
Chapter 1

Introduction

For an export-oriented economy or an energy-limited economy, like Taiwan, economic

development mainly depends on the supply level of electric energy; particularly,

most production activities for each industry also depend on its available level. As the

economic development is proceeding vigorously, the electric energy demand in

industries, in commerce, and in people’s residential uses has also significantly increased.

To ensure that electric energy is usable for all electricity users (i.e., meeting users’

demands)will be an important challenge for the electric energy industry. The availability

and reliability of electric energy become themost premier issue in energypolicymaking.

Therefore, accurate electric load forecasting is quite an important guide for effective

implementations/actions of energy policies. The policy makers desire to look for

founded forecasts to well plan the new electric power facilities investments and to

determine the import and export amounts.

In the meanwhile, along with the recent privatization and deregulation of the

electricity industry, the reliance and accuracy of future electricity demand forecasting

have received growing attention, particularly in the areas of electricity load planning,

energy expenditure/cost economy, and secure operation fields, in regional and/or

national systems. For electricity load reliance, electricity providers face increasing

competition in the demandmarket andmust pay increased attention to electricity quality,

including unit commitment, hydrothermal coordination, short-term maintenance, inter-

change and transaction evaluation, network power flow dispatched optimization, and

security strategies. On the other hand, inaccurate electricity load forecasting may

increase operating costs [1–5]. Bunn and Farmer [4] point out that a 1 % increase in

forecasting error implied a₤10million increase in operating costs.Hence, overestimation
of future load results in unnecessary spinning reserve and, furthermore, is not accepted by
international energy networks owing to excess supply. In contrast, underestimation of
load causes failure in providing sufficient reserve and implies high costs in the peaking
unit. Because buying at the last minute from other suppliers is expensive, it is necessary
for international electricity production cooperation that every member is able to forecast
its demands accurately. However, it is complex to predict the electric load, primarily
due to the various influencing factors, such as climate factors, social activities, and
seasonal factors [6]. Climate factors depend on the temperature and humidity; social
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factors imply human social activities includingwork, school, and entertainment affecting
the electric load; seasonal factors then include seasonal climate change and load growth
year after year.

1.1 Traditional Approaches for Electric Load Forecasting

In the last few decades, there are widespread investigations with regard to the efforts

proposed to improve the accuracy of electricity load forecasting. One suchmethod is a

weather insensitive approach that uses historical load data to infer the future electricity

load. Generally, it is famously known as the Box–Jenkins autoregressive integrated

moving average (ARIMA) [7–13], which is theoretically based on univariate time

sequences. Christianse [14] and Park et al. [11] design exponential smoothing models

by Fourier series transformation for electricity load forecasting. Hence, many

researchers consider related factors, such as seasonal temperature and day type, in

load forecasting models. Mbamalu and El-Hawary [15] propose multiplicative

autoregressive (AR) models that considered seasonal factors in load forecasting. The

analytical results show that the forecasting accuracy of the proposed models

outperformed the univariate AR model. Douglas et al. [16] consider verifying the

impacts of temperature on the forecasting model. The authors combine Bayesian

estimation with a dynamic linear model for load forecasting. The experimental results

demonstrated that the presented model is suitable for forecasting load under imperfect

weather information. Sadownik and Barbosa [17] propose dynamic nonlinear models

for load forecasting.Themaindisadvantage of thesemethods is that they become time-

consuming to compute as the number of variables increases.Azadeh et al. [18] employ

fuzzy system to provide an ideal rule base to determine which type of ARMAmodels

should be used; the results also indicate that the integrated approach outperforms those

novel intelligent computing models. Wang et al. [19] propose hybrid ARMAX

(autoregressive and moving average with exogenous variables) model with particle

swarm optimization to efficiently solve the problem of trapping into local minimum

which is caused by exogenous variable (e.g., weather condition). Their results also

reveal that the proposed approach has superior forecasting accuracy.

To achieve the accuracy of load forecasting, state space and Kalman filtering

technologies, developed to reduce the difference between actual loads and prediction

loads (random error), are employed in load forecasting model. This approach

introduces the periodic component of load as a random process. It requires historical

data more than 3–10 years to construct the periodic load variation and to estimate the

dependent variables (load or temperature) of power system [20–22]. Moghram and

Rahman [23] proposed a model based on this technique and verified that the

proposed model outperforms another four forecasting methods (multiple linear

regression, time series, exponential smoothing, and knowledge-based approach).

Similarly, Park et al. [11] proposed a load forecasting model based on the state

space and Kalman filtering technology and also showed that their model out-

performed other methods. The disadvantage of these methods is that they are difficult

to avoid the observation noise in the forecasting process, especially multivariable
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considered. Recently, Al-Hamadi and Soliman [24] employ fuzzy rule-based logic,

by utilizing a moving window of current values of weather data as well as the recent

past history of load and weather data, to recursively estimate the optimal fuzzy

parameters for each hour load of the day. Amjady [25] proposes hybrid model of the

forecast-aided state estimator (FASE) and the multilayer perceptron (MLP) neural

network to forecast short-term bus load of power systems. The proposed hybrid

model has been examined on a real power system, and the results show that the

hybrid method has better prediction accuracy than the other models, such as MLP,

FASE, and the periodic autoregression (PAR) model.

The regression approach is another popular model for forecasting electricity load.

Regression models construct the cause–effect relationships between electricity load

and the independent variables. The most popular model is linear regression model,

proposed by Asbury [26]; he considers the “weather” variable to explain the electric

load. Meanwhile, Papalexopoulos and Hesterberg [27] add the factors of “holiday”

and “temperature” into their proposed model. The proposed model uses the weighted

least square method to obtain robust parameter estimation encountering with the

heteroskedasticity. Furthermore, Soliman et al. [28] propose a multivariate linear

regression model for load forecasting, which includes temperature and wind

cooling/humidity factors. The empirical results indicate that the proposed model

outperforms the harmonic model as well as the hybrid model. Similarly, Mirasgedis

et al. [29] also incorporateweathermeteorological variables, such as relative humidity,

heating, and cooling degree days to forecast electricity demand in Greece. In contrast,

Mohamed and Bodger [30] employ economic and geographic variables (such asGDP,

electricity price, and population) to forecast electricity consumption in New Zealand.

In these models, the dependent variables are generally decomposed into weather

insensitive and weather sensitive components [4, 11, 31]. However, these models are

all based on linear assumption, that is, these independent variables cannot be well

justified due to nonlinear relationships among variables. Therefore, in the recent years,

Tsekouras et al. [32] introduce a nonlinear multivariable regression approach to

forecast annual load, which considers correlation analysis with weighting factors to

select appropriate input variables. Asber et al. [33] employ kernel regression model

to establish a relationship among past, current, and future temperatures and the system

loads to forecast the load in the Hydro-Quebec distribution network. A set of past load

history comprising of weather information and load consumption is used. The paper

proposes a class of flexible conditional probability models and techniques for classifi-

cation and regression problems. A group of regression models is used, each one

focusing on consumer classes characterizing specific load behavior. Numerical

investigations show that the suggested technique is an efficient way of computing

forecast statistics.
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1.2 Artificial Intelligent Technology for Electric Load

Forecasting

Recently, lots of researches have attempted to apply artificial intelligence techniques to

improve the accuracy of electric load forecasting models. Knowledge-based expert

system (KBES) and artificial neural networks (ANNs) are the popular representatives.

Rahman andBhatnagar [34] present aKBESmodel for electricity load forecasting.They

construct new rules based on received information, including daily temperature, day

type, and load from the previous day. The characteristic feature of this approach is rule

based, which implied that the system transformed new rule from received information.

In other words, this approach is derived from training rules and transformed the

information into mathematical equations; the so-called expert capability is training by

the existence presuming andwill significantly increase the forecasting accuracy [34–36].

Recently, applying fuzzy inference system and fuzzy theory in load forecasting has also

received attentions; Ying and Pan [37] introduce adaptive network fuzzy inference

system (ANFIS), by looking for the mapping relation between the input and output

data to determine the optimal distribution of membership functions, to forecast regional

load. Pai [38] and Pandian et al. [39] all employ fuzzy approaches to get superior

performance in terms of load forecasting.

Meanwhile, many researches also have tried to apply ANNs to improve the load

forecasting accuracy level. Dillon et al. [40] use adaptive pattern recognition and

self-organizing techniques for short-term load forecasting. Dillon et al. [41] present a

three-layered feedforward adaptive neural network to forecast short-term load. Their

proposedmodel is trained by back-propagation neural network. The proposedmodel is

applied to real data from a power system and is distinguished providing superior

comparative results with other methods are given. In the meanwhile, Park et al. [42]

propose a 3-layer back-propagation neural network to daily load forecasting problems.

The inputs include three indices of temperature: average, peak, and lowest loads. The

outputs are peak loads. The proposedmodel outperforms the regressionmodel and the

time series model in terms of forecasting accuracy index and mean absolute percent

error (MAPE). Moreover, Ho et al. [43] develop an adaptive learning algorithm for

forecasting the electricity load in Taiwan. The numerical results demonstrate that the

proposed algorithm converges faster than the traditional back-propagation learning

method. Novak [44] applies radial basis function (RBF) neural networks to forecast

electricity load. The analytical results indicate that theRBFnetwork is at least 11 times

faster and more reliable than the back-propagation neural networks. Darbellay and

Slama [45] apply ANNs to predict the Czech electricity load. The experimental results

show that the proposed ANN model outperforms the ARIMA model in terms of

normalized mean square error. Abdel-Aal [46] proposes an abductive network to

conduct 1 h ahead load forecasts for a 5-year period. The proposed model achieves

extremely promising results based on themeasurement ofmean absolute percent error.

Hsu and Chen [47] employ back-propagation neural networks to forecast the regional

load in Taiwan. The experiment results show that the artificial neural network

approach outperforms the regression models. Recently, Kandil et al. [48] apply
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ANNs for short-term load forecasting using real load andweather data from theHydro-

Quebec databases where three types of variables are used as inputs to the neural

network. Their proposed model demonstrates ANNs capabilities in load forecasting

without the use of load history as an input. In addition, only temperature (fromweather

variables) is used, in this application, where results show that other variables like sky

condition (cloud cover) and wind velocity have no serious effect and may not be

considered in the load forecasting procedure. Applications of hybrid ANNs model

with statisticalmethods or other intelligent approaches have received a lot of attention,

such as hybrid withBayesian inference [49, 50], self-organizingmap [51, 52], wavelet

transform [53, 54], particle swarm optimization [55], and dynamic mechanism [56].

1.3 Support Vector Regression for Electric Load Forecasting

Proposed by Vapnik [57], support vector machines (SVMs) are one of the significant

developments in overcoming shortcomings of ANNsmentioned above. Rather than most

of the traditional neural networkmodels by implementing the empirical riskminimization

(ERM) principle to minimize the training error, SVMs apply the structural risk minimi-

zation (SRM) principle to minimize an upper bound on the generalization error. SVMs

can theoretically guarantee to achieve the global optimum, instead of trapping local

optimum like ANN models. Thus, the solution of a nonlinear problem in the original

lower dimensional input space could be equivalent to solving a linear-constrained

quadratic programming problem and find its linear solution in the higher dimensional

feature space. Originally, SVMs have found wide application in the field of pattern

recognition, bioinformatics, and other artificial intelligence relevant applications. In

addition, with introduction of Vapnik’s ε-insensitive loss function, SVMs have been

extended to solve nonlinear regression estimation problems, which are so-called support

vector regression (SVR). SVR has been successfully employed to solve forecasting

problems in many fields, such as financial time series forecasting [58–65], production

value forecasting of machinery industry [66, 67], software reliability forecasting [68],

atmospheric science forecasting [69–72], tourism forecasting [73, 74], and so on. Mean-

while, SVR model has also been successfully applied to forecast electric load [75–81].

Cao [58] uses the SVMs experts for time series forecasting. The generalized SVMs

experts contain a two-stage neural network architecture. The numerical results indicate

that the SVMs experts are capable of outperforming the single SVM models in terms of

generalization comparison. Cao andGu [59] propose a dynamic SVMsmodel to dealwith

nonstationary time series problems. Experimental results show that the dynamic SVM

model outperforms standard SVMs in forecasting nonstationary time series. Meanwhile,

Tay and Cao [60] present C-ascending SVMs to model nonstationary financial time

series. Experimental results show that the C-ascending SVMs with actually ordered

sample data consistently perform better than standard SVMs. Tay and Cao [61] use

SVMs in forecasting financial time series. The numerical results indicate that the SVMs

are superior to the multilayer back-propagation neural network in financial time series

forecasting. Hong and Pai [68] apply SVR in forecasting rainfall during the period while

typhoon attacks Taiwan. The experimental results indicate that SVR outperforms other
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alternative forecasting models, such as Holt–Winters (HW) model, seasonal Holt and

Winters’ linear exponential smoothing (SHW) model, and recurrent neural network

(RNN) model. Hong and Pai [67] apply SVMs to predict engine reliability. Their

experimental results indicate that SVMs outperform Duane model, ARIMA model, and

general regression neural networks model. Hong et al. [73] propose a multifactor support

vector regression model to forecast Taiwanese demand for travel to Hong Kong from

1967 to 1996. They indicate that the proposed SVRCGA model outperforms BP model,

FF model, Holt’s model, MA model, naı̈ve model, and multiple regression model. For

electric load forecasting, Chen et al. [75] are the pioneers for proposing a SVM model,

which is the winning entry of a competition aiming at midterm load forecasting

(predicting daily maximum load of the next 31 days) organized by EUNITE network in

2001, to solve the problem. They discuss in detail how the SVM, a new learning

technique, is successfully applied to load forecasting. Pai and Hong [80] employ the

concepts of Jordan recurrent neural networks to construct recurrent SVRmodel in Taiwan

regional long-term load forecasting. In addition, they use genetic algorithms to determine

approximate optimal parameters in the proposed RSVMG model. They conclude that

RSVMG outperforms other models, such as SVMG, ANN, and regression models.

Similarly, Pai and Hong [81] also propose a hybrid model of SVR and simulated

annealing (SA) algorithms to forecast Taiwan’s long-term electric load, in which SA is

employed to select approximate optimal parameters in the proposed SVMSA model.

Conclusively, they indicate that SVMSA is superior to ARIMA and GRNN models in

terms of MAPE, MAD, and NRMSE.

The empirical results indicated that selection of the three parameters,C (to trade off

the training errors and largeweights), ε (thewidth of the insensitive loss function), and
σ (the parameter of Gaussian kernel function), in an SVR model influences the

forecasting accuracy significantly. Although numerous publications in the literature

have given some recommendations on appropriate setting of SVR parameters [82],

however, those approaches do not simultaneously consider the interaction effects

among the three parameters. There is no general consensus and many contradictory

opinions. It is feasible to employ optimization solving procedure to obtain suitable

parameters combination, such as minimizing the objective function describing the

structural risk mentioned above. Evolutionary algorithms, such as genetic algorithm,

simulated annealing algorithms, immune algorithms, particle swarm optimization,

and tabu search, are the very candidates to be employed to determine appropriate

parameter values. However, evolutionary algorithms almost lack knowledge memory

or storage functions which would be either time-consuming or inefficient in searching

the suitable parameters (i.e., being premature convergent or being trapped in local

optimum). Therefore, it is necessary to consider some feasible approaches, such as

hybridizing or combining other potential technologies, to overcome the premature

convergent problems.
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1.4 Feasible Approaches to Improve the Forecasting

Accuracy Performance

Asmentioned, evolutionary algorithms almost have their theoretical drawbacks, such as

lack of knowledge memory or storage functions, time-consuming in training, trapped in

local optimum, and so on. Therefore, hybridizing some novel search technique to adjust

their internal parameters (e.g., mutation rate, crossover rate, and annealing temperature)

to overcome the embedded shortcomings is the feasible improving approach. There are

three feasible considerations.

1.4.1 Hybridization of Complementary Evolutionary Algorithms

Firstly, for example, in genetic algorithm (GA), new individuals are generated by the

following operators: selection, crossover, and mutation. For all types of objective

functions, the generation begins with a binary coding for the parameter set. Based on

this special binary coding process, GA is able to solve some specified problems which

are not easily solved by traditional algorithms. GA can empirically provide a few best-

fitted offsprings from the whole population; however, after some generations, due to

low diversity of the population, it might lead to a premature convergence. Similarly,

simulated annealing (SA) is a generic probabilistic search technique that simulates the

material physical process of heating and controlled cooling. Each step of SA attempts

to replace the current state by a randommove. The new state may then be accepted with

a probability that depends both on the difference between the corresponding function

values and also on a global parameter, temperature. Thus, SA has some institution to

reach more ideal solutions. However, SA costs lots of computation time in annealing

process. To improve premature convergence and to receive more suitable objective

function values, it is necessary to find some effective approach to overcome these

drawbacks from GA to SA. Hybridization of genetic algorithm with simulated

annealing (GA–SA) algorithm is an innovative trial by applying the superior capability

of SA algorithm to reach more ideal solutions and by employing the mutation process

of GA to enhance searching process. GA–SA algorithm has been applied to the fields of

system design [83], system and network optimization [84], continuous-time production

planning [85], and electrical power districting problem [86]. Furthermore, due to easy

implementation process and special mechanism to escape from local optimum [87],

chaos and chaos-based searching algorithms have received intense attentions [88, 89].

Applications of chaotic sequence to carefully expand variable searching space, that is,

let variable travel ergodically over the searching space, are more and more popular to

be employed in evolutionary computation fields.
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1.4.2 Hybridization of Chaos/Cloud Theories with Evolutionary
Algorithms

Secondly, several disadvantages embedded in these evolutionary algorithms are

required to be improved to get more satisfied performance. For example, based on

the operation procedure of SA, subtle and skillful adjustment in the annealing schedule

is required, such as the size of the temperature steps during annealing. Particularly, the

temperature of each state is discrete and unchangeable, which does not meet the

requirement of continuous decrease in temperature in actual physical annealing pro-

cesses. In addition, SA is easy to accept deteriorate solution with high temperature, and

it is hard to escape from local minimum trap with low temperature [90]. To overcome

these drawbacks of SA, the cloud theory is considered. Cloud theory is a model of the

uncertainty transformation between quantitative representation and qualitative concept

using language value [91]. It is successfully used in intelligence control [92, 93], data

mining [94], spatial analysis [95], intelligent algorithm improvement [96], and so on.

Based on the operation procedure of SA, subtle and skillful adjustments in the

annealing schedule are required, such as the size of the temperature steps during

annealing, the temperature range, and the number of restarts and redirection of the

search. The annealing process is like a fuzzy system in which the molecules move from

large scale to small scale randomly as the temperature decreases. In addition, due to its

Monte Carlo scheme and lack of knowledge memory functions, time-consuming is also

an another boring problem. Author has tried to employ chaotic simulated annealing

(CSA) algorithm, to overcome these shortcomings, in which the transiently chaotic

dynamics are temporarily generated for foraging and self-organizing, then gradually

vanished with autonomous decreasing of the temperature, and are accompanied by

successive bifurcations and converged to a stable equilibrium. Therefore, CSA has

significantly improved the randomization of Monte Carlo scheme, has controlled the

convergent process by bifurcation structures instead of stochastic “thermal”

fluctuations, and eventually performed efficient searching including a global optimum

state. However, as mentioned that the temperature of each state is discrete and

unchangeable, which does not meet the requirement of temperature continuously

decrease in actual physical annealing processes. Even some temperature annealing

function is exponential in general, the temperature is gradually fallen with a fixed

value in every annealing step, and the changing process of temperature between two

neighbor steps is not continuous. This phenomenon also appears while other types of

temperature update functions are implemented, such as arithmetical, geometrical, or

logarithmic one. In the cloud theory, by introducing the Y condition normal cloud

generator to the temperature generation process, it can randomly generate a group of

new values that distribute around the given value like “cloud.” Let the fixed tempera-

ture point of each step become a changeable temperature zone, the temperature of each

state generation in every annealing step is chosen randomly, the course of temperature

changing in the whole annealing process is nearly continuous and fits the physical

annealing process better. Therefore, based on chaotic sequence and cloud theory, the

CCSA is employed to replace the stochastic “thermal” fluctuations control from
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traditional SA, to enhance the continuously physical temperature annealing process

from CSA. The cloud theory can realize the transformation between a qualitative

concept in words and its numerical representation. It is able to be employed to avoid

problems mentioned above.

1.4.3 Combination of Recurrent/Seasonal Mechanisms
with Evolutionary Algorithms

Thirdly, the concepts of combined or hybrid models also deserve to be considered.

Please notice that the so-called hybrid model means that some process of the former

model is integrated into the process of the latter one, for example, hybridizing A and B

implies that some processes of A are controlled by A and some are by B. On the other

hand, for the so-called combined model, it only indicated that the output of the former

model is then the input of the latter one; therefore, the classification results from

combined models will be superior to single model. The combined models are

employed to further capture more data pattern information from the analyzed data

series. For example, inspired by the concept of recurrent neural networks (RNNs) that

every unit is considered as an output of the network and the provision of adjusted

information as input in a training process [97], the recurrent learning mechanism

framework is also combined into the original analyzed model. For a feedforward

neural network, links may be established within layers of a neural network. These

types of networks are called recurrent neural networks. RNNs are extensively applied

in time series forecasting. Jordan [98] proposes a recurrent neural network model

(Fig. 1.1) for controlling robots. Elman [99] develops a recurrent neural network

model (Fig. 1.2) to solve linguistics problems. Williams and Zipser [100] present a

recurrent network model (Fig. 1.3) to solve nonlinear adaptive filtering and pattern

recognition problems. These three models mentioned all consist of multilayer

perceptron (MLP) with a hidden layer. Jordan networks have a feedback loop from

the output layer with past values to an additional input, namely, “context layer.” Then,

output values from the context layer are fed back into the hidden layer. Elman

networks have a feedback loop from the hidden layer to the context layer. InWilliams

and Zipser networks, nodes in the hidden layer are fully connected to each other. Both

Jordan and Elman networks include an additional information source from the output

layer or the hidden layer. Hence, these models use mainly past information to capture

detailed information.Williams and Zipser networks takemuchmore information from

the hidden layer and back into themselves. Therefore, Williams and Zipser networks

are sensitive when models are implemented [101]. For another combined model, on

the other hand, some data series sometimes reveals a seasonal tendency due to cyclic

economic activities or seasonal nature hour to hour, day to day,week toweek,month to

month, and season to season, such as hourly peak in a working day, weekly peak in a

business week, and monthly peak in a demand planned year. In order to excellently

deal with cyclic/seasonal trend data series, some useful trial, for example, seasonal

mechanism [102, 103], also received some intentions.
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Fig. 1.1 Network diagram created from Jordan’s definition
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Fig. 1.2 Network diagram created from Elman’s definition
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1.4.4 Summary: Electric Load Forecasting Support System
(ELFSS)

Based on the discussions above, it will also become the research mainstream in SVR-

based electric load forecasting, which is also the principal purpose of this book, to

guide researchers how to employ alternative ways (proper evolutionary algorithms) in

parameter determination while new electric load forecasting model is constructing,

that is, the importance and necessity of the electric load forecasting support systems.

This is because that for any forecasting model, the most important problem is how to

catch the data pattern and apply the learned patterns or rules to forecast, that is, the key

successful factor is how to suitably look for data pattern. The data patterns could be

classified into three categories: (1) fluctuation, changing violently according to policy

or herding behaviors of investors; (2) regular pattern, trends (electric load increasing or

decreasing annually) or seasonality/cyclic (peak electric load in summer and winter);

and (3) noise, accidental events (e.g., 9/11 event, SARS event) or man-made events

(e.g., product promotion event). However, each model itself has excelled ability to

catch specific data pattern. For example, exponential smoothing and ARIMA models

focus on strict increasing (or decreasing) time series data, that is, linear pattern, even

though they have seasonal modification mechanism to analyze seasonal (cyclic)

change; due to artificial learning function being able to adjust the suitable training

rules, ANNmodel is excelled only if historical data pattern has been learned, it is lacks

of systematic explanation how the accurate forecasting results are obtained; SVR

model could acquire superior performance only if proper parameter determination

search algorithms.

input 1 input 2 input  n

output t

Input
layer

Output
layer

Hidden
layer

Fig. 1.3 Network diagram created from Williams and Zipser’s definition
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Therefore, it is essential to construct an inference system to collect the characteristic

rules to determine the data pattern category. Then, it should assign appropriate approach

to implement forecasting: for (1) ARIMA or exponential smoothing approaches, the

only work is to adjust their differential or seasonal parameters, and (2) for ANN or SVR

models, the forthcoming problem is how to determine best parameter combination

(numbers of hidden layer, units of each layer, learning rate or Gaussian σ, model

flatness C, ε-insensitive) to acquire superior forecasting performance. Particularly,

for the focus of this book, in order to determine the most proper parameter combination

(σ,C, and ε), a series of evolutionary algorithms should be employed to test which data

pattern is familiar with, such as genetic algorithms (GA), simulated annealing

algorithms (SA), ant colony optimization (ACO), tabu search (TA), immune algorithm

(IA), and particle swarm optimization algorithm (PSO). Based on experimental

findings, those evolutionary algorithms themselves also have merits and drawbacks,

for example, GA and IA could handle excellently in regular trend data pattern (real

number) [80], SA excelled in fluctuation or noise data pattern (real number) [68, 81],

TA is good in regular cyclic data pattern (real number) [104], and ACO is well done in

integer number searching.

As aforementioned, it is possible to propose an intelligent forecasting support system

to improve the usage efficiency of evolutionary algorithms, chaos/cloud theories, and

recurrent/seasonal mechanisms hybridized in an SVR load forecasting model, namely,

electric load forecasting support system (ELFSS). The main flowchart of the ELFSS

suggested in this conclusion is given in Fig. 1.4. Firstly, employ fuzzy logic to construct

the inference system to preprocess the time series data and find out or define the

characteristic rules set of data pattern, such as linear, logarithmic, inverse, quadratic,

cubic, compound, power, growth, and exponential. Secondly, filter the original electric

load data by those data pattern rules set and then recognize the appropriate data pattern

(fluctuation, regular, or noise). The recognition decision rules should include two

principles (1) the change rate of two continuous electric load data and (2) the decreasing

or increasing trend of the change rate, that is, behavior of the approached curve. Finally,

decide appropriate evolutionary algorithm (including hybrid evolutionary algorithms)

to be hybridized into an SVR model; in addition, to avoid trapping in local optimum,

suitable chaos or cloud theory and appropriate (recurrent or seasonal) mechanism could

be further hybridized or combined with associated evolutionary algorithms into these

SVR-based forecasting models (such as CGA, CSA, CTA, CIA, CACO, and CPSO in

Fig. 1.4).

1.5 Structure of This Book

In this book, different techniques used in the past decades are employed to construct

the electric load forecasting models, including ARIMA, SARIMA, HW, SHW,

GRNN, and BPNN models; chaos/cloud theories; and recurrent/seasonal

mechanisms. The book contains six chapters:

Chapter 1, “Introduction.” This chapter introduces the background of electric load

forecasting, traditional approaches, artificial intelligent technology, SVR for electric
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load forecasting, and some feasible improvements of forecasting accuracy, to help the

reader understand the very issue of electric load forecasting in this book and the current

development tendency and shortcomings; in addition, some critical arrangements to

improve the forecasting accuracy level are also discussed. In this chapter, readers will

study the basic concepts of the electric load forecasting and associate forecasting

technologies, includingARIMA, exponential smoothing, state space/Kalmanfiltering,

regression, knowledge-based expert system (KBES), artificial neural networks

(ANNs), fuzzy theory, support vector regression, and so on. The reader will also

review these technologies proposed during the past decades for electric load

forecasting. A brief discussion for each model is given in this chapter. Superiorities

and shortcomings of each model are also taken into account and discussed.

Chapter 2, “Modeling for Energy Demand Forecasting.” This chapter introduces

different basic energy demand forecasting models, which will be employed in Chaps.

3–5. Electric load forecasting methods can be classified in three categories (1) traditional

approaches, including Box–Jenkins autoregressive integrated moving average (ARIMA)

model, autoregressive and moving average with exogenous variables (ARMAX) model,

seasonal ARIMA (SARIMA) model, exponential smoothing models (including

Holt–Winters model (HW) and seasonal Holt andWinters’ linear exponential smoothing

(SHW)), state space/Kalman filtering model, and linear regression model; (2) artificial

intelligent approaches, including knowledge-based expert system (KBES) model, artifi-

cial neural networks (ANNs) model, and fuzzy inference system model; and (3) support

vector regression (SVR) model and its related hybrid/combined models. These models

are classified according to the basis of the forecasting technological development ten-

dency, evolved from mathematical relationship model (e.g., statistics-based model) to

application of artificial intelligent model (e.g., ANNs model) and eventually to
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hybridization of statistical model and artificial intelligent model (e.g., SVR model). Of

course, the classifications are not unique, and the classification based on the technological

evolution is not always suitable for another. Based on this classification, interested readers

can be inspired to propose another new model to receive more accurate electric load

forecasting performance. Eachmodel has its outstanding advantages comparedwith other

models due to its theoretical innovation and also has its embedded theoretical limitations;

thus, it always has the potential to be improved by hybridizing or combining with other

novel approaches. Seven representative models are introduced, namely, ARIMA,

SARIMA, Holt–Winters (HW), seasonal HW (SHW), general regression neural network

(GRNN), back-propagation neural networks (BPNN), and SVR models.

Chapter 3, “Evolutionary Algorithms in SVR’s Parameters Determination.” As

mentioned, the traditional determination of three parameters does not guarantee to

improve forecasting accuracy level, because it is unable to set up more suitable initial

values of parameters in the initial step and unable to simultaneously consider the

interaction effects among three parameters to efficiently find out the near-optimal

solution for large-scale data set. Therefore, evolutionary algorithms are employed to

conduct intelligent searching around the solution range to determine suitable parame-

ter combination by minimizing the objective function describing the structural risk of

an SVR model. This chapter introduces several representative evolutionary

algorithms, such as genetic algorithm (GA), simulated annealing (SA) algorithm,

hybrid GA with SA (GA–SA) algorithm, particle swarm optimization (PSO) algo-

rithm, ant colony optimization (ACO) algorithm, artificial bee colony (ABC) algo-

rithm, and immune algorithm (IA), used in an SVR forecasting model to determine

suitable parameter combination to receive improved forecasting accuracy level.

Chapter 4, “Chaos/Cloud Theories to Avoid Trapping into Local Optimum.” As

demonstrated in Chap. 3, these different evolutionary algorithms, including genetic

algorithm (GA), simulated annealing (SA) algorithm, hybrid GASA algorithm,

particle swarm optimization (PSO) algorithm, continuous ant colony optimization

(CACO) algorithm, artificial bee colony (ABC) algorithm, and immune algorithm

(IA), are employed to determine suitable parameter combination of an SVR-based

electric load forecasting model. These forecasting results indicate that almost all

SVR-based models with different evolutionary algorithms are superior to other

competitive forecasting models (including ARIMA, HW, GRNN, and BPNN

models); however, these algorithms almost lack knowledge memory or storage

mechanisms which would be either time-consuming or inefficient in searching the

suitable parameters, that is, premature convergence (being trapped in local opti-

mum). This chapter introduces that hybrid chaos theory with evolutionary

algorithms can overcome the shortcomings of trapping local optimum to improve

forecasting performance.

Chapter 5, “Recurrent/Seasonal Mechanism to Improve the Accurate Level of

Forecasting.” As demonstrated in Chap. 4, these different hybrid chaotic evolutionary

algorithms, including chaotic genetic algorithm (CGA), chaotic simulated annealing

(CSA) algorithm, chaotic cloud simulated annealing (CCSA) algorithm, chaotic

GASA (CGASA) algorithm, chaotic particle swarm optimization (CPSO) algorithm,

chaotic ant swarm (CAS) algorithm, chaotic artificial bee colony (CABC) algorithm,
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and chaotic immune algorithm (CIA), employed to determine suitable parameter

combination of an SVR-based electric load forecasting model. These forecasting

results indicate that almost all SVR-based models with different hybrid chaotic-

evolutionary algorithms are superior to other competitive forecasting models (includ-

ing ARIMA, GRNN, and TF-ε-SVR-SA models). However, these hybrid chaotic-

evolutionary algorithms do not provide satisfactory forecasting performance (well

fitting the actual fluctuation tendency), even though their forecasting accuracy receives

significant level. To improve the fitting effects for each SVR-chaotic/cloud-evolution-

ary algorithm-basedmodel, this chapter introduces two combinedmechanisms (recur-

rent mechanism or seasonal mechanism) to significantly improve the fitting effects

with the actual fluctuation tendency.
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