
A Trinity of the Borcherds Φ-Function

Ken-Ichi Yoshikawa

Abstract We discuss a trinity, i.e., three distinct expressions, of the Borcherds
Φ-function on the analogy of the trinity of the Dedekind η-function.

1 Introduction—A Trinity of Dedekind η-Function

The Dedekind η-function is the holomorphic function on the complex upper half-
plane H defined as the infinite product

η(τ) := q1/24
∏

n>0

(
1− qn

)
,

where q := e2πiτ . It is classical that η(τ)24 is a modular form for SL2(Z) of weight
12 vanishing at +i∞ and this property characterizes the Dedekind η-function up to
a constant.

Let us recall the trinity of the Dedekind η-function. Besides the definition as
above, the Dedekind η-function admits at least two other distinct expressions, one
analytic and the other algebro-geometric. Precisely speaking, we consider the Pe-
tersson norm

∥∥η(τ)
∥∥ := (�τ)1/4

∣∣η(τ)
∣∣

rather than the Dedekind η-function itself.
Let us explain an analytic counterpart of the Dedekind η-function. For τ ∈H, let

Eτ be the elliptic curve defined by

Eτ := C/Z+ τZ,

which is equipped with the flat Kähler metric of normalized volume 1

gτ := dz⊗ dz̄/�τ.
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The Laplacian of (Eτ , gτ ) is the differential operator defined as

�τ := −�τ
∂2

∂z∂z̄
=−�τ

4

(
∂2

∂x2
+ ∂2

∂y2

)
.

The set of eigenvalues of �τ is given by {π2|mτ + n|2/�τ }(m,n)∈Z2 and hence the
spectral zeta function of �τ is defined as

ζτ (s) :=
∑

(m,n) �=(0,0)

( �τ

π2 |mτ + n|2
)s

.

It is classical that ζτ (s) converges absolutely when �s > 1 and extends to a mero-
morphic function on C. Moreover, ζτ (s) is holomorphic at s = 0. The value

det ∗�τ := exp
(−ζ ′τ (0)

)

is called the (regularized) determinant of �τ on the analogy of the identity for finite
dimensional, non-degenerate, Hermitian matrices

log detH =− d

ds

∣∣∣∣
s=0

TrH−s .

By Ray-Singer [29], the classical Kronecker limit formula can be stated as follows
in this setting:

Theorem 1 The following equality holds

det ∗�τ = 4
∥∥η(τ)

∥∥4
.

Let us explain an algebro-geometric counterpart of the Dedekind η-function. Let
Mm,n(K) be the set of m × n-matrices with entries in K ⊂ C. Recall that every
elliptic curve is expressed as the complete intersection of two quadrics of P3

EA :=
{
[x] ∈ P3; f1(x)= a11x

2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 = 0

f2(x)= a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 = 0

}
,

where A= (aij )= (a1,a2,a3,a4) ∈M2,4(C). For A ∈M2,4(C) and 1 ≤ i < j ≤ 4,
we define

Δij (A) := det(ai ,aj ).

Since the value ‖η(τ)‖ depends only on the isomorphism class of the elliptic curve
Eτ , it makes sense to set ‖η(Eτ )‖ := ‖η(τ)‖.

Theorem 2 With the same notation as above, the following equality holds

28
∥∥η(EA)

∥∥24 =
∏

1≤i<j≤4

∣∣Δij (A)
∣∣2 ·
(

2
√−1

π2

∫

EA

αA ∧ αA

)6

.
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Here αA ∈H 0(EA,Ω1
EA

) is defined as the residue of f1, f2, i.e.,

αA :=Ξ |EA
,

where Ξ is a meromorphic 1-form on P3 satisfying the equation

df1 ∧ df2 ∧Ξ =
4∑

i=1

(−1)i−1xidx1 ∧ dxi−1 ∧ dxi+1 ∧ dx4.

For A= (aij ) ∈M2,4(C), one can associate another elliptic curve

CA := {(x, y) ∈ C2; y2 = 4(a11x + a21)(a12x + a22)(a13x + a23)(a14x + a24)
}
.

Namely, CA is the double covering of P1 with 4 branch points (a11 : −a21), (a12 :
−a22), (a13 : −a23), (a14 : −a24). If a11 = 0 and a12 = 1, then CA is an elliptic
curve expressed by the Weierstrass equation. It is not difficult to see CA

∼=EA and

28
∥∥η(CA)

∥∥24 =
∏

1≤i<j≤4

∣∣Δij (A)
∣∣2 ·
(√−1

2π2

∫

CA

dx

y
∧ dx

y

)6

.

(We shall study an analogue of EA and CA for K3 surfaces later.)
Theorem 2 is easily verified when EA is the projective embedding of Eτ by the

linear system |4Θ|. In this situation, the equations of EA are the linear relations
between the theta functions θa,b(z, τ ) (a, b ∈ {0, 1

2 }). General case of Theorem 2
follows from this special case by the invariance of the expression in Theorem 2
under the action of GL2(C)× (C∗)4. See [16] for the details.

In this survey, we explain a generalization of the trinity of the Dedekind η-
function as above to that of the Borcherds Φ-function. For this, we make the fol-
lowing replacements:

• elliptic curves =⇒ Enriques surfaces
• determinant of Laplacian =⇒ analytic torsion
• ∏1≤i<j≤4 Δij (A) =⇒ resultant of three quadratic forms in three variables

For the analytic aspect of the Borcherds Φ-function, our explanation is based on
[34, 36], while for the algebro-geometric aspect of the Borcherds Φ-function, our
explanation is based on [16]. In this survey, we will not give proofs. We refer the
reader to these papers for the details.

2 Borcherds Φ-Function

In this section, we recall the Borcherds Φ-function.
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2.1 Domains of Type IV and Its Realization as a Tube Domain

A free Z-module of finite rank equipped with a non-degenerate, integral, symmetric
bilinear form is called a lattice. The automorphism group of a lattice L is denoted
by O(L). For a lattice L= (Zr , 〈·, ·〉L) and k ∈ Q, we set L(k) := (Zr , k〈·, ·〉L). We
define U := (Z2,

(0 1
1 0

)
). There exists a unique positive-definite, even, unimodular

lattice of rank 8, up to an isometry. This lattice is denoted by E8.
Let Λ be a lattice of signature (2, b−). We define an open manifold ΩΛ of di-

mension b− as

ΩΛ := {[Z] ∈ P(Λ⊗C); 〈Z,Z〉Λ = 0, 〈Z, Z̄〉Λ > 0
}
.

Then ΩΛ is the set of maximal positive-definite subspaces of Λ⊗R and is isomor-
phic to SO(2, b−)/SO(2) × SO(b−). Hence each connected component of ΩΛ is
isomorphic to a symmetric bounded domain of type IV of dimension b−.

Assume that there exists k ∈ Z>0 and a lattice of signature (1, b− − 1) such that
Λ = U(k) ⊕ L. Let {e, f} be a basis of U(k) with e2 = f2 = 0, e · f = k. We set
v := e ∈ U(k) and v′ := f/k ∈ U(k)∨. Then we have an isomorphism of complex
manifolds L⊗R+ iCL

∼=ΩΛ given by the map

L⊗R+ iCL � z→ Z =
[

v− 〈z, z〉L
2

v′ + z

]
∈ΩΛ.

Here CL := {x ∈ L⊗R; 〈x, x〉L > 0} is the positive cone of L. Since L is Lorentzian
and hence CL consists of two connected components, we choose one of them,
say C+L . Write Ω+

Λ for the component of ΩΛ corresponding to L ⊗ R + iC+L .

Then we have the decomposition ΩΛ = Ω+
Λ � Ω+

Λ . The subgroup of O(Λ)

preserving the connected components Ω+
Λ , Ω+

Λ is denoted by O+(Λ). Clearly,
[O(Λ) :O+(Λ)] = 2.

2.2 Automorphic Forms over Domains of Type IV

Let us recall the notion of automorphic forms over Ω+
Λ . There are several mutually

equivalent definitions.

2.2.1 Automorphic Form as a Multicanonical Form on Ω+
Λ

Let L be the tautological line bundle on Ω+
Λ :

L :=OP(Λ⊗C)(−1)|Ω+
Λ
⊂Ω+

Λ × (Λ⊗C).
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The natural action of O+(Λ) on Ω+
Λ × (Λ⊗ C) induces the O+(Λ)-action on L.

A holomorphic section f ∈ H 0(Ω+
Λ,Lk) is called an automorphic form for Γ ⊂

O+(Λ) of weight k with character χ if

f (γZ)= χ(γ )γf (Z)

for all Z ∈Ω+
Λ and γ ∈ Γ , where χ : Γ → C∗ is a finite character.

2.2.2 Automorphic Form as a Homogeneous Function on the Cone over Ω+
Λ

Let CΩ+
Λ

be the cone over Ω+
Λ obtained from L by contracting the zero section.

Then a holomorphic function F ∈O(CΩ+
Λ
) is called an automorphic form on Ω+

Λ

for Γ ⊂O+(Λ) of weight k with character χ if

F
(
γ (ζ )

)= χ(γ )F (ζ ), F (λ ζ )= λ−k F (ζ )

for all ζ ∈ CΩ+
Λ

, γ ∈ Γ and λ ∈ C∗.

2.2.3 Automorphic Form as a Function on Ω+
Λ

Let � ∈Λ⊗R be such that 〈�, �〉 ≥ 0. Observe that

σ�(Z) := Z

〈�,Z〉 , Z ∈Ω+
Λ

is a nowhere vanishing holomorphic section of L. Via the assignment f �→ f/σ k
� ,

we can define automorphic forms as follows: A holomorphic function F(Z) ∈
O(Ω+

Λ) is an automorphic form for Γ of weight k with character χ if for all Z ∈Ω+
Λ

and γ ∈ Γ ,

F(γZ)= χ(γ )

( 〈�, γZ〉
〈�,Z〉

)k

F (Z).

The choice of � corresponds to the choice of a hyperplane at infinity of P(Λ⊗C).

2.2.4 Automorphic Form as a Function on L ⊗ R + iC+
L

We have the O+(Λ)-action on the tube domain L⊗ R + iC+L via the identification
Ω+

Λ
∼= L⊗ R + iC+L . Write J (γ, y) for the Jacobian determinant of γ ∈O+(Λ)⊂

Aut(L⊗R+ iC+L ). By the relation between the canonical line bundle of Ω+
Λ and L,

there is a holomorphic function j (γ, z) with

j (γ, z)dimΩΛ = J (γ, z).
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A holomorphic function F(z) ∈O(L⊗ R + iC+L ) is an automorphic form for Γ of
weight k with character χ if for all z ∈ L⊗R+ iC+L and γ ∈ Γ ,

F(γ · z)= χ(γ ) j (γ, z)k F (z).

2.3 Borcherds Φ-Function

Define the Enriques lattice Λ as

Λ :=U⊕U(2)⊕E8(−2).

Then Λ is an even lattice of signature (2,10). We define the discriminant divisor of
ΩΛ by

DΛ :=
∑

d∈Λ/±1, d2=−2

d⊥,

where d⊥ := {[Z] ∈Ω+
Λ ; 〈d,Z〉 = 0}. Define {c(n)} by the generating series:

∑

n∈Z

c(n)qn = η(τ)−8η(2τ)8η(4τ)−8.

2.3.1 Borcherds Φ-Function at the Level 1 Cusp

Let v be a primitive isotropic vector of U⊂Λ and set L1 := v⊥/v ∼=U(2)⊕E8(2).
Then L1 ⊗R+ i C+L1

∼=Ω+
Λ .

Definition 1 The Borcherds Φ-function is the formal Fourier series on the tube
domain L1 ⊗R+ iC+L1

defined as

Φ1(z) :=
∏

λ∈L1∩C+L1
\{0}

(
1− eπi〈λ,z〉

1+ eπi〈λ,z〉

)c(λ2/2)

.

2.3.2 Borcherds Φ-Function at the Level 2 Cusp

Let v be a primitive isotropic vector of U(2)⊂Λ and set L2 = v⊥/v ∼=U⊕ E8(2).
Then L2 ⊗R+ i C+L2

∼=Ω+
Λ .
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Definition 2 The Borcherds Φ-function is the formal Fourier series on the tube
domain L2 ⊗R+ i C+L2

defined as

Φ2(z) := 28e2πi〈ρ,z〉 ∏

λ∈L2, 〈λ,ρ〉>0 or λ∈Nρ

(
1− e2πi〈λ,z〉)(−1)〈ρ−ρ′,λ〉c(λ2/2)

,

where ρ = ((0,1),0), ρ′ = ((1,0),0) ∈ L2.

Theorem 3 (Borcherds [8, 9]) For j = 1,2, the formal Fourier series Φj(z) as
above converges absolutely for z ∈ Lj ⊗ R + i C+Lj

with �z � 0 and extends to an

automorphic form on Lj ⊗R+ i C+Lj
for O+(Λ) of weight 4. Regarded as holomor-

phic functions on Ω+
Λ , one has the equality up to a constant of modulus 1

Φ1 =Φ2.

In what follows, we write Φ(z) for Φ1(z) and Φ2(z).

Definition 3 The Petersson norm of Φ is the C∞ function on Lj ⊗R+i C+Lj
defined

as
∥∥Φ(z)

∥∥2 := 〈�z,�z〉4∣∣Φj(z)
∣∣2.

Since the Petersson norm ‖Φ(z)‖ is O+(Λ)-invariant, we regard ‖Φ(z)‖ as a
function on the orthogonal modular variety Ω+

Λ/O+(Λ).
By [9, Th. 13.3], log‖Φ‖ is defined as the finite part of the divergent integral:

−4 log
∥∥Φ(Z)

∥∥− 8
(
Γ ′(1)+ log(2π)

)= Pf
∫

SL2(Z)\H
F(τ) ·ΘΛ(τ,Z)y

dxdy

y2
,

where F(τ) is a certain vector-valued elliptic modular form for Mp2(Z) (cf. [36,
Def. 7.6] with Λ=Λ) and ΘΛ(τ,Z) is the Siegel theta function [9] of the Enriques
lattice Λ. Then the expressions Φ1(z) and Φ2(z) are obtained by computing the
above integral at the level 1 cusp and the level 2 cusp, respectively. For the necessity
of the constant 28 in Φ2(z), see [9, Th. 13.3 (5)] and [36, Eq. (7.9)].

Remark 1 One can rewrite the expression of Φ(z) using the dual lattice of Λ. Set
L :=U⊕E8(−1). Since the dual lattice of Λ is given by Λ∨ =U⊕L(1/2), we get

Λ∨(2)=U(2)⊕L.

Then the Borcherds Φ-function can be expressed as a function on L⊗R+ i C+L

Φ(z)=
∏

λ∈L∩C+L \{0}

(
1− e2πi〈λ,z〉

1+ e2πi〈λ,z〉

)c(λ2/2)

=
∑

λ∈L∩C+L ,λ2=0,primitive

η(〈λ, z〉)16

η(2〈λ, z〉)8
.
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This identity is known as the denominator identity for the fake monster superalge-
bra. See [9, Example 13.7] and [30] for more details about the denominator identity
for the fake monster superalgebra. See [7, 8] for the Fourier expansion of Φ2(z).

3 Enriques Surfaces and Their Moduli Space

In this section, we recall Enriques surfaces.

3.1 K3 Surfaces

A compact connected complex surface X is a K3 surface if

H 1(X,OX)= 0, Ω2
X
∼=OX.

It is known that the diffeomorphism type underlying a K3 surface is unique. In
particular, the second integral cohomology group of a K3 surface equipped with the
cup-product pairing is isometric to the K3-lattice

LK3 :=U⊕U⊕U⊕E8(−1)⊕E8(−1).

For a K3 surface X, an isometry of lattices α : H 2(X,Z)∼= LK3 is called a marking.
Let X be a K3 surface and let α : H 2(X,Z) ∼= LK3 be a marking. Since Ω2

X

is trivial, there exists a unique nowhere vanishing holomorphic 2-form η on X, up
to a non-zero constant. By the Hodge decomposition, we get the natural inclusion
H 0(X,Ω2

X) ⊂ H 2(X,Z) ⊗ C, so that the line Cη ∈ P(H 2(X,C)) is uniquely de-
termined by X. The period of (X,α) is defined as the point of P(LK3 ⊗ C) corre-
sponding to Cη via the marking α:

�(X,α) := [α(η)
] ∈ΩLK3 .

Here we define ΩLK3 = {[Z] ∈ P(LK3 ⊗ C); 〈Z,Z〉 = 0, 〈Z, Z̄〉 > 0} as before.
Notice that [α(η)] ∈ ΩLK3 by the Riemann-Hodge bilinear relations

∫
X

η ∧ η = 0
and

∫
X

η ∧ η > 0. For K3 surfaces and their moduli space, see [1] for more details.

3.2 Enriques Surfaces

A compact connected complex surface Y is an Enriques surface if

H 1(Y,OY )= 0, Ω2
Y �∼=OY ,

(
Ω2

Y

)⊗2 ∼=OY .
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It is known that the universal covering of an Enriques surface is a K3 surface and
an Enriques surface is obtained as the quotient of its universal covering by a fixed-
point-free involution. Notice that a single K3 surface can cover many distinct En-
riques surfaces (cf. [25–28] and Subsect. 5.3 below).

Let Y be an Enriques surface and let Ỹ → Y be the universal covering. Let
ι : Y → Y be the non-trivial covering transformation of Ỹ → Y . Write H 2(Ỹ ,Z)+
and H 2(Ỹ ,Z)− for the invariant and anti-invariant subspaces of H 2(Ỹ ,Z) with re-
spect to the ι-action, respectively. Let I : LK3 → LK3 be the involution defined as

I (a, b, c, x, y) := (b, a,−c, y, x), a, b, c ∈U, x, y ∈ E8(−1).

By [13, 14], there exists a marking α : H 2(Ỹ ,Z)∼= LK3 such that

α ◦ ι∗ ◦ α−1 = I.

Let (LK3)+ and (LK3)− be the invariant and anti-invariant subspaces of LK3 with
respect to the I -action, respectively. Then we have isometries of lattices

α
(
H 2(Ỹ ,Z)+

)= (LK3)+ ∼=U(2)⊕E8(−2), α
(
H 2(Ỹ ,Z)−

)= (LK3)− ∼=Λ.

Since Y has no non-zero holomorphic 2-forms, we get H 0(Ỹ ,Ω2
Ỹ
)⊂H 2(Ỹ ,Z)− ⊗

C. Hence �(Ỹ ,α) ∈ ΩΛ if α is a marking as above. The period of an Enriques
surface Y = Ỹ /ι is defined as the period of its universal covering Ỹ , i.e.,

�(Y) := [�(Ỹ ,α)
] ∈Ω+

Λ/O+(Λ),

where α is a marking satisfying α ◦ ι∗ ◦α−1 = I and [�(Ỹ ,α)] denotes the O+(Λ)-
orbit of �(Ỹ ,α). It is known that the isomorphism class of an Enriques surface is
classified by its period:

Theorem 4 (Horikawa [13, 14]) There exists a coarse moduli space of Enriques
surfaces, denoted by M. The period mapping induces an isomorphism between the
analytic spaces

� : M � [Y ]→ [
�(Y)

] ∈ Ω+
Λ \DΛ

O+(Λ)
.

In what follows, we identify M with (Ω+
Λ \DΛ)/O+(Λ) by the map � . We refer

the reader to [1] for more details about Enriques surfaces and their moduli space. By
Theorem 4, the period mapping for Enriques surfaces omit the discriminant locus.
The Borcherds Φ-function characterize exactly the discriminant locus DΛ.

Theorem 5 (Borcherds [8]) The Borcherds Φ-function vanishes exactly on DΛ of
order 1. In particular, Φ is a nowhere vanishing holomorphic section of the Hodge
line bundle on M.
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Since the line bundle of automorphic forms on an arithmetic quotient of a sym-
metric bounded domain is an ample line bundle by Baily-Borel, the moduli space of
Enriques surfaces is quasi-affine by Theorem 5 [8]. In fact, the quasi-affinity of the
moduli space holds for wider classes of K3 surfaces with involution. See [36].

4 Analytic Torsion and Borcherds Φ-Function: An Analytic
Counterpart

The notion of holomorphic analytic torsion was introduced by Ray-Singer [29] in
their works extending the classical notion of torsion in algebraic topology to certain
analytic settings; they extended the construction of torsion of finite-dimensional
acyclic complex to the setting of de Rham or Dolbeault complex, in which they
replaced the usual finite-dimensional determinant of the combinatorial Laplacian
to the regularized determinant of the Hodge-Kodaira Laplacian. In this section, we
explain the construction of the Borcherds Φ-function via analytic torsion.

4.1 Analytic Torsion

Let (M,hT M) be a compact connected Kähler manifold. Let �q = (∂̄ + ∂̄∗)2 be
the Hodge-Kodaira Laplacian acting on (0, q)-forms on M . Since M is compact,
the Hilbert space of square integrable (0, q)-forms on M splits into the direct
sum L

0,q
M =⊕λ∈σ(�q ) E(λ,�q), where σ(�q) ⊂ R≥0 is the spectrum of �q and

E(λ,�q) is the eigenspace of �q with respect to the eigenvalue λ. Then E(λ,�q)

is of finite-dimensional. The zeta function of �q is defined as

ζq(s) :=
∑

λ∈σ(�q )\{0}
λ−s dimE(λ,�q).

By the Weyl law of the asymptotic distribution of the eigenvalues of �q , ζq(s) con-
verges absolutely for s ∈ C with �s > dimM . From the existence of the asymptotic
expansion of the trace of the heat operator e−t�q as t → 0, it follows that ζq(s) ex-
tends to a meromorphic function on C and that ζq(s) is holomorphic at s = 0. After
Ray-Singer [29], we make the following

Definition 4 The analytic torsion of (M,hT M) is the real number defined as

τ
(
M,hT M

) := exp

[
−
∑

q≥0

(−1)qq ζ ′q(0)

]
.

When dimM = 1, τ(M)−1 is exactly the determinant of Laplacian appearing in
the formula for ‖η(τ)‖. After Theorem 1, it is natural to expect that the determinant
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of Laplacian or analytic torsion may produce a nice function on the moduli space.
This is the main topic of this section.

One natural direction of such a generalization seems to be the study of the deter-
minant of Laplacian for compact Riemann surfaces of higher genus g > 1. Among
numbers of studies of the determinant of Laplacian for hyperbolic Riemann surfaces
of genus g > 1, it is Zograf [37] and McIntyre-Takhtajan [24] who obtained a holo-
morphic function with infinite product expression on the Schottky space by using
the determinant of Laplacian. On the other hand, Kokotov-Korotkin [17] considered
the determinant of Laplacian with respect to the flat (but degenerate) Kähler metric
ω ⊗ ω, where ω is an Abelian differential on a compact Riemann surface of genus
g > 1. They proved that, as a function on the moduli space of pairs (C,ω), with
C being a marked Riemann surfaces of genus g > 1 and ω being an Abelian dif-
ferential on C, the determinant of Laplacian is expressed by using some classical
quantities like prime forms, theta function and periods. Hence there are two different
generalizations of Theorem 1 in higher genus g > 1.

Another direction of generalization is the study of analytic torsion for higher
dimensional varieties. (For several reasons, in higher dimensions, analytic torsion
seems to be more appropriate than a single determinant of Laplacian in consider-
ing a generalization of Theorem 1.) Among those varieties, we are interested in
Enriques surfaces, since they can be regarded as one of the natural generalizations
of elliptic curves in dimension 2. For other directions of generalization, we refer to
[11, 33], where analytic torsion produces the Siegel modular form characterizing the
Andreotti-Mayer locus and the section of certain line bundle on the moduli space of
Calabi-Yau threefolds characterizing the discriminant locus.

4.2 Borcherds Φ-Function as the Analytic Torsion of Enriques
Surface

As in the case of elliptic curves, we choose some special Kähler metric to construct
an invariant of an Enriques surface. Since c1(Y )R = 0 for an Enriques surface Y ,
there exists by Yau [31] a unique Ricci-flat Kähler form in each Kähler class on Y .
In contrast to elliptic curves, the condition of Ricci-flatness with normalized volume
1 does not determine a unique Kähler form on Y , because the space of Kähler classes
on Y has real dimension 10. Even though, we get the following:

Theorem 6 ([34]) Let Y be an Enriques surface and let γ be a Ricci-flat Kähler
metric on Y with normalized volume 1. Then the analytic torsion τ(Y, γ ) is indepen-
dent of the choice of such a Kähler metric γ . In particular, τ(Y, γ ) is an invariant
of Y .

After Theorem 6, we may write τ(Y ) for τ(Y, γ ). Then the analytic torsion gives
rise to the function on the moduli space of Enriques surfaces

τ : M � [Y ]→ τ(Y ) ∈ R.
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Recall that the Petersson norm of the Borcherds Φ-function ‖Φ‖ is O+(Λ)-
invariant and hence it descends to a function on M. We write ‖Φ(Y)‖ for
‖Φ(�(Ỹ ,α))‖.

Theorem 7 ([34]) There exists an absolute constant C �= 0 such that for every En-
riques surface Y , the following equality holds

τ(Y )= C
∥∥Φ(Y)

∥∥−1/4
.

The proofs of Theorems 6 and 7 are based on the curvature formula for (equivari-
ant) Quillen metrics [4–6, 19] and the immersion formula for (equivariant) Quillen
metrics [2, 3]. We compare the ∂∂̄ of log τ and log‖Φ‖ as currents on the Baily-
Borel compactification of Ω+

Λ/O+(Λ). For this, the curvature formula and the im-
mersion formula for (equivariant) Quillen metrics play crucial roles. We refer the
reader to [34] for the details of the proofs of Theorems 6 and 7.

As in the case of elliptic curves, we get an analytic expression of the Borcherds
Φ-function by using analytic torsion. In fact, we can extend this result to arbitrary
K3 surfaces with anti-symplectic involution. Namely, for a K3 surface X equipped
with an involution ι : X →X acting non-trivially on H 0(X,Ω2

X), we can construct
an invariant τM(X, ι) by using the equivariant analytic torsion of (X, ι), the analytic
torsion of the fixed-point-set of ι and a certain Bott-Chern secondary class. Here M

refers to the isometry class of the invariant sublattice of H 2(X,Z) with respect to
the ι-action, which determines the topological type of ι. When M =U(2)⊕E8(−2),
we get the analytic torsion of Enriques surface τ as above. It is worth remarking that
we can construct the invariant τM(X, ι) without assuming the existence of Ricci-flat
Kähler metrics on X. After fixing M , i.e., the topological type of the involution,
the invariant τM(X, ι) gives rise to a function on the moduli space of K3 surfaces
with involution, which is again a certain arithmetic quotient of a symmetric bounded
domain of type IV, with the discriminant divisor removed. As before in Theorem 7,
the resulting function τM is the Petersson norm of an automorphic form on the
moduli space of K3 surfaces with involution. It is remarkable that the corresponding
automorphic form on the moduli space of K3 surfaces with involution thus obtained,
is very often expressed as the product of a certain Borcherds lift and Igusa’s Siegel
modular form. We refer the reader to [34, 36] for more details about the analytic
torsion invariant τM of K3 surfaces with involution.

5 Resultants and Borcherds Φ-Function: An Algebraic Counter
Part

In this section, we explain an algebro-geometric counterpart of the Borcherds Φ-
function.
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5.1 (2,2,2)-Model of an Enriques Surface

Let

f1(x), g1(x), h1(x) ∈ C[x1, x2, x3], f2(x), g2(x), h2(x) ∈ C[x4, x5, x6]
be homogeneous polynomials of degree 2. We define f,g,h ∈ C[x1, x2, x3, x4,

x5, x6] by

f (x) := f1(x)+ f2(x), g(x) := g1(x)+ g2(x), h(x) := h1(x)+ h2(x)

and the corresponding surface X(f,g,h) by

X(f,g,h) :=
{[x] ∈ P5; f (x)= g(x)= h(x)= 0

}
.

If the quadratic forms f1, g1, h1, f2, g2, h2 are generic enough, then X(f,g,h)

equipped with the line bundle OP5(1) is a K3 surface of degree 8 by the adjunc-
tion formula. Let ι be the involution on C6 defined as

ι(x1, x2, x3, x4, x5, x6) := (x1, x2, x3,−x4,−x5,−x6).

The involution on P5 induced by ι is again denoted by the same symbol ι. Since the
set of fixed points of the ι-action on P5 is the disjoint union of two projective planes
P1 := {x1 = x2 = x3 = 0} and P2 := {x4 = x5 = x6 = 0}, we see that Xι

(f,g,h), the
set of fixed points of the ι-action on X(f,g,h), is given by

Xι
(f,g,h) = (X(f,g,h) ∩ P1)� (X(f,g,h) ∩ P2).

For three quadratic forms in three variables q1(x, y, z), q2(x, y, z), q3(x, y, z), let
R(q1, q2, q3) be the resultant of q1, q2, q3. Then R(q1, q2, q3) is the polynomial of
degree 12 of the coefficients of q1, q2, q3 characterizing the existence of common
intersection points of the three conics of P2 defined by q1 = 0, q2 = 0 and q3 = 0.
Namely,

R(q1, q2, q3)= 0 ⇐⇒ {
(x : y : z) ∈ P2; q1 = q2 = q3 = 0

} �= ∅.

If qi(x, y, z)= ai1x
2 +ai2y

2 +ai3z
2 +ai4xy+ai5xz+ai6yz, then R(q1, q2, q3) is

expressed as an explicit integral linear combination of the polynomials of the form

[j1, j2, j3][k1, k2, k3][l1, l2, l3][m1,m2,m3],
where

[j1, j2, j3] :=
∣∣∣∣∣∣

a1,j1 a1,j2 a1,j3

a2,j1 a2,j2 a2,j3

a3,j1 a3,j2 a3,j3

∣∣∣∣∣∣
.

See [15, p. 215 Table 1] for an explicit formula for R(q1, q2, q3).
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If the quadrics f1, g1, h1, f2, g2, h2 are generic enough, then we may assume
that R(f1, g1, h1)R(f2, g2, h2) �= 0, so that ι has no fixed points on X(f,g,h) in that
case. Hence, if R(f1, g1, h1)R(f2, g2, h2) �= 0 and X(f,g,h) is smooth, then

Y(f,g,h) :=X(f,g,h)/ι

is an Enriques surface. Let us see that a generic Enriques surface is constructed in
this manner.

Assume that R(f1, g1, h1)R(f2, g2, h2) �= 0 and that X(f,g,h) is smooth. For sim-

plicity, set X0 := X(f,g,h). Let S := Gr3(Sym2C6) ∼= Gr3(C(7
2)) be the Grassmann

variety of 3-dimensional subspaces in the vector space of quadratic forms in the
variables x1, . . . , x6. Then S is equipped with the ι-action induced from the one on
C6 and with the PGL(C6)-action induced from the standard GL(C6)-action on C6.
By choosing f1, g1, h1, f2, g2, h2 generic enough, we may assume that sl(C6) is a
subspace of the tangent space of S at the point Span{f,g,h} ∈ S.

For s ∈ S, we define Xs := {[x] ∈ P5;q(x) = 0 (∀q ∈ s)}. Then we get a flat
family π : X → S with π−1(s) = Xs . Write [X0] ∈ S for Span{f,g,h} ∈ S. We
get a flat deformation π : (X,X0) → (S, [X0]) of K3 surfaces of degree 8. Since
ι preserves X0 and hence ι([X0]) = [X0], we get a subfamily π : (X|Sι , ι,X0) →
(Sι, [X0]) of K3 surfaces with involution, where Sι := {s ∈ S; ι(s)= s} is the fixed-
point-set of the ι-action on S. Since ι has no fixed points on X0 by assumption and
since the set of fixed points of the ι-action on X is a closed subset of X, we see that
ι has no fixed points on Xs if s ∈ Sι is sufficiently close to [X0]. We define Y :=
(X|Sι )/ι and Y0 :=X0/ι. Let p : Y → S be the projection induced from π : X → S.
Since ι has no fixed points on Xs , Ys is an Enriques surface for s ∈ S sufficiently
close to [X0]. Hence p : (Y,Y0)→ (Sι, [X0]) is a flat deformation of Y0.

Let ρX0 : T[X0]S → H 1(X0,ΘX0) and ρY0 : T[X0]Sι → H 1(Y0,ΘY0) be the
Kodaira-Spencer maps of the deformations π : (X,X0)→ (S, [X0]) and p : (Y,Y0)

→ (Sι, [X0]), respectively. Let (T[X0]S)+ and H 1(X0,ΘX0)+ be the invariant sub-
spaces of T[X0]S and H 1(X0,ΘX0) with respect to the ι-action, respectively. Since
ρX0 commutes with the ι-action, we set (ρX0)+ := ρX0 |(T[X0]S)+ : (T[X0]S)+ →
H 1(X0,ΘX0)+. Since (ρX0)+ can be identified with ρY0 under the identifications
(T[X0]S)+ = T[X0]Sι and H 1(X0,ΘX0)+ =H 1(Y0,ΘY0), we get

kerρY0
∼= ker(ρX0)+ = sl

(
C6)∩ ker(ι∗ − 1)∼= sl

(
C3)⊕ sl

(
C3)⊕C ∼= C17.

Here the second equality follows from the equality kerρX0 = sl(C6), which is a con-
sequence of the fact that Xs

∼=Xs′ as polarized K3 surfaces of degree 8 if and only
if s and s′ lie on the same PGL(C6)-orbit. (We can also see the equality kerρX0 =
sl(C6) as follows. Set L0 :=OP5(1)|X0 . We consider the semiuniversal deformation
q : ((X,L), (X0,L0))→ (Def(X0,L0), [X0]) of the polarized K3 surface (X0,L0)

of degree 8. Since L0 is very ample on X0, we may assume that L is very ample on
Xt for t ∈ Def(X0,L0). Since degL|Xt

= 8, the image of the projective embedding
Φ|L|Xt | : Xt → P5 must be a (2,2,2)-complete intersection. Namely, (Xt ,L|Xt

) is
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isomorphic to (Xs,OP5(1)) for some s ∈ S. Hence the deformation germ of polar-
ized K3 surfaces π : (X,X0) → (S, [X0]) is complete, which implies the equality
dim kerρX0 = dimS − dim Def(X0,L0)= 35 = dim sl(C6). This, together with the
inclusion sl(C6)⊂ kerρX0 , yields the equality kerρX0 = sl(C6).)

Since dimSι = 27 and dim kerρY0 = 17, we get dim ImρY0 = 27 − 17 = 10 =
dimH 1(Y0,ΘY0). Hence the Kodaira-Spencer map ρY0 is surjective and the family
p : (Y,Y0)→ (Sι, [X0]) is complete.

Set U := {s ∈ Sι; SingXs =Xι
s = ∅}. Then U is a Zariski open subset of Sι. For

s ∈ U , Ys = Xs/ι is an Enriques surface. Let � : U � s → �(Xs/ι) ∈M be the
period mapping for the family of Enriques surfaces p : Y |U → U . By the Borel-
Kobayashi-Ochiai extension theorem, � extends to a rational map from Sι to the
Baily-Borel compactification of Ω+

Λ/O+(Λ). By the completeness of the deforma-
tion germ p : (Y,Y0) → (Sι, [X0]), the image of � contains a dense Zariski open
subset of M, say U . If Y is an Enriques surface with �(Y) ∈ U , then Y = Y(F,G,H)

for some quadratic forms F,G,H .

5.2 An Algebraic Expression of Borcherds Φ-Function

Since we have a nice projective model of Enriques surfaces of degree 4, it is natural
to expect that the Borcherds Φ-function may admit an algebraic expression analo-
gous to the one for the Dedekind η-function associated to the plane cubic model or
the (2,2)-complete intersection model. In fact, this is the case.

Theorem 8 ([16]) Let Y(f,g,h) be the (2,2,2)-model of an Enriques surface de-
fined by the quadric polynomials f = f1 + f2, g = g1 + g2, h = h1 + h2 ∈
C[x1, x2, x3, x4, x5, x6]. Then the following equality holds

∥∥Φ(Y(f,g,h))
∥∥2 = ∣∣R(f1, g1, h1)R(f2, g2, h2)

∣∣
(

2

π4

∫

X(f,g,h)

α(f,g,h) ∧ α(f,g,h)

)4

.

Here α(f,g,h) ∈H 0(X(f,g,h),Ω
2
X(f,g,h)

) is defined as the residue of f , g, h, i.e.,

α(f,g,h) :=Ξ |X(f,g,h)
,

where Ξ is a meromorphic 2-form on P5 satisfying the equation

df ∧ dg ∧ dh∧Ξ =
6∑

i=1

(−1)ixidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dx6.

We remark that a weaker version of this result was obtained by Maillot-Roessler
[20] under a certain arithmeticity assumption on X(f,g,h). In their formula, the con-
tribution from the resultants is understood as the contribution from the bad primes
with respect to the reductions of X(f,g,h). When f , g, h are defined over the ring
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of integers of a number field K , Theorem 8 implies that the Borcherds Φ-function
detects the degenerations of ι over Spec(OK), since R(f1, g1, h1)R(f2, g2, h2) ∈ p

for a prime ideal p ∈ Spec(OK) if and only if ι has non-empty fixed points on the
reduction X(f,g,h)(OK/p). This picture of the Borcherds Φ-function is quite analo-
gous to the corresponding picture of the Dedekind η-function: For an elliptic curve
E = {y2 = 4x3−g2x−g3} over K , ‖η‖24 is identified with the discriminant of E up
to the L2-norm of dx/y. Hence the algebraic part of ‖η‖ detects the degenerations
of E over Spec(OK). See [10] for more explanation of this view point.

The proof of Theorem 8 shall be given in [16]. The strategy is as follows. We
compare the ∂∂̄ of the both hand sides as currents on S. Then it turns out that they
satisfy the same ∂∂̄-equation of currents on S. For this, we use Theorem 7 and a
formula for the asymptotic behavior of equivariant analytic torsion for degenerating
family of algebraic manifolds [35]. In this way, we get the desired equality, up to
an absolute constant. To fix the absolute constant, we compare the behavior of the
both hand sides for certain explicit 2-parameter family of Enriques surfaces, whose
universal coverings are Kummer surfaces of product type.

In fact, Theorem 8 holds even if Y(f,g,h) has at most rational double points by the
continuity of the both hand sides at those points of Sι corresponding to Enriques sur-
faces with rational double points. This continuity is a consequence of the existence
of simultaneous resolution of 2-dimensional rational double points.

By Theorem 8, we get a Thomae type formula for the Borcherds Φ-function.

Corollary 1 ([16]) Let v,v′ ∈ H 2(X(f,g,h),Z) be anti-ι-invariant, primitive,
isotropic vectors with 〈v,v′〉 = 1 and let v∨ ∈H2(X(f,g,h),Z) be the Poincaré dual
of v. Under the identification of lattices (Zv + Zv′)⊥ ∼= U(2) ⊕ E8(−2) =: L, the
vector

z(f,g,h),v,v′ := α − 〈α,v′〉v− 〈α,v〉v′
〈α,v〉 ∈ L⊗R+ i C+L

is regarded as the period of Y(f,g,h). Then, by a suitable choice of the 2-cocycles
{v,v′}, one has

Φ(z(f,g,h),v,v′)
2 =R(f1, g1, h1)R(f2, g2, h2)

(
2

π2

∫

v∨
α(f,g,h)

)8

.

When X(f,g,h) is birational to a Kummer surface of product type, the 2-cycle v∨
can be given explicitly. See [16] for the details.
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5.3 A 4-Parameter Family of Enriques Surfaces Associated to
M3,6(C)

For a non-zero 3× 6-complex matrix A ∈M3,6(C), we define

XA :=

⎧
⎪⎨

⎪⎩
[x] ∈ P5;

f (x) = a11x
2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 + a15x

2
5 + a16x

2
6 = 0

g(x) = a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 + a25x

2
5 + a26x

2
6 = 0

h(x) = a31x
2
1 + a32x

2
2 + a33x

2
3 + a34x

2
4 + a35x

2
5 + a36x

2
6 = 0

⎫
⎪⎬

⎪⎭
.

For A= (a1, . . . ,a6) ∈M(3,6;C) and i < j < k, we define

Δijk(A)= det(ai ,aj ,ak).

A matrix A ∈M(3,6;C) is said to be non-degenerate if
∏

i<j<k Δijk(A) �= 0. Then,
for a non-degenerate A ∈ M3,6(C), XA is a K3 surface. We write αA for α(f,g,h).
As an immediate consequence of Theorem 8, we get the following:

Corollary 2 ([16]) Let A ∈M3,6(C) be non-degenerate. For a partition of 6 letters
{1,2,3,4,5,6}

(
ijk

lmn

)
:= {i, j, k} ∪ {l,m,n} = {1,2,3,4,5,6},

define an involution ι
( ijk
lmn)

on P5 by

ι
( ijk
lmn)

(xi, xj , xk, xl, xm, xn)= (xi, xj , xk,−xl,−xm,−xn).

Then ι
( ijk
lmn)

is a free involution on XA called a switch such that

∥∥Φ(XA/ι
( ijk
lmn)

)
∥∥2 = ∣∣Δijk(A)

∣∣4∣∣Δlmn(A)
∣∣4
(

2

π4

∫

XA

αA ∧ αA

)4

.

By Corollary 2 , if A ∈ M3,6(K) with K ⊂ C, then for any partitions
(

ijk
lmn

)
and

(
i′j ′k′
l′m′n′

)
, one has

‖Φ(XA/ι
( ijk
lmn)

)‖2

‖Φ(XA/ι
(

i′j ′k′
l′m′n′)

)‖2
= |Δijk(A)|4|Δlmn(A)|4
|Δi′j ′k′(A)|4|Δl′m′n′(A)|4 ∈K.

Since |Δijk(A)|4|Δlmn(A)|4/|Δi′j ′k′(A)|4|Δl′m′n′(A)|4 �= 1 for all pairs of parti-

tions
(

ijk
lmn

)
,
(
i′j ′k′
l′m′n′

)
for generic non-degenerate A, we conclude that all of the 10

Enriques surfaces XA/ι
( ijk
lmn)

are mutually distinct for a generic choice of A.
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6 Theta Function and Borcherds Φ-Function

In this section, we explain a relation between the Borcherds Φ-function and Fre-
itag’s theta function.

6.1 The Matsumoto-Sasaki-Yoshida Model

Recall that, for A ∈M2,4(C), we could associate two distinct models EA and CA of
an elliptic curve. By a similar construction, we can associate another K3 surface to
A ∈M3,6(C) as follows. For A ∈M3,6(C), define a K3 surface

ZA :=
{
(
(x1 : x2 : x3), y

) ∈OP2(3); y2 =
6∏

i=1

(a1ix1 + a2ix2 + a3ix3)

}
,

which is identified with its minimal resolution. Then ZA is (the minimal resolution
of) the double covering of P2, whose branch divisor is the union of 6 lines in general
position a1ix1 + a2ix2 + a3ix3 = 0 (i = 1, . . . ,6). The period mapping and its in-
verse for the family of K3 surfaces ZA over a certain open subset of M3,6(C) were
worked out by Matsumoto-Sasaki-Yoshida [23] and Matsumoto [21].

We define a holomorphic 2-form ηA on ZA by

ηA := x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

y
.

By Matsumoto-Sasaki-Yoshida [23], there are 6 independent transcendental 2-
cycles {γij }1≤i<j≤4 on ZA and 16 independent algebraic 2-cycles on ZA, which
form a basis of H2(ZA,Q).

Following Matsumoto-Sasaki-Yoshida [23], define the period of ZA as the matrix

ΩA := 1

η34(A)

⎛

⎝ η14(A) − η13(A)−√−1η24(A)

1+√−1

− η13(A)+√−1η24(A)

1−√−1
−η23(A)

⎞

⎠ ,

where

ηij (A) :=
∫

γij

ηA.

By a suitable choice of the cycles {γij }1≤i<j≤4, one has

ΩA ∈D := {T ∈M2,2(C); (T − t T
)
/2i > 0

}
,

where D is isomorphic to a symmetric bounded domain of type IV of dimension 4.
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6.2 Theta Function on D

Write e(x) := exp(2πix).

Definition 5 For Ω ∈D and a, b ∈ Z[i]2, define the Freitag theta function as

Θ a
1+i

, b
1+i

(Ω)

:=
∑

n∈Z[i]2
e
[

1

2

(
n+ a

1+ i

)
Ωt

(
n+ a

1+ i

)
+�

(
n+ a

1+ i

)
t

(
b

1+ i

)]
.

Following [32], we identify the characteristic
(
a
b

)
with the partition

(
ijk
lmn

)
by the

rule:

(
a
b

)= (a1 a2
b1 b2

) (
i 0
0 i

) (
i 0
0 0

) (
i i
0 0

) (
i i
i i

) (0 i
0 0

) (0 0
0 0

) (0 0
i i

) (0 0
0 i

) (0 0
i 0

) (0 i
i 0

)

" " " " " " " " " " "(
ijk
lmn

) (123
456

) (124
356

) (125
346

) (126
345

) (134
256

) (135
246

) (136
245

) (145
236

) (146
235

) (156
234

)

Under this identification, we define

Θ
(ijk
lmn)

(Ω) :=Θ a
1+i

, b
1+i

(Ω)

and its Petersson norm by

∥∥Θ
(ijk
lmn)

(Ω)
∥∥2 := det

(
Ω − tΩ

2
√−1

)∣∣Θ
(ijk
lmn)

(Ω)
∣∣2.

Theorem 9 ([16]) For a non-degenerate A = (A1,A2) ∈ M3,6(C) with A1,A2 ∈
M3(C), define

A∨ := (tA−1
1 , tA−1

2

)
.

Then
∥∥Φ(XA/ι

( ijk
lmn)

)
∥∥= ∥∥Θ

(ijk
lmn)

(ZA∨)
∥∥4

.

The proof of Theorem 9 shall be given in [16]. We use Matsumoto-Terasoma’s
Thomae type formula [22] to rewrite the right hand side of Theorem 9. Comparing
this with Theorem 8, we get the result. See [16] for the details. We remark that, after
Freitag-Salvati-Manni [12, Th. 5.6], Theorem 9 is not very surprising, because they
proved that the Borcherds Φ-function itself is expressed as a linear combination of
certain additive Borcherds lifts.
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6.3 The Case of Jacobian Kummer Surfaces

For λ = (λ1, . . . , λ6) ∈ C6 with λi �= λj (i �= j), define a genus 2 curve Cλ by the
affine equation

Cλ :=
{

(x, y) ∈ C2; y2 =
6∏

i=1

(x − λi)

}
.

Define holomorphic differentials ω1 and ω2 on Cλ by

ω1 := dx

y
, ω2 := xdx

y
.

Let {A1,A2,B1,B2} be a certain symplectic basis of H1(Cλ,Z) and set

Tλ :=
(∫

B1
ω1

∫
B2

ω1∫
B1

ω2
∫
B2

ω2

)−1(∫
A1

ω1
∫
A2

ω1∫
A1

ω2
∫
A2

ω2

)
∈S2.

Then the Kummer surface K(Cλ) of the Jacobian variety Jac(Cλ) is expressed as
follows:

K(Cλ)∼=XA, A=
⎛

⎝
1 1 1 1 1 1
λ1 λ2 λ3 λ4 λ5 λ6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

⎞

⎠ ∈M3,6(C).

By Theorem 9, we get the following.

Corollary 3 ([16]) If the partition
(
pqr
stu

)
corresponds to the characteristic (a, b),

then
∥∥Φ
(
K(Cλ)/ι(pqr

stu)

)∥∥= (det�Tλ)
2
∣∣θ�( a

1+i
),�( b

1+i
)
(Tλ) θ�( a

1+i
),�( b

1+i
)
(Tλ)

∣∣4.

Here θα,β(T ), α,β ∈ {0,1/2}2, is the Riemann theta constant

θα,β(T ) :=
∑

n∈Z2

e
[

1

2
(n+ α)T t (n+ α)+ (n+ α)tβ

]
, T ∈S2.

Recall that Igusa’s Siegel modular form Δ5 is defined as the product of all even
theta constants

Δ5(T ) :=
∏

(α,β) even

θα,β(T ), T ∈S2.

For a genus 2 curve C with period T ∈S2, its Petersson norm
∥∥Δ5(C)

∥∥2 := (det�T )5
∣∣Δ5(T )

∣∣2

is independent of the choice of a symplectic basis of H1(C,Z). Hence ‖Δ5(C)‖ is
an invariant of C. Form Corollary 3, it follows the following:
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Corollary 4 ([16]) The Igusa cusp form Δ5 is the average of Φ with respect to the
10 switches, i.e.,

∏

( ijk
lmn)

∥∥Φ
(
K(C)

)
/ι

( ijk
lmn)

∥∥= ∥∥Δ5(C)
∥∥8

.

7 Some Problems

Problem 1 For elliptic curves, two distinct models EA and CA yield distinct
algebro-geometric expressions of ‖η‖. For projective models of Enriques sur-
faces distinct from the (2,2,2)-complete intersection of P5, find the corresponding
algebro-geometric expressions of ‖Φ‖.

Problem 2 On a generic Jacobian Kummer surface, there exists 31 conjugacy
classes of free involutions ([25, 28]), which split into three families:

• 10 switches,
• 15 Hutchinson-Göpel involutions,
• 6 Hutchinson-Weber involutions.

Recall that, as the average of the Borcherds Φ-function by 10 switches, we get
Igusa’s Siegel modular form Δ5. Determine the Siegel modular form constructed as
the average of the Borcherds Φ-function by the 15 Hutchinson-Göpel involutions
(resp. 6 Hutchinson-Weber involutions).

Problem 3 As mentioned in Sect. 4.2, there exists an analytic torsion invariant τM

for K3 surfaces with involution [34], which is often expressed as the Petersson norm
of the tensor product of an explicit Borcherds lift and Igusa’s Siegel modular form
[36]. After Theorem 8, it is an interesting problem to find an algebro-geometric
expression of τM for general M .

Problem 4 (The inverse of the period mapping for Enriques surfaces) For elliptic
curves, the inverse of the period mapping was constructed by Jacobi by using theta
constants. We ask the same problem for the (2,2,2)-model of Enriques surfaces:
For 1 ≤ i < j ≤ 3 and 4 ≤ k < l ≤ 6, find a system of automorphic forms

α
(1)
ij (Z), α

(2)
kl (Z), β

(1)
ij (Z), β

(2)
kl (Z), γ

(1)
ij (Z), γ

(2)
kl (Z)

on Ω+
Λ for (a finite index subgroup of) O+(Λ) such that

YZ :=XZ/ι, ι(x)= (x1, x2, x3,−x4,−x5,−x6)
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is the Enriques surface whose period is the given by Z ∈Ω+
Λ . Here

XZ =

⎧
⎪⎨

⎪⎩
[x] ∈ P5;

∑
1≤i<j≤3 α

(1)
ij (Z)xixj +∑4≤k<l≤6 α

(2)
kl (Z)xkxl = 0

∑
1≤i<j≤3 β

(1)
ij (Z)xixj +∑4≤k<l≤6 β

(2)
kl (Z)xkxl = 0

∑
1≤i<j≤3 γ

(1)
ij (Z)xixj +∑4≤k<l≤6 γ

(2)
kl (Z)xkxl = 0

⎫
⎪⎬

⎪⎭
.

Kondō [18] and Freitag-Salvati-Manni [12] constructed certain (birational) projec-
tive embeddings of the moduli space of Enriques surfaces with some level structure.
Are the system of automorphic forms appearing in their embeddings regarded as
the set of coefficients of the defining equations of appropriately polarized Enriques
surfaces?
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