side of Eq. (56), we have
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E

[ N∑

k=−Ñ

h(Tk)

∣∣∣∣DT

]
= E

[ K∑

k=1

h(Tk)

∣∣∣∣DT

]

+ E

[ Ñ∑

k=1

h(T−k)

∣
∣∣∣DT

]
+ E

[ N∑

k=K+1

h(Tk)

∣
∣∣∣DT

]

=
K∑

k=1

h(tk)+ E

[ Ñ∑

k=1

h(T−k)

∣∣
∣∣DT

]
+ E

[ N∑

k=K+1

h(Tk)

∣∣
∣∣DT

]
. (137)

Similar to the previous section, we consider the second and third terms of right-hand
side of Eq. (137). Then we have

E

[ Ñ∑

k=1

h(T−k)

∣∣∣∣DT

]

=
( ∞∑

l=0

∞∑

r=0

e−ωωK+l+r
∫ 0

−∞

∫ u1

−∞
· · ·
∫ ul−1

−∞

l∑

j=1

h(ul)

l∏

j=1

f (u j )

×
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∏

j=1

f (u j )dur · · · du1

)

/( ∞∑

l=0

∞∑

r=0

e−ωωK+l+r
∫ 0

−∞

∫ u1

−∞
· · ·
∫ ul−1

−∞

l∏

j=1

f (u j )

×
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∏

j=1

f (u j )dur · · · du1

)

=
( ∞∑

l=1

ωl 1

(l − 1)!
∫ 0

−∞
h(u) f (u)duF(0)l−1

)/( ∞∑

l=0

ωl 1

l! F(0)l
)

= ω

∫ 0

−∞
h(u) f (u)du (138)

and

E

[ N∑

k=K+1

h(Tk)

∣∣∣∣DT

]

=
( ∞∑

l=0

∞∑

r=0

e−ωωK+l+r
∫ 0

−∞

∫ u1

−∞
· · ·
∫ ul−1

−∞

l∏

j=1

f (u j )

×
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

l∑

j=1

h(ur )

r∏

j=1

f (u j )dur · · · du1

)
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/( ∞∑

l=0

∞∑

r=0

e−ωωK+l+r
∫ 0

−∞

∫ u1

−∞
· · ·
∫ ul−1

−∞

l∏

j=1

f (u j )

×
K∏

k=1

f (tk)
∫ ∞

T

∫ ∞

u1

· · ·
∫ ∞

ur−1

r∏

j=1

f (u j )dur · · · du1

)

=
( ∞∑

r=1

ωr 1

(r − 1)!
∫ ∞

T
h(u) f (u)duF(T )r−1

)/( ∞∑

r=0

ωr 1

r ! F(T )r
)

= ω

∫ ∞

T
h(u) f (u)du. (139)
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Closed-Form Approach for Epistemic
Uncertainty Propagation in Analytic Models

Kesari Mishra and Kishor S. Trivedi

1 Introduction

System dependability or performance is often studied using stochastic models. These
models capture the natural uncertainty in the system being studied, known as aleatory
uncertainty. Randomness in events of interest like times to failure/recovery of compo-
nents, ability to detect failures, ability to perform recovery action, inter-arrival time,
service time, etc., are taken into account in the models, by means of their distribu-
tions. The models are usually solved at fixed parameter values. However, the model
input parameter values have uncertainty associated with them as they are derived
either from a finite number of observations (from lifetime determining experiments
or field data) or are based upon expert guesses. This uncertainty in model input para-
meter values, known as epistemic uncertainty, is not normally taken into account by
the stochastic aleatory model.

The uncertainty in model output, due to epistemic uncertainty in model input
parameters should be distinguished from the modeling error in the aleatory model.
Modeling error in the aleatory model causes the aleatory model to not be a faithful
representation of the behavior of the real system. It can be due to incorrect under-
standing of system behavior, omissions in components/ states, incorrect assumptions
of distributions of various events in the aleatory model, incorrect use of constructs
of modeling paradigm, or simply incorrect implementation of the model; while epis-
temic uncertainty is the uncertainty in the parameters of the aleatory model due to
incomplete information. Assuming the aleatory model of the system behavior and the
aleatory distributional assumptions to be correct, this chapter discusses propagation
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of epistemic uncertainty through stochastic aleatory model, to obtain the uncertainty
in the model output metric.

The epistemic uncertainty in the model parameters may be expressed in the form
of distribution of parameter values themselves (epistemic distribution) or in the form
of bounds or confidence interval of parameter values, obtained from manufacturer
datasheets. The model output value computed using fixed values of the model parame-
ters can be considered to be conditional upon the parameter values used. To propagate
the epistemic uncertainty of model input parameters to the model output, it needs to
be unconditioned. Applying the theorem of total probability, unconditioning of the
model output can be performed by means of multi-dimensional integration. Various
analytic and numerical techniques can be employed to solve this integration.

Depending on the nature of the stochastic models (analytic or simulation) and their
complexity, different techniques may be applied to perform the unconditioning inte-
gration. Simple analytic aleatory models may be solved analytically to get the model
output as closed-form expressions of input parameters. For more complex analytic
models, only analytic-numerical solutions using tools like SHARPE [16] or SPNP
[4] may be possible. Alternatively, the aleatory model may be a simulation model.
Different methods of propagating the epistemic uncertainty need to be employed for
each of these cases. For analytic models which have simple closed-form model out-
puts, direct analytic integration may be possible. For more complex analytic models
without closed-form solutions, numerical integration maybe needed. Sampling-based
uncertainty propagation [3, 15] can be applied to complex analytic models (can also
be used when the model can be solved either analytically or analytic-numerically), as
well as simulation models. Figure 1 summarizes the applicability of various methods
of epistemic uncertainty propagation for different types of aleatory models.

In this chapter, epistemic uncertainty propagation by direct analytical integration
of closed-form expressions of system reliability is discussed. This method is applied
to compute uncertainty in reliability of some nonrepairable systems. The results are
then analyzed to gain insight into the uncertainty in system reliability, due to the
epistemic uncertainty in model input parameters. The limiting behavior of metrics
of uncertainty in model output is also studied. As the expression for model output

Fig. 1 Epistemic uncertainty propagation for different aleatory model types
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becomes more complex, analytic closed-form integration of the model output may
not be possible. For such an example, the expectation and variance of model output,
due to epistemic uncertainties in the model input parameters, are obtained using
numerical integration to perform the unconditioning integrations.

2 Uncertainty Propagation

Due to the epistemic uncertainties, the input parameters of a reliability model can
be considered a random vector. Therefore, the reliability obtained by solving the
model can be considered a random variable that is a function of these input ran-
dom variables. If random variables {Λi , i = 1, 2, . . . , l} are the set of l input para-
meters of the model, the reliability R(t), at time t , can be viewed as a random
variable (function) g of the l input parameters as R(t) = g(Λ1,Λ2, . . . , Λl). Due
to the uncertainty associated with the model parameters, computing the reliability
at specific parameter values can be seen as computing the conditional reliability
R(t |Λ1 = λ1,Λ2 = λ2, . . . , Λl = λl) (denoted by R(t |.) in Eq. 1). Applying the
theorem of total probability [14], this can be unconditioned to compute the distribu-
tion of reliability via the joint epistemic density fΛ1,Λ2,...,Λl (λ1,λ2, . . . ,λl) of the
input parameters (denoted by f (.) in Eq. 1).

FR(t)(p) =
∫
. . .

∫
I (R(t |.) ≤ p) f (.)dλ1 . . . dλl (1)

where I (Event) is the indicator variable of the event Event . The unconditional
expected reliability at time t can be computed as:

E[R(t)] =
∫
. . .

∫
R(t |.) f (.)dλ1 . . . dλl (2)

Similarly, the second moment of reliability, E[R(t)2] can be computed, as:

E[(R(t))2] =
∫
. . .

∫
(R(t |.))2 f (.)dλ1 . . . dλl (3)

With the second moment and the expected value, the variance of reliability at time
t , V ar [R(t)] can be computed.

If the reliability model is simple, it can be solved analytically to obtain a closed-
form expression of reliability, in terms of the model input parameters. In such cases,
the above integrations can theoretically, be directly performed on the expression
for reliability, to propagate the epistemic uncertainty. For simpler expressions, the
integration can be performed analytically, while for more complex expressions of
reliability, numerical integration [10] may be performed. However, the task of evalu-
ating these integrals quickly becomes intractable for complex expressions of system
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reliability or for larger numbers of model input parameters. Apart from the compu-
tational problem, the joint epistemic density of all the model parameters also needs
to be specified. The problem becomes somewhat simpler if the epistemic random
variables can be assumed to be independent, as the joint probability density functions
can then be factored into the product of marginals.

While in this chapter we assume the model input parameters as random variables
to be independent, in real life, there may be dependencies between them, originating
from the fact that they may be obtained from a common data or information source.
Ignoring epistemic dependencies among parameters can lead to errors and biases in
the output metrics, depending on the degree of correlation and the parameters which
are correlated [12]. Sampling-based epistemic uncertainty propagation methods can
take the epistemic dependencies into account, relatively easily, via methods like
the one proposed by Iman and Conover [5], which can introduce rank correlation
between the parameter values sampled from the marginal distributions. It should be
noted that assuming epistemic independence between the model input parameters
as random variables, does not rule out considering dependency of any kind between
events in the aleatory model (e.g., dependency between failure or repair events of
components or dependency between failure modes of components). Dependence can
always be allowed in the aleatory model via Markov chains, stochastic Petri nets,
or other state-space models [1, 7, 14], even when independence is assumed among
the epistemic variables. Table 1 summarizes the differences between dependence in
the aleatory model and the epistemic dependence between model input parameters
as random variables.

In this chapter, propagation of parametric epistemic uncertainty through analytic
integration of closed-form expression of system reliability is considered. In the exam-
ples discussed here, the model parameters as random variables are considered to be
independent (epistemic independence assumed).

Clearly, for this approach, the epistemic distributions of each of the parameters as
random variables need to be determined or known first. Determination of epistemic
distribution of parameters as random variables, from observed values of times to
failure, is discussed next.

Table 1 Difference between epistemic dependence and dependence in aleatory model

Epistemic Dependence Dependence in Aleatory model

Dependence Between Model input parameters as ran-
dom variables

Events in the aleatory model of the
system

Reason for Dependence Common source of data used
to compute parameter values;
Parameter values guessed at by
the same expert

Failure or repair events of compo-
nents dependent on each other or
on the state of the system; Failure
modes of components dependent on
each other or on state of the system

Accounting for Depen-
dence

Use joint pd f of all model input
parameters; Employ methods
like Iman-Conover method [5]
to introduce correlation between
sampled values from marginals

Use state-space models like
Markov chains, stochastic Petri
nets/stochastic reward nets. Hier-
archical models may also be used
[1, 7, 14]
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2.1 Determining Epistemic Distribution

Assume that the time to failure, X , of a component, follows a distribution (aleatory)
with parameter Λ. If X1, X2, . . . , Xr are the independent and identically distrib-
uted (iid) random variables corresponding to the r observed values of X , then
the probability of these observations, given Λ = λ (likelihood), is given by
fX1,X2,...,Xr |Λ(x1, x2, . . . , xr |λ). Applying the continuous form of Bayes’ theorem,
the probability density function for Λ (or the epistemic density function), given the
set of observed values, can be obtained by:

fΛ|X1,X2,...,Xr (λ|x1, x2, . . . , xr ) = fΛ(λ) fX1,X2,...,Xr |Λ(x1, x2, . . . , xr |λ)∫
fΛ(λ) fX1,X2,...,Xr |Λ(x1, x2, . . . , xr |λ)dλ

(4)
where, fΛ|X1,X2,...,Xr (λ|x1, x2, . . . , xr ) is the likelihood function, based on the
aleatory distribution and fΛ(λ) is the prior density function. Clearly the epistemic
posterior density function, determined in Eq. (4), will be different for different prior
density functions. Assuming that we do not have much information about the epis-
temic distribution of the parameter beforehand, we choose a non-informative (or
objective) prior based on Jeffreys’ rule [6, 11]. In case of bounded parameter space
(e.g., coverage probability), the prior is assumed to be uniform over the entire para-
meter space (every value equally likely). For parameter λ of exponential distribution,
it is chosen to be ∝ 1/λ.

Epistemic Distribution for Rate Parameter of Exponential Distribution

If the time to failure of a component, X , is exponentially distributed with rate para-
meter λ, then the random variable S, such that S = ∑r

i=1 Xi , will have an r − stage
Erlang distribution with parameter λ. Therefore, probability density function (pdf)
of S, given Λ = λ, can be shown as:

fS|Λ(s|λ) = λr sr−1e−λs

(r − 1)! (5)

Then, applying Bayes’ theorem as in Eq. (4), the pd f of Λ, given S = s, will be
given by:

fΛ|S(λ|s) = fΛ(λ)
λr sr−1e−λs

(r−1)!
∫ ∞

0 fΛ(λ)
λr sr−1e−λs

(r−1)! dλ
(6)

Using Jeffreys’ prior for Λ, as fΛ(λ) = s/λ [11], upon evaluating the integral and
performing simple algebraic manipulations, Eq. (6) reduces to pd f of r − stage
Erlang distribution with rate parameter s, as:

fΛ|S(λ|s) = λr−1sr e−λs

(r − 1)! = Erlang pd f (r; s) (7)
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This provides the epistemic probability density function for the rate parameter λ,
when the time to failure is exponentially distributed.

Using the above equations, the rest of the chapter discusses closed-form method
of uncertainty propagation through different nonrepairable systems.

3 Reliability of a Single Component System

Reliability of a single component system at time t , when the time to failure of
the component follows the exponential distribution with parameter λ, is given by
R(t) = e−λt [14]. In this section, we discuss obtaining the distribution, expectation,
and variance of reliability of such a single component system.

3.1 Distribution of Reliability

Due to the epistemic uncertainty in parameter λ, the reliability R(t), computed at a
fixed value of λ, can be seen to be conditioned on the value of λ used. If the point
estimate λ̂ of parameterλwere computed from r observations of times to failure, then
applying the theorem of total probability and using Eqs. (1) and (7), the cumulative
distribution function (CDF) of reliability at time t can be computed as shown below:

FR(t)(p) =
∫ ∞

0
I (R(t) ≤ p)

λr−1sr e−λs

(r − 1)! dλ (8)

As I (.) is the indicator function, the above integral is nonzero only for values of
λ for which R(t) ≤ p. Since R(t) = e−λt , it can be shown that the integral will
be nonzero for λ ≥ λa , such that λa = − ln p/t . Using the expression for CDF of
an Erlang distributed random variable [14] and knowing that s = r/λ̂, the above
equation reduces to:

FR(t)(p) =
∫ ∞

λa

λr−1sr e−λs

(r − 1)! dλ = 1 −
∫ λa

0

λr−1sr e−λs

(r − 1)! dλ
︸ ︷︷ ︸

Erlang C DF

=
r−1∑

i=0

e−sλa
(sλa)

i

i !

=
r−1∑

i=0

e
r ln p
λ̂t

(
−r ln p
λ̂t

)
i

i ! (9)
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Fig. 2 CDF of reliability of a single-component system, for r = 10

At any t the reliability R(t) of the system will have a distribution given by Eq. (9)
and hence will have an expected value, a variance, and a confidence interval. Figure 2,
shows the distribution of reliability, FR(t)(p), at different values of t . As t increases,
the CDF shifts to the left (i.e., the reliability tends to 0, as t increases, as expected).
In this figure, the value of λ̂ is chosen to be 5.7078 × 10−5 hrs., corresponding to
an MTTF of 17, 520 hrs., used for failure of software in [13] and the number of
observations, r , is chosen to be 10.

Next we discuss the limiting behavior of this distribution as r is varied. As provided
by the Central Limit Theorem (CLT) [14], for very large values of r , the Erlang
distribution for Λ as derived in Eq. (7) will tend to normal distribution with mean
μNormal = n/s = λ̂ and standard deviation σ = √

r/s = λ̂/
√

r . As r → ∞, σ → 0
and the normal pdf tends to Dirac-delta function [9]. Hence the CDF of Λ tends to
Heaviside step function (or unit step function) H [λ− λ̂] [9], such that, for λ ≥ λ̂, the
CDF evaluates to 1 and for all other values of λ, it evaluates to 0. In other words, the
only possible value of λ as r → ∞ is λ̂, which being an unbiased estimate, is the true

value of λ. Therefore, the only value of R(t) possible as r → ∞ is e−λ̂t and the CDF

of reliability, FR(t)(p) tends to Heaviside step function H [p −e−λ̂t ]. Figure 3 shows
the CDF of reliability, R(t), at time t = 5000 hours, as the number of observations
r , is varied from 10 to 1000. It can be seen clearly that as r increases, the CDF tends
to the step function. The value of λ̂ is chosen as earlier to be 5.7078 × 10−5 hours.
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Fig. 3 CDF of reliability of a single-component system at t = 5000 hours

3.2 Expected Reliability

If the point estimate λ̂ of parameter λ, were computed from r observations of times
to failure, then using Eqs. (2) and (7), the unconditional expected reliability at time
t can be computed as shown in Eq. (10).

E[R(t)] =
∫ ∞

0
e−λt .

λr−1sr e−λs

(r − 1)!︸ ︷︷ ︸
Erlang pd f

dλ

=
(

s

s + t

)r

=
(

1

1 + λ̂t/r

)r

(10)

The above equation makes use of the expression λ̂ = r/s, used to calculate the
Maximum Likelihood Estimate (MLE) ofλ. Using the identity limh→∞(1+1/h)h =
e [14], the limiting value of unconditional expectation of reliability at time t , can be

shown in Eq. (11) to be e−λ̂t .

lim
r→∞ E[R(t)] = 1

limr→∞
(

1 + λ̂t
r

)r = e−λ̂t (11)

Since λ̂ is an unbiased estimate, it tends to the true value of λ, as r → ∞. Figure 4
plots the expected value of R(t), at t = 1000, as a function of r . The value of λ̂ is
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Fig. 4 Expected reliability of a single-component system at t=1000 hours

chosen to be 5.7078 × 10−5 hrs., corresponding to an MTTF of 17, 520 hrs., used

for failure of software in [13]. It can be seen that E[R(t)] tends to e−λ̂t as r increases.

3.3 Variance of Reliability

The relation V ar [Y ] = E[Y 2]−(E[Y ])2, where Y is a random variable, can be used
to derive the variance of reliability at time t , V ar [R(t)]. E[(R(t))2] can be derived
in a similar fashion as E[R(t)] has been derived in Eq. 10. Variance of reliability of
a singe-component system, at time t , is shown in Eq. (12).

V ar [R(t)] =
(

s

s + 2t

)r

︸ ︷︷ ︸
E[(R(t))2]

−
(

s

s + t

)2r

︸ ︷︷ ︸
E[R(t)]2

=
(

1

1 + 2λ̂t/r

)r

−
(

1

1 + λ̂t/r

)2r

(12)

It follows from Eq. (12) that V ar [R(t)] → 0 as r → ∞. Using the same value of
λ̂ as in Sect. 3.2, Figure 5 shows the variance of reliability at time t = 1000 hours.
It is clear from the figure that V ar [R(t)] tends to 0 as r increases.

Extending the distribution function and the expressions for expected reliability
and variance of a single-component system, to obtain the same for an n-component
series system is trivial (assuming each component having independent and identically
distributed times to failure following the exponential distribution with parameter λ).
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Fig. 5 Variance of reliability of a single-component system at t=1000 hours

For ease of reference in the later parts of the chapter, the expressions for expected reli-
ability of an n-component series system with identical components, E[Rnseries(t)]
and variance of its reliability, V ar [Rnseries(t)], are provided below in Eqs. (13) and
(14), respectively.

E[Rnseries(t)] =
(

s

s + nt

)r

=
(

1

1 + nλ̂t/r

)r

(13)

V ar [Rnseries(t)] =
(

s

s + 2nt

)r

−
(

s

s + nt

)2r

=
(

1

1 + 2nλ̂t/r

)r

−
(

1

1 + nλ̂t/r

)2r

(14)

4 Reliability of a k-out-of-n System

A k−out−of −n system is considered to be operational as long as at least k of the total
n components in the system are operational [14]. Consider a k−out −of −n system,
where each of the n components has an independent and identically distributed time
to failure, following the exponential distribution with parameter λ. The reliability
R(t) of such a system is given by:
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R(t) =
n∑

i=k

(
n

i

)(
i − 1

k − 1

)
(−1)i−ke−iλt (15)

Since e−iλt is the same expression as the reliability of an i-component series
system, using the linearity property of expectation [14], the expected reliability of a
k −out −of −n system can be derived based on Eq. (13). As in the earlier sections,
assume that the number of observations of times to failure of a component, used to
compute the point estimate λ̂, is r and that the value of random variable S, denoting
the sum of observed times to failure, is s. Eq. (16) provides the expression for the
expected reliability, E[R(t)], of a k − out − of − n system with all components
having independent and identically distributed times to failure.

E[R(t)] =
n∑

i=k

(
n

i

)(
i − 1

k − 1

)
(−1)i−k

(
s

s + i t

)r

=
n∑

i=k

(
n

i

)(
i − 1

k − 1

)
(−1)i−k

(
1

1 + i λ̂t/r

)r

(16)

The limiting value of expected reliability of a k−out−o f −n system, as r → +∞
can easily be shown to be tending to the value of R(t), Eq. (15), computed at point
estimate λ̂, which, being an unbiased estimate, is also equal to the true value, as
r → ∞.

Since the components have independent failures, from Eq. (15) it follows that the
variance of reliability of a k − out − of − n system can be derived as:

V ar [R(t)] =
n∑

i=k

((
n

i

)(
i − 1

k − 1

)
(−1)i−k

)2

V ar [e−iλt ]

=
n∑

i=k

((
n

i

)(
i − 1

k − 1

))2

⎛

⎝

(
1

1 + 2i λ̂t/r

)r

−
(

1

1 + i λ̂t/r

)2r
⎞

⎠ (17)

The variance of the k −out −of −n system can be shown to tend to 0, as r → ∞,
as each of the terms in the summation in Eq. (17) tend to 0, when r → ∞.

The distribution of reliability of a k − out − of − n system, due to the epistemic
uncertainty in parameter λ can be derived using Eqs. (1) and (7), as shown in Sect. 3.
The CDF of reliability of a k − out − of − n system is given by:

FRkof n(t)(p) =
∫ ∞

0
I (Rkof n(t) ≤ p)

λr−1sr e−λs

(r − 1)! dλ
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=
∫ ∞

λakof n

λr−1sr e−λs

(r − 1)! dλ

= 1 −
∫ λakof n

0

λr−1sr e−λs

(r − 1)! dλ
︸ ︷︷ ︸

Erlang C DF

=
r−1∑

i=0

e−sλakof n
(sλakof n)

i

i ! (18)

where λakof n is the value of λ for which Rkof n(t)− p ≤ 0.
Using different values for k and n, the above expressions can be used to compute

the expected reliability and variance of reliability, due to epistemic uncertainty in fail-
ure rate parameter, for different series, parallel or k-out-of-n (also called N-modular
redundant (NMR) [8]) systems.

5 Duplex System with a Spare

Consider a duplex system with a spare, where 2 components are initially in opera-
tion (active) and a third component is a warm spare (de-energized standby). Each
active component has an exponentially distributed time to failure with parameter λ
(independent and identically distributed), while the standby component has an expo-
nentially distributed time to failure with parameter μ (where, μ is usually expected
to be less than λ). Upon failure of an active component, the standby component is
brought into active operation and then follows the exponential failure law with para-
meter λ. The system is considered to be operational as long as 2 of the components
are in active operation [14]. The reliability R(t) of such a system is:

R(t) =
(

2
λ

μ
+ 1

)
e−2λt − 2

λ

μ
e(−2λ+μ)t (19)

While the epistemic random variables (Λ and M) are assumed to be independent
for uncertainty propagation purposes, the aleatory model takes into account different
failure rates of components in different states (active or standby).

5.1 Expected Reliability : Duplex System with a Spare

The expected reliability of a duplex system with a spare, taking into account the
epistemic uncertainties in parameters λ and μ, can be derived based on Eq. (2).
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Assume that the point estimate λ̂ is computed using r observations of times to failure
and that the value of random variable representing sum of observed times to failure
S, is s, while the point estimate μ̂ (of random variable M corresponding to failure rate
in standby mode) is derived using u observations of times to failure of component
in standby mode, with the value of sum of observed times to failure random variable
B, being b. The expected reliability derived, is shown below in 20.

E[R(t)] =
∫ ∞

0

∫ ∞

0

((
2
λ

μ
+ 1

)
e−2λt − 2

λ

μ
e(−2λ+μ)t

)

λr−1sr e−λs

(r − 1)!︸ ︷︷ ︸
pd f o f Λ

μu−1bue−μb

(u − 1)!︸ ︷︷ ︸
pd f o f M

dλdμ

=
[(

s

s + 2t

)r 1

s + 2t

(
b

b + t

)u−1
(−2)b × r

u − 1

]

+
[(

s

s + 2t

)r 1

s + 2t

2b × r

u − 1

]
+

(
s

s + 2t

)r

(20)

Using the number of observations r and the point estimate λ̂, the value s, of sum of
observed times to failure random variable S can be expressed as, s = r/λ̂. Similarly
b can be expressed as b = u/μ̂. Equation. (20) can then be rewritten as:

E[R(t)] =
[(

1

1 + 2λ̂t/r

)r
1

r/λ̂+ 2t

(
1

1 + μ̂t/u

)u−1
(−2)u × r

μ̂(u − 1)

]

︸ ︷︷ ︸
I

+
[(

1

1 + 2λ̂t/r

)r
1

r/λ̂+ 2t

2u × r

μ̂(u − 1)

]

︸ ︷︷ ︸
I I

+
(

1

1 + 2λ̂t/r

)r

︸ ︷︷ ︸
I I I

(21)

It can be shown, similar to Eq. (11), that as r → ∞ and u → ∞, the term in Eq.

(21) marked by I , tends to −2e−(2λ̂+μ̂)t λ̂/μ̂, term I I tends to 2e−2λ̂t λ̂/μ̂, and term

marked by I I I tends to e−2λ̂t . Thus in the limiting case, the expected reliability of
a duplex system with a spare, tends to the reliability evaluated at λ̂ and μ̂ (which
being unbiased estimates, are also the true values of λ and μ as r and u tend to ∞,
respectively).

Figure 6 plots the expected reliability, E[R(t)] of a duplex system with one spare,
at time t = 1000 hours. The value for λ̂ is chosen to be 5.7078 × 10−5 hours,
corresponding to an MTTF of 17, 520 hours and μ̂ is chosen to be half of λ̂. While
Eq. (21) allows different values for r and u, in Fig. 6, the number of observations r
and u are kept equal at each point, for ease of illustration. It can be seen that as r and
u increase, the expected reliability E[R(t)] tends to the value of reliability computed
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Fig. 6 Expected reliability of a duplex system with one spare, at t=1000 hours

at point estimates λ̂ and μ̂ (which are the true values for λ and μ, as r and u tend to
∞).

5.2 Variance of Reliability : Duplex System with a Spare

For a duplex system with one spare, the variance of reliability, due to epistemic
uncertainty in the rate parameters of times to failure distribution for components in
active and standby mode, can be computed using the expected reliability E[R(t)]
and the second moment of reliability, E[(R(t))2]. While E[R(t)] has already been
derived in Eq. (21), E[(R(t))2] is derived below in Eq. (22).

E[(R(t))2] =
(

s

s + 4t

)r (
1

s + 4t

)[
4b2r(r + 1)

(u − 1)(u − 2)

(
1

s + 4t

)

− 8r(r + 1)b2

(u − 1)(u − 2)

(
b

b + t

)u−2 (
1

s + 4t

)

+ 4r(r + 1)b2

(u − 1)(u − 2)

(
b

b + 2t

)u−2 (
1

s + 4t

)
+ 4b × r

u − 1

− 4r × b

u − 1

(
b

b + t

)u−1 ]
+

(
s

s + 4t

)r
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=
(

1

1 + 4λ̂t/r

)r (
1

r/λ̂+ 4t

) [
4u2r(r + 1)

μ̂2(u − 2)

(
1

r/λ̂+ 4t

)

− 8r(r + 1)u2

(u − 1)(u − 2)μ̂2

(
1

1 + μ̂t/u

)u−2
(

1

r/λ̂+ 4t

)

+ 4r(r + 1)u2

μ̂2(u − 1)(u − 2)

(
1

1 + 2μ̂t/u

)u−2
(

1

r/λ̂+ 4t

)

+ 4r × u

μ̂(u − 1)

− 4r × u

μ̂(u − 1)

(
1

1 + μ̂t/u

)u−1 ]
+

(
1

1 + 4λ̂t/r

)r

(22)

The variance V ar [R(t)] can be derived next from Eqs. (21) and (22), simply using
the relation V ar [R(t)] = E[(R(t))2] − (E[R(t)])2. It can also be shown that as the
number of observations used to compute the estimates of parameters λ and μ tend
to ∞, the variance of reliability tends to 0, as expected. Figure 7 shows the variance
of reliability of this system, as r and u are varied. It is clear that the variance tends
to 0 as r and u increase.

6 Analytic-Numeric Epistemic Uncertainty Propagation

Quite often, the expression for model output is complex and difficult to integrate
analytically. For complex expressions of model output, which cannot be analytically
integrated easily, numerical integration can be used to perform the unconditioning
integrals explained in Eqs. (1), (2), and (3).

We use the M/M/1 queuing system with server breakdown and repair, explained
in [2], as an example to illustrate analytic-numeric epistemic uncertainty propagation.
The system is modeled using a Markov chain (with approximations). An approximate
expression for expected number of customers in the system is derived in [2] as:

N̄ = ρ

1 − ρ
+ λγ

τ (γ + τ )(1 − ρ)
(23)

where, ρ = λ/μ, λ, and μ are the customer arrival and service rates, respectively,
while γ and τ are the server failure and repair rates, respectively.

Since the parameters in Eq. (23), are all rate parameters of exponential aleatory
distribution, the epistemic density function of each parameter can be derived as shown
in Eq. (7). The expected value and variance due to the epistemic uncertainties in the
model input parameters, for the expected number of customers in the system are
obtained by computing the integrations shown in Eqs. (2) and (3), numerically using
Global Adaptive method of numerical integration (a built-in method, supported by
NIntegrate function in Mathematica [17]). We exploit various properties of expecta-
tion to simplify the computations (linearity property and expectation of product of
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Fig. 8 Expected value of expected number of customers in the system

independent random variables). Figure 8 shows the expectation of N̄ , as the number
of observations used to compute the point estimates of the parameters is increased.
As in the other examples in this chapter, when the number of observations, r , used
to compute the point estimates of the parameters increases, the expectation tends
to expected number of customers N̄ , computed at point estimates of the parameters
(which tends to the true value as the number of observations is increased). While the
uncertainty propagation method allows different number of observations for different
parameters, the same value of r is used for all the parameters at each point in Fig. 8
for ease of illustration. Similarly, based on Eqs. (2) and (3), the variance of expected
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number of customers in the system, due to the epistemic uncertainty in model input
parameters, can be obtained. The variance thus computed tends to 0 as the number
of observations used to compute the point estimate of N̄ tends to ∞ (indicating the
point estimate of N̄ approaching the true value).

7 Summary

In this chapter, an approach for propagating parametric epistemic uncertainty through
analytic stochastic models is presented. This approach can be applied when the model
output is a closed-form expression of input parameters. The method for deriving
closed-form expressions of CDF, expected value, and variance of reliability due to
epistemic uncertainty in input parameter values is discussed. Closed-form expres-
sions for the distribution function, expected value, and variance of reliability are
derived for some nonrepairable systems. Limiting behavior of the CDF, expected
value and variance of reliability, is also studied. As the number of observations used
to determine the time to failure distribution parameter tends to ∞, the variance of
reliability, due to the epistemic uncertainty in the input parameter, tends to zero. The
expected value of reliability tends to the reliability evaluated at point estimates of the
parameters, as the number of observations tend to ∞ (the point estimates of parame-
ters being unbiased estimates, tend to the true value as number of observations tend
to ∞). The CDF of reliability tends to a Heaviside step function in the limiting case.
While closed-form expressions for distribution function, expected value, and vari-
ance of reliability can be obtained for simpler expressions of system reliability, the
task becomes difficult for more complex cases. Numerical integration or sampling-
based methods may need to be applied for epistemic uncertainty propagation in such
cases. Numerical integration is used to perform uncertainty propagation for one such
case.

References

1. Ajmone-Marsan M, Balbo G, Conte G, Franceschinis SG (1995) Modeling with generalized
stochastic petri nets. Wiley, Donatelli

2. Bobbio A, Trivedi KS (1986) An aggregation technique for the transient analysis of stiff markov
chains. IEEE Trans Comp C-35(9):803–814

3. Devaraj A, Mishra K, Trivedi K (2010) Uncertainty propagation in analytic availability models.
In 29th IEEE international symposium on reliable distributed systems, SRDS, pp 121–130

4. Hirel C, Tuffin B, Trivedi KS (2000) Spnp: Stochastic petri nets. version 6.0. In computer
performance evaluation. Modelling techniques and tools, vol 1786. Springer Berlin/Heidelberg,
pp 354–357

5. Iman RL, Conover WJ (1982) A distribution-free approach to inducing rank correlation among
input variables. Comm Stat Simul Comput 11(3):311–334

6. Kass-Robert E, Wasserman L (1996) The selection of prior distributions by formal rules. J Am
Stat Assoc 91(435):1343–1370



332 K. Mishra and K. S. Trivedi

7. Muppala J, Fricks R, Trivedi KS (2000) Techniques for system dependability evaluation. In:
Grassman W (ed) Computational probability. Kluwer Academic Publishers, New York, pp
445–480

8. Ng YW, Avizienis AA (1980) A unified reliability model for fault-tolerant computers. IEEE
Trans Comp C–29(211):1002–1011

9. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. Prentice Hall,
New York

10. Rabinowitz P, Davis PJ (2007) Methods of numerical integration. Dover Publications, New
York

11. Singpurwalla ND (2006) Reliability and risk: a Bayesian perspective, 1st edn. Wiley, New York
12. Smith AE, Ryan PB, Evans JS (1992) The effect of neglection correlations when propagating

uncertainty and estimating the population distribution risk. Risk Anal 12(4):467–474
13. Smith W, Trivedi K, Tomek L, Ackaret J (2008) Availability analysis of blade server systems.

IBM Syst J 47(4):155
14. Trivedi K (2001) Probability and statistics with reliability, queuing and computer science

applications. Wiley, New York
15. Trivedi K, Mishra K (2010) A non-obtrusive method for uncertainty propagation in analytic

dependability models. In: 4th Asia-Pacific international symposium on advanced reliability
and maintenance modeling (APARM 2010)

16. Trivedi KS, Sahner R (2009) Sharpe at the age of twenty two. SIGMETRICS Perf Eval Rev
36(4):52–57

17. Wolfram Research, Inc Wolfram mathematica 6. http://www.wolfram.com/products/
mathematica/index.html

http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/index.html


Generational Garbage Collection Policies

Xufeng Zhao, Syouji Nakamura and Cunhua Qian

1 Introduction

In the computer science community, the technique of garbage collection [5] is an
automatic process of memory recycling, which refers to those objects in the memory
no longer referenced by programs are called garbage and should be thrown away.
A garbage collector determines which objects are garbage and makes the heap space
occupied by such garbage available again for the subsequent new objects. Garbage
collection plays an important role in Java’s security strategy, however, it adds a large
overhead that can deteriorate the program performances. From related studies which
are summarized in [5], a garbage collector spends between 25 and 40 percent of
execution time of programs for its work in general, and delays caused by such a
garbage collection are obtrusive.

In recent years, generational garbage collection [1, 17, 19, 20] has been popular
with programmers as it can be made more efficiently. Compared with classical tracing
collectors, e.g., reference counting collector, mark-sweep collector, mark-compact
collector, and copying collector, a generational garbage collector is effective in com-
puter programs with the characteristic that it is unnecessary to mark or copy all active
data of the whole heap for every collection, i.e., the collector concentrates effort on
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those objects that are most likely to be garbage. Based on the weak generational
hypothesis [17] which asserts that most objects are short-lived after their allocation,
a generational garbage collector segregates objects by age into two or more regions
called generations or multiple generations. The survival rates of younger generations
are always much lower than those of older ones, which means that younger genera-
tions are more likely to be garbage and can be collected more frequently than older
ones. Although such generational collections cost much shorter time than that of a
full collection, the problems of pointers from older generations to younger ones and
the size of root sets for younger generations become more complicated. For these
reasons, many generational collectors are limited to just two or three generations [5].
This generational technique is now in widespread use for memory management. For
instance, the garbage collector, which is used in Sun’s HotSpot Java Virtual Machine
(JVM), manages heap space for both young and old generations [19]: New objects
space Eden, two equal survivor spaces SS�1 and SS�2 for surviving objects, and
tenured objects space Old (Tenured), where Eden, SS�1 and SS�2 are for younger
generations, and Old (Tenured) is for older ones.

A generational garbage collector uses minor collection and tenuring collection 1

for younger generations and major collection for multi-generations [5]. Most gen-
erational garbage collectors are copying collectors, although it is possible to use
mark-sweep collectors [2]. In this chapter, we concentrate on a generational garbage
collector using copying collection. However, for every garbage collection, the manner
of stop and copy pauses all application threads to collect the garbage. The duration
of time for which the collector has worked is called pause time [5], which is an
important parameter for interactive systems, and depends largely upon the volume
of surviving objects and the type of collections. That is, pause time suffered for minor
collection increases with the number of collections and is less than that of tenuring
collection; major collection pause time is the longest among the three.

With regard to garbage collection modelings, there have been few research papers
that studied analytical expressions of optimal policies for a generational garbage
collector. Most problems were concerned with several ways to introduce garbage
collection methods in techniques and how to tune the garbage collector by simula-
tions, which is more complex and time-consuming due to the random accesses of
programs in the memory in practice [4, 6, 7, 16, 18]. We propose that garbage col-
lection is a stochastic decision making process and should be analyzed by the theory
of stochastic processes from the viewpoints of management. As some applications
of damage models, a garbage collection model for a database in the computer system
[14] was studied, but the theoretical point of garbage collection was not considered
essentially, and optimal policies for a generational garbage collector with tenur-
ing threshold and major collection times according to practical working schemes
[21, 22] were studied recently.

1 Tenuring collection is also a kind of minor collection [5]. We define tenuring collection as distinct
from minor collection because there may be some surviving objects tenured from survivor space
into Old.
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This chapter considers a pause time goal which is called time cost or cost for
simplicity, and our problem is to obtain optimal collection times which minimize
the expected cost rates. Using the techniques of cumulative processes and reliabil-
ity theory [8–10], optimal tenuring collection times and major collection times are
discussed. Furthermore, increase in objects might be unclear at discrete times for
the high frequency of computer processes. According to [1, 19], it would be more
practical to assume that surviving objects that should be copied increase with time
continuously and roughly according to some mathematical laws. Applying the tech-
niques of degradation processes [11, 15] and continuous wear processes [9], optimal
tenuring collection times are discussed analytically and numerically.

2 Working Schemes

In general, the frequency of garbage collections depends on whether the computer
processes are busy or not. Hence, it is practical to assume that garbage collections
occur at a nonhomogeneous Poisson process with an intensity function λ(t) and a
mean-value function R(t) ≡ ∫ t

0 λ(u)du. Then, the probability that collections occur
exactly j times in (s, t] is [12]

Hj (s, t) ≡ [R(t)− R(s)] j

j ! e−[R(t)−R(s)] ( j = 0, 1, 2, . . .).

Letting Fj (s, t) ( j = 1, 2, . . .) denote the probability that collections occur at least
j times in the time interval (s, t],

Fj (s, t) =
∫ t

s
Hj−1(s, u)λ(u)du =

∞∑

i= j

Hi (s, t), (1)

where F0(s, t) ≡ 1 and

Hj (t) ≡ Hj (0, t) = [R(t)] j

j ! e−R(t),

Fj (t) ≡ Fj (0, t) =
∞∑

i= j

Hi (t).

Further, the volume Xi of new objects in Eden at the i th collection has an iden-
tical distribution G(x) ≡ Pr{Xi ≤ x} (i = 1, 2, . . .), and survivor rate αi (0 ≤
αi < 1; i = 1, 2, . . .), where 1 > α1 > α2 > · · · > αi > · · · ≥ 0, means that
new objects will survive 100αi percent at the i th minor collection. That is, detailed
working schemes of a generational garbage collector that have been introduced in
[5, 19, 21, 22] are given as the following steps (Fig. 1):
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Fig. 1 Working schemes of a generational garbage collector

1. New objects X1 are allocated in Eden.
2. When the first minor collection occurs, surviving objects α1 X1 from Eden are

copied into SS�1.
3. When the second minor collection occurs, surviving objects α1 X2 from Eden and
α2 X1 from SS�1 are copied into SS�2.

4. In the fashions of 1–3, minor collections copy surviving objects between SS�1
and SS�2 until they become tenured, i.e., tenuring collection occurs when some
parameter meets the tenuring threshold, and then, the older or the oldest objects
are copied into Old.

5. When Old fills up, major collection of the whole heap occurs, and surviving
objects from Old are kept in Old, while objects from Eden and survivor space are
kept in survivor space.

In practice, tenuring threshold mentioned in step 4 above is adaptive, which is
called adaptive tenuring [5] and can be modified at any time. In this chapter, we pro-
pose two cases of working schemes according to the properties of adaptive tenuring:

Based on [17], new objects can be tenured only if they survive at least one minor
collection, because objects that survive two minor collections are much less than
those that survive just one. In other words, surviving objects are likely to reduce
slightly with the number of minor collections beyond two. That is, for step 4:

4a. When tenuring collection occurs, surviving objects from Eden and survivor space
are copied into the other survivor space and Old, respectively. That is, if tenuring
collection is made at the j th ( j = 1, 2, . . .) collection, surviving objects α1 X j
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and α2 X j−1 + α3 X j−2 + · · · + α j X1 are copied into survivor space and Old,
respectively.

4b. After tenuring collection, the same collection cycle begins with step 1. The
collector works 1 → 2 → 3 → 4a → 4b → 1 → · · · . In this case, tenur-
ing collections can be consider as renewal points of the collection processes,
because Old will be filled with tenured objects slowly and major collection
occurs rarely, especially when the tenuring threshold is high and the survivor
rates are low. Modelings and optimizations of tenuring collection times are dis-
cussed in Sects. 3 and 5.

From [19], the oldest objects can be tenured from survivor space into Old at every
collection time when tenuring collection begins. That is, for step 4:

4c. When tenuring collection occurs, the oldest objects from survivor space are
copied into Old, and the other surviving objects from Eden and survivor space are
copied into the other survivor space. That is, if tenuring collection is made at the
j th ( j = 1, 2, . . .) collection, surviving objectsα1 X j +α2 X j−1+· · ·+α j−1 X2
and α j X1 are copied into survivor space and Old, respectively.

4d. When the next collection occurs, the collector works as the same rule as 4c. That
is, when the second tenuring collection occurs, surviving objects α1 X j+1 +
α2 X j + · · · + α j−1 X3 and α j X2 are copied into the other survivor space and
Old, respectively. The collector works 1 → 2 → 3 → 4c → 4d → 5 →
1 → · · · . In this case, major collections can be consider as renewal points of the
collection processes, because there are always some surviving objects tenured
from survivor space into Old at every collection time when tenuring collection
begins, especially when the tenuring threshold is low and the survivor rates are
high. Related optimization problems of major collection times are discussed in
Sect. 4.

From the above discussions, if tenuring collection is made at the j th ( j = 1, 2, . . .)
collection, surviving objects that should be copied at the i th (i = 0, 1, 2, . . . , j − 1)
minor collection, copied objects and tenured objects at the kth (k = 1, 2, . . .) tenuring
collection are, respectively,

i−1∑

n=0

αn+1 Xi−n < K ,
j∑

n=1

αn X j+k−n ≥ K and α j Xk, (2)

where
∑−1

n=0 ≡ 0, and K is tenuring threshold in step 4, which means that the
total volume of surviving objects has exceeded level K . It could be easily seen that
copied objects increase with the number of minor collections and are relatively stable
with the number of tenuring collections. We define that the distribution of the total
surviving objects at the i th minor collection is

Gi (x) ≡ Pr

{
i−1∑

n=0

αn+1 Xi−n ≤ x

}

(i = 0, 1, 2, . . .), (3)
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where Gi (x) decreases with i , and G0(x) ≡ 1 means that there are no objects in the
heap space at time 0. The probability that the total surviving objects exceed exactly
a threshold level K at the (i + 1)th (i = 0, 1, 2, . . .) minor collection is

pi (K ) ≡
∫ K

0
G(K − x)dGi (x) = Gi (K )− Gi+1(K ), (4)

where V (x) ≡ 1 − V (x) for any distribution V (x).
Letting cS + cM (x) be the cost suffered for every minor collection, where cS is

the constant cost of scanning surviving objects and x is the surviving objects that
should be copied, cM (x) increases with x and cM (0) ≡ 0. Then, the expected cost
of the i th minor collection is

C(i, K ) ≡ 1

Gi (K )

∫ K

0
[cS + cM (x)] dGi (x) (i = 0, 1, 2, . . .), (5)

where C(0, K ) ≡ 0 and C(i, K ) increases with i .

3 Tenuring Collection Times

Suppose that minor collections are made when the garbage collector begins to work,
tenuring collection is made at a planned time T (0 < T ≤ ∞) or at the first collection
time when surviving objects have exceeded a threshold level K (0 < K ≤ ∞),
whichever occurs first. Then, the probability that tenuring collection is made at time
T is

PT =
∞∑

j=0

Hj (T )G j (K ), (6)

and the probability that tenuring collection is made at level K is

PK =
∞∑

j=0

Fj+1(T )p j (K ), (7)

where note that PT + PK ≡ 1. The mean time to tenuring collection is

E1(L) = T
∞∑

j=0

Hj (T )G j (K )+
∞∑

j=0

p j (K )
∫ T

0
tdFj+1(t)

=
∞∑

j=0

G j (K )
∫ T

0
Hj (t)dt. (8)
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The expected cost suffered for minor collections until tenuring collection is

CM =
∞∑

j=1

j∑

i=1

C(i, K )Hj (T )G j (K )+
∞∑

j=1

j∑

i=1

C(i, K )Fj+1(T )p j (K )

=
∞∑

j=1

C( j, K )Fj (T )G j (K ). (9)

Then, the expected cost until tenuring collection is

E1(C) = cK − (cK − cT )

∞∑

j=0

Hj (T )G j (K )+
∞∑

j=1

C( j, K )Fj (T )G j (K ), (10)

where cT and cK (cT , cK > cS + cM (K )) are the costs suffered for tenuring collec-
tions at time T and when surviving objects have exceeded K , respectively. Therefore,
from (8) to (10), by using the theory of renewal reward process [13], the expected
cost rate is

C1(T, K ) =
cK − (cK − cT )

∑∞
j=0 Hj (T )G j (K )

+∑∞
j=1 C( j, K )Fj (T )G j (K )
∑∞

j=0 G j (K )
∫ T

0 Hj (t)dt
. (11)

3.1 Optimal Policies

1. Optimal T∗
1: When tenuring collection is made only at time T ,

C1(T ) ≡ lim
K→∞ C1(T, K ) = 1

T

⎧
⎨

⎩

∞∑

j=1

Fj (T )
∫ ∞

0
[cS + cM (x)] dG j (x)+ cT

⎫
⎬

⎭
.

(12)
Letting f j (t) be a density function of Fj (t), i.e., f j (t) ≡ dFj (t)/dt . Then, differ-
entiating C1(T ) with respect to T and setting it equal to zero,

∞∑

j=1

[
T f j (T )− Fj (T )

] ∫ ∞

0
[cS + cM (x)] dG j (x) = cT . (13)

Letting L1(T ) be the left-hand side of (13),

L1(0) ≡ lim
T →0

L(T ) = 0,
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L ′
1(T ) =λ′(T )T

∞∑

j=0

Hj (T )
∫ ∞

0
[cS + cM (x)] dG j+1(x)

+ λ(T )2T
∞∑

j=0

Hj (T )
∫ ∞

0
p j+1(x)dcM (x).

Thus, if λ(t) increases with t and L1(∞) > cT , there exists a finite and unique
T ∗

1 (0 < T ∗
1 < ∞) which satisfies (13), and the resulting cost rate is

C1(T
∗
1 ) = λ(T ∗

1 )

∞∑

j=0

Fj (T
∗
1 )

∫ ∞

0
p j (x)dcM (x).

In particular, when Hj (t) = [(λt) j/j !]e−λt ( j = 0, 1, 2, . . .), i.e., garbage col-
lections occur at a Poisson process with rate λ, (13) becomes

∞∑

j=1

j Fj+1(T )
∫ ∞

0
p j (x)dcM (x) = cT . (14)

Differentiating the left-hand side of (14) with respect to T ,

λ

∞∑

j=1

j Hj (T )
∫ ∞

0
p j (x)dcM (x) > 0.

Thus, if the left-hand side of (14) is greater than cT , then there exists a finite and
unique T ∗

1 (0 < T ∗
1 < ∞) which satisfies (14).

2. Optimal K∗
1: When tenuring collection is made only at level K ,

C1(K ) ≡ lim
T →∞ C1(T, K ) =

∑∞
j=1

∫ K
0 [cS + cM (x)]dG j (x)+ cK

∑∞
j=0 G j (K )

∫∞
0 Hj (t)dt

. (15)

Letting gi (x) be a density function of Gi (x) in (3), i.e., gi (x) ≡ dGi (x)/dx . Differ-
entiating C1(K ) with respect to K and setting it equal to zero,

Q1(K )
∞∑

j=0

G j (K )
∫ ∞

0
Hj (t)dt −

∞∑

j=1

∫ K

0
[cS + cM (x)] dG j (x) = cK , (16)

where

Q1(K ) ≡ [cS + cM (K )]∑∞
j=1 g j (K )

∑∞
j=1 g j (K )

∫∞
0 Hj (t)dt

.
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Letting L1(K ) be the left-hand side of (16),

L1(0) ≡ lim
K→0

L1(K ) = Q1(0)
∫ ∞

0
H0(t)dt,

L ′
1(K ) = Q′

1(K )
∞∑

j=0

G j (K )
∫ ∞

0
Hj (t)dt.

Thus, if Q1(K ) increases with K and L1(0) < cK < L1(∞), then there exists a
finite and unique K ∗

1 (0 < K ∗
1 < ∞) which satisfies (16), and the resulting cost rate

is
C1(K

∗
1 ) = Q1(K

∗
1 ).

In particular, when Hj (t) = [(λt) j/j !]e−λt , (16) becomes

cM (K )+
∫ K

0
[cM (K )− cM (x)] dM(x) = cK − cS, (17)

whose left-hand side increases with K from 0 to ∞, where M(x) ≡ ∑∞
j=1 G j (x).

Thus, there exists a finite and unique K ∗
1 (0 < K ∗

1 < ∞) which satisfies (17).

3.2 Numerical Examples

When λ(t) = λ, Xi (i = 1, 2, . . .) has a normal distribution N (μ,σ2), αi =
α/ i (0 ≤ α < 1; i = 1, 2, . . .) and cM (x) = cM x . Then

Fj (t) = 1 −
j−1∑

i=0

(λt)i

i ! e−λt , G j (x) = �

(
x − αμν j

ασ
√
ω j

)

, (18)

where �(x) is the standard normal distribution with mean 0 and variance 1, i.e.,
�(x) ≡ (1/

√
2π)

∫ x
−∞ e−u2/2du, and

ν j ≡
j∑

n=1

1

n
, ω j ≡

j∑

n=1

1

n2 .

Tables 1 and 2 present λT ∗
1 , C1(T ∗

1 )/λ, K ∗
1 and C1(K ∗

1 )/λ for cT = cK = 20,
30, 40, μ = 8, 10 and α = 0.40, 0.45, 0.50, 0.55, 0.60 when cS = 10, cM = 1 and
σ = 1. These show that optimal tenuring collection times λT ∗

1 increase with cost cT

and decrease with both the volume of new objects in Eden at collection time μ and
the survivor rate α, optimal tenuring collection times K ∗

1 increase with all of cK , μ
and α, and C1(T ∗

1 )/λ and C1(K ∗
1 )/λ increase with all of cT or cK , μ and α. We can

explain all the results and obtain some interesting conclusions as follows:
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Table 1 Optimal λT ∗
1 and C1(T ∗

1 )/λ when cS = 10, cM = 1 and σ = 1

μ α cT = 20 cT = 30 cT = 40
λT ∗

1 C1(T ∗
1 )/λ λT ∗

1 C1(T ∗
1 )/λ λT ∗

1 C1(T ∗
1 )/λ

0.40 8.99 19.24 12.48 20.18 15.84 20.89
0.45 8.24 20.11 11.34 21.14 14.35 21.92

8 0.50 7.61 20.95 10.42 22.07 13.15 22.92
0.55 7.08 21.77 9.66 22.98 12.17 23.90
0.60 6.64 22.58 9.03 23.86 11.34 24.85

0.40 7.61 20.95 10.42 22.07 13.14 22.91
0.45 6.96 21.98 9.49 23.20 11.95 24.14

10 0.50 6.44 22.97 8.75 24.30 10.97 25.31
0.55 6.01 23.95 8.13 25.37 10.17 26.47
0.60 5.64 24.91 7.61 26.43 9.49 27.60

Table 2 Optimal K ∗
1 and C1(K ∗

1 )/λ when cS = 10, cM = 1 and σ = 1

μ α cK = 20 cK = 30 cK = 40
K ∗

1 C1(K ∗
1 )/λ K ∗

1 C1(K ∗
1 )/λ K ∗

1 C1(K ∗
1 )/λ

0.40 8.76 18.76 9.61 19.61 10.71 20.71
0.45 9.25 19.25 11.04 21.04 11.57 21.57

8 0.50 9.71 19.71 12.03 22.03 12.39 22.39
0.55 10.12 20.12 12.69 22.69 13.18 23.18
0.60 10.49 20.49 13.32 23.32 13.94 23.94

0.40 10.72 20.72 12.05 22.05 12.41 22.41
0.45 11.24 21.24 12.87 22.87 13.39 23.39

10 0.50 11.64 21.64 13.64 23.64 14.33 24.33
0.55 12.08 22.08 14.37 24.37 15.23 25.23
0.60 12.44 22.44 15.07 25.07 16.09 26.09

• When tenuring collection cost cT or cK increases, it is not economical to make
tenuring collections frequently, then T ∗

1 or K ∗
1 should be postponed.

• Whenμ orα increases, cost suffered for minor collections will increase in a shorter
time, because of faster increase in copied objects. If cost cT or cK is constant in
this case, T ∗

1 should be advanced. For K ∗
1 , it costs much shorter time to increase

copied objects until level K , then K ∗
1 would increase suitably to decrease both the

frequency of tenuring collections and the total minor collection cost.
• The resulting cost rates C1(T ∗

1 ) or C1(K ∗
1 ) increase with all μ, α and cT or

cK , because the total expected cost of one cycle increases but the expected time
decreases.

• It is interesting that C1(K ∗
1 ) are always less than C1(T ∗

1 ) for the same parameters,
i.e., tenuring collections at level K are better than those at time T . In fact, from
Tables 1 and 2, we know that the expected number of minor collections until tenur-
ing collection for two models are almost the same. That is, from the assumption



Generational Garbage Collection Policies 343

of αi = α/ i , we can derive

1 + 1

2
+ 1

3
+ · · · + 1

[λT ∗
1 ] <

K ∗
1

αμ
< 1 + 1

2
+ 1

3
+ · · · + 1

[λT ∗
1 ] + 1

, (19)

where [x] denotes the greatest integer contained in x . For example, when cT =
cK = 20, μ = 8 and α = 0.4, λT ∗

1 = 8.99 and K ∗
1 = 8.76, and hence

1 + 1

2
+ · · · + 1

8
= 2.55 <

8.76

0.4 × 8
= 2.74 < 1 + 1

2
+ · · · + 1

9
= 2.83.

We can estimate approximate values K ∗
1 from T ∗

1 using the relationship of the two
policies in (19), and vice versa.

4 Major Collection Times

4.1 Model 1

Suppose that minor collections are made before surviving objects exceed a threshold
level K (0 < K < ∞), and when they have exceeded K , tenuring collections are
always made. Further, major collection is made at time T (0 < T ≤ ∞) or at the
N th (N = 1, 2, . . .) collection including minor and tenuring collections, whichever
occurs first. Furthermore, Letting ckT (k = 1, 2, . . .) be the cost suffered for the kth
tenuring collection, where cS + cM (K ) < c1T < c2T < · · · , and cF (cF > ckT ) be
the cost suffered for major collection. Then, the probability that major collection is
made at time T is

PT =
N−1∑

j=0

Hj (T )G
( j)(K )+

N−1∑

j=1

j−1∑

i=1

Hj (T )pi (K ) = 1 − FN (T ), (20)

and the probability that major collection is made at collection N is

PN = FN (T )G
(N )(K )+

N−1∑

j=0

FN (T )p j (K ) = FN (T ), (21)

where note that PT + PN ≡ 1. The mean time to major collection is

E2(L) =
∫ T

0
tdFN (t)+ T

N−1∑

j=0

Hj (T ) =
∫ T

0
[1 − FN (t)] dt. (22)
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The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CT M =
N−1∑

j=1

Hj (T )

⎡

⎣
j∑

i=1

C(i, K )G( j)(K )+
j−1∑

i=1

i∑

k=1

C(k, K )pi (K )

⎤

⎦

=
N−1∑

j=1

Hj (T )
j∑

i=1

C(i, K )G(i)(K ), (23)

CT T =
N−1∑

j=1

Hj (T )
j−1∑

i=0

j−i∑

k=1

ckT pi (K )

=
N−1∑

j=1

Hj (T )
j−1∑

i=0

[
c(i+1)T − c( j−i)T G(i+1)(K )

]
, (24)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CN M = FN (T )

⎡

⎣
N∑

j=1

C( j, K )G(N )(K )+
N−1∑

j=1

j∑

i=1

C(i, K )p j (K )

⎤

⎦

= FN (T )
N∑

j=1

C( j, K )G( j)(K ), (25)

CN T = FN (T )
N−1∑

j=0

N− j∑

i=1

ciT p j (K )

= FN (T )
N−1∑

j=0

[
c( j+1)T − c(N− j)T G( j+1)(K )

]
. (26)

Thus, the total expected cost until major collection is, summing up from (23) to
(26) and adding the cost cF of major collection,

E2(C)= cF +
N∑

j=1

C( j, K )Fj (T )G
( j)(K )

+
N∑

j=1

Fj (T )

⎡

⎣c jT −
j−1∑

i=0

G( j−i)(K )(c(i+1)T − ciT )

⎤

⎦ . (27)
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Therefore, the expected cost rate is, from (22) and (27),

C2(T, N ) = cF +∑N
j=1 Fj (T )A j

∫ T
0 [1 − FN (t)]dt

, (28)

where

A j ≡ c jT +
∫ K

0
[cS + cM (x)] dG( j)(x)−

j−1∑

i=0

G( j−i)(K )(c(i+1)T − ciT ).

It can be easily proved that A j increases with j because

A j+1 − A j = (c1T − cS − cM (K ))p j (K )+
∫ K

0
p j (x)dcM (x)

+
j∑

i=1

p j−i (K )(c(i+1)T − ciT ) > 0.

1. Optimal T ∗
2 : When major collection is made only at time T ,

C2(T ) ≡ lim
N→∞ C2(T, N ) = 1

T

⎡

⎣
∞∑

j=1

Fj (T )A j + cF

⎤

⎦ . (29)

Differentiating C2(T ) in (29) with respect to T and setting it equal to zero,

∞∑

j=1

A j
[
Tλ(T )Hj−1(T )− Fj (T )

] = cF ,

that is,
∞∑

j=1

A j

∫ T

0
td
[
λ(t)Hj−1(t)

] = cF . (30)

Letting L2(T ) be the left-hand side of (30),

L ′
2(T ) =

∞∑

j=0

A j+1

∫ T

0
tλ′(t)Hj (t)dt +

∞∑

j=0

(A j+2 − A j+1)

∫ T

0
t[λ(t)]2 Hj (t)dt,

L2(∞) =
∞∑

j=1

A j

∫ ∞

0
td[λ(t)Hj−1(t)].
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Thus, if λ(t) increases with t and L2(∞) > cF , then there exists a finite and unique
T ∗

2 (0 < T ∗
2 < ∞) which satisfies (30).

In particular, when λ(t) = λ,

L ′
2(T ) =

∞∑

j=0

( j + 1)Fj+2(T )(A j+2 − A j+1),

L2(∞) =
∞∑

j=1

(A∞ − A j ).

Therefore, if
∑∞

j=1(A∞ − A j ) > cF , then there exists a finite and unique T ∗
2

(0 < T ∗
2 < ∞), and the resulting cost rate is

C2(T ∗
2 )

λ
=

∞∑

j=0

Hj (T
∗
2 )A j+1.

2. Optimal N∗
2 : When major collection is made only at collection N ,

C2(N ) ≡ lim
T →∞ C2(T, N ) =

∑N
j=1 A j + cF

∫∞
0 [1 − FN (t)]dt

(N = 1, 2, . . .). (31)

From the inequality C2(N + 1)− C2(N ) ≥ 0,

N−1∑

j=0

[
AN+1∫∞

0 HN (t)dt

∫ ∞

0
Hj (t)dt − A j+1

]

≥ cF . (32)

Letting L2(N ) be the left-hand side of (32),

L2(N + 1)− L2(N ) =
[

AN+2∫∞
0 HN+1(t)dt

− AN+1∫∞
0 HN (t)dt

]∫ ∞

0

[
1 − FN+1(t)

]
dt.

(33)
Thus, if AN+1/

∫∞
0 HN (t)dt increases with N and L2(∞) > cF , then there exists a

finite and unique minimum N∗
2 (1 ≤ N∗

2 < ∞) which satisfies (32).
In particular, when λ(t) = λ,

L2(N ) =
N∑

j=1

(AN+1 − A j ),

L2(N + 1)− L2(N ) = (N + 1)(AN+2 − AN+1) > 0.
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It is assumed that A∞ ≡ lim j→∞ A j < ∞. Then,

L2(∞) =
∞∑

j=1

(A∞ − A j ).

Further, because
∑N

j=1(AN+1 − A j ) ≥ AN+1 − A1 (N = 1, 2, . . .), if A∞ = ∞,
then L2(∞) = ∞. Therefore, if

∑∞
j=1(A∞ − A j ) > cF , then there exists a finite

and unique minimum N∗
2 (1 ≤ N∗

2 < ∞), and the resulting cost rate is

AN∗
2

≤ C2(N∗
2 )

λ
< AN∗

2 +1.

It is of interest that when collections occur at a Poisson process with rate λ, if∑∞
j=1(A∞ − A j ) > cF , then both finite and unique T ∗

2 and N∗
2 exist.

4.2 Model 2

Suppose that minor collections are made before surviving objects exceed a threshold
level K , and after they have exceeded K , tenuring collections are always made.
Further, major collection is made at time T (0 < T ≤ ∞) or at collection N
(N = 1, 2, . . .) including tenuring collections, whichever occurs first. Then, the
probability that major collection is made at time T is

PT =
∞∑

j=0

N−2∑

i=0

p j (K )
∫ ∞

0
Hi (u, u + T )dFj+1(u), (34)

and the probability that major collection is made at collection N is

PN =
∞∑

j=0

∞∑

i=N−1

p j (K )
∫ ∞

0
Hi (u, u + T )dFj+1(u). (35)

The mean time to major collection is

E3(L) =
∞∑

j=0

p j (K )
∫ ∞

0

[∫ T

0
(u + t)dFN−1(u, u + t)

]
dFj+1(u)

+
∞∑

j=0

N−2∑

i=0

p j (K )
∫ ∞

0
(u + T )Hi (u, u + T )dFj+1(u)
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=
∞∑

j=0

p j (K )
∫ ∞

0
udFj+1(u)

+
∞∑

j=0

p j (K )
∫ ∞

0

{∫ T

0

[
1 − FN−1(u, u + t)

]
dt

}
dFj+1(u). (36)

The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CT M =
∞∑

j=0

j∑

i=1

ci M p j (K )
∫ ∞

0

[
1 − FN−1(u, u + T )

]
dFj+1(u), (37)

CT T =
∞∑

j=0

N−2∑

i=0

i+1∑

k=1

ckT p j (K )
∫ ∞

0
Hi (u, u + T )dFj+1(u), (38)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CN M =
∞∑

j=0

j∑

i=1

ci M p j (K )
∫ ∞

0
FN−1(u, u + T )dFj+1(u), (39)

CN T =
∞∑

j=0

N∑

i=1

ciT p j (K )
∫ ∞

0
FN−1(u, u + T )dFj+1(u). (40)

Thus, the total expected cost until major collection is, summing up from (37) to
(40) and adding the cost cF of major collection,

E3(C)= cF +
∞∑

j=1

j∑

i=1

ci M p j (K )

+
∞∑

j=0

N∑

i=1

ciT p j (K )
∫ ∞

0
Fi−1(u, u + T )dFj+1(u). (41)

Therefore, from (36) to (41), the expected cost rate is

C3(T, N ) = E3(C)

E3(L)
. (42)
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1. Optimal T ∗
3 : When major collection is made only at time T ,

C3(T ) ≡ lim
N→∞ C3(T, N ) =

cF +∑∞
j=1

∑ j
i=1 ci M p j (K )

+∑∞
j=0

∑∞
i=1 ciT p j (K )

× ∫∞
0 Fi−1(u, u + T )dFj+1(u)

∑∞
j=0 p j (K )

∫∞
0 udFj+1(u)+ T

. (43)

Differentiating C3(T ) with respect to T and setting it equal to zero,

∞∑

j=0

p j+1(K )
∫ ∞

0
Q3(u, T )dFj+1(u) = cF +

∞∑

j=1

c j M G( j)(K ), (44)

where

Q3(u, T ) ≡
∞∑

i=1

ciT

∫ ∞

0
(l + x) d

[
λ(u + x)Hi−2(u, u + x)

]

=
∞∑

i=1

ciT

∫ ∞

0
(l + x)λ′(u + x)Hi−2(u, u + x)dx

+
∞∑

i=1

(c(i+3)T − c(i+2)T )

∫ ∞

0
(l + x) [λ(u + x)]2 Hi (u, u + x)dx,

and

l ≡
∞∑

j=1

p j (K )
∫ ∞

0
tdFj (t),

which represents the mean time until surviving objects have exceeded K . Letting
L3(T ) be the left-hand side of (44). Thus, if λ(t) increases with t , L3(T ) increases
with T . Therefore, if L3(∞) > cF +∑∞

j=1 c j M G( j)(K ), then there exists a finite
and unique T ∗

3 (0 < T ∗
3 < ∞) which satisfies (44).

In particular, when λ(t) = λ, then l = [1 + M(K )]/λ, and

Q3(u, T )= [1 + M(K )]
∞∑

j=1

Fj (T )(c( j+2)T − c( j+1)T )

+
∞∑

j=1

j Fj+1(T )(c( j+2)T − c( j+1)T ),

L3(∞) =
∞∑

j=1

(c∞T − c( j+1)T )+ [1 + M(K )](c∞T − c2T ).
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Therefore, if

∞∑

j=1

(c∞T − c( j+1)T )+ [1 + M(K )](c∞T − c2T ) > cF +
∞∑

j=1

c j M G( j)(K ),

then there exists a finite and unique T ∗
3 (0 < T ∗

3 < ∞), and the resulting cost rate is

C3(T ∗
3 )

λ
=

∞∑

j=0

Hj (T
∗
3 )c( j+2)T .

2. Optimal N∗
3 : When major collection is made only at collection N ,

C3(N ) ≡ lim
T →∞ C3(T, N ) = cF +∑∞

j=1
∑ j

i=1 ci M p j (K )+∑N
j=1 c jT

∑∞
j=0 p j (K )

∫∞
0 [1 − Fj+N (t)]dt

(N = 1, 2, . . .). (45)

From the inequality C3(N + 1)− C3(N ) ≥ 0,

Q3(N )c(N+1)T −
N∑

j=1

c jT ≥ cF +
∞∑

j=1

c j M G( j)(K ), (46)

where

Q3(N ) ≡
∑∞

j=0 p j (K )
∫∞

0 [1 − Fj+N (t)]dt
∑∞

j=0 p j (K )
∫∞

0 Hj+N (t)dt.

Letting L3(N ) be the left-hand side of (46),

L3(N+1)−L3(N ) = [
Q̃3(N + 1)− Q̃3(N )

] ∞∑

j=0

p j (K )
∫ ∞

0

[
1 − Fj+N+1(t)

]
dt,

where
Q̃3(i) ≡ c(i+1)T∑∞

j=0 p j (K )
∫∞

0 Hj+i (t)dt
.

Thus, if Q̃3(i) increases with i , L3(N ) increases with N . Therefore, if L3(∞) >

cF + ∑∞
j=1 c j M G( j)(K ), then there exists a finite and unique minimum N∗

3 (1 ≤
N∗

3 < ∞) which satisfies (46).
In particular, when λ(t) = λ, then Q3(N ) = M(K ) + N , where M(x) ≡∑∞
j=1 G( j)(x) is the expected number of minor collections before surviving objects

exceed x , and
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L3(N ) =
N∑

j=1

(c(N+1)T − c jT )+ M(K )c(N+1)T ,

L3(N + 1)− L3(N ) = [M(K )+ N + 1] (c(N+2)T − c(N+1)T ) > 0.

It is assumed that c∞T ≡ lim j→∞ c jT < ∞. Then,

L3(∞) =
∞∑

j=1

(c∞T − c jT )+ M(K )c∞T .

Clearly, if c∞T = ∞, then L2(∞) = ∞. Therefore, if

∞∑

j=1

(c∞T − c jT )+ M(K )c∞T > cF +
∞∑

j=1

c j M G( j)(K ),

then there exists a finite and unique minimum N∗
3 (1 ≤ N∗

3 < ∞) which satisfies
(46), and the resulting cost rate is

cN∗
3 T ≤ C3(N∗

3 )

λ
< c(N∗

3 +1)T .

4.3 Numerical Examples

It is assumed that ckT = cT + kβ (β > 0; k = 1, 2, . . .), and other assumptions are
the same as in Sect. 3.2. We give numerical examples of each model as follows:

Tables 3–6 present optimal λT ∗
i and Ci (T ∗

i )/λ (i = 2, 3), N∗
i and Ci (N∗

i )/λ (i =
2, 3), when cF = 100, cT = cN = 20, cS = 10, cM = 1, μ = 10 and σ = 1 for
different α and β. These show that both λT ∗

2 and N∗
2 decrease with α or β, both

λT ∗
3 and N∗

3 increase with α and decrease with β, all Ci (T ∗
i )/λ (i = 2, 3) and

Ci (N∗
i )/λ (i = 2, 3) increase with α or β.

It can be explained as follows:

• When α or β increases, it means that the total cost suffered for minor collections
or tenuring collections increases, then optimal major collection times should be
advanced, but even then the expected cost rates increase.

• The differences between Tables 3 and 5, Tables 4 and 6, are that when α increases,
M(K ) decreases, then optimal major collection times should be postponed,
because it is not economic to make major collection frequently.

• Compared Tables 3 with 4, Tables 5 with 6, these show that C2(T ∗
2 ) > C2(N∗

2 ) and
C3(T ∗

3 ) > C3(N∗
3 ) for the same parameters, that is, major collections made at N2

or N3 are better than those at T2 or T3. It is interesting that C2(N∗
2 ) ≈ C3(N∗

3 ) and
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Table 3 Optimal λT ∗
2 and C2(T ∗

2 )/λ when cF = 100, cT = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
λT ∗

2 C2(T ∗
2 )/λ λT ∗

2 C2(T ∗
2 )/λ λT ∗

2 C2(T ∗
2 )/λ

0.3 17.98 24.4699 15.51 25.1134 13.14 26.0229
0.4 14.09 28.1939 10.66 31.5677 7.77 35.1867
0.5 13.80 31.6197 9.95 35.5256 6.60 42.2212
0.6 12.86 32.8499 9.86 37.6922 6.33 46.6393
0.7 12.86 33.6762 9.86 39.2143 6.27 50.0259

Table 4 Optimal N∗
2 and C2(N∗

2 )/λ when cF = 100, cN = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
N∗

2 C2(N∗
2 )/λ N∗

2 C2(N∗
2 )/λ N∗

2 C2(N∗
2 )/λ

0.3 17 24.1785 16 24.3642 15 24.7538
0.4 14 28.6941 11 30.5818 8 32.8485
0.5 14 31.1212 10 34.5257 7 39.7804
0.6 14 32.3506 10 36.6942 6 44.1853
0.7 14 33.1763 10 38.2160 6 47.5548

Table 5 Optimal λT ∗
3 and C3(T ∗

3 )/λ when cF = 100, cT = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
λT ∗

3 C3(T ∗
3 )/λ λT ∗

3 C3(T ∗
3 )/λ λT ∗

3 C3(T ∗
3 )/λ

0.3 1.95 23.9629 0.06 24.1471 0.01 24.3401
0.4 6.92 28.9179 3.42 30.8389 0.57 32.8532
0.5 9.45 31.4559 5.54 35.0679 2.10 40.4869
0.6 10.75 32.7357 6.69 37.3694 3.06 45.3683
0.7 11.60 33.5878 7.48 38.9639 3.80 49.0298

Table 6 Optimal N∗
3 and C3(N∗

3 )/λ when cF = 100, cN = 20, cS = 10, cM = 1, μ = 10 and
σ = 1

α β = 1 β = 2 β = 5
N∗

3 C3(N∗
3 )/λ N∗

3 C3(N∗
3 )/λ N∗

3 C3(N∗
3 )/λ

0.3 3 23.9071 2 24.1387 1 24.3365
0.4 8 28.6662 5 30.5026 2 32.5947
0.5 10 31.1223 7 34.4997 3 39.6811
0.6 12 32.3455 8 36.6799 4 44.1223
0.7 13 33.1731 9 38.2105 5 47.4478
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C2(T ∗
2 ) ≈ C3(T ∗

3 ), that is, although the two policies are different, the resulting
expected cost rates are almost the same.

• We can derive the relationship of the two polices, that is,

λT ∗
2 ≈ 1 + M(K )+ λT ∗

3 ,

N∗
2 ≈ M(K )+ N∗

3 .

For example, when α = 0.3 and β = 1, M(K ) = 14.8, then

λT ∗
2 = 17.98, 1 + M(K )+ λT ∗

3 = 1 + 14.8 + 1.95 = 17.75,

N∗
2 = 17, M(K )+ N∗

3 = 14.8 + 3 = 17.8.

Therefore, the concrete performances of the two kinds of policies would depend
on the program engineers and software system structures at the beginning, and so
on.

5 Continuous Models

From the related studies in Sect. 2, we know that the volume of surviving objects
that should be copied increases with the number of minor collections and is relatively
stable with the number of tenuring collections. However, it may be difficult to inspect
the survivor rates exactly at collection times. Hence, in this section, we assume
that the total volume of surviving objects in Eden and survivor space at time t is
Z(t) = A(t)t + σB(t) with distribution Pr{Z(t) ≤ x} = W (t, x), where both A(t)
and B(t) are random variables of time t . Then, the expected cost of minor collection
at time t is

C(t, K ) = 1

W (t, K )

∫ K

0
[cS + cM (x)] dW (t, x), (47)

where C(0, K ) ≡ 0. Letting r(t, x) be the failure rate of W (t, x), i.e., r(t, x) ≡
−[dW (t, x)/dt]/W (t, x) [3]. It is clear that if r(t, x) increases with t for any x ≥ 0,
C(t, K ) increases with t for any K ≥ 0.

Suppose that garbage collections occur at a nonhomogeneous Poisson process
in Sect. 2, minor collections are made when the garbage collector begins to work,
tenuring collection is made at a planned time T (0 < T ≤ ∞), or when surviving
objects have exceeded a threshold level K (0 < K ≤ ∞), whichever occurs first.
Then, the mean time to tenuring collection is

E4(L) = T W (T, K )+
∫ T

0
tdW (t, K ) =

∫ T

0
W (t, K )dt, (48)

where V (t, x) ≡ 1 − V (t, x) for any distribution V (t, x).
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The expected cost suffered for minor collections until tenuring collection is

CM =W (T, K )
∞∑

j=1

∫ T

0
C(t, K )dFj (t)

+
∫ T

0

⎡

⎣
∞∑

j=1

∫ t

0
C(u, K )dFj (u)

⎤

⎦ dW (t, K )

=
∫ T

0
λ(t)C(t, K )W (t, K )dt. (49)

Then, the expected cost until tenuring collection is

E4(C) = cK − (cK − cT )W (T, K )+
∫ T

0
λ(t)C(t, K )W (t, K )dt. (50)

Therefore, from (48) to (50), the expected cost rate is

C4(T, K ) =

cK − (cK − cT )W (T, K )

+ ∫ T
0 λ(t)C(t, K )W (t, K )dt

∫ T
0 W (t, K )dt

. (51)

5.1 Optimal Policies

It can be seen that C4(T, K ) includes the following collection polices:

• Tenuring collection is made at time T for a given K , the reason why making such
a policy is cT < cK .

• Tenuring collection is made at level K for a given T . In this case, cK < cT .
• Tenuring collection is made only at time T or only at level K . In these two cases,

cK = cT .

1. Optimal T ∗
4 : When cT < cK , we find an optimal T ∗

4 which minimizes C4(T, K )
in (51) for a given K . Differentiating C4(T, K )with respect to T and setting it equal
to zero,

(cK − cT )

[
r(T, K )

∫ T

0
W (t, K )dt − W (T, K )

]

+
∫ T

0
[λ(T )C(T, K )− λ(t)C(t, K )] W (t, K )dt = cT . (52)

Letting L4(T ) be the left-hand side of (52),

L4(0) ≡ lim
T →0

L4(T ) = 0,
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L ′
4(T ) =(cK − cT )r

′(T, K )
∫ T

0
W (t, K )dt

+ [
λ′(T )C(T, K )+ λ(T )C ′(T, K )

] ∫ T

0
W (t, K )dt.

Thus, if both r(t, K ) andλ(t) increase with t , then the left-hand side of (52) increases
with t from 0. Therefore, there exists a unique optimal T ∗

4 (0 < T ∗
4 ≤ ∞) which

satisfies (52), and the resulting cost rate is

C4(T
∗
4 , K ) = (cK − cT )r(T

∗
4 , K )+ λ(T ∗

4 )C(T
∗
4 , K ).

2. Optimal K ∗
4 : When cK < cT , we find an optimal K ∗

4 which minimizes C4(T, K )
in (51) for a given T . Lettingw(t, x) be a density function of W (t, x), i.e.,w(t, x) ≡
dW (t, x)/dx . Then, differentiating C4(T, K ) with respect to K and setting it equal
to zero,

(cT − cK )

[
Q4(T, K )

∫ T

0
W (t, K )dt − W (T, K )

]

+
∫ T

0

[
Q̃4(T, K )− λ(t)C(t, K )

]
W (t, K )dt = cK , (53)

where

Q4(T, K ) ≡ w(T, K )
∫ T

0 w(t, K )dt
, Q̃4(T, K ) ≡ [cS + cM (K )]

∫ T
0 λ(t)w(t, K )dt

∫ T
0 w(t, K )dt

.

Letting L4(K ) be the left-hand side of (53),

L4(0) ≡ lim
K→0

L4(K ) = 0,

L ′
4(K ) =(cT − cK )Q

′
4(T, K )

∫ T

0
W (t, K )dt + Q̃′

4(T, K )
∫ T

0
W (t, K )dt.

Thus, if both Q4(T, K ) and Q̃4(T, K ) increase with K , then the left-hand side of (53)
increases with K from 0. Therefore, there exists a unique optimal K ∗

4 (0 < K ∗
4 ≤ ∞)

which satisfies (53), and the resulting cost rate is

C4(T, K ∗
4 ) = (cT − cK )Q4(T, K ∗

4 )+ Q̃4(T, K ∗
4 ).

3. Optimal T̃ ∗
4 : When cK = cT , putting that K = ∞ in (51), the expected cost rate

is

C̃4(T ) ≡ lim
K→∞ C4(T, K ) = 1

T

[∫ T

0
λ(t)C(t,∞)dt + cT

]
, (54)
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where

C(t,∞) ≡
∫ ∞

0
[cS + cM (x)] dW (t, x) = cS +

∫ ∞

0
W (t, x)dcM (x).

From (52), ifλ(t) increases with t , then an optimal tenuring collection time T̃ ∗
1 which

minimizes (54) is given by a unique solution of the equation

∫ T

0
[λ(T )C(T,∞)− λ(t)C(t,∞)] dt = cT , (55)

and the resulting cost rate is

C̃4(T̃
∗
4 ) = λ(T̃ ∗

4 )C(T̃
∗
4 ,∞).

In particular, when λ(t) = λ, (55) becomes

∫ ∞

0

{∫ T

0
[W (t, x)− W (T, x)]dt

}
dcM (x) = cT

λ
, (56)

which increases with T , and the resulting cost rate is

C̃4(T̃ ∗
4 )

λ
= cS +

∫ ∞

0
W (T̃ ∗

4 , x)dcM (x).

4. Optimal K̃ ∗
4 : When cK = cT , putting that T = ∞ in (51), the expected cost rate

is

C̃4(K ) = lim
T →∞ C4(T, K ) =

∫∞
0 λ(t)C(t, K )W (t, K )dt + cK∫∞

0 W (t, K )dt
. (57)

From (53), if Q̃4(∞, K ) increases with K , then an optimal tenuring collection time
K̃ ∗

4 which minimizes (57) is given by a unique solution of the equation

∫ ∞

0

[
Q̃4(∞, K )− λ(t)C(t, K )

]
W (t, K )dt = cK , (58)

and the resulting cost rate is

C̃4(K̃
∗
4 ) = Q̃4(∞, K̃ ∗

4 ).

In particular, when λ(t) = λ, (58) becomes

∫ ∞

0

[∫ K

0
W (t, x)dcM (x)

]
dt = cK

λ
, (59)
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Table 7 Optimal T ∗
4 and C4(T ∗

4 , K ) when cT = 10 and cS = λ = μ = σ = 1

K cK cM = 0.1 cM = 0.5 cM = 1.0
T ∗

4 C4(T ∗
4 , K ) T ∗

4 C4(T ∗
4 , K ) T ∗

4 C4(T ∗
4 , K )

20 4.73 0.4723 4.09 0.5462 3.57 0.6324
30 3.25 0.5473 3.06 0.6087 2.87 0.6822

5 40 2.80 0.5891 2.69 0.6453 2.56 0.7133
50 2.57 0.6191 2.49 0.6718 2.40 0.7361

20 7.43 0.2990 5.77 0.4285 4.50 0.5586
30 6.37 0.3160 5.40 0.4339 4.42 0.5596

10 40 5.91 0.3252 5.18 0.4378 4.36 0.5604
50 5.63 0.3320 5.03 0.4408 4.31 0.5612

which increases with K and the resulting cost rate is

C̃4(K̃ ∗
4 )

λ
= cS + cM (K̃

∗
4 ).

5.2 Numerical Examples

We compute numerical examples of the models discussed above for Z(t) = μt +
σB(t) when B(t) is normally distributed with mean 0 and variance t or for Z(t) =
A(t)t when A(t) is normally distributed with mean μ and variance σ2/t , that is,

W (t, x) = �

(
x − μt

σ
√

t

)
, (60)

where �(x) is the standard normal distribution with mean 0 and variance 1, i.e.,
�(x) ≡ (1/

√
2π)

∫ x
−∞ e−u2/2du.

From Tables 7– 9, we can obtain the following results:

• Optimal tenuring collection times increase with the initial parameters and decrease
with minor or tenuring collection cost, however, the resulting cost rates have the
opposite tendencies, that is, they decrease with the initial parameters and increase
with minor or tenuring collection cost. Take T ∗

4 and C4(T ∗
4 , K ) in Table 7 for an

example: T ∗
4 increase with K and decrease with cK or cM . Increasing in K , cK

or cM means that tenuring collection time made at a given level K is postponed,
tenuring or minor collection cost is increased, respectively, so that tenuring col-
lection times should be postponed for K or be advanced for cK or cM to decrease
the frequency of tenuring collections or to decrease the total minor collection cost.
C4(T ∗

4 , K ) decrease with K and increase with cK or cM for the reason that the
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Table 8 Optimal K ∗
4 and C4(T, K ∗

4 ) when cK = 10 and cS = λ = μ = σ = 1

T cT cM = 0.1 cM = 0.5 cM = 1.0
K ∗

4 C4(T, K ∗
4 ) K ∗

4 C4(T, K ∗
4 ) K ∗

4 C4(T, K ∗
4 )

20 4.35 0.4677 3.77 0.5342 3.23 0.6063
30 3.45 0.5500 3.14 0.6048 2.80 0.6661

5 40 3.01 0.6153 2.79 0.6633 2.54 0.7183
50 2.67 0.6719 2.55 0.7155 2.36 0.7659

20 7.43 0.2973 5.30 0.4209 3.92 0.5328
30 6.37 0.3202 4.93 0.4221 3.80 0.5390

10 40 5.80 0.3372 4.67 0.4318 3.71 0.5448
50 5.42 0.3512 4.48 0.4405 3.62 0.5503

Table 9 Optimal T̃ ∗
4 , C̃4(T̃ ∗

4 ), K̃ ∗
4 and C̃4(K̃ ∗

4 ) when cT = cK = 10 and cS = λ = μ = σ = 1

cM T̃ ∗
4 C̃4(T̃ ∗

4 ) K̃ ∗
4 C̃4(K̃ ∗

4 )

0.1 14.24 0.2424 14.15 0.2413
0.2 10.11 0.3021 9.99 0.2997
0.3 8.28 0.3486 8.15 0.3444
0.4 7.20 0.3882 7.05 0.3820
0.5 6.46 0.4233 6.30 0.4151
0.6 5.91 0.4554 5.75 0.4449
0.7 5.49 0.4851 5.32 0.4722
0.8 5.15 0.5130 4.97 0.4976
0.9 4.86 0.5394 4.68 0.5114
1.0 4.62 0.5546 4.44 0.5239

frequency of tenuring collections is decreased and tenuring or minor collection
cost is increased.

• Compared with Tables 7 and 8, we can derive that T ∗
4 ≈ K ∗

4 , in fact, this means
that μT ∗

4 ≈ K ∗
4 , which corresponds to the assumption of Z(t). C4(T ∗

4 , K ) ≈
C4(T, K ∗

4 ), however, C4(T ∗
4 , K ) are sometimes greater than and sometimes less

than C4(T, K ∗
4 ). That is, we can not compare them exactly.

• C̃4(T ) and C̃4(K ) are the particular cases of C4(T, K ). Take T ∗
4 and T̃ ∗

4 in Tables
7 and 9 for an example, when cM = 0.1, 0.5, 1.0, T̃ ∗

4 should be greater than T ∗
4

and C4(T ∗
4 , K ) should be less than C̃4(T̃ ∗

4 ) when K = 10 and cK = 20.

6 Conclusions

This chapter has discussed the problems of when to make tenuring and major col-
lections for a generational garbage collector to meet the pause time goal. According
to the properties of adaptive tenuring, two cases of working schemes have been
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introduced first, where tenuring and major collections have been considered as
renewal points of the collection processes, respectively. Second, analyses of the
costs suffered for collections, including minor, tenuring and major collections, have
been given. Third, using the techniques of cumulative processes and degradation
processes or continuous wear processes, expected cost rates for the two cases have
been derived, and optimal tenuring collection times and major collection times are
discussed analytically. Fourth, numerical examples have been given and some com-
parisons of the policies have been made. Such theoretical analyses would be applied
to actual garbage collections by suitable modifications and extensions.
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