
Chapter 5

Recurrent/Seasonal Mechanism to Improve

the Accurate Level of Forecasting

As demonstrated in Chap. 4, different hybrid chaotic evolutionary algorithms,

including chaotic genetic algorithm (CGA), chaotic simulated annealing (CSA)

algorithm, chaotic cloud simulated annealing (CCSA) algorithm, chaotic GASA

(CGASA) algorithm, chaotic particle swarm optimization (CPSO) algorithm, chaotic

ant swarm (CAS) optimization algorithm, chaotic artificial bee colony (CABC)

algorithm, and chaotic immune algorithm (CIA), are employed to determine suitable

parameter combination of an SVR-based electric load forecasting model. These

forecasting results indicate that almost all SVR-based models with different hybrid

chaotic evolutionary algorithms are superior to other competitive forecasting models

(including ARIMA, GRNN, and TF-ε-SVR-SA models). However, these hybrid

chaotic evolutionary algorithms still do not provide satisfactory forecasting perfor-

mance (well fitting the actual fluctuation tendency) even their forecasting accuracy

receives significant level. To improve the fitting effects for each SVR-chaotic-/cloud-

evolutionary algorithm-based model, this chapter introduces two combined

mechanisms (recurrent mechanism or seasonal mechanism) to significantly improve

the fitting effects with the actual fluctuation tendency.

5.1 Combined Mechanisms

5.1.1 Recurrent Mechanism

For a feed-forward neural network, links may be established within layers of a neural

network; these types of networks are so-called recurrent neural networks (RNNs).

The main concept on which RNNs are based is that every unit is considered as an

output of the network and the provision of adjusted information as input in a training

process [1]. RNNs are extensively applied in time series forecasting, such as Jordan

recurrent neural network model [2] (Fig. 1.1), Elman recurrent neural network model

[3] (Fig. 1.2), and Williams and Zipser recurrent neural network model [4] (Fig. 1.3).

These three models mentioned all consist of multilayer perceptron (MLP) with a
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hidden layer. Jordan networks have a feedback loop from the output layer with past

values to an additional input, namely, “context layer.” Then, output values from the

context layer are fed back into the hidden layer. Elman networks have a feedback

loop from the hidden layer to the context layer. In Williams and Zipser networks,

nodes in the hidden layer are fully connected to each other. Both Jordan and Elman

networks include an additional information source from the output layer or the hidden

layer. Hence, these models use mainly past information to capture detailed informa-

tion. Williams and Zipser network takes much more information from the hidden

layer and back into themselves. Therefore, Williams and Zipser networks are sensi-

tive when models are implemented [5]. Jordan networks and Elman networks are

suited to time series forecasting [6, 7]. In this book, the Jordan network is employed

as a base to construct the recurrent SVR models.

In a Jordan recurrent neural network, all neurons in a layer except those in the

context layer are connected with all neurons in the next layer. A context layer is a

special hidden layer. Interactions only occur between neurons in the hidden layer

and those in the context layer. For a Jordan network with p inputs, q hidden, and r
output neurons, the output of the nth neuron, fnðtÞ, is shown as Eq. (5.1) [8–11]:

fnðtÞ ¼
Xq
i¼1

WiφiðtÞ þ biðtÞ (5.1)

where Wi are weights between the hidden and output layers and φi(t) is the output
function of the hidden neurons, which is as Eq. (5.2),

φiðtÞ ¼ g
XP
j¼1

vijxjðtÞ þ
Xs
k¼1

Xr
v¼1

wikv fvðt� kÞ þ biðtÞ
 !

; (5.2)

where vij are weights between the input and the hidden layer, wikv are weights

between the context and the hidden layer with k delay periods, and s is the total

number of context layers in past output data.

Back-propagation yields gradients for adapting weights of a neural network. The

back-propagation algorithm is presented as follows. First, the output of the nth
neuron in Eq. (5.2) is rewritten as

fnðtÞ ¼ hðxTðtÞϕðtÞÞ; (5.3)

where h(·) is the nonlinearity function of xT(t) and fn(t); x
T(t) ¼ [x1(t), . . ., xp(t)]

T is

the input vector; andϕðtÞ ¼ ½ϕ1ðtÞ; . . . ;ϕPðtÞ�T is the weight vector. A cost function

is then presented to be the instantaneous performance index, as shown in Eq. (5.4):

JðϕðtÞÞ ¼ 1

2
dðtÞ � fnðtÞ½ �2 ¼ 1

2
dðtÞ � hðxTðtÞϕðtÞÞ� �2

(5.4)

where d(t) ¼ [d1(t), . . ., dp(t)]
T is the desired output.
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Second, the instantaneous output error at the output neuron and the revised

weight vector in the next moment are given by Eqs. (5.5) and (5.6), respectively:

eðtÞ ¼ dðtÞ � fnðtÞ ¼ dðtÞ � hðxTðtÞϕðtÞÞ; (5.5)

ϕðtþ 1Þ ¼ ϕðtÞ � ηrϕJðϕðtÞÞ; (5.6)

where η is the learning rate.

Third, the gradient rϕJðϕðtÞÞ can be calculated as Eq. (5.7):

rϕ JðϕðtÞÞ ¼ @JϕðtÞ
@ϕðtÞ ¼ eðtÞ � @eðtÞ

@ϕðtÞ ¼ �eðtÞh0ðxTðtÞϕðtÞÞxðtÞ; (5.7)

where h0ð�Þ is the first derivative of the nonlinearity hð�Þ . Finally, the weight is

revised as Eq. (5.8):

ϕðtþ 1Þ ¼ ϕðtÞ þ ηeðtÞh0ðxTðtÞϕðtÞÞxðtÞ (5.8)

Figure 5.1 shows the architecture of the general recurrent SVR-based (RSVR-

based) model. The output of RSVR-based model (~f nðtÞ) is as Eq. (5.9):

~fnðtÞ ¼
XP
i¼1

WTψðxTðtÞÞ þ bðtÞ (5.9)
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Fig. 5.1 The architecture of RSVR-based model
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Then, Eq. (5.9) replaces Eq. (2.47) in the SVR-based model, to run the loop of

SVR-based model in the search for values of three parameters. Finally, the forecast

values ~f nðtÞ are calculated using Eq. (5.9).

5.1.2 Seasonal Mechanism

As mentioned, the electric load often demonstrates a cyclic tendency due to

economic activities or climate cyclic nature. Lots of researchers in financial fields

have explored how to identify the seasonal index to adjust the seasonal biases, such

as Martens et al. [12], Taylor and Xu [13], and Andersen and Bollerslev [14] apply

flexible Fourier form to estimate the variation of daily stock exchange, then receive

the seasonal variation estimator; Deo et al. [15] proposed a revised model to further

identify the seasonal variation estimator that is composed of two linear

combinations in a cyclic period. Based on the data series-type consideration and

inspired from previous papers, this investigation firstly applies ARIMA methodol-

ogy to identify the seasonal length, then proposes the seasonal index to easily adjust

cyclic effects, as shown in Eq. (5.10):

Seasont ¼ ln
at
ft

� �2

¼ 2 ln at � ln
Xn
i¼1

β�i � βi
� �

Kðx; xiÞ þ b

 !
(5.10)

where t ¼ j, l + j, 2l + j, . . ., (m � 1)l + j only for the same time point in each

period. Then, the seasonal index (SI) for each time point j is computed as

Eq. (5.11):

SIj ¼ exp
1

m
ðseasonj þ seasonlþj þ � � � þ seasonðm�1ÞlþjÞ

� ��
2 (5.11)

where j ¼ 1, 2, . . ., l. The seasonal mechanism is shown in Fig. 5.2.

Eventually, the forecasting value of the SSVRCCSA is obtained by Eq. (5.12):

fNþk ¼
XN
i¼1

ðβ�i � βiÞKðxi; xNþkÞ þ b

 !
� SIk; (5.12)

where k ¼ 1, 2, . . ., l implies the time point in another period (for forecasting

period).
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5.2 Seasonal ARIMA Model and Seasonal HW (SHW) Model

5.2.1 SARIMA Model

For the Seasonal ARIMA (SARIMA) model, by Minitab 14 statistic software, the

parameters are determined by taking the first-order regular difference and first

seasonal difference to remove nonstationary and seasonality characteristics.

Using statistical packages, with no residuals autocorrelated and approximately

white noise residuals, the most suitable models for the employed electric load

data is SARIMA(4,2,2) � (1,2,1)12 with constant item. The equation used for the

SARIMA model is presented as Eq. (5.13):

ð1þ 1:067Bþ 0:6578B2 þ 0:4569B3 þ 0:1819B4Þð1þ 0:3012B5ÞWt ¼
� 0:7758þ ð1� 0:8055B� 0:1857B2Þð1� 0:5054B5Þεt; (5.13)

where Wt ¼ (1 � B)2(1 � B12)2Xt.

After determining the suitable parameters of the SARIMA model, it is

important to examine how closely the proposed model fits a given time series.

The autocorrelation function (ACF) is calculated to verify the parameters.

Figure 5.3 plots the estimated residual ACF and indicates that the residuals are

not autocorrelated. PACF, the partial autocorrelation function, displayed in

Fig. 5.4, is also used to check the residuals and indicates that the residuals are

not correlated. The forecasting results are shown in the third column of

Table 5.1.
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Fig. 5.3 Estimated residual ACF
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5.2.2 SHW Model

For the seasonal Holt–Winters (SHW) model, by Minitab 14 statistic software, the

α-value and β-value are determined as 0.5618 and 0.0472, respectively.

For the seasonal Holt–Winters (SHW) method, by Minitab 14 statistic software,

the appropriate parameters (L, α, β, and γ) are determined 12, 0.95, 0.20, and 0.20,

correspondingly. The forecasting results are shown in the fourth column of Table 5.1.

Figure 5.5 is provided to illustrate the forecasting accuracy among different

models. Obviously, these four models, excepting GRNN and BPNN models, are

fitting much better than ARIMA and HW models. Furthermore, to verify the

significance of accuracy improvement of SARIMA(4,2,2) � (1,2,1)12 and SHW

(0.12, 0.95, 0.2, 0.2) models comparing with ARIMA(1,1,1) and HW(0.5618,

0.0472) models, respectively, the Wilcoxon signed-rank test and asymptotic test
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Fig. 5.4 Estimated residual PACF

Table 5.1 Forecasting results of SARIMA, SHW, GRNN, and BPNN models (unit: hundred

million kWh)

Time point

(month) Actual

SARIMA(4,2,2)

� (1,2,1)12

SHW(0.12, 0.95,

0.2, 0.2)

GRNN

(σ ¼ 3.33) BPNN

Oct. 2008 181.07 184.210 181.554 191.131 172.084

Nov. 2008 180.56 187.638 190.312 187.827 172.597

Dec. 2008 189.03 194.915 197.887 184.999 176.614

Jan. 2009 182.07 197.119 193.511 185.613 177.641

Feb. 2009 167.35 155.205 163.113 184.397 180.343

Mar. 2009 189.30 187.090 181.573 178.988 183.830

Apr. 2009 175.84 166.394 178.848 181.395 187.104

MAPE (%) 4.404 3.566 4.636 5.062
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are conducted and shown in Tables 5.2 and 5.3. It is clear to receive that SARIMA

and SHW models significantly outperform ARIMA and HW models, respectively.

Therefore, SARIMA(4,2,2) � (1,2,1)12 and SHW(0.12, 0.95, 0.2, 0.2) are potential

to compare with seasonal-SVR-chaotic-evolutionary algorithm-based models in the

following sections.

Table 5.2 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SARIMA(4,2,2) � (1,2,1)12 vs. ARIMA(1,1,1) 2a 2a

SHW(0.12, 0.95, 0.2, 0.2) vs. HW(0.5618, 0.0472) 1a 1a

aDenotes that SARIMA and SHW models significantly outperform other alternative models
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Fig. 5.5 Forecasting results of SARIMA, SHW, GRNN, and BPNN models

Table 5.3 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SARIMA(4,2,2) � (1,2,1)12 vs.

ARIMA(1,1,1)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �9.511; p ¼ 0.000

(reject H0)

S1 ¼ �5.958; p ¼ 0.000

(reject H0)

SHW(0.12, 0.95, 0.2, 0.2) vs. HW

(0.5618, 0.0472)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �6.262; p ¼ 0.000

(reject H0)

S1 ¼ �6.262; p ¼ 0.000

(reject H0)
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5.3 Seasonal Mechanism in SVRCGA Model and Forecasting

Results

Based on the total employed electric load, each fixed point (month) has its electric

load status (specific data pattern); therefore, the seasonal (cyclic) length can be

estimated as 12 [16]. The 12 seasonal indexes can be estimated by the 46 in-sample

forecasting loads of the SVRCGAmodel mentioned in Sect. 4.2.3, including 32 and

14 in-sample forecasting loads in training stage and validation stage, respectively,

as shown in Table 5.4. The actual values and the out-of-sample forecasting loads

obtained by different forecasting models, including SARIMA(4,2,2) � (1,2,1)12,

TF-ε-SVR-SA, SHW(0.12, 0.95, 0.2, 0.2), SVRCGA, and SSVRCGA models, are

illustrated in Table 5.5. The proposed SSVRCGAmodel with smaller MAPE values

is superior to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-
SA, and SVRCGA models, due to its capability to excellently learn about the

monthly load changing tendency. The seasonal mechanism further revises

the forecasting results from the SVRCGA model (MAPE ¼ 3.382 %), based on

the seasonal indexes (per month) obtained from training and validation stages, to

achieve more acceptable forecasting accuracy (2.695 %).

Furthermore, for forecasting accuracy improvement significant test, the Wilcoxon

signed-rank test and asymptotic test, as mentioned, are also conducted. The test

results are shown in Tables 5.6 and 5.7, respectively. Clearly, the SSVRCGA

model receives complete significant forecasting accuracy improvement than

SARIMA(4,2,2) � (1,2,1)12 model, but incomplete significant forecasting accuracy

Table 5.5 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCGA, and SSVRCGA

models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12,

0.95, 0.2, 0.2)

TF-ε-
SVR-SA SVRCGA SSVRCGA

Oct. 2008 181.07 184.210 181.554 184.504 185.224 180.1534

Nov. 2008 180.56 187.638 190.312 190.361 186.046 190.4631

Dec. 2008 189.03 194.915 197.887 202.980 186.865 198.5843

Jan. 2009 182.07 197.119 193.511 195.753 187.680 190.7387

Feb. 2009 167.35 155.205 163.113 167.580 188.493 170.7151

Mar. 2009 189.30 187.090 181.573 185.936 189.149 190.7486

Apr. 2009 175.84 166.394 178.848 180.165 178.300 175.3391

MAPE (%) 4.404 3.566 3.799 3.382 2.695

Table 5.4 The seasonal indexes for each time point (month) for the SVRCGA model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0163 July 1.0566

February 0.9057 August 1.0527

March 1.0085 September 0.9987

April 0.9834 October 0.9726

May 1.0112 November 1.0237

June 1.0140 December 1.0627
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improvement than SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA, and SVRCGA models

(only receives significance with α ¼ 0.05 level in Wilcoxon test, and all pass with

both levels in asymptotic test). Particularly for comparing with TF-ε-SVR-SA model

(also with seasonal adjustment mechanism but without hybrid evolutionary algorithm

and chaotic sequence), the comparison results recognize that chaotic sequence could

significantly improve the performance in terms of premature convergence. By com-

paring SVRCGA with SSVRCGAmodels, it also indicates the significant superiority

from seasonal mechanism, even it is a little time-consuming; however, it deserves to

pay some attention on those cyclic information while modeling. Figure 5.6 is

provided to illustrate the forecasting accuracy among different models.

5.4 Seasonal Mechanism in SVRCSA Model and Forecasting

Results

Similarly, the seasonal (cyclic) length of the total employed electric load is also set as

12. Thus, the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads

of the SVRCSA model mentioned in Sect. 4.3.3, including 32 and 14 in-sample

Table 5.6 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCGA vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SSVRCGA vs. SHW(0.12, 0.95, 0.2, 0.2) 3 3a

SSVRCGA vs. TF-ε-SVR-SA 3 3a

SSVRCGA vs. SVRCGA 3 3a

aDenotes that SSVRCGA model significantly outperforms other alternative models

Table 5.7 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCGA vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.958; p ¼ 0.00155

(reject H0)

S1 ¼ �2.958; p ¼ 0.00155

(reject H0)

SSVRCGA vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.146; p ¼ 0.000828

(reject H0)

S1 ¼ �3.146; p ¼ 0.000828

(reject H0)

SSVRCGA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �4.284; p ¼ 0.000

(reject H0)

S1 ¼ �4.284; p ¼ 0.000

(reject H0)

SSVRCGA vs. SVRCGA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.180; p ¼ 0.00074

(reject H0)

S1 ¼ �3.180; p ¼ 0.00074

(reject H0)
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forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.8. The actual values and the out-of-sample forecasting loads obtained by

different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-SA,
SHW(0.12, 0.95, 0.2, 0.2), SVRCSA, and SSVRCSA models, are illustrated in

Table 5.9. The proposed SSVRCSA model with smaller MAPE values is superior

to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA, and

SVRCSA models, due to its capability to excellently learn about the monthly load

changing tendency. The seasonal mechanism further revises the forecasting results

from the SVRCSA model (MAPE ¼ 3.633 %), based on the seasonal indexes (per

month) obtained from training and validation stages, to achieve more acceptable

forecasting accuracy (2.844 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-rank

test and asymptotic test are employed. The test results are shown in Tables 5.10 and

5.11, respectively. Clearly, the SSVRCSA model receives complete significant

forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12 and SHW

Table 5.8 The seasonal indexes for each time point (month) for the SVRCSA model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0170 July 1.0714

February 0.9212 August 1.0633

March 1.0324 September 1.0065

April 0.9988 October 0.9894

May 1.0302 November 1.0430

June 1.0301 December 1.0617
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Fig. 5.6 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCGA, and SSVRCGA

models
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(0.12, 0.95, 0.2, 0.2) models, but incomplete significant forecasting accuracy

improvement than TF-ε-SVR-SA and SVRCSA models (only receives significance

with α ¼ 0.05 level inWilcoxon test, and all pass with both levels in asymptotic test).

Particularly for comparing with TF-ε-SVR-SA model (also with seasonal adjustment

mechanism but without hybrid evolutionary algorithm and chaotic sequence), the

Table 5.11 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCSA vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.657; p ¼ 0.00394

(reject H0)

S1 ¼ �2.657; p ¼ 0.00394

(reject H0)

SSVRCSA vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.294; p ¼ 0.01088

(reject H0)

S1 ¼ �2.294; p ¼ 0.01088

(reject H0)

SSVRCSA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.465; p ¼ 0.000265

(reject H0)

S1 ¼ �3.465; p ¼ 0.000265

(reject H0)

SSVRCSA vs. SVRCSA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.093; p ¼ 0.0182

(reject H0)

S1 ¼ �2.093; p ¼ 0.0182

(reject H0)

Table 5.9 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCSA, and SSVRCSA

models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12, 0.95,

0.2, 0.2)

TF-ε-
SVR-SA SVRCSA SSVRCSA

Oct. 2008 181.07 184.210 181.554 184.504 184.059 182.103

Nov. 2008 180.56 187.638 190.312 190.361 183.717 191.626

Dec. 2008 189.03 194.915 197.887 202.980 183.854 195.202

Jan. 2009 182.07 197.119 193.511 195.753 184.345 187.487

Feb. 2009 167.35 155.205 163.113 167.580 184.489 169.942

Mar. 2009 189.30 187.090 181.573 185.936 184.186 190.149

Apr. 2009 175.84 166.394 178.848 180.165 184.805 184.576

MAPE (%) 4.404 3.566 3.799 3.633 2.844

Table 5.10 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCSA vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SSVRCSA vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCSA vs. TF-ε-SVR-SA 3 3a

SSVRCSA vs. SVRCSA 3 3a

aDenotes that SSVRCSA model significantly outperforms other alternative models
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comparison results also recognize that chaotic sequence could significantly improve

the performance in terms of premature convergence. By comparing SVRCSA with

SSVRCSA models, it also indicates the significant superiority from seasonal mecha-

nism. It deserves to pay some attention on those cyclic information while modeling.

Figure 5.7 is provided to illustrate the forecasting accuracy among different models.

5.5 Seasonal Mechanism in SVRCCSA Model and Forecasting

Results

The seasonal (cyclic) length of the total employed electric load is also set as 12.

Thus, the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of

the SVRCCSA model mentioned in Sect. 4.4.3, including 32 and 14 in-sample

forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.12. The actual values and the out-of-sample forecasting loads obtained by
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Fig. 5.7 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCSA, and SSVRCSA

models

Table 5.12 The seasonal indexes for each month for the SVRCCSA model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0207 July 1.0891

February 0.9391 August 1.0789

March 1.0500 September 1.0258

April 1.0056 October 1.0053

May 1.0418 November 1.0612

June 1.0466 December 1.0643
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different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-
SA, SHW(0.12, 0.95, 0.2, 0.2), SVRCSA, and SSVRCSA models, are illustrated

in Table 5.13. The proposed SSVRCCSA model with smaller MAPE values is

superior to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA,
and SVRCCSA models, due to its capability to excellently learn about the monthly

load changing tendency. The seasonal mechanism further revises the forecasting

results from the SVRCCSA model (MAPE ¼ 3.406 %), based on the seasonal

indexes (per month) obtained from training and validation stages, to achieve more

acceptable forecasting accuracy (1.973 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-rank

test and asymptotic test are employed. The test results are shown in Tables 5.14 and

5.15, respectively. Clearly, the SSVRCCSA model receives complete significant

forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12, SHW(0.12,

0.95, 0.2, 0.2), TF-ε-SVR-SA, and SVRCCSA models. Particularly for comparing

with TF-ε-SVR-SA model (also with seasonal adjustment mechanism but without

hybrid evolutionary algorithm and chaotic sequence), the comparison results also

recognize that chaotic sequence could significantly improve the performance in terms

of premature convergence. By comparing SVRCCSA with SSVRCCSA models, it

also indicates the significant superiority from seasonal mechanism. It deserves to pay

some attention on those cyclic information while modeling. Figure 5.8 is provided to

illustrate the forecasting accuracy among different models.

Table 5.13 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCCSA, and SSVRCCSA
models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12,

0.95, 0.2, 0.2)

TF-ε-
SVR-SA SVRCCSA SSVRCCSA

Oct. 2008 181.07 184.210 181.554 184.504 179.138 180.083

Nov. 2008 180.56 187.638 190.312 190.361 179.789 190.786

Dec. 2008 189.03 194.915 197.887 202.980 179.834 191.389

Jan. 2009 182.07 197.119 193.511 195.753 179.835 183.551

Feb. 2009 167.35 155.205 163.113 167.580 179.835 168.878

Mar. 2009 189.30 187.090 181.573 185.936 179.835 188.819

Apr. 2009 175.84 166.394 178.848 180.165 182.514 183.542

MAPE (%) 4.404 3.566 3.799 3.406 1.973

Table 5.14 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCCSA vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SSVRCCSA vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCCSA vs. TF-ε-SVR-SA 2a 2a

SSVRCCSA vs. SVRCCSA 1a 1a

aDenotes that SSVRCCSA model significantly outperforms other alternative models
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The significant superiority of the proposed SSVRCCSA model in load forecasting

can be summarized as follows. Firstly, the Y condition cloud generator can obviously

ensure temperature reducing continuously and to overcome the dilemma of the

original SA, easily to accept worsened solution, and lead to converge to local

minimum while decreasing to low temperature; that is, it can help the original SA

to well simulate the actual physical annealing processes, to avoid premature conver-

gence. Secondly, the seasonal mechanism can successfully determine cyclic length

and well calculate suitable seasonal indexes for each cycle point.

150

160

170

180

190

200

210

Oct 2008 Nov 2008 Dec 2008 Jan 2009 Feb 2009 Mar 2009 Apr 2009

kWh
Actual SARIMA(4,2,2) ×(1,2,1)12
SHW (0.12, 0.95, 0.2, 0.2) TF- -SVR-SA
SVRCCSA SSVRCCSA

Fig. 5.8 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCCSA, and SSVRCCSA

models

Table 5.15 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCCSA vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.945; p ¼ 0.00162

(reject H0)

S1 ¼ �2.945; p ¼ 0.00162

(reject H0)

SSVRCCSA vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.066; p ¼ 0.00109

(reject H0)

S1 ¼ �3.066; p ¼ 0.00109

(reject H0)

SSVRCCSA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.788; p ¼ 0.00008

(reject H0)

S1 ¼ �3.788; p ¼ 0.00008

(reject H0)

SSVRCCSA vs. SVRCCSA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.976; p ¼ 0.0241

(reject H0)

S1 ¼ �1.976; p ¼ 0.0241

(reject H0)
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5.6 Seasonal Mechanism in SVRCGASA Model and

Forecasting Results

The seasonal (cyclic) length of the total employed electric load is also set as 12. Thus,

the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of the

SVRCGASA model mentioned in Sect. 4.5.3, including 32 and 14 in-sample

forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.16. The actual values and the out-of-sample forecasting loads obtained by

different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-SA,
SHW(0.12, 0.95, 0.2, 0.2), SVRCGASA, and SSVRCGASA models, are illustrated

in Table 5.17. The proposed SSVRCGASA model with smaller MAPE values is

superior to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA,
and SVRCGASA models, due to its capability to excellently learn about the monthly

load changing tendency. The seasonal mechanism further revises the forecasting

results from the SVRCGASA model (MAPE ¼ 3.731 %), based on the seasonal

indexes (per month) obtained from training and validation stages, to achieve more

acceptable forecasting accuracy (1.901 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-

rank test and asymptotic test are employed. The test results are shown in Tables 5.18

and 5.19, respectively. Clearly, the SSVRCGASA model receives complete

Table 5.17 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCGASA, and

SSVRCGASA models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) �
(1,2,1)12

SHW(0.12, 0.95,

0.2, 0.2)

TF-ε-
SVR-SA SVRCGASA SSVRCGASA

Oct. 2008 181.07 184.210 181.554 184.504 177.300 175.639

Nov. 2008 180.56 187.638 190.312 190.361 177.443 185.210

Dec. 2008 189.03 194.915 197.887 202.980 177.585 189.907

Jan. 2009 182.07 197.119 193.511 195.753 177.726 181.970

Feb. 2009 167.35 155.205 163.113 167.580 177.867 163.281

Mar. 2009 189.30 187.090 181.573 185.936 178.008 182.175

Apr. 2009 175.84 166.394 178.848 180.165 178.682 177.629

MAPE (%) 4.404 3.566 3.799 3.731 1.901

Table 5.16 The seasonal indexes for each month for the SVRCGASA model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0239 July 1.0775

February 0.9180 August 1.0742

March 1.0234 September 1.0189

April 0.9941 October 0.9906

May 1.0271 November 1.0438

June 1.0321 December 1.0694
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significant forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12,

SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA, and SVRCGASA models. Particularly

for comparing with TF-ε-SVR-SA model (also with seasonal adjustment mecha-

nism but without hybrid evolutionary algorithm and chaotic sequence), the com-

parison results also recognize that chaotic sequence could significantly improve the

performance in terms of premature convergence. By comparing SVRCGASA with

SSVRCGASA models, it also indicates the significant superiority from seasonal

mechanism, which can successfully determine cyclic length and well calculate

suitable seasonal indexes for each cycle point. By the way, it should be noticed

that the proposed SSVRCGASA model will implement three processes, including

SVR modeling, CGASA conducting, and seasonal mechanism; of course, it will

cost some reasonable processing time. However, it deserves to pay some attention

on those cyclic information analyses while modeling. Figure 5.9 is provided to

illustrate the forecasting accuracy among different models.

Table 5.19 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCGASA vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.329; p ¼ 0.000432

(reject H0)

S1 ¼ �3.329; p ¼ 0.000432

(reject H0)

SSVRCGASA vs. SHW(0.12,

0.95, 0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �17.745; p ¼ 0.000

(reject H0)

S1 ¼ �17.745; p ¼ 0.000

(reject H0)

SSVRCGASA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �6.222; p ¼ 0.000

(reject H0)

S1 ¼ �6.222; p ¼ 0.000

(reject H0)

SSVRCGASA vs. SVRCGASA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.563; p ¼ 0.005185

(reject H0)

S1 ¼ �2.563; p ¼ 0.005185

(reject H0)

Table 5.18 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCGASA vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SSVRCGASA vs.SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCGASA vs. TF-ε-SVR-SA 0a 0a

SSVRCGASA vs. SVRCGASA 2a 2a

aDenotes that SSVRCGASA model significantly outperforms other alternative models
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5.7 Seasonal Mechanism in SVRCPSO Model and Forecasting

Results

The seasonal (cyclic) length of the total employed electric load is also set as 12.

Thus, the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of

the SVRCPSO model mentioned in Sect. 4.6.3, including 32 and 14 in-sample

forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.20. The actual values and the out-of-sample forecasting loads obtained by

different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-
SA, SHW(0.12, 0.95, 0.2, 0.2), SVRCPSO, and SSVRCPSO models, are illustrated

in Table 5.21. The proposed SSVRCPSO model with smaller MAPE values is

superior to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA,
and SVRCPSO models, due to its capability to excellently learn about the monthly

load changing tendency. The seasonal mechanism further revises the forecasting
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Fig. 5.9 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCGASA, and SSVRCGASA
models

Table 5.20 The seasonal indexes for each month for the SVRCPSO model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0606 July 1.0430

February 1.0170 August 1.0791

March 0.9298 September 1.0784

April 1.0429 October 1.0210

May 1.0046 November 0.9992

June 1.0401 December 1.0545
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results from the SVRCPSO model (MAPE ¼ 3.231 %), based on the seasonal

indexes (per month) obtained from training and validation stages, to achieve

more acceptable forecasting accuracy (2.699 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-rank

test and asymptotic test are employed. The test results are shown in Tables 5.22 and

5.23, respectively. Clearly, the SSVRCPSOmodel only receives complete significant

forecasting accuracy improvement than SHW(0.12, 0.95, 0.2, 0.2) model, but incom-

plete significant forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12
and TF-ε-SVR-SA models (only receives significance with α ¼ 0.05 level in

Wilcoxon test, and all pass with both levels in asymptotic test), and SVRCPSO

model (receives significance with both levels in Wilcoxon test, but only receives

significance with both α ¼ 0.10 level in asymptotic test). Particularly for comparing

with TF-ε-SVR-SA model (also with seasonal adjustment mechanism but without

hybrid evolutionary algorithm and chaotic sequence), the comparison results also

recognize that chaotic sequence could significantly improve the performance in terms

of premature convergence. By comparing SVRCPSO with SSVRCPSO models, it

also indicates the significant superiority from seasonal mechanism. By the way, it

should be noticed that the proposed SSVRCPSO model will implement three pro-

cesses, including SVR modeling, CPSO conducting, and seasonal mechanism; of

course, it will cost some reasonable processing time. However, it deserves to pay

some attention on those cyclic information analyses while modeling. Figure 5.10 is

provided to illustrate the forecasting accuracy among different models.

Table 5.22 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCPSO vs. SARIMA(4,2,2) � (1,2,1)12 3 3a

SSVRCPSO vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCPSO vs. TF-ε-SVR-SA 3 3a

SSVRCPSO vs. SVRCPSO 2a 2a

aDenotes that SSVRCPSO model significantly outperforms other alternative models

Table 5.21 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCPSO, and SSVRCPSO

models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12,

0.95, 0.2, 0.2)

TF-ε-
SVR-SA SVRCPSO SSVRCPSO

Oct. 2008 181.07 184.210 181.554 184.504 181.938 181.7964

Nov. 2008 180.56 187.638 190.312 190.361 182.186 192.1178

Dec. 2008 189.03 194.915 197.887 202.980 182.677 193.742

Jan. 2009 182.07 197.119 193.511 195.753 182.794 185.8846

Feb. 2009 167.35 155.205 163.113 167.580 182.826 169.9838

Mar. 2009 189.30 187.090 181.573 185.936 182.746 190.5905

Apr. 2009 175.84 166.394 178.848 180.165 184.222 185.072

MAPE (%) 4.404 3.566 3.799 3.231 2.699
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5.8 Seasonal Mechanism in SVRCAS Model and

Forecasting Results

The seasonal (cyclic) length of the total employed electric load is also set as 12. Thus,

the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of the

SVRCAS model mentioned in Sect. 4.7.3, including 32 and 14 in-sample forecasting

loads in training stage and validation stage, respectively, as shown in Table 5.24. The

actual values and the out-of-sample forecasting loads obtained by different forecasting
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Fig. 5.10 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCPSO, and SSVRCPSO

models

Table 5.23 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCPSO vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.586; p ¼ 0.004856

(reject H0)

S1 ¼ �2.586; p ¼ 0.004856

(reject H0)

SSVRCPSO vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.177; p ¼ 0.01472

(reject H0)

S1 ¼ �2.177; p ¼ 0.01472

(reject H0)

SSVRCPSO vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.266; p ¼ 0.000548

(reject H0)

S1 ¼ �3.266; p ¼ 0.000548

(reject H0)

SSVRCPSO vs. SVRCPSO H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.450; p ¼ 0.0735(not

reject H0)

S1 ¼ �1.450; p ¼ 0.0735

(reject H0)
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models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-SA, SHW(0.12, 0.95, 0.2,

0.2), SVRCAS, and SSVRCAS models, are illustrated in Table 5.25. The proposed

SSVRCAS model with smaller MAPE values is superior to SARIMA

(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA, and SVRCAS models,

due to its capability to excellently learn about the monthly load changing tendency. The

seasonal mechanism further revises the forecasting results from the SVRCAS model

(MAPE ¼ 2.881%), based on the seasonal indexes (per month) obtained from training

and validation stages, to achieve more acceptable forecasting accuracy (2.341 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-

rank test and asymptotic test are also used. The test results are shown in Tables 5.26

and 5.27, respectively. Clearly, the SSVRCAS model only receives complete

Table 5.26 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCAS vs. SARIMA(4,2,2) � (1,2,1)12 3 3a

SSVRCAS vs. SHW(0.12, 0.95, 0.2, 0.2) 3 3a

SSVRCAS vs. TF-ε-SVR-SA 0a 0a

SSVRCAS vs. SVRCAS 2a 2a

aDenotes that SSVRCAS model significantly outperforms other alternative models

Table 5.25 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCAS, and SSVRCAS

models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12, 0.95,

0.2, 0.2)

TF-ε-
SVR-SA SVRCAS SSVRCAS

Oct. 2008 181.07 184.210 181.554 184.504 180.6185 184.1706

Nov. 2008 180.56 187.638 190.312 190.361 180.8985 187.4521

Dec. 2008 189.03 194.915 197.887 202.980 181.1779 195.3663

Jan. 2009 182.07 197.119 193.511 195.753 181.4569 187.0961

Feb. 2009 167.35 155.205 163.113 167.580 181.7354 166.1057

Mar. 2009 189.30 187.090 181.573 185.936 182.0133 185.1910

Apr. 2009 175.84 166.394 178.848 180.165 180.7582 179.0545

MAPE (%) 4.404 3.566 3.799 2.881 2.341

Table 5.24 The seasonal indexes for each month for the SVRCAS model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0311 July 1.0673

February 0.9140 August 1.0617

March 1.0175 September 1.0079

April 0.9906 October 1.0197

May 1.0191 November 1.0362

June 1.0233 December 1.0783
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significant forecasting accuracy improvement than TF-ε-SVR-SA and SVRCAS

models, but incomplete significant forecasting accuracy improvement than

SARIMA(4,2,2) � (1,2,1)12 and SHW(0.12, 0.95, 0.2, 0.2) models (only receives

significance with α ¼ 0.05 level in Wilcoxon test, and all pass with both levels in

asymptotic test). Particularly for comparing with TF-ε-SVR-SA model (also with

seasonal adjustment mechanism but without hybrid evolutionary algorithm and

chaotic sequence), the comparison results also recognize that chaotic sequence

could significantly improve the performance in terms of premature convergence.

By comparing SVRCAS with SSVRCAS models, it also indicates the significant

superiority from seasonal mechanism. By the way, it should be noticed that the

proposed SSVRCAS model will implement three processes, including SVR

modeling, CAS conducting, and seasonal mechanism; of course, it will cost some

reasonable processing time. However, it deserves to pay some attention on those

cyclic information analyses while modeling. Figure 5.11 is provided to illustrate the

forecasting accuracy among different models.

The proposed SSVRCAS model has obtained significant smaller MAPE values

than other alternative models (SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2,

0.2), TF-ε-SVR-SA, and SVRCAS models). It is caused by (1) nonlinear mapping

capabilities and structural risk minimization of SVR model itself; (2) the CAS

algorithm employed the organization variable to perform self-organization foraging

process of ant colony to determine proper parameters combination, and applies

ergodicity property of chaotic sequences to enrich the searching behavior to avoid

premature convergence; (3) the seasonal adjustment with well seasonal/cyclic

analytical ability of load demanding tendency.

It is interesting to address the SVRCASmodel focuses on the interactions among

individual ant’s chaotic behavior and ant colony organization foraging activities,

instead of “expert rules,” to negotiate and to coordinate to look for much better

solutions. Therefore, the better solution is evolved with “learning by doing”

activities among ants and their colony to approximately reach the global optimum

or near-optimum. It is sometimes like a “practical (numerical) rule” to guide colony

organization variable that enhances its effects on individual ant’s chaotic behaviors.

Table 5.27 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCAS vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.477; p ¼ 0.000253

(reject H0)

S1 ¼ �3.477; p ¼ 0.000253

(reject H0)

SSVRCAS vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �7.430; p ¼ 0.000

(reject H0)

S1 ¼ �7.430; p ¼ 0.000

(reject H0)

SSVRCAS vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �5.726; p ¼ 0.000

(reject H0)

S1 ¼ �5.726; p ¼ 0.000

(reject H0)

SSVRCAS vs. SVRCAS H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.971; p ¼ 0.02435

(reject H0)

S1 ¼ �1.971; p ¼ 0.02435

(reject H0)
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Furthermore, for example, along with the unexpected climate change pattern, the

tendencies of the electric load data may present more fluctuant nonhistorically, and

the future changes of the electric load data may be more cyclic with more short

cycle. The proposed SSVRCAS model is potential to approximately reach the near-

optimum by “learning by doing” activities among ants and their colony (organiza-

tion variable), to adjust any length of seasonal load demand (weekly, monthly,

bimonthly, quarterly, etc.) by seasonal adjustment; thus, it is much more potential

alternative forecasting model in nonhistorical climate change age.

5.9 Seasonal Mechanism in SVRCABC Model and Forecasting

Results

The seasonal (cyclic) length of the total employed electric load is also set as 12.

Thus, the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of

the SVRCABC model mentioned in Sect. 4.8.3, including 32 and 14 in-sample

forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.28. The actual values and the out-of-sample forecasting loads obtained by

different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-
SA, SHW(0.12, 0.95, 0.2, 0.2), SVRCABC, and SSVRCABC models, are

illustrated in Table 5.29. The proposed SSVRCABC model with smaller MAPE

values is superior to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-
SVR-SA, and SVRCABC models, due to its capability to excellently learn about
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Fig. 5.11 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCAS, and SSVRCAS

models
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the monthly load changing tendency. The seasonal mechanism further revises the

forecasting results from the SVRCABC model (MAPE ¼ 3.164 %), based on the

seasonal indexes (per month) obtained from training and validation stages, to

achieve more acceptable forecasting accuracy (3.056 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-

rank test and asymptotic test are also used. The test results are shown in Tables 5.30

and 5.31, respectively. Clearly, the SSVRCABC model only receives incomplete

significant forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12,

TF-ε-SVR-SA models (only receives significance with α ¼ 0.05 level in Wilcoxon

test, and all pass with both levels in asymptotic test), SHW(0.12, 0.95, 0.2, 0.2) and

SVRCABC models (receives significance with both levels in Wilcoxon test, and all

fails with both levels in asymptotic test). Particularly for comparing with TF-ε-
SVR-SA model (also with seasonal adjustment mechanism but without hybrid

Table 5.30 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCABC vs. SARIMA(4,2,2) � (1,2,1)12 3 3a

SSVRCABC vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCABC vs. TF-ε-SVR-SA 3 3a

SSVRCABC vs. SVRCABC 1a 1a

aDenotes that SSVRCABC model significantly outperforms other alternative models

Table 5.28 The seasonal indexes for each month for the SVRCABC model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0202 July 1.0875

February 0.9346 August 1.0817

March 1.0448 September 1.0195

April 1.0081 October 1.0045

May 1.0467 November 1.0603

June 1.0467 December 1.0637

Table 5.29 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCABC, and SSVRCABC
models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12,

0.95, 0.2, 0.2)

TF-ε-
SVR-SA SVRCABC SSVRCABC

Oct. 2008 181.07 184.210 181.554 184.504 182.131 182.9516

Nov. 2008 180.56 187.638 190.312 190.361 182.788 193.8166

Dec. 2008 189.03 194.915 197.887 202.980 182.791 194.4410

Jan. 2009 182.07 197.119 193.511 195.753 182.793 186.4791

Feb. 2009 167.35 155.205 163.113 167.580 182.795 170.8391

Mar. 2009 189.30 187.090 181.573 185.936 182.747 190.9312

Apr. 2009 175.84 166.394 178.848 180.165 182.772 184.2451

MAPE (%) 4.404 3.566 3.799 3.164 3.056
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evolutionary algorithm and chaotic sequence), the comparison results also recog-

nize that chaotic sequence could significantly improve the performance in terms of

premature convergence. By comparing SVRCABC with SSVRCABC models, it

also indicates the superiority from seasonal mechanism; it deserves to pay some

attention on those cyclic information analyses while modeling. To look for more

capability to receive complete significant forecasting accuracy improvement, it is

necessary to use the final hybridization tool, recurrent mechanism, as shown in the

following subsection. Figure 5.12 is provided to illustrate the forecasting accuracy

among different models.
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Fig. 5.12 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCABC, and SSVRCABC

models

Table 5.31 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCABC vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.075; p ¼ 0.019

(reject H0)

S1 ¼ �2.075; p ¼ 0.019

(reject H0)

SSVRCABC vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.232; p ¼ 0.10894

(not reject H0)

S1 ¼ �1.232; p ¼ 0.10894

(not reject H0)

SSVRCABC vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.446; p ¼ 0.00722

(reject H0)

S1 ¼ �2.446; p ¼ 0.00722

(reject H0)

SSVRCABC vs. SVRCABC H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �0.808; p ¼ 0.20958

(not reject H0)

S1 ¼ �0.808; p ¼ 0.20958

(not reject H0)
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The proposed SSVRCABC model has obtained smaller MAPE values than other

alternative models (SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-
SVR-SA, and SVRCABC models). It is caused by (1) nonlinear mapping

capabilities and structural risk minimization of SVR model itself, (2) the CABC

algorithm that employs both global search and local search in each iteration to

receive better performance and applies ergodicity property of chaotic sequences to

enrich the searching behavior to avoid premature convergence, and (3) the seasonal

mechanism with well seasonal/cyclic analytical ability of load demanding

tendency.

5.10 Recurrent and Seasonal Mechanisms in SVRCABC Model

and Forecasting Results

This subsection will firstly demonstrate the three parameters determination of the

proposed hybrid model (recurrent SVR with CABC), namely, RSVRCABC model.

Secondly, conduct the combined model (RSVRCABC with seasonal mechanism),

namely, SRSVRCABC model.

For RSVRCABC modeling process, based on the parameter determination results

in Sect. 4.8.3, the SVRCABC model with the smallest testing MAPE value is used

further to implement the RSVRCABC model. After performing the RSVRCABC

model, the final forecasting values are gained, and the kernel parameters, σ, C, and
ε, are used as the most suitable model in this example. The forecasting results and the

suitable parameters for the RSVRCABCmodel are illustrated in Table 5.32, in which it

is indicated that these three models all perform the best when 25 fed-in data are used.

Now the seasonal mechanism is considered. The seasonal (cyclic) length of the

total employed electric load is also set as 12. Thus, the 12 seasonal indexes are

estimated by the 46 in-sample forecasting loads of the SVRCABC model mentioned

in Sect. 4.8.3, including 32 and 14 in-sample forecasting loads in training stage and

validation stage, respectively, as shown in Table 5.33. The actual values and the out-

of-sample forecasting loads obtained by different forecasting models, including

SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-SA, SHW(0.12, 0.95, 0.2, 0.2),

SSVRCABC, RSVRCABC, and SRSVRCABCmodels, are illustrated in Table 5.34.

The proposed SRSVRCABC model with smaller MAPE values is superior to

Table 5.32 Parameters determination of RSVRCABC model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 107.24 170.69 8.9356 3.232

10 5.89 177.03 2.2860 3.200

15 4.14 9932.70 14.2530 3.016

20 63.00 6326.70 19.1810 3.009

25 50.27 7681.30 19.3750 2.960
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SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA,
SSVRCABC, and RSVRCABC models, due to its capability to excellently learn

about the monthly load changing tendency. The seasonal mechanism further revises

the forecasting results from the RSVRCABC model (MAPE ¼ 2.960 %), based on

the seasonal indexes (per month) obtained from training and validation stages, to

achieve more acceptable forecasting accuracy (2.387 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-rank

test and asymptotic test are also used. The test results are shown in Tables 5.35 and

5.36, respectively. Clearly, the SRSVRCABC model receives complete significant

forecasting accuracy improvement than SARIMA(4,2,2) � (1,2,1)12, SHW(0.12,

0.95, 0.2, 0.2), TF-ε-SVR-SA, SSVRCABC, and RSVRCABC models. Particularly

for comparing with TF-ε-SVR-SA model (also with seasonal adjustment mechanism

but without hybrid evolutionary algorithm and chaotic sequence), the comparison

results also recognize that chaotic sequence could significantly improve the perfor-

mance in terms of premature convergence. By comparing RSVRCABC with

SRSVRCABC models, it also indicates the superiority from seasonal mechanism; it

deserves to pay some attention on those cyclic information analyses while modeling.

Figure 5.13 is provided to illustrate the forecasting accuracy among different models.

The proposed SRSVRCABC model has obtained smaller MAPE values than

other alternative models (SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2),

TF-ε-SVR-SA, SSVRCABC, and RSVRCABC models). It is caused by (1) nonlin-

ear mapping capabilities and structural risk minimization of SVR model itself, (2)

the CABC algorithm that employs both global search and local search in each

iteration to receive better performance and applies ergodicity property of chaotic

sequences to enrich the searching behavior to avoid premature convergence, (3) the

recurrent mechanism with superior capability to capture more data pattern infor-

mation from past electric load data, and (4) the seasonal adjustment with well cyclic

(seasonal) analytical ability of load demanding tendency. For example, recurrent

mechanism, hybridized into the SVRCABC model, also plays a contributive role to

further improve the better solution of SVRCABC model to another solution (σ, C,
ε) ¼ (50.27, 7681.30, 19.3750) of RSVRCABC model to be the more appropriate

optimal solution with forecasting error in terms of MAPE (2.960) (refer to

Tables 4.27 and 5.38). Finally, the seasonal mechanism further revises the

forecasting results from RSVRCABC model, based on their seasonal indexes (per

Table 5.33 The seasonal indexes for each month for the SVRCABC model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0336 July 1.0692

February 0.9167 August 1.0648

March 1.0206 September 1.0110

April 0.9923 October 0.9895

May 1.0202 November 1.0415

June 1.0249 December 1.0807
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month) obtained from training and validation stages, to achieve more acceptable

forecasting accuracies (2.387 %).

It is interesting to address that via recurrent mechanism and seasonal mechanism,

the proposed SRSVRCABCmodel is able to deal with any data pattern nomatter data

tendencies may present fluctuation or sustained increasing or decreasing types.

Furthermore, for example, along with the unexpected climate change pattern, the

tendencies of the electric load data or energy-consuming data may present more

fluctuant nonhistorically; or along with the large penetration of renewable energies

for electricity production, the future changes of the electric load data may be more

cyclic with more short cycle. The proposed SRSVRCABC model is potential to

approximately reach the global optimum or near-optimum by “communicating in

searching” activities among bees and their colony, to learn more fluctuant changed

load demand by recurrent mechanism, to adjust any length of seasonal load demand

(weekly,monthly, bimonthly, quarterly, etc.) by seasonal mechanism; thus, it is much

more potential alternative forecasting model in nonhistorical climate change age.

Table 5.35 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SRSVRCABC vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SRSVRCABC vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SRSVRCABC vs. TF-ε-SVR-SA 0a 0a

SRSVRCABC vs. SSVRCABC 2a 2a

SRSVRCABC vs. RSVRCABC 2a 2a

aDenotes that SRSVRCABC model significantly outperforms other alternative models

Table 5.36 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SRSVRCABC vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.417; p ¼ 0.000313

(reject H0)

S1 ¼ �3.417; p ¼ 0.000313

(reject H0)

SRSVRCABC vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �5.896; p ¼ 0.000

(reject H0)

S1 ¼ �5.896; p ¼ 0.000

(reject H0)

SRSVRCABC vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �5.355; p ¼ 0.000

(reject H0)

S1 ¼ �5.355; p ¼ 0.000

(reject H0)

SRSVRCABC vs. SSVRCABC H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.971; p ¼ 0.02435

(reject H0)

S1 ¼ �1.971; p ¼ 0.02435

(reject H0)

SRSVRCABC vs. RSVRCABC H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.960; p ¼ 0.025

(reject H0)

S1 ¼ �1.960; p ¼ 0.025

(reject H0)
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5.11 Seasonal Mechanism in SVRCIA Model and Forecasting

Results

The seasonal (cyclic) length of the total employed electric load is also set as 12.

Thus, the 12 seasonal indexes are estimated by the 46 in-sample forecasting loads of

the SVRCIA model mentioned in Sect. 4.9.3, including 32 and 14 in-sample

forecasting loads in training stage and validation stage, respectively, as shown in

Table 5.37. The actual values and the out-of-sample forecasting loads obtained by

different forecasting models, including SARIMA(4,2,2) � (1,2,1)12, TF-ε-SVR-
SA, SHW(0.12, 0.95, 0.2, 0.2), SVRCIA, and SSVRCIA models, are illustrated in

Table 5.38. The proposed SSVRCIA model with smaller MAPE values is superior

to SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-SVR-SA, and
SVRCIA models, due to its capability to excellently learn about the monthly load

changing tendency. The seasonal mechanism further revises the forecasting results

from the SVRCIA model (MAPE ¼ 3.041 %), based on the seasonal indexes (per

Table 5.37 The seasonal indexes for each month for the SVRCIA model

Time point (month) Seasonal index Time point (month) Seasonal index

January 1.0153 July 1.0663

February 0.9089 August 1.0615

March 1.0126 September 1.0076

April 0.9853 October 0.9734

May 1.0187 November 1.0247

June 1.0225 December 1.0614
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Fig. 5.13 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SSVRCABC, RSVRCABC,
and SRSVRCABC models

186 5 Recurrent/Seasonal Mechanism to Improve the Accurate Level of Forecasting

http://dx.doi.org/10.1007/978-1-4471-4968-2_4#Sec000439_4


month) obtained from training and validation stages, to achieve more acceptable

forecasting accuracy (1.766 %).

For forecasting accuracy improvement significant test, the Wilcoxon signed-

rank test and asymptotic test are also used. The test results are shown in Tables 5.39

and 5.40, respectively. Clearly, the SSVRCIA model almost receives complete

Table 5.39 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SSVRCIA vs. SARIMA(4,2,2) � (1,2,1)12 2a 2a

SSVRCIA vs. SHW(0.12, 0.95, 0.2, 0.2) 2a 2a

SSVRCIA vs. TF-ε-SVR-SA 0a 0a

SSVRCIA vs. SVRCIA 3 3a

aDenotes that SSVRCIA model significantly outperforms other alternative models

Table 5.38 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCIA, and SSVRCIA

models (unit: hundred million kWh)

Time point

(month) Actual

SARIMA

(4,2,2) � (1,2,1)12

SHW(0.12, 0.95,

0.2, 0.2)

TF-ε-
SVR-SA SVRCIA SSVRCIA

Oct. 2008 181.07 184.210 181.554 184.504 179.028 174.274

Nov. 2008 180.56 187.638 190.312 190.361 179.412 183.844

Dec. 2008 189.03 194.915 197.887 202.980 179.795 190.837

Jan. 2009 182.07 197.119 193.511 195.753 180.176 182.934

Feb. 2009 167.35 155.205 163.113 167.580 180.556 164.106

Mar. 2009 189.30 187.090 181.573 185.936 180.934 183.211

Apr. 2009 175.84 166.394 178.848 180.165 178.104 175.483

MAPE (%) 4.404 3.566 3.799 3.041 1.766

Table 5.40 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SSVRCIA vs. SARIMA

(4,2,2) � (1,2,1)12

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.091; p ¼ 0.00097

(reject H0)

S1 ¼ �3.091; p ¼ 0.00097

(reject H0)

SSVRCIA vs. SHW(0.12, 0.95,

0.2, 0.2)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �20.751; p ¼ 0.000

(reject H0)

S1 ¼ �20.751; p ¼ 0.000

(reject H0)

SSVRCIA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �5.692; p ¼ 0.000

(reject H0)

S1 ¼ �5.692; p ¼ 0.000

(reject H0)

SSVRCIA vs. SVRCIA H0: e1 ¼ e2 H0: e1 n e2
S1 ¼ �1.797; p ¼ 0.03614

(reject H0)

S1 ¼ �1.797; p ¼ 0.03614

(reject H0)
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significant forecasting accuracy improvement than other alternative models except

the SVRCIA model (only receives significance with α ¼ 0.05 level in Wilcoxon

test and pass both levels in asymptotic test). Particularly for comparing with TF-ε-
SVR-SA model (also with seasonal adjustment mechanism but without hybrid

evolutionary algorithm and chaotic sequence), the comparison results also recog-

nize that chaotic sequence could significantly improve the performance in terms of

premature convergence due to the superior searching capability of CIA to deter-

mine proper parameters in an SVR model and the use of a seasonal mechanism to

adjust the seasonal/cyclic effects of electric loads. By comparing SVRCIA with

SSVRCIA models, it also indicates the superiority from seasonal mechanism

employed here is proficient in dealing with such cyclic data types; thus, it deserves

to pay some attention on those cyclic information analyses while modeling. Fig-

ure 5.14 is provided to illustrate the forecasting accuracy among different models.

The proposed SSVRCIA model has obtained smaller MAPE values than other

alternative models (SARIMA(4,2,2) � (1,2,1)12, SHW(0.12, 0.95, 0.2, 0.2), TF-ε-
SVR-SA, and SVRCIA models). The superior performance of the SSVRCIA model

is not only because of its theoretical assumptions of a convex set while SVR

modeling but also because of the superior searching capability of CIA to determine

the proper parameters in SVR (this is why it outperforms the TF-ε-SVR-SA model)

and effective seasonal mechanism (this is why it outperforms the SVRCIA model).

By contrast, SARIMA model employs the parametric technique which is based on

specific assumptions, such as linear relationships between the current value of the

underlying variables and previous values of the variable and error terms, and these

assumptions are not completely in line with real-world problems.
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kWh Actual SARIMA(4,2,2) ×(1,2,1)12

SHW (0.12, 0.95, 0.2, 0.2) TF- -SVR-SA

SVRCIA SSVRCIA

Fig. 5.14 Forecasting results of SARIMA, SHW, TF-ε-SVR-SA, SVRCIA, and SSVRCIA

models

188 5 Recurrent/Seasonal Mechanism to Improve the Accurate Level of Forecasting



References

1. Kechriotis G, Zervas E, Manolakos ES (1994) Using recurrent neural networks for adaptive

communication channel equalization. IEEE Trans Neural Netw 5:267–278. doi:10.1109/

72.279190

2. Jordan MI (1986) Attractor dynamics and parallelism in a connectionist sequential machine.

In: Proceedings of the 8th annual conference of the cognitive science society, New Jersey, NJ,

pp 531–546

3. Elman JL (1990) Finding structure in time. Cogn Sci 14:179–211. doi:10.1207/

s15516709cog1402_1

4. Williams R, Zipser D (1989) A learning algorithm for continually running fully recurrent

neural networks. Neural Comput 1:270–280. doi:10.1162/neco. 1989.1.2.270

5. Tsoi AC, Back AD (1994) Locally recurrent globally feedforward networks: a critical review

of architectures. IEEE Trans Neural Netw 5:229–239. doi:10. 1109/72.279187

6. Jhee WC, Lee JK (1993) Performance of neural networks in managerial forecasting. Int J Intell

Syst Acc Financ Manag 2:55–71

7. Suykens JAK, van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Leu-ven KU (2002)

Least squares support vector machines. World Scientific Publishing, Belgium

8. Connor JT, Martin RD, Atlas LE (1994) Recurrent neural networks and robust time series

prediction. IEEE Trans Neural Netw 5:240–254. doi:10.1109/72. 279188

9. Gencay R, Liu T (1997) Nonlinear modeling and prediction with feedforward and recurrent

networks. Physica D 108:119–134. doi:10.1016/S0167-2789(97) 82009-X

10. Kermanshahi B (1998) Recurrent neural network for forecasting next 10 years loads of nine

japanese utilities. Neurocomputing 23:125–133. doi:10.1016/S0925-2312(98)00073-3

11. Mandic DP, Chambers JA (2001) Recurrent neural networks for prediction.Wiley, NewYork, NY

12. Martens K, Chang YC, Taylor S (2002) A comparison of seasonal adjustment methods when

forecasting intraday volatility. J Financ Res 25:283–299. doi:10. 1111/1475-6803.t01-1-00009

13. Taylor SJ, Xu X (1997) The incremental volatility information in one million foreign exchange

quotations. J Empir Financ 4:317–340. doi:10.1016/S0927- 5398(97)00010-8

14. Andersen TG, Bollerslev T (1998) DM-dollar volatility: intraday activity patterns, macroeconomic

announcements and longer run dependencies. J Financ 53:219–265. doi:10.1111/0022-1082.85732

15. Deo R, Hurvich C, Lu Y (2006) Forecasting realized volatility using a long- memory stochastic

volatility model: estimation, prediction and seasonal adjustment. J Econom 131:29–58.

doi:10.1016/j.jeconom.2005.01.003

16. Wang J, Zhu W, Zhang W, Sun D (2009) A trend fixed on firstly and seasonal adjustment

model combined with the ε-SVR for short-term forecasting of electricity demand. Energ

Policy 37:4901–4909. doi:10.1016/j.enpol.2009.06.046

References 189

http://dx.doi.org/10.1109/72.279190
http://dx.doi.org/10.1109/72.279190
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco. 1989.1.2.270
http://dx.doi.org/10. 1109/72.279187
http://dx.doi.org/10.1109/72. 279188
http://dx.doi.org/10.1016/S0167-2789(97) 82009-X
http://dx.doi.org/10.1016/S0925-2312(98)00073-3
http://dx.doi.org/10. 1111/1475-6803.t01-1-00009
http://dx.doi.org/10.1016/S0927- 5398(97)00010-8
http://dx.doi.org/10.1111/0022-1082.85732
http://dx.doi.org/10.1016/j.jeconom.2005.01.003
http://dx.doi.org/10.1016/j.enpol.2009.06.046

	Chapter 5: Recurrent/Seasonal Mechanism to Improve the Accurate Level of Forecasting
	5.1 Combined Mechanisms
	5.1.1 Recurrent Mechanism
	5.1.2 Seasonal Mechanism

	5.2 Seasonal ARIMA Model and Seasonal HW (SHW) Model
	5.2.1 SARIMA Model
	5.2.2 SHW Model

	5.3 Seasonal Mechanism in SVRCGA Model and Forecasting Results
	5.4 Seasonal Mechanism in SVRCSA Model and Forecasting Results
	5.5 Seasonal Mechanism in SVRCCSA Model and Forecasting Results
	5.6 Seasonal Mechanism in SVRCGASA Model and Forecasting Results
	5.7 Seasonal Mechanism in SVRCPSO Model and Forecasting Results
	5.8 Seasonal Mechanism in SVRCAS Model and Forecasting Results
	5.9 Seasonal Mechanism in SVRCABC Model and Forecasting Results
	5.10 Recurrent and Seasonal Mechanisms in SVRCABC Model and Forecasting Results
	5.11 Seasonal Mechanism in SVRCIA Model and Forecasting Results
	References


