
Chapter 3

Evolutionary Algorithms in SVR’s Parameter

Determination

As mentio.ned in Chap. 2, the traditional determination of three parameters does not

guarantee to improve forecasting accuracy level, because of its inability to set up

more suitable initial values of parameters σ, C, and ε in the initial step and inability

to simultaneously consider the interaction effects among three parameters to effi-

ciently find out the near optimal solution for large scale data set. Therefore, it is

feasible to employ evolutionary algorithms to conduct intelligent searching around

the solution range to determine suitable parameter combination by minimizing the

objective function describing the structural risk of a SVR model. This chapter

introduces several representative evolutionary algorithms used in a SVR forecasting

model to determine suitable parameter combination to receive improved forecasting

accuracy level.

3.1 Data Set and Forecasting Comparison Statistical Tests

3.1.1 Data Set

To be based on the same comparison conditions, this book uses historical monthly

electric load data of Northeast China to compare the forecasting performance

among the proposed SVR-based models hybridizing with seven evolutionary

algorithms, ARIMA, and TF-ε-SVR-SA models proposed by Wang et al. [1].

Table 3.1 lists the data set used in this chapter. Figure 3.1 illustrates the tendency

of this data set. Totally, there are 64 data (from January 2004 to April 2009) of

Northeastern China monthly electric load. However, based on Wang et al.’s [1]

support vectors computation, only 53 months data (from December 2004 to April

2009) are suggested. Therefore, for the same comparison condition, the employed

data are divided into three data sets: the training data set (32 months, December
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Table 3.1 Monthly electric load in Northeastern China (from Jan. 2004 to Apr. 2009) (unit,

hundred million kWh)

Time Electric load Time Electric load Time Electric load

Jan. 2004 129.08 Nov. 2005 150.84 Sep. 2007 175.41

Feb. 2004 127.24 Dec. 2005 165.27 Oct. 2007 179.64

Mar. 2004 136.95 Jan. 2006 155.31 Nov. 2007 188.89

Apr. 2004 125.34 Feb. 2006 138.5 Dec. 2007 197.62

May 2004 126.86 Mar. 2006 133.27 Jan. 2008 200.35

Jun. 2004 129.34 Apr. 2006 151.41 Feb. 2008 169.24

Jul. 2004 131.91 May 2006 155.63 Mar. 2008 196.97

Aug. 2004 136.22 Jun. 2006 155.7 Apr. 2008 186.15

Sep. 2004 131.56 Jul. 2006 162.98 May 2008 188.485

Oct. 2004 134.62 Aug. 2006 163.41 Jun. 2008 190.82

Nov. 2004 144.62 Sep. 2006 157.57 Jul. 2008 196.53

Dec. 2004 154.62 Oct. 2006 160.15 Aug. 2008 197.67

Jan. 2005 151.48 Nov. 2006 168.13 Sep. 2008 183.77

Feb. 2005 126.74 Dec. 2006 180.71 Oct. 2008 181.07

Mar. 2005 148.57 Jan. 2007 179.94 Nov. 2008 180.56

Apr. 2005 136.6 Feb. 2007 147.29 Dec. 2008 189.03

May 2005 138.83 Mar. 2007 172.45 Jan. 2009 182.07

Jun. 2005 136.6 Apr. 2007 169.98 Feb. 2009 167.35

Jul. 2005 146.21 May 2007 173.21 Mar. 2009 189.3

Aug. 2005 146.09 Jun. 2007 177.43 Apr. 2009 175.84

Sep. 2005 140.04 Jul. 2007 184.29

Oct. 2005 142.02 Aug. 2007 183.53
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Fig. 3.1 Illustration of the monthly electric load in Northeastern China (from Jan. 2004 to Apr.

2009)
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2004 to July 2007), the validation data set (14 months, August 2007 to September

2008), and the testing data set (7 months, from October 2008 to April 2009), as

shown in Table 3.2.

3.1.2 Forecasting Comparison Statistical Tests

3.1.2.1 Wilcoxon Signed-Rank Test

Wilcoxon signed-rank test is used to detect the significance of a difference in

central tendency of two data series when the size of two data series is equal [2].

The statistic W is represented as Eq. (3.1):

W ¼ min Sþ; S�f g; (3.1)

where

Sþ ¼
Xn
i¼1

IþðdiÞ; (3.2)

S� ¼
Xn
i¼1

I�ðdiÞ; (3.3)

IþðdiÞ ¼ 1 if di > 0

0 otherwise
;

�
(3.4)

I�ðdiÞ ¼ 1 if di < 0

0 otherwise
;

�
(3.5)

and

di ¼ ðdata series IÞi � ðdata series IIÞi: (3.6)

Table 3.2 Training, validation, and testing data sets of the proposed models

Data sets SVR-based models TF-ε-SVR-SA model [1]

Training data Dec. 2004–Jul. 2007 Dec. 2004–Sep. 2008

Validation data Aug. 2007–Sep. 2008

Testing data Oct. 2008–Apr. 2009 Oct. 2008–Apr. 2009
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3.1.2.2 Asymptotic Test

Diebold and Mariano [3] suggest the asymptotic test (S1), which is applicable

because one or more assumptions are violated to be suitable for the simple F test,

the Morgan–Granger–Newbold test [4, 5], and the Meese–Rogoff test [6]. There-

fore, the S1 statistic, as Eq. (3.7), is employed in this study:

S1 ¼
�dffiffiffiffiffiffiffiffiffiffiffi

2π f̂ dð0Þ
T

q ; (3.7)

where di is the loss-differential series of two compared electric forecasting models,

as shown in Eq. (3.8),

di ¼ e21i � e22i; (3.8)

where e1 and e2 denoted the errors of the two compared electric load forecasting

models, respectively.

2πf̂ dð0Þ is the weighted sum of the available sample autocovariances as

Eq. (3.9):

2πf̂ dð0Þ ¼
XT�1

τ¼�ðT�1Þ
1 � τ

SðTÞ
� �

γ̂dðTÞ; (3.9)

where T is the sample size, γ̂dðTÞ is defined as Eq. (3.10),

γ̂dðTÞ ¼
1

T

XT
t¼ τj jþ1

ðdt � �dÞðdt� τj j � �dÞ; (3.10)

and 1 � τ
SðTÞ

� �
is the lag window, defined as Eq. (3.11),

1 � τ

SðTÞ
� �

¼ 1 if τ
SðTÞ
��� ��� � 1

0 otherwise

(
: (3.11)

Obviously, S(T) ¼ k, where k denotes as the number of forecasting ahead, the

forecasts in this book are one-step-ahead; thus, k is set as 1.
The test will be performed at the 0.05 and 0.10 significance levels in two-tail

tests (with normal distribution) under the null hypothesis of equal forecast accuracy

for the two compared electric load forecasting models.
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3.2 Modeling and Forecasting Results of Alternative Models

3.2.1 ARIMA Model

For ARIMA models, the statistical package identified the most suitable model for

the training data as ARIMA(1,1,1) with constant term. The ARIMA(1,1,1) model

can be expressed as Eq. (3.12):

ð1� 0:0641B1Þryt ¼ 1:2652þ ð1þ 0:9715B1Þεt: (3.12)

After determining the suitable parameters of the ARIMA model, it is important

to examine how closely the proposed model fits a given time series. The autocorre-

lation function (ACF) is calculated to verify the parameters. Figure 3.2 plots the

estimated residual ACF and indicates that the residuals are not autocorrelated.

PACF, the partial autocorrelation function, displayed in Fig. 3.3, is also used to

check the residuals and indicates that the residuals are not correlated. The

forecasting results are shown in the third column of Table 3.3.

3.2.2 Holt–Winters Model

For the Holt–Winters (HW) method, by Minitab 14 statistic software, the α value

and β value are determined as 0.5618 and 0.0472, respectively. The forecasting

results are shown in the fourth column of Table 3.3.
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3.2.3 GRNN Model

For the GRNN model, Fig. 3.4 shows the MAPE values of the GRNN with various

σ. Clearly, while σ exceeds over 3.33, the value of MAPE will subsequently

increase. Therefore, the limit of σ is 3.33. In this book, the value of σ is set at

0.04. The forecasting results are shown in the fifth column of Table 3.3.

3.2.4 BPNN Model

For the BPNNmodel, Matlab 6.5 computing software is employed to implement the

forecasting procedure. The number of nodes in the hidden layer is used as a

validation parameter of the BPNN model. The most suitable number of hidden
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Fig. 3.3 Estimated residual PACF

Table 3.3 Forecasting results of ARIMA, HW, GRNN, and BPNN models (unit, hundred million

kWh)

Time point (month) Actual

ARIMA

(1,1,1) HW (0.5618, 0.0472)

GRNN

(σ ¼ 3.33) BPNN

Oct. 2008 181.07 192.932 191.049 191.131 172.084

Nov. 2008 180.56 191.127 192.015 187.827 172.597

Dec. 2008 189.03 189.916 192.981 184.999 176.614

Jan. 2009 182.07 191.995 193.947 185.613 177.641

Feb. 2009 167.35 189.940 194.913 184.397 180.343

Mar. 2009 189.30 183.988 195.879 178.988 183.830

Apr. 2009 175.84 189.348 196.846 181.395 187.104

MAPE (%) 6.044 7.480 4.636 5.062
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nodes of the BPNN model is set as 3. The forecasting results are shown in the last

column of Table 3.3.

Figure 3.5 is provided to illustrate the forecasting accuracy among different

models. Obviously, these four models are not fitting well particularly for HW and

BPNN models. Therefore, it is desired to look for more robust technology to

overcome these shortcomings from the traditional models and ANN-based models.

In the following sections, ARIMA(1,1,1) and GRNN(σ ¼ 3.33) are selected to be

compared with SVR-based models.
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3.3 Genetic Algorithm in SVR’s Parameter Determination

3.3.1 Operation Procedure of GA

Proposed by Holland [7], genetic algorithm (GA) is an organized random search

technique by imitating the biological evolution process. Such algorithm is based on

the principle of the survival of the fittest, which attempts to retain genetic informa-

tion from generation to generation. GA is also auto-adaptive stochastic search

technique [7]; it generates new individuals with selection, crossover, and mutation

operators. GA starts with a coding of the parameter set of all types of objective

functions; thus, it has the ability to solve those traditional algorithms that are not

easy to solve. The major advantages of GA are the capabilities for finding optimal

or near optimal solutions with relatively modest computational requirements.

Figure 3.6 depicts the operation of a GA, which is described below.

Step 1: Initialization. Generate randomly an initial population of chromosomes.

The three free parameters, σ, C, and ε, are encoded in a binary format and

represented by a chromosome.

Step 2: Evaluating fitness. Evaluate the fitness of each chromosome. In this

book, a negative mean absolute percentage error (�MAPE) is used as the fitness

function. The MAPE is as Eq. (3.13):

Start

Generation =1 
(random initial population)

Is the number of generation 
less than or equal to the maximal 

number

Calculate the fitness function

Parent selection

Crossover

Mutation

End

Yes

No

Generation=
generation+1 

Fig. 3.6 The architecture of

the genetic algorithm
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MAPE ¼ 1

N

XN
i¼1

ai � fi

ai

����
����� 100%; (3.13)

where ai and fi represent the actual electric load and forecast electric load, and N is

the number of forecasting periods.

Step 3: Selection. Based on fitness functions, chromosomes with higher

fitness values are more likely to yield offspring in the next generation. The

roulette wheel selection principle [7] is applied to choose chromosomes for

reproduction.

Step 4: Crossover and mutation. Create new offspring by crossover and mutation

operations. Mutations are performed randomly by converting a “1” bit into a “0” bit

or a “0” bit into a “1” bit. The single-point-crossover principle is employed.

Segments of paired chromosomes between two determined breakpoints are

swapped. The rates of crossover and mutation are probabilistically determined. In

this book, the probabilities of crossover and mutation are set to 0.5 and 0.1,

respectively.

Step 5: Next generation. Form a population for the next generation.

Step 6: Stop condition. If the number of generation is equal to a given scale, then

the best chromosomes are presented as a solution; otherwise, go back to step 2.

GA is used to yield a smaller MAPE by searching for better combinations of

three parameters in SVR. In this book, binary encoding is specified in GA. Three

free parameters, σ, C and ε, are represented by a chromosome that consists of three

genes in the form of binary numbers (Fig. 3.7). The size of the population is set to

200 herein. Each gene contains 40 bits. If each gene contains 40 bits, for example,

then a chromosome contains 120 bits. More bits in a gene correspond to a finer

partition of the searched space. Parent selection is a procedure in which two

chromosomes from the parent population are chosen according to the fitness

functions. Fitter chromosomes are more likely to generate offspring to the next

generation. For simplicity, suppose a gene has four bits. A chromosome contains

12 bits (Fig. 3.8). Before crossover is performed, the values of the three parameters

in #1 parent are 1.5, 1.25, and 0.34375. For #2 parent, the three values are 0.625,

8.75, and 0.15625. After crossover, for #1 offspring, the three values are 1.625,

3.75, and 0.40625. For #2 offspring, the three values are 0.5, 6.25, and 0.09375.

Mutations are performed randomly by converting a “1” bit into a “0” bit or a “0”

bit into a “1” bit. The rates of crossover and mutation are probabilistically

determined. In this study, the probabilities of crossover and mutation are set to

0.5 and 0.1, respectively.

… ……

s C e

Fig. 3.7 The binary encoding of a chromosome
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3.3.2 GA for Three-Parameter Determination and Forecasting
Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with GA), namely, SVRGA model.

In the training stage, the rolling-based forecasting procedure (see Fig. 3.9) is

conducted, which is dividing training data into two subsets, namely, fed-in subset

(e.g., 25 load data) and fed-out subset (7 load data), respectively. Firstly, the

primary 25 load data of fed-in subset are feeding into the proposed model (the

structural risk minimization principle is employed to minimize the training error)

and then obtain one-step-ahead forecasting load, namely, the 26th forecasting load.

Secondly, the next 25 load data, including 24 of the fed-in subset data (from 2nd to

25th) pulsing the 26th data in the fed-out subset, are similarly again fed into the

proposed model (the structural risk minimization principle is also employed to

minimize the training error) and then obtain one-step-ahead forecasting load,

namely, the 27th forecasting load. Repeat the rolling-based forecasting procedure

till the 32nd forecasting load is obtained. Meanwhile, training error in this training

stage is also obtained.

For the first training rolling, 25 months (from Dec. 2004 to Dec. 2006), electric

load data are feeding into SVRGA to compute the forecasting electric load of Jan.

2007, then, for the second training rolling, the next 25 months (from Jan. 2005 to

Jan. 2007), electric load data are similarly feeding into SVRGA to compute the

forecasting electric load of Feb. 2007, and repeat previous procedures to compute

the forecasting electric load of Mar. 2007,. . ., Jul. 2007, respectively. Finally,
compute the MAPE of training stage between the forecasting electric load (from

Jan. 2007 to Jul. 2007) and the original load (from Jan. 2007 to Jul. 2007, namely,

fed-out subset).

before crossover

0 1 1 0 0 0 1 1 1 0 0 1

1 1 0 0 1 0 1 0 0 1 1 1
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Crossover Point=1
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0
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s e

s e

Fig. 3.8 A simplified example of parameter representation
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While training error improvement occurs, the three kernel parameters, σ, C, and
ε, of the SVRGA model adjusted by GA are employed to calculate the validation

error. Then, the adjusted parameters with minimum validation error are selected as

the most appropriate parameters. Finally, a one-step-ahead policy is employed to

forecast electric load. Note that the testing data set is not used for modeling but for

examining the accuracy of the forecasting model. The forecasting results and the

suitable parameters for the SVRGA model are illustrated in Table 3.4, in which it is

indicated that these two models all perform the best when 25 fed-in data are used.

Table 3.5 shows the actual values and the forecast values obtained using various

forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33), TF-ε-SVR-SA, and SVRGA.
The MAPE values are calculated to compare fairly the proposed models with other

alternative models. The proposed SVRGA model has smaller MAPE values than
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Jan 07
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Fig. 3.9 The rolling-base forecasting procedure (training stage)

Table 3.4 Parameter determination of SVRGA model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 76.84 297.20 0.4298 4.354

10 4.46 143.54 1.6705 3.763

15 4.67 70.23 3.9921 3.719

20 233.56 2,911.70 11.2340 3.974

25 686.16 5,048.40 19.3170 3.676
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ARIMA, GRNN, and TF-ε-SVR-SA models. Furthermore, to verify the significance

of accuracy improvement of SVRGA model comparing with ARIMA(1,1,1), GRNN

(σ ¼ 3.33), and TF-ε-SVR-SAmodels, the statistical test, namely, Wilcoxon signed-

rank test, is conducted at the 0.025 and 0.05 significance levels in one-tail tests.

The test results are shown in Tables 3.6 and 3.7, respectively. Clearly, the

SVRGA model is significantly superior to ARIMA(1,1,1), GRNN(σ ¼ 3.33), and

TF-ε-SVR-SA. Figure 3.10 is provided to illustrate the forecasting accuracy among

different models.

The superior performance of the SVRGA model has several causes: first, for a

SVR-based model, it has nonlinear mapping capabilities and can more easily

Table 3.5 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, and SVRGA models (unit,

hundred million kWh)

Time point (month) Actual ARIMA(1,1,1) GRNN(σ ¼ 3.33) TF-ε-SVR-SA SVRGA

Oct. 2008 181.07 192.932 191.131 184.504 178.326

Nov. 2008 180.56 191.127 187.827 190.361 178.355

Dec. 2008 189.03 189.916 184.999 202.980 178.355

Jan. 2009 182.07 191.995 185.613 195.753 178.356

Feb. 2009 167.35 189.940 184.397 167.580 178.357

Mar. 2009 189.30 183.988 178.988 185.936 178.358

Apr. 2009 175.84 189.348 181.395 180.165 181.033

MAPE (%) 6.044 4.636 3.799 3.676

Table 3.6 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRGA vs. ARIMA(1,1,1) 0a 0a

SVRGA vs. GRNN(σ ¼ 3.33) 0a 0a

SVRGA vs. TF-ε-SVR-SA 2a 2a

aDenotes that SVRGA model significantly outperforms other alternative models

Table 3.7 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRGA vs. ARIMA(1,1,1) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �11.546; p¼0.000

(reject H0)

S1 ¼ �11.546; p ¼ 0.000

(reject H0)

SVRGA vs. GRNN(σ ¼ 3.33) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.100; p ¼ 0.0179

(reject H0)

S1 ¼ �2.100; p ¼ 0.0179

(reject H0)

SVRGA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.344; p ¼ 0.00954

(reject H0)

S1 ¼ �2.344; p ¼ 0.00954

(reject H0)
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capture electric load data patterns than can the ARIMA and GRNNmodels. Second,

the parameter selection in a SVR model significantly influences their forecasting

performance. Improper determining of these three parameters will cause either

over-fitting or under-fitting of a SVR model. In this section, the GA can determine

suitable free parameters for forecasting electric load. Finally, the SVR-based model

performs structural risk minimization rather than minimizing the training errors.

Minimizing the upper bound on the generalization error improves the generaliza-

tion performance compared to the ARIMA and GRNN models. However, it is clear

that SVRGA is not fitting the actual electric loads very well even it has smaller

MAPE values and passed the Wilcoxon test than other alternatives. Therefore, it

still requires hybridizing other novel techniques to improve this shortcoming.

3.4 Simulated Annealing Algorithm in SVR’s Parameter

Determination

3.4.1 Operation Procedure of SA Algorithm

The simulated annealing (SA) algorithm is an optimization technique, analogous to

the annealing process of material physics. Boltzmann [8] pointed out if the system

is in thermal equilibrium at a temperature T, then the probability PT(s) of the system
being in a given state s is given by the Boltzmann distribution, shown as Eq. (3.14):

PTðsÞ ¼ exp �EðsÞ kT=ð ÞP
w2S

exp �EðwÞ kT=ð Þ ; (3.14)

160

165

170

175

180

185

190

195

200

205

210

Oct 2008 Nov 2008 Dec 2008 Jan 2009 Feb 2009 Mar 2009 Apr 2009

kWh Actual ARIMA(1,1,1) GRNN (s=3.33)

TF-e-SVR-SA SVRGA

Fig. 3.10 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, and SVRGA models
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where E(s) denotes the energy of state s (the state is defined as the SVR forecasting

error in each iteration here), k represents the Boltzmann constant, and S is the set of
all possible states. However, Eq. (3.14) does not contain information on how a fluid

reaches thermal equilibrium at a given temperature. Metropolis et al. [9] develop an

algorithm that simulates the process of Boltzmann. The Metropolis algorithm is

summarized as follows. When the system is in original state sold with energy E(sold),
a randomly selected atom is perturbed, resulting in a state snew with energy E(snew).
This new state is either accepted or rejected depending on the Metropolis criterion:

if E(snew) � E(sold), then the new state is automatically accepted; in contrast, if

E(snew) > E(sold), then the probability of accepting the new state is given by the

following probability function, Eq. (3.15):

Pðaccept snewÞ ¼ exp �EðsoldÞ � EðsnewÞ
kT

� �
: (3.15)

According to the studies of Boltzmann and Metropolis, Kirkpatrick et al. [10]

claim that the Metropolis approach is conducted for each temperature on the

annealing schedule until thermal equilibrium is reached. Additionally, a prerequi-

site for applying SA is that a given set of the multiple variables defines a unique

system state, for which the objective function can be calculated. The procedure of

SA algorithm is described as follows and the flowchart is shown as Fig. 3.11.

Step 1: Initialization. Set upper bounds of the three SVR parameters, σ, C, and ε.
Then, generate and feed the initial values of the three parameters into the SVR

model. The forecasting error is defined as the system state (E). Here, the initial state
(E0) is obtained.

Step 2: Provisional state. Make a random move to change the existing system

state to a provisional state. Another set of three positive parameters is generated in

this stage.

Step 3: Acceptance tests. The following equation is employed to determine the

acceptance or rejection of the provisional state [9]:

Accept the provisional state; if EðsnewÞ > EðsoldÞ;
and p < Pðaccept snewÞ; 0 � p � 1

Accept the provisional state; if EðsnewÞ � EðsoldÞ
Reject the provisional state; otherwise:

8>>><
>>>:

(3.16)

In Eq. (3.16), the p is a random number for determining the acceptance of the

provisional state. If the provisional state is accepted, then set the provisional state as

the current state.

Step 4: Incumbent solutions. If the provisional state is not accepted, then return

to step 2. Furthermore, if the current state is not superior to the system state, then

repeat steps 2 and 3 until the current state is superior to the system state, and set the

current state as the new system state. Previous studies [10, 11] indicate that the
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maximum number of loops (Nsa) is 100d to avoid infinitely repeated loops, where d
denotes the problem dimension. In this investigation, three parameters (σ, C, and ε)
are used to determine the system states. Therefore, Nsa is set to be 300.

Step 5: Temperature reduction. After the new system state is obtained, reduce

the temperature. The new temperature reduction is obtained by the Eq. (3.17),

New temperature ¼ Current temperature� ρ; (3.17)

where 0 < ρ < 1. The ρ is set to be 0.9 in this book [12]. If the predetermined

temperature is reached, then stop the algorithm and the latest state is an approxi-

mate optimal solution. Otherwise, go to step 2.

Similarly, the value of the mean absolute percent error (MAPE), shown as

Eq. (3.13), also serves as the criterion for identifying suitable parameters for use in

the SVRSAmodel. The SA algorithm is used to seek a better combination of the three

parameters in a SVR model, so that a smaller MAPE is obtained in each iteration.

3.4.2 SA Algorithm for Three-Parameter Determination
and Forecasting Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with SA), namely, SVRSA model.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training

stage. Then, if training error improvement occurs, the three kernel parameters, σ, C,
and ε, of the SVRSAmodel adjusted by SA algorithm are employed to calculate the

validation error. The adjusted parameters with minimum validation error are also

selected as the most appropriate parameters. The forecasting results and the suitable

parameters for the SVRSA model are illustrated in Table 3.8, in which it is also

indicated that these two models all perform the best when 25 fed-in data are used.

Table 3.9 shows the actual values and the forecast values obtained using various

forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33), TF-ε-SVR-SA, and SVRSA.
The MAPE values are calculated to compare fairly the proposed models with other

alternative models. The proposed SVRSAmodel only has smaller MAPE values than

ARIMA and GRNN models, but TF-ε-SVR-SA model. Furthermore, to verify the

Table 3.8 Parameter determination of SVRSA model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 464.06 399.70 0.6891 4.289

10 3.72 176.14 0.6089 4.161

15 3.53 165.38 7.3935 3.941

20 3.02 1,336.70 9.8374 3.871

25 94.998 9,435.20 12.6570 3.801

56 3 Evolutionary Algorithms in SVR’s Parameter Determination



significance of accuracy improvement of SVRSA model comparing with ARIMA

(1,1,1), GRNN(σ ¼ 3.33), and TF-ε-SVR-SA models, the Wilcoxon signed-rank test

and asymptotic test, as mentioned, are also conducted. The test results are shown in

Tables 3.10 and 3.11, respectively. Clearly, the SVRSA model is significantly

superior to ARIMA(1,1,1) model and minor significantly superior to GRNN

(σ ¼ 3.33) model (only receives significance with both levels in Wilcoxon test, but

all fails with both levels in asymptotic test). And, based on Tables 3.9, 3.10, and 3.11,

TF-ε-SVR- SA model has smaller MAPE value but not complete significantly (only

receives significance with α ¼ 0.05 level in Wilcoxon test, but all fails with both

levels in asymptotic test) outperforms SVRSA model. Figure 3.12 is provided to

illustrate the forecasting accuracy among different models.

Table 3.9 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, and SVRSA models (unit,

hundred million kWh)

Time point (month) Actual ARIMA(1,1,1) GRNN(σ ¼ 3.33) TF-ε-SVR-SA SVRSA

Oct. 2008 181.07 192.932 191.131 184.504 184.584

Nov. 2008 180.56 191.127 187.827 190.361 185.412

Dec. 2008 189.03 189.916 184.999 202.980 185.557

Jan. 2009 182.07 191.995 185.613 195.753 185.593

Feb. 2009 167.35 189.940 184.397 167.580 185.737

Mar. 2009 189.30 183.988 178.988 185.936 184.835

Apr. 2009 175.84 189.348 181.395 180.165 184.390

MAPE (%) 6.044 4.636 3.799 3.801

Table 3.10 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRSA vs. ARIMA(1,1,1) 1a 1a

SVRSA vs. GRNN(σ ¼ 3.33) 2a 2a

SVRSA vs. TF-ε-SVR-SA 3 3b

aDenotes that SVRSA model significantly outperforms other alternative models
bDenotes that SVRSA model is significantly outperformed by other alternative models

Table 3.11 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRSA vs. ARIMA(1,1,1) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �9.790; p ¼ 0.000

(reject H0)

S1 ¼ �9.790; p ¼ 0.000

(reject H0)

SVRSA vs. GRNN(σ ¼ 3.33) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.210; p ¼ 0.1131

(not reject H0)

S1 ¼ �1.210; p ¼ 0.1131

(not reject H0)

SVRSA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �0.969; p ¼ 0.1663

(not reject H0)

S1 ¼ �0.969; p ¼ 0.1663

(not reject H0)
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The superior performance of the SVRSA model not only caused from several

similar causes of SVRGA model, such as SVR-based model with nonlinear

mapping capabilities, minimizing the structural risks rather than the training errors,

but also caused from the searching mechanism of SA algorithm itself. In this

section, the SA algorithm can successfully escape from some critical local mini-

mum (forecasting error) of the three-parameter combination for electric load

forecasting. However, it is also clear that SVRSA model is not fitting the actual

electric loads very well even if it has significant smaller MAPE values than other

alternatives. Therefore, it also still requires hybridizing other novel techniques to

improve this shortcoming.

3.5 Hybrid GA with SA in SVR’s Parameter Determination

3.5.1 Shortcomings of GA and SA

GA is auto-adaptive stochastic search technique [7] that is based on the Darwinian

survival-of-the-fittest philosophy and generates new individuals with selection,

crossover, and mutation operators. GA starts with a coding of the parameter set

of all types of objective functions; thus, GA has the ability to solve those traditional

algorithms that are not easy to solve. GA is able to reserve a few best fitted members

of the whole population for the next generation in the operation process; however,

after some generations, GA may lead to a premature convergence to a local

optimum in searching the suitable parameters of a SVR model.
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SA is a stochastic based general search tool that mimics the annealing process of

material physics [10]. When the system in the original state is greater than that of

the new generated state, this new state is automatically accepted. In contrast, the

new state is accepted by Metropolis criterion with a probability function. The

performance of SA is dependent on the cooling schedule. Thus, SA has some

institution to be able to escape from local minima and reach to the global minimum

[13]. However, SA costs more computation time. To ensure the efficiency of SA, a

proper temperature cooling rate (stop criterion) should be considered.

To overcome these drawbacks from GA and SA, it is necessary to find some

effective approach and improvement to avoid misleading to the local optimum and

to search optimum objective function efficiently. Genetic algorithm–simulated

annealing (GA–SA) hybrid algorithm is a novel trial in dealing with the challenges

mentioned above. The GA–SA can firstly employ the superiority of SA algorithm to

escape from local minima and approximate to the global minimum, and secondly

apply the mutation process of GA to improve searching ability in the range of

values. So, the hybrid algorithm has been applied to the fields of system design [14],

system and network optimization [15, 16], query to information retrieval system

[17], continuous-time production planning [18, 19], and electrical power districting

problem [20]. However, there is little application of the GA–SA to SVR’s parame-

ter determination. This investigation presented in this book is motivated by a desire

to solve the problem of maintaining the premature convergence to a local optimum

of GA and the efficiency of SA mentioned above in determining the three free

parameters in a SVR electric load forecasting model, namely, SVRGASA.

3.5.2 Operation Procedure of GA–SA Algorithm

To overcome the drawbacks from GA and SA, this study proposes a hybrid GA–SA

algorithm by applying the superiority of SA to escape from local minima and

approximate to the global minimum, in addition, by using the mutation process of

GA to improve searching ability in the range of values. On the other hand, to avoid

computation executing time consuming, only the optimal individual of GA popula-

tion will be delivered to the SA for further improving. The proposed GA–SA

algorithm consists of the GA part and the SA part. GA evaluates the initial

population and operates on the population using three basic genetic operators to

produce new population (best individual); then, for each generation of GA, it will

be delivered to SA for further processing. After finishing all the processes of SA,

the modified individual will be sent back to GA for the next generation. These

computing iterations will be never stopped till the termination condition of the

algorithm is reached. The proposed procedure of GA–SA algorithm is illustrated as

follow and the flowchart is shown as Fig. 3.13.
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3.5.2.1 The Procedure of the GA Part

Step 1: Initialization. Construct randomly the initial population of chromosomes.

The three parameters, C, σ, and ε, in a SVR model in the ith generation are encoded
into a binary format and represented by a chromosome that is composed of “genes”

of binary numbers (Fig. 3.2). Each chromosome has three genes, which represent

three parameters. Each gene has 40 bits. For instance, if each gene contains 40 bits,

a chromosome contains 120 bits. More bits in a gene correspond to finer partition of

the search space.

Step 2: Evaluating fitness. Evaluate the fitness (forecasting errors) of each

chromosome. In this book, a negative mean absolute percentage error (�MAPE)

is used as the fitness function. The MAPE is as Eq. (3.13).

Step 3: Selection operation. Based on fitness functions, chromosomes with

higher fitness values are more likely to yield offspring in the next generation. The

roulette wheel selection principle [7] is also applied to choose chromosomes for

reproduction.

Step 4: Crossover operation and mutation operation. Mutations are performed

randomly by converting a “1” bit into a “0” bit or a “0” bit into a “1” bit. In

crossover operation, chromosomes are paired randomly. The single-point-crossover

principle is employed herein. Segments of paired chromosomes between two

determined breakpoints are swapped. Finally, decode the crossover three

parameters in a decimal format.

Step 5: Stop condition. If the number of generation is equal to a given scale, then

the best chromosomes are presented as a solution; otherwise, go to the step 1 of the

SA part.

In the proposed GA–SA algorithm process, GA will deliver its best individual to

SA for further processing. After the optimal individual of GA being improved, SA

sends it back to GA for the next generation. These computing iterations will be

never stopped till the termination condition of the algorithm is reached.

3.5.2.2 The Procedure of the SA Part

Step 1: Generate initial current state. Receive values of the three parameters from

GA. The value of forecasting error, MAPE, shown as Eq. (3.12), is defined as the

system state (E). Here, the initial state (E0) is obtained.

Step 2: Provisional state. Make a random move to change the existing system

state to a provisional state. Another set of three positive parameters are generated in

this stage.

Step 3: Metropolis criterion tests. Equation (3.16) is also employed to determine

the acceptance or rejection of provisional state [9]. If the provisional state is

accepted, then set the provisional state as the current state.

Step 4: Incumbent solutions. If the provisional state is not accepted, then return to
step 2. Furthermore, if the current state is not superior to the system state, then repeat
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steps 2 and 3 until the current state is superior to the system state, and set the current

state as new system state. The maximum number of loops (Nsa) is also set to 300.

Step 5: Temperature reduction. After the new system state is obtained, reduce

the temperature. The new temperature reduction is obtained by the Eq. (3.17). If the

predetermined temperature is reached, then stop the algorithm and the latest state is

an approximate optimal solution. Otherwise, go to step 2.

3.5.3 GA–SA Algorithm for Three-Parameter Determination
and Forecasting Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with GA–SA), namely, SVRGASA model.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training

stage. Then, if training error improvement occurs, then the three kernel parameters,

σ, C, and ε, of the SVRGASA model adjusted by GA–SA are employed to calculate

the validation error. The adjusted parameters with minimum validation error are

also selected as the most appropriate parameters. The forecasting results and the

suitable parameters for the SVRGASA model are illustrated in Table 3.12, in which

it is also indicated that these two models all perform the best when 25 fed-in data

are used.

Table 3.13 shows the actual values and the forecast values obtained using

various forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33), TF-ε-SVR-SA,
SVRGA, SVRSA, and SVRGASA. The MAPE values are calculated to compare

fairly the proposed models with other alternative models. The proposed SVRGASA

model has smaller MAPE values than other alternative models. Furthermore, to

verify the significance of accuracy improvement of SVRGASA model comparing

with other alternative models, the Wilcoxon signed-rank test and asymptotic test, as

mentioned, are also conducted. The test results are shown in Tables 3.14 and 3.15,

respectively. Clearly, the SVRGASA model is significantly superior to other

alternative models. Figure 3.14 is provided to illustrate the forecasting accuracy

among different models.

Table 3.12 Parameter determination of SVRGASA model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 96.06 469.09 4.2588 5.049

10 22.45 99.97 0.9677 4.383

15 5.14 146.91 9.8969 3.951

20 788.75 6,587.20 9.2529 3.853

25 92.09 2,449.50 13.639 3.530
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In this section, the hybrid GA–SA algorithm helps to avoid trapping into local

minimum than GA and SA algorithms do, thus, outperforming the SVRGA and

SVRSA models. For example, in Tables 3.4, 3.8, and 3.12, the GA–SA algorithm is

Table 3.13 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRGA, SVRSA, and

SVRGASA models (unit, hundred million kWh)

Time point

(month) Actual

ARIMA

(1,1,1)

GRNN

(σ ¼ 3.33)

TF-ε-
SVR-SA SVRGA SVRSA SVRGASA

Oct. 2008 181.07 192.932 191.131 184.504 178.326 184.584 183.563

Nov. 2008 180.56 191.127 187.827 190.362 178.355 185.412 183.898

Dec. 2008 189.03 189.916 184.999 202.980 178.355 185.557 183.808

Jan. 2009 182.07 191.995 185.613 195.753 178.356 185.593 184.128

Feb. 2009 167.35 189.940 184.397 167.580 178.357 185.737 184.152

Mar. 2009 189.30 183.988 178.988 185.936 178.358 184.835 183.387

Apr. 2009 175.84 189.348 181.395 180.165 181.033 184.390 183.625

MAPE (%) 6.044 4.636 3.799 3.676 3.810 3.530

Table 3.14 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRGASA vs. ARIMA(1,1,1) 0a 0a

SVRGASA vs. GRNN(σ ¼ 3.33) 2a 2a

SVRGASA vs. TF-ε-SVR-SA 1a 1a

SVRGASA vs. SVRGA 0a 0a

SVRGASA vs. SVRSA 0a 0a

aDenotes that SVRGASA model significantly outperforms other alternative models

Table 3.15 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRGASA vs. ARIMA

(1,1,1)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �10.965; p ¼ 0.000

(reject H0)

S1 ¼ �10.965; p ¼ 0.000

(reject H0)

SVRGASA vs. GRNN

(σ ¼ 3.33)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.879; p ¼ 0.03016

(reject H0)

S1 ¼ �1.879; p ¼ 0.03016

(reject H0)

SVRGASA vs. TF-ε-SVR-
SA

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.432; p ¼ 0.00751

(reject H0)

S1 ¼ �2.432; p ¼ 0.00751

(reject H0)

SVRGASA vs. SVRGA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ 4.426; p ¼ 0.000

(reject H0)

S1 ¼ 4.426; p ¼ 0.000

(reject H0)

SVRGASA vs. SVRSA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �17.370; p ¼ 0.000

(reject H0)

S1 ¼ �17.370; p ¼ 0.000

(reject H0)
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excellently to shift the local solution of SVRGA and SVRSA models by 25 fed-in

data rolling type, (σ, C, ε) ¼ (686.16, 5048.4, 19.317 and 94.998, 9435.20,

12.6570, respectively) with local optimal forecasting errors, in terms of MAPE

(3.676 % and 3.810 %, respectively), to be improved by GA–SA algorithm to

another better solution, (σ, C, ε) ¼ (92.807, 2449.50, 13.639) to be the appropriate

local optimal forecasting error in terms of MAPE (3.530 %). Thus, it once again

reveals that GA–SA algorithm is much appropriate than GA and SA algorithms in

parameter adjustments to achieve forecasting accuracy improvement by integrated

into the SVR model. However, it is also clear that SVRSA model is not fitting the

actual electric loads very well even it has significant smaller MAPE values than

other alternatives. Therefore, it also still requires hybridizing other novel

techniques to improve this shortcoming.

3.6 Particle Swarm Optimization Algorithm in SVR’s

Parameter Determination

3.6.1 Operation Procedure of PSO Algorithm

In the previous sections, although both SVRGA and SVRSA are superior to other

competitive forecasting models (ARIMA, HW, GRNN, and BPNN models), how-

ever, the drawbacks of GA and SA algorithms, as mentioned, are lacking knowl-

edge memory or storage functions, while previous knowledge of the problem is

destroyed once the population (GA) or the temperature changes (SA algorithm).

160

165

170

175

180

185

190

195

200

205

210

Oct 2008 Nov 2008 Dec 2008 Jan 2009 Feb 2009 Mar 2009 Apr 2009

kWh
Actual ARIMA(1,1,1) GRNN (s=3.33)
TF-e-SVR-SA SVRGA SVRSA
SVRGASA

Fig. 3.14 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRGA, SVRSA, and

SVRGASA models

64 3 Evolutionary Algorithms in SVR’s Parameter Determination



Thus, these drawbacks of GA and SA algorithms would lead to time-consuming and

inefficient in searching the suitable parameters of a SVR model. Recently, inspired

by the social behavior of organisms such as fish schooling and bird flocking,

Kennedy and Eberhart [21] first introduced particle swarm optimization (PSO)

algorithm, in which it is also initialized with a population of random solutions.

Each individual, namely, particle, is assigned with a randomized velocity flown

through hyperspace to look for the optimal position to land. Compared with GA and

SA algorithm, PSO algorithm has memory to store the knowledge of good solutions

by all particles; in addition, particles in the swarm share information with each

other. Therefore, due to the simple concept, easy implementation, and quick

convergence, nowadays PSO algorithm has gained much attention and wide

applications in solving continuous nonlinear optimization problems [22]. However,

the performance of PSO algorithm greatly depends on its parameters, and similar to

GA and SA algorithm, it often suffers from being trapped in local optimum [23, 24].

In a PSO system, it starts with the random initialization of a population (swarm)

in the search space, where multiple solution-candidates coexisted. Each solution,

namely, particle, flies in the space looking for the optimal position to land.

Eventually, the global best position of the system could be found out by adjusting

the direction of each particle towards its own best location and towards the best

particle of the swarm at each generation. The direction of each particle is adjusted

by dynamically altering the velocity of each particle, according to its own flying

experience as well as the experience of neighboring particles. During the searching

process, tracking and memorizing the best position encountered could cumulate

each particle’s experience. Thus, the PSO system essentially has the capability of

memory; each particle remembers the best position it reaches during the past, and

then the PSO system combines local search method (via self experience) with

global search methods (via neighboring experience).

The position, the velocity, and own best position of the ith particle pair, due to

the three parameters in a SVR model, in the n-dimensional space can be represented

as Eqs. (3.18)–(3.20), respectively,

XðkÞi ¼ xðkÞi;1; xðkÞi;2; . . . ; xðkÞi;n
	 


; (3.18)

VðkÞi ¼ vðkÞi;1; vðkÞi;2; . . . ; vðkÞi;n
	 


; (3.19)

PðkÞi ¼ pðkÞi;1; pðkÞi;2; . . . ; pðkÞi;n
	 


; (3.20)

where k ¼ σ, C, ε, and i ¼ 1, 2, . . ., N.
The global best position among all particles in the swarm

XðkÞi ¼ XðkÞ1;XðkÞ2; . . . ;XðkÞN
	 


is shown as Eq. (3.21):

PðkÞg ¼ pðkÞg;1; pðkÞg;2; . . . ; pðkÞg;d
	 


; (3.21)

where k ¼ σ, C, ε, and g ¼ 1, 2, . . ., N.

3.6 Particle Swarm Optimization Algorithm in SVR’s Parameter Determination 65



Then, the new velocity of each particle is computed by Eq. (3.22):

VðkÞiðtþ 1Þ ¼ lVðkÞiðtÞ þ q1randð�ÞðPðkÞi � XðkÞiðtÞÞ þ q2Randð�ÞðPðkÞg � XðkÞiðtÞÞ;
(3.22)

where k ¼ σ, C, ε, and i ¼ 1, 2, . . ., N, l is called the inertia weight that controls the
impact of the previous velocity of the particle on its current one, q1 and q2 are two
positive constants called acceleration coefficients, and rand(∙) and Rand(∙) are two
independently uniformly distributed random variables with range [0,1].

After the velocity has been updated, the new position of the particle for each

parameter in the next generation is determined as Eq. (3.23):

XðkÞiðtþ 1Þ ¼ XðkÞiðtÞ þ VðkÞiðtþ 1Þ; (3.23)

where k ¼ σ, C, ε, and i ¼ 1, 2, . . ., N.
Notice that the value of each component in V(k)i can be limited to the range

[�vmax, vmax] to control excessive roaming of particles outside the search space.

This process is repeated until the defined stopping threshold is reached. The

procedure of PSO algorithm is illustrated as follows and the flowchart is shown

as Fig. 3.15. Interested readers could refer to [21] for more detail:

Step 1: Initialization. Initialize a defined population of particle pairs (σi, Ci, εi)
with random positions (Xσi, XCi, Xεi) and velocities (Vσi, VCi, Vεi), where each

particle contains n variables.

Step 2: Objective value computing. Compute the objective values (forecasting

errors) of all particle pairs. Let own best position (Pσi, PCi, Pεi) of each particle pair

and its objective value fbesti equal to its initial position and objective value. Let

global best position (Pσg, PCg, Pεg) and its objective value fglobalbesti equal to the best
initial particle pair’s position and its objective value.

Step 3: Evaluation of the objective values. According to Eqs. (3.22) and (3.23),

update the velocity and position for each particle pair. And evaluate the objective

values for all particle pairs.

Step 4: Comparison and update. For each particle pair, compare its current

objective value with fbesti. If the current objective value is better (i.e., with smaller

forecasting accuracy index value), then update best position (Pσi, PCi, Pεi) and its

objective value by the current position and objective value.

Step 5: The best particle pair determination. Determine the best particle pair of

whole population based on the best objective value. If the objective value is smaller

than fglobalbesti, then update (Pσg, PCg, Pεg) and its objective value with the current

best particle pair’s position and objective.

Step 6: Stop criterion. If a stopping threshold (forecasting accuracy) is reached,

then (Pσg, PCg, Pεg) and its fglobalbesti would be determined; otherwise, go back to

step 3.

66 3 Evolutionary Algorithms in SVR’s Parameter Determination



Initialize a population of particle
pairs with random 
positions  and 
velocities 

Compare its current 
objective value with

Is current value with smaller 
forecasting error value?

Compute the objective values 
(forecasting errors) of all 

particle pairs

Yes

),,( iiiC se
),,( iiCi XXX se

),,( iiCi VVV se

Set up initial position and 
objective value         by own best
position  of each 
particle pair  

),,( iiCi PPP se

Define the best initial particle pair’s 
position and its objective value as

ifbest 

Global best position
and objective value

),,( iiCi PPP se

i
fglobalbest

Based on Eqs. (3.22) and (3.23)
(1)Update the velocity and 
position for each particle pair. 
(2)And evaluate the objective 
values for all particle pairs

ifbest 

Is the objective value of the 
best particle pair among whole 

population smaller than

Yes; or maximum iteration is reached

No
Revising the velocity and 

position of each particle pair

ifglobalbest

No
Revising the velocity and 

position of each particle pair

Finished

Fig. 3.15 The architecture of
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3.6.2 PSO Algorithm for Three-Parameter Determination
and Forecasting Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with PSO), namely, SVRPSO model.

The parameters of the PSO algorithm in the proposed model are experimentally

set as shown in Table 3.16. The population size is set as 20; the total number of

function evaluation is fixed as 10,000; q1 and q2 for each particle pair (σ, C, ε) are
set to 0.05, 100, 0.5, respectively. vmax for σ particle is clamped to be 10 % of its

search space (where σ 2 ½0; 500�). vmax for C particle is clamped to be 12.5 % of

its search space (C 2 ½0; 20000�). vmax for ε particle are both clamped to be 15 % of

its search space (ε 2 ½0; 100�).The standard PSO [21] uses a linearly varying inertia

weight over the generations, varying from 1.2 at the beginning of the search to

0.2 at the end.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training

stage. Then, if training error improvement occurs, the three kernel parameter s, σ,
C, and ε, of the SVRPSO model adjusted by PSO algorithm are employed to

calculate the validation error. The adjusted parameters with minimum validation

error are also selected as the most appropriate parameters. The forecasting results

and the suitable parameters for the SVRPSO model are illustrated in Table 3.17, in

which it is also indicated that these two models all perform the best when 25 fed-in

data are used.

Table 3.18 shows the actual values and the forecast values obtained using

various forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33), TF-ε-SVR-SA,
and SVRPSO. The MAPE values are calculated to compare fairly the proposed

models with other alternative models. The proposed SVRPSO model has smaller

MAPE values than other alternative models. Furthermore, to verify the significance

of accuracy improvement of SVRPSO model comparing with other alternative

models, the Wilcoxon signed-rank test and asymptotic test are also conducted.

The test results are shown in Tables 3.19 and 3.20, respectively. Clearly, the

SVRPSO model is significantly superior to other alternative models, except versus

GRNN model (receives significance with both levels in Wilcoxon test, but all fails

with α ¼ 0.05 level in asymptotic test). Figure 3.16 is provided to illustrate the

forecasting accuracy among different models.

In this section, the PSO algorithm is employed to overcome the shortcomings

of GA and SA algorithms, that is, with memory to store the knowledge of good

solutions and sharing information with each other. PSO algorithm is capable of

searching experience memorizing to avoid inefficacious searching paths and to

quickly converge. Therefore, it is expected to receive better forecasting perfor-

mance than SVRGA and SVRSA models. However, it is also clear that SVRPSO

model is not fitting the actual electric loads very well even if it has significant

smaller MAPE values than other alternatives. Therefore, it also still requires

hybridizing other novel techniques to improve this shortcoming.
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3.7 Continuous Ant Colony Optimization Algorithm in SVR’s

Parameter Determination

3.7.1 Basic Concept of ACO Algorithm

Ant colony optimization (ACO) algorithm was firstly proposed by Dorigo [25] and

Dorigo et al. [26]. The process by which ants could establish the shorter path

between ant nest and food is illustrated in Fig. 3.17. Initially, ants leave their nest

in random directions to search for food. As roaming around, ants deposit some

Table 3.17 Parameter determination of SVRPSO model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 70.34 289.53 2.4341 4.558

10 23.82 81.12 1.2436 4.346

15 111.04 3,158.10 2.8713 4.484

20 93.32 5,683.70 11.4980 4.078

25 158.44 7,014.50 2.2836 3.638

Table 3.18 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRGA, SVRSA, and

SVRPSO models (unit, hundred million kWh)

Time point

(month) Actual

ARIMA

(1,1,1)

GRNN

(σ ¼ 3.33)

TF-ε-
SVR-SA SVRGA SVRSA SVRPSO

Oct. 2008 181.07 192.932 191.131 184.504 178.326 184.584 184.042

Nov. 2008 180.56 191.127 187.827 190.361 178.355 185.412 183.577

Dec. 2008 189.03 189.916 184.999 202.980 178.355 185.557 183.471

Jan. 2009 182.07 191.995 185.613 195.753 178.356 185.593 184.210

Feb. 2009 167.35 189.940 184.397 167.580 178.357 185.737 184.338

Mar. 2009 189.30 183.988 178.988 185.936 178.358 184.835 183.725

Apr. 2009 175.84 189.348 181.395 180.165 181.033 184.390 184.529

MAPE (%) 6.044 4.636 3.799 3.676 3.810 3.638

Table 3.19 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRPSO vs. ARIMA(1,1,1) 0a 0a

SVRPSO vs. GRNN(σ ¼ 3.33) 2a 2a

SVRPSO vs. TF-ε-SVR-SA 2a 2a

SVRPSO vs. SVRGA 0a 0a

SVRPSO vs. SVRSA 1a 1a

aDenotes that SVRPSO model significantly outperforms other alternative models
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amount of pheromone trails, which could be detectable by other ants. For example,

assuming ant 1 finds a food source, it will pick up some food and go back to the nest

by following its previous pheromone trail, laying additional pheromone on the

same path while other ants (ant 2, ant 3, etc.) are still roaming randomly. When the

second ant group leaves the nest to look for food, those ants could detect much

Table 3.20 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRPSO vs. ARIMA(1,1,1) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �9.677; p ¼ 0.000

(reject H0)

S1 ¼ �9.677; p ¼ 0.000

(reject H0)

SVRPSO vs. GRNN(σ ¼ 3.33) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.567; p ¼ 0.0586

(not reject H0)

S1 ¼ �1.567; p ¼ 0.0586

(reject H0)

SVRPSO vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.852; p ¼ 0.0320

(reject H0)

S1 ¼ �1.852; p ¼ 0.0320

(reject H0)

SVRPSO vs. SVRGA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ 5.863; p ¼ 0.000

(reject H0)

S1 ¼ 5.863; p ¼ 0.000

(reject H0)

SVRPSO vs. SVRSA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �5.992; p ¼ 0.000

(reject H0)

S1 ¼ �5.992; p ¼ 0.000

(reject H0)
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Fig. 3.16 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRGA, SVRSA, and

SVRPSO models
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pheromone (twice) on path 1 than on others (path 2, path 3, etc.). Since the

probability for a path to be followed is determined by its pheromone amount,

more ants will follow path 1 in this second round of looking for food. In this

way, the ants can establish the shortest path from their colony to the food sources.

Obviously, even if an isolated ant roams randomly, it can, communicated by

pheromones, follow the collective behavior of ant colonies.

Due to their power to learn and search capabilities, ACO algorithm has been

successfully used to dealing with different combinatorial optimization problems

including job-shop scheduling [27], traveling salesman problem [28], space planning

[29], quadratic assignment problems [30], and data mining [31]. ACO imitates the

behaviors of real ant colonies as they forage for food, wherein each ant lays down the

pheromone on the path to the food sources or back to the nest. The paths with more

pheromone are more likely to be selected by other ants. Over time, a colony of ants

will select the shortest path to the food source and back to the nest. Therefore, a

pheromone trail is the most important process for individual ant to smell and select its

route. Meanwhile, ACO algorithm is originally proposed for discrete optimization,

and their application to continuous optimization problems requires some specified

transformation techniques. In the literature, only a few approaches for continuous

optimization have been proposed, such as continuous ACO [32–34], API algorithm

[35], and continuous interacting ACO [36]. However, these algorithms added some

operational mechanisms that are mostly beyond the regular essences of ACO.

Recently, Socha and Dorigo [37] proposed an extension of ACO to continuous

domain by applying the continuous probability density function to decide pheromone

probabilistic choice, in which, however, other external parameters should be deter-

mined in advance; thereby, it would mislead to continuous technological issue instead

of appropriate SVR’s parameter determination.

Food

Ant 
nest

Ant 1

Path 1Path 5
Path 2

Ant 2
Ant 3

Path 3

Ant 4

Ant 5

Path 4

Fig. 3.17 Description of establishing the shorter path between ant nest and food
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3.7.2 Continuing Transformation

Hence, the concepts of transforming a continuous search space to a discrete one by

discretization of the continuous decision variables [38] are feasible to be employed,

which is so-called the continuous ant colony optimization (CACO) algorithm. In this

book, the CACO algorithm for the traveling salesman problem is modified to

determine three parameters of a SVR model in the discrete search space. The

probability, Pk(i, j), that an ant kmoves from city i to city j is expressed as Eq. (3.24):

Pkði; jÞ ¼ arg max
S2Mk

τði; SÞ½ �α ηði; SÞ½ �β
n o

; if q � q0

Eq:ð3:25Þ, otherwise

(
; (3.24)

Pkði; jÞ ¼ τði; jÞ½ �α ηði; jÞ½ �β P
S2Mk

τði; SÞ½ �α ηði; SÞ½ �β;
,

j =2Mk

0; otherwise

;

8><
>: (3.25)

where τ(i, j) is the pheromone level between city i and city j, and η(i, j) is the inverse
of the distance between cities i and j. In this study, the forecasting error represents

the distance between cities. The α and β are parameters determining the relative

importance of pheromone level, and Mk is a set of cities in the next column of the

city matrix for ant k. q is a random uniform variable [0,1], and the value q0 is a
constant between 0 and 1, that is, q0 2 [0,1]. The values of α, β, and q0 are set to be
8, 5, and 0.2, respectively.

Once ants have completed their tours, the most pheromone deposited by ants on

the visited paths is considered as the information regarding the best paths from the

nest to the food sources. Therefore, the pheromone dynamic updating plays the

main role in real ant colonies searching behaviors. The local and global updating

rules of pheromone are expressed as Eqs. (3.26) and (3.27), respectively,

τði; jÞ ¼ ð1� ρÞτði; jÞ þ ρτ0; (3.26)

τði; jÞ ¼ ð1� δÞτði; jÞ þ δΔτði; jÞ; (3.27)

where ρ is the local evaporation rate of pheromone, 0 < ρ < 1; τ0 is the initial

amount of pheromone deposited on each of the paths. In this book, the value of ρ is
set to be 0.01. In addition, the initial amount of pheromone, τ0, generated by Dorigo
and Gambardella’s [28] proposed approach, is expressed as Eq. (3.28):

τ0 ¼ 1

nLnn
(3.28)

where n is the number of cities and Lnn is the tour length produced by the nearest

neighbor heuristic.
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Global trail updating is accomplished according to Eq. (3.27). The δ is the global
pheromone decay parameter, 0 < δ < 1, and set to be 0.2 for this study. TheΔτ(i, j),
expressed as Eq. (3.29), is used to increase the pheromone on the path of the solution:

Δτði; jÞ ¼ 1 L;= if ði; jÞ 2 global best route

0; otherwise

�
; (3.29)

where L is the length of the shortest route.

3.7.3 Operation Procedure of CACO Algorithm

More detail of the CACO algorithm on this book is as follows and the flowchart is

shown as Fig. 3.18.

Step 1: Initialization. Set upper bounds of three SVR positive parameters, σ, C,
and ε. In this study, to discretize those continuous parameters, each digit of the

parameters is represented by ten cities. Thus, each digit contains 10 possible values

from 0 to 9. Assume the limits of parameters σ, C, and ε are 500, 10,000, and 100,

correspondingly. The numbers of digits that represent each parameter (σ, C, and ε)
are all set as six. Hence, three ant colonies are defined as σ-ant colony, C-ant
colony, and ε-ant colony for three-parameter values searching. The numbers of

cities for each ant colony are 40, and the total number of cities is 120.

Step 2: Assigning tasks to each ant colony. From step one, pathway-structure list

of each ant colony would be generated. Figure 3.19 shows the parameters

represented by the CACO algorithms and pathway-structure list in this study.

Each ant will randomly select a pathway from the pathway list in its associate

colony and remember the values of the represented parameters (σ, C, and ε). At the
end of the pathway, pass the three-parameter values into the SVR model (i.e.,

objective function) and calculate the forecasting error. The shortest travel pathway

in each searching loop would be determined based on the smaller forecasting error.

In this book, the MAPE is used as the forecasting error index as given by Eq. (3.13).

Step 3: Determine the numbers of ants and calculate the distance between cities.
The numbers of ants are set to be 10 in each ant colony searching, that is, totally 30

ants for each iteration searching. The maximum number of iterations is set to

20,000 to avoid infinite iterations.

Step 4: Stop criterion I. While the maximum number of iterations is reached,

then stop the algorithm, and the shortest travel path of the ants colony is an

approximate optimal solution. Otherwise, continue to step 4.

Step 5: Calculate the visiting probability. If the maximum number of iterations

is not reached, then calculate the probability that an ant k in city i moves to city j in
accordance with Eq. (3.24). Repeat steps 1–3.
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Step 6: Stop criterion II. If each ant has finished its pathway-structure list from

the nest to the food source passing through all cities, then the shortest path is an

approximate optimal solution. Otherwise, conduct the pheromone updating process

represented as Eqs. (3.26) and (3.27) to renew the reinforcement of pheromone.

Then, go back to step 4.

Notice that, in any iteration, while the shorter path is attained, the appropriate

solution is determined, and for those three parameters, new search space is then

Initialization & Discretization 

Determine the numbers of ants
Calculate the desirability between

cities

Assigning tasks to each ant colony

Maximum numbers of
searching iterations is

reached ?

Calculate the visiting probability

Each ant has finished its
journey?

Global updating pheromone
process

Best (approximate) travel path
(Solution)

End

No

No

Yes

Fig. 3.18 The architecture of

CACO algorithm
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re-discretized. The CACO algorithm is used to seek a better combination of the three

parameters in the SVR so that a smallerMAPE is obtained during forecasting iteration.

3.7.4 CACO Algorithm for Three-Parameter Determination
and Forecasting Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with CACO), namely, SVRCACO model.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training

stage. Then, if training error improvement occurs, the three kernel parameters, σ,
C, and ε, of the SVRCACO model adjusted by CACO algorithm are employed to

calculate the validation error. The adjusted parameters with minimum validation

error are also selected as the most appropriate parameters. The forecasting results

and the suitable parameters for the SVRCACOmodel are illustrated in Table 3.21,

in which it is also indicated that these two models all perform the best when 25

fed-in data are used.

Table 3.22 shows the actual values and the forecast values obtained using various

forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33), TF-ε-SVR-SA, SVRPSO,
and SVRCACO. The MAPE values are calculated to compare fairly the proposed
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Fig. 3.19 SVR parameter representation by the CACO algorithm
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models with other alternative models. The proposed SVRCACO model has smaller

MAPE values than other alternative models. Furthermore, to verify the significance

of accuracy improvement of SVRCACO model comparing with other alternative

models, the Wilcoxon signed-rank test and asymptotic test are also conducted. The

test results are shown in Tables 3.23 and 3.24, respectively. Clearly, the SVRCACO

model is significantly superior to other alternative models, except GRNN model

(minor significantly superior to GRNN model, only receives significance with

α ¼ 0.05 level in Wilcoxon test, but all fails with both levels in asymptotic test)

and SVRPSOmodel (not completely significantly outperforms SVRPSOmodel, only

receives significance with both levels inWilcoxon test, but all fails with both levels in

asymptotic test). Figure 3.20 is provided to illustrate the forecasting accuracy among

different models.

Table 3.21 Parameter determination of SVRCACO model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 1.49 322.92 6.7778 5.623

10 159.76 198.03 4.5219 5.076

15 12.81 114.24 0.0035 4.510

20 22.99 7,233.00 13.7640 4.003

25 243.55 6,868.10 11.2480 3.371

Table 3.22 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRPSO, and SVRCACO

models (unit, hundred million kWh)

Time point

(month) Actual

ARIMA

(1,1,1)

GRNN

(σ ¼ 3.33)

TF-ε-SVR-
SA SVRPSO SVRCACO

Oct. 2008 181.07 192.932 191.131 184.504 184.042 180.876

Nov. 2008 180.56 191.127 187.827 190.361 183.577 182.122

Dec. 2008 189.03 189.916 184.999 202.980 183.471 184.610

Jan. 2009 182.07 191.995 185.613 195.753 184.210 185.233

Feb. 2009 167.35 189.940 184.397 167.580 184.338 185.274

Mar. 2009 189.30 183.988 178.988 185.936 183.725 184.247

Apr. 2009 175.84 189.348 181.395 180.165 184.529 184.930

MAPE (%) 6.044 4.636 3.799 3.638 3.371

Table 3.23 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRCACO vs. ARIMA(1,1,1) 1a 1a

SVRCACO vs. GRNN(σ ¼ 3.33) 3 2a

SVRCACO vs. TF-ε-SVR-SA 2a 2a

SVRCACO vs. SVRPSO 2a 2a

aDenotes that SVRCACO model significantly outperforms other alternative models
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In this section, the CACO algorithm is also applied to overcome the shortcomings

of GA and SA algorithms, that is, with memory to store the knowledge of good

solutions and sharing information with each other. CACO algorithm has such the

mechanism of learning/searching experiences storage and feedback to establish the

shorter path (i.e., suitable parameter combination of a SVR model) between ant nest

and food (i.e., smaller forecasting error). Therefore, it is expected to receive better

forecasting performance than SVRGA and SVRSA models and has the potential to

provide some competitive solution comparing with SVRPSO model. However, it is

also clear that SVRCACOmodel is not fitting the actual electric loads very well even

Table 3.24 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRCACO vs. ARIMA(1,1,1) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �7.174; p ¼ 0.000

(reject H0)

S1 ¼ �7.174; p ¼ 0.000

(reject H0)

SVRCACO vs. GRNN(σ ¼ 3.33) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.201; p ¼ 0.1149

(not reject H0)

S1 ¼ �1.201; p ¼ 0.1149

(not reject H0)

SVRCACO vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.018; p ¼ 0.0218

(reject H0)

S1 ¼ �2.018; p ¼ 0.0218

(reject H0)

SVRCACO vs. SVRPSO H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ 0.6341; p ¼ 0.263

(not reject H0)

S1 ¼ 0.6341; p ¼ 0.263

(not reject H0)
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Fig. 3.20 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRPSO, and SVRCACO

models
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it has significant smaller MAPE values than other alternatives. Therefore, it

also still requires hybridizing other novel techniques to improve this shortcoming.

3.8 Artificial Bee Colony Algorithm in SVR’s Parameter

Determination

3.8.1 Behaviors of Real Bees

The artificial bee colony (ABC) algorithm, proposed by Karaboga et al. [39] and

further developed by Karaboga and Basturk [40–42], is inspired by the intelligent

foraging behavior of honeybee swarm. As known that lots of optimization algorithms

conduct only one search operation during one iteration time, for example, PSO

algorithm carries out global search at the beginning and local search in the later

stage. For ABC algorithm, it conducts both global search and local search during one

iteration time to ensure that ABC algorithm is more probabilistic to receive more

suitable parameter combination, and thereby efficiently to avoid local optimum to a

large extent, and to receive better performance in optimization problem compared

with GA, differential evolution (DE), and PSO algorithm [40–43].

The whole fabric of honeybee society depends on various communication

ways among bees, such as waggle dance and special odor, to easily find food

sources that produce relatively high amount of nectar [44]. To introduce this kind

of forage selection model that leads to the emergence of collective intelligence of

honeybee swarms, three essential components are defined: food sources, unem-

ployed foragers, and employed foragers. In addition, two leading modes of the

behavior, recruitment to a nectar source and abandonment of a source, are also

embedded [42]:

1. Food sources (A and B in Fig. 3.21). The value of a food source depends on

many factors, such as its proximity to the nest, richness or concentration of

energy, and the ease of extracting this energy. For the sake of simplicity, the

“profitability” of a food source can be represented with a single quantity.

2. Unemployed foragers (UF in Fig. 3.21). It is assumed that a bee has no prior

knowledge about the food sources in the search field; thus, bee initializes its

search as an unemployed forager. Unemployed foragers are looking for a food

source to exploit. There are three types of unemployed foragers: scouts,

onlookers, and recruits.

(a) Scouts (S in Fig. 3.21). Without any prior knowledge, they start searching

spontaneously for new food sources around the nest. The mean number of

scouts averaged over conditions is about 10 % in nature [45].
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(b) Onlookers (O in Fig. 3.21). They wait in the nest and find a food source

through the shared information from the employed foragers. There is a

greater probability of onlookers choosing more profitable sources [43].

(c) Recruits (R in Fig. 3.21). If the onlookers attend a waggle dance done by

some other bees, these onlookers will become recruits and start searching by

using the obtained (shared) knowledge from the waggle dance.

3. Employed foragers. They are associated with a particular food source which they

are currently exploiting or are “employed” at. They carry the information

(profitability) about this particular source and share this information by a certain

probability. After the employed foraging bee loads a portion of nectar from the

food source, it returns to the hive and unloads the nectar to the food area in the

hive. Then, the foraging bee has three possible behaviors related to residual

amount of nectar to be acted.

(a) Unemployed foragers (UF in Fig. 3.21). If the nectar amount is decreased to

a low critical level or exhausted, the foraging bee abandons the food source

and becomes an unemployed bee.
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Food source ANon food source D
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(O)

Dancing area
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Fig. 3.21 Behavior of honeybee foraging for nectar
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(b) Employed foragers type 1 (EF1 in Fig. 3.21). The foraging bee can go to the

dance area to perform waggle dance to inform the nest mates about the food

source.

(c) Employed foragers type 2 (EF2 in Fig. 3.21). On the contrary, if there are

still sufficient amounts of nectar in the food source, the foraging bee can

continue to forage without communicating the food source information with

the nest mates.

The communication of information among bees is the most important matter in

the whole fabric of honeybee society. Communication among bees related to the

quality of food sources occurs in the dancing area. The related dance is called

waggle dance, which closely provides the information correlated with the direction

of and the distance from the food sources. Employed foragers share their informa-

tion with a probability, which is proportional to the profitability of the food source.

Hence, the recruitment is proportional to the profitability of a food source [46].

3.8.2 Operation Procedure of ABC Algorithm

The proposed procedure of ABC algorithm is illustrated as follows and the flow-

chart is shown as Fig. 3.22:

Step 1: Initialization. Initialize the population size Np, the number of employed

foragers ne, and the number of unemployed foragers (onlookers) n0, which satisfy

the condition, Np ¼ ne + n0. Let xij (i ¼ 1, 2, . . ., Np; j ¼ 1, 2, . . ., D) represent the
initial solution of parameter combination in a SVRmodel, whereD is the number of

parameters. D is set as 3 in this book.

Step 2: Criteria of food source determination. Based on ABC algorithm,

choosing a food source of an onlooker is dependent on the probability value

associated with that food source. However, for forecasting accuracy improvement

in the investigation, the onlooker will choose a food source according to the mean

absolute percentage error (MAPE), shown as Eq. (3.13).

Step 3: Generate neighboring food sources (potential solutions). A candidate

food source (solution) vij from the old solution xij can be generated as Eq. (3.30):

vij ¼ xij þ Φijðxij � xkjÞ; (3.30)

where k 2 {1, 2, . . ., N} is randomly chosen index, k must be different from i, and
Φij is a random number in the range [�1,1]. If the MAPE value of the candidate

solution vij is equal to or smaller than xij’s, then vij will be set as the new solution;

else, xij will remain as the solution. The parameter Φij in ABC is the key factor that

affects convergence [65].

Step 4: Determine the abandoned food source. If a solution cannot be improved

through a predetermined threshold (limited iterations), then the food source is
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considered to be abandoned. The employed bee will reinstate to be a scout,

according to Eq. (3.31), to look for another new food source to replace the

abandoned source:

xij ¼ min
j

þ φijðmax
j

�min
j
Þ; (3.31)

Initialization 
Initialize the population size (Np), the
numbers of EF (ne), UEF (no), and the 

initial solution xij

Generate neighboring solutions
A candidate food source (solution) vij

can be generatedby

Stop criterion

The solution with smaller MAPE
value or maximum iteration is 

reached

End

Yes

Abandon food source
If a solution cannot be improved any
more, abandon the food source, and

look for a new food source by

No

( )kjijijijij xxxv -F+=

{ }Nk ,...,2,1Î

New solution determination
Compare the candidate solutions   with
  and select as the new solution with
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vij
xij,
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Fig. 3.22 The architecture of

artificial bee colony (ABC)

algorithm
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where maxj is the maximal solution, that is, maxj ¼ max{x1j, x2j, . . ., xNj}; minj
represents the minimal solution, that is, minj ¼ min{x1j, x2j, . . ., xNj}; and φij is a

random number in the range [�1,1].

Step 5: Stop criterion. If the new food source value is with smaller MAPE value

or maximum iteration is reached, then the new three parameters xi
(n+1) and its

corresponding objective value are the final solution; otherwise, go to the next

iteration and go back to step 2.

3.8.3 ABC Algorithm for Three-Parameter Determination
and Forecasting Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with ABC), namely, SVRABC model.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training

stage. Then, if training error improvement occurs, the three kernel parameters, σ, C,
and ε, of the SVRABCmodel adjusted by ABC algorithm are employed to calculate

the validation error. The adjusted parameters with minimum validation error are

also selected as the most appropriate parameters. The forecasting results and the

suitable parameters for the SVRABCmodel are illustrated in Table 3.25, in which it

is also indicated that these two models all perform the best when 25 fed-in data are

used.

For simplified comparison among alternative models, SVRGA, SVRSA, and

SVRGASA models are not considered due to their law forecasting accuracy levels;

SVRCACO model is also not included in comparison due to minor relationship

between CACO and ABC algorithms. Table 3.26 shows the actual values and the

forecast values obtained using various forecasting models: ARIMA(1,1,1), GRNN

(σ ¼ 3.33), TF-ε-SVR-SA, SVRPSO, and SVRABC. The MAPE values are calcu-

lated to compare fairly the proposed models with other alternative models. The

proposed SVRABC model has smaller MAPE values than other alternative models.

Furthermore, to verify the significance of accuracy improvement of SVRABC

model comparing with other alternative models, the Wilcoxon signed-rank test

and asymptotic test are also conducted. The test results are shown in Tables 3.27

Table 3.25 Parameter determination of SVRABC model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 115.78 130.01 2.9542 3.812

10 193.26 44.08 2.4476 3.665

15 30.27 9,652.50 12.7640 3.509

20 620.15 4,246.00 13.1820 3.588

25 38.348 4,552.10 16.8450 3.458
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and 3.28, respectively. Clearly, the SVRABC model is significantly superior to

other alternative models. Figure 3.23 is provided to illustrate the forecasting

accuracy among different models.

In this section, the ABC algorithm is also applied to overcome the shortcomings

of PSO algorithm (only carries out global search at the beginning and local search in

the later stage), that is,, conducting both global search and local search during one

Table 3.26 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRPSO, and SVRABC

models (unit, hundred million kWh)

Time point

(month) Actual

ARIMA

(1,1,1)

GRNN

(σ ¼ 3.33)

TF-ε-SVR-
SA SVRPSO SVRABC

Oct. 2008 181.07 192.932 191.131 184.504 184.042 184.498

Nov. 2008 180.56 191.127 187.827 190.361 183.577 183.372

Dec. 2008 189.03 189.916 184.999 202.980 183.471 183.323

Jan. 2009 182.07 191.995 185.613 195.753 184.210 183.549

Feb. 2009 167.35 189.940 184.397 167.580 184.338 183.774

Mar. 2009 189.30 183.988 178.988 185.936 183.725 183.999

Apr. 2009 175.84 189.348 181.395 180.165 184.529 183.420

MAPE (%) 6.044 4.636 3.799 3.638 3.458

Table 3.27 Wilcoxon signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRABC vs. ARIMA(1,1,1) 1a 1a

SVRABC vs. GRNN(σ ¼ 3.33) 2a 2a

SVRABC vs. TF-ε-SVR-SA 2a 2a

SVRABC vs. SVRPSO 2a 2a

aDenotes that SVRABC model significantly outperforms other alternative models

Table 3.28 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRABC vs. ARIMA

(1,1,1)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �13.231; p ¼ 0.000(reject

H0)

S1 ¼ �13.231; p ¼ 0.000(reject

H0)

SVRABC vs. GRNN

(σ ¼ 3.33)

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.257; p ¼ 0.01199

(reject H0)

S1 ¼ �2.257; p ¼ 0.01199

(reject H0)

SVRABC vs. TF-ε-SVR-
SA

H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.066; p ¼ 0.0194(reject

H0)

S1 ¼ �2.066; p ¼ 0.0194(reject

H0)

SVRABC vs. SVRPSO H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �2.723; p ¼ 0.0032(reject

H0)

S1 ¼ �2.723; p ¼ 0.0032(reject

H0)
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iteration time to enrich the searching behavior to avoid trapping into local optimum.

Therefore, it is also expected to receive better forecasting performance than

SVRPSO model and has the potential to provide some alternative solution compar-

ing with SVRCACO model. However, it is also clear that SVRABC model is not

fitting the actual electric loads very well even if it has significant smaller MAPE

values than other alternatives. Therefore, it also still requires hybridizing other

novel techniques to improve this shortcoming.

3.9 Immune Algorithm in SVR’s Parameter Determination

3.9.1 Operation Procedure of IA

The immune algorithm (IA), proposed by Mori et al. [47] and used in this book, is

based on the learning mechanism of natural immune systems. Similar to GA, SA, and

PSO, IA is also a population-based evolutionary algorithm; therefore, it provides a set

of solutions for exploration and exploitation of search space to obtain optimal/near

optimal solutions [48]. The natural immune system is a complex adaptive system that

efficiently employs several mechanisms to recognize all cells within the body and

classify those cells as self or nonself. Additionally, the nonself cells are further

categorized to stimulate an appropriate type of defensive mechanism for defending

against foreign invaders, such as bacteria and viruses. The lymphocyte is the main

type of immune cell participating in the immune response. The lymphocyte contains

two subclasses: T and B. Each subclass has its own function. When an antigen enters
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the bloodstream and lymphatic system, the antigen encounters B-cells, and antibodies
anchored in the membrane of B-cells recognize antigens in the bacteria. T-cells,
which have already received communication from macrophages about the antigen,

then communicate with B-cells and stimulate their proliferation. The proliferated B-
cells turn into memory cells and produce antibodies. After the antibodies enter the

bloodstream via the heart, the antibodies bind to antigens and kill them with the help

of macrophages and other proteins.

Analogous to the natural immune system, the IA has the ability to seek out the

best solution for optimization problems. In the IA procedure, the optimization

problem can be viewed as antigens. Conversely, the feasible solutions of the

optimization problem are treated as antibodies (B-cells). The procedure of IA is

illustrated as follows and the flowchart is shown as Fig. 3.24.

Step 1: Random initialization of antibody population. The initial antibody

population represented by binary-code string, including three parameters (σ, C,
and ε) of a SVR model, is generated randomly. For example, assume that an

antibody contains 12 binary codes to represent three SVR parameters. Each param-

eter is thus expressed by four binary codes. Therefore, for example, assume the set

boundaries for parameters σ, C, and ε are 2, 10, and 0.5, respectively; then, the

antibody with binary code “1 0 0 1 0 1 0 1 0 0 1 1” implies that the real values

of the three parameters σ, C, and ε are 1.125, 3.125, and 0.09375, respectively.

The number of initial antibodies is the same as the size of the memory cell.

The size of the memory cell is set to 10 in this book.

Start

Generation =1 
(random initial antibody population)

Is the number of generation 
less than or equal to the max 

generation

Identify the affinity and the similarity

Suitable candidate antibodies into the 
memory cell

Crossover of antibody population

Mutation of antibody population

End

Yes

No

Generation= 
generation+1

Fig. 3.24 The architecture of

immune algorithm (IA)
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Step 2: Identifying the affinity and the similarity. A higher affinity value implies that

an antibody has a higher activation with an antigen. To maintain the diversity of the

antibodies stored in the memory cells, the antibodies with lower similarity have higher

probability of being included in the memory cell. Therefore, an antibody with a higher

affinity value and a lower similarity value has a good likelihood of entering the

memory cells. The affinity between the antibody and antigen is defined as Eq. (3.32):

Agk ¼ 1 ð1þ dkÞ= ; (3.32)

where dk denotes the SVR forecasting errors obtained by the antibody k.
The similarity between antibodies is expressed as Eq. (3.33):

Abij ¼ 1 ð1þ TijÞ
�

; (3.33)

where Tij denotes the difference between the two SVR forecasting errors obtained

by the antibodies inside (existed) and outside (will be entering) the memory cell.

Step 3: Selection of antibodies in the memory cell. Antibodies with higher values
of Agk are considered to be potential candidates for entering the memory cell.

However, the potential antibody candidates with Abij values exceeding a certain

threshold are not qualified to enter the memory cell. In this investigation, the

threshold value is set to 0.9.

Step 4: Crossover and mutation of antibody population. New antibodies are

created via crossover and mutation operations. To perform crossovers, strings

representing antibodies are paired randomly. Moreover, segments of paired strings

between two determined breakpoints are swapped. Mutations are performed ran-

domly by converting a “1” code into a “0” code or a “0” code in to a “1” code. The

crossover and mutation rates are determined using probabilities. In this investiga-

tion, the probabilities are set to 0.5 and 0.1 for crossover and mutation, respectively.

Step 5: Stopping criterion. If the number of generations equals a given scale,

then the best antibody is a solution; otherwise, return to step 2.

The IA is used to seek a better combination of the three parameters in SVR. The

value of the mean absolute percent error (MAPE) is used as the criterion (the

smallest value of MAPE) of forecasting errors to determine the suitable parameters

used in SVR model, which is given by Eq. (3.13).

3.9.2 IA for Three-Parameter Determination and Forecasting
Results

This subsection will demonstrate the three-parameter determination of the proposed

hybrid model (SVR with IA), namely, SVRIA model.

Similarly, in the training stage, the rolling-based forecasting procedure is also

employed to obtain the forecasting load and receive training error in the training
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stage. Then, if training error improvement occurs, the three kernel parameters, σ, C,
and ε, of the SVRIA model adjusted by IA are employed to calculate the validation

error. The adjusted parameters with minimum validation error are also selected as

the most appropriate parameters. The forecasting results and the suitable

parameters for the SVRIA model are illustrated in Table 3.29, in which it is also

indicated that these two models all perform the best when 25 fed-in data are used.

For simplified comparison among alternative models, SVRGA, SVRSA,

SVRGASA, and SVRPSO models are not considered due to their law forecasting

accuracy levels. Table 3.30 shows the actual values and the forecast values

obtained using various forecasting models: ARIMA(1,1,1), GRNN(σ ¼ 3.33),

TF-ε-SVR-SA, SVRCACO, and SVRABC. The MAPE values are calculated to

compare fairly the proposed models with other alternative models. The proposed

SVRIA model has smaller MAPE values than other alternative models. Further-

more, to verify the significance of accuracy improvement of SVRIA model

comparing with other alternative models, the Wilcoxon signed-rank test and

asymptotic test are also conducted. The test results are shown in Tables 3.31

and 3.32, respectively. Clearly, the SVRIA model is almost significantly superior

to other alternative models, except SVRABC model (only receives significance

with α ¼ 0.05 level in Wilcoxon test, but all fails with both levels in asymptotic

test). Figure 3.25 is provided to illustrate the forecasting accuracy among differ-

ent models.

Table 3.29 Parameter determination of SVRIA model

Nos. of fed-in data

Parameters

MAPE of testing (%)σ C ε

5 758.12 409.33 3.7736 4.940

10 11.74 180.91 0.6728 4.079

15 43.21 2,367.70 13.5250 3.504

20 282.38 2,365.50 2.4397 3.880

25 149.93 4,293.10 9.4790 3.211

Table 3.30 Forecasting results of ARIMA, GRNN, TF-ε-SVR-SA, SVRCACO, SVRABC, and
SVRIA models (unit, hundred million kWh)

Time point

(month) Actual

ARIMA

(1,1,1)

GRNN

(σ ¼ 3.33)

TF-ε-
SVR-SA SVRCACO SVRABC SVRIA

Oct. 2008 181.07 192.932 191.131 184.504 180.876 184.498 181.322

Nov. 2008 180.56 191.127 187.827 190.361 182.122 183.372 181.669

Dec. 2008 189.03 189.916 184.999 202.980 184.610 183.323 183.430

Jan. 2009 182.07 191.995 185.613 195.753 185.233 183.549 183.964

Feb. 2009 167.35 189.940 184.397 167.580 185.274 183.774 184.030

Mar. 2009 189.30 183.988 178.988 185.936 184.247 183.999 182.829

Apr. 2009 175.84 189.348 181.395 180.165 184.930 183.420 183.463

MAPE (%) 6.044 4.636 3.799 3.371 3.458 3.211
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In this section, the IA is also employed to overcome the shortcomings of GA,

SA, and PSO algorithms, that is, providing a set of solutions for exploration and

exploitation of search space to obtain optimal/near optimal solutions by using

immune system to find out the feasible solutions of the optimization problem. IA

has such a mechanism to recognize all cells within the body and classify those cells

as self or nonself; the nonself cells are categorized to the defensive mechanism for

defending against foreign invaders; the lymphatic system contains two subclasses,

T-cells and B-cells, to communicate with each other when an antigen enters the

bloodstream. The proliferated B-cells turn into memory cells and produce

antibodies (i.e., suitable parameter combination of a SVR model). The optimization

problem (i.e., smaller forecasting error) is viewed as antigens. Conversely, the

feasible solutions of the optimization problem are treated as antibodies (B-cells).
Therefore, it is expected to receive better forecasting performance than SVRGA,

SVRSA, and SVRPSO models and has the potential to provide some competitive

Table 3.32 Asymptotic test

Compared models

Asymptotic (S1) test

α ¼ 0.05 α ¼ 0.10

SVRIA vs. ARIMA(1,1,1) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �9.143; p ¼ 0.000

(reject H0)

S1 ¼ �9.143; p ¼ 0.000

(reject H0)

SVRIA vs. GRNN(σ ¼ 3.33) H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �1.768; p ¼ 0.03856

(reject H0)

S1 ¼ �1.768; p ¼ 0.03856

(reject H0)

SVRIA vs. TF-ε-SVR-SA H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.910; p ¼ 0.000

(reject H0)

S1 ¼ �3.910; p ¼ 0.000

(reject H0)

SVRIA vs. SVRCACO H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ �3.632; p ¼ 0.00014

(reject H0)

S1 ¼ �3.632; p ¼ 0.00014

(reject H0)

SVRIA vs. SVRABC H0: e1 ¼ e2 H0: e1 ¼ e2
S1 ¼ 0.218; p ¼ 0.4136

(not reject H0)

S1 ¼ 0.218; p ¼ 0.4136

(not reject H0)

Table 3.31 Wilcoxon

signed-rank test

Compared models

Wilcoxon signed-rank test

α ¼ 0.025 α ¼ 0.05

W ¼ 2 W ¼ 3

SVRIA vs. ARIMA(1,1,1) 0a 0a

SVRIA vs. GRNN(σ ¼ 3.33) 2a 2a

SVRIA vs. TF-ε-SVR-SA 2a 2a

SVRIA vs. SVRCACO 1a 1a

SVRIA vs. SVRABC 3 3a

aDenotes that SVRIA model significantly outperforms other alter-

native models
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solution comparing with SVRCACO and SVRABC models. However, it is also

clear that SVRIA is not fitting the actual electric loads very well even if it has

significant smaller MAPE values than other alternatives. Therefore, it also still

requires hybridizing other novel techniques to improve this shortcoming.
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