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Abstract We study the PBW-filtration on the highest weight representations V (λ)

of the Lie algebras of type An and Cn. This filtration is induced by the standard
degree filtration on U(n−). In previous papers, the authors studied the filtration and
the associated graded algebras and modules over the complex numbers. The aim of
this paper is to present a proof of the results which holds over the integers and hence
makes the whole construction available over any field.

1 Introduction

Let g be a finite dimensional simple complex Lie algebra, we fix a maximal torus
h and a Borel subalgebra b = h ⊕ n+. Denote by R the set of roots and let P be
the integral weight lattice. Corresponding to the choice of b, let R+ be the set of
positive roots and let P + be the monoid of dominant weights.

For λ ∈ P + let V (λ) be the finite dimensional irreducible representation of high-
est weight λ and let vλ be a highest weight vector. Denote by M(λ) the Verma
module corresponding to the same highest weight. For a Lie algebra a denote by
U(a) its enveloping algebra. Fix a highest weight vector mλ ∈ M(λ). The linear
map

U
(
n

−)→ M(λ), n �→ nmλ
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is an isomorphism of complex vector spaces. The degree filtration on U(n−):

U
(
n

−)
0 = C1, U

(
n

−)
s
= span

{
1, x1 . . . xl : xi ∈ n

−, l ≤ s
}

for s ≥ 1,

induces via the isomorphism above a natural b-stable filtration on M(λ):

M(λ)s = U
(
n

−)
s
mλ for s ≥ 0.

Set U(n−)−1 = M(λ)−1 = 0, then the associated q-character

charqM(λ) :=
∑

s≥0

char
(
M(λ)s/M(λ)s−1

)
qs

has a very simple form:

charqM(λ) = eλ 1
∏

β∈R+(1 − qe−β)
.

This is obvious by the fact that the associated graded module M(λ)a =⊕s≥0 M(λ)s/

M(λ)s−1 is a free module over the associated graded algebra S(n−) = grad U(n−).
In contrast, the situation becomes rather complicated if one replaces M(λ)

by its finite dimensional quotient V (λ). Again this module has an induced b-
stable filtration V (λ)s = U(n−)svλ, called the Poincaré-Brikhoff-Witt-filtration,
or, for short, just the PBW-filtration. The associated graded module V (λ)a =⊕

s≥0 V (λ)s/V (λ)s−1 is a U(b)-module as well as a S(n−)-module. A general
closed formula for the q-character

charqV (λ) :=
∑

s≥0

char
(
V (λ)s/V (λ)s−1

)
qs

is not known, partial combinatorial answers can be found in [4, 5], more geometric
interpretations can be found in [3, 6]. Another natural (and, at least in the general
case, open) question is about the structure of V (λ)a as a cyclic S(n−)-module, gen-
erated by the image of the highest weight vector.

The aim of this paper is to present a proof of the results in [4, 5] which holds
over the integers and hence makes the whole construction available over any field.
More precisely, for g of type An or type Cn we want

• to describe V a
Z
(λ) as a cyclic SZ(n−)-module, i.e. describe the ideal IZ(λ) ↪→

SZ(n−) such that V a
Z
(λ) � SZ(n−)/IZ(λ);

• to find a basis of V a
Z
(λ), in particular, show that V a

Z
(λ) is torsion free;

• to get a (characteristic free) combinatorial graded character formula for V a
Z
(λ).

As a last remark we would like to point out that one should not confuse the PBW-
filtration (discussed in this paper) neither with the Brylinski-Kostant filtration [2]
(BK-filtration for short) on the weight spaces induced by a principal sl2-triple
(e,h,f ), nor with the right Brylinski-Kostant filtration discussed in [7]. As an ex-
ample, consider the case g of type B2 and λ = ω1 + 2ω2. In Table 1 we list for
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Table 1 Examples for the Poincaré polynomial of the associated graded weight spaces in V (λ),
λ = ω1 + 2ω2, g of type B2, enumeration as in [1]

Weight λ − α1 − 3α2 λ − 2α1 − 2α2 λ − 2α1 − 3α2 λ − 2α1 − 4α2

PBW q3 + q2 q3 + 2q2 2q3 + q2 q4 + q3 + q2

BK q4 + q3 q4 + q3 + q2 q5 + q4 + q3 q6 + q5 + q4

Right BK q4 + q2 q4 + q3 + q2 q5 + q4 + q3 q6 + q5 + q4

some weights the Poincaré polynomial of the associated graded weight space. For
the left and right Brylinski-Kostant filtration, the polynomials have been taken from
[7], for the PBW-filtration the polynomials have been calculated using Theorem 3
(B2 = C2).

2 The Setup over the Complex Numbers: Definitions and
Notation

Let g be a complex finite-dimensional simple Lie algebra. We fix a Cartan subal-
gebra h and a Borel subalgebra b = h ⊕ n+. Let R+ be the set of positive roots
corresponding to the choice of b and let αi , ωi , i = 1, . . . , n be the simple roots
and the fundamental weights. The height ht(β) of a positive root is the sum of the
coefficients of the expression of β as a sum of simple roots.

Let G be the simple, simply connected algebraic group such that LieG = g. Fix
a maximal torus T ⊂ G and a Borel subgroup B ⊃ T such that LieB = h⊕ n+ and
LieT = h. Denote by N− the unipotent radical of the opposite Borel subgroup.

Let g = n+ ⊕ h ⊕ n− be the Cartan decomposition. Consider the increasing de-
gree filtration on the universal enveloping algebra of U(n−):

U
(
n

−)
s
= span

{
1, x1 . . . xl : xi ∈ n

−, l ≤ s
}
, (1)

for example, U(n−)0 = C ·1, U(n−)1 = C ·1+n−, and so on. The associated graded
algebra is the symmetric algebra S(n−) over n−.

For a dominant integral weight λ let Ψ : G → GL(V (λ)) and ψ : g → End(V (λ))

be the corresponding irreducible representations. Fix a highest weight vector vλ.
Since V (λ) = U(n−)vλ, the filtration in (1) induces an increasing filtration V (λ)s
on V (λ):

V (λ)s = U
(
n

−)
s
vλ.

Definition 1 We call this filtration the PBW-filtration of V (λ) and we denote the
associated graded space by V a(λ).

Let n−
s = ∑ht (β)≥s n

−
−β ⊆ n− be the Lie subalgebra formed by the root sub-

spaces corresponding to roots of height at least s. In fact, n−
s ⊂ n− is an ideal, and
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the associated graded algebra n−,a =⊕s≥1 n
−
s /n−

s+1 is an abelian Lie algebra. We
make n−,a into a B- as well as a b-module by identifying the vector space n−,a with
the quotient space g/b, which is a B- respectively b-module via the induced adjoint
action ad : B → GL(g/b).

Definition 2 Denote by ga the Lie algebra ga = b⊕ n−,a , where n−,a is an abelian
ideal in ga and b acts on n−,a via the induced adjoint action described above.

For a positive root β let U−β ⊂ G be the closed root subgroup corresponding
to the root −β . Denote by Ga the additive group of the field (viewed as a one-
dimensional unipotent algebraic group) and let x−β : Ga,β → U−β be a fixed iso-
morphism of the root subgroup with the additive group Ga . We add the root as an
index to indicate that this copy Ga,β of the additive group is related to U−β .

The group N− admits a filtration by a sequence of normal subgroups: let
N−

s =∏ht (β)≥s U−β , then N−
s is a normal subgroup of N−. Denote by N−,a the

product N−,a =∏s≥1 N−
s /N−

s+1, then N−,a is a commutative unipotent group. We
can identify N−,a naturally with the product

∏
β∈R+ Ga,β , viewed as a product of

commuting additive groups. Here Ga,β gets identified with the image of U−β in
N−

ht (β)
/N−

ht (β)+1. The Lie algebra of N−,a is n−,a .

The action ad of B on n−,a can be lifted to an action Ad on N−,a using the expo-
nential map. To make this action more explicit, recall that for two linearly indepen-
dent roots α,β we know by Chevalley’s commutator formula: there exist complex
numbers ci,j,α,β such that

xα(t)xβ(s)x−1
α (t)x−1

β (s) =
∏

i,j>0

xiα+jβ

(
ci,j,α,β t isj

)

for all s, t ∈ C. The product is taken over all pairs i, j ∈ Z>0 such that iα + jβ is
a root and in order of increasing height of the occurring roots. We have for m =∏

β∈R+ x−β(uβ) ∈ N−,a and xα(t) ∈ B , uβ, t ∈C:

Ad
(
xα(t)

)
(m) =

∏

β∈R+
x−β

(
uβ +

∑

i,j>0,γ∈R+
−β=iα−jγ

ci,j,α,−γ t iuj
γ

)
. (2)

Definition 3 Denote by Ga the semi-direct product Ga � B � N−,a , where N−,a

is an abelian normal subgroup in Ga and B acts on N−,a via the action described
above.

The subspaces V (λ)s = U(n−)svλ are stable with respect to the B- and the b-
action, so we get an induced action of B as well as of b on V a(λ). Since the appli-
cation by an element f ∈ n− induces linear maps

f : V (λ)s → V (λ)s+1
∪ ∪

V (λ)s−1 → V (λ)s
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we get an induced endomorphism ψa(f ) : V a(λ) → V a(λ) with the property that
ψa(f )ψa(f ′) − ψa(f ′)ψa(f ) : V a(λ) → V a(λ) is the zero map for f,f ′ ∈ n−.
Hence we get an induced representation of the abelian Lie algebra n−,a and of its
enveloping algebra S(n−,a), the symmetric algebra over n−,a . Note that V a(λ) is a
cyclic S(n−,a)-module:

V a(λ) = S
(
n

−,a
)
.vλ.

The action of n−,a on V a(λ) is compatible with the B-action on V a(λ) and on n−,a :
suppose b ∈ B , f ∈ n− and v ∈ V (λ)s , then

b(f.v) = (bf b−1)(bv) = (ad(b)(f )
)
bv + m.bv for some m ∈ b,

and hence bf.v = (ad(b)(f ))bv in V (λ)s+1/V (λ)s . It follows:

Proposition 1 V a(λ) is a ga-module, it is a cyclic S(n−,a)-module and a B-module.
The B-action on S(n−,a) is compatible with the B-action on V a(λ) = S(n−,a).vλ

The action of U−β on V (λ) is given by:

Ψ
(
x−β(t)

)
(v) =

∑

i≥0

t iψ

(
f i

β

i!
)

(v) for v ∈ V (λ) and t ∈C

and we get an induced action of U−β on V a(λ) by

Ψ a
(
x−β(t)

)
(v) =

∑

i≥0

t iψa

(
f i

β

i!
)

(v) for v ∈ V a(λ) and t ∈C.

The action of the various U−β on V a(λ) commute and hence we get a representation
Ψ a : N−,a → GL(V a(λ)). This action is compatible with the B-action on V a(λ)

and hence:

Proposition 2 V a(λ) is a representation space for Ga .

In analogy to the classical construction we define:

Definition 4 The closure of the orbit Ga.[vλ] ⊆ P(V a(λ)) is called the degenerate
flag variety Fa

λ .

3 The Kostant Lattice

Let GZ be a split and simple, simply connected algebraic Z-group (see [8]), set
GA = (GZ)A for any ring A. We assume without loss of generality (GZ)C = G.
We fix a split maximal torus TZ ⊂ GZ such that T = (TZ)C and a Borel subgroup
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BZ ⊃ TZ such that B = (BZ)C. Let gZ, bZ, n+
Z

etc. be the Lie algebras, then we have
g = gZ ⊗C, b = bZ ⊗C etc.

Fix a Chevalley basis

{
fβ, eβ : β ∈ R+;h1, . . . , hn

}⊂ gZ,

where fβ ∈ n
−
Z

(respectively eβ ∈ n
+
Z

) is an element of the root space g−β,Z (respec-
tively gβ,Z), and hi ∈ hZ.

Let n−
Z,s

=∑ht (β)≥s n
−
−β,Z

be the Lie subalgebra formed by the root spaces cor-

responding to roots of height at least s. The Lie subalgebra n
−
Z,s+1 ⊂ n

−
Z,s

is an

ideal, and the associated graded algebra n
−,a
Z

=⊕s≥1 n
−
Z,s

/n−
Z,s+1 is an abelian Lie

algebra. We make n
−,a
Z

into a BZ- as well as a bZ-module by identifying the vector
space n−,a

Z
with the quotient module gZ/bZ, which is a BZ- respectively bZ-module

via the adjoint action.

Definition 5 Denote by ga
Z

the Lie algebra ga
Z

= bZ⊕n
−,a
Z

, where n−,a
Z

is an abelian
ideal in ga

Z
and bZ acts on n

−,a
Z

via the induced adjoint action described above.

We write e
(m)
β , f

(m)
β for the divided powers

f m
β

m! and
em
β

m! in the enveloping algebra

U(g). We denote by
(
hi

m

)
the following element in U(g):

(
hi

m

)
= hi(hi − 1) · · · (hi − m + 1)

m! .

Let now UZ(g) be the Kostant lattice in U(g), i.e. the subalgebra generated by the(
hi

m

)
and the divided powers e

(m)
β , f

(m)
β . We identify UZ(g) with Dist(GZ), the alge-

bra of distributions or the hyperalgebra of GZ. We fix an enumeration of the positive
roots {β1, . . . , βN }. Given an N -tuple m = (m1, . . . ,mN) of non-negative integers,
we set

f (m) = f
(m1)
β1

· · ·f (mN)
βN

, e(m) = e
(m1)
β1

· · · e(mN)
βN

,

and given an n-tuple � = (
1, . . . , 
n), set

h(�) =
(

h1


1

)
· · ·
(

hn


n

)
.

The ordered monomials

f (m)h(�)e(k), where m,k are N -tuples, � is an n-tuple of natural numbers,

form a Z-basis of UZ(g) as a free Z-module. The subalgebras UZ(n−) and UZ(n+)

admit the ordered monomials

{
f (m) | m1, . . . ,mN ∈ Z≥0

}
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respectively
{
e(m) | m1, . . . ,mN ∈ Z≥0

}

as bases.
Let UZ(n−)s be the Z-span of the monomials of degree at most s:

UZ

(
n

−)
s
= 〈f (m1)

γ1
. . . f (m
)

γ

| m1 + · · · + m
 ≤ s, γ1, . . . , γ
 ∈ R+〉

Z
, (3)

where the degree of f
(m1)
γ1 . . . f

(m
)
γ


is the sum m1 + · · · + m
. Since changing the
ordering is commutative up to terms of smaller degree, the UZ(n−)s define a filtra-
tion of the algebra UZ(n−). By abuse of notation denote by SZ(n−,a) the associated
graded algebra. Note that n−,a

Z
⊂ SZ(n−,a). In fact, SZ(n−,a) is a divided power

analogue of the symmetric algebra over n−,a
Z

. This algebra can be described as the

quotient of a polynomial algebra in infinitely many generators (the “symbols” f(m)
β ):

Z[f(m)
β | m ∈ Z≥0, β ∈ R+] modulo the ideal J generated by the following identities:

J =
〈
f
(m)
β f

(k)
β −

(
m + k

m

)
f
(m+k)
β

∣∣∣∣ k,m ≥ 1, β ∈ R+
〉
. (4)

So we have:

SZ
(
n

−,a
)� Z

[
f
(m)
β | m ∈ Z≥0, β ∈ R+]/J.

The isomorphism above sends the basis given by classes of the monomials in
the symbols f

(m1)
β1

· · · f(mN)
βN

to the basis of SZ(n−,a) given by the monomials

f
(m1)
β1

· · ·f (mN)
βN

.

Let U+
Z
(h + n+) ⊂ UZ(g) be the span of the monomials h(�)e(k) such that

∑n
i=1 
i +∑N

j=1 kj > 0. The natural map which sends a monomial to its class in
the quotient:

UZ

(
n

−)→ UZ(g)/UZ

(
n

−)U+
Z

(
h+ n

+), f (m) → f (m),

is an isomorphism of free Z-modules. Recall that UZ(g) is naturally a BZ-module
and a UZ(b)-module via the adjoint action, and UZ(n−)U+

Z
(h + n+) is a proper

submodule. Via the identification above, we get an induced structure on UZ(n−)

as a BZ-module and a UZ(b)-module. The filtration of UZ(n−) by the UZ(n−)s is
stable under this BZ- and UZ(b)-action and hence:

Lemma 1 The BZ-module structure and the UZ(b)-module structure on UZ(n−)

induce a BZ-module structure and a UZ(b)-module structure on SZ(n−,a).

For a dominant integral weight λ = m1ω1 + · · · + mnωn fix a highest weight
vector vλ and let VZ(λ) = UZ(g)vλ ⊂ V (λ) be the corresponding lattice in the com-
plex representation space. Since VZ(λ) = UZ(n−)vλ, the filtration (3) induces an
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increasing filtration VZ(λ)s on VZ(λ):

VZ(λ)s = UZ

(
n

−)
s
vλ. (5)

We denote the associated graded space by V a
Z
(λ). Since BZVZ(λ)s ⊂ VZ(λ)s , V a

Z
(λ)

becomes naturally a BZ-module. The application by an element f
(m)
β ∈ UZ(n−)

provides linear maps for all s:

f
(m)
β : VZ(λ)s → VZ(λ)s+m

∪ ∪
VZ(λ)s−1 → VZ(λ)s+m−1,

and we get an induced endomorphism ψa(f
(m)
β ) : V a

Z
(λ) → V a

Z
(λ) such that

ψa(f
(m)
β )ψa(f

(
)
γ ) = ψa(f

(
)
γ )ψa(f

(m)
β ), and hence we get an induced represen-

tation of the abelian Lie algebra n
−,a
Z

and of the algebra SZ(n−,a). Note that V a
Z
(λ)

is a cyclic SZ(n−,a)-module:

V a
Z
(λ) = SZ

(
n

−,a
)
vλ.

The action of SZ(n−,a) on V a
Z
(λ) is compatible with the BZ-action on SZ(n−,a) and

on V a(λ), so summarizing we have:

Proposition 3 V a
Z
(λ) is a ga

Z
-module, it is a cyclic SZ(n−,a)-module and a BZ-

module. The BZ-action on SZ(n−,a) is compatible with the BZ-action on V a
Z
(λ) =

SZ(n−,a).vλ.

For a positive root β let U−β,Z ⊂ GZ be the closed root subgroup corresponding
to the root −β . We denote by x−β : Ga,Z,β → U−β,Z a fixed isomorphism of the
root subgroup with the additive group Ga,Z. We add the root as an index to indicate
that this copy Ga,Z,β of the additive group is supposed to be identified with U−β,Z.

As in the case before over the complex numbers, the group N−
Z

admits a
filtration by a sequence of normal subgroups: set N−

Z,s
= ∏

ht (β)≥s U−β,Z, the

product N
−,a
Z

= ∏
s≥1 N−

Z,s
/N−

Z,s+1, is a commutative group. We can identify

N
−,a
Z

naturally with the product
∏

β∈R+ Ga,Z,β , viewed as a product of commut-
ing additive groups. Again, Ga,Z,β gets identified with the image of U−β,Z in
N−
Z,ht (β)

/N−
Z,ht (β)+1. The Lie algebra of N

−,a
Z

is n−,a
Z

.
The action of U−β,Z on VZ(λ) is given by:

Ψ
(
u−β(t)

)
(v) =

∑

i≥0

t iψ
(
f

(i)
β

)
(v) for v ∈ VZ(λ) and t ∈ Z

and we get an induced action of U−β,Z on V a
Z
(λ) by

Ψ a
(
u−β(t)

)
(v) =

∑

i≥0

t iψa
(
f

(i)
β

)
(v) for v ∈ V a

Z
(λ) and t ∈ Z.



PBW-filtration over Z and Compatible Bases for VZ(λ) in Type An and Cn 43

The action of the various U−β,Z on V a
Z
(λ) commute and hence we get a representa-

tion Ψ a : N−,a
Z

→ GL(V a
Z
(λ)). Since we started with a Chevalley basis, by [9], §6,

or [10], §3.6, the coefficients in (2) are integral, so we get an action of BZ on N
−,a
Z

.
Denote by Ga

Z
the semi-direct product BZ �N

−,a
Z

. The actions of BZ and N
−,a
Z

on
V a
Z
(λ) are compatible and hence we get

Proposition 4 V a
Z
(λ) is a Ga

Z
-module.

As a consequence, given a field k, we have the group Ga
k = (Ga

Z
)k , the representa-

tion space V a
k = (V a

Z
)k and the degenerate flag variety Fa

λ,k := Ga
k.[vλ] ⊂ P(V a

k (λ)).
Here are some natural questions:

(i) is the graded character of V a
k (λ) independent of the characteristic?

(ii) is V a
Z
(λ) torsion free?

An explicit monomial basis for V a
C
(λ) has been constructed for G = SLn in [4] and

for G = Sp2n in [5]. Another natural question:

(iii) is this basis of V a(λ) compatible with the lattice construction in this section?
Or, to put it differently: is V a

Z
(λ) a free Z-module with basis {f (s)vλ | s ∈

S(λ)}? (For the notation see the next sections.)

The aim of the next sections is to give an affirmative answer to these questions for
G = SLn and G = Sp2n.

4 Roots and Relations in Type A and C

Let R+ be the set of positive roots of sln+1. Let αi , ωi i = 1, . . . , n be the simple
roots and the fundamental weights. All positive roots of sln+1 are of the form αp +
αp+1 + · · · + αq for some 1 ≤ p ≤ q ≤ n. In the following we denote such a root by
αp,q , for example αi = αi,i .

Let now R+ be the set of positive roots of sp2n. Let αi , ωi i = 1, . . . , n be the
simple roots and the fundamental weights. All positive roots of sp2n can be divided
into two groups:

αi,j = αi + αi+1 + · · · + αj , 1 ≤ i ≤ j ≤ n,

αi,j = αi + αi+1 + · · · + αn + αn−1 + · · · + αj , 1 ≤ i ≤ j ≤ n
(6)

(note that αi,n = αi,n). We will use the following short versions

αi = αi,i , αi = αi,i .

We recall the usual order on the alphabet J = {1, . . . , n,n − 1, . . . ,1}
1 < 2 < · · · < n − 1 < n < n − 1 < · · · < 1. (7)
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Let g = n+ ⊕ h ⊕ n− be the Cartan decomposition. By Lemma 1, the UZ(n+)-
module structure on UZ(n−) induces a UZ(n+)-module structure on SZ(n−,a). We
want to make this action more explicit for g of type A and C.

If α = β or if the root vectors commute, then

(
ad e(k)

α

)(
f

(m)
β

)= 0. (8)

If α,γ,β = α + γ are positive roots spanning a subsystem of type A2, then

(
ad e(k)

α

)(
f

(m)
β

)=
{

±f
(k)
γ f

(m−k)
β , if k ≤ m,

0, otherwise.
(9)

If α,γ,α + γ,α + 2γ span a subrootsystem of type B2 = C2, then

(
ad e(k)

α

)(
f

(m)
α+γ

)=
{

±f
(k)
γ f

(m−k)
α+γ , if k ≤ m,

0, otherwise,
(10)

and

(
ad e

(k)
α+γ

)(
f

(m)
α+2γ

)=
{

±f
(k)
γ f

(m−k)
α+2γ , if k ≤ m,

0, otherwise,
(11)

and

(
ad e(k)

γ

)(
f

(m)
α+γ

)=
{

±2kf
(k)
α f

(m−k)
α+γ , if k ≤ m,

0, otherwise,
(12)

and

(
ad e(k)

γ

)(
f

(m)
α+2γ

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

±f
(k)
α+γ f

(m−k)
α+2γ

+∑ c>m−k
a+b+c=m

ra,b,cf
(a)
α f

(b)
α+γ f

(c)
α+2γ , if k ≤ m,

0, otherwise,

(13)

where the coefficients ra,b,c are integers.

5 The Spanning Property for SLn+1

We first recall the definition of a Dyck path in the SLn+1-case:

Definition 6 A Dyck path (or simply a path) is a sequence

p = (β(0), β(1), . . . , β(k)
)
, k ≥ 0

of positive roots satisfying the following conditions:



PBW-filtration over Z and Compatible Bases for VZ(λ) in Type An and Cn 45

(i) the first and last elements are simple roots. More precisely, β(0) = αi and
β(k) = αj for some 1 ≤ i ≤ j ≤ n;

(ii) the elements in between obey the following recursion rule: If β(s) = αp,q then
the next element in the sequence is of the form either β(s + 1) = αp,q+1 or
β(s + 1) = αp+1,q .

Example 1 Here is an example for a Dyck path for sl6:

p = (α2, α2 + α3, α2 + α3 + α4, α3 + α4, α4, α4 + α5, α5).

For a multi-exponent s = {sβ}β>0, sβ ∈ Z≥0, let f (s) be the element

f (s) =
∏

β∈R+
f

(sβ)

β ∈ SZ
(
n

−,a
)
.

Definition 7 For an integral dominant sln+1-weight λ =∑n
i=1 miωi let S(λ) be

the set of all multi-exponents s = (sβ)β∈R+ ∈ Z
R+
≥0 such that for all Dyck paths

p = (β(0), . . . , β(k))

sβ(0) + sβ(1) + · · · + sβ(k) ≤ mi + mi+1 + · · · + mj , (14)

where β(0) = αi and β(k) = αj .

The space V a
Z
(λ) is endowed with the structure of a cyclic SZ(n−,a)-module,

hence V a
Z
(λ) = SZ(n−,a)/IZ(λ) for some ideal IZ(λ) ⊆ SZ(n−,a). Our aim is to

prove that the elements f (s)vλ, s ∈ S(λ), span V a
Z
(λ).

Let λ = m1ω1 + · · · + mnωn. The strategy is as follows: f
((λ,α)+1)
α vλ = 0 in

VZ(λ) for all positive roots α, so for α = αi + · · · + αj , i ≤ j , we have the relation

f
(mi+···+mj +1)

αi+···+αj
∈ IZ(λ).

In addition we have the operators e
(m)
α acting on V a

Z
(λ). We note that IZ(λ) is stable

with respect to the induced action of the e
(m)
α on SZ(n−,a) (Lemma 1). By applying

the operators e
(m)
α to f

(mi+···+mj +1)

αi+···+αj
, we obtain new relations. We prove that these

relations are enough to rewrite any vector f (t)vλ as an integral linear combination
of f (s)vλ with s ∈ S(λ).

To simplify the notation we use the following abbreviations: we write just fi,j

for fαi+···+αj
, i ≤ j , and we write f

(si,j )

i,i for f
(sαi+···+αj

)

αi+···+αj
.

By the degree deg s of a multi-exponent we mean the degree of the corresponding

monomial f (s) =∏1≤i≤j≤n f
(si,j )

i,j in SZ(n−,a), i.e. deg s =∑ si,j .
We are going to define an order on the monomials in SZ(n−,a). To begin with,

we define a total order on the fi,j , 1 ≤ i ≤ j ≤ n. We say that (i, j) � (k, l) if i > k
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or if i = k and j > l. Correspondingly we say that fi,j � fk,l if (i, j) � (k, l), so

fn,n � fn−1,n � fn−1,n−1 � fn−2,n � · · · � f2,3 � f2,2 � f1,n � · · · � f1,1.

We use a sort of associated homogeneous lexicographic ordering on the set of multi-
exponents, i.e. for two multi-exponents s and t we write s � t:

(i) if deg s > deg t,
(ii) if deg s = deg t and there exist 1 ≤ i0 ≤ j0 ≤ n such that si0j0 > ti0j0 and for

i > i0 and (i = i0 and j > j0) we have si,j = ti,j .

We use the “same” total order on the set of monomials, i.e. f (s) � f (t) if and only
if s � t.

Proposition 5 Let p = (p(0), . . . , p(k)) be a Dyck path with p(0) = αi and p(k) =
αj . Let s be a multi-exponent supported on p, i.e. sα = 0 for α /∈ p. Assume further
that

k∑

l=0

sp(l) > mi + · · · + mj .

Then there exist some constants ct ∈ Z labeled by multi-exponents t such that

f (s) +
∑

t≺s

ctf
(t) ∈ IZ(λ) (15)

(t does not have to be supported on p).

Remark 1 We refer to (15) as a straightening law because it implies

f (s) = −
∑

t≺s

ctf
(t) in SZ

(
n

−,a
)
/IZ(λ) � V a

Z
(λ).

Proof We start with the case p(0) = α1 and p(k) = αn (so, k = 2n − 2). This
assumption is just for convenience. In the general case p starts with p(0) = αi ,

p(k) = αj and one would start with the relation f
(mi+···+mj +1)

i,j ∈ IZ(λ) instead of

the relation f
(m1+···+mn+1)
1,n ∈ IZ(λ) below.

So from now on we assume without loss of generality that p(0) = α1 and p(k) =
αn. In the following we use the differential operators ∂

(k)
α defined by

∂(k)
α f

(m)
β =

{
f

(k)
β−αf

(m−k)
β , if β − α ∈ �+ and k ≤ m,

0, otherwise.
(16)

The operators ∂
(k)
α satisfy the property

∂(k)
α f

(m)
β = ±(ad e(k)

α

)(
f

(m)
β

)
.
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In the following we use very often the following consequence: if a monomial
f

(m1)
β1

. . . f
(ml)
βl

∈ IZ(λ), then for any sequence of positive roots α1, . . . , αs and any
sequence of integers k1, . . . , ks ∈ Z>0 we have:

∂(k1)
α1

. . . ∂(ks )
αs

f
(m1)
β1

. . . f
(ml)
βl

∈ IZ(λ).

Since f
(m1+···+mn+1)
1,n vλ = 0 in V a

Z
(λ) and sp(0) + · · · + sp(k) > m1 + · · · + mn by

assumption, it follows that

f
(sp(0)+···+sp(k))

1,n ∈ IZ(λ).

Write ∂
(m)
i,j for ∂

(m)
αi,j

, and for i, j = 1, . . . , n set

s•,j =
j∑

i=1

si,j , si,• =
n∑

j=i

si,j .

We first consider the vector

∂
(s•,n−1)
n,n ∂

(s•,n−2)

n−1,n · · · ∂(s•,1)

2,n f
(sp(0)+···+sp(k))

1,n ∈ IZ(λ). (17)

By means of formula (16) we get:

∂
(s•,1)

2n f
(sp(0)+···+sp(k))

1,n = f
(sp(0)+···+sp(k)−s•,1)

1,n f
(s•,1)

1,1

and

∂
(s•,2)

3n ∂
(s•,1)

2n f
(sp(0)+···+sp(k))

1,n = f
(sp(0)+···+sp(k)−s•1−s•2)

1,n f
(s•1)
1,1 f

(s•2)
1,2 .

Summarizing, the vector (17) is equal to

f
(s•,1)

1,1 f
(s•,2)

1,2 · · ·f (s•,n)

1,n ∈ IZ(λ).

To prove the proposition, we apply more differential operators to the monomial

f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n)

1,n . Consider the following element in IZ(λ) ⊂ SZ(n−,a):

A = ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(sn,•)
1,n−1f

(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n)

1,n . (18)

Claim

A =
∑

t�s

ctf
(t) where cs = 1. (19)

Now A ∈ IZ(λ) by construction, so the claim proves the proposition.

Proof of the claim In order to prove the claim we need to introduce some more
notation. For j = 1, . . . , n − 1 set

Aj = ∂
(sj+1,•)
1,j ∂

(sj+2,•)
1,j+1 . . . ∂

(sn,•)
1,n−1f

(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n)

1,n , (20)
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so A1 = A. To start an inductive procedure, we begin with An−1:

An−1 = ∂
(sn,•)
1,n−1f

(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n)

1,n .

Now sn,• = sn,n and ∂
(x)
1,n−1f

(y)

1,j = 0 for j �= n, so

An−1 = f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n−sn,n)

1,n f
(sn,n)
n,n . (21)

We proceed with the proof using decreasing induction. Since the induction proce-
dure is quite involved and the initial step does not reflect the problems occurring in
the procedure, we discuss for convenience the case An−2 separately.

Consider An−2, we have:

An−2 = ∂
(sn−1,•)
1,n−2 f

(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n−sn,n)

1,n f
(sn,n)
n,n .

Now ∂
(k)
1,n−2f

(m)
1,j = 0 for j �= n − 1, n, ∂

(k)
1,n−2f

(m)
n,n = 0, and ∂(k)(xy) =

∑k
i=0 ∂(k−i)(x)∂(i)(y), so

An−2 =
sn−1,•∑


=0

f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,n−1−sn−1,•+
)

1,n−1 f
(s•,n−sn,n−
)

1,n f
(sn−1,•−
)

n−1,n−1 f
(
)
n−1,nf

(sn,n)
n,n .

We need to control which divided powers f
(
)
n−1,n can occur. Recall that s has support

in p. If αn−1 /∈ p, then sn−1,n−1 = 0 and sn−1,• = sn−1,n, so f
(sn−1,n)

n−1,n is the highest
divided power occurring in the sum. Next suppose αn−1 ∈ p. This implies αj,n /∈ p
unless j = n − 1 or n. Since s has support in p, this implies

s•,n = s1,n + · · · + sn−1,n + sn,n = sn−1,n + sn,n,

and hence again the highest divided power of fn−1,n which can occur is f
(sn−1,n)

n−1,n ,
and the coefficient is 1. So we can write

An−2 =
sn−1,n∑


=0

f
(s•,1)

1,1 . . . f
(s•,n−1−sn−1,•+
)

1,n−1 f
(s•,n−sn,n−
)

1,n f
(sn−1,•−
)

n−1,n−1 f
(
)
n−1,nf

(sn,n)
n,n .

(22)
For the inductive procedure we make the following assumption:

Aj is a sum with integral coefficients of monomials of the form

f
(s•,1)

1,1 . . . f
(s•,j )

1,j f
(s•,j+1−∗)

1,j+1 . . . f
(s•,n−∗)

1,n︸ ︷︷ ︸
X

f
(tj+1,j+1)

j+1,j+1 f
(tj+1,j+2)

j+1,j+2 . . . f
(tn−1,n)

n−1,n f
(tn,n)
n,n

︸ ︷︷ ︸
Y

(23)

having the following properties:

(i) With respect to the homogeneous lexicographic ordering, all the multi-
exponents of the summands, except one, are strictly smaller than s.
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(ii) More precisely, there exists a pair (k0, 
0) such that k0 ≥ j + 1, sk0
0 > tk0
0

and sk
 = tk
 for all k > k0 and all pairs (k0, 
) such that 
 > 
0.
(iii) The only exception is the summand such that t
,m = s
,m for all 
 ≥ j + 1 and

all m, and in this case the coefficient is equal to 1.

The calculations above show that this assumption holds for An−1 and An−2.

We start now with the induction procedure and we consider Aj−1 = ∂
(sj,•)
1,j−1Aj .

Note that ∂
(k)
1,j−1f

(m)
1,
 = 0 for 
 < j , and for 
 ≥ j we have ∂

(p)

1,j−1f
(q)

1,
 = f
(p)
j,
 f

(q−p)

1,


for p ≤ q , and the result is 0 for p > q .
Furthermore, ∂

(p)

1,j−1f
(q)
k,
 = 0 for k ≥ j + 1, so applying ∂

(p)

1,j−1 to a summand of

the form (23) does not change the Y -part in (23). Summarizing, applying ∂
(sj,•)
1,j−1 to

a summand of the form (23) gives a sum of monomials of the form

f
(s•,1)

1,1 . . . f
(s•,j−1)

1,j−1 f
(s•,j −∗)

1,j . . . f
(s•,n−∗)

1,n︸ ︷︷ ︸
X′

f
(tj,j )

j,j . . . f
(tj,n)

j,n︸ ︷︷ ︸
Z

f
(tj+1,j+1)

j+1,j+1 f
(tj+1,j+2)

j+1,j+2 . . . f
(tn,n)
n,n

︸ ︷︷ ︸
Y

. (24)

We have to show that these summands satisfy again the conditions (i)–(iii) above
(but now for the index (j − 1)). If we start in (23) with a summand which is not
the maximal summand, but such that (i) and (ii) hold for the index j , then the same
holds obviously also for the index (j − 1) for all summands in (24) because the
Y -part remains unchanged.

So it remains to investigate the summands of the form (24) obtained by applying

∂
(sj,•)
1j−1 to the only summand in (23) satisfying (iii).

To formalize the arguments used in the calculation for An−2 we need the follow-
ing notation. Let 1 ≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ n be numbers defined by

ki = max{j : αi,j ∈ p}.
For convenience we set k0 = 1.

Example 2 For p = (α1,1, α1,2, . . . , α1,n−1, α1,n, α2,n, α3,n, α4,n, . . . , αn,n) we have
ki = n for all i = 1, . . . , n.

Since s is supported on p we have

si,• =
ki∑


=ki−1

si,
, s•,
 =
∑

i: ki−1≤
≤ki

si,
. (25)

Suppose now that we have a summand of the form in (24) obtained by applying

∂
(sj,•)
1j−1 to the only summand in (23) satisfying (iii). Since the Y -part remains un-

changed, this implies already tn,n = sn,n, . . . , tj+1,j+1 = sj+1,j+1. Assume that we



50 E. Feigin et al.

have already shown tj,n = sj,n, . . . , tj,
0+1 = sj,
0+1, then we have to show that
tj,
0 ≤ sj,
0 .

We consider five cases:

(i) 
0 > kj . In this case the root αj,
0 is not in the support of p and hence sj,
0 =
0. Since 
0 > kj ≥ kj−1 ≥ · · · ≥ k1, for the same reason we have si,
0 = 0

for i ≤ j . Recall that the divided power of f
(∗)
1,
0

in Aj−1 in (20) is equal to

s•,
0 . Now s•,
0 =∑i>j si,
0 by the discussion above, and hence f
(s•,
0 )

1,
0
has

already been transformed completely by the operators ∂
(∗)
1,i , i > j , and hence

tj,
0 = 0 = sj,
0 .
(ii) kj−1 < 
0 ≤ kj . Since 
0 > kj−1 ≥ · · · ≥ k1, for the same reason as above we

have si,
0 = 0 for i < j , so s•,
0 =∑i≥j si,
0 . The same arguments as above

show that for the operator ∂
(∗)
1,j−1 only the power f

(sj,
0 )

1,
0
is left to be trans-

formed into a divided power of fj,
0 , so necessarily tj,
0 ≤ sj,
0 .

(iii) kj−1 = 
0 = kj . In this case sj,• = sj,
0 and thus the operator ∂
sj,•
1,j−1 = ∂

sj,
0
1,j−1

can transform a divided power f
(∗)
1,
0

in Aj only into a power f
(q)

j,
0
with q at

most sj,
0 .
(iv) kj−1 = 
0 < kj . In this case sj,• = sj,
0 + sj,
0+1 + · · · + sj,kj

. Applying

∂
(sj,•)
1,j−1 to the only summand in (23) satisfying (iii), the assumption tj,n =

sj,n, . . . , tj,
0+1 = sj,
0+1 implies that one has to apply ∂
(sj,kj )

1,j−1 to f
(∗)
1,kj

and

∂
(sj,kj −1)

1,j−1 to f
(∗)
1,kj −1 etc. to get the demanded divided powers of the root vec-

tors. So for f
(∗)
1,
0

only the operator ∂
(sj,
0 )

1,j−1 is left for transformations into a
divided power of fj,
0 , and hence tj,
0 ≤ sj,
0 .

(v) 
0 < kj−1. In this case sj,
0 = 0 because the root is not in the support. Since
tj,
 = sj,
 for 
 > 
0 and sj,
 = 0 for 
 ≤ 
0 (same reason as above) we obtain

∂
(sj,•)
1,j−1 = ∂

(
∑


>
0
sj,
)

1,j−1 .

But by assumption we know that ∂
(sj,
)

1,j−1 is needed to transform the power f
(sj,
)

1,


into f
(sj,
)

j,
 for all 
 > 
0, so no divided power of ∂1,j−1 is left and thus tj,
0 =
0 = sj,
0 .

It follows that all summands except one satisfy the conditions (i), (ii) above. The

only exception is the term where the divided powers of the operator ∂
(sj,•)
1,j−1 are dis-

tributed as follows:

f
(s•,1)

1,1 . . . f
(s•,j−1)

1,j−1

(
∂

(sj,j )

1,j−1f
(s•,j )

1,j

)(
∂

(sj,j+1)

1,j−1 f
(s•,j+1−∗)

1,j+1

)

. . .
(
∂

(sj,n)

1,j−1f
(s•,n−∗)

1,n

)
f

(sj+1,j+1)

j+1,j+1 . . . f
(sn,n)
n,n .

By construction, this term has coefficient 1 and satisfies the condition (iii), which
finishes the proof of the proposition. �
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Theorem 1 The elements f (s)vλ with s ∈ S(λ) (see Definition 7) span the module
V a
Z
(λ).

Proof The elements f (s), s arbitrary multi-exponent, span SZ(n−,a), so the elements
f (s)vλ, s arbitrary multi-exponent, span SZ(n−,a)/IZ(λ) � V a

Z
(λ). We use now the

Eq. (15) in Proposition 5 as a straightening algorithm to express f (s)vλ, s arbitrary,
as a linear combination of elements f (t)vλ such that t ∈ S(λ).

Let λ =∑n
i=1 miωi and suppose s /∈ S(λ), then there exists a Dyck path p =

(p(0), . . . , p(k)) with p(0) = αi , p(k) = αj such that

k∑

l=0

sp(l) > mi + · · · + mj .

We define a new multi-exponent s′ by setting

s′
α =

{
sα, if α ∈ p,

0, otherwise.

For the new multi-exponent s′ we still have

k∑

l=0

s′
p(l) > mi + · · · + mj .

We can now apply Proposition 5 to s′ and conclude

f (s′) =
∑

s′�t′
ct′f

(t′) in SZ
(
n

−,a
)
/IZ(λ),

where ct′ ∈ Z. We get f (s) back as f (s) = f (s′)∏
β /∈p f

(sβ)

β . For a multi-exponent t′
occurring in the sum with ct′ �= 0 let the multi-exponent t and ct ∈ Z be such that

ct′f (t′)∏
β /∈p f

(sβ)

β = ctf
(t) (recall (4)). Since we have a monomial order it follows:

f (s) = f (s′)∏

β /∈p

f
(sβ)

β =
∑

s�t

ctf
(t) in SZ

(
n

−,a
)
/IZ(λ). (26)

Equation (26) provides an algorithm to express f (s) in SZ(n−,a)/IZ(λ) as a sum of
elements of the desired form: if some of the t are not elements of S(λ), then we can
repeat the procedure and express the f (t) in SZ(n−,a)/IZ(λ) as a sum of f (r) with
r ≺ t. For the chosen ordering any strictly decreasing sequence of multi-exponents
(all of the same total degree) is finite, so after a finite number of steps one obtains
an expression of the form f (s) =∑ crf

(r) in SZ(n−,a)/IZ(λ) such that r ∈ S(λ) for
all r. �
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6 The Main Theorem for SLn+1

Theorem 2 The elements {f (s)vλ | s ∈ S(λ)} form a basis for the module V a
Z
(λ)

and the ideal IZ(λ) is generated by the subspace

〈
UZ

(
n

+)f (mi+···+mj +1)
αi,j

| 1 ≤ i ≤ j ≤ n − 1
〉
.

As an immediate consequence we see:

Corollary 1

(i) V a
Z
(λ) is a free Z-module.

(ii) For every s ∈ S(λ) fix a total order on the set of positive roots and denote by
abuse of notation by f (s) ∈ UZ(n−) also the corresponding product of divided
powers. The {f (s)vλ | s ∈ S(λ)} form a basis for the module VZ(λ) and for all
s < s′ we have VZ(λ)s is a direct summand of VZ(λ)s′ as a Z-module. (See (5)
for the filtration.)

(iii) With the notation as above: let k be a field and denote by Vk(λ) = VZ(λ) ⊗Z k,
Uk(g) = UZ(g)⊗Z k, Uk(n

−) = UZ(n−)⊗Z k etc. the objects obtained by base
change. The {f (s)vλ | s ∈ S(λ)} form a basis for the module Vk(λ).

Proof We know that the elements f (s)vλ, s ∈ S(λ), span V a
Z
(λ), see Theorem 1.

By [6], the number �S(λ) is equal to dimV (λ), which implies the linear indepen-
dence. By lifting the elements to VZ(λ), we get a basis of VZ(λ) which is (by con-
struction) compatible with the PBW-filtration: set

S(λ)r =
{

s ∈ S(λ)

∣∣∣∣
∑

β∈R+
sβ ≤ r

}
,

then the elements f (s)vλ, s ∈ S(λ)r , span VZ(λ)r .
Let I ⊂ SZ(n−,a) be the ideal generated by

〈
UZ

(
n

+) ◦ f
(mi+···+mj +1)
αi,j

| 1 ≤ i ≤ j ≤ n − 1
〉
,

by construction we know I ⊆ IZ(λ). But we also know that the relations in I

are sufficient to rewrite every element in V a
Z
(λ) in terms of the basis elements

f (s)vλ, s ∈ S(λ), which implies that the canonical surjective map SZ(n−)/I →
SZ(n−)/IZ(λ) � VZ(λ) is injective. �

7 Symplectic Dyck Paths

We recall the notion of the symplectic Dyck paths:
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Definition 8 A symplectic Dyck path (or simply a path) is a sequence

p = (β(0), β(1), . . . , β(k)
)
, k ≥ 0

of positive roots satisfying the following conditions:

(i) the first root is simple, β(0) = αi for some 1 ≤ i ≤ n;
(ii) the last root is either simple or the highest root of a symplectic subalgebra,

more precisely β(k) = αj or β(k) = αjj for some i ≤ j ≤ n;
(iii) the elements in between obey the following recursion rule: If β(s) = αp,q with

p,q ∈ J (see (7)) then the next element in the sequence is of the form either
β(s + 1) = αp,q+1 or β(s + 1) = αp+1,q , where x + 1 denotes the smallest
element in J which is bigger than x.

Denote by D the set of all Dyck paths. For a dominant weight λ =∑n
i=1 miωi

let P(λ) ⊂ R
n2

≥0 be the polytope

P(λ) :=

⎧
⎪⎪⎨

⎪⎪⎩
(sα)α>0 | ∀p ∈ D :

If β(0) = αi,β(k) = αj , then
sβ(0) + · · · + sβ(k) ≤ mi + · · · + mj ,

if β(0) = αi,β(k) = αj , then
sβ(0) + · · · + sβ(k) ≤ mi + · · · + mn

⎫
⎪⎪⎬

⎪⎪⎭
, (27)

and let S(λ) be the set of integral points in P(λ).
For a multi-exponent s = {sβ}β>0, sβ ∈ Z≥0, let f (s) be the element

f (s) =
∏

β∈R+
f

(sβ)

β ∈ SZ
(
n

−,a
)
.

8 The Spanning Property for the Symplectic Lie Algebra

Our aim is to prove that the set f (s)vλ, s ∈ S(λ), forms a basis of V a
Z
(λ). As a first

step we will prove that these elements span V a
Z
(λ).

Lemma 2 Let λ =∑n
i=1 miωi be the sp2n-weight and let VZ(λ) ⊂ V (λ) be the

corresponding lattice in the highest weight module with highest weight vector vλ.
Then

f
(mi+···+mj +1)
αi,j

vλ = 0, 1 ≤ i ≤ j ≤ n − 1, (28)

f (mi+···+mn+1)
αi,i

vλ = 0, 1 ≤ i ≤ n. (29)

Proof The lemma follows immediately from the sl2-theory. �

In the following we use the operators ∂
(k)
α defined by ∂

(k)
α (f

(m)
β ) = 0 if α = β or

if the root vectors commute, and if α,γ,β = α + γ are positive roots spanning a
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subsystem of type A2, then

∂(k)
α

(
f

(m)
β

)=
{

f
(k)
γ f

(m−k)
β , if k ≤ m,

0, otherwise.
(30)

If α,γ,α + γ,α + 2γ span a subrootsystem of type B2 = C2, then

∂(k)
α

(
f

(m)
α+γ

)=
{

f
(k)
γ f

(m−k)
α+γ , if k ≤ m,

0, otherwise,
(31)

and

∂
(k)
α+γ

(
f

(m)
α+2γ

)=
{

f
(k)
γ f

(m−k)
α+2γ , if k ≤ m,

0, otherwise,
(32)

and

∂(k)
γ

(
f

(m)
α+γ

)=
{

2kf
(k)
α f

(m−k)
α+γ , if k ≤ m,

0, otherwise,
(33)

and

∂(k)
γ

(
f

(m)
α+2γ

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(k)
α+γ f

(m−k)
α+2γ

+∑ c>m−k

a+b+c=k
ca,b,cf

(a)
α f

(b)
α+γ f

(c)
α+2γ , if k ≤ m,

0, otherwise,

(34)

with the coefficients ca,b,c chosen such that ∂
(k)
γ (f

(m)
α+2γ ) = ±(ad e

(k)
γ (f

(m)
α+2γ )). Note

that all the operators are such that ∂
(k)
γ = ±(ad e

(k)
γ ) (see (8)–(13)).

In the following we often just write fi,j and fi,j̄ instead of fαi,j
and fαi,j̄

. We
use the same abbreviation for the differential operators and the multi-exponents, so
we write ∂i,j and ∂i,j̄ instead of ∂αi,j

and ∂αi,j̄
, similarly we replace sαi,j

and sαi,j̄

by si,j and si,j̄ . Recall that αi,n = αi,n (see (6)).

Lemma 3 The only non-trivial vectors of the form ∂βfα , α,β > 0 are as follows:
for α = αi,j , 1 ≤ i ≤ j ≤ n

∂i,sfi,j = fs+1,j , i ≤ s < j, ∂s,j fi,j = fi,s−1, i < s ≤ j, (35)

and for α = αi,j , 1 ≤ i ≤ j ≤ n

∂i,sfi,j = fs+1,j , i ≤ s < j, ∂i,sfi,j = fj,s+1, j ≤ s,

∂i,sfi,j = fj,s−1, j < s,
(36)

∂s+1,j fi,j = fi,s , i ≤ s < j, ∂j,s+1fi,j = fi,s , j ≤ s,

∂j,s−1fi,j = fi,s, j < s.
(37)
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Let us illustrate this lemma by the following picture in type C5.

Here all circles correspond to the positive roots of the root system of type C5 in
the following way: in the upper row we have from left to right α1,1, . . . , α1,5, α1,4,

. . . , α1,1, in the second row we have from left to right α2,2, . . . , α2,5, α2,4, . . . , α2,2,
and the last line corresponds to the root α5,5. Now let us take the root α1,3 (which
corresponds to the fat circle). Then all roots that can be obtained by applying the
operators ∂β are depicted as filled small circles.

Theorem 3

(i) The vectors f (s)vλ, s ∈ S(λ) span V a
Z
(λ).

(ii) Let IZ(λ) = SZ(n−)(UZ(n+)R), i.e. IZ(λ) is the ideal generated by the ele-
ments obtained from R by the UZ(n+)-action, where

R = span
{
f

(mi+···+mj +1)
αi,j

,1 ≤ i ≤ j ≤ n − 1, f (mi+···+mn+1)
αi,i

,1 ≤ i ≤ n
}
.

There exists an order “�mon” on the ring SZ(n−,a) such that for any s /∈ S(λ)

there exists a homogeneous expression (a straightening law) of the form

f (s) −
∑

s�mont

ctf
(t) ∈ IZ(λ). (38)

Remark 2 In the following we refer to (38) as a straightening law for SZ(n−,a) with
respect to the ideal IZ(λ). Such a straightening law implies that in the quotient ring
SZ(n−,a)/IZ(λ) we can express f (s) as a linear combination of monomials which
are smaller in the order, but of the same total degree since the expression in (38) is
homogeneous.

First we show that (ii) implies (i):

Proof [(ii) ⇒ (i)] The elements in R obviously annihilate vλ ∈ V a
Z
(λ), and so do

the elements of UZ(n+)R, and hence so do the elements of the ideal I generated by
UZ(n+)R. As a consequence we get a surjective map S(n−)/I → V a

Z
(λ).
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Assume s /∈ S(λ). We know by (ii) that f (s) =∑s�mont ctf
(t) in SZ(n−,a)/I .

If any of the t with nonzero coefficient ct is not an element in S(λ), then we can
again apply a straightening law and replace f (t) by a linear combination of smaller
monomials. Since there are only a finite number of monomials of the same total
degree, by repeating the procedure if necessary, after a finite number of steps we
obtain an expression of f (s) in SZ(n−,a)/I as a linear combination of elements f (t),
t ∈ S(λ). It follows that {f (t) | t ∈ S(λ)} is a spanning set for SZ(n−,a)/I , and hence,
by the surjection above, we get a spanning set {f (t)vλ | t ∈ S(λ)} for V a

Z
(λ). �

To prove the second part we need to define the total order. We start by defining a
total order on the variables:

f1,1 < f1,2 < · · · < f1,n−1 < f1,n < f1,n−1 < · · · < f1,2 < f1,1

< · · · < · · · < · · · <
< fn−2,n−2 < fn−2,n−1 < fn−2,n < fn−2,n−1 < fn−2,n−2

< fn−1,n−1 < fn−1,n < fn−1,n−1

< fn,n, (39)

so, given an element fx,y , the elements in the rows below and the elements on the
right side in the same row are larger than fx,y .

Remark 3 If we omit in (39) above the elements fi,j̄ , i = 1, . . . , n, i ≤ j ≤ n − 1,
then we have the order in the case g = sln.

We use the same notation for the induced homogeneous lexicographic ordering
on the monomials. Note that this monomial order > is not the order �mon we define
now. Let

s•,j =
j∑

i=1

si,j , s•,j =
j∑

i=1

si,j ,

si,• =
n∑

j=i

si,j +
n−1∑

j=i

si,j .

Define a map d from the set of multi-exponents s to Z
n
≥0:

d(s) = (sn,•, sn−1,•, . . . , s1,•).

So, d(s)i = sn−i+1,•. We say d(s) > d(t) if there exists an i such that

d(s)1 = d(t)1, . . . , d(s)i = d(t)i , d(s)i+1 > d(t)i+1.

Definition 9 For two monomials f (s) and f (t) we say f (s) �mon f (t) if
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(a) the total degree of f (s) is bigger than the total degree of f (t);
(b) both have the same total degree but d(s) < d(t);
(c) both have the same total degree, d(s) = d(t), but f (s) > f (t).

In other words: if both have the same total degree, this definition means that f (s)

is greater than f (t) if d(s) is smaller than d(t), or d(s) = d(t) but f (s) > f (t) with
respect to the homogeneous lexicographic ordering on SZ(n−).

Remark 4 It is easy to check that “�mon” defines a “monomial ordering” in the
following sense: if f (s) �mon f (t) and f (m) �= 1, then

f (s+m) �mon f (t+m) �mon f (t).

By abuse of notation we use the same symbol also for the multi-exponents: we
write s �mon t if and only if f (s) �mon f (t).

Proof of Theorem 3(ii) Let s be a multi-exponent violating some of the Dyck path
conditions from the definition of S(λ). As in the proof of Theorem 1, it suffices to
consider the case where s /∈ S(λ) and s is supported on a Dyck path p and s violates
the Dyck path condition for S(λ) for this path p.

Suppose first that the Dyck path p is such that p(0) = αi , p(k) = αj for some
1 ≤ i ≤ j < n. In this case the Dyck path involves only roots which belong to the Lie
subalgebra sln ⊂ sp2n, and we get a straightening law by the results in Sect. 5. By
(19) and Lemma 3, the application of the ∂-operators produces only summands such
that d(s) = d(t) for any t occurring in the sum with a nonzero coefficient. Hence we
can replace “�” by “�mon” in (15), which finishes the proof of the theorem in this
case.

Now assume p(0) = αi,i and p(k) = αj,j for some j ≥ i. We include the case
j = n by writing αn,n = αn,n. We proceed by induction on n. For n = 1 we have
sp2 = sl2, so we can refer to Sect. 5. Now assume that we have proved the existence
of a straightening law for all symplectic algebras of rank strictly smaller than n. If
i > 1, then the Dyck path is also a Dyck path for the symplectic subalgebra L �
sp2n−2(i−1) generated by eαk,k

, fαk,k
, hαk,k

, i ≤ k ≤ n. Let n+
L,n−

L etc. be defined by
the intersection of n+,n− etc. with L and set λL =∑n

k=i mkωk . It is now easy to see
that the straightening law for f (s) viewed as an element in SZ(n

−,a
L ) with respect to

IZ,L(λL) defines also a straightening law for f (s) viewed as an element in SZ(n−,a)

with respect to IZ(λ).
So from now on we fix p(0) = α1 and p(k) = αi,i for some i ∈ {1, . . . , n}. For a

multi-exponent s supported on p, set

Σ =
k∑

l=0

sp(l) > m1 + · · · + mn.
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Obviously we have f
(Σ)

1,1̄
∈ I (λ). Now we consider two operators

Δ1 := ∂
(s•,ī+si,•)
1,i−1 ∂

(s•,i )

i+1,i+1
. . . ∂

(s•,n−1)

n,n̄
︸ ︷︷ ︸

δ3

∂
(s•,n−1+s•,n)

1,n−1 . . . ∂
(s•,i+s•,i+1)

1,i︸ ︷︷ ︸
δ2

· ∂(s•,i−1)

1,ī
. . . ∂

(s•,2)

1,3̄
∂

(s•,1)

1,2̄︸ ︷︷ ︸
δ1

and

Δ2 := ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(si−1,•)
1,i−2 ,

and we will show that

Δ2Δ1f
(Σ)

1,1̄
= f (s) +

∑

s�mont

ctf
(t) (40)

with integral coefficients ct. Since Δ2Δ1f
(Σ)

1,1̄
∈ IZ(λ), the proof of (40) finishes

the proof of the theorem. A first step in the proof of (40) is the following Lemma 4
below.

Recall the alphabet J = {1, . . . , n, n − 1, . . . ,1}. Let q1, . . . , qi ∈ J be a se-
quence of increasing elements defined by

qk = max{l ∈ J : αk,l ∈ p}.
For example, qi = i. All roots of p are of the form

α1,1, . . . , α1,q1 , α2,q1 , . . . , α2,q2 , . . . , αi,qi−1 , . . . , αi,qi
. �

Lemma 4 Set f (s′) = f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,qi−1−si,qi−1 )

1,qi−1
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
, then

Δ1f
(Σ)

1,1̄
= f (s′) +

∑

s′�mont

ctf
(t). (41)

If f (t), t �= s′, is a monomial occurring in this sum, then either there exists an in-
dex j such that d(t)j > 0 for some j ∈ {1,2, . . . , n − i}, or d(t)j = 0 for all j ∈
{1,2, . . . , n − i} and d(t)n−j+1 > si,•, or d(t) = d(s′) and f

(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
<

f
(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
.

Corollary 2 If f t �= f s′ is a monomial occurring in (41), then either Δ2f
t = 0, or

Δ2f
t is a sum of monomials f k such that f s �mon f k.

Proof of the lemma One easily sees by induction that

δ1
(
f

(Σ)

1,1̄

)= f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,i−1)

1,i−1 f
(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
.
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Note that the roots used in the operator are α1,2̄, . . . , α1,ī , and they are applied to

f1,1̄ of weight α1,1̄. In terms of (10)–(13), we apply ∂
(∗)
α+γ to f

(∗)
α+2γ , so rule (11)

applies.
Since α1,j − α1,
, 1 ≤ j < i, i < 
 ≤ n, and α1,j − α
,
̄, 1 ≤ j < i, i < 
 ≤ n,

and α1,j − α1,i−1, 1 ≤ j < i, are never positive roots, one has

∂
(s•,ī+si,•)
1,i−1 δ3δ2

(
f

(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,i−1)

1,i−1︸ ︷︷ ︸
f (x)

)= 0,

so it remains to consider f (x)∂
(s•,ī+si,•)
1,i−1 δ3δ2(f

(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
).

To better visualize the following procedure, one should think of the variables fi,j

as being arranged in a triangle like in the picture after Lemma 3, or in the following
example (type C4):

f11 f12 f13 f14 f13̄ f12̄ f11̄
f22 f23 f24 f23̄ f22̄

f33 f34 f33̄
f44

(42)

With respect to the ordering “>”, the largest element is located in the bottom row
and the smallest element is written in the top row on the left side. We enumerate the
rows and columns like the indices of the variables, so the top row is the 1-st row, the
bottom row the n-th row, the columns are enumerated from the left to the right, so
we have the 1-st column on the left side and the most right one is the 1̄-st column.
We refer to row k, column j as the (k; j) entry. Similarly, we refer to row k, column
j̄ as the (k; j̄ ) entry.

The operator ∂1,q , 1 ≤ q ≤ n−1, kills all f1,j for 1 ≤ j ≤ q , ∂1,q (f1,j ) = fq+1,j

for j = q + 1, . . . , q + 1 (rule (9) applies), ∂1,q (f1,j̄ ) = fj,q+1 for j = 1, . . . , q

(rule (9) applies), and ∂1,q kills all fk,
 for k ≥ 2. Because of the set of indices of

the operators occurring in δ2, the operator applied to f
(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
never

increases the zero entries in positions (1; ī) through (1; 2̄). As a consequence, the
application of δ2 produces the sum of monomials

f (x)f
(s•,i+s•,i+1)

1,i+1
· · ·f (s•,n−2+s•,n−1)

1,n−1
f

(s•,n−1+s•,n)

1,n f
(s•,ī )

1,1̄
+
∑

ckf (k),

where the monomials f (k) occurring in the sum are such that the corresponding tri-
angle (see (42)) has at least one non-zero entry in one of the positions between the
(i + 1)-th and the n-th row (counted from top to bottom). This implies d(k)j > 0

for some j = 1, . . . , n − i. The operators δ3 and ∂
(s•,ī+si,•)
1,i−1 do not change this prop-

erty because (in the language of the scheme (42) above) the operators ∂j,j̄ used to
compose δ3 either kill a monomial or, in the language of the scheme (42), they sub-
tract from an (k, j̄ ) entry and add to a (k, j − 1) entry. The operator ∂1,i−1 subtracts
from the entries in the top row and, since the entries in the positions (1, i − 1) up
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to (1, 2̄) are zero, adds to the entries in the i-th row. The only exception is ∂1,i−1

applied to f1,1̄, the result is f1,ī . It follows that the monomials f (k′) occurring in

∂
(s•,ī+si,•)
1,i−1 δ3f

(k) have already the desired properties because we have just seen that
d(k′)j > 0 for some j = 1, . . . , n − i.

So to finish the proof of the lemma, in the following it suffices to consider

f x∂
(s•,ī+si,•)
1,i−1 δ3f

(s•,i+s•,i+1)

1,i+1
· · ·f (s•,n−2+s•,n−1)

1,n−1
f

(s•,n−1+s•,n)

1,n f
(s•,ī )

1,1̄

= f x∂
(s•,ī+si,•)
1,i−1 f

(s•,i )

1,i f
(s•,i+1)

1,i+1 · · ·f (s•,n)

1,n f
(s•,n−1)

1,n−1
· · ·f (s•,i+1)

1,i+1
f

(s•,ī )

1,1̄
. (43)

Note that the operators in δ3 are of the form ∂j,j̄ , j = i + 1, . . . , n, and they are

applied to f1,
̄, 
 = i + 1, . . . , n, so ∂
(k)

j,j̄
f

(p)

1,
̄
= 0 for 
 �= j and for j = 
 we set α =

αj,j̄ , γ = α1,j−1, ∂j,j̄ = ∂α , f1,j̄ = fα+γ , so rule (10) applies and the coefficient in
(43) is 1.

It remains to consider the operator ∂
(s•,ī+si,•)
1,i−1 . There are three possibilities: apply-

ing ∂1,i−1 to the monomial above increases the degree with respect to the variables
fi,∗, or the operator is applied to a variable killed by the operator, or the opera-
tor is applied to a factor f1,1̄, in which case the result is f1,ī (note that in this
case rule (11) applies). So the right hand side of (43) can be written as a linear
combination

∑
ckf (k) of monomials such that d(k)j = 0 for j = 1, . . . , n − i and

d(k)n−i+1 ≥ si,•.
It remains to consider the case where d(k)n−i+1 = si,•. This is only possible

if ∂1,i−1 is applied s•,ī -times to f
s•,ī

1,1̄
, in which case d(k) has only two non-zero

entries: d(k)1 = Σ − si,• and d(k)n−i+1 = si,•, so d(k) = d(s′). If k �= s′, then

necessarily f
(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
. �

Proof of the corollary The operators used to compose Δ2 do not change anymore
the entries of d(t) for the first n − i + 1 indices.

Suppose first t is such that there exists an index j such that d(t)j > 0 for some
j ∈ {1,2, . . . , n − i} or d(t)i,ī > si,•. By the description of the operators occurring
in Δ2, every monomial f (k) occurring with a nonzero coefficient in Δ2f

(t) has this
property too and hence f (s) �mon f (k).

Next assume d(t) = d(s′) and f
(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
.

Recall that t1,i−1 = · · · = t1,1 = 0. It follows that the operators occurring in Δ2
always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i). It
follows that all monomials f (k) occurring in Δ2(f

(t)) have the property: d(k) =
d(s). Since f

(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
, it follows that f (s) >

f (k) and hence f (s) �mon f (k). �

Continuation of the proof of Theorem 3(ii) We have seen that, in order to prove
Theorem 3(ii), it suffices to prove (40). Recall the definition of the multi-index (s′)
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in Lemma 4:

f (s′) = f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,qi−1−si,qi−1 )

1,qi−1
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
. (44)

To prove the theorem it remains to prove (using Lemma 4 and Corollary 2) for
f (s′) that Δ2f

(s′) is a linear combination of f (s) with coefficient 1 and monomials
strictly smaller than f (s). The following lemma proves this claim and hence finishes
the proof of the theorem. �

Lemma 5 The operator Δ2 := ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(si−1,•)
1,i−2 applied to the monomial

f (s′) (see (44) for the multi-index (s′)) is a linear combination of f (s) and smaller
monomials:

Δ2f
(s′) = f (s) +

∑

s�mont

ctf
(t). (45)

Proof First note that all monomials f (k) occurring in Δ2f
(s′) have the same total

degree. Recall that s′
1,i−1

= · · · = s′
1,1

= 0. It follows that the operators occurring in
Δ2 always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i and
strictly greater than 1). It follows that all monomials f (k) occurring in Δ2(f

(s′))
have the same multidegree d(s), in fact, we will see below that f s is a summand
and hence d(k) = d(s).

So in the following we can replace the ordering �mon by > since, in this special
case, the latter implies the first.

The elements fi,j and fi,j̄ , 2 ≤ i ≤ j ≤ n, are in the kernel of the operators ∂1,k

for all 1 ≤ k ≤ n, and so are the variables f1,j , j ≤ k in the first k columns.
The operator ∂1,k , 1 ≤ k ≤ n, “moves” the variables f1,j , k + 1 ≤ j ≤ n from the

first row to the variable fk+1,j in the same column, in this case rule (9) applies.
The operator ∂1,k , 1 ≤ k ≤ n “moves” the variables f1,j̄ , k + 1 ≤ j ≤ n from the

first row to the variable fk+1,j̄ in the same column. Note that here rule (9) applies,
except for j = k + 1, in this case set rule (10) applies.

For j ≤ k, the operator makes the variables switch the column, it moves the
variable f1,j̄ to the variable fj,k+1 in the j -th row and (k + 1)-th column. In this
situation rule (9) applies, except if j = 1. But note that j = 1 can be excluded in
our case because j = 1 implies i = 1 for the path, and this implies that Δ2 is the
identity operator, so there is no operator ∂1,k in this case.

We proceed by induction on i. If i = 1,2, then Δ2 is the identity operator, f (s) =
f (s′) and hence the lemma is trivially true. Now assume i ≥ 3 and the lemma holds
for all numbers less than i. We note that the monomial

f
(s1,1)

1,1 . . . f
(s1,q1 )

1,q1
· (∂(s2,q1 )

1,1 f
(s2,q1 )

1,q1
. . . ∂

(s2,q2 )

1,1 f
(s2,q2 )

1,q2

)

· · · · · (∂(si−1,qi−2 )

1,i−2 f
(si−1,qi−2 )

1,qi−2
. . . ∂

(si−1,qi−1 )

1,i−2 f
(si−1,qi−1 )

1,qi−1

)(
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī

)
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is equal to f s (only the rules (9) and (10) apply) and appears as a summand in
Δ2f

(s′). Our aim is to show that all other monomials in Δ2f
(s′) are less than f (s).

All monomials share the common factor (f
(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
), the maximal vari-

able smaller than the ones occurring in the divisor is the variable fi−1,qi−1 . Note
that if j < i − 1 then for any q ∈ J the variable ∂1,j f1,q lies in the (j + 1)-th row,
note that j + 1 < i. The operator ∂1,i−2 is applied si−1,•-times, the unique maximal

monomial in the sum expression of ∂
(si−1,•)
1,i−2 f (s′) is

f
(s•,1)

1,1 f
(s•,2)

1,2 . . . f
(s•,qi−2−si−1,qi−2 )

1,qi−2

(
f

(si−1,qi−2 )

i−1,qi−2
. . . f

(si−1,qi−1 )

i−1,qi−1

)(
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī

)
,

because applying the operator ∂1,i−2 to any of the variables f1,j such that j �=
qi−2, . . . , qi−1, gives a monomial smaller in the order >, and the exponents si−1,j ,

j = qi−2, . . . , qi−1, are the maximal powers such that ∂
(∗)
1,i−2 can be applied to f

(y)

1,j

because either qi−2 < j < qi−1, and then y = s•,j = si−1,j , or j = qi−1, then
si−1,qi−1 is the power with which the variable occurs in f (s′), or j = qi−2, then
only the power si−1,qi−2 of the operator is left.

Repeating the arguments for the operators ∂1,i−3 etc. finishes the proof of the
lemma. �

9 The Tensor Product Property

In the following section let g = SLn or Sp2n.

Proposition 6 For two dominant weights λ and μ the SZ(n−,a)-module V a
Z
(λ +

μ) is embedded into the tensor product V a
Z
(λ) ⊗Z V a

Z
(μ) as the highest weight

component, i.e. there exists a unique injective homomorphism of SZ(n−,a)-modules:

V a
Z
(λ + μ) ↪→ V a

Z
(λ) ⊗ V a

Z
(μ) such that vλ+μ �→ vλ ⊗ vμ. (46)

Proof Using the defining relations for V a
Z
(λ + μ), it is easy to see that we have a

canonical map V a
Z
(λ + μ) → V a

Z
(λ) ⊗ V a

Z
(μ) sending vλ+μ to vλ ⊗ vμ. We know

that V a
Z
(λ) ⊂ V a(λ) and V a

Z
(μ) ⊂ V a(μ) are lattices in the corresponding complex

vector spaces, and, by [4] and [5], we know that S(n−,a)(vλ ⊗vμ) ⊂ V a(λ)⊗V a(μ)

is isomorphic to V a(λ + μ), the isomorphism being given by

V a(λ + μ) � m.vλ+μ �→ m.vλ ⊗ vμ ∈ V a(λ) ⊗ V a(μ) for m ∈ S
(
n

−,a
)
.

It follows that the induced map V a
Z
(λ + μ) → V a

Z
(λ) ⊗ V a

Z
(μ) between the lattices

is injective and hence an isomorphism onto the image. �
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