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Abstract This is a survey about the construction of fermions which act on the space
of quasi-local operators in the XXZ model. We also include a proof of the anti-
commutativity of fermionic creation operators.

1 Introduction

In this article, we give an exposition of the ‘fermionic basis’ found in [1, 2] for the
space of operators in the XXZ spin chain. In order to explain the problem, let us
begin with some historical background.

Quite generally, in integrable models one is given a large family of commuting
operators which act on the space of states. The first issue is then to describe their
spectra. In the case of the XXZ chain, the space of states is simply a tensor product
V ⊗N , where V = C

2. The generating function of the commuting operators is the
transfer matrix of the underlying six vertex model, and the standard machinary of
the Bethe ansatz enables one to study its spectra in great detail.

The second issue is to describe expectation values of local operators

O ∈ EndV ⊗m ⊂ EndV ⊗N.

This is a problem far more involved than the first. It has been known for some
time that, for the XXZ chain in the thermodynamic limit N → ∞, the expectation
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values of the standard basis elements (products of matrix units) are given by certain
multiple integrals [3–6]. Subsequently it has been recognised, on many examples,
that actually these integrals can be reduced to sums of products of one-dimensional
integrals, with complicated rational functions as coefficients [7–10]. These findings
suggested that, if one passes from the standard basis of local operators to a suitable
new basis, then the corresponding expectation values simplify drastically.

It turns out to be convenient to introduce a parameter α and consider in place of
EndV ⊗m the space of expressions of the form

q2αS(0)O, S(0) = 1

2

0∑

j=−∞
σ 3

j ,

where σ 3
j is a Pauli matrix at site j and O is a local operator in the usual sense. We

shall call such operators ‘quasi-local’ (see Sect. 3 below). The parameter α plays a
role of regularisation which helps removing degeneracies from the formulas.

In [1], we have defined certain fermions bp, cp,b∗
p, c∗

p , p ≥ 1, which act on
the space of all quasi-local operators. Together with the adjoint action of the in-
tegrals of motion t∗p , these operators act on q2αS(0) and create a basis which we
call ‘fermionic’. We have shown in [2] that for these basis elements the expecta-
tion values are given by determinants involving only two basic functions ρ(ζ ) and
ω(ζ, ξ) (see Sect. 6, Theorem 2). This clarifies the reason for the simplification of
the integrals mentioned above.

The aim of the present paper is to outline the construction of the fermions, leav-
ing the proofs to the original papers. The construction is purely algebraic. It can be
viewed as a sophisticated version of the algebraic Bethe ansatz, but there are new
features. In particular it is applied to the spaces EndV ⊗m rather than V ⊗m. Also, es-
sential use is made of representations of the Borel subalgebra Uqb of Uq ŝl2. Taking
this opportunity, we supply a proof of the anti-commutativity of fermionic creation
operators which has not been published in the previous papers.

The text is organised as follows. In Sect. 2 we collect preliminary materials about
the transfer matrix and Baxter’s Q-matrices, thereby introducing our notation. In
Sect. 3 we consider the action of integrals of motion on the space of quasi-local
operators. In Sect. 4 we define the fermionic annihilation and creation operators,
and in Sect. 5 explain their properties. In Sect. 6 we consider the expectation values.
The main statement is that the expectation values of operators created by fermions
from ‘the primary operator’ can be computed as a determinant. We give an explicit
formula for the function ω(ζ, ξ) in Appendix A. Appendix B is devoted to the proof
of anti-commutativity of creation operators.

Throughout the text we shall assume that q is not a root of unity.

2 Transfer Matrix and Q-Matrices

In this section, we fix our notation and review the standard construction of the trans-
fer matrix of the six vertex model and Baxter’s Q-matrices.
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Let V = C
2, and let v+, v− be the standard basis. Let Vj (j ∈ Z) be copies of V ,

and set V[K,L] = VK ⊗ · · · ⊗ VL for an interval [K,L] ⊂ Z. The transfer matrix is
an element of EndV[K,L] defined by

T[K,L](ζ,α) = Tra
(
Ta,[K,L](ζ ) · qασ 3

a
)
,

Ta,[K,L](ζ ) = La,L(ζ ) · · ·La,K(ζ ).
(1)

Here the operator L is the image of the universal R matrix of Uq ŝl2 in the two-
dimensional evaluation representation πa,ζ : Uq ŝl2 → EndVa ,

La,j (ζ/ξ) = (πa,ζ ⊗ πj,ξ )R. (2)

It has the weight preserving property

[
x ⊗ x,La,j (ζ/ξ)

] = 0 for any diagonal x ∈ EndV . (3)

We have also introduced an arbitrary parameter α, which will play a key role later
on.

Due to the Yang-Baxter relation, for each fixed α the transfer matrices (1) mutu-
ally commute,

[
T[K,L](ζ,α), T[K,L]

(
ζ ′, α

)] = 0
(∀ζ, ζ ′).

We note also

[
S[K,L], T[K,L](ζ,α)

] = 0,

where

S[K,L] = 1

2

L∑

j=K

σ 3
j .

In addition to the transfer matrices, there are also Baxter’s Q-matrices among the
commuting family. As we shall see below, the latter are more fundamental objects
than the former.

For the construction of Q-matrices one uses representations of the Borel sub-
algebra Uqb of Uq ŝl2 [12] in place of the two-dimensional ‘auxiliary space’ Va .
More specifically, consider the following operators a,a∗, q±D on the vector space
W = ⊕

k∈ZC|k〉:

qD|k〉 = qk|k〉, a|k〉 = (
1 − q2k

)|k − 1〉, a∗|k〉 = |k + 1〉.
They satisfy the so-called q-oscillator algebra relations

qDaq−D = q−1a, qDa∗q−D = qa∗, q−1aa∗ − qa∗a = q−1 − q.
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Then the formulas

	+
A,ζ (e0) = ζ

q − q−1
a, 	+

A,ζ (e1) = ζ

q − q−1
a∗,

	+
A,ζ

(
qh0

)−1 = 	+
A,ζ

(
qh1

) = q2D

give a representation 	+
A,ζ : Uqb → EndW+, where W+ = ⊕

k≥0 C|k〉. Inter-

changing the indices 0 and 1, one defines another representation 	−
A,ζ on the quo-

tient space W− = W/W+. (We use the letter A for ‘auxiliary’. The representations
	±

A,ζ are the two types of fundamental representations of Uqb, see [13].) Accord-

ingly we define

Q±
[K,L](ζ,α) = ζ±(α−S[K,L])TrA

(
T ±

A,[K,L](ζ ) · q±2αDA
)
,

T ±
A,[K,L](ζ ) = L±

A,L(ζ ) · · ·L±
A,K(ζ ),

where ±2DA = 	±
A (h1) and

L±
A,j (ζ/ξ) = (

	±
A,ζ ⊗ πj,ξ

)
R. (4)

In the above, Tr is understood as analytic continuation from |q±2α| < 1, e.g.,
TrW±(q2αD) = ±1/(1 − q2α).

The Q-matrices commute among themselves as well as with T[K,L](ζ,α) and
S[K,L],

[
Qε[K,L](ζ,α),Qε′

[K,L]
(
ζ ′, α

)] = 0
(∀ζ, ζ ′),

[
Qε[K,L](ζ,α), T[K,L]

(
ζ ′, α

)] = 0,
[
Qε[K,L](ζ,α), S[K,L]

] = 0.

In fact, the transfer matrix and its ‘higher’ analogs are all expressible as quadratic
combinations of the Q-matrices. For instance, dropping the suffix [K,L] we have

(
qα−S − q−α+S

) ∣∣∣∣
Q+(q−1/2ζ,α) Q−(q−1/2ζ,α)

Q+(q1/2ζ,α) Q−(q1/2ζ,α)

∣∣∣∣ = id.,

(
qα−S − q−α+S

) ∣∣∣∣
Q+(q−1ζ,α) Q−(q−1ζ,α)

Q+(qζ,α) Q−(qζ,α)

∣∣∣∣ = T (ζ,α).

These ‘Wronskian’ like relations follow from the analysis of the composition factors
of W+

A,ζ1
⊗ W−

A,ζ2
[12]. They entail in particular Baxter’s TQ relation

T (ζ,α)Q±(ζ,α) = Q±(
q−1ζ,α

) + Q±(qζ,α), (5)

which corresponds to the exact sequence of Uqb-modules

0 −→ W±
A,q−1ζ

[∓1] −→ Va,ζ ⊗ W±
A,ζ −→ W±

A,qζ [±1] −→ 0. (6)
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Here, for a Uqb-module W , W [m] means the Uqb-module structure on W where
qh1 acts by qm × qh1 .

3 Quasi-local Operators

Our main concern in this note is not the space of states V[K,L], but rather the space of
operators EndV[K,L]. We wish to consider them all at once by letting −K,L → ∞
while keeping only local operators, i.e., only those elements O which have finite
support. Here, by support suppO of O, we mean the minimal interval [k0, l0] ⊂ Z

such that O acts as identity on Vj for all j ∈ [k0, l0]. When suppO ⊂ [k, l], we
indicate this fact by putting a suffix and writing O[k,l]. We shall also say that O has
spin s ∈ Z if S(O) = sO, where S(·) = [S(−∞,∞), ·].

Let us look at the action of the transfer matrix on an element O ∈ EndV[K,L],

t∗[K,L](ζ,α)(O) = Tra
{
Ta,[K,L](ζ )qασ 3

a ·O · Ta,[K,L](ζ )−1}.

It is a simple consequence of the weight-preserving property (3) that, if suppO ⊂
[k, l], then

t∗[K,L](ζ,α)
(
qα(σ 3

K+···+σ 3
k−1)O[k,l]

) = qα(σ 3
K+···+σ 3

k−1)t∗[k,L](ζ,α)(O[k,l]). (7)

Namely, apart from the ‘tail’ qα(σ 3
K+···+σ 3

k−1), there is a reduction of the action of the
operator t∗ to the left of the support [k, l] of the operand O[k,l]. Although there is
no such simple reduction to the right, the following stability takes place. Consider
the Taylor expansion at ζ 2 = 1,

t∗[k,L](ζ,α)(O[k,l]) =
∑

p≥1

t∗[k,L],p(O[k,l]) · (ζ 2 − 1
)p−1 (

ζ 2 → 1
)
.

Then for each fixed p the coefficient t∗[k,L],p(O[k,l]) becomes independent of L if L

is chosen large enough.
These properties suggest that, instead of naïvely taking −K,L → ∞, it is more

natural to introduce a formal element

q2αS(0) = · · ·qασ 3
−2qασ 3

−1qασ 3
0 , S(0) = S(−∞,0],

and to consider expressions of the form

q2(α−s)S(0)O, O is local and has spin s. (8)

The shift of α depending on the spin s is introduced for convenience. Let Wα−s,s

be the set of all elements (8), and set

W(α) =
⊕

s∈Z
Wα−s,s .
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We shall say that an element of W(α) is a quasi-local operator. We call q2αS(0) ∈
Wα,0 the primary operator. Abusing the language we define the support of (8) to be
suppO.

From the foregoing discussions it is clear that for each p ≥ 1 the limit

t∗p
(
q2(α−s)S(0)O[k,l]

) := lim−K,L→∞ t∗[K,L],p
(
q2(α−s)S[K,0]O[k,l]

)

has a well-defined meaning as an operator acting on W(α). We shall use the gener-
ating series

t∗(ζ ) =
∞∑

p=1

t∗p
(
ζ 2 − 1

)p−1
. (9)

From the definition it is equally clear that the operators {t∗p}p≥1 mutually com-
mute. However we are not interested in their diagonalisation. Indeed, the question
does not even make sense because their action on W(α) turns out to be free. They
generate one half of the Heisenberg algebra, and we shall use them as a part of op-
erators which create a basis of W(α) from the primary operator q2αS(0), see Sect. 5
below.

4 Introducing Fermions

In this section we shall introduce fermions which act on the space W(α).
Going back to the setting of a finite interval [K,L], let us re-examine the deriva-

tion of the TQ relation (5). For definiteness we consider only W+
A,ζ and omit the

superfix +. The exact sequence (6) tells that, with an appropriate matrix Fa,A of
base change in Va,ζ ⊗ WA,ζ , the product of the two L operators (2), (4) can be
brought to a block triangular form

L{a,A},j (ζ ) = F−1
a,ALa,j (ζ )LA,j (ζ )Fa,A

=
(
LA,j (qζ )q

−σ 3
j /2 0

∗ LA,j (q
−1ζ )q

σ 3
j /2

)

a

,

where the suffix a refers to the block structure in Va . Introducing

T{a,A},[K,L](ζ ) = L{a,A},L(ζ ) · · ·L{a,A},K(ζ ),

we consider its action on an element X ∈ End(V[K,L]) by

T{a,A},[K,L](ζ )qα(σ 3
a +2DA) · X · T{a,A},[K,L](ζ )−1

=
(
AA,[K,L](ζ,α)(X) 0
CA,[K,L](ζ,α)(X) DA,[K,L](ζ,α)(X)

)

a

.
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If we take the trace of both sides on Va,ζ ⊗ WA,ζ , then we obtain an EndV[K,L]
version of the TQ relation (5). Here we proceed differently and define a new operator
by looking at the lower left block,

k[K,L](ζ,α)(X) = TrA
(
CA,[K,L](ζ,α) · ζ α−S

(
q−2S[K,L]X

))
. (10)

For each X, the operator (10) is a rational function in ζ 2 apart from an overall
power ζ α . It has poles at ζ 2 = 1, q±2 in the ζ 2-plane. Hence one can write the
partial fraction decomposition

k[K,L](ζ,α)(X) = c̄[K,L](ζ,α)(X) + c[K,L](qζ,α)(X) + c[K,L]
(
q−1ζ,α

)
(X)

+ f[K,L](qζ,α)(X) − f[K,L]
(
q−1ζ,α

)
(X), (11)

demanding that ζ 2 = 1 is the only pole of

c̄[K,L](ζ,α)(X), c[K,L](ζ,α)(X), f[K,L](ζ,α)(X).

(There is an ambiguity about how to share the possible polynomial part among them.
The prescription is given in [1], Sect. 2.7.) We define further

b∗[K,L](ζ,α)(X) := f[K,L](qζ,α)(X) + f[K,L]
(
q−1ζ,α

)
(X)

− t∗[K,L](ζ,α)f[K,L](qζ,α)(X). (12)

Notice that the right hand side is the combination which appears in the TQ relation
(5). Although we are not able to give a logical explanation to the formula (12), it
turns out that this operator enjoys various nice properties.

We supplement (11), (12) by giving two more definitions,

b[K,L](ζ,α) = NJ[K,L] ◦ c[K,L](ζ,−α) ◦ J[K,L],

c∗[K,L](ζ,α) = −NJ[K,L] ◦ b∗[K,L](ζ,−α) ◦ J[K,L],

where N = q−1(q−α+S+1 − qα−S−1) is a normalisation and

J[K,L](X) = J[K,L] · X · J−1
[K,L], J[K,L] =

L∏

j=K

σ 1
j

is an operator which flips the spin.
It can be shown that the operators b[K,L], c[K,L], b∗[K,L], c∗[K,L] introduced above

have reduction properties similar to (7). The left reduction takes the form

x[K,L](ζ,α)
(
q(α±1)(σ 3

K+···+σ 3
k−1)O[k,l]

) = qα(σ 3
K+···+σ 3

k−1)x[k,L](ζ,α)(O[k,l]), (13)

where the + sign is chosen for x = c,b∗ and − for x = b, c∗. (The change of α in
(13) is the reason why we introduced the shift in the definition (8) of quasi-local
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operators.) In addition, b∗, c∗ share with t∗ the same stability properties to the right.
For x = b, c the situation is even simpler, since

x[K,L](ζ,α)(O[k,l]) = x[K,l](ζ,α)(O[k,l]).

As it was explained for t∗p , these properties allow us to consider the limit −K,L →
∞ of b[K,L](ζ,α) and so forth. We end up with the formal series

b(ζ ) = ζ−α

∞∑

p=0

bp

(
ζ 2 − 1

)−p
, c(ζ ) = ζ α

∞∑

p=0

cp

(
ζ 2 − 1

)−p
, (14)

b∗(ζ ) = ζ α−2
∞∑

p=1

b∗
p

(
ζ 2 − 1

)p−1
, c∗(ζ ) = ζ−α+2

∞∑

p=1

c∗
p

(
ζ 2 − 1

)p−1
, (15)

whose coefficients bp, cp,b∗
p, c∗

p are well-defined operators on W(α). We shall not
use the zeroth coefficients b0, c0 because they are not independent from bp, cp ,
p ≥ 1.

5 Properties of Fermions

So far we have introduced the operators

t∗p, bp, cp, b∗
p, c∗

p (p ≥ 1), (16)

which act on W(α) in the following manner:

t∗p : Wα−s,s −→Wα−s,s ,

cp, b∗
p : Wα−s+1,s−1 −→ Wα−s,s ,

bp, c∗
p : Wα−s−1,s+1 −→ Wα−s,s .

In this section we summarize their basic properties.

Commutation Relations Among the operators in the list (16), t∗p are central:

[
t∗p,xp′

] = 0
(
p,p′ ≥ 1, x = t∗,b, c,b∗, c∗). (17)

The rest of the operators obey the canonical anti-commutation relations

[bp,bp′ ]+ = [cp, cp′ ]+ = [cp,bp′ ]+ = 0, (18)
[
bp,b∗

p′
]
+ = [

cp, c∗
p′

]
+ = δp,p′ ,

[
bp, c∗

p′
]
+ = [

cp,b∗
p′

]
+ = 0, (19)

[
b∗

p,b∗
p′

]
+ = [

b∗
p, c∗

p′
]
+ = [

c∗
p, c∗

p′
]
+ = 0. (20)
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The proof of (18), (19) requires quite a heavy computation which occupies a large
part of [1]. We give a proof of (20) when the target space is Wα,0 in Appendix B.

Later on we shall use (19) in the form of generating series,
[
b(ζ ),b∗(ξ)

]
+ = ψ(ζ/ξ,−α),

[
c(ζ ), c∗(ξ)

]
+ = ψ(ζ/ξ,α),

where ψ(ζ,α) is a Cauchy kernel defined by

ψ(ζ,α) = 1

2
ζ α ζ 2 + 1

ζ 2 − 1
.

Support Property By acting with bp, cp the support of an operator does not
enlarge. Namely if X ∈W(α) satisfies suppX ⊂ [k, l], then

supp xp(X) ⊂ [k, l] (x = b, c), (21)

xp(X) = 0 if p > l − k + 1 (x = b, c). (22)

In particular, we have

bp

(
q2αS(0)

) = 0, cp

(
q2αS(0)

) = 0. (23)

These properties justify calling bp, cp annihilation operators.
In contrast, the support is enlarged by t∗p,b∗

p, c∗
p according to the rule

supp x∗
p(X) ⊂ [k, l + p] (

x∗ = t∗,b∗, c∗). (24)

We call t∗p,b∗
p, c∗

p creation operators.

Fermionic Basis The following set is a basis of W(α) [11]:
(
t∗1

)pt∗i1 · · · t∗ir b∗
j1

· · ·b∗
js

c∗
k1

· · · c∗
kt

(
q2αS(0)

)

(i1 ≥ · · · ≥ ir ≥ 2, j1 > · · · > js ≥ 1, k1 > · · · > kt ≥ 1, p ∈ Z, r, s, t ≥ 0).

(25)

Hence W(α) may be regarded as a tensor product of Fock spaces of one boson and
two kinds of fermions. (However we do not know how to construct the annihilation
partner to t∗p .)

As we shall explain in the next section, it is in this fermionic basis that the cal-
culation of expectation values simplify drastically.

6 Expectation Values

We now move on to the discussion of expectation values in the six vertex model.
Dealing with the infinite lattice limit one has to be specific about the range of the
parameters. From now on we assume that q = eπiν , 1/2 < ν < 1, ν ∈Q.
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Fig. 1 Six vertex model with fields × = q
(κ+α)σ 3

j , ◦ = q
κσ 3

j . Insertion of a local field E
ε′

1,ε1

1 E
ε′

2,ε2

2
corresponds to introducing defects (filled circles)

Let us consider an infinite cylinder extending to the horizontal direction. We take
finitely many rows, numbered say from 1 to n, and denote them collectively by M

(the letter M stands for ‘Matsubara’). To each row m = 1, . . . , n attach a parameter
τm and set

T[K,L],M(ζ ) = TK,M(ζ ) · · ·TL,M(ζ ),

Tj,M(ζ ) = Lj,n(ζ/τn) · · ·Lj,1(ζ/τ1).

Further, on each vertical edge j between the n-th and the (n+1)-st row, i.e., the first

row in the cyclic boundary condition, we assign a ‘field’ q
(κ+α)σ 3

j , j ≤ 0 or q
κσ 3

j ,
j > 0 (see Fig. 1).

We introduce the expectation value of a quasi-local operator q2αS(0)O as the limit
of the ratio

Zκ
{
q2αS(0)O

} = lim−K,L→∞
Tr[K,L],M {T[K,L],M(1)q2αS[K,0]+2κS[K,L]O}
Tr[K,L],M {T[K,L],M(1)q2αS[K,0]+2κS[K,L] } . (26)

It is a linear functional Zκ : W(α) →C so normalised that Zκ {q2αS(0)} = 1. The nu-
merator which appears in the right hand side is the partition function corresponding
to a lattice with ‘defects’ specified by O.

It is convenient to introduce a slightly more general object than Zκ . Consider the
transfer matrix corresponding to a column

TM(ζ, κ) = Trj
{
Tj,M(ζ )q

κσ 3
j
}
.

We call it the ‘Matsubara’ transfer matrix. Fix an eigencovector 〈Φ| of TM(ζ, κ +α)

(resp. eigenvector |Ψ 〉 of TM(ζ, κ)) with eigenvalue T (ζ, κ + α) (resp. T (ζ, κ)),

〈Φ|TM(ζ, κ + α) = 〈Φ|T (ζ, κ + α), TM(ζ, κ)|Ψ 〉 = T (ζ, κ)|Ψ 〉.
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We assume that

〈Φ|Ψ 〉 = 0, (27)

and in particular that they have the same spin. For an element q2αS(0)O ∈ Wα,0,
choose −K,L > 0 so that suppO ⊂ [K,L], and set

Zκ
Φ,Ψ

{
q2αS(0)O

} = 〈Φ|Tr[K,L]{T[K,L],M(1)q2κS[K,L]+2αS[K,0]O}|Ψ 〉
〈Φ|Ψ 〉 T (1, κ + α)−K+1T (1, κ)L

. (28)

Then the right hand side is independent of the choice of K,L. If 〈Φ| = 〈κ + α|,
|Ψ 〉 = |κ〉 are the maximal eigenvectors, then by the Perron-Frobenius theorem the
expectation value (26) considered above reduces to (28):

Zκ
{
q2αS(0)O

} = Zκ〈κ+α|,|κ〉
{
q2αS(0)O

}
.

It is not difficult to see that

Zκ
Φ,Ψ

{
t∗(ζ )

(
q2αS(0)

)} = 2ρ(ζ ),

where

ρ(ζ ) = T (ζ, κ + α)

T (ζ, κ)
.

A more interesting example of (28) is

Zκ
Φ,Ψ

{
b∗(ζ )c∗(ξ)

(
q2αS(0)

)} = ω(ζ, ξ).

The function ω(ζ, ξ) is determined from the data about the eigenvectors 〈Φ|, |Ψ 〉.
An explicit formula for ω(ζ, ξ) is given in Appendix A.

We are now in a position to state the ‘Ward identities’ regarding the expectation
values.

Theorem 1 For any X ∈ W(α) the following relations hold:

Zκ
Φ,Ψ

{
t∗(ζ )(X)

} = 2ρ(ζ )Zκ
Φ,Ψ {X},

Zκ
Φ,Ψ

{
b∗(ζ )(X)

} = resξ2=1ω(ζ, ξ)Zκ
Φ,Ψ

{
c(ξ)(X)

}dξ2

ξ2
,

Zκ
Φ,Ψ

{
c∗(ζ )(X)

} = −resξ2=1ω(ξ, ζ )Zκ
Φ,Ψ

{
b(ξ)(X)

}dξ2

ξ2
.

In the left hand side, we have the action of creation operators. In the right hand
side, it becomes reduced to that of the annihilation operators. The proof given in [2]
makes use of a q-difference analog of Abelian integrals on hyperelliptic Riemann
surfaces.
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The formulas in Theorem 1, combined with the annihilation property (23), allow
one to calculate the expectation values of operators inductively. We thus arrive at
the following main result of [2], which says that the calculation of Zκ

Φ,Ψ on the
fermionic base vectors in (25) can be performed by using the ordinary Wick theorem
for fermions.

Theorem 2 Notation being as above, we have

Zκ
Φ,Ψ

{
t∗

(
ζ 0

1

) · · · t∗
(
ζ 0
r

)
b∗(ζ+

1

) · · ·b∗(ζ+
s

)
c∗(ζ−

t

) · · · c∗(ζ−
1

)(
q2αS(0)

)}

=
r∏

j=1

2ρ
(
ζ 0
j

) × δs,t det
(
ω

(
ζ+
k , ζ−

l

))
1≤k,l≤s

.

7 Concluding Remarks

In this article we have outlined the construction of fermions acting on the space
W(α) of quasi-local operators. In this basis the expectation values take a very simple
form (Theorem 2).

As long as the number of sites n in the Matsubara direction is kept finite, ρ(ζ ) and
(ζ/ξ)−αω(ζ, ξ) are rational functions (see Appendix A below). The main virtue of
such a formula is that, in passing to various limits, it is enough to do that for these
two functions alone. For example, for the ground state average in the XXZ spin
chain, the limit n → ∞ can be taken in a straightforward manner. Moreover, on the
infinite lattice any operator of the form t∗p(X) (p ≥ 2) has vanishing expectation
value, so ρ(ζ ) does not appear in the result. This explains the fact that the original
multiple integral formula can be simplified using only one transcendental function
(the limit of ω(ζ, ξ)).

In a sense, the main formula is only an existence theorem, since the transition
matrix between the standard basis and the fermionic basis remains unknown in gen-
eral. Nevertheless, it has non-trivial implications in the continuous limit to confor-
mal field theory and the sine-Gordon theory. For these topics the reader is referred
to [15–18].
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Appendix A: Formula for ω(ζ, ξ)

We quote an explicit formula for the function ω(ζ, ξ) from [2], Sect. 7. For that
purpose we need to prepare some notation.

As in the text, we fix an eigencovector 〈Φ| of TM(ζ, κ + α) and an eigenvector
|Ψ 〉 of TM(ζ, κ) satisfying 〈Φ|Ψ 〉 = 0. Denote their eigenvalues and those for the
Q-matrices as follows:

〈Φ|TM(ζ, κ + α) = 〈Φ|T (ζ, κ + α), 〈Φ|Q±
M(ζ, κ + α) = 〈Φ|Q±(ζ, κ + α),

TM(ζ, κ)|Ψ 〉 = T (ζ, κ)|Ψ 〉, Q±
M(ζ, κ)|Ψ 〉 = Q±(ζ, κ)|Ψ 〉.

Introduce q-difference operators Δζ , Dζ by

Δζ F(ζ ) = F(qζ ) − F
(
q−1ζ

)
,

Dζ F (ζ ) = F(qζ ) + F
(
q−1ζ

) − 2ρ(ζ )F (ζ ).

Hereafter we shall use the shorthand

T (ζ ) = T (ζ, κ), T̃ (ζ ) = T (ζ, κ + α),

Q±(ζ ) = Q±(ζ, κ), Q̃±(ζ ) = Q±(ζ, κ + α),

ψ(ζ ) = ψ(ζ,α).

Set

a(ζ ) =
n∏

m=1

(
1 − q2ζ 2/τ 2

m

)
, d(ζ ) =

n∏

m=1

(
1 − ζ 2/τ 2

m

)
,

ϕ(ζ ) = (
a(ζ )d(ζ )

)−1
,

(29)

and define ωsym(ζ, ξ) by

T (ζ )T (ξ)ωsym(ζ, ξ) = (
4a(ξ)d(ζ ) − T (ζ )T (ξ)

)
ψ(qζ/ξ)

− (
4a(ζ )d(ξ) − T (ζ )T (ξ)

)
ψ

(
q−1ζ/ξ

)

− 2
(
T (ζ )T̃ (ξ) − T (ξ)T̃ (ζ )

)
ψ(ζ/ξ).

As a function of ζ , ω(ζ, ξ) is characterised by the following two conditions.

1. ζ−αT (ζ )(ω(ζ, ξ) − ωsym(ζ, ξ)) is a polynomial in ζ 2 of degree n,
2. It satisfies the normalisation conditions for m = 0,1, . . . , n:

∫

Γm

T (ζ )
(
ω(ζ, ξ) + Dζ DξΔ

−1
ζ ψ(ζ/ξ)

)
Q̃−(ζ )Q+(ζ )ϕ(ζ )

dζ 2

ζ 2
= 0.

Here Γ0 is a contour around ζ 2 = 0, and for m = 1, . . . , n, Γm is a contour encir-
cling ζ 2 = τ 2

m,q−2τ 2
m.
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As it is explained in [2], Sect. 5, the integral in (ii) does not depend on a particular
choice of the ‘q-primitive’ Δ−1

ζ ψ(ζ/ξ).
To be more explicit, consider the function

r+(ζ, ξ) = T (ζ )Δ−1
ζ

((
T (ζ ) − T (ξ)

)
ψ(ζ/ξ)

)

+ T̃ (ζ )Δ−1
ζ

((
T̃ (ζ ) − T̃ (ξ)

)
ψ(ζ/ξ)

)

− T (ζ )Δ−1
ζ

((
T̃ (qζ ) − T̃ (ξ)

)
ψ(qζ/ξ)

)

− T̃ (ζ )Δ−1
ζ

((
T

(
q−1ζ

) − T (ξ)
)
ψ

(
q−1ζ/ξ

))

+ (
a(qζ ) − a(ξ)

)
d(ζ )ψ(qζ/ξ)

− a(ζ )
(
d
(
q−1ζ

) − d(ξ)
)
ψ

(
q−1ζ/ξ

)
.

Then it has the form

(ζ/ξ)−αr+(ζ, ξ) =
n∑

m=0

p+
m

(
ζ 2)ξ2m,

where p+
m(ζ 2) is a polynomial in ζ 2 of degree 2n. Using them we introduce (n +

1) × (n + 1) matrices A, B by

Ai,j =
∫

Γi

ζ α+2j Q̃−(ζ )Q+(ζ )ϕ(ζ )
dζ 2

ζ 2
,

Bi,j =
∫

Γi

ζ αp+
j

(
ζ 2)Q̃−(ζ )Q+(ζ )ϕ(ζ )

dζ 2

ζ 2
.

The formula for ω(ζ, ξ) reads

ω(ζ, ξ) = 4

T (ζ )T (ξ)

tv+(ζ ) ·A−1B · v−(ξ) + ωsym(ζ, ξ),

where v±(ζ ) denote column vectors with entries v±(ζ )j = ζ±α+2j .
For the purpose of studying various limits, it is more convenient to use an alterna-

tive expression in terms of solutions to integral equations [19]. The relevant formula
can be found in [15], (3.11) (the function ω(ζ, ξ) in the present paper is denoted
ωrat(ζ, ξ) there, see [15], (2.11)). In this connection one should mention the recent
paper [20] where a Riemann-Hilbert problem has been formulated.

Appendix B: Anti-commutativity of Fermionic Creation
Operators

In this appendix we prove the following anti-commutation relations between the
creation operators.
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Theorem 3 For all p,p′ ≥ 1, we have

[
b∗

p,b∗
p′

]
+ = 0 on Wα+2,−2,

[
c∗
p, c∗

p′
]
+ = 0 on Wα−2,2, (30)

[
b∗

p, c∗
p′

]
+ = 0 on Wα,0. (31)

Since the proofs are similar, we shall concentrate on the case (31).
The next Proposition says that the anti-commutation relation (31) holds in the

sense of expectation values.

Proposition 1 Assume (27). Then for any X ∈Wα,0 we have

Zκ
Φ,Ψ

{[
b∗

p, c∗
p′

]
+(X)

} = 0
(∀p,p′ ≥ 1

)
.

Proof Abbreviating Zκ
Φ,Ψ to Z, we apply the Ward identities for the expectation

values in Theorem 1,

Z
{
b∗(ζ1)c∗(ζ2)(X)

}

= resξ2
1 =1ω(ζ1, ξ1)Z

{
c(ξ1)c∗(ζ2)(X)

}dξ2
1

ξ2
1

= resξ2
1 =1ω(ζ1, ξ1)

(−Z
{
c∗(ζ2)c(ξ1)(X)

} + ψ(ξ1/ζ2, α)
)dξ2

1

ξ2
1

= resξ2
1 ,ξ2

2 =1ω(ζ1, ξ1)ω(ζ2, ξ2)Z
{
b(ξ2)c(ξ1)(X)

}dξ2
1

ξ2
1

dξ2
2

ξ2
2

+ ω(ζ1, ζ2).

In the second line we used the known anti-commutation relations between the cre-
ation and annihilation operators.

Similarly one calculates

Z
{
c∗(ζ2)b∗(ζ1)(X)

}

= resξ2
1 ,ξ2

2 =1ω(ζ2, ξ2)ω(ζ1, ξ1)Z
{
c(ξ1)b(ξ2)(X)

}dξ2
1

ξ2
1

dξ2
2

ξ2
2

− ω(ζ1, ζ2).

Using the known anti-commutativity of b(ξ2) and c(ξ1), we arrive at

Z
{
b∗(ζ1)c∗(ζ2)(X)

} = −Z
{
c∗(ζ2)b∗(ζ1)(X)

}
,

which is equivalent to the assertion of Proposition. �
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Before proceeding, we recall a few facts from the algebraic Bethe ansatz. Nor-
malising the L operator as

L(ζ ) =

⎛

⎜⎜⎝

1 − q2ζ 2

(1 − ζ 2)q (1 − q2)ζ

(1 − q2)ζ (1 − ζ 2)q

1 − q2ζ 2

⎞

⎟⎟⎠ ,

we set

La,n(ζ/τn) · · ·La,1(ζ/τ1) =
(

A(ζ ) B(ζ )

C(ζ ) D(ζ )

)

a

.

Let |0〉 = v⊗n+ , 〈0| = (v∗+)⊗n be the reference vector and covector respectively,
where v+, v− is the standard basis of C2 and v∗+, v∗− is the dual basis. Let further
l ∈ {0,1, . . . , n} and set for j = 1, . . . , l

Fj (ξ1, . . . , ξl) = a(ξj )

l∏

i=1

(
ξ2
i − q−2ξ2

j

) + q−2κ+n−2ld(ξj )

l∏

i=1

(
ξ2
i − q2ξ2

j

)
,

where a(ζ ), d(ζ ) are defined in (29).
The following formula is well known [14].

Proposition 2 Assume that (ξ1, . . . , ξl) ∈ (C×)l is a solution of the Bethe equation

Fj (ξ1, . . . , ξl) = 0 (j = 1, . . . , l), (32)

and let (ζ1, . . . , ζl) ∈ (C×)l be arbitrary. Then

〈0|
l∏

j=1

C(ζj )

l∏

j=1

B(ξj )|0〉 = q−l(l−1−n)
(
q − q−1)l

×
∏l

j=1 ζj ξj d(ξj )
∏

1≤i<j≤l (ξ
2
i − ξ2

j )(ζ 2
j − ζ 2

i )
det(Ωj,k)1≤j,k≤l ,

Ωj,k = a(ζk)
∏l

i=1(q
2ξ2

i − ζ 2
k )

(ξ2
j − ζ 2

k )(q2ξ2
j − ζ 2

k )
− q−2κ+n d(ζk)

∏l
i=1(ξ

2
i − q2ζ 2

k )

(ξ2
j − ζ 2

k )(ξ2
j − q2ζ 2

k )
.

We shall consider the specialisation of parameters q,τ = (τ1, . . . , τn) to

q0 = eπi/2, τ 0 = (1, . . . ,1).

Lemma 1 Define xj (κ) by

1 − xj (κ)

1 + xj (κ)
= −e− πi

n
(κ− n

2 +l+2j) (j = 1, . . . , n).
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Then, for any subset I = {i1, . . . , il} ⊂ {1, . . . , n}, i1 < · · · < il ,
(
ξ2

1 , . . . , ξ2
l

) = (
xi1(κ), . . . , xil (κ)

)
(33)

is a solution of (32) for (q,τ ) = (q0,τ 0). If further κ is generic, then we have
ξ2
j = ±1, ξ2

j = ±ξ2
k (j = k).

Proof is straightforward.
Hereafter we choose and fix a generic κ0. Denote by ξ

(I )
0 the solution (33) at

(κ, q,τ ) = (κ0, q0,τ 0).

Lemma 2 We have

det

(
∂Fj

∂ξ2
k

(
ξ

(I )
0

)) = 0.

Proof This follows from the calculation

∂Fj

∂ξ2
k

(
ξ

(I )
0

) = δj,k · 2n

1 − ξ4
j

a(ξj )

l∏

i=1

(
ξ2
i + ξ2

j

)
,

where (32) is used. �

By Lemma 2 and the implicit function theorem, in a neighborhood of (κ, q,τ ) =
(κ0, q0,τ 0) there exists a unique branch ξ (I )(κ, q,τ ) = {ξ2

1 , . . . , ξ2
l } of solutions to

(32) such that ξ (I )(κ0, q0,τ 0) = ξ
(I )
0 . Denote by

I 〈κ, q,τ | = 〈0|
l∏

j=1

C(ξj ), |κ, q,τ 〉I =
l∏

j=1

B(ξj )|0〉

the corresponding Bethe (co)vectors.

Lemma 3 In a neighborhood of (κ0, q0,τ 0), we have

I

〈
κ ′, q,τ |κ, q,τ

〉
J

= 0
(
κ ′ = κ

)

for all I, J ⊂ {1, . . . , n} with �I = �J = l.

Proof We apply Proposition 2 at (q,τ ) = (q0,τ 0). Setting ξ (I )(κ, q0,τ 0) =
(ξ1, . . . , ξl) and ξ (J )(κ ′, q0,τ 0) = (ζ1, . . . , ζl) we find

I

〈
κ ′, q0,τ 0|κ, q0,τ 0

〉
J

= 2l i−l(l−2−n)
(
1 − eπi(κ ′−κ)

)l
l∏

p=1

(
ξpζpd(ξp)a(ζp)

)
∏

j<k(ξ
2
j + ξ2

k )(ζ 2
k + ζ 2

j )
∏l

j,k=1(ξ
2
j + ζ 2

k )
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which is non-zero. Hence the scalar product does not vanish in some neighborhood
of (κ0, q0,τ 0) and κ ′ = κ . �

We finish the proof with the

Proposition 3 For any p,p′ ≥ 1 and X ∈Wα,0 we have
[
b∗

p, c∗
p′

]
+(X) = 0. (34)

Proof Denote the left hand side of (34) by Y . Take (κ, q,τ ) in a neighborhood
of (κ0, q0,τ 0) and α = 0 small enough. Choose 〈Φ| = I 〈κ + α,q,τ | and |Ψ 〉 =
|κ, q,τ 〉J , where �I = �J = l and 0 ≤ l ≤ n. Under the assumption above, we have
〈Φ|Ψ 〉 = 0 by Lemma 3. Hence Proposition 1 is applicable, and we obtain that

〈Φ|Tr[K,L]
{
T[K,L],M(1)q2κS[K,L]Y

}|Ψ 〉 = 0.

Since the vectors {I 〈κ +α,q,τ |}, {|κ, q,τ 〉I } are bases of the spin n/2− l subspace,
we find

Tr[K,L]
{
T[K,L],M(1)q2κS[K,L]Y

} = 0.

If we choose n = L − K + 1 and τ = τ 0, then T[K,L],M(1) becomes a permutation
operator and the trace becomes simply q2κS[K,L]Y . We conclude that Y = 0 provided
(q,α) is close enough to (q0,0) and α = 0. But Y is rational in q, qα , so we must
have that Y = 0 identically. This completes the proof. �
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