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Design and Automation for Manufacturing
Processes: An Intelligent Business Modeling
Using Adaptive Neuro-Fuzzy Inference Systems
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Abstract The design and automation of a steel making process is getting more
complex as a result of the advances in manufacturing and becoming more demand-
ing in quality requirements. It is essential to have an intelligent business process
model which brings consistent and outstanding product quality thus keeping the
trust with the business stakeholders. Hence, schemes are highly needed for improv-
ing the nonlinear process automation. The empirical mathematical model for steel
making process is usually time consuming and may require high processing power.
Fuzzy neural approach has recently proved to be very beneficial in the identification
of such complex nonlinear systems. In this chapter, we discuss the applicability of
an Adaptive Neuro-Fuzzy Inference System (ANFIS) to model the dynamics of the
hot rolling industrial process including: roll force, roll torque and slab temperature.
The proposed system was developed, tested as well as compared with other existing
systems. We have conducted several simulation experiments on real data and the
results confirm the effectiveness of the ANFIS based algorithms.
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13.1 Introduction

Due to the increasing quality requirements of steel products over the past few years,
with very strict limits to meet the market demands, steel production system demands
more accurate and speedy automated systems. A major stage in steel production is
hot rolling. In order to produce a good quantitative description of the industrial op-
eration, the automation of hot rolling processes requires the development of several
mathematical models to identify the simulation process including system parameters
and variables [1]. Although empirical mathematical models demand high process-
ing power and more computation time, but still give poor performance. Providing
fast, reliable, and accurate models are of great importance for predicting the roll
force, roll torque and slab temperature. These models are significantly useful for
a hot rolling process in order to generate pass schedules on-line [2]. Section 13.3
presents a more detailed description of the hot rolling process.

The advances in Fuzzy Logic (FL) and Artificial Neural Networks (ANNs) re-
search have opened avenues for new advances in system modeling and identifica-
tion. An application of fuzzy neural to model and control nonlinear industrial pro-
cesses has been intensively studied in recent years [3, 4]. Moreover, ANNs have
been used to assist in building a reasonable model structure for physical nonlinear
systems to serve for process control [4]. FL has been used to develop a mathemat-
ical model for many industrial processes and showed significant improved results
[5, 6]. Many researchers have focused their works on developing new automation
techniques to meet the required quality of hot rolling processes [1, 7–9].

Complex generated models based on neural networks and fuzzy logic make it
possible to work with higher performance of rolling forces, larger reductions and
better flatness control [10, 11]. Application for quality monitoring in hot rolling
process based on ANNs and fuzzy logic was presented in [12]. Accordingly, there
is opportunity of further research to model the rolling process both theoretically
and empirically based on the data measured in experimental or industrial rolling
operations [6, 13, 14]. To improve the prediction ability of the rolling force model,
many researchers have focused on evolving more effective physical models for the
rolling force prediction [1]. Many important requirements of the hot rolling process
including roll force, roll torque and slab temperature, should be affirmed in model-
ing a plate hot rolling process. Perhaps the most important requirement that should
be exactly determined is the temperature of the slab at the entry of each pass in the
rolling schedule, because of the fact that the strength of hot steel is highly dependent
on temperature [15]. The prediction accuracies for the rolling force and torque are
still vital issues from the point of the physical limitations of the rolling mill, and
hence there are other requirements that must be emphasized, too [16].

In this chapter, we present an Adaptive Neuro-Fuzzy Inference System to model
the structure of a hot rolling manufacturing process which consists of three subsys-
tems. Three models for force, torque and slab temperature in the plate mill are pre-
cisely developed. The obtained results are compared to the earlier observed results
based on fuzzy logic [6], conventional mathematical models [2] and FeedForward
(FF) neural network models.
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The methodologies which will be outlined in this chapter can also be transferred
to other problem domains. They can help to analyse data which, for instance, is
provided by a data warehouse. Besides, the approaches presented in the following
sections can also be valuable for performance management, for instance in the field
of business activity monitoring.

13.2 Motivation to use ANFIS?

Neural Networks (NNs) have been used successfully in identification of nonlinear
systems. However, the conventional NN techniques for locating a suitable mathe-
matical model from the input–output dataset of a system follow three familiar fac-
tors:

1. The first factor is related to the experimental data being driven, where the model
qualities are mostly influenced by the quality of data being used.

2. The second factor is concerned with the network architecture, whereas different
network architectures may result in a different estimation performance.

3. The third factor is directly correlated with the model size and its complexity.
This factor is strongly dependent on the network training, which may be the most
important factor, as it holds as an identification task to the model parameters that
must fit with the given data.

Actually, a small network may not be able to represent the real situation of the
model estimation, due to its limited capability, while the results of a large network
may be distorted by noise or over fitting in the training data, which fails to pro-
vide a good generalization. Because of these reasons, search for adaptive modeling
techniques are being pursued. Two observations have been made. First, the behavior
of most dynamic systems is nonlinear. Second, Fuzzy Neural approach is suitable
for system identification task, and it avails working with nonlinear systems. Adap-
tive Neuro-Fuzzy Inference System (ANFIS) [17] is a well-established method of
combining Fuzzy and Neural approaches. ANFIS has been shown to be effective
in identifying a model for a sufficient input–output data driven [3, 4], and is able
to approximate any continuous function to an arbitrary accuracy. Considering the
observations, we present in this chapter the use of ANFIS models in dealing with
hot rolling plants automation as part of steel making systems.

13.3 Hot Rolling Plants: Problem Domain

13.3.1 Process Description

The processes involved in mill plants and production of steel have become more
complicated. In this aspect, the hot rolling industrial process was considered as a
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Fig. 13.1 Diagram of the hot rolling mill plant at the Ereg̃li Iron and Steel Factory in Turkey

Table 13.1 The chemical
composition of the low
carbon steel (ASTM A53-96
Gr. A)

Carbon Manganese Sulfur Phosphorus Silicon

0.12 % 0.25 % 0.2 % 0.025 % 0.05 %

plant-wide problem. Ereg̃li Iron and Steel factory in Turkey used the hot rolling mill
plant (see Fig. 13.1) to provide the experimental data. Hot rolling process [13, 14]
is based on an actual system developed in Ereg̃li Iron and Steel factory. The system
is a well-posed problem for analysis and identification design of a nonlinear rolling
process. A large number of interacting processes and manipulated variables are in-
corporated into the model, making it a truly significant plant-wide problem. The
plant consists of two slab furnaces, pre-rolling mill, edger, reversible mill, seven
strip rolling stands, a cooling system, a hot leveller, and a shearing system. The
plant has also a data acquisition and a computer control system modified by Gen-
eral Electrics.

Data acquisition and computer control systems are normally controlled by op-
erators to achieve certain system performance goal. In manufacturing process, a
mechanical or electrical controller is used to adjust the cooling system and the hot
leveller for certain level. Steel strips with a thickness of 15–16 mm can be produced
in the rolling mill plant. In a normal production cycle, each slab passes five times
in forward and backward directions in the reversible mill. In this plant, the dimen-
sions of slabs are monitored continuously during every passes with X-ray system,
the temperature of slab with a pyrometer, roll force and torque with four load cells
placed along the mill. But averages of these measured values for each pass are used
for identification. The nonlinear dynamics of the rolling mill plant are mainly due to
the chemical composition of the low-carbon steels within the hot rolling. The chem-
ical composition of the low-carbon steels used, in this study, is given in Table 13.1.

13.3.2 Hot Rolling Process

The Ereg̃li Iron and Steel Factory has four rolling mill plants: two are cold and
two are hot. Cold rolling plants have a total capacity of 2.3 million tons per year.
Hot rolling mill plants have 540.000 tons per year capacity. This corresponds to a
total product capacity of 2.84 million tons per year. The dataset that describes the
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behavior of the rolling process was collected in order to measure different outputs
of the rolling process and how it responds to various inputs. The dataset consists of
640 points and was generated from 128 different slabs by a General Electric’s data
acquisition system. The thickness and width distribution of the data ranged from
31.68 mm to 168.6 mm and 948.76 mm to 1457.26 mm, respectively.

13.4 System Identification Process

It is a common practice in engineering modeling for control system design is to first
create and test a model offline for the system. This is called indirect control model-
ing. Identifying and modeling the hot rolling process requires some procedures.

The system identification process consists of constantly adopting a class of model
structures, picking up the best model in the structure, and testing the model’s per-
formance whether it is acceptable. We use it for modeling the three sub-processes
of the hot rolling process. The succession can be summarized as follows:

1. Experimental design: Collect input–output data from the process to be identified.
2. Pre-processing the data: Clean it to remove trends and outliers, and data scaling

can be applied.
3. Select a class of models: Define a set of candidate systems in which a solution

can be found.
4. Select a model structure: Pick the best model in the model structure set according

to the input–output data and the selected performance criteria.
5. Model estimation: Estimate the model parameters and check the developed

model’s properties.
6. Model validation: If the model passes a given criterion, then stop; otherwise go

back and try another model set.

13.4.1 Experimental Design

The collected measurements were practically measured for roll force, roll torque
and slab temperature of the rolling process. We emphasis on modeling the hot
rolling process using a neuro-fuzzy approach. The process is divided into three sub-
processes: (i) the force f , (ii) the torque G and (iii) the slab temperature T . Each of
the sub-process has six input variables. The force f and the torque G have the same
input variables; u1, u2, u3, u4, u5 and u6. These inputs are standing for Entry Tem-
perature (Ti ), Width (Ws ), Carbon Equivalent (Ce), Gauge (hi ), Draft (i) and Roll
diameter (R), respectively. The six input variables u1, u2, u3, u4, u5 and u6 for the
slab temperature T are the Ti , Ws , Ce, hi , Torque (Gi ), Power (Ei ), respectively.
The output of each sub-process is stated as y(k). Figure 13.2 shows the six main
inputs for both the force and the torque, while Fig. 13.3 shows the six main inputs
for each of the slab temperature of the rolling mill plant.
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Fig. 13.2 The data input for the roll force/torque models

Fig. 13.3 The data input for the slab-temperature model

13.4.2 Pre-processing the Data

Model development based on the neuro-fuzzy approach requires some necessary
preparation stages, which must be completed first to provide a good modeling pro-
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cess. These stages include data collection, preparation and suitable system mod-
eling. The dataset is split into two parts: (i) the training dataset, which is used to
train the neuro-fuzzy model and (ii) a testing dataset, which is used to verify the
accuracy of the developed neuro-fuzzy model. The training dataset consists of ap-
proximately 78 % of the total dataset and the testing dataset consists of the remain-
ing 22 %.

The quality and quantity of the training data is an important issue for neural
networks training and for the accuracy of the fuzzification process. Usually, the suc-
cess of neural network performance relies heavily on large amounts of data, but
this demands more computing time for training. In order to reduce the amount of
data whilst maintaining the model quality, the data used must be carefully selected
to ensure that they are sufficiently ‘rich’. A major concern with the high preci-
sion of neuro-fuzzy is data pre-processing, the scaling of data is needed to prevent
data with larger magnitude from overriding the smaller, and impeding the premature
learning process. In our study, the input and output data are scaled in the range of
(0.1–0.9).

13.4.3 Select a Class of Models

The known empirical modeling techniques were unable to compensate the changes
in size and chemical components. Therefore, carbon equivalent (Ce) and width (Ws )
were added as inputs to the neuro-fuzzy model of the roll force and the roll torque.
It is also difficult to get the correct force and torque values from the mathematical
model itself. This is because a part of slight changes there would exist a highly non-
linear and complex structure, and with some various conditions some un-measurable
parameters appear, such as, friction coefficient, yield stress, and disturbances. More-
over, reduction, chemical composition and temperature factors cannot be well suited
and are not being considered in the mathematical model [2]. Also, a typical adapta-
tion of these mathematical models to such a process would be a kind of fragmented
look-up table. This approach has some drawbacks arising from the large size of the
look-up tables due to the large product variety.

We consider the neuro-fuzzy approach in our study because it has a capabil-
ity for good quality prediction, and it can produce a pure algebraic relationship
between outputs and inputs. This means the predictor will be stable even if the
system is not [3]. So we can overcome the instability of immeasurable parameters
in the cases of torque and force. The ANFIS was used for evaluating and testing
the neuro-fuzzy output error between the actual and the estimated outputs. ANFIS
uses Fuzzy Inference System (FIS) structure such that relationships between train
data and test data are adjusted until the specified inputs yield the desired output.
Through these activities, the ANFIS learns the correct input–output response be-
havior. Thus, the ability of neuro-fuzzy models to model the hot rolling process can
be improved.
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13.4.4 Select a Model Structure

ANFIS is one of the most successful schemes which combines the benefits of both
neural and fuzzy paradigms into a single channel [17]. ANFIS works by apply-
ing neural learning rules to identify and tune the parameters and the structure of
FIS. The ANFIS is a multilayer feedforward network which uses ANN learning
algorithms and fuzzy reasoning to characterize an input space to an output space.
The architecture of the employed ANFIS is developed in the form of a zero-order
Takagi-Sugeno-Kang (TSK) fuzzy inference system [18, 19].

ANFIS uses a hybrid learning algorithm to identify the membership function pa-
rameters of single-output, Sugeno type FIS. The architecture of ANFIS has been
suggested by Roger Jang [17], which can be used for tuning the membership func-
tions (i.e. the membership functions bounds) leading to improved performance. AN-
FIS requires the antecedent MFs and fuzzy rules in the training phase to initialize the
neuro-fuzzy system; the MFs should be specified before the training. This employed
training process is stopped whenever the designated iteration number is reached, or
the training error goal is achieved. In this research, an ANFIS model is conducted
to predict the future actions of the hot rolling process in an effort to formalize an
identification task.

13.4.5 Model Estimation

The testing and validation processes are among the important steps in developing an
accurate process model. The validation was performed by calculating some of the
measurement criteria to evaluate the proposed models. The testing stage includes a
criterion of fit and an iterative search algorithm. A neuro-fuzzy approach was used
for estimating the hot rolling process, because it provides a rapid convergence and
generally can be considered a very robust approach. The capability of neuro-fuzzy
approach to emphasize the model validity was assured using the Mean Square Er-
ror (MSE) criterion between the actual and the estimated outputs. The relationship
between the fuzzy model input and output is represented by what is called the Mem-
bership Function (MF).

In principle, the model validation should not only validate the accuracy of the
model, but also verify whether the model can be easily interpreted to give a better
understanding of the modeled process. It is therefore important to combine data-
driven validation, aiming at checking the accuracy and robustness of the model, with
more subjective validation, concerning the interpretability of the model. Takagi-
Sugeno (TS) fuzzy models, which is based on fuzzy rules with crisp conclusions,
were suitable to model a large class of dynamic datasets as stated in [20–22]. Once
the model structure and parameters have been identified, it is necessary to validate
the quality of the resulting model.
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13.4.6 Model Validation

The performance of the ANFIS models in both training and testing data are eval-
uated, and the best training/testing data set is selected according to MSE and
Variance-Account-For (VAF) [20]. VAF is computed to measure how close the mea-
sured values are to the developed values. The VAF is defined in Eq. (13.1).

VAF =
[

1 − var(y − ŷ)

var(y)
)

]
× 100 % (13.1)

where, y and ŷ are the actual output and the estimated neuro-fuzzy model output,
respectively.

13.5 Experimental Setup and Algorithms

13.5.1 Data Preparation

We consider the length of training and testing data set of 78 % and 22 % of the sam-
ples to improve the generalization properties of the adopted ANFIS. For each case
of the rolling process, two ANFIS models of the same size, but different in initial-
ization weights, were trained to study the stability and robustness of the each model.
The best weights, which give the minimum MSE of two different training sessions
over each input/output training set, were chosen as the final ANFIS models. Over-
all, the neuro fuzzy approach based on the adopted ANFIS model was accepted for
modelling the hot rolling process, since it gives reasonable results and the prediction
output is closely related to the actual output.

13.5.2 Learning Methodology

The neuro fuzzy system with the learning capability of neural network and with the
advantages of the rule-base fuzzy system can improve the performance significantly.
It can also provide a mechanism to incorporate past observations into the classifica-
tion process. This approach uses neural networks for the membership function and
mapping between fuzzy sets that are utilized as fuzzy rules. In the training process,
a neural network adjusts its weights in order to minimize the MSE. According to the
neuro-fuzzy approach, a neural network is utilized to implement the fuzzy system
and to automatically tune the system parameters. The ANFIS structure is accom-
plished by defining, adapting and optimizing the topology and the parameters of
the corresponding neuro-fuzzy network. The neuro-fuzzy models are trained based
on ANFIS training approach. The checking data method uses the validation data to
prevent over fitting of the training dataset that has the same format as the training
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Table 13.2 Training
parameters of the Hot Rolling
ANFIS model

The ANFIS parameter type Value

TSK Type Zero-order

Number of iterations 200

Training error goal 0

Initial step size 0.001

Number of inputs 6

Number of MFs Gaussian 6

Step increasing rate 1.5

Step decreasing rate 0.1

Total fitting parameters 104

Consequent (linear) parameters 80

Premise (nonlinear) parameters 24

Number of nodes 55

Number of rules 64

data. The toolbox function ANFIS in MATLAB constructs the FIS whose member-
ship function parameters are tuned. The configuration parameters of the employed
ANFIS for modeling the rolling process are shown in Table 13.2.

A neuro fuzzy system is a combination of neural network and fuzzy systems
combined in such a way, in which neural networks are used to determine the pa-
rameters of the fuzzy system, with a kind of automatic tuning method. To be more
precise, optimizing the parameters, which are linearly related in a nonlinear way,
neural networks and nonlinear optimization can be employed. A fuzzy model can
be seen as a layered structure network similar to neural networks.

13.6 Experimental Results

13.6.1 Developed Neuro-Fuzzy Models

In this chapter, a neuro-fuzzy is proposed as a compensator of both fuzzy logic and
neural networks to build a suitable model structure for three subsystems of the hot
rolling process. It performs as a powerful method which has the ability to cover
all the system variances for a typical rolling mill process. The neuro-fuzzy models
are capable of producing estimated outputs similar to the actual outputs of each
subsystem. This is accomplished by using the ANFIS method based on the MSE
training errors.

After training and testing cases, the MSE became steady in all subsystems of
the hot rolling system. We run 25 experiments to produce our results. The best and
the average error are reported over all the experiments. For example, in the slab



13 Design and Automation for Manufacturing Processes 201

Fig. 13.4 Convergence curve
of the neuro-fuzzy
slab-temperature model

Fig. 13.5 Actual and estimated force response of the ANFIS model in both training and testing
cases

temperature subsystem, the convergence training results of best and average are
shown in Fig. 13.8.

It is observed from the developed error curves in Fig. 13.4 that the errors con-
verged to optimum MSE values. The actual and estimated responses of the neuro-
fuzzy models for the rolling process are shown in Figs. 13.5, 13.6 and 13.7. Fig-
ures 13.5, 13.6 and 13.7 show that the error between the actual and the predicted
output of the model is very insignificant. This means that the neuro-fuzzy approach
has learned to model the dynamics of a hot rolling process quite accurately. Over-
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Fig. 13.6 Actual and estimated torque response of the ANFIS model in both training and testing
cases

Fig. 13.7 Actual and estimated temperature response of the ANFIS model in both training and
testing cases
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all, all models display promising results in the training and testing sets for all the
developed models.

13.6.2 Developed FeedForward Levenberg-Marquardt (FF-LM)
Models

We avoid a restrictive mathematical model by selecting a particular class of models
because of the limitations of the traditional model building approaches. The capa-
bility of neural networks to learn from examples seem to make it an ideal choice
for modeling the hot rolling process. Multi-layer feedforward networks are the first
to be used for the identification purposes. The neural networks of interest that we
considered in this chapter are the feedforward backpropagation networks. The net-
work model was trained based on Levenberg-Marquardt (LM) algorithm [23, 24].
The LM search algorithm was used as an iterative training algorithm, because it
provides a rapid convergence. The MSE criterion was used for evaluating the ANN
output using the LM optimization algorithm.

The network structure has an input layer, one hidden layer and an output layer
with ten nodes in the hidden layer. The algorithm starts by assigning a random set
of weights to the ANN, and the network adjusts its weights each time it comes
across an input–output pair. The weights are adjusted in order to minimize the er-
rors, where, the errors are propagated back to the connections preceding from the
input nodes and the weights are adjusted accordingly. This type of model has been
accepted for modeling the hot rolling process, as it produces a prediction output
which is very close to the real actual output.

A feedforward back-propagation network approach based on LM algorithm was
implemented to perform the same modeling task as in the case of the neuro-fuzzy ap-
proach. In Fig. 13.8, we show the error convergence when training a FF-LM neural
network. The performances of the neural models in tracking the actual data in each
sub-process of the hot rolling process are illustrated in Figs. 13.9, 13.10 and 13.11.
The neural network models outputs follow the desired outputs quite closely. This
indicates that the MSE reached the global minimum for all subsystems of the hot
rolling system. As a result, the NN based LM method capable to learn the behav-
ior of the industrial processes. The VAF values are considered for evaluating the
experimental results.

13.6.3 Comparisons

In the neuro-fuzzy approach, an error tolerance of zero was used, and the ANFIS
was trained with 200 epochs. The best error convergence curve in roll force achieved
minimum MSE values at the last iteration of 0.0140 and 0.0187 for training and test-
ing, respectively. While the roll torque achieved minimum MSE values to be 0.0134
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Fig. 13.8 Convergence curve
of the neuro-fuzzy
slab-temperature model

Fig. 13.9 Actual and estimated response of the force FF-LM model in both training and testing
cases

and 0.0569, at the last iteration for training and testing cases, respectively. recorded
best MSE values at the last iteration were 0.0017 and 0.0026 for training and testing,
respectively. In Table 13.3, the VAF computed values using neuro-fuzzy, FF-LM,
fuzzy logic and the empirical model as presented in [6] and [16], respectively are
reported.

Roll torque and slab temperature models on the other hand, yield good re-
sults. This means that these models are highly stable towards the end of process-
ing phase. Moreover, the performance of neuro-fuzzy for modeling the rolling pro-
cess is slightly better than both of fuzzy logic and FF-LM, and shows better perfor-
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Fig. 13.10 Actual and estimated response of the torque FF-LM model in both training and testing
cases

Fig. 13.11 Actual and estimated response of the temperature FF-LM model in both training and
testing cases



206 A.F. Sheta et al.

Table 13.3 VAF values for
the developed hot rolling
models in %

VAF Force F Torque G Temperature T

ANFIS training 99.22 99.47 99.15

ANFIS testing 84.99 95.76 98.48

FF-LM training 81.32 99.67 99.18

FF-LM testing 81.73 93.04 98.07

FL training 98.59 99.04 95.18

FL testing 81.72 95.20 97.73

Empirical 73.69 74.98 85.08

mance than the empirical model. In addition, the neuro-fuzzy and the fuzzy logic ap-
proaches have nearly the same VAF values. This confirms that both neuro-fuzzy and
fuzzy logic approaches are adequate with a sufficient accuracy to model complex
processes. Overall, VAF results reveal the fact that the proposed modeling methods
reflect the nature of the hot rolling plant process quite well.

13.7 Conclusions and Future Work

This chapter explored the use of Takagi-Sugeno technique to develop adaptive
neuro-fuzzy models for the hot rolling manufacturing process. Three models (i)
roll force, (ii) roll torque, and (iii) slab temperature were implemented. A com-
parison of results between the neuro-fuzzy models and other developed models are
presented successfully. The developed neuro-fuzzy models showed a distinct better
performance with promising results. Due to adaptation and predictability, the pro-
posed neuro-fuzzy models can be used to design model-based intelligent regulators
especially in strip rolling in which the model parameters are updated online. The
presented methodologies can also be applied to other problem domains. They offer
an efficient way to analyse data and can support business activity monitoring in the
field of performance management
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