
Chapter 2

Modeling for Energy Demand Forecasting

As mentioned in Chap. 1, the electric load forecasting methods can be classified in

three categories [1–12]:

• Traditional approaches, including Box–Jenkins autoregressive integrated

moving average (ARIMA) model, autoregressive and moving average with

exogenous variables (ARMAX) model, seasonal autoregressive integrated

moving average (SARIMA) model, exponential smoothing models [including

Holt–Winters model (HW) and seasonal Holt and Winters’ linear exponential

smoothing (SHW)], state space/Kalman filtering model, and linear regression

model

• Artificial intelligent approaches, including knowledge-based expert system

(KBES) model, artificial neural networks (ANNs) model, and fuzzy inference

system model

• Support vector regression (SVR) model and its related hybrid/combined models

These models are classified on the basis of the forecasting technological

development tendency, evolved from mathematical relationship model (e.g.,

statistics-based model) to application of artificial intelligent model (e.g.,

ANNs model) and eventually to hybridizing statistical model and artificial

intelligent model (e.g., SVR model). Of course, the classifications are not

unique, and the classification based on the technological evolution is not always

suitable for another. However, based on this classification, interested readers can

be inspired to propose another new model to receive more accurate electric load

forecasting performance. Additionally, each model has its outstanding

advantages compared with other models due to its theoretical innovation while

it has been proposed and also has its embedded theoretical limitations; thus, it

always has the potential to be improved by hybridizing or combining with other

novel approaches.

This book is focused on SVR model, SVR with hybrid evolutionary algorithms,

and SVR with combined mechanisms; therefore, to be based on the same compari-

son conditions and easily to receive full comparison results, only ARIMA,
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SARIMA, HW, SHW, GRNN (general regression neural network), BPNN (back-

propagation neural network), and SVR models are introduced in the following

subsections, whereas the state space/Kalman filtering, linear regression, and

KBES models are beyond the scope of this book.

2.1 Autoregressive Integrated Moving Average Model

Introduced by Box and Jenkins [13], the ARIMA model has been one of the most

popular approaches in forecasting. The ARIMA model is composed of three

partitions: the autoregressive (AR), the moving average (MA), and the differencing

process (also called integrated processes). In the AR process, the current value of

electric load is often expressed as linear combination of previous actual electric

load values and with a random noise. The order of AR process is determined by the

oldest previous electric load value that is regressed with the same series itself. In the

MA process, it expresses a white noise error series of linear combination in terms of

current against previous (unobserved) white noise error term. The order of MA

process is determined by the oldest previous value. The AR and MA processes are

combined to be the famous electric load forecasting model, autoregressive moving

average (ARMA) process. In the ARMA process, the order is determined by the

same method as mentioned in AR and MA processes [14].

The AR, MA, or ARMAmodels are often viewed as stationary processes, that is,

their means and covariances are stationary with respect to time. Therefore, while

the process is nonstationary, it is necessarily transformed to a stationary series

before conducting their modeling processes. Differencing process is employed to

transform a nonstationary series into a stationary one. The order of a differencing

process is the number of times of differenced before achieving stationarity.

Differencing processes for AR, MA, or ARMA models are also the so-called

integrated processes and are named as ARI, IMA, and ARIMA, respectively.

In an ARIMA model, the future value of a variable is supposed to be a linear

combination of past values and past errors, expressed as Eq. (2.1):

yt ¼ θ0 þϕ1yt�1 þϕ2yt�2 þ � � � þϕpyt�p þ � � � εt � θ1εt�1 � θ2εt�2 � � � � � θqεt�q;

(2.1)

where yt is the actual value and εt is the random error at time t, ϕi and θj are the

coefficients, and p and q are integers and often referred to as autoregressive and

moving average polynomials, respectively. In addition, the difference ðrÞ is used to
solve the nonstationary problem and defined as Eq. (2.2):

rdyt ¼ rd�1yt �rd�1yt�1: (2.2)
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Basically, three phases are included in an ARIMA model: model identification,

parameter estimation, and diagnostic checking. Furthermore, the backward shift

operator, B, is defined as Eqs. (2.3) and (2.4):

B1yt ¼ yt�1;B
2yt ¼ yt�2; . . . ;B

pyt ¼ yt�p; (2.3)

B1εt ¼ εt�1;B
2εt ¼ εt�2; . . . ;B

pεt ¼ εt�p: (2.4)

Then ϕpðBÞ and θq(B) can be written as Eqs. (2.5) and (2.6), respectively,

ϕpðBÞ ¼ 1� ϕ1B
1 � ϕ2B

2 � � � � � � � � ϕpB
p; (2.5)

θ1ðBÞ ¼ 1� θ1B
1 � θ2B

2 � � � � � � � � θqB
q: (2.6)

Hence, Eq. (2.1) can be rewritten as Eq. (2.7):

ϕpðBÞrdyt ¼ C0 þ θqðBÞεt: (2.7)

Equation (2.7) is denoted as ARIMA(p,d,q) with nonzero constant, C0. For

example, the ARIMA(2,2,1) model can be represented as Eq. (2.8):

ϕ2ðBÞr2yt ¼ C0 þ θ1ðBÞεt: (2.8)

In general, the values of p, d, and q need to be estimated by autocorrelation

function (ACF) and partial autocorrelation function (PACF) of the differenced

series.

2.2 Seasonal Autoregressive Integrated Moving Average Model

For a special-period time series, a seasonal or cyclic component should be consid-

ered in ARIMA modeling process. This additional process is well known as the

seasonal process, and its abbreviation is used as SARIMA [15]. The SARIMA

process is often referred to as the SARIMA(p,d,q)(P,D,Q)S model. Similar to the

ARIMA model, the forecasting values are assumed to be a linear combination of

past values and past errors. A time series {Xt} is a SARIMA process with seasonal

period length S if d and D are nonnegative integers and if the differenced series

Wt ¼ (1 � B)d(1 � BS)DXt is a stationary autoregressive moving average process.

In symbolic terms, the model can be written as Eq. (2.9):

ϕpðBÞΦPðBSÞWt ¼ θqðBÞΘQðBSÞεt; t ¼ 1; 2; . . . ;N; (2.9)
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where N is the number of observations up to time t, B is the backshift operator

defined by BaWt ¼ Wt�a, ϕpðBÞ ¼ 1� ϕ1B� � � � � ϕpB
p is called a regular (non-

seasonal) autoregressive operator of order p,ΦPðBSÞ ¼ 1�Φ1B
S � � � � �ΦPB

PS is

a seasonal autoregressive operator of order P, θqðBÞ ¼ 1� θ1B� � � � � θqBq is a

regular moving average operator of order q,ΘQðBSÞ ¼ 1� Θ1B
S � � � � � ΘQB

QS is

a seasonal moving average operator of order Q, and εt is identically and indepen-

dently distributed as normal random variables with mean zero, variance σ2, and cov
(εt, εt�k) ¼ 0, 8k 6¼ 0.

In the definition above, the parameters p and q represent the autoregressive and

moving average order, respectively, and the parameters P and Q represent the

autoregressive and moving average order at the model’s seasonal period length,

S, respectively. The parameters d andD represent the order of ordinary and seasonal

differencing, respectively.

Basically, when fitting a SARIMA model to data, the first task is to estimate

values of d and D, the orders of differencing needed to make the series stationary

and to remove most of the seasonality. The values of p, P, q, and Q then need to be

estimated by the autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) of the differenced series. Other model parameters may be estimated by

suitable iterative procedures.

2.3 Holt–Winters Model

The Holt–Winters (HW) model is proposed by Holt [16] and Winter [17]. HW

model is an extension of exponentially weighted moving average procedure. The

exponentially weighted moving average approach forecasts future values based on

past observations and places more weight on the recent observations. HW model

smoothes the trend values separately with two smoothing coefficients (with values

between 0 and 1) and incorporates an explicit linear trend in the forecast. The

approach of Holt–Winter linear exponential smoothing is shown as

Eqs. (2.10)–(2.12):

st ¼ αat þ ð1� αÞðst�1 þ bt�1Þ; (2.10)

bt ¼ βðst � st�1Þ þ ð1� βÞbt�1; (2.11)

ft ¼ st þ ibt; (2.12)

where at is the actual value at time t, st is the smoothed estimate at time t, bt is the
trend value at time t, α is the level smoothing coefficient, and β is the trend

smoothing coefficient.

Equation (2.10) lets the actual value be smoothed in a recursive manner by

weighting the current level (α) and then adjusts st directly for the trend of the
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previous period, bt�1, by adding it to the last smoothed value, st�1. This helps to

eliminate the lag and brings st to the approximate base of the current data value.

Equation (2.11) updates the trend, which is expressed as the difference between the

last two smoothed values. It modifies the trend by smoothing with β in the last

period (st�st�1) and adding that to the previous estimate of the trend multiplied by

(1 � β). Equation (2.12) is used to forecast ahead. The trend, bt, is multiplied by the

number of periods ahead to be forecast, i, and added to the base value, st. The
forecast error (et) is defined as the actual value minus the forecast (fitted) value for

time period t, which is shown in Eq. (2.13):

et ¼ at � ft: (2.13)

The forecast error is assumed to be an independent random variable with zero

mean and constant variance. Values of smoothing coefficients, α and β, are deter-
mined to minimize the forecast error index.

2.4 Seasonal Holt–Winters (SHW) Model

To consider the seasonal effect, the seasonal Holt and Winters’ linear exponential

smoothing (SHW) approach is also employed. HW model cannot be extended to

accommodate additive seasonality if the magnitude of the seasonal effects does not

change with the series or multiplicative seasonality if the amplitude of the seasonal

pattern changes over time. Therefore, the forecast for SHW model is shown as

Eqs. (2.14)–(2.17):

st ¼ α
at
It�L

þ ð1� αÞðst�1 þ bt�1Þ; (2.14)

bt ¼ βðst � st�1Þ þ ð1� βÞbt�1; (2.15)

It ¼ γ
at
st
þ ð1� γÞIt�L; (2.16)

ft ¼ ðst þ ibtÞIt�Lþi; (2.17)

where L is the length of seasonality, I is the seasonal adjustment factor, and γ is the
seasonal adjustment coefficient. Equation (2.14) differs slightly from Eq. (2.15) in

that the first term is divided by the seasonal number It�L; this is done to

deseasonalize at (eliminate seasonal fluctuations from at). Equation (2.16) is com-

parable to a seasonal index that is found as a ratio of current values of the series, at,
divided by the smoothed value for the series, st. If at is larger than st, the ratio will be
greater than 1, else, the ratio will be less than 1. In order to smooth the randomness
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of at, Eq. (2.17) weights the newly computed seasonal factor with γ and the most

recent seasonal number corresponding to the same season with (1�γ).

2.5 General Regression Neural Network Model

The GRNN model, proposed by Specht [18], can approximate any arbitrary func-

tion from historical data. The foundation of GRNN operation is based on the theory

of kernel regression. The procedure of the GRNN model can be equivalently

represented as Eq. (2.18):

E½N Mj � ¼
Ð1
�1 Nf ðM;NÞdNÐ1
�1 f ðM;NÞdN ; (2.18)

where N is the predicted value of GRNN, M is the input vector (M1, M2, . . ., Mn)

which consists of n variables, E[N|M] is the expected value of the output N given an

input vector M, and f(M, N) is the joint probability density function of M and N.
GRNN model primarily has four layers (Fig. 2.1). Each layer is assigned with a

specific computational function when nonlinear regression function is performed.

The first layer of the network is to receive information. The input neurons then feed

the data to the second layer. The primary task of the second layer is to memorize the

relationship between the input neuron and its proper response. Therefore, the

neurons in the second layer are also called pattern neurons. A multivariate Gaussian

function of θi is given in Eq. (2.19), and the data from the input neurons are used to

compute an output θi by a typical pattern neuron i:

θi ¼ exp
�ðM � UiÞ0ðM � UiÞ

2σ2

� �
; (2.19)

where Ui is a specific training vector represented by pattern neuron i and σ is the

smoothing parameter. In the third layer, the neurons, namely, the summation

neurons, receive the outputs of the pattern neurons. The outputs from all pattern

neurons are augmented. Basically, two summations, the simple summation and the

weighted summation, are conducted in the neurons of the third layer. The simple

summation and the weighted summation operations can be represented as

Eqs. (2.20) and (2.21), respectively:

Ss ¼
X
i

θi; (2.20)

Sw ¼
X
i

wiθi; (2.21)

where wi is the pattern neuron i connected to third layer of weights.
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The summations of neurons in the third layer are then fed into the fourth layer.

The GRNN regression output Q is calculated as Eq. (2.22):

Q ¼ Ss
Sw

: (2.22)

2.6 Back-Propagation Neural Networks Model

The multilayer back-propagation neural network (BPNN) is one of the most widely

used neural network models. Consider the simplest BPNN architecture (Fig. 2.2)

including three layers: an input layer (x), an output layer (o), and a hidden layer (h).
The computational procedure of this network is described as Eq. (2.23):

oi ¼ f
X
j

gijxij

 !
; (2.23)

where oi denotes the output of node i, f(·) represents the activation function, gij is the
connection weight between nodes i and j in the lower layer which can be replaced

with vji and wkj, and xij denotes the input signal from the node j in the lower layer.

x1 x2 xp

Input layer

Pattern layer

………

…………………

⎥⎦
⎤

⎢⎣
⎡ ′
−

2σ2

(M −Ui)exp

……………S1 S2 SI Ss 

∑=
i

Ss θi

Summation layer∑=
i

wiθi

……………

Q2 QIQ1

Output layer
Ss

SwQ =

θi

θIθ2θ1

(M −Ui)

wiθi

Sw

Fig. 2.1 The architecture of the GRNN model
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The BPNN algorithm attempts to improve neural network performance (reduce

the total error) through changing the gradient weights. The BPNN algorithm

minimizes the sum of square error, which can be calculated by Eq. (2.24):

E ¼ 1

2

XP
p¼1

XK
j¼1

ðdpj � opjÞ2; (2.24)

where E denotes the square errors, K represents the output layer neurons, P is the

training data pattern, dpj denotes the actual output, and opj represents the network

output.

The BPNN algorithm is expressed as follows: Let Δvjt denote the weight change
for any hidden layer neuron and Δwkj for any output layer neuron, shown as

Eqs. (2.25) and (2.26):

Δvji ¼ �η
@E

@vji
i ¼ 1; . . . ; I; j ¼ 1; . . . ; J � 1 (2.25)

Δwkj ¼ �η
@E

@wkj
j ¼ 1; . . . ; J � 1; k ¼ 1; . . . ;K; (2.26)

where η represents the learning rate parameter. Notably, the Jth node in Fig. 2.2 is

the bias neuron without weight. Equations (2.27) and (2.28) express the signal (sj) to
each hidden layer neuron and the signal (uk) to each neuron in the output layer:
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Fig. 2.2 The architecture of the BPNN model
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sj ¼
XI
i¼1

vjixi; (2.27)

uk ¼
XJ�1

j¼1

wkjyj: (2.28)

The error signal terms for the jth hidden neuron δyj and for the kth output neuron
δok are defined as Eqs. (2.29) and (2.30), respectively:

δyj ¼ � @E

@sj
; (2.29)

δok ¼ � @E

@uk
: (2.30)

Applying the chain rule, the gradient of the cost function with respect to weights

vji and wkj is

@E

@vji
¼ @E

@sj

@sj
@vji

; (2.31)

@E

@wkj
¼ @E

@uk

@uk
@wkj

; (2.32)

and

@sj
@vji

¼ @ðvj1x1 þ vj2x2 þ � � � þ vjixi þ � � � þ vjIxIÞ
@vji

¼ xi; (2.33)

@uk
@wkj

¼ @ðwk1y1 þ wk2y2 þ � � � þ wkjyj þ � � � þ wkJyJÞ
@wkj

¼ yj: (2.34)

By combining Eqs. (2.29), (2.31), and (2.33) and Eqs. (2.30),(2.32), and (2.34),

one obtains Eqs. (2.35) and (2.36):

@E

@vji
¼ �δyjxi; (2.35)

@E

@wkj
¼ �δokyj: (2.36)
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The weight change from Eqs. (2.25) and (2.26) can now be written as Eqs. (2.37)

and (2.38), respectively:

Δvji ¼ �η
@E

@vji
¼ ηδyjxi; (2.37)

Δwkj ¼ �η
@E

@ekj
¼ ηδokyj: (2.38)

Furthermore, Eqs. (2.29) and (2.30) can be calculated as Eqs. (2.39) and (2.40):

δok ¼ � @E

@uk
¼ � @E

@ok

@ok
@uk

¼ ðdk � okÞf 0ðukÞ; (2.39)

δyj ¼ � @E

@sj
¼ � @E

@yj

@yj
@sj

¼
XK
k¼1

ok � wkj

( )
� f 0jðujÞ: (2.40)

The weights, vji and wkj, are changed as Eqs. (2.41) and (2.42):

wkj ¼ wkj þ Δwkj ¼ wkj þ ηδokyj; (2.41)

vji ¼ vji þ Δvji ¼ vji þ ηf 0jðujÞxi
XK
k¼1

δokwkj: (2.42)

The constant term, η, is specified at the start of training cycle and determines the

training speed and stability of the network. The most common activation functions

are the squashing sigmoid function, such as the logistic and tangent hyperbolic

functions.

2.7 Support Vector Regression Model

2.7.1 Structural Risk Minimization

Artificial intelligent approaches have tended to be based on finding functions to

map as training errors over training set, that is, empirical risk minimization (ERM).

However, the ERM does not guarantee good generalization to novel testing data set.

To separate the classes with a surface (hyperplane) that maximizes the margin

between training data set, SVMs employ the SRM principle that aims to minimize a

bound on the generalization error, rather than minimizing the mean square error

over the training data set. SRM provides a well-defined quantitative measurement
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for the capacity of a learned function to capture the true structure of the data

distribution and generalize over unknown test data set. Vapnik–Chervonenkis

(VC) dimension [19] has been applied for such a capacity; by selecting a function

and minimizing its empirical error to a training data set, SRM can guarantee a

minimal bound on the test data set.

Give a training data set of N elements {(xi, yi), i ¼ 1, 2, . . ., N}, where xi is the ith
element in n-dimensional space, that is, xi ¼ ½x1i; . . . ; xni� 2 <n, and yi 2 f�1;þ1g
is the label of xi, then define a deterministic function f:x!{�1,+1} for a given input

data x and adjustable weights wðw 2 <nÞ , according to the same but unknown

probability distribution (P(x, y)). The weights w would be adjusted during the

training stage. Since the underlying probability distribution P(x, y) is unknown,

the upper bound for the probability of classification errors on the test data set

(i.e., expected error of f, R(f)) cannot be minimized directly. Thus, it is feasible to

estimate an approximate function of R(f), that is, empirical risk, denoted as Remp(f),
that is close to the optimal one based on the training data pairs (x, y). Then, according
to the SRM principle [20, 21], R(f) and Remp(f) are expressed as Eqs. (2.43)–(2.46):

Rðf Þ � Rempðf Þ þ ε1ðN; h; η;RempÞ; (2.43)

Rempðf Þ ¼ 1

N

XN
i¼1

yi � f ðxiÞj jloss function:; (2.44)

ε1ðN; h; η;RempÞ ¼ 2ε20ðN; h; ηÞ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rempðf Þ

ε20ðN; h; ηÞ

s !
; (2.45)

ε0ðN; h; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ln 2N

h

� �þ 1
� �� ln η

4

� �
N

s
: (2.46)

Equation (2.43) holds with probability 1�η for 0 � η � 1. The ε0(N,h,η) is the
so-called VC confidence interval. The values of ε0(N,h,η) depend on the number of

training data N, the VC dimension h, and the value of η.
For a small empirical risk Remp(f), for example, closes to 0, then Eq. (2.43)

would approximately reduce to Remp(f) + 4ε0
2(N,h,η) and, in contrast, for a large

empirical risk closes to 1, Eq. (2.43) would approximately reduce to Remp(f) + ε0(N,
h,η) [22].

Thus, there are two strategies for minimizing the upper bound, R(f). The first one
is to keep the VC confidence (ε0(N,h,η)) fixed and to minimize the empirical risk;

most of ANN models seek to employ the first one. However, the first way does not

perform well because dealing with Remp(f) lonely cannot guarantee reduction of VC
confidence. The second one is to fix the empirical risk to a small value and to

minimize the VC confidence, which is the so-called SRM principle. Although
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SVMs implement this principle, their training algorithm that aims to minimize the

VC dimension is still based on a hierarchy that depends on the data [20, 23].

2.7.2 Support Vector Regression

As mentioned above, SVMs have originally been used for classification purposes,

but their principles can be extended easily to the task of regression and time series

prediction. The brief ideas of SVMs for the case of regression are introduced. A

nonlinear mapping φð�Þ : <n ! <nh is defined to map the input data (training data
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x3

x1
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2

x3
2

1

1

1
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Fig. 2.3 Transformation of the second-order polynomial hyperplane over a three-dimensional

original space in an SVR model
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set) fðxi; yiÞgNi¼1 into a so-called high-dimensional feature space (Fig. 2.3), which

may have infinite dimensions, <nh . Then, in the high-dimensional feature space,

there theoretically exists a linear function, f, to formulate the nonlinear relationship

between input data and output data (Fig. 2.4a, b). Such a linear function, namely,

SVR function, is as Eq. (2.47):

f ðxÞ ¼ wTφðxÞ þ b; (2.47)

where f(x) denotes the forecasting values and the coefficients w (w 2 <nh ) and

b (b 2 <) are adjustable. As mentioned above, using SVM method one aims at

minimizing the empirical risk as Eq. (2.48):

Rempðf Þ ¼ 1

N

XN
i¼1

Θεðyi;wTφðxiÞ þ bÞ; (2.48)

whereΘεðy; f ðxÞÞ is the ε-insensitive loss function (as thick line in Fig. 2.4c) and is
defined as Eq. (2.49):

Θεðy; f ðxÞÞ ¼ f ðxÞ � yj j � ε; if f ðxÞ � yj j � ε
0; otherwise

�
: (2.49)

In addition, Θεðy; f ðxÞÞ is employed to find out an optimum hyperplane on the

high-dimensional feature space (Fig. 2.4b) to maximize the distance separating the

training data into two subsets. Thus, the SVR focuses on finding the optimum

hyperplane and minimizing the training error between the training data and the

ε-insensitive loss function.
Then, the SVR minimizes the overall errors, shown as Eq. (2.50):

Min
w;b;ξ�;ξ

Rεðw; ξ�; ξÞ ¼ 1

2
wTwþ C

XN
i¼1

ðξ�i þ ξiÞ; (2.50)

with the constraints

Input space

a

(x)ϕ

Feature space

b
*
iξ

iξ

0
ε+

ε−

-insensitive loss functionε

ε+ε−

*
iξc

Hyper plane

Fig. 2.4 Transformation process illustration of an SVR model
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yi � wTφðxiÞ � b � εþ ξ�i ; i ¼ 1; 2; . . . ;N
�yi þ wTφðxiÞ þ b � εþ ξi; i ¼ 1; 2; . . . ;N
ξ�i � 0; i ¼ 1; 2; . . . ;N
ξi � 0; i ¼ 1; 2; . . . ;N

:

The first term of Eq. (2.50), employing the concept of maximizing the distance

of two separated training data, is used to regularize weight sizes, to penalize large

weights, and to maintain regression function flatness. The second term penalizes

training errors of f(x) and y by using the ε-insensitive loss function. C is a parameter

to trade off these two terms. Training errors above +ε are denoted as ξi*, whereas
training errors below �ε are denoted as ξi (Fig. 2.4b).

After the quadratic optimization problem with inequality constraints is solved,

the parameter vector w in Eq. (2.51) is obtained:

w ¼
XN
i¼1

ðβ�i � βiÞφðxiÞ; (2.51)

where βi
*, βi are obtained by solving a quadratic program and are the Lagrangian

multipliers. Finally, the SVR regression function is obtained as Eq. (2.52) in the

dual space:

f ðxÞ ¼
XN
i¼1

ðβ�i � βiÞKðxi; xÞ þ b; (2.52)

where K(xi, xj) is called the kernel function and the value of the kernel equals the

inner product of two vectors, xi and xj, in the feature space φ(xi) and φ(xj),
respectively; that is, K(xi, xj) ¼ φ(xi)◦φ(xj). Any function that meets Mercer’s

condition [20] can be used as the kernel function.

There are several types of kernel function. The most used kernel functions are

the Gaussian RBF with a width of σ: Kðxi; xjÞ ¼ expð�0:5 xi � xj
�� ��2 σ2

	 Þ , the
polynomial kernel with an order of d and constants a1 and a2: K(xi, xj) ¼ (a1
xixj + a2)

d, and K(xi, xj) ¼ tanh(xi
Txj�b), where b is a constant, in which, if the

value of σ is very large, the RBF kernel approximates the use of a linear kernel

(polynomial with an order of 1). Till now, it is hard to determine the type of kernel

functions for specific data patterns [24, 25]. However, based on Smola et al.’s [26]

empirical results, they claim that the Gaussian RBF kernel is not only easier to

implement but also capable to nonlinearly map the training data into an infinite-

dimensional space; thus, it is suitable to deal with nonlinear relationship problems.

Therefore, the Gaussian RBF kernel function is specified in this book. The

forecasting process of an SVR model is illustrated as in Fig. 2.5.
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2.7.3 The Role of Evolutionary Algorithms

It is well known that the forecasting accuracy of an SVR model depends on a good

setting of hyper parameters C, ε, and the kernel parameters (σ). For example,

parameter C is considered to specify the trade-off between the model flatness and

the degree of the training errors larger than ε which are tolerated in Eq. (2.48) (i.e.,

the empirical risk). If C is too large (approximated to infinity), then the objective

is only to minimize the empirical risk, Θεðy; f ðxÞÞ , without model flatness in

the optimization formulation, Eq. (2.48). Parameter ε controls the width of the

ε-insensitive loss function, that is, the number of support vectors (SVs) employed

by the regression [20]. Larger ε-value results in fewer SVs employed; thus, the

regression function is more flat (simple). Parameter σ controls the Gaussian func-

tion width, which reflects the distribution range of x-values of training data.

Therefore, the three parameters affect model constructing in different ways.

There is no structural method or any shortage opinions on efficient setting of

SVR parameters. Although numerous publications in the literature have given

some recommendations on appropriate setting of SVR parameters [27], however,

those approaches do not simultaneously consider the interaction effects among the

three parameters. Thus, the determination of these three parameters’ selection is

further an important issue.
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The traditional determination procedure in determining suitable values of these

three parameters is conducted in following steps and shown as Fig. 2.6:

Step 1: Set fixed values of the parameters ε and C. Then, adjust the value of σ till

a minimum testing error is achieved. The finalized σ value is denoted as σ0.
Step 2: Set a fixed value of the parameter ε, and the value of σ is set to σ0. Then,

adjust the value of C to achieve a minimum testing error. The finalized C is defined

as C0.
Step 3: Values of σ and C are set to σ0 and C0. Then, adjust ε till a minimum

testing error is obtained. The finalized ε is defined as ε0. Therefore, values of σ, ε,
and C are obtained as σ0, ε0, and C0.

Some numerical examples are used to illustrate step by step the traditional

determination procedure. For the first example, please refer Figs. 2.7, 2.8, and

2.9. First, the fixed values, 0.5 and 50, are set to the parameters σ and C, respec-
tively. Then, adjust the value of ε till a minimum testing error (NRMSE) is reached.

It is found that there exists only one local minimum value of NRMSE (0.008049)

when ε ¼ 0.27, shown in Fig. 2.7. Therefore, set finalized ε-value as 0.27. Second,
set ε ¼ 0.27 and C ¼ 50, respectively. It is found that there also exists only one

local minimum value of NRMSE (0.007584) when σ ¼ 0.45, presented in Fig. 2.8.

Finally, the third step will focus on searching the third parameter, set to σ ¼ 0.45

and ε ¼ 0.27; it is found that there exists only one local minimum value of NRMSE

(0.006446) when C ¼ 60, presented in Fig. 2.9. Therefore, the three parameters are

estimated as follows: σ ¼ 0.45, C ¼ 60, and ε ¼ 0.27.

Validation data
(1.a) Set fixed values of   and C. 

(1.b) Adjust s to obtain minimum
validation error 

(2.a) Set fixed values of e and s¢.
(2.b) Adjust C to obtain minimum
validation error

(3.a) Fix values of C¢ and s¢.
(3.b) Adjust e to obtain
minimum validation error

Values of s, e and
C are obtained 

finalized C value is denoted as  C¢ 

finalized   value is denoted as    ¢

finalized e value is denoted as e¢ 

Fig. 2.6 The traditional determining processes of three parameters in an SVR model
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when C=50,   =0.5
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For the second example, please refer Figs. 2.10, 2.11, and 2.12. First, set the

values of the parameters ε and C fixed at 0 and 10, respectively. Then, adjust

the value of σ till a minimum testing error (RMSE) is reached. In Fig. 2.10, when

the finalized σ value equaled to 87, the minimum value of RMSE is achieved.

Therefore, set finalized σ value as 87. Secondly, fix the values of the parameters

σ and ε at 87 and 0, respectively. Then, adjust the value of C (Fig. 2.11). The

finalized value of C is 2. The minimum value of RMSE is obtained. Therefore, the

finalized C value is 2. Finally, set the values of the parameters σ and C fixed at
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RMSEFig. 2.12 Fixed values of σ
and C to adjust ε-values
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87 and 2, respectively. Then, adjust the value of ε (Fig. 2.12). The ε-value equals to
0.008 when the minimum value of RMSE is achieved. Therefore, the values of

three parameters (σ, C, and ε) are 87, 2, and 0.008, correspondingly. The minimum

value of RMSE is 0.002345.

The traditional determination of these three parameters is not only time-

consuming but also unable to receive satisfied forecasting accuracy level. This is

because it is difficult to set up more suitable initial values of parameters ε and C in

the initial step and it cannot efficiently find out the near-optimal solution for large-

scale data set; particularly, while simultaneously considering the interaction effects

among the three parameters, the computing complexity will exhaust the limited

decision time. Therefore, it is feasible to employ optimization solving procedure to

obtain suitable parameter combination, such as minimizing the objective function

describing the structural risk mentioned above. Evolutionary algorithms, such as

genetic algorithm, simulated annealing algorithms, immune algorithms, particle

swarm optimization, and tabu search, are the very candidates to be employed to

determine appropriate parameter values. The author will start a series exploration

by employing different evolutionary algorithms to determine suitable parameters of

an SVR model in Chap. 3.
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