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Preface

This is the joint proceedings of the two conferences:

1. Infinite Analysis 11—Frontier of Integrability—
University of Tokyo, Japan in July 25th to 29th, 2011,

2. Symmetries, Integrable Systems and Representations
Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011.

As both of the conferences had been organized in the occasion of 60th anniver-
sary of Prof. Michio Jimbo, the topics covered in this proceedings are very large.
Indeed, it includes combinatorics, differential equations, integrable systems, proba-
bility, representation theory, solvable lattice models, special functions etc. We hope
this volume might be interesting and useful both for young researchers and experi-
enced specialists in these domains.

We shall mention about the financial supports we had; the conference at Tokyo
was supported in part by Global COE programme “The research and training center
for new development in mathematics” (Graduate School of Mathematical Science,
University of Tokyo), and the conference at Lyon was supported by Institut Uni-
versitaire de France, GDR 3395 ‘Théorie de Lie algébrique et géométrique’, GDRE
571 ‘Representation theory’, Université Lyon 1 and Université Paris 6.

Kenji Iohara
Sophie Morier-Genoud

Bertrand Rémy

Lion, France
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A Presentation of the Deformed W1+∞ Algebra

N. Arbesfeld and O. Schiffmann

Abstract We provide a generators and relation description of the deformed W1+∞-
algebra introduced in previous joint work of E. Vasserot and the second author. This
gives a presentation of the (spherical) cohomological Hall algebra of the one-loop
quiver, or alternatively of the spherical degenerate double affine Hecke algebra of
GL(∞).

1 Introduction

In the course of their work on the cohomology of the moduli space of U(r)-
instantons on P

2 in relation to W -algebras and the AGT conjecture (see [6])
E. Vasserot and the second author introduced a certain one-parameter deformation
SHc of the enveloping algebra of the Lie algebra W1+∞ of algebraic differential
operators on C

∗. The algebra SHc—which is defined in terms of Cherednik’s dou-
ble affine Hecke algebras—acts on the above mentioned cohomology spaces (with a
central character depending on the rank n of the instanton space). For the same value
of the central character, SHc is also strongly related to the affine W algebra of type
gln, and has the same representation theory (of admissible modules) as the latter.
The same algebra SHc arises again as the (spherical) cohomological Hall algebra
of the quiver with one vertex and one loop, and as a degeneration of the (spherical)
elliptic Hall algebra (see [6, Sects. 4, 8]. It also independently appears in the work
of Maulik and Okounkov on the AGT conjecture, see [5].

The definition of SHc given in [6] is in terms of a stable limit of spherical degen-
erate double affine Hecke algebras, and does not yield a presentation by generators
and relations. In this note, we provide such a presentation, which bears some resem-
blance with Drinfeld’s new realization of quantum affine algebras and Yangians.
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2 N. Arbesfeld and O. Schiffmann

Namely, we show that SHc is generated by families of elements in degrees −1,0,1,
modulo some simple quadratic and cubic relations (see Theorems 1, 2).

The definition of SHc is recalled in Sect. 2. In the short Sect. 3 we briefly recall
the links between SHc and Cherednik algebras, resp. W-algebras. The presentation
of SHc is given in Sect. 4, and proved in Sect. 5. Although we have tried to make
this note as self-contained as possible, there are multiple references to statements
in [6] and the reader is advised to consult that paper (especially Sects. 1 and 8) for
details.

2 Definition of SHc

2.1 Symmetric Functions and Sekiguchi Operators

Let κ be a formal parameter, and let us set F =C(κ). Let us denote by ΛF the ring
of symmetric polynomials in infinitely many variables with coefficients in F , i.e.

ΛF = F [X1,X2, . . .]S∞ = F [p1,p2, . . .].
For λ a partition, we denote by Jλ the integral form of the Jack polynomial associ-
ated to λ and to the parameter α = 1/κ . The integral form Jλ is characterized by the
following relation:

Jλ ∈
⊕

(1n)<μ�λ

Fmμ + |λ|!m(1n)

where mμ denotes the monomial symmetric function associated to a partition μ.
It is well-known that {Jλ} forms a basis of ΛF (see e.g. [7], or [6, Sects. 1.3,

1.6]). The polynomials Jλ arise as the joint spectrum of a family of commuting
differential operators {D0,l}, l ≥ 1 called Sekiguchi operators. We will not need the
expression of D0,l as a differential operator, but only their eigenvalues on the basis
of Jack polynomials (which, of course, fully characterizes them):

D0,l(Jλ)=
∑

s∈λ
c(s)l−1Jλ (1)

where s runs through the set of boxes in the partition λ, and where c(s) = x(s)−
κy(s) is the content of s. Here x(s), y(s) denote the x and y-coordinates of the box
s, when λ is drawn according to the continental convention. For example, for the
box s in the partition (5,42,2,1) depicted below

s
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we have x(s)= 3 and y(s)= 1 hence c(s)= 3− κ .
We denote by Dl,0 ∈ End(ΛF ) the operator of multiplication by the power-sum

function pl .

2.2 The Algebras SH+ and SH>

Let SH+ be the unital subalgebra of End(ΛF ) generated by {D0,l ,Dl,0 | l � 1}. For
l ≥ 1 we set D1,l = [D0,l+1,D1,0]. This relation is still valid when l = 0, and we
furthermore have

[D0,l ,D1,k] =D1,k+l−1, l � 1, k � 0. (2)

We denote by SH> the unital subalgebra of SH+ generated by {D1,l | l � 0},
and by SH0 the unital subalgebra of SH+ generated by the Sekiguchi operators
{D0,l | l � 1}. It is known (and easy to check from (1)) that the D0,l are algebraically
independent, i.e. SH0 = F [D0,1,D0,2, . . .].

Observe that by (2), the operators ad(D0,l) preserve the subalgebra SH>. This
allows us to view SH+ as a semi-direct product of SH0 and SH>. In fact, the mul-
tiplication map induces an isomorphism

SH> ⊗ SH0 � SH+ (3)

(see [6, Proposition 1.18]).

2.3 Grading and Filtration

The algebra SH+ carries an N-grading, defined by setting D0,l , D1,k in degrees zero
and one respectively. This grading, which corresponds to the degrees as operators
on polynomials will be called the rank grading. It also carries an N-filtration com-
patible with the rank grading, induced from the filtration by the order of differential
operators. It may alternatively be characterized as follows, see [6, Proposition 1.2]:
SH+[� d] is the space of elements u ∈ SH> satisfying

ad(z1) ◦ · · · ◦ ad(zd+1)(u)= 0

for all z1, . . . , zd+1 ∈ F [D1,0,D2,0, . . .]. We have SH>[� 0] = F [D1,0,D2,0, . . .].
The following is proved in [6, Lemma 1.21]. Set Dr,d = [D0,d+1,Dr,0] for
r ≥ 1, d ≥ 0.

Proposition 1 (i) The associated graded algebra gr SH+ is equal to the free com-
mutative polynomial algebra in the generators Dr,d ∈ gr SH+[r, d], for r � 0, d �
0, (r, d) 	= (0,0).

(ii) The associated graded algebra gr SH> is equal to the free commutative poly-
nomial algebra in the generators Dr,d ∈ gr SH+[r, d], for r � 1, d � 0.
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We will need the following slight variant of the above result, which can easily be
deduced from [6, Proposition 1.38]. For r � 1, set D′

r,d = ad(D0,2)
d(Dr,0). Then

D′
r,d ∈ rd−1Dr,d ⊕ SH>[r,� d − 1]. (4)

In particular, gr SH> is also freely generated by the elements D′
r,d ∈ gr SH>[r, d].

2.4 The Algebra SHc

Let SH< be the opposite algebra of SH>. We denote the generator of SH> cor-
responding to D1,l by D−1,l . The algebra SHc is generated by SH>,SH0,SH<

together with a family of central elements c= (c0, c1, . . .) indexed by N, modulo a
certain set of relations involving the commutators [D−1,k,D1,l] (see [6, Sect. 1. 8]).
In order to write down these relations, we need a few notations. Set ξ = 1− κ and

G0(s)=−log(s), Gl(s)=
(
s−1 − 1

)
/l, l � 1,

ϕl(s)=
∑

q=1,−ξ,−κ

sl
(
Gl(1− qs)−Gl(1+ qs)

)
, l � 1,

φl(s)= slGl(1+ ξs).

We may now define SHc as the algebra generated by SH>,SH<,SH0 and
F [c0, c1, . . .] modulo the following relations:

[D0,l ,D1,k] =D1,k+l−1, [D−1,k,D0,l] =D−1,k+l−1, (5)

[D−1,k,D1,l] =Ek+l , l, k � 0, (6)

where the elements Eh are determined through the formulas

1+ ξ
∑

l�0

Els
l+1 = exp

(∑

l�0

(−1)l+1clφl(s)

)
exp

(∑

l�0

D0,l+1ϕl(s)

)
. (7)

Set SH0,c = SH0⊗F [c0, c1, . . .]. One can show that the multiplication map pro-
vides an isomorphism of F -vector spaces

SH> ⊗ SH0,c ⊗ SH< � SHc.

Putting the generators D±1,k in degree±1 and the generators D0,l , ci in degree zero
induces an Z-grading on SHc. One can show that the order filtration on SH>,SH<

can be extended to a filtration on the whole SHc, but we won’t need this last fact.
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3 Link to W-Algebras, Cherednik Algebras and Shuffle Algebras

3.1 Relation the Cherednik Algebras

Let ω be a new formal parameter and let SHω be the specialization of SH at
c0 = 0, ci = −κiωi . Let Hn be Cherednik’s degenerate (or trigonometric) double
affine Hecke algebra with parameter κ (see [2]). Let SHn ⊂Hn be its spherical sub-
algebra. The following result shows that SHω may be thought of as the stable limit
of SHn as n goes to infinity (see [6, Sect. 1.7]):

Theorem For any n there exists a surjective algebra homomorphism Φn : SHω →
SHn such that Φn(ω)= n. Moreover

⋂
n KerΦn = {0}.

3.2 Realization as a Shuffle Algebra

Consider the rational function

g(z)= h(z)

z
, h(z)= (z+ 1− κ)(z− 1)(z+ κ).

Following [3], we may associate to g(z) an N-graded associative F -algebra Ag(z),
the symmetric shuffle algebra of g(z) as follows. As a vector space,

Ag(z) =
⊕

n�0

Ag(z)[n], Ag(z)[n] = F [z1, . . . , zn]Sn

with multiplication given by

P(z1, . . . , zr ) � Q(z1, . . . , zs)

=
∑

σ∈Shr,s

σ ·
( ∏

1�i�r
r+1�j�r+s

g(zi − zj ) · P(z1, . . . , zr )Q(zr+1, . . . , zr+s)

)

where Shr,s ⊂Sr+s is the set of (r, s) shuffles inside the symmetric group Sr+s . Let
Sg(z) ⊆ Ag(z) denote the subalgebra generated by Ag(z)[1] = F [z1]. The restriction
of the grading on Ag(z) yields a grading Sg(z) =⊕n�0 Sg(z)[n]. The following is
proved in [6, Cor. 6.4]:

Theorem The assignment Sg(z)[1] � zl1 �→D1,l , l � 0 induces an isomorphism of
F -algebras

Sg(z)
∼−→ SH>.
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Remark The normalization used here differs slightly from [6]. Namely, the isomor-
phism in [6, Cor. 6.4] is between SH> and the shuffle algebra associated to the
rational function 1

z
(z + x + y)(z − x)(z − y), where x and y are formal parame-

ters satisfying κ = −y/x. In the present note, we have applied the transformation
z �→ z/x, yielding the above isomorphism.

3.3 Relation to W -Algebras

Let W1+∞ be the universal central extension of the Lie algebra of all differential
operators on C

∗ (see e.g. [4]). This is a Z-graded and N-filtered Lie algebra. The
following result shows that SH may be thought of as a deformation of the universal
enveloping algebra U(W1+∞) of W1+∞ (see [6, Appendix F]):

Theorem The specialization of SHc at κ = 1 and ci = 0 for i � 1 is isomorphic to
U(W1+∞).

More interesting is the fact that, for certain good choices of the parameters
c0, c1, . . . , a suitable completion of SHc is isomorphic to the current algebra of
the (affine) W -algebra W(glr ) (see e.g. [1, Sect. 3.11]). We will not need this result,
so we are a bit vague here and refer to [6, Sect. 8] for the full details. Fix an inte-
ger r � 1, k ∈C and let (ε1, . . . , εr ) be new formal parameters. Let U(Wk(glr ))

′ be
the formal current algebra of W(glr ) at level k, defined over the field F(ε1, . . . , εr )

(see [6, Sect. 8.4] for details). Let SH(r) be the specialization of SHc to κ = k + r ,
ci = εi1 + · · · + εir for i � 0. The following is proved in [6, Cor. 8.24], to which we
refer for details.

Theorem There is an embedding SH(r) → U(Wk(glr ))
′ with a dense image, which

induces an equivalence between the category of admissible SH(r)-modules and the
category of admissible U(Wk(glr ))

′-modules.

4 Presentation of SH+ and SHc

4.1 Generators and Relations for SH+

Consider the F -algebra S̃H
+

generated by elements {D̃0,l | l � 1} and {D̃1,k | k � 0}
subject to the following set of relations:

[D̃0,l , D̃0,k] = 0, ∀l, k � 1, (8)

[D̃0,l , D̃1,k] = D̃1,l+k−1, ∀l � 1, k � 0, (9)
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(
3[D̃1,2, D̃1,1]− [D̃1,3, D̃1,0]+ [D̃1,1, D̃1,0]

)+ κ(κ − 1)
(
D̃2

1,0+[D̃1,1, D̃1,0]
)= 0,

(10)
[
D̃1,0, [D̃1,0, D̃1,1]

]= 0. (11)

Let S̃H
0 = F [D̃0,1, D̃0,2, . . .] denote the subalgebra of S̃H

+
generated by D̃0,l ,

l � 1, and let S̃H
>

be the subalgebra generated by D̃1,k, k � 0. The algebras S̃H
+

,

S̃H
0
, S̃H

>
are all N-graded, where D̃0,l and D̃1,k are placed in degrees zero and

one respectively. According to the terminology used for SH+, we call this grading
the rank grading.

Theorem 1 The assignment D̃0,l �→D0,l , D̃1,k �→D1,k for l � 1, k � 0 induces an
isomorphism of graded F -algebras

φ : S̃H
+ ∼−→ SH+.

Obviously, the map φ restricts to isomorphisms S̃H
0 � SH0, S̃H

> � SH>. Note
however that S̃H

>
is not generated by the elements D̃1,k with the sole relations (10),

(11). Theorem 1 is proved in Sect. 5.

4.2 Generators and Relations for SHc

For the reader’s convenience, we write down the presentation of SHc, an immediate
corollary of Theorem 1 above. Let S̃H

c
be the algebra generated by elements {D̃0,l |

l � 1}, {D̃±1,k | k � 0} and {c̃i | i � 0} subject to the following set of relations:

[D̃0,l , D̃0,k] = 0, ∀l, k � 1, (12)

[D̃0,l , D̃1,k] = D̃1,l+k−1, [D̃−1,k, D̃0,l] = D̃−1,l+k−1, ∀l � 1, k � 0, (13)

(
3[D̃1,2, D̃1,1]− [D̃1,3, D̃1,0]+ [D̃1,1, D̃1,0]

)+ κ(κ − 1)
(
D̃2

1,0+[D̃1,1, D̃1,0]
)= 0,

(14)

(
3[D̃−1,2, D̃−1,1] − [D̃−1,3, D̃−1,0] + [D̃−1,1, D̃−1,0]

)

+ κ(κ − 1)
(−D̃2

1,0 + [D̃−1,1, D̃−1,0]
)= 0, (15)

[
D̃1,0, [D̃1,0, D̃1,1]

]= 0,
[
D̃−1,0, [D̃−1,0, D̃−1,1]

]= 0, (16)

[D̃−1,k, D̃1,l] = Ẽk+l , l, k � 0, (17)

where the Ẽl are defined by the formula (7).
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Theorem 2 The assignment D̃0,l �→ D0,l , D̃±1,k �→ D±1,k for l � 1, k � 0 and
c̃i �→ ci for i � 0 induces an isomorphism of F -algebras

φ : S̃H
c ∼−→ SHc.

Coupled with the Theorems in Sect. 3.3, this provides a potential’generators and
relations’ approach to the study of the category of admissible modules over the W-
algebras Wk(glr ).

5 Proof of Theorem 1

5.1 First Reductions

Let us first observe that φ is a well-defined algebra map, i.e. that relations (8)–(11)
hold in SH+. For (8), (9) this follows from the definition of SH+ and [6, (1.38)].
Equation (10) may be checked directly, e.g. from the Pieri rules (see [6, (1.26)]), or
from the shuffle realization of SH> (see Sect. 5.2 below). As for Eq. (11), we have
by [6, (1.35)], [[D1,1,D1,0],D1,0] = [D2,0,D1,0] = 0. The map φ is surjective by
construction; in the rest of the proof, we show that it is injective as well.

Using relation (9) it is easy to see that any monomial in the generators D̃0,l , D̃1,k
may be expressed as a linear combination of similar monomials, in which all D̃0,l

appear on the right of all D̃1,k . Hence the multiplication map S̃H
> ⊗ S̃H

0 → S̃H
+

is surjective. Since φ clearly restricts to an isomorphism S̃H
0 � SH0 we only have

to show, by (3), that φ restricts to an isomorphism S̃H
> � SH>. Our strategy will

be to construct a suitable filtration on S̃H
>

mimicking the order filtration of SH>

and to pass to the associated graded algebras.

5.2 Verification in Ranks One and Two

We begin by proving directly, using the shuffle realization of SH>, that φ is an
isomorphism in ranks one and two. This is obvious in rank one since φ is a graded
map and the only relation in rank one is (9).

Suppose
∑

αiD1,kiD1,li = 0 is a relation in rank two. The shuffle realization
then implies

∑
αiz

ki � zli = 0 so that

h(z1 − z2)
(∑

αiz
ki
1 z

li
2

)
= h(z2 − z1)

(∑
αiz

li
1 z

ki
2

)
.

Therefore
∑

αiz
ki
1 z

li
2 = h(z2 − z1)P (z1, z2) where P(z1, z2) is some symmetric

polynomial in z1, z2. Hence
∑

αiz
ki
1 z

li
2 is a linear combination of polynomials of
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the form h(z2− z1)(z
k
1z

l
2+ zl1z

l
2k) so that

∑
αiD1,kiD1,li is a linear combination of

expressions of the form

3[D1,l+2,D1,k+1] − 3[D1,l+1,D1,k+2]
− [D1,l+3,D1,k] + [D1,l ,D1,k+3] + [D1,l+1,D1,k] − [D1,l ,D1,k+1]
+ κ(κ − 1)

(
D1,kD1,l +D1,lD1,k + [D1,l+1,D1,k] − [D1,l ,D1,k+1]

)
. (18)

If I denotes the image of (10) under the action of F [ad D̃0,2,ad D̃0,3, . . .] then using
(9) we see that each such expression lies in φ(I) so that φ is indeed an isomorphism
in rank two.

We remark that the relations (18) may be written in a more standard way using
the generating functions D(z)=∑l D1,lz

−l as follows:

k(z−w)D(z)D(w)=−k(w− z)D(w)D(z) (19)

where k(u) = (u − 1 + κ)(u + 1)(u − κ) = −h(−u). In particular, the defining
relation (10) may be replaced by the above (19), of which it is a special case.

5.3 The Order Filtration on ˜SH
>

We now turn to the definition of the analog, on S̃H
>

, of the order filtration on SH>.
We will proceed by induction on the rank r . For r = 1, d � 0, we set

S̃H
>[1,� d] =

⊕

k�d

F D̃1,k.

Assuming that S̃H
>[r ′,� d ′] has been defined for all r ′ < r we let S̃H

>[r,� d] be
the subspace spanned by all products

S̃H
>[

r ′,� d ′
] · S̃H

>[
r ′′,� d ′′

]
, r ′ + r ′′ = r, d ′ + d ′′ = d

and by the spaces

ad(D̃1,l)
(
S̃H

>[r − 1,� d − l + 1]), l = 0, . . . , d + 1.

From the above definition, it is clear that S̃H
>

is a Z-filtered algebra. Note that
it is not obvious at the moment that S̃H

>[r,� d] = {0} for d < 0. Because the
associated graded gr SH> is commutative, it follows by induction on the rank r

that φ : S̃H
> → SH> is a morphism of filtered algebras. We denote by gr S̃H

>
the

associated graded of S̃H
>

and we let φ : gr S̃H
> → gr SH be the induced map. The

map φ is graded with respect to both rank and order. Moreover φ is an isomorphism
in ranks 1 and 2 (indeed, that the filtration as defined above coincides with the order
filtration in rank 2 can be seen directly from [6, (1.84)]). The rest of the proof of
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Theorem 1 consists in checking that φ is an isomorphism. Once more, we will argue
by induction. So in the remainder of the proof, we fix an integer r � 3 and assume
that φ is an isomorphism in ranks r ′ < r .

5.4 Commutativity of the Associated Graded

By our assumption above, the algebra gr S̃H
>

is commutative in ranks less than
r , that is ab = ba whenever rank(a)+ rank(b) < r . Our first task is to extend this
property to the rank r .

Lemma 1 The algebra gr S̃H
>

is commutative in rank r .

Proof We have to show that for a ∈ S̃H
>[r1,� d1], b ∈ S̃H

>[r2,� d2] and r1 +
r2 = r we have

[a, b] ∈ S̃H
>[r,� d1 + d2 − 1]. (20)

We argue by induction on r1. If r1 = 1 then (20) holds by definition of the filtration.
Now let r1 > 1 and let us further assume that (20) is valid for all r ′1, r ′2 with r ′1+r ′2 =
r and r ′1 < r1. We will now prove (20) for r1, r2, thereby completing the induction
step. According to the definition of the filtration, there are two cases to consider:

Case 1 We have a = a1a2 with a1 ∈ S̃H
>[s′,� d ′], a2 ∈ S̃H

>[s′′,� d ′′] such
that s′ + s′′ = r1, d

′ +d ′′ = d1. Then [a, b] = a1[a2, b]+[a1, b]a2. By our induction
hypothesis on r , [a2, b] ∈ S̃H

>[s′′ + r2,� d ′′ + d2− 1] hence a1[a2, b] ∈ S̃H
>[r,�

d1 + d2 − 1]. The term [a1, b]a2 is dealt with in a similar fashion.
Case 2 We have a = [D̃1,l , a

′]with a′ ∈ S̃H
>[r1−1,� d1− l+1]. Then [a, b] =

[[D̃1,l , a
′], b] = [D̃1,l , [a′, b]] − [a′, [D̃1,l , b]]. By our induction hypothesis on r ,

[a′, b] ∈ S̃H
>[r1+ r2−1,� d1+d2− l] hence [D̃1,l , [a′, b]] ∈ S̃H

>[r,� d1+d2−
1]. Similarly, [D̃1,l , b] ∈ S̃H

>[r2 + 1,� d2 + l − 1]. The inclusion [a′, [D̃1,l , b]] ∈
S̃H

>[r,� d1 + d2 − 1] now follows from the induction hypothesis on r1.
We are done. �

5.5 The Degree Zero Component

We now focus on the filtered piece of order � 0 of S̃H
>

. We inductively define
elements D̃l,0 for l � 2 by

D̃l,0 = 1

l − 1
[D̃1,1, D̃l−1,0].

From [6, (1.35)] we have φ(D̃l,0)=Dl,0. Since we assume are assuming that φ is
an isomorphism in ranks less than r , we have [D̃l,0, D̃l′,0] = 0 whenever l + l′ < r .
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Lemma 2 We have [D̃l,0, D̃l′,0] = 0 for l + l′ = r .

Proof If r = 3 this reduces to the cubic relation (11). For r = 4 we have to consider

[D̃3,0, D̃1,0] = 1

2

[[D̃1,1, D̃2,0], D̃1,0
]

= 1

2

[
D̃1,1, [D̃2,0, D̃1,0]

]− 1

2

[
D̃2,0, [D̃1,1, D̃1,0]

]

= −1

2
[D̃2,0, D̃2,0] = 0.

Now let us fix l, l′ with l + l′ = r . We have

[D̃l,0, D̃l′,0] = 1

l − 1

[[D̃1,1, D̃l−1,0], D̃l′,0
]

= 1

l − 1

[
D̃1,1, [D̃l−1,0, D̃l′,0]

]− 1

l − 1

[
D̃l−1,0, [D̃1,1, D̃l′,0]

]

= − l′

l − 1
[D̃l−1,0, D̃l′+1,0]. (21)

If r = 2k is even then by repeated use of (21) we get

[D̃l,0, D̃l′,0] = c[D̃k, D̃k] = 0

for some constant c. Next, suppose that r = 2k + 1 is odd, with k � 2. Applying
ad(D̃1,1) to [D̃k+1,0, D̃k−1,0] = 0 yields the relation

(k + 1)[D̃k+2,0, D̃k−1,0] + (k − 1)[D̃k+1,0, D̃k,0] = 0. (22)

Similarly, applying ad(D̃2,1) to [D̃k,0, D̃k−1,0] = 0 and using the relation [Dk,1,

Dl,0] = klDl+k,0 in SH> (see [6, (1.91), (8.47)]) we obtain the relation

k[D̃k+2,0, D̃k−1,0] + (k − 1)[D̃k,0, D̃k+1,0] = 0. (23)

Equations (22) and (23) imply that [D̃k+2,0, D̃k−1,0] = [D̃k+1,0, D̃k,0] = 0. The gen-
eral case of [D̃l,0, D̃l′,0] = 0 is now deduced, as in the case r = 2k, from repeated
use of (21). �

Note that Lemma 2 above implies that S̃H
>[r,�−1] = {0}.

5.6 Completion of the Induction Step

Recall that gr SH> is a free polynomial algebra in generators in the generators D′
s,d

for s � 1, d � 0. In order to prove that φ is an isomorphism in rank r , it suffices, in
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virtue of Lemma 1, to show that the factor space

Ur,d = gr S̃H
>[r, d] /

{ ∑

r ′+r ′′=r
d ′+d ′′=d

gr S̃H
>[

r ′, d ′
] · gr S̃H

>[
r ′′, d ′′

]}

is one dimensional for any d � 0. Let us set, for any s � 1, d � 0

D̃′
s,d = ad(D̃0,2)

d(D̃s,0) ∈ S̃H
>[s,� d].

We will denote by the same symbol D̃′
s,d the corresponding element of gr S̃H

>[s, d].
Note that D̃′

s,0 = D̃s,0 We claim that in fact Ur,d = FD̃′
r,d . Observe that φ(D̃′

s,d )=
D′

s,d for any s, d , hence D̃′
s,d ∈Us,d for any s � r, d � 0. Moreover, by our general

induction hypothesis on r we have Us,d = FD̃′
s,d for any s < r and d � 0.

We will prove that Ur,d = FD̃′
r,d by induction on d . For d = 0, this comes from

Lemma 2. So fix d > 0 and let us assume that Ur,l = FD̃′
r,l for all l < d . By defini-

tion of the filtration on S̃H
>

, Ur,d is linearly spanned by the classes of the elements

[
D̃1,0, D̃

′
r−1,d+1

]
,
[
D̃1,1, D̃

′
r−1,d

]
, . . . ,

[
D̃1,d+1, D̃

′
r−1,0

]
.

By our induction hypothesis on d , the elements

[
D̃1,0, D̃

′
r−1,d

]
,
[
D̃1,1, D̃

′
r−1,d−1

]
, . . . ,

[
D̃1,d , D̃

′
r−1,0

]

all belong to FD̃′
r,d−1 ⊕ S̃H

>[r,� d − 2]. Applying ad(D̃0,2), we see that

[
D̃1,0, D̃

′
r−1,d+1

]+ [D̃1,1, D̃
′
r−1,d

]
, . . . ,

[
D̃1,d , D̃

′
r−1,1

]+ [D̃1,d+1, D̃
′
r−1,0

]
(24)

all belong to FD̃′
r,d ⊕ S̃H

>[r,� d − 1]. Next, applying ad(D̃0,d+2) to the equality

[D̃1,0, D̃r−1,0] = 0 yields

[D̃1,0, D̃r−1,d+1] + [D̃1,d+1, D̃r−1,0] = 0

which implies, by (4), that

[
D̃1,0, D̃

′
r−1,d+1

]+ rd [D̃1,d+1, D̃r−1,0]
∈ [D̃1,0, S̃H

>[r − 1,� d]]⊆ S̃H
>[r,� d − 1]. (25)

The collection of inclusions (24), (25) may be considered as a system of linear equa-
tions in Ur,d modulo FD̃′

r,d in the variables [D̃1,0, D̃
′
r−1,d+1], . . . , [D̃1,d+1, D̃

′
r−1,0]
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whose associated matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1
1 1 · · · 0 0

0 1
. . .

...
...

...
...

. . . 1 0
0 0 · · · 1 −rd

⎞

⎟⎟⎟⎟⎟⎟⎠

is invertible. We deduce that [D̃1,0, D̃
′
r−1,d+1], . . . , [D̃1,d+1, D̃

′
r−1,0] all belong to

the space FD̃′
r,d ⊕ S̃H

>[r,� d − 1] as wanted. This closes the induction step on d .

We have therefore proved that Ur,d = FD̃′
r,d for all d � 0, and hence that φ and φ is

an isomorphism in rank r . This closes the induction step on r . Theorem 1 is proved.
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Generating Series of the Poincaré Polynomials
of Quasihomogeneous Hilbert Schemes

A. Buryak and B.L. Feigin

Abstract In this paper we prove that the generating series of the Poincaré polyno-
mials of quasihomogeneous Hilbert schemes of points in the plane has a beautiful
decomposition into an infinite product. We also compute the generating series of
the numbers of quasihomogeneous components in a moduli space of sheaves on
the projective plane. The answer is given in terms of characters of the affine Lie
algebra ŝlm.

1 Introduction

The Hilbert scheme (C2)[n] of n points in the plane C
2 parametrizes ideals I ⊂

C[x, y] of colength n: dimCC[x, y]/I = n. There is an open dense subset of
(C2)[n], that parametrizes the ideals, associated with configurations of n distinct
points. The Hilbert scheme of n points in the plane is a nonsingular, irreducible,
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quasiprojective algebraic variety of dimension 2n with a rich and much studied ge-
ometry, see [9, 22] for an introduction.

The cohomology groups of (C2)[n] were computed in [6] and we refer the reader
to the papers [5, 15–17, 24] for the description of the ring structure in the cohomol-
ogy H ∗((C2)[n]).

There is a (C∗)2-action on (C2)[n] that plays a central role in this subject.
The algebraic torus (C∗)2 acts on C

2 by scaling the coordinates, (t1, t2) · (x, y) =
(t1x, t2y). This action lifts to the (C∗)2-action on the Hilbert scheme (C2)[n].

Let Tα,β = {(tα, tβ) ∈ (C∗)2|t ∈ C
∗}, where α,β ≥ 1 and gcd(α,β) = 1, be a

one dimensional subtorus of (C∗)2. The variety ((C2)[n])Tα,β parametrizes quasi-
homogeneous ideals of colength n in the ring C[x, y]. Irreducible components of
((C2)[n])Tα,β were described in [7]. Poincaré polynomials of irreducible components
in the case α = 1 were computed in [3]. For α = β = 1 it was done in [12].

For a manifold X let H∗(X) denote the homology group of X with rational co-

efficients. Let Pq(X) =∑
i≥0 dimHi(X)q

i
2 . The main result of this paper is the

following theorem (it was conjectured in [3]):

Theorem 1

∑

n≥0

Pq

(((
C

2)[n])Tα,β
)
tn =

∏

i≥1
(α+β)�i

1

1− t i

∏

i≥1

1

1− qt(α+β)i
. (1)

There is a standard method for constructing a cell decomposition of the Hilbert
scheme ((C2)[n])Tα,β using the Bialynicki-Birula theorem. In this way the Poincaré
polynomial of this Hilbert scheme can be written as a generating function for a cer-
tain statistic on Young diagrams of size n. However, it happens that this combina-
torial approach doesn’t help in a proof of Theorem 1. In fact, we get very nontrivial
combinatorial identities as a corollary of this theorem, see Sect. 1.1.

We can describe the main geometric idea in the proof of Theorem 1 in the fol-
lowing way. The irreducible components of ((C2)[n])Tα,β can be realized as fixed
point sets of a C

∗-action on cyclic quiver varieties. Theorem 4 tells us that the Betti
numbers of the fixed point set are equal to the shifted Betti numbers of the quiver
variety. Then known results about cohomology of quiver varieties can be used for a
proof of Theorem 1.

In principle, Theorem 4 has an independent interest. However, there is another
application of this theorem. In [4] we studied the generating series of the numbers
of quasihomogeneous components in a moduli space of sheaves on the projective
plane. Combinatorially we managed to compute it only in the simplest case. Now
using Theorem 4 we can give an answer in a general case, this is Theorem 5. We
show that it proves our conjecture from [4].
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Fig. 1 Arms and legs in a
Young diagram

1.1 Combinatorial Identities

Here we formulate two combinatorial identities that follow from Theorem 1. We
denote by Y the set of all Young diagrams. For a Young diagram Y let

rl(Y )= ∣∣{(i, j) ∈ Y |j = l
}∣∣,

cl(Y )= ∣∣{(i, j) ∈ Y |i = l
}∣∣.

For a point s = (i, j) ∈ Z
2≥0 let

lY (s)= rj (Y )− i − 1,

aY (s)= ci(Y )− j − 1,

see Fig. 1. Note that lY (s) and aY (s) are negative, if s /∈ Y .
The number of boxes in a Young diagram Y is denoted by |Y |.

Theorem 2 Let α and β be two arbitrary positive coprime integers. Then we have

∑

Y∈Y
q�{s∈Y |αl(s)=β(a(s)+1)}t |Y | =

∏

i≥1
(α+β)�i

1

1− t i

∏

i≥1

1

1− qt(α+β)i
.

In the case α = β = 1 another identity can be derived from Theorem 1. The
q-binomial coefficients are defined by

[
M

N

]

q

=
∏M

i=1(1− qi)
∏N

i=1(1− qi)
∏M−N

i=1 (1− qi)
.

By P we denote the set of all partitions. For a partition λ= (λ1, λ2, . . . , λr ), λ1 ≥
λ2 ≥ · · · ≥ λr , let |λ| =∑r

i=1 λi .

Theorem 3

∑

λ∈P

∏

i≥1

[
λi − λi+2 + 1

λi+1 − λi+2

]

q

t
λ1(λ1−1)

2 +|λ| =
∏

i≥1

1

(1− t2i−1)(1− qt2i )
.
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Here for a partition λ= (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr , we adopt the con-
vention λ>r = 0.

1.2 Cyclic Quiver Varieties

Quiver varieties were introduced by H. Nakajima in [20]. Here we review the con-
struction in the particular case of cyclic quiver varieties. We follow the approach
from [21].

Let m ≥ 2. We fix vector spaces V0,V1, . . . , Vm−1 and W0,W1, . . . ,Wm−1 and
we denote by

v = (dimV0, . . . ,dimVm−1),w = (dimW0, . . . ,dimWm−1) ∈ Z
m
≥0

the dimension vectors. We adopt the convention Vm = V0. Let

M(v,w)=
(

m−1⊕

k=0

Hom(Vk,Vk+1)

)
⊕
(

m−1⊕

k=0

Hom(Vk,Vk−1)

)

⊕
(

m−1⊕

k=0

Hom(Wk,Vk)

)
⊕
(

m−1⊕

k=0

Hom(Vk,Wk)

)
.

The group Gv =∏m−1
k=0 GL(Vk) acts on M(v,w) by

g · (B1,B2, i, j) �→
(
gB1g

−1, gB2g
−1, gi, jg−1).

The map μ : M(v,w)→⊕m−1
k=0 Hom(Vk,Vk) is defined as follows

μ(B1,B2, i, j)= [B1,B2] + ij.

Let

μ−1(0)s =
{
(B, i, j) ∈ μ−1(0)

∣∣∣ if a collection of subspaces Sk ⊂ Vk

is B-invariant and contains Im(i), then Sk = Vk

}
.

The action of Gv on μ−1(0)s is free. The quiver variety M(v,w) is defined as the
quotient

M(v,w)= μ−1(0)s/Gv,

see Fig. 2.
The variety M(v,w) is irreducible (see e.g. [21]).
We define the (C∗)2 × (C∗)m-action on M(v,w) as follows:

(t1, t2, ek) · (B1,B2, ik, jk)=
(
t1B1, t2B2, e

−1
k ik, t1t2ekjk

)
.
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Fig. 2 Cyclic quiver variety M(v,w)

1.3 C
∗-Action on M(v,w)

In this section we formulate Theorem 4 that is a key step in the proofs of Theorems 1
and 5.

Let α and β be any two positive coprime integers, such that α + β =m. Define
the integers λ0, λ1, . . . , λm−1 ∈ [−(m− 1),0] by the formula λk ≡−αk modm. We
define the one-dimensional subtorus T̃α,β ⊂ (C∗)2 × (C∗)m by

T̃α,β =
{(

tα, tβ, tλ0, tλ1, . . . , tλm−1
) ∈ (C∗)2 × (C∗)m|t ∈C

∗}.

For a manifold X we denote by HBM∗ (X) the homology group of possibly infinite
singular chains with locally finite support (the Borel-Moore homology) with rational

coefficients. Let PBM
q (X)=∑i≥0 dimHBM

i (X)q
i
2 .

Theorem 4 The fixed point set M(v,w)T̃α,β is compact and

PBM
q

(
M(v,w)

)= q
1
2 dimM(v,w)Pq

(
M(v,w)T̃α,β

)
.
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1.4 Quasihomogeneous Components in the Moduli Space of
Sheaves

Here we formulate our result that relates the numbers of quasihomogeneous com-
ponents in a moduli space of sheaves with characters of the affine Lie algebra ŝlm.

The moduli space M(r, n) is defined as follows (see e.g. [22]):

M(r, n)=
{
(B1,B2, i, j)

∣∣∣∣∣

(1) [B1,B2]+ij=0
(2) (stability) There is no subspace

S �C
n such that Bα(S)⊂ S (α = 1,2)

and Im(i)⊂ S

}/
GLn(C),

where B1,B2 ∈ End(Cn), i ∈ Hom(Cr ,Cn) and j ∈ Hom(Cn,Cr ) with the action
of GLn(C) given by

g · (B1,B2, i, j)=
(
gB1g

−1, gB2g
−1, gi, jg−1),

for g ∈GLn(C).
The variety M(r, n) has another description as the moduli space of framed tor-

sion free sheaves on the projective plane, but for our purposes the given definition
is better. We refer the reader to [22] for details. The variety M(1, n) is isomorphic
to (C2)[n] (see e.g. [22]).

Define the (C∗)2 × (C∗)r -action on M(r, n) by

(t1, t2, e) ·
[
(B1,B2, i, j)

]= [(t1B1, t2B2, ie
−1, t1t2ej

)]
.

Consider two positive coprime integers α and β and a vector

ω= (ω1,ω2, . . . ,ωr) ∈ Z
r

such that 0 ≤ ωi < α + β . Let T ω
α,β be the one-dimensional subtorus of (C∗)2 ×

(C∗)r defined by

T ω
α,β =

{(
tα, tβ, tω1, tω2, . . . , tωr

) ∈ (C∗)2 × (C∗)r |t ∈C
∗}.

In [4] we studied the numbers of the irreducible components of M(r, n)
T ω
α,β and

found an answer in the case α = β = 1. Now we can solve the general case.
We define the vector ρ = (ρ0, ρ1, . . . , ρα+β−1) ∈ Z

α+β

≥0 by ρi = �{j |ωj = i} and

the vector μ ∈ Z
α+β

≥0 by μi = ρ−iα modα+β .

Let Ek,Fk,Hk , k = 1,2, . . . , α + β , be the standard generators of ŝlα+β . Let V
be the irreducible highest weight representation of ŝlα+β with the highest weight μ.
Let x ∈ V be the highest weight vector. We denote by Vp the vector subspace of V
generated by vectors Fi1Fi2 . . . Fipx. The character χμ(q) is defined by

χμ(q)=
∑

p≥0

(dimVp)q
p.

We denote by h0(X) the number of connected components of a manifold X.
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Theorem 5
∑

n≥0

h0
(
M(r, n)

T ω
α,β
)
qn = χμ(q).

In [14] the authors found a combinatorial formula for characters of ŝlm in terms
of Young diagrams with certain restrictions. In [8] the same combinatorics is used
to give a formula for certain characters of the quantum continuous gl∞. Compar-
ing these two combinatorial formulas it is easy to see that Conjecture 1.2 from [4]
follows from Theorem 5.

Remark 1 There is a small mistake in Conjecture 1.2 from [4]. The vector a′ =
(a′0, a′1, . . . , a′α+β−1) should be defined by a′i = a−αi modα+β . The rest is correct.

1.5 Organization of the Paper

We prove Theorem 4 in Sect. 2. Then using this result we prove Theorem 1
in Sect. 3. In Sect. 4 we derive the combinatorial identities as a corollary of Theo-
rem 1. Finally, using Theorem 4 we prove Theorem 5 in Sect. 5.

2 Proof of Theorem 4

In this section we prove Theorem 4. The Grothendieck ring of quasiprojective vari-
eties is a useful technical tool and we remind its definition and necessary properties
in Sect. 2.1.

2.1 Grothendieck Ring of Quasiprojective Varieties

The Grothendieck ring K0(νC) of complex quasiprojective varieties is the abelian
group generated by the classes [X] of all complex quasiprojective varieties X mod-
ulo the relations:

1. if varieties X and Y are isomorphic, then [X] = [Y ];
2. if Y is a Zariski closed subvariety of X, then [X] = [Y ] + [X\Y ].
The multiplication in K0(νC) is defined by the Cartesian product of varieties: [X1] ·
[X2] = [X1 ×X2]. The class [A1

C
] ∈K0(νC) of the complex affine line is denoted

by L.
We need the following property of the ring K0(νC). There is a natural homomor-

phism of rings θ : Z[z] →K0(νC), defined by θ(z)= L. This homomorphism is an
inclusion (see e.g. [18]).
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2.2 Proof of Theorem 4

Let r =∑m−1
i=0 θi . For an arbitrary ν ∈ Z

r let Γ ν
α,β ⊂ T ν

α,β be the subgroup of roots
of 1 of degree m. Let

θ = (0, . . . ,0︸ ︷︷ ︸
w0 times

, λ1, . . . , λ1︸ ︷︷ ︸
w1 times

, . . . , λm−1, . . . , λm−1︸ ︷︷ ︸
wm−1 times

) ∈ Z
r .

Lemma 1 1. We have the following decomposition into irreducible components

M(r, n)
Γ θ
α,β =

∐

v∈Zm
≥0∑

vk=n

M(v,w). (2)

2. The T θ
α,β -action on the left-hand side of (2) corresponds to the T̃α,β -action on

the right-hand side of (2).

Proof Let Γm be the group of roots of unity of degree m. By definition, a point
[(B1,B2, i, j)] ∈M(r, n) is fixed under the action of Γ θ

α,β if and only if there exists
a homomorphism λ : Γm →GLn(C) satisfying the following conditions:

ζ αB1 = λ(ζ )−1B1λ(ζ ),

ζ βB2 = λ(ζ )−1B2λ(ζ ), (3)

i ◦ diag
(
ζ θ1, ζ θ2 , . . . , ζ θr

)−1 = λ(ζ )−1i,

diag
(
ζ θ1 , ζ θ2, . . . , ζ θr

) ◦ j = jλ(ζ ),

where ζ = e
2π
√−1
m . Suppose that [(B1,B2, i, j)] is a fixed point. Then we have the

weight decomposition of C
n with respect to λ(ζ ), i.e. Cn =⊕

k∈Z/mZ
V ′
k , where

V ′
k = {v ∈ C

n|λ(ζ ) · v = ζ kv}. We also have the weight decomposition of Cr , i.e.
C

r =⊕k∈Z/mZ
W ′

k , where W ′
k = {v ∈ C

r |diag(ζ θ1 , . . . , ζ θr ) · v = ζ kv}. From con-
ditions (3) it follows that the only components of B1, B2, i and j that might survive
are:

B1 : V ′
k → V ′

k−α,

B2 : V ′
k → V ′

k−β,

i : W ′
k → V ′

k,

j : V ′
k →W ′

k.

Let us denote V ′−αk modm by Vk and W ′−αk modm by Wk . Then the operators
B1,B2, i, j act as follows: B1,2 : Vk → Vk±1, i : Wk → Vk, j : Vk →Wk . The first
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part of the lemma is proved. The second part of the lemma easily follows from the
proof of the first part and from the definition of the T̃α,β -action. �

In [4] it is proved that the variety M(r, n)
T θ
α,β is compact. Therefore, M(v,w)T̃α,β

is compact.

We denote by M(r, n)
Γ θ
α,β

v the irreducible component of M(r, n)
Γ θ
α,β correspond-

ing to M(v,w). Let M(r, n)
T θ
α,β

v = (M(r, n)
Γ θ
α,β

v )
T θ
α,β . We denote by Iv the set of

irreducible components of M(r, n)
T θ
α,β

v and let M(r, n)
T θ
α,β

v =∐i∈Iv M(r, n)
T θ
α,β

v,i be
the decomposition into the irreducible components. We define the sets Cv,i by

Cv,i =
{
z ∈M(r, n)

Γ θ
α,β

v

∣∣∣ lim
t→0,t∈T θ

α,β

tz ∈M(r, n)
T θ
α,β

v,i

}
.

Lemma 2 (1) The sets Cv,i form a decomposition of M(r, n)
Γ θ
α,β

v into locally closed
subvarieties.

(2) The subvariety Cv,i is a locally trivial bundle over M(r, n)
T θ
α,β

v,i with an affine
space as a fiber.

Proof The lemma follows from the results of [1, 2]. The only thing that we need to

check is that the limit limt→0,t∈T θ
α,β

tz exists for any z ∈M(r, n)
Γ θ
α,β

v .

Consider the variety M0(r, n) from [23]. It is defined as the affine algebro-
geometric quotient

M0(r, n)=
{
(B1,B2, i, j)|[B1,B2] + ij = 0

}
//GLn(C).

It can be viewed as the set of closed orbits in {(B1,B2, i, j)|[B1,B2] + ij = 0}.
There is a morphism π : M(r, n)→M0(r, n). It maps a point [(B1,B2, i, j)] ∈
M(r, n) to the unique closed orbit that is contained in the closure of the orbit of
(B1,B2, i, j) in {(B1,B2, i, j)|[B1,B2] + ij = 0}. The (C∗)2 × (C∗)r -action on
M0(r, n) is defined in the same way as on M(r, n). The variety M0(r, n) is affine
and the morphism π is projective and equivariant (see e.g. [23]).

By [19], the coordinate ring of M0(r, n) is generated by the following two types
of functions:

(a) tr(BaNBaN−1 · · ·Ba1 : Cn →C
n), where ai = 1 or 2.

(b) χ(jBaNBaN−1 · · ·Ba1 i), where ai = 1 or 2, and χ is a linear form on End(Cr ).

From the inequalities −m < θk ≤ 0 it follows that both types of functions
have positive weights with respect to the T θ

α,β -action. Therefore, for any point
z ∈M0(r, n) we have limt→0,t∈T θ

α,β
tz = 0. The morphism π is projective, so the

limit limt→0,t∈T θ
α,β

tz exists for any z ∈M(r, n)
Γ θ
α,β

v . The lemma is proved. �
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Denote by d+v,i the dimension of the fiber of the locally trivial bundle Cv,i →
M(r, n)

T θ
α,β

v,i .

Lemma 3 The dimension d+v,k doesn’t depend on k ∈ Iv and is equal to

d+v,k =
1

2
dimM(v,w).

Proof The set of fixed points of the (C∗)2 × (C∗)r -action on M(r, n) is finite and
is parametrized by the set of r-tuples D = (D1,D2, . . . ,Dr) of Young diagrams Di

such that
∑r

i=1 |Di | = n (see e.g. [23]).

Let p ∈M(r, n)(C
∗)2×(C∗)r be the fixed point corresponding to an r-tuple D.

Let R((C∗)2 × (C∗)r ) = Z[t±1
1 , t±1

2 , e±1
1 , e±1

2 , . . . , e±1
r ] be the representation ring

of (C∗)2 × (C∗)r . Then the weight decomposition of the tangent space TpM(r, n)

of the variety M(r, n) at the point p is given by (see e.g. [23])

TpM(r, n)=
r∑

i,j=1

ej e
−1
i

(∑

s∈Di

t
−lDj

(s)

1 t
aDi

(s)+1
2 +

∑

s∈Dj

t
lDi

(s)+1
1 t

−aDj
(s)

2

)
. (4)

For a computation of d+v,k we choose an arbitrary (C∗)2 × (C∗)r -fixed point p in

M(r, n)
T θ
α,β

v,k . Let D be the corresponding r-tuple of Young diagrams. We have

d+v,k =
∑

i,j

�

{
s ∈Di

∣∣∣∣
θj−θi−αlDj

(s)+β(aDi
(s)+1)≡0 modm

θj−θi−αlDj
(s)+β(aDi

(s)+1)>0

}

+
∑

i,j

�

{
s ∈Dj

∣∣∣∣
θj−θi+α(lDi

(s)+1)−βaDj
(s)≡0 modm

θj−θi+α(lDi
(s)+1)−βaDj

(s)>0

}

=
∑

i,j

�

{
s ∈Di

∣∣∣∣
θj−θi−αlDj

(s)+β(aDi
(s)+1)≡0 modm

θj−θi−αlDj
(s)+β(aDi

(s)+1)>0

}

+
∑

i,j

�

{
s ∈Di

∣∣∣∣
θj−θi−αlDj

(s)+β(aDi
(s)+1)≡0 modm

θj−θi−αlDj
(s)+β(aDi

(s)+1)<m

}

=
∑

i,j

�
{
s ∈Di |θj − θi − αlDj

(s)+ β(aDi
(s)+ 1)≡ 0 modm

}

+
∑

i,j

�

{
s ∈Di

∣∣∣∣
θj−θi−αlDj

(s)+β(aDi
(s)+1)≡0 modm

0<θj−θi−αlDj
(s)+β(aDi

(s)+1)<m

}
.

It is easy to see that the last sum is equal to zero, thus

d+v,k =
∑

i,j

�
{
s ∈Di |θj − θi − αlDj

(s)+ β
(
aDi

(s)+ 1
)≡ 0 modm

}
.
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On the other hand

dimM(r, n)
Γ θ
α,β

v

=
∑

i,j

�
{
s ∈Di |θj − θi − αlDj

(s)+ β
(
aDi

(s)+ 1
)≡ 0 modm

}

+
∑

i,j

�
{
s ∈Dj |θj − θi + α

(
lDi

(s)+ 1
)− βaDj

(s)≡ 0 modm
}

= 2
∑

i,j

�
{
s ∈Di |θj − θi − αlDj

(s)+ β
(
aDi

(s)+ 1
)≡ 0 modm

}
.

Hence d+v,k = 1
2 dimM(r, n)

Γ θ
α,β

v = 1
2 dimM(v,w). �

From Lemmas 2 and 3 it follows that

[
M(r, n)

Γ θ
α,β

v

]= L
1
2 dimM(v,w)

[
M(r, n)

T θ
α,β

v

]
.

Using the (C∗)2 × (C∗)r -action it is easy to get a cell decomposition of the vari-

eties M(r, n)
Γ θ
α,β

v and M(r, n)
T θ
α,β

v,k . Therefore

[
M(r, n)

Γ θ
α,β

v

]= PBM
q

(
M(r, n)

Γ θ
α,β

v

)∣∣
q=L,

[
M(r, n)

T θ
α,β

v,k

]= Pq

(
M(r, n)

T θ
α,β

v,k

)∣∣
q=L.

The theorem is proved.

3 Proof of Theorem 1

In this section we prove Theorem 1. First of all, in Sect. 3.1 we remind the reader a
notion of a power structure over the Grothendieck ring K0(νC). This technique al-
lows us to simplify some combinatorial computations. Then in Sect. 3.2 we review
standard combinatorial constructions related to Young diagrams. In Sect. 3.3 we
review a connection between Hilbert schemes and quiver varieties and do an impor-
tant step in the proof of Theorem 1. Instead of considering the Tα,β -fixed point set
in the Hilbert scheme (C2)[n], we first look at the fixed point set of a finite subgroup
of Tα,β . Finally, in Sect. 3.4 we combine everything and prove the theorem.
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3.1 Power Structure over K0(νC)

In [10] there was defined a notion of a power structure over a ring and there was
described a natural power structure over the Grothendieck ring K0(νC). This means
that for a series A(t)= 1+ a1t + a2t

2+ · · · ∈ 1+ t ·K0(νC)[[t]] and for an element
m ∈K0(νC) one defines a series (A(t))m ∈ 1+ t ·K0(νC)[[t]] so that all the usual
properties of the exponential function hold. We also need the following property of
this power structure. For any i ≥ 1 and j ≥ 0 we have (see e.g. [10])

(
1−L

j t i
)L = 1−L

j+1t i . (5)

3.2 Cores and Quotients

In this section we review the well known construction of an m-core and an m-
quotient of a Young diagram.

The set Corem is defined as the set of Young diagrams Y such that for any box
s ∈ Y we have lY (s)+ aY (s)+ 1 	≡ 0 modm. For a Young diagram Y let

wi(Y )= �
{
(p, q) ∈ Y |p+ q ≡ i modm

}
.

We remind the reader that we consider a Young diagram as a subset of Z2≥0. Let

Πm−1 =
{
λ= (λ0, λ1, . . . , λm−1) ∈ Z

m

∣∣∣∣∣

m−1∑

k=0

λk = 0

}
.

Define the map Ψ : Corem →Πm−1 by

Corem � Y �→ (λ0, λ1, . . . , λm−1), λi =wi+1(Y )−wi(Y ).

The map Ψ is a bijection (see e.g. [13], Chap. 2.7).
There is also a bijection (see e.g. [13], Chap. 2.7)

Φ : Y→ Corem ×Ym, Φ(Y )= (Φ(Y)0,Φ(Y )1, . . . ,Φ(Y )m
)
.

We don’t give a construction of this map, we will only list all necessary proper-
ties. The diagram Φ(Y)0 is called the m-core of the diagram Y and the m-tuple
(Φ(Y )1,Φ(Y )2, . . . ,Φ(Y )m) is called the m-quotient. The bijection Φ has the fol-
lowing properties (see e.g. [13], Chap. 2.7):

|Y | = ∣∣Φ(Y)0
∣∣+m

m∑

i=1

∣∣Φ(Y)i
∣∣; (6)



Quasihomogeneous Hilbert Schemes 27

wi(Y )=wi

(
Φ(Y)0

)+
m∑

i=1

∣∣Φ(Y)i
∣∣; (7)

�
{
s ∈ Y |lY (s)+ aY (s)+ 1≡ 0 modm

}=
m∑

i=1

∣∣Φ(Y)i
∣∣. (8)

3.3 Hilbert Schemes and Quiver Varieties

For an ideal I ⊂ C[x, y] of codimension n let V (I) = C[x, y]/I and B1,B2 ∈
GL(V (I )) be the operators of the multiplications by x and y correspondingly. Let
i : C→ V (I) be the linear map that sends 1 ∈ C to the unit in C[x, y]. Define the
map f : (C2)[n] →M(1, n) by I �→ [(B1,B2, i,0)]. This map is an isomorphism
(see e.g. [22]).

For integers μ and ν let Γν,μ be the finite subgroup of (C∗)2 defined by Γν,μ =
{(ζ jν, ζ jμ) ∈ (C∗)2|ζ = exp( 2πi

m
)}. It is clear that the isomorphism f transforms

the Tα,β -action on (C2)[n] to the T 0
α,β -action on M(1, n) and the Γα,β -action to the

Γ 0
α,β -action. Thus, by Lemma 1, we have

((
C

2)[n])Γα,β =
∐

v∈Zm≥0∑
vi=n

M(v, e0),

((
C

2)[n])Tα,β =
∐

v∈Zm
≥0∑

vi=n

M(v, e0)
T̃α,β ,

(9)

where by e0 we denote the vector (1,0, . . . ,0) ∈ Z
m
≥0. Until the end of this section

we consider a quiver variety M(v, e0) as a subset of M(1,
∑

vi)= (C2)[
∑

vi ].
The last factor C∗ of the product (C∗)2 × C

∗ acts trivially on M(1, n), so now
we start to consider only the (C∗)2-action on M(1, n).

3.4 Proof of Theorem 1

For a vector v ∈ Z
m
≥0 let |v| =∑m−1

i=0 vi . By (9) and Theorem 4, we have

∑

n≥0

Pq

(((
C

2)[n])Tα,β
)
tn =

∑

v∈Zm≥0

q−
1
2 dimM(v,e0)P BM

q

(
M(v, e0)

)
t |v|.
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If the variety M(v, e0) is nonempty, then (see e.g. [23])

dimM(v, e0)= 2v0 −
m−1∑

i=0

(vi − vi+1)
2. (10)

Here we follow the convention vm = v0. For λ ∈Πm−1 let

v0(λ)= 1

2

m−1∑

k=0

λ2
k,

n(λ)=mv0(λ)+
m−2∑

k=0

(m− 1− k)λk.

Using these notations and formula (10) we get

∑

v∈Zm≥0

q−
1
2 dimM(v,e0)P BM

q

(
M(v, e0)

)
t |v|

=
∑

λ∈Πm−1

tn(λ)
∑

v∈Zm
≥0

vi+1−vi=λi

P BM
q

(
M(v, e0)

)(
q−

1
m t
)m(v0−v0(λ)).

Lemma 4 For any λ ∈Πm−1 we have

∑

v∈Zm≥0
vi+1−vi=λi

P BM
q

(
M(v, e0)

)
t |v| = tn(λ)∏

i≥1(1− qitmi)m−1(1− qi+1tmi)
.

Before a proof of this lemma we introduce a new notation and prove two useful
lemmas.

In the proof of Lemma 2 we used the morphism π : M(r, n)→M0(r, n). We
have M0(1, n)= Sn(C2) (see e.g. [22]). Slightly changing notations we denote now
by π the morphism M(1, n)→ Sn(C2). It can be described explicitly as follows.
Let [(B1,B2, i, j)] ∈M(1, n). We can make B1 and B2 simultaneously into upper
triangular matrices with numbers λi and μi on the diagonals. The morphism π is
given by π(B1,B2, i, j)= {(λ1,μ1), . . . , (λn,μn)} (see e.g. [22]).

It is useful to note that the subgroups Γα,β and Γ1,−1 of (C∗)2 coincide, therefore

M(1, n)Γα,β =M(1, n)Γ1,−1 .

For any Γ1,−1-invariant subset Z ⊂C
2 and any vector λ ∈Πm−1 let

HZ,λ(t)=
∑

v∈Zm
≥0

vi+1−vi=λi

[
M(v, e0)∩ π−1(S|v|Z

)]
t |v|.
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We denote by Cx the x-axis in the plane C
2.

Lemma 5 For any λ ∈Πm−1 consider the unique diagram Yλ ∈ Corem such that
Ψ (Yλ)= λ. Then we have

HCx ,λ(t)=
t |Yλ|

∏
i≥1(1−Li tmi)m

. (11)

Proof The set of fixed points of the (C∗)2-action on M(1, n) is parametrized by the
set of Young diagrams Y such that |Y | = n. Let p be the fixed point corresponding
to a Young diagram Y , then, by (4), we have

Tp

(
M(1, n)

)=
∑

s∈Y

(
t
−lY (s)
1 t

aY (s)+1
2 + t

lY (s)+1
1 t

−aY (s)
2

)
. (12)

We choose γ � 1 and for each point p ∈M(v, e0)
(C∗)2

we define the attracting set
Cp as follows

Cp =
{
z ∈M(v, e0)

∣∣∣ lim
t→0,t∈T1,−γ

tz= p
}
.

Clearly, if z ∈ Cx , then limt→0,t∈T1,−γ
tz = 0, and if z ∈ C

2\Cx , then tz goes to
infinity. By [1, 2], the sets Cp form a cell decomposition of M(v, e0)∩π−1(S|v|Cx).
Using (12) we obtain

[
M(v, e0)∩ π−1(S|v|Cx

)]=
∑

Y∈Y
wi(Y )=vi

L
�{s∈Y |lY (s)+aY (s)+1≡0 modm}. (13)

The formula (11) follows from (13) and properties (6), (7) and (8). �

Lemma 6 For any Y ∈ Corem we have |Y | = n(Ψ (Y )).

Proof Consider the quiver variety M(w(Y ), e0). From the properties of the bijec-
tion Φ it follows that if Y ′ is a Young diagram such that |Y ′| = |Y | and w(Y) =
w(Y ′), then Y ′ = Y . Thus, the (C∗)2-fixed point set in M(w(Y ), e0) consists of
only one point. Using the Bialynicki-Birula theorem we can construct a cell decom-
position of M(w(Y ), e0) and it is easy to see that the unique cell has dimension 0.
Therefore, M(w(Y ), e0) is just a point. By (10), w0(Y ) = v0(Ψ (Y )) and clearly
|Y | = n(Ψ (Y )). �

Proof of Lemma 4 For λ= 0 this lemma was proved in [11].
Since [M(v, e0)] = PBM

q (M(v, e0))|q=L, it is sufficient to prove that

∑

v∈Zm
≥0

vi+1−vi=λi

[
M(v, e0)

]
t |v| = tn(λ)∏

i≥1(1−Li tmi)m−1(1−Li+1tmi)
.
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The Γ1,−1-action on C
2\Cx is free. Therefore, if the intersection of M(v, e0)

with π−1(S|v|(C2\Cx)) is nonempty, then v0 = v1 = · · · = vm−1. We get

HC2,λ(t)=HCx ,λ(t)HC2\Cx ,0(t). (14)

We denote by O the origin of C2. Let

HO(t)=
∑

n≥0

[
M(1, n)∩ π−1(Sn(O)

)]
tn.

From [11] (see Theorem 1) it follows that

HC2\Cx ,0(t)=HO

(
tm
)[(C2\Cx)/Γ1,−1].

It is easy to check that [(C2\Cx)/Γ1,−1] = L
2 −L. Therefore we have

HC2\Cx ,0(t)=
(∏

i≥1

1

(1−Li−1tmi)

)L
2−L

by (5)=
∏

i≥1

1−L
i tmi

1−Li+1tmi
. (15)

If we combine formulas (11), (14) and (15) and also Lemma 6, we get the proof
of the lemma. �

Using Lemma 4 we get

∑

λ∈Πm−1

tn(λ)
∑

v∈Zm
≥0

vi+1−vi=λi

P BM
q

(
M(v, e0)

)(
q−

1
m t
)m(v0−v0(λ))

=
(∏

i≥1

1

(1− tmi)m−1(1− qtmi)

)( ∑

λ∈Πm−1

tn(λ)
)
.

By Lemma 6,
∑

λ∈Πm−1 tn(λ) =∑Y∈Corem t |Y |. We have (see e.g. [11])

∑

Y∈Corem

t |Y | =
∏

i≥1

(1− tmi)m

(1− t i )
.

This completes the proof of the theorem.

4 Proofs of Theorems 2 and 3

Here we prove two combinatorial identities from Sect. 1.1.
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4.1 Proof of Theorem 2

Consider the (C∗)2-action on ((C2)[n])Tα,β . Let p ∈ (C2)[n] be the fixed point
corresponding to a Young diagram Y . By (4), the weight decomposition of
Tp(((C

2)[n])Tα,β ) is given by

Tp

(((
C

2)[n])Tα,β
)

=
∑

s∈Y
α(lY (s)+1)=βaY (s)

t
lY (s)+1
1 t

−aY (s)
2 +

∑

s∈Y
αlY (s)=β(aY (s)+1)

t
−lY (s)
1 t

aY (s)+1
2 . (16)

Let γ be a big positive integer γ . By [1, 2], the variety ((C2)[n])Tα,β has a cellu-
lar decomposition with the cells Cp = {z ∈ ((C2)[n])Tα,β | limt→0,t∈T1,γ tz = p}. By
(16), we have dimCp = �{s ∈ Y |αlY (s)= β(aY (s)+ 1)}. Thus, we have

∑

n≥0

Pq

(((
C

2)[n])Tα,β
)
tn =

∑

Y∈Y
q�{s∈Y |αlY (s)=β(aY (s)+1)}t |Y |.

Now Theorem 2 follows from Theorem 1.

4.2 Proof of Theorem 3

In [12] it is proved that the set of irreducible components of the variety ((C2)[n])T1,1

is parametrized by partitions λ such that λ1(λ1−1)
2 + |λ| = n. The Poincaré poly-

nomial of the irreducible component corresponding to a partition λ is equal to
(see [12])

∏

i≥1

[
λi − λi+2 + 1

λi+1 − λi+2

]

q

.

Combining this fact with Theorem 1 we get the proof of Theorem 3.

5 Proof of Theorem 5

Let α + β =m. Similar to Lemma 1 we have the decomposition

M(r, n)
Γ ω
α,β =

∐

v∈Zm
≥0|v|=n

M(v,μ), (17)
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and the T ω
α,β -action on the left-hand side of (17) corresponds to the T̃α,β -action on

the right-hand side. Using Theorem 4 we get

∑

n≥0

h0
(
M(r, n)

T ω
α,β
)
qn =

∑

v∈Zm≥0

dimHBM
1
2 dimM(v,μ)

(
M(v,μ)

)
q |v|.

In [20] it is proved that the space
⊕

v∈Zm
≥0

HBM
1
2 dimM(v,μ)

(M(v,μ)) is an irreducible

highest weight representation of ŝlm with the highest weight μ. This completes the
proof of Theorem 5.

Acknowledgements The authors are grateful to S.M. Gusein-Zade, M. Finkelberg and S. Shadrin
for useful discussions.

A.B. is partially supported by a Vidi grant of the Netherlands Organization of Scientific Re-
search, by the grants RFBR-10-01-00678, NSh-4850.2012.1 and the Moebius Contest Foundation
for Young Scientists. Research of B.F. is partially supported by RFBR initiative interdisciplinary
project grant 09-02-12446-ofi-m, by RFBR-CNRS grant 09-02-93106, RFBR grants 08-01-00720-
a, NSh-3472.2008.2 and 07-01-92214-CNRSL-a.

References

1. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98, 480–497
(1973)

2. Bialynicki-Birula, A.: Some properties of the decompositions of algebraic varieties deter-
mined by actions of a torus. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 24, 667–674
(1976)

3. Buryak, A.: The classes of the quasihomogeneous Hilbert schemes of points on the plane.
Mosc. Math. J. 12(1), 1–17 (2012)

4. Buryak, A., Feigin, B.L.: Homogeneous components in the moduli space of sheaves and Vi-
rasoro characters. J. Geom. Phys. 62(7), 1652–1664 (2012)

5. Costello, K., Grojnowski, I.: Hilbert schemes, Hecke algebras and the Calogero-Sutherland
system. math.AG/0310189

6. Ellingsrud, G., Stromme, S.A.: On the homology of the Hilbert scheme of points in the plane.
Invent. Math. 87, 343–352 (1987)

7. Evain, L.: Irreducible components of the equivariant punctual Hilbert schemes. Adv. Math.
185(2), 328–346 (2004)

8. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous gl∞: tensor
products of Fock modules and Wn-characters. Kyoto J. Math. 51(2), 365–392 (2011)

9. Gottsche, L.: Hilbert schemes of points on surfaces. In: ICM Proceedings, vol. II, Beijing, pp.
483–494 (2002)

10. Gusein-Zade, S.M., Luengo, I., Melle-Hernandez, A.: A power structure over the
Grothendieck ring of varieties. Math. Res. Lett. 11(1), 49–57 (2004)

11. Gusein-Zade, S.M., Luengo, I., Melle Hernandez, A.: On generating series of classes of equiv-
ariant Hilbert schemes of fat points. Mosc. Math. J. 10(3) (2010)

12. Iarrobino, A., Yameogo, J.: The family GT of graded artinian quotients of k[x, y] of given
Hilbert function. Commun. Algebra 31(8), 3863–3916 (2003). Special issue in honor of Steven
L. Kleiman

13. James, G., Kerber, A.: the Representation Theory of the Symmetric Group. Encyclopedia of
Mathematics and Its Applications, vol. 16. Addison-Wesley, Reading (1981)

http://arxiv.org/abs/math.AG/0310189


Quasihomogeneous Hilbert Schemes 33

14. Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of Uq(ŝln) at
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PBW-filtration over Z and Compatible Bases
for VZ(λ) in Type An and Cn

Evgeny Feigin, Ghislain Fourier, and Peter Littelmann

Abstract We study the PBW-filtration on the highest weight representations V (λ)

of the Lie algebras of type An and Cn. This filtration is induced by the standard
degree filtration on U(n−). In previous papers, the authors studied the filtration and
the associated graded algebras and modules over the complex numbers. The aim of
this paper is to present a proof of the results which holds over the integers and hence
makes the whole construction available over any field.

1 Introduction

Let g be a finite dimensional simple complex Lie algebra, we fix a maximal torus
h and a Borel subalgebra b = h⊕ n+. Denote by R the set of roots and let P be
the integral weight lattice. Corresponding to the choice of b, let R+ be the set of
positive roots and let P+ be the monoid of dominant weights.

For λ ∈ P+ let V (λ) be the finite dimensional irreducible representation of high-
est weight λ and let vλ be a highest weight vector. Denote by M(λ) the Verma
module corresponding to the same highest weight. For a Lie algebra a denote by
U(a) its enveloping algebra. Fix a highest weight vector mλ ∈ M(λ). The linear
map

U
(
n
−)→M(λ), n �→ nmλ
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is an isomorphism of complex vector spaces. The degree filtration on U(n−):

U
(
n
−)

0 =C1, U
(
n
−)

s
= span

{
1, x1 . . . xl : xi ∈ n

−, l ≤ s
}

for s ≥ 1,

induces via the isomorphism above a natural b-stable filtration on M(λ):

M(λ)s =U
(
n
−)

s
mλ for s ≥ 0.

Set U(n−)−1 =M(λ)−1 = 0, then the associated q-character

charqM(λ) :=
∑

s≥0

char
(
M(λ)s/M(λ)s−1

)
qs

has a very simple form:

charqM(λ)= eλ
1∏

β∈R+(1− qe−β)
.

This is obvious by the fact that the associated graded module M(λ)a =⊕s≥0 M(λ)s/

M(λ)s−1 is a free module over the associated graded algebra S(n−)= grad U(n−).
In contrast, the situation becomes rather complicated if one replaces M(λ)

by its finite dimensional quotient V (λ). Again this module has an induced b-
stable filtration V (λ)s = U(n−)svλ, called the Poincaré-Brikhoff-Witt-filtration,
or, for short, just the PBW-filtration. The associated graded module V (λ)a =⊕

s≥0 V (λ)s/V (λ)s−1 is a U(b)-module as well as a S(n−)-module. A general
closed formula for the q-character

charqV (λ) :=
∑

s≥0

char
(
V (λ)s/V (λ)s−1

)
qs

is not known, partial combinatorial answers can be found in [4, 5], more geometric
interpretations can be found in [3, 6]. Another natural (and, at least in the general
case, open) question is about the structure of V (λ)a as a cyclic S(n−)-module, gen-
erated by the image of the highest weight vector.

The aim of this paper is to present a proof of the results in [4, 5] which holds
over the integers and hence makes the whole construction available over any field.
More precisely, for g of type An or type Cn we want

• to describe V a
Z
(λ) as a cyclic SZ(n

−)-module, i.e. describe the ideal IZ(λ) ↪→
SZ(n

−) such that V a
Z
(λ)� SZ(n

−)/IZ(λ);
• to find a basis of V a

Z
(λ), in particular, show that V a

Z
(λ) is torsion free;

• to get a (characteristic free) combinatorial graded character formula for V a
Z
(λ).

As a last remark we would like to point out that one should not confuse the PBW-
filtration (discussed in this paper) neither with the Brylinski-Kostant filtration [2]
(BK-filtration for short) on the weight spaces induced by a principal sl2-triple
(e,h,f ), nor with the right Brylinski-Kostant filtration discussed in [7]. As an ex-
ample, consider the case g of type B2 and λ = ω1 + 2ω2. In Table 1 we list for
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Table 1 Examples for the Poincaré polynomial of the associated graded weight spaces in V (λ),
λ= ω1 + 2ω2, g of type B2, enumeration as in [1]

Weight λ− α1 − 3α2 λ− 2α1 − 2α2 λ− 2α1 − 3α2 λ− 2α1 − 4α2

PBW q3 + q2 q3 + 2q2 2q3 + q2 q4 + q3 + q2

BK q4 + q3 q4 + q3 + q2 q5 + q4 + q3 q6 + q5 + q4

Right BK q4 + q2 q4 + q3 + q2 q5 + q4 + q3 q6 + q5 + q4

some weights the Poincaré polynomial of the associated graded weight space. For
the left and right Brylinski-Kostant filtration, the polynomials have been taken from
[7], for the PBW-filtration the polynomials have been calculated using Theorem 3
(B2 = C2).

2 The Setup over the Complex Numbers: Definitions and
Notation

Let g be a complex finite-dimensional simple Lie algebra. We fix a Cartan subal-
gebra h and a Borel subalgebra b = h ⊕ n+. Let R+ be the set of positive roots
corresponding to the choice of b and let αi , ωi , i = 1, . . . , n be the simple roots
and the fundamental weights. The height ht(β) of a positive root is the sum of the
coefficients of the expression of β as a sum of simple roots.

Let G be the simple, simply connected algebraic group such that LieG= g. Fix
a maximal torus T ⊂G and a Borel subgroup B ⊃ T such that LieB = h⊕ n+ and
LieT = h. Denote by N− the unipotent radical of the opposite Borel subgroup.

Let g= n+ ⊕ h⊕ n− be the Cartan decomposition. Consider the increasing de-
gree filtration on the universal enveloping algebra of U(n−):

U
(
n
−)

s
= span

{
1, x1 . . . xl : xi ∈ n

−, l ≤ s
}
, (1)

for example, U(n−)0 =C ·1, U(n−)1 =C ·1+n−, and so on. The associated graded
algebra is the symmetric algebra S(n−) over n−.

For a dominant integral weight λ let Ψ :G→GL(V (λ)) and ψ : g→ End(V (λ))

be the corresponding irreducible representations. Fix a highest weight vector vλ.
Since V (λ) = U(n−)vλ, the filtration in (1) induces an increasing filtration V (λ)s
on V (λ):

V (λ)s =U
(
n
−)

s
vλ.

Definition 1 We call this filtration the PBW-filtration of V (λ) and we denote the
associated graded space by V a(λ).

Let n−s =
∑

ht (β)≥s n
−
−β ⊆ n− be the Lie subalgebra formed by the root sub-

spaces corresponding to roots of height at least s. In fact, n−s ⊂ n− is an ideal, and
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the associated graded algebra n−,a =⊕s≥1 n
−
s /n−s+1 is an abelian Lie algebra. We

make n−,a into a B- as well as a b-module by identifying the vector space n−,a with
the quotient space g/b, which is a B- respectively b-module via the induced adjoint
action ad : B→GL(g/b).

Definition 2 Denote by ga the Lie algebra ga = b⊕ n−,a , where n−,a is an abelian
ideal in ga and b acts on n−,a via the induced adjoint action described above.

For a positive root β let U−β ⊂ G be the closed root subgroup corresponding
to the root −β . Denote by Ga the additive group of the field (viewed as a one-
dimensional unipotent algebraic group) and let x−β : Ga,β → U−β be a fixed iso-
morphism of the root subgroup with the additive group Ga . We add the root as an
index to indicate that this copy Ga,β of the additive group is related to U−β .

The group N− admits a filtration by a sequence of normal subgroups: let
N−

s =∏ht (β)≥s U−β , then N−
s is a normal subgroup of N−. Denote by N−,a the

product N−,a =∏s≥1 N
−
s /N−

s+1, then N−,a is a commutative unipotent group. We
can identify N−,a naturally with the product

∏
β∈R+ Ga,β , viewed as a product of

commuting additive groups. Here Ga,β gets identified with the image of U−β in
N−

ht (β)
/N−

ht (β)+1. The Lie algebra of N−,a is n−,a .

The action ad of B on n−,a can be lifted to an action Ad on N−,a using the expo-
nential map. To make this action more explicit, recall that for two linearly indepen-
dent roots α,β we know by Chevalley’s commutator formula: there exist complex
numbers ci,j,α,β such that

xα(t)xβ(s)x
−1
α (t)x−1

β (s)=
∏

i,j>0

xiα+jβ

(
ci,j,α,β t

isj
)

for all s, t ∈ C. The product is taken over all pairs i, j ∈ Z>0 such that iα + jβ is
a root and in order of increasing height of the occurring roots. We have for m =∏

β∈R+ x−β(uβ) ∈N−,a and xα(t) ∈ B , uβ, t ∈C:

Ad
(
xα(t)

)
(m)=

∏

β∈R+
x−β

(
uβ +

∑

i,j>0,γ∈R+
−β=iα−jγ

ci,j,α,−γ t
iuj

γ

)
. (2)

Definition 3 Denote by Ga the semi-direct product Ga � B �N−,a , where N−,a

is an abelian normal subgroup in Ga and B acts on N−,a via the action described
above.

The subspaces V (λ)s = U(n−)svλ are stable with respect to the B- and the b-
action, so we get an induced action of B as well as of b on V a(λ). Since the appli-
cation by an element f ∈ n− induces linear maps

f : V (λ)s → V (λ)s+1
∪ ∪

V (λ)s−1 → V (λ)s
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we get an induced endomorphism ψa(f ) : V a(λ)→ V a(λ) with the property that
ψa(f )ψa(f ′) − ψa(f ′)ψa(f ) : V a(λ)→ V a(λ) is the zero map for f,f ′ ∈ n−.
Hence we get an induced representation of the abelian Lie algebra n−,a and of its
enveloping algebra S(n−,a), the symmetric algebra over n−,a . Note that V a(λ) is a
cyclic S(n−,a)-module:

V a(λ)= S
(
n
−,a
)
.vλ.

The action of n−,a on V a(λ) is compatible with the B-action on V a(λ) and on n−,a :
suppose b ∈ B , f ∈ n− and v ∈ V (λ)s , then

b(f.v)= (bf b−1)(bv)= (ad(b)(f )
)
bv+m.bv for some m ∈ b,

and hence bf.v = (ad(b)(f ))bv in V (λ)s+1/V (λ)s . It follows:

Proposition 1 V a(λ) is a ga-module, it is a cyclic S(n−,a)-module and a B-module.
The B-action on S(n−,a) is compatible with the B-action on V a(λ)= S(n−,a).vλ

The action of U−β on V (λ) is given by:

Ψ
(
x−β(t)

)
(v)=

∑

i≥0

t iψ

(
f i
β

i!
)
(v) for v ∈ V (λ) and t ∈C

and we get an induced action of U−β on V a(λ) by

Ψ a
(
x−β(t)

)
(v)=

∑

i≥0

t iψa

(
f i
β

i!
)
(v) for v ∈ V a(λ) and t ∈C.

The action of the various U−β on V a(λ) commute and hence we get a representation
Ψ a : N−,a → GL(V a(λ)). This action is compatible with the B-action on V a(λ)

and hence:

Proposition 2 V a(λ) is a representation space for Ga .

In analogy to the classical construction we define:

Definition 4 The closure of the orbit Ga.[vλ] ⊆ P(V a(λ)) is called the degenerate
flag variety Fa

λ .

3 The Kostant Lattice

Let GZ be a split and simple, simply connected algebraic Z-group (see [8]), set
GA = (GZ)A for any ring A. We assume without loss of generality (GZ)C = G.
We fix a split maximal torus TZ ⊂GZ such that T = (TZ)C and a Borel subgroup
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BZ ⊃ TZ such that B = (BZ)C. Let gZ, bZ, n+
Z

etc. be the Lie algebras, then we have
g= gZ ⊗C, b= bZ ⊗C etc.

Fix a Chevalley basis

{
fβ, eβ : β ∈R+;h1, . . . , hn

}⊂ gZ,

where fβ ∈ n
−
Z

(respectively eβ ∈ n
+
Z

) is an element of the root space g−β,Z (respec-
tively gβ,Z), and hi ∈ hZ.

Let n−
Z,s
=∑ht (β)≥s n

−
−β,Z

be the Lie subalgebra formed by the root spaces cor-

responding to roots of height at least s. The Lie subalgebra n
−
Z,s+1 ⊂ n

−
Z,s

is an

ideal, and the associated graded algebra n
−,a
Z

=⊕s≥1 n
−
Z,s

/n−
Z,s+1 is an abelian Lie

algebra. We make n
−,a
Z

into a BZ- as well as a bZ-module by identifying the vector
space n−,a

Z
with the quotient module gZ/bZ, which is a BZ- respectively bZ-module

via the adjoint action.

Definition 5 Denote by ga
Z

the Lie algebra ga
Z
= bZ⊕n

−,a
Z

, where n−,a
Z

is an abelian
ideal in ga

Z
and bZ acts on n

−,a
Z

via the induced adjoint action described above.

We write e
(m)
β , f

(m)
β for the divided powers

fm
β

m! and
emβ
m! in the enveloping algebra

U(g). We denote by
(
hi

m

)
the following element in U(g):

(
hi

m

)
= hi(hi − 1) · · · (hi −m+ 1)

m! .

Let now UZ(g) be the Kostant lattice in U(g), i.e. the subalgebra generated by the(
hi

m

)
and the divided powers e

(m)
β , f

(m)
β . We identify UZ(g) with Dist(GZ), the alge-

bra of distributions or the hyperalgebra of GZ. We fix an enumeration of the positive
roots {β1, . . . , βN }. Given an N -tuple m= (m1, . . . ,mN) of non-negative integers,
we set

f (m) = f
(m1)
β1

· · ·f (mN)
βN

, e(m) = e
(m1)
β1

· · · e(mN)
βN

,

and given an n-tuple �= (�1, . . . , �n), set

h(�) =
(
h1

�1

)
· · ·
(
hn

�n

)
.

The ordered monomials

f (m)h(�)e(k), where m,k are N -tuples, � is an n-tuple of natural numbers,

form a Z-basis of UZ(g) as a free Z-module. The subalgebras UZ(n
−) and UZ(n

+)
admit the ordered monomials

{
f (m) |m1, . . . ,mN ∈ Z≥0

}
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respectively
{
e(m) |m1, . . . ,mN ∈ Z≥0

}

as bases.
Let UZ(n

−)s be the Z-span of the monomials of degree at most s:

UZ

(
n
−)

s
= 〈f (m1)

γ1
. . . f (m�)

γ�
|m1 + · · · +m� ≤ s, γ1, . . . , γ� ∈R+

〉
Z
, (3)

where the degree of f
(m1)
γ1 . . . f

(m�)
γ� is the sum m1 + · · · +m�. Since changing the

ordering is commutative up to terms of smaller degree, the UZ(n
−)s define a filtra-

tion of the algebra UZ(n
−). By abuse of notation denote by SZ(n

−,a) the associated
graded algebra. Note that n−,a

Z
⊂ SZ(n

−,a). In fact, SZ(n
−,a) is a divided power

analogue of the symmetric algebra over n−,a
Z

. This algebra can be described as the

quotient of a polynomial algebra in infinitely many generators (the “symbols” f(m)
β ):

Z[f(m)
β |m ∈ Z≥0, β ∈R+]modulo the ideal J generated by the following identities:

J=
〈
f
(m)
β f

(k)
β −

(
m+ k

m

)
f
(m+k)
β

∣∣∣∣ k,m≥ 1, β ∈R+
〉
. (4)

So we have:

SZ
(
n
−,a
)� Z

[
f
(m)
β |m ∈ Z≥0, β ∈R+

]
/J.

The isomorphism above sends the basis given by classes of the monomials in
the symbols f

(m1)
β1

· · · f(mN)
βN

to the basis of SZ(n
−,a) given by the monomials

f
(m1)
β1

· · ·f (mN)
βN

.

Let U+
Z
(h + n+) ⊂ UZ(g) be the span of the monomials h(�)e(k) such that∑n

i=1 �i +
∑N

j=1 kj > 0. The natural map which sends a monomial to its class in
the quotient:

UZ

(
n
−)→UZ(g)/UZ

(
n
−)U+

Z

(
h+ n

+), f (m) → f (m),

is an isomorphism of free Z-modules. Recall that UZ(g) is naturally a BZ-module
and a UZ(b)-module via the adjoint action, and UZ(n

−)U+
Z
(h + n+) is a proper

submodule. Via the identification above, we get an induced structure on UZ(n
−)

as a BZ-module and a UZ(b)-module. The filtration of UZ(n
−) by the UZ(n

−)s is
stable under this BZ- and UZ(b)-action and hence:

Lemma 1 The BZ-module structure and the UZ(b)-module structure on UZ(n
−)

induce a BZ-module structure and a UZ(b)-module structure on SZ(n
−,a).

For a dominant integral weight λ = m1ω1 + · · · + mnωn fix a highest weight
vector vλ and let VZ(λ)=UZ(g)vλ ⊂ V (λ) be the corresponding lattice in the com-
plex representation space. Since VZ(λ) = UZ(n

−)vλ, the filtration (3) induces an
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increasing filtration VZ(λ)s on VZ(λ):

VZ(λ)s =UZ

(
n
−)

s
vλ. (5)

We denote the associated graded space by V a
Z
(λ). Since BZVZ(λ)s ⊂ VZ(λ)s , V a

Z
(λ)

becomes naturally a BZ-module. The application by an element f
(m)
β ∈ UZ(n

−)
provides linear maps for all s:

f
(m)
β : VZ(λ)s → VZ(λ)s+m

∪ ∪
VZ(λ)s−1 → VZ(λ)s+m−1,

and we get an induced endomorphism ψa(f
(m)
β ) : V a

Z
(λ) → V a

Z
(λ) such that

ψa(f
(m)
β )ψa(f

(�)
γ ) = ψa(f

(�)
γ )ψa(f

(m)
β ), and hence we get an induced represen-

tation of the abelian Lie algebra n
−,a
Z

and of the algebra SZ(n
−,a). Note that V a

Z
(λ)

is a cyclic SZ(n
−,a)-module:

V a
Z
(λ)= SZ

(
n
−,a
)
vλ.

The action of SZ(n−,a) on V a
Z
(λ) is compatible with the BZ-action on SZ(n

−,a) and
on V a(λ), so summarizing we have:

Proposition 3 V a
Z
(λ) is a ga

Z
-module, it is a cyclic SZ(n

−,a)-module and a BZ-
module. The BZ-action on SZ(n

−,a) is compatible with the BZ-action on V a
Z
(λ)=

SZ(n
−,a).vλ.

For a positive root β let U−β,Z ⊂GZ be the closed root subgroup corresponding
to the root −β . We denote by x−β : Ga,Z,β → U−β,Z a fixed isomorphism of the
root subgroup with the additive group Ga,Z. We add the root as an index to indicate
that this copy Ga,Z,β of the additive group is supposed to be identified with U−β,Z.

As in the case before over the complex numbers, the group N−
Z

admits a
filtration by a sequence of normal subgroups: set N−

Z,s
= ∏

ht (β)≥s U−β,Z, the

product N
−,a
Z

= ∏
s≥1 N

−
Z,s

/N−
Z,s+1, is a commutative group. We can identify

N
−,a
Z

naturally with the product
∏

β∈R+ Ga,Z,β , viewed as a product of commut-
ing additive groups. Again, Ga,Z,β gets identified with the image of U−β,Z in
N−
Z,ht (β)

/N−
Z,ht (β)+1. The Lie algebra of N−,a

Z
is n−,a

Z
.

The action of U−β,Z on VZ(λ) is given by:

Ψ
(
u−β(t)

)
(v)=

∑

i≥0

t iψ
(
f

(i)
β

)
(v) for v ∈ VZ(λ) and t ∈ Z

and we get an induced action of U−β,Z on V a
Z
(λ) by

Ψ a
(
u−β(t)

)
(v)=

∑

i≥0

t iψa
(
f

(i)
β

)
(v) for v ∈ V a

Z
(λ) and t ∈ Z.
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The action of the various U−β,Z on V a
Z
(λ) commute and hence we get a representa-

tion Ψ a :N−,a
Z

→ GL(V a
Z
(λ)). Since we started with a Chevalley basis, by [9], §6,

or [10], §3.6, the coefficients in (2) are integral, so we get an action of BZ on N
−,a
Z

.
Denote by Ga

Z
the semi-direct product BZ �N

−,a
Z

. The actions of BZ and N
−,a
Z

on
V a
Z
(λ) are compatible and hence we get

Proposition 4 V a
Z
(λ) is a Ga

Z
-module.

As a consequence, given a field k, we have the group Ga
k = (Ga

Z
)k , the representa-

tion space V a
k = (V a

Z
)k and the degenerate flag variety Fa

λ,k :=Ga
k.[vλ] ⊂ P(V a

k (λ)).
Here are some natural questions:

(i) is the graded character of V a
k (λ) independent of the characteristic?

(ii) is V a
Z
(λ) torsion free?

An explicit monomial basis for V a
C
(λ) has been constructed for G= SLn in [4] and

for G= Sp2n in [5]. Another natural question:

(iii) is this basis of V a(λ) compatible with the lattice construction in this section?
Or, to put it differently: is V a

Z
(λ) a free Z-module with basis {f (s)vλ | s ∈

S(λ)}? (For the notation see the next sections.)

The aim of the next sections is to give an affirmative answer to these questions for
G= SLn and G= Sp2n.

4 Roots and Relations in Type A and C

Let R+ be the set of positive roots of sln+1. Let αi , ωi i = 1, . . . , n be the simple
roots and the fundamental weights. All positive roots of sln+1 are of the form αp +
αp+1+ · · · +αq for some 1≤ p ≤ q ≤ n. In the following we denote such a root by
αp,q , for example αi = αi,i .

Let now R+ be the set of positive roots of sp2n. Let αi , ωi i = 1, . . . , n be the
simple roots and the fundamental weights. All positive roots of sp2n can be divided
into two groups:

αi,j = αi + αi+1 + · · · + αj , 1≤ i ≤ j ≤ n,

αi,j = αi + αi+1 + · · · + αn + αn−1 + · · · + αj , 1≤ i ≤ j ≤ n
(6)

(note that αi,n = αi,n). We will use the following short versions

αi = αi,i , αi = αi,i .

We recall the usual order on the alphabet J = {1, . . . , n,n− 1, . . . ,1}
1 < 2 < · · ·< n− 1 < n< n− 1 < · · ·< 1. (7)
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Let g = n+ ⊕ h⊕ n− be the Cartan decomposition. By Lemma 1, the UZ(n
+)-

module structure on UZ(n
−) induces a UZ(n

+)-module structure on SZ(n
−,a). We

want to make this action more explicit for g of type A and C.
If α = β or if the root vectors commute, then

(
ad e(k)α

)(
f

(m)
β

)= 0. (8)

If α,γ,β = α+ γ are positive roots spanning a subsystem of type A2, then

(
ad e(k)α

)(
f

(m)
β

)=
{
±f

(k)
γ f

(m−k)
β , if k ≤m,

0, otherwise.
(9)

If α,γ,α + γ,α+ 2γ span a subrootsystem of type B2 = C2, then

(
ad e(k)α

)(
f

(m)
α+γ

)=
{
±f

(k)
γ f

(m−k)
α+γ , if k ≤m,

0, otherwise,
(10)

and

(
ad e

(k)
α+γ

)(
f

(m)
α+2γ

)=
{
±f

(k)
γ f

(m−k)
α+2γ , if k ≤m,

0, otherwise,
(11)

and

(
ad e(k)γ

)(
f

(m)
α+γ

)=
{
±2kf

(k)
α f

(m−k)
α+γ , if k ≤m,

0, otherwise,
(12)

and

(
ad e(k)γ

)(
f

(m)
α+2γ

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

±f
(k)
α+γ f

(m−k)
α+2γ

+∑ c>m−k
a+b+c=m

ra,b,cf
(a)
α f

(b)
α+γ f

(c)
α+2γ , if k ≤m,

0, otherwise,

(13)

where the coefficients ra,b,c are integers.

5 The Spanning Property for SLn+1

We first recall the definition of a Dyck path in the SLn+1-case:

Definition 6 A Dyck path (or simply a path) is a sequence

p= (β(0), β(1), . . . , β(k)), k ≥ 0

of positive roots satisfying the following conditions:
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(i) the first and last elements are simple roots. More precisely, β(0) = αi and
β(k)= αj for some 1≤ i ≤ j ≤ n;

(ii) the elements in between obey the following recursion rule: If β(s)= αp,q then
the next element in the sequence is of the form either β(s + 1) = αp,q+1 or
β(s + 1)= αp+1,q .

Example 1 Here is an example for a Dyck path for sl6:

p= (α2, α2 + α3, α2 + α3 + α4, α3 + α4, α4, α4 + α5, α5).

For a multi-exponent s= {sβ}β>0, sβ ∈ Z≥0, let f (s) be the element

f (s) =
∏

β∈R+
f

(sβ)

β ∈ SZ
(
n
−,a
)
.

Definition 7 For an integral dominant sln+1-weight λ =∑n
i=1 miωi let S(λ) be

the set of all multi-exponents s = (sβ)β∈R+ ∈ Z
R+≥0 such that for all Dyck paths

p= (β(0), . . . , β(k))

sβ(0) + sβ(1) + · · · + sβ(k) ≤mi +mi+1 + · · · +mj , (14)

where β(0)= αi and β(k)= αj .

The space V a
Z
(λ) is endowed with the structure of a cyclic SZ(n

−,a)-module,
hence V a

Z
(λ) = SZ(n

−,a)/IZ(λ) for some ideal IZ(λ) ⊆ SZ(n
−,a). Our aim is to

prove that the elements f (s)vλ, s ∈ S(λ), span V a
Z
(λ).

Let λ = m1ω1 + · · · + mnωn. The strategy is as follows: f
((λ,α)+1)
α vλ = 0 in

VZ(λ) for all positive roots α, so for α = αi + · · · + αj , i ≤ j , we have the relation

f
(mi+···+mj+1)
αi+···+αj

∈ IZ(λ).

In addition we have the operators e
(m)
α acting on V a

Z
(λ). We note that IZ(λ) is stable

with respect to the induced action of the e
(m)
α on SZ(n

−,a) (Lemma 1). By applying

the operators e
(m)
α to f

(mi+···+mj+1)
αi+···+αj

, we obtain new relations. We prove that these

relations are enough to rewrite any vector f (t)vλ as an integral linear combination
of f (s)vλ with s ∈ S(λ).

To simplify the notation we use the following abbreviations: we write just fi,j

for fαi+···+αj
, i ≤ j , and we write f

(si,j )

i,i for f
(sαi+···+αj

)

αi+···+αj
.

By the degree deg s of a multi-exponent we mean the degree of the corresponding

monomial f (s) =∏1≤i≤j≤n f
(si,j )

i,j in SZ(n
−,a), i.e. deg s=∑ si,j .

We are going to define an order on the monomials in SZ(n
−,a). To begin with,

we define a total order on the fi,j , 1≤ i ≤ j ≤ n. We say that (i, j)� (k, l) if i > k
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or if i = k and j > l. Correspondingly we say that fi,j � fk,l if (i, j)� (k, l), so

fn,n � fn−1,n � fn−1,n−1 � fn−2,n � · · · � f2,3 � f2,2 � f1,n � · · · � f1,1.

We use a sort of associated homogeneous lexicographic ordering on the set of multi-
exponents, i.e. for two multi-exponents s and t we write s� t:

(i) if deg s > deg t,
(ii) if deg s = deg t and there exist 1 ≤ i0 ≤ j0 ≤ n such that si0j0 > ti0j0 and for

i > i0 and (i = i0 and j > j0) we have si,j = ti,j .

We use the “same” total order on the set of monomials, i.e. f (s) � f (t) if and only
if s� t.

Proposition 5 Let p= (p(0), . . . , p(k)) be a Dyck path with p(0)= αi and p(k)=
αj . Let s be a multi-exponent supported on p, i.e. sα = 0 for α /∈ p. Assume further
that

k∑

l=0

sp(l) > mi + · · · +mj .

Then there exist some constants ct ∈ Z labeled by multi-exponents t such that

f (s) +
∑

t≺s

ctf
(t) ∈ IZ(λ) (15)

(t does not have to be supported on p).

Remark 1 We refer to (15) as a straightening law because it implies

f (s) =−
∑

t≺s

ctf
(t) in SZ

(
n
−,a
)
/IZ(λ)� V a

Z
(λ).

Proof We start with the case p(0) = α1 and p(k) = αn (so, k = 2n − 2). This
assumption is just for convenience. In the general case p starts with p(0) = αi ,

p(k) = αj and one would start with the relation f
(mi+···+mj+1)
i,j ∈ IZ(λ) instead of

the relation f
(m1+···+mn+1)
1,n ∈ IZ(λ) below.

So from now on we assume without loss of generality that p(0)= α1 and p(k)=
αn. In the following we use the differential operators ∂

(k)
α defined by

∂(k)
α f

(m)
β =

{
f

(k)
β−αf

(m−k)
β , if β − α ∈�+ and k ≤m,

0, otherwise.
(16)

The operators ∂
(k)
α satisfy the property

∂(k)
α f

(m)
β =±(ad e(k)α

)(
f

(m)
β

)
.
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In the following we use very often the following consequence: if a monomial
f

(m1)
β1

. . . f
(ml)
βl

∈ IZ(λ), then for any sequence of positive roots α1, . . . , αs and any
sequence of integers k1, . . . , ks ∈ Z>0 we have:

∂(k1)
α1

. . . ∂(ks )
αs

f
(m1)
β1

. . . f
(ml)
βl

∈ IZ(λ).

Since f
(m1+···+mn+1)
1,n vλ = 0 in V a

Z
(λ) and sp(0) + · · · + sp(k) > m1 + · · · +mn by

assumption, it follows that

f
(sp(0)+···+sp(k))

1,n ∈ IZ(λ).

Write ∂
(m)
i,j for ∂(m)

αi,j
, and for i, j = 1, . . . , n set

s•,j =
j∑

i=1

si,j , si,• =
n∑

j=i

si,j .

We first consider the vector

∂
(s•,n−1)
n,n ∂

(s•,n−2)

n−1,n · · · ∂(s•,1)
2,n f

(sp(0)+···+sp(k))

1,n ∈ IZ(λ). (17)

By means of formula (16) we get:

∂
(s•,1)
2n f

(sp(0)+···+sp(k))

1,n = f
(sp(0)+···+sp(k)−s•,1)
1,n f

(s•,1)
1,1

and

∂
(s•,2)
3n ∂

(s•,1)
2n f

(sp(0)+···+sp(k))

1,n = f
(sp(0)+···+sp(k)−s•1−s•2)

1,n f
(s•1)
1,1 f

(s•2)
1,2 .

Summarizing, the vector (17) is equal to

f
(s•,1)
1,1 f

(s•,2)
1,2 · · ·f (s•,n)

1,n ∈ IZ(λ).

To prove the proposition, we apply more differential operators to the monomial

f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n)
1,n . Consider the following element in IZ(λ)⊂ SZ(n

−,a):

A= ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(sn,•)
1,n−1f

(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n)
1,n . (18)

Claim

A=
∑

t�s

ctf
(t) where cs = 1. (19)

Now A ∈ IZ(λ) by construction, so the claim proves the proposition.

Proof of the claim In order to prove the claim we need to introduce some more
notation. For j = 1, . . . , n− 1 set

Aj = ∂
(sj+1,•)
1,j ∂

(sj+2,•)
1,j+1 . . . ∂

(sn,•)
1,n−1f

(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n)
1,n , (20)
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so A1 =A. To start an inductive procedure, we begin with An−1:

An−1 = ∂
(sn,•)
1,n−1f

(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n)
1,n .

Now sn,• = sn,n and ∂
(x)
1,n−1f

(y)

1,j = 0 for j 	= n, so

An−1 = f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n−sn,n)

1,n f
(sn,n)
n,n . (21)

We proceed with the proof using decreasing induction. Since the induction proce-
dure is quite involved and the initial step does not reflect the problems occurring in
the procedure, we discuss for convenience the case An−2 separately.

Consider An−2, we have:

An−2 = ∂
(sn−1,•)
1,n−2 f

(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n−sn,n)

1,n f
(sn,n)
n,n .

Now ∂
(k)
1,n−2f

(m)
1,j = 0 for j 	= n − 1, n, ∂

(k)
1,n−2f

(m)
n,n = 0, and ∂(k)(xy) =

∑k
i=0 ∂

(k−i)(x)∂(i)(y), so

An−2 =
sn−1,•∑

�=0

f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,n−1−sn−1,•+�)

1,n−1 f
(s•,n−sn,n−�)

1,n f
(sn−1,•−�)

n−1,n−1 f
(�)
n−1,nf

(sn,n)
n,n .

We need to control which divided powers f
(�)
n−1,n can occur. Recall that s has support

in p. If αn−1 /∈ p, then sn−1,n−1 = 0 and sn−1,• = sn−1,n, so f
(sn−1,n)

n−1,n is the highest
divided power occurring in the sum. Next suppose αn−1 ∈ p. This implies αj,n /∈ p
unless j = n− 1 or n. Since s has support in p, this implies

s•,n = s1,n + · · · + sn−1,n + sn,n = sn−1,n + sn,n,

and hence again the highest divided power of fn−1,n which can occur is f
(sn−1,n)

n−1,n ,
and the coefficient is 1. So we can write

An−2 =
sn−1,n∑

�=0

f
(s•,1)
1,1 . . . f

(s•,n−1−sn−1,•+�)

1,n−1 f
(s•,n−sn,n−�)

1,n f
(sn−1,•−�)

n−1,n−1 f
(�)
n−1,nf

(sn,n)
n,n .

(22)
For the inductive procedure we make the following assumption:

Aj is a sum with integral coefficients of monomials of the form

f
(s•,1)
1,1 . . . f

(s•,j )
1,j f

(s•,j+1−∗)
1,j+1 . . . f

(s•,n−∗)
1,n︸ ︷︷ ︸

X

f
(tj+1,j+1)

j+1,j+1 f
(tj+1,j+2)

j+1,j+2 . . . f
(tn−1,n)

n−1,n f
(tn,n)
n,n

︸ ︷︷ ︸
Y

(23)

having the following properties:

(i) With respect to the homogeneous lexicographic ordering, all the multi-
exponents of the summands, except one, are strictly smaller than s.
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(ii) More precisely, there exists a pair (k0, �0) such that k0 ≥ j + 1, sk0�0 > tk0�0

and sk� = tk� for all k > k0 and all pairs (k0, �) such that � > �0.
(iii) The only exception is the summand such that t�,m = s�,m for all �≥ j + 1 and

all m, and in this case the coefficient is equal to 1.

The calculations above show that this assumption holds for An−1 and An−2.

We start now with the induction procedure and we consider Aj−1 = ∂
(sj,•)
1,j−1Aj .

Note that ∂(k)
1,j−1f

(m)
1,� = 0 for � < j , and for �≥ j we have ∂

(p)

1,j−1f
(q)

1,� = f
(p)
j,� f

(q−p)

1,�
for p ≤ q , and the result is 0 for p > q .

Furthermore, ∂(p)

1,j−1f
(q)
k,� = 0 for k ≥ j + 1, so applying ∂

(p)

1,j−1 to a summand of

the form (23) does not change the Y -part in (23). Summarizing, applying ∂
(sj,•)
1,j−1 to

a summand of the form (23) gives a sum of monomials of the form

f
(s•,1)
1,1 . . . f

(s•,j−1)

1,j−1 f
(s•,j−∗)
1,j . . . f

(s•,n−∗)
1,n︸ ︷︷ ︸

X′

f
(tj,j )

j,j . . . f
(tj,n)

j,n︸ ︷︷ ︸
Z

f
(tj+1,j+1)

j+1,j+1 f
(tj+1,j+2)

j+1,j+2 . . . f
(tn,n)
n,n

︸ ︷︷ ︸
Y

. (24)

We have to show that these summands satisfy again the conditions (i)–(iii) above
(but now for the index (j − 1)). If we start in (23) with a summand which is not
the maximal summand, but such that (i) and (ii) hold for the index j , then the same
holds obviously also for the index (j − 1) for all summands in (24) because the
Y -part remains unchanged.

So it remains to investigate the summands of the form (24) obtained by applying

∂
(sj,•)
1j−1 to the only summand in (23) satisfying (iii).

To formalize the arguments used in the calculation for An−2 we need the follow-
ing notation. Let 1≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ n be numbers defined by

ki =max{j : αi,j ∈ p}.
For convenience we set k0 = 1.

Example 2 For p= (α1,1, α1,2, . . . , α1,n−1, α1,n, α2,n, α3,n, α4,n, . . . , αn,n) we have
ki = n for all i = 1, . . . , n.

Since s is supported on p we have

si,• =
ki∑

�=ki−1

si,�, s•,� =
∑

i: ki−1≤�≤ki

si,�. (25)

Suppose now that we have a summand of the form in (24) obtained by applying

∂
(sj,•)
1j−1 to the only summand in (23) satisfying (iii). Since the Y -part remains un-

changed, this implies already tn,n = sn,n, . . . , tj+1,j+1 = sj+1,j+1. Assume that we
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have already shown tj,n = sj,n, . . . , tj,�0+1 = sj,�0+1, then we have to show that
tj,�0 ≤ sj,�0 .

We consider five cases:

(i) �0 > kj . In this case the root αj,�0 is not in the support of p and hence sj,�0 =
0. Since �0 > kj ≥ kj−1 ≥ · · · ≥ k1, for the same reason we have si,�0 = 0

for i ≤ j . Recall that the divided power of f
(∗)
1,�0

in Aj−1 in (20) is equal to

s•,�0 . Now s•,�0 =
∑

i>j si,�0 by the discussion above, and hence f
(s•,�0 )

1,�0
has

already been transformed completely by the operators ∂
(∗)
1,i , i > j , and hence

tj,�0 = 0= sj,�0 .
(ii) kj−1 < �0 ≤ kj . Since �0 > kj−1 ≥ · · · ≥ k1, for the same reason as above we

have si,�0 = 0 for i < j , so s•,�0 =
∑

i≥j si,�0 . The same arguments as above

show that for the operator ∂
(∗)
1,j−1 only the power f

(sj,�0 )

1,�0
is left to be trans-

formed into a divided power of fj,�0 , so necessarily tj,�0 ≤ sj,�0 .

(iii) kj−1 = �0 = kj . In this case sj,• = sj,�0 and thus the operator ∂
sj,•
1,j−1 = ∂

sj,�0
1,j−1

can transform a divided power f
(∗)
1,�0

in Aj only into a power f
(q)

j,�0
with q at

most sj,�0 .
(iv) kj−1 = �0 < kj . In this case sj,• = sj,�0 + sj,�0+1 + · · · + sj,kj . Applying

∂
(sj,•)
1,j−1 to the only summand in (23) satisfying (iii), the assumption tj,n =

sj,n, . . . , tj,�0+1 = sj,�0+1 implies that one has to apply ∂
(sj,kj )

1,j−1 to f
(∗)
1,kj

and

∂
(sj,kj−1)

1,j−1 to f
(∗)
1,kj−1 etc. to get the demanded divided powers of the root vec-

tors. So for f
(∗)
1,�0

only the operator ∂
(sj,�0 )

1,j−1 is left for transformations into a
divided power of fj,�0 , and hence tj,�0 ≤ sj,�0 .

(v) �0 < kj−1. In this case sj,�0 = 0 because the root is not in the support. Since
tj,� = sj,� for � > �0 and sj,� = 0 for �≤ �0 (same reason as above) we obtain

∂
(sj,•)
1,j−1 = ∂

(
∑

�>�0
sj,�)

1,j−1 .

But by assumption we know that ∂
(sj,�)

1,j−1 is needed to transform the power f
(sj,�)

1,�

into f
(sj,�)

j,� for all � > �0, so no divided power of ∂1,j−1 is left and thus tj,�0 =
0= sj,�0 .

It follows that all summands except one satisfy the conditions (i), (ii) above. The

only exception is the term where the divided powers of the operator ∂
(sj,•)
1,j−1 are dis-

tributed as follows:

f
(s•,1)
1,1 . . . f

(s•,j−1)

1,j−1

(
∂
(sj,j )

1,j−1f
(s•,j )
1,j

)(
∂
(sj,j+1)

1,j−1 f
(s•,j+1−∗)
1,j+1

)

. . .
(
∂
(sj,n)

1,j−1f
(s•,n−∗)
1,n

)
f

(sj+1,j+1)

j+1,j+1 . . . f
(sn,n)
n,n .

By construction, this term has coefficient 1 and satisfies the condition (iii), which
finishes the proof of the proposition. �
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Theorem 1 The elements f (s)vλ with s ∈ S(λ) (see Definition 7) span the module
V a
Z
(λ).

Proof The elements f (s), s arbitrary multi-exponent, span SZ(n
−,a), so the elements

f (s)vλ, s arbitrary multi-exponent, span SZ(n
−,a)/IZ(λ)� V a

Z
(λ). We use now the

Eq. (15) in Proposition 5 as a straightening algorithm to express f (s)vλ, s arbitrary,
as a linear combination of elements f (t)vλ such that t ∈ S(λ).

Let λ =∑n
i=1 miωi and suppose s /∈ S(λ), then there exists a Dyck path p =

(p(0), . . . , p(k)) with p(0)= αi , p(k)= αj such that

k∑

l=0

sp(l) > mi + · · · +mj .

We define a new multi-exponent s′ by setting

s′α =
{
sα, if α ∈ p,
0, otherwise.

For the new multi-exponent s′ we still have

k∑

l=0

s′p(l) > mi + · · · +mj .

We can now apply Proposition 5 to s′ and conclude

f (s′) =
∑

s′�t′
ct′f

(t′) in SZ
(
n
−,a
)
/IZ(λ),

where ct′ ∈ Z. We get f (s) back as f (s) = f (s′)∏
β /∈p f

(sβ)

β . For a multi-exponent t′
occurring in the sum with ct′ 	= 0 let the multi-exponent t and ct ∈ Z be such that

ct′f (t′)∏
β /∈p f

(sβ)

β = ctf
(t) (recall (4)). Since we have a monomial order it follows:

f (s) = f (s′)∏

β /∈p

f
(sβ)

β =
∑

s�t

ctf
(t) in SZ

(
n
−,a
)
/IZ(λ). (26)

Equation (26) provides an algorithm to express f (s) in SZ(n
−,a)/IZ(λ) as a sum of

elements of the desired form: if some of the t are not elements of S(λ), then we can
repeat the procedure and express the f (t) in SZ(n

−,a)/IZ(λ) as a sum of f (r) with
r ≺ t. For the chosen ordering any strictly decreasing sequence of multi-exponents
(all of the same total degree) is finite, so after a finite number of steps one obtains
an expression of the form f (s) =∑ crf

(r) in SZ(n
−,a)/IZ(λ) such that r ∈ S(λ) for

all r. �
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6 The Main Theorem for SLn+1

Theorem 2 The elements {f (s)vλ | s ∈ S(λ)} form a basis for the module V a
Z
(λ)

and the ideal IZ(λ) is generated by the subspace

〈
UZ

(
n
+)f (mi+···+mj+1)

αi,j
| 1≤ i ≤ j ≤ n− 1

〉
.

As an immediate consequence we see:

Corollary 1

(i) V a
Z
(λ) is a free Z-module.

(ii) For every s ∈ S(λ) fix a total order on the set of positive roots and denote by
abuse of notation by f (s) ∈UZ(n

−) also the corresponding product of divided
powers. The {f (s)vλ | s ∈ S(λ)} form a basis for the module VZ(λ) and for all
s < s′ we have VZ(λ)s is a direct summand of VZ(λ)s′ as a Z-module. (See (5)
for the filtration.)

(iii) With the notation as above: let k be a field and denote by Vk(λ)= VZ(λ)⊗Z k,
Uk(g)=UZ(g)⊗Z k, Uk(n

−)=UZ(n
−)⊗Z k etc. the objects obtained by base

change. The {f (s)vλ | s ∈ S(λ)} form a basis for the module Vk(λ).

Proof We know that the elements f (s)vλ, s ∈ S(λ), span V a
Z
(λ), see Theorem 1.

By [6], the number �S(λ) is equal to dimV (λ), which implies the linear indepen-
dence. By lifting the elements to VZ(λ), we get a basis of VZ(λ) which is (by con-
struction) compatible with the PBW-filtration: set

S(λ)r =
{

s ∈ S(λ)

∣∣∣∣
∑

β∈R+
sβ ≤ r

}
,

then the elements f (s)vλ, s ∈ S(λ)r , span VZ(λ)r .
Let I ⊂ SZ(n

−,a) be the ideal generated by

〈
UZ

(
n
+) ◦ f (mi+···+mj+1)

αi,j
| 1≤ i ≤ j ≤ n− 1

〉
,

by construction we know I ⊆ IZ(λ). But we also know that the relations in I

are sufficient to rewrite every element in V a
Z
(λ) in terms of the basis elements

f (s)vλ, s ∈ S(λ), which implies that the canonical surjective map SZ(n
−)/I →

SZ(n
−)/IZ(λ)� VZ(λ) is injective. �

7 Symplectic Dyck Paths

We recall the notion of the symplectic Dyck paths:
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Definition 8 A symplectic Dyck path (or simply a path) is a sequence

p= (β(0), β(1), . . . , β(k)), k ≥ 0

of positive roots satisfying the following conditions:

(i) the first root is simple, β(0)= αi for some 1≤ i ≤ n;
(ii) the last root is either simple or the highest root of a symplectic subalgebra,

more precisely β(k)= αj or β(k)= αjj for some i ≤ j ≤ n;
(iii) the elements in between obey the following recursion rule: If β(s)= αp,q with

p,q ∈ J (see (7)) then the next element in the sequence is of the form either
β(s + 1) = αp,q+1 or β(s + 1) = αp+1,q , where x + 1 denotes the smallest
element in J which is bigger than x.

Denote by D the set of all Dyck paths. For a dominant weight λ =∑n
i=1 miωi

let P(λ)⊂R
n2

≥0 be the polytope

P(λ) :=

⎧
⎪⎪⎨

⎪⎪⎩
(sα)α>0 | ∀p ∈D :

If β(0)= αi,β(k)= αj , then
sβ(0) + · · · + sβ(k) ≤mi + · · · +mj ,

if β(0)= αi,β(k)= αj , then
sβ(0) + · · · + sβ(k) ≤mi + · · · +mn

⎫
⎪⎪⎬

⎪⎪⎭
, (27)

and let S(λ) be the set of integral points in P(λ).
For a multi-exponent s= {sβ}β>0, sβ ∈ Z≥0, let f (s) be the element

f (s) =
∏

β∈R+
f

(sβ)

β ∈ SZ
(
n
−,a
)
.

8 The Spanning Property for the Symplectic Lie Algebra

Our aim is to prove that the set f (s)vλ, s ∈ S(λ), forms a basis of V a
Z
(λ). As a first

step we will prove that these elements span V a
Z
(λ).

Lemma 2 Let λ =∑n
i=1 miωi be the sp2n-weight and let VZ(λ) ⊂ V (λ) be the

corresponding lattice in the highest weight module with highest weight vector vλ.
Then

f
(mi+···+mj+1)
αi,j

vλ = 0, 1≤ i ≤ j ≤ n− 1, (28)

f (mi+···+mn+1)
αi,i

vλ = 0, 1≤ i ≤ n. (29)

Proof The lemma follows immediately from the sl2-theory. �

In the following we use the operators ∂
(k)
α defined by ∂

(k)
α (f

(m)
β )= 0 if α = β or

if the root vectors commute, and if α,γ,β = α + γ are positive roots spanning a
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subsystem of type A2, then

∂(k)
α

(
f

(m)
β

)=
{
f

(k)
γ f

(m−k)
β , if k ≤m,

0, otherwise.
(30)

If α,γ,α + γ,α+ 2γ span a subrootsystem of type B2 = C2, then

∂(k)
α

(
f

(m)
α+γ

)=
{
f

(k)
γ f

(m−k)
α+γ , if k ≤m,

0, otherwise,
(31)

and

∂
(k)
α+γ

(
f

(m)
α+2γ

)=
{
f

(k)
γ f

(m−k)
α+2γ , if k ≤m,

0, otherwise,
(32)

and

∂(k)
γ

(
f

(m)
α+γ

)=
{

2kf
(k)
α f

(m−k)
α+γ , if k ≤m,

0, otherwise,
(33)

and

∂(k)
γ

(
f

(m)
α+2γ

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(k)
α+γ f

(m−k)
α+2γ

+∑ c>m−k

a+b+c=k
ca,b,cf

(a)
α f

(b)
α+γ f

(c)
α+2γ , if k ≤m,

0, otherwise,

(34)

with the coefficients ca,b,c chosen such that ∂(k)
γ (f

(m)
α+2γ )=±(ad e

(k)
γ (f

(m)
α+2γ )). Note

that all the operators are such that ∂(k)
γ =±(ad e

(k)
γ ) (see (8)–(13)).

In the following we often just write fi,j and fi,j̄ instead of fαi,j
and fαi,j̄

. We
use the same abbreviation for the differential operators and the multi-exponents, so
we write ∂i,j and ∂i,j̄ instead of ∂αi,j

and ∂αi,j̄
, similarly we replace sαi,j

and sαi,j̄

by si,j and si,j̄ . Recall that αi,n = αi,n (see (6)).

Lemma 3 The only non-trivial vectors of the form ∂βfα , α,β > 0 are as follows:
for α = αi,j , 1≤ i ≤ j ≤ n

∂i,sfi,j = fs+1,j , i ≤ s < j, ∂s,j fi,j = fi,s−1, i < s ≤ j, (35)

and for α = αi,j , 1≤ i ≤ j ≤ n

∂i,sfi,j = fs+1,j , i ≤ s < j, ∂i,sfi,j = fj,s+1, j ≤ s,

∂i,sfi,j = fj,s−1, j < s,
(36)

∂s+1,j fi,j = fi,s , i ≤ s < j, ∂j,s+1fi,j = fi,s , j ≤ s,

∂j,s−1fi,j = fi,s, j < s.
(37)
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Let us illustrate this lemma by the following picture in type C5.

Here all circles correspond to the positive roots of the root system of type C5 in
the following way: in the upper row we have from left to right α1,1, . . . , α1,5, α1,4,

. . . , α1,1, in the second row we have from left to right α2,2, . . . , α2,5, α2,4, . . . , α2,2,
and the last line corresponds to the root α5,5. Now let us take the root α1,3 (which
corresponds to the fat circle). Then all roots that can be obtained by applying the
operators ∂β are depicted as filled small circles.

Theorem 3

(i) The vectors f (s)vλ, s ∈ S(λ) span V a
Z
(λ).

(ii) Let IZ(λ) = SZ(n
−)(UZ(n

+)R), i.e. IZ(λ) is the ideal generated by the ele-
ments obtained from R by the UZ(n

+)-action, where

R= span
{
f

(mi+···+mj+1)
αi,j

,1≤ i ≤ j ≤ n− 1, f (mi+···+mn+1)
αi,i

,1≤ i ≤ n
}
.

There exists an order “�mon” on the ring SZ(n
−,a) such that for any s /∈ S(λ)

there exists a homogeneous expression (a straightening law) of the form

f (s) −
∑

s�mont

ctf
(t) ∈ IZ(λ). (38)

Remark 2 In the following we refer to (38) as a straightening law for SZ(n−,a) with
respect to the ideal IZ(λ). Such a straightening law implies that in the quotient ring
SZ(n

−,a)/IZ(λ) we can express f (s) as a linear combination of monomials which
are smaller in the order, but of the same total degree since the expression in (38) is
homogeneous.

First we show that (ii) implies (i):

Proof [(ii) ⇒ (i)] The elements in R obviously annihilate vλ ∈ V a
Z
(λ), and so do

the elements of UZ(n
+)R, and hence so do the elements of the ideal I generated by

UZ(n
+)R. As a consequence we get a surjective map S(n−)/I → V a

Z
(λ).
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Assume s /∈ S(λ). We know by (ii) that f (s) =∑
s�mont ctf

(t) in SZ(n
−,a)/I .

If any of the t with nonzero coefficient ct is not an element in S(λ), then we can
again apply a straightening law and replace f (t) by a linear combination of smaller
monomials. Since there are only a finite number of monomials of the same total
degree, by repeating the procedure if necessary, after a finite number of steps we
obtain an expression of f (s) in SZ(n

−,a)/I as a linear combination of elements f (t),
t ∈ S(λ). It follows that {f (t) | t ∈ S(λ)} is a spanning set for SZ(n−,a)/I , and hence,
by the surjection above, we get a spanning set {f (t)vλ | t ∈ S(λ)} for V a

Z
(λ). �

To prove the second part we need to define the total order. We start by defining a
total order on the variables:

f1,1 < f1,2 < · · ·< f1,n−1 < f1,n < f1,n−1 < · · ·< f1,2 < f1,1

< · · · < · · ·< · · ·<
< fn−2,n−2 < fn−2,n−1 < fn−2,n < fn−2,n−1 < fn−2,n−2

< fn−1,n−1 < fn−1,n < fn−1,n−1

< fn,n, (39)

so, given an element fx,y , the elements in the rows below and the elements on the
right side in the same row are larger than fx,y .

Remark 3 If we omit in (39) above the elements fi,j̄ , i = 1, . . . , n, i ≤ j ≤ n− 1,
then we have the order in the case g= sln.

We use the same notation for the induced homogeneous lexicographic ordering
on the monomials. Note that this monomial order > is not the order �mon we define
now. Let

s•,j =
j∑

i=1

si,j , s•,j =
j∑

i=1

si,j ,

si,• =
n∑

j=i

si,j +
n−1∑

j=i

si,j .

Define a map d from the set of multi-exponents s to Z
n
≥0:

d(s)= (sn,•, sn−1,•, . . . , s1,•).

So, d(s)i = sn−i+1,•. We say d(s) > d(t) if there exists an i such that

d(s)1 = d(t)1, . . . , d(s)i = d(t)i , d(s)i+1 > d(t)i+1.

Definition 9 For two monomials f (s) and f (t) we say f (s) �mon f (t) if
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(a) the total degree of f (s) is bigger than the total degree of f (t);
(b) both have the same total degree but d(s) < d(t);
(c) both have the same total degree, d(s)= d(t), but f (s) > f (t).

In other words: if both have the same total degree, this definition means that f (s)

is greater than f (t) if d(s) is smaller than d(t), or d(s)= d(t) but f (s) > f (t) with
respect to the homogeneous lexicographic ordering on SZ(n

−).

Remark 4 It is easy to check that “�mon” defines a “monomial ordering” in the
following sense: if f (s) �mon f (t) and f (m) 	= 1, then

f (s+m) �mon f (t+m) �mon f (t).

By abuse of notation we use the same symbol also for the multi-exponents: we
write s�mon t if and only if f (s) �mon f (t).

Proof of Theorem 3(ii) Let s be a multi-exponent violating some of the Dyck path
conditions from the definition of S(λ). As in the proof of Theorem 1, it suffices to
consider the case where s /∈ S(λ) and s is supported on a Dyck path p and s violates
the Dyck path condition for S(λ) for this path p.

Suppose first that the Dyck path p is such that p(0) = αi , p(k) = αj for some
1≤ i ≤ j < n. In this case the Dyck path involves only roots which belong to the Lie
subalgebra sln ⊂ sp2n, and we get a straightening law by the results in Sect. 5. By
(19) and Lemma 3, the application of the ∂-operators produces only summands such
that d(s)= d(t) for any t occurring in the sum with a nonzero coefficient. Hence we
can replace “�” by “�mon” in (15), which finishes the proof of the theorem in this
case.

Now assume p(0) = αi,i and p(k) = αj,j for some j ≥ i. We include the case
j = n by writing αn,n = αn,n. We proceed by induction on n. For n = 1 we have
sp2 = sl2, so we can refer to Sect. 5. Now assume that we have proved the existence
of a straightening law for all symplectic algebras of rank strictly smaller than n. If
i > 1, then the Dyck path is also a Dyck path for the symplectic subalgebra L �
sp2n−2(i−1) generated by eαk,k

, fαk,k
, hαk,k

, i ≤ k ≤ n. Let n+L,n−L etc. be defined by
the intersection of n+,n− etc. with L and set λL =∑n

k=i mkωk . It is now easy to see
that the straightening law for f (s) viewed as an element in SZ(n

−,a
L ) with respect to

IZ,L(λL) defines also a straightening law for f (s) viewed as an element in SZ(n
−,a)

with respect to IZ(λ).
So from now on we fix p(0)= α1 and p(k)= αi,i for some i ∈ {1, . . . , n}. For a

multi-exponent s supported on p, set

Σ =
k∑

l=0

sp(l) > m1 + · · · +mn.
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Obviously we have f
(Σ)

1,1̄
∈ I (λ). Now we consider two operators

Δ1 := ∂
(s•,ī+si,•)
1,i−1 ∂

(s•,i )
i+1,i+1

. . . ∂
(s•,n−1)

n,n̄︸ ︷︷ ︸
δ3

∂
(s•,n−1+s•,n)
1,n−1 . . . ∂

(s•,i+s•,i+1)

1,i︸ ︷︷ ︸
δ2

· ∂(s•,i−1)

1,ī
. . . ∂

(s•,2)
1,3̄

∂
(s•,1)
1,2̄︸ ︷︷ ︸

δ1

and

Δ2 := ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(si−1,•)
1,i−2 ,

and we will show that

Δ2Δ1f
(Σ)

1,1̄
= f (s) +

∑

s�mont

ctf
(t) (40)

with integral coefficients ct. Since Δ2Δ1f
(Σ)

1,1̄
∈ IZ(λ), the proof of (40) finishes

the proof of the theorem. A first step in the proof of (40) is the following Lemma 4
below.

Recall the alphabet J = {1, . . . , n, n− 1, . . . ,1}. Let q1, . . . , qi ∈ J be a se-
quence of increasing elements defined by

qk =max{l ∈ J : αk,l ∈ p}.
For example, qi = i. All roots of p are of the form

α1,1, . . . , α1,q1 , α2,q1 , . . . , α2,q2 , . . . , αi,qi−1 , . . . , αi,qi . �

Lemma 4 Set f (s′) = f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,qi−1−si,qi−1 )

1,qi−1
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
, then

Δ1f
(Σ)

1,1̄
= f (s′) +

∑

s′�mont

ctf
(t). (41)

If f (t), t 	= s′, is a monomial occurring in this sum, then either there exists an in-
dex j such that d(t)j > 0 for some j ∈ {1,2, . . . , n − i}, or d(t)j = 0 for all j ∈
{1,2, . . . , n− i} and d(t)n−j+1 > si,•, or d(t)= d(s′) and f

(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
<

f
(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
.

Corollary 2 If f t 	= f s′ is a monomial occurring in (41), then either Δ2f
t = 0, or

Δ2f
t is a sum of monomials f k such that f s �mon f k.

Proof of the lemma One easily sees by induction that

δ1
(
f

(Σ)

1,1̄

)= f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,i−1)

1,i−1 f
(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
.
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Note that the roots used in the operator are α1,2̄, . . . , α1,ī , and they are applied to

f1,1̄ of weight α1,1̄. In terms of (10)–(13), we apply ∂
(∗)
α+γ to f

(∗)
α+2γ , so rule (11)

applies.
Since α1,j − α1,�, 1 ≤ j < i, i < � ≤ n, and α1,j − α�,�̄, 1 ≤ j < i, i < � ≤ n,

and α1,j − α1,i−1, 1≤ j < i, are never positive roots, one has

∂
(s•,ī+si,•)
1,i−1 δ3δ2

(
f

(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,i−1)

1,i−1︸ ︷︷ ︸
f (x)

)= 0,

so it remains to consider f (x)∂
(s•,ī+si,•)
1,i−1 δ3δ2(f

(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
).

To better visualize the following procedure, one should think of the variables fi,j

as being arranged in a triangle like in the picture after Lemma 3, or in the following
example (type C4):

f11 f12 f13 f14 f13̄ f12̄ f11̄
f22 f23 f24 f23̄ f22̄

f33 f34 f33̄
f44

(42)

With respect to the ordering “>”, the largest element is located in the bottom row
and the smallest element is written in the top row on the left side. We enumerate the
rows and columns like the indices of the variables, so the top row is the 1-st row, the
bottom row the n-th row, the columns are enumerated from the left to the right, so
we have the 1-st column on the left side and the most right one is the 1̄-st column.
We refer to row k, column j as the (k; j) entry. Similarly, we refer to row k, column
j̄ as the (k; j̄ ) entry.

The operator ∂1,q , 1≤ q ≤ n−1, kills all f1,j for 1≤ j ≤ q , ∂1,q (f1,j )= fq+1,j

for j = q + 1, . . . , q + 1 (rule (9) applies), ∂1,q (f1,j̄ ) = fj,q+1 for j = 1, . . . , q
(rule (9) applies), and ∂1,q kills all fk,� for k ≥ 2. Because of the set of indices of

the operators occurring in δ2, the operator applied to f
(Σ−s•,1−s•,2−···−s•,i−1)

1,1̄
never

increases the zero entries in positions (1; ī) through (1; 2̄). As a consequence, the
application of δ2 produces the sum of monomials

f (x)f
(s•,i+s•,i+1)

1,i+1
· · ·f (s•,n−2+s•,n−1)

1,n−1
f

(s•,n−1+s•,n)
1,n f

(s•,ī )
1,1̄

+
∑

ckf
(k),

where the monomials f (k) occurring in the sum are such that the corresponding tri-
angle (see (42)) has at least one non-zero entry in one of the positions between the
(i + 1)-th and the n-th row (counted from top to bottom). This implies d(k)j > 0

for some j = 1, . . . , n− i. The operators δ3 and ∂
(s•,ī+si,•)
1,i−1 do not change this prop-

erty because (in the language of the scheme (42) above) the operators ∂j,j̄ used to
compose δ3 either kill a monomial or, in the language of the scheme (42), they sub-
tract from an (k, j̄ ) entry and add to a (k, j − 1) entry. The operator ∂1,i−1 subtracts
from the entries in the top row and, since the entries in the positions (1, i − 1) up
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to (1, 2̄) are zero, adds to the entries in the i-th row. The only exception is ∂1,i−1

applied to f1,1̄, the result is f1,ī . It follows that the monomials f (k′) occurring in

∂
(s•,ī+si,•)
1,i−1 δ3f

(k) have already the desired properties because we have just seen that
d(k′)j > 0 for some j = 1, . . . , n− i.

So to finish the proof of the lemma, in the following it suffices to consider

f x∂
(s•,ī+si,•)
1,i−1 δ3f

(s•,i+s•,i+1)

1,i+1
· · ·f (s•,n−2+s•,n−1)

1,n−1
f

(s•,n−1+s•,n)
1,n f

(s•,ī )
1,1̄

= f x∂
(s•,ī+si,•)
1,i−1 f

(s•,i )
1,i f

(s•,i+1)

1,i+1 · · ·f (s•,n)
1,n f

(s•,n−1)

1,n−1
· · ·f (s•,i+1)

1,i+1
f

(s•,ī )
1,1̄

. (43)

Note that the operators in δ3 are of the form ∂j,j̄ , j = i + 1, . . . , n, and they are

applied to f1,�̄, �= i+ 1, . . . , n, so ∂
(k)

j,j̄
f

(p)

1,�̄
= 0 for � 	= j and for j = � we set α =

αj,j̄ , γ = α1,j−1, ∂j,j̄ = ∂α , f1,j̄ = fα+γ , so rule (10) applies and the coefficient in
(43) is 1.

It remains to consider the operator ∂
(s•,ī+si,•)
1,i−1 . There are three possibilities: apply-

ing ∂1,i−1 to the monomial above increases the degree with respect to the variables
fi,∗, or the operator is applied to a variable killed by the operator, or the opera-
tor is applied to a factor f1,1̄, in which case the result is f1,ī (note that in this
case rule (11) applies). So the right hand side of (43) can be written as a linear
combination

∑
ckf

(k) of monomials such that d(k)j = 0 for j = 1, . . . , n− i and
d(k)n−i+1 ≥ si,•.

It remains to consider the case where d(k)n−i+1 = si,•. This is only possible

if ∂1,i−1 is applied s•,ī -times to f
s•,ī
1,1̄

, in which case d(k) has only two non-zero

entries: d(k)1 = Σ − si,• and d(k)n−i+1 = si,•, so d(k) = d(s′). If k 	= s′, then

necessarily f
(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
. �

Proof of the corollary The operators used to compose Δ2 do not change anymore
the entries of d(t) for the first n− i + 1 indices.

Suppose first t is such that there exists an index j such that d(t)j > 0 for some
j ∈ {1,2, . . . , n− i} or d(t)i,ī > si,•. By the description of the operators occurring
in Δ2, every monomial f (k) occurring with a nonzero coefficient in Δ2f

(t) has this
property too and hence f (s) �mon f (k).

Next assume d(t) = d(s′) and f
(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
.

Recall that t1,i−1 = · · · = t1,1 = 0. It follows that the operators occurring in Δ2
always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i). It
follows that all monomials f (k) occurring in Δ2(f

(t)) have the property: d(k) =
d(s). Since f

(ti,i )

i,i f
(ti,i+1)

i,i+1 · · ·f (ti,ī )

i,ī
< f

(si,i )

i,i f
(si,i+1)

i,i+1 · · ·f (si,ī )

i,ī
, it follows that f (s) >

f (k) and hence f (s) �mon f (k). �

Continuation of the proof of Theorem 3(ii) We have seen that, in order to prove
Theorem 3(ii), it suffices to prove (40). Recall the definition of the multi-index (s′)
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in Lemma 4:

f (s′) = f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,qi−1−si,qi−1 )

1,qi−1
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
. (44)

To prove the theorem it remains to prove (using Lemma 4 and Corollary 2) for
f (s′) that Δ2f

(s′) is a linear combination of f (s) with coefficient 1 and monomials
strictly smaller than f (s). The following lemma proves this claim and hence finishes
the proof of the theorem. �

Lemma 5 The operator Δ2 := ∂
(s2,•)
1,1 ∂

(s3,•)
1,2 . . . ∂

(si−1,•)
1,i−2 applied to the monomial

f (s′) (see (44) for the multi-index (s′)) is a linear combination of f (s) and smaller
monomials:

Δ2f
(s′) = f (s) +

∑

s�mont

ctf
(t). (45)

Proof First note that all monomials f (k) occurring in Δ2f
(s′) have the same total

degree. Recall that s′
1,i−1

= · · · = s′
1,1
= 0. It follows that the operators occurring in

Δ2 always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i and
strictly greater than 1). It follows that all monomials f (k) occurring in Δ2(f

(s′))
have the same multidegree d(s), in fact, we will see below that f s is a summand
and hence d(k)= d(s).

So in the following we can replace the ordering �mon by > since, in this special
case, the latter implies the first.

The elements fi,j and fi,j̄ , 2≤ i ≤ j ≤ n, are in the kernel of the operators ∂1,k

for all 1≤ k ≤ n, and so are the variables f1,j , j ≤ k in the first k columns.
The operator ∂1,k , 1≤ k ≤ n, “moves” the variables f1,j , k+ 1≤ j ≤ n from the

first row to the variable fk+1,j in the same column, in this case rule (9) applies.
The operator ∂1,k , 1≤ k ≤ n “moves” the variables f1,j̄ , k + 1≤ j ≤ n from the

first row to the variable fk+1,j̄ in the same column. Note that here rule (9) applies,
except for j = k+ 1, in this case set rule (10) applies.

For j ≤ k, the operator makes the variables switch the column, it moves the
variable f1,j̄ to the variable fj,k+1 in the j -th row and (k + 1)-th column. In this
situation rule (9) applies, except if j = 1. But note that j = 1 can be excluded in
our case because j = 1 implies i = 1 for the path, and this implies that Δ2 is the
identity operator, so there is no operator ∂1,k in this case.

We proceed by induction on i. If i = 1,2, then Δ2 is the identity operator, f (s) =
f (s′) and hence the lemma is trivially true. Now assume i ≥ 3 and the lemma holds
for all numbers less than i. We note that the monomial

f
(s1,1)

1,1 . . . f
(s1,q1 )

1,q1
· (∂(s2,q1 )

1,1 f
(s2,q1 )

1,q1
. . . ∂

(s2,q2 )

1,1 f
(s2,q2 )

1,q2

)

· · · · · (∂(si−1,qi−2 )

1,i−2 f
(si−1,qi−2 )

1,qi−2
. . . ∂

(si−1,qi−1 )

1,i−2 f
(si−1,qi−1 )

1,qi−1

)(
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī

)
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is equal to f s (only the rules (9) and (10) apply) and appears as a summand in
Δ2f

(s′). Our aim is to show that all other monomials in Δ2f
(s′) are less than f (s).

All monomials share the common factor (f
(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī
), the maximal vari-

able smaller than the ones occurring in the divisor is the variable fi−1,qi−1 . Note
that if j < i − 1 then for any q ∈ J the variable ∂1,j f1,q lies in the (j + 1)-th row,
note that j + 1 < i. The operator ∂1,i−2 is applied si−1,•-times, the unique maximal

monomial in the sum expression of ∂
(si−1,•)
1,i−2 f (s′) is

f
(s•,1)
1,1 f

(s•,2)
1,2 . . . f

(s•,qi−2−si−1,qi−2 )

1,qi−2

(
f

(si−1,qi−2 )

i−1,qi−2
. . . f

(si−1,qi−1 )

i−1,qi−1

)(
f

(si,qi−1 )

i,qi−1
. . . f

(si,ī )

i,ī

)
,

because applying the operator ∂1,i−2 to any of the variables f1,j such that j 	=
qi−2, . . . , qi−1, gives a monomial smaller in the order >, and the exponents si−1,j ,

j = qi−2, . . . , qi−1, are the maximal powers such that ∂(∗)
1,i−2 can be applied to f

(y)

1,j
because either qi−2 < j < qi−1, and then y = s•,j = si−1,j , or j = qi−1, then
si−1,qi−1 is the power with which the variable occurs in f (s′), or j = qi−2, then
only the power si−1,qi−2 of the operator is left.

Repeating the arguments for the operators ∂1,i−3 etc. finishes the proof of the
lemma. �

9 The Tensor Product Property

In the following section let g= SLn or Sp2n.

Proposition 6 For two dominant weights λ and μ the SZ(n
−,a)-module V a

Z
(λ +

μ) is embedded into the tensor product V a
Z
(λ) ⊗Z V a

Z
(μ) as the highest weight

component, i.e. there exists a unique injective homomorphism of SZ(n−,a)-modules:

V a
Z
(λ+μ) ↪→ V a

Z
(λ)⊗ V a

Z
(μ) such that vλ+μ �→ vλ ⊗ vμ. (46)

Proof Using the defining relations for V a
Z
(λ+ μ), it is easy to see that we have a

canonical map V a
Z
(λ+ μ)→ V a

Z
(λ)⊗ V a

Z
(μ) sending vλ+μ to vλ ⊗ vμ. We know

that V a
Z
(λ)⊂ V a(λ) and V a

Z
(μ)⊂ V a(μ) are lattices in the corresponding complex

vector spaces, and, by [4] and [5], we know that S(n−,a)(vλ⊗vμ)⊂ V a(λ)⊗V a(μ)

is isomorphic to V a(λ+μ), the isomorphism being given by

V a(λ+μ) �m.vλ+μ �→m.vλ ⊗ vμ ∈ V a(λ)⊗ V a(μ) for m ∈ S
(
n
−,a
)
.

It follows that the induced map V a
Z
(λ+μ)→ V a

Z
(λ)⊗ V a

Z
(μ) between the lattices

is injective and hence an isomorphism onto the image. �
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On the Subgeneric Restricted Blocks of Affine
Category O at the Critical Level

Peter Fiebig

Abstract We determine the endomorphism algebra of a projective generator in a
subgeneric restricted block of the critical level category O over an affine Kac–
Moody algebra.

1 Introduction

This article complements the results of the articles [1] and [2]. There we studied the
structure of restricted critical level representations for affine Kac–Moody algebras.
The two main results we obtained are the following. The first is a multiplicity for-
mula for restricted Verma modules with a subgeneric critical highest weight, and the
second is a linkage principle together with a block decomposition for the restricted
category O. In this article we use these results in order to describe the categorical
structure of the subgeneric restricted blocks of O.

We would like to be able to describe the structure of all restricted blocks and to
establish more general multiplicity and character formulas. Generically, a restricted
critical level block contains a unique simple object which is, moreover, projective.
This implies that such a block is equivalent to the category of C-vector spaces.
The next simplest situation is already much more involved. Each subgeneric block
contains infinitely many simples. Every subgeneric restricted Verma module has a
two-step Jordan–Hölder filtration, and the restricted version of BGGH-reciprocity
(see [2]) tells us that a restricted subgeneric indecomposable projective object is a
non-split extension of two Verma modules. In this note we describe the endomor-
phism algebra of a projective generator in such a subgeneric block.

2 Affine Kac–Moody Algebras

In this section we collect the main structural results on affine Kac–Moody algebras.
Let g be a simple complex Lie algebra and let ĝ be the corresponding affine Kac–
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Moody algebra. As a vector space, ĝ = g⊗C C[t, t−1] ⊕ CK ⊕ CD, and the Lie
bracket on ĝ is determined by the rules

[
x ⊗ tm, y ⊗ tn

]= [x, y] ⊗ tm+n +mδm,−n(x, y)K,

[K, ĝ] = {0},
[
D,x ⊗ tn

]= nx ⊗ tn,

where x and y are elements of g, m and n are integers, δa,b is the Kronecker symbol,
and (·, ·) : g× g→C denotes the Killing form on g.

Let h ⊂ g be a Cartan subalgebra and b ⊂ g a Borel subalgebra containing h.
Then

ĥ := h⊕CK ⊕CD,

b̂ := g⊗ tC[t] ⊕ b⊕CK ⊕CD

denote the corresponding affine Cartan and Borel subalgebras of ĝ, respectively.

2.1 Affine Roots

We denote by V � the dual of a vector space V . Let R ⊂ h� be the set of roots of
g with respect to h. We consider h� as a subspace in ĥ� by letting each λ ∈ h� act
trivially on CK ⊕CD. We define δ ∈ ĥ� by

δ(h⊕CK)= {0},
δ(D)= 1.

The set R̂ ⊂ ĥ� of roots of ĝ with respect to ĥ is

R̂ = {α + nδ | α ∈R,n ∈ Z} ∪ {nδ | n ∈ Z, n 	= 0}.
The subsets

R̂ re := {α+ nδ | α ∈R,n ∈ Z},
R̂ im := {nδ | n ∈ Z, n 	= 0}

are called the sets of real roots and of imaginary roots, resp.
We denote by R+ ⊂ R the positive (finite) roots, i.e. the set of roots of b with

respect to h. Then the set of positive affine roots, i.e. the set of roots of b̂ with respect
to ĥ, is

R̂+ := {α + nδ | α ∈R,n≥ 1} ∪R+ ∪ {nδ | n≥ 1}.
The partial order “≤” on ĥ� is defined as follows. We have λ ≤ μ if μ− λ is a

sum of positive affine roots.
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2.2 The Invariant Bilinear Form

There is an extension of the Killing form (·, ·) on g to a symmetric bilinear form on
ĝ. It is determined by the following:

(
x ⊗ tn, y ⊗ tm

)= δn,−m(x, y),

(
K,g⊗C C

[
t, t−1]⊕CK

)= {0},
(
D,g⊗C C

[
t, t−1]⊕CD

)= {0},
(K,D)= 1

for x, y ∈ g and m,n ∈ Z. This form is again non-degenerate and invariant, i.e. it
satisfies ([x, y], z) = (x, [y, z]) for all x, y, z ∈ ĝ. Moreover, it induces a non-
degenerate bilinear form on the Cartan subalgebra ĥ and hence yields an isomor-
phism ĥ

∼→ ĥ�. We get an induced symmetric non-degenerate bilinear form on the
dual ĥ�, which we again denote by the symbol (·, ·).

Remark 1 The definitions immediately imply that the isomorphism ĥ→ ĥ� from
above maps K to δ, i.e. for any λ ∈ ĥ� we have

λ(K)= (δ, λ).

In particular, (δ, γ )= 0 for any γ ∈ R̂.

2.3 The Weyl Group

For each real affine root α + nδ we have (α + nδ,α + nδ)= (α,α) 	= 0, hence we
can define the reflection

sα,n : ĥ� → ĥ
�

λ �→ λ− 2
(λ,α + nδ)

(α,α)
(α + nδ).

This is a reflection as it stabilizes the hyperplane (·, α + nδ)= 0 and maps α + nδ

to −α − nδ.
We denote by Ŵ ⊂ GL(̂h�) the affine Weyl group, i.e. the subgroup generated

by the reflections sα,n for α ∈ R and n ∈ Z. The subgroup W ⊂ Ŵ generated by
the reflections sα,0 with α ∈R leaves the subset h� ⊂ ĥ� stable and can be identified
with the Weyl group of g.

Let ρ ∈ ĥ� be an element that takes the value 1 on any simple affine coroot. This
element is defined only up to addition of a multiple of δ. Nevertheless, nothing in
what follows will depend on the value of ρ on D in an essential way.
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The dot-action Ŵ × ĥ� → ĥ�, (w,λ) �→ w.λ, of the affine Weyl group on ĥ� is
obtained by shifting the linear action in such a way that −ρ becomes a fixed point,
i.e. it is given by

w.λ :=w(λ+ ρ)− ρ

for w ∈ Ŵ and λ ∈ ĥ�. Note that since (δ,α + nδ)= 0 we have sα,n(δ)= δ for all
α + nδ ∈ R̂re. Hence w(δ) = δ for all w ∈ Ŵ (so the dot-action is independent of
the choice of ρ).

3 The Affine Category O

We denote by Ô the full subcategory of the category of representations of ĝ that
contains an object M if and only if it has the following properties:

• M is semisimple under the action of ĥ,
• M is locally finite under the action of b̂.

The first condition means that M =⊕
λ∈ĥ� Mλ, where Mλ = {m ∈ M | h.m =

λ(h)m for all h ∈ ĥ}, and the second that each m ∈ M is contained in a finite-
dimensional sub-̂b-module of M .

For any λ ∈ ĥ� we denote by Δ(λ) the Verma module with highest weight λ,
and by L(λ) its unique irreducible quotient. The L(λ) for λ ∈ ĥ� are a system of
representatives of the simple objects in the category Ô.

Remark 2 Most often the Verma modules are denoted by M(λ) instead of Δ(λ).
However, the notation Δ(λ) appears in categorical contexts in order to signify stan-
dard modules. The dual standard modules are then denoted by ∇(λ). This view-
point, in particular, was taken in the article [2].

For an object M of Ô and a simple object L in Ô we denote by [M : L] ∈N the
corresponding Jordan–Hölder multiplicity, whenever this makes sense (see [3]). In
general, we write [M : L] 	= 0 if L is isomorphic to a subquotient (i.e. a quotient of
a subobject) of M .

3.1 Projective Objects in ̂O

In order to describe the categorical structure of Ô we want to describe the endomor-
phism algebra of a projective generator. Now Ô does not contain enough projec-
tives. Fortunately, it is filtered by “truncated subcategories” that do contain enough
projectives, which for us is good enough.

In order to define the truncated subcategories, we need the following topology
on ĥ�.
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Definition 1 A subset J of ĥ� is called open if it is downwardly closed with re-
spect to the partial order “≤”, i.e. if it satisfies the following condition: If λ ∈ J
and μ< λ, then μ ∈ J . An open subset J of ĥ� is called bounded (rather, locally
bounded from above), if for any λ ∈ J , the set {ν ∈ J | ν > λ} is finite.

Now we can define the truncated subcategories.

Definition 2 Let J ⊂ ĥ� be open. Then ÔJ is the full subcategory of Ô that con-
tains all objects M with the property that Mλ 	= {0} implies λ ∈ J .

For any λ ∈ ĥ� the set {μ ∈ ĥ� | μ≤ λ} is open. We use the notation Ô≤λ instead
of Ô{μ∈ĥ�|μ≤λ}. Note that L(λ) is contained in ÔJ if and only if λ ∈ J . The inclu-
sion functor ÔJ → Ô has a left adjoint that we denote by M �→MJ . It is defined
as follows: Let I = ĥ� \J be the closed complement of J and let MI ⊂M be the
submodule generated by all weight spaces Mλ with λ ∈ I . Then set

MJ :=M/MI .

This definition clearly is functorial. We will need the following notion.

Definition 3 Let M ∈ Ô. We say that M admits a Verma flag if there is a finite
filtration

0=M0 ⊂M1 ⊂ · · · ⊂Mn =M

with Mi/Mi−1 ∼=Δ(μi) for some μ1, . . . ,μn ∈ ĥ�.

In case M admits a Verma flag, the Verma multiplicity (M : Δ(μi)) = #{i ∈
{1, . . . , n} | μi = μ} is independent of the chosen filtration. The following is proven
in [8] (see also [4]).

Theorem 1 Let J ⊂ h� be open and bounded and let λ ∈ J .

1. There exists a projective cover PJ (λ)→ L(λ) in ÔJ and the object PJ (λ)

admits a Verma flag.
2. BGGH-reciprocity

(
PJ (λ) :Δ(μ)

)=
{ [Δ(μ) : L(λ)], if μ ∈ J ,

0, if μ 	∈ J

holds for the Jordan-Hölder and Verma multiplicities.
3. If J ′ ⊂ J is an open subset, then PJ (λ)J

′ ∼= PJ ′
(λ).

4. For any M ∈ ÔJ such that [M : L(λ)] is finite we have

dimC HomÔ
(
PJ (λ),M

)= [M : L(λ)
]
.
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3.2 The Block Decomposition of Category ̂O

We quickly summarize the basic facts about the block decomposition of category
Ô. Recall that the simple isomorphism classes are parametrized by ĥ� by means of
their highest weight. The block decomposition in particular yields a partition of the
simple isomorphism classes. In terms of their parameters, this partition is given as
follows.

Definition 4 Let “∼” be the equivalence relation on ĥ� that is generated by the
following. We have λ ∼ μ if there exists a positive affine root γ ∈ R̂+ and n ∈ Z

such that 2(λ+ ρ,γ )= n(γ, γ ) and μ= λ− nγ .

For an equivalence class Λ⊂ ĥ� with respect to “∼” we let ÔΛ be the full subcat-
egory of Ô that contains all objects M with the property that [M : L(λ)] 	= 0 implies
λ ∈Λ. The linkage principle (see [5]) together with BGGH-reciprocity mentioned
above now yields the following.

Theorem 2 The functor
∏

Λ∈ĥ�/∼

ÔΛ→ Ô,

{MΛ} �→
⊕

Λ∈ĥ�/∼

MΛ

is an equivalence of categories.

3.3 The Level

As the central line CK of ĝ is contained in ĥ, it acts on each object M of Ô by
semisimple endomorphisms. For each k ∈ C, we denote by Mk the eigenspace of
the action of K with eigenvalue k. We define ĥ�k ⊂ ĥ� as the affine hyperplane that
contains all λ with λ(K)= k, so Mk =⊕λ∈ĥ�

k
Mλ. The eigenspace decomposition

M =⊕k∈CMk is a decomposition into sub-̂g-modules of M . When M =Mk for
some k we call k the level of M , and we let Ôk be the full subcategory of Ô that
contains all objects of level k.

If λ ∼ μ, then λ and μ differ by a sum of affine roots. As γ (K) = 0 for any
γ ∈ R̂, for each equivalence class Λ there is a k = kΛ with Λ⊂ ĥ�k , i.e. each block
ÔΛ determines a level.

There is a specific level that we denote by “crit” and that is distinguished in more
than one respect. It is crit=−ρ(K) (this is another instance of the above mentioned
independence of the choice of ρ). In the usual normalization, this is −h∨, where
h∨ denotes the dual Coxeter number of g. The elements in ĥ�crit are called critical
weights, and, analogously, we call an equivalence class Λ critical if Λ⊂ ĥ�crit.
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3.4 The Structure of Equivalence Classes

For any two affine roots α and β we have 2(β,α) ∈ Z(α,α). Since equivalent
weights differ by a sum of affine roots, this implies,

{
α ∈ R̂ | 2(λ+ ρ,α) ∈ Z(α,α)

}= {α ∈ R̂ | 2(μ+ ρ,α) ∈ Z(α,α)
}

whenever λ∼ μ. If Λ is a ∼-equivalence class, we can hence define

R̂(Λ) := {α ∈ R̂ | 2(λ+ ρ,α) ∈ Z(α,α) for some (all) λ ∈Λ
}
.

Lemma 1 Let Λ be a ∼-equivalence class. Then the following are equivalent:

1. δ ∈ R̂(Λ),
2. Zδ ⊂ R̂(Λ),
3. Λ is critical, i.e. Λ⊂ ĥ�crit.

Proof Note that (δ, δ)= 0. Let λ ∈Λ. We have δ ∈ R̂(Λ) if and only if (λ+ρ, δ)=
0. This is the case if and only if (λ + ρ,nδ) = 0 for all n ∈ Z, i.e. if and only if
Zδ ⊂ R̂(Λ). Finally, (λ+ ρ, δ)= (λ+ ρ)(K) by Remark 1, and this equals 0 if and
only if λ(K)=−ρ(K), i.e. if and only if λ is critical. �

Lemma 2 Suppose that λ is critical and α ∈R. Then the following are equivalent.

1. α + nδ ∈ R̂(λ) for some n ∈ Z,
2. α + nδ ∈ R̂(λ) for all n ∈ Z.

Proof Note that (α + nδ,α + nδ) = (α,α), as (δ, γ ) = 0 for any affine root γ by
Remark 1. As λ is critical, (λ+ ρ, δ)= 0. Hence, both statements are equivalent to
2(λ+ ρ,α) ∈ Z(α,α). �

For any ∼-equivalence class Λ we define

Ŵ(Λ)= 〈sα,n | α + nδ ∈ R̂(Λ)
〉
.

Lemma 3

1. Suppose that Λ is not critical. Then

Λ= Ŵ(Λ).λ

for any λ ∈Λ.
2. Suppose that Λ is critical. Then

Λ= Ŵ(Λ).λ+Zδ

for any λ ∈Λ.



72 P. Fiebig

Proof Let λ,μ ∈ ĥ�, γ ∈ R̂+ and n ∈ Z be as in Definition 4. Then λ − μ = nγ

and 2(λ+ ρ,γ )= n(γ, γ ). Note that if γ is real, then λ= sγ .μ. If γ is imaginary,
then γ = mδ for some m 	= 0 and (γ, γ ) = 0 and (λ + ρ, δ) = 0, which implies
λ+ nδ ∼ λ for all n ∈ Z. This, together with the fact that R̂(λ)= R̂(μ), implies the
statements. �

4 Extensions of Neighbouring Verma Modules

In this section we collect some results about extensions of Δ(λ) and Δ(μ) in Ô,
where λ and μ are “neighbouring”. By this we mean the following.

Definition 5 The elements λ,μ ∈ ĥ� are called neighbouring if the following con-
ditions are satisfied:

1. There is α ∈ R̂+ ∩ R̂re and n ∈ N with 2(λ,α) = n(α,α) and μ = λ + nα. In
particular, λ∼ μ and λ < μ.

2. There is no ν ∈ ĥ� that is ∼-equivalent to both λ and μ with λ < ν < μ.

Our first result is the following:

Lemma 4 Suppose that λ and μ are neighbouring and λ < μ. Then [Δ(μ) :
L(λ)] = 1.

Proof Let

Δ(μ)=M0 ⊃M1 ⊃M2 ⊃ · · ·
be the Jantzen filtration (for this and the sum formula below, see [5]). Then
Δ(μ)/M1 ∼= L(μ). The Jantzen sum formula says

∑

i>0

chMi =
∑

α∈R̂+,n∈N,
2(μ+ρ,α)=n(α,α)

chΔ(μ− nα),

where the roots should be counted with their multiplicities (i.e. the imaginary roots
should be counted rkg-times). Now on the right hand side, Δ(λ) occurs exactly
once, and otherwise only Δ(ν) appear with ν 	≥ λ. Hence [M1 : L(λ)] = 1, so
[Δ(μ) : L(λ)] = 1. �

Lemma 5 Suppose that λ and μ are neighbouring and λ < μ. Then

dimC Ext1Ô
(
Δ(λ),Δ(μ)

)= 1.

Proof It is enough to calculate Ext1 in the subcategory Ô≤μ of Ô. By Lemma 4 and
BGGH-reciprocity we have (P (λ)≤μ :Δ(μ))= (P (λ)≤μ :Δ(λ))= 1 and all other
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multiplicities are 0. Hence there is a short exact sequence

0→Δ(μ)∼= P(μ)≤μ → P(λ)≤μ →Δ(λ)→ 0

which is already a projective resolution of Δ(λ) in Ô≤μ. Applying HomÔ≤μ(·,Δ(μ))

to 0→Δ(μ)→ P(λ)≤μ → 0 yields

0→HomÔ≤μ

(
P(λ)≤μ,Δ(μ)

)→HomÔ≤μ

(
Δ(μ),Δ(μ)

)→ 0.

Both Hom-spaces are one-dimensional (the first again by Lemma 4), and each non-
zero homomorphism P(λ)≤μ →Δ(μ) factors through an inclusion Δ(λ)→Δ(μ),
hence has Δ(μ)⊂ P(λ)≤μ in its kernel. So the middle homomorphism in the above
sequence vanishes, so the dimension of Ext1Ô≤μ

(Δ(λ),Δ(μ)) is 1. �

We denote by Z(λ,μ) ∈ Ô the (unique up to isomorphism) non-split extension
of Δ(μ) and Δ(λ) for neighbouring λ and μ.

Lemma 6 Suppose that λ and μ are neighbouring and that λ < μ. Then P≤μ(λ)∼=
Z(λ,μ).

Proof By BGGH-reciprocity, P≤μ(λ) has a two-step Verma flag with subquotients
isomorphic to Δ(μ) and Δ(λ). This filtration is non-split, as Δ(μ) is not a quotient
of P≤μ(λ), since L(μ) is not. Hence the claim. �

Note that for any λ,μ ∈ ĥ� we have dimC HomÔ(Δ(λ),Δ(λ + nδ)) ≤ [Δ(λ+
nδ) : L(λ)]. We now study the particular situation in which this is an equality.

Lemma 7 Suppose that λ and μ are neighbouring and λ < μ. Let n > 0 and sup-
pose that

dimC HomÔ
(
Δ(λ),Δ(λ+ nδ)

)= [Δ(λ+ nδ) : L(λ)
]
.

Then every homomorphism Z(λ,μ)→Δ(λ+nδ) factors through a homomorphism
Δ(λ)→Δ(λ+ nδ).

Proof Let J be open and bounded and suppose it contains all relevant weights λ,
μ and λ+ nδ. By the previous lemma, we have a surjection PJ (λ)→ Z(λ,μ). So
the chain of surjections

PJ (λ)� Z(λ,μ)�Δ(λ)

induces a chain of injections

HomÔ
(
Δ(λ),Δ(λ+ nδ)

)
↪→HomÔ

(
Z(λ,μ),Δ(λ+ nδ)

)

↪→HomÔ
(
PJ (λ),Δ(λ+ nδ)

)
.
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Now the dimension of the space on the right is [Δ(λ+ nδ) : L(λ)], as PJ (λ) is a
projective cover of L(λ) in ÔJ , so our assumptions imply that the above injections
are bijections. This proves the lemma. �

4.1 The Tilting Equivalence

Let M be the full subcategory of Ô that contains all objects that admit a Verma flag.

Theorem 3 ([9, Corollary 2.3]) There is an equivalence t : M→Mopp that maps
short exact sequences to short exact sequences and satisfies

t
(
Δ(λ)

)∼=Δ(−2ρ − λ).

(Note that this statement does depend on the choice of ρ.)
Note that t stabilizes Ôcrit, as (−2ρ−λ)(K)= 2 crit− crit= crit for all λ ∈ ĥ�crit.

Lemma 8 Suppose that λ and μ are neighbouring and that λ < μ. Then tZ(λ,μ)∼=
Z(−2ρ −μ,−2ρ − λ).

Proof Applying the tilting equivalence to the short exact sequence

0→Δ(μ)→Z(λ,μ)→Δ(λ)→ 0

yields a non-split short exact sequence

0→Δ(−2ρ − λ)→ tZ(λ,μ)→Δ(−2ρ −μ)→ 0.

Lemma 5 now immediately implies the statement. �

Applying the tilting equivalence to the statement of Lemma 7 and using the pre-
vious lemma we obtain:

Lemma 9 Suppose that λ, μ are neighbouring and λ < μ. Suppose that

dimC HomÔ
(
Δ(−2ρ−μ),Δ(−2ρ−μ+nδ)

)= [Δ(−2ρ−μ+nδ) : L(−2ρ−μ)
]
.

Then every homomorphism Δ(μ−nδ)→Z(λ,μ) factors through a homomorphism
Δ(μ− nδ)→Δ(μ).

5 Restricted Critical Level Representations

We will now define the subcategory Ocrit of Ôcrit that contains all restricted repre-
sentations, and we will review structural results on this subcategory that resemble
the ones we discussed in Sect. 3 (references for the following are [1] and [2]).
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5.1 The Feigin–Frenkel Center

Let us denote by

Z =
⊕

n∈Z
Zn =C

[
p(i)
s , i = 1, . . . , rkg, s ∈ Z

]

the polynomial ring (of infinite rank) constructed from the center of the critical level
vertex algebra (see [1, Sect. 5]). We consider it as a Z-graded algebra with p

(i)
s being

homogeneous of degree s.
The algebra Z acts on objects in Ôcrit in the following way. The simple highest

weight module L(δ) is invertible, i.e. it is one-dimensional and L(δ)⊗C L(−δ) is
isomorphic to the trivial ĝ-module L(0). Hence, the functor

T : Ô→ Ô

M �→M ⊗C L(δ)

is an equivalence with inverse M �→M ⊗C L(−δ). As the level of a tensor product
equals the sum of the levels of its factors, and as L(δ) is of level zero, the functor T
preserves the subcategories Ôk for any k ∈C. We will henceforth restrict it to Ôcrit.

Note that g⊗C C[t, t−1] ⊗ CK acts trivially on L(δ), while, as δ(D) = 1, the
grading element D acts as the identity.

Lemma 10 ([1]) Let z ∈ Zn. For any M ∈ Ôcrit, z defines a homomorphism
zM : T nM →M .

5.2 Restricted Representations

We define restricted representations by the following vanishing condition on the
action of Z :

Definition 6 An object M ∈ Ôcrit is called restricted if for any n 	= 0 and any z ∈Zn

we have that zM is zero.

We denote by Ocrit the full subcategory of Ôcrit that contains all restricted ob-
jects. There is a functor (·)res : Ôcrit → Ocrit that is left adjoint to the inclusion
Ocrit ⊂ Ôcrit. It is defined as

M res :=M/M ′,

where M ′ is the submodule of M that is generated by the images of all homomor-
phisms zM with z ∈Zn and n 	= 0.
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For any λ ∈ ĥ�, the restricted Verma module with highest weight λ ∈ ĥ� is defined
as

Δ(λ) :=Δ(λ)res.

The next definition is the obvious restricted version of the earlier notion of a Verma
flag.

Definition 7 Let M ∈ Ôcrit. We say that M admits a restricted Verma flag if there
is a finite filtration

0=M0 ⊂M1 ⊂ · · · ⊂Mn =M

with Mi/Mi−1 ∼=Δ(μi) for some μ1, . . . ,μn ∈ ĥ�crit.

In case M admits a restricted Verma flag, the restricted Verma multiplicity (M :
Δ(μi))= #{i ∈ {1, . . . , n} | μi = μ} is again independent of the chosen filtration.

5.3 Restricted Projective Objects

For any open bounded subset J of ĥ�crit set OJ
crit :=Ocrit ∩ ÔJ

crit. The following is
an analogue of Theorem 1 in the restricted setting.

Theorem 4 ([2], see also [4, Theorems 4.3 and 5.4]) Let J ⊂ ĥ�crit be an open
bounded subset and let λ ∈ J .

1. There exists a projective cover P
J
(λ)→ L(λ) of L(λ) in OJ

crit and the object

P
J
(λ) admits a restricted Verma flag.

2. For the multiplicities we have

(
P
J
(λ) :Δ(μ)

)=
{ [Δ(μ) : L(λ)], if μ ∈ J ,

0, if μ 	∈ J .

3. For any open subset J ′ ⊂ J we have P
J
(λ)J

′ ∼= P
J ′

(λ).

4. For any M ∈OJ
crit such that [M : L(λ)] is finite we have

dimC HomOcrit

(
P
J
(λ),M

)= [M : L(λ)
]
.

In [2] we showed that one obtains P
J
(λ) from PJ (λ) by applying the restriction

functor, i.e.

P
J
(λ)= PJ (λ)res

for any λ ∈ J .
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5.4 The Restricted Block Decomposition

The block decomposition Ô =∏Λ∈ĥ�/∼ ÔΛ of Theorem 2 clearly induces a block

decomposition of Ocrit. It turns out that a component Ocrit ∩ ÔΛ is, in general, no
longer indecomposable. Note that the following definition is a version of Defini-
tion 4, that only utilizes real affine roots instead of all affine roots.

Definition 8 Let “∼ ” be the equivalence relation on ĥ� that is generated by the
following. We have λ∼μ if there exists a positive real root γ ∈ R̂re ∩ R̂+ and n ∈ Z

such that 2(λ+ ρ,γ )= n(γ, γ ) and μ= λ− nγ .

Clearly, “∼ ” is a finer equivalence relation than “∼” and it coincides with “∼”
on the affine hyperplanes ĥ�k for all k 	= crit.

For a ∼-equivalence class Γ ⊂ ĥ�crit we let OΓ be the full subcategory of Ocrit

that contains all objects M with the property that [M : L(λ)] 	= 0 implies λ ∈ Γ .
Then we have the following analogue of Theorem 2.

Theorem 5 ([2]) The functor

∏

Γ ∈ĥ�
crit/∼

OΓ →Ocrit,

{MΓ } �→
⊕

Γ ∈ĥ�
crit/∼

MΓ

is an equivalence of categories.

For the restricted equivalence relation, we get the following analogue of
Lemma 3, (1), which is proven using the analogous arguments.

Lemma 11 Let Γ be a critical ∼-equivalence class. Then

Γ = Ŵ(Γ ).λ

for any λ ∈ Γ .

6 The Structure of Subgeneric Critical Restricted Blocks

In this section we describe the structure of OΓ in the case that Γ is a subgeneric
∼-equivalence class.
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6.1 Subgeneric Critical Equivalence Classes

Let α ∈R+ be a finite positive root, and let Ŵα ⊂ Ŵ be the subgroup generated by
the reflections sα,n with n ∈ Z. Then Ŵα is the affine Weyl group of type A1, and it
is generated by sα,0 and sα,−1.

Definition 9 Let γ ∈ ĥ�crit and let Γ ⊂ ĥ�crit be its ∼-equivalence class. We say that
γ is α-subgeneric if the following holds:

1. α ∈ R̂(γ ) (hence, as γ is critical, α + nδ ∈ R̂(γ ) for all n ∈ Z by Lemma 2),
2. γ is α-regular, i.e. sα,0.γ 	= γ ,
3. Γ = Ŵα.γ .

Let ν ∈ ĥ�crit. Then (ν + ρ, δ)= 0, hence

sα,n.ν = ν − 2(ν + ρ,α)

(α,α)
(α + nδ).

We call ν α-dominant, if (ν + ρ,α) ∈ Z≥0. If ν is α-dominant, then sα,0.ν ≤ ν

and sα,−1 ≥ ν (as −α + δ is a positive affine root). We call ν α-antidominant, if
(ν + ρ,α) ∈ Z≤0. If ν is α-antidominant, then sα,0.ν ≥ ν and sα,−1 ≤ ν. Moreover,
ν is α-dominant if and only if sα,0.ν is α-antidominant, which is the case if and only
if sα,n.ν is α-antidominant for all n ∈ Z.

So suppose that γ is α-subgeneric. As Ŵα is generated by sα,0 and sα,−1, we
conclude from the above that the equivalence class Γ of γ is a totally ordered set
with respect to “�”. For any ν ∈ Γ we define

α ↑ ν := min{sα,n.ν | sα,n.ν > ν}

=
{
sα,−1.ν, if ν is α-dominant,
sα,0.ν. if ν is α-antidominant.

Then α ↑ (·) : Γ → Γ is a bijection and we denote by α ↑n (·) : Γ → Γ its n-fold
composition for n ∈ Z, and we set α ↓n (·) := α ↑−n (·). Then

Γ = {. . . , α ↓2 ν,α ↓ ν, ν,α ↑ ν,α ↑2 ν, . . .
}
.

6.2 Multiplicities in the Subgeneric Case

The main result of [1] is the following multiplicity formula for α-subgeneric γ : for
any μ ∈ ĥ�crit we have

[
Δ(γ ) : L(μ)

]=
{

1, if μ ∈ {γ,α ↓ γ },
0, if μ 	∈ {γ,α ↓ γ }.
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Suppose that J is an open and bounded subset of ĥ�crit that contains γ and α ↑ γ .

From BGGH-reciprocity we then obtain that P
J
(γ ) has a two-step Verma flag with

subquotients Δ(α ↑ γ ) and Δ(γ ). Clearly, Δ(α ↑ γ ) has to occur as a submodule,
so we obtain a short exact sequence

0→Δ(α ↑ γ )→ P
J
(γ )→Δ(γ )→ 0.

Hence, in the subgeneric situations, the P
J
(γ ) stabilize (with respect to the par-

tially ordered set of open subsets J in ĥ�crit), so there is a well-defined object

P(γ ) := lim←−
J

P
J
(γ )

for any α-subgeneric γ . From BGGH-reciprocity and the multiplicity statement
above we obtain that

[
P (μ),L(γ )

]=
⎧
⎨

⎩

1, if μ ∈ {α ↑ γ,α ↓ γ },
2, if μ= γ ,

0, if μ 	∈ {α ↓ γ, γ,α ↑ γ },
hence

dimC HomO
(
P(γ ),P (μ)

)=
⎧
⎨

⎩

1, if μ ∈ {α ↑ γ,α ↓ γ },
2, if μ= γ ,

0, if μ 	∈ {α ↓ γ, γ,α ↑ γ }.

6.3 The Partial Restriction Functor

We will need “partially restricted” objects. Let

Z+ :=C
[
p(i)
s , i = 1, . . . , rkg, s > 0

]
.

We set Z+
n :=Z+ ∩Zn. Then Z+ is a positively graded subalgebra of Z .

Definition 10 An object M ∈ Ôcrit is called positively restricted if for any n > 0
and any z ∈Z+

n we have that zM is zero.

Note that, for example, each non-restricted Verma module Δ(γ ) is positively
restricted. We denote by Ô+

crit the full subcategory of Ôcrit that contains all positively
restricted objects. Again we have an obvious left adjoint to the inclusion functor
Ô+

crit ⊂ Ôcrit. We let Z+M be the submodule of M generated by the images of all
homomorphisms zM with z ∈Z+

n and n > 0, and we set

M+ :=M/Z+M.
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This yields the functor from Ôcrit to Ô+
crit that is left adjoint to the inclusion functor.

Analogously, we define

Z− :=C
[
p(i)
s , i = 1, . . . , rkg, s < 0

]
.

By replacing Z+ by Z− in the definitions above, we obtain the analogous no-
tion of negatively restricted objects, the corresponding category Ô−

crit and a functor
M �→M− that is left adjoint to the inclusion Ô−

crit ⊂ Ôcrit. As Z is generated by its
subalgebras Z− and Z+ we have

M res = (M+)− = (M−)+

for all M in Ôcrit.
We now collect some results on the partial restriction functor that we need later

on.

Proposition 1 Let γ ∈ ĥ�crit be α-subgeneric and let J ⊂ ĥ�crit be open and bounded
such that γ,α ↑ γ ∈ J . Then PJ (γ )+ is a non-split extension of Δ(γ ) and Δ(α ↑
γ ), hence isomorphic to Z(γ,α ↑ γ ).

Proof Let P := PJ (γ ). Then P�α↑γ ∼= P�α↑γ (γ ). Then γ and α ↑ γ are neigh-
bouring, hence

(
P�α↑γ :Δ(γ )

)= (P�α↑γ :Δ(α ↑ γ )
)= 1

and all other multiplicities are zero, so we have a short exact sequence

0→Δ(α ↑ γ )→ P�α↑γ →Δ(γ )→ 0.

This is a non-split short exact sequence, as Δ(α ↑ γ ) is not a quotient of P�α↑γ .
So P�α↑γ ∼= Z(γ,α ↑ γ ).

Note that the kernel of the homomorphism P → P�α↑γ is generated by all
weight spaces Pμ with μ 	≤ α ↑ λ. Now P is generated by its γ -weight space, so
Z+P is generated by its weight spaces (Z+P)γ+nδ for n > 0. As γ + nδ 	≤ α ↑ γ

for all n > 0, we obtain an induced map P+ → P�α↑γ . We claim that this map is
an isomorphism, which, by the above, implies the statement of the proposition.

Clearly this map is surjective. If it is not injective, then there exists a μ with
μ 	≤ α ↑ γ and P+

μ 	= 0. Let us in this case choose a maximal such μ. Then we
have (P res)μ = ((P+)−)μ 	= 0, which contradicts the fact that P res is an extension
of Δ(γ ) and Δ(α ↑ γ ), so all its weights are ≤ α ↑ γ . �

For simplicity we will denote PJ (γ )+ by P(γ )+ in the following.
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6.4 Homomorphisms Between Projectives

We will now construct a basis of the homomorphism space HomO(P (λ),P (μ)) for
λ and μ in a α-subgeneric equivalence class. We have already seen that this space is
one-dimensional if μ ∈ {α ↓ λ,α ↑ λ}, two-dimensional in case λ= μ, and it is the
trivial space otherwise.

To start with, let us fix, for any α-subgeneric ν, an inclusion

jν : Δ(ν)→Δ(α ↑ ν).

We denote by jν : Δ(ν)→Δ(α ↑ ν) the homomorphism j−ν (which coincides with
j res
ν , as Verma modules are already positively restricted). Note that ν 	≤ α ↑ ν − nδ

for any n > 0, hence jν is non-zero. Let J ⊂ ĥ� be open and bounded and suppose
that γ and α ↑ γ are contained in J . We also fix a surjection

πν : PJ (ν)→Δ(ν)

and an inclusion

iα↑ν : Δ(α ↑ ν)→ P(ν)+.

In particular, we have a short exact sequence

0→Δ(α ↑ ν)
iα↑ν−→ P(ν)+

π+ν−→Δ(ν)→ 0.

As the action of Z− on Verma modules is free (see [7] and [6, Theorem 9.5.3]), this
induces, after applying the functor (·)−, a short exact sequence

0→Δ(α ↑ ν)
iα↑ν−→ P (ν)

πν−→Δ(ν)→ 0.

Now we can find, by projectivity, a homomorphism

aγ : PJ (γ )→ PJ (α ↑ γ )

such that the diagram

PJ (γ )
aγ

πγ

PJ (α ↑ γ )

πα↑γ

Δ(γ )
jγ

Δ(α ↑ γ )
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commutes. Applying the functor (·)+ yields a commuting diagram

P(γ )+
a+γ

π+γ

P (α ↑ γ )+

π+α↑γ

Δ(γ )
jγ

Δ(α ↑ γ ).

The following is the crucial technical result of this paper.

Lemma 12 The composition Δ(α ↑ γ )
iα↑γ−→ P(γ )+

a+γ→ P(α ↑ γ )+ is non-zero.

Proof Suppose the composition were zero. Then we could factor the map a+γ over
a homomorphism Δ(γ ) → P(α ↑ γ )+. By Proposition 1, P(α ↑ γ )+ ∼= Z(α ↑
γ,α ↑2 γ ).

Note that for any α-subgeneric ν, the weights ν and α ↑ ν are neighbouring.
Moreover, with ν also−2ρ−ν is α-subgeneric. In [1] it is shown that for subgeneric
ν we have

dimC HomÔ
(
Δ(ν − nδ),Δ(ν)

)= [Δ(ν) : L(ν − nδ)
]

for all n ∈ Z. Finally, α ↑2 ν = ν + nδ for some n > 0. The above statements now
allow us to apply Lemma 9 and we conclude that the map a+γ would factor over

a homomorphism Δ(γ )→Δ(α ↑2 γ )→ P(α ↑ γ )+. But this contradicts its con-
struction. �

Now apply the restriction functor (·)res to aγ . We obtain a homomorphism
aγ : P(γ )→ P(α ↑ γ ) such that the diagram

P(γ )
aγ

πγ

P (α ↑ γ )

πα↑γ

Δ(γ )

jγ

Δ(α ↑ γ )

commutes. From Lemma 12 (and some weight considerations) we conclude:

Lemma 13 The composition

Δ(α ↑ γ )
iα↑γ−→ P(γ )

aγ−→ P(α ↑ γ )

is non-zero.
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In particular, aγ is non-zero, hence a generator of HomO(P (γ ),P (α ↑ γ )).
Let bγ : P(γ )→ P(α ↓ γ ) be the following composition:

bγ : P(γ )
πγ−→Δ(γ )

iγ−→ P(α ↓ γ ).

This composition is clearly non-zero, hence bγ is a basis of HomO(P (γ ),P (α ↓
γ )).

Finally, let nγ : P(γ )→ P(γ ) be the composition

nγ : P(γ )
πγ−→Δ(γ )

jγ−→Δ(α ↑ γ )
iα↑γ−→ P (γ ).

Again, this is non-zero and obviously not invertible (we even have n2
γ = 0), so

{nγ , id} is a basis of EndO(P (γ )).
We have now exhibited a basis for any non-zero space HomO(P (γ ),P (μ)). The

following theorem describes all possible (non-trivial) compositions, hence gives
a full description of the subgeneric endomorphism algebra EndO(

⊕
γ∈Γ P (γ )),

where Γ is the ∼-equivalence class of γ .

Theorem 6 Let γ ∈ ĥ�crit be α-subgeneric. Then we have the following relations:

1. bα↑γ ◦ aγ and aα↓γ ◦ bγ are non-zero scalar multiples of nγ .
2. aα↑γ ◦ aγ = 0 and bα↓γ ◦ bγ = 0.
3. nα↑γ ◦ aγ = 0 and nα↓γ ◦ bγ = 0.
4. nγ ◦ nγ = 0.

Proof Note that (2) is obvious, as the homomorphism spaces in question vanish.
Then (3) and (4) follow immediately from (1) and (2). So we are left to prove (1).
Note that both compositions are clearly not automorphisms of P(γ ), so we only
have to prove that they are non-zero. From the construction it immediately follows
that bα↑γ ◦ aγ 	= 0. That aα↑γ ◦ bγ is non-zero follows from Lemma 13. �

Hence we see that the endomorphism algebra of
⊕

γ∈Γ P (γ ) is given by the
following infinite quiver

· · · •
aα↓γ

•
bγ

aγ

•
bα↑γ

aα↑γ

•
b
α↑2γ

· · ·

with relations aα↓γ ◦ bγ = bα↑γ ◦ aγ and aα↑γ ◦ aγ = 0 and bγ ◦ bα↑γ = 0 for all
γ ∈ Γ .
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Slavnov Determinants, Yang–Mills Structure
Constants, and Discrete KP

Omar Foda and Michael Wheeler

Abstract Using Slavnov’s scalar product of a Bethe eigenstate and a generic state
in closed XXZ spin- 1

2 chains, with possibly twisted boundary conditions, we obtain
determinant expressions for tree-level structure constants in 1-loop conformally-
invariant sectors in various planar (super) Yang-Mills theories. When certain ra-
pidity variables are allowed to be free rather than satisfy Bethe equations, these
determinants become discrete KP τ -functions.

1 Overview

Classical integrable models, in the sense of integrable hierarchies of nonlinear par-
tial differential equations that admit soliton solutions, and quantum integrable mod-
els, in the sense of Yang-Baxter integrability, are topics that Prof M. Jimbo continues
to make profound contributions to since more than three decades.

They are also topics that, since the late 1980’s, have made increasingly frequent
contacts with, and have lead to definite advances in modern quantum field theory.
Amongst the most important of these contacts are discoveries of integrable struc-
tures on both sides of Maldacena’s conjectured AdS/CFT correspondence [1]. From
2002 onward, classical integrability was discovered in free superstrings1 on the AdS
side of AdS/CFT [2, 3], and quantum integrability in the planar limit2 of N = 4 su-
persymmetric Yang-Mills on the CFT side [4–6]. Further, examples of integrability
that are restricted 1-loop level were discovered in planar Yang-Mills theories with

1Superstrings with tree-level interactions only, and no spacetime loops.
2The limit in which the number of colours Nc →∞, the gauge coupling gYM → 0, while the
’t Hooft coupling λ= g2

YMNc remains finite.
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fewer supersymmetries and in QCD [7, 8]. In the sequel, we use YM for Yang-Mills
theories in general, and SYMN for N -extended supersymmetric Yang-Mills.

1.1 Scope of This Work

In this work, we restrict our attention to quantum field theories that are (1) planar,
so that the methods of integrability have a chance to work, (2) weakly-coupled, so
that perturbation theory makes sense and we can focus our attention to 1-loop level,
and (3) conformally-invariant at 1-loop level, so they allow an exact mapping to
Heisenberg spin-chains, that is spin-chains with nearest neighbour interactions that
can be solved using the algebraic Bethe Ansatz. In the sequel, we consider only
Heisenberg spin- 1

2 chains.
Even within the above restrictions, our subject is still very broad and we can only

review the basics needed to obtain our results. For an introduction to the vast subject
of integrability in AdS/CFT, we refer to [9] and references therein.3

1.2 Conformal Invariance and 2-Point Functions

Any 1-loop conformally-invariant quantum field theory contains (up to 1-loop order)
a basis of local scalar primary conformal composite operators4 {O} such that the 2-
point functions can be written as

〈
Oi (x)Oj (y)

〉= δij
Ni

|x − y|2Δi
(1)

where Oi is the Wick conjugate of Oi , Δi is the conformal dimension of Oi and Ni

is a normalization factor. Later, we choose Ni to be (the square root of) the Gaudin
norm of the corresponding spin-chain state.

The primary goal of studies of integrability on the CFT side of AdS/CFT in
the past ten years has arguably been the calculation of the spectrum of conformal

3Further highlights of integrability in modern quantum field theory and in string theory include
(1) Classical integrable hierarchies in matrix models of non-critical strings, from the late 1980’s
[10], (2) Finite gap solutions in Seiberg-Witten theory of low-energy SYM2 in the mid 1990’s [11–
14], (3) Integrability in QCD scattering amplitudes in the mid 1990’s [8, 15–17], (4) Free fermion
methods in works of Nekrasov, Okounkov, Nakatsu, Takasaki and others on Seiberg-Witten theory,
in the 2000’s [18, 19], (5) Integrable spin chains in works of Nekrasov, Shatashvili and others on
SYM2, in the 2000’s [20], (6) Integrable structures, particularly the Yangian, that appear in recent
studies of SYM4 scattering amplitudes [21, 22]. There are many more.
4In this work, we restrict our attention to this class of local composite operators. In particular, we
do not consider descendants or operators with non-zero spin, for which the 2-point and 3-point
functions are different.
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dimensions {ΔO} of local composite operators {O}, and matching them with corre-
sponding results from the strong coupling AdS side of AdS/CFT. This goal has by
and large been achieved [9], and the next logical step is to study 3-point functions
and their structure constants [23–29].

1.3 3-Point Functions and Structure Constants

The 3-point function of three basis local operators such as those that appear in (1) is
restricted (up to 1-loop order) by conformal symmetry to be of the form

〈
Oi (xi)Oj (xj )Ok(xk)

〉

= (Ni Nj Nk

)1/2 Cijk

|xij |Δi+Δj−Δk |xjk|Δj+Δk−Δi |xki |Δk+Δi−Δj
(2)

where xij = xi − xj , and Cijk are structure constants. The structure constants Cijk

are the subject of this work. In [26–28], Escobedo, Gromov, Sever and Vieira
(EGSV) obtained sum expressions for the structure constants of non-extremal
single-trace operators in the scalar sector of SYM4. In [29], the sum expressions
of EGSV were evaluated, and determinant expressions for the same structure con-
stants were obtained.5

1.4 Aims of This Work

We extend the results of [29] to a number of YM theories that are conformally
invariant at least up to 1-loop level. We also show that the determinants that we
obtain are discrete KP τ -functions.

More precisely, (1) We recall, and make explicit, a generalization of the restricted
Slavnov scalar product used in [29] to twisted, closed and homogeneous XXZ spin-
1
2 chains. That is, we allow for an anisotropy parameter Δ 	= 1, as well as a twist
parameter θ 	= 0 in the boundary conditions. The result is still a determinant. We
use this result to obtain determinant expressions for the YM theories listed in Sub-
sect. 1.5.6 (2) Allowing certain rapidity variables in the determinant expressions
to be free, rather than satisfy Bethe equations, we show that these rapidities can
be regarded as Miwa variables. In terms of these Miwa variables, the determinants
satisfy Hirota-Miwa equations and become discrete KP τ -functions. The structure
constants are recovered by requiring that the free variables are rapidities that label a
gauge-invariant composite operator and satisfy Bethe equations.

5Three operators Oi , of length Li , i ∈ {1,2,3}, are non-extremal if lij = Li +Lj −Lk > 0.
6The SYM4 expression of [29] is a special case of the general expression obtained here.
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1.5 Type-A and Type-B YM Theories

We consider six planar, weakly-coupled YM theories. 1. SYM4 [30, 31], 2. SYMM
4 ,

which is an order-M Abelian orbifold of SYM4 that is N = 2 supersymmetric [32,
33], and 3. SYMβ

4 , which is a Leigh-Strassler marginal real-β deformation of SYM4

that is N = 1 supersymmetric [33, 35–38]. 4. The complex scalar sector of pure
SYM2 [7, 39], 5. The gluino sector of pure SYM1 [7], and 6. The gauge sector of
QCD [7, 8].

These six theories are naturally divisible into two types. Type-A contains theories
1, 2 and 3, which are conformally-invariant to all orders in perturbation theory.
Type-B contains theories 4, 5 and 6, which are conformally-invariant to 1-loop level
only.7

Conformal invariance at 1-loop level, which is the case in all theories that we
consider, is necessary and sufficient for our purposes because the mapping to spin- 1

2
chains with nearest neighbour interactions breaks down at higher loops. Our results
are valid only up to 1-loop level.

1.6 Non-extremal Operators

In [26–29], structure constants of three operators Oi of length Li , i ∈ {1,2,3}
were considered, and the condition that the operators are non-extremal, that is
lij = Li + Lj − Lk > 0, for all distinct i, j and k, was emphasized. The reason
is that, in these works, one wished to compute the structure constants of three non-
BPS operators. Using the analysis presented in this work, one can show that this
requires the condition lij > 0. One can of course consider the special case where
one of these parameters lij = 0, but then at least one of the three operators has to be
BPS.

In type-A theories, which include SYM4, we can compute non-trivial structure
constants of three non-BPS operators, so we do that, and the condition lij > 0 is
satisfied. The case where one of these parameters vanishes, for example l23 = L2 +
L3−L1 = 0, is allowed, but then either O2 or O3 has to be BPS. In type-B theories,
we find that one of the three operators, which we choose to be O3, has to be BPS,
hence the condition lij > 0 is no longer significant and we consider operators such
that l23 = L2 +L3 −L1 = 0.

7There are definitely more gauge theories that are conformally-invariant at 1-loop or more, with
SU(2) sectors that map to states in spin- 1

2 chains. Here we consider only samples of theories with
different supersymmetries and operator content.
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1.7 SU(2) Sectors that Map to Spin-1
2 Chains

We will not list the full set of fundamental fields in the gauge theories that we
consider, but only those fundamental fields that form SU(2) doublets that map to
states in spin- 1

2 chains. All fields are in the adjoint of SU(Nc) and can be represented
in terms of Nc ×Nc matrices.

1. SYM4 contains six real scalars that form three complex scalars {X,Y,Z}, and
their charge conjugates {X̄, Ȳ , Z̄}. Any pair of non-charge-conjugate scalars, e.g.
{Z,X}, or {Z, X̄}, forms a doublet that maps to a state in a closed periodic XXX
spin- 1

2 chain8 [4, 31].
2. SYMM

4 has the same fundamental charged scalar fields {X,Y,Z} and their charge
conjugates, as SYM4, so the same scalars form SU(2) doublets. Due to the orb-
ifolding of the SU(2) sectors by the action of the discrete group ΓM , these dou-
blets map to states in a closed twisted XXX spin- 1

2 chain. The twist parameter is
a (real) phase θ = 2π

M
[33].

3. SYMβ

4 has the same fundamental charged scalar fields {X,Y,Z} and their charge
conjugates, as SYM4, so the same scalars form SU(2) doublets. Due to the real-
β deformation, these doublets map to states in a closed twisted XXX spin- 1

2
chain. The twist parameter is a (real) phase θ = β , where β is the deformation
parameter. [33, 34].

4. SYM2 has a gluino field λ and its conjugate λ̄ that form a doublet that maps to a
state in a closed untwisted XXZ spin- 1

2 chain with Δ= 3 [7, 39].
5. SYM1 has a complex scalar φ and its conjugate φ̄ that form a doublet that maps

to a state in a closed untwisted XXZ spin- 1
2 chain with Δ= 1

2 [7].
6. Pure QCD has light-cone derivatives {∂+A,∂+Ā}, where A and Ā are the trans-

verse components of the gauge field Aμ, that form a doublet that maps to a state
in a closed untwisted XXZ spin– 1

2 chain with Δ=− 11
3 [7].

1.8 Remark

Theories 1, 2 and 3, that are conformally invariant to all orders, contain three
charged scalars and their conjugates. These combine into various SU(2) doublets.
Theories 4, 5 and 6, on the other hand, contain only one doublet. This fact affects
the type of structure constants that we can compute in determinant form in Sects. 5
and 6.9

8XXX spin- 1
2 chains are XXZ spin- 1

2 chains with an anisotropy parameter Δ= 1.
9The fact that the structure constants in these two types of theories should be handled differently
was pointed out to us by C. Ahn and R. Nepomechie.
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1.9 Outline of Contents

In Sect. 2, we recall basic background information related to integrability in weakly
coupled YM. In Sect. 3, we review standard facts on closed XXZ spin- 1

2 chains with
twisted boundary conditions. In particular, following [42], we introduce restricted
versions S[L,N1,N2] of Slavnov’s scalar product, that can be evaluated in determi-
nant form.10

In Sect. 4, we review standard facts on the trigonometric six-vertex model, which
is regarded as another way to view XXZ spin- 1

2 chains in terms of diagrams that
are convenient for our purposes. Following [43], we introduce the [L,N1,N2]-
configurations that are central to our result. The determinant S[L,N1,N2], obtained
in Sect. 3, turns out to be the partition function of these [L,N1,N2]-configurations.

In Sect. 5, we recall the EGSV formulation of the structure constants of three
non-extremal composite operators in the scalar sector of SYM4. Since all Type-A
theories, which include SYM4 and two other theories that are closely related to it,
share the same set of fundamental charged scalar fields, namely {X,Y,Z} and their
charge conjugates {X̄, Ȳ , Z̄}, our discussion applies to all of them in one go. Since
the composite operators that we are interested in map to states in (generally twisted)
XXX spin- 1

2 chains, we express these structure functions in terms of rational six-
vertex model configurations, and obtain determinant expressions for them.

In Sect. 6, we extend the above discussion to Type-B theories, which contain
theories with only one SU(2) doublet that we can work with. Since the composite
operators that we are interested in map to states in periodic XXZ spin- 1

2 chains, we
express these structure functions in terms of trigonometric six-vertex model config-
urations. We find that our method applies only when one of the operators is BPS-like
(a single-trace of a power of one type of fundamental fields). We obtain determinant
expressions for these objects, and find that the result is identical to that in type-A,
apart from the fact that one of the operators in BPS-like.

In Sect. 7, we show that the determinant expressions are solutions of Hirota-
Miwa equations, and thereby τ -functions of the discrete KP hierarchy. In Sect. 8,
we summarize our results.

2 Background

Let us recall basic facts on integrability on the CFT side of AdS/CFT.

2.1 Integrability in AdS/CFT

In its strongest sense, the anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence is the postulate that all physics, including gravity, in an anti-de Sitter

10In [29], S[L,N1,N2] was denoted by S[L, {N}].
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space can be reproduced in terms of a conformal field theory that lives on the bound-
ary of that space [40]. The first and most thoroughly studied example of the corre-
spondence is Maldacena’s original proposal that type-IIB superstring theory in an
AdS5 × S5 geometry is equivalent to planar SYM4 on the 4-dimensional boundary
of AdS5 [1].

Since its proposal in 1997, the AdS/CFT correspondence has passed every single
check that it was subject to, and there was a large number of these. However, because
the correspondence typically identifies one theory in a regime that is easy to study
(for example, a weakly-coupled planar quantum field theory) to another theory in
a regime that is hard to study (for example, a quantum free superstring theory in a
strongly curved geometry), it has so far not been possible to prove it [9].

2.2 The Dilatation Operator

The generators of the conformal group in 4-dimensions, SO(4,2), contain a dilata-
tion operator D [41]. Every gauge-invariant operator O in a YM theory, that is
1-loop conformally-invariant, is an eigenstate of D to that order in perturbation the-
ory. The corresponding eigenvalue ΔO , which is the conformal dimension of O, is
the analogue of mass in massive, non-conformal theories.

2.3 SYM4 and Spin Chains. 1-Loop Results

An SU(2) doublet of fundamental fields {u,d}, which could be any of those dis-
cussed in Subsect. 1.7 above, is analogous to the {↑,↓} states of a spin variable
on a single site in a spin- 1

2 chain. Furthermore, the local gauge-invariant operators
formed by taking single traces of a product of an arbitrary combination of u and d

fields, such as Tr[uududduu · · ·uu], is analogous to a state in a closed spin- 1
2 chain.

In [4], Minahan and Zarembo made the above intuitive analogies exact corre-
spondences by showing that the action of the 1-loop dilatation operator on single-
trace operators in the SU(2) scalar subsector of SYM4 is identical to the action of
the nearest-neighbour Hamiltonian on the states in a closed periodic XXX spin- 1

2
chain.11 In this mapping, valid up to 1-loop level12 single-trace operators with well-
defined conformal dimensions map to eigenstates of the XXX Hamiltonian. The
corresponding eigenvalues are the conformal dimensions ΔO .

11Minahan and Zarembo obtained their remarkable result in the context of the complete scalar
sector of SYM4. The relevant spin chain in that case is SO(6) symmetric. Here we focus our
attention on the restriction of their result to the SU(2) scalar subsector.
12We are interested in local single-trace composite operators that consist of many fundamental
fields. These fields are interacting. In a weakly-interacting quantum field theory, one can consis-
tently choose to ignore all interactions beyond a chosen order in perturbation theory. In the planar
theory under consideration, perturbation theory can be arranged according to the number of loops
in Feynman diagrams computed. In a 1-loop approximation, one keeps only 1-loop diagrams.
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The above brief outline is all we need for the purposes of this work. For an in-
depth overview, we refer the reader to [9].

3 The XXZ Spin-1
2 Chain

In this section, we recall basic facts related to the XXZ spin- 1
2 chain that are needed

in later sections. The presentation closely follows that in [29, 43], but adapted to
closed XXZ spin chains with twisted boundary conditions.

3.1 1-Dimensional Lattice Segments and Spin Variables

Consider a length-L 1-dimensional lattice, and label the sites with i ∈ {1,2, . . . ,L}.
Assign site i a 2-dimensional vector space hi with the basis

|∧〉i =
(

1
0

)

i

, |∨〉i =
(

0
1

)

i

(3)

which we refer to as ‘up’ and ‘down’ states, and a spin variable si which can be
equal to either of these states. The space of states H is the tensor product H =
h1⊗· · ·⊗ hL. Every state in H is an assignment {s1, s2, . . . , sL} of L definite-value
(either up or down) spin variables to the sites of the spin chain. In computing scalar
products, as we do shortly, we think of states in H as initial states.

3.2 Initial Spin-Up and Spin-Down Reference States

H contains two distinguished states,

∣∣L∧
〉=

L⊗

i=1

(
1
0

)

i

,
∣∣L∨

〉=
L⊗

i=1

(
0
1

)

i

(4)

where L∧ indicates L spin states that are all up, and L∨ indicates L spin states that
are all down. These are the initial spin-up and spin-down reference states, respec-
tively.
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3.3 Final Spin-Up and Spin-Down Reference States, and a
Variation

Consider a length-L spin chain, and assign each site i a 2-dimensional vector space
h∗i with the basis

i〈∧| =
(
1 0

)
i
, i〈∨| =

(
0 1

)
i

(5)

We construct a final space of states as the tensor product H∗ = h∗1 ⊗ · · · ⊗ h∗L. H∗
contains two distinguished states

〈
L∧
∣∣=

L⊗

i=1

(
1 0

)
i
,

〈
L∨
∣∣=

L⊗

i=1

(
0 1

)
i

(6)

where all spins are up, and all spins are down. These are the final spin-up and spin-
down reference states. respectively. Finally, we consider the variation

〈
N3

∨, (L−N3)
∧∣∣=

⊗

1≤i≤N3

(
0 1

)
i

⊗

(N3+1)≤i≤L

(
1 0

)
i

(7)

where the first N3 spins from the left are down, and all remaining spins are up.

3.4 Pauli Matrices

We define the Pauli matrices

σx
m =

(
0 1
1 0

)

m

, σ
y
m =

(
0 −i

i 0

)

m

, σ z
m =

(
1 0
0 −1

)

m

(8)

with i =√−1, and the spin raising/lowering matrices

σ+m = 1

2

(
σx
m + iσ

y
m

)=
(

0 1
0 0

)

m

, σ−m = 1

2

(
σx
m − iσ

y
m

)=
(

0 0
1 0

)

m

(9)

where in all cases the subscript m is used to indicate that the matrices act in the
vector space hm.

3.5 The Hamiltonian H

The Hamiltonian of the finite length XXZ spin- 1
2 chain is given by the equivalent

expressions

H = 1

2

L∑

m=1

(
σx
mσx

m+1 + σ
y
mσ

y

m+1 +Δ
(
σz
mσ z

m+1 − 1
))
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=
L∑

m=1

(
σ+m σ−m+1 + σ−m σ+m+1 +

Δ

2

(
σz
mσ z

m+1 − 1
))

(10)

where Δ is the anisotropy parameter of the model, and where we assume the
‘twisted’ periodicity conditions

σ±L+1 = e±iθ σ±1 , σ z
L+1 = σz

1 (11)

3.6 The R-Matrix

From an initial reference state, we can generate all other states in H using operators
that flip the spin variables, one spin at a time. Defining these operators requires
defining a sequence of objects. (1) The R-matrix, (2) The L-matrix, and finally,
(3) The monodromy or M-matrix.

The R-matrix is an element of End(ha⊗hb), where ha,hb are two 2-dimensional
auxiliary vector spaces. The variables ua,ub are the corresponding rapidity vari-
ables. The R-matrix intertwines these spaces, and it has the (4× 4) structure

Rab(ua,ub)=

⎛

⎜⎜⎝

1 0 0 0
0 b[ua,ub] c[ua,ub] 0
0 c[ua,ub] b[ua,ub] 0
0 0 0 1

⎞

⎟⎟⎠

ab

(12)

where we have defined the functions

b[ua,ub] = [ua − ub]
[ua − ub + η] , c[ua,ub] = [η]

[ua − ub + η] , [u] ≡ sinh(u)

(13)

The R-matrix satisfies unitarity, crossing symmetry and the crucial Yang-Baxter
equation that is required for integrability, given by

Rab(ua,ub)Rac(ua,uc)Rbc(ub,uc)=Rbc(ub,uc)Rac(ua,uc)Rab(ua,ub) (14)

which holds in End(ha ⊗ hb ⊗ hc) for all ua,ub,uc .
As we will see in Sect. 4, the elements of the R-matrix (12) are the weights of the

vertices of the trigonometric six-vertex model. This is the origin of the connection
of the two models. One can graphically represent the elements of (12) to obtain the
six vertices of the trigonometric six-vertex model in Fig. 2.

3.7 The L-Matrix

The L-matrix of the XXZ spin chain is a local operator that depends on a single
rapidity ua , and acts in the auxiliary space ha . Its entries are operators acting at the
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m-th lattice site, and identically everywhere else. It has the form

Lam(ua)=
([ua + η

2σ
z
m] [η]σ−m

[η]σ+m [ua − η
2σ

z
m]
)

a

(15)

Using the definition of the R-matrix and the L-matrix, (12) and (15) respectively,
the local intertwining equation is given by

Rab(ua,ub)Lam(ua)Lbm(ub)= Lbm(ub)Lam(ua)Rab(ua,ub) (16)

The proof of (16) is immediate, if one uses the matrix representations of σz
m,σ+m ,σ−m

to write

Lam(ua) =

⎛

⎜⎜⎝

[ua + η
2 ] 0 0 0

0 [ua − η
2 ] [η] 0

0 [η] [ua − η
2 ] 0

0 0 0 [ua + η
2 ]

⎞

⎟⎟⎠

am

= [ua + η/2]Ram(ua, η/2) (17)

This means that the L-matrix is equal to the R-matrix Ram(ua, zm) with zm = η/2,
up to an overall multiplicative factor. Cancelling these common factors from (16), it
becomes

Rab(ua,ub)Ram(ua, η/2)Rbm(ub, η/2)

=Rbm(ub, η/2)Ram(ua, η/2)Rab(ua,ub) (18)

which is simply a corollary of the Yang-Baxter equation (14).

3.8 The Monodromy Matrix M

The monodromy or M-matrix is a global operator that acts on all sites in the spin
chain. It is constructed as an ordered direct product of the L-matrices that act on
single sites,

Ma(ua)= La1(ua) . . .LaL(ua)Ωa(θ) (19)

where Ωa(θ) is a twist matrix given by

Ωa(θ)=
(
eiθ 0
0 e−iθ

)

a

(20)

The monodromy matrix is essential in the algebraic Bethe Ansatz approach to the
diagonalization of the Hamiltonian H . It is convenient to define an inhomogeneous
version, as an ordered direct product of R-matrices Ram(ua, zm),

Ma

(
ua, {z}L

)=Ra1(ua, z1) . . .RaL(ua, zL)Ωa(θ) (21)
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The variables {z1, . . . , zL} are parameters corresponding with the sites of the spin
chain and the homogeneous monodromy matrix, given by (19), is recovered by set-
ting zm = η/2 for all 1≤m≤ L. The inclusion of the variables {z1, . . . , zL} simpli-
fies many later calculations, even though it is the homogeneous limit which actually
interests us. We write the inhomogeneous monodromy matrix in (2×2) block form,
by defining

Ma

(
ua, {z}L

)=
(
eiθA(ua) e−iθB(ua)

eiθC(ua) e−iθD(ua)

)

a

(22)

where the matrix entries are operators that act in H = h1 ⊗ · · · ⊗ hL. To simplify
the notation, we have omitted the dependence of the elements of the M-matrix on
the quantum rapidities {z1, . . . , zL}. This dependence is implied from now on.

The operator entries of the monodromy matrix satisfy a set of commutation rela-
tions, which are determined by the equation

Rab(ua,ub)Ma

(
ua, {z}L

)
Mb

(
ub, {z}L

)

=Mb

(
ub, {z}L

)
Ma

(
ua, {z}L

)
Rab(ua,ub) (23)

which is a direct consequence of the Yang-Baxter equation (14) and the property
[
Rab(ua,ub),Ωa(θ)Ωb(θ)

]= 0 (24)

of the twist matrix. Typical examples of these commutation relations, which are
particularly important in the algebraic Bethe Ansatz, are

B(u)B(v)= B(v)B(u) (25)

[u− v+ η]B(u)A(v)= [η]B(v)A(u)+ [u− v]A(v)B(u) (26)

[η]B(u)D(v)+ [u− v]D(u)B(v)= [u− v + η]B(v)D(u) (27)

In Sect. 4, we identify the operator entries of the monodromy matrix (22) with rows
of vertices from the six-vertex model, see Fig. 3.

3.9 The Transfer Matrix T

The transfer matrix T (ua, {z}L) is defined as the trace of the inhomogeneous mon-
odromy matrix

T
(
ua, {z}L

)= Tra Ma

(
ua, {z}L

)= eiθA(ua)+ e−iθD(ua) (28)

The Hamiltonian (10) is recovered via the quantum trace identity

H = [η] d

du
logT (u)

∣∣∣∣
u= η

2

, where T (u)= T
(
u, {z}L

)∣∣
z1=···=zL= η

2
(29)
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where the anisotropy parameter in (10) is defined as Δ= cosh(η). In this equation
all quantum parameters have been set equal, so for the purpose of reconstructing
the Hamiltonian H we see that the homogeneous monodromy matrix is sufficient.
However, in all subsequent calculations we preserve the variables {z1, . . . , zL} and
seek eigenvectors of T (u, {z}L). By (29), they are clearly also eigenvectors of H .

3.10 Generic States, Eigenstates and Bethe Equations

The initial and final spin-up reference states |L∧〉 and 〈L∧| are eigenstates of the
diagonal elements of the monodromy matrix. They satisfy the equations

A
(
u, {z}L

)∣∣L∧
〉= a(u)

∣∣L∧
〉
, D

(
u, {z}L

)∣∣L∧
〉= d(u)

∣∣L∧
〉

(30)
〈
L∧
∣∣A
(
u, {z}L

)= a(u)
〈
L∧
∣∣,

〈
L∧
∣∣D
(
u, {z}L

)= d(u)
〈
L∧
∣∣ (31)

where we have defined the eigenvalues

a(u)= 1, d(u)=
L∏

i=1

[u− zi]
[u− zi + η] (32)

This makes |L∧〉 and 〈L∧| eigenstates of the transfer matrix T (u, {z}L). The rest of
the eigenstates {O} of T (u, {z}L), that is, states that satisfy

T
(
u, {z}L

)|O〉β =
(
eiθA(u)+ e−iθD(u)

)|O〉β =EO(u)|O〉β (33)

where EO(u) is the corresponding eigenvalue, are generated using the Bethe
Ansatz. This is the statement that all eigenstates of T (u, {z}L) are created in two
steps. 1. One acts on the initial reference state with the B-element of the monodromy
matrix

|O〉β = B(uβN
) · · ·B(uβ1)

∣∣L∧
〉

(34)

where N ≤ L, since acting on |L∧〉 with more B-operators than the number of sites
in the spin chain annihilates it. This generates a ‘generic Bethe state’. 2. We require
that the auxiliary space rapidity variables {uβ1 , . . . , uβN

} satisfy Bethe equations,
hence the use of the subscript β .13 We call the resulting state a ‘Bethe eigenstate’.
That is, |O〉β is an eigenstate of T (u, {z}L) if and only if

a(uβi
)

d(uβi
)
=

L∏

j=1

[uβi
− zj + η]

[uβi
− zj ] = e−2iθ

N∏

j 	=i

[uβj
− uβi

− η]
[uβj

− uβi
+ η] , (35)

13We use β in two different ways. 1. To indicate the deformation parameter in SYMβ

4 theories, and
2. To indicate that a certain state is a Bethe eigenstate of the spin-chain Hamiltonian. There should
be no confusion with 1, in which β is a parameter but never a subscript, while in 2 it is always a
subscript.
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for all 1≤ i ≤N . This fact can be proved using the commutation relations (26) and
(27), as well as (30) and (31). As remarked earlier, by virtue of (29), eigenstates of
the transfer matrix T (u, {z}L) are also eigenstates of the spin-chain Hamiltonian H .
The latter is the spin-chain version of the 1-loop dilatation operator in SYM4. We
construct eigenstates of T (u, {z}L) in H∗ using the C-element of the M-matrix

β〈O| =
〈
L∧
∣∣C(uβ1) . . .C(uβN

) (36)

where N ≤ L to obtain a non vanishing result, and requiring that the auxiliary space
rapidity variables satisfy the Bethe equations.

3.11 Scalar Products that Are Determinants

Following [42, 43] we define the scalar product S[L,N1,N2], 0 ≤ N2 ≤ N1, that
involves (N1 + N2) operators, N1 B-operators with auxiliary rapidities that sat-
isfy Bethe equations, and N2 C-operators with auxiliary rapidities that are free.14

For N2 = 0, we obtain, up to a non-dynamical factor, the domain wall partition
function. For N2 = N1, we obtain Slavnov’s scalar product [45]. As we will see
in Sect. 4, S[L,N1,N2] is the partition function (weighted sum over all internal
configurations) of a lattice in an [L,N1,N2]-configuration, see Fig. 9.

Let {uβ}N1 = {uβ1, . . . , uβN1
}, {v}N2 = {v1, . . . , vN2}, {z}L = {z1, . . . , zL} be

three sets of variables the first of which satisfies Bethe equations, 0≤N2 ≤N1 and
1≤N1 ≤ L. We define the scalar products

S[L,N1,N2]
({uβ}N1, {v}N2, {z}L

)

= 〈N∨
3 , (L−N3)

∧∣∣
N2∏

i=1

C(vi)

N1∏

j=1

B(uβj
)
∣∣L∧

〉
(37)

with N3 =N1−N2, and where we have defined the normalized B- and C-operators

B(u)= B(u)

d(u)
, C(v)= C(v)

d(v)
(38)

which are introduced only as a matter of convention. It is clear that for N2 = 0, we
obtain a domain wall partition function, while for N2 = N1, we obtain Slavnov’s
scalar product. In all cases, we assume that the auxiliary rapidities {uβ}N1 obey the
Bethe equations (35), and use the subscript β to emphasize that, while the auxiliary
rapidities {v}N2 are either free or also satisfy their own set of Bethe equations. When
the latter is the case, this fact is not used. The quantum rapidities {z}L are taken to
be equal to the same constant value in the homogeneous limit.

14To simplify the notation, we use N1, N2 and N3 =N1−N2, instead of the corresponding notation
used in [42, 43]. These variables match the corresponding ones in Sect. 5.
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3.12 A Determinant Expression for the Slavnov Scalar Product
S[L,N1,N2]

Following [42, 43], we consider the (N1 ×N1) matrix

S
({uβ}N1, {v}N2, {z}L

)

=
⎛

⎜⎝
f1(z1) · · · f1(zN3) g1(vN2) · · · g1(v1)

...
...

...
...

fN1(z1) · · · fN1(zN3) gN1(vN2) · · · gN1(v1)

⎞

⎟⎠ (39)

whose entries are the functions

fi(zj )=
( [η]
[uβi

− zj + η][uβi
− zj ]

) N2∏

k=1

1

[vk − zj ] (40)

gi(vj )=
( [η]
[uβi

− vj ]
)(( L∏

k=1

[vj − zk + η]
[vj − zk]

N1∏

k 	=i

[uβk
− vj + η]

)

− e−2iθ
N1∏

k 	=i

[uβk
− vj − η]

)
(41)

and where N3 =N1 −N2. Since the auxiliary rapidities {uβ}N1 satisfy Bethe equa-
tions (35), following [42, 43] it is possible to show that

S[L,N1,N2]

=
∏N1

i=1

∏N3
j=1[uβi

− zj + η]detS({uβ}N1 , {v}N2, {z}L)∏
1≤i<j≤N1

[uβj
− uβi

]∏1≤i<j≤N2
[vi − vj ]∏1≤i<j≤N3

[zi − zj ] (42)

3.13 The Slavnov Scalar Product S[L,N1,N1]
Consider the special case N1 = N2 = N , which corresponds to Slavnov’s scalar
product itself. In this case we obtain the (N ×N) matrix

S
({uβ}N, {v}N, {z}L

)=
⎛

⎜⎝
g1(vN) · · · g1(v1)

...
...

gN(vN) · · · gN(v1)

⎞

⎟⎠ (43)

whose entries are the functions

gi(vj ) =
( [η]
[uβi

− vj ]
)(( L∏

k=1

[vj − zk + η]
[vj − zk]

N∏

k 	=i

[uβk
− vj + η]

)



100 O. Foda and M. Wheeler

− e−2iθ
N∏

k 	=i

[uβk
− vj − η]

)
(44)

The Slavnov scalar product S[L,N,N] is then given by

S[L,N,N] = detS({uβ}N, {v}N, {z}L)∏
1≤i<j≤N [uβi

− uβj
]∏1≤i<j≤N [vi − vj ] (45)

3.14 Restrictions

There is a simple relation between the scalar products S[L,N1,N1] and S[L,N1,

N2], which was used in [43] to provide a recursive proof of Slavnov’s scalar product
formula [45]. It is easy to show that by restricting the free variables vN1, . . . , vN2+1
in (45) to the values z1, . . . , zN3 , one obtains the recursion relation

(
N1∏

i=N2+1

L∏

j=1

[vi − zj ]S[L,N1,N1]
)∣∣∣∣ vN1=z1

...
v(N2+1)=zN3

=
N3∏

i=1

L∏

j=1

[zi − zj + η]S[L,N1,N2] (46)

As we show in Sect. 4, the scalar products S[L,N1,N1] and S[L,N1,N2] are in di-
rect correspondence with the partition function of an [L,N1,N1]- and [L,N1,N2]-
configuration, respectively. Accordingly, we expect that the recursion relation (46)
has a natural interpretation at the level of six-vertex model lattice configurations,
and indeed this turns out to be the case.

3.15 The Homogeneous Limit of S[L,N1,N2]
For the result in this paper, we need the homogeneous limit of S[L,N1,N2], which
we denote by Shom[L,N1,N2]. Taking the limit zi → z, i ∈ {1, . . . ,L}, the result is

Shom[L,N1,N2] =
∏N1

i=1[uβi
− z+ η]N3 detShom({uβ}N1, {v}N2, z)∏

1≤i<j≤N1
[uβj

− uβi
]∏1≤i<j≤N2

[vi − vj ] (47)

Shom({uβ}N1, {v}N2, z
)

=

⎛

⎜⎜⎝

Φ
(0)
1 (z) · · · Φ

(N3−1)
1 (z) ghom

1 (vN2) · · · ghom
1 (v1)

...
...

...
...

Φ
(0)
N1

(z) · · · Φ
(N3−1)
N1

(z) ghom
N1

(vN2) · · · ghom
N1

(v1)

⎞

⎟⎟⎠ (48)
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where Φ
(j)
i = 1

j !∂
(j)
z fi(z), and

ghom
i (vj ) = [η]

[uβi
− vj ]

(( [vj − z+ η]
[vj − z]

)L N1∏

k 	=i

[uβk
− vj + η]

− e−2iθ
N1∏

k 	=i

[uβk
− vj − η]

)
(49)

3.16 The Gaudin Norm

Let us consider the original, unrestricted Slavnov scalar product in the homogeneous
limit zi → z, S[L,N1,N1]({uβ}N1, {v}N1, z), and set {v}N1 = {uβ}N1 to obtain the
Gaudin norm N ({uβ}N1) which is the square of the norm of the Bethe eigenstate
with auxiliary rapidities {uβ}N1 . It inherits a determinant expression that can be
computed starting from that of the Slavnov scalar product that we begin with and
taking the limit {v}N1 →{uβ}N1 . Following [42], one obtains

N
({uβ}N1

)= (e−2iθ [η])N1

(
N1∏

i 	=j

[ui − uj + η]
[ui − uj ]

)
detΦ ′({uβ}N1

)
(50)

where

Φ ′
ij

({uβ}N1

)=−∂uj
ln

(( [ui − z+ η]
[ui − z]

)L N1∏

k=1
k 	=i

[uk − ui + η]
[uk − ui − η]

)
(51)

We need the Gaudin norm to normalize the Bethe eigenstates that form the 3-point
functions whose structure constants we are interested in.

4 The Trigonometric Six-Vertex Model

This section follows almost verbatim the exposition in [29], up to straightforward
adjustments to account for the fact that here we are interested in the trigonometric,
rather than the rational six-vertex model. We recall the 2-dimensional trigonometric
six-vertex model in the absence of external fields. From now on, ‘six-vertex model’
refers to that. It is equivalent to the XXZ spin- 1

2 chain that appears in [26–28], but
affords a diagrammatic representation that suits our purposes. We introduce quite a
few terms to make this correspondence clear and the presentation precise, but the
reader with basic familiarity with exactly solvable lattice models can skip all these.
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Fig. 1 A square lattice with
oriented lines and rapidity
variables. Lattice lines are
assigned the orientations
indicated by the white arrows

4.1 Lattice Lines, Orientations, and Rapidity Variables

Consider a square lattice with Lh horizontal lines and Lv vertical lines that intersect
at Lh×Lv points. There is no restriction, at this stage, on Lh or Lv . We order the
horizontal lines from top to bottom and assign the i-th line an orientation from left
to right and a rapidity variable ui . We order the vertical lines from left to right and
assign the j -th line an orientation from top to bottom and a rapidity variable zj . See
Fig. 1. The orientations that we assign to the lattice lines are matters of convention
and are only meant to make the vertices of the six-vertex model, that we introduce
shortly, unambiguous. We orient the vertical lines from top to bottom to agree with
the direction of the ‘spin set evolution’ that we introduce shortly.

4.2 Line Segments, Arrows, and Vertices

Each lattice line is split into segments by all other lines that are perpendicular to it.
‘Bulk segments’ are attached to two intersection points, and ‘boundary segments’
are attached to one intersection point only. Assign each segment an arrow that can
point in either direction, and define the vertex vij as the union of 1. The intersection
point of the i-th horizontal line and the j -th vertical line, 2. The four line segments
attached to this intersection point, and 3. The arrows on these segments (regardless
of their orientations). Assign vij a weight that depends on the specific orientations
of its arrows, and the rapidities ui and zj that flow through it.

4.3 Six Vertices that Conserve ‘Arrow Flow’

Since every arrow can point in either direction, there are 24 = 16 possible types
of vertices. In this note, we are interested in a model such that only those vertices
that conserves ‘arrow flow’ (that is, the number of arrows that point toward the
intersection point is equal to the number of arrows that point away from it) have
non-zero weights. There are six such vertices. They are shown in Fig. 2. We assign
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Fig. 2 The
non-vanishing-weight
vertices of the six-vertex
model. Pairs of vertices in the
same column share the weight
that is shown below that
column. The white arrows
indicate the line orientations
needed to specify the vertices
without ambiguity

these vertices non-vanishing weights. We assign the rest of the 16 possible vertices
zero weights [51].

In the trigonometric six-vertex model, and in the absence of external fields, the
six vertices with non-zero weights form three equal-weight pairs of vertices, as in
Fig. 2. Two vertices that form a pair are related by reversing all arrows, thus the
vertex weights are invariant under reversing all arrows. In the notation of Fig. 2, the
weights of the trigonometric six-vertex model, in the absence of external fields, are

a[ui, zj ] = 1, b[ui, zj ] = [ui − zj ]
[ui − zj + η] , c[ui, zj ] = [η]

[ui − zj + η] (52)

where we use the definition [x] = sinh(x) to simplify notation.15 The assignment
of weights in (52) satisfies unitarity, crossing symmetry, and most importantly the
Yang-Baxter equations [51]. It is not unique since one can multiply all weights by
the same factor without changing the final physical results.

4.4 Correspondence with the XXZ R-Matrix

The connection with the R-matrix of the XXZ spin- 1
2 chain is straightforward. One

can think of the R-matrix (12) as assigning a weight to the transition from a pair
of initial spin states (for example, the definite spin states on the right and upper
segments that meet at a certain vertex) to a pair of final spin states (the definite spin
states on the left and lower segments that meet at the same vertex as the initial ones).
In the case of the trigonometric XXZ spin- 1

2 chain, this is a transition between four
possible initial spin states and four final spin states, and accordingly the R-matrix is
(4× 4). The six non-zero entries of (12) correspond with the vertices in Fig. 2.

15The weights of the six-vertex model (52) and the entries of the XXZ R-matrix (12) are identical.
This is the origin of the connection between the two models. We have chosen to write down these
functions twice for clarity and to emphasize this fact.
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4.5 Remarks

1. The spin chains that are relevant to integrability in YM theories are typically
homogeneous since all quantum rapidities are set equal to the same constant value
z. In our conventions, z = 1

2

√−1. 2. The trigonometric six-vertex model that cor-
responds to the homogeneous XXZ spin- 1

2 chain used in [26–28] has, in our con-
ventions, all vertical rapidity variables equal to 1

2

√−1. In this note, we start with
inhomogeneous vertical rapidities, then take the homogeneous limit at the end. 3. In
a 2-dimensional vertex model with no external fields, the horizontal lines are on
equal footing with the vertical lines. To make contact with spin chains, we treat
these two sets of lines differently. 4. In all figures in this note, a line segment with
an arrow on it obviously indicates a definite arrow assignment. A line segment with
no arrow on it implies a sum over both arrow assignments.

4.6 Weighted Configurations and Partition Functions

By assigning every vertex vij a weight wij , a vertex model lattice configuration
with a definite assignment of arrows is assigned a weight equal to the product of the
weights of its vertices. The partition function of a lattice configuration is the sum of
the weights of all possible configurations that the vertices can take and that respect
the boundary conditions. Since the vertex weights are invariant under reversal of all
arrows, the partition function is also invariant under reversal of all arrows.

4.7 Rows of Segments, Spin Systems, Spin System States and Net
Spin

A ‘row of segments’ is a set of vertical line segments that start and/or end on the
same horizontal line(s). An Lh × Lv six-vertex lattice configuration has (Lv + 1)
rows of segments. On every length-Lh row of segments, one can assign a definite
spin configuration, whereby each segment carries a spin variable (an arrow) that
can point either up or down. A ‘spin system’ on a specific row of segments is a set
of all possible definite spin configurations that one can assign to that row. A ‘spin
system state’ is one such definite configuration. Two neighbouring spin systems (or
spin system states) are separated by a horizontal lattice line. The spin systems that
live on the top and the bottom rows of segments are initial and final spin systems,
respectively. Consider a specific spin system state. Assign each up-spin the value
+1 and each down-spin the value −1. The sum of these values is the net spin of this
spin system state. In this paper, we only consider six-vertex model configurations
such that all elements in a spin system have the same net spin.
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4.8 Initial and Final Spin-Up and Spin-Down Reference States,
and a Variation

An initial (final) spin-up reference state |L∧〉 (〈L∧|) is a spin system state on a top
(bottom) row of segments with L arrows that are all up. An initial (final) spin-down
reference state |L∨〉 (〈L∨|) is a spin system state on a top (bottom) row of segments
with L arrows that are all down. The state 〈N∨

3 , (L−N3)
∧| is a spin system state on

a bottom row of segments with L arrows such that the first N3 arrows from the left
are down, while the remaining (L−N3) arrows are up. We do not need the initial
version of this state.

4.9 Correspondence with XXZ Spin Chain States

The connection to the XXZ spin- 1
2 chain of Sect. 3 is clear. Every state of the pe-

riodic spin chain is analogous to a spin system state in the six-vertex model. Pe-
riodicity is not manifest in the latter representation for the same reason that it is
not manifest once we choose a labeling system. The initial and final spin-up/down
reference states are the six-vertex analogues of those discussed in Sect. 3.

4.10 Remarks

1. There is of course no ‘time variable’ in the six-vertex model, but one can think of a
spin system as a dynamical system that evolves in discrete steps as one scans a lattice
configuration from top to bottom. Starting from an initial spin set and scanning the
configuration from top to bottom, the intermediate spin sets are consecutive states
in the history of a dynamical system, ending with the final spin set. This evolution
is caused by the action of the horizontal line elements. 2. In this paper, all elements
in a spin system, that live on a certain row of segments, have the same net spin. The
reason is that vertically adjacent spin systems are separated by horizontal lines of a
fixed type that change the net spin by the same amount (±1) or keep it unchanged.
Since we consider only lattice configurations with given horizontal lines (and do not
sum over different types), the net spin of all elements in a spin system changes by
the same amount.

4.11 Four Types of Horizontal Lines

Each horizontal line has two boundary segments. Each boundary segment has as an
arrow that can point into the configuration or away from it. Accordingly, we can
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Fig. 3 There are four types
of horizontal lines in a
six-vertex model lattice
configuration

distinguish four types of horizontal lines, as in Fig. 3. We refer to them as A-, B-,
C- and D-lines.

An important property of a horizontal line is how the net spin changes as one
moves across it from top to bottom. Given that all vertices conserve ‘arrow flow’,
one can easily show that, scanning a configuration from top to bottom, B-lines
change the net spin by −1, C-lines change it by +1, while A- and D-lines preserve
the net spin. This can be easily understood by working out a few simple examples.

4.12 Correspondence with Monodromy Matrix Entries

The A-, B-, C- and D-lines in Fig. 3 are the six-vertex model representation of the
corresponding elements of the M-matrix in Sect. 3. This graphical representation is
used frequently throughout the rest of the paper.

4.13 Four Types of Configurations

1. A B-configuration is a lattice configuration with L vertical lines and N horizontal
lines, N ≤ L, such that (A) The initial spin system is an initial reference state |L∧〉,
and (B) All horizontal lines are B-lines. An example is on the left hand side of
Fig. 4.

2. A C-configuration is a lattice configuration with L vertical lines and N hori-
zontal lines, N ≤ L, such that (A) All horizontal lines are C-lines, and (B) The final
spin system is a final reference state 〈L∧|. An example is on the right hand side of
Fig. 4.

3. A BC-configuration is a lattice configuration with L vertical lines and 2N1

horizontal lines, 0 ≤ N1 ≤ L, such that (A) The initial spin system is an initial
reference state |L∧〉, (B) The first N1 horizontal lines from top to bottom are B-
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Fig. 4 On the left, a
B-configuration, generated by
the action of N B-lines on an
initial length-L reference
state, N ≤ L. A weighted
sum over all possible
configurations of segments
with no arrows is implied. On
the right, the corresponding
C-configuration

lines, (C) The following N1 horizontal lines are C-lines, (D) The final spin system
is a final reference state 〈L∧|. See Fig. 5.16

4. An [L,N1,N2]-configuration, 0≤N2 ≤N1, is identical to a BC-configuration
except that it has N1 B-lines, and N2 C-lines. When N3 = N1 − N2 = 0, we ev-
idently recover a BC-configuration. The case N2 = 0 is discussed below. For in-
termediate values of N2, we obtain restricted BC-configurations whose partition
functions turn out to be essentially the structure constants.

4.14 Correspondence with Generic Bethe States

An initial (final) generic Bethe state is represented in six-vertex model terms as a B-
configuration (C-configuration), as illustrated on the left (right) hand side of Fig. 4.
Note that the outcome of the action of the N B-lines (C-lines) on the initial (final)
length-L spin-up reference state is an initial (final) spin system that can assume all
possible spin states of net spin (L−N). Each of these definite spin states is weighted
by the weight of the corresponding lattice configuration.

4.15 Correspondence with S[L,N1,N1] Scalar Products
and S[L,N1,N2] Restricted Scalar Products

In the language of the six-vertex model, the scalar product S[L,N1,N1] corre-
sponds with a BC-configuration with N1 B-lines and N1 C-lines, as illustrated in
Fig. 5. The restricted scalar product S[L,N1,N2] corresponds with an [L,N1,N2]-
configuration, as illustrated in Fig. 9. Compared with the definition of S[L,N1,N2]
in (37), the partition function of an [L,N1,N2]-configuration differs only up to an
overall normalization. To translate between the two, one should divide the latter by
d(u) for every B-line with rapidity u and by d(v) for every C-line with rapidity v.

16For visual clarity, we have allowed for a gap between the B-lines and the C-lines in Fig. 5. There
is also a gap between the N3-th and (N3+1)-th vertical lines, where N3 = 3 in the example shown,
that indicates separate portions of the lattice that will be relevant shortly. The reader should ignore
this at this stage.
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Fig. 5 A six-vertex model
BC-configuration. L= 12,
and N1 = 5, or equivalently
Lh = 2× 5= 10 and
Lv = 12. The top N1
horizontal lines represent
B-operators. The bottom N1
horizontal lines represent
C-operators. The initial (top)
as well as the final (bottom)
boundary spin systems are
reference states

4.16 [L,N1,N2]-Configurations as Restrictions
of BC-Configurations

Consider a BC-configuration with no restrictions. To be specific, let us consider the
configuration in Fig. 5, where N1 = 5 and L = 12. Both sets of rapidities {u} and
{v} are labeled from top to bottom, as usual.

Consider the vertex at the bottom-left corner of Fig. 5. From Fig. 2, it is easy
to see that this can be either a b- or a c-vertex. Since the {v} variables are free,
set v5 = z1, thereby setting the weight of all configurations with a b-vertex at this
corner to zero, and forcing the vertex at this corner to be a c-vertex.

Referring to Fig. 2 again, one can see that not only is the corner vertex forced
to be a c-vertex, but the orientations of all arrows on the horizontal lattice line with
rapidity v5, as well as all arrows on the vertical line with rapidity z1 but below the
horizontal line with rapidity uN1 are also frozen to fixed values as in Fig. 6.

The above exercise in ‘freezing’ vertices and arrows can be repeated and to pro-
duce a non-trivial example, we do it two more times. Setting v4 = z2 forces the
vertex at the intersection of the lines carrying the rapidities v4 and z2 to be a c-
vertex and freezes all arrows to the right as well as all arrows above that vertex and
along C-lines, as in Fig. 7.

Setting v3 = z3, we end up with the lattice configuration in Fig. 8, from which
we can see that (1) All arrows on the lower N3 horizontal lines, where N3 = 3 in the
specific example shown, are frozen, and (2) All lines on the N3 left most vertical
lines in the lower half of the diagram, where they intersect with C-lines. Removing
the lower N3 C-lines we obtain the configuration in Fig. 9. This configuration has
a subset (rectangular shape on lower left corner) that is also completely frozen. All
vertices in this part are a-vertices, hence from (52), their contribution to the partition
function of this configuration is trivial.
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Fig. 6 Setting vN1 to z1 in
Fig. 5, we freeze (1) the
vertex at the lower left corner
to be type-c, (2) all vertices to
the right of the frozen corner
to be type-a, and (3) all
vertices above the frozen
corner, but on the lower half
of the diagram, to be type-b

Fig. 7 Setting vN1−1 (on
second horizontal line from
below) to z2 (on second
vertical line from left) in
Fig. 6, we freeze (1) the
vertex at the intersection of
the lines that carry rapidities
vN1−1 and z2 to be type-c,
(2) all vertices to the right of
the most recently-frozen
corner to be type-a, and
(3) all vertices above the same
vertex, but on the lower half
of the diagram, to be type-b

An [L,N1,N2]-configuration, as in Fig. 9, interpolates between an initial refer-
ence state |L∧〉 and a final 〈N3

∨, (L− N3)
∧| state, using N1 B-lines followed by

N2 C-lines.
Setting vN1−i+1 = zi for i = 1, . . . ,N1, we freeze all arrows that are on C-lines

or on segments that end on C-lines. Discarding these we obtain the lattice configu-
ration in Fig. 10.

Removing all frozen vertices (as well as the extra space between two sets of
vertical lines, that is no longer necessary), one obtains the domain wall configura-
tion in Fig. 11, which is characterized as follows. All arrows on the left and right
boundaries point inwards, and all arrows on the upper and lower boundaries point
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Fig. 8 The effect of forcing
the three vertices at the
intersection of the lines that
carry the pairs of rapidities
{vN1 , z1}, {vN1−1, z2} and
{vN1−2, z3} to be c-vertices.
We used the notation
N3 =N1 −N2

Fig. 9 An
[L,N1,N2]-configuration. In
this example, N1 = 5,
N2 = 2, and as always
N3 =N1 −N2

Fig. 10 Another
[L,N1,N2]-configuration. In
this example, N2 = 0 and
N1 = 5. Equivalently, the left
half is an (N1 ×N1) domain
wall configuration, where
N1 = 5, with an additional
totally frozen lattice
configuration to its right

outwards. The internal arrows remain free, and the configurations that are consis-
tent with the boundary conditions are summed over. Reversing the orientation of all
arrows on all boundaries is a dual a domain wall configuration.
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Fig. 11 The left hand side is
an (N ×N) domain wall
configuration, where N = 5.
The right hand side is the
corresponding dual
configuration

4.17 Remarks on Domain Wall Configurations

1. One can generate a domain wall configuration directly starting from a length-N
initial reference state followed by N B-lines, 2. One can generate a dual domain wall
configuration directly starting from a length-N dual initial reference state followed
by N C-lines, 3. A BC-configuration with length-L initial and final reference states,
L B-lines and L C-lines, factorizes into a product of a domain wall configuration
and a dual domain wall configuration, 4. The restriction of BC-configurations to
[L,N1,N2]-configurations, where N2 < N1, produces a recursion relation that was
used in [43] to provide a recursive proof of Slavnov’s determinant expression for the
scalar product of a Bethe eigenstate and a generic state in the corresponding spin
chain, 5. The partition function of a domain wall configuration has a determinant
expression found by Izergin, that can be derived in six-vertex model terms (without
reference to spin chains or the BA) [50].

4.18 Izergin’s Domain Wall Partition Function

Let {u}N = {u1, . . . , uN } and {z}N = {z1, . . . , zN } be two sets of rapidity variables17

and define ZN({u}N, {z}N) to be the partition function of the domain wall lattice
configuration on the left hand side of Fig. 11, after dividing by d(u) for every B-
line with rapidity u. Izergin’s determinant expression for the domain wall partition
function is

ZN

({u}N, {z}N
)

=
∏N

i,j=1[ui − zj + η]
∏

1≤i<j≤N [ui − uj ][zj − zi] det

( [η]
[ui − zj + η][ui − zj ]

)

1≤i,j≤N

(53)

Dual domain wall configurations have the same partition functions due to invari-
ance under reversing all arrows. For the result of this note, we need the homoge-
neous limit of the above expression. Taking the limit zi → z, {i = 1, . . . ,L}, we

17The following result does not require that any set of rapidities satisfy Bethe equations.
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Fig. 12 A schematic
representation of a 3-point
function. State O1 is on top.
O2 and O3 are below, to the
right and to the left. Type-A
3-point functions are
(initially) in this ‘wide-pants’
form

obtain

Zhom
N

({u}N, z
)=

∏N
i=1[ui − z+ η]N∏
1≤i<j≤N [ui − uj ] det

(
φ(j−1)(ui, z)

)
1≤i,j≤N

where φ(j)(ui, z)= 1

j !∂
(j)
z

( [η]
[ui − z+ η][ui − z]

)
(54)

5 Structure Constants in Type-A Theories

In this section, we recall the discussion of SYM4 tree-level structure constants of
[26–29] but now in the context of the Type-A theories in Subsect. 1.5, and construct
determinant expressions for structure constants of three non-extremal SU(2) single-
trace operators.

Since theory 1 is SYM4, theory 2 is an Abelian orbifolding of SYM4, and the-
ory 3 is a real-β-deformation of it, all three theories share the same fundamental
charged scalar field content, that is {X,Y,Z} and their charge conjugates {X̄, Ȳ , Z̄},
and all are conformally invariant up to all loops [33]. This makes our discussion a
straightforward paraphrasing of that in [26–29].

5.1 Tree-Level Structure Constants

We consider tree-level 3-point functions of SU(2) single-trace operators that
(1) have well-defined conformal dimensions at 1-loop level, and (2) can be mapped
to Bethe eigenstates in closed spin- 1

2 chains.
These 3-point functions can be represented schematically as in Fig. 12. Identify

the pairs of corner points {l1, r1}, {l2, r2}, {l3, r3}, as well as the triple {m1,m2,m3}
to obtain a pants diagram. The structure constants have a perturbative expansion in
the ’t Hooft coupling constant λ,

Cijk = c
(0)
ijk + λc

(1)
ijk + · · · (55)

We restrict our attention to the leading coefficient c(0)ijk . In the limit λ→ 0, many
single-trace operators have the same conformal dimension. This degeneracy is lifted
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at 1-loop level and certain linear combinations of single-trace operators have definite
1-loop conformal dimension. This is why although we compute tree-level structure
constants, we insist on 1-loop conformal invariance: We identify operators with well
defined conformal dimensions.

As explained in Sect. 2, these linear combinations correspond to eigenstates of
a closed spin- 1

2 chain. Their conformal dimensions are the corresponding Bethe
eigenvalues. These closed spin chain states correspond to the circles at the bound-
aries of the pants diagram that can be constructed from Fig. 12 as discussed above.

5.2 Remark

In computing 3-point functions, the three composite operators may or may not be-
long to the same SU(2) doublet. In particular, in [26–28], EGSV use operators from
the doublets {Z,X}, {Z̄, X̄}, and {Z, X̄}. In [29], this procedure allowed us to con-
struct determinant expressions for structure constants of non-extremal 3-point func-
tions. This applies to all Type-A theories. Type-B structure constants are constructed
differently. In particular, the non-extremal case l23 = 0 is considered.

5.3 Constructing 3-Point Functions

To construct three-point functions at the gauge theory operator level, the fundamen-
tal fields in the operators Oi , i = {1,2,3} are contracted by free propagators. Each
propagator connects two fields, hence L1+L2+L3 is an even number. The number
of propagators between Oi and Oj is

lij = 1

2
(Li +Lj −Lk) (56)

where (i, j, k) take distinct values in (1,2,3). We restrict our attention, in this sec-
tion, to the non-extremal case, that is, all lij ’s are strictly positive. The free propa-

gators reproduce the factor 1/|xi − xj |Δi+Δj−Δk in (2), where Δi = Δ
(0)
i , the tree-

level conformal dimension. See Fig. 12 for a schematic representation of a three
point function of the type discussed in this note. The horizontal line segment be-
tween li and ri represents the operator Oi . The lines that start at O1 and end at
either O2 or O3 represent one type of propagator.

5.4 From Single-Trace Operators to Spin-Chain States

One represents the single-trace operator Oi of well-defined 1-loop conformal di-
mension Δi by a closed spin-chain Bethe eigenstate |Oi〉β . Its eigenvalue Ei is
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Table 1 Identification of operator content of Oi , i ∈ {1,2,3}with initial and final spin-chain states

Operator
(1

0

) (0
1

)
(1 0) (0 1)

O1 Z X Z̄ X̄

O2 Z̄ X̄ Z X

O3 Z X̄ Z̄ X

equal to Δi . The number of fundamental fields Li in the trace is the length of the
spin chain.

The single-trace operator Oi is a composite operator built from weighted sums
over traces of products of two fundamental fields {u,d}. These fundamental fields
are mapped to definite spin states. To perform suitable mappings that lead to non-
vanishing results, we need to decide on which state(s) are in-state(s) from the view-
point of the lattice representation, and which are out-state(s).

5.5 Type-A. Fundamental Field Content of the States

All three Type-A theories have the same fundamental field content, namely that of
SYM4, and thereby, more than one doublet. We focus on the doublets formed from
the fields Z, X and their conjugates. Following [26–28], we identify the fundamental
field content of Oi , i ∈ {1,2,3} with spin-chain spin states as shown in Table 1,
where Z̄ and X̄ are the conjugates of Z and X. That is, if Z appears on one side of
a propagator and Z̄ appears on the other side, then that propagator is not identically
vanishing, and Z and Z̄ can be Wick contracted. Similarly for X and X̄.

In our conventions

〈Z̄Z〉 = 〈Z|Z〉 = 1, 〈ZZ〉 = 〈Z̄|Z〉 = 0 (57)

and similarly for X and X̄. In (57), 〈f̄ f 〉 with no vertical bar between the two
operators is a propagator, while 〈f |f 〉 with a vertical bar between the two operators
is a scalar product of an initial state |f 〉 and a final state 〈f |.

From Table 1, one can read the fundamental-scalar operator content of each
single-trace operator Oi , i ∈ {1,2,3}, when it is an initial state and when it is a
final state. For example, the fundamental field content of the initial state |O1〉 is
{Z,X}, and that of the corresponding final state 〈O1| is {Z̄, X̄}. The content of an
initial state and the corresponding final state are related by the ‘flipping’ operation
of [26–28] described below.

5.6 Structure Constants in Terms of Spin-Chains

Having mapped the single-trace operators Oi , i ∈ {1,2,3} to spin-chain eigenstates,
EGSV construct the structure constants in three steps.
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5.6.1 Step 1. Split the Lattice Configurations that Correspond to Closed
Spin-Chain Eigenstates into Two Parts

Consider the open 1-dimensional lattice configuration that corresponds to the i-th
closed spin-chain eigenstate, i ∈ {1,2,3}. This is schematically represented by a line
in Fig. 12 that starts at li and ends at ri . Split that, at point ci into left and right sub-
lattice configurations of lengths Li,l = 1

2 (Li+Lj −Lk) and Li,r = 1
2 (Li+Lk−Lj )

respectively. Note that the lengths of the sub-lattices is fully determined by L1, L2
and L3 which are fixed.

Following [44], we express the single lattice configuration of the original closed
spin chain state as a weighted sum of tensor products of states that live in two smaller
Hilbert spaces. The latter correspond to closed spin chains of lengths Li,l and Li,r

respectively. That is, |Oi〉 =∑Hl,r |Oi〉l ⊗ |Oi〉r . The factors Hl,r were computed
in [44] and were needed in [26–28], where one of the scalar products is generic and
had to be expressed as an explicit sum. They are not needed in this work as we use
Bethe equations to evaluate this very sum as a determinant.

5.6.2 Step 2. From Initial to Final States

Map |Oi〉l ⊗ |Oi〉r →|Oi〉l ⊗ r 〈Oi |, using the operator F that acts as follows.

F
(|f1f2 · · ·fL−1fL〉

)= 〈f̄Lf̄L−1 · · · f̄2f̄1| (58)

In particular,

〈ZZ · · ·Z|ZZ · · ·Z〉 = 〈Z̄Z̄ · · · Z̄|Z̄Z̄ · · · Z̄〉 = 1,

and 〈Z̄Z̄ · · · Z̄|ZZ · · ·Z〉 = 0 (59)

More generally

〈fi1fi2 · · ·fiL |fj1fj2 · · ·fjL〉 ∼ δi1j1δi2j2 · · · δiLjL (60)

The ‘flipping’ operation in (58) is the origin of the differences in assignments of fun-
damental fields to initial and final operator states in Table 1. For example, |O1〉 has
fundamental field content {Z,X}, but 〈O1| has fundamental field content {Z̄, X̄}.
This agrees with the fact that in computing 〈Oi |Oi〉, free propagators can only con-
nect conjugate fundamental fields.

5.6.3 Step 3. Compute Scalar Products

Wick contract pairs of initial states |Oi〉r and final states |Oi+1〉l , where i ∈ {1,2,3}
and i + 3 ≡ i. The spin-chain equivalent of that is to compute the scalar products
r 〈Oi |Oi+1〉l , which in six-vertex model terms are BC-configurations. The most
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general scalar product that we can consider is the generic scalar product between
two generic Bethe states

Sgeneric
({u}, {v})= 〈0|

N∏

j=1

C(vj )

N∏

j=1

B(uj )|0〉 (61)

A computationally tractable evaluation of Sgeneric({u}, {v}) using the commuta-
tion relations of BA operators is known [46]. Simpler expressions are obtained when
the auxiliary rapidities of one (or both) states satisfies Bethe equations. The result in
this case is a determinant. When only one set satisfies Bethe equations, one obtains
a Slavnov scalar product. This was discussed in Sect. 3.

5.7 Type-A. An Unevaluated Expression

The above three steps lead to the following preliminary, unevaluated expression

c
(0)
123 =N123

∑
r 〈O3|O1〉l r 〈O1|O2〉l r 〈O2|O3〉l (62)

where the normalization factor N123, that turns out to be a non-trivial object that
depends on the norms of the Bethe eigenstates, is

N123 =
√

L1L2L3

N1N2N3
(63)

In (63), Li is the number of sites in the closed spin chain that represents state Oi .
Ni is the Gaudin norm of state Oi as in (50). The sum in (62) is to be understood
as follows. 1. It is a sum over all possible ways to split the sites of each closed spin
chain (represented as a segment in a 1-dimensional lattice) into a left part and a right
part. We will see shortly that only one term in this sum survives. 2. It is a sum over
all possible ways of partitioning the X or X̄ content of a spin chain state between
the two parts that spin chain was split into. We will see shortly that only one sum
survives.

5.8 Type-A. Simplifying the Unevaluated Expression

Wick contracting single-trace operators, we can only contract a fundamental field
with its conjugate. Given the assignments in Table 1, one can see that (1) All Z

fields in O3 must contract with Z̄ fields in O2. The reason is that there are Z̄ fields
only in O2, and none in O1. (2) All X̄ fields in O3 contract with X fields in O1. The
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reason is that there are X fields only in O1, and none in O2. If the total number of
scalar fields in Oi is Li , and the number of {X,X̄}-type scalar fields is Ni , then

l13 =N3, l23 = L3 −N3, l12 = L1 −N3 (64)

and we have the constraint

N1 =N2 +N3 (65)

From (64) and (65), we have the following 4 simplifications. 1. There is only one
way to split each lattice configuration that represents a spin chain into a left part and
a right part, 2. The scalar product r 〈O2|O3〉l involves the fundamental field Z (and
only Z) in the initial state |O3〉l as well as in the final state r 〈O2|. Using Table 1,
we find that these states translate to an initial and a final spin-up reference state,
respectively. This is represented in Fig. 12 by the fact that no connecting lines (that
stand for propagators of {X,X̄} states) connect O2 and O3. The scalar product of
the two reference states is r 〈O2|O3〉l = 1, 3. The scalar product r 〈O3|O1〉l involves
the fundamental fields X (and only X) in the initial state |O1〉l as well as in the final
state r 〈O3|. Using Table 1, we find that these states translate to an initial spin-up
and a final spin-down reference state, respectively. This is represented in Fig. 12
by the high density of connecting lines (that stand for propagators of {X,X̄} states)
between O1 and O3. This scalar product is straightforward to evaluate in terms of
the domain wall partition function, 4. In the remaining scalar product r 〈O1|O2〉l ,
both the initial state |O2〉l and the final state r 〈O1| involve {X̄, Z̄}. These fields
translate to up and down spin states and the scalar product is generic. Using the BA
commutation relations, it can be evaluated as a weighted sum [44].

5.9 Type-A. Evaluating the Expression

The idea of [29] is to identify the expression in (62), up to simple factors, with the
partition function of an [L1,N1,N2]-configuration. Since this partition function is
a restricted scalar product S[L1,N1,N2], it can be evaluated as a determinant. This
is achieved in two steps.

5.9.1 Step 1. Re-writing One of the Scalar Products

We use the facts that (1) r 〈O2|O3〉l = 1, and (2) r 〈O2|O1〉l = l〈O1|O2〉r , which is
true for all scalar products, to re-write (62) in the form

c
(0)
123 =N123

∑

α∪ᾱ={uβ }N1

r 〈O3|O1〉l l〈O2|O1〉r

=N123
(
r 〈O3| ⊗ l〈O2|

)|O1〉 (66)
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Fig. 13 A schematic
representation of a 3-point
function after removal of a
contraction between the left
part of O2 and the right part
of O3, that evaluates to a
factor of 1. Type-B 3-point
functions are in this ‘narrow
pants’ form from the outset

where the right hand side of (66) is a scalar product of the full initials tate |O1〉 (so
we no longer have a sum over partitions of the rapidities {uβ}N1 since we no longer
split the state O1) and two states that are pieces of original states that were split.
Deleting the scalar product corresponding to contracting the left part of state O2

with the right part of state O3, since that contraction leads to a factor of unity, the
object that we are evaluating can be schematically drawn as in Fig. 13.

This right hand side is identical to an [L1,N1,N2]-configuration, apart from the
fact that it includes an (N3 × N3)-domain wall configuration, that corresponds to
the spin-down reference state contribution of r 〈N3

∨|, that is not included in an
[L1,N1,N2]-configuration.

5.9.2 Step 2. The Domain Wall Partition Functions

Accounting for the domain wall partition function, and working in the homogeneous
limit where all quantum rapidities are set to z= 1

2

√−1, we obtain our result for the
structure constants, which up to a factor, is in determinant form.

c
(0)
123 =N123 Zhom

N3

(
{w}N3,

1

2

√−1

)

× Shom[L1,N1,N2]
(
{uβ}N1, {v}N2,

1

2

√−1

)
(67)

where the normalization N123 is defined in (63), the (N3 × N3) domain wall par-
tition function Zhom

N3
({w}N3,

1
2

√−1) is given in (54). The term Shom[L1,N1,N2]
({uβ}N1 , {v}N2,

1
2

√−1) is an (N1 × N1) determinant expression of the partition
function of an [L1,N1,N2]-configuration, given in (47). The auxiliary rapidities
{u}, {v} and {w} are those of the eigenstates O1, O2 and O3 in [26–28], respec-
tively. Notice that {v} and {w} are actually {v}β and {w}β , that is, they satisfy Bethe
equations, but this fact is not used. In six-vertex model terms, the object that we are
evaluating is drawn in Fig. 14.
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Fig. 14 The six-vertex lattice configuration that corresponds, up to a normalization factor N123,
to the structure constant c(0)123

5.10 Type-A Specializations

Equation (67) is quite general. To obtain an expression specific to a certain Type-
A theory, we need to use the values of the spin-chain parameters appropriate to
that theory, as were given in Subsect. 1.7. All Type-A theories map to XXX spin-
1
2 chains, hence the anisotropy parameter Δ = 1, but with different values for the
twist parameter θ . Theory 1 is SYM4 and θ = 0. Theory 2 is SYMM

4 is an Abelian
orbifold version of SYM4 and θ = 2π

M
. Theory 3 is a real-β-deformed version of

SYM4 and θ = β .

6 Structure Constants in Type-B Theories

In this section, we consider structure constants in Type-B theories. Our approach is
parallel to that used in Type-A. The difference is that each Type-B theory has only
one doublet, and therefore requires a slightly modified treatment.18

In type-A theories, the left part of O2 gets trivially contracted with the right part
of O3, and the pants diagram is reduced to the ‘narrow pants diagram’ in Fig. 13.
As we will see, the starting point in the case of Type-B theories is a ‘narrow pants’
diagram.

18The conclusion that, in order to obtain a determinant formula, one of the single-trace operators
should be BPS-like, was obtained in discussions with C. Ahn and R. Nepomechie.
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Table 2 Identification of
Type-B operator content of
Oi , i ∈ {1,2,3} with initial
and final spin-chain states

Operator
(1

0

) (0
1

)
(1 0) (0 1)

O1 ζ ζ̄ ζ̄ ζ

O2 ζ̄ ζ ζ ζ̄

O3 ζ̄ ζ ζ ζ̄

This implies that in Type-B theories O3 must be chosen to be a BPS-like state,
with one type of fundamental field in the composite operator O3. On the other hand,
since the missing contraction (that between the left part of O2 and the right part of
O3) was trivial for Type-A theories, the final result remains the same.

6.1 Type-B. Fundamental field content of the states

As in Type-A, we consider single-trace operators in an SU(2) sector of a 1-loop
conformally-invariant gauge theory, that is Tr(f1f2f3 · · · ), where fi ∈ {u,d} is a
fundamental field that belongs to an SU(2) doublet.

The new feature in Type-B theories is that we have only one doublet to work
with. The doublets relevant to Type-B theories were given in Subsect. 1.7. Theory 4
is pure gauge SYM2, and the doublet consists of the gluino and its conjugate {λ, λ̄}.
Theory 5 is pure gauge SYM1, and the doublet consists of the complex scalar and its
conjugate {φ, φ̄}. Theory 6 is pure QCD and the doublet consists of the light cone
derivative of the gauge field component A and its conjugate Ā, that is, {∂+A,∂+Ā}.
In the following, we deal with all three theories in one go, using the notation {ζ, ζ̄ }
for a generic single doublet.

Since we have only one doublet to construct composite operators from, we iden-
tify the fundamental field content of Oi , i ∈ {1,2,3} with spin-chain spin states as
shown in Table 2.

Once again, in our conventions

〈ζ̄ ζ 〉 = 〈ζ |ζ 〉 = 1, 〈ζ ζ 〉 = 〈ζ̄ |ζ 〉 = 0 (68)

From Table 2, one can read the fundamental-scalar operator content of each
single-trace operator Oi , i ∈ {1,2,3}, when it is an initial state and when it is a
final state.

6.2 Similarities Between Type-A and Type-B Theories

Steps 1, 2 and 3 from the EGSV construction of the structure constants apply
unchanged to Type-B theories. In other words, (1) The splitting of each lattice,
(2) The flipping procedure, and (3) The contraction of left and right halves to form
scalar products, are replicated in the case of Type-B theories. Therefore we see that
Eq. (62) continues to hold, and we assume that as our starting point.
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6.3 Differences Between Type-A and Type-B Theories

1. In the case of Type-A theories, O3 contains Z fields that can only contract with
Z̄ fields in O2. This is because there are no fields that they can contract with in O1.
This trivializes the l〈O2|O3〉r scalar product.

This is not the case in Type-B theories, where we have only a single doublet that
must be used to populate all three states O1, O2 and O3. Because of that, one can
see that if there is a contraction between O2 and O3, it is in general non-trivial.
This is sufficient to prevent us from duplicating our Type-A arguments in the case
of Type-B theories. In fact, there is yet another difference.

2. In the case of Type-A theories, O3 contains X̄ fields that can contract only
with X fields in O1. The reason is that there are no X fields in O2. This trivializes
the scalar product that involves the left part of O1 and the right part of O3, leading
to a domain wall partition function.

Once again, in the case of Type-B theories, the above trivial contraction is no
longer the case, and contractions between O1 and O3 are in general non-trivial.

6.4 One of the Operators Must Be BPS-Like

Because of the above reasons, we cannot map the most general SU(2) structure
constants of Type-B operators onto a restricted Slavnov scalar product. However,
both problems are overcome if we take O3 to be BPS-like, that is, a single-trace
operator of the form Tr[ζ̄ ζ̄ · · · ζ̄ ]. This means that we demand that N3 = L3, or
equivalently, that l23 = L3 − N3 = 0. In other words, the fields in O3 are all of
the same type ζ̄ (magnons) and they contract with a subset of the fields in O1,
while there are no contractions between O3 and O2. From this, we conclude that the
starting point of the Type-B structure constants that we can compute in determinant
form is the ‘narrow pants’ diagram in Fig. 13.

But we know that the partition function of the lattice configuration corresponding
to Fig. 13 is given by a restricted Slavnov scalar product. Therefore for Type-B
structure constants for which O3 is BPS-like, that is L3 =N3, we obtain

c
(0)
123 =N123Z

hom
N3

(
{w}N3,

1

2

√−1

)

× Shom[L1,N1,N2]
(
{uβ}N1, {v}N2,

1

2

√−1

)
(69)

This is the same result as the Type-A case, but with the caveat that we are restricting
our attention to the situation L3 = N3. As a result the Gaudin norm N3, which
occurs in the normalization factor N123, is equal to the partition function of a BC-
configuration with length-N3 initial and final reference states, and N3 B-lines and
C-lines. As we commented in Subsect. 4.17, such a configuration factorizes into a
product of domain wall partition functions. Hence we are able to cancel the factor
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Zhom
N3

({w}N3,
1
2

√−1) in (69) at the expense of the factor
√
N3 in the denominator,

and obtain the final expression

c
(0)
123 =

√
L1L2L3

N1N2
Shom[L1,N1,N2]

(
{uβ}N1, {v}N2,

1

2

√−1

)
(70)

6.5 Type-B Specializations

As in the previous section, (69) is quite general. To obtain an expression specific
to a certain Type-B theory, we need to use the values of the spin-chain parameters
appropriate to that theory, as were given in Subsect. 1.7. All Type-B theories map
to periodic XXZ spin- 1

2 chains, hence the twist parameter θ = 0, but with different
values of the anisotropy parameter Δ. Theory 4 is pure SYM2 and Δ = 3 [7, 39].
Theory 5 is pure SYM1 and Δ= 1

2 [7]. Theory 6 is pure gauge QCD and Δ=− 11
3

[7].

7 Discrete KP τ -Functions

In this section we closely follow [47], where it was shown that Slavnov’s scalar
product is a τ -function of the discrete KP hierarchy. The only differences in this
work are (1) A more compact expression for the τ -function itself, see (99), (2) The
inclusion of the twist parameter θ in the τ -function, and (3) A discussion of restrict-
ing the Miwa variables to the values of the quantum inhomogeneities.

7.1 Notation Related to Sets of Variables

We use {x} for the set of finitely many variables {x1, x2, . . . , xN }, and {̂xm} for
{x} with the element xm omitted. In the case of sets with a repeated variable xi ,
we use the superscript (mi) to indicate the multiplicity of xi , as in x

(mi)
i . For

example, {x(3)
1 , x2, x

(2)
3 , x4, . . . } is the same as {x1, x1, x1, x2, x3, x3, x4, . . . } and

f {. . . , x(mi)
i , . . . } is equivalent to saying that f depends on mi distinct variables all

of which have the same value xi . For simplicity, we use xi to indicate x
(1)
i .
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7.2 The Complete Symmetric Function hi{x}
Let {x} denote a set of N variables {x1, x2, . . . , xN }. The complete symmetric func-
tion hi{x} is the coefficient of ki in the power series expansion

N∏

i=1

1

1− xi k
=

∞∑

i=0

hi{x} ki (71)

For example, h0{x} = 1, h1(x1, x2, x3)= x1+x2+x3, h2(x1, x2)= x2
1 +x1x2+x2

2 ,
and hi{x} = 0 for i < 0.

7.3 Useful Identities for hi{x}
From (71), it is straightforward to show that

hi{x} = hi {̂xm} + xmhi−1{x} (72)

Then from (72) one obtains

(xm − xn)hi−1{x} = hi {̂xn} − hi {̂xm} (73)

(xm − xn)hi{x} = xmhi {̂xn} − xnhi {̂xm} (74)

7.4 Discrete Derivatives

The discrete derivative Δmhi{x} of hi{x} with respect to any one variable xm ∈ {x}
is defined using (72) as

Δmhi{x} = hi{x} − hi {̂xm}
xm

= hi−1{x} (75)

Note that the effect of applying Δm to hi{x} is a complete symmetric function
hi−1{x} of degree i − 1 in the same set of variables {x}.

7.5 The Discrete KP Hierarchy

Discrete KP is an infinite hierarchy of integrable partial difference equations in an
infinite set of continuous Miwa variables {x}, where time evolution is obtained
by changing the multiplicities {m} of these variables. In this work, we are inter-
ested in the situation where the total number of continuous Miwa variables is fi-
nite, which corresponds to setting to zero all continuous Miwa variables apart from
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{x1, . . . , xN }. In this case, the discrete KP hierarchy can be written in bilinear form
as the n × n determinant equations

det

⎛

⎜⎜⎜⎝

1 x1 · · · xn−2
1 xn−2

1 τ+1{x}τ−1{x}
1 x2 · · · xn−2

2 xn−2
2 τ+2{x}τ−2{x}

...
...

...
...

...

1 xn · · · xn−2
n xn−2

n τ+n{x}τ−n{x}

⎞

⎟⎟⎟⎠= 0 (76)

where 3≤ n≤N , and

τ+i{x} = τ
{
x
(m1)
1 , . . . , x

(mi+1)
i , . . . , x

(mN)
N

}

τ−i{x} = τ
{
x
(m1+1)
1 , . . . , x

(mi)
i , . . . , x

(mN+1)
N

} (77)

In other words, if τ {x} has mi copies of the variable xi , then τ+i{x} has mi + 1
copies of xi and the multiplicities of all other variables remain the same, while
τ−i{x} has one more copy of each variable except xi . Equivalently, one can use the
simpler notation

τ+i{x} = τ
{
m1, . . . , (mi + 1), . . . ,mN

}
(78)

τ−i{x} = τ
{
(m1 + 1), . . . ,mi, . . . , (mN + 1)

}

The simplest discrete KP bilinear difference equation, in the notation of (78), is

xi(xj − xk)τ {mi + 1,mj ,mk}τ {mi,mj + 1,mk + 1}
+ xj (xk − xi)τ {mi,mj + 1,mk}τ {mi + 1,mj ,mk + 1}
+ xk(xi − xj )τ {mi,mj ,mk + 1}τ {mi + 1,mj + 1,mk} = 0 (79)

where {xi, xj , xk} ∈ {x} and {mi,mj ,mk} ∈ {m} are any two (corresponding) triples
in the sets of continuous and discrete (integral valued) Miwa variables. Equa-
tion (79) is the discrete analogue of the KP equation in continuous time variables.

7.6 Casoratian Matrices and Determinants

A Casoratian matrix Ω of the type that appears in this paper is such that its matrix
elements ωij satisfy

ωi,j+1{x} =Δmωij {x} (80)

where the discrete derivative Δm is taken with respect to any one variable xm ∈ {x}
(it is redundant to specify which variable, since ωij {x} is symmetric in {x}). From
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the definition of the discrete derivative Δm, it is clear that the entries of Casoratian
matrices satisfy

ωij

{
x1, . . . , x

(2)
m , . . . , xN

}

= ωij {x1, . . . , xN } + xmωi,j+1
{
x1, . . . , x

(2)
m , . . . , xN

}
(81)

which, in turn, gives rise to the identity

(xr − xs)ωij

{
x1, . . . , x

(2)
r , . . . , x(2)

s , . . . xN
}

= xrωij

{
x1, . . . , x

(2)
r , . . . , xN

}− xs ωij

{
x1, . . . , x

(2)
s , . . . , xN

}
(82)

If Ω is a Casoratian matrix, then detΩ is a Casoratian determinant. Casoratian
determinants are discrete analogues of Wronskian determinants.

7.7 Notation for Column Vectors with Elements ωij

We need the column vector

ωj =

⎛

⎜⎜⎜⎜⎝

ω1j {x(m1)
1 , . . . , x

(mN)
N }

ω2j {x(m1)
1 , . . . , x

(mN)
N }

...

ωNj {x(m1)
1 , . . . , x

(mN)
N }

⎞

⎟⎟⎟⎟⎠
(83)

and write

ω
[k1,...,kn]
j =

⎛

⎜⎜⎜⎜⎜⎝

ω1j {x(m1)
1 , . . . , x

(mk1+1)
k1

, . . . , x
(mkn+1)
kn

, . . . , x
(mN)
N }

ω2j {x(m1)
1 , . . . , x

(mk1+1)
k1

, . . . , x
(mkn+1)
kn

, . . . , x
(mN)
N }

...

ωNj {x(m1)
1 , . . . , x

(mk1+1)
k1

, . . . , x
(mkn+1)
kn

, . . . , x
(mN)
N }

⎞

⎟⎟⎟⎟⎟⎠
(84)

for the corresponding column vector where the multiplicities of the variables
xk1, . . . , xkn are increased by 1.

7.8 Notation for Determinants with Elements ωij

We also need the determinant

τ = det(ω1 ω2 · · · ωN)= |ω1 ω2 · · · ωN | (85)
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and the notation

τ [k1,...,kn] = ∣∣ω[k1,...,kn]
1 ω

[k1,...,kn]
2 · · · ω

[k1,...,kn]
N

∣∣ (86)

for the determinant with shifted multiplicities.

7.9 Identities Satisfied by Casoratian Determinants

Two identities, which are needed in the sequel, are

xn−2
1 τ [1] = ∣∣ω1 ω2 · · · ωN−1 ω

[1]
N−n+2

∣∣ (87)
∏

1≤r<s≤n

(xr − xs)τ
[1,...,n]

= ∣∣ω1 . . . ωN−n ω
[n]
N−n+1 ω

[n−1]
N−n+1 . . . ω

[1]
N−n+1

∣∣ (88)

These identities may be proved by using the (81) and (82) to perform column op-
erations in the determinant expressions for τ [1] and τ [1,...,n]. To keep the exposition
concise we do not present these proofs, but full details can be found in [47].

7.10 Casoratians Are Discrete KP τ -Functions

Following [48], consider the 2N × 2N determinant

det

(
ω1 · · · ωN−1 ω

[1]
N−n+2 01 · · · 0N−n+1 ω

[n]
N−n+2 · · ·ω[2]N−n+2

01 · · · 0N−1 ω
[1]
N−n+2 ω1 · · · ωN−n+1 ω

[n]
N−n+2 · · ·ω[2]N−n+2

)

= 0 (89)

which is identically zero. For notational clarity, we have used subscripts to label the
position of columns of zeros. Performing a Laplace expansion of the left hand side
of (89) in N × N minors along the top N × 2N block, we obtain

n∑

k=1

(−)k−1
∣∣ω1 · · ·ωN−1ω

[k]
N−n+2

∣∣

× ∣∣ω1 · · ·ωN−n+1ω
[n]
N−n+2 · · ·ω[k+1]

N−n+2ω
[k−1]
N−n+2 · · ·ω[1]N−n+2

∣∣= 0 (90)

By virtue of (87) and (88), (90) becomes

n∑

k=1

(−)k−1xn−2
k τ [k]

∏

1≤r<s≤n
r,s 	=k

(xr − xs)τ
[1,...k̂...,n] = 0 (91)



Slavnov Determinants, Yang–Mills, and KP 127

Using the Vandermonde determinant identity

det

⎛

⎜⎜⎜⎜⎜⎜⎝

1 x1 · · · xn−2
1

...
...

...

〈1 xk · · · xn−2
k 〉

...
...

...

1 xn · · · xn−2
n

⎞

⎟⎟⎟⎟⎟⎟⎠
=

∏

1≤r<s≤n
r,s 	=k

(xr − xs) (92)

with 〈1 xk · · · xn−2
k 〉 denoting the omission of the k-th row of the matrix, we rec-

ognize (91) as the cofactor expansion of the determinant in (76) along its last col-
umn. Hence we conclude that Casoratian determinants satisfy the bilinear difference
equations of discrete KP.

7.11 Change of Variables

To interpret the Slavnov determinant (45) as a τ -function of discrete KP in the sense
described above, it is necessary to adopt a change of variables as follows

{
e−2vi , e2uβi , e2zi , e2η}→{xi, yi, zi , q} (93)

In other words, our new variables (of which {x1, . . . , xN } end up being the contin-
uous Miwa variables of discrete KP) are expressed as exponentials of the original
variables. Furthermore, we consider a new normalization of the scalar product, given
by

S[L,N,N]

= eN
2η

N∏

i=1

e(L−1)(uβi
−vi )

L∏

i=1

e2Nzi

N∏

j=1

L∏

k=1

[vj − zk][uβj
− zk]S[L,N,N]

(94)

Applying this normalization to (45), performing trivial rearrangements within the
determinant and making the change of variables as prescribed by (93), we obtain

S[L,N,N] = (q − 1)N
∏N

i=1
∏L

j=1(yi − zj )∏
1≤i<j≤N(xi − xj )(yi − yj )

× det

(
e−2iθ qN−1∏N

k 	=i (1− xj
yk
q
)
∏L

k=1(1− xj zk)

1− xjyi

− q
L
2
∏N

k 	=i (1− qxjyk)
∏L

k=1(1− xj
zk
q
)

1− xjyi

)

1≤i,j≤N

(95)
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Our goal is to show that S[L,N,N] has the form of a Casoratian determinant, where
the discrete derivative is taken with respect to the variables {x1, . . . , xN }.

7.12 Removing the Pole in the Slavnov Scalar Product

For all 1≤ i ≤N , define the function γi as

γi = e−2iθ qN−1
N∏

j 	=i

(
1− yj

qyi

) L∏

j=1

(
1− zj

yi

)

− q
L
2

N∏

j 	=i

(
1− qyj

yi

) L∏

j=1

(
1− zj

qyi

)
(96)

These functions provide a convenient way of expressing the Bethe equations (35)
under the change of variables (93 ), namely

γi = 0, for all 1≤ i ≤N. (97)

Recalling that these equations are assumed to apply to the variables {y1, . . . , yN },
we see that the pole at xj = 1/yi in the determinant of (95) can be removed. We omit
the details here as they are mechanical, and state only the result of this calculation,
which reads

S[L,N,N]

= (q − 1)N
∏N

i=1
∏L

j=1(yi − zj )∏
1≤i<j≤N(xi − xj )(yi − yj )

det

(
L+N−2∑

k=0

[
yk
i γi
]
+x

k
j

)

1≤i,j≤N

(98)

where [yk
i γi]+ denotes all terms in the Laurent expansion of yk

i γi which have non-
negative degree in yi .

7.13 The Slavnov Scalar Product is a Discrete KP τ -Function

Using identities (72) and (73) to perform elementary column operations in the de-
terminant of (98), it is possible to remove the Vandermonde

∏
1≤i<j≤N(xi − xj )

from the denominator of this equation. This procedure is directly analogous to the
proof of the Jacobi-Trudi identity for Schur functions [49]. The result obtained is

S[L,N,N]

= (q − 1)N
∏N

i=1
∏L

j=1(yi − zj )∏
1≤i<j≤N(yj − yi)

det

(
L+N−2∑

k=0

[
yk
i γi
]
+hk−j+1{x}

)

1≤i,j≤N

(99)
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Up to an overall multiplicative factor which does not depend on the variables {x},
the normalized scalar product S[L,N,N] is a determinant of the form detΩ , where
the matrix Ω has entries ωij which satisfy

ωi,j+1 =Δmωi,j , ωi,1 =
L+N−2∑

k=0

[
yk
i γi
]
+hk{x} (100)

Hence S[L,N,N] has the form of a Casoratian determinant, making it a discrete
KP τ -function in the variables {x} = {x1, . . . , xN }.

7.14 Restrictions of S[L,N1,N1]
Similarly to (94), we define a new normalization of the restricted scalar product
S[L,N1,N2] as follows

S[L,N1,N2] = eN
2
1 η

N1∏

i=1

e(L−1)uβi

N2∏

i=1

e−(L−1)vi
L∏

i=1

e(N1+N2)zi

×
N2∏

j=1

L∏

k=1

[vj − zk]
N1∏

j=1

L∏

k=1

[uβj
− zk]S[L,N1,N2] (101)

Normalizing both sides of (46) using (94) and (101), and working in terms of the
variables introduced by (93), we obtain the result

S[L,N1,N1]| xN1=1/z1

...
x(N2+1)=1/zN3

= (z1 . . . zN3)
1/2

N3∏

i=1

L∏

j=1

(
q1/2 − q−1/2zj /zi

)
S[L,N1,N2] (102)

Hence the function S[L,N1,N2] is (up to an overall multiplicative factor) a restric-
tion of S[L,N1,N1], obtained by setting the variables xN1, . . . , xN2+1 to the values
1/z1, . . . ,1/zN3 . Since S[L,N1,N1] is a discrete KP τ -function in the variables
{x1, . . . , xN1}, it is clear that S[L,N1,N2] is also a τ -function in the unrestricted set
of variables {x1, . . . , xN2}.

8 Summary and Comments

Following [29], we obtained determinant expressions for two types of structure
constants. 1. Structure constants of non-extremal 3-point functions of single-trace
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non-BPS operators in the scalar sector of SYM4 and two close variations on it (an
Abelian orbifolding of SYM4 and a real-β-deformation of it. The operators involved
map to states in closed XXX spin- 1

2 chains, that are periodic in the case of SYM4,
and twisted in the other two cases. 2. Structure constants of extremal 3-point func-
tions of two non-BPS and one BPS single-trace operators in (not necessarily scalar,
but spin-zero) sectors of pure gauge SYM2, SYM1 and QCD. The operators in-
volved map to states in closed periodic XXZ spin- 1

2 chains, with different values
of the anisotropy parameter, as identified in [7, 39]. One of the operators must be
BPS-like.

Our expressions are basically special cases of Slavnov’s determinant for the
scalar product of a Bethe eigenstate and a generic state in a (generally twisted)
closed XXZ spin chain. Finally, following [47], we showed that all these deter-
minants are discrete KP τ -functions, in the sense that they obey the Hirota-Miwa
equations.

The study of 3-point functions is a continuing activity. In [52], a systematic study,
using perturbation theory, of 3-point functions in planar SYM4 at 1-loop level, in-
volving scalar field operators up to length 5 is reported on. In [53, 54], quantum
corrections to 3-point functions of the very same type studied in this work planar
SYM4 are studied using integrability. At 1-loop level, new algebraic structures are
found that govern all 2-loop corrections to the mixing of the operators as well as
automatically incorporate all 1-loop corrections to the tree-level computations.

In [55], operator product expansions of local single-trace operators composed of
self-dual components of the field strength tensor in planar QCD are considered. Us-
ing methods that extend those used in this work to spin-1 chains, a determinant ex-
pression for certain tree-level structure constants that appear in the operator product
expansion is obtained. More recently, in [56, 57], the classical limit of the determi-
nant form of the structure constants that appear in this work, was obtained.
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Monodromy of Partial KZ Functors for Rational
Cherednik Algebras

Iain G. Gordon and Maurizio Martino

Abstract We study the monodromy of the Bezrukavnikov-Etingof induction and
restriction functors for rational Cherednik algebras of type G(�,1, n). We show that
these produce an sl-categorification on the category O’s for these algebras, and that,
through the KZ-functor, it is compatible with a corresponding categorification on
cyclotomic Hecke algebra representations.

1 Introduction

Shan has proved that the categories Oc(Wn) for rational Cherednik algebras of type
Wn =W(G(�,1, n))=Sn� (μ�)

n with n varying, together with decompositions of
the parabolic induction and restriction functors of Bezrukavnikov-Etingof, provide
a categorification of an integrable s̃le Fock space representation F(m), [18]. The
parameters m ∈ Z

� and e ∈ N ∪ {∞} arise from the choice of parameters c for the
rational Cherednik algebra. This categorification gives rise to a crystal structure on
the set of irreducible rational Cherednik algebra representations that belong to cat-
egory Oc; it is isomorphic to the crystal introduced by Jimbo-Misra-Miwa-Okado,
[11].

Works of many authors, including Kleshchev, Brundan, Lascoux-Leclerc-
Thibon, Ariki, Grojnowski-Vazirani, Grojnowski and Chuang-Rouquier, show that
the categories Hq(Wn)-mod for Hecke algebras of type Wn with n varying, to-
gether with decompositions of the parabolic induction and restriction functors, pro-
vide a categorification of an irreducible integrable s̃le-representation L(Λ), [6]. The
weight Λ arises from the choice of parameters q for the Hecke algebra. This gives
rise to a crystal structure on the set of irreducible Hecke algebra representations.
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The Fock space is substantially more interesting than the representation L(Λ).
It is not irreducible, and in fact has an infinite number of non-zero isotypic compo-
nents. This reducibility reveals itself through distinct canonical bases one can define
on F(m), each of which produces a corresponding crystal. Nonetheless for each
n ∈ N there is an exact functor KZn :Oc(Wn)→Hq(Wn)-mod, [10], intertwining
the parabolic induction and restriction functors for Cherednik algebras and Hecke
algebras and which produces a compatibility between the corresponding crystals:
the component of the Cherednik crystal containing the irreducible representation of
W0 = {1} is isomorphic to the Hecke crystal.

In this paper we give another construction of a decomposition of the parabolic
induction and restriction functors for the rational Cherednik algebra of type an ar-
bitrary complex reflection group. Our construction uses the monodromy of these
functors. Together with an appropriate transitivity result for restriction, we explain
how these give rise to an ˜sle-categorification and crystal structure on F(m) via Oc.
The structure of the proof of these last claims is as in [18]. We also show via a ho-
motopy calculation that the decomposition we obtain is naturally isomorphic to the
decomposition introduced in [18].

The only small novelty in our approach is that we do not make use of the double
centralizer property of the KZ-functor. It is a fundamental and fruitful technique
of [18] to use this property to extend results systematically from Hecke algebras
to Cherednik algebras, obtaining in this way definitive results. Optimistically, how-
ever, we hope that using the monodromy of the induction and restriction functors
alone may be helpful towards generalizations, for instance to Cherednik algebras of
varieties with a finite group action, where less is known about the corresponding
KZ-functor and where one may imagine branching rules for affine type B and D

appear, amongst other things.
Our results were proved in the second half of 2008, and announced by the first

author at the conference “Algebraic Lie Structures with Origins in Physics” at the
Isaac Newton Institute in March 2009. It is important to record that although we
mentioned then that we knew biadjointness of parabolic restriction and induction,
our proof for that turned out to be incomplete. This is one of the most useful results
in [18]; it is also proved by Losev without use of the KZ-functor, [13]. We use this
result here, although it is not needed to obtain the crystal structure. Furthermore
we want to say that the presentation of [18] has helped to simplify several of our
arguments significantly.

The outline of the paper is as follows. We recall the restriction and induction
functors in Sect. 2, in both the algebraic and holomorphic settings. In Sect. 3 we
study the monodromy actions on restrictions of modules. Finally in Sect. 4 we spe-
cialize to the Wn case to define i-restriction and i-restriction, and to explain the
categorification that then arises. We also check that this does indeed match up with
Shan’s original results.
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2 Definitions and Notation

2.1 Rational Cherednik Algebras

Let h be a finite dimensional vector space over C and W < GL(h) be a finite sub-
group generated by complex reflections. Let S be the set of complex reflections in
W and A be the corresponding set of reflecting hyperplanes. For each s ∈ S , let
Hs = ker(αs) denote the reflecting hyperplane of s, and define α∨s ∈ h to be an el-
ement such that h = Hs ⊕ Cα∨s is the s-stable decomposition of h, normalized by
〈αs,α

∨
s 〉 = 2.

Let c : S → C be constant on W -conjugacy classes. The rational Cherednik al-
gebra attached to W with parameter c is the quotient Hc(W,h) of T (h⊕ h∗)�W ,
the smash product of CW and the tensor algebra of h⊕ h∗, by the relations

[
x, x′

]= 0,
[
y, y′

]= 0, [y, x] = 〈x, y〉 −
∑

s∈S
cs〈αs, y〉

〈
x,α∨s

〉
s,

for all x, x′ ∈ h∗, y, y′ ∈ h, [8, (1.15)].
There is a faithful representation of Hc(W,h) on C[h] where h∗ and W act nat-

urally, and each y ∈ h acts via the Dunkl operator

Dy := ∂y +
∑

s∈S

2cs
1− deth∗(s)

αs(y)

αs

(s − 1)

where ∂y is the partial derivative in the direction of y, [8, §4]. Let {xi} be a basis of
h∗ and let {yi} be the dual basis. Then

eu=
∑

i

xiyi + dim(h)

2
−
∑

s∈S

2cs
1− deth∗(s)

s

is an analogue of the Euler element in Hc(W,h). We have

[eu, x] = x, [eu, y] = −y, [eu,w] = 0,

for all x ∈ h∗, y ∈ h and w ∈W .

2.2 Centralizer Algebras and the Isomorphism of
Bezrukavnikov-Etingof

Let b ∈ h and Wb ⊂W the stabilizer of b, and let cb denote the restriction of the
function c to S ∩Wb . We write C[h]∧b for the completion of C[h] at b in h, and
C[h]∧[b] for the completion of C[h] at the W -orbit of b in h. For any C[h]-module
M let M∧b =C[h]∧b ⊗C[h] M and M∧[b] =C[h]∧[b] ⊗C[h] M .
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The completion Hc(W,h)∧[b] can be identified with the subalgebra of
EndC(C[h]∧[b]) generated by C[h]∧[b] , the Dunkl operators Dy for y ∈ h, and the
group W . Let P = FunWb

(W,Hcb(Wb,h)
∧b ) and Z(W,Wb,Hcb(Wb,h)

∧b ) be the
ring of endomorphisms of the right Hcb(Wb,h)

∧b -module P .

Theorem 1 ([3] Theorem 3.2) For any b ∈ h there is an isomorphism of algebras

Θb :Hc(W,h)∧[b] −→ Z
(
W,Wb,Hcb(Wb,h)

∧b
)

defined as follows: for f ∈ P , x ∈ h∗, y ∈ h, u,w ∈W ,
(
Θb(u)f

)
(w) = f (wu),

(
Θb(x)f

)
(w) = w(x)f (w),

(
Θb(y)f

)
(w) = w(y)f (w)+

∑

s∈S\Wb

2cs
1− deth∗(s)

αs(wy)

xαs

(
f (sw)− f (w)

)
.

Thus we can identify Hc(W,h)∧[b] -modules with Z(W,Wb,Hcb(Wb,h)
∧b )-

modules. A choice of decomposition of algebras C[h]∧[b] ∼=⊕
p∈WbC[h]∧p pro-

duces a non-canonical isomorphism of algebras

Φ :Z(W,Wb,Hcb(Wb,h)
∧b
)→Mat|W/Wb|

(
Hcb(Wb,h)

∧b
)
.

Let xb ∈ C[h]∧[b] be the idempotent corresponding to 1 under the inclusion
C[h]∧b ↪→ C[h]∧[b] . Then we can identify Hcb(Wb,h)

∧b with xbHc(W,h)∧[b]xb . If
we denote by Oc(W,h)∧[b] the category of Hc(W,h)∧[b] -modules that are finitely
generated over C[h]∧[b] , and similarly for Ocb (Wb,h)

∧b , then there are quasi-inverse
equivalences

J :Ocb (Wb,h)
∧b →Oc(W,h)∧[b], M �→Hc(W,h)∧[b]xb ⊗Hcb

(Wb,h)
∧b M,

and

R :Oc(W,h)∧[b] →Ocb (Wb,h)
∧b , N �→ xbN.

2.3 Category O and Parabolic Restriction and Induction

The standard reference for material on category O is [10]. Category Oc(W,h)

is the full subcategory of the category of Hc(W,h)-modules consisting of ob-
jects that are finitely generated as C[h]-modules and h-locally nilpotent. A module
M ∈ O is h-locally nilpotent if and only if it is eu-locally finite, [3]. The cate-
gory Oc(W,h) is a highest weight category. Its standard modules are parametrized
by Irr(W), the irreducible complex representations of W : for any λ ∈ Irr(W) set
Δ(λ)=Hc(W,h)⊗C[h∗]�CW λ where h⊂C[h∗] acts by zero on λ. We denote the
irreducible head of Δ(λ) by L(λ).
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Parabolic restriction and induction functors were defined in [3, §2.3]. Let b ∈ h

with stabilizer Wb and set hb = h/hWb . There is an adjoint pair of exact functors
((·)∧[b] ,Eb) defined by

(·)∧[b] :Oc(W,h)→Oc(W,h)∧[b], M �→M∧[b],

and

Eb :Oc(W,h)∧[b] →Oc(W,h), N �→N ln,

where N ln ⊂N denotes the locally nilpotent part of N under the action of h. Con-
sider also

E :Oc(Wb,h)
∧b →Oc(Wb,h), N �→Neu,

where Neu ⊂N denotes the locally finite part of N under the action of eu.
There is an equivalence of categories

ζ :Ocb (Wb,h)→Ocb (Wb,hb), M �→ {
v ∈M : yv = 0 for all y ∈ h

Wb
}

with quasi-inverse

ζ−1 :Ocb (Wb,hb)→Ocb (Wb,h), N �→N ⊗C
[
h
Wb
]
,

where C[hWb ] is the polynomial representation of the ring of polynomial differential
operators Dpol(h

Wb).
The parabolic restriction and induction functors are then defined as follows, [3,

§3.5]:

Resb :Oc(W,h)→Ocb (Wb,hb), M �→ ζ ◦E ◦R(M∧[b]
)
,

Indb :Ocb (Wb,hb)→Oc(W,h), N �→Eb ◦ J (ζ−1(N)
∧b)

.

By [3, Theorem 3.10] Indb is right adjoint to Resb .

2.4 Basechange

Let S denote the formal power series ring C[[cs − cs]]s∈S , where the cs denote
indeterminates such that cs = cs′ if s and s′ are conjugate in W . We denote by m

the maximal ideal of S and let K be the quotient field of S. The rational Cherednik
algebras over these base rings, defined at the formal parameters cs , are denoted by
HS(W,h) and HK(W,h) respectively.

The definition of category O makes sense over K , and is denoted OK(W,h).
This is a semisimple category whose simple objects are given by the standard mod-
ules ΔK(λ) for λ ∈ Irr(W). We can also construct standard modules over S, ΔS(λ),
and we define OΔ

S (W,h) to be the full subcategory of finitely generated HS(W,h)-
modules that are free as S[h]-modules. This is motivated by [10, Proposition 2.21]
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which states that the objects of OΔ
c (W,h), the full subcategory of Oc(W,h) consist-

ing of modules with filtrations by standard modules, are precisely those for which
the action of C[h] is free.

All of the preceding constructions are well-defined over S and K . Thus we can
define restriction functors Resb,S and Resb,K .

Lemma 1 The following diagram commutes:

OΔ
c (W,h)

Resb

OΔ
S (W,h)

Resb,S

OK(W,h)

Resb,K

OΔ
cb
(Wb,hb) OΔ

S (Wb,hb) OK(Wb,hb),

(1)

where the arrows to the left denote − ⊗S S/m and arrows to the right denote
−⊗S K .

Proof Let ZS = Z(W,Wb,HS(Wb,h)
∧b ) and ZK = Z(W,Wb,HK(Wb,h)

∧b ).
There is a commutative diagram of homomorphisms:

Hc(W,h)∧[b]

Θ

HS(W,h)∧[b]

ΘS

HK(W,h)∧[b]

ΘK

Z ZS ZK

where the horizontal arrows denote the homomorphisms corresponding to the natu-
ral maps S→ S/m and S→K .

Let M ∈ OΔ
S (W,h). We claim that the idempotent xb lifts uniquely from Z

to ZS . Indeed, the isomorphism Φ is derived from a choice of decomposition
C[h]∧[b] ∼= ∏

p∈W ·bC[h]∧p . Let n ⊂ C[h] denote the ideal of functions vanish-
ing on W · b. Then by the unique lifting property for complete rings we can lift
(xb)n uniquely to S[h]/(n)n along the homomorphism S[h]/(n)n → C[h]/(n)n,
where (xb)n denotes the image of xb in C[h]∧[b]/(n)n. Therefore, xb lifts uniquely
to S[h]∧[b] . The claim now follows. As a consequence of this lifting, we have
RS(M

∧[b])⊗S S/m∼=R(M∧[b] ⊗S S/m).
We show that the left hand square of (1) commutes by establishing that

(
ES ◦RS

(
M∧[b]

))⊗S S/m∼=E ◦R(M∧[b]
)
.

The module N = RS(M
∧[b]) is a finitely generated S[h]∧[b] -module. Let m be the

ideal of positive degree formal power series, and let ˜ denote the completion with
respect to m. By the proof of [3, Theorem 2.3], which is valid over S, we have

ẼS(N)=N . In particular, there exists a set n1, . . . , nl ∈N consisting of generalized
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eu-eigenvectors that generate N as an S[h]∧[b] -module. Let us denote by ni the
image of ni in N ⊗S S/m. By [3, Theorem 2.3] again, ES(N) = S[h]n1 + · · · +
S[h]nl and so ES(N)⊗S S/m= C[h]n1 + · · · +C[h]nl . On the other hand, by the
previous paragraph, N ⊗S S/m = C[h]∧[b]n1 + · · · + C[h]∧[b]nl , and so E(N ⊗S

S/m)=C[h]n1 + · · · +C[h]nl =ES(N)⊗S C.
It remains to show that the right-hand square of (1) commutes. It is clear that

(
RS

(
M∧[b]

))⊗S K ∼=RK

(
M∧[b]

)
.

By the arguments above, N = RS(M
∧[b]) is generated by a finite set of generalized

eu-eigenvectors. Therefore {n ∈N ⊗S K : n is locally finite for eu} is the image of
the set of eu-finite vectors in N by the functor −⊗S K . �

2.5 Holomorphic Version

Let X be a complex manifold and define KX to be the sheaf of holomorphic func-
tions on X. For x ∈ X, we denote by KX,x the germs of holomorphic functions
around x. We also denote by K̂X,x the algebra of formal series in local coordinates
around x. There is an injective algebra homomorphism KX,x → K̂X,x , sending a
germ to its Maclaurin series around x. Given a sheaf M of KX-modules, we denote
its stalk at x by Mx and define M∧x to be K̂X,x ⊗KX,x

Mx .
We now consider h with the complex topology. Let U ⊆ h be a connected W -

stable open subset containing b. Define Hc(W)|U to be the sheaf of algebras on
U/W whose sections at a W -invariant open subset V ⊆ U are the subalgebra of
EndC(KU(V )) generated by W , KU(V ) and the Dunkl operators Dy for y ∈ h. For
a W -stable open subset V ⊆U , let Hc(W,V )=Hc(W)|U(V ).

Let W ′ ⊆W be a subgroup, not necessarily parabolic. Let U ⊆ h be an W ′-stable
open subset such that

w ·U ∩U = ∅, for w ∈W \W ′.

Thus W · U =⊔w∈W/W ′ w · U . Let c′ denote the restriction of c to S ∩W ′. For
each y ∈ h define Dunkl operators

D′
y := ∂y +

∑

s∈S∩W ′

2cs
1− deth∗(s)

αs(y)

αs

(s − 1). (2)

As above, we can define a sheaf of algebras on U/W ′, which we denote Hc′(W ′)|U .
The endomorphisms of the sheaf FunW ′(W,Hc′(W)|U) form a sheaf of algebras
Z(W,W ′,Hc′(W ′)|U).

Theorem 2 ([3]) Let W ′ and U be as above. Then there is an isomorphism of
sheaves of algebras

ΘU :Hc(W)|W ·U −→Z
(
W,W ′,Hc′

(
W ′)|U

)
,
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which is given as follows. Let f be a section of FunW ′(W,Hc(W)|W ·U), then

(
ΘU(u)f

)
(w) = f (wu),

(
ΘU(φ)f

)
(w) = (φw|V

)
f (w),

(
ΘU(y)f

)
(w) = w(y)f (w)+

∑

s∈S,s /∈W ′

2cs
1− deth∗(s)

αs(wy)

xαs

(
f (sw)− f (w)

)
,

where u,w ∈W , φ is a section of KW ·U and y ∈ h.

Let Oc(W,W · U) be the category of Hc(W)|W ·U -modules that are coherent as
KW ·U -modules. Letting 1U play the analogous role to the element xb defined in 2.2,
there are quasi-inverse equivalences

JU :Oc′
(
W ′,U

)→Oc(W,W ·U), M �→Hc(W)W ·U1U ⊗Hc′ (W ′)U M,

and

RU :Oc(W,W ·U)→Oc′
(
W ′,U

)
, N �→ 1UN . (3)

Let M be a sheaf on V ⊆ h, where V is an open set containing the orbit W · b.
Then we can define M∧[b] =⊕p∈W ·bM∧p .

Lemma 2 Let M ∈Oc(W,h) and set M=Kh ⊗C[h] M . Let U ⊂ h and W ′ ⊆W

be as above, and assume that b ∈ U has stabilizer Wb contained in W ′. Then there
are natural isomorphisms of Hcb(Wb,h)

∧b -modules:

R
(
M∧[b]

)∼=R
(
(M|W ·U)∧[b]

)∼=R
((
RU(M|W ·U)

)∧
W ′ ·b).

Proof The first isomorphism is clear since M∧[b] ∼= (M|W ·U)∧[b] . For the second
isomorphism we can find a connected Wb-stable open subset V of U containing
b such that w · V ∩ V = ∅ for w ∈ W ′ \ Wb. Let N = RU(M|W ·U). We have
R(N ∧

W ′·b )∼=R((N |W ′·V )∧W ′ ·b ). There is a decomposition

N |W ′·V ∼=
⊕

w∈W ′/Wb

N |w·V ,

such that RV (N |W ′·V ) is the projection onto N |V , and we have a commutative
diagram

⊕
w∈W ′/Wb

N ∧wb

·xb ⊕
w∈W ′/Wb

N ∧wb

⊕
w∈W ′/Wb

N |w·V
·1V

⊕
w∈W ′/Wb

N |w·V
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where the vertical arrows denote the canonical morphisms into completions. Thus
R((N |W ′·V )∧W ′ ·b ) ∼= (RV (N |W ′·V ))∧b . We have 1V 1U = 1V on W · V , so that
RV (N |W ′·V ) ∼= RV (M|W ·V ). Hence, using for the second isomorphism below the
same commutative diagram logic, we deduce

R
(
(M|W ·U)∧[b]

) ∼= R
(
(M|W ·V )∧[b]

)

∼= (RV (M|W ·V )
)∧b

∼= (RV (N |W ′·V )
)∧b

∼= R
(
N ∧

W ′ ·b
)
,

as required. �

We define

Resb,U :Oc(W,h)→Ocb (Wb,hb), M �→ ζ ◦E ◦R((RU(M|W ·U)
)∧

W ′ ·b).

It then follows from Lemma 2 that

Corollary 1 The functors Resb,U and Resb are naturally isomorphic.

Now note that the module RU(M|W ·U) has an action of W ′, since U is W ′-stable.
Assume that W ′ normalizes Wb . For each w ∈W ′, there is a well-defined automor-
phism of Hcb(Wb,hb) given by a �→waw−1 for all a ∈Hcb(Wb,hb). Similarly, we
obtain an isomorphism xbHc(W,h)∧[b]xb ∼= xwbHc(W,h)∧[b]xwb via conjugation.
There is a commutative diagram of algebra homomorphisms

xbHc(W,h)∧[b]xb
w(·)w−1

xwbHc(W,h)∧[b]xwb

Hcb(Wb,hb)
w(·)w−1

Hcb(Wb,hb)

where the vertical arrow denote inclusion maps.

Lemma 3 Let w ∈W ′ and let N ∈Oc(W,h)∧[b] . Then, as an Hcb(Wb,hb)-module,
xwbN is isomorphic to the twist of xbN by the automorphism w(·)w−1. In particu-
lar, if w centralizes Hcb(Wb,hb), then these modules are isomorphic.
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3 Monodromy Actions

3.1 Fundamental Groups

Let us fix throughout a W -invariant hermitian form (−,−) on h, and let ‖ · ‖ be
the associated hermitian product. Let b ∈ h, Wb ⊆W the stabilizer of b, and W ′ =
NW(Wb) be the normalizer of Wb in W . Let hWb the fixed point set and hb the
orthogonal complement to hWb in h. Note that the decomposition h = hWb ⊕ hb is
W ′-stable. If we wish to consider b as an element of hWb we will write it as b′, so
that b= (b′,0) ∈ hWb ⊕ hb .

Proposition 1 ([14]) There is a subgroup N ⊆W ′ such that N ∩Wb = 1 and W ′ =
Wb �N .

This proposition allows us to define C ⊆N to be the pointwise stabilizer of hb .
In particular C centralizes Wb.

Let Sb = S ∩Wb and Ab ⊆A denote the corresponding reflecting hyperplanes.
We define S ′ and A′ similarly, using W ′. Let

h
Wb
r = {x ∈ h :Wx =Wb}.

Let BC = π1(h
Wb
r /C,b′) and BN = π1(h

Wb
r /N,b′), where we abuse notation by

letting b′ denote the image of b′ ∈ hWb
r in the relevant orbit space. Since hWb

r /C→
hWb

r /N is a normal covering, we have an exact sequence

1 BC BN

β

N/C 1. (4)

Note that in the special case that b is generic, we have Wb = 1, N =W and BW

is the braid group attached to (W,h).
Let ε > 0 be a real number. Let X denote the open ball of radius ε around 0 in hb .

For any v ∈ hWb we let Bv(ε) denote the open ball in hWb with centre v and radius
ε. Take the annulus

Y =
⋃

v∈hWb ; ‖v‖=‖b′‖
Bv(ε),

and let Yr = Y ∩hWb
r . Set U =X×Yr. This open subset is W ′-stable, and we choose

ε small enough so that w ·U ∩U = ∅ for all w ∈W \W ′. In particular, U intersects
only the reflecting hyperplanes in Ab . Since Yr is homotopic to hWb

r and X is simply
connected we have

π1(U/N,b)∼= π1
(
h
Wb
r /N,b′

)= BN.
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3.2 Holomorphic Differential Operators

Given a complex manifold V , let DV denote the sheaf of holomorphic differential
operators on V .

Lemma 4 Keep the above notation. Let p1 : U → X and p2 : U → Yr be the
projections. The sheaf Hc′(W ′,h)|U contains subsheaves p−1

1 Hc′(Wb,hb)|X and

p−1
2 (DYr �N). Furthermore p−1

1 Hc′(Wb,hb)|X and p−1
2 (DYr) commute.

Proof Let V ⊆ U be an W ′-stable open subset. By our assumptions on Yr and X,
the functions 1

αs
for s ∈ S \Wb are well-defined on all of U . So Hc′(W ′,V ) contains

the operators

D′
y =Dy −

∑

s∈S,s /∈Wb

2cs
1− deth∗(s)

αs(y)

αs

(s − 1),

defined in (2) for all y ∈ h. The subalgebra generated by KX(p1(V )), Wb and D′
y

for y ∈ hb generate a copy of Hcb(Wb,p1(V )). Similarly, the algebra generated by
KYr(p2(V )), N and the D′

y = ∂y for y ∈ hWb yield a copy of DYr(p2(V ))�N . It is
straightforward to check that the final assertion holds. �

3.3 Monodromy

Let λ ∈ Irr(W), and let M = Δ(λ) be the corresponding standard module. In the
notation of (3), we set N = RU(M|W ·U). By Lemma 4, the action of ∂y , y ∈ hWb ,
on N (U) defines an N -equivariant connection on Yr with parameters in KX(X), see
[19, §13] for information on linear differential equations with parameters.

Proposition 2 ([3], Proposition 3.20) The local system on Yr attached to N (U) is
given by the connection form

∑

s∈S\Wb

2cs
1− deth∗(s)

dαs

αs

(s − 1).

This is a connection with parameters in KX(X) on the trivial bundle on Yr taking
values in

⊕
ν∈Irr(Wb)

HomWb
(ν,λ↓Wb

).

We denote this connection by ∇λ, and for a pair (c,p) ∈C
|S/W | ×X we denote

its specialization to this point as ∇λ
c,p .

Let m = dimE. By [16], there exist functions φ1, . . . , φm, holomorphic on
C
|S/W | × X × Y ′, where Y ′ ⊂ Yr is an open ball containing b′, such that special-

ising to a point (c,p) ∈ C
|S/W | × X yields the horizontal sections of ∇λ

c,p in Y ′.
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Since the connection is N -equivariant, we can associate to each g ∈ BN a mon-
odromy matrix acting on the span of the φj . We call this gλ and its specialization
gλ
c,p .

Corollary 2 The stalk at b′ of the local system N∇λ
on Yr can be evaluated by

taking horizontal sections of ∇λ in either Nb′ or N ∧
b′ . In particular, we can identify

the completion of N∇λ

b′ at 0 ∈ hb with ζ(Resb(M))∧0 .

Proof By the proposition, the connection on ∇E
(c,p) has regular singularities at b′

for all (c,p). The equality of horizontal sections in the convergent or formal setting
is then well-known, see [15] for example. The second claim follows from Corol-
lary 1. �

Lemma 5 The elements w ∈ Wb, f ∈ K̂X,0 and D′
y for y ∈ hb act on (N∇λ

b′ )∧0 .

Let P denote any of these operators. These P commute with gλ via (gλ)−1Pgλ =
β(g)(P ) where β is defined in (4).

Proof By Lemma 4, any w ∈Wb , f ∈ K̂X,0 and D′
y , y ∈ hb , act on the completion

of Nb′ at 0 ∈ hb, and commute with the action of (π−1
2 DYr)b

∼= (DYr)b′ . So the
operators certainly act.

Recall that gλ is calculated as follows. We represent g by a path p from b′ to nb′
for some n ∈ N . Then we let Ap denote the analytic continuation operator along

p, a linear isomorphism Ap : N∇λ

b′ → N∇λ

nb′ . Then gλ : N∇λ

b′ → N∇λ

b′ is given by
n−1Ap .

Let vb′ ∈N
∇λ

(c,0)
b′ and P denote one of the operators w, f or D′

y as above. Unique-

ness of analytic continuation implies that Ap(Pvb′) = P(Apvb′) and so if Ap de-
notes the reverse path to Ap we have

(
gE
)−1

PgE(vb′) = Apn
(
Pn−1(Apvb′)

)

= (ApP
nAp

)
(vb′)

= Pnvb′

= β(g)(P )vb′ ,

as required. �

Using the short exact sequence (4) we define we define an action of BN on
Hc′(Wb,hb) via the quotient BN/BC .

Theorem 3 Let M ∈ Oc(W,h). Then there is an action of Hcb(Wb,hb) � BN on
Resb(M). The BN -action is functorial.



Monodromy of Partial KZ Functors for Rational Cherednik Algebras 145

Proof Let us first suppose that M =Δ(λ) for some λ ∈ Irr(W). By Lemma 5 and
Corollary 2, there is an action of Hcb(Wb,hb)

∧0 �BN on ζ(Resb(M))∧0 . Since (·)∧0

and ζ are equivalences of categories, we thus obtain an action of Hcb(Wb,hb)�BN

on Resb(M).
We use the argument from [10, §5.3] to extend this to any M ∈Oc(W,h). By 3.3

and Lemma 1, we can extend our constructions to the base rings S and K introduced
in 2.4: there is an action of HS(Wb,hb)� SBN on Resb,S(ΔS(λ)), and similarly for
Resb,K(ΔK(λ)). These actions are compatible with the natural maps C� S ↪→K .
Let M ∈ OΔ

S (W,h). Since M ⊗S K embeds into a direct sum of standard mod-
ules, we establish the result for M by using Lemma 1. By [10, Corollary 2.7]
and basechange, the result holds for projective modules in Oc(W,h). By construc-
tion, for any morphism between projective modules P → Q, the resulting map
Resb(P )→ Resb(Q) is a map of BN -modules. But for any M ∈ Oc(W,h) there

is an exact sequence P1
f→ P0 →M → 0, where P0,P1 ∈Oc(W,h) are projective.

We deduce that Hcb(Wb,hb)�BN acts on Resb(M)∼= Resb(P0)/Im Resb(f ). The
functoriality also follows, completing the proof. �

We rephrase the statement of the theorem as the existence of an exact functor

ResWWb
:Oc(W,h)→ (

Ocb (Wb,hb)� Loc
(
h
Wb
r

))NW (Wb),

where the superscript NW(Wb) denotes the NW(Wb)-equivariant structure. This
equivariance is obtained by extending the N -action to NW(Wb)=Wb �N by using
the inner Wb action on Hcb(Wb,hb). The functor Resb is the composition of ResWWb

with the functor that forgets the local system on hWb
r and the equivariant structure.

3.4 Decomposition of Induction and Restriction

This extra structure allows us to decompose both Resb and Indb . Consider again
equivariant local systems on hWb

r as representations of BN and restrict them to BC .
Let P ∈O(W,h) be a projective generator, and let A= C[BC]/AnnBC

(Resb(P )),
a finite dimensional algebra which is the image of C[BC] in EndOc(W,h)(P ). Since
Resb is exact and P is a generator, the C[BC]-action on Resb(M) factors through
A for all M ∈ Oc(W,h). Let I denote a labelling set for the blocks of A and for
any i ∈ I let ei ∈ Z(A) be the corresponding primitive central idempotent of A. By
Theorem 3 we may consider ei ∈ End(Resb) and then we have

Resb(M)=
⊕

i∈I
Resib, where Resib := ei ◦Resb. (5)

As (Resb, Indb) is an adjoint pair, we may apply [6, §4.1.5] to see that there
exists corresponding adjoint pairs (Resib, Indi

b) for each i ∈ I and such that Indb =⊕
i∈I Indi

b .
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3.5 Transitivity

Let us take two parabolic subgroups W1 ≤W2. These produce decompositions h=
hW1⊕h1 = hW2⊕h2 and h2 = h

W1
2 ⊕h1, where h1 and h2 are the non-trivial isotypic

components of h with respect to the actions of W1 and W2 respectively. Note that
h1 ⊆ h2 and hW1 ⊇ hW2 . By taking W1-invariants we find hW1 = hW2 ⊕h

W1
2 . It is not

true that one of hW1
r and hW2

r × h
W1
2,r is contained in the other, but nevertheless we

may pick b1, b2 ∈ h such that b1 ∈ hW1
r and b2 ∈ hW2

r and b′1 = (b′2, b′′1) ∈ hW2×h
W1
2 .

Let NW(W1,W2)=NW(W1)∩NW(W2), which acts on hW1
r , hW2

r and h
W1
2,r . There

is a homomorphism

ιW1,W2 : π1
(
h
W2
r × h

W1
2,r /NW(W1,W2),

(
b′2, b′′1

))−→ π1
(
h
W1
r /NW(W1,W2), b

′
1

)
.

(6)
To construct this, note first that there is a free action of NW(W1,W2)/W1 on both
hW2

r × h
W1
2,r and hW1

r . Therefore it is enough to produce an NW(W1,W2)-equivariant
homomorphism from homotopy classes of paths in hW2

r × h
W1
2,r to homotopy classes

of paths in hW1
r . Given a path γ = (γ1, γ2) : [0,1] → hW2

r × h
W1
2,r , we may adjust γ2

sufficiently inside h
W1
2,r , depending on how close γ1 passes to the reflecting hyper-

planes in h that do not contain hW2 , to ensure that the image of γ belongs to hW1
r .

Inclusion then provides the homomorphism.

Theorem 4 There is a natural isomorphism of functors from O(W,h) to (O(W1,h1)

� Loc(hW1
2,r )� Loc(hW2

r ))NW (W1,W2),

ι∗W1,W2
◦ ↓NW (W1)

NW (W1,W2)
◦ResWW1

∼= ResW2
W1

� id◦ ↓NW (W2)
NW (W1,W2)

◦ResWW2
,

where ↓ denotes the restriction of equivariant structure to a subgroup.

Proof It is unpleasant to deal directly with the path manipulation appearing in the
construction of ιW1,W2 . To avoid this we work instead with an intermediate version
of Theorems 1 and 2 and the restriction functors. For b ∈ h with stabilizer Wb this
version takes place within a formal neighbourhood of W ·hWb

r in h. The space hWb
r is

an affine open algebraic subset of hWb given by the non-vanishing of the polynomial
π :=∏s∈S\Wb

αs . Set π =∏w∈W w ·π , a polynomial whose non-vanishing defines

W · hWb
r = {x ∈ h |Wx is conjugate to Wb}. We denote by Hc(W,h)

∧
[hWb

r ] the sub-

algebra of C-linear endomorphisms of C[h]∧[hWb
r ] := C[h]∧[hWb ] [π−1] generated by

C[h]∧[hWb
r ] , Dy for y ∈ h and w ∈W . There is then an isomorphism of algebras

Θb :Hc(W,h)
∧
[hWb

r ] −→ Z
(
W,Wb,Hcb(Wb,h)

∧
h
Wb
r
)
,

which is defined exactly as in Theorem 1. There is furthermore an isomorphism

Hcb(Wb,h)
∧
h
Wb
r ∼=Dpol(h

Wb
r )⊗Hcb(Wb,hb)

∧0 . The restriction functors are then de-
fined as usual, splitting the centralizer with an element we label by 1W

Wb
, then taking

locally-finite vectors with respect to eu ∈Hcb(Wb,h).
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Now we move onto the proof. Corresponding to the natural algebra homomor-
phisms

C[h]∧hW1
r = C

[
h
W1
r

]⊗C[[h1]]
→ C

[
h
W2
r

]⊗C
[[
h
W1
2

]][
α−1
s : s ∈W2 \W1

]⊗C[[h1]]
→ C

[
h
W2
r

]⊗C
[[
h
W1
2 × h1

]][
α−1
s : s ∈W2 \W1

]=C[h]∧hW2
r |

h
W1
2,r ×h1

we see that successive restriction to smaller formal neighbourhoods produces

1W
W2

(M
∧
[hW1

r ]) �→ 1W
W2

(M
∧
[hW2

r ])|
W2·(hW1

2,r ×h1)
. The space 1W

W1
(M

∧
[hW1

r ]) has a natural

D(hW1
r )-structure which extends to a D(hW2

r ) ⊗ D(h
W1
2,r )∧0 -structure on

1W2
W1

(1W
W2

(M
∧
[hW2

r ])|W
2·(hW1

2,r ×h1)
).

The natural inclusion
((

1W
W2

(
M

∧
[hW2

r ]
))eu2

)|
W2·(hW1

2,r ×h1)
→ ((

1W
W2

(
M

∧
[hW2

r ]
))|

W2·(hW1
2,r ×h1)

)eu2

is an isomorphism since the {αs}s∈W2 have positive eu2-weights. For y ∈ hW1
r ⊂ h2

we have that

∂y =Dy −
∑

s∈W2\W1

2cs
1− deth∗(s)

αs(y)

αs

(s − 1) ∈Hc2(W2,h2)
[
α−1
s : s ∈W2 \W1

]

so that there is an action of D(hW2
r )⊗D(h

W1
2,r ) on

((
1W
W2

(
M

∧
[hW2

tinyr]
))|

W2·(hW1
2,r ×h1)

)eu2 .

Completing at 0 ∈ h
W1
2 produces another action of D(hW2

r ) ⊗ D(h
W1
2,r )∧0 on

(1W
W2

(M
∧
[hW2

r ]))|
W2·(hW1

2,r ×h1)
.

A similar argument to [18, Lemma 2.2], using the version of the comparison
theorem over the formal neighbourhood of a subvariety due to Kashiwara-Schapira,
[12, Corollary 6.2], allows us to deduce that the monodromy representations of the
two above local systems on hW2

r × h
W1
2,r agree.

We then have a functorial morphism

1W
W1

(
M

∧
[hW1

r ]
)eu1 �→ 1W2

W1

(
1W
W2

(
M [hW2

r ])|
W2·(hW1

2,r ×h1)

)eu1

�→ 1W2
W1

((
1W
W2

(
M∧[h

W2
r ])|

W2·(hW1
2,r ×h1)

)eu2
)eu1

�→ 1W2
W1

((
1W
W2

(
M

∧
[hW2

r ]
)eu2

)|
W2·(hW1

2,r ×h1)

)eu1

�→ 1W2
W1

((
1W
W2

(
M

∧
[hW2

r ]
)eu2

)∧[hW1
2,r ]
)eu1 .
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This realizes the functor ι∗W1,W2
. Since the initial term is ResWW1

(M) and the final

term is ResW2
W1

(ResWW2
(M)), this completes the proof. �

4 Consequences for G(�,1,n)

4.1 The Groups G(�,1,n)

Fix � ∈N, and let Wn =W(G(�,1, n))= μn
� �Sn for any n ∈N, a complex reflec-

tion group with a Coxeter style presentation
〈
t, s1, . . . , sn−1 | s2

i = t� = 1, s1ts1t = ts1ts1, si t = tsi if i > 1,

sisi+1si = si+1sisi+1, sisj = sj si if |i − j |> 1
〉
.

The reflection representation hn = h of Wn is the vector space C
n = span{y1, . . . ,

yn}. With respect to the standard basis the si generate a copy of the symmet-
ric group acting by place permutation, and t acts by diag(η,1, . . . ,1), where
η = exp(2π

√−1/�). We write ti = (1, . . . ,1, η,1, . . . ,1) where η appears at the
ith coordinate.

When n > 1 there are � conjugacy classes of reflections, the set of conjugates of
the si and the set of conjugates of t r for 1 ≤ r ≤ � − 1; when n = 1 there are no
si and so only �− 1 classes. The parameters we choose for the rational Cherednik
algebra are

csi =−k and ctr =−1

2

(
1+

�∑

j=1

k(mj+1 −mj)η
−rj

)
for 1≤ r ≤ �− 1

where k ∈C, m= (m1, . . . ,m�) ∈ Z
� and we set m�+1 =m1.

We identify the irreducible representations Irr(Wn) of Wn with the set P�(n) of
�-multipartitions of n, [17, 6.1.1]. Set P� =⋃n≥0 P�(n). We write λ= (λ1, . . . , λ�)

for the multipartition and the corresponding representation and we will often iden-
tify λ with an �-tuple of Young diagrams. If a box p ∈ λ is in position (i, j) of the
Young diagram of λt we set β(p)= t , and define the residue as res(p)= j − i and
the m-shifted residue resm(p)= res(p)+mβ(p).

4.2 Induction and Restriction

Set bn = b= (0, . . . ,0, n). Then Wb =Wn−1, NW(Wn−1)=Wn−1×N where N =
〈tn〉 ∼= μ�. Clearly hb = {(a1, a2, . . . , an−1,0) : ai ∈C} and hWn−1

r = {(0, . . . ,0, an) :
0 	= an ∈C}. We have

ResWn

Wn−1
:Oc(Wn)→

(
Oc(Wn−1)� Loc

(
h
Wn−1
r

))NW (Wn−1).
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Let λ ∈ Irr(W). Recall from Proposition 2 that the local system on hWn−1
r

∼= C
×

attached to ResWWn−1
(Δ(λ)) arises from the N -equivariant connection

∑

s∈S\Wn−1

2cs
1− deth∗(s)

dαs

αs

(s − 1)

on HomWn−1(ν, λ↓Wn−1) where we run over all ν ∈ Irr(Wn−1).
There are two types of s ∈ S \Wn−1: (i n)tri t

−r
n for 1≤ i ≤ n− 1,0≤ r ≤ �− 1,

with αs = −ηryi + yn; t rn for 1 ≤ r ≤ � − 1 with αs = yn. Thus the above con-
nection can be written explicitly as the following μ�-equivariant connection on⊕

ν∈Irr(Wn−1)
HomWn−1(ν, λ↓Wn−1) over C×

−
n−1∑

i=1

�−1∑

r=0

k
dz

z

(
(i n)tri t

−r
n − 1

)−
�−1∑

r=1

1+∑�
j=1 k(mj+1 −mj)η

−rj

1− η−r

dz

z

(
t rn − 1

)
.

To calculate the monodromy of this connection we will apply the following result
which essentially appears in [4, Theorem 4.12]

Lemma 6 Let V be a trivial vector bundle over C×, equipped with a μ�-equivariant
structure, and take a μ�-equivariant connection on V of the form ω=∑�−1

r=0 αrεr
dz
z

,

where εr = 1
�

∑l−1
j=0 exp(−2π

√−1r)j tjn ∈ C[μ�]. Let Σ be the monodromy oper-
ator corresponding to the generator of π1(C

×, ·), an anticlockwise loop about the
origin. Then the part of the Σ corresponding to the term αrεrdz/z is given by mul-
tiplication by exp(2π

√−1(αr − r)/�).

The space M =HomWn−1(ν, λ↓Wn−1) is either zero or one-dimensional, with the
non-zero spaces occurring precisely when p is a box of λ such that ν = λ \ {p}.
Assume we are in this case. Then tn acts on M by multiplication by ηβ(p)−1. The
element

∑n−1
i=1

∑�−1
r=0(i n)t

r
i t
−r
n is the nth Jucys-Murphy element of C[Wn]: it acts

on M by multiplication by � · res(p). Therefore on M the coefficient of the connec-
tion is multiplication by k�(n− 1)− k�res(p)+ k�(m1 −mβ(p))+ β(p)− 1. Thus

by Lemma 6 the monodromy ΣΔ(λ) of the local system arising from ResWn

Wn−1
(Δ(λ))

satisfies the relation

∏

p

(
ΣΔ(λ) − q(resm(p)+1−n)−m1

)= 0,

where p runs over all removable boxes of λ and q = exp(−2π
√−1k).

Proposition 3 Let M ∈ Oc(Wn) and let ΣM denote the monodromy operator on
Resb(M) arising from the local system over hWn−1

r attached to ResWn

Wn−1
(M). The

eigenvalues of ΣM lie in {qi | i ∈ Z}.
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Proof By the calculation above we know that ΣΔ(λ) has eigenvalues in this set for
all λ ∈ Irr(Wn). Since Resb(L(λ)) is a quotient of Resb(Δ(λ)), the same is true for
any ΣL(λ) and so for any ΣM , as required. �

We can now decompose Resb as in (5). Let i be an integer. We define the func-
tor Resi (n) := πi ◦ Resb , where πi is projection on to the qi+1−n−m1 generalized
eigenspace of the monodromy operator Σ . We have a decomposition

Resb =
⊕

i∈Z/∼
Resi (n)

where i ∼ j if and only qi = qj .
Let Indi (n) denote the right adjoint of Resi (n).

4.3 s̃le-Categorification

We proceed to the theorem that has been proved by Shan in [18, Theorem 5.1] using
the KZ-functor and its double centralizer property. We will show in Proposition 4
our approach is identical to [18]. Nonetheless, we outline the result and its proof
here as it avoids using the double centralizer.

Recall the choice of parameters from 4.1: k ∈ C and m = (m1, . . . ,m�) ∈ Z
�.

Let e′ ∈ N ∪ {∞} be the multiplicative order of q = exp(−2π
√−1k) ∈ C

× and set
e= e′ if e′ 	= 1 and set e=∞ if e′ = 1. Let F(m) denote the Fock space with mul-
ticharge m, an integrable s̃le-representation, see for instance [11]. As a vector space
we have F(m)=⊕λ∈P�

Cλ; for i ∈ Z/eZ the corresponding Chevalley generators
act as

ei(λ)=
∑

|λ/μ|=1,resm(λ/μ)≡i

μ, fi(λ)=
∑

|μ/λ|=1,resm(μ/λ)≡i

μ;

finally ∂(λ) = −τ0λ where τ0 is the number of boxes in λ with m-shifted residue
divisible by e. The weight spaces of F(m) are F(m)τ for τ = (τ0, . . . , τe−1) ∈
Z≥0×Z/eZ where F(m)τ is spanned by the multipartitions having exactly τi boxes
with m-shifted residue equal to i for each i ∈ Z/eZ. Such elements have weight∑�

j=1 Λmj
−∑i∈Z/eZ τiαi where Λi is the ith fundamental weight of s̃le.

Let Oc(N)=⊕n≥0 Oc(Wn,hn). Set E=⊕n≥0 Resbn,F=⊕n≥0 Indbn :Oc(N)

→ Oc(N). Define X ∈ End(E) as the direct sum over n ≥ 0 of the operators
Σ ∈ π1(h

Wn−1
r /μ�, ·). By Theorem 4 we may identify E2 with the direct sum of the

restrictions Res
b̃n
:O(Wn,hn)→O(Wn−2,hn−2) where b̃n = (0, . . . ,0, n− 1, n) ∈

hn. Then h
W

b̃n
r = {(an−1, an) ∈ C

2 : an−1, an 	= 0 and an−1 	= ηjan for 0 ≤ j ≤
�− 1} and N(W

b̃n
)=W

b̃n
�W ′

2 where W ′
2 = 〈sn−1, tn−1, tn〉. Let T ∈ End(Res

b̃n
)

be the operator arising from the generator of monodromy in π1(h
W

b̃n
r /W ′

2, ·) at-

tached to the reflecting hyperplane an−1 = an in h
W

b̃n , [4, Appendix 1]. We may
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decompose Oc(N)=⊕τ Oc(N)τ where τ = (τ0, . . . , τe−1) and Oc(N)τ is the full
subcategory of Oc(W|τ |,h|τ |) generated by all the L(λ) where λ has exactly τi boxes
with m-shifted residue equal to i for each i ∈ Z/eZ. By [7, Theorem 4.1] Oc(N)τ
is a sum of blocks of Oc(N).

Theorem 5 Let c be the parameters for the rational Cherednik algebra given in 4.1
and keep the notation above.

1. The adjoint pair (E,F), X ∈ End(E), T ∈ End(E2) and the block decomposition
Oc(N)=⊕τ∈P Oc(N)τ gives an s̃le-categorification of F(m) by Oc(N).

2. The simple objects in Oc(N) give an s̃le-crystal basis for the Grothendieck group
[Oc(N)] which is isomorphic to the crystal of the Fock space F(m).

Proof (1) By construction the eigenoperators of E under the action of X are the
sums of Resi (n) over all n. The standard modules {[Δ(λ)] : λ ∈ P�} give a basis of
Q⊗K(Oc(N)). Identify Q⊗K(Oc(N)) with F(m) by sending [Δ(λ)] to λ. We
have seen in 4.2 that Resi ([Δ(λ)])=∑|λ/μ|=1,resm(λ/μ)≡i[Δ(μ)] for any λ ∈ P�. It

then follows by adjunction and the elementary fact that Resi ([Δ(λ)]) has a standard
filtration, see [18, Proposition 1.9], that Indi ([∇(λ)])=∑|μ/λ|=1,resm(μ/λ)≡i[∇(μ)]
where ∇(−) denotes a costandard module in Oc(N). Since [Δ(λ)] = [∇(λ)] for any
λ ∈ P�, [10, Proposition 3.3], it follows that we have a weak s̃le-categorification of
F(m).

For the full s̃le-categorification we also need that F is a left adjoint of E: this is a
theorem of Shan, [18, Proposition 2.9], and Losev, [13]. Finally, the compatibilities
and equalities required of T and X all follow from Theorem 4 and standard mon-

odromy calculations in h
W

b̃n
r and h

W
b̂n

r with the connections of Proposition 2, where
b̃n = (0, . . . ,0, n− 1, n) and b̂n = (0, . . . , n− 2, n− 1, n).

(2) This follows formally, as explained in [18, Theorem 6.3]. �

4.4 Monodromy and the KZ Functor

We now compare Resi (n) with Ei (n), the functor of i-restriction from [18, Defi-
nition 4.2]. We choose the basepoint x0 = (1,2, . . . , n) ∈ h{1}r =: hr and recall that
the KZ-functor KZn : Oc(Wn,h)→ Hq(Wn)-mod is obtained from the local sys-

tem over hr/Wn attached to ResWn

{1} . We have π1(hr/Wn,x0) = Bn, the braid group
attached to Wn, which following [4] may be presented as

〈τ, σ1, . . . , σn−1 | σ1τσ1τ = τσ1τσ1, τσi = σiτ if i > 1

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i − j |> 1〉,



152 I.G. Gordon and M. Martino

and Hq(Wn) is the quotient of C[Bn] by the relations

(σi − 1)
(
σi + q−1)= 0 for 1≤ i ≤ n− 1, and

�∏

i=1

(
τ − qmi−m1

)= 0. (7)

There is an algebra isomorphism γ : Z(Oc(Wn,h))
∼→ Z(Hq(Wn)) such that

zM = γ (z)KZn(M) for all z ∈ Z(Oc(Wn,h)). Let J0, . . . , Jn−1 denote the Jucys-
Murphy elements in Hq(Wn), defined by

J0 = qm1τ, Ji = qm1+i−1σi . . . σ1τσ1 . . . σi,

for 1 ≤ i ≤ n− 1. (See [9, Definition 5.2.3], but note that our normalization of the
Hecke algebra Hq(Wn) differs from [loc.cit] so we have a slightly different defini-
tion.) Set Cn(z)=∏n−1

i=0 (z− Ji ), a polynomial in the variable z whose coefficients
lie in Z(Hq(Wn)). Let Dn(z)= γ−1(Cn(z)). For a(z) ∈C(z) let Qn,a(z) be the ex-
act endo-functor of Oc(Wn) that maps an object M to the generalized eigenspace of
Dn(z) in M with the eigenvalue a(z). The functor

Ei (n) :Oc(Wn)→Oc(Wn−1)

is given by Ei (n)=⊕a(z)∈C(z) Qn−1,a(z)/(z−qi ) ◦Resb ◦Qn,a(z), where b is chosen
as in 4.2.

The following result shows that the categorification here of F(m) arising from
the monodromy of the restriction and induction functors is the same as that of [18].

Proposition 4 For any i and any n there is a natural isomorphism Resi (n)∼= Ei (n).

Proof We will prove that KZn−1 ◦ Resi (n) ∼= KZn−1 ◦ Ei (n), so the result follows
from [18, Lemma 2.4]. Let M ∈OΔ

c (Wn,h). We first consider KZn−1 ◦ Ei (n)(M).
By [18, Theorem 2.1], this is the restriction of KZn(M) to Hq(Wn−1) followed by
the projection onto a block corresponding to the eigenvalue a(z). The blocks of
such a restriction are determined by the generalized eigenspaces of Jn−1 in Hq(Wn)

acting on the restriction: on removing a box p from a multipartition, Jn−1 acts by
qresm(p).

On the other hand KZn−1 ◦Resi (n)(M) equals the monodromy of the local sys-
tem attached to ResWn−1

{1} ◦Resi (n)(M). By Theorem 4 this in turn equals the gener-
alized eigenspace of the image of ΣM in Bn acting on KZn(M). We saw in 4.2 that
on removing a box p, Σ acts by qresm(p)+1−n−m1 . By Lemma 7 below, the element
Σ is mapped to σn−1 . . . σ1τσ1 . . . σn−1 = q1−n−m1 Jn−1 under the homomorphism
Bn →Hq(Wn,h). Thus we have the required equality for objects with Δ-filtrations.

The general case follows since projective objects have Δ-filtrations and Oc(Wn,

hn) has finite global dimension. �

It remains only to explain the following lemma used above.
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Lemma 7 Recall the notation ιW1,W2 of (6). Let ψ : 〈Σ〉 −→ Bn be the canonical
composition

π1
(
h
W2
r /〈tn〉, b

) −→ π1(
(
h
W2
r /〈tn〉 × h2,r/Wn−1, x0

)

ι{1},Wn−1−→ π1
(
hr/N(Wn−1), x0

)

−→ π1(hr/W,x0).

Then ψ(Σ)= σn−1 . . . σ1τσ1 . . . σn−1.

Proof If we calculate by lifting paths to hr, then a representative of ψ(Σ) is
given by the path γ n

x0
where for any 1 ≤ i ≤ n we set γ i

x0
(s) = (1, . . . , i −

1, exp(2π
√−1s)i, i + 1, . . . , n) for s ∈ [0,1]. For any 1≤ i ≤ n− 1, set I[i,i+1] =

{(a1, a2) : i ≤ |a1|, |a2| ≤ i + 1}. One can then prove by an unenlightening (for
us) calculation in the space {1} × · · · × {i − 1} × I[i,i+1] × {i + 2} × {n} ⊂ hr that
σiγ

i
x0
σi = γ i+1

x0
. Since τ = γ 1

x0
this confirms the lemma. �

4.5 The KZ-Component of the Crystal

We end with a remark on the Cherednik crystal of irreducible representations in
Oc(N). Let

Bn =
{
λ ∈ Irr(Wn) :KZn

(
L(λ)

) 	= 0
}

and set

B=
∐

n

Bn.

We claim that B ∪ {0} is stable under the crystal operators ẽi and f̃i for i ∈ Z/eZ.
Indeed f̃i ẽib = b which ensures that KZ(ẽib) = KZ(socResi (ẽib)) 	= 0, so that
ResiKZ(ẽi (b)) ∼= KZ(Resi (ẽib)) 	= 0 and so KZ(ẽi(b)) 	= 0. The argument for f̃ib

is similar.
By [5, Corollary 5.8] the set B equals the subset of Uglov multipartitions, that is

the subset of multipartitions that label the canonical basis of L(Λm1 +· · ·+Λm�
)⊂

F(m) constructed by Uglov. It follows from the argument in [2, Theorem 6.1] that
this crystal equals the crystal defined from Uglov’s canonical basis of the Fock space
provided that we know that the decomposition matrix of the Hecke algebra is given
by the evaluation of Uglov’s canonical basis at 1. This is the well-known result of
Ariki, [1]. Thus we have an explicit identification of the so-called KZ-component of
the crystal with the combinatorial crystal on Uglov multipartitions.
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Category of Finite Dimensional Modules
over an Orthosymplectic Lie Superalgebra:
Small Rank Examples

Caroline Gruson and Vera Serganova

Abstract The aim is to give a concrete picture of simple and projective finite di-
mensional modules over osp(5,4), together with a summary of our papers (Gruson,
C., Serganova, V. in Proc. Lond. Math. Soc. 101(3):852–892, 2010 and in Mosc.
Math. J., to appear).

1 Introduction

Let g be a complex orthosymplectic Lie superalgebra and let G be the corresponding
algebraic supergroup SOSP(m,2n). Consider the category F of finite dimensional
G-modules such that the parity of a weight space coincides with the parity of the
corresponding weight. In previous work ([6, 7]), we proved results concerning the
character of simple objects in F and projective indecomposable modules. In partic-
ular, we showed that a Bernstein-Gel’fand-Gel’fand reciprocity law holds in F .

The aim of this presentation is to describe the algorithms introduced in [6] and
[7] in low rank examples. We start with a summary of those two papers in the case
osp(2m + 1,2n). We then give a complete description of the algorithms for the
maximally atypical weights of osp(5,4). Using these algorithms, we are able to give
multiplicities of simple modules occurring in a projective indecomposable module:
up to now, such explicit computations were available only for weights of atypicality
degree less or equal to 1 (here we get atypicality degree 2). In the last section,
we consider the case osp(7,6), where such a complete description is rather more
complicated and we draw the picture for “generic weights” (such a picture is also
obtained for osp(2n+ 1,2n)). We completely describe the “exceptional moves” for
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osp(7,6), this is the smallest case where these moves can start from infiniteley many
weights.

We encode dominant weights by weight diagrams, following the idea of Brundan
and Stroppel for the gl(m,n) case ([2]). The category F splits into blocks, which are
indexed by the core of these weight diagram. We only consider maximally atypical
weights since we know that, with the help of translation functors all the other cases
can be reduced to that one, see Theorem 2 in [6]. We restrict ourselves to algebras
of type osp(2m+ 1,2n) in order to limit the notations. . .

2 Context

Let us first recall a few facts about Lie superalgebras.
It is well-known that the representation theory of simple Lie superalgebras is

not a straightforward adaptation of the theory in the non graded case. In 1977, Kac
in [8], classified the simple Lie superalgebras, and emphasized on the fact that the
finite dimensional modules are not semi-simple. When the Lie superalgebra is basic
classical, the simple modules have a highest weight, which is a dominant weight
for the reductive Lie algebra which forms the even part. He asked the question of
computing the characters for simple modules and introduced the Kac modules for
the case of gl(m,n): there is a parabolic subalgebra p with a purely odd complement
space. A Kac module is obtained by inflating a simple module from the Levi part
gl(m)× gl(n) of p to p, then by inducing from p to gl(m,n): the induced module
is still finite dimensional and there is a neat character formula for them. Moreover,
Kac modules play the role of standard modules in the BGG reciprocity law in the
category of finite dimensional modules, as is first mentioned in [12]. This category,
for gl(m,n), is now quite well understood ([1–5, 10]).

It is tempting to do the same with orthosymplectic superalgebras, but they have
no such parabolic subalgebras, hence in this case, Kac modules no longer exist.
However, one can give a geometric interpretation Borel-Weil-Bott like for Kac mod-
ules for gl(m,n), as the space of sections of a line bundle over the super flag va-
riety. Hence, one can make the corresponding construction in the osp case ([9]):
now the cohomology is no longer concentrated in degree 0, and as is first men-
tioned in [11], we introduce the Euler characteristic which is a virtual module in
the Grothendieck group K(F) of the category defined as the alternating sum of the
cohomology groups: we will be more precise later.

Those virtual modules stand for the standard objects for F , meaning that they
have computable composition series in terms of the simple modules ([6]), and the
indecomposable projective modules can be uniquely expressed as linear combina-
tions (with not necessarily positive integral coefficients) of Euler characteristics.
Moreover, a BGG reciprocity law holds ([7]). It is to be noted that there are less stan-
dard objects than projective or simple modules, since they are labelled by weights
belonging to a smaller set.

We also want to emphasize that for osp(2m+ 1,2n), the multiplicity of a simple
module in any Euler characteristic is at most 1 (but not for osp(2m,2n) in general).



Modules over an Orthosymplectic Lie Superalgebra 157

Now let us be a little more precise. Let g = osp(2m + 1,2n), we denote by
g = g0 ⊕ g1 the decomposition into even and odd parts. We choose a Cartan sub-
algebra h⊂ g0 together with a basis (ε1, . . . , εm, δ1, . . . δn) of h∗, denote by W the
associated Weyl group. The roots split into the roots of g0 with respect to h, Δ0,
and the odd roots Δ1 are the weights of g1. The Killing form on g restricts to a non-
degenerate bilinear form on h up to a scalar, it is given by (εi, εj )= δij =−(δi, δj ),
and (εi, δj )= 0. We choose the Borel subalgebra b of g (and in doing so we get a
choice of positive roots), such that:

• If g= osp(2m+ 1,2n) and m≥ n, the simple roots are

ε1 − ε2, . . . , εm−n+1 − δ1, δ1 − εm−n+2, . . . , εm − δn, δn,

ρ =−1

2

m∑

i=1

εi + 1

2

n∑

j+1

δj +
m−n∑

i=1

(m− n− i + 1)εi;

• If g= osp(2m+ 1,2n) and m< n, the simple roots are

δ1 − δ2, . . . , δn−m − ε1, ε1 − δn−m+1, . . . , εm − δn, δn,

ρ =−1

2

m∑

i=1

εi + 1

2

n∑

j+1

δj +
n−m∑

j=1

(n−m− j)δj ,

here ρ = ρ0 − ρ1 is the graded version of half sum of positive roots, where ρi =
1
2

∑
α∈Δ+i α.

Recall (see [6] Corollary 3) that λ is the highest weight of a simple finite dimen-
sional g-module (or λ is integral dominant) if and only if

λ+ ρ = a1ε1 + · · · + amεm + c1δ1 + · · · + cnδn,

where ai, cj ∈ 1
2 +Z, and either

a1 > a2 > · · ·> am ≥ 1

2
, c1 > c2 > · · ·> cn ≥ 1

2
,

or there exists � ∈ {0, . . . ,min(m,n)} such that
⎧
⎪⎪⎨

⎪⎪⎩

a1 > a2 > · · ·> am−�−1 > am−� = · · · = am =−1

2
,

c1 > c2 > · · ·> cn−�−1 ≥ cn−� = · · · = cn = 1

2
.

There is a partial ordering on the set of dominant weights, namely λ≤ μ iff μ−λ=∑
α∈Δ+ nαα with nα ∈ Z+.
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Moreover, recall that a weight λ is atypical if there exist isotropic odd root(s) α

such that (λ+ ρ,α)= 0. The degree of atypicality is defined in Definition 2 in [6],
we will explain in the next section how to compute it with the weight diagrams.

Let G be the algebraic supergroup SOSP(2m+ 1,2n) and Q be a parabolic sub-
group containing B , the Borel subgroup of G with Lie algebra b. There is a structure
of algebraic supervariety on the flag manifold G/Q. Let λ be a dominant weight,
one can associate to λ a vector bundle LG/Q(λ) over G/Q and a structure of g-
module on the cohomology groups Hi(G/Q,L(λ)). The Euler characteristic is the
following virtual module:

EG/Q(λ)=
∑

0≤i≤dim(G/Q)

(−1)i
[
Hi
(
G/Q,L(λ)

)] ∈K(F).

In most cases, the Euler characteristic mentioned above is E(λ)= EG/B(λ), but
for certain weights, namely when λ has a tail (see [6] after Lemma 15 and next
section), it turns out that EG/B(λ) vanishes and then one finds a proper parabolic
subgroup Qλ associated to λ, such that E(λ)= EG/Qλ(λ) is non-zero.

3 Summary of [6] and [7] in the osp(2m + 1,2n) Case

A dominant weight λ such that

λ+ ρ = a1ε1 + · · · + amεm + c1δ1 + · · · + cnδn

is encoded in the weight diagram denoted fλ constructed as follows:
A weight diagram is a assignation of zero, one or several symbols <, >, or × to

positions t = 2r+1
2 , r ∈ Z≥0, maybe endowed with a sign (+) or (−):

(1) put one symbol > at position t for every i such that |ai | = t ;
(2) put one symbol < at position t for every i such that ci = t ;
(3) for every t , replace a pair of symbols > and <, by a single ×, as many times as

possible;
(4) if t = 1

2 and the smallest value of ai for which |ai | = 1
2 is positive (resp. nega-

tive), put a (+) (resp. (−)) in front of the diagram.

Remark 1

(1) There is a one-to-one correspondence between dominant weights and weight
diagrams.

(2) Due to the dominance conditions, there is at most one symbol at a position
t 	= 1

2 .
(3) The atypicality degree of λ is by definition the maximal number of mutually

orthogonal isotropic roots which are orthogonal to λ+ ρ, such roots are neces-
sarily odd, and it turns out to be the total number of × in fλ.
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(4) The position t = 1
2 can contain at most one of the symbols > or <, and up to

the maximal possible atypicality degree symbols ×.

Definition 1

(1) The position t = 1
2 is called the tail position.

(2) The length of the tail of a diagram (and the corresponding weight) is equal to
the number of× at the tail position if the diagram does not have sign or the sign
is (−); the number of × at the tail position minus 1 if the diagrams has sign
(+). The diagram is tailless if the length of the tail is 0.

(3) The core of λ is the weight diagram (for a smaller rank Lie superalgebra of the
same type) obtained when removing all the × of fλ. The core determines the
block of F containing the modules Lλ, E(λ) and Pλ. The core symbols are all
the symbols < and >.

Theorem 1 ([6])

(1) Two simple modules Lλ and Lμ belong to the same block of F if and only if
weight diagrams of λ and μ have the same core, and therefore the same number
of ×.

(2) Two blocks B1 and B2 of F are equivalent if and only if: let Lλ ∈ B1,Lμ ∈ B2,
fλ and fμ have the same number of ×.

Example 1 (1) If λ= ( 9
2 ,

7
2 ,

−1
2 | 72 , 5

2 ,
1
2 ), then fλ is (−)× ◦<×> · · · . The sym-

bol ◦ stands for an empty position, all positions to the right of > are empty. The
atypicality degree is 2, and the length of the tail is 1.

(2) If λ= ( 9
2 ,

7
2 ,

1
2 ,

−1
2 | 72 , 5

2 ,
1
2 ,

1
2 ) then fλ is

(−) ×◦<×> · · ·
×

the atypicality degree is 3 and the length of the tail is 2.

Recall that the translation functors are functors in F sending a block to another
one (or possibly the same one). A translation functor is a composition of tensoring
with the standard representation of osp(2m+ 1,2n) and projecting on the appropri-
ate block. See for details [6] Sect. 5.

Important Remark Both papers describe algorithms giving, in the first one, the
composition series of EG/B(λ) or EG/Qλ(λ) if λ has a tail, in terms of simple mod-
ules, and in the second one an expression of a projective indecomposable as a linear
combination of Euler characteristics for tailless weights, EG/B(μ).
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3.1 Summary of [6] for osp(2n + 1,2n)

This paper is focused on the character formula for simple modules. We restrict our
attention to the maximally atypical block of osp(2n + 1,2n) since the translation
functors lead us to understand all the other blocks, once this family of blocks is
understood, see Theorem 2 and Corollary 5 in [6].

The Dynkin diagram of osp(2n+ 1,2n) is the following:

⊗ ⊗ ⊗ ⊗· · ·
ε1 − δ1 δ1 − ε2 δn−1 − εn εn − δn δn

The principle of the method is as follows: the Euler characteristics have a char-
acter which is easy to compute, so the idea is to write the composition series of the
Euler characteristics in terms of simple modules. Note that the highest weights of
these simple modules are lower than the dominant weight of the Euler characteris-
tic: thus one gets a triangular matrix with 1 on the diagonal. Inverting this matrix
expresses a simple module in terms of Euler characteristics, and we deduce its char-
acter by applying the character formula for the Euler characteristics.

Let Q be a parabolic subgroup of G containing B and μ be an integral dominant
weight which induces a one-dimensional representation of Q. Recall that

EG/Q(μ)=
dimG0/Q0∑

i=1

(−1)i
[
Hi
(
G/Q,O(−μ)

)∗]
.

If μ has a tail, then EG/B(μ)= 0. If the length of the tail of μ is k+ 1, we define
qμ as the parabolic subalgebra containing b such that the semi-simple part of its
Levi subalgebra has the following Dynkin diagram:

⊗ ⊗ ⊗ ⊗· · ·
εn−k − δn−k δn−k − εn−k+1 δn−1 − εn εn − δn δn

which is the Dynkin diagram of Lie superalgebra of the same type as osp(2n +
1,2n). Note that for a tailless μ, qμ = b.

As an element in the Grothendieck group of F , the Euler characteristic EG/Qμ(μ)

has a decomposition

EG/Qμ(μ)=
∑

a(μ,λ)[Lλ].
Furthermore, a(μ,μ)= 1 and a(μ,λ) 	= 0 implies λ≤ μ. The main result of [6] is a
combinatorial algorithm for calculating a(μ,λ). Below we describe this algorithm.

Since in our case λ and μ are maximally atypical, their weight diagrams don’t
have any core symbols.

We say fμ is obtained from fλ by an elementary move if one or two × of fλ are
moved to some empty positions to the right according the following rules.
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(1) Exceptional moves: can be made when λ has two × at the tail position, which
are both moved simultaneously: see Definition 6, Sect. 11 of [6] for a pre-
cise definition, see the list of exceptional moves in the following sections for
osp(5,4) and osp(7,6).

(2) Legal moves (resp. legal tail moves): take a× of fλ at position s, s 	= 1/2 (resp.
s = 1/2), move it to the right to an empty position t > s of fλ and obtain a new
diagram fμ. The × starts with 1 life (resp. 2 times the number of × at the tail
position of fμ), it looses 1 life going over an empty position, it gains one life
over a × and should never have a negative number of lives. The number of lives
that this moving × has at position t is called the degree (or the weight) of the
corresponding legal move.

We say that fμ is obtained from fλ be a decreasing sequence of elementary moves
λ= μ0 → μ1 → ·· ·→ μk = μ if fμi is obtained from fμi−1 by moving a × to po-
sition ti by a legal (or legal tail) move or two× to positions si < ti by an exceptional
move and we have t1 > t2 > · · ·> tk . The degree l(γ ) of a decreasing sequence γ

of elementary moves is the sum of the degrees of the elementary moves included in
the sequence.

Theorem 3 in [6] states that

a(μ,λ)=
∑

γ∈S(λ,μ)

(−1)l(γ ),

where the summation is taken over the set S(λ,μ) of all decreasing sequences of
elementary moves from λ to μ.

Remark 2 It is proven in [6] that a(μ,λ)=±1 or 0 for all dominant integral λ,μ.

3.2 Summary of [7] for osp(2m + 1,2n)

This second paper contains several results. First of all, it explains in a more general
context that a Bernstein-Gel’fand-Gel’fand reciprocity law holds in the category F ,
in other words the multiplicity of a simple module Lλ in the Euler characteristic
EG/B(μ) is the same as the multiplicity of EG/B(μ) in the projective indecompos-
able module Pλ, this equality holding in the Grothendieck ring of F : it is to be noted
that, in this paper, the only flag variety involved is G/B .

It also contains a categorification of the Lie algebra with Dynkin diagram

· · ·
in orthosymplectic terms which allows us to interpret most of the translation func-
tors as linear operators satisfying Serre relations.

The result we are interested in for this survey is the fact that one can express
any projective indecomposable module as a linear combination with integral coeffi-
cients of Euler characteristics of tailless weights. Caution, these coefficients might
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be negative. We explain an algorithm on the weight diagrams which gives this com-
bination.

Start with a tailless dominant weight λ, and consider its weight diagram. Con-
struct the cap diagram as follows:

consider the rightmost × of fλ and join it to the next free position on the right.
This position is no longer free. Repeat for the next × on the left, and so on until
there is no × left. Leave all the symbols corresponding to the core where they are.

Example 2 For the following weight diagram,

◦ × > < × ◦ ◦

the caps are the following:

◦ × > < × ◦ ◦.

Denote by P(λ) the set P(λ) := {μ dominant, fμ is obtained from fλ by moving
0 or any number of × along the caps}.

Now assume that λ has a tail: we construct a tailless weight λ̄ the following way:
Ignore the sign before the diagram if it exists. In the beginning, forget about

the tail position of fλ and draw the corresponding cap diagram. Then circle the ×,
getting ⊗, at the tail position, and move them according to the following rules:

• if λ has no core symbol at 1
2 move all the ⊗ but one at the tail position to the free

positions number 2, 4, 6, etc.
• if λ has a core symbol at 1

2 , then move all the ⊗ at the tail position to the free
positions number 1, 3, 5, etc.

Now draw the cap diagram of this new weight λ̄.
We are now ready to state the result:

Theorem 2

(1) If λ is tailless, then one has

Pλ =
∑

μ∈P(λ)

EG/B(μ).

(2) If fλ has a core symbol or a (−) sign,

Pλ =
∑

μ∈P(λ̄)

(−1)c(λ,μ)EG/B(μ),

where c(λ,μ) is the number of ⊗ in λ plus the number of ⊗ in fλ̄ moved along
a cap in order to get fμ from fλ̄.
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(3) If the sign before fλ is (+), use the preceding formula and change the sign of
all the EG/B(μ) such that fμ has a symbol at the tail position.

The proof of this result involves a massive use of translation functors.

4 Computing Characters for a Simple Maximally Atypical
Module over osp(5,4)

From now on, for any dominant λ we will abuse notation and set E(λ) for EG/Qλ(λ)

if λ has a tail and EG/B(λ) if λ is tailless.
In this case, a dominant weight has the form:

λ+ ρ = (a1, a2|c1, c2)

with a1 > a2 ≥ − 1
2 or a1 = a2 = − 1

2 and c1 > c2 ≥ 1
2 or c1 = c2 = 1

2 . It is maxi-
mally atypical iff |a1| = c1 and |a2| = c2. The weight diagram of a maximally atyp-
ical weight contains two ×, one at |a1| and the other at |a2|, together with a sign.
If there are two × at the tail position or one × and a (−) sign, then the weight has
a tail and the parabolic subgroup Qλ of the previous section is obtained by adding
the opposite of the roots ε1 − δ1, δ1 − ε2 unless the weight is trivial in which case
Qλ =G. Another difficulty occurs when one gets close to the wall a1 = a2 + 1.

In [6] Sect. 11, we described a series of moves which can be made with the ×
of the weight diagram: if there is a (authorised) move from the weight diagram fλ

to the weight diagram fμ of weight (or degree) i, it means that the simple module
Lλ is in the cohomology group of degree i corresponding to the Euler characteristic
E(μ), so that it occurs with the sign (−1)i in the composition series. Nevertheless, it
doesn’t mean that Lλ appears in E(μ) because one also has to consider paths, which
are sequences of moves, and it can lead to cancellations.

There are several kinds of moves: regular ones, which take a× at a non-tail posi-
tion and move it to the right according to specific rules, tail moves, which deal with
one × at the tail position, and exceptional moves which move simultaneously two
× at the tail position (see Proposition 6 in [6]), in this case there is no exceptional
moves.

One can check by hand all the possibilities which occur.
In Fig. 1, we have represented a maximally atypical weight λ+ ρ = (a1, a2||a1|,

|a2|) by the point (a1, a2) in the plane and we join two points if there exists a legal
move taking the weight diagram of the first weight to the weight diagram of the
second one. We have equipped all the arrows with their weights.

Now, we want to compute the multiplicity of the simple module Lλ in the Euler
characteristic EG/Qμ(μ). We have to consider:

(1) Arrow going from λ to μ with weight i (there is at most one), we will say we
have a path of length one P and weight wt(P ) := i.
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Fig. 1 osp(5,4)

(2) regular paths of length two from λ to μ: a regular path Pi is a sequence of two
arrows, one, f1 of weight i1, from λ to a certain λ1 and one, f2 with weight i2,
from λ1 to μ, such that the first one f1 is going East or North-East in the picture
(meaning that this arrow can increase the horizontal coordinate and possibly
the vertical one) and the second one f2 goes straight North (so the horizon-
tal coordinate cannot be increased). The weight of the corresponding path is
wt(Pi) := i1 + i2.

Proposition 1 Let λ and μ be two dominant weights such that λ ≤ μ. Then the
multiplicities are as follows:

(1) [E(μ) : Lλ] = 1 if λ= μ,
(2) If λ < μ, look at all the paths of length one and two from λ to μ, denote this set

P(λ,μ), [E(μ) : Lλ] =∑P∈P(λ,μ)(−1)wt(P ).

One can check on the picture that the module of the multiplicity of Lλ in the Euler
characteristic EG/μ(μ) is at most one. This is a general phenomenon for algebras
osp(2n+ 1,2m).
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Fig. 2 osp(7,6), generic case

Remark 3

(1) If μ is far from the walls, meaning that a1 ≥ a2 + 3 ≥ 5/2, then the partial
picture explaining which Lλs appear in the Euler characteristic is just a square
of size 1× 1.

If one looks at the same picture for maximally atypical weights of osp(2n+
1,2n), if the weight diagram of μ has two empty positions between each couple
of × and μ is far enough from the tail, the weights λ occurring in the Euler
characteristic are the vertices of the hypercube with “greater vertex” μ. See
Fig. 2 for the case osp(7,6).

(2) As long as μ is far enough from the origin, a1 > 9/2, the pattern along the walls
is always the same.

We put all this information in a big (infinite) triangular unipotent matrix M la-
belled by all dominant maximally atypical weights, the line labelled by the weight
λ encoding in which Euler characteristics Lλ occurs, and with which multiplicity.
This matrix gives us the composition series of all the Euler characteristics, and since
we know the character of the Euler characteristics, if we invert M and hence obtain
a simple module as a linear combination of Euler characteristics, we are able to
compute the character of the simple module. Well, able might be abusing language,
since no one wants to explicitely compute all this. . .

Let us show the matrix (Table 1) for small weights, with the conventions of the
Fig. 1 for the weights.

For instance, let us explain how we get the column corresponding to ( 3
2 ,

1
2 ): look

at the picture, and the arrows coming to this weight: one gets ( 3
2 ,− 1

2 ) with weight
−1, then ( 1

2 ,− 1
2 ) with weight 2, but it cancels with the path ( 1

2 ,− 1
2 )→ ( 3

2 ,− 1
2 )→

( 3
2 ,

1
2 ) which is of weight 1, and then the path (− 1

2 ,− 1
2 ) → ( 1

2 ,− 1
2 ) → ( 3

2 ,
1
2 )

which has weight 5 cancels with the arrow coming from the exceptional move
(− 1

2 ,− 1
2 ) → ( 3

2 ,
1
2 ). Finally, ( 3

2 ,
1
2 ) itself appears with multiplicity 1, hence the

column.
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5 Projective Indecomposable Modules for osp(5,4), Maximally
Atypical Case

In [7], we showed that one can express any projective indecomposable module in the
Grothendieck group K(F) as a linear combination with integral coefficients (possi-
bly negative) of Euler characteristic for tailless weights, hence the underlying alge-
braic supermanifold is the flag variety G/B . We also showed that there is a (weak
version of) Bernstein-Gel’fand-Gel’fand reciprocity law (see [7], Theorem 1):

Proposition 2 Let λ and μ be two dominant weights such that μ is tailless, one
has:

[
E(μ) : Lλ

]= [Pλ : E(μ)
]
.

Remark 4 Note that Euler characteristics for tailless weights do not form a basis in
the Grothendieck group. Since our category has infinite cohomological dimension,
classes of projective modules generate a proper subgroup in the Grothendieck group
(see [7]). However, Euler characteristics are linearly independent, hence the presen-
tation of the class of a projective module as a combination of Euler characteristics
is unique.

Hence, actually we have already computed all the coefficients of this linear com-
bination while computing the characters of simple modules, or, more appropriately,
the multiplicity of the simple modules occurring in a given Euler characteristic for
tailless weights. Note that the (partial) matrix of the previous section contains the
information for Euler characteristics for weights with a tail (the lines corresponding
to weights with first coordinate equal to zero), and these ones are not relevant in the
computation we do now.

Thanks to the algorithm described in [7] that allows to compute the coefficients
of the linear combination of Euler characteristics involved in a given projective mod-
ule, we obtain the decomposition numbers of the previous section by an independent
method.

Let us take the opportunity of this paper to describe the decomposition of pro-
jective indecomposable modules of maximally atypicality degree in terms of simple
modules.

Let λ be a dominant weight, we write λ+ ρ = (a1, a2||a1|, |a2|). For simplicity
we encode λ by (a1, a2), as in the previous section. Assume that a1 − a2 ≥ 4 and
a2 ≥ 5

2 , we say that λ is generic, then the Euler characteristics involved are these of
(a1, a2), (a1 + 1, a2), (a1, a2 + 1) and (a1 + 1, a2 + 1) so that the simple modules
involved are (see Table 2).

Let us study now the generic weights which are near the oblique wall.
Case a1 = a2 + 3, a2 ≥ 5

2 : The Euler characteristics involved are the same as
in the generic case, but E(a1, a2 + 1) has L(a1−2,a2) as an additional composition
factor. Hence Table 3.

Case a1 = a2 + 2: The Euler characteristics involved are the same as in
the generic case, but E(a1, a2) has an additional composition factor which is
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Table 2 Highest weights of
simple modules occurring in
Pλ, λ= (a1, a2) generic

Coordinates of simple factor Multiplicity

(a1 + 1, a2 + 1) 1

(a1 + 1, a2) 2

(a1 + 1, a2 − 1) 1

(a1, a2 + 1) 2

(a1, a2) 4

(a1, a2 − 1) 2

(a1 − 1, a2 + 1) 1

(a1 − 1, a2) 2

(a1 − 1, a2 − 1) 1

Table 3 Highest weights of
simple modules occurring in
Pλ, λ= (a1, a2), a1 − a2 = 3,
a2 ≥ 5

2

Coordinates of simple factor Multiplicity

(a1 + 1, a2 + 1) 1

(a1 + 1, a2) 2

(a1 + 1, a2 − 1) 1

(a1, a2 + 1) 2

(a1, a2) 4

(a1, a2 − 1) 2

(a1 − 2, a2) 1

(a1 − 1, a2 + 1) 1

(a1 − 1, a2) 2

(a1 − 1, a2 − 1) 1

Table 4 Highest weights of
simple modules occurring in
Pλ, λ= (a1, a2), a1 − a2 = 2,
a1 ≥ 5

2

Coordinates of simple factor Multiplicity

(a1 + 1, a2 + 1) 1

(a1, a2 + 1) 2

(a1 + 1, a2) 2

(a1, a2) 4

(a1 − 1, a2) 2

(a1 + 1, a2 − 1) 1

(a1, a2 − 1) 2

(a1 − 1, a2 − 1) 1

(a1 − 2, a2 − 1) 1
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Table 5 Highest weights of
simple modules occurring in
Pλ, λ= (a1, a2), a1 − a2 = 1,
a2 ≥ 5

2

Coordinates of simple factor Multiplicity

(a1 + 2, a2 + 2) 1

(a1 + 2, a2 + 1) 2

(a1 + 1, a2 + 1) 1

(a1 + 2, a2) 1

(a1 + 1, a2) 2

(a1, a2) 4

(a1 + 1, a2 − 1) 1

(a1, a2 − 1) 2

(a1 − 1, a2 − 1) 1

Table 6 Highest weights of
simple modules occurring in
Pλ, λ= (a1,3/2), a1 ≥ 11/2

Coordinates of simple factor Multiplicity

(a1 + 1,5/2) 1

(a1,5/2) 2

(a1 − 1,5/2) 1

(a1 + 1,3/2) 2

(a1,3/2) 4

(a1 − 1,3/2) 2

(a1 + 1,1/2) 1

(a1,1/2) 2

(a1 − 1,1/2) 1

(a1 + 1,−1/2) 1

(a1,−1/2) 2

(a1 − 1,−1/2) 1

L(a1−2,a2−1), E(a1 + 1, a2 + 1) has L(a1−1,a2) as an additional composition fac-
tor and E(a1, a2 + 1) is smaller than expected since it lacks L(a1−1,a2+1). Hence
Table 4.

Case a1 = a2 + 1: The Euler characteristics involved are these corresponding to
(a1, a2), (a1 + 1, a2), (a1 + 2, a2 + 1), (a1 + 2, a2 + 2). We get Table 5.

Next we study generic weights near the tail a1 ≥ 11
2 .

Case a2 = 3
2 .

The Euler characteristics involved are the usual ones and we have several addi-
tional composition factors in them, see Table 6.

Case a2 = 1
2 .

The Euler characteristics involved are the usual ones and we have several addi-
tional composition factors in them. See Table 7.

Case a1 ≥ 9
2 , a2 =− 1

2 .
See Table 8.
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Table 7 Highest weights of
simple modules occurring in
Pλ, λ= (a1,

1
2 ), a1 ≥ 9

2

Coordinates of simple factor Multiplicity

(a1 + 1,3/2) 1

(a1,3/2) 2

(a1 − 1,3/2) 1

(a1 + 1,1/2) 2

(a1,1/2) 4

(a1 − 1,1/2) 2

Table 8 Highest weights of
simple modules occurring in
Pλ, λ= (a1,− 1

2 ), a1 ≥ 9
2

Coordinates of simple factor Multiplicity

(a1 + 1,3/2) 1

(a1,3/2) 2

(a1 − 1,3/2) 1

(a1 + 1,−1/2) 2

(a1,−1/2) 4

(a1 − 1,−1/2) 2

Table 9 Highest weights of
simple modules occurring in
Pλ, λ(9/2,3/2)

Coordinates of simple factor Multiplicity

(11/2,5/2) 1

(9/2,5/2) 2

(7/2,5/2) 1

(11/2,3/2) 2

(9/2,3/2) 4

(7/2,3/2) 2

(5/2,3/2) 1

(11/2,1/2) 1

(9/2,1/2) 2

(7/2,1/2) 1

(11/2,−1/2) 1

(9/2,−1/2) 2

(7/2,−1/2) 1

The remaining weights are represented by the couples (− 1
2 ,− 1

2 ), ( 1
2 ,− 1

2 ),
( 3

2 ,− 1
2 ), (

5
2 ,− 1

2 ), (
7
2 ,− 1

2 ), (
3
2 ,

1
2 ), (

5
2 ,

1
2 ), (

7
2 ,

1
2 ), (

5
2 ,

3
2 ), (

7
2 ,

3
2 ) and ( 9

2 ,
3
2 ).

We intend to use the partial matrix A we wrote in the previous section, sup-
pressing the lines corresponding to Euler characteristics for weights with tail, and
compute tA.A. Caution, the relevant information in this matrix concerns only the
weights which are labelled by (a1, a2) with a1 < 9/2 and a2 < 5/2, since we
need additional information to get the other weights. We first do by hand the case
(a1, a2)= (9/2,3/2), see Table 9.
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Table 10 Partial Cartan matrix

(− 1
2 ,− 1

2 ) ( 1
2 ,− 1

2 ) ( 3
2 ,− 1

2 ) ( 5
2 ,− 1

2 ) ( 7
2 ,− 1

2 ) ( 3
2 ,

1
2 ) ( 5

2 ,
1
2 ) ( 7

2 ,
1
2 ) ( 5

2 ,
3
2 ) ( 7

2 ,
3
2 )

(−1/2,−1/2) 4 2 2 1

(1/2,−1/2) 4 2 2 1

(3/2,−1/2) 2 4 2 1 1 1 2

(5/2,−1/2) 2 4 2 2 1

(7/2,−1/2) 2 1 2 4 1 1 2

(9/2,−1/2) 2 1

(3/2,1/2) 2 1 4 2 1 1 2

(5/2,1/2) 2 4 2 2 1

(7/2,1/2) 2 1 1 2 4 1 2

(9/2,1/2) 2 1

(5/2,3/2) 1 2 1 1 2 1 4 2

(7/2,3/2) 1 1 2 1 2 2 1 2 2 4

(9/2,3/2) 1 1 1 2

(7/2,5/2) 1 1 1 2

(9/2,5/2) 2 1

(9/2,7/2) 1

Table 10 is the result of the multiplication of matrices mentioned above, it should
be read this way: the line labelled by (b1, b2) is the decomposition of the corre-
sponding indecomposable projective module in terms of the simple modules la-
belled by the columns.

6 Generic Picture for osp(7,6), Exceptional Moves for
osp(7,6) (and Remarks on Higher Rank Cases)

As is explained in [6], in order to get rid of the signs of the weight diagrams, it is
better to look at the dominant weights of osp(7,8) belonging to the same block as
the trivial module. This means adding a < at the tail position, move all × not at the
tail one position to the right and for the × at the tail, if the sign is (−) don’t change
anything, whether if the sign is (+) move exactly one × from the tail one position
to the right.

The weight diagram of a dominant maximally atypical weight has exactly three
× plus a < at the tail.
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6.1 Generic Maximally Atypical Weights

One can draw a picture similar to Fig. 1, but it is 3-dimensional and quite intricate
near the origin. . . Nevertheless, for a “generic” maximally atypical weight (meaning
there are at least 2 empty positions between two × and it is far from the tail), the
picture is easy to make, see Fig. 2. In this picture, the legal way is to go East then
North then North-East.

Remark 5 For maximally atypical weights of osp(2n + 1,2n) which are generic,
i.e. such that the first × in the weight diagram is far from the tail position and there
are at least two empty positions between two ×, the picture looks the same and the
legal way is to move along the basis vectors corresponding first to the rightmost ×,
then the following rightmost × and so on.

6.2 Exceptional Moves

In osp(7,6), there are infinitely many weights leading to exceptional moves, be-
cause there are more than two ×, see the case (5) where the rightmost × can be at
any place further right. Here is a list of these moves, we indicate the parity of the
weight of the corresponding move if it is not 0.

(1)

fμ =
<

×
×
×
−→ fλ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

<

× × ×
or
<

× ◦ ◦ × ×
(2)

fμ =
<

×
× ×

−→ fλ = < × ◦ × ×

(3)

fμ =
<

×
× ◦ ×

−→ fλ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

< × × × (1)
or
< × × ◦ ×
or
< ◦ × × ×

(4)

fμ =
<

×
× ◦ ◦ ×

−→ fλ =
⎧
⎨

⎩

< × × ×
or
< × ◦ × ×



Modules over an Orthosymplectic Lie Superalgebra 173

(5)

fμ =
<

×
× ◦ ◦ ◦ ×

−→ fλ = < × × ◦ × etc.

Remark 6 This last move can be reproduced for any diagram fμ with the same
pattern at the tail and the last× at any position further on the right, with the obvious
change on the diagram fλ.

If one looks closely at the definition of admissible paths, such a move can be
combined with any move concerning the × not involved in the exceptional move,
so that these exceptional things are really annoying. . . and one has to be extremely
careful in the computations. Is there still anyone wondering why we didn’t draw the
complete figure?
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Monoidal Categorifications of Cluster Algebras
of Type A and D

David Hernandez and Bernard Leclerc

Abstract In this note, we introduce monoidal subcategories of the tensor cate-
gory of finite-dimensional representations of a simply-laced quantum affine algebra,
parametrized by arbitrary Dynkin quivers. For linearly oriented quivers of types A

and D, we show that these categories provide monoidal categorifications of clus-
ter algebras of the same type. The proof is purely representation-theoretical, in the
spirit of Hernandez and Leclerc (Duke Math. J. 154, 265–341, 2010).

1 Introduction

The theory of cluster algebras has received a lot of attention in the recent years
because of its numerous connections with many fields, in particular Lie theory and
quiver representations.

One important problem is to categorify cluster algebras. In recent years, many ex-
amples of additive categorifications of cluster algebras have been constructed. The
concept of a monoidal categorification of a cluster algebra, which is quite different,
was introduced in [15, Definition 2.1]. If a cluster algebra has a monoidal categorifi-
cation, we get informations on its structure (positivity, linear independence of cluster
monomials). Conversely, if a monoidal category is a monoidal categorification of a
cluster algebra of finite type, we can calculate the factorization of any simple object
as a tensor product of finitely many prime objects, as well as the composition factors
of a tensor product of simple objects.
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In [15] we have introduced a certain monoidal subcategory C1 of the category C
of finite-dimensional representations of a simply-laced quantum affine algebra, and
we have conjectured that C1 is a monoidal categorification of a cluster algebra of
the same type. This conjecture was proved in [15] for types A and D4, and in [20]
for all A,D,E types. The proof in [15] relies on representation theory, and on the
well-developed combinatorics of cluster algebras of finite type. Nakajima’s proof is
different and uses additional geometric tools: a tensor category of perverse sheaves
on quiver varieties, and the Caldero-Chapoton formula for cluster variables.

The categories C1 of [15] are associated with bipartite Dynkin quivers. In this
note, we introduce monoidal subcategories Cξ of C associated with arbitrary Dynkin
quivers. For types A and D, we show that the categories Cξ corresponding to linearly
oriented quivers provide new monoidal categorifications of cluster algebras of the
same type. The proof is similar to [15]. However, the main calculations are much
simpler because, for these choices of ξ , the irreducibility criterion for products of
prime representations is more accessible than for the categories C1. This is why we
can also treat in this note the cases Dn (n≥ 5).

In his PhD thesis, Fan Qin [21] has recently generalized the geometric approach
of Nakajima (partly in collaboration with Kimura), and obtained monoidal categori-
fications of cluster algebras associated with an arbitrary acyclic quiver (not neces-
sarily bipartite) using perverse sheaves on quiver varieties.

2 Cluster Algebras and Their Monoidal Categorifications

We refer to [4, 17] for excellent surveys on cluster algebras.

2.1 Cluster Algebras

Let 0 ≤ n < r be some fixed integers. If B̃ = (bij ) is an r × (r − n)-matrix with
integer entries, then the principal part B of B̃ is the square matrix obtained from B̃

by deleting the last n rows. Given some k ∈ [1, r−n] define a new r×(r−n)-matrix
μk(B̃)= (b′ij ) by

b′ij =
{
−bij if i = k or j = k,

bij + |bik |bkj+bik |bkj |
2 otherwise,

(1)

where i ∈ [1, r] and j ∈ [1, r − n]. One calls μk(B̃) the mutation of the matrix B̃ in
direction k. If B̃ is an integer matrix whose principal part is skew-symmetric, then it
is easy to check that μk(B̃) is also an integer matrix with skew-symmetric principal
part. We will assume from now on that B̃ has skew-symmetric principal part. In this
case, one can equivalently encode B̃ by a quiver Γ with vertex set {1, . . . , r} and
with bij arrows from j to i if bij > 0 and −bij arrows from i to j if bij < 0.
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Now Fomin and Zelevinsky define a cluster algebra A(B̃) as follows. Let F =
Q(x1, . . . , xr ) be the field of rational functions in r commuting indeterminates x=
(x1, . . . , xr ). One calls (x, B̃) the initial seed of A(B̃). For 1≤ k ≤ r − n define

x∗k =
∏

bik>0 x
bik
i +∏bik<0 x

−bik
i

xk
. (2)

The pair (μk(x),μk(B̃)), where μk(x) is obtained from x by replacing xk by x∗k , is
the mutation of the seed (x, B̃) in direction k. One can iterate this procedure and
obtain new seeds by mutating (μk(x),μk(B̃)) in any direction l ∈ [1, r − n]. Let S
denote the set of all seeds obtained from (x, B̃) by any finite sequence of mutations.
Each seed of S consists of an r-tuple of elements of F called a cluster, and of a
matrix. The elements of a cluster are its cluster variables. One does not mutate the
last n elements of a cluster; they are called frozen variables and belong to every
cluster. We then define the cluster algebra A(B̃) as the subring of F generated by
all the cluster variables of the seeds of S . A cluster monomial is a monomial in the
cluster variables of a single cluster. Two cluster variables are said to be compatible
if they occur in the same cluster.

The first important result of the theory is that every cluster variable z of A(B̃) is a
Laurent polynomial in x with coefficients in Z. It is conjectured that the coefficients
are positive.

The second main result is the classification of cluster algebras of finite type, i.e.
with finitely many different cluster variables. Fomin and Zelevinsky proved that this
happens if and only if there exists a seed (z, C̃) such that the quiver attached to the
principal part of C̃ is a Dynkin quiver (that is, an arbitrary orientation of a Dynkin
diagram of type A,D,E).

In [5], Fomin and Zelevinsky have shown that the cluster variables of a cluster
algebra A have a nice expression in terms of certain polynomials called the F -
polynomials. In type A and D, explicit formulas for F -polynomials are known.

2.2 Monoidal Categorifications

The concept of a monoidal categorification of a cluster algebra was introduced in
[15, Definition 2.1]. We say that a simple object S of a monoidal category is real if
S ⊗ S is simple.

Definition 1 Let A be a cluster algebra and let M be an abelian monoidal category.
We say that M is a monoidal categorification of A if there is an isomorphism be-
tween A and the Grothendieck ring of M such that the cluster monomials of A are
the classes of all the real simple objects of M.

A non trivial simple object S of M is prime if there exists no non trivial factor-
ization S ∼= S1 ⊗ S2. By [10, Sect. 8.2], the cluster variables of A are the classes of
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all the real prime simple objects of M. So Definition 1 coincides with the definition
in [15].

As an application, we get information on the cluster algebra, as shown by the
following result.

Proposition 1 ([15]) If a cluster algebra A has a monoidal categorification, then

(i) every cluster variable of A has a Laurent expansion with positive coefficients
with respect to any cluster;

(ii) the cluster monomials of A are linearly independent.

Assertion (ii) can also be proved by using additive categorification, see the re-
cent [1].

Conversely, if M is a monoidal categorification of a finite type cluster algebra,
we can calculate the factorization of any simple object of M as a tensor product of
finitely many prime objects, as well as the composition factors of a tensor product
of simple objects of M. Moreover, every simple object in M is real.

3 Categories of Finite-Dimensional Representations of Uq(Lg)

For recent surveys on the representation theory of quantum loop algebras, we invite
the reader to consult [2] or [18].

3.1 Simple Lie Algebra

Let g be a simple Lie algebra of type A,D,E. We denote by I the set of vertices
of its Dynkin diagram, and we put n = |I |. The Cartan matrix of g is the I × I

matrix C = (Cij )i,j∈I . We denote by αi (i ∈ I ) and 'i (i ∈ I ) the simple roots and
fundamental weights of g, respectively.

Let ξ : I → Z be a height function, that is |ξj − ξi | = 1 if Cij =−1. It induces
an orientation Q of the Dynkin diagram of g such that we have an arrow i → j if
Cij =−1 and ξj = ξi − 1. Define

Î := {(i,p) ∈ I ×Z | p− ξi ∈ 2Z
}
.

3.2 Quantum Loop Algebra

Let Lg be the loop algebra attached to g, and let Uq(Lg) be the associated quantum
enveloping algebra. We assume that the deformation parameter q ∈C

∗ is not a root
of unity.
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The simple finite-dimensional irreducible Uq(Lg)-modules (of type 1) are usu-
ally labeled by Drinfeld polynomials. Here we shall use an alternative labeling
by dominant monomials (see [8]). Moreover, as in [15], we shall restrict our at-
tention to a certain tensor subcategory CZ of the category of finite-dimensional
Uq(Lg)-modules. The simple modules in CZ are labeled by the dominant mono-

mials in Y = Z[Y±1
i,p | (i,p) ∈ Î ], that is monomials m=∏(i,p)∈Î Y

ui,p(m)

i,p such that

ui,p(m)≥ 0 for every (i,p) ∈ Î .
We shall denote by L(m) the simple module labeled by the dominant mono-

mial m.
By [8], every object M in CZ has a q-character χq(M) ∈ Y . These q-characters

generate a commutative ring K isomorphic to the Grothendieck ring of CZ.
By [7, 8], we have χq(L(m)) ∈mZ[A−1

i,p+1](i,p)∈Î where for (i,p) ∈ Î we denote

Ai,p+1 = Yi,pYi,p+2

∏

j∈I,Cij=−1

Y−1
j,p+1 ∈ Y .

In particular, an element in K is characterized by the multiplicity of its dominant
monomials. When m is the only dominant monomial occurring in χ ∈ Y , χ is said
to be minuscule. We say that M is minuscule if χq(M) is minuscule. This implies
that M is simple.

3.3 The Monoidal Category Cξ

Define

Î ξ :=
{
(i, ξi) | i ∈ I

}∪ {(i, ξi + 2) | i ∈ I
}⊂ Î ,

and let Yξ be the subring of Y generated by the variables Yi,p ((i,p) ∈ Î ξ ).

Definition 2 Cξ is the full subcategory of CZ whose objects have all their composi-
tion factors of the form L(m) where m is a dominant monomial in Yξ .

When Q is a sink-source orientation, we recover the subcategories C1 introduced
in [15]. Since Îξ is a “convex slice” of Î , we get as in [16, Lemma 5.8]:

Lemma 1 Cξ is closed under tensor products, hence is a monoidal subcategory
of CZ.

We denote by Kξ the subring of K spanned by the q-characters χq(L(m)) of the
simple objects L(m) in Cξ . Then Kξ is isomorphic to the Grothendieck ring Rξ of
Cξ . Note that this ring is a polynomial ring over Z with generators the classes of the
2n fundamental modules

L(Yi,ξi ), L(Yi,ξi+2) (1≤ i ≤ n).
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The q-character of a simple object L(m) of Cξ contains in general many monomials
m′ which do not belong to Yξ . By discarding these monomials we obtain a trun-
cated q-character [15]. We shall denote by χ̃q(L(m)) the truncated q-character of
L(m). One checks that for a simple object L(m) of Cξ , all the dominant monomi-
als occurring in χq(L(m)) belong to the truncated q-character χ̃q(L(m)) (the proof
is similar to that of [15] for the category C1, as for the proof of Lemma 1 above).
Therefore the truncation map χq(L(m)) �→ χ̃q(L(m)) extends to an injective alge-
bra homomorphism from Kξ to Yξ .

It is sometimes convenient to renormalize the (truncated) q-character of L(m) by
dividing it by m, so that its leading term becomes 1. The element of Y thus obtained
is called a renormalized (truncated) q-character.

Define a partial ordering � on Y by χ � χ ′ if χ ′ −χ is an N-linear combination
of monomials. In particular, we have χ̃q(M)� χq(M) for M in Cξ .

3.4 Restriction and Decomposition

Let J ⊂ I and gJ ⊂ g be the corresponding Lie subalgebra. Let Î J = Î ∩ (J ×Z).

For m a monomial, let mJ =∏(i,p)∈Î J
Y

ui,p(m)

i,p . If mJ is dominant, one says that
m is J -dominant. In this case, let LJ (m) be the sum (with multiplicities) of the
monomials m′ occurring in mm−1

J χq(L(mJ )) such that m(m′)−1 is a product of
A−1

i,p+1, (i,p) ∈ Î J . The image of LJ (m) in Z[Yi,p](i,p)∈Î J
, obtained by sending

the Yi,p to 1 if (i,p) /∈ Î J , is the q-character of the simple Uq(LgJ ) labeled by mJ

[13, Lemma 5.9]. In particular we have the following:

Lemma 2 Let m and m′ be two dominant monomials such that L(m)⊗ L(m′) is
simple. Then LJ (m)LJ (m

′)= LJ (mm′).

For m a dominant monomial one has a decomposition [11, Proposition 3.1]

L(m)=
∑

m′
λJ

(
m′)LJ

(
m′) (3)

where the sum runs over J -dominant monomials m′. The λJ (m
′) ∈ N are unique.

This corresponds to the decomposition of L(m) in the Grothendieck ring of
Uq(LgJ )-modules. This decomposition gives an inductive process to construct
monomials occurring in χq(L(m)). Let us start with m0 = m. Then the mono-
mials m1 of LJ (m0) occur in χq(L(m)). If m1 is J1-dominant (J1 ⊂ I ) and if
LJ1(m1) occurs in the decomposition (3), then the monomials m2 of LJ1(m1) occur
in χq(L(m)), and we continue. See [13, Remark 3.16] for details.
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3.5 Proof of Monoidal Categorifications

In this note, we follow the proof of [15] to establish that for certain choices of ξ the
category Cξ is a monoidal categorification of a cluster algebra A. Let us recall the
main steps (see [15] for details):

(1) We define a family P of prime simple modules in Cξ and we label the cluster
variables of an acyclic initial seed Σ of A with a subset of P .

(2) We prove that the renormalized truncated q-characters of the representations of
P coincide with the F -polynomials with respect to Σ of all the cluster variables
of A.

(3) We prove an irreducibility criterion for tensor products of two representations
in P .

(4) By using the following general result, we factorize every simple module in Cξ
as a tensor product of representations in P .

Theorem 1 ([14]) Let S1, . . . , SN be simple objects in C. Then S1 ⊗ S2 ⊗ · · · ⊗ SN

is simple if and only Si ⊗ Sj is simple for any 1≤ i < j ≤N .

In the next sections, we follow these steps for a good choice of ξ in types A

and D. We conjecture that for arbitrary choices of ξ and for every type A,D,E, Cξ
is the monoidal categorification of a cluster algebra of the same type. For type A,
this can be proved in the same way as explained in Remark 1(b). For other types,
this can be probably established by using the methods in [20].

4 Type A

4.1 A Cluster Algebra of Type A

Let A be a cluster algebra of type An in the Fomin-Zelevinsky classification. As is
well-known, the combinatorics of A is conveniently recorded in a regular polygon P
with n+ 3 vertices labeled from 0 to n+ 2, see [3, Sect. 12.2]. Here, each cluster
variable xab (0 ≤ a < b ≤ n + 2) is labeled by the segment joining vertex a to
vertex b. The cluster variables xab for which the segment [a, b] is a side of the
polygon are frozen. Moreover we specialize

x01 = xn+1, n+2 = x0, n+2 = 1.

The exchange relations (Ptolemy relations) are of the form

xacxbd = xabxcd + xadxbc (a < b < c < d). (4)

The clusters of A correspond to the triangulations of P. The variables x0i (2≤ i ≤
n+ 1) together with the n frozen variables xi, i+1 (1≤ i ≤ n) form a cluster, whose
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associated quiver is

x02 → x03 → x04 → ·· · → x0, n+1
↓ ↖ ↓ ↖ ↓ ↖ ↖ ↓
x12 x23 x34 · · · xn,n+1

Note that the principal part of this quiver (i.e. the subquiver with vertices the non-
frozen variables) is a quiver of type An with linear orientation. We denote by Σ this
particular seed of A.

4.2 Cluster Structure on Cξ

Let g be of type An. We will write Y0,p = Yn+1,p = 1 for p ∈ Z. We choose the
height function

ξ(i) := i (i ∈ I ),

corresponding to a quiver Q of type An with linear orientation. We define the fol-
lowing family of irreducible representations in Cξ :

P := {L(i, j) := L(Yi,iYj,j+2) | 0≤ i ≤ j ≤ n+ 1
}
.

The simple modules L(i, j) are evaluation representations whose q-characters are
known (see references in [2]). In particular they are prime. We have χ̃q(L(0, j))=
Yj,j+2 and if i 	= 0 we have

χ̃q

(
L(i, j)

)= Yi,iYj,j+2
(
1+A−1

i,i+1 + (Ai,i+1Ai+1,i+2)
−1 + · · ·

+ (Ai,i+1Ai+1,i+2 · · ·Aj−1,j )
−1).

Dividing both sides by Yi,iYj,j+2 and setting ti := A−1
i,i+1, we see that this for-

mula for the renormalized truncated q-characters coincides with the formula for
F -polynomials computed in [23, Example 1.14]. It is easy to deduce from this that
we have the following relations in Rξ (also obtained in [19]):

[
L(i, k)

][
L(j, l)

]= [L(i, l)
][
L(j, k)

]+ [L(i, j − 1)
][
L(k+ 1, l)

]

if 0≤ i < j ≤ k < l ≤ n+ 1. (5)

Therefore, comparing with (4), we see that the assignment

xab �→
[
L(a, b− 1)

]
(0≤ a < b ≤ n+ 2)

extends to an isomorphism from the cluster algebra A to the Grothendieck ring Rξ .
This isomorphism maps the seed Σ to

L(0,1)→ L(0,2)→ ·· · → L(0, n)
↓ ↖ ↓ ↖ ↖ ↓

L(1,1) L(2,2) · · · L(n,n)



Monoidal Categorifications of Cluster Algebras of Type A and D 183

where the L(i, i) (1≤ i ≤ n) correspond to frozen variables.
We say that (i, k) and (j, l) are crossing if and only if i < j ≤ k < l or

j < i ≤ l < k. Otherwise, we say that (i, k) and (j, l) are noncrossing. The next
proposition is similar to the classical irreducibility criterion for prime representa-
tions of Uq(Lsl2), except that here, spectral parameters are replaced by nodes of the
Dynkin diagram.

Proposition 2 The module L(i, j)⊗L(k, l) is simple if and only if (i, j) and (k, l)

are noncrossing.

Proof The “only if” part follows from (5). We prove the “if” part. Let M =
Yi,iYj,j+2Yk,kYl,l+2. We have χ̃q(L(M)) � χ = χ̃q(L(i, j) ⊗ L(k, l)). We prove
the other inequality. By symmetry, we are reduced to the following two cases:

(a) if j < k or (k = 0 and i, j ≤ l) or (1 ≤ k ≤ i, j = l), then χ contains a unique
dominant monomial, namely M , so L(i, j)⊗L(k, l) is simple.

(b) if 1≤ k ≤ i ≤ j < l, then χ contains exactly two dominant monomials, namely
M and

M ′ =M(Ak,k+1Ak+1,k+2 · · ·Aj,j+1)
−1.

So it suffices to prove that M ′ occurs in χ̃ (L(M)). First, by Sect. 3.4, the monomial

M ′′ =M(Ak,k+1Ak+1,k+2 · · ·Ai−1,i )
−1

occurs in χ̃ (L(M)). Hence LJ (M
′′) occurs in the decomposition (3) for J =

{i, . . . , n}. But L(Yi,−iYj,−j−2)⊗L(Yi,−i ) is minuscule and simple. Hence, by [12,
Corollary 4.11], the tensor product L(Yi,iYj,j+2) ⊗ L(Yi,i) is simple, isomorphic
to L(Y 2

i,iYj,j+2). So Y 2
i,iYj,j+2(Ai,i+1 · · ·Aj,j+1)

−1 occurs in χ̃ (L(Y 2
i,iYj,j+2)) and

M ′ occurs in LJ (M
′′). �

Therefore, as explained in Sect. 3.5, we get the following:

Theorem 2 Cξ is a monoidal categorification of the cluster algebra A of type An.

Remark 1 (a) It follows from Theorem 2 that when ξi = i, every simple module in
Cξ can be factorized as a tensor product of evaluation representations.

(b) For an arbitrary ξ , a theorem similar to Theorem 2 can be proved in an analog
but slightly more complicated way. A subset J = [i, j ] ⊂ I (1 ≤ i ≤ j ≤ n) has a
natural orientation induced by ξ . Let J+ (resp. J−) be the set of sources (resp. sinks)
of J . The prime objects in Cξ are the simple modules

L(J ) := L

(∏

k∈J−
Yk,ξk

∏

k∈J+
Yk,ξk+2

)
, L(i) := L(Yi,ξi ),

L′(i) := L(Yi,ξi+2).



184 D. Hernandez and B. Leclerc

Note that L(J ) is not an evaluation representation if J has several sources or several
sinks.

(c) Different choices of ξ yield different subcategories Cξ . These subcategories
seem to be quite similar, but they are not equivalent in general. For example, in
type A3, consider the categories Cξ with ξi = i and Cφ with φ1 = 1, φ2 = 2, φ3 =
1. Both categories are monoidal categorifications of a cluster algebra of type A3
with 3 coefficients. The category Cφ was studied in [15]. In particular, we the have
following relation in the Grothendieck ring of Cφ :

[
L(Y1,1Y2,4Y3,1)

][
L(Y2,2)

]= [L(Y1,1)
][
L(Y3,1)

][
L(Y2,2Y2,4)

]

+ [L(Y1,1Y1,3)
][
L(Y3,1Y3,3)

]
.

But by (5), in the Grothendieck ring of Cξ , a simple constituent of the tensor product
of two simple prime representations can be factorized as a tensor product of at most
2 non trivial representations. Hence, Cξ and Cφ are not equivalent.

5 Type D

5.1 A Cluster Algebra of Type D

Let A be a cluster algebra of type Dn in the Fomin-Zelevinsky classification. The
clusters of A are now encoded by the centrally symmetric triangulations of a regular
polygon P with 2n vertices, labeled by a = 0, 1, . . . ,2n− 1 [3, Sect. 12.4] (note
that a more modern way to record the combinatorics of a cluster algebra of type
Dn would be by means of a once-punctured n-gon and tagged arcs [6]). A segment
[a, b] joining two vertices is called a diagonal if it meets the interior of P, and a
side otherwise. Let Θ be the 180◦ rotation of P, and for a vertex a, write a =Θ(a).
Each non frozen cluster variable is labeled by a Θ-orbit on the set of diagonals of P.
More precisely, to each non trivial Θ-orbit ([a, b], [a, b]) (with b 	= a) we attach a
single cluster variable

xab = xab.

But we associate with every Θ-fixed diagonal [a, a] (or diameter) two different
cluster variables

xaa 	= xãa.

We may think of [a, a] and [̃a, a] as two different Θ-orbits, supported on the same
segment but with two different colors. Given two Θ-orbits, one of which at least
being non trivial, we say that they are noncrossing if they do not meet in the interior
of P. We also declare that two Θ-fixed diagonals are noncrossing if and only if they
have the same support or the same color. A centrally symmetric triangulation of
P is then a maximal subset of pairwise noncrossing Θ-orbits of diagonals. Such a
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triangulation always consists of n different Θ-orbits. For instance, for n = 4, the
following are two distinct triangulations

{([1,3], [1,3]), ([2,3], [2,3]), [3,3], ˜[3,3]},
{([1,3], [1,3]), ([2,3], [2,3]), [3,3], [2,2]}.

To the Θ-orbits of the sides [a, b] of P we can also attach some frozen variables
xab = xab. We specialize

x01 = xn−1,0 = 1.

Our initial seed for the cluster algebra A will correspond to the triangulation

{
Θ
([a,n− 1]) | 1≤ a ≤ n− 2

}∪ {[n− 1, n− 1], ˜[n− 1, n− 1]}.
More precisely, it is described by the following quiver

x
˜n−1, n−1

← fn−1

↑ ↘
x1, n−1 → ·· · → xn−3, n−1 → xn−2, n−1 ← xn−2, n−1

↑ ↙ ↙ ↑ ↙ ↓ ↗
x12 · · · xn−3, n−2 xn−1, n−1 ← fn

where fn and fn−1 are two additional frozen variables, which can not be encoded
by sides of P. The principal part of the quiver (obtained by removing the frozen
vertices xi, i+1 (1 ≤ i ≤ n − 2), fn−1, fn, and the arrows incident to them) is a
Dynkin quiver Q of type Dn, hence A is indeed a cluster algebra of type Dn in the
Fomin-Zelevinsky classification.

One can easily check that, because of this particular choice of frozen variables,
A belongs to the class of cluster algebras studied in [9]. More precisely, let us label
the vertices of Q by {1, . . . , n} so that xi,n−1 lies at vertex i for i ≤ n − 1, and
x

˜n−1, n−1
lies at vertex n. Then A is the same as the algebra attached in [9] to Q and

the Weyl group element

w = c2 = (snsn−1sn−2 · · · s1)
2.

It follows from [9, Theorem 16.1(i)] that A is a polynomial ring in 2n generators.
These generators are the initial cluster variables

zi := xi,n−1 (1≤ i ≤ n− 1), zn := x
˜n−1, n−1

,

together with the new cluster variables z
†
i (1≤ i ≤ n) produced by the sequence of

mutations

μn ◦μn−1 ◦μn−2 ◦ · · · ◦μ2 ◦μ1. (6)
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Recall from [3] that, our initial cluster being fixed, the cluster variables of A also
have a natural labelling by almost positive roots. The correspondence is as follows.
First, the Θ-orbits of the initial triangulation are labeled by negative simple roots:

Θ
([i, n− 1]) �→ −αi (1≤ i ≤ n− 2), [n− 1, n− 1] �→−αn−1,

[ ˜n− 1, n− 1] �→−αn.

Any other Θ-orbit x is mapped to the positive root
∑

i ciαi , where the diagonals
representing x cross the diagonals representing −αi at ci pairs of centrally symmet-
ric points (counting an intersection of two diameters of different colors and support
as one such pair).

In [22, 23], a different labelling for the cluster variables is used. First the choice
of an acyclic initial seed is encoded by the choice of a Coxeter element c. For our
choice of initial seed, this Coxeter element is

c= snsn−1sn−2 · · · s1.

Next the cluster variables are labeled by weights of the form

cm'i

(
i ∈ I, 0≤m≤ h(i, c)

)
,

where h(i, c) is the smallest integer such that ch(i,c)'i = w0'i . The correspon-
dence between the two labellings is as follows. To the fundamental weight 'i

corresponds −αi , and to the weight cm'i (m ≥ 1) corresponds the positive root
β = cm−1'i − cm'i .

Example 1 We illustrate all these definitions in the case n= 4. Here P is a regular
octogon, with vertices labeled by 0,1,2,3,0,1,2,3. Our choice of initial triangu-
lation is

{([1,3], [1,3]), ([2,3], [2,3]), [3,3], ˜[3,3]},
which corresponds to the Coxeter element c = s4s3s2s1. The sixteen Θ-orbits of
diagonals (represented by one of their elements), and the corresponding indexings
by almost positive roots, and by weights, are given in the table below:

[1,3] −α1 '1

[2,3] −α2 '2

˜[3,3] −α3 '3

[3,3] −α4 '4

[0,2] α1 c3'1

[1,3] α2 c2'1

[2,2] α3 c'3

˜[2,2] α4 c'4

[0,3] α1 + α2 c3'2

[1,1] α2 + α3 c2'4

˜[1,1] α2 + α4 c2'3

[0,0] α1 + α2 + α3 c3'3

˜[0,0] α1 + α2 + α4 c3'4

[2,1] α2 + α3 + α4 c'2

[2,0] α1 + α2 + α3 + α4 c'1

[1,0] α1 + 2α2 + α3 + α4 c2'2
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5.2 Cluster Structure on Cξ

Let g be of type Dn. We will write Y0,p = Yn+1,p = 1 for p ∈ Z. We choose the
height function ξi = n− 1− i if i < n and ξn = 0. This induces a partial order � on
{1, . . . , n} defined by

i ≺ j ⇐⇒ ξi < ξj .

Note that n − 1 and n are not comparable for �. Moreover, for convenience, we
extend this to {0, . . . , n+ 1} by declaring that 0 is a maximal element and n+ 1 a
minimal element for �.

We define the following family P of representations in Cξ :

L(i, j)= L(Yi,ξi Yj,ξj+2) (n+ 1� i � j � 0),

L(i, j)† = L(Yn,0Yn−1,0Yi,ξi+2Yj,ξj+2) (n− 2� j ≺ i � 0).

Since A and Rξ are both polynomial rings over Z with 2n generators, the assign-
ment

zi �→
[
L(n+ 1, i)

]= [L(Yi,ξi+2)
]
, z

†
i �→

[
L(i,0)

]= [L(Yi,ξi )
]

(1≤ i ≤ n),

extends to a ring isomorphism ι : A ∼→Rξ . Thus Rξ is endowed with the structure
of a cluster algebra. Moreover, using the T -system equations for calculating the
products

[
L(Yi,ξi )

][
L(Yi,ξi+2)

]= ziz
†
i ,

and comparing them with the exchange relations involved in the sequence of muta-
tions (6), we can easily check that the frozen variables of A are mapped by ι to the
classes [L(i, i)] = [L(Yi,ξi Yi,ξi+2)]. More precisely,

ι(fn−1)=
[
L(n− 1, n− 1)

]
, ι(fn)=

[
L(n,n)

]
,

ι(xi,i+1)=
[
L(i, i)

]
(1≤ i ≤ n− 2).

Therefore ι maps the initial seed of A to

L(n+ 1, n− 1)← L(n− 1, n− 1)
↑ ↘

L(n+ 1,1)→ L(n+ 1,2)→ ·· · → L(n+ 1, n− 2)← L(n− 2, n− 2)
↑ ↙ ↑ ↙ ↙ ↓ ↗

L(1,1) L(2,2) · · · L(n+ 1, n) ← L(n, n)
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Let us compute the truncated q-characters of the representations in P . As in
Sect. 4.2, the modules L(i, j) are prime minimal affinizations. We have

χ̃q

(
L(n+ 1, j)

)= Yj,ξj+2,

χ̃q

(
L(i, j)

)= Yi,ξi Yj,ξj+2
(
1+A−1

i,ξi+1 + · · · + (Ai,ξi+1 · · ·Aj−1,ξj )
−1)

(n− 1� i),

χ̃q

(
L(n, j)

)= Yn,0Yj,ξj+2
(
1+A−1

n,1χj

)
(0≤ j ≤ n− 2),

where χj := 1+A−1
n−2,2 + · · · + (An−2,2 · · ·Aj+1,ξj )

−1. In general the L(i, j)† are
not minimal affinizations. However, we have:

Lemma 3 For n− 2� j ≺ i � 0, the representation L(i, j)† is prime and

χ̃q

(
L(i, j)†)= Yn,0Yn−1,0Yi,ξi+2Yj,ξj+2

× (1+ (A−1
n−1,1 +A−1

n,1

)
χj +A−1

n−1,1A
−1
n,1χiχj

)
.

Proof As

χ̃q

(
L(i, j)†)� χ̃q

(
L(n, j)⊗L(n− 1, i)

)

and

χ̃q

(
L(i, j)†)� χ̃q

(
L(n, i)⊗L(n− 1, j)

)
,

there are A,B � χj and C � χiχj such that

χ̃q

(
L(i, j)†)= Yn,0Yn−1,0Yi,ξi+2Yj,ξj+2

(
1+A−1

n−1,1A+A−1
n,1B +A−1

n,1A
−1
n−1,1C

)
.

From Proposition 2 with J = {1, . . . , n− 1}, we have

Yn,0LJ (Yn−1,0Yj,n−j+1)LJ (Yi,n−i+1)= LJ (Yn,0Yn−1,0Yi,n−i+1Yj,n−j+1).

Hence, by Sect. 3.4, we have A = χj . The proof that B = χj is analog. Similarly,
from Proposition 2 with J = {1, . . . , n− 2}, we have

LJ (Yn−2,1Yi,n−i+1)LJ (Yn−2,1Yj,n−j+1)= LJ

(
Y 2
n−2,1Yi,n−i+1Yj,n−j+1

)
.

So

C = (Y 2
n−2,1Yi,n−i+1Yj,n−j+1

)−1
χ̃q

(
L
(
Y 2
n−2,1Yi,n−i+1Yj,n−j+1

))= χiχj .

This explicit formula shows that χ̃q(L(i, j)†) can not be factorized and so L(i, j)†

is prime. �
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Let P ′ :=P \ {L(i, i) | 1≤ i ≤ n}. We introduce the following bijection between
the non frozen cluster variables of A and the representations in P ′.

xij �→ L(j − 1, i) (0≤ i ≤ j − 2≤ n− 3),

xi j �→ L(j, i)† (0≤ j < i ≤ n− 2),

xi i �→ L(n− 1, i) (0≤ i ≤ n− 2),

x
ĩ i

�→ L(n, i) (0≤ i ≤ n− 2),

xi,n−1 �→ L(n+ 1, i) (1≤ i ≤ n− 2),

x
˜n−1, n−1

�→ L(n+ 1, n− 1),

xn−1, n−1 �→ L(n+ 1, n).

One can check that under this correspondence, the renormalized truncated q-
characters for the representations in P ′ coincide with the F -polynomials of the
cluster variables of A calculated in [22, 23]. One then deduces that this bijection
is the restriction of the ring automorphism ι to the set of non frozen cluster vari-
ables.

Example 2 We continue Example 1. The table below gives the list of cluster vari-
ables of A together with the corresponding representations of P ′ and their truncated
q-characters. Here ti =A−1

i,ξi+1.

x02 L(1,0) Y1,2(1+ t1)

x03 L(2,0) Y2,1(1+ t2 + t2t1)

x13 L(2,1) Y1,4Y2,1(1+ t2)

x10 L(0,1)† Y1,4Y3,0Y4,0(1+ t3 + t3t2 + t4 + t4t2 + t3t4 + 2t3t4t2 + t3t4t
2
2

+t3t4t2t1 + t3t4t
2
2 t1)

x20 L(0,2)† Y2,3Y3,0Y4,0(1+ t3 + t4 + t3t4 + t3t4t2 + t3t4t2t1)

x2,1 L(1,2)† Y1,4Y2,3Y3,0Y4,0(1+ t3 + t4 + t3t4 + t3t4t2)

x00 L(3,0) Y3,0(1+ t3 + t3t2 + t3t2t1)

x11 L(3,1) Y1,4Y3,0(1+ t3 + t3t2)

x22 L(3,2) Y2,3Y3,0(1+ t3)

x
0̃0

L(4,0) Y4,0(1+ t4 + t4t2 + t4t2t1)

x
1̃1

L(4,1) Y1,4Y4,0(1+ t4 + t4t2)

x
2̃2

L(4,2) Y2,3Y4,0(1+ t4)

x13 L(5,1) Y1,4

x23 L(5,2) Y2,3

x
3̃3

L(5,3) Y3,2

x33 L(5,4) Y4,2
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We now describe which tensor products of representations of P are simple.

Proposition 3 We have the following:

(a) Suppose {i, k} 	= {n− 1, n}. Then L(i, j)⊗ L(k, l) is not simple if and only if
i ≺ k � j ≺ l or k ≺ i � l ≺ j .

(b) Suppose {i, k} = {n− 1, n}. Then L(i, j)⊗L(k, l) is simple if and only if j = l

or i = j or k = l.
(c) Suppose j ≺ i and l ≺ k. Then L(i, j)† ⊗ L(k, l)† is simple if and only if j �

l ≺ k � i or l � j ≺ i � k.
(d) Suppose i 3 n − 2 and l ≺ k. Then L(i, j)⊗ L(k, l)† is simple if and only if

i = j or i ≺ j � l ≺ k or l ≺ k ≺ i ≺ j or l ≺ i ≺ j � k.
(e) Suppose i ≺ n − 2 and l ≺ k. Then L(i, j)⊗ L(k, l)† is simple if and only if

i = j or ((i 	= n+ 1) and l � j � k) or (i = n+ 1 and k � j ).

Proof In each case, the proof of non simplicity follows from the identification of
truncated q-characters with F -polynomials in the last section. So we treat only the
proof of the simplicity.

(a) The irreducibility is proved as in type A, except for the tensor product

L(n+ 1, n)⊗L(n+ 1, n− 1)

which is minuscule and so is simple.
(b) If n− 2� j = l or i = j or k = l, L(n, j)⊗L(n− 1, j) is minuscule and so

is simple.
(c) By symmetry, we can assume j � l. Suppose that j � l ≺ k � i and

let us prove that L(i, j)† ⊗ L(k, l)† is simple. Let M be its highest weight
monomial. It suffices to prove that any dominant monomial m occurring in
χ̃ (L(i, j)†)χ̃(L(k, l)†) occurs in χ̃q(L(M)). If A−1

n−1,1 or A−1
n,1 is not a factor of

mM−1, this is proved as for type A. If A−2
n−1,1 is a factor of mM−1, first from

Sect. 3.4 MA−2
n−1,1 occurs and LJ (MA−2

n−1,1) occurs in the decomposition (3) for
J = {1, . . . , n− 2, n}. But from type A

LJ

(
MA−2

n−1,1

)= Y−2
n−1,2LJ (Yn,0Yn−2,1Yi,n−i+1Yj,n−j+1)

×LJ (Yn,0Yn−2,1Yk,n−k+1Yl,n−l+1)

and we can conclude by Sect. 3.4. This is analog if A−2
n,1 is a factor. So we can assume

that A−1
n,1 and A−1

n−1,1 are factors with power 1. Then m is one of the following
monomials

MA−1
n,1A

−1
n−1,1A

−1
n−2,2 · · ·A−1

j,n−j with multiplicity 5,

MA−1
n,1A

−1
n−1,1A

−1
n−2,2 · · ·A−1

l,n−l with multiplicity 2,



Monoidal Categorifications of Cluster Algebras of Type A and D 191

MA−1
n,1A

−1
n−1,1A

−1
n−2,2 · · ·A−1

k,n−k with multiplicity 1,

MA−1
n,1A

−1
n−1,1A

−2
n−2,2 · · ·A−2

j,n−jA
−1
j+1,n−j−1 · · ·A−1

l,n−l with multiplicity 1.

Then we conclude as above. For example for the last monomial of the list,

M ′ :=MA−1
n,1A

−1
n−2,2 · · ·A−1

j,n−j

occurs in L{n,n−2,...,j}(M) from type A. Hence M ′Aj,n−j occurs in

L{n−1,n−2,...,j}
(
MA−1

n,1

)
,

but M ′ does not. So L{n−1,n−2,...,j}(M ′) occurs in the decomposition (3). Since M

is a monomial in L{n−1,n−2,...,1}(M ′), we get the result.
(d) and (e): The proof is analog. �

Proposition 3 implies that the tensor products of representations of P corre-
sponding to compatible cluster variables are simple. Indeed, two cluster variables
are compatible if and only if the corresponding diagonals in P do not cross (with the
convention that diameters of the same color do not cross each other) [3, Sect. 12.4].
This coincides with the conditions of Proposition 3.

Example 3 We continue Example 1. The following table lists the compatible pairs
of non frozen variables of A, and indicates in which case of Proposition 3 the cor-
responding pairs of simple modules fall.

(x02, x03) (a) (x02, x00) (a) (x02, x0̃0
) (a) (x02, x22) (a)

(x02, x2̃2
) (a) (x02, x23) (a) (x02, x33) (a) (x02, x3̃3

) (a)

(x03, x00) (a) (x03, x0̃0
) (a) (x03, x13) (a) (x03, x33) (a)

(x03, x3̃3
) (a) (x00, x13) (a) (x00, x11) (a) (x00, x22) (a)

(x00, x33) (a) (x
0̃0
, x13) (a) (x

0̃0
, x

1̃1
) (a) (x

0̃0
, x

2̃2
) (a)

(x
0̃0
, x

3̃3
) (a) (x13, x11) (a) (x13, x1̃1

) (a) (x13, x13) (a)

(x13, x33) (a) (x13, x3̃3
) (a) (x11, x13) (a) (x11, x22) (a)

(x11, x33) (a) (x
1̃1
, x13) (a) (x

1̃1
, x

2̃2
) (a) (x

1̃1
, x

3̃3
) (a)

(x13, x22) (a) (x13, x2̃2
) (a) (x13, x23) (a) (x13, x33) (a)

(x13, x3̃3
) (a) (x22, x23) (a) (x

2̃2
, x23) (a) (x23, x33) (a)

(x23, x3̃3
) (a) (x33, x3̃3

) (a) (x00, x0̃0
) (b) (x11, x1̃1

) (b)

(x22, x2̃2
) (b) (x10, x20) (c) (x20, x21) (c) (x13, x10) (d)

(x02, x20) (d) (x22, x21) (e) (x22, x20) (e) (x11, x21) (e)

(x11, x20) (e) (x11, x10) (e) (x00, x20) (e) (x00, x10) (e)

(x
2̃2
, x21) (e) (x

2̃2
, x20) (e) (x

1̃1
, x21) (e) (x

1̃1
, x20) (e)

(x
1̃1
, x10) (e) (x

0̃0
, x20) (e) (x

0̃0
, x10) (e) (x31, x21) (e)
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Now, as explained in Sect. 3.5, we may conclude that:

Theorem 3 Cξ is a monoidal categorification of the cluster algebra A of type Dn.

Acknowledgements The first author would like to thank A. Zelevinsky for explaining the results
in [22, 23]. The authors are grateful to the referee for useful comments.
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A Classification of Roots of Symmetric
Kac-Moody Root Systems and Its Application

Kazuki Hiroe and Toshio Oshima

Abstract We study Weyl group orbits in symmetric Kac-Moody root systems and
show a finiteness of orbits of roots with a fixed index. We apply this result to the
study of the Euler transform of linear ordinary differential equations on the Riemann
sphere whose singular points are regular singular or unramified irregular singular
points. The Euler transform induces a transformation on spectral types of the differ-
ential equations and it keeps their indices of rigidity. Then as a generalization of the
result by Oshima (in Fractional calculus of Weyl algebra and Fuchsian differential
equations, MSJ Memoirs 28, 2012), we show a finiteness of Euler transform orbits
of spectral types with a fixed index of rigidity.

1 Introduction

Recall the definition of symmetric Kac-Moody root systems [3] (precise definition
of terminology appearing below can be found in the latter section, see Sect. 2.1).
For a finite index set I , define a lattice Q :=⊕i∈I Zαi with a basis {αi | i ∈ I } and
consider a symmetric bilinear form on Q which satisfies

〈αi,αi〉 = 2,

〈αi,αj 〉 = 〈αj ,αi〉 ∈ Z≤0 (i, j ∈ I and i 	= j).

The Weyl group W acting on Q is generated by simple reflections, σi(β) :=
β − 〈β,αi〉αi for β ∈Q and i ∈ I .
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Then a certain subset of Q, called the set of roots, is defined by

Δ :=
⋃

i∈I
Wαi 4WF 4−WF.

Here F := {α ∈ Q+ \ {0} | suppα is connected and 〈α,αi〉 ≤ 0 for all i ∈ I } with
Q+ :=⊕

i∈I Z≥0αi . In particular we call Δre :=⋃
i∈I Wαi the set of real roots

and Δim :=WF 4 −WF the set of imaginary roots. If α ∈Δ is in Q+, it is called
a positive root. Moreover we call elements in F basic positive imaginary roots or
shortly basic roots. Then we call the triple (I, 〈 , 〉, Δ) or shortly (I, 〈 , 〉) the
symmetric Kac-Moody root system.

A symmetric Kac-Moody root system (〈 , 〉1, I1) is a subsystem of a symmetric
Kac-Moody root system (〈 , 〉2, I2) if there is an injective map φ of I1 to I2 such
that 〈αi,αj 〉1 = 〈αφ(i), αφ(j)〉2 for i, j ∈ I1 and in this case the root of (〈 , 〉1, I1)

is naturally identified with a root of (〈 , 〉2, I2). Thus we can define the universal
symmetric Kac-Moody root system by the inductive limit of symmetric Kac-Moody
root systems under the injective maps defining subsystems.

One of our main aim is to classify the orbits of roots under the action of the Weyl
group in the universal symmetric Kac-Moody root system. Since the real roots form
a single orbit of the Weyl group, it is sufficient to classify the orbits contained in
the set of positive imaginary roots, i.e., elements in Δ+

im =Δim ∩Q+ =WF . Thus
what we need to do is to classify elements in F , i.e., basic roots.

For an element α in a root lattice, the index of α is defined by idxα := 〈α,α〉.
The classification of basic roots with index 0 is known as follows. Dynkin diagrams
of supports of them are classified by the following 5 cases.

Moreover for each diagram, there exists a unique indivisible root and any basic
roots are scalar multiples of one of these indivisible roots. Here α =∑i∈I miαi is
indivisible if the greatest common divisor of coefficients mi is 1.

Hence in this case, the classification of Weyl group orbits of imaginary roots
is obtained by the classification of indivisible basic roots which correspond to the
above finite cases.

One of the main results in this paper is to show a finiteness of basic roots with a
general index. For this purpose we introduce the shape of an element in a root lattice.
Fix a root lattice Q=⊕i∈I Zαi and α =∑i∈I miαi ∈Q. For the Dynkin diagram
of the support of α, we attach each coefficient mi of α to the vertex corresponding to
αi , then we obtain the diagram with the coefficients, which we call the shape of α.
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We say i1, . . . , ik ∈ {i ∈ I | mi 	= 0} is a constant connected sequence of α if
mi1 = · · · =mik and the Dynkin diagram of {αi1, . . . , αik } is

.

Theorem 1 (see Corollary 1) If a basic root α = ∑
i∈I miαi contains a con-

stant connected sequence i1, . . . , ik of I satisfying k > 2 and 〈α,αiν 〉 = 0 for
ν = 2, . . . , k − 1, then the shape obtained from that of α by shrinking or extend-
ing the length of the sequence corresponds to a basic root with the same index.

Expressing such a sequence by , we have shapes of roots which may contain
such expressions. We call these shapes reduced shapes.

Then the basic roots with a fixed nonzero index are classified by a finite number
of reduced shapes. The indivisible basic roots with index 0 are also classified by a
finite number of reduced shapes.

Moreover proceeding further from the classification of basic roots with index 0
seen above, we give the complete list of shapes of basic roots with index −2 in
Sect. 2.4.

Another aim of this paper is to give a classification of orbits of linear ordinary
differential equations under the action of the Euler transform as an application of
our classification of basic roots.

Consider a Fuchsian system of ordinary differential equations on the Riemann
sphere of the form d

dx
Y (x) =∑p

i=0
Ai

x−ci
Y (x) where Ai (i = 0, . . . , p) are n × n

matrices with coefficients in C and Y(x) is a C
n-valued function. For this system,

W. Crawley-Boevey [2] constructs a representation of a quiver, more precisely, a
deformed preprojective algebra, with a star-shaped quiver. His result shows that for
an irreducible Fuchsian system, the dimension vector of the corresponding repre-
sentation of the quiver is a positive root in the Kac-Moody root system of its quiver.
Then the index of rigidity of the Fuchsian system equals the index of the root and
reflection functors on representations of the quiver are obtained by algebraic trans-
formations on Fuchsian systems, the Euler transform and the addition. Thus to study
orbits of irreducible Fuchsian systems under the actions of the Euler transform and
the additions, we can apply the classification of Weyl group orbits of the roots.

In [10, 11] the corresponding results for Fuchsian single differential equations
together with the analysis of their global solutions, namely, integral representations
of the solutions and the connection problem etc., are studied.

In [7], we consider a generalization of the result of Crawley-Boevey to ordi-
nary differential equations whose singular points are regular singular or unramified
irregular singular points. As in the case of the Fuchsian equations, there exists a
Kac-Moody root system attached to a differential equation such that its spectral
type corresponds to an element in the root lattice (see Theorem 6, Theorem 7 and
Definition 11). Here a spectral type is a tuple of integers representing multiplici-
ties of characteristic exponents of local formal solutions of a differential equation
where we ignore integer differences of characteristic exponents (see Sect. 3.1.2 for
the precise definition).
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Thus for spectral types it shall be defined an analogy of basic roots, called basic
pairs (see Definition 9). Then we shall consider a classification of basic pairs in
Sect. 3.3 as an application of that of basic roots.

Combining this result with Theorem 1, we show the following theorem which
generalizes the result of the second author [9, 11] in the Fuchsian case.

Theorem 2 (see Theorem 4) Fix an integer r ≥ 0 and consider linear differential
equations with index of rigidity −r on the Riemann sphere whose singular points
are regular singular or unramified irregular singular points.

Then we have the finiteness of orbits of spectral types of the differential equations
under the actions of the Euler transform and the addition. Namely, if r > 0, there
exist only a finite number of orbits and if r = 0, there exist a finite number of orbits
of indivisible spectral types.

Finally in Sect. 3.3.2 and Sect. 3.3.3, we classify basic pairs with indices of
rigidity 0 and −2. This gives classifications of Euler transform orbits of differential
equations with these indices of rigidity. When all singular points are regular singular
points, these classifications are given by V. Kostov [6] and the second author [9, 11],
respectively.

2 A Classification of Basic Roots

2.1 Symmetric Kac-Moody Root Systems

Let Q :=⊕i∈I Zαi be a Z-lattice with the basis {αi | i ∈ I } where I is a finite set
of indices. The set of positive elements in Q is written by Q+ :=Q∩⊕i∈I Z≥0αi .
Fix a symmetric Z-bilinear form 〈 , 〉 on Q satisfying

〈αi,αi〉 = 2 (i ∈ I ),

〈αi,αj 〉 = 〈αj ,αi〉 ∈ Z≤0 (i, j ∈ I and i 	= j).

We call this lattice Q with the bilinear form 〈 , 〉 the symmetric Kac-Moody root
lattice.

For an element α ∈Q, we define an even integer

idxα := 〈α,α〉,
which we call the index of α. For each αi (i ∈ I ), we can define a Z-endomorphism
of Q by

σi(β)= β − 〈β,αi〉αi (β ∈Q),

which is called the simple reflection with respect to αi . The transformation group W

on Q generated by all these σi (i ∈ I ) is called the Weyl group.
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For this lattice Q, we associate a diagram which consists of edges and vertices as
follows. Regard the elements in Π := {αi | i ∈ I } as vertices. Connect two vertices
αi, αj ∈Π by n edges if 〈αi,αj 〉 = −n with a positive integer n. We express this
by

We call the diagram constructed as above the Dynkin diagram of Q.
Let α =∑i∈I miαi ∈Q with mi ∈ Z. The support of α is suppα := {αi |mi 	=

0}. We say the support of α is connected if for any two distinct elements αi, αj ∈
suppα, there exists a sequence αi = αi1, αi2 , . . . , αir = αj of elements of suppα

such that 〈αik , αik+1〉 	= 0 for k = 1, . . . , r − 1. We define that α is indivisible if the
greatest common divisor of {mi | i ∈ I } equals 1.

Recall the root system of Q. Each element αi (i ∈ I ) of the basis of Q is called
the simple root. The real roots are the elements of

Δre :=
⋃

i∈I
Wαi,

i.e., a real root belongs to the Weyl group orbit of a simple root αi . Define the
fundamental subset of Q,

F := {α ∈Q+ \ {0} | suppα is connected and 〈α,αi〉 ≤ 0 for all i ∈ I
}
.

Then the imaginary roots are the elements of

Δim :=WF 4−WF.

Here WF = {wα | w ∈W, α ∈ F } and −WF = {−α | α ∈WF }. The root is the
element of Δ := Δre 4 Δim. The root in Δ+ := Δ ∩Q+ and that in F are called
positive and basic, respectively.

In general the symmetric Kac-Moody root system determined by the pair 〈 , 〉 and
I shall be denoted by (〈 , 〉, I ). A symmetric Kac-Moody root system (〈 , 〉1, I1)

is a subsystem of a symmetric Kac-Moody root system (〈 , 〉3, I3) if there is a map
φ of I1 to I3 such that 〈αi,αj 〉1 = 〈αφ(i), αφ(j)〉3 for i, j ∈ I1 and in this case the
root of (〈 , 〉1, I1) is naturally identified with a root of (〈 , 〉3, I3).

We define a root α of (〈 , 〉1, I1) and a root α′ of (〈 , 〉2, I2) are in a same
Weyl group orbit in a universal symmetric Kac-Moody root system if there exists a
symmetric Kac-Moody root system (〈 , 〉3, I3) such that (〈 , 〉1, I1) and (〈 , 〉2, I2)

are subsystems of (〈 , 〉3, I3) and moreover α and α′ are in the same orbit under
the action of the Weyl group of (〈 , 〉3, I3). Namely, the universal symmetric Kac-
Moody root system is defined by the inductive limit of symmetric Kac-Moody root
systems under the injective maps defining subsystems.

Our purpose is to classify the Weyl group orbits in the universal symmetric Kac-
Moody root system. Since the real roots form a single Weyl group orbit, it is suffi-
cient to classify the orbits contained in the set of positive imaginary roots.
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For an element α =∑i∈I miαi ∈Q, we consider the diagram of suppα, that is,
we restrict the Dynkin diagram of Π to suppα. Then we attach each coefficient mi

of α to the vertex corresponding to αi and obtain the diagram of the support of α

with the coefficients. We call this diagram with coefficients the shape of α.
For example, if α =m1αi1 +m2αi2 +m3αi3 ∈Q with the diagram of the support

, the diagram with coefficients is

Note that each Weyl group orbit contained in the set of positive imaginary roots
has a unique representative in F and therefore the orbits containing positive imagi-
nary roots are classified by the shapes of the basic roots in the orbits.

2.2 Basic Roots with a Fixed Index

First we examine some properties of the shapes of basic roots.
Fix an indivisible basic root

α =
∑

i∈I
miαi (mi ∈ Z≥0) (1)

in this section and define subsets of I

⎧
⎪⎨

⎪⎩

Ī = {i ∈ I |mi > 0},
I0 = {i ∈ Ī | 〈α,αi〉 = 0},
I1 = Ī \ I0.

(2)

Lemma 1 Let {i1, . . . , ik} ⊂ J for a subset J of Ī such that iν 	= iν′ for 1 ≤ ν <

ν′ ≤ k and 〈αiν , αiν+1〉 	= 0 for ν = 1, . . . , k − 1. Then we call that i1, . . . , ik is a
connected sequence of length k in J . Moreover if mi1 =mi,2 = · · · =mi,k , we call
i1, . . . , ik is a constant connected sequence.

(i) Suppose i1, i2 is a connected sequence in Ī with i2 ∈ I0. Then

mi1 ≤ 2mi2 (3)

and if mi1 = 2mi2 ,

〈αi1, αi2〉 = −1 (4)

and 〈αi2, αν〉 = 0 for ν ∈ Ī \ {i1, i2}.
Furthermore if i1 ∈ I0, then (4) is valid or the shape of α is
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(ii) Fix i0 ∈ I0 and put Ji0 = {i ∈ I0 | 〈αi,αi0〉< 0}. Then #Ji0 ≤ 4 and the equal-

ity holds if and only if the shape of α is If #Ji0 = 3, then mi <mi0 for

i ∈ Ji0 or {mi | i ∈ Ji0} = {mi0,
1
2mi0,

1
2mi0}.

(iii) Let i1, . . . , ik be a connected sequence in I with k ≥ 3. Suppose iν ∈ I0 for
ν = 2, . . . , k− 1 and mi1 ≥mi2 . Then

mi1 −mik ≥ (k − 1)(mi1 −mi2).

If mi1 −mik = (k − 1)(mi1 −mi2), then

〈αi,αiν 〉 =
{
−1 (i = iν−1 or iν+1 and 1 < ν < k),

0 (i ∈ Ī \ {iν−1, iν, iν+1} and 1 < ν < k).

If mi1 −mik−1 = (k− 2)(mi1 −mi2) and mi1 −mik > (k− 1)(mi1 −mi2), then there
exists j ∈ Ī such that

〈αik−1 , αj 〉< 0 and j ∈ I1 (5)

or

{
mi1 =mi2, ik 	= j,mik−1 = 2mik = 2mj

and 〈αik−1, αj 〉 = 〈αik−1, αik 〉 = −1.
(6)

Suppose mi1 =mi2 = · · · =mik . Then {j ∈ Ī | 〈αiν , αj 〉< 0} = {iν−1, iν+1} for ν =
2, . . . , k − 1. Moreover suppose 〈αi1, αik 〉 = 0. Fix r ∈ Z>0, put m=mi1 and intro-
duce new simple roots αj1, . . . , αjr and put I ′ = (Ī ∪{j1, . . . , jr})\{i1, . . . , ik}. Then
the element α′ =∑i∈I ′ miαi with mjν = m (1 ≤ ν ≤ r) is also a basic root such
that r = 1 or j1, . . . , jr is a constant connected sequence satisfying 〈α,αjν 〉 = 0 for
ν = 2, . . . , r − 1 and idxα = idxα′. Here 〈αj ,αj1〉 = 〈αj ,αi1〉 + δr,1〈αj ,αik 〉 for
j ∈ Ī \ {i1, . . . , ik} etc.

(r = 1,2, . . .)

(iv) Suppose that i1, i2 is a connected sequence in Ī with i2 ∈ I0 and � :=mi1 −
mi2 ≥ 0. Then there exists a connected sequence i1, i2, . . . , ik in Ī such that

〈αiν , αi〉 = 0 (i ∈ Ī \ {iν−1, iν, iν+1}, ν = 2, . . . , k − 1)
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and one of the following is valid.

(a) � > 0, k�=mi1, miν =mi1 − (ν − 1)� (0≤ ν ≤ k),

and 〈αik , αi〉 = 0 (i ∈ Ī \ {ik−1, ik}):
(7)

(b) �= 0, mi1 = · · · =mik−1 =mik and there exist jν ∈ I0 for ν = 1,2

such that 2mjν =mi1, 〈αjν , αi〉 = 0 (i ∈ Ī \ {ik, jν}),
〈αjν , αik 〉 = −1, 〈αik , αi〉 = 0 (i ∈ Ī \ {ik−1, ik, j1, j2}):

(8)

(c) k� <mi1, miν =mi1 − (ν − 1)� for ν = 1, . . . , k

and there exists j ∈ I1 with 〈αik , αj 〉< 0: (9)

(d) k = 2, l = 0, mi1 =mi2 , 〈αi1, αi2〉 = −2, 〈αi2, αi〉 = 0 (i ∈ Ī \ {i1, i2})

(10)

Proof (i) Since 〈αi1, αi2〉 ≤ −1 and 〈αν,αi2〉 ∈ Z≤0 for ν ∈ Ī \ {i1, i2} and

2mi2 +mi1〈αi1, αi2〉 +
∑

ν∈I\{i1,i2}
mν〈αν,αi2〉 = 〈α,αi2〉 = 0,

we have mi1 ≤ 2mi2 and the condition mi1 = 2mi2 implies 〈αi1 , αi2〉 = −1 and
〈αν,αi2〉 = 0 for ν ∈ Ī \ {i1, i2}.

Suppose i1 ∈ I0 and 〈αi1, αi2〉<−1. Then we have mi2 ≤mi1 . In the same way
we have mi1 ≤mi2 and hence mi1 =mi2 and 〈αi1, αi2〉 = −2 and the shape of α is

(ii) We may assume #Ji0 > 2. Since the claim (i) shows 〈αi0, αν〉 = −1 and mi0 ≤
2mν for ν ∈ Ji0 and the condition i0 ∈ I0 implies 2mi0 −

∑
ν∈Ji0 mν ≥ 0, we have

#Ji0 ≤ 4. If #Ji0 = 4, 2mν =mi0 for ν ∈ Ji0 and the shape of α is given in the claim.
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Suppose #Ji0 = 3. Put Ji0 = {i1, i2, i3}with mi1 ≥mi2 ≥mi3 . Then mi1 ≤ 2mi0−
mi2 −mi3 ≤ 2mi0 − 1

2mi0 − 1
2mi0 =mi0 . If mi1 =mi0 , mi2 =mi3 = 1

2mi0 .
(iii) We may assume k = 3. Since mi1 ≥mi2 and

0= 〈α,αi2〉 = 2mi2 +mi1〈αi1, αi2〉 +mi3〈αi3, αi2〉 +
∑

ν∈I\{i1, i2, i3}
mν〈αν,αi2〉,

we have 〈αi1, αi2〉 = −1 and 2mi2 ≥mi1 +mi3 , which means mi1 −mi3 ≥ 2(mi1 −
mi2). Moreover the condition mi1 −mi3 = 2(mi1 −mi2) implies 〈αi2 , αi3〉 = −1 and
〈αν,αi2〉 = 0 for ν ∈ Ī \ {i1, i2, i3}.

Suppose 2mi2 >mi1 +mi3 and i3 ∈ I0. Then the claim (i) shows 〈αi2, αi3〉 = −1
and there exists j ∈ Ī \{i1, i2} satisfying 〈αi2, αj 〉< 0. Suppose j ∈ I0. Then 2mj ≥
mi2 , 2mi3 ≥mi2 and mi2 −mi3 −mj ≥ 2mi2 −mi1 −mi3 −mj ≥ 0 and therefore
2mj = 2mi3 =mi1 =mi2 and

〈αi2, αν〉 =
{
−1 (ν = i1, i3, j),

0 (ν ∈ Ī \ {i1, i2, i3, j}),
〈αj ,αν〉 = 0 (ν ∈ Ī \ {i2, j}),
〈αi3, αν〉 = 0 (ν ∈ Ī {i2, i3}).

Thus we have (iii) since the last claim in (iii) is clear.
(iv) The claims easily follow from (iii). �

Now we give one of our main results in this paper.

Theorem 3 Fix integers N ∈ Z≥0 and M ∈ Z>0. Let α be the basic root satisfying
the following conditions:

1. idxα =−N .
2. N 	= 0 or α is indivisible.
3. α has no constant connected sequence in I0 whose length is larger than M .

Then there are only finite shapes which can be the shape of α.

Proof Since the basic roots with index 0 are well-known as are given in the next
section, we may assume N > 0. We shall use the notation in the previous lemma.
Since

N =−
∑

i∈I1

mi〈α,αi〉 ≥
∑

i∈I1

mi, (11)

we have

mi ≤N for i ∈ I1 and #I1 ≤N. (12)
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Let i ∈ I1 and j ∈ I0 and suppose 〈αi,αj 〉< 0. Then

N =−
∑

ν∈I1

mν〈α,αν〉 ≥ −mi〈α,αi〉 ≥mimj

∣∣〈αj ,αi〉
∣∣− 2m2

i

and therefore

mj ≤m−1
i N + 2mi ≤ 3N and

∣∣〈αi,αj 〉
∣∣≤ 3N. (13)

Since N = −∑ν∈I1
mν〈α,αν〉 = −∑i∈I

∑
ν∈I1

mimν〈αi,αν〉 − 2
∑

ν∈I1
m2

ν , we
have

∑

i∈I0

∑

ν∈I1

∣∣〈αi,αν〉
∣∣≤N + 2

∑

ν∈I1

m2
ν ≤N + 2N2 ≤ 3N2 (14)

and therefore #∂I0 ≤ 3N2 by denoting ∂I0 := {i ∈ I0 |∑ν∈I1
〈αi,αν〉 	= 0}.

Fix i1 ∈ ∂I0. Suppose Ji1 := {j ∈ I0 | 〈αj ,αii 〉< 0} 	= ∅. Note that #Ji1 ≤ 3. Fix
i2 ∈ Ji1 and put

J (i1, i2)=
{
i ∈ I0 | ∃ connected sequence i1, i2, . . . , ik = i in I0

with iν /∈ ∂I0 (1 < ν < k)
}
.

Then the Dynkin diagram of J (i1, i2) equals that in (7) or (8) or (9) or

� ∈ Z>0, αj ∈ I1, J (i1, i2)= {i1, . . . , ik}, i2, . . . , ik−1 ∈ I0 \ ∂I0

(15)

or

(16)

miν =mip − (p− ν)�i, mjν =mip − (q − ν)�j , mkν =mip − (q − ν)�k,

�i, �j , �k ∈ Z>0, i2, . . . , ip, j2, . . . , jq−1, k2, . . . , kr−1 ∈ I0 \ ∂I0,

{i1, j1, k1} ∩ ∂I0 	= ∅, p ≥ 2, q ≥ 2, r ≥ 2.
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If the Dynkin diagram is not of the form (16), we have

#J (i1, i2)≤ 3N +M and mi ≤ 3N
(
i ∈ J (j1, j2)

)
(17)

by the estimate (13).
Hence we assume the Dynkin diagram is of the form (16). We may assume �i ≤

�j ≤ �k without loss of generality. Since ip ∈ I0, we have 2m2
ip
=mip(mip − �i)+

mip(mip − �j )+mip(mip − �k) and therefore

�i + �j + �k =mip .

Hence 3�k ≥mip and r ≤ 3.
If k1 ∈ ∂I0, r = 2 and mk1 ≤ 3N and we have

mip < 6N, #J (i1, i2) < 12N and mi < 6N for i ∈ J (i1, i2) (18)

because p < 6N and q < 6N .
Suppose k1 ∈ I0 \ ∂I0. Then r = 2 or r = 3.
If r = 3, �i = �j = �k = 1

3mip and we may assume i1 ∈ ∂I0 and we have the
same claim (18).

Suppose r = 2. Then �k = 1
2mip and 1

2mip > �j ≥ 1
4mip . If j1 ∈ I0 \ ∂I0, 4�j =

4�i =mip or 3�j = 6�i =mip and therefore p ≤ 5 and

#J (i1, i2) < 9 and mi ≤ 15N
(
i ∈ J (i1, i2)

)
. (19)

If j1 ∈ ∂I0, q ≤ 3 and mp ≤ 9N and therefore

#J (i1, i2)≤ 9N + 2+ 1= 9N + 3 and mi ≤ 9N
(
i ∈ J (i1, i2)

)
. (20)

Since #{(i1, i2) | i1 ∈ ∂I0, i2 ∈ I0, 〈αi1, αi2〉< 0} ≤ 3 · #∂I0 ≤ 9N2, we have

#I ≤ 9N2 · (12N +M)+ #∂I0 + #I1 ≤ 108N3 + 9MN2 + 3N2 +N,

mi ≤ 15N (i ∈ I ) and
∣∣〈αi,αj 〉

∣∣≤ 3N (i, j ∈ I ).

These estimates imply the theorem. �

The proof of Theorem 3 assures the following finiteness of the shapes.

Corollary 1 If a basic root α =∑i∈I miαi contains a constant connected sequence
i1, . . . , ik of I such that k ≥ 2 and 〈α,αiν 〉 = 0 for ν = 2, . . . , k − 1, then the shape
obtained from that of α by shrinking or extending the length of the sequence corre-

sponds to a basic root with the same index. Expressing such a sequence by
m m

,
we have shapes of roots which may contain such expressions. We call these shapes
reduced shapes. Then the basic roots with a fixed nonzero index are classified by a
finite number of reduced shapes. Also the indivisible basic roots with index 0 are
classified by a finite number of reduced shapes.
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Remark 1 The Dynkin diagram of the form star-

shaped. The basic roots whose shapes have star-shaped Dynkin diagrams are studied
and the finiteness of such basic roots with a fixed index is proved in [9]. The number
of such shapes with index 0, −2, −4, −6, . . . equals 4, 13, 36, 67, . . . , respectively,
and the list of them is given in [11].

2.3 Basic Roots with Index 0

Theorem 3 assures that in the universal symmetric Kac-Moody root system there
are only a finite number of Weyl group orbits with a fixed index. The basic roots
with index 0 are well-known and we list their shapes as follows.

These are diagrams obtained by attaching coefficients to the Dynkin diagrams called
Euclidean diagrams, which are denoted by A

(1)
n (n ≥ 1), D(1)

n (n ≥ 4), E(1)
6 , E(1)

7

and E
(1)
8 , respectively. Here m are positive integers and A

(1)
n and D

(1)
n have n+ 1

vertices. Moreover A(1)
1 and D

(1)
4 mean and , respectively. Hence

A
(1)
n for n≥ 1 shall be written by or .

2.4 Basic Roots with Index −2

In this section, we shall give a classification of the basic roots whose indices are−2.
Suppose that α =∑i∈I miαi ∈Q is basic and idxα = −2. Retain the notation in
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Sect. 2.2 and put Ni =−〈α,αi〉 ≥ 0. Then 〈α,α〉 = −∑i∈I miNi and I1 = {i ∈ I |
Ni > 0, mi > 0}.

Lemma 2 Let α ∈Q be as above. Put

Ed (αi) := −
∑

j∈Ī\{i}
〈αj ,αi〉, (21)

which equals the number of edges spread out from αi . Then we have the following.

(i) The cardinality #I1 is 1 or 2.
(ii) If I1 = {i}, there are two cases.

Case 1: mi = 2, Ni = 1 and Ed (αi)≤ 5.
Case 2: mi = 1, Ni = 2 and Ed (αi)≤ 4.

(iii) If I1 = {i, i′}, then mi =mi′ =Ni =Ni′ = 1, Ed (αi)≤ 3 and Ed (αi′)≤ 3.

Proof Since 2=∑i∈I miNi =∑j∈I1
mjNj , we have #I1 = 1 or 2. Then (mi,Ni)

= (1,2) or (2,1) if I1 = {i} and mi =mi′ =Ni =Ni′ = 1 if I1 = {i, i′}. The remain-
ing assertions follow from Ni =∑j∈Ī\{i}mj 〈αj ,αi〉 − 2mi ≥ Ed (αi)− 2mi . �

From this lemma and Lemma 1, the basic roots with index −2 are classified by
the following cases.

Case 1: I1 = {i}, mi = 2 and Ed (αi)≤ 5
Since

∑

ν∈Ī\{i}
mν

∣∣〈αi,αν〉
∣∣= 5,

one of the following Case 1.1, Case 1.2 or Case 1.3 is valid.
Case 1.1: There exists αk such that mk = 1 and 〈αi,αk〉< 0.
It follows from Lemma 1(i) that 〈αj ,αk〉 = 0 for j ∈ Ī \{i, k} and 〈αi,αk〉 = −1.

Then the element α′ = α−αk ∈Q+ satisfies 〈α′, αi〉 = 0 for i ∈ Ī \ {k} and suppα′
is connected. Hence the diagram of {αi | i ∈ Ī \{k}} is one of the Euclidean diagrams
A

(1)
n , D

(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 given in the previous section and we have the list of the

shapes with indicating αi by dotted circles.
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Note that the first shape represents etc.,

and the part · in the diagram above can be · as a special

case. Hence is a special case of the second shape.

Case 1.2: There exist αk and αk′ such that (mk,mk′) = (2,3) and 〈αi,αk〉 =
〈αi,αk′ 〉 = −1.

Then cutting the shape of the basic root between αk and αi and adding three
vertices, we have one or two Euclidean diagrams with coefficients corresponding to
some basic roots of index 0:

Here each × represents a new vertex. It follows from the shapes given in the previ-
ous section that the corresponding diagrams are D

(1)
n and E

(1)
k (k = 6, 7, 8) and we

have the following list of shapes:
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Replacing by in the above shapes, we may regard three shapes in Case
1.1 as special cases in Case 1.2.

Case 1.3: There uniquely exists αk with k ∈ Ī such that 〈αi,αk〉< 0. Put

{
j ∈ Ī | 〈αk,αj 〉< 0

}= {i, l1, . . . , lr}
with suitable r . Note that mi = 2, mk = 5, k ∈ I0, �ν ∈ I0 and 〈αlν , αk〉 = −1 for
ν = 1, . . . , r . Since

∑
j∈Ī mj 〈αk,αj 〉 = 0, we have

ml1 + · · · +mlr = 2mk −mi = 2× 5− 2= 8

and Lemma 1(iv) shows mlν ≥ 4 and mlν 	= 5 for ν = 1, . . . , r . Hence {ml1 , . . . ,mlr }
= {4,4} or {8}.

Suppose {ml1, . . . ,mlr } = {8}. Then the shape of α is

(p ≥ 1, j1 = l1)

and there exist positive integers p′ and p′′ such that p′l′ = p′′l′′ = 3p + 5. The
condition jp ∈ I0 shows

2(3p+ 5)= (3p+ 2)+ (3p+ 5)
p′ − 1

p′
+ (3p+ 5)

p′′ − 1

p′′
,

2= 3p+ 2

3p+ 5
+ p′ − 1

p′
+ p′′ − 1

p′′
,

1= 3

3p+ 5
+ 1

p′
+ 1

p′′
.

Since {1 − 1
p′ − 1

p′′ | p′, p′′ ∈ Z>0} ∩ (0,1) ⊂ [ 1
6 ,1), it follows that 3p + 5 =

8, 11, 14, 17 and 1 − 3
3p+5 = 5

8 ,
8

11 ,
11
14 ,

14
17 . Then we can conclude p = 1 and

{p′,p′′} = {2,8}, which corresponds to 5
8 = 1

2 + 1
8 .

Hence α is one of the following.
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Case 2: I1 = {i}, mi = 1 and Ed (αi)≤ 4.
Since

∑

ν∈Ī\{i}
mν

∣∣〈αi,αν〉
∣∣= 4,

one of Case 2.1, . . . , Case 2.4 is valid.
Case 2.1: The condition 〈αν,αi〉 	= 0 implies mν ≤ 1.
Then it follows from Lemma 1 that the shape of α is the following:

Hence the diagrams is obtained by connecting Euclidean diagrams A
(1)
n (n≥ 1) and

A
(1)
n′ (n′ ≥ 1) at the common vertex αi .
Case 2.2: There exists αk such that 〈αk,αi〉 	= 0 and mk = 2.

Then the shape of α is

or
Modify these diagrams with coefficients as follows.

(22)

(23)

(24)

Here we do not modify the parts in the above. Then α′, α′′ and α′′′ are elements
of F with the given shapes and their indices are 0.

The element α′ ∈ F is a basic root with the diagram D
(1)
n or E

(1)
7 or E

(1)
8 and in

this case α corresponds to the first four shapes in the list below.
The element α′′ ∈ F is an indivisible basic root with the diagram D

(1)
n and we

have the fifth shape in the list below.
The shape of α′′′ ∈ F is that of an indivisible basic root with the diagram D

(1)
n or

E
(1)
6 or E

(1)
7 or a disjoint union of the shapes D1 and D2 of indivisible basic roots

with the diagrams Dν ∈ {D(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 } for ν = 1 and 2. In each case it is

easy to write the shape of α and therefore we only give some examples in the list
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below.

Case 2.3: There exists αk such that 〈αk,αi〉 	= 0 and mk = 3.

Then α corresponds to However applying Lemma 1(iv) to

the part of this shape, we can conclude that such α does not exist.
Case 2.4: There exists αk such that 〈αk,αi〉 	= 0 and mk = 4.
In the same way as in Case 1.3 we have

{
j ∈ Ī | 〈αk,αj 〉< 0

}= {i, l1, . . . , lr},
ml1 + · · · +mlr = 2mk −mi = 7,

mlν ≥ 2, mlν 	= 4 (1≤ ν ≤ r).

Hence {m�1 , . . . ,m�r } = {3,2,2} or {5,2} or {4,3} or {7}.
Suppose {m�1, . . . ,m�r } = {7}. Then α corresponds to

(p ≥ 1, j1 = l1)
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and we have

2(3p+ 4)= 3p+ 1+ (3p+ 4)
p′ − 1

p′
+ (3p+ 4)

p′′ − 1

p′′
,

1= 3

3p+ 4
+ 1

p′
+ 1

p′′
.

Here 3
3p+4 should be 3

7 ,
3
10 ,

3
13 or 3

16 . It is easy to see that p = 2 together with
{p′,p′′} = {2,5} is the unique solution of the above equation.

If {m�1, . . . ,m�r } = {5,2}, the shape of α is obtained by replacing a part

of the shape of a basic root with index 0 by

. Hence α corresponds to one of the following:

Case 3: I1 = {i, i′}, mi =mi′ = 1, Ed (αi)≤ 3 and Ed (αi′)≤ 3.
Since

{∑
ν∈Ī\{i}mν |〈αi,αν〉| +∑ν∈Ī\{i, i′}mν |〈αi′ , αν〉| = 6,

∑
ν∈Ī\{i}mν |〈αi,αν〉| ≥ 3,

∑
ν∈Ī\{i′}mν |〈αi′ , αν〉| ≥ 3,

one of Case 3.1, . . . , Case 3.4 is valid.
Case 3.1: 〈αk,αi〉 = 〈αk,αi′ 〉 = 0 if mk > 1.
It is easy to see that the shape of α is one of the following:

The first four shapes may be expressed by
1· ·1.
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Case 3.2: There uniquely exists αk such that 〈αk,αi〉 	= 0, 〈αk,αi′ 〉 	= 0 and
mk = 2.

Then α is

Hence α has one of the following shapes:

Case 3.3: There are different elements αk and αk′ such that 〈αk,αi〉 	= 0 and
〈αk′ , αi′ 〉 	= 0 and mk =mk′ = 2.

Then the shape of α is and therefore the shape

obtained by replacing · · by are one or two

of the shapes of basic roots of index 0. Hence the list of the shapes of α is obtained

by replacing by in the shapes classified in Case 2.2.
For example we have

Consequently the shapes in Case 2.2 may be regarded as special cases of those in
Case 3.3 except for the first five shapes listed there.

Case 3.4: There uniquely exists a pair αk and αk′ such that 〈αk,αi〉 	= 0,
〈αk′ , αi′ 〉 	= 0 with mk =mk′ = 3.
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Suppose k = k′. Then the shape of α is . Then as in Case 1.3 we have

{
j ∈ Ī | 〈αk,αj 〉< 0

}= {i, i′, l1, . . . , lr
}
,

ml1 + · · · +mlr = 2mk −mi −mi′ = 4.

Since mlν ≥ 2, we have {ml1 , . . . ,mlr } = {2,2} or {4}. If {ml1 , . . . ,mlr } = {2,2}, it
corresponds to the first shape in the list below .

If {ml1 , . . . ,mlr } = {4}, the shape of α is obtained by replacing a part

of the shape of a basic root with index 0 by

It corresponds to the second and the third shape in the below.

Suppose k 	= k′. Then the shape of α contains twice and we have

{
j ∈ Ī | 〈αk,αj 〉< 0

}= {i, l1, . . . , lr},
ml1 + · · · +mlr = 2mk −mi = 5

and mlν ≥ 2 for ν = 1, . . . , r . Hence {ml1, . . . ,mlr } = {3,2} or {5}. If {ml1 , . . . ,mlr }
= {3,2}, Lemma 1(iv) assures that the shape of α is the forth shape in the below.

Suppose {ml1, . . . ,mlr } = {5}. The shape of α is

with p ≥ 1 and j1 = l1. Then 2(2p + 3) = 2 + 2 + (2p + 3)p
′−1
p′ , which means

1= 4
2p+3 + 1

p′ and we have (p,p′)= (1,5). The shape of α is the last one in below.
Thus we see the following list:
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3 Spectral Types of Differential Equations

In this section, we consider linear differential equations on the Riemann sphere
whose singular points are regular singular or unramified irregular singular points.
For these differential equations, we define spectral types as tuples of integers rep-
resenting multiplicities of characteristic exponents of local formal solutions where
we ignore integer differences of characteristic exponents. We shall classify orbits of
spectral types under algebraic transformations on differential equations, called the
Euler transform and the addition and show the finiteness of orbits with a fixed index
of rigidity, where we note that the index does not change under the transformations.

First we explain that spectral types can be seen as elements of a certain Z-lattice
L which has a group action defined by these transformations. Moreover we shall
see that there exists a Kac-Moody root lattice QL and the lattice L can be seen as a
quotient lattice of QL. Then the group action on L coincides with the Weyl group
action on QL and an analogy of the root system for L shall be defined. As in the
previous section, we study the classification of basic roots of L, in particular we
show the finiteness of basic roots with a fixed index and give lists of basic roots
with index 0 and −2.

3.1 Differential Equations and Spectral Types

The detail of this section can be found in [7]. Let K be an algebraically closed field
of characteristic zero. Let W [x] =K[x][∂] be the ring of differential operators with
polynomial coefficients and W(x)=K(x)[∂] the ring of differential operators with
coefficients in K(x). Moreover W((x)) denotes the ring of differential operators
with coefficients in K((x)), the quotient field of the ring of formal power series
K[[x]].

3.1.1 Local Structures

In this section we review the local structure of elements in W(x). We fix an element
in W(x), P =∑n

i=0 ai(x)∂
i (an(x) 	= 0). Here the non-negative integer n is called

the rank and written by rankP . For c ∈K and a monomial (x−c)a∂b , we introduce
the weight

wt c
(
(x − c)a∂b

) := a − b.
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The weight of P ∈W(x)⊂W((x − c)) is defined by

wt c(P ) :=min
{
wt c

(
(x − c)i∂j

) | P =
∑

i, j

ai,j (x − c)i∂j , ai,j 	= 0
}
.

For f (x) ∈K((x − c)), weight wtc(f (x)) is defined by regarding f (x) as an ele-
ment in W((x − c)).

For an integer k, the k-homogeneous part of P ∈W((x − c)) is

P(k) :=
∑

i−j=k

ai,j (x − c)i∂j

if P =∑i,j ai,j (x − c)i∂j with ai,j ∈K .
Similarly we can define wt∞ by

wt∞
(
xa∂b

)= b− a.

The singular points of P are poles of ai (x)
an(x)

(i = 1, . . . , n). We also say that ∞ is
a singular point of P if

P (∞) :=
n∑

i=0

ai

(
1

x

)(−x2∂
)i

has a singular point at 0. Suppose that c (	=∞) is a singular point of P . The wt c(P )-
homogeneous part of P equals

∑

i−j=wt c(P )

ai,j (x − c)i∂j

and then the characteristic polynomial of P at c is defined by

Cc(P )(t) :=
∑

i−j=wt c(P )

ai,j t (t − 1) · · · (t − j + 1).

If degK[t]Cc(P )(t) = rankP , we say that c is a regular singular point of P . Oth-
erwise, c is an irregular singular point of P . For the point ∞, we can define char-
acteristic polynomials, regular and irregular singular points as well as the above
replacing x − c by 1

x
.

Suppose that c is an irregular singular point of P . For simplicity of notation, we

put c= 0. There exists an algebraic extension K((x
1
q )) of K((x)) for a positive in-

teger q and we denote the ring of differential operators with coefficients in K((x
1
q ))

by Wq((x)). Then we can decompose the left-Wq((x))-module Wq((x))/Wq((x))P

as follows.

Definition 1 (Local decomposition (see [8] for example)) For P ∈W(x) with an

irregular singular point c, there exists the algebraic extension K(((x − c)
1
q )) of
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K((x−c)), distinct polynomials wi of (x−c)
− 1

q with no constant terms and Pi(t) ∈
K(((x − c)

1
q ))[t] for 1≤ i ≤ r such that we have the following.

(i) Each Pi(ϑc) has a regular singular point at c.
(ii) We can write P as the least left common multiple of

{
P1(ϑc −w1), . . . ,Pr(ϑc −wr)

}
.

Namely there exist Ri ∈Wq((x − c)) such that

P =RiPi(ϑc −wi) for i = 1, . . . , r.

Here ϑc = (x − c)∂ and for Q(t) =∑
ν≥0 qν(x)t

ν ∈ K(((x − c)
1
q ))[t] and w ∈

K(((x − c)
1
q ))), we put

Q(ϑc −w)=
∑

ν≥0

qν(x)(ϑc −w)ν.

(iii) We have the decomposition

Wq

(
(x − c)

)
/Wq

(
(x − c)

)
P �

r⊕

i=1

Wq

(
(x − c)

)
/Wq

(
(x − c)

)
Pi(ϑc −wi)

as Wq((x − c))-modules.
We call the decomposition in (iii) the local decomposition of P at c. Moreover

we call Pi(ϑc −wi) ∈Wq((x − c)) local factors and wi the exponential factors of
Pi(ϑc −wi) for 1≤ i ≤ r .

If the local decomposition at c is obtained in W1((x − c)) = W((x − c)), we
say that c is an unramified irregular singular point. Otherwise, c is called a ramified
irregular singular point.

We introduce the notion of spectral data. Let P ∈ W((x)). We regard the left
W((x))-module MP =W((x))/W((x))P as the K((x))-vector space of dimMP =
rankP . For a basis {u1, . . . , un} of MP as K((x))-vector space, we can repre-
sent the action of ϑ = x∂ by the matrix as follows. For u ∈ MP , there exists
A= (aij )1≤i≤n

1≤j≤n

∈M(n,K((x))) such that

ϑui =
n∑

j=1

aijuj .

Moreover if 0 is a regular singular point of P , there exists a basis such that we can
take A ∈M(n,K). We call this matrix A ∈M(n,K) a local matrix of P at 0. For
any other regular singular point c ∈ K and ∞, we can define a local matrix in the
same way.
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Definition 2 (Spectral data) Fix m1, . . . ,ms ∈ Z>0 and λ1, . . . , λs ∈K which sat-
isfy

λi − λj /∈ Z (i 	= j).

We say P ∈W(x) has the spectral data
{
(λ1, . . . , λs); (m1, . . . ,ms)

}

at c if P has a regular singular point at c and satisfies the following.
(i) The characteristic polynomial is

Cc(P )(t)= C

s∏

i=1

mi−1∏

j=0

(
t − (λi + j)

)

for a constant C.
(ii) A local matrix of P is a semisimple matrix.

Here we note that condition (ii) does not depend on the choice of local matrices.

3.1.2 Spectral Types and the Euler Transform

Fix P ∈W(x) satisfying the assumption below.

Assumption 1 We assume that P ∈W(x) satisfies the following.

(i) All singular points of P , written by c0 =∞, c1, . . . , cp ∈K , are regular singu-
lar or unramified irregular singular points.

(ii) Denote the set of local factors of P at ci by
{
Pi,1(ϑci −wi,1), . . . ,Pi,ki (ϑci −wi,ki )

}
.

Then there exist positive integers mi,j,s and λi,j,s ∈ K for i = 0, . . . , p, j =
1, . . . , ki, s = 1, . . . , li,j such that λi,j,s − λi,j,s′ /∈ Z if s 	= s′ and Pi,j (ϑ) have
spectral data

{
(λi,j,1, . . . , λi,j,li,j ); (mi,j,1, . . . ,mi,j,li,j )

}
,

respectively. Here wi,j are the exponential factors of the corresponding local
factors.

Put

λ(P )= ((λi,j,1, . . . , λi,j,li,j )
)

0≤i≤p
1≤j≤ki

,

m(P )= ((mi,j,1, . . . ,mi,j,li,j )
)

0≤i≤p
1≤j≤ki

.
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The index of rigidity is defined by

idxP := −
p∑

i=0

∑

1≤j 	=j ′≤ki

di
(
j, j ′

)
( li,j∑

s=1

mi,j,s

)( li,j ′∑

s′=1

mi,j ′,s′

)

+
p∑

i=0

ki∑

j=1

li,j∑

s=1

m2
i,j,s − (p− 1)(rankP)2 (25)

where di(j, j
′) = −wtci (wi,j − wi,j ′) for i = 0, . . . , p and j, j ′ = 1, . . . , ki . Here

we notice that these di(j, j
′) satisfy

di
(
j, j ′

)= 0 if and only if j = j ′

di
(
j, j ′

)= di
(
j, j ′

)
,

di(j1, j2)≤max
{
di(j1, j3), di(j2, j3)

}
(26)

for all i = 0, . . . , p and j, j ′, j1, j2, j3 ∈ {1, . . . , ki}.

Remark 2 The index of rigidity is defined by N. Katz in [4] and can be computed
from local structures of differential equations (see Proposition 3.1 in [1] for exam-
ple). One can check that our definition of the index of rigidity coincides with the
original one.

Remark 3 Suppose P ∈W(x) satisfies Assumption 1 and put Zi :=⊕ki
j=1 Z

li,j . If
p > 0 and there exists i0 ∈ {0, . . . , p} such that ki0 = 1 and li0,1 = 1, then ci0 is not a
singular point of Ad (e−wi0,1)Ad ((x− ci0)

−λi0,1,1)P . Here the operator Ad (f (x)) is
defined in Definition 4. Hence in this case, we identify m(P ) and pr{0,...,p}\{i0}m(P ).
Here pr{0,...,p}\{i0} :

⊕p

i=0 Zi →⊕
i∈{0,...,p}\{i0}Zi is the natural projection.

Thus for m(P ), we assume ki · li,ki > 1 for all i = 0, . . . , p if p > 0.

Definition 3 (Spectral type) Choose arbitrary integers p ∈ Z≥0, ki ∈ Z>0 (i =
0, . . . , p) and li,j ∈ Z>0 (i = 0, . . . , p, j = 1, . . . , ki). Fix integers di(j, j

′) ∈ Z≥0
satisfying the relation (26) and take a tuple of positive integers

m= ((mi,j,1, . . . ,mi,j,li,j )
)

0≤i≤p
1≤j≤ki

∈
p⊕

i=0

ki⊕

j=1

Z
li,j
≥0.

Then we call m with the integers (di(j, j
′)) 0≤i≤p

1≤j,j ′≤ki

a spectral type.

The spectral type of P ∈W(x) satisfying Assumption 1 is defined by m=m(P )

and di(j, j
′) = −wtci (wi,j − wi,j ′). A spectral type is called irreducible if there

exists an irreducible operator P ∈W(x) with the spectral type which satisfies As-
sumption 1.
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In the remaining of this paper, we investigate orbits of spectral types under the
action of the twisted Euler transform which is defined below. The following is one
of our main theorem which tells us that the finiteness of Euler transform orbits of
spectral types with a fixed index of rigidity.

Theorem 4 Fix an integer r ≥ 0. If r > 0, there exist only a finite number of orbits
of irreducible spectral types with index of rigidity −r under the action of twisted
Euler transforms.

Moreover there exist a finite number of orbits of indivisible irreducible spectral
types with index of rigidity 0 under the action of twisted Euler transforms.

Here we say that a spectral type m = ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

with inte-

gers is indivisible if the greatest common divisor of {mi,j,s | i = 0, . . . , p, j =
1, . . . , ki, s = 1, . . . , li,j } is 1.

This theorem follows from Theorem 7 and Theorem 8 which appear in the latter
sections.

We give a brief review of algebraic transformations on W [x] and W(x).

Definition 4 (Addition) For f (x) ∈K(x), define

Ad (e
∫
f (x)dx) :W(x) −→ W(x)

x �−→ x

∂ �−→ ∂ − f (x)

.

In particular,

Ad ((x − c)λ) :W(x) −→ W(x)

x �−→ x

∂ �−→ ∂ − λ
x−c

for c, λ ∈K is called the addition at c with the parameter λ.

Definition 5 (Fourier-Laplace transform) The Fourier-Laplace transform is the K-
algebra automorphism of W [x],

L :W [x] −→W [x]
x �−→ −∂

∂ �−→ x

.

Definition 6 (Primitive component) We say that P = ∑n
i=0 ai(x)∂

i ∈ W [x] is
primitive if

(i) gcdK[x]{ai(x) | i = 0, . . . , n} = 1,
(ii) the highest term an(x) is monic.
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For P ∈ W(x), there exist f (x) ∈ K(x) and the primitive element P̃ ∈ W [x],
and then we can decompose P by

P = f (x)P̃ ,

uniquely.
We denote the primitive element by Prim(P ) and call this the primitive compo-

nent of P .

Definition 7 (Euler transform) The Euler transform of P ∈W(x) with the parame-
ter λ is

E(λ)P := L ◦ Prim ◦Ad
(
xλ
) ◦L−1 ◦ Prim(P ) ∈W [x].

For P ∈ W(x) satisfying Assumption 1, we consider following special Euler
transforms.

Definition 8 (Twisted Euler transform) Let P ∈ W(x) satisfying Assumption 1.
Define J :=⊕p

i=0{1, . . . , ki}. Then for ĵ = (j0, . . . , jp) ∈ J , the twisted Euler

transform E(ĵ)P is

E(ĵ)P :=
p∏

i=0

Ad
(
ewi,ji

) p∏

i=1

Ad
(
(x − ci)

λi,ji ,1
)

◦E(1− λ(P ; ĵ ))
p∏

i=1

Ad
(
(x − ci)

−λi,ji ,1
) p∏

i=0

Ad
(
e−wi,ji

)
P

where

λ(P ; ĵ ) :=
p∑

i=0

λi,ji ,1.

The following theorem gives explicit changes of spectral types induced by the
twisted Euler transform.

Theorem 5 (Theorem 3.2 in [7]) Let P ∈W(x) satisfying Assumption 1. Choose
ĵ = (j0, . . . , jp) ∈ J and suppose λ(P ) is generic (see [7, Theorem 2.18]).

Then E(ĵ)P ∈ W(x) also satisfies conditions in Assumption 1. If the
spectral type of P

ĵ
= E(ĵ)P is m(P

ĵ
) = ((m̃i,j,1, . . . , m̃i,j,li,j )) 0≤i≤p

1≤j≤ki

with

(d̃i(j, j
′)) 0≤i≤p

1≤j, j ′ ≤ki

, then we have

m̃i,j,1 =mi,j,1 + d(ĵ ) if j = ji,

m̃i,j,s =mi,j,s otherwise,

d̃i
(
j, j ′

)= di
(
j, j ′

)
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where

d(ĵ )=
p∑

i=1

ki∑

j=1

(−wtci (wi,j −wi,ji )+ 1
) li,j∑

s=1

mi,j,s

+
k0∑

j=1

(−wtc0(w0,j −w0,j0)− 1
) l0,j∑

s=1

m0,j,s −
p∑

i=0

mi,ji ,1.

3.2 The Lattice of Spectral Types and the Root System

Theorem 5 shows that twisted Euler transforms E(ĵ) (ĵ ∈ J ) induce transforma-
tions of the spectral type m(P ) of P ∈W(x) satisfying Assumption 1. From these
transformations we shall construct a transformation group on a certain lattice where
m(P ) can be seen as an element in this lattice. Moreover we shall see this lattice
with the transformation group is a quotient lattice of a Kac-Moody root lattice.

3.2.1 The Lattice of Spectral Types

Choose arbitrary integers p ∈ Z≥0, ki ∈ Z>0 (i = 0, . . . , p) and li,j ∈ Z>0 (i =
0, . . . , p, j = 1, . . . , ki). Fix integers di(j, j

′) ∈ Z≥0 satisfying the relation (26).
Then we consider the following Z-lattice

L :=
{
(
(mi,j,1, . . . ,mi,j,li,j )

)
0≤i≤p
1≤j≤ki

∈
p⊕

i=0

ki⊕

j=1

Z
li,j

∣∣∣∣∣

k0∑

j=1

l0,j∑

s=1

m0,j,s = · · · =
kp∑

j=1

lp,j∑

s=1

mp,j,s

}
.

We denote the set of positive elements in L by

L+ := L∩
p⊕

i=0

ki⊕

j=1

Z
li,j
≥0

and define the rank of m= ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

∈ L by

rank m :=
ki∑

j=1

li,j∑

s=1

mi,j,s
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for any i = 0, . . . , p. Note that the definition of rank m is independent of the choice
of i = 0, . . . , p.

Then we define transformations on L as an analogy of the transformation of
spectral types given in Theorem 5. Namely, for each ĵ = (j0, j1, . . . , jp) ∈ J :=⊕p

i=0{1, . . . , ki}, we define the lattice transformation on L,

σ(ĵ ) : L −→ L

m= ((mi,j,1, . . . , ai,j,li,j )
)

0≤i≤p
1≤j≤ki

�−→ (
(m̃i,j,1, . . . , m̃i,j,li,j )

)
0≤i≤p
1≤j≤ki

,

where

m̃i,j,1 :=mi,j,1 + d(m; ĵ ) if (i, j)= (i, ji),

m̃i,j,s :=mi,j,s otherwise

and

d(m; ĵ ) :=
p∑

i′=1

ki′∑

j ′=1

(
di′
(
j ′, ji′

)+ 1
) li′,j ′∑

s=1

mi′,j ′,s

+
k0∑

j ′=1

(
d0
(
j ′, j0

)− 1
) l0,j ′∑

s=1

m0,j ′,s −
p∑

i′=0

mi′,ji′ ,1.

In addition, for i0 = 0, . . . , p, j0 = 1, . . . , ki0, s0 = 1, . . . , li0,j0 − 1, we also de-
fine permutations on L,

σ(i0, j0, s0) : L(P ) −→ L(P )

mi0,j0,s0 �−→ mi0,j0,s0+1

mi0,j0,s0+1 �−→ mi0,j0,s0

mi,j,s �−→ mi,j,s (i, j, s) 	= (i0, j0, s0), (i0, j0, s0 + 1).

Then L has the action of the group W generated by these σ(ĵ ), σ (i, j, s), i.e.,

W := 〈σ(ĵ ), σ (i, j, s) | ĵ ∈ J , i = 0, . . . , p, j = 1, . . . , ki , s = 1, . . . , li,j−1
〉
.

We call L with W action the lattice of spectral types and denote it by (L,W) or
shortly by L.
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3.2.2 The Lattice of Spectral Types as a Quotient Lattice

We shall explain that the lattice of spectral types (L,W) can be seen as a quotient
lattice of the Kac-Moody root lattice QL with the index set

I := J 4 {(i, j, s) | i = 0, . . . , p, j = 1, . . . , ki , s = 1, . . . , li,j − 1
}

and the basis {αt | t ∈ I }. Namely, QL :=⊕t∈I Zαt . We define the symmetric bi-
linear form 〈 , 〉 on QL,

〈α
ĵ
, α

ĵ ′ 〉 := 2−
∑

0≤i≤p

ji 	=j ′i

(
di
(
ji, j

′
i

)+ 1
)
,

〈α
ĵ
, α(i,j,s)〉 :=

{
−1 if ji = j and s = 1,

0 otherwise,

〈α(i,j,s), α(i′,j ′,s′)〉 :=

⎧
⎪⎨

⎪⎩

2 if (i, j, s)= (i′, j ′, s′),
−1 if (i, j)= (i′, j ′) and |s − s′| = 1,

0 otherwise.

Here ĵ = (j0, . . . , jp), ĵ ′ = (j ′0, . . . , j ′p) ∈ J . Let WL := 〈σt | t ∈ I 〉 be the Weyl
group of QL. Then we have the surjection Φ : QL → L by which WL action on QL

coincides with the W action on L.

Theorem 6 (Theorem 3.3 in [7]) Define the Z-module homomorphism

Φ : QL −→ L

as follows. For

α =
∑

ĵ∈J
m

ĵ
α
ĵ
+

p∑

i=0

ki∑

j=1

li,j−1∑

s=1

m(i,j,s)α(i,j,s) ∈QL,

the image Φ(α)= ((m̄i,j,1, . . . , m̄i,j,li,j )) 0≤i≤p
1≤j≤ki

is given by

m̄i,j,1 =
∑

{ĵ∈J |ji=j}
m

ĵ
−m(i,j,1),

m̄i,j,s =m(i,j,s−1) −m(i,j,s) for 2≤ s ≤ li,j .

Here we put m(i,j,li,j ) = 0. Then we have the following.

(i) The map Φ is surjective.
(ii) Φ is injective if and only if #{i ∈ {0,1, . . . , p} | ki > 1} ≤ 1.
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(iii) The Weyl group action on QL corresponds to the action of W on L. Namely,
we have

Φ(σ
ĵ
α)= σ(ĵ )Φ(α) (α ∈QL),

Φ(σ(i,j,s)α)= σ(i, j, s)Φ(α) (α ∈QL).

(iv) If α ∈KerΦ , then 〈α,β〉 = 0 for any β ∈QL.
(v) Let m ∈ L. Then we have

〈α,α
ĵ
〉 = −d(m; ĵ ) (

α ∈Φ−1(m), ĵ ∈ J
)

(vi) For α ∈Φ−1(m), we have

〈α,α〉 = −
p∑

i=0

∑

1≤j 	=j ′≤ki

di
(
j, j ′

)
( li,j∑

s=1

mi,j,s

)( li,j ′∑

s′=1

mi,j ′,s′

)

+
p∑

i=0

ki∑

j=1

li,j∑

s=1

m2
i,j,s − (p− 1)(rank m)2.

Form (vi) in this theorem, we define the index of rigidity of m ∈ L by

idx m := idxα = 〈α,α〉
for α ∈Φ−1(m).

3.2.3 Φ-Root System

We shall define the Φ-root system of (L,W) which is an analogue of the root system
of QL.

First consider the following subset of L,

ΔΦ
re :=

⋃

ĵ∈J
WΦ(α

ĵ
),

i.e., the union of W -orbits of Φ(α
ĵ
), which is called the set of Φ-real roots. We also

consider the subset

FΦ :=
{

m ∈ L+ \ {0}
∣∣∣∣∣

mi,j,1≥mi,j,2≥···≥mi,j,li,j
, d(m;ĵ )≥0

for all i=0,...,p, j=1,...,ki ,ĵ∈J ,

Wm⊂L+

}
.

Then the set of Φ-imaginary roots is

ΔΦ
im :=WFΦ ∪−WFΦ.
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We call

ΔΦ :=ΔΦ
re ∪ΔΦ

im

the set of Φ-roots.

3.2.4 Spectral Types of Differential Equations and Root Systems

We explain that for P ∈W(x) satisfying Assumption 1, the spectral type of P can
be seen as an element in the lattice of spectral types (L,W).

Suppose P ∈W(x) satisfies Assumption 1. If we put

di
(
j, j ′

)=−wtci (wi,j −wi,j ′)

for i = 0, . . . , p and j, j ′ = 1, . . . , ki , then di(j, j
′) satisfy the relations (26).

Thus we can define the lattice of spectral types (L,W) and see m(P ) ∈ L. Then
the index of rigidity of P equals that of m(P ) ∈ L, namely, idxP = idx m(P ). Also
rankP = rank m(P ) as well.

Theorem 5 shows that the spectral types of P
ĵ
=E(ĵ)P (ĵ ∈ J ) are obtained by

the transformation σ(ĵ ) on L, i.e.,

m(P
ĵ
)= σ(ĵ )m(P ).

Hence we can associate an element in ΔΦ to P as follows.

Theorem 7 (Theorem 3.11 in [7]) Suppose λ(P ) is generic (see [7, Definition 3.8]).
If P is irreducible in W(x), then we have the following.

(i) m(P ) ∈ΔΦ .
(ii) If idx m(P ) > 0, then idx m(P )= 2.

(iii) We have

m(P ) ∈
{
ΔΦ

re if idx m(P )= 2,

ΔΦ
im if idx m(P )≤ 0.

3.3 A Classification of Basic Pairs

At the end of Sect. 3.2, we see that the spectral type of the irreducible operator
P ∈W(x) satisfying Assumption 1 corresponds to an element in ΔΦ+ =ΔΦ ∩L+.
By the definition of ΔΦ , any element in ΔΦ+ can be reduced to an element in
{Φ(α

ĵ
) | ĵ ∈ J } 4 FΦ by W action. This means that m(P ) can be reduced to an

element in {Φ(α
ĵ
) | ĵ ∈ J } 4 FΦ by the Euler transform.

Thus to see Euler transform orbits of spectral types, it suffices to see elements in
FΦ 4 {Φ(α

ĵ
) | ĵ ∈ J }.
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The differential operator corresponding to an element in {Φ(α
ĵ
) | ĵ ∈ J } is an

obvious operator of the first order. Hence we study FΦ .

Definition 9 (Basic pair) Let (L,W) be a lattice of spectral types with W -action.
Denote the corresponding Kac-Moody root lattice by QL and the surjection by
Φ : QL → L defined as in Sect. 3.2.2. We also define the subset FΦ ⊂ L as in
Sect. 3.2.3.

Choose an element m= ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

∈ FΦ and suppose mi,j,s 	=
0 for all i = 0, . . . , p, j = 1, . . . , ki and s = 1, . . . , li,j .

Then we call (m,L,W) the basic triple. We usually omit W and call (m,L) the
basic pair.

We define the shape of a basic pair (m,L).

Definition 10 (Shape of a basic pair) Let (m,L) be a basic pair. The shape of
(m,L) is the set of shapes of elements in Φ−1(m)⊂QL.

Example 1 For example, suppose p = 1, k0 = k1 = 2, li,j = 1 (i = 0,1 and j =
1,2), d0(1,2) = d1(1,2) = 1. Consider m = ((mi,j,1))0≤i≤1

1≤j≤2
such that mi,j,1 = 1

for all i, j . Then (m,L) is a basic pair and its shape is

(a ∈ Z), (27)

where we simply denote {xa | a ∈ Z} by xa (a ∈ Z).

Suppose p = 0, k0 = 4, d0(i, j)= 2 for 1≤ i < j ≤ 4 and l0,ν = 2 for 1≤ ν ≤ 4.
If m0,j,1 = 1 for 1≤ j ≤ 4, the shape of (m,L) equals

(28)

Now we prepare the following lemma to have an element in Φ−1(m)∩Q+
L .

Lemma 3 Let (mi,j ) 0≤i≤p
1≤j≤ki

be a tuple of p + 1 partitions of a positive integer n,

namely, n, p, mi,j and ki are positive integers satisfying

mi,1 + · · · +mi,ki = n (j = 0, . . . , p).
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Then there exist non-negative integers m̃ν0,...,νp for 1 ≤ νi ≤ k and 0 ≤ i ≤ p such
that

∑

0≤j≤p
j 	=i

kj∑

νj=1

m̃ν0,ν1,...,νp =mi,νi (0≤ i ≤ p, 1≤ νi ≤ ki),

m̃j0,...,jp · m̃j ′0,...,j ′p 	= 0 ⇒

⎧
⎪⎨

⎪⎩

jν ≤ j ′ν (0≤ ν ≤ p)

or

jν ≥ j ′ν (0≤ ν ≤ p),

m̃1,...,1 · m̃k0,...,kp 	= 0.

Proof Put

m̃ν0,...,νp = #
{
k ∈ {1,2, . . . , n} |
mj,1 + · · · +mj,νj−1 < k ≤mj,1 + · · · +mj,νj for j = 0, . . . , p

}
.

Then the lemma is clear. Here we note that m̃1,...,1 = min{m0,1, . . . ,mp,1} and
m̃k0,...,kp =min{m0,k0 , . . . ,mp,kp }. �

Definition 11 Fix m = ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

∈ L+. Put n = rank m and

mi,j =∑li,j
j=1 mi,j,s . Applying Lemma 3 to m and putting m

ĵ
= m̃ν0,...,νp (ĵ =

(ν0, . . . , νp)) and m(i,j,s) =∑li,j
t=s+1 mi,j,t , we define

α(m) :=
∑

ĵ∈J
m

ĵ
α
ĵ
+

p∑

i=0

ki∑

j=1

li,j−1∑

s=1

m(i,j,s)α(i,j,s) ∈Φ−1(m)∩Q+
L.

The following lemma gives some properties of α(m).

Lemma 4 Retain the notation in Definition 11.
Let I be the index set of the basis of QL:

I = J 4 {(i, j, s) | i = 0, . . . , p, j = 1, . . . , ki, s = 1, . . . , li,j − 1
}
.

Put Cm = suppα(m) and define

Ī := {i ∈ I | αi ∈ Cm}, I0 :=
{
t ∈ Ī | 〈α(m), αt

〉= 0
}
, I1 := Ī \ I0.

Assume k0 ≥ k1 ≥ · · · ≥ kN−1 > kN = · · · = kp = 1. Here N is a non-negative
integer. Put ĵ0 = (1, . . . ,1) ∈ J , ĵ1 = (k0, . . . , kp) ∈ J .

(i) The element α(m) is indivisible if m is indivisible.
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(ii) We have m
ĵ0

> 0, m
ĵ1

> 0 and

〈α
ĵ0
, α

ĵ1
〉 ≤ 2− 2N,

max{k0, . . . , kp} ≤ #(Ī ∩J )≤ 1+
p∑

i=0

(ki − 1),

∑

ĵ∈Ī∩J
m

ĵ
= rank m.

(iii) The Dynkin diagram of a subset of Cm is never equal to D
(1)
n with n > 4.

Preceding to the proof of Lemma 4, we remark the following.

Lemma 5 Let ĵν = (jν,0, . . . , jν,p) ∈ J for ν = 1,2, . . .. Then we have

〈α
ĵ1
, α

ĵ2
〉 ≤ 2− 2#

{
i ∈ {0,1, . . . , p} | j1,i 	= j2,i

}
, (29)

〈α
ĵ1
, α

ĵ2
〉 = 〈α

ĵ1
, α

ĵ3
〉 = 0 ⇒ 〈α

ĵ2
, α

ĵ3
〉 	= −1. (30)

Proof Definition 11 directly shows (29). Suppose −1≤ 〈α
ĵν
, α

ĵν′
〉 ≤ 0 for 1≤ ν <

ν′ ≤ 3. Then there exists l ∈ Z≥0 such that j1,i = jν,i for i ∈ {0, . . . , p} \ {l} and
therefore (30) follows from the relation (26). �

Proof of Lemma 4 The claims (i) and (ii) follow from Definition 11, Lemma 3 and
(29).

(iii) Suppose the Dynkin diagram of a subset of Cm is D
(1)
n with n > 4:

.

Define cμ,ν = 〈αiμ,αiν 〉. For iν ∈ I put iν = (jν,0, . . . , jν,p) if iν ∈ J and put
iν = (kν, jν, sν) otherwise. The proof of Lemma 5 shows that there exists l with
0≤ l ≤N such that jν,i = jν′,i if i 	= l and iν, iν′ ∈ J .

Suppose i1 ∈ J and i2 ∈ J . Then (30) shows #({i3, i4, i5, i6} ∩J )≤ 1 and there
exists iν /∈ J such that iν = (kν, jν,1) with kν 	= l and jν = j1,kν . Then cν,1 =
cν,2 =−1, which contradicts to the Dynkin diagram.

Suppose i1 /∈ J and i2 ∈ J . Then {i3, i4} ∩ J 	= ∅. We may assume i3 ∈ J and
then the claim (i) shows i5 /∈ J and i6 /∈ J , The same argument as above shows
c3,5 =−1 or c3,6 =−1, which leads a contradiction.

Lastly suppose i1 = (k1, j1,1) /∈ J and i2 /∈ J . We may assume i3 ∈ J and i5 ∈
J . Then there exists αi7 ∈ J such that i7 	= i3, i7 	= i4 and c1,7 =−1. Since c1,7 =
c1,3 =−1, we have k1 	= l, j1 = j3,k1 and c1,5 =−1, which leads a contradiction. �

We shall show some properties of α(m) when (m,L) is basic.
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Lemma 6 Retain the notation and the assumption in Lemma 4. Suppose (m,L) is
basic.

(i) Cm is connected.
(ii) Put α′ =∑i∈Ī ′ miαi for a proper subset Ī ′ � Ī . Then

idxα′ > idxα(m).

(iii) We have

〈αi1, αi2〉 ≥
1

2
idx m− 2 for i1, i2 ∈ Ī (31)

and the equality holds if and only if the shape of α(m) is

(m= 1 if k 	= 2) (32)

with k = 1
2 − idx m.

(iv) We have

N ≤ 2+ 1

4
|idx m| (33)

and the equality holds if and only if the shape of α(m) is the one in (32) with
k = 2N − 2.

(v) Suppose (m,L) is basic. Let αi1, αi2, . . . , αiK be a constant connected se-
quence in I0 (k > 1). Then K ≤ 4 and 1≤N ≤ 2.

If K = 4, then N = 1 and the shape of α(m) is .

Suppose N = 2 and K = 3. Then i2 = ĵ2 or i2 = ĵ3 by denoting

ĵ2 := (1, k1,1, . . . ,1) ∈ J and ĵ3 := (k0,1,1, . . . ,1) ∈ J .

Moreover i1 /∈ J and i3 /∈ J .

Proof (i) We say that two elements α and α′ in Cm are connected in Cm if they
belong to a connected component of the Dynkin diagram of Cm. Note that α

ĵ0
and

α
ĵ1

are connected in Cm.

Fix α(i,j,s) with 1 ≤ s ≤ li,j − 1. Then there exists ĵ = (j0, . . . , jp) such that
α
ĵ
∈ Cm and ji = j . Then α(i,j,s) and α

ĵ
are connected in Cm.

Let ĵ ∈ J with α
ĵ
∈ Cm. If N ≥ 3, then 〈α

ĵ0
, α

ĵ
〉 	= 0 or 〈α

ĵ1
, α

ĵ
〉 	= 0, which

means α
ĵ

and α
ĵ0

are connected in Cm and therefore Cm is connected.

Hence we assume N = 2 and 〈α
ĵ0
, α

ĵ
〉 = 〈α

ĵ1
, α

ĵ
〉 = 0. Then ĵ = ĵ2 or ĵ = ĵ3.

Suppose ĵ = ĵ2. Then α
ĵ3

/∈ Cm, which follows from Lemma 3. Since α(m) is
basic, there exists α ∈ Cm satisfying 〈α,α

ĵ2
〉< 0.
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Suppose α = α
ĵ ′ with ĵ ′ ∈ J , ĵ ′ = (1, j1, . . . ,1) or ĵ ′ = (j0, k1,1, . . . ,1). Here

1 < j1 < k1 and 1 < j0 < k0, respectively. If ĵ ′ = (1, j1, . . . ,1), α and α
ĵ1

are con-

nected in Cm. We have the same conclusion when ĵ ′ = (j0, k1,1, . . . ,1).
Suppose α = α(i,j,s). Then s = 1. If i ≥ 2 or i = 0, j = 1 and 〈α(i,1,1), αĵ0

〉< 0.
If i = 1, j = k1 and 〈α(i,1,1), αĵ1

〉< 0. Hence α and α
ĵ1

are connected in Cm and so
are α

ĵ
and α

ĵ1
.

In the same way as above we have the same conclusion when ĵ = ĵ3. Thus we
have the claim.

If N = 0, #J = 1 and the Dynkin diagram of Cm is star-shaped and hence con-
nected.

Lastly assume N = 1. If there exists i ∈ {2, . . . , p} such that li,1 > 1, then
〈α

ĵ
, α(i,1,1)〉 = −1 for any ĵ ∈ Ī ∩ J and therefore the Dynkin diagram of Cm is

connected. Hence we assume li,1 = 1 for all i ∈ {2, . . . , p}. If 〈α
ĵ0
, αj 〉 = 0 for any

ĵ ∈ (Ī ∩J ) \ {ĵ0}, then 〈α(m), α
ĵ0
〉 = 2m

ĵ
−m(0,1,1) > 0, which contradicts to the

fact that α(m) is basic. Hence there exists ĵ ∈ Ī ∩J satisfying 〈α
ĵ0
, α

ĵ
〉< 0. Then

the relation (26) assures 〈α
ĵ0
, α

ĵ ′ 〉< 0 or 〈α
ĵ
, α

ĵ ′ 〉< 0 for any ĵ ′ ∈ (Ī ∩J )\{ĵ0, ĵ},
which proves that α

ĵ0
and α

ĵ ′ are connected in Cm and moreover Cm is connected.
(ii) The claim easily follows from the definition of the index and the connected-

ness of the Dynkin diagram of Cm.
(iii) We may assume 〈αi1, αi2〉 ≤ −2. If mi1 <mi2 , we have

idx m≤ 〈α(m),mi1αi1

〉

≤m2
i1
+mi1mi2〈αi1, αi2〉

≤m2
i1

(
1+ 〈αi1, αi2〉

)+mi1〈αi1 , αi2〉
≤m2

i1

(
1+ 〈αi1, αi2〉

)+m2
i1
〈αi1 , αi2〉,

〈αi1, αi2〉 ≥
idx m

2m2
i1

− 1

2
.

If mi1 =mi2 , we have

idx m≤ 〈α(m),mi1αi1

〉+ 〈α(m),mi2αi2

〉

≤ 2m2
i1
+ 2mi1mi2〈αi1, αi2〉 + 2m2

i2
,

〈αi1, αi2〉 ≥
idx m

2mi1mi2

− 2.

Hence we have 〈αi1, αi2〉 ≥ 1
2 idx m − 2 and the equality implies mi1 = mi2 and

moreover mi1 = 1 if idx m 	= 0. It follows from the claim (ii) that the equality im-
plies that the shape of α(m) is the one in (32) with k = 2− 1

2 idx m.
(iv) Since 〈α

ĵ0
, α

ĵ1
〉 ≤ 2− 2N , the claim in (iii) implies that in (iv).
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(v) Put A= Ī ∩J and B = Ī \A.
Let (i, j, s) ∈ B with s ≥ 2. Then m(i,j,s−1) > m(i,j,s) > mi,j,s+1 ≥ 0 and {i ∈ I |

〈α(i,j,s), αi〉< 0} ⊂ {(i, j, s−1), (i, j, s+1)}. Hence iν 	= (i, j, s) for ν = 1, . . . ,K .
Note that 〈α(i,j,1), α(i′,j ′,1)〉 = 0 for two different elements (i, j,1) and (i′, j ′,1)

of B . Hence there exists no constant connected sequence in B .
If N = 0, then #J = 1 and it is clear that there is no constant connected sequence.
Suppose N ≥ 3. Then α

ĵν
/∈ I0 for ν = 0 and 1 and moreover 〈α

ĵ
, α

ĵ0
〉 ≤ −2 or

〈α
ĵ
, α

ĵ1
〉 ≤ −2 for any ĵ ∈ A. Hence there exists no constant connected sequence

in I0.
Suppose N = 2 and K = 3. If ĵ ∈ A \ {ĵ0, ĵ1, ĵ2, ĵ3}, then 〈α

ĵ
, α

ĵ0
〉 ≤ −2 or

〈α
ĵ
, α

ĵ1
〉 ≤ −2. Hence i2 = ĵ2 or i2 = ĵ3. Since {ĵ2, ĵ3} 	⊂ A, the length of the

constant connected sequence in I0 is not larger than 3 and the corresponding claim
in (iii) is valid.

Lastly suppose N = 1. Suppose K = 2 and i2 ∈ B . Then i1 = (j1,1, . . . ,1) ∈ A

and i2 = (0, j1,1) or i2 = (i,1,1) with i > 0. If i2 = (0, j1,1), then mi1 > mi2 ,
which implies i2 = (i,1,1) and 〈α

ĵ
, αi2〉< 0 for any ĵ ∈A.

Fix a constant connected sequence in I0. The number M of the elements αi in
the sequence with i ∈ B is not larger than 2. If M > 0, the number of the elements
αj with j ∈ A in the sequence is not larger than 2 and therefore K ≤ 4. If M > 0
and K = 4, then M = 2 and the shape of α(m) is the one given in (v).

Suppose M = 0 and K ≥ 4. Put iν = (jν,1, . . . ,1) ∈ A for ν = 1, . . . ,K . Since
〈αi1, αi3〉 = 0 we have 〈αi3, αi4〉 = 0 if 〈αi1, αi4〉 = 0. Hence K = 4 and 〈αi1, αi4〉<
0 and the condition i1 ∈ I0 shows the claim (v). �

3.3.1 The Finiteness of Basic Pairs

We show the finiteness theorem which is an analogue of Theorem 3.
We say that a basic pair (m,L) is indivisible if the greatest common divisor of

{mi,j,s | i = 0, . . . , p, j = 1, . . . , ki, s = 1, . . . , li,j } is 1 for m =
((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p

1≤j≤ki

.

We also say that a basic pair (m,L) is reduced when we have li,1 > 1 for all
i = 0, . . . , p satisfying ki = 1 (cf. Remark 3).

Theorem 8 (Corollary of Theorem 3) Fix an integer r ≥ 0. If r > 0, then there exist
only a finite number of reduced basic pairs (m,L) with idx m=−r . Moreover there
exist only a finite number of reduced indivisible basic pairs (m,L) with idx m= 0.

Proof Theorem 8 and Lemma 6 assure that there are only finite possibilities of
shapes of α(m). Hence there exists a positive integer nr such that rank m ≤ nr .
Hence the theorem is reduced to the following lemma. �

Lemma 7 Fix integers n > 0 and r . Then there exist a finite number of reduced
basic pairs (m,L) satisfying rank m≤ n and idx m≥−r .
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Proof Let (m,L) be a reduced basic pair satisfying the assumption. Since
∑v

u=1 e
2
u−(∑v

u=1 eu
)2 ≤−2 if v ≥ 2 and eu ∈ Z>0 for u= 1, . . . , v, we have

idx m+
p∑

i=0

∑

1≤j 	=j ′≤ki

di
(
j, j ′

)
( li,j∑

s=1

mi,j,s

)( li,j ′∑

s′=1

mi,j ′,s′

)

=
p∑

i=0

(
ki∑

j=1

li,j∑

s=1

m2
i,j,s − (rank m)2

)
+ 2(rank m)2

≤−2(p+ 1)+ 2(rank m)2

by putting m= ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

, which implies

2(p+ 1)≤ r + 2n2,

di
(
j, j ′

)≤ 2n2 − 2(p+ 1)+ r

≤ 2n2 + r − 2
(
0≤ i ≤ p, 1≤ j < j ′ ≤ ki

)
.

This shows the lemma. �

3.3.2 The Classification of Basic Pairs with idx 0

We shall give lists of shapes of basic pairs of index 0 and −2. First we consider
basic pairs of index 0.

Theorem 9 If a basic pair (m,L) satisfies idx m = 0, then its shape is one of the
following.
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Here m are arbitrary elements in Z>0. We simply write sets {xa | a ∈ Z} and {x} by
xa (a ∈ Z) and x, respectively. The sequences of integers written under the shapes
except for star-shaped ones stand for the corresponding basic pairs (m,L).

Proof Retain the notation in the proof of Lemma 6. We may assume m is indivisible.

If N = 2, the shape of α(m) is . Then rank m= 2 and the shape of (m,L)

is the last shape in the above list with m= 1.
Then we may assume N ≤ 1 and the shape of (m,L) corresponds to the shape of

α(m). Hence the claim in Sect. 2.3, Lemma 4 and Lemma 6 show the theorem. �

Remark 4 We shall explain the notation expressing (m,L) in Theorem 9. The num-
ber of parentheses ( ) represents the number di(j, j

′). For instance, if (m,L) is
written by

· · ·mi,j,1mi,j,2 . . .mi,j,li,j ))((mi,j ′,1mi,j ′,2 · · · ,
then we can see the double parenthesis (( )) between mi,j,1 . . . , and mi,j ′,1 . . . . This
means di(j, j

′)= 2. Let us see an example. Consider a basic pair (m,L) where p =
1, (k0, k1)= (2,3), (l0,1, l0,2, l1,1, l1,2, l1,3)= (1,2,1,1,2) and (d0(1,2), d1(1,2),
d1(2,3), d1(1,3))= (1,1,2,2).

Then m= ((mi,j,1, . . . ,mi,j,li,j )) 0≤i≤p
1≤j≤ki

is written by

(m0,1,1)(m0,2,1m0,2,2),
(
(m1,1,1)(m1,2,1)

)(
(m1,3,1m1,3,2)

)
.

Remark 5 In the above list of shapes, we omit the corresponding (m,L) for
star-shaped diagrams. For these cases (m,L) are obtained as follows. Consider a

shape and put m(i,1) = n0 − ni,1, m(i,j+1) = ni,j − ni,j+1,

m(i,0) =∑0≤k≤p
k 	=i

nk,1−n0 and m(0) =∑p

i=0 ni,1−n0. Then the shape corresponds

to the following 5 types of (m,L) with 0≤ i ≤ p.

m(0,1)m(0,2) . . . , m(1,1)m(1,2) . . . , . . . , m(p,1)m(p,2) . . . ,

m(0)n0, (m(0,2)m(0,3) . . .) . . . (m(p,2)m(p,3) . . .),

m(i,0)m(i,1) . . . , (m(0,2)m(0,3) . . .) . . . (m(i−1,2) . . .)(m(i+1,2) . . .) . . . ,
(
(m(i,1)m(i,2) . . .)

)(
(m(0,2)m(0,3) . . .) . . . (m(i−2,2) . . .)(m(i+1,2) . . .) . . .

)
,

(
(n0)

)(
(m(0,2)m(0,3) . . .) . . . (m(p,2)m(p,3) . . .)

)
.
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In [12], K. Takemura obtains a part of the classification in Theorem 9 under some
conditions (see Proposition 4.3 in [12]).

3.3.3 The Classification of Basic Pairs with idx−2

We shall give a classification of basic pairs of idx − 2.

Theorem 10 Let (m,L) be a basic pair with idx m=−2. Then its shape is one of
the following.
Case 1:

Case 2:

Case 3:
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Here we simply denote the sets {xa | a ∈ Z} and {y} by xa (a ∈ Z) and y, respec-
tively. The sequences of integers written under the shapes except for star-shaped
ones stand for the corresponding basic pairs (m,L).

Retain the notation in the previous section. To prove the theorem we may assume
k0 ≥ k1 ≥ · · · ≥ kN−1 > kN = · · · = kp = 1 and lN,1 ≥ lN+1,1 ≥ · · · ≥ lp,1 > 1.
Note that Lemma 6(iv) assures N ≤ 2.

Then the proof of the theorem deduced to the following three lemmas.

Lemma 8 Suppose N = 2. Then the shape of α(m) is one of the following.

Moreover the shape of (m,L) is one of the shapes in Case 1 in Theorem 10.

Proof Use the notation in Lemma 6.
First suppose k0 ≥ 3. Then there exists ĵ = (2, l,1 . . . ,1) ∈ J ∩ Ī . If l 	= 1,

〈α
ĵ
, α

ĵ1
〉 ≤ −2. If l 	= k1, 〈α

ĵ
, α

ĵ0
〉 ≤ −2. Since 〈α

ĵ0
, α

ĵ1
〉 ≤ −2, the lists in

Sect. 2.4 show that the shape of α(m) equals (E) .

If p ≥ 3, the Dynkin diagram of {α
ĵ0
, α

ĵ1
, α(2,1,1), α(3,1,1)} equals with

u=−〈α
ĵ0
, α

ĵ1
〉 ≥ 2, which contradicts to the lists in Sect. 2.4.
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Next suppose k0 = k1 = 2 and p ≤ 2. Then #(Ī ∩ J ) ≤ 3 and the support of
α(m) is a subset of the set of simple roots whose Dynkin diagram is

where s, t ≥ 0, u= s+ t+2≥ 2 and ĵ = (1,2,1 . . . ,1) or ĵ = (2,1,1, . . . ,1). Here
the Dynkin diagram in the case ĵ = (2,1,1 . . . ,1) is similar as above and hence we
assume ĵ = (1,2,1 . . . ,1). Then the lists in Sect. 2.4 tell us that the shape of α(m)

is one of the following.

Here s = t = 0 when m
ĵ
> 0 and the simple roots indicated in the shape are exam-

ples corresponding to the shapes.
Since α ∈ QL and Φ(α) = m, m is uniquely determined from α(m) for fixed

L. Then if we write the shapes of (m,L) from the shapes (A), (B), (C), (D), (E)

and (F ), then we have the shapes in Case 1 in Theorem 10, respectively. Here we
note that the shapes of α(m) labeled by (C) correspond to a single shape of (m,L),
which is the third one in Case 1. �

Next consider the case N = 1. We notice that Φ is injective in this case. Hence
the shape of (m,L) consists only of the shape of α(m). Put J0 := {1, . . . , k0} for
simplicity.
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Lemma 9 Retain the notation above. If max{d0(j, j
′) | j, j ′ ∈ J0} ≥ 3, the shape

of α(m) is one of the shapes in Case 2 in Theorem 10.

Proof Lemma 6 proves max{d0(j, j
′) | j, j ′ ∈ J0} ≤ 4 and the equality means that

the shape of α(m) is the first one in Case 2.
Suppose max{d0(j, j

′) | j, j ′ ∈ J0} = 3. We may assume d0(1,2)= 3. Put ĵν =
(ν,1, . . . ,1).

If p ≥ 1, the Dynkin diagram of {α
ĵ
, α

ĵ ′ , α(1,1,1)} equals and the

lists in Sect. 2.4 show that the shape of α(m) is the last one in Case 2.
If k0 = 2, the shape of α(m) is and the lists in Sect. 2.4 show

that the shape of α(m) is the second one in Case 2.
Suppose k0 ≥ 3, Then d0(1,3) = 3 or d0(2,3) = 3 by the relation (26). Hence

the lists in Sect. 2.4 show that k0 ≤ 3 and moreover that if k0 = 3, the shape of α(m)

is the third one in Case 2. �

Lemma 10 If max{d0(j, j
′) | j, j ′ ∈ J0} ≤ 2, the shape of α(m) is one of the

shapes in Case 3 in Theorem 10.

Proof Define the coset decomposition of J0 by the following relation: for distinct
j, j ′ ∈ J0, j and j ′ are in the same coset if and only if d0(j, j

′)= 1.
Put J̃0 = J0∪{(j,1,1) | j = 1, . . . , p} and define the coset decomposition J̃0 =∐q

j=1 J (q) so that the coset is one of the cosets of J0 or {(j,1,1) | j = 1, . . . , p}.
We may assume #J (1)≥ #J (2)≥ · · · ≥ #J (q)≥ 1.

Then we have q ≤ 3, #J (2) ≤ 2 and if q = 3, then #J (2) = 1 and #J (1) ≤
2. Moreover if #J (2) = 2, then #J (1) ≤ 3. In fact, if this is not valid, suppα(m)

contains a set of simple roots with the Dynkin diagram

1 2

3 4

or
1

2 2 2

1 1
or 3

1

2

2

1

or
1

2

1 1

3

or
1

2

1 1 1

2

,

which contradicts to the classification in Sect. 2.4. Here i corresponds to a simple
root in J (i).

If q = 1 or q = 2 and #J (2)= 1, the Dynkin diagram of the support of α(m) is
star-shaped. Otherwise it is one of the following:

1 2

3 1

1 2

3

1 2

2 1
1

1 2

2 1
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Hence we have the lemma from the classification in Sect. 2.4. �

Remark 6 We mention about a related work by H. Kawakami, A. Nakamura and
H. Sakai in [5]. They consider systems of first order differential equations with index
of rigidity −2 whose singular points are regular singular or unramified irregular
singular points. These equations are obtained by the confluence of singular points
from Fuchsian systems of first order differential equations with index of rigidity −2
whose spectral types are basic in the sense of Definition 9. We notice that spectral
types can be defined for systems of first order differential equations (see [9] for
instance).

We regard these spectral types as elements in lattices of spectral types and write
their shapes as in Sect. 3. Then the list of shapes of these spectral types in [5] and
our list of shapes of basic pairs with index −2 coincide with each other.

This coincidence is no more valid in the case when the index of rigidity is−4. Let

P be a differential operator with the shape of the spectral type
which represents a basic root with index −4. Then P is of order 5 and has an un-
ramified irregular singular point. The operator P is obtained by a confluence of
four regular singular points of a Fuchsian differential equation with the shape of the

spectral type , which does not corresponds to a basic root.

Note that any Fuchsian differential equation of order 5 with a basic spectral type
and index −4 has only three singular points (see [9, 11]).
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Fermions Acting on Quasi-local Operators
in the XXZ Model

Michio Jimbo, Tetsuji Miwa, and Feodor Smirnov

Abstract This is a survey about the construction of fermions which act on the space
of quasi-local operators in the XXZ model. We also include a proof of the anti-
commutativity of fermionic creation operators.

1 Introduction

In this article, we give an exposition of the ‘fermionic basis’ found in [1, 2] for the
space of operators in the XXZ spin chain. In order to explain the problem, let us
begin with some historical background.

Quite generally, in integrable models one is given a large family of commuting
operators which act on the space of states. The first issue is then to describe their
spectra. In the case of the XXZ chain, the space of states is simply a tensor product
V⊗N , where V = C

2. The generating function of the commuting operators is the
transfer matrix of the underlying six vertex model, and the standard machinary of
the Bethe ansatz enables one to study its spectra in great detail.

The second issue is to describe expectation values of local operators

O ∈ EndV⊗m ⊂ EndV⊗N.

This is a problem far more involved than the first. It has been known for some
time that, for the XXZ chain in the thermodynamic limit N →∞, the expectation
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values of the standard basis elements (products of matrix units) are given by certain
multiple integrals [3–6]. Subsequently it has been recognised, on many examples,
that actually these integrals can be reduced to sums of products of one-dimensional
integrals, with complicated rational functions as coefficients [7–10]. These findings
suggested that, if one passes from the standard basis of local operators to a suitable
new basis, then the corresponding expectation values simplify drastically.

It turns out to be convenient to introduce a parameter α and consider in place of
EndV⊗m the space of expressions of the form

q2αS(0)O, S(0)= 1

2

0∑

j=−∞
σ 3
j ,

where σ 3
j is a Pauli matrix at site j and O is a local operator in the usual sense. We

shall call such operators ‘quasi-local’ (see Sect. 3 below). The parameter α plays a
role of regularisation which helps removing degeneracies from the formulas.

In [1], we have defined certain fermions bp, cp,b∗p, c∗p , p ≥ 1, which act on
the space of all quasi-local operators. Together with the adjoint action of the in-
tegrals of motion t∗p , these operators act on q2αS(0) and create a basis which we
call ‘fermionic’. We have shown in [2] that for these basis elements the expecta-
tion values are given by determinants involving only two basic functions ρ(ζ ) and
ω(ζ, ξ) (see Sect. 6, Theorem 2). This clarifies the reason for the simplification of
the integrals mentioned above.

The aim of the present paper is to outline the construction of the fermions, leav-
ing the proofs to the original papers. The construction is purely algebraic. It can be
viewed as a sophisticated version of the algebraic Bethe ansatz, but there are new
features. In particular it is applied to the spaces EndV⊗m rather than V⊗m. Also, es-
sential use is made of representations of the Borel subalgebra Uqb of Uq ŝl2. Taking
this opportunity, we supply a proof of the anti-commutativity of fermionic creation
operators which has not been published in the previous papers.

The text is organised as follows. In Sect. 2 we collect preliminary materials about
the transfer matrix and Baxter’s Q-matrices, thereby introducing our notation. In
Sect. 3 we consider the action of integrals of motion on the space of quasi-local
operators. In Sect. 4 we define the fermionic annihilation and creation operators,
and in Sect. 5 explain their properties. In Sect. 6 we consider the expectation values.
The main statement is that the expectation values of operators created by fermions
from ‘the primary operator’ can be computed as a determinant. We give an explicit
formula for the function ω(ζ, ξ) in Appendix A. Appendix B is devoted to the proof
of anti-commutativity of creation operators.

Throughout the text we shall assume that q is not a root of unity.

2 Transfer Matrix and Q-Matrices

In this section, we fix our notation and review the standard construction of the trans-
fer matrix of the six vertex model and Baxter’s Q-matrices.
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Let V =C
2, and let v+, v− be the standard basis. Let Vj (j ∈ Z) be copies of V ,

and set V[K,L] = VK ⊗ · · · ⊗ VL for an interval [K,L] ⊂ Z. The transfer matrix is
an element of EndV[K,L] defined by

T[K,L](ζ,α)= Tra
(
Ta,[K,L](ζ ) · qασ 3

a
)
,

Ta,[K,L](ζ )= La,L(ζ ) · · ·La,K(ζ ).
(1)

Here the operator L is the image of the universal R matrix of Uq ŝl2 in the two-
dimensional evaluation representation πa,ζ :Uq ŝl2 → EndVa ,

La,j (ζ/ξ)= (πa,ζ ⊗ πj,ξ )R. (2)

It has the weight preserving property

[
x ⊗ x,La,j (ζ/ξ)

]= 0 for any diagonal x ∈ EndV . (3)

We have also introduced an arbitrary parameter α, which will play a key role later
on.

Due to the Yang-Baxter relation, for each fixed α the transfer matrices (1) mutu-
ally commute,

[
T[K,L](ζ,α), T[K,L]

(
ζ ′, α

)]= 0
(∀ζ, ζ ′).

We note also

[
S[K,L], T[K,L](ζ,α)

]= 0,

where

S[K,L] = 1

2

L∑

j=K

σ 3
j .

In addition to the transfer matrices, there are also Baxter’s Q-matrices among the
commuting family. As we shall see below, the latter are more fundamental objects
than the former.

For the construction of Q-matrices one uses representations of the Borel sub-
algebra Uqb of Uq ŝl2 [12] in place of the two-dimensional ‘auxiliary space’ Va .
More specifically, consider the following operators a,a∗, q±D on the vector space
W =⊕k∈ZC|k〉:

qD|k〉 = qk|k〉, a|k〉 = (1− q2k)|k − 1〉, a∗|k〉 = |k + 1〉.
They satisfy the so-called q-oscillator algebra relations

qDaq−D = q−1a, qDa∗q−D = qa∗, q−1aa∗ − qa∗a= q−1 − q.
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Then the formulas

'+
A,ζ (e0)= ζ

q − q−1
a, '+

A,ζ (e1)= ζ

q − q−1
a∗,

'+
A,ζ

(
qh0

)−1 ='+
A,ζ

(
qh1

)= q2D

give a representation '+
A,ζ : Uqb → EndW+, where W+ =⊕

k≥0 C|k〉. Inter-

changing the indices 0 and 1, one defines another representation '−
A,ζ on the quo-

tient space W− =W/W+. (We use the letter A for ‘auxiliary’. The representations
'±

A,ζ are the two types of fundamental representations of Uqb, see [13].) Accord-

ingly we define

Q±
[K,L](ζ,α)= ζ±(α−S[K,L])TrA

(
T ±
A,[K,L](ζ ) · q±2αDA

)
,

T ±
A,[K,L](ζ )= L±A,L(ζ ) · · ·L±A,K(ζ ),

where ±2DA ='±
A (h1) and

L±A,j (ζ/ξ)=
(
'±

A,ζ ⊗ πj,ξ

)
R. (4)

In the above, Tr is understood as analytic continuation from |q±2α| < 1, e.g.,
TrW±(q2αD)=±1/(1− q2α).

The Q-matrices commute among themselves as well as with T[K,L](ζ,α) and
S[K,L],

[
Qε[K,L](ζ,α),Qε′[K,L]

(
ζ ′, α

)]= 0
(∀ζ, ζ ′),

[
Qε[K,L](ζ,α), T[K,L]

(
ζ ′, α

)]= 0,
[
Qε[K,L](ζ,α), S[K,L]

]= 0.

In fact, the transfer matrix and its ‘higher’ analogs are all expressible as quadratic
combinations of the Q-matrices. For instance, dropping the suffix [K,L] we have

(
qα−S − q−α+S

) ∣∣∣∣
Q+(q−1/2ζ,α) Q−(q−1/2ζ,α)

Q+(q1/2ζ,α) Q−(q1/2ζ,α)

∣∣∣∣= id.,

(
qα−S − q−α+S

) ∣∣∣∣
Q+(q−1ζ,α) Q−(q−1ζ,α)

Q+(qζ,α) Q−(qζ,α)

∣∣∣∣= T (ζ,α).

These ‘Wronskian’ like relations follow from the analysis of the composition factors
of W+

A,ζ1
⊗W−

A,ζ2
[12]. They entail in particular Baxter’s TQ relation

T (ζ,α)Q±(ζ,α)=Q±(q−1ζ,α
)+Q±(qζ,α), (5)

which corresponds to the exact sequence of Uqb-modules

0−→W±
A,q−1ζ

[∓1] −→ Va,ζ ⊗W±
A,ζ −→W±

A,qζ [±1] −→ 0. (6)
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Here, for a Uqb-module W , W [m] means the Uqb-module structure on W where
qh1 acts by qm × qh1 .

3 Quasi-local Operators

Our main concern in this note is not the space of states V[K,L], but rather the space of
operators EndV[K,L]. We wish to consider them all at once by letting −K,L→∞
while keeping only local operators, i.e., only those elements O which have finite
support. Here, by support suppO of O, we mean the minimal interval [k0, l0] ⊂ Z

such that O acts as identity on Vj for all j 	∈ [k0, l0]. When suppO ⊂ [k, l], we
indicate this fact by putting a suffix and writing O[k,l]. We shall also say that O has
spin s ∈ Z if S(O)= sO, where S(·)= [S(−∞,∞), ·].

Let us look at the action of the transfer matrix on an element O ∈ EndV[K,L],

t∗[K,L](ζ,α)(O)= Tra
{
Ta,[K,L](ζ )qασ 3

a ·O · Ta,[K,L](ζ )−1}.

It is a simple consequence of the weight-preserving property (3) that, if suppO ⊂
[k, l], then

t∗[K,L](ζ,α)
(
qα(σ 3

K+···+σ 3
k−1)O[k,l]

)= qα(σ 3
K+···+σ 3

k−1)t∗[k,L](ζ,α)(O[k,l]). (7)

Namely, apart from the ‘tail’ qα(σ 3
K+···+σ 3

k−1), there is a reduction of the action of the
operator t∗ to the left of the support [k, l] of the operand O[k,l]. Although there is
no such simple reduction to the right, the following stability takes place. Consider
the Taylor expansion at ζ 2 = 1,

t∗[k,L](ζ,α)(O[k,l])=
∑

p≥1

t∗[k,L],p(O[k,l]) ·
(
ζ 2 − 1

)p−1 (
ζ 2 → 1

)
.

Then for each fixed p the coefficient t∗[k,L],p(O[k,l]) becomes independent of L if L
is chosen large enough.

These properties suggest that, instead of naïvely taking −K,L→∞, it is more
natural to introduce a formal element

q2αS(0) = · · ·qασ 3
−2qασ 3

−1qασ 3
0 , S(0)= S(−∞,0],

and to consider expressions of the form

q2(α−s)S(0)O, O is local and has spin s. (8)

The shift of α depending on the spin s is introduced for convenience. Let Wα−s,s

be the set of all elements (8), and set

W(α) =
⊕

s∈Z
Wα−s,s .
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We shall say that an element of W(α) is a quasi-local operator. We call q2αS(0) ∈
Wα,0 the primary operator. Abusing the language we define the support of (8) to be
suppO.

From the foregoing discussions it is clear that for each p ≥ 1 the limit

t∗p
(
q2(α−s)S(0)O[k,l]

) := lim−K,L→∞ t∗[K,L],p
(
q2(α−s)S[K,0]O[k,l]

)

has a well-defined meaning as an operator acting on W(α). We shall use the gener-
ating series

t∗(ζ )=
∞∑

p=1

t∗p
(
ζ 2 − 1

)p−1
. (9)

From the definition it is equally clear that the operators {t∗p}p≥1 mutually com-
mute. However we are not interested in their diagonalisation. Indeed, the question
does not even make sense because their action on W(α) turns out to be free. They
generate one half of the Heisenberg algebra, and we shall use them as a part of op-
erators which create a basis of W(α) from the primary operator q2αS(0), see Sect. 5
below.

4 Introducing Fermions

In this section we shall introduce fermions which act on the space W(α).
Going back to the setting of a finite interval [K,L], let us re-examine the deriva-

tion of the TQ relation (5). For definiteness we consider only W+
A,ζ and omit the

superfix +. The exact sequence (6) tells that, with an appropriate matrix Fa,A of
base change in Va,ζ ⊗ WA,ζ , the product of the two L operators (2), (4) can be
brought to a block triangular form

L{a,A},j (ζ )= F−1
a,ALa,j (ζ )LA,j (ζ )Fa,A

=
(
LA,j (qζ )q

−σ 3
j /2 0

∗ LA,j (q
−1ζ )q

σ 3
j /2

)

a

,

where the suffix a refers to the block structure in Va . Introducing

T{a,A},[K,L](ζ )= L{a,A},L(ζ ) · · ·L{a,A},K(ζ ),

we consider its action on an element X ∈ End(V[K,L]) by

T{a,A},[K,L](ζ )qα(σ 3
a+2DA) ·X · T{a,A},[K,L](ζ )−1

=
(
AA,[K,L](ζ,α)(X) 0
CA,[K,L](ζ,α)(X) DA,[K,L](ζ,α)(X)

)

a

.
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If we take the trace of both sides on Va,ζ ⊗WA,ζ , then we obtain an EndV[K,L]
version of the TQ relation (5). Here we proceed differently and define a new operator
by looking at the lower left block,

k[K,L](ζ,α)(X)= TrA
(
CA,[K,L](ζ,α) · ζ α−S(q−2S[K,L]X

))
. (10)

For each X, the operator (10) is a rational function in ζ 2 apart from an overall
power ζ α . It has poles at ζ 2 = 1, q±2 in the ζ 2-plane. Hence one can write the
partial fraction decomposition

k[K,L](ζ,α)(X) = c̄[K,L](ζ,α)(X)+ c[K,L](qζ,α)(X)+ c[K,L]
(
q−1ζ,α

)
(X)

+ f[K,L](qζ,α)(X)− f[K,L]
(
q−1ζ,α

)
(X), (11)

demanding that ζ 2 = 1 is the only pole of

c̄[K,L](ζ,α)(X), c[K,L](ζ,α)(X), f[K,L](ζ,α)(X).

(There is an ambiguity about how to share the possible polynomial part among them.
The prescription is given in [1], Sect. 2.7.) We define further

b∗[K,L](ζ,α)(X) := f[K,L](qζ,α)(X)+ f[K,L]
(
q−1ζ,α

)
(X)

− t∗[K,L](ζ,α)f[K,L](qζ,α)(X). (12)

Notice that the right hand side is the combination which appears in the TQ relation
(5). Although we are not able to give a logical explanation to the formula (12), it
turns out that this operator enjoys various nice properties.

We supplement (11), (12) by giving two more definitions,

b[K,L](ζ,α) = NJ[K,L] ◦ c[K,L](ζ,−α) ◦ J[K,L],

c∗[K,L](ζ,α) = −NJ[K,L] ◦ b∗[K,L](ζ,−α) ◦ J[K,L],

where N = q−1(q−α+S+1 − qα−S−1) is a normalisation and

J[K,L](X)= J[K,L] ·X · J−1
[K,L], J[K,L] =

L∏

j=K

σ 1
j

is an operator which flips the spin.
It can be shown that the operators b[K,L], c[K,L], b∗[K,L], c∗[K,L] introduced above

have reduction properties similar to (7). The left reduction takes the form

x[K,L](ζ,α)
(
q(α±1)(σ 3

K+···+σ 3
k−1)O[k,l]

)= qα(σ 3
K+···+σ 3

k−1)x[k,L](ζ,α)(O[k,l]), (13)

where the + sign is chosen for x= c,b∗ and − for x= b, c∗. (The change of α in
(13) is the reason why we introduced the shift in the definition (8) of quasi-local
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operators.) In addition, b∗, c∗ share with t∗ the same stability properties to the right.
For x= b, c the situation is even simpler, since

x[K,L](ζ,α)(O[k,l])= x[K,l](ζ,α)(O[k,l]).

As it was explained for t∗p , these properties allow us to consider the limit −K,L→
∞ of b[K,L](ζ,α) and so forth. We end up with the formal series

b(ζ )= ζ−α

∞∑

p=0

bp

(
ζ 2 − 1

)−p
, c(ζ )= ζ α

∞∑

p=0

cp
(
ζ 2 − 1

)−p
, (14)

b∗(ζ )= ζ α−2
∞∑

p=1

b∗p
(
ζ 2 − 1

)p−1
, c∗(ζ )= ζ−α+2

∞∑

p=1

c∗p
(
ζ 2 − 1

)p−1
, (15)

whose coefficients bp, cp,b∗p, c∗p are well-defined operators on W(α). We shall not
use the zeroth coefficients b0, c0 because they are not independent from bp, cp ,
p ≥ 1.

5 Properties of Fermions

So far we have introduced the operators

t∗p, bp, cp, b∗p, c∗p (p ≥ 1), (16)

which act on W(α) in the following manner:

t∗p : Wα−s,s −→Wα−s,s ,

cp, b∗p : Wα−s+1,s−1 −→Wα−s,s ,

bp, c∗p : Wα−s−1,s+1 −→Wα−s,s .

In this section we summarize their basic properties.

Commutation Relations Among the operators in the list (16), t∗p are central:

[
t∗p,xp′

]= 0
(
p,p′ ≥ 1, x= t∗,b, c,b∗, c∗

)
. (17)

The rest of the operators obey the canonical anti-commutation relations

[bp,bp′ ]+ = [cp, cp′ ]+ = [cp,bp′ ]+ = 0, (18)
[
bp,b∗p′

]
+ =

[
cp, c∗p′

]
+ = δp,p′ ,

[
bp, c∗p′

]
+ =

[
cp,b∗p′

]
+ = 0, (19)

[
b∗p,b∗p′

]
+ =

[
b∗p, c∗p′

]
+ =

[
c∗p, c∗p′

]
+ = 0. (20)
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The proof of (18), (19) requires quite a heavy computation which occupies a large
part of [1]. We give a proof of (20) when the target space is Wα,0 in Appendix B.

Later on we shall use (19) in the form of generating series,
[
b(ζ ),b∗(ξ)

]
+ =ψ(ζ/ξ,−α),

[
c(ζ ), c∗(ξ)

]
+ =ψ(ζ/ξ,α),

where ψ(ζ,α) is a Cauchy kernel defined by

ψ(ζ,α)= 1

2
ζ α ζ 2 + 1

ζ 2 − 1
.

Support Property By acting with bp, cp the support of an operator does not
enlarge. Namely if X ∈W(α) satisfies suppX ⊂ [k, l], then

supp xp(X)⊂ [k, l] (x= b, c), (21)

xp(X)= 0 if p > l − k+ 1 (x= b, c). (22)

In particular, we have

bp

(
q2αS(0))= 0, cp

(
q2αS(0))= 0. (23)

These properties justify calling bp, cp annihilation operators.
In contrast, the support is enlarged by t∗p,b∗p, c∗p according to the rule

supp x∗p(X)⊂ [k, l + p] (
x∗ = t∗,b∗, c∗

)
. (24)

We call t∗p,b∗p, c∗p creation operators.

Fermionic Basis The following set is a basis of W(α) [11]:
(
t∗1
)pt∗i1 · · · t∗ir b∗j1

· · ·b∗js c∗k1
· · · c∗kt

(
q2αS(0))

(i1 ≥ · · · ≥ ir ≥ 2, j1 > · · ·> js ≥ 1, k1 > · · ·> kt ≥ 1, p ∈ Z, r, s, t ≥ 0).
(25)

Hence W(α) may be regarded as a tensor product of Fock spaces of one boson and
two kinds of fermions. (However we do not know how to construct the annihilation
partner to t∗p .)

As we shall explain in the next section, it is in this fermionic basis that the cal-
culation of expectation values simplify drastically.

6 Expectation Values

We now move on to the discussion of expectation values in the six vertex model.
Dealing with the infinite lattice limit one has to be specific about the range of the
parameters. From now on we assume that q = eπiν , 1/2 < ν < 1, ν 	∈Q.
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Fig. 1 Six vertex model with fields×= q
(κ+α)σ 3

j , ◦ = q
κσ 3

j . Insertion of a local field E
ε′1,ε1

1 E
ε′2,ε2

2
corresponds to introducing defects (filled circles)

Let us consider an infinite cylinder extending to the horizontal direction. We take
finitely many rows, numbered say from 1 to n, and denote them collectively by M

(the letter M stands for ‘Matsubara’). To each row m= 1, . . . , n attach a parameter
τm and set

T[K,L],M(ζ )= TK,M(ζ ) · · ·TL,M(ζ ),

Tj,M(ζ )= Lj,n(ζ/τn) · · ·Lj,1(ζ/τ1).

Further, on each vertical edge j between the n-th and the (n+1)-st row, i.e., the first

row in the cyclic boundary condition, we assign a ‘field’ q
(κ+α)σ 3

j , j ≤ 0 or q
κσ 3

j ,
j > 0 (see Fig. 1).

We introduce the expectation value of a quasi-local operator q2αS(0)O as the limit
of the ratio

Zκ
{
q2αS(0)O

}= lim−K,L→∞
Tr[K,L],M {T[K,L],M(1)q2αS[K,0]+2κS[K,L]O}
Tr[K,L],M {T[K,L],M(1)q2αS[K,0]+2κS[K,L] } . (26)

It is a linear functional Zκ :W(α)→C so normalised that Zκ {q2αS(0)} = 1. The nu-
merator which appears in the right hand side is the partition function corresponding
to a lattice with ‘defects’ specified by O.

It is convenient to introduce a slightly more general object than Zκ . Consider the
transfer matrix corresponding to a column

TM(ζ, κ)= Trj
{
Tj,M(ζ )q

κσ 3
j
}
.

We call it the ‘Matsubara’ transfer matrix. Fix an eigencovector 〈Φ| of TM(ζ, κ+α)

(resp. eigenvector |Ψ 〉 of TM(ζ, κ)) with eigenvalue T (ζ, κ + α) (resp. T (ζ, κ)),

〈Φ|TM(ζ, κ + α)= 〈Φ|T (ζ, κ + α), TM(ζ, κ)|Ψ 〉 = T (ζ, κ)|Ψ 〉.
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We assume that

〈Φ|Ψ 〉 	= 0, (27)

and in particular that they have the same spin. For an element q2αS(0)O ∈Wα,0,
choose −K,L> 0 so that suppO ⊂ [K,L], and set

Zκ
Φ,Ψ

{
q2αS(0)O

}= 〈Φ|Tr[K,L]{T[K,L],M(1)q2κS[K,L]+2αS[K,0]O}|Ψ 〉
〈Φ|Ψ 〉 T (1, κ + α)−K+1T (1, κ)L

. (28)

Then the right hand side is independent of the choice of K,L. If 〈Φ| = 〈κ + α|,
|Ψ 〉 = |κ〉 are the maximal eigenvectors, then by the Perron-Frobenius theorem the
expectation value (26) considered above reduces to (28):

Zκ
{
q2αS(0)O

}= Zκ〈κ+α|,|κ〉
{
q2αS(0)O

}
.

It is not difficult to see that

Zκ
Φ,Ψ

{
t∗(ζ )

(
q2αS(0))}= 2ρ(ζ ),

where

ρ(ζ )= T (ζ, κ + α)

T (ζ, κ)
.

A more interesting example of (28) is

Zκ
Φ,Ψ

{
b∗(ζ )c∗(ξ)

(
q2αS(0))}= ω(ζ, ξ).

The function ω(ζ, ξ) is determined from the data about the eigenvectors 〈Φ|, |Ψ 〉.
An explicit formula for ω(ζ, ξ) is given in Appendix A.

We are now in a position to state the ‘Ward identities’ regarding the expectation
values.

Theorem 1 For any X ∈W(α) the following relations hold:

Zκ
Φ,Ψ

{
t∗(ζ )(X)

}= 2ρ(ζ )Zκ
Φ,Ψ {X},

Zκ
Φ,Ψ

{
b∗(ζ )(X)

}= resξ2=1ω(ζ, ξ)Zκ
Φ,Ψ

{
c(ξ)(X)

}dξ2

ξ2
,

Zκ
Φ,Ψ

{
c∗(ζ )(X)

}=−resξ2=1ω(ξ, ζ )Zκ
Φ,Ψ

{
b(ξ)(X)

}dξ2

ξ2
.

In the left hand side, we have the action of creation operators. In the right hand
side, it becomes reduced to that of the annihilation operators. The proof given in [2]
makes use of a q-difference analog of Abelian integrals on hyperelliptic Riemann
surfaces.
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The formulas in Theorem 1, combined with the annihilation property (23), allow
one to calculate the expectation values of operators inductively. We thus arrive at
the following main result of [2], which says that the calculation of Zκ

Φ,Ψ on the
fermionic base vectors in (25) can be performed by using the ordinary Wick theorem
for fermions.

Theorem 2 Notation being as above, we have

Zκ
Φ,Ψ

{
t∗
(
ζ 0

1

) · · · t∗(ζ 0
r

)
b∗
(
ζ+1
) · · ·b∗(ζ+s

)
c∗
(
ζ−t
) · · · c∗(ζ−1

)(
q2αS(0))}

=
r∏

j=1

2ρ
(
ζ 0
j

)× δs,t det
(
ω
(
ζ+k , ζ−l

))
1≤k,l≤s

.

7 Concluding Remarks

In this article we have outlined the construction of fermions acting on the space
W(α) of quasi-local operators. In this basis the expectation values take a very simple
form (Theorem 2).

As long as the number of sites n in the Matsubara direction is kept finite, ρ(ζ ) and
(ζ/ξ)−αω(ζ, ξ) are rational functions (see Appendix A below). The main virtue of
such a formula is that, in passing to various limits, it is enough to do that for these
two functions alone. For example, for the ground state average in the XXZ spin
chain, the limit n→∞ can be taken in a straightforward manner. Moreover, on the
infinite lattice any operator of the form t∗p(X) (p ≥ 2) has vanishing expectation
value, so ρ(ζ ) does not appear in the result. This explains the fact that the original
multiple integral formula can be simplified using only one transcendental function
(the limit of ω(ζ, ξ)).

In a sense, the main formula is only an existence theorem, since the transition
matrix between the standard basis and the fermionic basis remains unknown in gen-
eral. Nevertheless, it has non-trivial implications in the continuous limit to confor-
mal field theory and the sine-Gordon theory. For these topics the reader is referred
to [15–18].
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Appendix A: Formula for ω(ζ, ξ)

We quote an explicit formula for the function ω(ζ, ξ) from [2], Sect. 7. For that
purpose we need to prepare some notation.

As in the text, we fix an eigencovector 〈Φ| of TM(ζ, κ + α) and an eigenvector
|Ψ 〉 of TM(ζ, κ) satisfying 〈Φ|Ψ 〉 	= 0. Denote their eigenvalues and those for the
Q-matrices as follows:

〈Φ|TM(ζ, κ + α)= 〈Φ|T (ζ, κ + α), 〈Φ|Q±
M(ζ, κ + α)= 〈Φ|Q±(ζ, κ + α),

TM(ζ, κ)|Ψ 〉 = T (ζ, κ)|Ψ 〉, Q±
M(ζ, κ)|Ψ 〉 =Q±(ζ, κ)|Ψ 〉.

Introduce q-difference operators Δζ , Dζ by

ΔζF(ζ )= F(qζ )− F
(
q−1ζ

)
,

DζF (ζ )= F(qζ )+ F
(
q−1ζ

)− 2ρ(ζ )F (ζ ).

Hereafter we shall use the shorthand

T (ζ )= T (ζ, κ), T̃ (ζ )= T (ζ, κ + α),

Q±(ζ )=Q±(ζ, κ), Q̃±(ζ )=Q±(ζ, κ + α),

ψ(ζ )=ψ(ζ,α).

Set

a(ζ )=
n∏

m=1

(
1− q2ζ 2/τ 2

m

)
, d(ζ )=

n∏

m=1

(
1− ζ 2/τ 2

m

)
,

ϕ(ζ )= (a(ζ )d(ζ ))−1
,

(29)

and define ωsym(ζ, ξ) by

T (ζ )T (ξ)ωsym(ζ, ξ) = (4a(ξ)d(ζ )− T (ζ )T (ξ)
)
ψ(qζ/ξ)

− (4a(ζ )d(ξ)− T (ζ )T (ξ)
)
ψ
(
q−1ζ/ξ

)

− 2
(
T (ζ )T̃ (ξ)− T (ξ)T̃ (ζ )

)
ψ(ζ/ξ).

As a function of ζ , ω(ζ, ξ) is characterised by the following two conditions.

1. ζ−αT (ζ )(ω(ζ, ξ)−ωsym(ζ, ξ)) is a polynomial in ζ 2 of degree n,
2. It satisfies the normalisation conditions for m= 0,1, . . . , n:

∫

Γm

T (ζ )
(
ω(ζ, ξ)+DζDξΔ

−1
ζ ψ(ζ/ξ)

)
Q̃−(ζ )Q+(ζ )ϕ(ζ )dζ

2

ζ 2
= 0.

Here Γ0 is a contour around ζ 2 = 0, and for m= 1, . . . , n, Γm is a contour encir-
cling ζ 2 = τ 2

m,q−2τ 2
m.
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As it is explained in [2], Sect. 5, the integral in (ii) does not depend on a particular
choice of the ‘q-primitive’ Δ−1

ζ ψ(ζ/ξ).
To be more explicit, consider the function

r+(ζ, ξ) = T (ζ )Δ−1
ζ

((
T (ζ )− T (ξ)

)
ψ(ζ/ξ)

)

+ T̃ (ζ )Δ−1
ζ

((
T̃ (ζ )− T̃ (ξ)

)
ψ(ζ/ξ)

)

− T (ζ )Δ−1
ζ

((
T̃ (qζ )− T̃ (ξ)

)
ψ(qζ/ξ)

)

− T̃ (ζ )Δ−1
ζ

((
T
(
q−1ζ

)− T (ξ)
)
ψ
(
q−1ζ/ξ

))

+ (a(qζ )− a(ξ)
)
d(ζ )ψ(qζ/ξ)

− a(ζ )
(
d
(
q−1ζ

)− d(ξ)
)
ψ
(
q−1ζ/ξ

)
.

Then it has the form

(ζ/ξ)−αr+(ζ, ξ)=
n∑

m=0

p+m
(
ζ 2)ξ2m,

where p+m(ζ 2) is a polynomial in ζ 2 of degree 2n. Using them we introduce (n+
1)× (n+ 1) matrices A, B by

Ai,j =
∫

Γi

ζ α+2j Q̃−(ζ )Q+(ζ )ϕ(ζ )dζ
2

ζ 2
,

Bi,j =
∫

Γi

ζ αp+j
(
ζ 2)Q̃−(ζ )Q+(ζ )ϕ(ζ )dζ

2

ζ 2
.

The formula for ω(ζ, ξ) reads

ω(ζ, ξ)= 4

T (ζ )T (ξ)

tv+(ζ ) ·A−1B · v−(ξ)+ωsym(ζ, ξ),

where v±(ζ ) denote column vectors with entries v±(ζ )j = ζ±α+2j .
For the purpose of studying various limits, it is more convenient to use an alterna-

tive expression in terms of solutions to integral equations [19]. The relevant formula
can be found in [15], (3.11) (the function ω(ζ, ξ) in the present paper is denoted
ωrat(ζ, ξ) there, see [15], (2.11)). In this connection one should mention the recent
paper [20] where a Riemann-Hilbert problem has been formulated.

Appendix B: Anti-commutativity of Fermionic Creation
Operators

In this appendix we prove the following anti-commutation relations between the
creation operators.
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Theorem 3 For all p,p′ ≥ 1, we have

[
b∗p,b∗p′

]
+ = 0 on Wα+2,−2,

[
c∗p, c∗p′

]
+ = 0 on Wα−2,2, (30)

[
b∗p, c∗p′

]
+ = 0 on Wα,0. (31)

Since the proofs are similar, we shall concentrate on the case (31).
The next Proposition says that the anti-commutation relation (31) holds in the

sense of expectation values.

Proposition 1 Assume (27). Then for any X ∈Wα,0 we have

Zκ
Φ,Ψ

{[
b∗p, c∗p′

]
+(X)

}= 0
(∀p,p′ ≥ 1

)
.

Proof Abbreviating Zκ
Φ,Ψ to Z, we apply the Ward identities for the expectation

values in Theorem 1,

Z
{
b∗(ζ1)c∗(ζ2)(X)

}

= resξ2
1=1ω(ζ1, ξ1)Z

{
c(ξ1)c∗(ζ2)(X)

}dξ2
1

ξ2
1

= resξ2
1=1ω(ζ1, ξ1)

(−Z
{
c∗(ζ2)c(ξ1)(X)

}+ψ(ξ1/ζ2, α)
)dξ2

1

ξ2
1

= resξ2
1 ,ξ

2
2=1ω(ζ1, ξ1)ω(ζ2, ξ2)Z

{
b(ξ2)c(ξ1)(X)

}dξ2
1

ξ2
1

dξ2
2

ξ2
2

+ω(ζ1, ζ2).

In the second line we used the known anti-commutation relations between the cre-
ation and annihilation operators.

Similarly one calculates

Z
{
c∗(ζ2)b∗(ζ1)(X)

}

= resξ2
1 ,ξ

2
2=1ω(ζ2, ξ2)ω(ζ1, ξ1)Z

{
c(ξ1)b(ξ2)(X)

}dξ2
1

ξ2
1

dξ2
2

ξ2
2

−ω(ζ1, ζ2).

Using the known anti-commutativity of b(ξ2) and c(ξ1), we arrive at

Z
{
b∗(ζ1)c∗(ζ2)(X)

}=−Z
{
c∗(ζ2)b∗(ζ1)(X)

}
,

which is equivalent to the assertion of Proposition. �
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Before proceeding, we recall a few facts from the algebraic Bethe ansatz. Nor-
malising the L operator as

L(ζ )=

⎛

⎜⎜⎝

1− q2ζ 2

(1− ζ 2)q (1− q2)ζ

(1− q2)ζ (1− ζ 2)q

1− q2ζ 2

⎞

⎟⎟⎠ ,

we set

La,n(ζ/τn) · · ·La,1(ζ/τ1)=
(
A(ζ ) B(ζ )

C(ζ ) D(ζ )

)

a

.

Let |0〉 = v⊗n+ , 〈0| = (v∗+)⊗n be the reference vector and covector respectively,
where v+, v− is the standard basis of C2 and v∗+, v∗− is the dual basis. Let further
l ∈ {0,1, . . . , n} and set for j = 1, . . . , l

Fj (ξ1, . . . , ξl)= a(ξj )

l∏

i=1

(
ξ2
i − q−2ξ2

j

)+ q−2κ+n−2ld(ξj )

l∏

i=1

(
ξ2
i − q2ξ2

j

)
,

where a(ζ ), d(ζ ) are defined in (29).
The following formula is well known [14].

Proposition 2 Assume that (ξ1, . . . , ξl) ∈ (C×)l is a solution of the Bethe equation

Fj (ξ1, . . . , ξl)= 0 (j = 1, . . . , l), (32)

and let (ζ1, . . . , ζl) ∈ (C×)l be arbitrary. Then

〈0|
l∏

j=1

C(ζj )

l∏

j=1

B(ξj )|0〉 = q−l(l−1−n)
(
q − q−1)l

×
∏l

j=1 ζj ξj d(ξj )∏
1≤i<j≤l (ξ

2
i − ξ2

j )(ζ
2
j − ζ 2

i )
det(Ωj,k)1≤j,k≤l ,

Ωj,k = a(ζk)
∏l

i=1(q
2ξ2

i − ζ 2
k )

(ξ2
j − ζ 2

k )(q
2ξ2

j − ζ 2
k )

− q−2κ+n d(ζk)
∏l

i=1(ξ
2
i − q2ζ 2

k )

(ξ2
j − ζ 2

k )(ξ
2
j − q2ζ 2

k )
.

We shall consider the specialisation of parameters q,τ = (τ1, . . . , τn) to

q0 = eπi/2, τ 0 = (1, . . . ,1).

Lemma 1 Define xj (κ) by

1− xj (κ)

1+ xj (κ)
=−e−

πi
n
(κ− n

2+l+2j) (j = 1, . . . , n).
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Then, for any subset I = {i1, . . . , il} ⊂ {1, . . . , n}, i1 < · · ·< il ,
(
ξ2

1 , . . . , ξ
2
l

)= (xi1(κ), . . . , xil (κ)
)

(33)

is a solution of (32) for (q,τ ) = (q0,τ 0). If further κ is generic, then we have
ξ2
j 	= ±1, ξ2

j 	= ±ξ2
k (j 	= k).

Proof is straightforward.
Hereafter we choose and fix a generic κ0. Denote by ξ

(I )
0 the solution (33) at

(κ, q,τ )= (κ0, q0,τ 0).

Lemma 2 We have

det

(
∂Fj

∂ξ2
k

(
ξ
(I )
0

)) 	= 0.

Proof This follows from the calculation

∂Fj

∂ξ2
k

(
ξ
(I )
0

)= δj,k · 2n

1− ξ4
j

a(ξj )

l∏

i=1

(
ξ2
i + ξ2

j

)
,

where (32) is used. �

By Lemma 2 and the implicit function theorem, in a neighborhood of (κ, q,τ )=
(κ0, q0,τ 0) there exists a unique branch ξ (I )(κ, q,τ )= {ξ2

1 , . . . , ξ
2
l } of solutions to

(32) such that ξ (I )(κ0, q0,τ 0)= ξ
(I )
0 . Denote by

I 〈κ, q,τ | = 〈0|
l∏

j=1

C(ξj ), |κ, q,τ 〉I =
l∏

j=1

B(ξj )|0〉

the corresponding Bethe (co)vectors.

Lemma 3 In a neighborhood of (κ0, q0,τ 0), we have

I

〈
κ ′, q,τ |κ, q,τ 〉

J
	= 0

(
κ ′ 	= κ

)

for all I, J ⊂ {1, . . . , n} with �I = �J = l.

Proof We apply Proposition 2 at (q,τ ) = (q0,τ 0). Setting ξ (I )(κ, q0,τ 0) =
(ξ1, . . . , ξl) and ξ (J )(κ ′, q0,τ 0)= (ζ1, . . . , ζl) we find

I

〈
κ ′, q0,τ 0|κ, q0,τ 0

〉
J

= 2l i−l(l−2−n)
(
1− eπi(κ ′−κ)

)l
l∏

p=1

(
ξpζpd(ξp)a(ζp)

)
∏

j<k(ξ
2
j + ξ2

k )(ζ
2
k + ζ 2

j )∏l
j,k=1(ξ

2
j + ζ 2

k )
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which is non-zero. Hence the scalar product does not vanish in some neighborhood
of (κ0, q0,τ 0) and κ ′ 	= κ . �

We finish the proof with the

Proposition 3 For any p,p′ ≥ 1 and X ∈Wα,0 we have
[
b∗p, c∗p′

]
+(X)= 0. (34)

Proof Denote the left hand side of (34) by Y . Take (κ, q,τ ) in a neighborhood
of (κ0, q0,τ 0) and α 	= 0 small enough. Choose 〈Φ| = I 〈κ + α,q,τ | and |Ψ 〉 =
|κ, q,τ 〉J , where �I = �J = l and 0≤ l ≤ n. Under the assumption above, we have
〈Φ|Ψ 〉 	= 0 by Lemma 3. Hence Proposition 1 is applicable, and we obtain that

〈Φ|Tr[K,L]
{
T[K,L],M(1)q2κS[K,L]Y

}|Ψ 〉 = 0.

Since the vectors {I 〈κ+α,q,τ |}, {|κ, q,τ 〉I } are bases of the spin n/2− l subspace,
we find

Tr[K,L]
{
T[K,L],M(1)q2κS[K,L]Y

}= 0.

If we choose n= L−K + 1 and τ = τ 0, then T[K,L],M(1) becomes a permutation
operator and the trace becomes simply q2κS[K,L]Y . We conclude that Y = 0 provided
(q,α) is close enough to (q0,0) and α 	= 0. But Y is rational in q, qα , so we must
have that Y = 0 identically. This completes the proof. �
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The Romance of the Ising Model

Barry M. McCoy

Abstract The essence of romance is mystery. In this talk, given in honor of the
60th birthday of Michio Jimbo, I will explore the meaning of this for the Ising
model beginning in 1946 with Bruria Kaufman and Willis Lamb, continuing with
the wedding by Jimbo and Miwa in 1980 of the Ising model with the Painlevé VI
equation which had been first discovered by Picard in 1889. I will conclude with the
current fascination of the magnetic susceptibility and explore some of the mysteries
still outstanding.

1 Introduction

A search of Google books reveals that the observation

The essence of romance is mystery

has been made by many authors in many different ways and in many different con-
texts ranging from the literary to the scientific. But in all contexts romance betokens
fascination and the Ising model has fascinated many people, including myself, for
many decades and in spite of many breakthroughs and moments of understanding
the mystery continues to this day. In this talk I will present some of the milestones
of this romance.

2 Kaufman and Lamb

In his talk “The Ising model in two dimensions” [1] presented at the fifth Battelle
Colloquium on Materials Science, held in Geneva and Gstaad, Switzerland, Septem-
ber 7–12, 1970, Lars Onsager wrote, following a discussion of his famous 1944
computation of the free energy [2] and a sketch of his 1945 proof of his conjectured
spectrum of the transfer matrix,
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Before long, however, Bruria Kaufman had developed a much better strat-
egy.

At Columbia University she first asked Willis E. Lamb to direct her work
on order-disorder problems; but he was much too heavily engaged in an ex-
perimental effort, and I was asked to assume the responsibility. Unable to talk
her out of the idea I suggested that she explore . . . By the summer of 1946 she
had a beautifully compact computation of the partition function, bypassing all
tedious detail.

By itself that was only a more elegant derivation of an old result but the
approach looked powerful enough to produce a few more new ones. Very
well, how about correlations?

The history of the Ising model from that time forth has been the study of these
correlations.

But the deeper meaning of this passage from Onsager’s paper completely es-
caped me until many years later Rodney Baxter wrote to me concerning a typescript
[3] that had been given to him which is certainly a draft of Onsager and Kaufman’s
calculation of the spontaneous magnetization of the Ising model. Why in the world
would Kaufman, who was creating pioneering mathematics, ask Lamb, an experi-
mental physicist, to supervise her research? This question was brought into sharp
focus when Baxter told me that he was going to contact her about the authorship
of the typescript. She was then living in Tucson, Arizona with her husband, Willis
Lamb.

So this is the first romance concerned with the Ising model. Both Bruria and
Willis were married to other people in 1946 when Bruria asked Willis to be her
research supervisor and he turned her down. But decades later, when Kaufman’s
husband died in 1992, Lamb invited her to Tucson as a Visiting Scholar at the Uni-
versity of Arizona where he was a professor. In 1996, after his wife died, Willis and
Bruria were married.

3 Correlations and Form Factors

The great understanding of Kaufman was that the Ising partition function could be
written by use of fermionic methods as the sum of four Pfaffians [4] and that this
fermionic method is powerful enough to write all correlation functions of the Ising
model as determinants [5].

The Ising model is a system of “spins” σj,k at row j and column k of a square
lattice which take on the values σj,k =±1 and interact with their nearest neighbors
with the interaction energy

E =−
Lv∑

j=−Lv

Lh∑

k=−Lh

{
Ehσj,kσj,k+1 +Evσj,kσj+1,k

}
. (1)
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The correlation functions studied by Kaufman and Onsager are defined as

〈σ0,0σM,N 〉 = lim
Lv,Lh→∞

Z−1
Lv,Lh

∑

σ=±1

σ0,0σM,Ne−E/kBT (2)

where T is the temperature, kB is Boltzmann’s constant,

ZLv,Lh =
∑

σ=±1

e−E/kBT (3)

is the partition function and the sum
∑

σ=±1 is over all values of the variables σj,k .
The discovery of Kaufman and Onsager [5] is that the row and diagonal correla-

tions can be written as a sum of two determinants. These are further simplified by
Montroll, Potts and Ward [6] to a single determinant. The diagonal 〈σ0,0σN,N 〉 and
the row correlations 〈σ0,0σ0,N 〉 can both be written as N ×N Toeplitz determinants

DN =

∣∣∣∣∣∣∣∣∣

a0 a−1 · · · a−N+1
a1 a0 · · · a−N+2
...

...
...

aN−1 aN−2 · · · a0

∣∣∣∣∣∣∣∣∣

(4)

where

an = 1

2π

∫ 2π

0
dθe−inθφ(θ) (5)

with

φ(θ)=
[
(1− α1e

iθ )(1− α2e
−iθ )

(1− α1e−iθ )(1− α2eiθ )

]1/2

. (6)

For 〈σ0,0σN,N 〉

α1 = 0, α2 =
(
sinh 2Ev/kBT sinh 2Eh/kBT

)−1 (7)

and for 〈σ0,0σ0,N 〉

α1 = e−2Ev/kBT tanhEh/kBT , α2 = e−2Ev/kBT cothEh/kBT (8)

and the square roots are defined to be positive at θ = π . These determinants are very
efficient for the calculation of the correlations when N is small.

However, when N is large the determinental representation (4) is not an efficient
method of calculation and a different representation must be found.

The first step in finding this new representation is the computation of the limiting
value as N →∞

lim
N→∞〈σ0,0σ0,N 〉 = lim

N→∞〈σ0,0σN,N 〉 = (1− t)1/4 (9)
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with

t = (sinh 2Ev/kBT sinh 2Eh/kBT
)−2

, (10)

which is valid for 0 ≤ t ≤ 1. For t > 1 the limit vanishes. The value of T for
which t = 1 is called the critical temperature Tc. It is the evaluation of this limit
for 〈σ0,0σN,N 〉 which is accomplished by Kaufman and Onsager in the manuscript
recently published by Baxter [3].

The next step in the evaluation of the long distance behavior of the correlations
was made in 1966 by Wu [7] who computed the first correction f

(2)
0,N to (9) as N →

∞ for 〈σ0,0σ0,N 〉 for T < Tc as a two-dimensional integral and the leading behavior
f

(1)
0,N as N →∞ of 〈σ0,0σ0,N 〉 for T > Tc as a one-dimensional integral. These are

the first terms in what is now called the form factor expansion of the correlation
functions, which for general M,N is written for T < Tc as

〈σ0,0σM,N 〉 = (1− t)1/4

{
1+

∞∑

n=1

f
(2n)
M,N

}
(11)

and for T > Tc as

〈σ0,0σM,N 〉 = (1− t)1/4
∞∑

n=0

f
(2n+1)
M,N , (12)

where for T > Tc we use the definition

t = (sinh 2Ev/kBT sinh 2Eh/kBT
)2
. (13)

The derivation of the complete expansions (11) and (12) has its own interesting
story. In 1976 Wu, McCoy, Tracy and Barouch [8] derived an expansion valid for
all N of the correlations in the form for T < Tc of

〈σ0,0σM,N 〉 = (1− t)1/4 exp
∞∑

n=0

F
(2n)
M,N (14)

and for T > Tc

〈σ0,0σM,N 〉 = (1− t)1/4
∞∑

n=0

G
(2n+1)
M,N exp

∞∑

n=0

F̃
(2n)
M,N (15)

where F
(2n)
M,N and F̃

(2n)
M,N are 4n dimensional integrals and G

(2n+1)
M,N are 4n + 2 di-

mensional integrals. For all three functions half of the integrals may be executed
by closing a contour integral on a pole. The forms (14) and (15) of the correlation
functions are called the exponential forms.

The form factor expansions (11) and (12) are obtained from the exponential
forms (14) and (15) by expanding the exponentials. For a few low values of n this
was done in [8] in connection with the study of the magnetic susceptibility but the
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general results for the f
(n)
M,N were not given by Nickel [9] and [10] until 1999 and

2000.
A curious feature of the derivation given in [8] of (14) and (15) is that the method

of [7] developed for the row correlation 〈σ0,0σ0,N 〉 is not used; instead the method
used by Cheng and Wu [11] in the study of the leading terms of large separation
behavior of the general correlation 〈σ0,0σM,N 〉 is used. The original method [7] of
Wu as applied to the correlations 〈σ0,0σ0,N 〉 and 〈σ0,0σN,N 〉 was extended to all
orders in 2007 by Lyberg and McCoy [12]. The results in [12] for the diagonal form
factors f

(n)
N,N(t) are for T < Tc

f
(2n)
N,N(t) = tn(N+n)

(n!)2 π2n

∫ 1

0

2n∏

k=1

dxkx
N
k

n∏

j=1

(
(1− tx2j )(x

−1
2j − 1)

(1− tx2j−1)(x
−1
2j−1 − 1)

)1/2

×
∏

1≤j≤n

∏

1≤k≤n

(
1

1− tx2k−1x2j

)2

×
∏

1≤j<k≤n

(x2j−1 − x2k−1)
2 (x2j − x2k)

2, (16)

and for T > Tc

f
(2n+1)
N,N (t)

= t (n+1/2)N+n(n+1)

n!(n+ 1)!π2n+1

∫ 1

0

2n+1∏

k=1

dxk xN
k

n+1∏

j=1

x−1
2j−1

[
(1− tx2j−1)

(
x−1

2j−1 − 1
)]−1/2

×
n∏

j=1

x2j
[
(1− tx2j )

(
x−1

2j − 1
)]1/2 ∏

1≤j≤n+1

∏

1≤k≤n

(
1

1− tx2j−1x2k

)2

×
∏

1≤j<k≤n+1

(x2j−1 − x2k−1)
2

∏

1≤j<k≤n

(x2j − x2k)
2. (17)

A closely related form for the row form factor f
(n)
0,N is also obtained in [12]. The

results (16) and (17) have the startling feature that in the diagonal case the f
(n)
N,N do

not manifestly reduce term by term to the corresponding functions obtained from
[8]. The reconciliation of these two forms is one of the present mysteries of the
Ising model.

These diagonal form factor integrals, which on the surface may appear to be
indigestible, have proven to have many very special properties.

(1) All the integrals in (16) and (17) reduce at t = 0 to a product of two special
cases of the celebrated Selberg integral [13]

∫ 1

0
· · ·
∫ 1

0

n∏

i=1

tα−1
i (1− ti )

β−1
∏

1≤i<j≤n

|ti − tj |2γ dt1 · · ·dtn. (18)
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(2) In [14] it was discovered by Maple calculations the f
(n)
N,N satisfy Fuchsian

differential equation with a factorized “Russian doll” structure

F2nf
(2n)
N,N = 0 with F2n = L2n+1(N) · · ·L3(N) ·L1(N), (19)

F2n+1f
(2n+1) = 0 with F2n+1 = L2n+2(N) · · ·L4(N) ·L2(N) (20)

where Lj (N) are linear differential operators of order j .
(3) It was also discovered in [14] by Maple calculations that the operators Fn

have in addition a direct sum decomposition

F2n =M2n+1(N)⊕ · · · ⊕M3(N)⊕M1(N), (21)

F2n+1 =M2n+2(N)⊕ · · · ⊕M4(N)⊕M2(N). (22)

(4) Furthermore, the f
(n)
N,N(t) have a factorization property first found in [14] by

computer computations and proven for n= 1,2,3 in [15] that

f
(2n)
N,N(t)=

n−1∑

m=0

K(2n)
m (N) · f (2m)

N,N (t)+
2n∑

m=0

C(2n)
m (N; t) · F 2n−m

N · Fm
N+1, (23)

f
(2n+1)
N,N (t)

tN/2
=

n−1∑

m=0

K(2n+1)
m (N) · f

(2m+1)
N,N (t)

tN/2

+
2n+1∑

m=0

C(2n+1)
m (N; t) · F 2n+1−m

N · Fm
N+1, (24)

where FN is the hypergeometric function

FN = 2F1(1/2,N + 1/2;N + 1; t), (25)

and f
(0)
N,N = 1. The K

(n)
m (N) depend only on N and we note in particular that

K
(3)
0 (0)= 1

6
, (26)

K
(4)
0 (0)= 0, K

(4)
1 (0)= 1

3
, (27)

K
(5)
0 (0)=− 1

120
, K

(5)
1 (0)= 1

2
, (28)

K
(6)
0 (0)= 0, K

(6)
1 (0)=− 2

45
, K

(6)
2 (0)= 2

3
. (29)

The C
(j)
m (N; t) are polynomials in t of degree for N ≥ 1

degC(2n)
m (N; t)= degC(2n+1)

m (N; t)= n · (2N + 1), (30)
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with C
(n)
m (N; t)∼ tm as t ∼ 0. which have the palindromic property

C(2n)
m (N; t) = tn(2N+1)+m · C(2n)

m (N;1/t), (31)

C(2n+1)
m (N; t) = tn(2N+1)+m · C(2n+1)

m (N;1/t). (32)

Explicit formulas for the polynomials C
(n)
m (N, t) have been obtained in [15] for

n= 1,2,3 and conjectured for n= 4. For example K
(2)
0 =N/2 and

C(2)
m (N; t)= (−1)m+1 N

2

(
m

2

)[
(2N + 1)2

4N(N + 1)

]m
tm

2N+1−m∑

n=0

c
(2)
m;n(N)tn, (33)

where for 0≤ n≤N − 1

c
(2)
2;n(N) = c

(2)
2;2N−1−n

(N)=
n∑

k=0

ak(N)an−k(N), (34)

c
(2)
1;n(N) = c

(2)
1;2N−n

(N)=
n∑

k=0

ak(N)an−k(N + 1), (35)

and for 0≤ n≤N

c
(2)
0;n(N)= c

(2)
0;2N+1−n

(N)= c
(2)
2;n(N + 1), (36)

and

c
(2)
1;N(N)=

(
(1/2)N

N !
)2{

1+ 2NHN(1/2)
}

(37)

where

an(N)= (1/2)N(1/2−N)n

(1−N)nn! (38)

and

HN(1/2)=
N−1∑

k=0

1

k + 1/2
. (39)

It is certainly true (but not yet proven) that the factorizations (23) and (24) hold
for all f

(n)
N,N . The computations in [15] are based on Fuchsian differential equa-

tions for the f
(n)
N,N(t). For n= 4 the order of these equations is 20. These equations

have a direct sum decomposition into operators which are homomorphic to sym-
metric powers and products of the operator which annihilates the hypergeometric
function FN .

It is furthermore very suggestive that this factorization property has been previ-
ously seen in the correlation functions of the XXZ model [16–22].
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The final property of the form factors to be discussed can best be illustrated by
making a “lambda extension”, first introduced in [23], of the expansions (11) and
(12) by defining

C−(M,N;λ)= (1− t)1/4

{
1+

∞∑

n=1

λ2nf
(2n)
M,N

}
(40)

and

C+(M,N;λ)= (1− t)1/4
∞∑

n=0

λ2nf
(2n+1)
M,N , (41)

which reduce to the Ising correlations below and above Tc when λ= 1. By use of a
remarkable set of relations presented by Orrick, Nickel, Guttmann and Perk [24] in
2001 for small values of M and N , these lambda extensions can be written in terms
of theta functions [25]

θ3(u;q)= 1+ 2
∞∑

n=1

qn2
cos 2nu, (42)

θ2(u;q)= 2q1/4
∞∑

n=0

qn(n+1) cos
[
(2n+ 1)u

]= q1/4eiuθ3(u+ πτ/2;q) (43)

and their derivatives

d

du
θn(u;q)≡ θ ′n(u;q) (44)

where t1/2 = k is the modulus of elliptic functions which is related to the nome q

by

q = e−πK ′(t1/2)/K(t1/2) (45)

and

K
(
t1/2)= π

2
2F1(1/2,1/2; t) (46)

is the complete elliptic integral of the first kind with K ′(t1/2)=K((1− t)1/2).
The simplest example given in [14] is for the low temperature case with M =

N = 0

C−(0,0;λ)= θ3(u;q)
θ3(0;q) where λ= cosu. (47)

For the special values λ = cos(πm/n) we find that C−(0,0;λ) and t satisfy an
algebraic equation. Calling C−(0,0;λ)= τ , it is seen in [14] that for λ= cosπ/3

16τ 12 − 16τ 8 − 8(t − 1)τ 3 + t (1− t)= 0, (48)
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which is a curve of genus one. For λ= cos(π/4),

16τ 16 + 16(t − 1)τ 8 + t2(t − 1)= 0 (49)

is a curve of genus three which has the simple algebraic expression

C−
(
0,0; cos(π/4)

)= 2−1/4(1− t)1/16[1+ (1− t)1/2]1/4
. (50)

Further results in this direction are [14]

C−
(
1,1; cos(π/4)

)= 2−3/4(1− t)1/16[1+ (1− t)1/2]3/4
, (51)

C−
(
2,2; cos(π/4)

)= 2−5/4(1− t)1/16[1+ (1− t)1/2]5/4[5− (1− t)1/2]/4.

(52)

Further results which follow from [24] are given in [26]

C+(0,0;λ)= θ2(u;q)
θ2(0;q) , (53)

C−(1,1;λ)=− θ ′2(u;q)
sinuθ2(0;q)θ2

3 (0;q)
, (54)

C+(1,1;λ)=− θ ′3(u;q)
sinuθ3(0;q)θ2

2 (0;q)
(55)

where is to be noted (for N = 0,1) that C+(N,N;λ) is obtained from C−(N,N;λ)
by the interchange θ2 ↔ θ3.

Many further results for various low values of M,N remain (in the tradition of
Kaufman and Onsager) to be published by the authors of [14].

4 Jimbo, Miwa and Painlevé

The immediate object of the computation of the leading term in the form factor ex-
pansion by Wu [7] for the row correlation 〈σ0,0σ0,N 〉 and by Cheng and Wu [11] for
the general case 〈σ0,0σM,N 〉 was to compute the leading behavior of the correlations
functions for large separations R = (M2 +N2)1/2. They found that for T < Tc the
correlation decays to the limiting value (9) as

〈σ0,0σM,N 〉 ∼ (1− t)1/4
{

1− C−(T )

R2
e−R/ξ−(T )

}
(56)

and vanishes for T > Tc as

〈σ0,0σM,N 〉 ∼ (1− t)1/4 C+(T )

R1/2
e−R/ξ+(T ), (57)
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where, in addition to depending on the temperature T , the R independent quantities
C±(T ) and ξ±(t) depend on the ratio M/N . It is found in [7] and [11] as t → 1 that

ξ±(T )∼ Aξ,±
1− t

, (58)

C−(T )∼ A−
(1− t)2

(59)

and

C+(T )∼ A+
(1− t)1/2

, (60)

where again the amplitudes Aξ.± and A± depend on the ratio M/N . Neither of these
asymptotic leading terms reduces to the result valid for T = Tc (i.e. t = 1) where in
[7] Wu found that the diagonal correlation has the leading behavior for large N

〈σ0,0σN,N 〉 ∼ ATc

N1/4
(61)

and

ATc = 21/12e3ζ ′(−1) (62)

with ζ ′(−1) the derivative of Riemann’s zeta function at −1.
The history of the result (61) is romantic in its own way. In the original 1949

paper of [5] there is a remark that the diagonal correlation vanishes “slowly”. In
1959 Fisher [27] derived the exponent 1/4 and remarked in footnote 8 that

Onsager, private communication, has derived exact expressions for the cor-
relations along the main diagonal . . .

This computation was never published and perhaps there is another typescript out
there waiting to be discovered.

Wu [7] also found the large N behavior of the row correlation 〈σ0,0σ0,N 〉, which
has the same dependence on N as (61) but with an amplitude

Arow =ATc

(
cosh 2Eh/kBTc

)1/4
. (63)

The first purpose of the paper [8] was to connect the three different asymptotic
behaviors (56), (57) and (61) by defining an interpolating function, traditionally
called a scaling function,

G±(r)= lim
M,N→∞,t→1

(1− t)−1/4〈σ0,0σM,N 〉 (64)

with
[(

sinh 2Eh/kBTc

sinh 2Ev/kBTc

)1/2

M2+
(

sinh 2Ev/kBTc

sinh 2Eh/kBTc

)1/2

N2
]1/2

(1− t)= r fixed. (65)
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For this purpose the exponential representation of the correlation functions was de-
rived. When the scaling function was computed it was discovered that G±(r) is
expressed in terms of a Painlevé equation of the third kind

d2η

dθ2
= 1

η

(
dη

dθ

)2

− 1

θ

dη

dθ
+ η3 − η−1 (66)

as

G±(r)= 1∓ η(r/2)

2η(r/2)1/2
exp

1

4

∫ ∞

r/2
dθθ

(1− η2)2 − (η′)2

η
, (67)

with the boundary condition

η(θ)∼ 1− 2

π
λK0(2θ) as θ →∞, (68)

where K0(2θ) is the modified Bessel function and λ= 1.
This result was first announced in [28] and [29].Two different proofs were given.

The first, in [8], is based on Myers’ work [30] on the scattering of electromagnetic
radiation from a strip and the second [23] is based on a direct manipulation of the
exponential representation in the scaling limit.

It is at this point that I first learned of the existence of Sato, Miwa and Jimbo
when in 1977 I received in the mail (how long ago it was that papers were sent by
mail) a letter by the three of them with title “Studies on holonomic quantum fields
II” [31] which generalized several of the results of [8] and made clear the relation
of the Painlevé III equation with the massive Dirac equation. This letter was fol-
lowed by many more where the only change in the title was that the Roman numeral
was different and by a series of 5 papers with the title “Holonomic quantum field
theory” [32–36]. These papers culminated in the groundbreaking paper “Studies on
holonomic quantum fields XVII” [37, 38] where it is derived that the diagonal Ising
correlation function for a general temperature on the lattice and not in the scaling
limit satisfies the sigma form of the Painlevé VI equation

(
t (t − 1)

d2σ

dt2

)2

=N2
(
(t − 1)

dσ

dt
− σ

)2

− 4
dσ

dt

(
(t − 1)

dσ

dt
− σ − 1/4

)(
t
dσ

dt
− σ

)
. (69)

The diagonal correlation is related to σ for T > Tc by

σ(t)= t (t − 1) · d

dt
log〈σ0,0σN,N 〉 − 1/4, (70)

with the boundary condition at t = 0 of

〈σ0,0σN,N 〉 = tN/2 (1/2)N
N ! +O

(
t1+N/2), (71)
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and for T < Tc by

σ(t)= t (t − 1) · d

dt
log〈σ0,0σN,N 〉 − t/4 (72)

with the boundary condition

〈σ0,0σN,N 〉 = (1− t)1/4
{

1− tN+1

2N + 1

(
(1/2)N+1

(N + 1)!
)2

+O
(
tN+2)

}
(73)

where (a)N = a(a + 1) · · · (a + N − 1) for 1 ≤ N and (a)0 = 1 is Pochammer’s
symbol. These boundary conditions are obtained from the leading terms of (16) and
(17) as t → 0. Furthermore the lambda extensions (40) and (41) satisfy the same
Painlevé VI equation (69) where the λ appears as a boundary condition.

The six Painlevé equations have a long history [39, 40]. They are defined as those
second-order nonlinear equations the location of whose branch points and essential
singularities (but not poles) are independent of the boundary conditions and which
cannot be reduced to simpler functions. Painlevé obtained three of these equations
[41] and Gambier [42] obtained the remaining three including the PVI equation
which in the general case has four parameters. However, the specific case of Painlevé
VI needed for the Ising model (69) had already been obtained by Picard [43] in 1889.
Subsequent to the discovery that this PVI equation characterizes the diagonal Ising
model, this equation has appeared in many contexts [44–46] ranging from Poncelet
polygons to mirror symmetry. The sigma form of the Painlevé equations was first
obtained by Okamoto [47, 48].

5 The Susceptibility

The second purpose of the paper [8] was to begin the study of the magnetic suscep-
tibility at zero magnetic field χ(T ), which is computed in terms of the correlation
functions as

kBT χ(T )=
∞∑

M=−∞

∞∑

N=−∞

{〈σ0,0σM,N 〉 −M2}, (74)

where M2 is the square of the spontaneous magnetization which was given in (9). In
order to evaluate the sums in (74) the exponential forms (14) and (15) which were
the basis of computing the Painlevé III equation cannot be used and instead the
exponentials must be expanded into the form factor representations (11) and (12).
Using these forms the sums over M and N are easily evaluated as geometric series
and the susceptibility is written as the infinite sum of n “particle” contributions

kBT χ+(T ) = (1− t)1/4t−1/4
∞∑

j=0

χ(2j+1)(T ) for T > Tc (75)
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kBT χ−(T ) = (1− t)1/4
∞∑

j=1

χ(2j)(T ) for T < Tc. (76)

In [8] the terms χ(n)(T ) for n = 1,2,3,4 were studied. In the scaling limit the
scaled χ(n)(T ) for general n were given by Nappi [49] in 1978. For arbitrary tem-
perature the results in the isotropic case were obtained by Nickel [9] and [10] and
for Ev 	=Eh in [24]

χ(j)(T )= cotj α

j !
∫ π

−π

dω1

2π
· · ·
∫ π

−π

dωj−1

2π

(
j∏

n=1

1

sinhγn

)
H(j)

1+∏j

n=1 xn

1−∏j

n=1 xn
,

(77)
with

xn = cot2 α
[
ξ − cosωn −

√
(ξ − cosωn)2 − (cotα)−4

]
, (78)

sinhγn = cot2 α
√
(ξ − cosωn)2 − (cotα)−4, (79)

where

cotα =√sh/sv, (80)

ξ = (1+ s−2
h

)1/2(1+ s2
v

)1/2
, (81)

sv = sinh 2Ev/kBT sh = sinh 2Eh/kBT , (82)

H(j) =
( ∏

1≤i<k≤j

hik

)2

(83)

with

hik = cotα
sin 1

2 (ωi −ωk)

sinh 1
2 (γi − γk)

= 1

cotα

sinh 1
2 (γi − γk)

sin 1
2 (ωi +ωk)

, (84)

and ωj is defined in terms of the remaining ωi from ω1 + · · ·ωj = 0 mod 2π . We
note in particular that for Ev =Eh

χ(1)(t)= t1/4

(1− t1/4)2
(85)

with t given by (13) and

χ(2)(t)= (1+ t)E(t1/2)− (1− t)K(t1/2)

3π(1− t1/2)(1− t)
(86)

with t given by (10).
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5.1 The Amplitude of the Susceptibility Divergence

The study of the susceptibility from the form factor expansions was initiated in 1973
in [28] where it was demonstrated that as T → Tc± the susceptibility diverges as

kBT χ(T )± ∼ C±
∣∣∣∣
s−1 − s

2

∣∣∣∣
−7/4√

2 (87)

where in the isotropic case

s = sinh 2E/kBT . (88)

The constants C− and C+ are different and are given as infinite series

C− =
∞∑

n=1

C(2n), C+ =
∞∑

n=0

C(2n+1) (89)

where the C(n) are n-fold integrals coming from the form factor expansion and have
been studied both numerically for n= 1, . . . ,5 [8, 28]. The first term in each of (89)
has been analytically evaluated in [8, 28]

C(1) = 1, C(2) = 1

12π
(90)

and the next leading term was evaluated by Tracy [50] as

C(3) = 1

2π2

(
π2

3
+ 2− 3

√
3Cl2(π/3)

)
(91)

where

Cl2(θ)=
∞∑

n=1

sinnθ

n2
(92)

is Clausen’s function and

C(4) = 1

16π3

(
4π2

9
− 1

6
− 7

2
ζ(3)

)
. (93)

In the tradition of Onsager and Kaufman [3] the details are only in an unpublished
typescript. A curious feature of these results is that the ratio C+/C− is found to be
closely approximated by 12π and the second terms are approximately three orders
of magnitude less than the leading term. The study of the constants C− and C+
has been continued by high precision numerical computations [24] and the most
recent evaluation [51] in 2011 is to an incredible 104 places. This is one of the most
precisely determined constants in all of mathematical physics.

However, the χ(n)(w) have singularities at other points besides sinhE/kBT =
±1 and the determination of the analytic properties of the magnetic susceptibility as
a function of temperature has become the most challenging problem in the field.
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Table 1 The Nickel
singularities of χ(n) for
n= 3,4,5,6

n w

3 −1/2,1

4 ±1/2

5 −1, −1±√5
4 , 3±√5

2

6 ±1,±1/3

5.2 Nickel Singularities and the Natural Boundary Conjecture

The first studies of analytic properties after the initial computations of [8] were
made in 1999 [9] and 2000 [10] when Nickel demonstrated for the isotropic case
Ev =Eh =E that the integrals (77) χ(n) have singularities in the complex T plane
on the curve

| sinh 2E/kBT | = 1, (94)

which is the same curve on which the four Pfaffians of Kaufman’s original evalua-
tion [4] of the Ising partition function vanish. This was extended to the general case
Ev 	=Eh in [24] where the singularities of χ(n)(T ) are at

cosh 2Ev/kBT cosh 2Eh/kBT

− sinh 2Eh/kBT cos(2πj/n)− sinh 2Ev/kBT cos(2πk/n)= 0 (95)

with

0≤ j, k ≤ [n/2], j = k = 0 excluded (96)

where [x] is the integer part of x and for n even j + k = n/2 is also excluded. In
terms of the variable used in [52–61] for the isotropic lattice with s given by (88)

w−1 = 2
(
s + s−1) (97)

these singularities for n = 3,4,5,6 are given in Table 1, where we note that
sinh 2E/kBT is real for −1/4≤w ≤ 1/4 and is complex with | sinh 2E/kBT | = 1
for 1/4 < |w|. If we call ε the deviation from the singular temperatures T

(j)

m,m′ deter-

mined by (95), then for T > Tc the singularity in χ(2j+1)(T ) is

ε2j (j+1)−1 ln ε (98)

and for T < Tc the singularity in χ(2j)(T ) is

ε2j2−3/2. (99)

It is striking that the number of singularities increases with n and becomes dense
in the limit n→∞. This feature led Nickel to the conclusion that unless cancella-
tions occur there will be a natural boundary in the susceptibility χ(T ) in the com-
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plex T plane at the location (95). The existence of a natural boundary in the complex
temperature plane is not contemplated in the scaling theory of critical phenomena.

5.3 Fuchsian Equations

The next step in the study of the susceptibility was begun in 2005 [52] and has
continued in the series of papers [53–61]. In these papers exact Fuchsian differential
equations for the χ(n)(T ) in the isotropic case Ev = Eh are determined by use
of Maple by first expanding the integrals in an appropriate variable such as w or
w2 and then using Maple programs which obtain ODE’s from these series. The
resulting differential equations have very special properties such as being globally
nilpotent [58] which allow for extensive analysis to be carried out. These studies
have uncovered several new and important features of the susceptibility; namely that
the χ(n)(w) have a direct sum decomposition and that they have further singularities
beyond those of (95).

5.3.1 Direct Sum Decompositions

In [55] and [60] it is shown for 1 ≤ n ≤ 6 that χ(n)(w) have the same direct sum
decomposition seen already in the diagonal form factors

χ(2n)(w)=
n−1∑

m=1

K(2n)
m χ(2m)(w)+Ω(2n)(w), (100)

χ(2n+1)(w)=
n−1∑

m=1

K(2n+1)
m χ(2m+1)(w)+Ω(2n+1)(w) (101)

where the Ω(n)(w) satisfy Fuchsian equations of order m

L(n)
m ·Ω(n) = 0 (102)

with

n 3 4 5 6
m 6 8 29 46

(103)

The K
(n)
j are constants which for n= 3,4,5,6 coincide with the values of K

(n)
m (0)

given in (26)–(29).
The operators in (102) factorize further. For L(3)

6 and L
(4)
8 we have we have

L
(3)
6 = L

(3)
3 ·L(3)

2 ·L(3)
1 (104)
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and

L
(4)
8 = L

(4)
4 ·L(4)

1 · (L(4)
1;a ⊕L

(4)
1;b ⊕L

(4)
1;c
)

(105)

where the numeral in the subscript indicates the order of the operators which are
given in [54] and [55]. The operator L

(5)
29 has been found in [57, 59] and [61] to

have the factorization

L
(5)
29 = L

(5)
5 ·L(5)

12 ·L(5)
1 ·L(5)

11 (106)

where L
(5)
11 has the further direct sum decomposition (A.1) of [61]

L
(5)
11 = (Z2 ·N1)⊕ V2 ⊕

(
F3 · F2 ·Ls

1

)
. (107)

Similarly in (56) and (57) of [60] the operator L
(6)
46 is shown to have the decompo-

sition

L
(6)
46 = L

(6)
6 ·L(6)

23 ·L(6)
17 (108)

where L
(6)
17 has a direct sum decomposition into the sum of four operators but the

possible reducibility of L(6)
23 has not yet been determined due to computational com-

plexity.

5.3.2 Singularities

The location of the singularities of the operators L
(n)
m are obtained by examining the

roots of the polynomial multiplying the highest derivative dm/dwm and this analysis
shows that there are further singularities beyond the singularities at w =±1/4,∞
and the Nickel singularities (95).

In [53] that the differential equation for χ(3)(w) admits additional singularities
at

w = −3± i
√

7

8
(109)

which correspond to

s = −1± i
√

7

4
, |s| = 1√

2
, (110)

s = −1± i
√

7

2
, |s| = √2 (111)

where we note the singularity at (110) is inside the unit circle |s| = 1 and thus cannot
appear in the principle sheet of the integral for χ(3) which is analytic for |s|< 1.
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There are no additional singularities in χ(4)(w) and the singularities of χ(5)(w)

are shown in (34) of [57] to be at the roots of following polynomial

w33(1− 4w)22(1+ 4w)16(1−w)4(1+ 2w)4(1+ 3w+ 4w2)

× (1+w)
(
1− 3w+w2)(1+ 2w− 4w2)

× (1−w− 3w2 + 4w3)(1+ 8w+ 20w2 + 15w3 + 4w4)

× (1− 7w+ 5w2 − 4w3)

× (1+ 4w+ 8w2)(1− 2w). (112)

The singularities located by the roots of the first line in (112) are identical with
the location of singularities of χ(3) and the roots of the second line are the Nickel
singularities of χ(5). Most of the remaining singularities correspond to complex
values of s not on |s| = 1.

6 Diagonal Susceptibility

The integrals (77) for the n particle contribution to the susceptibility χ(n)(T ) are
quite complex and the Maple-based studies cannot be extended much beyond their
present limits. Therefore it would be of great utility if a simpler set of integrals
could be found which would still incorporate all significant analytic features of the
χ(n). Several such simplified modifications of the integrals have been studied [56]
but by far the most natural case is to restrict the two dimensional sum over the
lattice positions M,N in (74) to the lattice diagonal M = N and thus to consider
the susceptibility that will result if a magnetic field is applied only to the diagonal

kBT χd(t)=
∞∑

N=−∞

{〈σ0,0σN,N 〉 −M2}, (113)

where the dependence on T is now for all Ev and Eh in terms of the single variable
t defined by (10) for T < Tc and by (13) for T > Tc .

This diagonal susceptibility has been studied in [62] and [63] and has been found
to have the remarkable simplification over the bulk susceptibility that all singular-
ities of the differential equations are at s = 0,∞ and |s| = 1. There are no other
complex singularities for |s| 	= 1 such as appear in χ(n)(t). Furthermore χ

(3)
d (t) and

χ
(4)
d (t) have been found to be explicitly expressed in terms of generalized hyperge-

ometric functions p+1Fp .
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6.1 Integral Representations

From the integral expressions for f
(n)
N,N(t) of (16) and (17) given in [12] and [14],

we find in [62] the expansion for T < Tc

kBT χd,−(t)= (1− t)1/4
∞∑

n=1

χ
(2n)
d (t) (114)

and for T > Tc

kBT χd,+(t)= (1− t)1/4
∞∑

n=0

χ
(2n+1)
d (t), (115)

where

χ
(2n)
d (t) = tn

2

(n!)2

1

π2n
·
∫ 1

0
· · ·

∫ 1

0

2n∏

k=1

dxk · 1 + tn x1 · · ·x2n

1 − tn x1 · · ·x2n

×
n∏

j=1

(
x2j−1(1− x2j )(1− tx2j )

x2j (1− x2j−1)(1 − t x2j−1)

)1/2

×
∏

1≤j≤n

∏

1≤k≤n

(1 − t x2j−1 x2k)
−2

×
∏

1≤j<k≤n

(x2j−1 − x2k−1)
2 (x2j − x2k)

2 (116)

and for T > Tc

χ
(2n+1)
d (t) = tn(n+1))

π2n+1n!(n+ 1)! ·
∫ 1

0
· · ·
∫ 1

0

2n+1∏

k=1

dxk

× 1 + tn+1/2 x1 · · ·x2n+1

1 − tn+1/2 x1 · · ·x2n+1
·

n∏

j=1

(
(1− x2j )(1 − t x2j ) · x2j

)1/2

×
n+1∏

j=1

(
(1 − x2j−1)(1 − t x2j−1) · x2j−1

)−1/2

×
∏

1≤j≤n+1

∏

1≤k≤n

(1 − t x2j−1 x2k)
−2

×
∏

1≤j<k≤n+1

(x2j−1 − x2k−1)
2

∏

1≤j<k≤n

(x2j − x2k)
2. (117)
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The expressions (116) and (117) are, indeed, much simpler than the corresponding
expressions for χ(n) given in (77). In particular

χ
(1)
d (t)= 1

1− t1/2
(118)

and

χ
(2)
d (t)= t

4(1− t)
(119)

which are simpler than (85) and (86) respectively. Most noticeable is that χ(2)(w)

in (86) has a logarithmic singularity at t = 1 (w = 1/4) while χ
(2)
d (t) in (119) does

not.

6.2 Root of Unity Singularities

In addition to the singularity at t = 1 it is straightforward to see from the integral
expressions (116) and (117) that χ(2n)

d (t) has singularities at

tn0 = 1 (120)

of the form

ε2n2−1 ln ε (121)

and χ
(2n+1)
d (t) has singularities

t
n+1/2
0 = 1 (122)

of the form

ε(n+1)2−1/2 (123)

where ε is the deviation from t0. These are the analogues for the diagonal suscepti-
bility of the Nickel singularities of the bulk susceptibility χ(n) of (95).

6.3 Direct Sum Decomposition

The χ
(n)
d (t) have the same direct sum decomposition seen already in the diagonal

form factors and χ(n)(w)

χ
(2n)
d (t)=

n−1∑

j=1

K
(2n)
d;j χ

(2j)
d (t)+Ω

(2n)
d (t), (124)
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χ
(2n+1)
d (t)=

n−1∑

j=1

K
(2n+1)
d;j χ

(2j+1)
d (t)+Ω

(2n+1)
d (t) (125)

where K
(n)
d;j are constants. However, unlike χ(n)(w), the operators L

(n)
d which anni-

hilate Ω
(n)
d (t) have a further direct sum decomposition

L
(3)
d;5 = L

(3)
d;2 +L

(3)
d;3 and L

(4)
d;7 = L

(4)
d;3 +L

(4)
d;4 (126)

6.4 Results for χ
(3)
d (t)

For χ(3)
d (t) we explicitly find by combining [58] and [62] and setting x = t1/2 that

χ
(3)
d (x)= 1

3
χ

(3)
d;1(x)+

1

2
χ

(3)
d;2(x)−

1

6
χ

(3)
d;3(x) (127)

where

χ
(3)
d;1(x)=

1

1− x
= χ

(1)
d (x), (128)

χ
(3)
d;2(x)=

1

(1− x)2 2F1
(
1/2,−1/2;1;x2)− 1

1− x
2F1

(
1/2,1/2;1;x2) (129)

and

χ
(3)
d;3(x) =

(1+ 2x)(x + 2)

(1− x)(x2 + x + 1)

[
F(1/6,1/3;1;Q)2

+ 2Q

9
F(1/6,1/3;1;Q)F(7/6,4/3;2;Q)

]
(130)

with

Q= 27

4

(1+ x)2x2

(x2 + x + 1)3
(131)

where we note that

1−Q= (1− x)2(1+ 2x)2(2+ x)2

4(1+ x + x2)3
. (132)

From (127) and (128) we see that in (125) we have K
(1)
1 = 1/3.

We see from (117) that χ(3)
d (x) vanishes when x → 0 as x4. However, χ(3)

d;1(x)
and χ

(3)
d;3(x) are constant as x → 0 and χ

(3)
d;2(x) vanishes linearly in x. The three

constants in (127) are determined by matching with the x4 behavior of χ
(3)
d and
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this requires that the three constants will solve a set of five (overdetermined) linear
equations.

As x→ 1 we find that χ(3)
d diverges as

χ
(3)
d (x)= 1

1− x

(
1

3
− 5π

18Γ 2(5/6)Γ 2(2/3)
+ 4π

Γ 2(1/6)Γ 2(1/3)

)
= 0.016329 · · ·

1− x
(133)

Furthermore χ
(3)
d;3(x) has an additional singularity at x→ e±2πi/3 which, to lead-

ing order is

χ
(3)
d;3sing →

34/516

35π
e±5πi/12ε7/2. (134)

6.5 Results for χ
(4)
d (t)

These results have been extended in [62] and [63] to χ
(4)
d (t) where is shown that

χ
(4)
d (t)= 1

23
χ

(4)
d;1(t)+

1

3 · 23
χ

(4)
d;2(t)−

1

23
χ

(4)
d;3(t) (135)

where

χ
(4)
d;1(t)= χ

(2)
d (t), (136)

χ
(4)
d;2(t) =

1+ t

(1− t)2 2F1(1/2,−1/2;1; t)2 − 2F1(1/2,1/2;1, t)2

− 2t

1− t
F (1/2,1/2;1; t)2F1(1/2,−1/2;1; t) (137)

and

χ
(4)
d;4(t)=A3 · 4F3

([1/2,1/2,1/2,1/2]; [1,1,1]t2) (138)

with

A3 = 2(1+ t)t3D3
t +

2

3

16t2 − t − 11

t − 1
t2d2

t

+ 1

3

31t2 − 4t − 11

t − 1
tDt + t. (139)

The singular behavior as t → 1 of χ
(4)
d;1(t) and χ

(4)
d;3 is easily obtained and the

singularity of χ
(4)
d;4 at t = 1 is obtained by use of the analytic continuation formula
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of Bühring [67]. The final result [63] is that as t → 1

χ(4)(t)→ 1

8(1− t)

(
1− 1

3π2

[
64+ 16(3I1 − 4I2)

])

+ 7

16π2
ln

16

1− t
− 1

16π2
ln2 16

1− t
(140)

where

3I1 − 4I2 =−2.2128121 · · · (141)

has been given to 100 digits.
At the root of unit singularity t =−1 the leading singular behavior is

χ
(4)
d → 1

26880
(1+ t)7 ln(1+ t). (142)

6.6 χ
(5)
d (t)

The ODE satisfied by χ
(5)
d (x) has been studied in [63] modulo a large prime. It is

found that the minimal order ODE is of order 19 and that the operator L(5)
d;19 has the

decomposition

L
(5)
d;19 = L

(3)
d;2 ⊕L

(5)
d;17 (143)

where L
(3)
d;2 is the second order operator which annihilates χ

(3)
d;2(x) and L

(5)
d;17 has

singularities at x = 0,∞, 1, − 1, x3 = e±2πi/3, x5 = e±2πi/5, e±4πi/5 where the
non-integer exponents at x3 are 5/2,7/2,7/2 and at x5 are 23/2. It has been further
found that

L
(5)
d;17 = L

(5)
d;6 ·L(5)

d;11 (144)

with

L
(5)
d;11 = L

(3)
d;1 ⊕L

(3)
d;3 ⊕

(
W

(5)
d;1 ·U(5)

d;1
)⊕ (L(5)

d;4 · V (5)
d;1 ·U(5)

d;1
)

(145)

where L
(3)
d;m annihilates χ

(3)
d;m and the remaining operators in this decomposition are

all given in [63].

6.7 Singularities and Cancellations

By examining the integral representations for χ(n)(w) (77) and χ
(n)
d (t) (116), (117)

it is clear that these integrals have no singularities for | sinh 2E/kBT |< 1 or t < 1.
The singularities at | sinh 2E/kBT | < 1 of the differential equations for χ(n)(w)
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will only appear in analytic continuations of the integral in the complex plane of the
variable w. The corresponding differential equations for χ

(n)
d (t) are significantly

simpler because they have singularities only at t = 0,∞ and |t | = 1.
It remains to discuss the singularities in the differential equations which do lie on

| sinh 2E/kBT | = 1 and to give an explanation for the observation that the singular-
ities of the ODEs for χ(n−2m)(w) and χ

(n−2m)
d (t) are also singularities of χ(n)(w)

and χ
(n)
d (t) respectively even though the integrands are singular only at the points

given by (95) for χ(n)(w) and by (120) and (122) for χ(n)
d (t).

The resolution of this is easily seen for χ(n)
d (t). By an examination of the integrals

(116) and (117) we see that there are paths of analytic continuation possible in the
complex t plane where the contour of integration must be deformed past the pole at

1− tx2j x2k+1 = 0 (146)

and the residue at that pole will reduce the denominators in χ2n
d (t) and χ

(2n+1)
d (t)

from

1− tnx1 · · ·x2n (147)

and

1− tn+1/2x1 · · ·x2n+1 (148)

to the denominators in χ
(2n−2)
d (t) and χ

(2n−1)
d (t) respectively with n→ n− 1 and

two less integration variables. Therefore, the singularities of χ
(n−2m)
d (t) will not

appear on the principle sheet of the integral which is analytic at t = 0 but only on
analytic continuations to non-physical branches. The similar phenomenon occurs
for χ(n)(w).

It remains to reconcile this non appearance of the singularities of χ
(n−2m)
d (t) in

the physical sheet of χ
(n)
d (t) with the direct sum decompositions (124) and (125).

This will be accomplished by showing that the term Ω
(n)
d (t) has singularities which

exactly cancel the singularities on χ
(n)
d (t). This requires the solution of a global

connection problem which has not yet been explicitly done even though from the
examination of the original integral the resulting exact cancellation must hold.

7 Conclusion

Now that we have summarized the known features of the Ising correlations, form
factors and susceptibility we can proceed to discuss what is not known. This is the
fascinating, mysterious and thus romantic part of the subject.
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7.1 Conformal and Quantum Field Theory

One of the most important features of the Ising model is that the scaling limit satis-
fies all the axioms for a massive Euclidean quantum field theory and that at T = Tc

the long range correlations are those of a conformal field theory with central charge
c = 1/2. This is in fact the earliest conformal field theory known and from this be-
ginning a vast new field of mathematics and physics has been developed in the last
30 years. However, the Ising model is much more than a conformal field theory be-
cause we have a vast number of results for T 	= Tc which are the simplest examples
of properties of massive Euclidean quantum field theories. Part of the romance is
the exploration of how these Ising results can be used to extend massless conformal
field theories into the massive region.

7.2 Form Factors, Exponential Forms and Amplitudes

The derivation [12] of the exponential and form factor expansion for the diagonal
Ising correlation is much more general than this special case. Indeed in [12] it is
proven that every Toeplitz determinant (4) with a generating function φ(ξ) such that
lnφ(ξ) is continuous and periodic on |ξ | = 1 has both an exponential and a form
factor expansion. Furthermore these Toeplitz determinants are also expressible as
Fredholm determinants [64] (at times in several different ways [65]). Consequently
the Ising computations have subsequently been extended to several very important
problems including the seminal work on the one dimensional impenetrable Bose gas
and on random matrices by Jimbo, Miwa, Mori and Sato [66].

To illustrate the differences between the form factor and the exponential repre-
sentation of the correlation functions, we consider the computation by Tracy [68] of
the constant ATc of (62). In the scaling limit the scaled correlations in the general
case where Ev 	= Eh depend only on the single variable r (65). Therefore we can
restrict attention to the scaled form of the diagonal correlation 〈σ0,0σN,N 〉 and con-
sider the lambda extension of the scaling form of the exponential form (14) which
we write as

G−(r;λ)= exp
∞∑

n=1

λ2ng(2n)(r), (149)

where

g(2n)(r)= lim
scaling

F
(2n)
N,N(t), (150)

which depends on the single variable r instead of the two independent variables N

and t . Tracy finds that, as r → 0,

g(2n)(r)=−αn ln r + βn + o(1). (151)
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Therefore, defining the lambda dependent sums

α(λ)=
∞∑

n=1

λ2nαn, β(λ)=
∞∑

n=1

λ2nβn, (152)

we find

G−(r;λ)∼ exp
{−α(λ) ln r + β(λ)

}= eβ(λ)

rα(λ)
. (153)

In the Ising case where λ= 1 the functions specialize to

α(1)= 1/4, β(1)= lnA (154)

where A is the constant in (61).
If, however, instead of the scaled exponential form we define the scaled limit of

the form factors f
(2n)
N,N(t) as

f̃ (2n)(r)= lim
scaling

f
(2n)
N,N(t), (155)

then as r → 0

f̃ (2n)(r)=
n∑

k=0

a
(2n)
k lnk r + o(1). (156)

Thus, in order for (153) to agree with the r → 0 behavior of the form factor expan-
sion, we need

eβ(λ)

rα(λ)
=
[ ∞∑

k=0

1

k!

(
ln r

∞∑

n=1

λ2nαn

)k][ ∞∑

k=0

1

k!

( ∞∑

n=1

λ2nβn

)k]

= 1+
∞∑

n=1

λ2n
n∑

k=0

a
(2n)
k lnk r (157)

to hold term by term for each power λ2n. The requires an infinite number of identi-
ties between the a

(2n)
k .

As an additional remark we note that if we rewrite the integral (16) for f
(2n)
N,N as

a contour integral, rescale the variables xk by xk = t−1/2yk and then send y2k →
1/y2k we see that as t → 1 the integral has logarithmic divergences as in (156). The
amplitudes an are closely related to the special case with ρ = 1 of the integral found
by Dotsenko and Fateev [69] in their study of four point correlations in conformal



The Romance of the Ising Model 289

field theories with central charge c ≤ 1

In,m(α,β;ρ)= 1

n!m!
n∏

i=1

∫ 1

0
dti t

α′
i (1− ti )

β ′
m∏

i=1

∫ 1

0
dτα

i (1− τi)
β

×
∣∣∣∣
∏

i<j

(ti − tj )

∣∣∣∣
2ρ′ ∣∣∣∣

∏

i<j

(τi − τj )

∣∣∣∣
2ρ n,m∏

i,j

P

(ti − τj )2
(158)

where P indicates the principal value and

α′ = −ρ′α, β ′ = −ρ′β, ρ′ = ρ−1. (159)

7.3 Exponentiation

Form factor expansions exist for many massive models of quantum field theory
including sine-Gordon and the non-linear sigma model [70] and similar form factor
expansions exist [71, 72] for the XXZ model on a chain of finite length

HXXZ =−
L∑

j=1

{
σx
j σ

x
j+1 + σ

y
j σ

y

j+1 +Δσz
j σ

z
j+1 +Hσz

j

}
. (160)

Moreover the Feynman expansion of amplitudes in quantum field theory is also what
we have called here a form factor expansion. In all of the models there are limiting
cases where series of multiple dimensional integrals expand to series in powers of
logarithms which need to be summed. However, unlike the Ising correlation func-
tions these form factor expansions do not come from either Toeplitz or Fredholm
determinants and thus the exponentiation methods of Ising correlations are not ap-
plicable.

Over the years an immense effort has been made to sum the form factor series of
logarithms. In quantum field theory this starts with the classic 1939 paper of Bloch
and Nordsiek [73] on resummation of infrared divergences in quantum electrody-
namics. A second example is the Regge theory of the 60’s and 70’s where the 2nth
order Feynman diagram in the expansion of a four point scattering amplitude is
shown to diverge as the energy s→∞ with a fixed momentum transfer t as

g2nα(t)n
lnn s

n! . (161)

This is a “leading” log approximation and is analagous to the Ising case if only the
first term in the series (152) for αn is retained. More recently there has been a great
deal of work on quantum chromodynamics1 where many non leading terms summed
by the use of an ingenious decomposition of the multidimensional integrals.

1This literature is also vast. For example see [74–76].
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In the theory of integrable systems a great deal of effort has been devoted to
compute the long range asymptotic behavior of the correlations of the XXZ model in
the massless region−1 <Δ< 1 from multiple integral representations. One method
is presented in [77] which shows how to modify the Fredholm determinant form
which holds for Δ= 0 by suitably picking out the important pieces of the multiple
integrals. This has led to the computation of both the exponents and the amplitude
of the long range behavior of the correlations when the H 	= 0. The study of the
correlations from the form factors is begun in [71, 72] with more results announced
to be forth coming. A full exploration of the relation of these subjects is beyond the
scope of this article.

7.4 Short Distance Versus Scaling Terms

In the n-particle expansions of the full (76), (75) and the diagonal (114), (115)
susceptibility the χ(n)(t) and the χ

(n)
d (t) will (for n≥ 3) have terms which contain

powers of ln t . From this it might be inferred that the susceptibility will contain
terms of the form (1− t)1/4+p lnq(1− t). However, from the extensive calculations
on long low and high temperature series expansions made in [24] and [51] such
terms do not appear to exist. Instead the susceptibility is conjectured to have the
form for t → 1 of

kBT χ(t)± = (1− t)−7/4
∞∑

j=0

C
(j)
± (1− t)j +

∞∑

q=0

[√q]∑

p=0

b
(p,q)
± (1− t)q lnp(1− t).

(162)
The first term is called the “scaling function”. The second term is called the “back-
ground” or “short distance” term and is numerically obtained by summing correla-
tion functions instead of form factors. In [51] it is stated that the “scaling function”
is determined by conformal field theory while for the “short distance” term here is
“no explicit prediction”. In [24] the belief is stated that the separation into “scaling”
and “short distance” parts is “tantamount to the scaling argument that in the critical
region there is a single length scale proportional to (1− t)−ν with ν = 1”. It would
be highly desirable if this distinction between “scaling” and “short distance” terms
could be made precise and if both terms could be obtained by use of the form factor
expansion alone.

7.5 Natural Boundaries and λ Extensions

Perhaps the most perplexing question concerning the relation of the Ising model on
a lattice with the scaling field theory limit is the existence of the natural boundary
in the susceptibility implied by the singularities (98), (99) found by Nickel [9, 10].
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The magnetic susceptibility is the second derivative of the free energy with respect
to an external magnetic field H interacting with the spins as −H

∑
j,k σj,k . In the

scaling limit the Ising model in a magnetic field is also a field theory and the ana-
lyticity properties of this field theory have been extensively studied by Fonseca and
Zamolodchikov [78] with the conclusion that there is no natural boundary. How can
this be reconciled with the computations of [9] and [10]?

The existence of the natural boundary suggested by Nickel in [9] and [10] rests
on the accumulation of the singularities (98) and (99) and the assumption that there
is no cancellation. However, for this argument to hold we need to be able to show
that the limit of t approaching the location of the supposed natural boundary (95)
will commute with the infinite sum over the n particle contributions χ(n)(T ) in (75)
and (76). Since the natural boundary does not exist if only a finite number of the
χ(n)(T ) are included this interchange need to be investigated. It is also possible that
the existence of a natural boundary could depend on the value of λ in the lambda
extensions of (75) and (76)

kBT χ+(T ;λ) = (1− t)1/4t−1/4
∞∑

j=0

λ2jχ(2j+1)(T ) for T > Tc, (163)

kBT χ−(T ;λ) = (1− t)1/4
∞∑

j=1

λ2jχ(2j)(T ) for T < Tc. (164)

These possibilities remain to be investigated.

7.6 Row Correlations

All of the results obtained for the diagonal correlation, which depend on the single
variable t , can be extended to the row correlation, which depends on the two vari-
ables α1 and α2 in a symmetric fashion (5). In particular it has been pointed out
to me by Jean-Marie Maillard and Nicholas Witte in private conversations that the
Painlevé VI results of Jimbo and Miwa [37, 38] can be extended to a two variable
Garnier system.2 However, this system must possess some most interesting proper-
ties because one of the most important properties of the Ising model is the fact that,
when these two variables are rewritten as

k = sinh 2Ev/kBT sinh 2Eh/kBT and r = sinh 2Ev/kBT

sinh 2Eh/kBT
, (165)

the dependence on k (the modulus of the elliptic functions) and the anisotropy ratio
r which is related to the spectral variable of the star triangle equation [79] is dra-
matically different. These results for Garnier systems have also yet to be obtained.

2For a modern exposition of Garnier systems see [40].
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8 Romance Versus Understanding

In a lecture given in Melbourne in January 2006 [80], I gave the following definition
of “understanding”

No one can be said to understand a paper unless he is able to generalize the
paper.

This definition is open to criticism on at least two grounds. Firstly the use of
the word “he” has a sexist implication which is neither appropriate nor intended.
Secondly, there are surely subjects which are fully understood where further gener-
alization is pointless. An illustration of this are the laws of thermodynamics which
have been fully understood by physicists for many decades (even if they are not
accepted by the overwhelming majority of voters and politicians).

However, precisely because thermodynamics is fully understood, it has lost the
mystery it had at the time of Gibbs, Boltzmann and Ehrenfest. This illustrates the
great truth that understanding is the enemy of romance because once the mysteries
are understood the romance dies.

Fortunately for romance, there are many mysteries of the Ising model which are
far from being understood. The romantic in me says that, even when these mys-
teries have been understood, the understanding of the mysteries will generate new
mysteries and the romance of the Ising model will be everlasting.
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A
(1)
n -Geometric Crystal Corresponding

to Dynkin Index i = 2 and Its
Ultra-Discretization

Kailash C. Misra and Toshiki Nakashima

Abstract Let g be an affine Lie algebra with index set I = {0,1,2, . . . , n} and gL

be its Langlands dual. It is conjectured in Kashiwara et al. (Trans. Am. Math. Soc.
360(7):3645–3686, 2008) that for each i ∈ I \ {0} the affine Lie algebra g has a
positive geometric crystal whose ultra-discretization is isomorphic to the limit of
certain coherent family of perfect crystals for gL. We prove this conjecture for i = 2
and g=A

(1)
n .

1 Introduction

Let A = (aij )i,j∈I , I = {0,1, . . . , n} be an affine Cartan matrix and (A, {αi}i∈I ,
{α∨i }i∈I ) be a given Cartan datum. Let g = g(A) denote the associated affine
Lie algebra [8] and Uq(g) denote the corresponding quantum affine algebra. Let
P = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛn ⊕ Zδ and P∨ = Zα∨0 ⊕ Zα∨1 ⊕ · · · ⊕ Zα∨n ⊕ Zd

denote the affine weight lattice and the dual affine weight lattice respectively. For
a dominant weight λ ∈ P+ = {μ ∈ P | μ(hi) ≥ 0 for all i ∈ I } of level l = λ(c)

(c = canonical central element), Kashiwara defined the crystal base (L(λ),B(λ))

[13] for the integrable highest weight Uq(g)-module V (λ). The crystal B(λ) is
the q = 0 limit of the canonical basis [21] or the global crystal basis [14]. It has
many interesting combinatorial properties. To give explicit realization of the crystal
B(λ), the notion of affine crystal and perfect crystal has been introduced in [10].
In particular, it is shown in [10] that the affine crystal B(λ) for the level l ∈ Z>0
integrable highest weight Uq(g)-module V (λ) can be realized as the semi-infinite
tensor product · · · ⊗ Bl ⊗ Bl ⊗ Bl , where Bl is a perfect crystal of level l. This
is known as the path realization. Subsequently it is noticed in [12] that one needs
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a coherent family of perfect crystals {Bl}l≥1 in order to give a path realization of
the Verma module M(λ) (or U−

q (g)). In particular, the crystal B(∞) of U−
q (g)

can be realized as the semi-infinite tensor product · · · ⊗ B∞ ⊗ B∞ ⊗ B∞ where
B∞ is the limit of the coherent family of perfect crystals {Bl}l≥1 (see [12]). At
least one coherent family {Bl}l≥1 of perfect crystals and its limit is known for
g=A

(1)
n ,B

(1)
n ,C

(1)
n ,D

(1)
n ,A

(2)
2n−1,A

(2)
2n ,D

(2)
n+1,D

(3)
4 ,G

(1)
2 (see [11, 12, 17, 22, 30]).

A perfect crystal is indeed a crystal for certain finite dimensional module called
Kirillov-Reshetikhin module (KR-module for short) of the quantum affine algebra
Uq(g) ([4, 5, 19]). The KR-modules are parametrized by two integers (i, l), where
i ∈ I \{0} and l any positive integer. Let {'i}i∈I\{0} be the set of level 0 fundamental
weights [15]. Hatayama et al. ([4, 5]) conjectured that any KR-module W(l'i)

admit a crystal base Bi,l in the sense of Kashiwara and furthermore Bi,l is perfect if
l is a multiple of c∨i :=max(1, 2

(αi ,αi )
). This conjecture has been proved for quantum

affine algebras Uq(g) of classical types ([2, 3, 27]). When {Bi,l}l≥1 is a coherent
family of perfect crystals we denote its limit by B∞('i) (or just B∞ if there is no
confusion).

On the other hand the notion of geometric crystal is introduced in [1] as a ge-
ometric analog to Kashiwara’s crystal (or algebraic crystal) [13]. In fact, geomet-
ric crystal is defined in [1] for reductive algebraic groups and is extended to gen-
eral Kac-Moody groups in [23]. For a given Cartan datum (A, {αi}i∈I , {α∨i }i∈I ),
the geometric crystal is defined as a quadruple V(g)= (X, {ei}i∈I , {γi}i∈I , {εi}i∈I ),
where X is an algebraic variety, ei : C× × X −→ X are rational C×-actions and
γi, εi :X −→C (i ∈ I ) are rational functions satisfying certain conditions (see Def-
inition 1). A geometric crystal is said to be a positive geometric crystal if it admits
a positive structure (see Definition 3). A remarkable relation between positive geo-
metric crystals and algebraic crystals is the ultra-discretization functor UD between
them (see Sect. 2.4). Applying this functor, positive rational functions are transfered
to piecewise linear functions by the simple correspondence:

x × y �−→ x + y,
x

y
�−→ x − y, x + y �−→max{x, y}.

It was conjectured in [18] that for each affine Lie algebra g and each Dynkin
index i ∈ I \ 0, there exists a positive geometric crystal V(g) = (X, {ei}i∈I ,
{γi}i∈I , {εi}i∈I ) whose ultra-discretization UD(V) is isomorphic to the limit B∞
of a coherent family of perfect crystals for the Langlands dual gL. In [18], it has
been shown that this conjecture is true for i = 1 and g = A

(1)
n ,B

(1)
n ,C

(1)
n ,D

(1)
n ,

A
(2)
2n−1,A

(2)
2n ,D

(2)
n+1. In [25] (resp. [6]) a positive geometric crystal for g=G

(1)
2 (resp.

g=D
(3)
4 ) and i = 1 has been constructed and it is shown in [26] (resp. [7]) that the

ultra-discretization of this positive geometric crystal is isomorphic to the limit of a
coherent family of perfect crystals for gL = D

(3)
4 (resp. gL = G

(1)
2 ) given in [17]

(resp. [22]).
In this paper we have constructed a positive geometric crystal associated with

the Dynkin index i = 2 for the affine Lie algebra A
(1)
n and have proved that its
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ultra-discretization is isomorphic to the limit B2,∞ of the coherent family of perfect
crystals {B2,l}l≥1 for the affine Lie algebra A

(1)
n given in [11, 28].

This paper is organized as follows. In Sect. 2, we recall necessary definitions
and facts about geometric crystals. In Sect. 3, we recall from [28] (see also [11])
the coherent family of perfect crystals {B2,l}l≥1for g= A

(1)
n and its limit B2,∞. In

Sects. 4, we construct a positive affine geometric crystal V = V(A
(1)
n ) explicitly. In

Sect. 5, we prove that the ultra-discretization X = UD(V) is isomorphic to the limit
B2,∞ which proves the conjecture in [18, Conjecture 1.2] for i = 2 and g=A

(1)
n .

2 Geometric Crystals

In this section, we review Kac-Moody groups and geometric crystals following [1,
20, 23, 29].

2.1 Kac-Moody Algebras and Kac-Moody Groups

Fix a symmetrizable generalized Cartan matrix A= (aij )i,j∈I with a finite index set
I . Let (t, {αi}i∈I , {α∨i }i∈I ) be the associated root data, where t is a vector space over
C and {αi}i∈I ⊂ t∗ and {α∨i }i∈I ⊂ t are linearly independent satisfying αj (α

∨
i ) =

aij .
The Kac-Moody Lie algebra g= g(A) associated with A is the Lie algebra over

C generated by t, the Chevalley generators ei and fi (i ∈ I ) with the usual defining
relations [9, 29]. There is the root space decomposition g=⊕α∈t∗ gα . Denote the
set of roots by Δ := {α ∈ t∗|α 	= 0, gα 	= (0)}. Set Q=∑i Zαi , Q+ =∑i Z≥0αi ,
Q∨ :=∑i Zα∨i and Δ+ :=Δ∩Q+. An element of Δ+ is called a positive root. Let
P ⊂ t∗ be a weight lattice such that C⊗ P = t∗, whose element is called a weight.

Define simple reflections si ∈Aut(t) (i ∈ I ) by si(h) := h−αi(h)α
∨
i , which gen-

erate the Weyl group W . It induces the action of W on t∗ by si(λ) := λ− λ(α∨i )αi .
Set Δre := {w(αi)|w ∈W, i ∈ I }, whose element is called a real root.

Let g′ be the derived Lie algebra of g and let G be the Kac-Moody group associ-
ated with g′ [29]. Let Uα := expgα (α ∈Δre) be the one-parameter subgroup of G.
The group G is generated by Uα (α ∈Δre). Let U± be the subgroup generated by
U±α (α ∈Δre+ =Δre ∩Q+), i.e., U± := 〈U±α|α ∈Δre+〉.

For any i ∈ I , there exists a unique homomorphism; φi : SL2(C)→G such that

φi

((
c 0
0 c−1

))
= cα

∨
i , φi

((
1 t

0 1

))
= exp(tei),

φi

((
1 0
t 1

))
= exp(tfi).
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where c ∈ C
× and t ∈ C. Set α∨i (c) := cα

∨
i , xi(t) := exp (tei), yi(t) := exp (tfi),

Gi := φi(SL2(C)), Ti := φi({diag(c, c−1)|c ∈ C
∨}) and Ni := NGi

(Ti). Let T

(resp. N ) be the subgroup of G with the Lie algebra t (resp. generated by the Ni ’s),
which is called a maximal torus in G, and let B± = U±T be the Borel subgroup
of G. We have the isomorphism φ :W ∼→N/T defined by φ(si)=NiT /T . An ele-
ment si := xi(−1)yi(1)xi(−1)= φi(

0 ±1
∓1 0 ) is in NG(T ), which is a representative

of si ∈W =NG(T )/T .

2.2 Geometric Crystals

Let X be an ind-variety, γi :X→ C and εi :X −→ C (i ∈ I ) rational functions on
X, and ei :C× ×X −→X ((c, x) �→ eci (x)) a rational C×-action.

Definition 1 A quadruple (X, {ei}i∈I , {γi, }i∈I , {εi}i∈I ) is a G (or g)-geometric
crystal if

1. {1} ×X ⊂ dom(ei) for any i ∈ I .
2. γj (e

c
i (x))= caij γj (x).

3. ei ’s satisfy the following relations.

e
c1
i e

c2
j = e

c2
j e

c1
i if aij = aji = 0,

e
c1
i e

c1c2
j e

c2
i = e

c2
j e

c1c2
i e

c1
j if aij = aji =−1,

e
c1
i e

c2
1c2

j e
c1c2
i e

c2
j = e

c2
j e

c1c2
i e

c2
1c2

j e
c1
i if aij =−2, aji =−1,

e
c1
i e

c3
1c2

j e
c2

1c2
i e

c3
1c

2
2

j e
c1c2
i e

c2
j = e

c2
j e

c1c2
i e

c3
1c

2
2

j e
c2

1c2
i e

c3
1c2

j e
c1
i if aij =−3, aji =−1,

4. εi(e
c
i (x))= c−1εi(x) and εi(e

c
j (x))= εi(x) if ai,j = aj,i = 0.

The condition 4 is slightly modified from the one in [6, 25, 26].
Let W be the Weyl group associated with g. For w ∈W define R(w) by

R(w) := {(i1, i2, . . . , il) ∈ I l |w = si1si2 · · · sil
}
,

where l is the length of w. Then R(w) is the set of reduced words of w. For a word
i= (i1, . . . , il) ∈R(w) (w ∈W), set α(j) := sil · · · sij+1(αij ) (1≤ j ≤ l) and

ei : T ×X→X

(t, x) �→ eti (x) := e
α(1)(t)
i1

e
α(2)(t)
i2

· · · eα(l)(t)
il

(x).

Note that the condition 3 above is equivalent to the following: ei = ei′ for any w ∈
W , i, i′ ∈R(w).
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2.3 Geometric Crystal on Schubert Cell

Let w ∈W be a Weyl group element and take a reduced expression w = si1 · · · sik .
Let X :=G/B be the flag variety, which is an ind-variety and Xw ⊂X the Schubert
cell associated with w, which has a natural geometric crystal structure ([1, 23]). For
i := (i1, . . . , ik), set

B−i :=
{
Yi(c1, . . . , ck) := Yi1(c1) · · ·Yik (ck) | c1, . . . , ck ∈C

×}⊂ B−, (2.1)

where Yi(c) := yi(
1
c
)α∨i (c). If I = {i1, . . . , ik}, this has a geometric crystal structure

([23]) isomorphic to Xw . The explicit forms of the action eci , the rational function
εi and γi on B−i are given by

eci
(
Yi(c1, . . . , ck)

)= Yi(C1, . . . ,Ck)),

where

Cj := cj

∑
1≤m≤j,im=i

c

c
ai1,i
1 ···caim−1,i

m−1 cm

+∑j<m≤k,im=i
1

c
ai1,i
1 ···caim−1,i

m−1 cm∑
1≤m<j,im=i

c

c
ai1,i
1 ···caim−1,i

m−1 cm

+∑j≤m≤k,im=i
1

c
ai1,i
1 ···caim−1,i

m−1 cm

, (2.2)

εi
(
Yi(c1, . . . , ck)

)=
∑

1≤m≤k,im=i

1

c
ai1,i

1 · · · caim−1,i

m−1 cm

, (2.3)

γi
(
Yi(c1, . . . , ck)

)= c
ai1,i

1 · · · caik ,ik . (2.4)

Remark As in [23], the above setting requires the condition I = {i1, . . . , ik}. Oth-
erwise, set J := {i1, . . . , ik} � I and let gJ � g be the corresponding subalgebra.
Then, by arguing similarly to [23, 4.3], we can define the gJ -geometric crystal struc-
ture on B−i .

2.4 Positive Structure, Ultra-Discretizations and Tropicalizations

Let us recall the notions of positive structure, ultra-discretization and tropicalization.
The setting below is same as in [18]. Let T = (C×)l be an algebraic torus over C

and X∗(T ) :=Hom(T ,C×)∼= Z
l (resp. X∗(T ) :=Hom(C×, T )∼= Z

l) be the lattice
of characters (resp. co-characters) of T . Set R :=C(c) and define

v :R \ {0} −→ Z

f (c) �→ deg
(
f (c)

)
,

where deg is the degree of poles at c =∞. Here note that for f1, f2 ∈ R \ {0}, we
have

v(f1f2)= v(f1)+ v(f2), v

(
f1

f2

)
= v(f1)− v(f2). (2.5)
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A non-zero rational function on an algebraic torus T is called positive if it can be
written as g/h where g and h are positive linear combinations of characters of T .

Definition 2 Let f : T → T ′ be a rational morphism between two algebraic tori T
and T ′. We say that f is positive, if η ◦ f is positive for any character η : T ′ →C.

Denote by Mor+(T ,T ′) the set of positive rational morphisms from T to T ′.

Lemma 1 ([1]) For any f ∈Mor+(T1, T2) and g ∈Mor+(T2, T3), the composition
g ◦ f is well-defined and belongs to Mor+(T1, T3).

By Lemma 1, we can define a category T+ whose objects are algebraic tori over
C and arrows are positive rational morphisms.

Let f : T → T ′ be a positive rational morphism of algebraic tori T and T ′. We
define a map f̂ : X∗(T )→X∗(T ′) by

〈
η, f̂ (ξ)

〉= v(η ◦ f ◦ ξ),
where η ∈X∗(T ′) and ξ ∈X∗(T ).

Lemma 2 ([1]) For any algebraic tori T1, T2, T3, and positive rational morphisms
f ∈Mor+(T1, T2), g ∈Mor+(T2, T3), we have ĝ ◦ f = ĝ ◦ f̂ .

Let Set denote the category of sets with the morphisms being set maps. By the
above lemma, we obtain a functor:

UD : T+ −→ Set

T �→ X∗(T )(
f : T → T ′

) �→ (
f̂ :X∗(T )→X∗

(
T ′
))

Definition 3 ([1]) Let χ = (X, {ei}i∈I , {wti}i∈I , {εi}i∈I ) be a geometric crystal, T ′
an algebraic torus and θ : T ′ →X a birational isomorphism. The isomorphism θ is
called positive structure on χ if it satisfies

1. For any i ∈ I the rational functions γi ◦ θ : T ′ → C and εi ◦ θ : T ′ → C are
positive.

2. For any i ∈ I , the rational morphism ei,θ :C××T ′ → T ′ defined by ei,θ (c, t) :=
θ−1 ◦ eci ◦ θ(t) is positive.

Let θ : T → X be a positive structure on a geometric crystal χ = (X, {ei}i∈I ,
{wti}i∈I , {εi}i∈I ). Applying the functor UD to positive rational morphisms ei,θ :
C
× × T → T and γi ◦ θ, εi ◦ θ : T →C (the notations are as above), we obtain

ẽi := UD(ei,θ ) : Z×X∗(T )→X∗(T ),

wti := UD(γi ◦ θ) :X∗
(
T ′
)→ Z,
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εi := UD(εi ◦ θ) :X∗
(
T ′
)→ Z.

Now, for given positive structure θ : T ′ →X on a geometric crystal χ = (X, {ei}i∈I ,
{wti}i∈I , {εi}i∈I ), we associate the quadruple (X∗(T ′), {ẽi}i∈I , {wti}i∈I , {εi}i∈I )
with a free pre-crystal structure (see [1, Sect. 7]) and denote it by UDθ,T ′(χ). We
have the following theorem:

Theorem 1 ([1, 23]) For any geometric crystal χ = (X, {ei}i∈I , {γi}i∈I , {εi}i∈I )
and positive structure θ : T ′ → X, the associated pre-crystal UDθ,T ′(χ) =
(X∗(T ′), {ẽi}i∈I , {wti}i∈I , {εi}i∈I ) is a crystal (see [1, Sect. 7])

Now, let GC+ be a category whose object is a triplet (χ,T ′, θ) where χ =
(X, {ei}, {γi}, {εi}) is a geometric crystal and θ : T ′ → X is a positive structure
on χ , and morphism f : (χ1, T

′
1, θ1) −→ (χ2, T

′
2, θ2) is given by a rational map

ϕ :X1 −→X2 (χi = (Xi, . . .)) such that

ϕ ◦ eX1
i = e

X2
i ◦ ϕ, γ

X2
i ◦ ϕ = γ

X1
i , ε

X2
i ◦ ϕ = ε

X1
i ,

and f := θ−1
2 ◦ ϕ ◦ θ1 : T ′1 −→ T ′2,

is a positive rational morphism. Let CR be the category of crystals. Then by the
theorem above, we have

Corollary 1 The map UD = UDθ,T ′ defined above is a functor

UD : GC+ −→ CR,
(
χ,T ′, θ

) �→X∗
(
T ′
)
,

(
f : (χ1, T

′
1, θ1

)→ (
χ2, T

′
2, θ2

)) �→ (
f̂ :X∗

(
T ′1
)→X∗

(
T ′2
))
.

We call the functor UD “ultra-discretization” as in [23, 24] instead of “tropical-
ization” as in [1]. And for a crystal B , if there exists a geometric crystal χ and a
positive structure θ : T ′ →X on χ such that UD(χ,T ′, θ)∼= B as crystals, we call
an object (χ,T ′, θ) in GC+ a tropicalization of B , which is not standard but we use
such a terminology as before.

3 Perfect Crystals of Type A
(1)
n

From now on we assume g to be the affine Lie algebra A
(1)
n , n ≥ 2. In this section,

we recall the coherent family of perfect crystals of type A
(1)
n , n ≥ 2 and its limit

given in [11, 28]. For basic notions of crystals, coherent family of perfect crystals
and its limit we refer the reader to [12] (see also [10, 11]).
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For the affine Lie algebra A
(1)
n , let {α0, α1, . . . αn}, {α∨0 , α∨1 , . . . α∨n } and {Λ0,Λ1,

. . .Λn} be the set of simple roots, simple coroots and fundamental weights, respec-
tively. The Cartan matrix A= (aij )i,j∈I , I = {0,1, . . . , n} is given by:

aij =

⎧
⎪⎨

⎪⎩

2 if i = j,

−1 if i ≡ (j ± 1) mod(n+ 1),

0 otherwise

and its Dynkin diagram is as follows.

�
�� �

��
�

1
�

2
�

n-1
�

n

�

0

The standard null root δ and the canonical central element c are given by

δ = α0 + α1 + · · · + αn and c= α∨0 + α∨1 + · · · + α∨n ,

where α0 = 2Λ0 −Λ1 −Λn+ δ, αi =−Λi−1 + 2Λi −Λi+1, 1≤ i ≤ n− 1, αn =
−Λ0 −Λn−1 + 2Λn.

For a positive integer l we introduce A
(1)
n -crystals B2,l and B2,∞ as

B2,l =
{
b= (bji)1≤j≤2,j≤i≤j+n−1

∣∣∣∣∣
bji ∈ Z≥0,

∑j+n−1
i=j bji = l,1≤ j ≤ 2

∑t
i=1 b1i ≥∑t+1

i=2 b2i ,1≤ t ≤ n

}
,

B2,∞ =
{
b= (bji)1≤j≤2,j≤i≤j+n−1

∣∣∣∣∣ bji ∈ Z,
∑j+n−1

i=j bji = 0,1≤ j ≤ 2

}
.

Now we describe the explicit crystal structures of B2,l and B2,∞. Indeed, most of
them coincide with each other except for ε0 and ϕ0. In the rest of this section, we
use the following convention: (x)+ =max(x,0). For b= (bji) we denote

zi = b1i − b2,i+1, 2≤ i ≤ n− 1. (3.6)

Now we define conditions (Em) and (Fm) for 2≤m≤ n as follows.

(Fm) :
{
zk + zk+1 + · · · + zm−1 ≤ 0, 2≤ k ≤m− 1,

zm + zm+1 + · · · + zk > 0, m≤ k ≤ n− 1,
(3.7)

(Em) :
{
zk + zk+1 + · · · + zm−1 < 0, 2≤ k ≤m− 1,

zm + zm+1 + · · · + zk ≥ 0, m≤ k ≤ n− 1.
(3.8)

We also define

Δ(m)= (b12 + b13 + · · · + b1,m−1)+ (b2,m+1 + b2,m+2 + · · · + b2n), 2≤m≤ n.

(3.9)
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Let Δ = min{Δ(m) | 2 ≤ m ≤ n}. Note that for 2 ≤ m ≤ n, Δ = Δ(m)

if the condition (Fm) (or (Em)) hold. Then for b = (bji) ∈ B2,l or B2,∞,
ẽk(b), f̃k(b), εk(b),ϕk(b), k = 0,1, . . . , n are given as follows.

For 0≤ k ≤ n, ẽk(b)= (b′ji), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = 0 : b′11 = b11 − 1, b′1m = b1m + 1, b′2m = b2m − 1,

b′2,n+1 = b2,n+1 + 1 if (Em),2≤m≤ n,

k = 1 : b′11 = b11 + 1, b′12 = b12 − 1,

2≤ k ≤ n− 1 :
{
b′1k = b1k + 1, b′1,k+1 = b1,k+1 − 1 if b1k ≥ b2,k+1,

b′2k = b2k + 1, b′2,k+1 = b2,k+1 − 1 if b1k < b2,k+1,

k = n : b′2n = b2n + 1, b′2,n+1 = b2,n+1 − 1

and b′ji = bji otherwise.

For 0≤ k ≤ n, f̃k(b)= (b′ji), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = 0 : b′11 = b11 + 1, b′1m = b1m − 1, b′2m = b2m + 1,

b′2,n+1 = b2,n+1 − 1 if (Fm),2≤m≤ n,

k = 1 : b′11 = b11 − 1, b′12 = b12 + 1,

2≤ k ≤ n− 1 :
{
b′1k = b1k − 1, b′1,k+1 = b1,k+1 + 1 if b1k > b2,k+1,

b′2k = b2k − 1, b′2,k+1 = b2,k+1 + 1 if b1k ≤ b2,k+1,

k = n : b′2n = b2n − 1, b′2,n+1 = b2,n+1 + 1

and b′ji = bji otherwise. For b ∈ B2,l if ẽkb or f̃kb does not belong to B2,l then we
understand it to be 0.

ε1(b)= b12, ϕ1(b)= b11 − b22,

εk(b)= b1,k+1 + (b2,k+1 − b1,k)+, ϕk(b)= b2k + (b1k − b2,k+1)+,

for 2≤ k ≤ n− 1,

εn(b)= b2,n+1 − b1n, ϕn(b)= b2n,

ε0(b)=
{
l − b2,n+1 −Δ, b ∈ B2,l ,

−b2,n+1 −Δ, b ∈ B2,∞,

ϕ0(b)=
{
l − b11 −Δ, b ∈ B2,l ,

−b11 −Δ, b ∈ B2,∞.
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Hence the weights wti(b)= ϕi(b)− εi(b),0≤ i ≤ n are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt0(b)= b2,n+1 − b11,

wt1(b)= b11 − b12 − b22,

wtk(b)= (b1k − b1,k+1)+ (b2k − b2,k+1) (1 < k < n),

wtn(b)= b1n + b2n − b2,n+1.

The following results have been proved in [11, 28]:

Theorem 2 ([11, 28])

1. The A
(1)
n -crystal B2,l is a perfect crystal of level l.

2. The family of the perfect crystals {B2,l}l≥1 forms a coherent family and the crys-
tal B2,∞ is its limit with the vector b∞ = (0)2×n.

4 Affine Geometric Crystal V(A
(1)
n )

Let c=∑n
i=0 α

∨
i be the canonical central element in the affine Lie algebra g=A

(1)
n

and {Λi |i ∈ I } be the set of fundamental weights as in the previous section. Let
σ denote the Dynkin diagram automorphism. In particular, σ(Λi) = Λi+1, where
i + 1= (i + 1) mod(n+ 1). Consider the level 0 fundamental weight '2 :=Λ2 −
Λ0. Let I0 = I \0, In = I \n, and gi denote the subalgebra of g associated with the
index sets Ii, i = 0, n. Then g0 as well as gn is isomorphic to An.

Let W('2) be the fundamental representation of U ′
q(g) associated with '2

([15]). By [15, Theorem 5.17], W('2) is a finite-dimensional irreducible integrable
U ′

q(g)-module and has a global basis with a simple crystal. Thus, we can consider

the specialization q = 1 and obtain the finite-dimensional A
(1)
n -module W('2),

which we call a fundamental representation of A
(1)
n and use the same notation as

above. We shall present the explicit form of W('2) below.

4.1 Fundamental Representation W(2) for A
(1)
n

The A
(1)
n -module W('2) is an 1

2n(n+ 1)-dimensional module with the basis,

{
(i, j) | 1≤ i < j ≤ n+ 1

}
,

where (i, j) denotes the tableaux:

i
j

The actions of ei and fi on these basis vectors are given as follows.
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For 1≤ k ≤ n, we have

fk(i, j) =

⎧
⎪⎨

⎪⎩

(i + 1, j), i = k < j − 1,

(i, j + 1), j = k,

0, otherwise,

ek(i, j) =

⎧
⎪⎨

⎪⎩

(i − 1, j), i = k + 1,

(i, j − 1), i < j − 1= k,

0, otherwise,

f0(i, j) =
{
(1, i), i 	= 1, j = n+ 1,

0, otherwise,

e0(1, j) =
{
(j, n+ 1), i 	= 1,

0, otherwise.

Furthermore the weights of the basis vectors are given by:

wt(i, j)= (Λi −Λi−1 +Λj −Λj−1), 1≤ i < j ≤ n+ 1,

where we understand that Λn+1 = Λ0. Note that in W('2), we have (1,2) (resp.
(1, n+1)) is a g0 (resp. gn) highest weight vector with weight '2 =Λ2−Λ0 (resp.
σ−1'2 =Λ1 −Λn).

4.2 Affine Geometric Crystal V(A
(1)
n ) in W(2)

Now we will construct the affine geometric crystal V(A
(1)
n ) in W('2) explicitly. For

ξ ∈ (t∗cl)0, let t (ξ) be the translation as in [15, Sect. 4] and '̃i as in [16]. Indeed,
'̃i :=max(1, 2

(αi ,αi )
)'i ='i in our case. Then we have

t ('̃2)= σ 2(sn−1sn−2 · · · s1)(snsn−1 · · · s2)=: σ 2w1,

t
(
wt(1, n+ 1)

)= σ 2(sn−2sn−3 · · · s0)(sn−1sn−2 · · · s1)=: σ 2w2.

Associated with these Weyl group elements w1,w2 ∈W , we define algebraic vari-
eties V1, V2 ⊂W('2) as follows.

V1 :=
{
V1(x) := Yn−1(x2n−1) · · ·Y1(xn+1)Yn(xn) · · ·Y2(x2)(1,2) | xi ∈C

×},

V2 :=
{
V2(y) := Yn−2(y2n−2) · · ·Y0(yn)Yn−1(yn−1) · · ·Y1(y1)(1, n+ 1) | yi ∈C

×}.

Using the explicit actions of fi ’s on W('2) as above, we have f 2
i = 0, for all i ∈ I .

Therefore, we have

Yi(c)=
(

1+ fi

c

)
α∨i (c) for all i ∈ I.
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Thus we can get explicit forms of V1(x) ∈ V1 and V2(y) ∈ V2. Set

V1(x) = V1(x2, x3, . . . , x2n−1)=
∑

1≤i<j≤n+1

Xij (i, j),

V2(y) = V2(y1, y2, . . . , y2n−2)=
∑

1≤i<j≤n+1

Yij (i, j),

where the coefficients Xij ’s and Yij ’s can be computed explicitly. These coefficients
are positive rational functions in the variables (x2, . . . , x2n−1) and (y1, . . . , y2n−2)

respectively and they are given as follows:

Xij =
⎧
⎨

⎩
xi+1 + xi+2xn+i

xn+i+1
+ xi+3xn+i

xn+i+2
+ · · · + xnxn+i

x2n−1
, j = n,

xn+j (xi+1 + xi+2xn+i

xn+i+1
+ xi+3xn+i

xn+i+2
+ · · · + xj xn+i

xn+j−1
), j ≤ n− 1,

Xi,n+1 =
{
xn+i , i 	= n,

1, i = n,

Yij =
{
yn+j (yi+1 + yi+2yn+i

yn+i+1
+ yi+3yn+i

yn+i+2
+ · · · + yj yn+i

yn+j−1
), j ≤ n− 2,

yi+1 + yi+2yn+i

yn+i+1
+ yi+3yn+i

yn+i+2
+ · · · + yn−1yn+i

y2n−2
, j = n− 1,

Yi,n =
{
yn+i , 1≤ i ≤ n− 2,

1, i = n− 1,

Yi,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

yn+i (y1 + y2yn
yn+1

+ y3yn
yn+2

+ · · · + yiyn
yn+i−1

), 1≤ i ≤ n− 2

y1 + y2yn
yn+1

+ y3yn
yn+2

+ · · · + yn−1yn
y2n−2

, i = n− 1,

yn, i = n.

Now for a given x = (x2, x3, , . . . , x2n−1) we solve the equation

V2(y)= a(x)V1(x), (4.10)

where a(x) is a rational function in x = (x2, x3, . . . , x2n−1). Though this equation
is over-determined, it can be solved uniquely by direct calculation and the explicit
form of solution is given below.

Lemma 3 We have the rational function a(x) and the unique solution of (4.10):

a(x)= 1

xn
, y1 =

(
x2

xn+1
+ x3

xn+2
+ · · · + xn

x2n−1

)−1

,

yk = xk

(
xk+1

xn+k

+ xk+2

xn+k+1
+ · · · + xn

x2n−1

)−1

, 2≤ k ≤ n− 1,

yn = 1

xn
, yn+l = xn+l

xn

(
xl+1

xn+l

+ xl+2

xn+l+1
+ · · · + xn

x2n−1

)
, 1≤ l ≤ n− 2.
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Now using Lemma 3 we define the map

σ : V1 −→ V2,

V1(x2, . . . , x2n−1) �→ V2(y1, . . . , y2n−2).

Then we have the following result.

Proposition 1 The map σ : V1 −→ V2 is a bi-positive birational isomorphism with
the inverse positive rational map

σ−1 : V2 −→ V1,

V2(y1, . . . , y2n−2) �→ V1(x2, . . . , x2n−1).

given by:

xk = yk

yn

(
y1

yn
+ y2

yn+1
+ · · · + yk

yn+k−1

)−1

, 2≤ k ≤ n− 1,

xn+l = yn+l

(
y1

yn
+ y2

yn+1
+ · · · + yl

yn+l−1

)
, 1≤ k ≤ n− 2,

xn = 1

yn
, x2n−1 =

(
y1

yn
+ y2

xn+1
+ · · · + yn−1

y2n−2

)
.

Proof The fact that σ is a bi-positive birational map follows from the explicit for-
mulas. The rest follows by direct calculation. �

It is known (see [18] and 2.3) that V1 (resp. V2) is a geometric crystal for g0

(resp. gn). Indeed, we have the g0-geometric crystal structure on V1 by setting
Y(x)= Y(x2n−1, . . . , x2) := Yn−1(x2n−1) · · ·Y2(x2), V1(x)= V1(x2n−1, . . . , x2) :=
Y(x)(1,2) and

eci
(
V1(x)

) := eci
(
Y(x)

)
(1,2), γi

(
V1(x)

)= γi
(
Y(x)

)
,

εi
(
V1(x)

) := εi
(
Y(x)

)
,

since the vector (1,2) is the highest weight vector with respect to g0. Similarly, we
obtain the gn-geometric crystal structure on V2. Hence the actions of eci , γi, εi (resp.
eci , γ i, εi ) on V1(x) (resp. V2(y)) are described explicitly for i ∈ I0 (resp. i ∈ In) by
the formula in 2.3. In particular, the actions of ec0, γ 0 and ε0 on V2(y) are given by:

ec0
(
V2(y)

)= V2(y1, . . . , cyn, . . . , y2n−2),

γ 0
(
V2(y)

)= y2
n

y1yn+1
, ε0

(
V2(y)

)= yn+1

yn
.
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In order to make V1 a A
(1)
n -geometric crystal we need to define the actions of ec0, γ0

and ε0 on V1(x). We define the action of ec0 on V1(x) by

ec0V1(x)= σ−1 ◦ ec0 ◦ σ
(
V1(x)

)
(4.11)

and the actions of γ0 and ε0 on V1(x) by

γ0
(
V1(x)

)= γ 0
(
σ
(
V1(x)

))
, ε0

(
V1(x)

) := ε0
(
σ
(
V1(x)

))
. (4.12)

Theorem 3 Together with the actions of ec0, γ0 and ε0 on V1(x) given in (4.11),

(4.12), we obtain a positive affine geometric crystal V(A
(1)
n ) := (V1, {ei}i∈I , {γi}i∈I ,

{εi}i∈I ) (I = {0,1, . . . , n}), whose explicit form is as follows: first we have
eci (V1(x)), γi(V1(x)) and εi(V1(x)) for i = 1,2, . . . , n from the formula (2.2), (2.3)
and (2.4).

eci
(
V1(x)

)=

⎧
⎪⎨

⎪⎩

V1(x2, . . . , cxn+1, . . . , x2n−1), i = 1,

V1(x2, . . . , cixi, . . . ,
c
ci
xn+i , . . . , x2n−1), 2≤ i ≤ n− 1,

V1(x2, . . . , cxn, . . . , x2n−1), i = n

where

ci = c(xixn+i + xi+1xn+i−1)

cxixn+i + xi+1xn+i−1
,

γi
(
V1(x)

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2
n+1

x2xn+2
, i = 1,

x2
i x

2
n+i

xi−1xi+1xn+i−1xn+i+1
, 2≤ i ≤ n− 1,

x2
n

xn−1x2n−1
, i = n.

εi
(
V1(x)

)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xn+2
xn+1

, i = 1,
xn+i+1
xn+i

+ xi+1xn+i−1xn+i+1

xix
2
n+i

, 2≤ i ≤ n− 2,

1
x2n−1

+ xnx2n−2

xn−1x
2
2n−1

, i = n− 1,
x2n−1
xn

, i = n.

Using (4.11) and (4.12), the explicit actions of ec0, ε0 and γ0 on V1(x) are given
by:

γ0
(
V1(x)

)= 1

xnxn+1
, ε0

(
V1(x)

)= xn+1

(
x2

xn+1
+ x3

xn+2
+ · · · + xn

x2n−1

)
,

ec0
(
V1(x)

)= V1
(
x′
)= V1

(
x′2, x′3, . . . , x′2n−1

)
,
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where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′k = xk ·
x2

xn+1
+ x3

xn+2
+···+ xn

x2n−1

c(
x2

xn+1
+ x3

xn+2
+···+ xk

xn+k−1
)+(

xk+1
xn+k

+···+ xn
x2n−1

)
, 2≤ k < n,

x′n = xn
c
, x′n+1 = xn+1

c
,

x′n+l = xn+l ·
c(

x2
xn+1

+ x3
xn+2

+···+ xl
xn+l−1

)+(
xl+1
xn+l

+···+ xn
x2n−1

)

c(
x2

xn+1
+ x3

xn+2
+···+ xn

x2n−1
)

, 2≤ l < n.

Proof Since the positivity is clear from the explicit formulas, it suffices to show that
V(A

(1)
n ) := (V1(x), {eci }i∈I , {γi}i∈I , {εi}i∈I ) satisfies the relations in Definition (1).

Indeed, since V1 is a g0 geometric crystal we need to check the relations involving
the 0-index:

(1) γ0(e
c
i (V1(x)))= cai0γ0(V1(x)),1≤ i ≤ n,

(2) γi(e
c
0(V1(x)))= ca0i γi(V1(x)), 1≤ i ≤ n,

(3) ε0(e
c
0(V1(x)))= c−1ε0(V1(x)),

(4) ec0e
cd
1 ed0 = ed1e

cd
0 ec1,

(5) ec0e
cd
n ed0 = edne

cd
0 ecn,

(6) ec0e
d
i = edi e

c
0, 2≤ i ≤ n− 1.

Since

γ0
(
eci
(
V1(x)

))=

⎧
⎪⎪⎨

⎪⎪⎩

c2

xnxn+1
, i = 0,

1
cxnxn+1

, i = 1, n,

1
xnxn+1

, 2≤ i ≤ n− 1,

and

γi
(
ec0
(
V1(x)

))=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2
n+1

cxnxn+2
, i = 1,

x2
n

cxn−1x2n−1
, i = n,

x2
i x

2
n+i

xi−1xi+1xn+i−1xn+i+1
, 2≤ i ≤ n− 1,

we have (1) and (2) hold. We also have (3) hold since V2 is a gn-geometric crystal
and hence

ε0
(
ec0
(
V1(x)

)) = ε0σσ−1ec0σ
(
V1(x)

)= ε0e
c
0

(
V2(y)

)

= ε0
(
V2
(
y′
))= y′n+1

y′n
= yn+1

cyn
= c−1ε0

(
V1(x)

)
.

By direct calculations we see that on V1(x) we have

σ ◦ eci = eci ◦ σ, for 1≤ i ≤ n− 1.
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Hence for 2≤ i ≤ n− 1, we have

ec0e
d
i =

(
σ−1ec0σ

)(
σ−1edi σ

)= σ−1ec0e
d
i σ

= σ−1edi e
c
0σ = edi e

c
0,

and

ec0e
cd
1 ed0 =

(
σ−1ec0σ

)(
σ−1ecd1 σ

)(
σ−1ed0σ

)

= σ−1ec0e
cd
i ed0σ = σ−1ed1e

cd
0 ec1σ = ed1e

cd
0 ec1,

since V2 is a gn-geometric crystal. Therefore, (4) and (6) hold.
Now for k = 2, . . . , n− 1 we set X =Xk + X̃k where

Xk = x2

xn+1
+ x3

xn+2
+ · · · + xk

xk+n−1
, X̃k = xk+1

xk+n

+ xk+2

xk+n+1
+ · · · + xn

x2n−1
.

Observe that for any k, l = 2, . . . , n− 1 we have X = Xk + X̃k = Xl + X̃l . Recall
that ec0(V1(x))= V1(x

′)= V1(x
′
2, . . . , x

′
2n−1). Now we have

x′k
x′k+n−1

= cX2

c− 1

(
1

cXk−1 + X̃k−1
− 1

cXk + X̃k

)
(3≤ k ≤ n−1, c 	= 1). (4.13)

Using Eq. (4.13) we can easily see that (5) holds which completes the proof. �

5 Ultra-Discretization of V(A
(1)
n )

We denote the positive structure on V = V(A
(1)
n ) as in the previous section by

θ : T ′ := (C×)2n−2 −→ V (x �→ V1(x)). Then by Corollary 1 we obtain the ultra-
discretization X = UD(V, T ′, θ) which is a Kashiwara’s crystal. Now we show that
the conjecture in [18] holds for g= A

(1)
n , i = 2 by giving an explicit isomorphism

of crystals between X and B2,∞. In order to show this isomorphism, we need the
explicit crystal structure on X := UD(χ,T ′, θ). Note that X = Z

2n−2 as a set. In
X , we use the same notations c, x0, x2, . . . , x2n−1 for variables as in V .

For x = (x2, x1, . . . , x2n−1) ∈ X , by applying the ultra-discretization functor
UD it follows from the results in the previous section that the functions wti =
UD(γi), εi = UD(εi) and UD(eci ) for i = 0,1, . . . , n are given by:

wti (x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−xn − xn+1, i = 0,

−x2 + 2xn+1 − xn+2, i = 1,

2x2 − x3 − xn+1 + 2xn+2 − xn+3, i = 2,

−xi−1 + 2xi − xi+1 − xn+i−1 + 2xn+i − xn+i+1, 3≤ i < n,

−xn−1 + 2xn − x2n−1, i = n.
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εi(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 +max2≤k≤n(βk), i = 0,

−xn+1 + xn+2, i = 1,

max(xn+i+1 − xn+i ,−xi + xi+1

+xn+i−1 − 2xn+i + xn+i+1), 2≤ i ≤ n− 2,

max(−x2n−1,−xn−1 + xn + x2n−2 − 2x2n−1), i = n− 1,

−xn + x2n−1, i = n,

where βk := xk − xn+k−1 for 2≤ k ≤ n.

UD
(
eci
)
(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x2 +C2, . . . , xn−1 +Cn−1, xn − c, xn+1 − c,

xn+2 − c−C2, . . . , x2n−1 − c−Cn−1), i = 0,

(x2, . . . , xn, xn+1 + c, xn+2, . . . , x2n−1), i = 1,

(x2, . . . , xi + ci, . . . , xn+i + c− ci, . . . , x2n−1), 2≤ i < n,

(x2, . . . , xn−1, xn + c, xn+1, . . . , x2n−1), i = n,

where

Ck = max
2≤j≤n

(βj )−max
(

max
2≤j≤k

(c+ βj ), max
k<j≤n

(βj )
)
, 2≤ k < n,

ci = c+max(xi + xn+i , xi+1 + xn+i−1)−max(c+ xi + xn+i , xi+1 + xn+i−1),

2≤ i < n.

Note that the Kashiwara operators are ẽi (x)= UDeci (x)|c=1 and f̃i (x)= UDeci (x)|c=−1 on X . In particular, for x ∈X , we have
{
f̃1(x)= (x2, . . . , xn+1 − 1, . . . , x2n−1),

f̃n(x)= (x2, . . . , xn − 1, . . . , x2n−1),
(5.14)

and for 2≤ i ≤ n− 1,

f̃i (x)=
{
(x2, . . . , xn+i − 1, . . . , x2n−1), if βi > βi+1,

(x2, . . . , xi − 1, . . . , x2n−1), if βi ≤ βi+1.
(5.15)

To determine the explicit action of f̃0 we define conditions:

(φj ) : β2, . . . , βj−1 ≤ βj > βj+1, . . . , βn (5.16)

for each 2≤ j ≤ n where we assume β1 = 0= βn+1. Note that under condition (φj )

we have:

C2 = · · · = Cj−1 = 0, and Cj = · · · = Cn−1 = 1.

Hence for x ∈X and 2≤ j ≤ n we have

f̃0(x)= (x2, . . . , xj−1, xj + 1, xj+1 + 1, . . . , xn+j−1 + 1, xn+j , . . . , x2n−1),
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if condition (φj ) hold.

Theorem 4 The map

Ω : X −→ B2,∞,

(x2, . . . , x2n−1) �→ b= (bji)1≤j≤2,j≤i≤j+n−1,

defined by

b11 = xn+1, b1i = xn+i − xn+i−1, 2≤ i ≤ n− 1, b1n =−x2n−1,

b22 = x2, b2i = xi − xi−1, 3≤ i ≤ n, b2,n+1 =−xn,

is an isomorphism of crystals.

Proof First we observe that the map Ω−1 : B2,∞ −→X is given by Ω−1(b)= x =
(x2, . . . , x2n−1) where

xi =
i∑

k=2

b2k, 2≤ i ≤ n,

xn+i =
i∑

k=1

b1k, 1≤ i ≤ n− 1.

Hence the map Ω is bijective. To prove that Ω is an isomorphism of crystals we
need to show that it commutes with the actions of f̃i and preserves the actions of
the functions wti and εi . In particular we need to show that for x ∈X and 0≤ i ≤ n

we have:

Ω
(
f̃i (x)

)= f̃i

(
Ω(x)

)
,

wti
(
Ω(x)

)=wti (x),

εi
(
Ω(x)

)= εi(x).

Indeed commutativity of Ω and ẽi follows similarly. For x ∈ X , set Ω(x) = b =
(bji) ∈ B2,∞. First let us check wti .

wt0
(
Ω(x)

) = wt0(b)= b2,n+1 − b11 =−xn − xn+1 =wt0(x),

wt1
(
Ω(x)

) = wt1(b)= b11 − b12 − b22 = xn+1 − (xn+2 − xn+1)− x2

= −x2 + 2xn+1 − xn+2 =wt1(x),

wt2
(
Ω(x)

) = wt2(b)= (b12 − b13)− (b22 − b23)

= xn+2 − xn+1 − xn+3 + xn+2 + x2 − x3 + x2

= 2x2 − x3 − xn+1 + 2xn+2 − xn+3 =wt2(x),
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wti
(
Ω(x)

) = wti (b)= (b1i − b1,i+1)+ (b2i − b2,i+1)

= xn+i − xn+i−1 − xn+i+1 + xn+i + xi − xi−1 − xi+1 + xi

= −xi−1 + 2xi − xi+1 − xn+i−1 + 2xn+i − xn+i+1 =wti (x),

3≤ i ≤ n− 1,

wtn
(
Ω(x)

)=wtn(b) = b1n + (b2n − b2,n+1)

= −x2n−1 + xn − xn−1 + xn =−xn1 + 2xn − x2n−1

= wtn(x).

Next, we shall check εi :

ε0
(
Ω(x)

) = ε0(b)=−b2,n+1 −Δ

= −b2,n+1 − min
2≤k≤n

(b12 + · · · + b1,k−1 + b2,k+1 + · · · + b2n)

= xn − min
2≤k≤n

(xn+k−1 − xn+1 + xn − xk)

= xn + max
2≤k≤n

(−xn+k−1 + xn+1 − xn + xk)

= xn+1 +max(xk − xn+k−1)= ε0(x).

ε1
(
Ω(x)

) = wt1(b)= b12 = xn+2 − xn+1 = ε1(x),

εi
(
Ω(x)

) = εi(b)= b1,i+1 + (b2,i+1 − b1i )+
= max(b1,i+1, b1,i+1 + b2,i+1 − b1i )

= −max(xn+i+1 − xn+i ,−xi + xi+1 + xn+i−1 − 2xn+i + xn+i+1)

= εi(x), for 2≤ i ≤ n− 2,

εn−1
(
Ω(x)

) = εn−1(b)=max(b1n, b1n + b2n − b1,n−1)

= max(−x2n−1,−xn−1 + xn + x2n− 2− 2x2n−1)= εn−1(x),

εn
(
Ω(x)

) = εn(b)= b2,n+1 − b1n =−xn + x2n−1 = εn(x).

Now we shall check that Ω(f̃i(x))= f̃i (Ω(x)) for i = 0,1, . . . , n.

f̃1
(
Ω(x)

)= f̃1(b)= b′ = (b′ji
)
,

where

b′11 = b11 − 1= xn+1 − 1, b′12 = b12 + 1= xn+2 − xn+1 + 1,

b′ji = bji, otherwise.

Hence Ω(f̃1(x))=Ω(x2, . . . , xn+1 − 1, . . . , x2n−1)= f̃1(Ω(x)).

f̃n

(
Ω(x)

)= f̃n(b)= b′ = (b′ji
)
,
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where

b′2n = b2n − 1= xn − xn−1 − 1, b′2,n+1 = b2,n+1 + 1=−xn + 1,

b′ji = bji, otherwise.

Hence Ω(f̃n(x))=Ω(x2, . . . , xn − 1, . . . , x2n−1)= f̃n(Ω(x)). Now we check that
Ω(f̃i(x))= f̃i (Ω(x)) for 2 ≤ i ≤ n− 1. Let f̃i (Ω(x))= f̃i (b)= b′ = (b′ji). Note
that b1i = xn+i − xn+i−1 and b1,i+1 = xi+1 − xi . Hence b1i > b2,i+1 (resp. b1i ≤
b2,i+1) if and only if βi > βi+1 (resp. βi ≤ βi+1).

If xn+i − xn+i−1 > xi+1 − xi , then f̃i (Ω(x))= f̃i (b)= b′ = (b′ji), where

b′1i = b1i − 1= xn+i − xn+i−1 − 1, b′1,i+1 = b1,i+1 + 1= xn+i+1 − xn+i + 1,

b′ji = bji, otherwise.

Hence Ω(f̃i(x))=Ω(x2, . . . , xn+i − 1, . . . , x2n−1)= f̃i (Ω(x)) in this case.
If xn+i − xn+i−1 ≤ xi+1 − xi , then f̃i (Ω(x))= f̃i (b)= b′ = (b′ji), where

b′2i = b2i − 1= xi − xi−1 − 1, b′2,i+1 = b2,i+1 + 1= xi+1 − xi + 1,

b′ji = bji, otherwise.

Hence Ω(f̃i(x))=Ω(x2, . . . , xi − 1, . . . , x2n−1)= f̃i (Ω(x)) in this case.
Finally we want to verify that Ω(f̃0(x)) = f̃0(Ω(x)). For 2 ≤ m ≤ n, we have

f̃0(Ω(x))= f̃0(b)= b′ = (b′ji) where

b′11 = b11 + 1= xn+1 + 1,

b′1m = b1m − 1=
{
xn+m − xn+m−1 − 1, if m 	= n,

−x2n−1 − 1, if m= n,

b′2m = b2m + 1=
{
x2 + 1, if m= 2,

xm − xm−1 + 1 if m 	= 2,

b′2,n+1 = b2,n+1 − 1=−xn − 1, b′ji = bji, otherwise,

if the condition (Fm) in (3.7) holds. Since zi = b1i − b2,i+1 = (xn+i − xn+i−1)−
(xi+1−xi)= βi−βi+1 for 2≤ i ≤ n−1, we observe that for 2≤m≤ n, the condi-
tion (Fm) in (3.7) holds if and only if the condition (φm) in (5.16) holds. Therefore,
for 2≤m≤ n, we have

Ω
(
f̃0(x)

) =Ω(x2, . . . , xm−1, xm + 1, . . . , xn+m−1 + 1, xn+m, . . . , x2n−1)

= f̃0
(
Ω(x)

)
,

which completes the proof. �
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A Z3-Orbifold Theory of Lattice Vertex
Operator Algebra and Z3-Orbifold
Constructions

Masahiko Miyamoto

Abstract For an even positive definite lattice L and its automorphism σ of order 3,
we prove that a fixed point subVOA V σ

L of a lattice VOA VL is C2-cofinite. Using
this result and the results in arXiv:0909.3665, we present Z3-orbifold constructions
of holomorphic VOAs from lattice VOAs VΛ, where Λ are even unimodular positive
definite lattices. One of them has the same character with the moonshine VOA V +

and another is a new VOA corresponding to No. 32 in Schellekens’ list (Theor. Mat.
Fiz. 95(2), 348–360, 1993).

1 Introduction

This is a half part of the preprint [13] and we will publish the other half separately.
A concept of a vertex operator algebra (shortly VOA) V = (V ,Y,1,ω) was in-

troduced by Borcherds [1] with a purpose to explain the moonshine phenomenon
[3] and then as a stage for studying the phenomenon, Frenkel, Lepowsky and Meur-
man [7] constructed the moonshine VOA V + by a Z2-orbifold construction from the
Leech lattice VOA VΛ and an automorphism −1 on Λ.

When we consider such an orbifold construction from a lattice VOA VL with
a finite automorphism σ , the rationality of the fixed point subVOA (VL)

σ (i.e. all
N-gradable (VL)

σ -modules are completely reducible) and C2-cofiniteness of (VL)
σ

(i.e. SpanC{v−2u | v,u ∈ (VL)
σ } has a finite codimension in (VL)

σ ) are very useful
conditions because there are several significant known theorems under these con-
ditions. For an automorphism −1 of L, these properties are already known by [19]
and [20]. Our target is an automorphism of order three.

Theorem A Let L be a positive definite even lattice and VL a lattice VOA asso-
ciated with L. Let σ ∈ Aut(L) of order three. We use the same notation for an
automorphism of VL lifted from σ . Then a fixed point subVOA V σ

L is C2-cofinite.

M. Miyamoto (B)
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We note that some special case is already studied in [17]. Generally, proving of
C2-cofiniteness looks easier than that of rationality. Moreover, we quote the follow-
ing result.

Theorem ([12]) Let V be a rational VOA of CFT-type satisfying V ′ ∼= V and σ a
finite automorphism of V . If V σ is C2-cofinite, then V σ is rational and every simple
V σ -module is a submodule of twisted σ j -module of V for some j .

Keeping the above theorem in mind, we will show the following theorem.

Theorem B Let Λ be a positive definite even unimodular lattice with an automor-
phism σ of order three. We assume that the conclusions in the above theorem hold
for V = VΛ and σ . If rank(Λ) − rank(Λσ ) is divisible by 3, then we are able to
construct a holomorphic VOA Ṽ by a Z3-orbifold construction from a lattice VOA
VΛ and σ .

At the end of paper, we will study two examples. One of them has the same
character with the moonshine VOA V + and another is a new VOA corresponding to
No. 32 in Schellekens’ list [16].

2 Proof of Theorem A

Before we start the proofs, we present several properties of C2-cofiniteness. There
are several different definitions of modules for vertex operator algebras. We will
consider the widest one. Namely, a V -module is just a vector space W on which all
vn (v ∈ V,n ∈ Z) act such that vertex operators

Y(v, z)=
∑

n∈Z
vnz

−1−n ∈ End(W)
[[
z, z−1]]

satisfies a truncation property on each w ∈ W , L(−1)-derivative property, and
Borcherds’ identity. One of main properties of C2-cofiniteness is that all V -modules
are Z+-gradable as we will see. Namely, there are no weak modules.

Proposition 1 Let V be a VOA. We have the following:

(i) If V is C2-cofinite then the number of inequivalent simple modules is finite, [8].
(ii) Set V = B + C2(V ) for B spanned by homogeneous elements. Then any V -

module W generated from one element w has a spanning set {v1
n1

. . . vk
nk
w |

vi ∈ B,n1 < · · ·< nk}. In particular, if V is C2-cofinite, then finitely generated
V -modules are C2-cofinite, [2, 11].

(iii) All modules are Z+-gradable if and only if V is C2-cofinite, [11] and [2].
(iv) If U,W,T are C2-cofinite V -modules, then a fusion product U �W is a well-

defined V -module and C2-cofinite and (U �W)� T ∼=U � (W � T ), [9, 12,
14].
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Let L be an even positive lattice and σ an automorphism of order 3. Abusing the
notation, we use the same notation to denote an automorphism of a lattice VOA VL

lifted from σ . We note that all lattice VOA are C2-cofinite [5].
One of the advantages of proving C2-cofiniteness is that if a full subVOA is C2-

cofinite, then the larger VOA is also C2-cofinite, see Proposition 1. Here a subVOA
U of V is called full subVOA if it contains a Virasoro element of V . Hence it is
sufficient to prove C2-cofiniteness of (VH )σ for any σ -invariant full sublattice H

of L, where a sublattice H of L is called full if Q⊗Z H = Q⊗Z L. This is very
useful. For example, we are able to consider H doubly even, that is, 〈h,h〉 ∈ 4Z
for h ∈H . Furthermore, for VOAs V 1 and V 2, V 1 ⊗ V 2 is C2-cofinite if and only
if the both V i are C2-cofinite by the Proposition 1(iii). Therefore, it is enough to
prove Theorem A for L= Zx + Zy with y = σ(x),−x − y = σ 2(x) and 〈x, x〉 =
−2〈x, y〉 = 18M > 72 and M is even.

2.1 A Lattice VOA

Recalling the definition of lattice VOA VL from [7], we will explain the notation of
this paper. Viewing CL= Cx +Cy as a commutative Lie algebra with a symmet-
ric bilinear form 〈·, ·〉, H := CL[t, t−1] ⊕ C becomes an affine Lie algebra with a
product

[
v⊗ tn, u⊗ tm

]= δn+m,0n〈v,u〉,
for v,u ∈CL. Hereafter we use v(n) to denote v⊗ tn. We then consider its universal
enveloping algebra U(H) and its subalgebras H+ = CL[t] and H− = CL[t−1].
Using an U(H+)-module Ceγ with the actions

μ(0)eγ = 〈μ,γ 〉eγ , and μ(n)eγ = 0 for n > 0

for μ ∈CL, we define an U(H)-module:

M2(1)e
γ :=U(H)⊗U(H+) Ceγ .

We note M2(1)eγ ∼= S(H−) as vector spaces, where S(H−) denotes a symmetric
tensor algebra of H−. We also note that M2(1)eγ is spanned by

{
x(−i1) · · ·x(−ik)y(−j1) · · ·y(−jh)e

γ | i1 ≥ · · · ≥ ik > 0, j1 ≥ · · · ≥ jh > 0
}

and their weights are defined by
∑k

s=1 is +
∑h

t=1 jt + 〈γ,γ 〉
2 .

We set the vector spaces for a lattice VOA VL and a subVOA M2(1) by

VL :=
⊕

γ∈L
M2(1)e

γ and M2(1) :=M2(1)e
0.



322 M. Miyamoto

We also define vertex operators Y(eγ , z) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Y
(
e0, z

) := IdVL
(i.e. e0 is the Vacuum 1),

Y
(
eγ , z

) :=
∞∑

p=0

1

p!
(∑

n∈Z+

γ (−n)

−n
z−n

)p ∞∑

m=0

1

m!
(∑

n∈Z+

γ (n)

n
zn
)m

eγ zγ ,

where eγ eμ = eγ+μ for eμ, eγ+μ ∈ VL and zγ eμ = z〈γ,μ〉eμ for eμ ∈ VL. We note
that we usually need cocycle c(γ,μ) to define a product eγ eμ = c(γ,μ)eγ+μ. How-
ever, since we have chosen L enough small so that 〈γ,μ〉 ∈ 4Z for any γ,μ ∈ L, we
may assume eγ eμ = eγ+μ for any γ,μ ∈ L by choosing suitable basis {eγ | γ ∈ L}.

For general elements u, we define Y(u, z)=∑n∈Z unz
−n−1 inductively by using

normal products

(
v(−m)α

)
n
=

∞∑

i=0

(−1)i
(−m

i

){
v(−m− i)αn+i − (−1)mα−m+n−iv(i)

}
(2.1)

for v ∈ CL and α ∈Mn(1)eγ and u = v(−m)α, where
(
n
i

) = n(n−1)···(n−i+1)
i! . We

will frequently use this normal product expansion (2.1).

2.2 In the Free Bosonic Fock Space M2(1)

We will treat two VOAs M2(1) and M2(1)σ at the same time. In order to avoid the
confusion, C2(W) denotes only SpanC{v−2w |w ∈W,v ∈M2(1)σ } by viewing W

as an M2(1)σ -module and ≡2 denotes a congruence relation modulo C2(M2(1)σ ).
We will also use

C1(W) := SpanC
{
v−1w |w ∈W,v ∈ (M2(1)

)σ
,wt(v) > 0

}
.

Set ξ = e2π
√−1/3. Viewing CL as a C[σ ]-module, there are a, a′ ∈CL such that

σ(a)= ξa, σ(a′)= ξ−1a′ and 〈a, a′〉 = 1. Hence M2(1) is spanned by

{
a(−i1) · · ·a(−ih)a

′(−j1) · · ·a′(−jk)1 | i1 ≥ · · · ≥ ih > 0, j1 ≥ · · · ≥ jk > 0
}
.

Clearly, u= a(−i1) · · ·a(−ih)a
′(−j1) · · ·a′(−jk)1 is σ -invariant if and only if h−

k ≡ 0 (mod 3). We note that ω = a(−1)a′ = a′(−1)a is the Virasoro element of
M2(1). Since we will use an induction often, we introduce left ideals

Pk = SpanC
{
α1(i1) · · ·αh(ih) | ih ≥ k,αj ∈ L

}⊆ End(VL)

of U(H) for k = 0,1. We note P0e
0 = 0 and P1e

γ = 0.
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Lemma 1 For k = 0,1 and m,n, l > 0 and v ∈M2(1), there are λs,t , λs,t,u ∈ Q

such that

a(−l)a′(−m)v −
∑

s,t>0

λs,t

(
a(−s)a′(−t)1

)
k−1v ∈Pkv,

a(−l)a(−m)a(−n)v −
∑

λs,t,u

(
a(−s)a(−t)a(−u)1

)
k−1v ∈ Pkv.

Proof These comes from the normal product (2.1). We prove only the second case
for k = 0. Since

(
a(−i)γ

)
−1v =

∞∑

j=0

(−i

j

)
(−1)j

{
a(−i − j)γ−1+i − (−1)iγ−i−1−j a(j)

}
v,

there are λi, λij ∈Q and λ0 = 1 such that

(
a(−s)a(−t)a(−u)1

)
−1v ∈

∞∑

i=0

λia(−s − i)
{
a(−t)a(−u)1

}
−1+i

v+P0v

=
∞∑

i=0

λi,j a(−s − i)

∞∑

j=0

a(−t − j)
{
a(−u)1

}
−1+i+j

v +P0v

=
∞∑

i=0

λi,j a(−s − i)

∞∑

j=0

a(−t − j)a(−u+ i + j)v+P0v

= a(−s)a(−t)a(−u)v +
∞∑

p=1

p∑

i=0

λi,p−ia(−s − i)a(−t − p+ i)a(−u+ p)v

+P0v.

Hence a(−l)a(−m)a(−n)v− (a(−l)a(−m)a(−n)1)−1v is equivalent to a Q-linear
combination of {a(−s− i)a(−t−p+ i)a(−u+p)v | p > 0}modulo P0v. Iterating
these steps, we can reduce them to zero modulo P0v. �

2.3 Modulo C2(M2(1)σ )

For a while, we consider the following element:

u= a(−i1) · · ·a(−ih)a
′(−j1) · · ·a′(−jk)1 with is , jt > 0. (2.2)

We will call u a “bloated element” if wt(u) > h+ k. Set

S2 =
{
a(−1)ia′(−1)j1, a(−i)a(−j)a, a′(−i)a′(−j)a′
a(−i)a′(−1)2a, a(−i)a′,1

∣∣∣∣ i, j ∈N

}
.
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Proposition 2 Let u= a(−i1) · · ·a(−ih)a
′(−j1) · · ·a′(−jk)1 be a bloated element.

If |h− k| ≥ 4, then u ∈ C2(M2(1)σ ).
If h− k = 3, then u ∈ SpanC{a(−i1)a(−i2)a | i1, i2 ∈N} +C2(M2(1)σ ).
If h= k, then

u ∈ SpanC
{
a
(−wt(u)+ 3

)
a′(−1)2a, a

(−wt(u)+ 1
)
a′
}+C2

(
M2(1)

σ
)
.

In particular, we have M2(1)σ = C2(M2(1)σ )+ SpanC{S2}.

Proof We will prove the last statement. The others come from the same arguments.
We note ω0β = β−21 ∈ C2(M2(1)σ ) for β ∈M2(1)σ and Virasoro element ω. Fur-
thermore a(−h)a(−k)a(−m)1 is congruent to a linear sum of elements of type
a(−i)a(−j)a since

ω0
(
a(−r1) · · ·a(−rk)1

)=
k∑

i=1

ria(−r1) · · ·a(−ri − 1) · · ·a(−rk)1.

Suppose h− k ≥ 4 and u /∈ C2(M2(1)σ )+ SpanC{S2}. We take u such that the total
number h+k is minimal. At least one of is , jt in (2.2) is not 1. Since h≥ 4, by using
a suitable triple term of a, we may assume i1 = 1 by Lemma 1. Then by choosing
another suitable triple a-term, we may also assume i2 = 1 and then i3 = 2. Then

2u− (a(−1)a(−1)a
)
−2a(−i4) · · ·a(−ih)a

′(−i1) · · ·a′(−ik)1

is congruent to a linear sum of elements whose the total number of terms are less
than h+ k, which contradicts the choice of u. We next treat the case h− k = 3. By
applying the same arguments to a(−n)a′(−m), we can reduce to the case h= 3 and
k = 0 in (2.2) as we desired. If h = k and h ≥ 3, then using the same argument as
above, we can reduce to u= a(−n)a′(−m)a(−1)a′(−1) and n≥ 2. If m≥ 2, then
u is congruent to a linear sum of a(−n−m+ 1)a′(−1)2a and a(−n−m− 1)a′ by
Lemma 1. Therefore we obtain M2(1)σ = C2(M2(1)σ )+ SpanC{S2}. �

2.4 A Subring

We first note that M2(1)σ /C2(M2(1)σ ) is a commutative associative algebra by
−1-normal product. Let O be the subspace of M2(1)σ /C2(M2(1)σ ) spanned by
elements with the same number of a-terms and b-terms and Oeven the subspace
of O spanned by elements with even weights. By abusing the notation, we may
view O as a subset of M2(1)σ modulo C2(M2(1)σ ). Clearly, O and Oeven are sub-
rings of M2(1)σ /C2(M2(1)σ ). We will study an algebraic structure of Oeven modulo
C2(M2(1)σ ).

Set γ (n) = a(−n + 1)a′ and we sometimes omit subscript −1 denoting
−1-normal product, for example, γ (n)γ (m) denotes γ (n)−1γ (m). From 0 ≡
ω0(a(−n)a′(−m)1) = na(−n − 1)a′(−m)1 + ma(−n)a′(−m − 1)1
mod ω0(M2(1)σ )⊆ C2(M2(1)σ ), we have:
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Lemma 2

a(−n)a′(−m− 1)1≡
(−n

m

)
γ (n+m+ 1)

(
mod ω0M2(1)

)
.

Proposition 3

a(−r)a(−m)a′(−n)a′ ≡2

( −m

n− 1

)
γ (r + 1)γ (m+ n)

− (−1)n−1(r +m+ n− 1)!(m+ n+ r + 1)

(r − 1)!(m− 1)!(n− 1)!(m+ 1)(r + n)
γ (t),

where t = r +m+ n+ 1. In particular, by replacing r with m, we have

γ (n+ 3)≡2
6

(n− 1)(n− 2)(n+ 3)

{
γ (3)γ (n)− (n− 1)γ (2)γ (n+ 1)

}

for n≥ 3 and γ (n) ∈ C1(M2(1)σ ) for n≥ 6.

Proof The assertion comes from the direct calculation:

( −m

n− 1

)
γ (r + 1)γ (m+ n)

≡2
(
a(−r)a′

)
−1a(−m)a′(−n)1

≡2

∑

i

(−r

i

)
(−1)i

{
a(−r − i)a′(−1+ i)− (−1)−ra′(−r − 1− i)a(i)

}

× a(−m)a′(−n)1

≡2 a(−r)a′(−1)a(−m)a′(−n)1+
(
r +m

m+ 1

)
ma(−r −m− 1)a′(−n)1

− (−1)r
(
r + n− 1

n

)
a′(−r − 1− n)na(−m)1

≡2 a(−r)a(−m)a′(−n)a′

+
{(

r +m

m+ 1

)
m

(−r −m− 1

n− 1

)

− (−1)n
(
r + n− 1

n

)
n

(
m+ r + n− 1

r + n

)}
γ (t)

≡2 a(−r)a(−m)a′(−n)a′ + (−1)n−1(r +m+ n− 1)!(m+ r + n+ 1)

(r − 1)!(m− 1)!(n− 1)!(m+ 1)(r + n)
γ (t).

�



326 M. Miyamoto

For example, we will use the following:

2γ (6)≡2 γ (3)γ (3)− 2γ (2)γ (4), 7γ (7)≡2 γ (3)γ (4)− 3γ (2)γ (5),

16γ (8)≡2 γ (3)γ (5)− 4γ (2)γ (6), 30γ (8)≡2 γ (4)γ (4)− 6γ (2)γ (6).
(2.3)

Lemma 3 O = SpanC{γ (2)n, γ (n+1), γ (2)γ (m)1 | n,m= 2, . . .}+C2(M2(1)σ ).

Proof By Proposition 2, O is spanned by {a(−1)na′(−1)n1, a(−n)a′(−1)2a, γ (m)}
modulo C2(M2(1)σ ). By Proposition 3, we get a(−n)a′(−1)2a − γ (2)γ (n+ 1) ∈
Qγ (n+ 3). We also have that a(−1)na′(−1)n1− γ (2)n is congruence to a linear
sum of a(−2n + 3)a′(−1)2a and γ (2n) modulo C2(M2(1)σ ), which proves the
desired result. �

Set S1 = {a(−i1)a(−i2)a, a
′(−i1)a

′(−i2)a
′, a(−i3)a

′,1 | i1, i2 ≤ 5, i3 ≤ 4}.

Proposition 4 M2(1)σ = C1(M2(1)σ ) + SpanC S1. In particular, M2(1)σ is C1-
cofinite.

Proof To simplify the notation, set C1 = C1(M2(1))σ in this proof. Suppose that
the proposition is false and let

u= a(−i1) · · ·a(−ih)a
′(−j1) · · ·a′(−jk)1 	∈ C1 + SpanC S1.

We take u such that the number of terms is minimal. By Lemma 1 and 2, we may
assume u = a(−i1)a(−i2)a or u = a(−m)a′. By Lemma 2 and Proposition 3, we
obtain a(−m)a′ ∈ C1 for m ≥ 5. Furthermore, since C1 is closed by the 0-normal
product, we have:

(1) C1 �
(
a(−k+ 1)a′

)
0

(
a(−1)a(−1)a

)= 3(k − 1)a(−k)a(−1)21 and so

(2) C1 �
(
a(−n)a′

)
0a(−1)2a(−k)1

= 2a(−n− 1)a(−k)a + ka(−n− k)a(−1)a

for k ≥ 6 and any n, which contradicts the choice of u. �

We next express O as a C[γ (2)]-module. We need the following lemma.

Lemma 4

120γ (7)1 ≡2 8γ (2)γ (5)1+ γ (2)2γ (3)1 and

60γ (8)1 ≡2 6γ (2)γ (3)21− 13γ (2)2γ (4)1.

Proof Since 0 ≡2 (a(−1)a(−1)a)−2a
′(−1)a′(−1)a′ ≡2 3a(−1)2a(−2)a′(−1)2a′

+18a(−4)a(−1)a′(−1)a′ +18a(−3)a(−2)a′(−1)a′ +18γ (7), we have a(−1)2×
a(−2)a′(−1)2a′ ≡2 −6a(−4)a(−1)a′(−1)a′ − 6a(−3)a(−2)a′(−1)a′ − 6γ (7).
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Using Proposition 3 and the above lemma, we obtain the first congruence expres-
sion:

γ (2)2γ (3) ≡2
(
a(−1)a′

)
−1

{
a(−1)a′(−1)a(−2)a′

}

+ γ (2)
{
2a(−4)a′ + a′(−3)a(−2)1

}

≡2 a(−1)a′(−1)a(−1)a′(−1)a(−2)a′ + a(−3)a′(−1)a(−2)a′

+ 2a(−4)a(−1)a′(−1)a′ + 2a′(−3)a(−1)a(−2)a′ + 5γ (2)γ (5)

≡2 −6a(−4)a(−1)a′(−1)a′ − 6a(−3)a(−2)a′(−1)a′ − 6γ (7)

+ a(−3)a′(−1)a(−2)a′ + 2a(−4)a′(−1)2a

+ 2a′(−3)a(−1)a(−2)a′ + 5γ (2)γ (5)

≡2 −4a(−4)a(−1)a′(−1)a′ − 5a(−3)a(−2)a′(−1)a′ − 6γ (7)

+ 2a′(−3)a(−1)a(−2)a′ + 5γ (2)γ (5)

≡2 −4

{(−4

0

)
γ (2)γ (5)−

[
4+

(−4

2

)]
γ (7)

}

− 5
{
3γ (2)γ (5)− 28γ (7)

}− 6γ (7)

+ 2

{(−2

2

)
γ (2)γ (5)−

[
2

(−4

2

)
+ 3

(−2

4

)]
γ (7)

}
+ 5γ (2)γ (5)

≡2 120γ (7)− 8γ (2)γ (5),

which proves the first equation.
By expanding 0≡2 (a(−1)a(−1)a)−2a

′(−2)a′(−1)a′, we have,

−(a(−2)a(−1)a(−1)
)
a′(−2)a′(−1)a′

≡2 4a(−4)a(−1)a′(−2)a′ + 4a(−3)a(−2)a′(−2)a′ + 4a(−5)a(−1)a′(−1)a′

+ 4a(−4)a(−2)a′(−1)a′ + 2a(−3)a(−3)a′(−1)a′ + 8γ (8)

and then we obtain:

2γ (2)γ (2)γ (4)

≡2 −
(
a(−1)a′

)
−1

{
a(−1)a(−2)a′(−2)a′ − 16γ (6)

}

≡2 −a(−1)2a′(−1)2a(−2)a′(−2)− a(−3)a(−2)a′(−2)a′

− 2a(−4)a(−1)a′(−1)a′(−2)− a′(−3)a(−1)a(−2)a′(−2)

− 2a′(−4)a(−1)a′(−1)a(−2)+ 16γ (2)γ (6)

≡2 4a(−4)a(−1)a′(−2)a′ + 4a(−3)a(−2)a′(−2)a′ + 4a(−5)a(−1)a′(−1)a′

+ 4a(−4)a(−2)a′(−1)a′ + 2a(−3)a(−3)a′(−1)a′ + 8γ (8)
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− a(−3)a′(−1)a(−2)a′(−2)− 2a(−4)a(−1)a′(−1)a′(−2)

− a′(−3)a(−1)a(−2)a′(−2)− 2a′(−4)a(−1)a′(−1)a(−2)+ 16γ (2)γ (6)

≡2 2a(−3)a(−2)a′(−2)a′ + 4a(−5)a(−1)a′(−1)a′ + 4a(−4)a(−2)a′(−1)a′

+ 2a(−3)a(−3)a′(−1)a′ + 16γ (2)γ (6)+ 8γ (8)

≡2 2
(
180γ (8)− 3γ (3)γ (5)

)+ 4
(
γ (2)γ (6)− 20γ (8)

)

+ 4
(
γ (3)γ (5)− 64γ (8)

)+ 2
(−90γ (8)+ γ (4)γ (4)

)+ 16γ (2)γ (6)+ 8γ (8)

≡2 −120γ (8)+ 12γ (2)γ (3)2 − 24γ (2)2γ (4),

which proves the second equation. �

By the above lemma, the direct calculation shows:

2γ (4)γ (4) ≡2 12γ (2)γ (6)+ 60γ (8)≡2 12γ (2)γ (3)2 − 25γ (2)2γ (4),

15γ (3)γ (5) ≡2 60γ (2)γ (6)+ 240γ (8)≡2 54γ (2)γ (3)2 − 112γ (2)2γ (4),

120γ (3)γ (4) ≡2 120
(
7γ (7)+ 3γ (2)γ (5)

)≡2 7γ (2)2γ (3)+ 416γ (2)γ (5).

Therefore, Oeven has a subring

Oeven
Q

=Q
[
γ (2)

]
γ (2)+Q

[
γ (2)

]
γ (3)γ (3)+Q

[
γ (2)

]
γ (4).

2.5 Elements a(−1)a(−1)a

We denote a(−1)a(−1)a and a′(−1)a′(−1)a′ by α and β , respectively.

Lemma 5 γ (2)−1γ (2)−1γ (2)≡2 α−1β − 264γ (2)−1γ (4)1+ 117γ (3)−1γ (3).

Proof From the direct calculation, we have:

α−1β ≡2
(
a(−1)a(−1)a

)
−1a

′(−1)a′(−1)a′

≡2 a(−1)3a′(−1)31+ 18a(−3)a(−1)a′(−1)a′ + 9a(−2)a(−2)a′(−1)a′

+ 18a(−5)a′.

Therefore, by Proposition 3, we obtain:

γ (2)3 ≡2
(
a(−1)a′

)
−1

{
a(−1)a′(−1)a(−1)a′ + 2γ (4)

}

≡2 a(−1)3a′(−1)31+ 2a(−3)a(−1)a′(−1)a′ + 2a′(−3)a(−1)a′(−1)a

+ 2γ (2)γ (4)



Z3-Orbifold Theory 329

≡2 α−1β − 14
{
γ (2)γ (4)− 9γ (6)

}− 9
{
γ (3)2 − 16γ (6)

}− 18γ (6)

+ 2γ (2)γ (4)

≡2 α−1β − 264γ (2)γ (4)+ 117γ (3)2. �

2.6 The Action of γ (4)

By (2.3), we have shown that Oeven
Q

is closed by the −1-normal product and

Aeven
Q

=Q
[
γ (2)

]
γ (4)+Q

[
γ (2)

]
γ (3)γ (3)

is an ideal modulo C2(M2(1)σ ). Let Q be an ideal generated by α−1β . We note

α−1β ≡2 γ (2)3 + 264γ (2)γ (4)− 117γ (3)2.

We will see the action of γ (4) on Aeven
Q

.

Lemma 6 Q=Oeven
Q

.

Proof We already know 2γ (4)2 ≡2 12γ (2)γ (3)2 − 25γ (2)2γ (4).
Since γ (3)γ (5)≡2 54γ (2)γ (3)2 − 112γ (2)2γ (4), we have:

1800γ (4)γ (3)2 ≡2 15γ (3)
{
7γ (2)2γ (3)+ 416γ (2)γ (5)

}

≡2 105γ (2)2γ (3)2 + 416γ (2)
{
54γ (2)γ (3)2 − 112γ (2)2γ (4)

}

≡2 22569γ (2)2γ (3)2 − 46592γ (2)3γ (4).

Therefore the action of 1800γ (4) on Aeven
Q

is expressed by

γ (2)2
(

22569 −46592
10800 −22500

)
.

The eigenpolynomial of 1800γ (4) is X2 − 69X − 4608900 and its discriminant is
3
√

2048929, which is not a rational number. Therefore, the action of γ (4)/γ (2)2 on
Qγ (2)γ (4)+Qγ (3)2 is irreducible over Q. Furthermore, since

(α−1β)−1γ (4) ≡2
(
γ (2)3 − 264γ (2)γ (4)− 117γ (3)2)γ (4)

≡2 γ (2)3γ (4)− 264γ (2)

{
6γ (2)γ (3)2 − 25

2
γ (2)2γ (4)

}

− 117

120
γ (3)

{
7γ (2)2γ (3)+ 416γ (2)γ (5)

}

≡2 3301γ (2)3γ (4)−
{

1584+ 273

40

}
γ (2)γ (3)2
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− 39× 52

5
γ (2)2

{
54

15
γ (3)2 − 112

15
γ (2)γ (4)

}

≡2

(
3301+ 13× 52× 112

25

)
γ (2)2γ (4)

−
{

1584+ 273

40
+ 39× 52× 18

25

}
γ (2)2γ (3)2,

we have Qeven
Q

∩Aeven
Q

	= 0 and so

(
SpanQ

{
α−1β,γ (4)α−1β,γ (4)2α−1β

})
n
= (Oeven

Q

)
n

for n≥ 14,

where (∗)n denotes the homogeneous subspace of weight n. �

2.7 Nilpotency of α Modulo C2(V
σ
L )

From now on, C2(W) denotes SpanC{v−2w | w ∈ W,v ∈ V σ
L } and we use ≡ to

denote the congruence modulo C2(V
σ
L ). A standard expression for an element μ in

V σ
L is

μ=
2∑

t=0

σ t
(
a(−i1) · · ·a(−ih)a

′(−j1) · · ·a′(−jk)e
γ
)

with is , jt > 0.

However, we will use a(0) and a′(0) so that we express it by

μ′ = 1

〈a, γ 〉s〈b, γ 〉t a(−i1) · · ·a(−ih)a
′(−j1) · · ·a′(−jk)a(0)

sa′(0)t
(

2∑

i=0

eσ
i(γ )

)
,

where h + s − k − t ≡ 0 (mod 3) and a(0)s = a(0) · · ·a(0)︸ ︷︷ ︸
s

and a′(0)t =

a′(0) · · ·a′(0)︸ ︷︷ ︸
t

. From now on, Eγ denotes
∑2

i=0 e
σ i(γ ) and we will call h and k

the numbers of a-terms and a′-terms, respectively. We next show that

Lemma 7 (a(−i1)a(−i2)a)−1 and (a′(−j1)a
′(−j2)a

′)−1 are all nilpotent in
M2(1)σ /(C2(V

σ
L )∩M2(1)) for any i1, i2, j1, j2.

Proof Except α and β , the square of the remainings are zero by Proposition 2.
We will prove that α−1 is nilpotent. Since wt(ex) = 9M , wt(ex−y) = 27M and
wt(e2x+y) = 27M for y = σ(x), we have e

y

−1−ke
−x = e

−x−y

−1−k e
x = 0 for k < 9M
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and so

Ex
−1−kE

−x =
2∑

i=0

σ i
(
Ex
−1−ke

−x
)=

2∑

i=0

σ i
(
ex−1−ke

−x
) ∈M2(1)

σ ∩C2
(
V σ
L

)

for 1 < k < 9M , where Ex denotes ex + ey + e−x−y . Multiplying (α−1)
6M+9 to

Ex
−4e

−x , the number of a-terms in (α−1)
6M+9Ex

−4e
−x is 6 more than that of a′-

terms and so all bloated elements vanished modulo C2(V
σ
L ). Hence

(α−1)
6M+9Ex

−4e
−x ≡ 1

(18M + 3)! (α−1)
6M+9(x(−1)

)18M+31 ∈ C2
(
V σ
L

)
.

Set x = ra + sa′. Since we multiply many a(−1), (α−1)
6M+9+k annihilates all

elements except for a(−1) and a′(−1) by Proposition 2 and so we have:

(α−1)
6M+9(x(−1)

)18M+31

≡ a(−1)18M+27(ra(−1)+ sa′(−1)
)18M+31

≡
18M+3∑

i=0

(
18M + 3

i

)
r18M+3−i sia(−1)36M+30−iγ (2)i

≡
6M+1∑

i=0

(
18M + 3

3i

)
r18M+3−3i s3i (α−1)

12M+10−iγ (2)3i

+
6M∑

i=0

(
18M + 3

3i + 1

)
r18M+2−3i s3i+1(α−1)

12M+9−ia(−1)a(−1)γ (2)3i+1

+
6M∑

i=0

(
18M + 3

3i + 2

)
r18M+1−3i s3i+2(α−1)

12M+9−ia(−1)γ (2)3i+2.

Similarly, since we obtain

α6M+9
−1 Ex

−4a(−1)e−x

= α6M+9
−1

(
x(−1)

)18M+3
a(−1)1+ α6M+9

−1 〈a, x〉(x(−1)
)18M+41

= α6M+9
−1

(
x(−1)

)18M+3
a(−1)1+ α6M+9

−1 〈a, x〉Ex
−5e

−x

≡ α6M+9
−1

(
x(−1)

)18M+3
a(−1)1

≡
6M+1∑

i=0

(
18M + 3

3i

)
r18M+3−3i s3iα12M+10−i

−1 a(−1)γ (2)3i



332 M. Miyamoto

+
6M∑

i=0

(
18M + 3

3i + 1

)
r18M+2−3i s3i+1α12M+9−i+1

−1 γ (2)3i+1

+
6M∑

i=0

(
18M + 3

3i + 2

)
r18M+1−3i s3i+2α12M+9−i

−1 a(−1)2γ (2)3i+2

and

α6M+9
−1 Ex

−4a(−1)2e−x

= α6M+9
−1

(
x(−1)

)18M+3
a(−1)21+ 2〈a, x〉α6M+9

−1

(
x(−1)

)18M+4
a

+ 2〈a, x〉2α6M+9
−1

(
x(−1)

)18M+51,

≡ α6M+9
−1

(
x(−1)

)18M+3
a(−1)21

≡
6M+1∑

i=0

(
18M + 3

3i

)
r18M+3−3i s3iα12M+10−i

−1 a(−1)2γ (2)3i

+
6M∑

i=0

(
18M + 3

3i + 1

)
r18M+2−3i s3i+1α12M+9−i+1

−1 a(−1)γ (2)3i+1

+
6M∑

i=0

(
18M + 3

3i + 2

)
r18M+1−3i s3i+2α12M+9−i+1

−1 γ (2)3i+2,

we have

a(−1)α6M+9
−1

(
x(−1)

)18M+31 ∈ C2(VL),

a′(−1)α6M+9
−1

(
x(−1)

)18M+31 ∈ C2
(
V σ
L

)
VL and

a(−1)a(−1)α6M+9
−1

(
x(−1)

)18M+31 ∈ C2(VL).

Hereafter VL is a (VL)
σ -module. Hence

α6M+9+k
−1 a(−1)ea′(−1)k

(
x(−1)

)18M+31

is a linear sum of elements of the form

α6M+9+k
−1 v−1

(
u · (x(−1)

)18M+31
)
,

where v is a σ -invariant element and u ∈ {1−1, a(−1), a(−1)a(−1)} by Lemma 1.
Therefore we obtain

α6M+9+k
−1 a(−1)ea′(−1)k

(
x(−1)

)18M+31 ∈ C2(VL)
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for any e, k ≥ 0. We also get a similar result for y = σ(x) as for x. Therefore we
have:

α12M+18
−1

(
λx(−1)+μy(−1)

)36M+61 ∈ C2(VL)

for any λ,μ ∈C. By choosing suitable λ and μ so that λx(−1)+μy(−1)= a(−1),
we have

α12M+18
−1 a(−1)36M+61= α48M+24

−1 1 ∈ C2
(
V σ
L

)
,

which implies that α−1 is nilpotent modulo C2(V
σ
L ). Similarly, β−1 is nilpotent.

This completes the proof of Lemma 7. �

Since α,β are nilpotent and Oeven =Oevenα−1β , we have the following:

Proposition 5 dim(M2(1)σ /(M2(1)σ ∩C2(VL))) <∞.

2.8 C2-Cofiniteness of V σ
L

By the previous proposition, there is an integer N0 such that v1−1 · · ·vk
−1γ ∈ C2(V

σ
L )

for any vi ∈ S1 and γ ∈ V σ
L if wt(v1−1 · · ·vk

−11)≥N0. Set N =N0 + 9M + 30.
Our final step is to prove

V σ
L = C2

(
V σ
L

)+
⊕

n≤N

(
M2(1)

)σ
n
+
⊕

n≤N

(
M2(1)E

x
)σ
n
+
⊕

n≤N

(
M2(1)E

−x
)σ
n
,

which implies the C2-cofiniteness of V σ
L . For μ 	= 0, set

Rμ =
⎧
⎨

⎩dk
ik
· · ·d1

i1
d0
i0
a(r)a′(0)Eμ

∣∣∣∣∣

(i) wt(d0
i0
a(r)a′(0)Eμ)−wt(Eμ)≤ 30

(ii) ik ≤ · · · ≤ i1 ≤−1, i0, r ≤ 0 and
(iii) di ∈ S1

⎫
⎬

⎭

Proposition 6 (M2(1)Eμ)σ = SpanC{R} + C2(V
σ
L ). In particular, if v ∈ (M2(1)

Eμ)σ has a weight greater than wt(Eμ)+N0 + 30, then v ∈ C2(V
σ
L ).

Proof Suppose false and we take u /∈ SpanC{R} + C2(V
σ
L ) with minimal wt(u).

Since M2(1)Eμ is an irreducible M2(1)σ -module, we may assume u= ckik
· · · c1

i1
Eμ

with ci ∈M2(1)σ . We choose u with the above expression such that
∑k

i=1 wt(ci)
is minimal. Moreover, among elements with the same

∑k
i=1 wt(ci), we choose u

with maximal k. Since (e−1f )m =∑∞
i=0(e−1−ifm+i + fm−1−iei) and wt(e−1f )=

wt(e) + wt(f ), we may assume ci ∈ S1. Also, since esft − ftes =∑∞
i=0

(
s
i

)×
(eif )s+t−i and wt(eif ) < wt(e)+ wt(f ) for i ≥ 0, we may assume ik ≤ · · · ≤ i1.
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By the minimality of wt(u), we have 0≤ ik and

k∑

i=1

wt
(
ci
)−

k∑

i=1

(1+ ij )=
(
wt(u)−wt

(
Eμ
))
.

To simplify the notation, we will call −∑k
i=1(1 + ij ) a bloated weight. Since

wt(Eμ) and wt(u) are fixed, we have chosen u = ckik
· · · c1

i1
Eμ such that a bloated

weight is maximal. We note that wt(ci) ≤ 11 for ci ∈ S1. On the other hand, by
Lemma 1, u is also a linear sum of elements of the form

er−1 · · · e1−1F,

where ei ∈M2(1)σ and F is one of

D = {a(m+ n)a′(0)Eμ,a(m)a(n)a(0)Eμ,a′(m)a′(n)a′(0)Eμ |m+ n < 0
}
.

By the minimality of wt(u), u is a linear sum of elements in D and −m − n +
wt(Eμ) = wt(u). We assert that a bloated weight of u is greater than or equal to
three. For elements a(m + n)a′(0)Eμ, we get a(m + n)a′(0)Eμ = (a′(m + n −
1)a)1E

μ, which has only bloated weight two. Before we start the proof for the
remaining case, we note

(
a′(m− 1)a

)
1

(
a′(n− 1)a

)
1E

μ

= (a′(m− 1)a
)

1a(n)a
′(0)Eμ

=
∞∑

i=0

(
m− 1

i

)
(−1)i(−1)ma(m− i)a′(i)a(n)a′(0)Eμ

=
(
m− 1

−n

)
(−1)m−nna(m+ n)a′(0)Eμ + (−1)ma(m)a′(0)a(n)a′(0)Eμ.

Suppose a(m)a(n)a(0)Eμ has a bloated weight greater than three. By ignoring ele-
ments with bloated weights less than three, we have

〈b,μ〉2
〈a,μ〉 a(m)a(n)a(0)Eμ

= a(m)a′(0)a(n)a′(0)Eμ

≡ (a′(m− 1)a
)

1

(
a′(n− 1)a

)
1E

μ

= (a′(m− 1)a
)

1

(
a(n− 1)a′

)
1E

μ + (a′(m− 1)a
)

1

(
ω0γ (−n+ 1)+ · · · )1Eμ

≡ (a′(m− 1)a
)

1

(
a(n− 1)a′

)
1E

μ + (ω0γ (−n+ 1)
)

1

(
a′(m− 1)a

)
1E

μ

≡ (a′(m− 1)a
)

1a
′(n)a(0)Eμ − γ (−n+ 1)0

(
a′(m− 1)a

)
1E

μ
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≡
s∑

i=0

(
m− 1

i

)
(−1)i

{
a′(m− 1− i)a(1+ i)− (−1)m−1a(m− i)a′(i)

}

× a′(n)a(0)Eμ

≡
(

m− 1

−n− 1

)
(−1)−nna′(m+ n)a(0)Eμ − (−1)m−1a(m)a′(0)a′(n)a(0)Eμ

≡ λ1a(m+ n)a′(0)Eμ +μ1a(m)a′(n)Eμ

≡ λ2a(m+ n)a′(0)Eμ +μ2a
′(m+ n)a(0)Eμ ≡ 0

for some λi and μj , which is a contradiction. Therefore, the bloated weight of u is
less than or equal to three. In particular, k ≤ 3 and wt(u)−Eμ ≤ 30. Therefore, the
elements a(m+n)a′(0)Eμ and γ (−n+1)0(a

′(m−1)a)1E
μ are all in SpanC{R}+

C2(V
σ
L ). In order to show a(m)a(n)a(0)Eμ ∈ SpanC{R} + C2(V

σ
L ), we are able

to have exactly the same congruence expressions as above modulo SpanC{R} +
C2(V

σ
L ).

This completes the proof of Proposition 6. �

Set K =M2(1)σ + (M2(1)Ex)σ + (M2(1)E−x)σ . Since we have already shown
that if v ∈K and wt(v) > N , then v ∈ C2(V

σ
L ). The remaining is to show

V σ
L =K +C2

(
V σ
L

)
.

By Proposition 6, it is enough to show that

a(−n)a′(0)Eμ ∈K +C2
(
V σ
L

)

for 1≤ n≤ 30 and μ 	∈ {0,±x,±y,±(x + y)}. We first treat the following case:

Lemma 8 For any n+m≡ 0 (mod 3), we have Emx+ny ∈ C2(V
σ
L )+K .

Proof We note that if n+m≡ 0 (mod 3), then there is γ ∈ L such that Emx+ny =
E±(σ (γ )−γ ). Set 2k = 〈γ, γ 〉. Then since 〈γ − σ(γ ), γ − σ(γ )〉 = 6k, we have

E
γ

−1−kE
−γ ∈M2(1)+Eσ(γ )−γ +E−σ(γ )+γ ,

E
γ

−ka(−1)e−γ ∈M2(1)+
〈
σ(γ ), a

〉
eσ(γ )−γ + 〈σ 2(γ ), a

〉
e−σ(γ )+γ , and

E
γ

−k

2∑

i=0

σ i
(
a(−1)e−γ

) ∈M2(1)+
〈
σ(γ ), a

〉
Eσ(γ )−γ + 〈σ 2(γ ), a

〉
E−σ(γ )+γ .

Therefore, we obtain Eσ(γ )−γ ,E−σ(γ )+γ ∈ C2(V
σ
L )+M2(1). �

For Eμ with μ = mx + ny and m + n ≡ ±1 (mod 3), we need the following
lemma.
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Lemma 9 (1) For m,n ∈ Z with m + n ≡ 1 (mod 3), there are γ ∈ L satisfying
γ − σ i(γ − μ) = mx + ny for some i = 1,2 and μ ∈ {x, y,−x − y} such that
〈γ,−σ 1(γ −μ)〉 and 〈γ,−σ 2(γ −μ)〉 are both positive.

(2) For m,n ∈ Z with m + n ≡ 2 (mod 3), there are γ ∈ L, i = 1,2, μ ∈
{−x,−y,+x + y} such that γ − σ i(γ −μ)=mx + ny, 〈γ,−σ 1(γ −μ)〉> 0 and
〈γ,−σ 2(γ −μ)〉> 0.

Proof We first note that for γ = px + qy and −γ − x − y, we have

〈
σ(γ ),−γ − x − y

〉 = p2 + q2 − pq + 2p− q

= (q − (p+ 1)/2
)2 + 3

4
(p+ 1)2 − 1,

〈
σ 2(γ ),−γ − x − y

〉 = p2 + q2 − pq + 2q − p

= (p− (q + 1)/2
)2 + 3

4
(q + 1)2 − 1,

and so the both are positive except−2≤ p,q ≤ 1. For μ=mx+ny with m+n≡ 1
(mod 3), we may assume m,n≤ 0 by taking a conjugate by 〈σ 〉. If μ=mx + ny 	∈
{x, y,−x − y,−2y}, then by setting γ = px + qy with q = (−m− n+ 1)/3 and
p = (n− 2m+ 2)/3, we obtain σ(γ )− γ − x − y = μ and 〈σ(γ ),−γ − x − y〉
and 〈σ 2(γ ),−γ − x− y〉 are positive. In the case μ=−2y, we choose q = (−m−
n + 1)/3 and p = (−2n + m + 2)/3, then we have σ 2(γ ) − γ − x − y = μ and
〈σ 1(γ ),−γ − x − y〉 and 〈σ 2(γ ),−γ − x − y〉 are positive. (2) comes from (1) by
replacing x and y by −x and −y, respectively. �

We come back to the proof of Theorem A. By the above lemmas, for any μ, there
are γ, γ ′ and k such that

E
γ

−2−ke
−γ ′ ∈ eμ + eμ

′ +M2(1)e
±x

and so

E
γ

−2−kE
−γ ′ ∈Eμ +Eμ′ +M2(1)E

±x.

We also have

E
γ

−2−k+1

2∑

i=0

σ i
(
a(−1)e−γ ′) ∈ 〈a, γ 〉Eμ + 〈a,σ (γ )

〉
Eμ′ +M2(1)E

±x,

which implies Eμ,Eμ′ ∈M2(1)E±x+C2(V
σ
L ) for any μ. The remaining is to show

a(−n)a′(0)Eμ ∈M2(1)E±x +C2(V
σ
L ) for n≤ 30. Actually, we obtain

E
γ

−2−k+1+na(−n)a(−n)e−γ ′

∈ 2n〈a, γ 〉a(−n)eμ + 2n
〈
a,σ (γ )

〉
a(−n)eμ

′ +E
γ

−2−k+1e
−γ ′ +M2(1)e

±x
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and

E
γ

−2−k+1+2na(−n)a(−n)a(−n)e−γ ′

∈ 6n2〈a, γ 〉a(−n)eμ + 6n2〈a,σ (γ )
〉
a(−n)eμ

′ +E
γ

−2−k+1e
−γ ′ +M2(1)e

±x.

Therefore, for n≤ 30, we have

a(−n)eμ, a(−n)eμ
′ ∈ C2

(
V σ
L

)
VL +M2(1)e

±x and so

a(−n)a′(0)Eμ,a(−n)a′(0)Eμ′ ∈ C2
(
V σ
L

)+M2(1)E
±x.

This completes the proof of Theorem A.

3 Z3-Orbifold Construction

The purpose in this section is to show Z3-orbifold constructions from a lattice VOA.
Let Λ be a positive definite even unimodular lattice of rank N with a triality au-
tomorphism σ and set H = Λσ . We note 8|N . By the assumption, (VΛ)σ is C2-
cofinite and rational and so we can apply many useful known theorems like Zhu’s
theory [21], orbifold theory [6] and Verlinde formula [10, 15, 18].

Since Λ is unimodular, a lattice VOA VΛ has exactly one simple module VΛ

and all modules are completely reducible ([5]). As Dong, Li and Mason has shown
in [6], VΛ has one σ -twisted module VΛ(σ) and one σ 2-twisted module VΛ(σ 2).
Decompose them into direct sums of simple V σ

Λ -modules:

VΛ =W 0 ⊕W 1 ⊕W 2, VΛ(σ )=W 3 ⊕W 4 ⊕W 5,

VΛ

(
σ 2)=W 6 ⊕W 7 ⊕W 8.

We note that V σ
Λ has exactly nine simple modules {Wi | 0≤ i ≤ 8} by the assump-

tion of Theorem B. By Zhu’s theory [21], there is a 9 × 9-matrix S = (Sij ) such
that

(
1

z

)wt(v)

TWi (v;−1/τ)=
9∑

j=1

sij TWj (v; τ)

for v ∈ Vwt(v) with L(1)v = 0, where

TW(v; τ) := TrW vwt(v)−1e
2πiτ(L(0)−N/24).

Lemma 10 Under the assumption of Theorem B, the weights of elements in
VΛ,V (σ ) and V (σ 2) are in Z/3.

Proof Set H ′ = {u ∈ QH | 〈u,h〉 ∈ Z for h ∈ H } the dual of H . Set s = rank(H),
then from the assumption t = (N − s)/2 is divisible by three. As it is well known,
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the character TVH
(1; τ) of VH is θH (τ)

η(τ)s
, where η(τ) = q1/24∏∞

n=1(1 − qn) is the
Dedekind eta-function. Since Λ is unimodular, 3H ′ ⊆ H and the restriction of Λ

into QH covers H ′/H and so the weights of elements in VH -modules are in Z/3.
Hence the powers of q in the character of simple VH -modules are all in−s/24+Z/3
and so are those of q in TVH

(1;−1/τ) by Zhu’s theory [21]. Since

TVΛ(σ,1; τ) = q−N/24 θH (τ)∏
n(1− qn)s

× 1∏
n(1− ξqn)t (1− ξ−1qn)t

= TVH
(1,1; τ) η(τ )t

η(3τ)t

and TV (σ)(1,1; τ) is a scalar times of

TVΛ(σ,1;−1/τ) = TVH
(1,1;−1/τ)

η(−1/τ)t

η(−3/τ)t

= TVH
(1,1;−1/τ)

(−√−1τ)t/2η(τ)t

(−√−1τ/3)t/2η(τ/3)t

= 3t/2TVH
(1,1;−1/τ)

η(τ )t

η(τ/3)t

= 3t/2q−2t/24TVH
(1,1;−1/τ)qt/9

∏
n(1− qn)t∏

n(1− qn/3)t
, (3.1)

we have that the powers of q in TV (σ)(1,1; τ) are in −N/24+Z/3. �

By reordering, we may assume that the weights of elements in Wi are in i/3+Z

for i ≥ 3. In particular, all elements in

Ṽ =W 0 ⊕W 3 ⊕W 6

have integer weights. We next show that Ṽ has a VOA-structure.

Lemma 11 Wi are all simple currents, that is, Wi �Wj are simple modules for
any i, j . Moreover, Ṽ is closed by the fusion products.

Proof We will determine the entries of the matrix S = (Sij ). Decompose S into S =
(Aij )i,j=1,2,3 with 3× 3-matrices Aij . Since S is symmetric by [10], Aij = tAji .
Simplify the notation, we denote TWi (v; τ) by Wi(τ). As they showed in [6], there
are λi ∈C (i = 0,1,2) such that ( 0 −1

1 0 )-transformation shifts

W 0(τ )+ ξ iW 1(τ )+ ξ2iW 2(τ )→ λi

(
W 3i (τ )+W 3i+1(τ )+W 3i+2(τ )

)
.
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Namely, the first three rows of S are

(A11A12A13)= 1

3

⎛

⎝
λ0 λ0 λ0 λ1 λ1 λ1 λ2 λ2 λ2

λ0 λ0 λ0 ξ2λ1 ξ2λ1 ξ2λ1 ξλ2 ξλ2 ξλ2

λ0 λ0 λ0 ξλ1 ξλ1 ξλ1 ξ2λ2 ξ2λ2 ξ2λ2

⎞

⎠ .

Since a squared S2 of S is a permutation matrix which shifts W to its restricted dual
W ′, we get λ2

i = 1. We next consider the characters ch(W) = TW(1,1; τ). In this
case, since ch(W ′) = ch(W), we have ch(W 1) = ch(W 2), ch(W 3+i ) = ch(W 6+i )

for i = 0,1,2. Clearly,
{
ch
(
W 0), ch

(
W 1), ch

(
W 3), ch

(
W 4), ch

(
W 5)}

is a linearly independent set. Since (3.1) has q1/3+Z-parts, A12 + A13 	= 0 and so
λ1 = λ2. Similarly, since ch(W 3+i )= ch(W 6+i ), we have A22 +A23 =A32 +A33.
Furthermore, since A33 = A22 + A23 − tA23 is symmetric, A23 is symmetric and
A22 = A33. Again, by [6], there are μi ∈ C (i = 1,2) such that τ → −1/τ -
transformation shifts

W 3(τ )+ ξ iW 4(τ )+ ξ2iW 5(τ )→ μi

(
W 3i (τ )+ ξ2W 3i+1(τ )+ ξW 3i+2(τ )

)

for i = 1,2. Therefore, from these information, we know the entries of S:

(Sij )= 1

3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0 λ0 λ0 λ1 λ1 λ1 λ1 λ1 λ1

λ0 λ0 λ0 ξ2λ1 ξ2λ1 ξ2λ1 ξλ1 ξλ1 ξλ1

λ0 λ0 λ0 ξλ1 ξλ1 ξλ1 ξ2λ1 ξ2λ1 ξ2λ1

λ1 ξ2λ1 ξλ1 μ1 ξμ1 ξ2μ1 μ2 ξ2μ2 ξμ2

λ1 ξ2λ1 ξλ1 ξμ1 ξ2μ1 μ1 ξ2μ2 ξμ2 μ2

λ1 ξ2λ1 ξλ1 ξ2μ1 μ1 ξμ1 ξμ2 μ2 ξ2μ2

λ1 ξλ1 ξ2λ1 μ2 ξ2μ2 ξμ2 μ1 ξμ1 ξ2μ1

λ1 ξλ1 ξ2λ1 ξ2μ2 ξμ2 μ2 ξμ1 ξ2μ1 μ1

λ1 ξλ1 ξ2λ1 ξμ2 μ2 ξ2μ2 ξ2μ1 μ1 ξμ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with λ2
i = μ1μ2 = 1. This implies SihSi′h = 1 and so

Nk
i,i′ =

9∑

h=1

SihSi′hShk′

S0h
=

9∑

h=1

Shk′

S0h
.

Therefore, Nk
i,i′ 	= 0 if and only if k = 0 and N0

i,i′ = 1. Namely, Wi � (Wi)′ = V σ
Λ

for every i. If R �Wi is not simple for a V σ
L -module R, then (R �Wi)� (Wi)′ ∼=

R� (Wi � (Wi)′)∼=R is not simple by Proposition 1, which implies Wi are simple
current. �

By considering the characters, we have:

TVΛ(σ,1; τ)= TVH
(1,1; τ) η(τ )s

η(3τ)s
= ch

(
W 0)+ ξch

(
W 1)+ ξ2ch

(
W 2),
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TVΛ(σ,1,−1/τ)= λ1
{
ch
(
W 3)+ ch

(
W 4)+ ch

(
W 5)},

TVΛ

(
σ,1,−1/(τ + 1)

)= e2π
√−1N/24λ1

{
ch
(
W 3)+ ξch

(
W 4)+ ξ2ch

(
W 5)},

TVΛ

(
σ,1,−1/

(
(−1/τ)+ 1

))

= e2π
√−1N/24λ1μ1

{
ch
(
W 3)+ ξ2ch

(
W 4)+ ξch

(
W 5)}

from the above a matrix S. On the other hand, since

TVΛ

(
σ,1,−1/

(
(−1/τ)+ 1

))

= TVΛ

(
σ,1,−1− 1

τ − 1

)

= e−2π
√−1N/24TVΛ

(
σ,1,−1/(τ − 1)

)

= e−4π
√−1N/24λ1

{
ch
(
W 3)+ ξ2ch

(
W 4)+ ξch

(
W 5)}

we have μ1 = e−6π
√−1N/24 = 1 since 8|N . Then the matrix S implies λ1 = λ0 and

W 3 �W 3 =W 6 and W 3 �W 6 =W 0. Therefore,

Ṽ =W 0 ⊕W 3 ⊕W 6

is a direct sum of simple current V -modules W 3i with integer weights and W 3i �
W 3j =W 3k with i + j ≡ k (mod 3). In order to prove that Ṽ has a VOA-structure,
we will prove a more general statement.

Proposition 7 Let V be a C2-cofinite VOA of CFT-type and all V -modules are
completely reducible. Let W =⊕n

i=0 W
i be a direct sum of simple V -module Wi

with integer weights and we assume Wi�Wj =Wk for i+j ≡ k (mod n), W 0 = V

and n is odd. Then W has a VOA structure.

Proof Let Y i,j be a nonzero intertwining operator of type
(

Wi+j

Wi Wj

)
, where Ws+n

coincides Ws . We choose Y2,i so that

E
(〈
d ′,Y1,i+1(w,x)Y1,i (u, y)a

〉)=E
(〈
d ′,Y2,i(Y1,1(w,x − y)u, y

)
a
〉)

for any a ∈Wi , w,u ∈W 1 and d ′ ∈ (Wi+2)′. Set an intertwining operator Y of type(
W

W 1 W

)
by

Y(w, z)=

⎛

⎜⎜⎜⎝

0 · · · 0 Y1,n−1(w, z)

Y1,0(w, z) 0 · · · 0 0
...

. . .
...

...

0 · · ·0 Y1,n−2(w, z) 0

⎞

⎟⎟⎟⎠ ,
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where w ∈W 1. We note that a vertex operator YW of V on W is given by

Y(v, z)=
⎛

⎜⎝
Y 0,0(v, z) · · · 0

...
. . .

...

0 · · · Y 0,n−1(v, z)

⎞

⎟⎠ .

By the definition, we have that Y(w, z) satisfies Commutativity with YW(v, z) for
any w ∈W and v ∈ V . We also have Y(L(−1)w, z)= d

dz
Y(w, z).

Our next aim is to prove that Y(w, z) satisfies Commutativity with itself. We note
that Y i,j are all integer power series. Therefore, it is sufficient to show

E
(〈
d ′,Y1,i+1(w,x)Y1,i (u, y)a

〉)=E
(〈
d ′,Y1,i+1(u, y)Y1,i (w,x)a

〉)

for any i = 0, . . . , n− 1, d ′ ∈ (Wi+2)′, a ∈Wi , and w,u ∈W 1.
Recall a skew-symmetric intertwining operator

σ12
(
Y1,1)(w, z)u= eL(−1)zY1,1(u,−z)w.

Since dimIW 2

W 1,W 1 = 1 and all Wi have integer weights, we have σ 2
12 = 1 on IW 2

W 1,W 1

and so there is λ ∈ {±1} such that σ12(Y1,1)= λY1,1. Therefore we have:

E
(〈
d ′,Y1,i+1(w,x)Y1,i (u, y)a

〉)

=E
(〈
d ′,Y2,i(Y1,1(w,x − y)u, y

)
a
〉)

=E
(〈
d ′,Y2,i(eL(−1)(x−y)σ12

(
Y1,1)(u, y − x)w,y

)
a
〉)

=E
(〈
d ′,Y2,i(σ12

(
Y1,1)(u, y − x)w,x

)
a
〉)

=E
(〈
d ′, λY2,i(Y1,1(u, y − x)w,x

)
a
〉)

=E
(〈
d ′, λY1,i+1(u, y)Y1,i (w,x)a

〉)
.

Irritating it n times, we obtain

E
(〈
e′,Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)
Y1,n−1(a, z1) · · ·Y1,0(c, zn−1)v

〉)

= λn2
E
(〈
e′,Y1,0(a, z1) · · ·Y1,1(c, zn−1)Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)
v
〉)

for e′ ∈ (W 1)′, a, . . . , c, di ∈W 1 and v ∈ V . On the other hand, from the associa-

tivity and

n︷ ︸︸ ︷
W 1 � · · ·�W 1 = V , there is 0 	= μ ∈C such that

E
(〈
e′,Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)
Y1,n−1(a, z1) · · ·Y1,0(c, zn−1)v

〉)

=E
(〈
e′,Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)

×μYV
(
Yn−1,1 · · ·Y1,1(a, r1)b, · · · (rn−2)c, zn−1

)
v
〉)
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for any v ∈ V , where we set ri = zi − zi+1 to make notation short. Since Y i,j satis-
fies Commutativity with YW , we have

E
(〈
e′,Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)
Y1,n−1(a, z1) · · ·Y1,0(c, zn−1)v

〉)

=E
(〈
e′,Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)

×μYV
(
Yn−1,1 · · ·Y1,1(a, r1)b, · · · (rn−2)c, zn−1

)
v
〉)

=E
(〈
e′,μYV

(
Yn−1,1 · · ·Y1,1(a, r1)b, · · · (rn−2)c, zn−1

)

×Y1,n−1(d1, x1
) · · ·Y1,0(dn, xn

)
v
〉)

=E
(〈
e′,Y1,0(a, z1) · · ·Y1,1(c, zn−1)Y1,n−1(d1, x1

) · · ·Y1,0(dn, xn
)
v
〉)
,

which implies λn2 = 1. Since n is odd, we have λ= 1. Thus, Y satisfies Commuta-
tivity with itself. By using the normal products, Y and YW generate a local system
O with a Virasoro element YW(ω, z). Since V is a subVOA of O and its modules
are completely reducible, O is a direct sum O =⊕T j of simple V -modules T j .
Clearly, the action of O on W induces intertwining operators of type

(
W

O W

)
. Since

V � V = V , the multiplicity of a V -module V in O is one and so we have O ∼=W

as V -modules. Therefore, W has a VOA structure, which proves Proposition 7. �

This completes the proof of Theorem B.

3.1 The Character of the Moonshine VOA

The first example is the Leech lattice Λ and a fixed point free automorphism σ of
Λ of order three. Then a trace function TVΛ(σ,1; τ) of σ on VΛ is

q−1
(

1∏∞
n=1(1− ξqn)

)12( 1∏∞
n=1(1− ξ2qn)

)12

= q−1
(

1∏∞
n=1(1+ qn + q2n)

)12

= η(τ)12

η(3τ)12
.

Hence, a character function of the twisted module VΛ(σ) is

ch
(
VΛ(σ)

) = ch
(
W 3)+ ch

(
W 4)+ ch

(
W 5)= TVΛ(σ,1,−1/τ)

= 36q−1q4/3
∏∞

n=1(1− qn)12
∏∞

n=1(1− qn/3)12
,

which implies that W 3 (also W 6) has no elements of weight 1 and ch(ṼΛ)= J (τ).
By a calculation, dimW 3

2 = 36(12+ 12+ (12
2

)
)= 65610, where W 3

2 denotes the
weight 2 subspace of W 3 and so a triality automorphism of Ṽ defined by ξ i on W 3i

for i = 0,1,2 is corresponding to 3B ∈M if Ṽ ∼= V +.
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3.2 A New VOA No. 32 in Schellekens’ List

The second example is a Niemeier lattice N of type E4
6 and a triality automorphism

σ which acts on the first entry E6 as fixed point free and permutes the last three
E6, where we choose 〈(0,1,1,1), (1,1,2,0)〉 as a set of glue vectors of N for E4

6 ,
see [4]. We note that since E6 contains a full sublattice A3

2, E6 has a fixed point
free automorphism of order three. Since t = 9, in order to determine a dimension of
the weight one space (ṼN )1, it is enough to see the constant term of q6/24 ΘH (−1/τ)

η(−1/τ)6 .

Since the fixed point sublattice H is isomorphic to
√

3E∗6 , where E∗6 denotes the
dual of E6, we have

ΘH(τ)= 1

3

[
φ0(τ )

3 + 1

4

{
3φ0(3τ)− φ0(τ )

}3
]
,

where φ0(τ ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ) and θ2(τ ) = ∑
m∈Z q(m+1/2)2

and

θ3(τ )=∑m∈Z qm2
, see [4]. Applying φ0(−1/τ)= τ

i
√

3
φ0(τ/3), we have

ΘH(−1/τ)

η(−1/τ)6
= 1

9
√

3
q−1/4 + · · ·

and so

dim(ṼN )1 = (6× 12)/3+ 6+ 6× 12+ 2× {39/23−5/2}= 120.

Clearly, from the construction we know that (ṼN )1 contains (V σ
N )1 ∼= A3

2E6,3 as a
subring. Therefore, ṼN is a new VOA No 32 in the list of Schellekens [16].
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Words, Automata and Lie Theory for Tilings

Jun Morita

Abstract We will give a new relationship between several simple automata and
formal power series as word invariants. Such an invariant is derived from certain
combinatorics and algebraic structures. We review them, and especially we deal
with a connection to Lie theory via through tilings.

1 Introduction

For each word w, as an abstract invariant, we obtain a formal power series fw(t) in
t with real coefficients (cf. [17, 20]). On the other hand, automata sometimes create
words. Therefore, we have the following picture.

automata −→ words −→ formal power series

Hence, it seems to be nice that there is a characterization of certain automata using
formal power series. This paper consists of

(1) a new approach to characterize the following simple automata, A1,A2,A3,A4

(Figs. 1, 2, 3, 4), using formal power series and a hierarchy of numbers, as well
as

(2) a review of several recent results.

We note that fw(t) can be obtained as a unique solution of some quadratic equation
for each word w. Such an equation is related to the decomposition rule for tensor
products of standard modules. A rough story is as follows. Let T be a one dimen-
sional tiling (or a bi-infinite word), and M the associated monoid. Put A = C[M]
as a monoid algebra with a bialgebra structure. Then, standard modules of A are
defined, and irreducible standard modules are parametrized by subwords of T . An
irreducible standard module corresponding to a subword w of T is denoted by Vw .
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Fig. 1 Automaton A1

Fig. 2 Automaton A2

Fig. 3 Automaton A3

Fig. 4 Automaton A4

Any standard module is completely reducible. Then, we have:

Vw ⊗ Vw = Vw ⊕
(⊕

s 	=w

V⊕μs(w)
s

)
,

which produces the equation

fw(t)2 = fw(t)+
∑

s 	=w

μs(w)fs(t).

Here, μs(w) means the multiplicity, and V⊕m means

V ⊕ · · · ⊕ V︸ ︷︷ ︸
m

.

By our convention here, we use “lowercase” for a word, and “uppercase” for a
letter, respectively. We will discuss words in Sect. 1, and formal power series as
algebraic invariants in Sect. 2 (cf. [15, 17, 20]). We will characterize simple au-
tomata using formal power series in Sect. 3. We refer [13] and [14] for automata
(or shifts), symbolic dynamics and combinatorics on words. In Sect. 4, we review
several recent results. Our motivation is coming from the study of tilings. Using the
so-called Kellendonk product (cf. [9–11]), we will construct monoids (cf. [12]) and
monoid algebras (cf. [1, 15, 17, 20]). These algebras were introduced and developed
deeply in [9–11], where topology, C∗-algebras and K-theory are used. We also dis-
cuss a certain representation theory. Especially we introduce group structures and
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Lie algebra structures (cf. [6–8, 16]), and obtain fundamental algebraic properties
(cf. [17, 20]), including Gauss decompositions and additive Gauss decompositions
(cf. [4, 5, 18, 19]).

We denote by C (resp. R,Q,Z,N) the set of complex numbers (resp. real num-
bers, rational numbers, integers, natural numbers).

2 Words

Let Ω be a set of letters. For convenience, we usually assume that Ω is finite. (We
assume �Ω ≤ 2 in Theorem 1. But, in general, we need not assume this finiteness.)
A word is a finite sequence of letters in Ω . That is,

w =X1X2 · · ·Xn (Xi ∈Ω)

is a word. The transpose of w means tw = XnXn−1 · · ·X1. The length of w is de-
noted by �(w), and in this case �(w) = n. A subword of w is a successive subse-
quence of w, namely

XkXk+1Xk+2 · · ·Xl (1≤ k ≤ l ≤ n).

We say s ≺w if s is a subword of w, and we set S(w)= {s | s ≺w}. We choose and
fix a special symbol, called φ, which should be totally different from letters in Ω .
One sometimes understand that φ is a special symbol meaning an empty word. To
control partial similarity of w, we define a certain n × n matrix M(w) = (mij ),
whose entries are in Ω ∪ {φ} as follows.

mij =
{
Xi if Xi =Xj ,

φ if Xi 	=Xj .

Using the matrix M(w), we introduce the associated graph, called Γ (w), with ver-
tices vij (1≤ i, j ≤ n) and edges defined by saying that vij and vi+1,j+1 are joined
if mij 	= φ and mi+1,j+1 	= φ. Let C(w) be the set of all connected components of
Γ (w). For γ ∈ C(w), we define

wγ =XiXi+1Xi+2 · · ·Xi+k

if γ = {vij , vi+1,j+1, vi+2,j+2, . . . , vi+k,j+k} with k ≥ 1, or if γ = {vij } with
mij 	= φ. Then, we define the multiplicity μs(w) for a subword s ≺w by

μs(w)= �
{
γ ∈ C(w) |wγ = s

}
.

Also we define

μφ(w)= � {vij |mij = φ, 1≤ i, j ≤ n}.
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Then, we obtain

μφ(w)+
∑

s∈S(w)

μs(w) · �(s)= n2.

3 Algebraic Invariants

Here we abstractly consider the following quadratic equation in x = g(t):

x2 = x +μφ(w)fφ(t)+
∑

s∈S(w),s 	=w

μs(w) · fs(t), (∗)

where g(t), fφ(t) and fs(t) are formal power series in t with real coefficients. We
proceed in the following process.

(F1) Put fφ(t)= t first, where t is a formal variable.
(F2) Suppose that the fs(t) for s ∈ S(w) with s 	= w are already defined as formal

power series in t with positive constant terms.
(F3) If the equation (∗) has a solution x = g(t) as a formal power series in t with a

positive constant term, then we put fw(t)= g(t).

This recursive process works well (cf. [17, 20]). We compute several typical exam-
ples. If w =A, then M(w)= (A) and the equation (∗) is

x2 = x.

This has an expected solution fA(t) = 1, which is just a constant. Next suppose
w =AB . Then,

M(w)=
(
A φ

φ B

)

and our equation (∗) is

x2 = x + 2t.

We need to solve

g(t)2 = g(t)+ 2t

satisfying g(t)=∑∞
i=0 ait

i with a0 > 0. Hence, we have the following.

a2
0 = a0

2a0a1 = a1 + 2

2a0a2 + a2
1 = a2

2a0a3 + 2a1a2 = a3

...
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This implies a0 = 1 since a0 > 0. Then we inductively obtain a1 = 2/(2a0−1)= 2,
a2 =−a2

1/(2a0 − 1)=−4, a3 =−2a1a2/(2a0 − 1)= 16, . . . . That is,

fAB(t)= g(t)= 1+ 2t − 4t2 + 16t3 − · · · ,

where all coefficients are integers since 2a0−1= 1. Hence, we have fAB(t) ∈ Z[[t]].
More precisely we easily see that ai is an even integer for all i > 0. Furthermore,
we examine one more example:

w =AA · · ·A︸ ︷︷ ︸
n

with �(w)= n. In this case, we claim fw(t)= n, which can be obtained by induction
on �(w). As above, we already knew that our claim is true for �(w)= 1. We suppose
that our claim is true for �(w) < n. In case of �(w)= n, we have

M(w)=
⎛

⎜⎝
A · · · A
...

. . .
...

A · · · A

⎞

⎟⎠

as an n× n matrix, and our equation (∗) is

g(t)2 = g(t)+ n(n− 1).

Here we note that μs(w) = 2 and fs(t) = �(s) for s ∈ S(w) with s 	= w and
μφ(w) = 0, and that 2(1 + 2 + 3 + · · · + (n − 1)) = n(n − 1). Thus, we obtain
fw(t)= g(t)= n if

w =AA · · ·A︸ ︷︷ ︸
n

.

We may call fw(t) is an algebraic invariant, since our equation (∗) is coming from
certain algebraic structures (standard modules and tensor product decompositions
etc.) behind.

4 Automata

To create words from a given set Ω of letters, there may be a rule. Such a rule is
sometimes controlled by an automaton (or a shift). Here we consider the automata
called A1,A2,A3,A4 (as in Introduction) with Ω = {A} or Ω = {A,B}, which
are very simple and fundamental. Let Wi(X) be the set of all words according to
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Ai (i = 1,2,3,4) and an initial letter X ∈Ω . Namely,

W1(A) = {A,AA,AAA,AAAA,AAAAA,AAAAAA, . . .},
W2(A) = {A,AB,ABA,ABAB,ABABA,ABABAB, . . .},
W2(B) = {B,BA,BAB,BABA,BABAB,BABABA, . . .},
W3(A) = {A,AA,AB,AAA,AAB,ABA,

AAAA,AAAB,AABA,ABAA,ABAB, . . .},
W3(B) = {B,BA,BAA,BAB,BAAA,BAAB,BABA, . . .},
W4(A) = {A,AA,AB,AAA,AAB,ABA,ABB, . . .},
W4(B) = {B,BA,BB,BAA,BAB,BBA,BBB, . . .}.

For two words w,w′ in Wi(X) with �(w)= n and �(w′)= n+ 1, we call w′ is an
extension in Wi(X) of w if w is a subword of w′ satisfying

w =X1X2 · · ·Xn and w′ =wXn+1 =X1X2 · · ·XnXn+1,

and we call w′ a unique extension in Wi(X) of w if w′ is unique as an extension
of w. For example, ABA is a unique extension in W3(A) of AB , but ABA is not a
unique extension in W4(A) of AB since ABB exists in W4(A) as another extension
of AB . A word w in Wi(X) is called of infinite type if there is an infinite sequence,
{uk}∞k=0 with u0 =w, of words in Wi(X) such that uk+1 is a unique extension of uk

for all k ≥ 0. A word w in Wi(X) is called maximal if there is no unique extension
in Wi(X) of w. Let Vi(X) be the set of w ∈Wi(X) satisfying (P1) and (P2):

(P1) �(w) is even,
(P2) w is maximal or of infinite type.

We call Vi(X) the principal part of Wi(X). Then, we put

Vi =
⋃

X∈Ω
Vi(X).

In fact, we have

V1 = {AA,AAAA,AAAAAA,AAAAAAAA, . . .},
V2 = {AB,BA,ABAB,BABA,ABABAB,BABABA, . . .},
V3 = {AA,BA,AAAA,AABA,ABAA,BAAA,BABA, . . .},
V4 = {AA,AB,BA,BB,AAAA,AAAB,AABA,AABB,

ABAA,ABAB,ABBA,ABBB,BAAA,BAAB,

BABA,BABB,BBAA,BBAB,BBBA,BBBB, . . .}.
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Theorem 1 Notation is as above.

(1) fw(t)= �(w) ∈N if w ∈ V1.
(2) fw(t) ∈ Z[[t]] if w ∈ V2. There exists w ∈ V2 such that fw(t) 	∈N.
(3) fw(t) ∈Q[[t]] if w ∈ V3. There exists w ∈ V3 such that fw(t) 	∈ Z[[t]].
(4) fw(t) ∈R[[t]] if w ∈ V4. There exists w ∈ V4 such that fw(t) 	∈Q[[t]].

Proof of Theorem 1 (1) is already discussed in the previous section. For (2), we
observe that fw(t)=m× fAB(t) for all w ∈ V2 with �(w)= n= 2m as well as that
the constant term a0 of fw(t)=∑∞

k=0 akt
k is m. We will show it by induction. We

can suppose w ∈ V2(A), and

w =AB AB · · · AB︸ ︷︷ ︸
m

with �(w)= 2m. Then, we obtain

M(w)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A φ A φ · · · · · · A φ

φ B φ B · · · · · · φ B

A φ A φ
. . .

. . .
...

...

φ B φ B
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . . A φ
...

...
. . .

. . .
. . .

. . . φ B

A φ · · · · · · A φ A φ

φ B · · · · · · φ B φ B

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

as a 2m× 2m matrix. Our equation (∗) implies

g(t)2 = g(t)+ 2
(
(2m− 1)+ (2m− 3)+ · · · + 1

)
t

+ 2
(
(m− 1)+ (m− 2)+ · · · + 1

)
fAB(t)

= g(t)+ 2m2t +m(m− 1)fAB(t).

Then, we observe that g(t)=m× fAB(t) is a solution of this equation, that is,

(
m× fAB(t)

)2 =m× fAB(t)+ 2m2t +m(m− 1)fAB(t),

since fAB(t) satisfies

fAB(t)2 = fAB(t)+ 2t.

In particular, we obtain, as a unique solution under our condition, fw(t) = m ×
fAB(t) ∈ Z[[t]]. For (3), we should refer [17], where the proof of (3) is given. How-
ever, it might be better to review it here for the reader. Take w =X1 · · ·Xn ∈W3(A).
Under this assumption, w satisfies that there is no pattern like XiXi+1 = BB with
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2≤ i ≤ n−1. Then, we claim that if w ∈W3(A) then fw(t) ∈Q[[t]] and the constant
term fw(0) of fw(t) is the number, called �A(w), of the letter A in w. We proceed by
induction. Let D(w)= {wγ | γ ∈ C(w)} \ {w}, and put w′ =X1 · · ·Xn−1. Then, we
write fw(t)=∑∞

i=0 pit
i and fw′(t)=∑∞

i=0 qit
i with pi, qi ∈R. By induction, we

can assume q0 = �A(w
′). We also note that w′′ = Y1 · · ·Ym ∈D(w) implies Y1 =A,

which shows by induction that if w′′ ∈ D(w) then fw′′(t) ∈ Q[[t]] and fw′′(0) =
�A(w

′′). First suppose Xn = B . If min = B in M(w) with 1 ≤ i ≤ n− 1, then the
corresponding vin is always attached to γ ′ = {. . . , vi−1,n−1} ∈ C(w′) in C(w) to get
wγ ′B ∈D(w), since mi−1,n−1 = A. In this case, there is no change of the number
of the letter A. Hence, p2

0 = p0 + (q0 − 1)q0 = p0 + (�A(w
′)− 1)�A(w′). There-

fore, p0 = �A(w
′)= �A(w). Next, suppose that Xn = A. If min = A ∈M(w) with

1≤ i ≤ n−1, then the corresponding vin is attached to γ ′ = {. . . , vi−1,n−1} ∈ C(w′)
in C(w), or vin is itself a connected component in C(w). In each case, such A can
give an effect “+1” to compute the corresponding constant term. Note that the num-
ber of the letter A added in the process from C(w′) to C(w) is 2�A(w′) = 2q0 as
follows. We need to count the letter A at the last column and at the last row. Since
the letter A appears �A(w

′) times in w′, we have

p2
0 = p0 + (q0 − 1)q0 + 2�A

(
w′
)= p0 + �A

(
w′
)(
�A
(
w′
)+ 1

)
.

Therefore, p0 = �A(w
′)+ 1= �A(w). In any case, that is, in either case Xn = B or

Xn =A, we see p0 = �A(w). Now we should solve

g(t)2 = g(t)+μφ(w)t +
∑

s∈D(w)

μs(w)fs(t),

which can be written as

∞∑

k=0

(p0pk + p1pk−1 + · · · + pkp0)t
k =

( ∞∑

k=0

pkt
k

)
+
( ∞∑

k=0

bkt
k

)
.

By induction all the bk are rational, and by our local recursive setting we can assume
that p1, . . . , pk−1 are also rational. Then, we have

p0pk + p1pk−1 + · · · + pkp0 = pk + bk.

Since p0 = �A(w) is a positive integer, we see that pk is rational, that is,

pk = bk − (p1pk−1 + p2pk−2 + · · · + pk−1p1)

2�A(w)− 1

for k > 0. Hence, we can recursively obtain fw(t) ∈ Q[[t]]. Now we take w ∈ V3.
Then, we see w ∈W3(A) or tw ∈W3(A). Since fw(t)= ftw(t), we always obtain
fw(t) ∈Q[[t]]. To confirm (4), we choose, for example, w =AABB ∈ V4. Then,

fAABB(t)= 1+√17

2
+ 8√

17
t − 64

17
√

17
t2 + · · · 	∈Q[[t]].
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One should also note, as examples, that

fAB(t)= 1+ 2t − 4t2 + 16t3 − · · · 	∈N

and

fABAA(t)= 3+ 6

5
t − 36

125
t2 + 432

3125
t3 − · · · 	∈ Z[[t]]. �

By Theorem 1, our algebraic invariant fw(t) of a word w can differentiate these
automata A1,A2,A3,A4 according to the hierarchy of numbers appeared in coef-
ficients. We note that we are just interested in the growth along one direction if we
imagine crystals or quasicrystals. The above proof of Theorem 1 looks very ele-
mentary, which is derived from our simple combinatorics. However, it seems to be
not so easy to find such a result at the beginning. One believes that it is much more
important to observe a new fact in this kind of study.

5 Motivation and Review

For a one dimensional tiling T , we define Ω(T ) to be the set of lengths of all
intervals as tiles in T . Here, we assume that Ω(T ) is finite. We choose a set Ω

of letters with �Ω = �Ω(T ), and fix a bijection from Ω(T ) to Ω . Then, we shall
identify Ω(T ) with Ω , and a one dimensional tiling with a bi-infinite sequence of
letters, using such a bijection. Hence, we shall consider T as

· · · X−2X−1X0X1X2 · · ·
(
Xi ∈Ω =Ω(T )

)
.

A subword of T is a finite successive subsequence XiXi+1Xi+2 · · ·Xj for some
integers i ≤ j . Let S(T ) be the set of subwords of T , and put S∗(T ) = S(T ) ∪
{φ}, where φ may be viewed as an empty word. Two tilings T and T ′ are said
to be locally indistinguishable if there is a bijection π : Ω(T ) −→ Ω(T ′) such
that S(T ′) = {π(w) | w ∈ S(T )}, where π(w) = π(X1)π(X2) · · ·π(Xr) for w =
X1X2 · · ·Xr ∈ S(T ).

Let T be a one dimensional tiling. Let (i, a, j) be a triplet of a ∈ S(T ) and
1≤ i, j ≤ �(a), and set

M=M(T )= {z, e} ∪ {(i, a, j) | a ∈ S(T ),1≤ i, j ≤ �(a)
}
,

where z and e are new abstract independent symbols.
We recall a matrix unit, called Eij . One can imagine that (i, a, j) is correspond-

ing to Eij = (i,E, j). Then, we remember the following rule:

Eij ·Ekl = δjkEil =
{
Eil if j = k,

0 otherwise.
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On the other hand, in our case here, E itself is parametrized. That is, we have:

(i, a, j) · (k, b, l)=
{
(p, c, q) if . . . ,

z otherwise,

as described below.
For (i, a, j), (k, b, l) ∈ M, we define a certain product, called the Kellen-

donk product, of (i, a, j) and (k, b, l) as follows. Pile up the j -th position of a

and the k-th position of b. If one gets c ∈ S(T ) by this piling, then we define
(i, a, j) · (k, b, l)= (p, c, q), where p is the position of c corresponding to i and q is
the position of c corresponding to l satisfying 1≤ p,q ≤ �(c). Otherwise, we define
(i, a, j) · (k, b, l)= z. We also define m · e= e ·m=m and m · z= z ·m= z for all
m ∈M. Then, M becomes a monoid. Let A=C[M] =⊕m∈MCm be the monoid
algebra of M over C (cf. [9–11]). Since M=M(T ) is a monoid, the monoid alge-
bra A=A(T )=C[M] becomes a bialgebra with a coalgebra map Δ :m �→m⊗m
and a counit map ε :m �→ 1 for all m ∈M (cf. [1]).

Theorem 2 (cf. [20]) For a couple of one dimensional tilings T and T ′, the follow-
ing two conditions are equivalent.

(1) A(T )�A(T ′) or A(tT )�A(T ′) as bialgebras.
(2) T and T ′ are locally indistinguishable, or tT and T ′ are locally indistinguish-

able.

Note that tT is the reverse of T . That is, tT is

· · ·X2X1X0X−1X−2 · · ·
if T is

· · ·X−2X−1X0X1X2 · · · .
Therefore, T �→ A(T ) is an invariant of one dimensional tilings. Let T be a

one dimensional tiling, and put A= A(T ). To establish Theorem 2, it is important
to study standard modules, which induces some combinatorics. We can draw the
following global picture.

1 DIM Tilings
↗ ↘

Combinatorics Algebraic Structures
↖ ↙

Representations

↓ ↓ ↓

Invariants
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If we have objects which we want to study, then it may sometimes be a good idea
to construct certain algebraic structures. Using such algebraic structures, there might
be the corresponding representation theory, which produces several combinatorics.
Usually such combinatorics may be very complicated, that is, more complicated
than original objects. But, here we can obtain the above circle, which seems to be
useful.

A left A-module V is called standard if the following two conditions are satis-
fied.

(S1) dim(V ) <∞, z(V )= 0
(S2) �{x ∈M | x(V ) 	= 0}<∞
Each a ∈ S∗(T ) induce an irreducible standard module called Va (cf. [17, 20]).

Theorem 3 (cf. [20]) Notation is as above.

(1) {Va | a ∈ S∗(T )} is a complete set of representatives for irreducible standard
A-modules.

(2) Every standard A-module is completely reducible.
(3) Every standard A-module is isomorphic to Va1⊕· · ·⊕Var for some a1, . . . , ar ∈

S∗(T ).

There might be several ways to pick up certain combinatorics from given decom-
position rules.

Tensor Product Decompositions → Combinatorics → Invariants

Here we choose the following type of decomposition:

V ⊗ V = V ⊕ (Other Terms),

which we understand as a quadratic equation in x = g(t):

x2 = x + (Other Terms).

There is another way, and then we obtain a higher degree equation. But, we really
want to get concrete invariants. For that purpose, we should always solve our equa-
tion. Hence, it is better to choose quadratic equations.

For standard A-modules Va,Vb with a, b ∈ S∗(T ), we see that Va ⊗ Vb is also
a standard A-module, which is given by x(v) = Δ(x)(v) for all x ∈ A and v ∈
Va ⊗ Vb . Then, we obtain an irreducible decomposition:

Va ⊗ Vb =
⊕

c∈S∗(T )

V⊕μc(a,b)
c ,

where μc(a, b) is the multiplicity of Vc. We put μc(a) = μc(a, a). Then, our
quadratic equation (∗) is arising from this formula for a = b as follows:

Va ⊗ Va =
⊕

c∈S∗(T )

V⊕μc(a)
c = Va ⊕

(⊕

c 	=a

V⊕μc(a)
c

)
.
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To construct associated groups and Lie algebras and to study them, we sometimes
need to divide tiles into three pieces.

1 DIM Tilings → Kellendonk Products →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lie Algebras

Groups

Bialgebras

For simple notation, we identify x in A with x̄ = x + Cz in A/Cz. If T is a one
dimensional tiling, say

T = · · ·Xi−1XiXi+1 · · · ,
then we need to change each letter Xi into X′

iX
′′
i X

′′′
i with totally new letters

X′
i ,X

′′
i ,X

′′′
i satisfying that X′

i ,X
′′
i ,X

′′
i ,X

′
j ,X

′′
j ,X

′′′
j are all different if Xi 	= Xj ,

and that X′
i = X′

j ,X
′′
i = X′′

j ,X
′′′
i = X′′′

j if Xi = Xj . By this rule, we obtain a new
tiling

T̃ = · · ·X′
i−1X

′′
i−1X

′′′
i−1X

′
iX

′′
i X

′′′
i X′

i+1X
′′
i+1X

′′′
i+1 · · · .

This means Ω(T̃ )= {X′,X′′,X′′′ |X ∈Ω(T )}. If we symbolically define θ :X �→
X′X′′X′′′, then we can write

T̃ = · · · θ(Xi−1)θ(Xi)θ(Xi+1) · · · .
Put Sθ (T̃ ) = {θ(w) | w ∈ S(T )} ⊂ S(T̃ ), where θ(w) = θ(X1) · · · θ(Xr) =
X′

1X
′′
1X

′′′
1 · · ·X′

rX
′′
r X

′′′
r ∈ Sθ (T̃ ) if w =X1 · · ·Xr ∈ S(T ).

1 DIM Tilings → Triple Substitution →
⎧
⎨

⎩

sl2 Theory

SL2 Theory

We will see the simplest example, namely our tiling T is trivial:

T = · · ·AAAAA · · · .
We choose θ :A �→ BCD. Then, we obtain

T̃ = · · ·BCDBCDBCDBCDBCD · · · .
Therefore, we have

S(T )= {A,AA,AAA, . . .}
and

Sθ (T̃ )= {BCD,BCDBCD,BCDBCDBCD, . . .}.
By the definition of our product, S(T ) can not create sl2 in general, but Sθ (T̃ ) can
do. We may call the above map θ a triple substitution.
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For a given one dimensional tiling T , we use T̃ to construct the associated
group G = G(T , θ). Put X = {(i, a, i + 1) | a ∈ Sθ (T̃ ),1 ≤ i < �(a)} and Y =
{(i + 1, a, i) | a ∈ Sθ (T̃ ),1 ≤ i < �(a)}. If ξ = (i, a, j), then we put ξ̂ = (j, a, i).
For ξ ∈X∪Y and t ∈C, we set xξ (t)= 1+ tξ . Since ξ2 = 0 and xξ (t)

−1 = xξ (−t),
we see xξ (t) ∈ (A(T̃ )/Cz)×, where (A(T̃ )/Cz)× is the multiplicative group of
units in A(T̃ )/Cz. Let G=G(T , θ)= 〈xξ (t) | ξ ∈ X ∪Y, t ∈ C〉 ⊂ (A(T̃ )/Cz)×.
We call G the tiling group defined by (T , θ). For ξ ∈X∪Y and u ∈C

× =C \ {0},
we define wξ(u)= xξ (u)xξ̂ (−u−1)xξ (u) and hξ (u)=wξ(u)wξ (−1). Let

G+ =
〈
xξ (t) | ξ ∈X, t ∈C

〉
,

G− =
〈
xξ (t) | ξ ∈Y, t ∈C

〉
,

G0 =
〈
hξ (u) | ξ ∈X∪Y, u ∈C

×〉.

For each ξ ∈X, we define

Gξ =
〈
xξ (t), xξ̂ (t) | t ∈C

〉⊂G.

Then we have the following properties.

Theorem 4 (cf. [4, 5]) Notation is as above.

(1) Gξ � SL2(C).
(2) G=G±G∓G0G± (Gauss Decomposition).

Using Gauss decompositions, we obtain:

G=
⋃

g∈G±
g(G∓G0G±)g−1 =

⋃

g∈G
g(G∓G0G±)g−1.

Here the universal enveloping algebra of a Lie algebra L is denoted by U(L).
We also use T̃ to construct the Lie algebra associated with a given one dimensional
tiling T . Let L= L(T , θ) be the Lie subalgebra of A(T̃ )/Cz generated by X ∪Y,
where the corresponding Lie bracket is given by [x, y] = xy − yx in A(T̃ )/Cz.
Then, L is called the tiling Lie algebra defined by (T , θ). We define

L+ = 〈ξ | ξ ∈X〉,
L− = 〈ξ | ξ ∈Y〉,
L0 =

〈[ξ, η] | ξ ∈X, η ∈Y
〉
.

For each ξ ∈X, we define

Lξ = 〈ξ, ξ̂〉 =Cξ ⊕C[ξ, ξ̂ ] ⊕Cξ̂ ⊂ L.

Then we have the following properties.
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Theorem 5 (cf. [3–5]) Notation is as above.

(1) Lξ � sl2(C).
(2) L= L− ⊕L0 ⊕L+ (Triangular Decomposition).
(3) U(L)=U(L±)U(L∓)U(L±) (Additive Gauss Decomposition).

As above, we have G = 〈Gξ | ξ ∈ X〉 and L = 〈Lξ | ξ ∈ X〉 with Gξ � SL2(C)

and Lξ � sl2(C). Using Gauss decompositions and additive Gauss decompositions,
it is interesting to study G and L as algebraic invariants of tilings.

We may say that our triple substitution is, philosophically speaking, correspond-
ing to

(
a b

c d

)
�→

⎛

⎜⎜⎜⎜⎜⎜⎝

a 0 0 b 0 0
0 a 0 0 b 0
0 0 a 0 0 b

c 0 0 d 0 0
0 c 0 0 d 0
0 0 c 0 0 d

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This may not exactly be fit to our original triple substitution, but may be a good
explanation philosophically. Honestly saying, our triple substitution has formally
imitated the so-called quark model, which says that every baryon (a kind of hadron
or a certain particle) consists of three quarks.

We now have three objects as invariants of one dimensional tilings, namely bial-
gebras, Lia algebras and groups. According to Theorem 2, bialgebras are advantaged
here compared with Lie algebras and groups. However, Lie algebras and groups are
much more familiar. Hence, it would be better to obtain Theorem 2 type results for
Lie algebras and groups. To show such a result or to create the corresponding rep-
resentation theory, Gauss decompositions and additive Gauss decompositions seem
to be useful. In fact, sl2-theory and SL2-theory are very important in Lie theory.
Hence, also in our case, we hope that such fundamental sub-objects could work
well. Furthermore, to study Lie algebras and groups corresponding to higher di-
mensional tilings in general, we need to create a new and wide setting including
(locally) extended affine Lie algebras probably (cf. [2, 21]). In higher dimensional
case, bialgebras might also be advantaged (cf. [20]). But, we hope that Lie algebras
and groups would be strong tools to develop further. In fact, even in case of bialge-
bras, we could NEVER expect the results like Theorems 1 and 2 before. Therefore,
we would like to expect such a new development using Lie algebras and groups.
We stand and walk on the way toward our invisible goal. Generally speaking, for a
tiling T , we can define the associated (bi-)algebra A(T ), the associated Lie alge-
bra L(T ) and the associated group G(T ). Then, we would like to handle A, L and
G as functors from the category of tilings to the category of algebras T �→ A(T ),
Lie algebras T �→ L(T ) and groups T �→G(T ) respectively. Then, we could show
how aperiodic structures can be understood in algebra theory, in Lie algebra theory
and in group theory respectively. For that purpose, we need to create the category of
tilings at least. Especially we should produce suitable morphisms between tilings.
But there seems to be no good reference on this topic yet. It is very important not



Words, Automata and Lie Theory for Tilings 359

only to study each tiling itself as a local picture, but also to study the category of
tilings as a global picture. Finally we should point out that there might be another
choice to define the corresponding algebras, Lie algebras and groups. There must
be lots of ways to approach to aperiodic orders from algebraic side.

Acknowledgements The author wishes to express his hearty thanks to Professor Akira Terui for
his valuable advice.
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Toward Berenstein-Zelevinsky Data in Affine
Type A, Part III: Proof of the Connectedness

Satoshi Naito, Daisuke Sagaki, and Yoshihisa Saito

Abstract We prove the connectedness of the crystal (BZσ
Z
;wt, ε̂p, ϕ̂p, êp, f̂p),

which we introduced in Contemp. Math. 565, 143–184 (2012).

1 Introduction

This paper is a continuation of our previous works ([8] and [9]). In [8], motivated
by the works ([5] and [4]) of Kamnitzer on Mirković-Vilonen polytopes in finite
types, we introduced an affine analog of Berenstein-Zelevinsky datum (BZ datum
for short) in type A

(1)
l−1. Let us recall its construction briefly. For a finite interval I

in Z, we denote by BZI the set of those BZ data of type A|I | which satisfy a certain
normalization condition, called the w0-normalization condition in [9]. The family
{BZI |I is a finite interval in Z} forms a projective system, and hence the set BZZ

of BZ data of type A∞ is defined to be a kind of projective limit of this projective
system. Furthermore, for l ≥ 3, we define the set BZσ

Z
of BZ data of type A

(1)
l−1 to be

the fixed point subset of BZZ under a natural action of the automorphism σ : Z→ Z

given by σ(j)= j + l for j ∈ Z. Note that a BZ datum of type A
(1)
l−1 is realized as

a collection of those integers, indexed by the set of infinite Maya diagrams, which
satisfy the “edge inequalities”, “tropical Plücker relations”, and some additional
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conditions (see Definitions 4 and 5 for details). The set BZσ
Z

has a Uq(ŝll)-crystal
structure, which is naturally induced by that on BZI . In [8], we proved that there
exists a distinguished connected component BZσ

Z
(O) of BZσ

Z
, which is isomorphic

as a crystal to the crystal basis B(∞) of the negative part U−
q (ŝll) of Uq(ŝll). We

anticipated that the connected component BZσ
Z
(O) is identical to the whole of BZσ

Z
,

but we could not prove it in [8]. The purpose of this paper is prove the anticipated
identity, that is, to prove the connectedness of the crystal graph of BZσ

Z
.

In [9], we introduced the notion of e-BZ data of type A
(1)
l−1, which are defined

in the same way as BZ data with another normalization condition, called the e-
normalization condition in [9]. In this paper, we mainly treat e-BZ data instead of
BZ data for the following reasons. First, it is known that the set (BZe

Z
)σ of e-BZ data

of type A
(1)
l−1 is isomorphic as a crystal to BZσ

Z
, and hence the connectedness of the

crystal graph of BZσ
Z

is equivalent to that of (BZe
Z
)σ . Second, in [9], we showed

that there is a natural correspondence between e-BZ data and (certain) limits of
irreducible Lagrangians of the varieties associated to quivers of finite type A. Thus,
we can use geometrical (or quiver-theoretical) methods for the study of e-BZ data.
This is an advantage of e-BZ data.

Our main result (Theorem 5) states that the crystal (BZe
Z
)σ is isomorphic to

B(∞). Because we already know that a distinguished connected component of
(BZe

Z
)σ is isomorphic to B(∞), Theorem 5 tells us that this connected compo-

nent is identical to the whole of (BZe
Z
)σ . In other words, we obtain a new explicit

realization of B(∞) in terms of an affine analog of a BZ datum. Our strategy for
proving Theorem 5 is as follows. In [6], Kashiwara and the third author gave those
conditions which characterize B(∞) uniquely (see Theorem 6 for details). We will
establish Theorem 5 by verifying that the (BZe

Z
)σ indeed satisfies these conditions.

In particular, we will construct a strict embedding Ψ ∗
p : (BZe

Z
)σ → (BZe

Z
)σ ⊗ B∗p ,

called the Kashiwara embedding (see condition (5) of Theorem 6). In order to con-
struct such an embedding, we define another crystal structure, which we call the
ordinary crystal structure, on (BZe

Z
)σ via a certain involution (denoted by �) on the

crystal (BZe
Z
)σ . For this purpose, we take advantage of e-BZ data mentioned above.

First, we consider a given e-BZ datum in (BZe
Z
)σ as a (certain) limit of irreducible

Lagrangians of the varieties associated to quivers of finite type A. Second, we take
the images of these irreducible Lagrangians under the (so-called) ∗-operation. Here
we note that for an irreducible Lagrangian, the ∗-operation is described explicitly
in terms of transposition of matrices (see Sect. 2.5). Finally, by taking a limit of
these images under the ∗-operation, we obtain the involution � on (BZe

Z
)σ . This

construction plays a crucial role in our proof.
This paper is organized as follows. In Sect. 2, we give a quick review of results

in our previous works. In Sect. 3, we introduce a new crystal structure, called the
ordinary crystal structure, on BZe

I . Here, BZe
I is the set of e-BZ data associated to

a finite interval I . Since (BZe
Z
)σ is the set of σ -fixed points of a kind of projective

limit of BZe
I ’s, we can define the ordinary crystal structure on (BZe

Z
)σ induced nat-

urally by that of BZe
I ’s. However, in order to overcome some technical difficulties

in following this procedure, we need a quiver-theoretical interpretation of BZe
I . We
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treat these technicalities in Sect. 4. In Sect. 5, we prove our main result (Theorem 5)
by checking the conditions in Theorem 6 for the (BZe

Z
)σ .

Finally, let us mention some related works, which appeared recently. The first
one is by Muthiah [7]. In [3], Braverman, Finkelberg, and Gaitsgory introduced
analogs of Mirković-Vilonen cycles in the case of an affine Kac-Moody group, and
defined a crystal structure on the set of those cycles. After that, Muthiah studied the
crystal structure of those cycles in an explicit way, and proved that it is isomorphic
to the crystal BZσ

Z
in affine type A. The second one is by Baumann, Kamnitzer,

and Tingley [1]. Let g be a symmetric affine Kac-Moody Lie algebra. In [1], they
introduced the notion of affine Mirković-Vilonen polytopes by using the theory of
preprojective algebras of the same type as g, and showed that there exists a bijection
between the set of affine Mirković-Vilonen polytopes and the crystal basis B(−∞)

of the positive part U+
q (g) of Uq(g). It seems to us that these works are closely

related to results in this paper. However, an explicit relationship between them is
still unclear; this is our future problem.

2 Review of Known Results

2.1 Preliminaries on Root Data

Let t be a vector space over C with basis {εi}i∈Z; we set hi := εi − εi+1, i ∈ Z. We
define Λi,Λ

c
i ∈ t∗ :=HomC(t,C), i ∈ Z by

〈εj ,Λi〉Z :=
{

1 if j ≤ i,

0 if j > i,

〈
εj ,Λ

c
i

〉
Z
=
{

0 if j ≤ i,

1 if j > i,

where 〈·, ·〉Z : t× t∗ → C is the canonical pairing, and set αi := −Λi−1 + 2Λi −
Λi+1, i ∈ Z. Let WZ := 〈σi |i ∈ I 〉(⊂ GL(t)) be the Weyl group of type A∞, where
σi is the automorphism of t defined by σi(t)= t − 〈t, αi〉Zhi , t ∈ t; the group WZ

also acts on t∗ by σi(λ)= λ− 〈hi, λ〉Zαi , λ ∈ t∗.
Let I = [n+ 1, n+m] be a finite interval in Z whose cardinality is equal to m,

and consider a finite-dimensional subspace hI :=⊕i∈I Chi of t∗. For each i ∈ I ,
set αI

i := πI (αi) and 'I
i := πI (Λi), where πI : t∗ → h∗I := HomC(hI ,C) is the

natural projection; we denote by 〈·, ·〉I the canonical pairing between hI and h∗I .
Then we can regard ({αI

i }i∈I , {hi}i∈I ,h∗I ,hI ) as the root datum of type Am. Also,
the set {'I

i }i∈I can be regarded as the set of fundamental weights. Let WI be the
subgroup of WZ generated by σi , i ∈ I . Since σi stabilizes the subspace hI of t for
all i ∈ I , we can regard WI as a subgroup of GL(hI ); the group WI acts on h∗I in a
usual way.
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2.2 BZ Data Associated to a Finite Interval

Set Ĩ := I ∪ {n+m+ 1}. A subset k⊂ Ĩ is called a Maya diagram associated to I ;
we denote by MI the set of all Maya diagrams associated to I , and set M×

I :=MI \
{φ, Ĩ }. We identify M×

I with ΓI :=⊔i∈I WI'
I
i via the bijection [n+ 1, i] ↔'I

i .
Under this identification, 〈·, ·〉I induces a pairing between hI and M×

I , which is
given explicitly as follows:

〈hi,k〉I =
⎧
⎨

⎩

1 if i ∈ k and i + 1 	∈ k,
−1 if i 	∈ k and i + 1 ∈ k,
0 otherwise.

(2.1)

Let M = (Mk)k∈M×
I

be a collection of integers indexed by M×
I . For each k ∈

M×
I , we call Mk the k-component of M, and denote it by (M)k.

Definition 1 (1) A collection M= (Mk)k∈M×
I

of integers indexed by M×
I is called

a Berenstein-Zelevinsky datum (BZ datum for short) associated to I if it satisfies
the following conditions:

(BZ-1) for all indices i 	= j in Ĩ and all k ∈MI such that k∩ {i, j} = φ,

Mk∪{i} +Mk∪{j} ≤Mk∪{i,j} +Mk;
(BZ-2) for all indices i < j < k in Ĩ and all k ∈MI such that k∩ {i, j, k} = φ,

Mk∪{i,k} +Mk∪{j} =min{Mk∪{i,j} +Mk∪{k},Mk∪{j,k} +Mk∪{i}}.
Here, Mφ =MĨ = 0 by convention.

(2) A BZ datum M = (Mk)k∈M×
I

is called a w0-BZ (resp., e-BZ) datum if it
satisfies the following normalization condition:

(BZ-0) for every i ∈ I , M[i+1,n+m+1] = 0 (resp., M[n+1,i] = 0).

We denote by BZI (resp., BZe
I ) the set of all w0-BZ (resp., e-BZ) data.

For M= (Mk)k∈M×
I
∈ BZI , define a new collection M∗ = (M∗

k)k∈M×
I

of inte-
gers by

M∗
k :=Mkc ,

where kc := Ĩ \ k is the complement of k in Ĩ . Then, M∗ is an element of BZe
I ,

and the map ∗ : M �→ M∗ gives a bijection from BZI to BZe
I . We also denote its

inverse by ∗.
Let K = [n′ + 1, n′ +m′] be a subinterval of I , and define

M×
I (K) := {k ∈M×

I |k=
[
n+ 1, n′

]∪ k′ for some k′ ∈M×
K

}
.
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Then, M×
K is naturally identified with M×

I (K) via the bijection k′ �→ [n+ 1, n′] ∪
k′. We denote its inverse by resIK :M×

I (K)
∼→M×

K .
For M= (Mk)k∈M×

I
∈ BZe

I , we define a new collection MK = (M ′
m)m∈M×

K
of

integers indexed by M×
K by

M ′
m :=M(resIK )−1(m).

Then, MK is an e-BZ datum associated to K .

2.3 Crystal Structure on BZ Data Associated to a Finite Interval

First, we recall the crystal structure on BZI . For M= (Mk)k∈M×
I
∈ BZI and i ∈ I ,

define

wt (M) :=
∑

i∈I
M[n+1,i]αI

i ,

εi(M) := −(M[n+1,i] +M[n+1,i−1]∪{i+1} −M[n+1,i−1] −M[n+1,i+1]),

ϕi(M) := εi(M)+ 〈hi,wt (M)
〉
I
.

Proposition 1 (1) Let M = (Mk)k∈M×
I
∈ BZI . If εi(M) > 0, then there exits a

unique w0-BZ datum M′ = (M ′
k)k∈M×

I
such that

(i) M ′[n+1,i] =M[n+1,i] + 1,

(ii) M ′
k = Mk for all k ∈M×

I \M×
I (i), where M×

I (i) := {k ∈M×
I |i ∈ k and

i + 1 	∈ k}.
(2) There exits a unique w0-BZ datum M′′ = (M ′′

k )k∈M×
I

such that

(iii) M ′′[n+1,i] =M[n+1,i] − 1,

(iv) M ′′
k =Mk for all k ∈M×

I \M×
I (i).

We set

ẽiM :=
{

M′ if εi(M) > 0,
0 if εi(M)= 0,

and f̃iM :=M′′.

Proposition 2 The set BZI , equipped with the maps wt, εi , ϕi , ẽi , f̃i , is a crystal,
which is isomorphic to (B(∞);wt, εi, ϕi, ẽi , f̃i ).

The explicit form of the action of the lowering Kashiwara operator f̃i on BZI is
given by the following:
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Proposition 3 For M= (Mk)k∈M×
I
∈ BZI , we have

(f̃iM)k =
{

min{Mk,Msik + ci(M)} if k ∈M×
I (i),

Mk otherwise,
(2.2)

where ci(M)= 〈hi,wt (M)〉I + εi(M)− 1.

Through the bijection ∗ : BZI
∼→ BZe

I , we can define the ∗-crystal structure on
BZe

I . Namely, for M= (Mk)k∈M×
I
∈ BZe

I , we set

wt (M) :=wt
(
M∗), ε∗i (M) := εi

(
M∗), ϕ∗i (M) := ϕi

(
M∗),

ẽ∗i := ∗ ◦ ẽi ◦ ∗, and f̃ ∗i := ∗ ◦ f̃i ◦ ∗.
It is easy to obtain the following corollaries.

Corollary 1 Let M= (Mk)k∈M×
I
∈ BZe

I .

(1) If ε∗i (M) > 0, then ẽ∗i M is a unique e-BZ datum such that
(i) (̃e∗i M)[i+1,n+m+1] =M[i+1,n+m+1] + 1,

(ii) (̃e∗i M)k =Mk for all k ∈M×
I \M×

I (i)∗, where M×
I (i)∗ := {k ∈M×

I |i 	∈
k and i + 1 ∈ k}.

(2) f̃ ∗i M is a unique e-BZ datum such that
(iii) (f̃ ∗i M)[i+1,n+m+1] =M[i+1,n+m+1] − 1,
(iv) (f̃ ∗i M)k =Mk for all k ∈M×

I \M×
I (i)∗.

(3) For M= (Mk)k∈M×
I
∈ BZe

I , we have

(
f̃ ∗i M

)
k =

{
min{Mk,Msik + c∗i (M)} if k ∈M×

n (i)∗,
Mk otherwise,

(2.3)

where c∗i (M) := 〈hi,wt (M)〉I + ε∗i (M)− 1.

Corollary 2 The set BZe
I , equipped with the maps wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i , is a crystal,

which is isomorphic to (B(∞);wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i ).

2.4 Lusztig Data vs. BZ Data

Let Δ+
I = {(i, j)|i, j ∈ Ĩ with i < j}, and set

BI :=
{
a= (ai,j )(i,j)∈Δ+I |ai,j ∈ Z≥0 for any (i, j) ∈Δ+

I

}
,

which is just the set of all m(m + 1)/2-tuples of nonnegative integers indexed by
Δ+

I . Here, m is the cardinality of the interval I . An element of BI is called a Lusztig
datum associated to I .



Toward Berenstein-Zelevinsky Data in Affine Type A, Part III 367

We define two crystal structures on BI (see [10] and [9] for details). For a ∈ BI ,
set

wt (a) := −
∑

i∈I
riα

I
i , where ri :=

i∑

k=n+1

n+m+1∑

l=i+1

ak,l, i ∈ I.

For i ∈ I , we set

A
(i)
k (a) :=

k∑

s=n+1

(as,i+1 − as−1,i ), n+ 1≤ k ≤ i,

A
∗(i)
l (a) :=

n+m+1∑

t=l+1

(ai,t − ai+1,t+1), i ≤ l ≤ n+m+ 1,

where an,i = 0 and ai+1,n+m+2 = 0 by convention, and define

εi(a) :=max
{
A

(i)
n+1(a), . . . ,A

(i)
i (a)

}
, ϕi(a) := εi(a)+

〈
hi,wt (a)

〉
,

ε∗i (a) :=max
{
A
∗(i)
i (a), . . . ,A∗(i)n+m(a)

}
, ϕ∗i (a) := ε∗i (a)+

〈
hi,wt (a)

〉
.

Also, set

ke :=min
{
n+ 1≤ k ≤ i

∣∣εi(a)=A
(i)
k (a)

}
,

kf :=max
{
n+ 1≤ k ≤ i

∣∣εi(a)=A
(i)
k (a)

}
,

le :=max
{
i ≤ l ≤ n+m

∣∣ε∗i (a)=A
∗(i)
l (a)

}
,

lf :=min
{
i ≤ l ≤ n+m

∣∣ε∗i (a)=A
∗(i)
l (a)

}
.

For a given a ∈ BI , we define four m(m + 1)/2-tuples of integers a(p) = (a
(p)
k,l ),

p = 1,2,3,4, by

a
(1)
k,l :=

⎧
⎨

⎩

ake,i + 1 if k = ke, l = i,

ake,i+1 − 1 if k = ke, l = i + 1,
ak,l otherwise,

a
(2)
k,l :=

⎧
⎨

⎩

akf ,i − 1 if k = kf , l = i,

akf ,i+1 + 1 if k = kf , l = i + 1,
ak,l otherwise,

a
(3)
k,l :=

⎧
⎨

⎩

ai,le+1 − 1 if k = i, l = le + 1,
ai+1,le+1 + 1 if k = i + 1, l = le + 1,
ak,l otherwise,
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a
(4)
k,l :=

⎧
⎨

⎩

ai,lf+1 + 1 if k = i, l = lf + 1,
ai+1,lf+1 − 1 if k = i + 1, l = lf + 1,
ak,l otherwise.

Now, we define Kashiwara operators on BI as follows:

ẽia :=
{

0 if εi(a)= 0,
a(1) if εi(a) > 0,

and f̃ia := a(2),

ẽ∗i a :=
{

0 if ε∗i (a)= 0,
a(3) if ε∗i (a) > 0,

and f̃ ∗i a := a(4).

Proposition 4 ([10]) Each of (BI ,wt, εi, ϕi, ẽi , f̃i ) and (BI ,wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i ) is
a crystal, which is isomorphic to B(∞).

Following [9], we call the first one the ordinary crystal structure on BI ; the sec-
ond one is called the ∗-crystal structure on BI .

Definition 2 ([2]) Let k = {kn+1 < kn+2 < · · ·< kn+u} ∈M×
I . For such a k, a k-

tableau is an upper-triangular matrix C = (cp,q)n+1≤p≤q≤n+u, with integer entries,
satisfying the condition

cp,p = kp, n+ 1≤ p ≤ n+ u,

and the usual monotonicity condition for semi-standard tableaux:

cp,q ≤ cp,q+1, cp,q < cp+1,q .

For a= (ai,j ) ∈ BI , define a collection M(a)= (Mk(a))k∈M×
I

of integers by

Mk(a) := −
n+u∑

j=n+1

kj−1∑

i=n+1

ai,kj

+min

{ ∑

n+1≤p<q≤n+u

acp,q ,cp,q+(q−p)

∣∣∣∣
C = (cp,q) is
a k-tableau

}
.

The following lemma is verified easily by direct calculation.

Lemma 1 Let k= {kn+1 < kn+2 < · · ·< kn+u} be a Maya diagram associated to I .
(1) If there exists s such that kl = l for all n+ 1≤ l ≤ s, then we have

Mk(a)=−
n+u∑

j=s+1

kj−1∑

i=n+1

ai,kj +min

{
n+u∑

q=s+1

q−1∑

p=n+1

acp,q ,cp,q+(q−p)

∣∣∣∣
C = (cp,q) is

a k-tableau

}
.
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In particular, Mk(a) depends only on ai,j with j ≥ s + 1.
(2) If there exists t such that kl−m+u−1 = l for all t + 1≤ l ≤ n+m+ 1, then we

have

Mk(a) = −
t−m+u−1∑

j=n+1

kj−1∑

i=n+1

ai,kj −
n+u∑

j=t−m+u

t∑

i=n+1

ai,j+m−u+1

+min

{
t−m+u−1∑

p=n+1

n+u∑

q=p+1

acp,q ,cp,q+(q−p)

∣∣∣∣∣
C = (cp,q) is
a k-tableau

}
.

In particular, Mk(a) depends only on ai,j with i ≤ t .

Theorem 1 ([2, 10]) Let ΨI denote the map a �→M(a). For every a ∈ BI , ΨI (a)=
M(a) is an e-BZ datum. Moreover, ΨI : BI → BZe

I is an isomorphism of crystals
with respect to the ∗-crystal structures on BI and BZe

I .

2.5 BZ Data Arising from the Lagrangian Construction of B(∞)

Let (I,H) be the double quiver of type Am. Here, the finite interval I = [n+ 1, n+
m] in Z is considered as the set of vertices, and H as the set of arrows. Let out(τ )
(resp., in(τ )) denote the outgoing (resp., incoming) vertex of τ ∈ H . For a given
τ ∈ H , we denote by τ the same edge as τ with the reverse orientation. Then, the
map τ �→ τ defines an involution of H . An orientation Ω is a subset of H such that
Ω ∩Ω = φ and Ω ∪Ω =H . Note that (I,Ω) is a Dynkin quiver of type Am.

Let ν = (νi)i∈I ∈ Z
I≥0. In the following, we regard ν as an element of Q+ :=⊕

i∈I Z≥0α
I
i via the map ν �→∑

i∈I νiαI
i . Let V (ν)=⊕i∈I V (ν)i be an I -graded

complex vector space with dimension vector dimV (ν)= ν. Set

EV (ν),Ω :=
⊕

τ∈Ω
HomC

(
V (ν)out(τ ), V (ν)in(τ )

)
,

X(ν) :=
⊕

τ∈H
HomC

(
V (ν)out(τ ), V (ν)in(τ )

)
.

We will write an element of EV (ν),Ω or X(ν) as B = (Bτ ), where Bτ is an element
of HomC(V (ν)out(τ ), V (ν)in(τ )). Define a symplectic form ω on X(ν) by

ω
(
B,B ′

) :=
∑

τ∈H
ε(τ)tr

(
BτB

′
τ

)
,

where ε(τ )= 1 for τ ∈Ω and ε(τ )=−1 for τ ∈Ω , and regard X(ν) as the cotan-
gent bundle T ∗EV (ν),Ω of EV (ν),Ω via the symplectic form ω.
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Also, the reductive group G(ν) :=∏i∈I GL(V (ν)i) acts on EV (ν),Ω and X(ν)

by: (Bτ ) �→ (gin(τ )Bτ g
−1
out(τ )) for g = (gi) ∈G(ν). Since the action of G(ν) on X(ν)

preserves the symplectic form ω, we can consider the corresponding moment map
μ : X(ν)→ (g(ν))∗ ∼= g(ν). Here g(ν) = LieG(ν), and we identify g(ν) with its
dual via the Killing form. We set

Λ(ν) := μ−1(0).

Then, Λ(ν) is a G(ν)-invariant closed Lagrangian subvariety of X(ν). We denote
by IrrΛ(ν) the set of all irreducible components of Λ(ν).

Let ν, ν′, ν ∈Q+, with ν = ν′ + ν. Consider the diagram

Λ
(
ν′
)×Λ(ν)

q1←−Λ
(
ν′, ν

) q2−→Λ(ν). (2.4)

Here, Λ(ν′, ν) denotes the variety of those (B,φ′, φ) for which B ∈Λ(ν), and φ′ =
(φ′i ), φ = (φi) give an exact sequence of I -graded complex vector spaces

0−→ V
(
ν′
)
i

φ′i−→ V (ν)
φi−→ V (ν)−→ 0

such that Imφ′ is stable by B; note that B induces B ′ : V (ν′) → V (ν′) and
B : V (ν)→ V (ν). The maps q1 and q2 are defined by q1(B,φ′, φ) := (B ′,B) and
q2(B,φ′, φ) := B , respectively. For i ∈ I and Λ ∈ IrrΛ(ν), we set

εi(Λ) := εi(B) and ε∗i (Λ) := ε∗i (B),

where B is a general point of Λ, and

εi(B) := dimC Coker
( ⊕

τ ;in(τ )=i

V (ν)out(τ )
⊕Bτ−→ V (ν)i

)
,

ε∗i (B) := dimC Ker
(
V (ν)i

⊕Bτ−→
⊕

τ ;out(τ )=i

V (ν)in(τ )

)
;

also for k, l ∈ Z≥0, we set
(
IrrΛ(ν)

)
i,k
:= {Λ ∈ IrrΛ(ν)|εi(Λ)= k

}
and

(
IrrΛ(ν)

)l
i
:= {Λ ∈ IrrΛ(ν)|ε∗i (Λ)= l

}
.

Suppose now that ν = cαi (resp., ν′ = cαi ) for c ∈ Z≥0. Since Λ(cαi) = {0}, we
have the following diagrams as special cases of (2.4):

Λ
(
ν′
)∼=Λ

(
ν′
)×Λ(cαi)

q1←−Λ
(
ν′, cαi

) q2−→Λ(ν), (2.5)

Λ(ν)∼=Λ(cαi)×Λ(ν)
q1←−Λ(cαi, ν)

q2−→Λ(ν). (2.6)
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Diagrams (2.5) and (2.6) induce bijections

ẽmax
i : (IrrΛ(ν)

)
i,c

∼→ (
IrrΛ

(
ν′
))

i,0 and ẽ∗max
i : (IrrΛ(ν)

)c
i

∼→ (
IrrΛ(ν)

)0
i
,

respectively. Then, we define maps

ẽi , ẽ
∗
i :

⊔

ν∈Q+
IrrΛ(ν)→

⊔

ν∈Q+
IrrΛ(ν) 4 {0} and

f̃i , f̃
∗
i :

⊔

ν∈Q+
IrrΛ(ν)→

⊔

ν∈Q+
IrrΛ(ν)

as follows. If c > 0, then

ẽi :
(
IrrΛ(ν)

)
i,c

∼−→ (
IrrΛ

(
ν′
))

i,0
∼−→ (

IrrΛ(ν + αi)
)
i,c−1,

ẽ∗i :
(
IrrΛ(ν)

)c
i

∼−→ (
IrrΛ(ν)

)0
i

∼−→ (
IrrΛ(ν + αi)

)c−1
i
;

and ẽiΛ = 0, ẽ∗i Λ′ = 0 for Λ ∈ (IrrΛ(ν))i,0, Λ′ ∈ (IrrΛ(ν))0
i , respectively. Also,

we define

f̃i :
(
IrrΛ(ν)

)
i,c

∼−→ (
IrrΛ

(
ν′
))

i,0
∼−→ (

IrrΛ(ν − αi)
)
i,c+1,

f̃ ∗i :
(
IrrΛ(ν)

)c
i

∼−→ (
IrrΛ(ν)

)0
i

∼−→ (
IrrΛ(ν − αi)

)c+1
i

.

Let ∗ : B �→ tB be an automorphism of X(ν), where tB is the transpose of B ∈
X(ν). Then, Λ(ν) is stable under ∗, and it induces an automorphism of IrrΛ(ν).

Lemma 2 ([6]) We have ẽ∗i = ∗ ◦ ẽi ◦ ∗ and f̃ ∗i = ∗ ◦ f̃i ◦ ∗.

Theorem 2 ([6]) (1) For Λ ∈ IrrΛ(ν), we set wtΛ := −ν, ϕi(Λ) := εi(Λ) +
〈hi,wtΛ〉. Then, (

⊔
ν∈Q+ IrrΛ(ν);wt, εi, ϕi, ẽi , f̃i ) is a crystal, which is isomor-

phic to (B(∞);wt, εi, ϕi, ẽi , f̃i ).
(2) Set ϕ∗i (Λ)= ε∗i (Λ)+〈hi,wtΛ〉I . Then, (

⊔
ν∈Q+ IrrΛ(ν);wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i )

is a crystal, which is isomorphic to (B(∞);wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i ).

A Maya diagram k ∈M×
I can be written as a disjoint union of intervals:

k= [s1 + 1, t1] 4 [s2 + 1, t2] 4 · · · 4 [sl + 1, tl],
where n≤ s1 < t1 < s2 < t2 < · · ·< sl < tl ≤ n+m+ 1;

the interval Kp = [sp + 1, tp] is called the p-th component of k for 1 ≤ p ≤ l.
Define two subsets out(k) and in(k) of I by

out(k) := {tp|1≤ p ≤ l} ∩ I, in(k) := {sp|1≤ p ≤ l} ∩ I.
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Also, we define two subsets It and Is of I by

It :=

⎧
⎪⎪⎨

⎪⎪⎩

out(k)∪ {n+ 1, n+m} if s1 ≥ n+ 2, tl = n+m+ 1,
out(k)∪ {n+ 1} if s1 ≥ n+ 2, tl ≤ n+m,

out(k)∪ {n+m} if s1 ≤ n+ 1, tl = n+m+ 1,
out(k)∪ {n+ 1, n+m} if s1 ≥ n+ 1, tl ≤ n+m,

Is :=

⎧
⎪⎪⎨

⎪⎪⎩

in(k)∪ {n+ 1, n+m} if s1 = n, tl ≤ n+m− 1,
in(k)∪ {n+ 1} if s1 = n, tl ≥ n+m,

in(k)∪ {n+m} if s1 ≥ n+ 1, tl ≤ n+m− 1,
in(k)∪ {n+ 1, n+m} if s1 ≥ n+ 1, tl ≥ n+m.

Then, there exists a unique orientation Ω(k) such that It is identical to the set of
source vertices of the quiver (I,Ω(k)), and Is is identical to the set of sink vertices
of this quiver.

For B = (Bτ )τ∈H ∈X(ν), we set

Mk(B) := −dimC Coker
( ⊕

k∈out(k)

V (ν)k
⊕Bμ−→

⊕

l∈in(k)

V (ν)l

)
,

where μ := τi1τi2 · · · τlq is a path from k ∈ out(k) to l ∈ in(k) under the orientation
Ω(k), and Bμ := Bτi1

Bτi2
· · ·Bτiq

is the corresponding composite of linear maps.

For Λ ∈ IrrΛ(ν) and k ∈M×
I , define

Mk(Λ) :=Mk(B),

where B = (Bτ )τ∈H is a general point of Λ.

Proposition 5 ([10]) (1) For each Λ ∈ IrrΛ(ν), a collection M(Λ) :=
(Mk(Λ))k∈M×

I
of integers is an e-BZ datum.

(2) The map ΨI :⊔ν∈Q+ IrrΛ(ν)→ BZe
I , defined by Λ �→M(Λ), gives rise to

an isomorphism of crystals (
⊔

ν∈Q+ IrrΛ(ν);wt, ε∗i , ϕ∗i , ẽ∗i , f̃ ∗i )
∼→ (BZe

I ;wt, ε∗i ,
ϕ∗i , ẽ∗i , f̃ ∗i ).

2.6 BZ Data Associated to Z

Definition 3 (1) For a given integer r ∈ Z, a subset k of Z is called a Maya diagram
of charge r if it satisfies the following condition: there exist nonnegative integers p

and q such that

Z≤r−p ⊂ k⊂ Z≤r+q, |k∩Z>r−p| = p, (2.7)

where |k ∩ Z>r−p| denotes the cardinality of the finite set k ∩ Z>r−p . We denote

by M(r)
Z

the set of all Maya diagrams of charge r , and set MZ :=⋃r∈ZM
(r)
Z

.
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(2) For a Maya diagram k of charge r , let kc := Z \ k be the complement of k in
Z. We call kc the complementary Maya diagram of charge r associated to k ∈M(r)

Z
.

We denote by M(r),c
Z

the set of all complementary Maya diagrams of charge r , and

set Mc
Z
:=⋃r∈ZM

(r),c
Z

.

A map c :MZ→Mc
Z

defined by k �→ kc is a bijection; the inverse of this map
is also denoted by c.

We identify ΞZ :=⊔
r∈ZWZΛr (resp., ΓZ :=⊔

r∈ZWZΛ
c
r ) with MZ (resp.,

Mc
Z

) via the bijection Λr ↔ Z≤r (resp., Λc
r ↔ Z>r ). Under the identification ΞZ

∼=
MZ (resp., ΓZ

∼=Mc
Z

), there is an induced action of σi ∈WZ on MZ (resp., Mc
Z

).
It is easy to see that the explicit form of this action is just the transposition (i, i+ 1)
of Z. For ξ ∈ΞZ (resp., γ ∈ ΓZ), we denote by k(ξ) (resp., k(γ )) the corresponding
Maya diagram.

Let I be a finite interval in Z, and resI :MZ→MI a map defined by resI (k)=
k ∩ Ĩ for k ∈MZ. Set MZ(I ) := {k ∈MZ|k = Z≤n ∪ kI for some kI ∈M×

I }.
Then the map resI induces a bijection from MZ(I ) to M×

I . For k ∈MZ(I ), if
we set ΩI(k) := (resI )−1(Ĩ \ resI (k)) for k ∈MZ(I ), then ΩI (k) ∈MZ(I ) and
the map ΩI :MZ(I )→MZ(I ) is a bijection. Also, if we define rescI := resI ◦ c :
Mc

Z
→MI , then it induces bijections rescI :Mc

Z
(I ) := (MZ(I ))

c ∼→M×
I and

Ωc
I :Mc

Z
(I )

∼→Mc
Z
(I ) in a similar way.

Let M= (Mk)k∈MZ
be a collection of integers indexed by MZ. For such an M,

we define MI := (Mk)k∈MZ(I ). By the bijection resI :MZ(I )
∼→M×

I , MI can be
regarded as a collection of integers indexed by M×

I . Similarly, for M= (Mk)k∈Mc
Z

,
we define MI := (Mk)k∈Mc

Z
(I ), which is regarded as a collection of integers indexed

by M×
I .

Definition 4 (1) A collection M = (Mk)k∈Mc
Z

of integers is called a complemen-
tary BZ (c-BZ for short) datum associated to Z if it satisfies the following condi-
tions:

(1-a) For each finite interval K in Z, MK = (Mk)k∈M×
K

is an element of BZK .

(1-b) For each k ∈Mc
Z

, there exists a finite interval I in Z such that

(1-i) k ∈Mc
Z
(I ),

(1-ii) for every finite interval J ⊃ I , MΩc
J (k)

=MΩc
I (k)

.

(2) A collection M= (Mk)k∈MZ
of integers is called an e-BZ datum associated

to Z if it satisfies the following conditions:

(2-a) For each finite interval K in Z, MK = (Mk)k∈M×
K

is an element of BZe
K .

(2-b) For each k ∈MZ, there exists a finite interval I in Z such that

(2-i) k ∈MZ(I ),
(2-ii) for every finite interval J ⊃ I , MΩJ (k) =MΩI (k).

We denote by BZZ (resp., BZe
Z

) the set of all c-BZ (resp., e-BZ) data associated
to Z.
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For a given c-BZ datum M = (Mk)k∈Mc
Z
∈ BZZ, we define a new collection

M∗ = (M∗
k)k∈MZ

of integers by M∗
k :=Mkc . As in the case of finite intervals, M∗

is an element of BZe
Z

and the map ∗ : BZZ → BZe
Z

is a bijection. The inverse of
this bijection is also denoted by ∗. We note that ∗2 = id.

Let M = (Mk)k∈Mc
Z
∈ BZZ be a c-BZ datum. For each complementary Maya

diagram k ∈Mc
Z

, we denote by Intc(M;k) the set of all finite intervals I in Z

satisfying condition (1-b) in the definition above.
For M ∈ BZZ, we define another collection Θ(M) = (Θ(M)k)k∈MZ

of in-
tegers as follows. Fix k ∈MZ and take the complement kc ∈Mc

Z
of k. Since

M ∈ BZZ, there exists a finite interval I ∈ Intc(M;kc). Then we define Θ(M)k :=
M(rescI )

−1(resI (k)); this definition does not depend on the choice of I .
Now, let M= (Mk)k∈MZ

∈ BZe
Z

. Note that M∗ ∈ BZZ. We set

Inte(M;k) := Intc
(
M∗;kc

)
. (2.8)

Lemma 3 The set Inte(M;k) is identical to the set of all finite intervals I in Z

satisfying condition (2-b) in Definition 4.

Proof It suffices to show that I ∈ Inte(M;k)= Intc(M∗;kc) if and only if I satisfies
condition (2-b). By the definition of Mc

Z
(I ), the condition kc ∈Mc

Z
(I ) is equiv-

alent to the condition k ∈MZ(I ). Suppose that this condition is satisfied. Recall
the following equation in Lemma 3.3.1 of [9]: Ωc

I (k
c)= (ΩI (k))c for k ∈MZ(I ).

From this, we deduce that

M∗
Ωc

I (k
c) =M(Ωc

I (k
c))c =MΩI (k).

Thus, condition (1-ii) for M∗ and kc is equivalent to condition (2-ii) for M and k.
This proves the lemma. �

2.7 Action of Kashiwara Operators

First, we define the action of the raising Kashiwara operators ẽp , p ∈ Z, on BZZ.
For M= (Mk)k∈Mc

Z
∈ BZZ and p ∈ Z, set

εp(M) := −(Θ(M)k(Λp) +Θ(M)k(σpΛp) −Θ(M)k(Λp+1) −Θ(M)k(Λp−1)

)
.

Let I ∈ Intc(M;k(Λp)
c) ∩ Intc(M;k(σpΛp)

c) ∩ Intc(M;k(Λp+1)
c) ∩ Intc(M;

k(Λp−1)
c). Then it is known that εp(M) = εp(MI ), and hence this is a nonneg-

ative integer.
If εp(M) = 0, then we set ẽpM = 0. Suppose that εp(M) > 0. Then we define

ẽpM = (M ′
k)k∈Mc

Z
as follows. For k ∈Mc

Z
, take a finite interval I in Z such that

k ∈Mc
Z
(I ) and I ∈ Intc(M;k(Λp)

c)∩ Intc(M;k(σpΛp)
c)∩ Intc(M;k(Λp+1)

c)∩
Intc(M;k(Λp−1)

c). Set

M ′
k := (̃epMI )rescI (k)

.
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Here we note that ẽpMI is defined since MI ∈ BZI .
Second, let us define the action of the lowering Kashiwara operators f̃p,p ∈ Z,

on BZZ. For M = (Mk)k∈Mc
Z
∈ BZZ and p ∈ Z, we define f̃pM = (M ′′

k )k∈Mc
Z

as follows. For k ∈Mc
Z

, take a finite interval I in Z such that k ∈Mc
Z
(I ) and

I ∈ Intc(M;k(Λp)
c)∩ Intc(M;k(σpΛp)

c). Set

M ′′
k := (f̃pMI )rescI (k)

.

Proposition 6 ([8]) (1) The definition above of M ′
k (resp., M ′′

k ) does not depend on
the choice of I .

(2) For each M= (Mk)k∈Mc
Z
∈ BZZ and p ∈ Z, ẽpM (resp., f̃pM) is contained

in BZZ ∪ {0} (resp., BZZ).

For M ∈ BZe
Z

, set ε∗p(M) := εp(M∗),p ∈ Z. We define the Kashiwara operators
ẽ∗p and f̃ ∗p on BZe

Z
by

ẽ∗pM :=
{
(̃ep(M∗))∗ if ε∗p(M) > 0,
0 if ε∗p(M)= 0,

and f̃ ∗p M := (f̃p

(
M∗))∗.

The following corollary is easily obtained from the proposition above.

Corollary 3 For each M ∈ BZe
Z

and p ∈ Z, ẽ∗pM (resp., f̃ ∗p M) is contained in
BZe

Z
∪ {0} (resp., BZe

Z
).

2.8 BZ Data of Type A
(1)
l−1

Fix l ∈ Z≥3. Let ĝ be the affine Lie algebra of type A
(1)
l−1, ĥ the Cartan subal-

gebra of ĝ, ĥi ∈ ĥ, i ∈ Î := {0,1, . . . , l − 1}, the simple coroots of ĝ, and α̂i ∈
ĥ∗ := HomC(̂h,C), i ∈ Î , the simple roots of ĝ. We set Q̂+ := ∑

i Z≥0α̂i and
Q̂− := −Q̂+. Note that 〈̂hi, α̂j 〉 = âij for i, j ∈ Î . Here, 〈·, ·〉 : ĥ× ĥ∗ → C is the

canonical pairing, and Â= (̂aij )i,j∈Î is the Cartan matrix of type A
(1)
l−1 with index

set Î ; the entries âij are given by

âij :=
⎧
⎨

⎩

2 if i = j,

−1 if |i − j | = 1 or l − 1,
0 otherwise.

Now, consider a bijection τ : Z→ Z given by τ(j) := j + 1 for j ∈ Z. It in-
duces an automorphism τ : t∗ ∼→ t∗ such that τ(Λj )=Λj+1 and τ(Λc

j )=Λc
j+1 for

all j ∈ Z. It follows that τ ◦ σj = σj+1 ◦ τ . Also, for i ∈ Î , define a family Si of
automorphism of t∗ by

Si := {σi+al |a ∈ Z}.
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Since l ≥ 3, σj1σj2 = σj2σj1 for all σj1, σj2 ∈ Si , and for a fixed k ∈MZ or Mc
Z

,
there exists a finite subset Si(k)⊂ Si such that σj (k)= k for every σj ∈ Si \ Si(k).
Therefore, we can define an infinite product σ̂i :=∏σj∈Si

σj of operators acting on

MZ and Mc
Z

. Note that we have τ ◦ σ̂i = σ̂i+1 ◦ τ , where we regard i ∈ Î as an
element of Z/lZ.

Set σ := τ l . For M ∈ BZZ, we define new collections σ(M) and σ−1(M) of
integers indexed by Mc

Z
by σ(M)k := Mσ−1(k) and σ−1(M)k := Mσ(k) for each

k ∈Mc
Z

, respectively. It is shown in [8] that σ(M) and σ−1(M) are both elements
of BZZ.

Similarly, for M ∈ BZe
Z

, we can define new collections σ±(M), and prove that
they are both elements of BZe

Z
.

Lemma 4 ([8]) (1) On BZZ, we have Θ ◦ σ = σ ◦Θ .
(2) For M ∈ BZZ and p ∈ Z, εp(σ (M))= εσ−1(p)(M).
(3) The equalities σ ◦ ẽp = ẽσ (p) ◦ σ and σ ◦ f̃p = f̃σ (p) ◦ σ hold on BZZ ∪ {0}

for all p ∈ Z. Here it is understood that σ(0)= 0.

Definition 5 Set

BZσ
Z
:= {M ∈ BZZ|σ(M)=M

}
and

(
BZe

Z

)σ := {M ∈ BZe
Z
|σ(M)=M

}
.

An element M of BZσ
Z

(resp., (BZe
Z
)σ ) is called a c-BZ (resp., e-BZ) datum of type

A
(1)
l−1.

2.9 Crystal Structure on BZσ
Z

Now we define a crystal structure on BZσ
Z

, following [8]. For M ∈ BZσ
Z

and p ∈ Î ,
we set

wt (M) :=
∑

p∈Î
Θ(M)k(Λp)α̂p, ε̂p(M) := εp(M),

ϕ̂p(M) := ε̂p(M)+ 〈̂hp,wt (M)
〉
.

In order to define the action of Kashiwara operators, we need the following.

Lemma 5 ([8]) Let q, q ′ ∈ Z, with |q − q ′| ≥ 2. Then, we have ẽq ẽq ′ = ẽq ′ ẽq ,
f̃q f̃q ′ = f̃q ′ f̃q , and ẽq f̃q ′ = f̃q ′ ẽq , as operators on BZZ ∪ {0}.

For M ∈ BZσ
Z

and p ∈ Î , we define êpM and f̂pM as follows. If ε̂p(M) = 0,
then we set êpM := 0. If ε̂p(M) > 0, then we define a new collection êpM= (M ′

k)

of integers indexed by Mc
Z

by

M ′
k := (eL(k,p)M)k for each k ∈Mc

Z
.
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Here, L(k,p) := {q ∈ p+ lZ|q ∈ k and q+ 1 	∈ k} and eL(k,p) :=∏q∈L(k,p) ẽq . By
the definition, L(k,p) is a finite set such that |q − q ′| > 2 for all q, q ′ ∈ L(k,p)

with q 	= q ′. Therefore, by Lemma 5, eL(k,p) is a well-defined operator on BZZ.
A collection f̂pM= (M ′′

k ) of integers indexed by Mc
Z

is defined by

M ′′
k := (fL(k,p)M)k for each k ∈Mc

Z
,

where fL(k,p) :=∏q∈L(k,p) f̃q . By the same reasoning as above, we see that fL(k,p)

is a well-defined operator on BZZ.

Proposition 7 ([8]) (1) We have êpM ∈ BZσ
Z
∪ {0} and f̂pM ∈ BZσ

Z
.

(2) The set BZσ
Z

, equipped with the maps wt, ε̂p, ϕ̂p, êp, f̂p , is a Uq(ŝll )-crystal.

Let O be a collection of integers indexed by Mc
Z

whose k-component is equal
to 0 for all k ∈Mc

Z
. It is obvious that O ∈ BZσ

Z
. Let BZσ

Z
(O) denote the connected

component of the crystal BZσ
Z

containing O. The following is the main result of [8].

Theorem 3 ([8]) As a crystal, (BZσ
Z
(O);wt, ε̂p, ϕ̂p, êp, f̂p) is isomorphic to B(∞)

for Uq(ŝll ).

In a manner similar to the one in [8], we can define a crystal structure on (BZe
Z
)σ .

By the construction, it is easy to see that ∗ ◦ σ = σ ◦ ∗. Therefore, the restriction of
∗ : BZZ

∼→ BZe
Z

to the subset BZσ
Z

gives rise to a bijection ∗ : BZσ
Z

∼→ (BZe
Z
)σ .

We denote by O∗ the image of O ∈ BZσ
Z

under the bijection ∗. Then, O∗ is a collec-
tion of integers indexed by MZ whose k-component is equal to 0 for all k ∈MZ.

For M ∈ (BZe
Z
)σ and p ∈ Z, we define

wt (M) :=wt
(
M∗), ε̂∗p(M) := ε̂p

(
M∗), ϕ̂∗p(M) := ε̂∗p(M)+ 〈̂hp,wt (M)

〉
,

and

ê∗pM :=
{
(̂ep(M∗))∗ if ε̂∗p(M) > 0,
0 if ε̂∗p(M)= 0,

f̂ ∗p :=
(
f̂p

(
M∗))∗.

The following corollary is an easy consequence of Theorem 3.

Corollary 4 (1) The set (BZe
Z
)σ , equipped with the maps wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p , is a

Uq(ŝll )-crystal.
(2) Let (BZe

Z
)σ (O∗) be the connected component of the crystal (BZe

Z
)σ con-

taining O∗ ∈ (BZe
Z
)σ . Then, ((BZe

Z
)σ (O∗);wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ) is isomorphic as a

crystal to B(∞) for Uq(ŝll ).
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3 Ordinary Crystal Structure on BZe
I

3.1 The Operator �

Let M= (Mk)k∈M×
I

be an e-BZ datum associated to a finite interval I = [n+1, n+
m]. Set wt∨(M) :=∑i∈I M[i+1,n+m+1]hi . Then the following equality holds:

〈
wt∨(M), αI

i

〉
I
= 〈hi,wt (M)

〉
I
.

Definition 6 For each M = (Mk)k∈MI
∈ BZe

I , we define a new collection M� =
(M

�

k)k∈M×
I

of integers by

M
�

k :=Mkc − 〈wt∨(M),k
〉
I
.

It is easy to verify the following lemma.

Lemma 6 (1) wt (M�)=wt (M) and wt∨(M�)=wt∨(M).
(2) (M�)� =M.

Lemma 7 M� ∈ BZe
I .

Proof It suffices to check conditions (BZ-0), (BZ-1), and (BZ-2). Condition (BZ-0)
is checked by an easy calculation. Let us check (BZ-1): for k∩ {i, j} = φ,

M
�

k∪{i} +M
�

k∪{j} ≤M
�

k∪{i,j} +M
�

k.

Since

〈
hk,k∪ {i}〉

I
=
⎧
⎨

⎩

1 if k = i,

−1 if k = i − 1,
〈hk,k〉I otherwise,

〈
hk,k∪ {j}〉

I
=
⎧
⎨

⎩

1 if k = j,

−1 if k = j − 1,
〈hk,k〉I otherwise,

and

〈
hk,k∪ {i, j}〉

I
=
⎧
⎨

⎩

1 if k = i or j,
−1 if k = i − 1 or j − 1,
〈hk,k〉I otherwise,

we obtain the following equalities:

〈
hk,k∪ {i}〉

I
+ 〈hk,k∪ {j}〉

I
= 〈hk,k∪ {i, j}〉

I
+ 〈hk,k〉I for all k ∈ I.
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From this, we deduce that

〈
wt∨(M),k∪ {i}〉

I
+ 〈wt∨(M),k∪ {j}〉

I
= 〈wt∨(M),k∪ {i, j}〉

I
+ 〈wt∨(M),k

〉
I
.

Since M(k∪{i})c +M(k∪{j})c ≤M(k∪{i,j})c +Mkc , condition (BZ-1) is satisfied for
M�.

Now, suppose that k ∩ {i, j, k} = φ with i < j < k. Then, for every l ∈ I , we
have

〈
hl,k∪ {i, k}〉

I
+ 〈hl,k∪ {j}〉

I
= 〈hl,k∪ {j, k}〉

I
+ 〈hl,k〉I

= 〈hl,k∪ {i, j}〉
I
+ 〈hl,k〉I .

From this equality, we see that condition (BZ-2) is satisfied for M� by the same
argument as for condition (BZ-1). �

For M ∈ BZe
I , set εi(M) := −M[n+1,i−1]∪{i+1}.

Lemma 8 εi(M)= ε∗i (M�).

Proof By Lemma 6(2), it suffices to show that εi(M�)= ε∗i (M). By the definitions,
we have

ε∗i (M)=−M[i+1,n+m+1] −M{i}∪[i+2,n+m+1] +M[i+2,n+m+1] +M[i,n+m+1].

Also, we compute:

εi
(
M�
)=−M

�
[n+1,i−1]∪{i+1}

= −M([n+1,i−1]∪{i+1})c +
〈
wt∨(M), [n+ 1, i − 1] ∪ {i + 1}〉

I

=−M{i}∪[i+2,n+m+1] +
∑

l∈I
M[l+1,n+m+1]

〈
hl, [n+ 1, i − 1] ∪ {i + 1}〉

I

=−M{i}∪[i+2,n+m+1] −M[i+1,n+m+1] +M[i+2,n+m+1] +M[i,n+m+1].

Thus, we obtain the desired equality. �

Lemma 9 (1) If εi(M) > 0, then

(a) (̃e∗i (M�))
�

k =Mk + 1 for k ∈M×
I (i)∗,

(b) (̃e∗i (M�))
�

k =Mk for k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).

(2) For every M ∈ BZe
I ,

(a) (f̃ ∗i (M�))
�

k =Mk − 1 for k ∈M×
I (i)∗,

(b) (f̃ ∗i (M�))
�

k =Mk for k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).



380 S. Naito et al.

Proof Since part (2) is proved in a similar way, we only give a proof of part (1).
Suppose that k ∈M×

I (i)∗ or k ∈M×
I \ (M×

I (i) ∪M×
I (i)∗). Then, kc ∈M×

I \
M×

I (i)∗. Also, since ε∗i (M�)= εi(M) > 0, it follows that

ẽ∗i
(
M�
)

kc =M�

kc by Proposition 1

=Mk −
〈
wt∨(M),kc

〉
I

=Mk +
〈
wt∨(M),k

〉
I
.

Therefore, we have

(
ẽ∗i
(
M�
))�

k = ẽ∗i
(
M�
)

kc −
〈
wt∨

(
ẽ∗i
(
M�
))
,k
〉
I

=Mk +
〈
wt∨(M),k

〉
I
− 〈wt∨(M),k

〉
I
− 〈hi,k〉I by Lemma 6(1)

=Mk − 〈hi,k〉I

=
{
Mk + 1 if k ∈M×

I (i)∗,
Mk if M×

I \ (M×
I (i)∪M×

I (i)∗).

This proves the lemma. �

Proposition 8 (1) Assume that εi(M) > 0. Then, there exists a unique e-BZ datum
M[1] such that

(a) (M[1])k =Mk + 1 for k ∈M×
I (i)∗,

(b) (M[1])k =Mk for k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).

(2) There exists a unique e-BZ datum M[2] such that

(a) (M[2])k =Mk − 1 for k ∈M×
I (i)∗,

(b) (M[2])k =Mk for k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).

Proof Since part (2) is proved in a similar way, we only give a proof of part (1). The
existence of the required M[1] is already proved in Lemma 9. Let N[1] be another
e-BZ datum which satisfy conditions (a) and (b). For the uniqueness, it suffices
to show that M[1]

k = N[1]k for an arbitrary subinterval k = [s + 1, t] of Ĩ , where
Ĩ = [n+ 1, n+m+ 1]. If [s + 1, t] ∈M×

I \M×
I (i), then the assertion is obvious

from conditions (a) and (b). Assume that [s+1, t] ∈M×
I (i). Here we note that such

an interval [s + 1, t] has the following form:

[s + 1, i], n≤ s ≤ i − 1.

If s = n, then we have (M[1])[n+1,i] = (N[1])[n+1,i] = 0 by the normalization condi-
tion. Now, suppose that (M[1])[s,i] = (N[1])[s,i]. Then, by the tropical Plücker rela-
tion for k= [s + 1, i − 1] and s < i < i + 1, we have



Toward Berenstein-Zelevinsky Data in Affine Type A, Part III 381

(
M[1])

[s+1,i] +
(
M[1])

[s,i−1]∪{i+1}

+min
{(

M[1])
[s,i−1] +

(
M[1])

[s+1,i+1],
(
M[1])

[s+1,i−1]∪{i+1} +
(
M[1])

[s,i]
}
.

Also, by conditions (a) and (b), we have
(
M[1])

[s,i−1]∪{i+1} =M[s,i−1]∪{i+1} + 1,
(
M[1])

[s+1,i−1]∪{i+1} =M[s+1,i−1]∪{i+1} + 1,

(
M[1])

[s,i−1] =M[s,i−1],
(
M[1])

[s+1,i+1] =M[s+1,i+1].

Therefore, we deduce that
(
M[1])

[s+1,i] = −M[s,i−1]∪{i+1} − 1

+min
{
M[s,i−1] +M[s+1,i+1],M[s+1,i−1]∪{i+1} + 1+ (M[1])

[s,i]
}
.

Similarly, we obtain
(
N[1]

)
[s+1,i] = −M[s,i−1]∪{i+1} − 1

+min
{
M[s,i−1] +M[s+1,i+1],M[s+1,i−1]∪{i+1} + 1+ (N[1])[s,i]

}
.

Consequently, we obtain (M[1])[s+1,i] = (N[1])[s+1,i]. This proves the proposi-
tion. �

Corollary 5 For k ∈M×
I (i), we have

(
M[2])

k =min
{
Mk + 1,Mσik + εi(M)

}
.

Proof From the uniqueness of M[2], it follows that M[2] = (f̃ ∗i (M�))�. Therefore,

(
M[2])

k =
(
f̃ ∗i
(
M�
))�

k

= (f̃ ∗i
(
M�
))

kc −
〈
wt∨

(
f̃ ∗i
(
M�
))
,k
〉
I

=min
{(

M�
)

kc ,
(
M�
)
σikc + c∗i

(
M�
)}− 〈wt∨(M),k

〉
I
+ 〈hi,k〉I

=min
{
Mk + 1,Mσik +

〈
wt∨(M), σik− k

〉
I
+ c∗i

(
M�
)+ 1

}
.

Here, we remark that 〈hi,k〉 = 1 since k ∈M×
I (i). Let us compute the second term

on the right-hand side of the last equality. Note that σik− k=−〈hi,k〉I αI
i =−αI

i .
Hence we deduce that

the second term=Mσik −
〈
wt∨(M), αI

i

〉
I
+ 〈hi,wt

(
M�
)〉

I
+ ε∗i

(
M�
)− 1+ 1

=Mσik + εi(M).

This proves the corollary. �
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3.2 Ordinary Crystal Structure on BZe
I

We define another crystal structure on BZe
I via the bijections BI

∼→⊔
ν∈Q+ IrrΛ(ν)

∼→ BZe
I . Let M = (Mk)k∈M×

I
be an e-BZ datum. Then, there exists a unique

Lusztig datum a (or equivalently, a unique irreducible Lagrangian Λa) such that
M=M(a). Now we define

εi(M) := εi(a)= εi(Λa), ϕi(M) := ϕi(a)= ϕi(Λa),

ẽiM :=
{

M(̃eia)=M(̃eiΛa) if εi(a) > 0,
0 if εi(a)= 0,

and f̃iM :=M(f̃ia)=M(f̃iΛa).

By the definitions, it is obvious that the set BZe
I , equipped with the maps wt, εi , ϕi ,

ẽi , f̃i , is a Uq(slm+1)-crystal, and the bijections above give rise to isomorphisms of
crystals

(BI ;wt, εi, ϕi, ẽi , f̃i )
∼−→

( ⊔

ν∈Q+
IrrΛ(ν);wt, εi, ϕi, ẽi , f̃i

)

∼−→ (
BZe

I ;wt, εi, ϕi, ẽi , f̃i

)
.

We call this crystal structure the ordinary crystal structure on BZe
I .

Lemma 10 For Λ ∈ IrrΛ(ν), we have

M
(
Λ∗)=M(Λ)�.

Proof We write ν =∑i∈I νiαI
i . Let B be a general point of Λ. Then its transpose

tB is also a general point of Λ∗. Therefore, we compute:

Mk
(
Λ∗) =Mk

(
tB
)

= −dimC Coker
( ⊕

k∈out(k)

V (ν)k
⊕tBμ−→

⊕

l∈in(k)

V (ν)l

)

= −dimC Ker
( ⊕

l∈in(k)

V (ν)l
⊕Bμ−→

⊕

k∈out(k)

V (ν)k

)

= −dimC Coker
( ⊕

l∈out(kc)

V (ν)l

⊕
Bμ−→

⊕

k∈in(kc)

V (ν)k

)

+
∑

k∈in(kc)

dimC V (ν)k −
∑

l∈out(kc)

dimC V (ν)l

=Mkc (Λ)+
∑

k∈out(k)

νk −
∑

l∈in(k)

νl .
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Here, for the third equality, we take the transpose t (tB)= B of tB . By the definitions
of out(k) and in(k), we have

〈hp,k〉I =
⎧
⎨

⎩

1 if p ∈ out(k),
−1 if p ∈ in(k),
0 otherwise,

and hence
〈
wt∨

(
M(Λ)

)
,k
〉
I
=−

∑

k∈out(k)

νk +
∑

l∈in(k)

νl .

From these, it follows that

Mk(Λ)=Mkc (Λ)− 〈wt∨
(
M(Λ)

)
,k
〉
I
= (M(Λ)�

)
k.

This proves the lemma. �

Proposition 9 As operators on BZe
I ,

ẽi = � ◦ ẽ∗i ◦ � and f̃i = � ◦ f̃ ∗i ◦ �.

Proof Let M ∈ BZe
I . We only give a proof of the first equality, since the proof of

the second one is similar.
If εi(M) = ε∗i (M�) = 0, then ẽiM = (̃e∗i (M�))� = 0 by the definitions. So, as-

sume that εi(M)= ε∗i (M�) > 0. Let Λ be a unique irreducible Lagrangian such that
M=M(Λ). Since the bijection ΞI :Λ �→M(Λ) is an isomorphism with respect to
both the ordinary and ∗-crystal structures, we have

(
ẽ∗i
(
M�
))� = (ẽ∗i

(
M(Λ)�

))� = (ẽ∗i
(
M
(
Λ∗)))� =M

(
ẽ∗i Λ∗)� =M

(
(̃eiΛ)∗

)�

= M(̃eiΛ)= ẽiM(Λ)= ẽiM,

as desired. �

The following corollary is obvious by the consideration above.

Corollary 6 (1) Let M ∈ BZe
I , and assume that εi(M) > 0. Then, ẽiM is a unique

e-BZ datum such that

(a) (̃eiM)k =Mk + 1 for k ∈M×
I (i)∗,

(b) (̃eiM)k =Mk for k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).

(2) For every M ∈ BZe
I ,

(f̃iM)k =
⎧
⎨

⎩

min{Mk + 1,Mσik + εi(M)} if k ∈M×
I (i).

Mk − 1 if k ∈M×
I (i)∗,

Mk if k ∈M×
I \ (M×

I (i)∪M×
I (i)∗).
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Proposition 10 Let i, j ∈ I , and M ∈ BZe
I . Set c := εi(M) and M′ = ẽcpM.

(1) We have

ε∗i (M)=max
{
ε∗i
(
M′), c− 〈hi,wt

(
M′)〉

I

}
.

(2) If i 	= j and ε∗j (M) > 0, then

εj
(
ẽ∗pM

)= c, ẽcj
(
ẽ∗i M

)= ẽ∗i M′.

(3) If ε∗i (M) > 0, then we have

εi
(
ẽ∗i M

)=
{
εi(M) if ε∗i (M′)≥ c− 〈hi,wt (M′)〉I ,
εi(M)− 1 if ε∗i (M′) < c− 〈hi,wt (M′)〉I ,

and

ẽc
′

i

(
ẽ∗i M

)=
{
ẽ∗i M′ if ε∗i (M′)≥ c− 〈hi,wt (M′)〉I ,
M′ if ε∗i (M′) < c− 〈hi,wt (M′)〉I .

Here, we set c′ := εi (̃e
∗
i M).

Proof Recall that the bijection ΞI :Λ �→M(Λ) is an isomorphism with respect to
both the ordinary and ∗-crystal structures. Therefore, all of the desired equations
follow immediately from the corresponding ones, which hold in

⊔
ν∈Q+ IrrΛ(ν)

(see [6]). This proves the proposition. �

4 Ordinary Crystal Structure on (BZe
Z
)σ

4.1 Definition of Ordinary Kashiwara Operators on BZe
Z

For M= (Mk)k∈MZ
∈ BZe

Z
and p ∈ Z, we set

εp(M) := −Mk(σpΛp).

Observe that if k(σpΛp) ∈MZ(I ), then

εp(M)=−Mk(σpΛp) =−(MI )resI (k(σpΛp)) =−(MI )k(σp'I
p )
= εp(MI ).

First, let us define the ordinary raising Kashiwara operators on BZe
Z

. If εp(M) > 0,

the we define a new collection M[1] = (M
[1]
k )k∈MZ

of integers as follows. For
a given k ∈ MZ, take a finite interval I in Z such that k, σpk ∈ MZ(I ), and
I ∈ Inte(M;k(Λp))∩ Inte(M;k(σpΛp))∩ Inte(M;k(Λp+1))∩ Inte(M;k(Λp−1)).
Then, we set

M
[1]
k := (̃epMI )resI (k).
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Here, ẽp is the ordinary raising Kashiwara operator on BZe
I defined in the previous

section. Now, we define the action of ẽp on BZe
Z

by

ẽpM :=
{

M[1] if εp(M) > 0,
0 if εp(M)= 0.

Note that the definition above does not depend on the choice of I .
Next, let us define the ordinary lowering Kashiwara operators on BZe

Z
. For M=

(Mk)k∈MZ
∈ BZe

Z
and p ∈ Z, we define a new collection f̃pM= (M

[2]
k )k∈MZ

of
integers as follows. For a given k ∈MZ, take a finite interval I in Z such that
k, σpk ∈MZ(I ), and I ∈ Inte(M;k(Λp))∩ Inte(M;k(σpΛp)). Then we set

M
[2]
k := (f̃pMI )resI (k).

Here, f̃p is the ordinary lowering Kashiwara operator on BZe
I defined in the previ-

ous section.
For p ∈ Z, we set

MZ(p) := {k ∈MZ|p ∈ k,p+ 1 	∈ k},
MZ(p)∗ := {k ∈MZ|p 	∈ k,p+ 1 ∈ k}.

The following lemma follows easily from the definitions.

Lemma 11 Let M= (Mk)k∈MZ
∈ BZe

Z
.

(1) If εp(M) > 0, then
(a) (̃epM)k =Mk + 1 for k ∈M×

Z
(p)∗,

(b) (̃epM)k =Mk for k ∈M×
Z
\ (M×

Z
(p)∪M×

Z
(p)∗).

(2) For each M ∈ BZe
Z

, we have

(f̃pM)k =
⎧
⎨

⎩

min{Mk + 1,Mσpk + εp(M)} if k ∈M×
Z
(p),

Mk − 1 if k ∈M×
Z
(p)∗,

Mk if k ∈M×
Z
\ (M×

Z
(p)∪M×

Z
(p)∗).

Proposition 11 (1) If εp(M) > 0, then ẽpM ∈ BZe
Z

.
(2) For every M ∈ BZe

Z
and p ∈ Z, we have f̃pM ∈ BZe

Z
.

In the next subsection, we give a proof of this proposition.

4.2 Proof of Proposition 11

Since part (2) is obtained in a similar way, we only give a proof of part (1). We will
only verify that condition (2-b) in Definition 4 is satisfied for ẽpM with εp(M) > 0,
since the remaining ones are easily verified. Namely, we will prove the following:
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Claim 1 Assume that εp(M) > 0, and let k ∈MZ. Then, there exists a finite inter-
val I in Z such that for every J ⊃ I ,

(̃epM)ΩI (k) = (̃epM)ΩJ (k). (4.1)

Take a finite interval K = [nK + 1, nK + mK ] in Z such that k, σpk ∈
MZ(K), and K ∈ Inte(M;k(Λp)) ∩ Inte(M;k(σpΛp)) ∩ Inte(M;k(Λp+1)) ∩
Inte(M;k(Λp−1)). Set K ′ := [nK,nk +mK + 1]. Since MZ(K

′) is a finite set, we
can take a finite interval I = [nI + 1, nI +mI ] in Z with the following properties:

I ⊃K, and I ∈ Inte(M;n) for all n ∈MZ

(
K ′). (4.2)

In the following, we will show that such an interval I satisfies the condition in
Claim 1. We may assume that J = {nI } ∪ I (case (i)) or J = I ∪ {nI + mI + 1}
(case (ii)). We show Eq. (4.1) only in case (i); the assertion in case (ii) follows by a
similar (and easier) argument.

Before starting a proof, we give some lemmas. We set a = (ai,j )(i,j)∈Δ+I :=
Ψ−1

I (MI ) ∈ BI , b= (bk,l)(k,l)∈Δ+J :=Ψ−1
J (MJ ) ∈ BJ , Λa :=Ξ−1

I (MI ) ∈ IrrΛ(νI ),

and Λb := Ξ−1
J (MJ ) ∈ IrrΛ(νJ ), where νI = wt (MI ) and νJ = wt (MJ ). Let

BI = (BI
τ ) ∈Λa and BJ = (BJ

τ ) ∈Λb be general points.

Lemma 12 Let σ(nI → nK) be the path from nI to nK defined as follows:

σ(nI → nK) : � � � · · · � � �
nI nI + 1 nI + 2 nK − 2 nK − 1 nK

� � � � � �.

Then, the corresponding composite map BJ
σ(nI→nK) : V (νJ )nI

→ V (νJ )nK
is a zero

map.

Proof Since ΛnK
∈MZ(K

′), we have

(MI )[nK+1,nI+mI+1] =MΩI (ΛnK
)

=MΩJ (ΛnK
) = (MJ )[nK+1,nI+mI+1] = −(νJ )nK

.

Also, by the definition, we have

(MI )[nK+1,nI+mI+1] = (MJ ){nI }∪[nK+1,nI+mI+1]

= −dimC Coker
(
V (νJ )nI

BJ−→ V (νJ )nK

)
.

From these, we obtain

(νJ )nK
= dimC Coker

(
V (νJ )nI

BJ−→ V (νJ )nK

)
.

This shows that the map BJ
σ(nI→nK) is a zero map, as desired. �

Let a∗ = (a∗i,j )(i,j)∈Δ+I := Ψ−1
I (M�

I ) and b∗ = (b∗k,l)(k,l)∈Δ+J := Ψ−1
J (M�

J ).



Toward Berenstein-Zelevinsky Data in Affine Type A, Part III 387

Lemma 13 We have b∗nI ,l
= 0 for nK + 1≤ l ≤ nI +mI + 1.

Proof First, note that

(
M�

J

)
[nI+1,nI+mI+1] = −

nI+mI+1∑

l=nI+1

b∗nI ,l
and

(
M�

J

)
[nI+1,nK ] = −

nK∑

l=nI+1

b∗nI ,l
.

Next, by Lemma 10, we have

(
M�

J

)
[nI+1,nK ] =M[nI+1,nK ]

(
Λ∗

b

)=−dimC Coker
(
V (νJ )nK

t (BJ )−→ V (νJ )nI

)
.

Since (t (BJ ))σ(nK→nI ) = t (BJ
σ(nI→nK))= 0 by Lemma 12, we deduce that

(
M�

J

)
[nI+1,nK ] = −(νJ )nI

.

Therefore, we deduce that

nI+mI+1∑

l=nK+1

b∗nI ,l
=−(M�

J

)
[nI+1,nI+mI+1] +

(
M�

J

)
[nI+1,nK ] = 0.

Since b∗nI ,l
is nonnegative for all l, we obtain the desired equality. �

Lemma 14 For every nI + 1≤ s ≤ t ≤ nI +mI + 1, we have

(
M�

J

)
[s,t] =

(
M�

I

)
[s,t] + (νI )s−1 − (νJ )s−1 − (νI )t + (νJ )t .

Here, by convention, (νI )s−1 = 0 for s = nI + 1 and (νI )t = (νJ )t = 0 for t =
nI +mI + 1.

Proof We assume that nI + 1 < s ≤ t < nI + mI + 1; in the remaining case, the
desired equation follows by a similar (and easier) argument.

Write nI = [s, t] ∈M×
I . Then we have

(
M�

I

)
nI
=−dimC Coker

(
V (νI )t

t (BI )−→ V (νI )s−1
)

=−dimC Ker
(
V (νI )s−1

BI−→ V (νI )t
)

=−dimC Coker
(
V (νI )s−

BI−→ V (νI )t
)− (νI )s−1 + (νI )t

= (MI )nc
I
− (νI )s−1 + (νI )t .

Similarly, we have

(
M�

J

)
nJ
= (MJ )nc

J
− (νJ )s−1 + (νJ )t .
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Here we set nJ := [s, t] ∈M×
J . Since nc

J = {nI } ∪ nc
I , we obtain

(MI )nc
I
= (MI )nc

J
.

Therefore, we deduce that

(
M�

J

)
nJ
= (MI )nc

I
− (νJ )s−1 + (νJ )t

= (M�
I

)
nI
+ (νI )s−1 − (νI )t − (νJ )s−1 + (νJ )t .

This proves the lemma. �

Corollary 7 For every nI + 1≤ i < j ≤ nI +mI + 1, we have

b∗i,j = a∗i,j .

Proof The desired equality follows easily from Lemma 14 and the chamber ansatz
maps (see [2]):

b∗i,j =
(
M�

J

)
[i,j ] +

(
M�

J

)
[i+1,j−1] −

(
M�

J

)
[i+,j ] −

(
M�

J

)
[i,j−1],

a∗i,j =
(
M�

I

)
[i,j ] +

(
M�

I

)
[i+1,j−1] −

(
M�

I

)
[i+,j ] −

(
M�

I

)
[i,j−1].

�

Proposition 12 We have

((
ẽ∗p
(
M�

I

))
K

)
[p+1,nK+mK+1] =

((
ẽ∗p
(
M�

J

))
K

)
[p+1,nK+mK+1].

Proof Note that the desired equation is equivalent to the following:

(
ẽ∗p
(
M�

I

))
[nI+1,nK ]∪[p+1,nK+mK+1] =

(
ẽ∗p
(
M�

J

))
[nI ,nK ]∪[p+1,nK+mK+1]. (4.3)

Let a′ = (a′i,j )(i,j)∈Δ+I := Ψ−1
I (̃e∗p(M

�
I )) and b′ = (b′k,l)(k,l)∈Δ+J := Ψ−1

J (̃e∗p(M
�
J )),

and set l := [nI + 1, nK ] ∪ [p+ 1, nK +mK + 1] and m := [nI ,nK ] ∪ [p+ 1, nK +
mK + 1]. Then, Eq. (4.3) is equivalent to the following:

Ml
(
a′
)=Mm

(
b′
)
. (4.4)

Observe that by Lemma 13, Corollary 7, and the definition of the action of ẽ∗p ,

a′i,j = b′i,j
(
(i, j) ∈Δ+

I

)
and b′nI ,l

= 0 (nK + 1≤ l ≤ nI +mI + 1). (4.5)

Since the Maya diagrams l and m satisfy the condition of Lemma 1(1) with s = nK ,
we have
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Ml
(
a′
) = −

nK+mK+1∑

j=p+1

l−1∑

i=nI+1

a′i,j

+min

{2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI+1

a′cs,t ,cs,t+(t−s)

∣∣∣∣∣
C = (cs,t ) is
an l-tableau

}
,

and

Mm
(
b′
) = −

nK+mK+1∑

l=p+1

l−1∑

k=nI

b′k,l

+min

{2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI

b′ds,t ,ds,t+(t−s)

∣∣∣∣∣
D = (ds,t ) is
an m-tableau

}
.

Here, by (4.5),

nK+mK+1∑

j=p+1

l−1∑

i=nI+1

a′i,j =
nK+mK+1∑

l=p+1

l−1∑

k=nI

b′k,l .

Now, let D = (ds,t )nI≤s≤t≤2nk+mk−p+1 be an m-tableau, and define two upper-
triangular matrices

D′ = (d ′s,t )nI≤s≤t≤2nk+mk−p+1 and D′′ = (d ′′s,t )nI+1≤s≤t≤2nk+mk−p+1

by

d ′s,t :=
{
nI if s = nI ,

dp,q otherwise,
and d ′′s,t := ds,t .

Then, D′ is an m-tableau and D′′ is an l-tableau. From the definitions and (4.5), we
see that

2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI

b′ds,t ,ds,t+(t−s) ≥
2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI

b′
d ′s,t ,d ′s,t+(t−s)

=
2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI+1

b′
d ′′s,t ,d ′′s,t+(t−s)

=
2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI+1

a′
d ′′s,t ,d ′′s,t+(t−s)

.
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Therefore, we obtain

min

{2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI+1

a′cs,t ,cs,t+(t−s)

∣∣∣∣∣
C = (cs,t ) is
an l-tableau

}

=min

{2nK+mK−p+1∑

t=nK+1

t−1∑

s=nI

b′ds,t ,ds,t+(t−s)

∣∣∣∣∣
D = (ds,t ) is
an m-tableau

}
,

and hence (4.4). �

Now let us start the proof of Eq. (4.1). By (4.2) and Proposition 9, we have

(̃epM)ΩI (k) = (̃epMI )resI (ΩI (k)) = (̃epMI )kc
I
= ((ẽ∗p

(
M�

I

))�)
kc
I

= (ẽ∗p
(
M�

I

))
kI
− 〈wt∨

(
ẽ∗p
(
M�

I

))
,kc

I

〉
I

= (ẽ∗p
(
M�

I

))
kI
+ 〈wt∨(MI ),kI

〉
I
+ 〈hp,kI 〉I .

Here, kI := resI (k) and kc
I := Ĩ \ kI . Similarly, we have

(̃epM)ΩJ (k) =
(
ẽ∗p
(
M�

J

))
kJ
+ 〈wt∨(MJ ),kJ

〉
J
+ 〈hp,kJ 〉J .

By these, the proof of Eq. (4.1) is reduced to showing:

(a) 〈hq,kI 〉I = 〈hq,kJ 〉J for all q ∈K ′;
(b) 〈wt∨(MI ),kI 〉I = 〈wt∨(MJ ),kJ 〉J ;
(c) (̃e∗p(M

�
I ))kI

= (̃e∗p(M
�
J ))kJ

.

By the definitions, (a) is easily shown. Let us show (b). Since k ∈MZ(K
′), we

have 〈hq,kI 〉I = 0 for q 	∈K ′. Therefore, we see that

〈
wt∨(MI ),kI

〉
I
=
∑

q∈I
〈hq,kI 〉I (MI )[q+1,nI+mI+1] =

∑

q∈I
〈hq,kI 〉IMΩI (k(Λq))

=
∑

q∈K ′
〈hq,kI 〉IMΩI (k(Λq)).

Similarly, we see that

〈
wt∨(MJ ),kJ

〉
J
=
∑

q∈K ′
〈hq,kJ 〉JMΩJ (k(Λp)).

Consequently, in view of (a), it suffices to show that MΩI (k(Λq)) =MΩJ (k(Λq)) for
all q ∈K ′, which follows from (4.1). Thus, we have shown (b). For (c), it suffices
to show the following proposition.
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Proposition 13
(
ẽ∗p
(
M�

I

))
K
= (ẽ∗p

(
M�

J

))
K
.

Proof We remark that (̃e∗p(M
�
I ))K and (̃e∗p(M

�
J ))K are both elements of BZe

K .
Hence it suffices to show the following:

(d) ((̃e∗p(M
�
I ))K)[p+1,nK+mK+1] = ((̃e∗p(M

�
J ))K)[p+1,nK+mK+1];

(e) ((̃e∗p(M
�
I ))K)m = ((̃e∗p(M

�
J ))K)m for all m ∈M×

K \M×
K(p)∗.

Because (d) is already shown in Proposition 12, the remaining task is to show (e).
We set mI := (resIK)−1(m). Since mI ∈M×

I \M×
I (p)∗, we have

((
ẽ∗p
(
M�

I

))
K

)
m =

(
ẽ∗p
(
M�

I

))
mI =

(
M�

I

)
mI = (MI )(mI )c −

〈
wt∨(MI ),mI

〉
I
.

We set mZ := res−1
K (m) ∈ MZ(K) ⊂ MZ. Then we have mI = resI (mZ) and

(mI )c = resI (ΩI (mZ)). Therefore, we obtain
((
ẽ∗p
(
M�

I

))
K

)
m =MΩI (mZ) −

〈
wt∨(MI ), resI

(
mZ

)〉
I
.

Also, we obtain a similar equation, with I replaced by J . By the same argument as in
the proof of (b), we deduce that 〈wt∨(MI ), resI (mZ)〉I = 〈wt∨(MJ ), resJ (mZ)〉J .
Now it remains to verify that MΩI (mZ) =MΩJ (mZ), which follows easily from (4.1).
Thus, we have shown (e). This proves the proposition. �

4.3 Ordinary Crystal Structure on (BZe
Z
)σ

First, we give some properties of ordinary Kashiwara operators on BZe
Z

. Because
all of those are obtained by the same argument as in [8], we omit the proofs of them.

Lemma 15 (1) Let M ∈ BZe
Z

and p ∈ Z. Then, ẽpf̃pM=M. Also, if εp(M) 	= 0,
then f̃pẽpM=M.

(2) For M ∈ BZe
Z

and p,q ∈ Z with |p− q| ≥ 2, we have εp(f̃pM)= εp(M)+
1 and εq(f̃pM) = εq(M). Also, if εp(M) 	= 0, then εp(̃epM) = εp(M) − 1 and
εq (̃epM)= εq(M).

(3) For q, q ′ ∈ Z with |q − q ′| ≥ 2, we have ẽq ẽq ′ = ẽq ′ ẽq , f̃q f̃q ′ = f̃q ′ f̃q and
ẽq f̃q ′ = f̃q ′ ẽq as operators on BZe

Z
∪ {0}.

(4) For M ∈ BZe
Z

, we have εp(σ (M))= εσ−1(p)(M).
(5) The equalities σ ◦ ẽp = ẽσ (p) ◦ σ and σ ◦ f̃p = f̃σ (p) ◦ σ hold on BZe

Z
∪ {0}.

Next, let us define the ordinary Uq(ŝll )-crystal structure on (BZe
Z
)σ . Recall that

the map wt : (BZe
Z
)σ → P̂ is already defined. Here, P̂ is the weight lattice for ŝll .

For M ∈ (BZe
Z
)σ and p ∈ Î , we define

ε̂p(M) := εp(M), ϕ̂p(M) := ε̂p(M)+ 〈̂hp,wt (M)
〉
.
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For given k ∈MZ and p ∈ Î , we set Le(k,p) := {q ∈ p + lZ|〈hq,k〉Z 	= 0}; note
that Le(k,p) is a finite set. For M ∈ (BZe

Z
)σ , we define

êpM :=
{

M(1) if ε̂p(M) > 0,
0 if ε̂p(M)= 0,

and f̂pM=M(2),

where M(i) = (M
(i)
k )k∈MZ

, i = 1,2, are the collections of integers defined by

M
(1)
k := (eLe(k,p)M)k, M

(2)
k := (fLe(k,p)M)k for each k ∈MZ.

Proposition 14 Let M ∈ (BZe
Z
)σ and p ∈ Î . Then, we have êpM ∈ (BZe

Z
)σ ∪ {0}

and f̂pM ∈ (BZe
Z
)σ .

In order to prove the proposition above, we need the next lemma.

Lemma 16 For given M ∈ BZe
Z

and k ∈MZ, there exists a finite interval I =
[nI + 1, nI + mI ] such that for every J = [nJ + 1, nJ + mJ ] with nJ < nI and
nJ +mJ > nI +mI ,

(1) (̃enJ
M)ΩJ (k) = (̃enJ+mJ+1M)ΩJ (k) = (̃enJ

ẽnJ+mJ+1M)ΩJ (k) =MΩJ (k);
(2) (f̃nJ

M)ΩJ (k) = (f̃nJ+mJ+1M)ΩJ (k) = (f̃nJ
f̃nJ+mJ+1M)ΩJ (k) =MΩJ (k).

Here we remark that the equalities in part (1) hold under the assumption that
ẽnJ

M 	= {0} and ẽnJ+mJ+1M 	= {0}.

Proof We only prove that

(̃enJ
ẽnJ+mJ+1M)ΩJ (k) =MΩJ (k) (4.6)

under the condition that ẽnJ
M 	= {0} and ẽnJ+mJ+1M 	= {0}; the other equalities can

be proved by a similar (and easier) argument.
For the M and k above, take finite intervals K = [nK + 1, nK +mK ] and I =

[nI + 1, nI +mJ ] as in (4.2). Let J = [nJ + 1, nJ +mJ ] 	 I , with nJ < nI and
nJ +mJ > nI +mI . Take another finite interval L= [nL + 1, nL +mL] ⊃ J such
that

MΩJ (k) = (ML)resL(ΩJ (k)),

(̃enJ
ẽnJ+mJ+1M)ΩJ (k) = (̃enJ

ẽnJ+mJ+1ML)resL(ΩJ (k)),

εnJ
(M)= εnJ

(ML), and εnJ+mJ+1(M)= εnJ+mJ+1(ML).

Note that such an interval L always exists. Hence Eq. (4.6) is equivalent to

(̃enJ
ẽnJ+mJ+1ML)resL(ΩJ (k)) = (ML)resL(ΩJ (k)). (4.7)



Toward Berenstein-Zelevinsky Data in Affine Type A, Part III 393

In what follows, we use the notation of Subsect. 4.2. Namely, set b= (bk,l)(k,l)∈Δ+L
:= Ψ−1

L (ML) ∈ BL, and Λb := Ξ−1
L (ML) ∈ IrrΛ(νL), where νL = wt (ML). Let

BL = (BL
τ ) ∈Λb be a general point.

Since L	 I , we can show the following claim by an argument similar to the one
for Lemma 12:

Claim 2 Both of the composite maps

BL
σ(nI→nK) : V (νJ )nI

→ V (νJ )nK
and

BL
σ(nI+mJ+1→nK+mK+1) : V (νJ )nI+mI+1 → V (νJ )nK+mK+1

are zero maps.

Write resL(ΩJ (k)) as a disjoint union of finite intervals:

resL
(
ΩJ (k)

)= [s1 + 1, t1] 4 [s2 + 1, t2] 4 · · · 4 [sl + 1, tl].
Then, by the construction,

s1 = nL, t1 = nJ , s2 =min{q ∈ Z|q 	∈ k} − 1,

sl =max{q ∈ Z|q ∈ k}, tl = nJ +mJ + 1,

and

s1 + 1= nL + 1 < t1 = nJ < nI < nK < s2, (4.8)

sl < nK +mK + 1 < nI +mI + 1 < nJ +mJ + 1= tl < nL +mL + 1. (4.9)

From these, we deduce that

out
(
resL

(
ΩJ (k)

))= {t1, t2, . . . , tl}, in
(
resL

(
ΩJ (k)

))= {s2, s3, . . . , sl}.
Because

BL
σ(t1→s2)

= BL
σ(nK→s2)

◦BL
σ(nI→nK) ◦BL

σ(t1→nI )
= 0,

BL
σ(tl→sl )

= BL
σ(nK+mK+1→sl )

◦BL
σ(nI+mI+1→nK+mK+1) ◦BL

σ(tl→nI+mI+1) = 0

by Claim 2, (4.8), and (4.9), we see that

(ML)resL(ΩJ (k)) =−dimC Coker

( ⊕

1≤u≤l

V (νL)tu
⊕BL

σ−→
⊕

2≤v≤l

V (νL)sv

)

=−dimC Coker

( ⊕

2≤u≤l−1

V (νL)tu
⊕BL

σ−→
⊕

2≤v≤l

V (νL)sv

)
. (4.10)
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Let b1 := ẽnJ
ẽnJ+mJ+1b, and consider the corresponding irreducible Lagrangian

Λb1 ∈ IrrΛ(ν1
L). Here we write ν1

L = νL − αnJ
− αnJ+mL+1. Let BL

1 = ((BL
1 )τ ) ∈

Λb1 be a general point. By the definitions of ẽnJ
and ẽnJ+mJ+1 (see Subsect. 2.5),

we may assume that
(
BL

1

)
τ
= BL

τ if out(τ ) 	= nJ ,nJ +mJ + 1 and if in(τ ) 	= nJ ,nJ ,nJ +mJ + 1.
(4.11)

Then, by Claim 2,
(
BL

1

)
σ(nI→nK)

= 0,
(
BL

1

)
σ(nI+mJ+1→nK+mK+1) = 0.

Therefore, by the same argument as for (ML)resL(ΩJ (k)), we deduce that

(̃enJ
ẽnJ+mJ+1ML)resL(ΩJ (k))

=−dimC Coker

( ⊕

2≤u≤l−1

V
(
ν1
L

)
tu

⊕(BL
1 )σ−→

⊕

2≤v≤l

V
(
ν1
L

)
sv

)
. (4.12)

Since nJ < s2 < t2 < · · ·< sl−1 < tl−1 < sl < nJ +mJ + 1, the right-hand side of
the last equality in (4.10) is equal to that of (4.12). Thus, we have proved Eq. (4.7).
This completes the proof of the lemma. �

Proof of Proposition 14 We only prove that êpM ∈ (BZe
Z
)σ ∪ {0}. If ε̂p(M) = 0,

then the assertion is obvious. So, we assume that ε̂p(M) > 0.
First, we prove that êpM ∈ BZe

Z
. Condition (2-a) in Definition 4 can be checked

by the same argument as in [8]. Let us show that condition (2-b) is satisfied. Fix
k ∈MZ and take a finite interval I = [nI + 1, nI +mI ] satisfying condition (4.2),
with M replaced by ẽLe(k,p)M. Let I ′ = [nI ′ + 1, nI ′ +mI ′ ] be an interval such that
nI ′ < nI , nI ′ +mI ′ > nI +mI , and I ′ ∈ Inte(̃eLe(k,p)M,k). We will show that this
I ′ satisfies condition (2-b).

Take J = [nJ + 1, nJ +mJ ] ⊃ I ′. By the definitions, we have

Le
(
ΩJ (k),p

)= Le(k,p)∪ δ(J,p; l).
Here,

δ(J,p; l) :=

⎧
⎪⎪⎨

⎪⎪⎩

{nJ ,nJ +mJ + 1} if nJ ≡ p,nJ +mJ + 1≡ p (mod l),

{nJ } if nJ ≡ p,nJ +mJ + 1 	≡ p (mod l),

{nJ +mJ + 1} if nJ 	≡ p,nJ +mJ + 1≡ p (mod l),

φ if nJ 	≡ p,nI ′ +mJ + 1 	≡ p (mod l).

From this, we deduce by Lemma 16 that

(̂epM)ΩJ (k) = (̃eLe(ΩJ (k),p)M)ΩJ (k) = (̃eLe(k,p)M)ΩI ′ (k) for every J ⊃ I ′.

Note that by Lemma 15, εq(M) = ε̂p(M) > 0 for every q ∈ p + lZ. Since I ′ ∈
Inte(̃eLe(k,p)M,k), we conclude that

(̃eLe(k,p)M)ΩJ (k) = (̃eLe(k,p)M)ΩI ′ (k).
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This shows that condition (2-b) is satisfied.
It remains to show that êpM is σ -invariant. However, this follows easily from

Lemma 15. This proves the proposition. �

Now we are ready to state one of the main results of this paper.

Theorem 4 ((BZe
Z
)σ ;wt, ε̂p, ϕ̂p, êp, f̂p) is a Uq(ŝll)-crystal.

Lemma 17 Let M ∈ (BZe
Z
)σ and p ∈ Î . Then, the following hold:

(1) wt (̂epM)=wt (M)+ α̂p if ε̂p(M) > 0, and wt (f̂pM)=wt (M)− α̂p;
(2) ε̂p(̂epM)= ε̂p(M)− 1 if ε̂p(M) > 0, and ε̂p(f̂pM)= ε̂p(M)+ 1.

Proof We only prove the first equation of part (1), since the other ones follow by a
similar (and easier) argument.

Let M ∈ (BZe
Z
)σ , with ε̂p(M) > 0, and J = [nJ +1, nJ +mJ ] ∈⋂q∈Î Inte(̂epM,

k(Λq)). Then,

wt (̂epM)=
∑

q∈Î
Θ(̂epM)k(Λq)α̂q

=
∑

q∈Î
(̂epM)ΩJ (k(Λq))α̂q

=
∑

q∈Î
(̃eLe(ΩJ (k(Λq)),p)M)ΩJ (k(Λq))α̂q .

Here we note that

Le
(
ΩJ

(
k(Λq)

)
,p
)= Le

(
k(Λq),p

)∪ δ(J,p; l)=
{ {q} ∪ δ(J,p; l) if p = q,

δ(J,p; l) if p 	= q.

Now we assume that J is sufficiently large. More precisely, for each q ∈ Î , let us
take an interval I ′ = I ′q as in the proof of Proposition 14, and then take J in such a
way that J ⊃⋃q∈Î I ′q . Then, by Lemma 16, we deduce that

(̃eLe(ΩJ (k(Λq)),p)M)ΩJ (k(Λq)) =
{
(M)ΩJ (k(Λp)) + 1 if p = q,

(M)ΩJ (k(Λp)) if p 	= q.

Therefore, we obtain

wt (̂epM)=wt (M)+ α̂p.

�

Proof of Theorem 4 By Lemma 17, it suffices to prove the following:

êpf̂pM=M for every M ∈ (BZe
Z

)σ and p ∈ Î .

Since this follows easily from Lemmas 15 and 16, we omit the details of its proof. �
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4.4 Uniqueness of an Element of Weight Zero

It is easy to show the following lemma.

Lemma 18 Let M= (Mk)k∈MZ
∈ BZe

Z
. Then, each component Mk for k ∈MZ is

a nonpositive integer.

The next corollary is a direct consequence of this lemma.

Corollary 8 Let M ∈ (BZe
Z
)σ . Then, wt (M) ∈ Q̂−.

Proposition 15 For M ∈ (BZe
Z
)σ , the following are equivalent.

(a) ε̂p(M)= 0 for every p ∈ Î .
(b) M=O∗.

Proof Since (b) ⇒ (a) is obvious, we will prove that Mk = 0 for all k ∈MZ under
the assumption that ε̂p(M)= 0 for every p ∈ Î .

We note that Mk(Λq) = 0 for every q ∈ Z by the normalization condition. Let
k ∈MZ \ (⋃q∈Z k(Λq)). Then there exists the smallest finite interval Ik such that
k ∈MZ(Ik). We prove the assertion above by induction on t := |Ik| ≥ 1.

Assume that t = 1. Then, k = σqk(Λq) = Z≤q−1 ∪ {q + 1} for some q ∈ Z. If
we take q ′ ∈ Î such that q ≡ q ′ (mod l), then we have

Mσqk(Λq) = εq(M)= ε̂q ′(M)= 0.

Now, we assume that t > 1, and

(i) the assertion holds for every m ∈MZ with |Im|< t .

Step 1. Let k= Z≤n ∪ {n+ t + 1} for some n ∈ Z. We use the tropical Plücker
relation for i = n+ 1, j = n+ t, k = n+ t + 1:

MZ≤n∪{n+t} +MZ≤n∪{n+1,n+t+1}
=min{MZ≤n∪{n+1} +MZ≤n∪{n+t,n+t+1},MZ≤n∪{n+t+1} +MZ≤n∪{n+1,n+t}}.

By the assumption (i), we see that

MZ≤n∪{n+t} =MZ≤n∪{n+1,n+t+1} =MZ≤n∪{n+1} =MZ≤n∪{n+1,n+t} = 0.

Since MZ≤n∪{n+t+1} =Mk and MZ≤n∪{n+t,n+t+1} =Mk∪{n+t} are both nonpositive
integers, we obtain

Mk =Mk∪{n+t} = 0.

Step 2. Let k = Z≤n ∪ {k1 < · · · < kr}, with k1 = n + s + 1 (1 < s ≤ t), and
kr = n+ t + 1. We prove the assertion by descending induction on s. If s = t , then
r = 1 and the assertion is already proved in Step 1. Assume that
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(ii) the assertion holds for every m= Z≤n ∪ {m1 < · · ·<mr ′ }, with m1 = n+ s′ +
1 > k1, and mr ′ = n+ t + 1.

Set k′ := k \ {n + s + 1, n + t + 1}, and use the tropical Plücker relation for i =
n+ 1, j = n+ s + 1, k = n+ t + 1, and k′:

Mk′∪{n+s+1} +Mk′∪{n+1,n+t+1}
=min{Mk′∪{n+1} +Mk′∪{n+s+1,n+t+1},Mk′∪{n+t+1} +Mk′∪{n+1,n+s+1}}.

By the assumption (i), we obtain

Mk′∪{n+s+1} =Mk′∪{n+1,n+t+1} =Mk′∪{n+1} =Mk′∪{n+1,n+s+1} = 0.

Also, we have

Mk′∪{n+t+1} = 0

by the assumption (ii). Therefore, by Lemma 18, we conclude that

Mk =Mk′∪{n+s+1,n+t+1} = 0.

This proves the proposition. �

The following corollary is a key to the proof of the connectedness of the crystal
graph of the Uq(ŝll)-crystal ((BZe

Z
)σ ;wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ), which will be given in

the next section.

Corollary 9 O∗ is the unique element of (BZe
Z
)σ of weight zero.

Proof It suffices to show the following:

If M 	=O∗, then wt (M) 	= 0.

Let M 	=O∗. By Proposition 15, there exists p ∈ Î such that ε̂p(M) > 0. This im-
plies that êpM ∈ (BZe

Z
)σ . Therefore, by Corollary 8, we have

wt (̂epM) ∈ Q̂−. (4.13)

Also, because ((BZe
Z
)σ ;wt, ε̂p, ϕ̂p, êp, f̂p) is a Uq(ŝll )-crystal (Theorem 4), we

have

wt (̂epM)=wt (M)+ α̂p. (4.14)

Now, suppose that wt (M)= 0. Then, by (4.14), we obtain

wt (̂epM)= α̂p,

which contradicts (4.13). Thus, we conclude that wt (M) 	= 0. This proves the corol-
lary. �
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4.5 Some Other Properties

The results of this subsection will be used in the next section.

Lemma 19 Let p,q ∈ Z with p 	= q , and M ∈ BZe
Z

.

(1) If εp(M) > 0, then ε∗q (̃epM)= ε∗q(M).
(2) If ε∗p(M) > 0, then εq (̃e

∗
pM)= εq(M).

Proof Because part (2) can be proved by a similar (and easier) argument, we only
give a proof of part (1). By the definitions, we have

ε∗q (̃epM) = −Θ
(
(̃epM)∗

)
k(Λq)

−Θ
(
(̃epM)∗

)
k(σqΛq)

+Θ
(
(̃epM)∗

)
k(Λq+1)

+Θ
(
(̃epM)∗

)
k(Λq−1)

. (4.15)

For simplicity of notation, we write k1 = k(Λq),k2 = k(σqΛq),k3 = k(Λq+1),

k4 = k(Λq−1). Take a finite interval I such that p ∈ I and I ∈⋂4
k=1 Intc((̃epM)∗,

kk).
Let us compute the second term on the right-hand side of (4.15).

Θ
(
(̃epM)∗

)
k(σqΛq)

= ((̃epM)∗
)
Ωc

I (k(σqΛq)c)
= (̃epM)ΩI (k(σqΛq)).

Since p 	= q , the following two cases occur:

case (a): p = q ± 1 (⇔ΩI(k(σqΛq)) ∈MZ(p)∗),
case (b): |p− q| ≥ 2 (⇔ΩI(k(σqΛq)) ∈MZ \ (MZ(p)∪MZ(p)∗)).
By Lemma 11, we have

(̃epM)ΩI (k(σqΛq)) =
{
MΩI (k(σqΛq)) + 1 in case (a),
MΩI (k(σqΛq)) in case (b).

By a similar computation, we obtain

Θ
(
(̃epM)∗

)
k(Λq)

=MΩI (k(Λq)),

(̃epM)ΩI (k(Λq+1)) =
{
MΩI (k(Λq+1)) + 1 if p = q + 1,
MΩI (k(Λq+1)) otherwise,

(̃epM)ΩI (k(Λq−1)) =
{
MΩI (k(Λq−1)) + 1 if p = q − 1,
MΩI (k(Λq−1)) otherwise.

Combining the above, we deduce that

ε∗q (̃epM)=−MΩI (k(Λq)) −MΩI (k(σqΛq)) +MΩI (k(Λq+1)) +MΩI (k(Λq−1))

= ε∗q(M).

This proves the lemma. �
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Proposition 16 Let p,q ∈ Î , and M ∈ (BZe
Z
)σ . Set c := ε̂p(M) and M′ := êcpM.

(1) We have

ε̂∗p(M)=max
{
ε̂∗p
(
M′), c− 〈̂hp,wt

(
M′)〉}.

(2) If p 	= q and ε̂∗q(M) > 0, then

ε̂q
(
ê∗pM

)= c, êcq
(
ê∗pM

)= êpM′.

(3) If ε̂∗p(M) > 0, then

ε̂p
(
ê∗pM

)=
{
ε̂p(M) if ε̂∗p(M′)≥ c− 〈̂hp,wt (M′)〉,
ε̂p(M)− 1 if ε̂∗p(M′) < c− 〈̂hp,wt (M′)〉,

and

êc
′

p

(
ê∗pM

)=
{
ê∗pM′ if ε̂∗p(M′)≥ c− 〈̂hp,wt (M′)〉,
M′ if ε̂∗p(M′) < c− 〈̂hp,wt (M′)〉.

Here, we set c′ := ε̂p(̂e
∗
pM).

Proof By taking a sufficiently large finite interval I , each of the equations above
follows from the corresponding one in the case of finite intervals (Proposition 10).

As an example, let us show part (1). By the definitions and Lemma 19, it suffices
to show that

ε∗p(M)=max
{
ε∗p
(
ẽcpM

)
,−c− 〈̂hp,wt (M)

〉}
.

Let kk , k = 1,2,3,4, be the Maya diagrams which we introduced in the proof of
Lemma 19. Note that there exists a finite interval I such that

(a) I ∈ (
⋂4

k=1 Intc(M∗,kk))∩ (
⋂4

k=1 Intc((̃ecpM)∗,kk)),
(b) (̃ecpM)I = ẽcpMI ,
(c) c= εp(M)= εp(MI ),
(d) 〈̂hp,wt (M)〉 = 〈hp,wt (MI )〉I .

For such an interval I , we have

ε∗p
(
ẽcpM

)= εp
((
ẽcpM

)∗)

= εp
(((

ẽcpM
)∗)

I

)
by (a)

= εp
(((

ẽcpM
)
I

)∗)

= εp
((
ẽcpMI

)∗) by (b)

= ε∗p
(
ẽ
εp(MI )
p MI

)
by (c).

Similarly, we obtain ε∗p(M)= ε∗p(MI ). Therefore, it suffices to show that

ε∗p(MI )=max
{
ε∗p
(
M′

I

)
, εp(MI )−

〈
hp,wt

(
M′

I

)〉
I

}
, (4.16)
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where we set M′
I := ẽ

εp(MI )
p MI . Here, we note that Eq. (4.15) is just the equation

in part (1) of Proposition 10. Thus, we have shown part (1).
Since the other equations are shown in a similar way, we omit the details of their

proofs. �

5 Proof of the Connectedness of ((BZe
Z
)σ ;wt, ε̂∗

p, ϕ̂∗
p, ê∗

p, ̂f ∗
p )

5.1 Strategy

The aim of this section is to prove the following theorem.

Theorem 5 (Main theorem) As a crystal, ((BZe
Z
)σ ;wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ) is isomor-

phic to B(∞) for Uq(ŝll ). In particular, the crystal graph of this crystal is con-
nected.

In order to prove this theorem, we use a characterization of B(∞), which was
obtained in [6]; although it is valid for an arbitrary symmetrizable Kac-Moody Lie
algebra, we restrict ourselves to the case of type A

(1)
l−1.

For p ∈ Î , we define a crystal (B∗p;wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ) as follows.

B∗p :=
{
b∗p(n)|n ∈ Z

}
,

wt
(
b∗p(n)

) := nα̂p, ε̂∗q
(
b∗p(n)

) :=
{−n if q = p,

−∞ if q 	= p,

ϕ̂∗q
(
b∗p(n)

) :=
{
n if q = p,

−∞ if q 	= p,

ê∗q
(
b∗p(n)

) :=
{
b∗p(n+ 1) if q = p,

0 if q 	= p,
f̂ ∗q
(
b∗p(n)

) :=
{
b∗p(n− 1) if q = p,

0 if q 	= p.

For simplicity of notation, we set b∗p := b∗p(0).

Theorem 6 ([6]) Let (B;wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ) be a Uq(ŝll )-crystal, and let b∗∞ be
an element of B of weight zero. We assume that the following seven conditions are
satisfied.

(1) wt (B)⊂ Q̂−.
(2) b∗∞ is the unique element of B of weight zero.
(3) ε̂∗p(b∗∞)= 0 for all p ∈ Î .
(4) ε̂∗p(b) ∈ Z for all p ∈ Î and b ∈ B .
(5) For each p ∈ Î , there exists a strict embedding Ψ ∗

p : B→ B ⊗B∗p .
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(6) Ψ ∗
p (B)⊂ B ⊗ {(f̂ ∗p )nb∗p|n≥ 0} for all p ∈ Î .

(7) For every b ∈ B such that b 	= b∗∞, there exists p ∈ Î such that Ψ ∗
p (b) = b′ ⊗

(f̂ ∗p )nb∗p with n > 0.

Then, (B;wt, ε̂∗p, ϕ̂∗p, ê∗p, f̂ ∗p ) is isomorphic as a crystal to B(∞).

Let us check the seven conditions above for the crystal ((BZe
Z
)σ ;wt, ε̂∗p, ϕ̂∗p, ê∗p,

f̂ ∗p ), with b∗∞ = O∗. Conditions (1)∼(4) are obvious from the definitions. In the
next subsection, we construct a strict embedding Ψ ∗

p : (BZe
Z
)σ → (BZe

Z
)σ ⊗ B∗p

for each p ∈ Î , and check conditions (6) and (7).

Remark 1 Since our aim is to prove Theorem 5, we consider the ∗-crystal structure
on (BZe

Z
)σ , not the ordinary crystal structure.

5.2 Proof of Theorem 5 and the Connectedness

Definition 7 Let p ∈ Î . We define a map Ψ ∗
p : (BZe

Z
)σ → (BZe

Z
)σ ⊗ B∗p by

Ψp(M) :=M′ ⊗ (f̂ ∗p )cb∗p . Here, c := ε̂p(M) and M′ := êcpM.

The following lemma is obvious from the definitions.

Lemma 20 (1) Ψp is an injective map.
(2) For every M ∈ (BZe

Z
)σ , we have wt (Ψ ∗

p (M))=wt (M).

Proof of Theorem 5 If condition (5) is satisfied for the Ψ ∗
p above, then conditions

(6) and (7) are automatically satisfied by the definitions. Therefore, the remaining
task is to check condition (5). However, by an argument similar to the one in [6],
this follows from Proposition 16. Thus, we have established the theorem. �

Corollary 10 (1) (BZe
Z
)σ (O∗)= (BZe

Z
)σ .

(2) BZσ
Z
(O)= BZσ

Z
.

Proof (1) is a direct consequence of the main theorem. Applying the map ∗ on both
sides of (1), we obtain (2). �

The second equality above is what we announced in the “note added in proof”
of [8].
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Quiver Varieties and Tensor Products, II

Hiraku Nakajima

Abstract We define a family of homomorphisms on a collection of convolution
algebras associated with quiver varieties, which gives a kind of coproduct on the
Yangian associated with a symmetric Kac-Moody Lie algebra. We study its property
using perverse sheaves.

1 Introduction

In the conference the author explained his joint work with Guay on a construction of
a coproduct on the Yangian Y(g) associated with an affine Kac-Moody Lie algebra
g. It is a natural generalization of the coproduct on the usual Yangian Y(g) for a fi-
nite dimensional complex simple Lie algebra g given by Drinfeld [7]. Its definition
is motivated also by a recent work of Maulik and Okounkov [12] on a geometric
construction of a tensor product structure on equivariant homology groups of holo-
morphic symplectic varieties, in particular of quiver varieties. The purpose of this
paper is to explain this geometric background.

For quiver varieties of finite type, the geometric coproduct corresponding to the
Drinfeld coproduct on Yangian Y(g) was studied in [17, 21, 22]. (And one corre-
sponding to the coproduct on g was studied also in [11].) But the results depend
on the algebraic definition of the coproduct. As it is not known how to define a co-
product on Y(g) for an arbitrary Kac-Moody Lie algebra g, the results cannot be
generalized to other types.

In this paper, we take a geometric approach and define a kind of a coproduct
on convolution algebras associated with quiver varieties together with a C

∗-action
preserving the holomorphic symplectic form, and study its properties using perverse
sheaves.

In fact, we have an ambiguity in the definition of the coproduct, and we have a
family of coproducts Δc , parametrized by c in a certain affine space. This ambiguity
of the coproduct was already noticed in [22, Remark in §5.2]. Maulik-Okounkov
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theory gives a canonical choice of c for a quiver variety of an arbitrary type, and
gives the formula of Δc on standard generators of Y(g). Therefore we can take the
formula as a definition of the coproduct and check its compatibility with the defining
relations of Y(g). This will be done for an affine Kac-Moody Lie algebra g as we
explained in the conference. (The formula is a consequence of results in [12], and
hence is not explained here.)

Although there is a natural choice, the author hopes that our framework, consid-
ering also other possibilities for Δ, is suitable for a modification to other examples
of convolution algebras when geometry does not give us such a canonical choice.
(For example, the AGT conjecture for a general group. See [20].)

Remark also that our construction is specific for Y(g), and is not clear how to
apply for a quantum loop algebra Uq(Lg). We need to replace cohomology groups
by K groups to deal with the latter, but many of our arguments work only for coho-
mology groups.

Finally let us comment on a difference on the coproduct for quiver varieties of
finite type and other types. A coproduct on an algebra A usually means an algebra
homomorphism Δ : A→ A ⊗ A satisfying the coassociativity. In our setting the
algebra A depends on the dimension vector, or equivalently dominant weight w.
Hence Δ is supposed to be a homomorphism from the algebra A(w) for w to the
tensor product A(w1)⊗A(w2) with w=w1 +w2. For a quiver of type ADE, this
is true, but not in general. See Remark 1 for the crucial point. The target of Δ is, in
general, larger than A(w1)⊗A(w2). Fortunately this difference is not essential, for
example, study of tensor product structures of representations of Yangians.

1.1 Notations

The definition and notation of quiver varieties related to a coproduct are as in [17],
except the followings:

• Linear maps i, j are denoted by a, b here.
• A quiver possibly contains edge loops. Roots are defined as in [6, §2]. They are

obtained from coordinate vectors at loop free vertices or ± elements in the fun-
damental region by applying some sequences of reflections at loop free vertices.

• Varieties Z, Z̃ are denote by T, T̃ here.

We say a quiver is of finite type, if its underlying graph is of type ADE. We say it
is of affine type, if it is Jordan quiver or its underlying graph is an extended Dynkin
diagram of type ADE.

For v= (vi), v′ = (v′i ) ∈ Z
I , we say v≤ v′ if vi ≤ v′i for any i ∈ I .

For a variety X, H∗(X) denote its Borel-Moore homology group. It is the dual to
H ∗

c (X) the cohomology group with compact support.
We will use the homology group H∗(L) of a closed variety L in a smooth variety

M in several contexts. There is often a preferred degree in the context, which is
written as ‘top’ below. For example, if L is Lagrangian, it is dimCM . If M has
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several components Mα of various dimensions, we mean Htop(L) to be the direct
sum of Htop(L∩Mα), though the degree ‘top’ changes for each L∩Mα .

Let D(X) denote the bounded derived category of complexes of constructible
C-sheaves on X. When X is smooth, CX ∈ D(X) denote the constant sheaf on X

shifted by dimX. If X is a disjoint union of smooth varieties Xα with various di-
mensions, we understand CX as the direct sum of CXα .

The intersection cohomology (IC for short) complex associated with a smooth
locally closed subvariety Y ⊂X and a local system ρ on Y is denoted by IC(Y,ρ)

or IC(Y ,ρ). If ρ is the trivial rank 1 local system, we simply denote it by IC(Y )

or IC(Y ).

2 Quiver Varieties

In this section we fix the notation for quiver varieties. See [13, 14] for detail.
Suppose that a finite graph is given. Let I be the set of vertices and E the set of

edges. In [13, 14] the author assumed that the graph does not contain edge loops (i.e.,
no edges joining a vertex with itself), but most of results (in particular definitions,
natural morphisms, etc.) hold without this assumption.

Let H be the set of pairs consisting of an edge together with its orientation. So
we have #H = 2#E. For h ∈H , we denote by i(h) (resp. o(h)) the incoming (resp.
outgoing) vertex of h. For h ∈H we denote by h the same edge as h with the reverse
orientation. Choose and fix an orientation Ω of the graph, i.e., a subset Ω ⊂H such
that Ω ∪Ω =H , Ω ∩Ω = ∅. The pair (I,Ω) is called a quiver.

Let V = (Vi)i∈I be a finite dimensional I -graded vector space over C. The di-
mension of V is a vector

dimV = (dimVi)i∈I ∈ Z
I≥0.

If V 1 and V 2 are I -graded vector spaces, we define vector spaces by

L
(
V 1,V 2) def.=

⊕

i∈I
Hom

(
V 1
i , V

2
i

)
, E

(
V 1,V 2) def.=

⊕

h∈H
Hom

(
V 1

o(h),V
2
i(h)

)
.

For B = (Bh) ∈ E(V 1,V 2) and C = (Ch) ∈ E(V 2,V 3), let us define a multipli-
cation of B and C by

CB
def.=

( ∑

i(h)=i

ChBh

)

i

∈ L
(
V 1,V 3).

Multiplications ba, Ba of a ∈ L(V 1,V 2), b ∈ L(V 2,V 3), B ∈ E(V 2,V 3) are de-
fined in the obvious manner. If a ∈ L(V 1,V 1), its trace tr(a) is understood as∑

i tr(ai).
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For two I -graded vector spaces V , W with v= dimV , w= dimW , we consider
the vector space given by

M≡M(v,w)
def.= E(V ,V )⊕ L(W,V )⊕ L(V ,W),

where we use the notation M when v, w are clear in the context. The above three
components for an element of M will be denoted by B =⊕

Bh, a =⊕
ai , b =⊕

bi respectively.
The orientation Ω defines a function ε : H →{±1} by ε(h)= 1 if h ∈Ω , ε(h)=

−1 if h ∈Ω . We consider ε as an element of L(V ,V ). Let us define a symplectic
form ω on M by

ω
(
(B,a, b),

(
B ′, a′, b′

)) def.= tr
(
εB B ′

)+ tr
(
ab′ − a′b

)
.

Let G≡Gv be an algebraic group defined by

G≡Gv
def.=

∏

i

GL(Vi).

Its Lie algebra is the direct sum
⊕

i gl(Vi). The group G acts on M by

(B,a, b) �→ g · (B,a, b)
def.= (

gBg−1, ga, bg−1)

preserving the symplectic structure.
The moment map vanishing at the origin is given by

μ(B,a, b)= εB B + ab ∈ L(V ,V ),

where the dual of the Lie algebra of G is identified with L(V ,V ) via the trace.
We would like to consider a ‘symplectic quotient’ of μ−1(0) divided by G. How-

ever we cannot expect the set-theoretical quotient to have a good property. Therefore
we consider the quotient using the geometric invariant theory. Then the quotient
depends on an additional parameter ζ = (ζi)i∈I ∈ Z

I as follows: Let us define a
character of G by

χζ (g)
def.=

∏

i∈I
(detgi)

−ζi .

Let A(μ−1(0)) be the coordinate ring of the affine variety μ−1(0). Set

A
(
μ−1(0)

)G,χn
ζ

def.= {
f ∈A

(
μ−1(0)

) | f (g · (B,a, b)
)= χζ (g)

nf
(
(B,a, b)

)}
.

The direct sum with respect to n ∈ Z≥0 is a graded algebra, hence we can define

Mζ ≡Mζ (v,w)≡Mζ (V ,W)
def.= Proj

(⊕

n≥0

A
(
μ−1(0)

)G,χn
ζ

)
.
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This is the quiver variety introduced in [13]. Since this space is unchanged when we
replace χ by a positive power χN (N > 0), this space is well-defined for ζ ∈ Q

I .
We call ζ a stability parameter.

We use two special stability parameters in this paper. When ζ = 0, the corre-
sponding M0 is an affine algebraic variety whose coordinate ring consists of the
G-invariant functions on μ−1(0).

Another choice is ζi = 1 for all i. In this case, we denote the corresponding vari-
ety simply by M. The corresponding stability condition is that an I -graded subspace
V ′ of V invariant under B and contained in Kerb is 0 [14, Lemma 3.8]. The sta-
bility and semistability are equivalent in this case, and the action of G on the set
μ−1(0)s of stable points is free, and M is the quotient μ−1(0)s/G. In particular M
is nonsingular.

3 Tensor Product Varieties

Let W 2 ⊂W be an I -graded subspace and W 1 =W/W 2 be the quotient. We fix an
isomorphism W ∼=W 1 ⊕W 2. We define a one parameter subgroup λ : C∗ →GW

by λ(t)= idW 1 ⊕ t idW 2 . Then C
∗ acts on M, M0 through λ.

We fix v, w and w1 = dimW 1, w2 = dimW 2 throughout this paper. Since we
use several quiver varieties with different dimension vectors, let us use the notation
M(v1,w1), etc. for those, while the notation M means the original M(v,w).

3.1 Fixed Points

We consider the fixed point loci MC
∗
, MC

∗
0 . The former decomposes as

M
C
∗ =

⊔

v=v1+v2

M
(
v1,w1)×M

(
v2,w2) (1)

(see [17, Lemma 3.2]). The isomorphism is given by considering the direct sum
of [B1, a1, b1] ∈M(v1,w1) and [B2, a2, b2] ∈M(v2,w2) as a point in M. Since
quiver varieties M(v1,w1), M(v2,w2) are connected, this is a decomposition of
MC

∗
into connected components.

Let us study the second fixed point locus MC
∗

0 . We have a morphism

σ :
⊔

v=v1+v2

M0
(
v1,w1)×M0

(
v2,w2)→M

C
∗

0

given by the direct sum as above. This cannot be an isomorphism unless v = 0
as the inverse image of 0 consists of several points corresponding to various de-
composition v = v1 + v2. This is compensated by considering the direct limit
M0(w) = ⋃

v M0(v,w) if the underlying graph is of type ADE. But this trick
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does not solve the problem yet in general. For example, if the quiver is the Jor-
dan quiver, and v1 =w1 = v2 =w2 = 1, we have M0(v1,w1)=M0(v2,w2)=C

2,
while MC

∗
0 = S2(C2). The morphism σ is the quotient map C

2 ×C
2 → S2(C2)=

(C2 ×C
2)/S2. Let us study σ further.

Using the stratification [14, Lemma 3.27] we decompose M0 =M0(v,w) as

M0 =
⊔

v0

M
reg
0

(
v0,w

)×M0
(
v− v0,0

)
, (2)

where M
reg
0 (v0,w) is the open subvariety of M0(v0,w) consisting of closed free

orbits, and M0(v− v0,0) is the quiver variety associated with W = 0. For quiver
varieties of type ADE, the factor M0(v− v0,0) is a single point 0. It is nontrivial
in general. For example, if the quiver is the Jordan quiver, we have M0(v− v0,0)=
Sn(C2) where n= v− v0. Then

Lemma 1 (1) The above stratification induces a stratification

M
C
∗

0 =
⊔

v0,1v,2v
v0=1v+2v

M
reg
0

(1v,w1)×M
reg
0

(2v,w2)×M0
(
v− v0,0

)
.

(2) σ is a surjective finite morphism.

Thus the factor with W = 0 appears twice in M0(v1,w1)×M0(v2,w2) while it
appears only once in MC

∗
0 .

Proof (1) We consider Mreg
0 (v0,w) as an open subvariety in M(v0,w) and restrict

the decomposition (1). Then it is easy to check that (x, y) ∈M(1v,w1)×M(2v,w2)

is contained in M
reg
0 (v0,w) if and only if x, y are in M

reg
0 (1v,w1), Mreg

0 (2v,w2) re-
spectively. Thus Mreg

0 (v0,w)C
∗ =M

reg
0 (1v,w1)×M

reg
0 (2v,w2). Now the assertion

is clear as C∗ acts trivially on the factor M0(v− v0,0).
(2) The coordinate ring of M0 is generated by the following two types of func-

tions:

• tr(BhN
BhN−1 · · ·Bh1 : Vo(h1) → Vi(hN ) = Vo(h1)), where h1, . . . , hN is a cycle in

our graph.
• χ(bi(hN )BhN

BhN−1 · · ·Bh1ao(h1)), where h1, . . . , hN is a path in our graph, and χ

is a linear form on Hom(Wo(h1),Wi(hN )).

Then the generators for MC
∗

0 are the first type functions and second type functions
with χ = (χ1, χ2) ∈Hom(W 1

o(h1)
,W 1

i(hN ))⊕Hom(W 2
o(h1)

,W 2
i(hN )).

If we pull back these functions by σ , they become sums of the same types of
functions for M0(v1,w1) and M0(v2,w2). From this observation, we can easily see
that σ is a finite morphism. From (1) it is clearly surjective. �
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Remark 1 Let Z(va,wa) be the fiber product M(va,wa)×M0(va,wa)M(va,wa) for
a = 1,2. The fiber product MC

∗ ×
MC∗

0
MC

∗
is larger than the union of the products

Z(v1,w1)× Z(v2,w2) in general. For example, consider the Jordan quiver variety
with v1 = v2 = w1 = w2 = 1. Then M(va,wa) is C

2. The product Z(v1,w1) ×
Z(v2,w2) is consisting of points (p1, q1,p2, q2) with p1 = q1, p2 = q2. On the
other hand, MC

∗ ×
MC∗

0
MC

∗
contains also points with p1 = q2, p2 = q1.

On the other hand, if the quiver is of type ADE, we do not have the factor
M0(v− v0,0), and they are the same.

3.2 Review of [17]

In this subsection we recall results in [17, §3], with emphasis on subvarieties in the
affine quotient M0.

We first define the following varieties which were implicitly introduced in [17,
§3]:

T0
def.=

{
x ∈M0 | lim

t→0
λ(t)x exists

}
,

T̃0
def.=

{
x ∈M0 | lim

t→0
λ(t)x = 0

}
.

By the proof of [17, Lemma 3.6] we have the following: x = [B,a, b] is in T0 (resp.
T̃0) if and only if

• bi(hN )BhN
BhN−1 · · ·Bh1ao(h1) maps W 2

o(h1)
to W 2

i(hN ) (resp. W 2
o(h1)

to 0 and the

whole Wo(h1) to W 2
i(hN )

) for any path in the doubled quiver.

From this description it also follows that T0, T̃0 are closed subvarieties in M0.
We have the inclusion i : T0 →M0 and the projection p : T0 →MC

∗
0 defined

by taking limt→0 λ(t)x. The latter is defined as M0 is affine.

We define T
def.= π−1(T0), T̃

def.= π−1(T̃0). These definitions coincide with ones
in [17, §3]. Note that we do not have an analog of p : T0 →MC

∗
0 for T. Instead we

have a decomposition

T=
⊔

v=v1+v2

T
(
v1,w1;v2,w2) (3)

into locally closed subvarieties, and the projection

p(v1,v2) : T
(
v1,w1;v2,w2)→M

(
v1,w1)×M

(
v2,w2), (4)

which is a vector bundle. These are defined by considering the limit limt→0 λ(t)x.
Note that they intersect in their closures, contrary to (1), which was the decom-
position into connected components. Since pieces in (3) are mapped to different
components, p(v1,v2)’s do not give a morphism defined on T.
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As a vector bundle, T(v1,w1;v2,w2) is the subbundle of the normal bundle of
M(v1,w1)×M(v2,w2) in M consisting of positive weight spaces. Its rank is half
of the codimension of M(v1,w1)×M(v2,w2). In fact, the restriction of the tangent
space of M to M(v1,w1)×M(v2,w2) decomposes into weight ±1 and 0 spaces
such that

• the weight 0 subspace gives the tangent bundle of M(v1,w1)×M(v2,w2),
• the weight 1 and −1 subspaces are dual to each other with respect to the sym-

plectic form on M.

We define a partial order < on the set {(v1,v2) | v1 + v2 = v} defined by
(v1,v2) ≤ (v′1,v′2) if and only if v1 ≤ v′1. We extend it to a total order and de-
note it also by <. Let

T≤(v1,v2)
def.=

⋃

(v′1,v′2)≤(v1,v2)

T
(
v1,w1;v2,w2),

and let T<(v1,v2) be the union obtained similarly by replacing ≤ by <. Then
T≤(v1,v2), T<(v1,v2) are closed subvarieties in T.

3.3 The Fiber Product ZT

We introduce one more variety, following [12]. Let us consider T0 as a subvariety in
M0×MC

∗
0 , where the projection to the second factor is given by p. Let ZT ⊂M×

MC
∗

be the inverse image of T0 under the restriction of the projective morphism
π × π . This variety is an analog of the variety Z =M×M0 M introduced in [14,
§7]. Note that ZT is also given as a fiber product T×

MC∗
0

MC
∗
, where T→MC

∗
0

is given by the composition of π : T→ T0 and p : T0 →MC
∗

0 . We will consider
a cycle in ZT as a correspondence in M ×MC

∗
later. Note that the projection

p1 : ZT→M is proper, but p2 : ZT→MC
∗

is not.
We consider the two decompositions (1, 3). For brevity, we change the notation

as

M
C
∗ =

⊔

α

Mα, T=
⊔

α

Tα.

We also recall

T≤α =
⊔

β≤α

Tβ, T<α =
⊔

β<α

Tβ.

These are closed subvarieties in T.
Then they induce a decomposition

ZT =
⊔

α,β

ZT,α,β ,
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with

ZT,α,β
def.= ZT ∩ (Tα ×Mβ).

We have the corresponding decomposition

ZC
∗ =M

C
∗ ×

MC∗
0

M
C
∗ =

⊔

α,β

Zα,β

induced from the decomposition of the first and second factors.
We also define

ZT,≤α,β
def.= ZT ∩ (T≤α ×Mβ), ZT,<α,β

def.= ZT ∩ (T<α ×Mβ).

They are closed subvarieties in ZT and ZT,α,β is an open subvariety in ZT,≤α,β . On
the other hand, each Zα,β is a closed subvariety in Mα ×Mβ .

Each piece ZT,α,β is a vector bundle over Zα,β , which is pull-back of Tα →Mα .
Therefore its rank is half of the codimension of Mα in M.

Proposition 1 (1) Each irreducible component of ZT,α,β is at most half dimen-
sional in M×MC

∗
, and hence the same is true for ZT.

(2) Irreducible components of ZT of half dimension are Lagrangian subvarieties
in M×MC

∗
.

Here MC
∗

has several connected components of various dimensions, so the
above more precisely meant half dimensional in each component M×Mβ .

Proof (1) It is known that π : M→M0 is semismall, if we replace the target by
the image π(M0). (This is a consequence of [13, 6.11] as explained in [19, 2.23].)
Therefore irreducible components of Z =M×M0 M are at most half dimensional
in M×M. As σ is a finite morphism, the same is true for ZC

∗
. Now the assertion

for ZT,α,β follows as it is a vector bundle over Zα,β whose rank is equal to the half
of codimension of Mα .

(2) This follows from the local description of π in [16, Theorem 3.3.2] which
respects the symplectic form from its proof, together with the fact that π−1(0) is
isotropic by the proof of [13, Theorem 5.8]. �

4 Coproduct

In this section we define a kind of a coproduct on the convolution algebra H∗(Z).
The target of Δ is, in general, larger than the tensor product H∗(Z(w1)) ⊗
H∗(Z(w2)) as we mentioned in the introduction.



412 H. Nakajima

4.1 Convolution Algebras

Recall the fiber product Z =M×M0 M. The convolution product defines an algebra
structure on H∗(Z):

a ∗ b
def.= p13∗

(
p∗12(a)∩ p∗23(b)

)
, a, b ∈H∗(Z),

where pij is the projection from M ×M ×M to the product of the ith and j th-
factors, and Z is viewed as a subvariety in M ×M for the cap product. (See [5,
§2.7] for more detail.)

As π : M→ π(M) is a semismall morphism, the top degree component Htop(Z)

is a subalgebra, where ‘top’ is equal to the complex dimension of M×M. Moreover
H∗(Z) is a graded algebra, where the degree p elements are in Htop−p(Z). (See [5,
§8.9].)

Take x ∈M0. We consider the inverse image π−1(x) ⊂M and denote it by
Mx . (When x = 0, this is denoted by L usually.) Then the convolution gives⊕

Htop−p(Mx) a structure of a module of H∗(Z). Here ‘top’ is the difference of
complex dimensions of M and the stratum containing x.

Similarly we can define a graded algebra structure on

H∗
(
ZC

∗)=
⊕

Htop−p

(
ZC

∗)
,

where ‘top’ means the complex dimension of MC
∗ ×MC

∗
, possibly different on

various connected components. By Sect. 3.1 it is close to
⊕

v1+v2=v2

H∗
(
Z
(
v1,w1))⊗H∗

(
Z
(
v2,w2)),

but is different in general, as explained in Remark 1.
We denote by MC

∗
x the inverse image (πC

∗
)−1(x) in MC

∗
for x ∈MC

∗
0 . Its ho-

mology
⊕

Htop−p(M
C
∗

x ) is a graded module of H∗(ZC
∗
). Here ‘top’ is the differ-

ence of complex dimensions of MC
∗

(resp. M) and the stratum containing x.

4.2 Convolution by ZT

Take x ∈MC
∗

0 . We consider the inverse image (p ◦ πT)−1(x)⊂ T⊂M and denote
it by Tx . (When x = 0, this is denoted by T̃ in Sect. 3.2.) By the convolution product
its homology H∗(Tx)=⊕Htop−p(Tx) is a graded module of H∗(Z). Here ‘top’ is
the difference of complex dimensions of M and the stratum containing x.

Let Tα,x , T≤α,x , T<α,x be the intersection of Tx with Tα , T≤α , T<α respectively.
We have a short exact sequence

0→Htop−p(T<α,x)→Htop−p(T≤α,x)→Htop−p(Tα,x)→ 0.

(See [17, §3] and (11) below.)
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Let us restrict the projection pα : Tα →Mα in (4) to Tα,x . As πC
∗ ◦pα = p ◦π ,

it identifies Tα,x with its inverse image of Mα,x
def.= Mα ∩MC

∗
x . Therefore we can

replace the last term of the short exact sequence by Htop−p(Mα,x) thanks to the
Thom isomorphism:

0→Htop−p(T<α,x)→Htop−p(T≤α,x)→Htop−p(Mα,x)→ 0. (5)

Our convention of ‘top’ is compatible for Tx and Mx as the rank of the vector
bundle is the half of codimension of Mα in M. Since T≤α = T when α is the
maximal element, we get

Lemma 2 Htop−p(Tx) has a filtration whose associated graded is isomorphic to
Htop−p(M

C
∗

x ).

Choice of splittings Htop−p(T≤α,x)← Htop−p(Mα,x) in (5) for all α gives an
isomorphism Htop−p(Tx)∼=Htop−p(M

C
∗

x ). Our next goal is to understand the space
of all splittings in a geometric way.

For this purpose we consider the top degree homology group Htop(ZT). They are
spanned by Lagrangian irreducible components of ZT by Proposition 1.

Let c ∈Htop(ZT) and p ∈ Z. The convolution product

a �→ c ∗ a
def.= p1∗

(
c ∩ p∗2(a)

)

defines an operator

c∗: Htop−p

(
M

C
∗

x

)→Htop−p(Tx), (6)

where p1, p2 are projections from M ×MC
∗

to the first and second factors. The
degree shift p is preserved by the argument in [5, §8.9]. (If we choose c from
Htop−k(ZT), the convolution maps Htop−p to Htop−p−k .) Note also that the above
operation is well-defined as p1 is proper, while the operator p2∗(c ∩ p∗1(−)) is not
in this setting.

An arbitrary class c ∈Htop(ZT) does not give a splitting of (5), as it is nothing
to do with the decomposition T=⊔Tα . Let us write down a sufficient condition to
give a splitting.

Since c is in the top degree, it is a linear combination of fundamental classes of
Lagrangian irreducible components of ZT. From Proposition 1(1), half-dimensional
irreducible components are closures of half-dimensional irreducible components of
ZT,β,α for some pair α, β . Therefore we can write

c=
∑

α,β

cβ,α.

Moreover its proof there, the latter are pull-backs of half-dimensional irreducible
components of Zβ,α under the projection pβ × idMα

.
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We impose the following conditions on c:

cβ,α = 0 unless α ≥ β, (7a)

cα,α =
[
(pα × idMα

)−1(ΔMα
)
]
. (7b)

The first condition also means that c is in the image of
⊕

α Htop(ZT,≤α,α) →
Htop(ZT). Note that

⊔
α ZT,≤α,α is a disjoint union of closed subvarieties in ZT,

and hence the push-forward homomorphism is defined.

Proposition 2 Let c ∈ Htop(ZT) with the conditions (7a), (7b). Then c∗ is an iso-
morphism and gives a splitting of (5) for all α.

We will show the converse in Sect. 5.2: c∗ gives a splitting if and only if c satis-
fies (7a), (7b).

Proof By the first condition the operator c∗ restricts to Htop−p(Mα,x) →
Htop−p(T≤α,x). And by the second condition it gives the identity if we compose
Htop−p(T≤α,x)→Htop−p(Mα,x). Thus c∗ gives a splitting of (5). �

Next we construct the inverse of c∗ also by a convolution product. We consider

T
−
0

def.=
{
x ∈M0 | lim

t→∞λ(t)x exists
}
,

and the similarly defined variety T− also by replacing t → 0 by t →∞. We have
the inclusion i− : T−0 →M0 and the projection p− : T−0 →MC

∗
0 . Note also that

T0 ∩T
−
0 =MC

∗
0 .

Let us define ZT− as the fiber product MC
∗ ×

MC∗
0

T−, and consider it as a

subvariety in MC
∗ ×M. We swap the first and second factors from ZT as it becomes

more natural when we consider a composite of correspondences.
Since p1 is proper on ZT− ∩ p−1

2 (Tx), a class c− ∈Htop(ZT−) defines the well-
defined convolution product c− ∗ a = p1∗(c− ∩ p∗2(a)) for a ∈ Htop−p(Tx), and
defines an operator

c−∗: Htop−p(Tx)→Htop−p

(
M

C
∗

x

)
. (8)

By the associativity of the convolution product, the composite c− ∗ (c ∗ •) ∈
End(Htop−p(M

C
∗

x )) is given by the convolution of

c− ∗ c= p13∗
(
p∗12

(
c−
)∩ p∗23(c)

)
,

where pij is the projection from MC
∗ ×M ×MC

∗
to the product of the ith and

j th-factors.

Proposition 3 Suppose that c ∈ Htop(ZT) satisfies the conditions (7a), (7b). Then
there exists a class c−1 ∈Htop(ZT−) such that c−1 ∗ c is equal to [ΔMC∗ ].
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Proof We have decomposition T− =⊔α T
−
α , and the projection p−α : T−α →Mα .

The index set {α} is the same as before, as it parametrizes the connected components
of MC

∗
.

Since the order < plays the opposite role for T−,

T
−≥α

def.=
⊔

β≥α

T
−
β , T

−
>α

def.=
⊔

β>α

T
−
β ,

are closed subvarieties in T−.
We define ZT−,γ,β

def.= ZT− ∩ (Mγ ∩ T
−
β ) and ZT−,γ,≥β as above. We then im-

pose the following conditions on c− =∑ c−γ,β :

c−γ,β = 0 unless γ ≤ β,

c−γ,γ =
[(

idMγ
× p−γ

)−1
(ΔMγ

)
]
.

These conditions imply that c− ∗ c is unipotent, more precisely is upper triangular
with respect to the block decomposition Htop(Z

C
∗
) =⊕

γ,α Htop(Zγ,α), and the

Htop(Zα,α) component is [ΔMα
] for all α. Noticing that we can represent (c− ∗c)−1

as a class in Htop(Z
C
∗
) by the convolution product, we define c−1 = (c− ∗ c)−1 ∗

c− ∈Htop(ZT−) to get c−1 ∗ c= [ΔZC∗ ]. �

Remark 2 If we consider the convolution product in the opposite order, we get

c ∗ c−1 ∈Htop
(
T×

MC∗
0

T
−),

where T→MC
∗

0 (resp. T→MC
∗

0 ) is p ◦ π (resp. p− ◦ π ). In general, there are no
inclusion relations between T×

MC∗
0

T− and Z =M×M0 M. Therefore the equality

c ∗ c−1 = [ΔM] does not make sense at the first sight. However the actual thing we
need is the operator c−∗ in (8). Proposition 3 implies that the composite c−1 ∗ (c∗)
of the operator is the identity on Htop−p(M

C
∗

x ) for each x. Then we have c ∗ (c−1∗)
is also the identity on Htop−p(Tx), as both Htop−p(M

C
∗

x ) and Htop−p(Tx) are vector
spaces of same dimension.

Later we will see that we do not loose any information when we consider c−1

as such an operator. In particular, we will see that c−1 is uniquely determined by c,
i.e., we will prove the uniqueness of the left inverse in the proof of Theorem 1.

4.3 Coproduct by Convolution

We define a coproduct using the convolution in this subsection.
Let c ∈Htop(ZT) be a class satisfying the conditions (7a), (7b). We take the class

c−1 ∈ Htop(ZT−) as in Proposition 3. We define a homomorphism Δc : H∗(Z)→
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H∗(ZC
∗
) by

Δc(•)= c−1 ∗ • ∗ c= p14∗
(
p∗12

(
c−1)∩ p∗23(•)∩ p∗34(c)

)
, (10)

where we consider the convolution product in MC
∗ ×M×M×MC

∗
. This preserves

the grading.
Since c−1 ∗ c= 1, we have Δc(1)= 1. But it is not clear at this moment that Δc

is an algebra homomorphism since we do not know c ∗ c−1 = 1, as we mentioned
in Remark 2. The proof is postponed until the next subsection.

4.4 Sheaf-Theoretic Analysis

In this subsection, we reformulate the result in the previous subsection using per-
verse sheaves.

By [5, §8.9] we have a natural graded algebra isomorphism

H∗(Z)∼= Ext•D(M0)
(π!CM,π!CM),

where the multiplication on the right hand side is given by the Yoneda product and
the grading is the natural one. Here the semismallness of π guarantees that the
grading is preserved.

We have similarly

H∗
(
ZC

∗)∼= Ext•
D(MC∗

0 )

(
πC

∗
! CMC∗ ,πC

∗
! CMC∗

)
.

In this subsection we define a functor sending π!CM to πC
∗

! CMC∗ to give a homo-
morphism H∗(Z)→H∗(ZC

∗
) which coincides with Δc .

For a later purpose, we slightly generalize the setting from the previous subsec-
tion. If v′ ≤ v, we have a closed embedding M0(v′,w)⊂M0 =M0(v,w), given by
adding the trivial representation with dimension v− v′.

We consider the push-forward π!CM(v′,w) as a complex in D(M0). By the de-
composition theorem [1] it is a semisimple complex. Furthermore π!CM(v′,w) is a
perverse sheaf, as π : M(v′,w)→ π(M(v′,w)) is semismall [3]. Let P(M0) de-
note the full subcategory of D(M0) consisting of all perverse sheaves that are finite
direct sums of perverse sheaves L, which are isomorphic to direct summand of
π!CM(v′,w) with various v′.

Replacing M0, M(v′,w) by MC
∗

0 , M(v′,w)C
∗

respectively, we introduce
the full subcategory P(MC

∗
0 ) of D(MC

∗
0 ) as above. Here we replace π by

πC
∗ : M(v′,w)C

∗ →M0(v′,w)C
∗
, which is the restriction of π .

Let i : T0 →M0 and p : T0 →MC
∗

0 as in Sect. 3.2. We consider p!i∗ : D(M0)

→D(MC
∗

0 ). This is an analog of the restriction functor in [8, §4], [9, §9.2], and was
introduced in the quiver variety setting in [22, §5]. It is an example of the hyperbolic
localization.
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Lemma 3 (1) The functor p!i∗ sends P(M0) to P(MC
∗

0 ).
(2) Let v′ ≤ v. The complex p!i∗π!CM(v′,w) has a canonical filtration whose as-

sociated graded is canonically identified with πC
∗

! CM(v′,w)C
∗ .

This was proved in [22, Lemma 5.1] for quiver varieties of finite type, but the
proof actually gives the above statements for general types.

Let us recall how the filtration is defined. Let us assume v′ = v for brevity. Con-
sider the diagram

M

π

T=⊔Tα

i′

πT

⊔
pα ⊔

Mα =MC
∗

πC
∗

M0 T0
i

p
MC

∗
0

where i′ is the inclusion, πT is the restriction of π to T, and pα is the projection of
the vector bundle (4). Note that each pα is a morphism, but the union

⊔
pα does

not gives a morphism T→MC
∗
.

Recall the order < on the set {α} of fixed point components, and closed subva-
rieties T≤α , T<α in Sect. 3.2. Let π≤α , π<α be the restrictions of πT to T≤α , T<α

respectively. Then the main point in [22, Lemma 5.1] (based on [8, §4]) was to note
that there is the canonical short exact sequence

0→ πC
∗

! CMα
→ (p ◦ π≤α)!CT≤α

→ (p ◦ π<α)!CT<α
→ 0. (11)

Since T≤α = T for the maximal element α and we have i∗π!CM = πT!i′∗CM, this
gives the desired filtration.

During the proof it was also shown that (p ◦ π≤α)!CT≤α
, (p ◦ π<α)!CT<α

are
semisimple. (It is not stated explicitly in [22], but comes from [8, 4.7].) There-
fore the short exact sequence (11) splits, and hence p!i∗π!CM and

⊕
α πC

∗
! CMα

=
πC

∗
! CMC∗ is isomorphic. The choice of an isomorphism depends on the choice of

splittings of the above short exact sequences for all α.
The exact sequence (11) is the sheaf theoretic counterpart of (5). More precisely

it is more natural to consider the transpose of (5):

0→ (p ◦ π<α)∗CT<α
→ (p ◦ π≤α)∗CT≤α

→ πC
∗

∗ CMα
→ 0, (12)

obtained by applying the Verdier duality.
Recall that we study Htop(ZT) in order to describe a splitting of (5) by convolu-

tion.

Lemma 4 We have a natural isomorphism

Htop(ZT)∼=Hom
D(MC∗

0 )

(
p!i∗π!CM,πC

∗
! CMC∗

)
.
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The proof is exactly the same as [5, Lemma 8.6.1], once we use the base change
i∗π!CM = πT!i′∗CM.

This isomorphism is compatible with the convolution operator (6) in the fol-
lowing way: Let ix denote the inclusion {x} → MC

∗
0 . Then an element c in

Hom
D(MC∗

0 )
(p!i∗π!CM,πC

∗
! CMC∗ ) ∼= Hom

D(MC∗
0 )

(πC
∗

∗ CMC∗ ,p∗i!π∗CM) defines
an operator

Hp
(
i!xπC

∗
∗ CMC∗

)→Hp
(
i!xp∗i!π∗CM

)
(13)

by the Yoneda product. (See [5, 8.6.13].) We have

Hp
(
i!xp∗i!π∗CM

)∼=Hp
(
i!x(p ◦ πT)∗i′!CM

)∼=Hp
(
(p ◦ πT)∗i′!xCM

)
,

where i′x is the inclusion of Tx in M. The last one is nothing but Htop−p(Tx).
Similarly Hp(i!xπC

∗
∗ CMC∗ ) is naturally isomorphic to Htop−p(M

C
∗

x ). Then we have

Lemma 5 Under the isomorphism in Lemma 4, the operator (13) given by c ∈
Htop(ZT) is equal to one in (6).

The proof is the same as in [5, §8.6].
The conditions (7a), (7b) on c ∈ Htop(ZT) is translated into a language for the

right hand side. We have the following equivalent to the condition (7a), (7b):

c maps (p ◦ π≤α)∗CT≤α
to
⊕

β≤α

πC
∗

∗ CMβ
, (14a)

c : (p ◦ π≤α)∗CT≤α
/(p ◦ π<α)∗CT<α

→ πC
∗

∗ CMα
is the identity. (14b)

Here the identity means the natural homomorphism given by (12).
Thus c satisfying (14a), (14b) gives a splitting of (11) and hence an isomorphism

p!i∗π!CM ∼= πC
∗

! CMC∗ . Therefore we have a graded algebra homomorphism

Ext•D(M0)
(π!CM,π!CM)

p!i∗−−→ Ext•
D(MC∗

0 )

(
p!i∗π!CM,p!i∗π!CM

)

Ad(c)−−−→∼= Ext•
D(MC∗

0 )

(
πC

∗
! CMC∗ ,πC

∗
! CMC∗

)
. (15)

It is compatible with (13), i.e.,

Hp(i!xπC
∗

∗ CMC∗ )
c

a

Hp(i!xp∗i!π∗CM)

Ad(c)p∗i!(a)

Hp(i!xπC
∗

∗ CMC∗ )
c

Hp(i!xp∗i!π∗CM)

is commutative.
For ZT− we have the following:
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Lemma 6 We have natural isomorphisms

Htop(ZT−)∼=Hom
D(MC∗

0 )

(
πC

∗
! CMC∗ ,p−∗ i−!π!CM

)

∼=Hom
D(MC∗

0 )

(
πC

∗
! CMC∗ ,p!i∗π!CM

)
.

The first isomorphism is one as in Lemma 4. We exchange the first and second
factors, as we have changed the order of factors MC

∗
and M containing ZT− . The

sheaves are replaced by their Verdier dual. The second isomorphism is induced by

p−∗ i−!π!CM ∼= p!i∗π!CM,

proved by Braden [4] (see Theorem 1 and the Eq. (1) at the end of Sect. 3).
We now have

Theorem 1 The coproduct Δc in (10) is equal to (15). In particular, Δc is an alge-
bra homomorphism.

Proof The isomorphisms in Lemmas 4, 6 are compatible with the product. There-
fore, c−1 ∗ c= [ΔMC∗ ] means that the composite

πC
∗

! CMC∗
c−1−−→ p!i∗π!CM

c−→ πC
∗

! CMC∗

is the identity. (Note that the order of c, c−1 is swapped as we need to consider the
transpose of homomorphisms for convolution.)

As πC
∗

! CMC∗ and p!i∗π!CM are semisimple, c, c−1 can be considered as lin-
ear maps between isotypic components. (See Sect. 5.2 for explicit descriptions of
isotypic components.) Therefore c ◦ c−1 = id implies c−1 ◦ c= id also. This, in par-
ticular, shows the uniqueness of c−1 mentioned in Remark 2. Moreover this c−1 is
the inverse of c used in (15). Therefore Δc coincides with (15) again thanks to the
compatibility between the convolution and Yoneda products. �

4.5 Coassociativity

Since Δc depends on the choice of the class c, the coassociativity does not hold
in general. We give a sufficient condition on c (in fact, various c’s) to have the
coassociativity in this subsection.

Let W =W 1 ⊕W 2 ⊕W 3 be a decomposition of the I -graded vector space. Let
w= w1 +w2 +w3 be the corresponding dimension vectors. Setting W 23 =W 2 ⊕
W 3, we have a flag W 3 ⊂ W 23 ⊂ W with W 3/W 23 ∼= W 2, W/W 23 = W 1. This
gives us a preferred order among factors generalizing to W 2 ⊂W in the previous
setting.

The two dimensional torus T = C
∗ × C

∗ acts on M =M(v,w) through the
homomorphism λ : T →GW defined by λ(t2, t3)= idW 1 ⊕ t2 idW 2 ⊕ t3 idW 3 .
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We have two ways of putting braces for the sum w = (w1 + w2)+ w3 = w1 +
(w2 + w3) respecting the order. We have corresponding two C

∗’s in T given by
{(1, t3)} and {(t2, t2)}. We denote the former by C

∗
12,3 and the latter by C

∗
1,23. We

then consider fixed points varieties, tensor product varieties, and fiber products for
both C

∗’s. We denote them by M12,3, T12,3, ZT12,3 , M1,23, T1,23, ZT1,23 , etc. They

correspond to block matrices
[ ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

]
and

[ ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

]
respectively.

On these varieties, we have the action of the remaining C
∗ = T/C∗12,3 and

T/C∗1,23 respectively. Then we can consider the fixed point sets (M12,3)C
∗
,

(M12,3)C
∗
. Both are nothing but the torus fixed points MT . We denote it by M1,2,3.

We denote the corresponding fiber product by Z1,2,3. In T
12,3
0 , T1,23

0 , we consider
subvarieties consisting of points limt→0 exists as before. They can be described as
the variety consisting of points x = [B,a, b] such that bi(hN )BhN

BhN−1 · · ·Bh1ao(h1)

preserves the flag W 3 ⊂W 23 ⊂W , i.e.,
[ ∗ ∗ ∗

0 ∗ ∗
0 0 ∗

]
. In particular, the variety is the same

for one defined in T
12,3
0 and in T

1,23
0 . Therefore it is safe to write both by T

1,2,3
0 . We

have the corresponding fiber product ZT1,2,3
def.= T1,2,3 ×

M
1,2,3
0

M1,2,3.

We need two more classes of varieties corresponding to
[ ∗ ∗ 0

0 ∗ 0
0 0 ∗

]
and

[ ∗ 0 0
0 ∗ ∗
0 0 ∗

]
re-

spectively. Tensor product varieties are

T
(1,2),3
0

def.= T
1,2,3
0 ∩M

12,3
0 , T

1,(2,3)
0

def.= T
1,2,3
0 ∩M

1,23
0

respectively. We define the fiber products ZT(1,2),3 = T(1,2),3 ×
M

1,2,3
0

M1,2,3,

ZT1,(2,3) = T1,(2,3) ×
M

1,2,3
0

M1,2,3.

A class c12,3 ∈Htop(ZT12,3) gives the coproduct

Δc12,3 : H∗(Z)→H∗(Z12,3),

and similarly c1,23 ∈Htop(ZT12,3) gives Δc1,23 . These correspond to Δ⊗1 and 1⊗Δ

for the usual coproduct respectively.
A class c(1,2),3 ∈Htop(ZT(1,2),3) gives

Δc(1,2),3 : H∗(Z12,3)→H∗(Z1,2,3),

and similarly c1,(2,3) ∈Htop(ZT(1,2),3) gives Δc1,(2,3) . Thus we have two ways going
from H∗(Z) to H∗(Z1,2,3):

H∗(Z)

Δ
c12,3

Δ
c1,23

H∗(Z12,3)

Δ
c(1,2),3

H∗(Z1,23)
Δ

c1,(2,3)

H∗(Z1,2,3)

(16)
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The commutativity of this diagram means the coassociativity of our coproduct.

Proposition 4 The diagram (16) is commutative if

c12,3 ∗ c(1,2),3 = c1,(2,3) ∗ c1,23

holds in Htop(ZT1,2,3).

The proof is obvious.

4.6 Equivariant Homology Version

Let G=∏i GL(W 1
i )×GL(W 2

i ). The group G acts on M, MC
∗

and various other
varieties considered in the previous subsections.

We consider a C
∗ ×C

∗-action on M defined by

(t1, t2) ·Bh =
{
t1Bh if h ∈Ω,

t2Bh if h ∈Ω,
(t1, t2) · a = a, (t1, t2) · b= t1t2b.

Let G=C
∗ ×C

∗ ×G.

Remark 3 When the graph does not contain a cycle, the action of a factor C∗ of
C
∗ × C

∗, lifted to the double cover, can be move to an action through C
∗ → G.

Therefore we only have an action of C∗ ×G essentially in this case.

The results in the previous subsections hold in the equivariant category: we re-
place the homology H∗(X) by the equivariant homology HG∗ (X). For the derived
category D(X) of complexes of constructible sheaves, we use their equivariant ver-
sion DG(X), considered in [2, 10].

The following observations are obvious, but useful. Top degree components of Z
give a base for both Htop(Z) and HG

top(Z). Therefore we have a natural isomorphism

Htop(ZT)∼=HG

top(ZT).

The corresponding statement for the right hand side of Lemma 4 is

Hom
D(MC∗

0 )

(
p!i∗π!CM,πC

∗
! CMC∗

)∼=Hom
DG(MC∗

0 )

(
p!i∗π!CM,πC

∗
! CMC∗

)
.

This is also true as p!i∗π!CM, πC
∗

! CMC∗ are G-equivariant perverse sheaves. (See
[10, 1.16(a)].)

In particular, c ∈Htop(ZT) defines the coproduct Δc for the equivariant version
Δc : HG∗ (Z)→ HG∗ (ZC

∗
). Also to check the coassociativity of the coproduct, we

only need to check the condition in Proposition 4 for the non-equivariant homology.
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Remark 4 In a wider framework of a holomorphic symplectic manifold with torus
action satisfying certain conditions, Maulik and Okounkov [12] give a ‘canonical’
element c. It is called the stable envelop. It is defined first on the analog of ZT for the
quiver varieties with generic complex parameters (deformations of M, MC

∗
), and

then as the limit when parameters go to 0. It satisfies (7a), (7b) and the condition in
Proposition 4. Therefore their stable envelop together with the construction in this
section gives a canonical coproduct, satisfying the coassociativity.

5 Tensor Product Multiplicities

In this section, we give the formula of tensor product multiplicities with respect to
the coproduct Δc in terms of IC sheaves.

5.1 Decomposition of the Direct Image Sheaf

We give the decomposition of π!(CM) in this subsection. For this purpose, we in-
troduce a refinement of the stratification (2). We do not need to worry about the first
factor Mreg

0 (v0,w) as it cannot be decomposed further. On the other hand the sec-
ond factor M0(v− v0,0) parametrizes isomorphism classes of semisimple modules
M of the preprojective algebra corresponding to the quiver. They decompose into
direct sum of simple modules as

M =M
⊕n1
1 ⊕M

⊕n2
2 ⊕ · · · ⊕M

⊕nN

N .

Dimension vectors of all simple modules have been classified by Crawley-Boevey
[6, Th. 1.2]. (In fact, he also classifies pairs (v0,w) with M

reg
0 (v0,w) 	= ∅.) Let

δ1, δ2, . . . , δN be such vectors which are ≤ v. They are all positive roots satisfying
certain conditions. For example, for a quiver of type ADE, they are simple roots.
For a quiver of affine type ADE, they are simple roots and the positive generator δ

of imaginary roots. For a Jordan quiver, it is the vector 1 ∈ Z= Z
I .

We then have

M0
(
v− v0,0

)= Sn1M
reg
0 (δ1,0)× Sn2M

reg
0 (δ2,0)× · · · × SnNM

reg
0 (δN ,0),

with v0 + n1δ1 + · · · + nNδN = v. Here M
reg
0 (δk,0) parametrizes simple modules

with dimension vector δk , or equivalently points in M0(δk,0) whose stabilizers are
nonzero scalars times the identity. Its symmetric power SnkM

reg
0 (δk,0) parametrizes

semisimple modules

M
⊕m1
1 ⊕M

⊕m2
2 ⊕ · · ·

such that M1,M2, . . . are distinct simple modules with dimension δk and the total
number of simple factors is nk .
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The symmetric power SnkM
reg
0 (δk,0) decomposes further according to multi-

plicities m1,m2, . . . . As we may assume m1 ≥m2 ≥ · · · , they define partition λk of
nk . Let us denote by Sλk

M
reg
0 (δk,0) the space parametrizing semisimple modules

having multiplicities λk .
Thus we have

M0 =
⊔

M
reg
0

(
v0,w

)×M0(λ) (17)

with v0 + |λ1|δ1 + · · · + |λN |δN = v, where

M0(λ)
def.= Sλ1M

reg
0 (δ1,0)× Sλ2M

reg
0 (δ2,0)× · · · × SλN

M
reg
0 (δN ,0).

This is nothing but the decomposition given in [13, 6.5], [14, 3.27].
This stratification has a simple form when the quiver is of type ADE. Each δk is

a simple root αi , and M
reg
0 (δk,0) is a one point given by the simple module Si . The

symmetric product SnkM
reg
0 (δk,0) is also a one point S

⊕nk

i , and hence we do not
need to consider the partition λk . Thus we can safely forget factors Sλk

M
reg
0 (δk,0)

and get

M0 =
⊔

M
reg
0

(
v0,w

)
,

with v0 ≤ v.
For the affine case δk is either simple root or δ, as we mentioned above. If δk is a

simple root, we can forget the factor SnkM
reg
0 (δk,0) as in the ADE cases. If δk = δ,

then M
reg
0 (δ,0) is C2 for the Jordan quiver or C2 \ {0}/Γ for the affine quiver corre-

sponding to a finite subgroup Γ ⊂ SU(2) via the McKay correspondence. Therefore
we have

M0 =
⊔

M
reg
0

(
v0,w

)× (SλC
2 or Sλ

(
C

2 \ {0})/Γ ). (18)

Return back to a general quiver. We denote each stratum in (17) by M0(v0;λ)
for brevity. Here λ= (λ1, . . . , λN). For a simple local system ρ on this stratum, we
consider the corresponding IC sheaf

IC
(
M0

(
v0;λ), ρ).

Then the decomposition theorem for a semismall projective morphism [3] implies a
canonical direct sum decomposition

π!CM ∼=
⊕

IC
(
M0

(
v0;λ), ρ)⊗Htop(Mxv0;λ)ρ. (19)

Here xv0;λ is a point in the stratum M0(v0;λ) and Mxv0;λ = π−1(xv0;λ) as before.
Then Htop(Mxv0;λ)ρ denotes the isotypic component of ρ in the homology group
Htop(Mxv0;λ) of the fiber with respect to the monodromy action.

This decomposition determines representations of the convolution algebra
Htop(Z)= EndD(M0)(π!CM) (see [5, §8.9]):
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Theorem 2 (1) {Htop(Mxv0;λ)ρ} is the set of isomorphism classes of simple modules
of Htop(Z).

(2) We have

Htop(Z)∼=
⊕

End
(
Htop(Mxv0;λ)ρ

)
.

When the quiver is of type ADE, it was proved that only trivial local systems on
strata appear [16, §15] in the direct summand of π!CM, and hence we have

π!(CM)∼=
⊕

IC
(
M0

(
v0,w

))⊗Htop(Mxv0 ),

where we remove the local system ρ from the notation for the IC sheaves.
For a quiver of general type, the argument used in [16, §15] implies that the

simple local system ρ is trivial on the factor Mreg
0 (v0,w), i.e., all simple modules

M1,M2, . . . are of the form Si . In general, the author does not know what kind of
local system ρ can appear on these factors. But we can show that only trivial local
system appears for an affine quiver:

Lemma 7 Suppose that the quiver is of affine type. Then

π!(CM)∼=
⊕

v0,λ

IC
(
M0

(
v0,w

))
� (C

Sλ(C2)
or C

Sλ(C2/Γ )
)⊗Htop(Mxv0;λ).

Proof By the argument in [16, §15], it is enough to assume v0 = 0 and hence
M

reg
0 (v0,w) is a single point. Then a point in the stratum xv0;λ is a point in SλC

2 or
Sλ((C

2 \ {0})/Γ ), and hence is written as m1x1+m2x2+ · · · , where x1, x2 are dis-
tinct points in C

2 or (C2 \ {0})/Γ . Then the fiber Mxv0;λ is the product of punctual

Quot schemes parametrizing quotients Q of the trivial rank r sheaf O⊕r

C2 over C2

such that Q is supported at 0 and the length is mi . Here r is given by 〈w, c〉, where
c is the central element of the affine Lie algebra or w itself for the Jordan quiver.
This follows from the alternative description of quiver varieties of affine types, ex-
plained in [18]. (Remark: In [18, §4], it was written that the fiber is the product of
punctual Hilbert schemes, but it is wrong.) It is known that top degree part Htop of
a punctual Quot scheme is 1-dimensional (see [15, Ex. 5.15]). Therefore the mon-
odromy action is trivial. Moreover Sλ(C2) and Sλ(C2/Γ ) only have finite quotient
singularities, and hence are rationally smooth. Therefore the intersection complexes
are constant sheaves, shifted by dimensions. �

5.2 A Description of Htop(ZT)

As in Theorem 2 we have a natural isomorphism

Htop(ZT)∼=
⊕

v1,v2,λ,ρ

Hom
(
Htop

(
M

C
∗

xv1,v2;λ
)
ρ
,Htop(Txv1,v2;λ)ρ

)
(20)
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from Lemma 4 and the above decomposition.
Thus c ∈ Htop(ZT) is determined by its convolution action Htop(M

C
∗

x ) →
Htop(Tx) for x = xv1,v2;λ in each stratum. Then the converse of Proposition 2 is
clear.

5.3 Tensor Product Multiplicities in Terms of IC Sheaves

As in the previous subsection, we also refine the stratification in Lemma 1 as

M
C
∗

0 =
⊔

M
reg
0

(
v1,w1)×M

reg
0

(
v2,w2)×M0(λ),

where

M0(λ)= Sλ1M
reg
0 (δ1,0)× Sλ2M

reg
0 (δ2,0)× · · · × SλN

M
reg
0 (δN ,0)

as before. For a simple local system ρ on M
reg
0 (v1,w1)×M

reg
0 (v2,w2)×M0(λ),

we consider the corresponding IC sheaf. We then have

πC
∗

! CMC∗ =
⊕

IC
(
M

reg
0

(
v1,w1)×M

reg
0

(
v2,w2)×M0(λ), ρ

)

⊗Htop
(
M

C
∗

xv1,v2;λ
)
ρ
,

where xv1,v2;λ is a point in the stratum M
reg
0 (v1,w1)×M

reg
0 (v2,w2)×M0(λ). Then

Htop(M
C
∗

xv1,v2;λ
)ρ is a simple module of Htop(Z

C
∗
), and any simple module is iso-

morphic to a module of this form as before.
By Δc in (10) we consider Htop(M

C
∗

xv1,v2;λ
)ρ as a module over Htop(Z). Since

Htop(Z) is semisimple, it decomposes into a direct sum of Htop(Mxv0;λ)ρ′ with var-

ious v0, λ′, ρ′. Let us define the ‘tensor product multiplicity’ by

n
v0;λ′,ρ′
v1,v2;λ,ρ

def.= [
Htop

(
M

C
∗

xv1,v2;λ
)
ρ
:Htop(Mxv0;λ′ )ρ′

]
. (21)

These multiplicity has a geometric description:

Theorem 3 The multiplicity n
v0;λ′,ρ′
v1,v2;λ,ρ is equal to

[
p!i∗IC

(
M0

(
v0;λ′), ρ′) : IC(Mreg

0

(
v1,w1) × M

reg
0

(
v2,w2) × M0(λ), ρ

)]
.

Recall that p!i∗IC(M0(v0;λ), ρ) is a direct sum of IC(M
reg
0 (v1,w1) ×

M
reg
0 (v2,w2) ×M0(λ

′), ρ′) with various v1, v2, λ′, ρ′ by Lemma 3. The right
hand side of the above formula denote the decomposition multiplicity.

This formula is a direct consequence of decompositions of π!CM, πC
∗

! CMC∗ and
the identification of Δc with Ad(c)p!i∗ in (15). (See also [22, Th. 5.1].)
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Remark 5 For a quiver of type ADE, we do not have data λ, ρ, λ′, ρ′, and multiplic-
ities nv0

v1,v2 is nothing but the usual tensor product multiplicity of finite dimensional
representations of the Lie algebra g of type ADE [22, Th. 5.1].

In general, the author does not know how to understand the behavior of
IC(M0(v0;λ), ρ) under p!i∗. For affine types, only constant sheaves C

Sλ(C2/Γ )
ap-

pear in π!CM, and local systems on M
reg
0 (v1,w1)×M

reg
0 (v2,w2)× Sλ(C

2\{0}/0)

can be determined. It should be possible to determine multiplicities from the tensor
product multiplicity for the affine Lie algebra. But it is yet to be clarified.

5.4 Fixed Point Version

Let a be a semisimple element in the Lie algebra of G. Then it defines a homomor-
phism

ρa : H ∗
G
(pt)→C.

Let A be the smallest torus whose Lie algebra contains a. Let ZA be the fixed point
set. Then we have a homomorphism

ra : HG∗ (Z)⊗H ∗
G
(pt) C→H∗

(
ZA
)

as the composite of the pull back and the multiplication of 1⊗ ρa(e(N))−1, where
N is the normal bundle of MA in M, and e(N) is its A-equivariant Euler class. (See
[5, §5.11].) Then ra is an algebra isomorphism. Similarly we have

ra : HG∗
(
ZC

∗)⊗H ∗
G
(pt) C→H∗

((
ZC

∗)A)
.

We then have a specialized coproduct

Δc : H∗
(
ZA
)→H∗

((
ZC

∗)A)
.

Those convolution algebras can be studied in terms of perverse sheaves appearing
whose shifts appear in direct summand in πA

CMA , (πC
∗
)A! C(MC∗ )A , where πA,

(πC
∗
)A are restrictions of π and πC

∗
to A-fixed point sets MA and (MC

∗
)A. See

[5, §8.6] for detail.
The tensor product multiplicities with respect to the specialized Δc are described

by the functor pA
! (i

A)∗, where pA, iA are restrictions of p and i to A-fixed point
sets. Since the result is almost the same as Theorem 3, we omit the detail. The differ-
ence is that the algebra is not semisimple in general, and multiplicities are consid-
ered in the Grothendieck group of the category of modules of convolution algebras.
In geometric side, perverse sheaves are not preserved by the functor pA

! (i
A)∗. They

are sent to direct sums of shifts of perverse sheaves in general.
As we mentioned in the introduction, the target of Δc in (10) is H∗(ZC

∗
), which

is larger than the tensor product of the corresponding algebra for w1, w2 in general.
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This is because of the existence of the third factor in Lemma 1(1). To avoid this, we
assume that generators tr(BhN

BhN−1 · · ·Bh1 : Vo(h1) → Vi(hN ) = Vo(h1)) have non-
trivial weights with respect to A. Then the A-fixed point set in the third factor
M0(v− v0,0) is automatically trivial, and hence we have

(
ZC

∗)A =
⊔

v1+v2=v

Z
(
v1,w1)A ×Z

(
v2,w2)A.

This assumption is rather mild and satisfied for example if the compositions of A→
G with the projections G→C

∗ to the first and second factor of G both have positive
weights. This condition occurs when we study modules of Y(g) for example, as both
are identities in that case.
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Derivatives of Schur, Tau and Sigma Functions
on Abel-Jacobi Images

Atsushi Nakayashiki and Keijiro Yori

Abstract We study derivatives of Schur and tau functions from the view point of the
Abel-Jacobi map. We apply the results to establish several properties of derivatives
of the sigma function of an (n, s) curve. As byproducts we have an expression of
the prime form in terms of derivatives of the sigma function and addition formulae
which generalize those of Onishi for hyperelliptic sigma functions.

1 Introduction

The Riemann’s theta function of an algebraic curve X of genus g can be considered,
through the Abel-Jacobi map, as a multivalued multiplicative analytic function on
Xg . The Riemann’s vanishing theorem tells that the theta function shifted by the
Riemann’s constant vanishes identically on Xg−1. However it is possible to find
certain derivatives of the theta function such that they become multivalued multi-
plicative analytic functions on Xg−1. Onishi [13] found such derivatives explicitly in
the case of hyperelliptic curves. The extension of the results to the curve yn = f (x)

is given in [9]. These explicit derivatives of the theta function are used to construct
certain addition formulae in [13]. The aim of this paper is to generalize and clarify
the structure of the results on derivatives and addition formulae in [13] by studying
Schur and tau functions.

We consider a certain plane algebraic curve X, called an (n, s) curve [2], which
contains curves yn = f (x) as a special case. As in [13] we study sigma functions
[1, 11] rather than Riemann’s theta function since it is simpler to describe deriva-
tives. Sigma functions can be expressed by the tau function of the KP-hierarchy
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[4, 5, 12]. The expansion of the tau function with respect to Schur functions is
known very explicitly due to Sato’s theory of universal Grassmann manifold (UGM)
[14, 15]. In the case corresponding to the sigma function of an (n, s) curve the ex-
pansion of the tau function begins from the Schur function sλ(t) corresponding to
the partition λ determined from the gap sequence at ∞ of X. Notice that Schur
functions themselves can be considered as a special case of tau functions [3].

For a theta function solution of the KP-hierarchy the image of the Abel-Jacobi
map of a point on a Riemann surface is transformed, in the tau function, to the vector
of the form

[z] = t
(
z, z2/2, z3/3, . . .

)
, (1)

where z being a local coordinate at a base point. Being motivated by this we con-
sider, in general, the map z �→ [z] as an analogue of the Abel-Jacobi map for Schur
and tau functions. For the Schur function corresponding to an (n, s) curve a similar
map is considered in [2] as the rational limit of the Abel-Jacobi map.

The Schur function sλ(t), t = (t1, t2, . . .), corresponding to a partition λ =
(λ1, . . . , λl) is the polynomial in t1, t2, . . . defined by

sλ(t)= det
(
pλi−i+j (t)

)
1≤i,j≤l

, exp

( ∞∑

i=1

tik
i

)
=

∞∑

i=1

pi(t)k
i .

We firstly study, for each k satisfying k ≤ g, the condition under which a derivative

∂αsλ
([z1] + · · · + [zk]

)
, (2)

vanishes identically, where, for α = (α1, α2, . . .), ∂α denote ∂
α1
1 ∂

α2
2 · · · and ∂i =

∂/∂ti . A sufficient condition can easily be found. Let us define the weight of α by
wtα =∑∞

i=1 iαi and set Nλ,k = λk+1 + · · · + λl . Then the derivative (2) vanishes,
if wtα <Nλ,k .

Concerning to derivatives such that (2) does not vanish identically we have found
two kinds of α satisfying wtα = Nλ,k . One is α = (Nλ,k,0,0, . . .) for which the
following recursive relation holds:

∂
Nλ,k

1 sλ

(
k∑

i=1

[zi]
)
= c′λ,k

c′λ,k−1
∂
Nλ,k−1
1 sλ

(
k−1∑

i=1

[zi]
)
zλk +O

(
z
λk+1
k

)
, (3)

where c′λ,k is a certain constant (Theorem 4).
The other kind of derivatives exist only for λ corresponding to a gap sequence.

A gap sequence of genus g is a sequence of positive integers w1 < · · · < wg such
that its complement in the set of non-negative integers Z≥0 is a semi-group. To each
gap sequence a partition λ= (λ1, . . . , λg) is associated by

λ= (wg, . . . ,w2,w1)− (g − 1, . . . ,1,0).
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Let w∗1 < w∗2 < · · · be the complement of {wi} in Z≥0. For each k the number mk

and the sequence a
(k)
j , 1≤ j ≤mk , are defined by

mk = �
{
i|w∗i < g − k

}
,

(
a
(k)
1 , . . . , a(k)

mk

) = (wg−k,wg−k−1, . . . ,wg−k−mk+1)−
(
w∗1, . . . ,w∗mk

)
.

Then
∑mk

j=1 a
(k)
j =Nλ,k and the following relation is valid:

∂
a
(k)
1
· · · ∂

a
(k)
mk

sλ

(
k∑

i=1

[zi]
)

=±∂
a
(k−1)
1

· · · ∂
a
(k−1)
mk

sλ

(
k−1∑

i=1

[zi]
)
z
λk

k +O
(
z
λk+1
k

)
. (4)

These derivatives generalize those of [9, 13]. Our construction here clarifies the
condition under which extensions of derivatives in [13] exist.

The tau function corresponding to a point of the cell UGMλ of UGM specified
by a partition λ has the expansion of the form

τ(t)= sλ(t)+
∑

λ<μ

ξμsμ(t). (5)

We show that the vanishing property and the Eqs. (3), (4) for Schur functions hold
without any change if Schur functions are replaced by tau functions. To this end
we need to study derivatives of Schur functions sμ(t) corresponding to partitions μ

satisfying λ≤ μ simultaneously. For example we have to study properties of “a(k)
j -

derivatives” of sμ(t) where a
(k)
j are determined from λ.

In the case corresponding to (n, s) curves all the properties of tau functions es-
tablished in this way are transplanted to sigma functions without much difficulty
using the relation of the sigma function with the tau function.

For applications to addition formulae we need to study derivatives of Schur func-
tions not only at [z1] + · · · + [zk] but at [z1] − [z2]. In this case we have

∂
N ′

λ,1
1 sλ

([z1] − [z2]
)= (−1)l−1 cλ

c′λ,1
∂
Nλ,1
1 sλ

([z1]
)
zl−1

2 +O
(
zl2
)
, (6)

where N ′
λ,1 = λ2+· · ·+λl − l+ 1 and cλ is the constant given in Theorem 2. It can

be proved using the rational analogue of the Riemann’s vanishing theorem for Schur
functions [2]. Again (6) and related properties are valid for tau and sigma functions
without any change. As a corollary we obtain the expression of the prime form
[6, 10, 11] in terms of a certain derivative of the sigma function and consequently
closed addition formulae for sigma functions. Here “closed” means “without using
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prime form”. The simplest example of the addition formula in the case of an (n, s)

curve X : yn − xs −∑λij x
iyj = 0, is

∂
Nλ,2
u1 σ(p2 + p1)∂

N ′
λ,1

u1 σ(p2 − p1)

(∂
Nλ,1
u1 σ(p1))2(∂

Nλ,1
u1 σ(p2))2

= (−1)gcλ
(
c′λ,1

)−4
c′λ,2(x2 − x1), (7)

where pi ∈X is identified with its Abel-Jacobi image, xi = x(pi) and λ is the parti-
tion corresponding to the gap sequence at∞ of X. It generalizes the famous addition
formula for Weierstrass’ sigma function

σ(u1 + u2)σ (u1 − u2)

σ (u1)2σ(u2)2
= ℘(u2)−℘(u1),

since (xi, yi)= (℘ (ui),℘
′(ui)), i = 1,2, are two points on y2 = 4x3−g2x−g3 and

the right hand side can be written as x2 − x1. The formulae in [13] for hyperelliptic
sigma functions are recovered if we use “a(k)

j -derivatives” instead of u1-derivative
(see the remark after Corollary 10).

The present paper is organized as follows. In section two properties of derivatives
of Schur functions are studied. The notion of gap sequence and the sequence a

(k)
i

are introduced. We lift the properties of Schur function in section two to functions
satisfying similar expansion to the tau functions of the KP-hierarchy in Sect. 3. In
Sect. 4 the properties on derivatives of the sigma function are proved using the sigma
function expression of the tau function. The expression of the prime form in terms
of a derivative of the sigma function of an (n, s) curve is given in Sect. 5. Addition
formulae for sigma functions are proved.

2 Schur Function

A sequence of non-negative integers λ = (λ1, . . . , λl) satisfying λ1 ≥ · · · ≥ λl is
called a partition. The number of non-zero elements in λ is called the length of λ

and is denoted by l(λ). We identify λ with partitions which are obtained from λ by
adding arbitrary number of 0’s, i.e. (λ1, . . . , λl,0, . . . ,0). We set |λ| = λ1+· · ·+λl .

Let t = (t1, t2, t3, . . .) and pn(t) the polynomial in t defined by

exp

( ∞∑

n=1

tnk
n

)
=

∞∑

n=0

pn(t)k
n. (8)

We set pn(t)= 0 for n < 0.
For a partition λ= (λ1, . . . , λl) Schur functions sλ(t) and Sλ(x) are defined by

sλ(t)= det
(
pλi−i+j (t)

)
1≤i,j≤l

,

Sλ(x)=
det(xλi+l−i

j )1≤i,j≤l
∏

i<j (xi − xj )
.

(9)
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The function Sλ(x) is a symmetric polynomial of x1, . . . , xl which is homogeneous
of degree |λ|.

We introduce the symbol [x] by

[x] =
t(

x,
x2

2
,
x3

3
, . . .

)
,

which is an analogue of Abel-Jacobi map in the theory of Schur functions. With this
symbol, sλ(t) and Sλ(x) are related by

sλ

(
n∑

i=1

[xi]
)
= Sλ(x),

for n≥ l(λ). From this relation we have

Proposition 1 Let λ= (λ1, . . . , λl) be a partition of length l. Then

(i) sλ(
∑l

i=1[xi])= s(λ1,...,λl−1)(
∑l−1

i=1[xi])xλl

l +O(x
λl+1
l ).

(ii) If k < l, sλ(
∑k

i=1[xi])= 0.

Proof (i) It immediately follows from the definition of Sλ(x).
(ii) We have

sλ

(
k∑

i=1

[xi]
)
= sλ

(
k∑

i=1

[xi] + [0] + · · · + [0]
)
.

The right hand side is zero by (i) since λl ≥ 1. �

Let Gc be a subset of the set of non-negative integers Z≥0. We assume that Gc is
a semi-group, that is, it is closed under addition and contains 0. Set G= Z≥0\Gc .

Definition 1 Let g be a positive integer. G is called a gap sequence of genus g, if
�G= g. Elements of G and Gc are called gaps and non-gaps respectively.

For a gap sequence of genus g enumerate elements of G and Gc respectively as

w1 <w2 < · · ·<wg,

0=w∗1 <w∗2 <w∗3 < · · · .
Then w1 = 1. For, otherwise Gc contains 1 and Gc = Z≥0 which is impossible due
to g ≥ 1. With this notation in mind we sometimes use (w1, . . . ,wg) to denote a gap
sequence instead of {w1, . . . ,wg}.
Example 1 Let (n, s) be a pair of relatively prime integers such that n, s ≥ 2. We
set

Gc = {in+ js|i, j ≥ 0}.
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Then G is a gap sequence of genus g = 1/2(n− 1)(s − 1) [2]. We call G the gap
sequence of type (n, s). It is characterized by the condition that Gc is generated by
two elements.

Example 2 Let G = {1,2,3,7} and Gc = Z≥0\G. Then G is a gap sequence of
genus four. In this case Gc is generated by 4,5,6. Therefore G is not of type (n, s)

for any (n, s).

In this way the gap sequences are classified by the minimum number of genera-
tors of Gc .

For a gap sequence {w1, . . . ,wg} we associate a partition λ by

λ= (wg, . . . ,w1)− (g − 1, . . . ,1,0).

A special property of the partition determined from a gap sequence is the follow-
ing.

Proposition 2 If λ is determined from a gap sequence (w1, . . . ,wg), then sλ(t) does
not depend on ti , i /∈ {w1, . . . ,wg}.

In order to prove the proposition we introduce some notation.
For a partition λ = (λ1, . . . , λl) we associate a strictly decreasing sequence of

numbers w̄i by

(w̄1, . . . , w̄l)= (λ1, . . . , λl)+ (l − 1, l − 2, . . . ,0).

By this correspondence the set of partitions of length at most l bijectively corre-
sponds to the set of strictly decreasing sequence non-negative integers w̄1 > · · ·>
w̄l ≥ 0.

For (w̄1, . . . , w̄l) we set

(wl, . . . ,w1)= (w̄1, . . . , w̄l).

The introduction of the notation w̄i is for the sake of simplicity in proofs and that of
wi is for the sake of being consistent with the notation of gap sequence.

For integers i1, . . . , il define the symbol [i1, . . . , il] as the determinant of the l× l

matrix whose j -th row is

(
. . . , pij−1(t),pij (t)

)
.

We write [i1, . . . , il](t) if it is necessary to write explicitly the dependence on t .
By the definition, [i1, . . . , il] is skew symmetric in the numbers i1, . . . , il and

becomes zero if two numbers coincide or some number is negative.
With this notation

sλ(t)= [w̄1, . . . , w̄l].
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Differentiating (8) by ti we have

∂ipn(t)= pn−i (t), ∂i = ∂

∂ti
.

Therefore we have

∂isλ(t)=
l∑

j=1

[w̄1, . . . , w̄j − i, . . . , w̄l].

Proof of Proposition 2 We have to show, for i ≥ 2,

∂w∗i sλ(t)=
l∑

j=1

Dj = 0, Dj =
[
wl, . . . ,wj −w∗i , . . . ,w1

]
. (10)

If wj − w∗i < 0, obviously Dj = 0. Suppose that wj − w∗i > 0. Let G =
{w1, . . . ,wg}. Then wj −w∗i ∈G. For, if wj −w∗i ∈Gc then wj ∈Gc +w∗i ⊂Gc

which is absurd. Thus wj − w∗i = wk for some k. Notice that w∗i ≥ 1 and k 	= j ,
since i ≥ 2. Therefore Dj = 0 because two rows coincide. Consequently (10) is
proved. �

Definition 2 Let G be a gap sequence of genus g. For 0 ≤ k ≤ g − 1 we define a
positive integer mk and a sequence of integers a

(k)
i , 1≤ i ≤mk by

mk = �
{
i|w∗i < g− k

}
,

(
a
(k)
1 , . . . , a(k)

mk

)= (wg−k,wg−k−1, . . . ,wg−k−mk+1)−
(
w∗1, . . . ,w∗mk

)
.

Example 3 For the gap sequence of type (2,2g+ 1) we have

(w1,w2, . . . ,wg)= (1,3, . . . ,2g − 1),
(
w∗1,w∗2,w∗3, . . .

)= (0,2,4, . . .).

Then

mk = �{i|2i − 2 < g − k} =
[
g − k + 1

2

]
,

(
a
(k)
1 , a

(k)
2 , . . .

)= (2g − 2k− 1,2g− 2k− 5,2g− 2k− 9, . . .).

This sequence recovers the rule for derivatives in [13].

For a partition λ= (λ1, . . . , λl) and a number k such that 0≤ k ≤ l − 1 we set

Nλ,k = λk+1 + · · · + λl. (11)

Lemma 1 (i) a(k)
1 > · · ·> a

(k)
mk
≥ 1.
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(ii) Each a
(k)
i belongs to G.

(iii) Let λ be the partition determined from G then

mk∑

i=1

a
(k)
i =Nλ,k.

Proof (i) Notice that (wg−k,wg−k−1, . . .) is strictly decreasing and (w∗1,w∗2, . . .) is

increasing. Therefore {a(k)
i } is strictly decreasing. Since G and Gc are complement

to each other we have

{0,1, . . . , g − k − 1} = {w∗1, . . . ,w∗mk

} 4 {w1, . . . ,wg−k−mk
}. (12)

Then, by the definition of the number mk ,

w∗1 < · · ·<w∗mk
< g− k ≤w∗mk+1 < · · · ,

w1 < · · ·<wg−k−mk
< g − k ≤wg−k−mk+1 < · · ·<wg−k < · · · .

(13)

In particular a(k)
mk
=wg−k−mk+1 −w∗mk

≥ 1.

(ii) Suppose that a(k)
j ∈Gc. Since Gc is a semi-group we have

wg−k−j+1 = a
(k)
j +w∗j ∈Gc,

which is absurd. Thus a
(k)
j ∈G.

(iii) By (12) we have

mk∑

i=1

a
(k)
i =

g−k∑

i=g−k−mk+1

wi −
mk∑

i=1

w∗i

=
g−k∑

i=g−k−mk+1

wi −
(

g−k−1∑

i=1

i −
g−k−mk∑

i=1

wi

)

=
g−k∑

i=1

wi −
g−k−1∑

i=1

i =
g∑

i=k+1

λi.
�

For α = (α1, α2, . . .) with finite number of non-zero components we define the
weight of α and the symbol ∂α by

wtα =
∞∑

i=1

iαi, ∂α = ∂
α1
1 ∂

α2
2 · · · .

The weight of ∂α is defined to be the weight of α.
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Proposition 3 Let λ= (λ1, . . . , λl) be a partition and 0≤ k ≤ l− 1. If wtα <Nλ,k

we have

∂αsλ

(
k∑

i=1

[xi]
)
= 0.

For k = 0 the right hand side should be understood as ∂αsλ(0).

Proof Notice that ∂αsλ(t) is a linear combination of determinants of the form

[w̄1 − r1, . . . , w̄l − rl], r1 + · · · + rl =wtα. (14)

If (14) is not zero, w̄i − ri are all non-negative and different. Thus there exists a
permutation (i1, . . . , il) of (1, . . . , l) such that

w̄i1 − ri1 > · · ·> w̄il − ril ≥ 0.

Let μ be the partition corresponding to this strictly decreasing sequence. Then

sμ(t)= [w̄i1 − ri1, . . . , w̄il − ril ].

If l(μ) > k, sμ(
∑k

i=1[xi])= 0 by (ii) of Proposition 1.
We prove that l(μ)≤ k is impossible if wtα <Nλ,k . Suppose that l(μ)≤ k. Then

μ= (μ1, . . . ,μk,0, . . . ,0) and

w̄il − ril = 0, w̄il−1 − ril−1 = 1, . . . , w̄ik+1 − rik+1 = l − k− 1.

Therefore

ril = w̄il , ril−1 = w̄il−1 − 1, . . . , rik+1 = w̄ik+1 − (l − k− 1),

and we have

ril + · · · + rik+1 = w̄il + · · · + w̄ik+1 − (1+ 2+ · · · + l − k − 1)

≥ w̄l + · · · + w̄k+1 − (1+ 2+ · · · + l − k − 1).

On the other hand

ril + · · · + rik+1 ≤ rl + · · · + r1 =wtα

< λk+1 + · · · + λl

= w̄k+1 + · · · + w̄l − (1+ 2+ · · · + l − k− 1),

which is a contradiction. Thus Proposition 3 is proved. �
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Theorem 1 Let λ= (λ1, . . . , λg) be the partition determined from a gap sequence

of genus g, 0≤ k ≤ g and a
(k)
j the associated sequence of numbers for k 	= g.We set

s(λ1,...,λk)(
∑k

i=1[xi])= 1 for k = 0 and ∂
a
(k)
1
· · · ∂

a
(k)
mk

= 1 for k = g.

(i) We have

∂
a
(k)
1
· · · ∂

a
(k)
mk

sλ

(
k∑

i=1

[xi]
)
= cks(λ1,...,λk)

(
k∑

i=1

[xi]
)
,

where ck =±1, k 	= g is given by the sign of the permutation

ck = sgn

(
w∗1 . . . w∗mk

wg−k−mk
. . . w1

g− k − 1 g− k − 2 . . . . . . 1 0

)
,

and cg = 1.
(ii) Let μ= (μ1, . . . ,μg) be a partition such that μi = λi for k+1≤ i ≤ g. Then

∂
a
(k)
1
· · · ∂

a
(k)
mk

sμ

(
k∑

i=1

[xi]
)
= cks(μ1,...,μk)

(
k∑

i=1

[xi]
)
,

where ck is the same as in (i).

Remark 1 For the gap sequence of type (n, s) it can be checked that the derivative
determined from the sequence a

(k)
j is the same as that found in [9]. In that case (i)

of Theorem 1 is proved in that paper.

Lemma 2 Let λ = (λ1, . . . , λl) be a partition, 0 ≤ k ≤ l − 1 and r1, . . . , rl non-
negative integers. Suppose that the following conditions:

l∑

i=1

ri =Nλ,k, (15)

[w̄1 − r1, . . . , w̄l − rl]
(

k∑

i=1

[xi]
)
	= 0. (16)

Then

(i) We have ri = 0 for 1≤ i ≤ k.
(ii) The sequence (w̄k+1 − rk+1, . . . , w̄l − rl) is a permutation of (l − k −

1, . . . ,1,0).
(iii) We have

[w̄1 − r1, . . . , w̄l − rl]
(

k∑

i=1

[xi]
)
= cs(λ1,...,λk)

(
k∑

i=1

[xi]
)
,

where c=±1.
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Proof By the assumption (16) there exists a permutation (i1, . . . , il) of (1, . . . , l)
and a partition μ= (μ1, . . . ,μl) such that

w̄i1 − ri1 > · · ·> w̄il − ril ≥ 0,

sμ(t)= [w̄i1 − ri1, . . . , w̄il − ril ],
and l(μ) ≤ k as in the proof of Proposition 3. In particular μi = 0 for i ≥ k + 1
which means

w̄il − ril = 0, . . . , w̄ik+1 − rik+1 = l − k − 1.

By a similar calculation to that in the proof of Proposition 3 we have

rik+1 + · · · + ril = w̄ik+1 + · · · + w̄il − (1+ 2+ · · · + l − k − 1)

≥ w̄k+1 + · · · + w̄l − (1+ 2+ · · · + l − k− 1), (17)

and

rik+1 + · · · + ril ≤ r1 + · · · + rl

= λk+1 + · · · + λl

= w̄k+1 + · · · + w̄l − (1+ 2+ · · · + l − k− 1), (18)

where we use (15). Therefore every inequalities in (17) and (18) are equalities.
Then ri1 = · · · = rik = 0 by (18) and (ik+1, . . . , il) is a permutation of (k+ 1, . . . , l)
by (17). It, then, implies that (i1, . . . , ik) is a permutation of (1, . . . , k).

Since

(w̄i1 − ri1, . . . , w̄il − ril )= (w̄i1, . . . , w̄ik , w̄ik+1 − rik+1, . . . , w̄il − ril )

and it is strictly decreasing, (i1, . . . , ik)= (1, . . . , k). Thus

[w̄i1 − ri1, . . . , w̄il − ril ] = [w̄1, . . . , w̄k, l − k− 1, . . . ,1,0]. (19)

�

Lemma 3 For a positive integer m and a set of integers i1, . . . , ik we have

[i1, . . . , ik,m− 1, . . . ,1,0] = [i1 −m, . . . , ik −m].

Proof Expand the determinant at m+ k-th row, m+ k− 1-th row, . . . , until k+ 1-st
row successively and get the result. �

Applying the lemma to (19) we have

[w̄i1 − ri1, . . . , w̄il − ril ] =
[
w̄1 − (l − k), . . . , w̄k − (l − k)

]
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= s(λ1,...,λk)(t).

Since (i1, . . . , il) is a permutation of (1, . . . , l),

[w̄1 − r1, . . . , w̄l − rl] = ±s(λ1,...,λk)(t).

Proof of Theorem 1 In this proof we fix k and denote a
(k)
j simply by aj . Recall that

sλ(t)= [wg, . . . ,w1].
We compute the value of ∂a1 · · · ∂amk

sλ(t) at t = t (k) := [x1] + · · · + [xk].
Step 1. We first consider the term for which the row labeled by wg−k−(i−1) is

differentiated by ∂ai for 1≤ i ≤mk . It is of the form

A := [wg, . . . ,wg−k+1,wg−k − a1, . . . ,wg−k−(mk−1) − amk
,wg−k−mk

, . . . ,w1].
By the definition of ai

wg−k−(i−1) − ai =w∗i .

Therefore

A= [wg, . . . ,wg−k+1,w
∗
1, . . . ,w

∗
mk

,wg−k−mk
, . . . ,w1

]
.

Using (12) we have

A = ck[wg, . . . ,wg−k+1, g− k− 1, . . . ,1,0]
= cks(λ1,...,λk)(t).

Step 2. We prove that the terms differentiated in a different way from that in
Step 1 are zero at t = t (k).

By Lemma 1(iii) and Lemma 2(i) the term is zero at t (k) if some row correspond-
ing to wi , g − k + 1 ≤ i ≤ g, is differentiated. Therefore, for non-zero terms, only
the last g − k rows are differentiated.

So let us consider a term for which only some of last g−k rows are differentiated.
Notice that a term is zero if some row is differentiated more than once. In fact some
row corresponding to wj with g − k − mk + 1 ≤ j ≤ g − k is not differentiated
in this case. By (13) wj ≥ g − k. Consequently it is impossible for the sequence
(wg−k, . . . ,w1) to be a permutation of (g − k − 1, . . . ,1,0). Then this term is zero
at t (k) by Lemma 2(ii).

As a consequence of the above argument we know that a term is zero if some
row labeled by wj with g − k −mk + 1≤ j ≤ g − k is not differentiated. So let us
consider a term for which each row corresponding to wj with g − k − mk + 1 ≤
j ≤ g − k is differentiated exactly once. We assume that the row corresponding
wg−k−(i−1) is differentiated by ∂ai for 1≤ i < j with some j ≤mk and ∂aj differ-
entiates the row corresponding to wg−k−(j ′−1) for some j ′ with j < j ′. We have

wg−k − a1 =w∗1, . . . , wg−k−(j−2) − aj−1 =w∗j−1,
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and

wg−k−(j ′−1) − aj = wg−k−(j ′−1) −
(
wg−k−(j−1) −w∗j

)

= w∗j − (wg−k−(j−1) −wg−k−(j ′−1)) < w∗j . (20)

If wg−k−(j ′−1) − aj belongs to Gc, we have

wg−k−(j ′−1) − aj ∈
{
w∗1, . . . ,w∗j−1

}
,

by (20). Thus the term is zero since two rows coincide.
Suppose that wg−k−(j ′−1) − aj belongs to G. Then

wg−k−(j ′−1) − aj ∈ {w1, . . . ,wg−k−mk
},

since w∗j < g− k and (13). In this case the term in consideration is zero since again
two rows coincide. Thus (i) of Theorem 1 is proved.

Step 3. We prove (ii) of Theorem 1. Let w′g > · · ·>w′1 be the strictly decreasing
sequence corresponding to μ, that is,

(
w′g, . . . ,w′1

)= (μ1, . . . ,μg)+ (g − 1, . . . ,1,0).

By assumption wi =w′i for 1≤ i ≤ g− k. Define w′i
∗, i ≥ 0 by

{
w′i

∗|i ≥ 0
}= Z≥0\

{
w′i
}
,

0=w′1
∗
<w′2

∗
< · · · .

Then w∗i =w′i
∗ for 1≤ i ≤mk , since

{
w∗1, . . . ,w∗mk

} 4 {w′1, . . . ,w′g−k−mk

} = {w∗1, . . . ,w∗mk

} 4 {w1, . . . ,wg−k−mk
}

= {0,1, . . . , g − k − 1}.
As a consequence the arguments in step 1 and step 2 are valid without any change
if wi , w∗i are replaced by w′i , w′i

∗ respectively. �

Next we study properties of Schur functions with respect to t1 derivative.

Theorem 2 Let λ = (λ1, . . . , λl) be a partition, (wl, . . . ,w1) the corresponding
strictly decreasing sequence and 0≤ k ≤ l. Then

∂
Nλ,k

1 sλ

(
k∑

i=1

[xi]
)
= c′λ,ks(λ1,...,λk)

(
k∑

i=1

[xi]
)
,

where

c′λ,k =
Nλ,k!∏l−k
i=1 wi !

l−k∏

i<j

(wj −wi).
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Proof We have

sλ(t)= [wl, . . . ,w1].
By Leibniz’s rule

∂
Nλ,k

1 sλ(t)=
∑

r1+···+rl=Nλ,k

Nλ,k!
r1! · · · rl ! [wl − rl, . . . ,w1 − r1]. (21)

By Lemma 2, if [wl − rl, . . . ,w1 − r1](t(k)) 	= 0 then ri = 0 for l − k + 1 ≤ i ≤ l,
(wl−k, . . . ,w1 − r1) is a permutation of (l − k − 1, . . . ,1,0) and

[wl − rl, . . . ,w1 − r1]
(
t (k)
)= sgn

(
wl−k · · · · · · w1 − r1

l − k − 1 · · · 1 0

)
.

In this case we can write

wi − ri = σ(i − 1), 1≤ i ≤ l − k,

for some σ of an element of the symmetric group Sl−k which acts on {0,1, . . . , l −
k− 1}. We define 1/n! = 0 for n < 0 for the sake of convenience. Then

∂
Nλ,k

1 sλ
(
t (k)
)=Aλ,ks(λ1,...,λk)

(
t (k)
)
,

where

Aλ,k =
∑

σ∈Sl−k

sgnσ
Nλ,k!

(w1 − σ(0))! · · · (wl−k − σ(l − k − 1))! .

We have

Aλ,k

Nλ,k! = det

(
1

(wi − (j − 1))!
)

1≤i,j≤l−k

(22)

=
l−k∏

i=1

1

wi ! det

(
j−2∏

m=0

(wi −m)

)

1≤i,j≤l−k

, (23)

where we set
∏j−2

m=0(wi −m)= 1 for j = 1. Notice that the rule 1/n! = 0 for n <

0 is taken into account in rewriting (22) to (23), since, if wi − (j − 1) < 0 then∏j−2
m=0(wi −m)= 0.
Let us set

D = det

(
j−2∏

m=0

(wi −m)

)

1≤i,j≤l−k

.
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Expanding
∏j−2

m=0(wi −m) in wi we easily have

D = det
(
w

j−1
i

)
1≤i,j≤l−k

=
l−k∏

i<j

(wj −wi),

and consequently

Aλ,k

Nλ,k! =
∏l−k

i<j (wj −wi)
∏l−k

i=1 wi !
.

�

In order to study addition formulae of sigma functions we need to study proper-
ties of Schur functions at t = [x1] − [x2].

For a partition λ = (λ1, . . . , λl) let λ′ = (λ′1, . . . , λ′l′) be the conjugate of λ, i.e.
λ′i = �{j |λj ≥ i}.

Theorem 3 Let λ = (λ1, . . . , λl) be a partition of length l, λ′ = (λ′1, . . . , λ′l′) and

λ̃′ = (λ′1 − 1, . . . , λ′
l′ − 1). Then

sλ

(
[x] −

l′∑

i=1

[xi]
)
= (−1)Nλ,1s

λ̃′

(
l′∑

i=1

[xi]
)

l′∏

j=1

(x − xj ).

Proof This theorem is essentially proved in the proof of Theorem 5.5 in [2]. In [2]
λ is assumed to be the partition corresponding to the gap sequence of type (n, s). In
that case λ= λ′ and the assertion in this theorem is not stated. Here we give a proof
since it is a key theorem for applications to addition formulae. For the notational
simplicity we prove the assertion by interchanging λ and λ′. All facts and notation
concerning Schur and symmetric functions used in this proof can be found in [8].

Let ei = ei(x1, . . . , xm) be the elementary symmetric function:

m∏

i=1

(t + xi)=
m∑

i=0

ei t
m−i . (24)

They satisfy the relation

ei(x1, . . . , xm)= ei(x1, . . . , xm−1)+ xmei−1(x1, . . . , xm−1). (25)

In general, for a partition μ= (μ1, . . . ,μm), the following equation holds:

Sμ′(x1, . . . , xm)= det(eμi−i+j )1≤i,j≤m. (26)

Let aj be the column vector defined by

aj = t (eλ1−1+j , eλ2−2+j , . . . , eλl−l+j ),

where er = er(x, x1, . . . , xl).
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By (25), (26) we have

sλ′
([x] + [x1] + · · · + [xl]

) = Sλ′(x, x1, . . . , xl)

= det(eλi−i+j )1≤i,j≤l

= det(a1 + xa0,a2 + xa1, . . . ,al−1 + xal)

=
l∑

j=0

xj det(a0, . . . ,aj−1,aj+1, . . . ,al )

= det

(
1 −x · · · (−x)l

a0 a1 · · · al

)
. (27)

Let pr =∑l
i=1 x

k
i be the power sum symmetric function, ω, ω̂ and ι the auto-

morphisms of the ring of symmetric polynomials in x1, . . . , xl defined by

ω̂(pr)= (−1)rpr , ι(pr)=−pr, ω= ι ◦ ω̂. (28)

Notice that ω̂ is, in terms of xj , the map sending xj to −xj for 1≤ j ≤ l. Then

sλ′

(
[x] −

l∑

i=1

[xi]
)
= (−1)|λ|ω

(
sλ′

(
[−x] +

l∑

i=1

[xi]
))

. (29)

It can be checked by computing the right hand side using (28) and the relation
Sμ(−x1, . . . ,−xm)= (−1)|μ|Sμ(x1, . . . , xm).

Let hi = hi(x1, . . . , xl) be the complete symmetric function:

1
∏l

i=1(1− txi)
=

∞∑

i=0

hix
i .

Then ω(ei)= hi and

ω(aj )= t (hλ1−1+j , . . . , hλl−l+j ). (30)

By (27) and (29) we have

sλ′
([x] − [x1] − · · · − [xl]

)= (−1)|λ| det

(
1 x · · · xl

ω(a0) ω(a1) · · · ω(al)

)
. (31)

Using the relation,

k∑

j=0

(−1)j ejhk−j = 0, k ≥ 1, (32)
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we have

k∑

j=0

(−1)j ejω(al−j )= o. (33)

By (24), (30), (31), (33) we obtain

sλ′

(
[x] −

l∑

i=1

[xi]
)
= (−1)l+|λ| det

(
ω(a0), . . . ,ω(al−1)

) l∏

j=1

(x − xj )

= (−1)Nλ′,1 det(hλi−1−i+j )1≤i,j≤l

l∏

j=1

(x − xj ).

Then the theorem follows from

S(μ1,...,μm)(x1, . . . , xm)= det(hμi−i+j )1≤i,j≤m. �

Corollary 1 Let λ= (λ1, . . . , λl) be a partition of length l. Then sλ([x1] − [x2]) is
not identically zero if and only if λi = 1 for 2≤ i ≤ l, that is, λ is a hook.

Proof Setting xi = 0 for 2≤ i ≤ l′ in Theorem 3 we have

sλ
([x] − [x1]

)= (−1)Nλ,1s
λ̃′
([x1]

)
xl′−1(x − x1). (34)

Thus sλ([x] − [x1]) 	= 0 is equivalent to s
λ̃′([x1]) 	= 0. The latter is equivalent to

the condition that the length of λ̃′ is one. It means that λ′ = (λ′1,1l′−1) which is
equivalent to that λ is a hook. �

Theorem 4 Let λ= (λ1, . . . , λl) be a partition of length l, (wl, . . . ,w1) the corre-
sponding sequence and N ′

λ,1 =
∑l

i=2 λi − l + 1.

(i) If n <N ′
λ,1

∂n
1 sλ

([x1] − [x2]
)= 0.

(ii) We have

∂
N ′

λ,1
1 sλ

([x1] − [x2]
)= cλs(λ1,1l−1)

([x1] − [x2]
)
,

where

cλ =
N ′

λ,1!∏l−1
i=1(wi − 1)!

l−1∏

i<j

(wj −wi).
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(iii) Let μ = (μ1, . . . ,μl′) be a partition of length l′ ≥ l such that μi = λi for
2≤ i ≤ l and μi = 1 for i > l. Then

∂
N ′

λ,1
1 sμ

([x1] − [x2]
)= cλs(μ1,1l′−1)

([x1] − [x2]
)
.

(iv) For m,n≥ 1 we have

a(m,1n−1)

([x1] − [x2]
)= (−1)n−1xm−1

1 xn−1
2 (x1 − x2).

Proof Notice that

∂1sλ(t)=
l∑

i=1

[wl, . . . ,wi − 1, . . . ,w1].

In the right hand side [wl, . . . ,wi − 1, . . . ,w1] 	= 0 if and only if all its components
are different. In terms of the diagram of λ, ∂1sλ(t) is a sum of sμ(t) with μ being
the diagram obtained from λ by removing one box. For example

∂1s(2,2,1)(t)= s(2,1,1)(t)+ s(2,2)(t).

(i) Notice that N ′
λ,1 is a number of boxes on second to l-th rows of the diagram

of λ which are on the right of the first column. Thus if n < N ′
λ,1 it is impossible to

get the hook diagram by removing n boxes from λ. Then the assertion of (i) follows
from Corollary 1.

(ii) There is only one hook diagram in diagrams obtained from λ by remov-
ing N ′

λ,1 boxes. It is μ := (λ1,1l−1). Let us compute the coefficient c of sμ(t) in

∂
N ′

λ,1
1 sλ(t). Consider Eq. (21) with Nλ,k being replaced by N ′

λ,1. In the right hand
side, sμ(t) appears only as a term such that rl = 0 and (wl−1 − rl−1, . . . ,w1 − r1)

is a permutation of (l − 1, . . . ,2,1). Let us write, for 1≤ i ≤ l − 1,

wi − ri = σ(i), σ ∈ Sl−1.

Then by a similar calculation to that in the proof of Theorem 2 we have

c

N ′
λ,1!

=
∑

σ∈Sl−1

sgnσ

(w1 − σ(1))! · · · (wl−1 − σ(l − 1))! =
∏l−1

i<j (wj −wi)
∏l−1

i=1(wi − 1)! .

(iii) Similarly to the proof of (ii) the only Schur function appearing in ∂
N ′

λ,1
1 sμ(t)

which does not vanish at t = [x1] − [x2] is sν(t), ν = (μ1,1l′−1). Let us compute

the coefficient c′ of sν(t) in ∂
N ′

λ,1
1 sμ(t).

Let (w′
l′ , . . . ,w

′
1) be the strictly decreasing sequence corresponding to μ. Then

∂
N ′

λ,1
1 sμ(t)=

∑

r1+···+rl′=N ′
λ,1

N ′
λ,1!

r1! · · · rl′ !
[
w′l′ − rl′ , . . . ,w

′
1 − r1

]
. (35)
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In the right hand side [w′
l′ − rl, . . . ,w

′
1 − r1] is proportional to sν(t) if and only

if ri = 0 for i = l′ or i < l′ − l, and (w′
l′−1 − rl′−1, . . . ,w

′
l′−l+1 − rl′−l+1) is a

permutation of (l′ − 1, l′ − 2, . . . , l′ − l + 1). Let us write

w′i − ri = σ(i), l′ − l + 1≤ i ≤ l′ − 1, σ ∈ Sl−1.

Then

c′

N ′
λ,1!

=
∑

σ∈Sl−1

sgnσ

(w′
l′−l+1 − σ(l′ − l + 1))! · · · (w′

l′−1 − σ(l′ − 1))!

=
∏

l′−l+1≤i<j≤l′−1(w
′
j −w′i )

∏l′−1
i=l′−l+1(w

′
i − l′ + l − 1)! . (36)

Let us rewrite c′ in terms of λj . By assumption μi = λi for 2 ≤ i ≤ l which
implies

w′i = μl′+1−i + i − 1= λl′+1−i + i − 1, l′ − l + 1≤ i ≤ l′ − 1.

Substitute it into (36) and get

c′ = N ′
λ,1!∏l

i=2(λi + l − 1− i)!
∏

2≤i<j≤l

(λi − λj + j − i),

which equals to cλ.
(iv) Set λ= (m,1n−1) in (34). Then, using s(r)([x])= xr , we get the assertion of

(iv). �

3 τ -Function

In this section we lift the properties of Schur functions which have been proved in
the previous section to τ -functions.

Let ≤ be the partial order on the set of partitions defined as follows. For two
partitions λ= (λ1, . . . , λl), μ= (μ1, . . . ,μl′), λ≤ μ if and only if λi ≤ μi for all i.

For a partition λ= (λ1, . . . , λl) we consider a function τ(t) given as a series of
the form

τ(t)= sλ(t)+
∑

λ<μ

ξμsμ(t), (37)

where ξu ∈C.

Example Let X be a compact Riemann surface of genus g ≥ 1, p∞ a point of X,
w1 < · · · < wg the gap sequence at p∞ and z a local coordinate at p∞. Embed
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the affine ring of X\{p∞} into Sato’s universal Grassmann manifold (UGM) as in
the paper [12]. Then the tau function corresponding to this point of UGM has the
expansion of the form (37).

Proposition 4 Let λ= (λ1, . . . , λl) a partition, τ(t) be a function of the form (37)
and 0≤ k ≤ l − 1. Then, if wtα <Nλ,k

∂ατ

(
k∑

i=1

[xi]
)
= 0.

Proof For μ= (μ1, . . . ,μl′) satisfying λ≤ μ we have

wtα <

l∑

i=k+1

λi ≤
l′∑

i=k+1

μi.

Thus

∂αsμ

(
k∑

i=1

[xi]
)
= 0,

by Proposition 3. The assertion of the proposition follows from (37). �

For a function τ(t) of the form (37) and 1 ≤ k ≤ l let τ (k)(t) be the function
defined by

τ (k)(t)= s(λ1,...,λk)(t)+
∑

μ

ξμs(μ1,...,μk)(t),

where the sum in the right hand side is over all partitions μ= (μ1, . . . ,μl) such that
λ < μ and μi = λi for k + 1 ≤ i ≤ l. In particular τ (l)(

∑k
i=1[xi]) = τ(

∑k
i=1[xi]).

We set τ (0)(t)= 1.

Theorem 5 Let λ= (λ1, . . . , λg) be the partition determined from a gap sequence
of genus g, τ(t) a function of the form (37).

(i) We have, for 0≤ k ≤ g,

∂
a
(k)
1
· · · ∂

a
(k)
mk

τ

(
k∑

i=1

[xi]
)
= ckτ

(k)

(
k∑

i=1

[xi]
)
,

where ck is the same as in Theorem 1.
(ii) We have, for k ≥ 1,

τ (k)

(
k∑

i=1

[xi]
)
= τ (k−1)

(
k−1∑

i=1

[xi]
)
x
λk

k +O
(
x
λk+1
k

)
.
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Proof Let μ= (μ1, . . . ,μl) be a partition of length l such that λ ≤ μ. Then l ≥ g

and

wt (∂
a
(k)
1
· · · ∂

a
(k)
mk

)=
mk∑

i=1

a
(k)
i =

g∑

i=k+1

λi ≤
l∑

i=k+1

μi. (38)

If the inequality in the right hand side is not an equality,

∂
a
(k)
1
· · · ∂

a
(k)
mk

sμ

(
k∑

i=1

[xi]
)
= 0, (39)

by Proposition 3. Therefore, if the left hand side of (39) does not vanish, l = g and

g∑

i=k+1

μi =
g∑

i=k+1

λi.

Since λi ≤ μi for any i, it implies μi = λi for k + 1≤ i ≤ g. For such μ we have,
by Theorem 1,

∂
a
(k)
1
· · · ∂

a
(k)
mk

sμ

(
k∑

i=1

[xi]
)
= cks(μ1,...,μk)

(
k∑

i=1

[xi]
)
.

The assertion (i) follows from this.
(ii) The assertion easily follows from (i) of Proposition 1 and the definition of

τ (k)(t). �

Combining (i) and (ii) of Theorem 5 we have

Corollary 2 Under the same assumption as in Theorem 5 we have, for 1≤ k ≤ g,

∂
a
(k)
1
· · · ∂

a
(k)
mk

τ

(
k∑

i=1

[xi]
)
= ck

ck−1
∂
a
(k−1)
1

· · · ∂
a
(k−1)
mk−1

τ

(
k−1∑

i=1

[xi]
)
x
λk

k +O
(
x
λk+1
k

)
.

Corresponding to Theorem 2 we have

Theorem 6 Let λ = (λ1, . . . , λl) be a partition of length l, τ(t) a function of the
form (37), 0≤ k ≤ l. Then

∂
Nλ,k

1 τ

(
k∑

i=1

[xi]
)
= c′λ,kτ (k)

(
k∑

i=1

[xi]
)
,

where c′λ,k is the same as in Theorem 2.
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Proof The theorem can be proved in a similar manner to Theorem 5 using Theo-
rem 2. �

Corollary 3 Under the same assumption as in Theorem 6 we have, for 1≤ k ≤ l,

∂
Nλ,k

1 τ

(
k∑

i=1

[xi]
)
= c′λ,k

c′λ,k−1
∂
Nλ,k−1
1 τ

(
k−1∑

i=1

[xi]
)
x
λk

k +O
(
x
λk+1
k

)
.

In order to state the properties for τ(t) corresponding to Theorem 4 let us intro-
duce one more function τ2(t) associated with τ(t) by

τ2(t)= s(λ1,1l−1)(t)+
∑

μ

ξμs(μ1,1l′−1)
(t), (40)

where the sum in the right hand side is over all partitions μ= (μ1, . . . ,μl′) of length
l′ ≥ l satisfying λ < μ, μi = λi for 2≤ i ≤ l and μi = 1 for i > l.

Theorem 7 Let λ= (λ1, . . . , λl) be a partition of length l and τ(t) a function of the
form (37).

(i) If n <N ′
λ,1

∂n
1 τ
([x1] − [x2]

)= 0.

(ii) We have

∂
N ′

λ,1
1 τ

([x1] − [x2]
)= cλτ2

([x1] − [x2]
)
,

where cλ is the same as in Theorem 4.
(iii) We have

τ2
([x1] − [x2]

)= (−1)λ1−1x
λ1−1
1 xl−1

2 (x1 − x2)(1+ · · · ),

where · · · part is a series in x1, x2 containing only terms proportional to xi
1x

j

2
with i + j > 0.

(iv) We have the expansion

τ2
([x1] − [x2]

)= (−1)l−1τ (1)([x1]
)
xl−1

2 +O
(
xl

2

)
.

Proof (i) By (i) of Theorem 4 we have ∂n
1 sλ([x1] − [x2])= 0.

Suppose that λ < μ and μ= (μ1, . . . ,μl′) is of length l′. Then, l′ ≥ l and

n <

l∑

i=2

λi − (l − 1)≤
l∑

i=2

μi +
l′∑

i=l+1

(μi − 1)− (l − 1)=
l′∑

i=2

μi −
(
l′ − 1

)
.

Thus ∂n
1 sμ([x1] − [x2])= 0 by Theorem 4(i) and the assertion (i) is proved.
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(ii) By (ii) of Theorem 4 we have

∂
N ′

λ,1
1 τ

([x1] − [x2]
)= cλs(λ1,1l−1)

([x1] − [x2]
)+

∑

μ

ξμ∂
N ′

λ,1
1 sμ

([x1] − [x2]
)
. (41)

Let us compute the second term in the right hand side of (41).

Suppose that μ> λ, μ= (μ1, . . . ,μl′) is of length l′ and ∂
N ′

λ,1
1 sμ([x1] − [x2]) 	=

0. In such a case, similarly to the proof of Theorem 4(ii), it can be shown that μ

should be of the form μ= (μ1, λ2, . . . , λl,1l′−l ). Then

∂
N ′

λ,1
1 sμ

([x1] − [x2]
)= cλs(μ1,1l′−1)

([x1] − [x2]
)
,

by (iii) of Theorem 4. Thus the right hand side of (41) becomes cλτ2([x1] − [x2]).
(iii) This is a direct consequence of Theorem 4(iv).
(iv) Substituting t = [x1] − [x2] in τ2(t) we have, by (iv) of Theorem 4,

τ2
([x1] − [x2]

)

= (−1)l−1x
λ1−1
1 xl−1

2 (x1 − x2)+
∑

ξμ(−1)l
′−1x

μ1−1
1 xl′−1

2 (x1 − x2)

= (−1)l−1
(
x
λ1
1 +

∑

μ

ξμx
μ1
1

)
xl−1

2 +O
(
xl

2

)
, (42)

where the sum in μ in the right hand side is over all partitions μ of the form μ =
(μ1, λ2, . . . , λl) with μ1 > λ1. Then the term in the bracket in the right hand side
of (42) is τ (1)([x1]). Thus (iv) is proved. �

4 σ -Function

In this section we deduce properties of sigma functions from those of tau functions
established in the previous section. To this end we briefly recall the definitions and
properties of sigma functions.

Let (n, s) be a pair of relatively prime integers satisfying 2 ≤ n < s and X the
compact Riemann surface corresponding to the algebraic curve defined by

f (x, y)= 0, f (x, y)= yn − xs −
∑

ni+sj<ns

λij x
iyj . (43)

We assume that the affine curve (43) is nonsingular. Then the genus of X is g =
1/2(n − 1)(s − 1). The Riemann surface X is called an (n, s) curve [2]. It has a
point ∞ over the point x =∞.

For a meromorphic function F on X we denote by ord∞F the order of a pole at
∞. The variables x and y can be considered as meromorphic functions on X which
satisfy

ord∞x = n, ord∞y = s.
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Let ϕi , i ≥ 1, be monomials of x and y satisfying the conditions

{ϕi |i ≥ 1} = {xiyj |i ≥ 0, n > j ≥ 0
}
,

ord∞ϕi < ord∞ϕi+1, i ≥ 1.
(44)

For example ϕ1 = 1, ϕ2 = x.
The gap sequence w1 < · · ·<wg at ∞ of X is defined by

{wi} = Z≥0\{ord∞ϕi |i ≥ 1}.
It becomes a gap sequence of type (n, s) defined in of Example 1 in Sect. 2.

A basis of holomorphic one forms on X is given by

duwi
:= −ϕg+1−idx

fy

, 1≤ i ≤ g. (45)

Let z be the local coordinate at ∞ such that

x = 1

zn
, y = 1

zs

(
1+O(z)

)
. (46)

Then we have

duwi
= zwi−1(1+O(z)

)
dz. (47)

We fix an algebraic fundamental form ω̂(p1,p2) on X [11] and decompose it as

ω̂(p1,p2)= dp2Ω(p1,p2)+
g∑

i=1

duwi
(p1)dri(p2),

where

Ω(p1,p2)=
∑n−1

i=0 yi
1[f (z,w)

wi+1 ]+|(z,w)=(x2,y2)

(x1 − x2)fy(x1, y1)
dx1,

[ ∞∑

m=−∞
amwm

]

+
=

∞∑

m=0

amwm.

Then dri automatically becomes a differential of the second kind whose only sin-
gularity is ∞ and {duwi

, dri} is a symplectic basis of H 1(X,C) [11].
We take a symplectic basis of the homology group H1(X,Z) and define period

matrices ωi, ηi , i = 1,2 by

2ω1 =
(∫

αj

duwi

)
, 2ω2 =

(∫

βj

duwi

)
,

−2η1 =
(∫

αj

dri

)
, −2η2 =

(∫

βj

dri

)
.
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The normalized period matrix τ is given by τ = ω−1
1 ω2.

Let τ t δ′ + t δ′′, δ′, δ′′ ∈ R
g be the Riemann’s constant with respect to the choice

({αi,βi},∞), δ = t (δ′, δ′′) and θ [δ](z, τ ) the Riemann’s theta function with the
characteristic δ. The sigma function for these data is defined in [1] (see also [11]).

Definition 3 The sigma function σ(u), u= t (uw1 , . . . , uwg ) of an (n, s) curve X is
defined by

σ(u)= C exp

(
1

2
t uη1ω

−1
1 u

)
θ [δ]((2ω1)

−1u, τ
)
,

where C is a certain constant.

Let λ= (λ1, . . . , λg) be the partition corresponding to the gap sequence at ∞ of
X. Then the constant C is specified by the condition that the expansion of σ(u) at
the origin is of the form

σ(u)= sλ(t)|twi
=uwi

+ · · · ,
where · · · part is a series in uwi

only containing terms proportional to
∏

u
αi
wi

with∑
αiwi > |λ|.
For mi ∈ Z

g , i = 1,2, the sigma function obeys the following transformation
rule:

σ

(
u+ 2

2∑

i=1

ωimi

)

= (−1)
tm1m2+2(δ′m1−δ′′m2) exp

(
2

2∑

i=1

t (ηimi)

(
u+

2∑

i=1

ωimi

))
σ(u). (48)

Let A be the affine ring of X\{∞}. As a vector space {ϕi |i ≥ 1} is a basis of A.
We embed A into UGM using the local coordinate z as in [12]. Then the tau function
τ(t) of the KP-hierarchy corresponding to this point of UGM has the form

τ(t)= sλ(t)+
∑

λ<μ

ξμsμ(t).

It can be expressed in terms of the sigma function as

τ(t)= exp

(
−

∞∑

i=1

ci ti + 1

2
q̂(t)

)
σ(Bt), (49)

where q̂(t) =∑ q̂ij ti tj , B = (bij )1≤i≤g,1≤j a certain g ×∞ matrix satisfying the
condition

bij =
{

0 if j < wi ,
1 if j =wi ,

(50)
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and ci, q̂ij , bij are certain constants [12],1 [4, 5]. The constant ci are irrelevant to ck
in Theorem 1 and is not used in other parts of this paper.

In this section ∂i is used for ∂/∂ti as in the previous section and ∂ui
is used for

∂/∂ui .
A point p ∈ X is identified with its Abel-Jacobi image

∫ p

∞ du, where du =
t (duw1 , . . . , duwg ). By the definition of the matrix B , for p ∈X, the following equa-
tion is valid:

B
[
z(p)

]= p, (51)

where z(p) is the value of the local coordinate z at p and
[
z(p)

]= t
[
z(p), z(p)2/2, . . .

]

as before.
Corresponding to Proposition 4 we have

Theorem 8 Let 0≤ k ≤ g − 1. If
∑g

i=1 αiwi < Nλ,k then

∂α1
uw1

· · · ∂αg
uwg

σ

(
k∑

i=1

pi

)
= 0,

for p1, . . . , pk ∈X.

Remark 2 In the case of the curve yn = f (x) Theorem 8 is proved in [9].

Lemma 4 Let 0≤ k ≤ g − 1. If wtα <Nλ,k

∂ασ (Bt)|t=t (k) = 0,

where t (k) =∑k
i=1[zi], zi = z(pi) and p1, . . . , pk ∈X.

Proof The assertion easily follows from (49) and Proposition 4. �

Proof of Theorem 8 We introduce the lexicographical order on Z
g

≥0 comparing from
the right. Namely define (α1, . . . , αg) < (β1, . . . , βg) if there exists 1 ≤ i ≤ g such
that αg = βg, . . . , αi+1 = βi+1 and αi < βi .

We prove

∂β1
uw1

· · · ∂βg
uwg

σ
(
Bt(k)

)= 0,
g∑

i=1

βiwi < Nλ,k, (52)

by induction on the order of (β1, . . . , βg).

1In the defining equation of ci in [12] ci should be corrected to ci/i.
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The case (β1, . . . , βg)= (0, . . . ,0) is obvious by Lemma 4.
Take (β1, . . . , βg) > (0, . . . ,0) such that

∑g

i=1 βiwi < Nλ,k . Suppose that (52) is
valid for any (β ′1, . . . , β ′g) satisfying (β ′1, . . . , β ′g) < (β1, . . . , βg) and

∑g

i=1 β
′
iwi <

Nλ,k .
Notice that σ(Bt) is a composition of σ(u) with

uwi
= twi

+
∑

wi<j

bij tj , 1≤ i ≤ g. (53)

By the chain rule,

∂wi
= ∂uwi

+
∑

l<i

blwi
∂uwl

. (54)

Let j be the maximum number such that βj 	= 0. Then

∂β1
w1
· · · ∂βg

wgσ (Bt)

= ∂β1
u1

(∂uw2
+ b1w2∂u1)

β2 · · ·
(
∂uwj

+
∑

l<j

blwj
∂uwl

)βj

σ (Bt)

= ∂β1
u1

∂β2
uw2

· · · ∂βj
uwj

σ (Bt)+ · · · , (55)

where · · · part contains terms of the form

∂
γ1
u1 · · · ∂γg

uwg
σ (Bt),

g∑

i=1

γiwi < Nλ,k, (γ1, . . . , γg) < (β1, . . . , βg).

At t = t (k) the left hand side of (55) vanishes by Lemma 4 and · · · part in the right
hand side of (55) vanishes by the assumption of induction. Thus (52) is proved. �

Corresponding to Theorem 5 and Corollary 2 we have

Corollary 4 Let 1≤ k ≤ g and p1, . . . , pk ∈X. Then

(i) We have

∂u
a
(k)
1

· · · ∂u
a
(k)
mk

σ

(
k∑

i=1

pi

)
= ckS(λ1,...,λk)(z1, . . . , zk)+ · · · ,

where · · · part is a series in zi containing only terms proportional to
∏k

i=1 z
αi

i

with
∑k

i=1 αi >
∑k

i=1 λi .
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(ii) The following expansion is valid:

∂u
a
(k)
1

· · · ∂u
a
(k)
mk

σ

(
k∑

i=1

pi

)
= ck

ck−1
∂u

a
(k−1)
1

· · · ∂u
a
(k−1)
mk−1

σ

(
k−1∑

i=1

pi

)
z
λk

k

+O
(
z
λk+1
k

)
.

Proof By Theorem 8 and (54) we have

∂
a
(k)
1
· · · ∂

a
(k)
mk

σ (Bt)|t=t (k) = ∂u
a
(k)
1

· · · ∂u
a
(k)
mk

σ

(
k∑

i=1

pi

)
. (56)

Let us write (49) as σ(Bt)= ε(t)τ (t) with

ε(t)= exp

( ∞∑

i=1

ci ti − 1

2
q̂(t)

)
.

By Proposition 4 and Corollary 2 we have

∂
a
(k)
1
· · · ∂

a
(k)
mk

σ (Bt)|t=t (k)

= ε
(
t (k)
)
∂
a
(k)
1
· · · ∂

a
(k)
mk

τ
(
t (k)
)

= c−1
k−1ckε

(
t (k)
)
∂
a
(k−1)
1

· · · ∂
a
(k−1)
mk−1

τ
(
t (k−1))zλk

k +O
(
z
λk+1
k

)

= c−1
k−1ck∂a(k−1)

1
· · · ∂

a
(k−1)
mk−1

σ(Bt)|t=t (k−1) z
λk

k +O
(
z
λk+1
k

)
. (57)

Then the assertion (ii) follows from (56) and the assertion (i) follows from the sec-
ond line of (57), Theorem 5(i) and the definition of τ (k)(t). �

The following corollary can similarly be proved using Theorem 6 and Corol-
lary 3.

Corollary 5 Let 1≤ k ≤ g and p1, . . . , pk ∈X. Then

(i) We have

∂
Nλ,k
u1 σ

(
k∑

i=1

pi

)
= c′λ,kS(λ1,...,λk)(z1, . . . , zk)+ · · · ,

where · · · part is a series in zi containing only terms proportional to
∏k

i=1 z
αi

i

with
∑k

i=1 αi >
∑k

i=1 λi .
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(ii) The following expansion holds:

∂
Nλ,k
u1 σ

(
k∑

i=1

pi

)
= c′λ,k

c′λ,k−1
∂
Nλ,k−1
u1 σ

(
k−1∑

i=1

pi

)
z
λk

k +O
(
z
λk+1
k

)
.

Corresponding to Theorem 7 we have

Theorem 9 (i) If n <N ′
λ,1 we have, for p1,p2 ∈X,

∂n
u1
σ(p1 − p2)= 0.

(ii) The following expansion with respect to zi = z(pi), i = 1,2 is valid:

∂
N ′

λ,1
u1 σ(p1 − p2)= (−1)g−1cλ(z1z2)

g−1(z1 − z2)(1+ · · · ),

where · · · part is a series in z1, z2 which contains only terms proportional to zi1z
j

2
with i + j > 0.

(iii) We have

∂
N ′

λ,1
u1 σ(p1 − p2)= (−1)g−1 cλ

c′λ,1
∂
Nλ,1
u1 σ(p1)z

g−1
2 +O

(
z
g

2

)
.

Proof (i) Notice that

∂m
1 σ(Bt)= ∂m

u1
σ(Bt) (58)

for any m. Differentiating σ(Bt)= ε(t)τ (t) and using (58) and (i) of Theorem 7 we
have the assertion.

(ii) We have, by (i), (ii), (iii) of Theorem 7,

∂
N ′

λ,1
u1 σ(p1 − p2) = ∂

N ′
λ,1

1 σ(Bt)|t=[z1]−[z2]

= ε
([z1] − [z2]

)
∂
N ′

λ,1
1 τ

([z1] − [z2]
)

= cλε
([z1] − [z2]

)
τ2
([z1] − [z2]

)

= cλ(−1)g−1(z1z2)
g−1(z1 − z2)(1+ · · · ).

(iii) In the computation in (ii) we have

cλε
([z1] − [z2]

)
τ2
([z1] − [z2]

)

= (−1)g−1cλ
(
c′λ,1

)−1
ε
([z1] − [z2]

)
∂
Nλ,1
1 τ

([z1]
)
z
g−1
2 +O

(
z
g

2

)

= (−1)g−1cλ
(
c′λ,1

)−1
∂
Nλ,1
1 σ(Bt)|t=[z1]z

g−1
2 +O

(
z
g

2

)
,

by Theorem 7(i), (ii), (iv) and Theorem 6. Then the assertion follows from (58). �
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5 Addition Formulae

Let E(p1,p2) be the prime form [6, 10] of an (n, s) curve X. In [11] we have
introduced the prime function Ẽ(p1,p2) by

Ẽ(p1,p2)=−E(p1,p2)

2∏

i=1

√
duwg (pi) exp

(
1

2

∫ p2

p1

t duη1ω
−1
1

∫ p2

p1

du
)
. (59)

Notice that Ẽ(p1,p2) is not a (−1/2,−1/2) form but a multi-valued analytic func-
tion on X and thus it has a sense to talk about the transformation rule if pi goes
around a cycle of X.

The prime function has the following properties.

(i) Ẽ(p2,p1)=−Ẽ(p1,p2).
(ii) As a function of p1, the zero divisor of Ẽ(p1,p2) is p2 + (g − 1)∞.

(iii) Let mi = t (mi1, . . . ,mig) ∈ Z
g . If p2 goes round the cycle γ =∑g

i=1(m1iαi +
m2iβi), Ẽ(p1,p2) transforms as

Ẽ(p1, γp2)= T

(
m1,m2

∣∣∣∣
∫ p2

p1

du
)
Ẽ(p1,p2), (60)

with

T (m1,m2|u)= (−1)
tm1m2+2(δ′m1−δ′′m2) exp

(
2

2∑

i=1

t (ηimi)

(
u+

2∑

i=1

ωimi

))
.

(iv) At (∞,∞), Ẽ(p1,p2) has the expansion of the form

Ẽ(p1,p2)= (z1z2)
g−1(z1 − z2)

(
1+

∑

i+j≥1

cij z
i
1z

j

2

)
, (61)

where zi = z(pi).

The specialization Ẽ(∞,p) of Ẽ(p1,p2) is defined by

−Ẽ(p1,p2)= Ẽ(∞,p2)z
g−1
1 +O

(
z
g

1

)
. (62)

It has the following properties corresponding to (iii) and (iv) above.

(iii)′ Under the same notation as in (iii) for Ẽ(p1,p2) we have

Ẽ(∞, γp2)= T

(
m1,m2

∣∣∣∣
∫ p2

∞
du
)
Ẽ(∞,p2). (63)

(iv)′ Ẽ(∞,p2)= z
g

2 +O(z
g+1
2 ).
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The following theorem gives the expression of the prime function in terms of a
derivative of the sigma function.

Theorem 10 Let λ = (λ1, . . . , λg) be the partition corresponding to the gap se-
quence at ∞ of an (n, s) curve X . Then

Ẽ(p1,p2)= (−1)g−1c−1
λ ∂

N ′
λ,1

u1 σ(p1 − p2).

Lemma 5 Under the same notation as in (60) we have

∂
N ′

λ,1
u1 σ(p1 − γp2)= T

(
m1,m2

∣∣∣∣
∫ p2

p1

du
)
∂
N ′

λ,1
u1 σ(p1 − p2).

Proof Notice that γp2 = p2 + 2ω1m1 + 2ω2m2 and

σ

(
u− 2

2∑

i=1

ωimi

)
= T (−m1,−m2|u)σ (u). (64)

Applying ∂
N ′

λ,1
u1 to (64) and setting u= p1 − p2, we get, by Theorem 9(i) we have

∂
N ′

λ,1
u1 σ

(
p1 − p2 − 2

2∑

i=1

ωimi

)

= T

(
−m1,−m2

∣∣∣∣
∫ p1

p2

du
)
∂
N ′

λ,1
u1 σ(p1 − p2).

(65)

Then the assertion follows from T (−m1,−m2|u)= T (m1,m2| − u). �

Proof of Theorem 10 Notice that

∂
N ′

λ,1
u1 σ(−u)=−∂

N ′
λ,1

u1 σ(u), (66)

since σ(−u)= (−1)|λ|σ(u) [11] and N ′
λ,1 = |λ| − 2g+ 1.

Consider the function

F(p1,p2)= ∂
N ′

λ,1
u1 σ(p1 − p2)

Ẽ(p1,p2)
. (67)

It is symmetric in p1 and p2 by (66), (i) of properties of Ẽ(p1,p2) and is a meromor-
phic function on X×X by Lemma 5. Fix p1 near∞. As a function of p2 F(p1,p2)

has no singularity by Theorem 8, Theorem 9(ii) and the property (ii) of Ẽ(p1,p2).
Therefore it does not depend on p2. It means that, for some non-empty open neigh-
borhood U of ∞, F(p1,p2) does not depend on p2 on U ×X. Since F(p1,p2) is
symmetric, it is a constant on U × U . Thus it is a constant on X ×X because it is
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meromorphic. The constant can be determined by comparing the expansion using
Theorem 9(ii) and the property (iv) of Ẽ(p1,p2). �

Corollary 6 For p ∈X we have

Ẽ(∞,p)= c′λ,1
−1

∂
Nλ,1
u1 σ(p).

Proof Compare the expansion in the equation of Theorem 10 using (iii) of Theo-
rem 9. �

Remark 3 In the case of hyperelliptic curves the prime function can be given us-
ing the derivative determined from the sequence a

(2)
j . This is because p1 − p2 can

be written as a sum p1 + p∗2 where ∗denoting the hyperelliptic involution. Such
expression is given in [7].

The following theorem had been proved in [11].

Theorem 11 ([11]) For n≥ g and pi ∈X, 1≤ i ≤ n,

σ

(
n∑

i=1

pi

)
=
∏n

i=1 Ẽ(∞,pi)
n

∏n
i<j Ẽ(pi,pj )

det
(
ϕi(pj )

)
1≤i,j≤n

.

By comparing the top term of the series expansion in z(pn), using Theorem 2
and Corollary 5, beginning from n= g successively in the equation of this theorem
we get

Corollary 7 For n < g we have

∂
Nλ,n
u1 σ

(
n∑

i=1

pi

)
= c′λ,n

∏n
i=1 Ẽ(∞,pi)

n

∏n
i<j Ẽ(pi,pj )

det
(
ϕi(pj )

)
1≤i,j≤n

.

Combining Theorem 10 and Corollaries 6 and 7 we have the following addition
formulae for sigma functions.

Corollary 8 (i) For n≥ g and pi ∈X, 1≤ i ≤ n,

σ(
∑n

i=1 pi)
∏

i<j ∂
N ′

λ,1
u1 σ(pj − pi)

∏n
i=1(∂

Nλ,1
u1 σ(pi))n

= bλ,n det
(
ϕi(pj )

)
1≤i,j≤n

,

with

bλ,n = (−1)
1
2 gn(n−1)c

1
2 n(n−1)
λ

(
c′λ,1

)−n2
.



Derivatives of Schur, Tau and Sigma Functions on Abel-Jacobi Images 461

(ii) For n < g

∂
Nλ,n
u1 σ(

∑n
i=1 pi)

∏
i<j ∂

N ′
λ,1

u1 σ(pj − pi)
∏n

i=1(∂
Nλ,1
u1 σ(pi))n

= bλ,n det
(
ϕi(pj )

)
1≤i,j≤n

,

with

bλ,n = (−1)
1
2 gn(n−1)c

1
2n(n−1)
λ

(
c′λ,1

)−n2
c′λ,n.

Similarly, using Theorem 11, Theorem 1 and Corollary 4, we have

Corollary 9 For n < g and pi ∈X, 1≤ i ≤ n, we have

∂u
a
(n)
1

· · · ∂u
a
(n)
mn

σ

(
n∑

i=1

pi

)
= cn

∏n
i=1 Ẽ(∞,pi)

n

∏n
i<j Ẽ(pi,pj )

det
(
ϕi(pj )

)
1≤i,j≤n

.

Corollary 10 For n < g and pi ∈X, 1≤ i ≤ n, we have

∂u
a
(n)
1

· · · ∂u
a
(n)
mn

σ (
∑n

i=1 pi)
∏

i<j ∂
N ′

λ,1
u1 σ(pj − pi)

∏n
i=1(∂

Nλ,1
u1 σ(pi))n

= b′λ,n det
(
ϕi(pj )

)
1≤i,j≤n

,

with

b′λ,n = (−1)
1
2 gn(n−1)c

1
2n(n−1)
λ

(
c′λ,1

)−n2
cn.

In the case of hyperelliptic curves ∂
N ′

λ,1
u1 σ(pj −pi) can be replaced by a constant

multiple of “a(2)
j -derivative” as remarked before (Remark after Corollary 6). Then

Corollaries 8, 10 recovers the formulae in [13].
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Padé Interpolation for Elliptic Painlevé Equation

Masatoshi Noumi, Satoshi Tsujimoto, and Yasuhiko Yamada

Abstract An interpolation problem related to the elliptic Painlevé equation is for-
mulated and solved. A simple form of the elliptic Painlevé equation and the Lax pair
are obtained. Explicit determinant formulae of special solutions are also given.

1 Introduction

There exists a close connection between the Painlevé equations and the Padé ap-
proximations (e.g. [6, 19]). An interesting feature of the Padé approach to Painlevé
equation is that we can obtain Painlevé equations, its Lax formalism and special
solutions simultaneously once we set up a suitable Padé problem. This method is
applicable also for discrete cases and it gave a hint for a Lax pair [20] for the elliptic
difference Painlevé equation [14].

In this paper, we analyze the elliptic Painlevé equation, its Lax pair and special
solutions, by using the Padé approach. In particular, we study the discrete deforma-
tion along one special direction.1 As a result, we obtain a remarkably simple form of
the elliptic Painlevé equation (39), (40) and its Lax pair (46), (14) or (15), together
with their explicit special solutions given by Eqs. (36), (57) and (70).

This paper is organized as follows. In Sect. 2, we set up the interpolation problem.
In Sect. 3, we derive two fundamental contiguity relations satisfied by the interpolat-
ing functions. In Sect. 4, we show that the variables f,g appearing in the contiguity

1Though all the directions are equivalent due to the Bäcklund transformations, there exists one
special direction in the formulation on P

1 × P
1 for which the equation takes a simple form like

QRT system [11]. Jimbo-Sakai’s q-Painlevé six equation [3] is a typical example of such beauti-
ful equations. For various q-difference cases, the Lax formalisms for such direction were studied
in [21].
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M. Noumi · Y. Yamada (B)
Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan

S. Tsujimoto
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University, Kyoto 606-8501, Japan

K. Iohara et al. (eds.), Symmetries, Integrable Systems and Representations,
Springer Proceedings in Mathematics & Statistics 40, DOI 10.1007/978-1-4471-4863-0_18,
© Springer-Verlag London 2013

463

http://dx.doi.org/10.1007/978-1-4471-4863-0_18


464 M. Noumi et al.

relations satisfy the elliptic Painlevé equation. Interpretation of the contiguity rela-
tions as the Lax pair for elliptic Painlevé equation is given in Sect. 5. In Sect. 6,
explicit determinant formulae for the interpolation problem are given. Derivation
of the Painlevé equation (39), (40) based on affine Weyl group action is given in
Appendix.

2 The Interpolation Problem

In this section, we will set up an interpolation problem which we study in this paper.

Notations Let p,q be two base variables satisfying constraints |p|, |q| < 1. We
denote by ϑp(x) the Jacobi theta function with base p:

ϑp(x)=
∞∏

i=0

(
1−xpi

)(
1−x−1pi+1), ϑp(px)= ϑp

(
x−1)=−x−1ϑp(x). (1)

The elliptic Gamma function [13] and Pochhammer symbol are defined as

Γ (x;p,q)=
∞∏

i,j=0

(1− x−1pi+1qj+1)

(1− xpiqj )
,

ϑp(x)s = Γ (qsx;p,q)

Γ (x;p,q)
=

s−1∏

i=0

ϑp

(
qix

)
,

(2)

where the last equality holds for s ∈ Z≥0. We shall use the standard convention

Γ (x1, . . . , x�;p,q)= Γ (x1;p,q) · · ·Γ (x�;p,q),

ϑp(x1, . . . , x�)s = ϑp(x1)s · · ·ϑp(x�)s .
(3)

Padé Problem Let m,n ∈ Z≥0, and let a1, . . . , a6, k be complex parameters with
a constraint:

6∏

i=1

ai = k3. (4)

In this paper we consider the following interpolation problem:

Ys = V (q−s)

U(q−s)
, (s = 0,1, . . . ,N =m+ n), (5)

specified by the following data:
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• The interpolated sequence Ys is given by

Ys = Y
(
q−s

)=
6∏

i=1

ϑp(ai)s

ϑp(
k
ai
)s

, Y (x)=
6∏

i=1

Γ (
ai
x
, k
ai
;p,q)

Γ ( k
aix

, ai;p,q)
. (6)

• The interpolating functions U(x),V (x) are defined as

U(x)=
n∑

i=0

uiφi(x), V (x)=
m∑

i=0

viχi(x), (7)

with basis

φi(x)=
T −i
a2

T i
a4
Y(x)

Y (x)
=

ϑp(
a4
x
, k
qia4x

)i

ϑp(
a2
qix

, k
a2x

)i

ϑp(
a2
qi ,

k
a2
)i

ϑp(a4,
k

qia4
)i
,

χi(x)= Y(x)

T i
a1
T −i
a3 Y(x)

=
ϑp(

a3
qix

, k
a3x

)i

ϑp(
a1
x
, k
qia1x

)i

ϑp(a1,
k

qia1
)i

ϑp(
a3
qi ,

k
a3
)i

,

(8)

where Ta : f (a) �→ f (qa).

The coefficients ui, vi are determined by Eq. (5) which is a system of linear
homogeneous equations. We normalize them as u0 = 1.

Remark on the Choice of the Bases φi(x),χi(x) The problem we are consider-
ing is a version of PPZ scheme (interpolation with prescribed poles and zeros) [22].
Note that

U(x)= Unum(x)

Uden(x)
, Uden(x)= ϑp

(
a2

qnx
,

k

a2x

)

n

,

V (x)= Vnum(x)

Vden(x)
, Vden(x)= ϑp

(
a1

x
,

k

qma1x

)

m

,

(9)

where Unum(x), Uden(x) (resp. Vnum(x),Vden(x)) are theta functions of order
2n (resp. 2m). Furthermore, the functions xmUnum(x), xnVnum(x), xmUden(x),
xnVden(x) (and hence U(x), V (x), φi(x), χi(x) also) are “symmetric”: F(k/qx)=
F(x). We will fix the denominator Uden (resp. Vden) as above in order to specify the
prescribed zeros (resp. poles). For the numerator Unum (resp. Vnum), contrarily, one
may take any basis of theta functions as far as they have the same order, same quasi
p-periodicity, and same symmetry under x↔ k

qx
as Uden (resp. Vden). In this sense,

the choice of the basis φi , χi in Eq. (8) is not so essential for general argument,
however, we will see that it is convenient for explicit expression of the functions
U(x), V (x) in Sect. 6.
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Parameters of the Elliptic Painlevé Equation The elliptic Painlevé equation is
specified by a generic configuration of 8 points on P

1 × P
1. We parametrize them

as (f∗(ξi), g∗(ξi))i=1,...,8, where

f∗(x)=
ϑp(

c2
x
, κ1
c2x

)

ϑp(
c1
x
, κ1
c1x

)
, g∗(x)=

ϑp(
c4
x
, κ2
c4x

)

ϑp(
c3
x
, κ2
c3x

)
, (10)

and ci are parameters independent of x. The functions f∗(x), g∗(x) satisfy f∗(x)=
f∗( κ1

x
), g∗(x)= g∗( κ2

x
), and they give a parametrization of an elliptic curve of de-

gree (2, 2).2 We define functions Ff (x) and Gg(x) as

Ff (x)= ϑp

(
c1

x
,
κ1

c1x

)
f − ϑp

(
c2

x
,
κ1

c2x

)
,

Gg(x)= ϑp

(
c3

x
,
κ2

c3x

)
g− ϑp

(
c4

x
,
κ2

c4x

)
.

(11)

Note that Ff (x)= 0⇔ f = f∗(x) and Gg(x)= 0⇔ g = g∗(x).
In this paper, the Painlevé equation appears with the following parameters

(κ1, κ2)=
(
k,

k2

a1

)
, (ξ1, . . . , ξ8)=

(
k

q
, kqm+n,

k

a1qm
,
a2

qn
, a3, a4, a5, a6

)
.

(12)
Note that κ2

1κ
2
2 = qξ1 · · · ξ8 due to the constraint (4).

3 Contiguity Relations

Here, we will derive two fundamental contiguity relations3 satisfied by the functions
V (x), Y(x)U(x).

Special Direction T of Deformation For any quantity (or function) F depending
on variables k, a1, . . . , a6,m,n, . . . , we denote by F = T (F ) its parameter shift
along a special direction T :

T : (k, a1, . . . , a6,m,n) �→
(
kq,

a1

q
, a2, a3q, . . . , a6q,m+ 1, n− 1

)
. (13)

This special direction is chosen so that T : (κ1, κ2, ξi) �→ (κ1q, κ2q
3, ξiq) and the

corresponding elliptic Painlevé equation will take a simple form.

2The choice of parameters c1, . . . , c4 (and over all normalization of f∗(x), g∗(x)) is related to the
fractional linear transformations on P

1 × P
1.

3Since the contiguity relations (14), (15) are similar to the linear relations of the RII chains [17], it
may be possible to derive them as a reduction of three discrete-time non-autonomous Toda chain
by using the method in [18].
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Proposition 1 The functions y(x)= V (x),Y (x)U(x) satisfy the following contigu-
ity relations:

L2 :
Gg(

kx
a1

)
∏8

i=1 ϑp(
ξi
x
)

ϑp(
k

a1x
, k
qx

)
y(x)− Gg(x)

∏8
i=1 ϑp(

k
xξi

)

ϑp(
a1
x
,
q
x
)

y

(
x

q

)

− C0Ff (x)ϑp(
k

x2 ,
a1
qx

,
kq
a1x

)

x
y(x)= 0, (14)

L3 : Gg

(
kqx

a1

)
ϑp

(
k

qx
,
kq

a1x

)
y(x)−Gg(x)ϑp

(
1

x
,

a1

q2x

)
y(qx)

−
C1Ff (qx)ϑp(

k

qx2 )

xϑp(
k

a1x
, a1
qx

)
y(x)= 0, (15)

where C0, C1, f , g are some constants w.r.t. x.

Proof We put y(x)= [ V (x)

Y (x)U(x)

]
and define the Casorati determinants Di as

D1(x) := det

[
y(x),y

(
x

q

)]
,

D2(x) := det
[
y(qx),y(x)

]
,

D3(x) := det
[
y(x),y(x)

]
,

D4(x) := det

[
y(x),y

(
x

q

)]
.

(16)

Then the desired contiguity relations are obtained from the identity

D1(x)y(x)−D4(x)y(x)+D3(x)y

(
x

q

)
= 0,

D4(qx)y(x)−D3(x)y(qx)−D2(x)y(x)= 0,

(17)

by using the formulae for Di given in the next Lemma 1. �

Lemma 1 The determinants (16) take the following form:

D1(x)=N (x)Y (x)c
ϑp(

k

x2 ,
q
x
, a1

x
)Ff (x)

xϑp(
k
qx

, k
xa1

)
∏8

i=1 ϑp(
k
xξi

)
,

D2(x)=N (x)Y (x)c
ϑp(

k

q2x2 ,
k

q2x
, k
qxa1

)Ff (qx)

qxϑp(
1
x
, a1
qx

)
∏8

i=1 ϑp(
ξi
qx

)
, (18)
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D3(x)=N (x)Y (x)c′
Gg(x)

ϑp(
k
qx

, k
xa1

,
kq
xa1

, a1
qx

)
,

D4(x)=N (x)Y (x)c′
ϑp(

q
x
, a1

x
)Gg(

kx
a1

)

ϑp(
k
qx

, k
qx

, k
xa1

, k
xa1

,
kq
xa1

, a1
qx

)

8∏

i=1

ϑp(
ξi
x
)

ϑp(
k
xξi

)
,

where

N (x)=
ϑp(

1
qm+nx

, k
qx

)m+n+1

Uden(x)Vden(x)
. (19)

Proof The functions U(x), V (x) and, due to the constraint (4), the function Y(x)

are elliptic (p-periodic) functions in x. Hence the ratios Di(x)
Y (x)

are also elliptic. They
are of order 2m+ 2n+ (small corrections) and have sequences of zeros and poles
represented as ϑp(

1
qm+nx

, k
qx

)m+n+1 and UdenVden modulo corrections at the bound-

aries of the sequence. Then we can compute the ratios Di(x)
Y (x)

, and each of them are
determined up to 2 unknown constants. In the computation, the following relations
are useful (they are derived by a straightforward computation)

G(x) := Y(qx)

Y (x)
=

6∏

i=1

ϑp(
k

aiqx
)

ϑp(
ai
qx

)
, (20)

K(x) := Y (x)

Y (x)
= ϑp(

k
a1
, k
a2
, a1

q
,
kq
a1

)

ϑp(
k

a1x
, k
a2x

, a1
qx

,
kq
a1x

)

6∏

i=3

ϑp(
ai
x
)

ϑp(ai)
, (21)

N
(

k

qx

)
= qx2

k
N (x), (22)

and

N (qx)

N (x)
= ϑp(

q
x
,
qNk
x

, a1
x
, k
qma1x

, k
a2x

, a2
qnx

)

ϑp(
1

qN+1x
, k
qx

,
qma1
x

, k
a1x

,
qnk
a2x

, a2
x
)
. (23)

• Computation of D1(x), D2(x): First, we count the degree of the elliptic function

D1(x)

Y (x)
= 1

G(x
q
)
V (x)U

(
x

q

)
− V

(
x

q

)
U(x). (24)
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Substituting

U

(
x

q

)
= Unum( x

q
)

Uden(
x
q
)
= ϑp(

k
a2x

, a2
qnx

)

ϑp(
qnk
a2x

, a2
x
)

Unum( x
q
)

Uden(x)
,

V

(
x

q

)
= Vnum( x

q
)

Vden(
x
q
)
= ϑp(

k
qma2x

, a1
x
)

ϑp(
k

a1x
,
qma1
x

)

Vnum( x
q
)

Vden(x)
,

(25)

we have

D1(x)

Y (x)
= 1

Uden(x)Vden(x)

ϑp(
a1
x
)

ϑp(
k

a1x
)

×
{
ϑp(

a2
qnx

)

ϑp(
qnk
a2x

)

6∏

i=3

ϑp(
ai
x
)

ϑp(
k

aix
)
Vnum(x)Unum

(
x

q

)

− ϑp(
k

qma1x
)

ϑp(
qma1
x

)
Unum(x)Vnum

(
x

q

)}
. (26)

The function D1(x)/Y (x) is p-periodic function of order 2m+2n+6 with denom-
inator

Uden(x)

{
Vden(x)

ϑp(
k

a1x
)

ϑp(
a1
x
)

}
ϑp

(
qma1

x

)
ϑp

(
qnk

a2x

) 6∏

i=3

ϑp

(
k

aix

)
. (27)

Next, we study the zeros. When x and x
q

are both in the Padé interpolation grid

(i.e. for x = 1, q−1, . . . , q−N+1), it follows obviously that D1(x) = 0. Noting the
symmetry properties

U

(
k

qx

)
=U(x), V

(
k

qx

)
= V (x), G

(
k

qx

)
= 1

G(x
q
)
, (28)

we have

D1(
k
x
)

Y ( k
x
)
=G

(
x

q

)
U(x)V

(
x

q

)
−U

(
x

q

)
V (x)=−G

(
x

q

)
D1(x)

Y (x)
. (29)

Then it follows that D1(x) = 0 at x = k, kq, . . . , kqN−1 and furthermore, due
to the relation y(x) = y( x

q
) for x2 = k, we have D1(x) = 0 at x2 = k (i.e. x =

±√k,±√kp). As a result, the function X(x) defined by

D1(x)=N (x)Y (x)
ϑp(

k

x2 ,
q
x
, a1

x
)

xϑp(
k
qx

, k
xa1

)
∏8

i=1 ϑp(
k
xξi

)
X(x) (30)
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is a theta function of degree 2 such that X( x
p
) = X( k

x
) = x2

k
X(x), hence it can be

written as X(x) = cFf (x) by suitable constants c, f . D2 is easily obtained since
D2(x)=D1(qx).

• Computation of D3(x), D4(x): First we note a relation between D3(x) and D4(x).
Using U( k

qx
)=U(x), U( k

x
)=U(x) and similar relations for V (x) we have

D3(
k
qx

)

Y ( k
qx

)
= U

(
k

qx

)
V

(
k

qx

)
−K

(
k

qx

)
U

(
k

qx

)
V

(
k

qx

)

= U(x)V (qx)−K

(
k

qx

)
U(qx)V (x)

= G(x)

Y (qx)

{
Y(x)U(x)V (qx)− K( k

qx
)

G(x)
Y (qx)U(qx)V (x)

}

=G(x)
D4(qx)

Y (qx)
, (31)

where we have used the relation
K( k

qx
)

G(x)
=K(qx) at the last step.

Let us compute D3(x). Substituting the relation

U(x)= Unum(x)

Uden(x)
= ϑp

(
k

a2x
,

a2

qnx

)
Unum(x)

Uden(x)
,

V (x)= Vnum(x)

Vden(x)
= ϑp(

k
qma1x

)

ϑp(
a1
qx

, k
a1x

,
qk
a1x

)

Vnum(x)

Vden(x)
,

(32)

into

D3(x)

Y (x)
=U(x)V (x)−K(x)U(x)V (x), (33)

we have

D3(x)

Y (x)
= 1

Uden(x)Vden(x)

1

ϑp(
k

a1x
,

qk
a1x

, a1
qx

)

×
{
ϑp

(
a2

qnx
,
a3

x
, . . . ,

a6

x

)
Vnum(x)Unum(x)

− ϑp

(
k

qma1x

)
Vnum(x)Unum(x)

}
. (34)

Hence, D3(x)
Y (x)

is of degree 2m+ 2n+ 3.
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D3(x) has zeros at x = 1, q−1, . . . , q−N and x = k, qk, . . . , qN−1k, where the
latter zeros follow from those of D4(x) through Eq. (31). Hence, we obtain

D3(x)=N (x)Y (x)
1

ϑp(
k
qx

, k
xa1

,
kq
xa1

, a1
qx

)
Z(x), (35)

where Z(x) is a theta function of degree 2 such as Z( x
p
) = Z( k2

a1x
) = a1x

2

k2 Z(x),
namely Z(x) = c′Gg(x) for some c′ and g as desired. D4(x) is derived by the
relation (31). �

Corollary 1 For any pair i, j ∈ {3,4,5,6} we have

α(ai)

α(aj )

Ff (ai)

Ff (aj )
= U(ai)V (ai/q)

U(aj )V (aj /q)
,

β(ai)

β(aj )

Gg(ai)

Gg(aj )
= U(ai)V (ai)

U(aj )V (aj )
, (36)

where

α(x)=N (x)
ϑp(

k

x2 ,
q
x
, a1

x
)

xϑp(
k
qx

, k
xa1

)
∏8

i=1 ϑp(
k
xξi

)
,

β(x)=N (x)
1

ϑp(
k
qx

, k
xa1

,
kq
xa1

, a1
qx

)
.

(37)

Proof By the definition of D1,D3, we have for x = ai (i = 3,4,5,6)

D1(x)

Y (x)
= 1

G(x/q)
V (x)U

(
x

q

)
−U(x)V

(
x

q

)
=−U(x)V

(
x

q

)
,

D3(x)

Y (x)
= V (x)U(x)−K(x)U(x)V (x)=U(x)V (x).

(38)

Then, from the first and the third equation of (18), one has Eq. (36). �

The formulae (36) are convenient in order to obtain f,g from U(x), V (x).

4 Elliptic Painlevé Equation

In this section, we study the Eqs. (14), (15) for generic variables f,g apart from the
Padé problem, and prove that the variables f,g satisfy the elliptic Painlevé equation.

Theorem 1 If the Eqs. (14), (15) are compatible, then the variables f,g and f ,g

should be related by

Ff (x)Ff (qx)

Ff (
xa1
k

)Ff (
q2xa1

k
)

=
8∏

i=1

ϑp(
ξi
x
)

ϑp(
k2

xξia1
)
, for g = g∗(x), (39)
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and

Gg(x)Gg(qx)

Gg(
kqx
a1

)Gg(
kqx
a1

)

=
8∏

i=1

ϑp(
ξi
x
)

ϑp(
k

qxξi
)
, for f = f∗(qx). (40)

Proof From equations L2|x→qx (14) and L3 (15) we have

Gg(
kqx
a1

)
∏8

i=1 ϑp(
ξi
x
)

ϑp(
kq
a1x

, k
qx

)
y(qx)= Gg(qx)

∏8
i=1 ϑp(

k
qxξi

)

ϑp(
a1
q2x

, 1
x
)

y(x),

Gg

(
kqx

a1

)
ϑp

(
k

qx
,
kq

a1x

)
y(x)=Gg(x)ϑp

(
1

x
,

a1

q2x

)
y(qx),

(41)

for f = f∗(qx), hence we have Eq. (40).
For g = g∗(x), we have from Eqs. (14), (15) that

Gg(
kx
a1

)
∏8

i=1 ϑp(
ξi
x
)

ϑp(
k

a1x
, k
qx

)
y(x)= C0Ff (x)ϑp(

k

x2 ,
a1
qx

,
kq
a1x

)

x
y(x),

Gg

(
kqx

a1

)
ϑp

(
k

qx
,
kq

a1x

)
y(x)=

C1Ff (qx)ϑp(
k

qx2 )

xϑp(
k

a1x
, a1
qx

)
y(x),

(42)

hence

Gg

(
kx

a1

)
Gg

(
kqx

a1

) 8∏

i=1

ϑp

(
ξi

x

)
= w

x2
Ff (x)Ff (qx)ϑp

(
k

x2
,

k

qx2

)
, (43)

where w = C0C1. The Eq. (43) holds also by replacing x → k2

a1x
since g∗(x) =

g∗( k2

a1x
). Taking a ratio Eq. (43) with Eq. (43)|

x→ k2
a1x

we have Eq. (39). �

The next Lemma 2 shows that the relations (39), (40) are equivalent to the time
evolution equation for the elliptic Painlevé.4

Lemma 2 The solution f of Eq. (39) is a rational function of (f, g) of degree
(1,4), which is characterized by the following conditions: (i) its numerator and
denominator have 8 zeros at f = f∗(ξ), g = g∗(ξ), (ii) if f = f∗(u), g = g∗(u)
(u 	= ξ) then f = f∗( a1u

k
). Similarly, by Eq. (40), g is uniquely given as a rational

function of (f , g) of degree (4,1), satisfying the conditions (i′) it has 8 points of

4Since the elliptic Painlevé equation [14] is rather complicated, its concise expressions have been
pursued by several authors (e.g. [8–10]). The system (39), (40) is supposed to be the simplest one.
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indeterminacy at f = f∗(qξ), g = g∗(ξ), (ii′) if f = f∗(qu), g = g∗(u) (u 	= ξ)

then g = g∗( q
3ku
a1

)= g∗( qkua1
).

Proof Written in the form

Ff (x)Ff (qx)

8∏

i=1

ϑp

(
k2

xξia1

)
= Ff

(
xa1

k

)
Ff

(
q2xa1

k

) 8∏

i=1

ϑp

(
ξi

x

)
, (44)

the Eq. (39) is quasi p-periodic in x of degree (apparently) 12 with symmetry under

x↔ k2

a1x
. Since it is divisible by a factor ϑp(

k2

a1x
2 ), it is effectively of degree 8. Then

the solution f of this equation takes the form

f = A(x)f +B(x)

C(x)f +D(x)
, (45)

where the coefficients A(x), . . . ,D(x) are x↔ k2

a1x
-symmetric p-periodic functions

of degree 8, namely polynomials of g = g∗(x) of degree 4. Hence f is a rational
function of (f, g) of degree (1,4). The conditions (i), (ii) are obvious by the form
of Eq. (39). The structure of the solution g = g(f ,g) of the Eq. (40) is similar. �

Remark on the Geometric Characterization of the Solutions f , g As a con-
sequence of the above results, the variables f,g obtained from the Padé problem
give special solutions of the elliptic Painlevé equation. Since they are (Bäcklund
transformations of) the terminating hypergeometric solution [4, 5], they have the
following geometric characterization. Let C1 be a curve of degree (2n,2n + 1)
passing through the 8 points (f∗(ξi), g∗(ξi))8

i=1 in Eqs. (10), (12) with multiplicity
n(18)+ (0,1,1,0,0,0,0,0). Similarly, let C2 be a curve of degree (2m+2,2m+1)
passing through the 8 points with multiplicity m(18)+ (0,1,0,1,1,1,1,1). C1 and
C2 are unique rational curves. Except for the assigned 8 points, there exists unique
unassigned intersection point (f, g) ∈ C1 ∩C2 which is the solution.

5 Lax Formalism

In this section, we prove that the elliptic Painlevé equation (39), (40) are sufficient
for the compatibility of Eqs. (14), (15).

Solving y(x) and y(qx) from eqs. L2, L2|x→qx and plugging them into L3, one
has the following difference equation (Fig. 1):
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Fig. 1 Lax equations

L1 :
ϑp(

k
a1x

, k
qx

)
∏8

i=1 ϑp(
k
xξi

)

Ff (x)ϑp(
k

x2 ,
a1
x
,
q
x
)

y

(
x

q

)
+ qϑp(

1
x
, a1
qx

)
∏8

i=1 ϑp(
ξi
qx

)

Ff (qx)ϑp(
k

q2x2 ,
k

q2x
, k
a1qx

)
y(qx)

+
{wFf (qx)ϑp(

k

qx2 )

x2Gg(x)Gg(
kqx
a1

)
− qGg(qx)

∏8
i=1 ϑp(

k
qxξi

)

Ff (qx)Gg(
kqx
a1

)ϑp(
k

q2x2 )

− Gg(
kx
a1

)
∏8

i=1 ϑp(
ξi
x
)

Ff (x)Gg(x)ϑp(
k

x2 )

}
y(x)= 0. (46)

The pairs of equations {L1,L2}, {L1,L3} and {L2,L3} are equivalent with each
other.

The above expression L1 (46) contains variables f,g,f ,w. We will rewrite and
characterize it in terms of f,g only. This characterization is a key of the proof of
the compatibility. To do this, we first note the following

Lemma 3 The factor w satisfying the relation (43) is explicitly given by (f, g) as

w = C
f den(f, g)

ϕ(f,g)
, (47)

where f den(f, g) is a polynomial of degree (1,4) defined as the denominator of
the rational function f = f (f,g), and ϕ(f,g) is the defining polynomial of the
degree (2,2) curve parametrized by f∗(x), g∗(x), and C is a constant independent
of f,g, x.

Proof The relation (43) follows from Eq. (47) by using

ϕ|g=g∗(x) = C′
Ff (x)Ff (

a1x
k

)

g∗den(x)
2

, (48)

(
f denf∗num(qx)− f numf∗den(qx)

)∣∣
g=g∗(x) = C′′

Ff (
a1x
k

)
∏8

i=1 ϑp(
ξi
x
)

g∗den(x)
4

, (49)
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where C′, C′′ are constants, g∗den(x)= ϑp(
c3
x
, k2

a1c3x
) is the denominator of g∗(x),

and similarly f∗den(x)= ϑp(
c1
x
,

kq
c1x

), f∗num(x)= ϑp(
c2
x
,

kq
c2x

). �

Lemma 4 In terms of variables f,g, the Eq. (46) is represented as a polynomial
equation L1(f, g) = 0 of degree (3,2) characterized5 by the following vanishing
conditions at: (1) 10 points (f∗(u), g∗(u)) where u= ξ , qx and k

x
, (2) 2 more points

(f, g) such as

f = f∗(x),
y(x)

y( x
q
)

Gg(
kx
a1

)

Gg(x)
= ϑp(

k
a1x

, k
qx

)

ϑp(
a1
x
,
q
x
)

8∏

i=1

ϑp(
k
ξix

)

ϑp(
ξi
x
)
, (50)

and

f = f∗(qx),
y(qx)

y(x)

Gg(
kqx
a1

)

Gg(qx)
=

ϑp(
k

a1qx
, k

q2x
)

ϑp(
a1
qx

, 1
x
)

8∏

i=1

ϑp(
k

ξiqx
)

ϑp(
ξi
qx

)
. (51)

Proof Due to the Eq. (43), the residue of L1 at the apparent pole g = g∗(x) vanishes.

Replacing x with k
qx

in Eq. (43) and using the relations Ff (
k
x
) = x2

k
Ff (x) and

Gg(
k2

a1x
)= a1x

2

k2 Gg(x), we have

qx2Gg(x)Gg(qx)

8∏

i=1

ϑp

(
k

qξix

)
=wFf (qx)Ff (qx)ϑp

(
k

qx2
,

k

q2x2

)
, (52)

hence, the residue of L1 at g = g∗( kqxa1
)= g∗( k

qx
) also vanishes. From these vanish-

ing of residues and the Eq. (47), the L.H.S of Eq. (46) turns out to be a polynomial in
(f, g) of degree (3,2), after multiplying by Ff (x)Ff (qx)ϕ. Check of the vanishing
conditions (1), (2) are easy. �

In a similar way, solving y( x
q
), y(x) form L3, L3|x→x/q and substituting them

into L2, one has

L′1 :
ϑp(

1
x
, a1
q2x

)
∏8

i=1 ϑp(
ξi
x
)

ϑp(
k

qx2 ,
k
qx

,
kq
xa1

)Ff (qx)
y(qx)+ ϑp(

k
x
,
kq2

xa1
)
∏8

i=1 ϑp(
k
xξi

)

qϑp(
kq

x2 ,
q
x
, a1
qx

)Ff (x)
y

(
x

q

)

+
{

wϑp(
k

x2 )Ff (x)

x2Gg(x)Gg(
kx
a1

)
− Gg(

x
q
)
∏8

i=1 ϑp(
k
xξi

)

qϑp(
kq

x2 )Ff (x)Gg(
kx
a1

)

− Gg(
kqx
a1

)
∏8

i=1 ϑp(
ξi
x
)

ϑp(
k

qx2 )Ff (qx)Gg(x)

}
y(x)= 0. (53)

5This geometric characterization of the difference equation L1 is essentially the same as that
in [20].
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By the similar analysis as L1, we have the following

Lemma 5 In terms of variables f ,g, the Eq. (53) is represented as a polynomial
equation L′1(f , g) = 0 of degree (3,2) characterized by the following vanishing
conditions at: (1) 10 points (f∗(qu), g∗(u)) where u = ξ , x

q
and k

qx
. (2) 2 more

points (f , g) such as

f = f∗(x),
y(x)

y( x
q
)

Gg(
x
q
)

Gg(
kx
a1

)
= ϑp(

kq2

a1x
, k
x
)

ϑp(
a1
qx

,
q
x
)
, (54)

and

f = f∗(qx),
y(qx)

y(x)

Gg(x)

Gg(
kqx
a1

)
= ϑp(

kq
a1x

, k
qx

)

ϑp(
a1
qx ,

1
x
)

. (55)

Proof In terms of (f , g), the gauge factor w (47) is written as

w = C′′′ fden(f , g)

ϕ(f ,g)
, (56)

where fden(f , g) is the denominator of the rational function f = f (f ,g), and
ϕ(f ,g) is the defining polynomial of the curve parametrized by f ∗(qx), g∗(x),
and C′′′ is a constant. Then the proof of the Lemma is the same as the proof of the
Lemma 4. �

Proposition 2 The Eq. (53) expressed in terms of (f , g) is equivalent with the trans-
formation T (L1)= L1 of Eq. (46).

Proof This fact is a consequence of Lemmas 2, 4 and 5. The geometric proof in the
q-difference case [21] is also available here (see Lemmas 4.2–4.6 in [21]). �

6 Determinant Formulae

In this section, we present explicit determinant formulae for the solutions U(x),
V (x) of the interpolation problem (5).
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Theorem 2 Interpolating rational functions U(x), V (x) have the following deter-
minant expressions:

U(x)= const.

∣∣∣∣∣∣∣∣∣

mU
0,0 · · · mU

0,n
...

. . .
...

mU
n−1,0 · · · mU

n−1,n
φ0(x) · · · φn(x)

∣∣∣∣∣∣∣∣∣

,

V (x)= const.

∣∣∣∣∣∣∣∣∣

mV
0,0 · · · mV

0,m
...

. . .
...

mV
m−1,0 · · · mV

m−1,m
χ0(x) · · · χm(x)

∣∣∣∣∣∣∣∣∣

,

(57)

where

mU
ij = 12V11

(
q−1k;q−N,qN−i−1a1, q

−j a2, q
ia3, q

j a4, a5, a6;q
)
,

mV
ij = 12V11

(
q−1k;q−N,q−j k

a1
, qN−i−1 k

a2
, qj k

a3
, qi k

a4
,
k

a5
,
k

a6
;q
)
,

(58)

and n+5Vn+4 (n+3En+2 in convention of [4]) is the very-well poised, balanced ellip-
tic hypergeometric series [1, 15, 16]

n+5Vn+4(u0;u1, . . . , un; z)=
∞∑

s=0

ϑp(u0q
2s)

ϑp(u0)

n∏

j=0

ϑp(uj )s

ϑp(qu0/uj )s
zs . (59)

Proof In general, the solution of interpolation problem

V (xs)= YsU(xs), s = 0, . . . ,N (60)

is written by the following determinants:

U(x)=

∣∣∣∣∣∣∣∣∣

χ0(x0) · · · χm(x0) Y0φ0(x0) · · · Y0φn(x0)
...

. . .
...

...
. . .

...

χ0(xN) · · · χm(xN) YNφ0(xN) · · · YNφn(xN)

0 · · · 0 φ0(x) · · · φn(x)

∣∣∣∣∣∣∣∣∣

, (61)

and

V (x)=

∣∣∣∣∣∣∣∣∣

χ0(x0) · · · χm(x0) Y0φ0(x0) · · · Y0φn(x0)
...

. . .
...

...
. . .

...

χ0(xN) · · · χm(xN) YNφ0(xN) · · · YNφn(xN)

χ0(x) · · · χm(x) 0 · · · 0

∣∣∣∣∣∣∣∣∣

. (62)
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We apply these formulae for Ys , φi(x), χi(x) given by (6), (8) and xs = q−s . Note
that φi(xs), χi(xs) can be written as

φi(xs)=
ϑp(

k
a2
, k
a4
, q−ia2, q

ia4)s

ϑp(a2, a4, qi k
a2
, q−i k

a4
)s

,

χi(xs)=
ϑp(a1, a3, q

−i k
a1
, qi k

a3
)s

ϑp(
k
a1
, k
a3
, qia1, q−ia3)s

.

(63)

To rewrite the determinant in Eq. (61), we use the multiplication by a matrix

L=
[
(Lij )

N
i,j=0

1

]
(64)

from the left, where

Lij = ϑp(q
2j−1k)

ϑp(q−1k)

ϑp(q
−1k, q−N,qN−i−1a1,

k
a1
, qia3,

k
a3
)j

ϑp(q, qNk, q−N+i+1 k
a1
, a1, q−i k

a3
, a3)j

qj . (65)

For the last n+ 1 columns, we have

N∑

s=0

LisYsφj (xs) = 12V11
(
q−1k;q−N,qN−i−1a1, q

−j a2, q
ia3, q

j a4, a5, a6;q
)

= mU
ij . (66)

For the first m+ 1 columns, we have

N∑

s=0

Lisχj (xs)= 10V9

(
q−1k;q−N,qN−i−1a1, q

−j k

a1
, qia3, q

j k

a3
;q
)
. (67)

Using the Frenkel-Turaev summation formula (u1 · · ·u5 = qu2
0, u5 = q−n) [2, 15,

16]:

10V9(u0;u1, . . . , u5;q)=
ϑp(qu0,

qu0
u1u2

,
qu0
u1u3

,
qu0
u2u3

)n

ϑp(
qu0
u1

,
qu0
u2

,
qu0
u3

,
qu0

u1u2u3
)n

, (68)

the expression (67) can be evaluated as

ϑp(k, q
−N+i+j+1, q−N+1 k

a1a3
, qj−i a1

a3
)N

ϑp(q−N+j+1 1
a3
, q−i k

a3
, qj a1, q−N+i+1 k

a1
)N

, (69)

and it vanishes for 0 ≤ i + j < N . Hence, we obtain the formula for U(x) in (57)
by Laplace expansion. The case for function V (x) is similar. �
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Theorem 2 supplies also formulae for special solutions f,g of the elliptic
Painlevé equation through Eq. (36). Moreover we have

Lemma 6 For i, j ∈ {3,4,5,6}, the ratios in Eq. (36) have following simple form

U(ai)

U(aj )
= ciT

−1
a2

Tai (τ
U )

cjT
−1
a2 Taj (τ

U )
,

V (ai/q)

V (aj /q)
= c′iTa1T

−1
ai

(τV )

c′j Ta1T
−1
aj (τV )

, (70)

where τU = det(mU
i,j )

n−1
i,j=0 and τV = det(mV

i,j )
m−1
i,j=0,

c3 = q
n(n−1)

2
(q−n k

a3
, q)n(a3, q)n(q

−m−n+1 a3
a1
, q)n(q

m+1 a1a3
k

, q)n

( k
a2a3

, q)n(
qa3
a2

, q)n(q−m−n+1 a3
a1
, q2)n(qm+n a1a3

k
,1)n

,

c4 =
(q−n k

a4
, q)n(a4, q)n

( k
a2a4

,1)n(
qa4
a2

, q2)n
, ci =

( k
qai

,1)n(ai,1)n

( k
a2ai

, q)n(
qai
a2

, q)n
, (i = 5,6),

(x, v)n =∏n−1
i=0 ϑp(xv

i) and

(
c′3, c′4, c′5, c′6

)= (c4, c3, c5, c6)|(m,n,a1,...,a6)�→(n,m, k
a2

, k
a1

, k
a4

, k
a3

, k
a5

, k
a6

)
.

Proof Since φi(a4)= δi,0 (i ≥ 0), we have

U(a4)

const.
= det

(
mU

i,j+1

)n−1
i,j=0 = T −1

a2
Ta4

(
τU
)
. (71)

Using the symmetry of U(x) in parameters a3, . . . , a6, the first relation of Eq. (70)
follows. The second relation is similar. �

The determinant expressions for the special solutions have been known for vari-
ous (discrete) Painlevé equations (see [7, 12] for example). Our method using Padé
interpolation gives a simple and direct way to obtain them.

Acknowledgements This work was partially supported by JSPS Grant-in-aid for Scientific Re-
search (KAKENHI) 21340036, 22540224 and 19104002.

Appendix: Affine Weyl Group Actions

Here we give a derivation of the Painlevé equation (39), (40) from the affine Weyl
group actions [9, 21].
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Define multiplicative transformations sij , c, μij , νij (1 ≤ i 	= j ≤ 8) acting on
variables h1, h2, u1, . . . , u8 as

sij = {ui ↔ uj }, c= {h1 ↔ h2},

μij =
{
h1 �→ h1h2

uiuj

, ui �→ h2

uj

, uj �→ h2

ui

}
,

νij =
{
h2 �→ h1h2

uiuj

, ui �→ h1

uj

, uj �→ h1

ui

}
.

(72)

These actions generate the affine Weyl group of type E
(1)
8 with the following simple

reflections:

s12
|

c − μ12 − s23 − s34 − · · · − s78.

(73)

We extend the actions bi-rationally on variables (f, g). The nontrivial actions are as
follows:

c(f )= g, c(g)= f, μij (f )= f̃ , νij (g)= g̃, (74)

where, f̃ = f̃ij and g̃ = g̃ij are rational functions in (f, g) defined by

f̃ −μij (fi)

f̃ −μij (fj )
= (f − fi)(g − gj )

(f − fj )(g − gi)
,

g̃− νij (gi)

g̃− νij (gj )
= (g − gi)(f − fj )

(g − gj )(f − fi)
, (75)

(fi, gi)= (f�(ui), g�(ui)), and

f�(z)=
ϑp(

d2
z
, h1
d2z

)

ϑp(
d1
z
, h1
d1z

)
, g�(z)=

ϑp(
d2
z
, h2
d2z

)

ϑp(
d1
z
, h2
d1z

)
, (76)

as in Eq. (10). As a rational function of (f, g), f̃ is characterized by the following
properties: (i) it is of degree (1,1) with indeterminate points (fi, gi), (fj , gj ), (ii) it

maps generic points on the elliptic curve (f�(z), g�(z)) to
ϑp(

d2
z
,

h1h2
d2zu1u2

)

ϑp(
d1
z
,

h1h2
d1zui uj

)
. Using this

geometric characterization, we have

μij

{Ff (
h1z
h2

)

Ff (z)

}
= ϑp(

ui

z
,
uj

z
)

ϑp(
h2
uiz

, h2
uj z

)

Ff (
h1z
h2

)

Ff (z)
, for g = g�(z), (77)
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where the functions Ff (z) (and Gg(z)) are defined in a similar way as Eq. (11)

Ff (z)= ϑp

(
d1

z
,
h1

d1z

)
f − ϑp

(
d2

z
,
h1

d2z

)
,

Gg(z)= ϑp

(
d1

z
,
h2

d1z

)
g− ϑp

(
d2

z
,
h2

d2z

)
.

(78)

Let us consider the following compositions [9]

r = s12μ12s34μ34s56μ56s78μ78, T = rcrc. (79)

Their actions on variables (hi, ui) are given by

r(h1)= vh2, r(h2)= h2, r(ui)= h2

ui

,

T (h1)= qh1v
2, T (h2)= q−1h2v

2, T (ui)= uiv,

(80)

where v = qh2/h1, q = h2
1h

2
2/(u1 · · ·u8). From Eq. (77) and r(h1

h2
)= qh2

h1
, the evo-

lution T (f )= rcrc(f )= r(f ) is determined as

Ff (z)

Ff (
h1z
h2

)

T (Ff )(
qh2z
h1

)

T (Ff )(z)
=

8∏

i=1

ϑp(
ui

z
)

ϑp(
h2
uiz

)
, for g = g�(z). (81)

Similarly, since cT c= T −1, T −1(g) is determined by

Gg(z)

Gg(
h2z
h1

)

T −1(Gg)(
qh1z
h2

)

T −1(Gg)(z)
=

8∏

i=1

ϑp(
ui

z
)

ϑp(
h1
uiz

)
, for f = f�(z). (82)

By a re-scaling of variables (hi, ui, di) = (κiλ
2, ξiλ, ciλ) with λ = (h3

1h
−1
2 )

1
4 , we

have Ff (z)= Ff (
z
λ
), T (Ff )(z)= T (Ff )(

κ1
κ2

z
λ
) and so on, since T (λ)= h2

h1
λ. Then

the above equations take the form (39), (40), by putting z= λx.
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Non-commutative Harmonic Oscillators

Hiroyuki Ochiai

Abstract This is a survey on the non-commutative harmonic oscillator, which is
a generalization of usual (scalar) harmonic oscillators to the system introduced by
Parmeggiani and Wakayama. With the definitions and the basic properties, we sum-
marize the positivity of several related operators with sl2 interpretations. We also
mention some unsolved questions, in order to clarify the current status of the prob-
lems and expected further development.

1 Introduction

A non-commutative harmonic oscillator Q is the Weyl quantization of a matrix-
valued quadratic forms in (x, ξ). This is a generalization of the usual (scalar) har-
monic oscillator to the system introduced by A. Parmeggiani and M. Wakayama [21].
The adjective “non-commutative” originates from the two kinds of non-commuta-
tivity: one comes from the system, the other is due to the Weyl quantization. The
main concern to this system has been devoted to the spectral problems, especially,
the explicit determination of eigenvalues and eigenstates for the discrete spectrum,
and their generating function, so called, spectral zeta functions.

In this paper, we deal with the case the system of ordinary differential op-
erators of the system size two, following the original work by Parmeggiani and
Wakayama [20]. (We note that little is known in the case that the size of the system
is greater than two.) The operator Q is defined by

A
(−∂2

x + x2)/2+B(x∂x + 1/2), (1)

where x ∈ R, ∂x = d/dx, A, B are real constant matrices of size two, A is sym-
metric, and B is skew-symmetric; AT = A,BT =−B . This operator Q is densely
defined on the space L2(R,C2) of C2-valued square integrable functions on the real
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line R. This is the Weyl quantization of

A
(
ξ2 + x2)+√−1Bxξ, (2)

which is a positive definite hermitian matrix if the constant matrix A+√−1B is
positive definite. In such a case, the system Q is positive elliptic, unbounded, self-
adjoint. So it has only a discrete spectrum with finite multiplicities: 0 < λ1 ≤ λ2 ≤
· · · (→+∞). In considering the spectral problem, there is no harm by the orthogo-
nal change of coordinates of C2, so we may assume that A is a real diagonal matrix.
Since we have assumed the system size is two, the matrix B is a constant multiple
of the standard one

[ 0 −1
1 0

]
.

Remark 1 In the case that the size is greater than two, the orbit decomposition of
the simultaneous action of the orthogonal group on the pair of symmetric and skew-
symmetric matrices is considered by [2], and it shows that the representatives of
isomorphism classes are rather complicated in general.

We continue the case that the system size is two. This means that the system Q

is

Q=Qα,β =
[

α
2 (−∂2

x + x2) −(x∂ + 1
2 )

x∂ + 1
2

β
2 (−∂2

x + x2)

]
, (3)

where α,β ∈R are the parameters specifying the operator Q.
In the case α = β , the system Qα,α is unitarily equivalent to the scalar oper-

ator ((∂2
x + (α2 − 1)x2)/2)I2, where I2 is the identity matrix of size two. Hence

the corresponding spectral problem is solved for Qα,α . For example, if α > 1, then
the spectrum is of the form

√
α2 − 1(N + 1/2) with a non-negative integer N , and

the eigenfunction is written in terms of Hermite functions. If α = 1, then the set
of spectra is the real half line {λ ≥ 0}, and if 0 < α < 1, then the set of spectra is
the whole real line R. This unitary equivalence is first obtained in [21, 22] by us-
ing the oscillator representation ' of sl2 (see Sect. 2), and is later obtained from
the Malliavin calculus [26]. Both approaches use the unitary operators involving the
function e

√−1x2 = cos(x2)+√−1 sin(x2), which is highly oscillating as x→±∞.
This suggests the difficulty of the naive numerical computation of eigenfunctions.
The general case α 	= β is considered to be the perturbation of the ‘diagonal case’
α = β . From this point of view, Parmeggiani ([19, 20]) gives some “clustering the-
orems” for the spectrum.

If α and β is large enough, then the system Q is also considered to be the pertur-
bation of the two split scalar harmonic oscillators. To be more precise, let us write

1√
αβ

Qα,β =
[√

α/β 0
0

√
β/α

](−∂2
x+x2)/2+ 1√

αβ

[
0 −1
1 0

]
(x∂x+1/2). (4)

For a fixed ratio α/β and taking the limit 1/
√
αβ→ 0, the system goes to the direct

sum of two independent harmonic oscillators; (α/β)±1/2(−∂2
x + x2)/2. Since the
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perturbation term is bounded with respect to the elliptic first term, we can apply
Rellich’s theory to obtain a qualitative property [18, 20].

Apart from these special cases of parameters, the spectrum does not seem to have
a simple behavior, such as an arithmetic progression as in the harmonic oscillators.
A numerical verification [13] with an accuracy supports this observation. In order
to describe the whole structure of the spectra, we need some ‘new’ functions.

In what follows in this paper, we always assume that the system is elliptic, that is,
the positivity assumption A+√−1B > 0 is now translated as α,β > 0 and αβ > 1.

Remark 2 Contrary to the case αβ > 1, nothing is known for αβ ≤ 1, except that it
seems that Parmeggiani has recently proved that the system Q has only the contin-
uous spectrum in the case αβ = 1.

2 Inequalities

If the scalar symbol is non-negative, then its Weyl quantization gives a positive
operator. However, this is not true for a system. A counter example is given by
Hörmander [4]

Q=
[

x2 −√−1(x∂x + 1/2)
−√−1(x∂x + 1/2) −∂2

x

]
. (5)

The symbol of Q is positive semi-definite, while the system Q is not positive, i.e.,
there exists an u ∈ L2(R)⊗C

2 such that 〈Qu,u〉< 0.
We may recall the oscillator representation ' of sl2. Let

H =
[

1 0
0 −1

]
, X+ =

[
0 1
0 0

]
, X− =

[
0 0
1 0

]
(6)

be the standard basis of the three-dimensional simple Lie algebra sl2(R) = {A ∈
M(2,R) | trA= 0}. The Lie bracket [A,B] =AB −BA is given as

[
H,X+]= 2X+,

[
H,X−]=−2X−,

[
X+,X−]=H. (7)

We recall (e.g., [5]) the representation ' of sl2 realized in Weyl algebra C[x, ∂x]
by

'(H)= x∂x + 1/2,'
(
X+)= x2/2,'

(
X−)=−∂2

x /2. (8)

Then the operator Q in (5) is unitarily equivalent to
[

2'(X+) '(H)

−'(H) 2'(X−)

]
='

[
2X+ H

−H 2X−
]
. (9)

The last matrix is considered to be an element in M(2,U(sl2)), where U(sl2) de-
notes the universal enveloping algebra of sl2. This matrix has the following relation
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with the Capelli matrix:

[
2X+ H

−H 2X−
][

0 I

I 0

]
= 2

[
E11 E12
E21 E22

]
−
[
I 0
0 I

]
, (10)

where Eij is the matrix unit, and I is the identity matrix, living in gl2 =M(2,R).
The column determinant

det

[
E11 E12
E21 E22 + I

]
(11)

of the Capelli matrix with an appropriate shift in the diagonal gives a central element
of U(gl2). By Schur’s lemma, we know every central element acts by a scalar on
each irreducible representation, and its scalar has been determined for the Capelli
elements, not only for the size two but for general matrix size. We may pose a
question: can we diagonalize the Capelli matrix rather than Capelli element (= its
determinant)? This question may have a relation with the spectral problem of non-
commutative harmonic oscillators.

The non-commutative harmonic oscillator Q in (1) is expressed in terms of sl2,
or rather gl2 ⊗ sl2 by

A⊗'
(
X+ +X−)+B ⊗'(H)= (ι⊗')

(
A⊗ (X+ +X−)+B ⊗H

)
, (12)

where ι is a natural representation of gl2 on C
2. We have not yet found an inti-

mate relation between Capelli elements and non-commutative harmonic oscillators.
However, both operators share the two kinds of non-commutativity (in the sense
of [21]), the matrix system as well as Weyl quantization and the Lie algebraic sym-
metry. Note that the positivity of the operator is related to the estimate of the lowest
eigenvalues. This is rather different a question than analyzing all the eigenvalues.
In the case of non-commutative harmonic oscillators, [18] and [20] give some esti-
mates of the lowest eigenvalues, and it still requires an improvement.

The positivity of another operator

Q=
[
a1x

2 − a2∂
2
x −(x∂ + 1/2)

x∂ + 1/2 a3x
2 − a4∂

2
x

]
(13)

with real parameters a1, a2, a3, and a4 is considered in [23]. The answer is given
as follows; there exists a real-valued real analytic function Φ(s1, s2) such that
Φ(a1a4, a2a3) > 0 if and only if Q is positive. Although this function Φ is ex-
plicitly defined by the determinant of the matrix of infinite size, the nature of the
function Φ is still unclear. For example, we do not know whether this function Φ

arises elsewhere. Note that the operator (13) is written in terms of sl2 as

[
0 −1
1 0

]
'(H)+

[
2a1 0
0 2a3

]
'
(
X+)+

[
2a2 0
0 2a4

]
'
(
X−), (14)

or as ι⊗' on gl2 ⊗ sl2, again.
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A system of partial differential operators related with the non-commutative har-
monic oscillator has been considered prior by [1], in the occasion to give a counter
example of the Fefferman-Phong inequality for systems.

3 Special Values of Spectral Zeta Functions

Although we can not write up each spectrum, its generating function is proved to be
manageable. The spectral zeta function, denoted by ζQ(s), is defined by

ζQ(s)=
∞∑

n=1

λ−s
n . (15)

The general property, such as an absolute convergence on the right half plane, the
analytic continuation to whole s-plane has been established in [6, 7]. They also give
an expression of the special value ζQ(2) by using the confluent Heun function, and
later it is simplified in [16] as

ζQ(s)= 3

2
ζ(2)

(α + β)2

(αβ − 1)αβ

(
1+ α − β

α + β
2F1

(
1

4
,

3

4
,1; 1

1− αβ

)2)
, (16)

where 2F1 is the Gauss hypergeometric function. In these special exponents, the
Gauss hypergeometric function reduces to the complete elliptic integral. This en-
ables us to give a connection with the modular forms [11]. This argument can be
generalized for a general special values ζQ(s) at positive integers s ≥ 2 as in [9, 10].
The related series arising in the Taylor expansion of such hypergeometric-like func-
tions are examined also in [8, 12].

4 Real Picture Versus Complex Picture

The description of the spectrum, which is the main concern for the positive non-
commutative harmonic oscillators, is first given in [22] by the infinite continued
fractions, and later in [14] by the monodromy representations and the connection
coefficients of the Heun differential equations. The former has a real nature, while
the latter has a complex one. These two approaches have their own advantage: taking
a truncation of the infinite continued fraction, we obtain an approximation of each
eigenvalues. This enables us to give, e.g., the estimate of the lowest eigenvalues. By
the connection coefficients or monodromy in the complex domain, such an estimate
is rather difficult. On the other hand, the description of spectra and the eigenfunc-
tions in terms of the monodromy of the Heun equation, e.g., enables us to control
the multiplicity of the spectrum. We will explain this feature in more detail.

Heun equation is the second order ordinary differential equation on the complex
projective line with four regular singular points [3]. It has one accessory parameter,



488 H. Ochiai

by definition, a parameter undetermined by the local exponents. The dependence
of the monodromy, the global behavior of the analytic continuation of any holo-
morphic solution at a regular point, on the accessory parameter is believed to be a
‘difficult function’. In a special case, apart from Heun, this dependence is controlled
by the Painlevé equation, which is sufficiently non-trivial. In representation theory
of finite-dimensional Lie groups and Lie algebras, special functions such as hy-
pergeometric functions, Beta integral, Gamma functions often arises, in the case of
non-commutative harmonic oscillators we have in [14] and encounter with the Fuch-
sian ordinary differential equation on the complex line with an accessory parameter.
Recently, another example is obtained in a different context [17] in the restriction of
Heckman-Opdam hypergeometric function to the one-dimensional singular locus.

In our case, Heun’s operator is of the form:

H = d2

dz
+
(

1− n

z
+ −n

z− 1
+ n+ (3/2)

z− αβ

)
+ −(3/2)nz− q

z(z− 1)(z− αβ)
, (17)

where n corresponds to the eigenvalues of Q with some normalization, and the
accessory parameter q is explicitly written as a rational function in α,β and n. The
Riemann scheme of this operator H is

⎧
⎨

⎩

w = 0 1 αβ ∞
0 0 0 3/2
n n+ 1 −n− (1/2) −n

⎫
⎬

⎭ . (18)

Note that in the case n ∈ R is an integer or a half integer, the differences of expo-
nents at four singular points consist of exactly two integers and two half integers
(= integer + 1/2). If all the four differences are half integers [25] or integers [24]
simultaneously, then there is an integral expression of a solution of such a Heun
equation, but we have not yet obtained such a concise expression in our case (18).

We call a function u ∈ L2(R)⊗ C
2 even if u(−x) = u(x) and odd if u(−x) =

−u(x). Since the operator Q preserves the parity, an eigenfunction is a sum of the
even and odd eigenfunctions. In the complex picture we use the different ordinary
differential operators H ’s corresponding to the even/odd cases. One of the corollar-
ies of the main theorem in [15] is that the following four conditions are equivalent:

(i) The multiplicity of odd eigenfunction of Q with the (normalized) spectrum n

is greater than 1.
(ii) The Heun equation H has a two-dimensional holomorphic solution on the disk

containing 0 and 1.
(iii) The Heun equation H has a non-zero rational solution.
(iv) The Heun equation H has a solution of the form

√
z− αβ× (a non-zero ratio-

nal function).

Moreover, (i) to (iv) occur only for n ∈ Z>0, and in the cases (iii) and (iv), we
can specify by n the locations and the possible orders of poles for such rational
functions. This means that the condition (iii) to (iv) are a finite condition.
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We note that we have not yet established the equivalence for even eigenfunctions,
because the corresponding result in [14] requires the inhomogenous Heun equation,
while the odd case corresponds to the homogeneous Heun equation. It should be
improved.

In our complex picture, even eigenfunctions and odd eigenfunctions correspond
to the different Fuchsian equations, so that the interaction between even and odd
eigenfunctions is not controlled well. Is there any intimate relation between these
two Fuchsian equations?
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The Inversion Formula of Polylogarithms
and the Riemann-Hilbert Problem

Shu Oi and Kimio Ueno

Abstract In this article, we set up a method of reconstructing the polylogarithms
Lik(z) from zeta values ζ(k) via the Riemann-Hilbert problem. This is referred to
as “a recursive Riemann-Hilbert problem of additive type.” Moreover, we suggest a
framework of interpreting the connection problem of the Knizhnik-Zamolodchikov
equation of one variable as a Riemann-Hilbert problem.

1 Introduction

Polylogarithms Lik(z) (k ≥ 2) satisfy the inversion formula

Lik(z)+
k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ Li2,1,...,1︸︷︷︸
k−2

(1− z)= ζ(k).

Applying the Riemann-Hilbert problem of additive type (alternatively, Plemelj-
Birkhoff decomposition) [1, 2, 4] to this inversion formula, we show that Lik(z) can
be reconstructed from boundary values ζ(k). We prove this by using the Riemann-
Hilbert problem recursively so that we refer to this method as a recursive Riemann-
Hilbert problem of additive type.

As a generalization of this method, we can reconstruct multiple polylogarithms
Lik1,...,kr (z) from multiple zeta values ζ(k1, . . . , kr ). This is nothing but interpreting
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the connection relation [3]

L(z)= L(1)(z)ΦKZ

between the fundamental solutions of the Knizhnik-Zamolodchikov equation of one
variable (KZ equation, for short)

dG

dz
=
(
X0

z
+ X1

1− z

)
G

as a Riemann-Hilbert problem. Here ΦKZ is Drinfel’d associator and L(z) (resp.
L(1)(z)) is the fundamental solution of KZ equation normalized at z= 0 (resp. z=
1). We have completely solved this problem and a preprint is now in preparation.

2 The Inversion Formula of Polylogarithms

For positive integers k, polylogarithms Lik(z) are introduced as follows: First we set
Li1(z) = − log(1− z). In the domain D = C \ {z = x|1 ≤ x}, Li1(z) has a branch
such that Li1(0)= 1 (the principal value of Li1(z)). Starting from the principal value
of Li1(z), we introduce Lik(z), which are holomorphic on D, recursively by

Lik(z)=
∫ z

0

Lik−1(t)

t
dt (k ≥ 2) (1)

where the integral contour is assumed to be in D. Then Lik(z) has a Taylor expan-
sion

Lik(z)=
∞∑

n=1

zn

nk
(2)

on |z|< 1. We obtain, for k ≥ 2,

lim
z→1,z∈D Lik(z)= ζ(k), (3)

where ζ(k) is the Riemann zeta value ζ(k)=∑∞
n=1

1
nk .

From (1), we have differential recursive relations:

d

dz
Li1(z)= 1

1− z
,

d

dz
Lik(z)= Lik−1(z)

z
(k ≥ 2). (4)

By virtue of (1), Lik(z) is analytically continued to a many-valued analytic func-
tion on P1 \ {0,1,∞}. However, in this article, we will use the notation Lik(z) as
the principal value stated previously.

We also define multiple polylogarithms Li2,1,...,1(z) (k ≥ 2) as

Li2,1,...,1︸︷︷︸
k−2

(z)=
∫ z

0

(−1)k−1

(k − 1)!
logk−1(1− t)

t
dt. (5)
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Fig. 1 The domains D(+),D(−)

By using these relations and (3), one can obtain easily the inversion formula of
polylogarithms.

Proposition 1 (the inversion formula of polylogarithms) For k ≥ 2, the following
functional relation holds.

Lik(z)+
k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ Li2,1,...,1︸︷︷︸
k−2

(1− z)= ζ(k). (6)

Proof Differentiating the left hand side of the equation (6), we have

d

dz

(
Lik(z)+

k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ Li2,1,...,1︸︷︷︸
k−2

(1− z)

)
= 0.

Therefore the left hand side of (6) is a constant. Taking the limit of the left hand side
of (6) as z ∈D tends to 1 and using (3), we see that the constant is equal to ζ(k). �

The branch of Li2,1,...,1︸︷︷︸
k−2

(1− z) on the domain D′ = C \ {z = x|x ≤ 0} is deter-

mined from the principal value of log z.

3 The Recursive Riemann-Hilbert Problem of Additive Type

Let D(+),D(−) (Fig. 1) be domains of C defined by

D(+) = {z= x + yi|x < 1,−∞< y <∞}⊂D,

D(−) = {z= x + yi|0 < x,−∞< y <∞}⊂D′.

The following theorem says that polylogarithms Lik(z) are characterized by the
inversion formula.
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Theorem 1 Put f (+)
1 (z)= Li1(z). For k ≥ 2, we assume that f (±)

k (z) are holomor-
phic functions on D(±) satisfying the functional relation

f
(+)
k (z)+

k−1∑

j=1

(−1)j logj z

j ! f
(+)
k−j (z)+ f

(−)
k (z)= ζ(k)

(
z ∈D(+) ∩D(−)

)
, (7)

the asymptotic conditions

d

dz
f

(±)
k (z)→ 0

(
z→∞, z ∈D(±)

)
, (8)

and the normalization condition

f
(+)
k (0)= 0. (9)

Then we have

f
(+)
k (z)= Lik(z), f

(−)
k (z)= Li2,1,...,1︸︷︷︸

k−2

(1− z) (k ≥ 2).

Proof We prove the theorem by induction on k ≥ 2. For the case k = 2, the proof can
be done in the same manner as the case k > 2 from the definition of f (+)

1 (z). So we

assume that f (+)
j (z)= Lij (z) and f

(−)
j (z)= Li2,1,...,1︸︷︷︸

j−2

(1−z) for 2≤ j ≤ k−1. Now

we show that f (+)
k (z) = Lik(z), f

(−)
k (z) = Li2,1,...,1︸︷︷︸

k−2

(1− z). From the assumption,

the Eq. (7) becomes

f
(+)
k (z)+

k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ f
(−)
k (z)= ζ(k). (10)

Differentiating this equation, we have

0 = d

dz

(
f

(+)
k (z)+

k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ f
(−)
k (z)

)

= d

dz
f

(+)
k (z)+

k−2∑

j=1

(
1

z

(−1)j logj−1 z

(j − 1)! Lik−j (z)+ (−1)j logj z

j !
Lik−j−1(z)

z

)

+ 1

z

(−1)k−1 logk−2 z

(k − 2)! Li1(z)+ (−1)k−1 logk−1 z

(k − 1)!
1

1− z

+ d

dz
f

(−)
k (z)
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= d

dz
f

(+)
k (z)− Lik−1(z)

z
+ 1

1− z

(−1)k−1 logk−1 z

(k − 1)! + d

dz
f

(−)
k (z).

Thus we obtain

d

dz
f

(+)
k (z)− Lik−1(z)

z
=− 1

1− z

(−1)k−1 logk−1 z

(k − 1)! − d

dz
f

(−)
k (z) (11)

on z ∈D(+)∩D(−). Here, the left hand side of (11) is holomorphic on D(+) and the
right hand side of (11) is holomorphic on D(−). Therefore the both sides of (11) are
entire functions. Using the asymptotic condition (8) and

Lik−1(z)

z
→ 0

(
z→∞, z ∈D(+)

)
,

logk−1 z

1− z
→ 0

(
z→∞, z ∈D(−)

)
,

we have that both sides of (11) are 0 by virtue of Liouville’s theorem. Therefore we
have

f
(+)
k (z)=

∫ z Lik−1(z)

z
dz= Lik(z)+ c

(+)
k ,

f
(−)
k (z)=

∫ z

− 1

1− z

(−1)k−1 logk−1 z

(k − 1)! dz= Li2,1,...,1︸︷︷︸
k−2

(1− z)+ c
(−)
k ,

where c
(+)
k , c

(−)
k are integral constants. From the normalization condition (9), it is

clear that c
(+)
k is equal to 0. Finally, substituting f

(+)
k (z) and f

(−)
k (z) in (7), we

obtain

Lik(z)+
k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)+ Li2,1,...,1︸︷︷︸
k−2

(1− z)+ c
(−)
k = ζ(k). (12)

Comparing the inversion formula (6), we have c
(−)
k = 0. This concludes the proof. �

The Eq. (10) is interpreted as the decomposition of the holomorphic function

k−1∑

j=1

(−1)j logj z

j ! Lik−j (z)

on z ∈D(+) ∩D(−) to a sum of a function f
(+)
k (z), which is holomorphic on D(+),

and a function f
(−)
k (z), which is holomorphic on D(−). This decomposition is noth-

ing but a Riemann-Hilbert problem of additive type. The theorem says that poly-
logarithms Lik(z) can be constructed from the boundary value ζ(k) by applying
this Riemann-Hilbert problem recursively. In this sense, we call (7) the recursive
Riemann-Hilbert problem of additive type.
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Some Remarks on the Quantum Hall Effect

Vincent Pasquier

Abstract This review is destinated to an integrable systems community and at-
tempts to motivate the Quantum Hall Effect as a possible field of application. We
review some of its aspects using a microscopic (wave function) point of view, and
we describe it as an incompressible quantum fluid droplet deforming under external
perturbations. In particular, we discuss some well known open and closed geome-
tries. We attempt to relate the Q.H.E. hydrodynamics to the Calogero-Sutherland
model and Benjamin Ono equation from the bulk and boundary point of view. Fi-
nally, as an illustration, we discuss the so called non dissipative viscosity.

1 Introduction

These notes were written at the occasion of a celebration in honor of Professor
Michio Jimbo.

They are intended for nonspecialists, the aim being to indicate a few research
directions. I gather a few topics in the Quantum Hall Effect (Q.H.E.) (see [16, 30]
for comprehensive reviews), limiting myself to the microscopic approach via wave
functions and concentrating on how the system adjusts to geometric deformations.

I review the well known bulk [37] edge correspondence from that point of view.
One way to connect the bulk aspects of the Q.H.E. described by a topologically
protected ground state and the edge state physic is by probing the bulk with out-
side perturbations. This can be effectively modeled by a boundary conformal field
theory restricted to the outside region and the bulk is represented by an appropri-
ate edge state [11, 37]. I limit myself to characterize the bulk by a Laughlin wave
function [24] and attempt to motivate the Calogero-Sutherland model [35] as a tool
to describe the edge. Since is not possible relate the dynamics of the Calogero-
Sutherland model to the Quantum Hall interactions, I try to bypass this difficulty by
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establishing a relation through the area preserving diffeomorphisms. The arguments
I give for this relation are not rigorous and should be understood as an advocacy
rather than a scientific justification.

I also consider wave functions on surfaces without edge such as the torus or the
sphere and recover the ground state and its quasihole excitations on the torus as
eigenstates of a modified Calogero Sutherland model.

Finally, I discuss the non dissipative viscosity [4, 32, 33, 36] which arose interest
recently and is related to the way the system reacts to an adiabatic deformation.

The content of the following sections can be briefly described as follows. The
second part reviews the correspondence between bulk and edge. The third part is
devoted to study the relations of the Hall effect with the Calogero-Sutherland model.
The fourth part studies the Hall effect on surfaces without boundaries such as the
sphere or the torus. Finally, the last part is devoted to make some remarks on the
viscosity.

Most of the material presented is motivated by a collaboration with Benoit Esti-
enne, Raoul Santachiara and Didina Serban. I also wish to thank Michel Bergere,
Jerome Dubail, Gregoire Misguich and J. Shiraishi for sharing their insights with
me.

2 Bulk and Edge

To illustrate the emergence of the edge physics, let us consider the problem of eval-
uating the norm of a Laughlin wave function.

We recall that in the symmetric gauge, the Lowest Landau Level (LLL) wave
functions are holomorphic polynomials in the variable z times a non holomorphic

exponential factor e
− 1

2l2
z̄z

. l is the magnetic length proportional to the inverse mag-
netic field l2 = h/eB . The fractional quantum Hall effect wave functions we shall
consider here are obtained as a linear combination of multi-particle Lowest Landau
Level wave functions. The constraint of incompressibility is put by hand by requir-
ing certain vanishing conditions and one looks for wave functions with the minimal
degree in zi compatible with the vanishing conditions. This minimal degree condi-
tion can easily be understood as follows: Imagine the particles are confined in a disc

shaped box of radius R. since zne
− 1

2l2
z̄z

is mostly concentrated on a circle of radius√
nl, the degree is bounded by (R/l)2, and we are interested in putting as many

particles as we can inside the box.
We can also use coherent states localized on patches of area 2πl2. The repul-

sive interactions induce a hard core repulsion between these patches. We shall see
that each particle occupies a extended area 2πl2/ν so that the maximal density is
ν/2πl2. The quantity ν, called the filling fraction turns out to be a rational (in all the
experimental known situations) and is the most important parameter characterizing
the properties of a Hall state.

One requires that the Laughlin wave function vanishes as (zi − zj )
m at short

distance and so ν = 1/m. For Ne particles, it is obtained by raising to the power m
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the Slater determinant (antisymmetrized product) of LLL orbitals zk−1,1≤ k ≤Ne

(we omit the nonholomorphic factor which can be incorporated in the definition of
the measure):

ψm(zi)=
Ne∏

i<j

(zi − zj )
m (1)

Note that m must be an integer for the wave function to be polynomial.
Its squared norm is therefore given by:

Zm =
∫ Ne∏

i=1

d2zie
− 1

2l2
z̄i zi

∏

i<j

|zi − zj |2m (2)

It can be interpreted as the partition function of a Coulomb gas at an inverse tem-
perature m. The electrostatic charges located at zi , 1≤ i ≤Ne repel each other with
a logarithmic potential. The partition function is obtained by integrating over the
positions of the charges, e−mE with E given by:

E(zi)=−2
Ne∑

i<j=1

log |zi − zj | +
Ne∑

i=1

1

2ml2
zi z̄i

=−
∫

d2zρ(z)

∫
d2wρ(w) log |z−w| + 1

2ml2

∫
d2zρ(z)zz̄ (3)

where ρ(z) is the density of charges.
In the saddle point approximation, Zm ∼ e−mE0 , with E0 the minimum of the

energy. The minimization consists in canceling the electric field at the position of
the charges:

1

2ml2
z̄−

∫
d2wρ(w)

1

z−w
= 0 (4)

Differentiating with respect to z̄ using ∂z̄z
−1 = πδ2(z), we obtain a constant density

inside the domain occupied by the charges: ρ = 1/2πml2. By rotational invariance
the boundary of the domain must be a disc with a radius such that the integrated
density is the total number of particles Ne: R2 = 2mNel

2.1

Notice that the generic m 	= 1 case can be brought back to m = 1 by rescaling
ρm = ρ1/m, z=√mz1 in (3), (4). So, semi-classically, the effect of m is simply to
rescale by m the area without changing the shape.

We expect the physical properties of the system to be independent of the mag-
netic length l provided we keep the radius of the disc fixed. In other words, we are
interested in the large Ne limit, keeping l2Ne fixed (Some physical effects may de-
pend on N though, we expect they can be apprehended in a 1/N expansion). In the

1The reader can verify that to the leading order in 1/Ne , the energy is given by N2
e (3/4−1/2 logm)

[15].
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following, we set l2 = 1/2N , N being the magnetic flux through the disc and let
N →∞ keeping Ne/N = ν fixed.

Consider now the partition function (2) in presence of a perturbation. Let us add
a quadrupole to the background potential:

Zm(t)=
∫ Ne∏

i=1

d2zie
−N(z̄izi+ t

2 (z
2
i+z̄2

i ))
∏

i<j

|zi − zj |2m (5)

This partition function was computed exactly for m = 1 in [15] with orthogonal
polynomials (in Sect. 5 these polynomials will be described explicitly). Here, in
order to illustrate the emergence of the edge physics we look at it from a semi-
classical point of view and limit ourselves to t 9 1.

Let us see how the quadrupole modifies the shape of the boundary. The change of
shape can be modeled by a surface density proportional to the normal displacement.
The electrostatic potential induced by this surface density must have the correct be-
havior tz2/4+h.c. at infinity and vanish at the boundary |z| = 1, (the normalization
is such that the potential between 2 unit charges at z,w is log |z− w|, so, there is
an additional factor 1/2 with respect to (5)). This fully determines it to be twice
the real part of φ(z) = t/4(z2 − 1/z2). The change of radius is then equal to the
normal electric field at the boundary: z∂zφ(z)= t cos(2θ). To this approximation, it
approaches the exact result, an ellipse [15] (we rederive this result in the Appendix)
such that the ratio of its large axis over the small axis is 1 + 2t + O(t2). ∂zφ(z)

having no simple poles inside the disc, the area is not modified by this deformation.
Notice that this ellipse does not coincide with an equipotential of the background
potential of (5) for which the ratio of the large over the small axis is 1+ t .

Following [37], let us now consider the partition function (2) in presence of L

external sources:

ZL
m

Zm

= 1

Zm

Ne∏

i

∫
d2zie

−zi z̄iN

L∏

k=1

|zi − vk|2qk
∏

i<j

|zi − zj |2m (6)

If all external charges qk equal m,up to a global normalization, we are considering
the diagonal part of the L-particles density matrix of a system of N + L particles.
Setting qk = m fixes the position of one of the particles at z = vk and so, m is
the charge of the particles at positions zk . Setting qk = 1 creates a quasi-hole of
fractional charge 1/m.

To go beyond the semi-classical result we consider the case m= 1 with all exter-
nal charges qk equal to one. The correlation can be obtained exactly using orthogo-
nal polynomial techniques [8, 26] with the following outcome. Define the kernel:

KN(x̄, y)=
N∑

p=0

(x̄y)p/hp (7)

with hn = n!/Nn. The correlator (6) is given by:

ZL
1

Z1
= hN . . . hN+L−1∏

i<j (vi − vj )(v̄i − v̄j )

∣∣KN+L−1(v̄k, vl)
∣∣ (8)
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In the case where the charges are located outside the droplet, |vi |> 1, the series
(7) is dominated by the large powers of p and can be expanded in 1/N powers:

KN(x, ȳ)= (xȳ)N−1

hN

(
1

xȳ − 1
− 1

N

1
(
xȳ − 1

)3 + · · ·
)

(9)

So, to the leading order, the partition functions is given by:

ZL
1

Z1
=

L∏

i=1

(vi v̄i)
N
∏

i,j

1

1− (vi v̄j )−1
(10)

To this order, it coincides with the Dyson gas correlator obtained by substituting in
(6): dμ(z) = d2z e−zz̄N → dμ(z) = dθ and integrating over the boundary of the
disc.

By fusion, integer charges qk can be deduced from this case, and the power −1
in each factor of the product must be replaced by −qiqj . Since this result coincides
with the saddle point approximation, we can deduce from (3) the leading order in
1/N for m generic in (6) by multiplying the energy by the effective inverse temper-
ature E→mE and rescaling the charges qi → qi/m:

ZL
m

Zm

=
∏

i

(vi v̄i )
Nqi

∏

i,j

(
1− R2

v̄ivj

)− qi qj
m

(11)

Here R2 =m is the square radius of charged disc when the filling fraction is 1/m.
At the leading order we can approximate the Hall system by a perfect conductor

interacting with the outside charges through its boundary only.2 This suggests a
connection between the Quantum Hall effect and boundary CFT which is further
explored in [11].

2Setting R = 1, one can present the second factor in (11) as the expectation value of a product of
Vertex operators:

ZL
m

Zm

= 〈0|
∏

k,i

(
1− 1

v̄kzi

)qk ∏

l,j

(
1− zj

vl

)ql

|0〉

=
〈∏

k

eqiφ+(v̄−1
k )
∏

l

eqj φ−(vl )

〉
(12)

In the second line, φ±(z) are the positive and negative modes of the field φ(z)=∑n 	=0 z
nk∂pn/n.

It is obtained by substituting
∑

i z
k
i = pk into the first line. To obtain the correlation, we use

the commutation relations [pk,pl] = k/mδk+l to eliminate the modes pk , k < 0, k > 0 which
respectively annihilate the left and right vacuum.
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3 Calogero-Sutherland Hamiltonian

An immediate consequence of what precedes is that if we use the boundary limit
(leading 1/N behavior) of the measure (2) to define a scalar product on symmetric
polynomials by:

〈P,Q〉 =
N∏

i

∫
dμ(zi)

∏

i<j

|zi − zj |2mP̄ (zi)Q(zi) (13)

and use the partition order of the basis mλ to construct an orthogonal basis by a
Gram-Schmidt procedure, we recover the Jack polynomials J

1/m
λ in the large N

limit.3

Another way to see the Jack polynomials emerge is to obtain the Laughlin wave
function as an eigenstate of a Calogero-Sutherland (C.S.) Hamiltonian [9, 22]. Set-
ting m= β (real not necessarily integer) it is easy to verify that:

(∑

i

(zi∂zi )
2 − 2β(β − 1)

∑

i<j

zizj

(zi − zj )2
−E0

)
Ψβ(zi)= 0 (15)

with E0 = β2N(N − 1)(2N − 1)/6.
This Hamiltonian acts on factorized wave functions m(zi)Ψβ(zi) with m(zi) a

polynomial. Its energy eigenvalues are given by
∑N−1

j=0 k2
j with

kj = βj + λN−j (16)

where λ1 ≥ λ2 · · · ≥ λN is a partition. The important property is that although in-
dividually ki can take any integer values, collectively they are constrained to be
separated by at least β .

At this point, we are not in position to assert that the Calogero-Sutherland Hamil-
tonian (15) can be regarded as an effective Hamiltonian representing the Coulomb
interaction in the fractional QHE. Nevertheless, the collective behavior of the mo-
menta described above is completely analogous to the vanishing conditions obeyed
by the quantum Hall effect wave functions. For this reason mainly we argue that the
Calogero-Sutherland model may be a good tool to study the fractional Hall effect.

3Alternatively, we could have defined our scalar product by:

〈P,Q〉 =
N∏

i

(∫
dμ(zi)

)
P̄ (zi )Q(zi) (14)

restricted to polynomials vanishing as (z−w)m when 2 variables approach each other. Such poly-
nomials are known to generate an ideal of the Jack polynomials J−2/(m−1)(zi ) and it is clear that
J

1/m
λ

∏
i<j (zi − zj )

m is an ordered orthonormal basis of this ideal.
Other Q.H.E. wave functions (so called Rezayi-Read wave functions related to parafermions)

are obtained by requiring that the polynomial vanishes as (z − w)m when k + 1 particle ap-
proach each other. Such polynomials are known to generate an ideal of the Jack polynomials
J−(k+1)/(m−1)(zi ) [14], I do not know of a description of their norm in the limit of large N .
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To see this property, it is convenient to conjugate it (with the energy term sub-
stracted) by Ψβ(zi) to obtain its action on the prefactor:

Hβ =
∑

i

(zi∂zi )
2 + 2β

∑

i 	=j

z2
i

zi − zj
∂zi =D0,2 + 2NβD0,1, (17)

where D0,1 =∑
i zi∂zi is the angular momentum which commutes with Hβ and

D0,2 can be diagonalized in each sector of angular momentum. Consider the follow-

ing basis indexed by partitions mλ =∑σ z
λσ1
1 . . . z

λσN

N , where the sum is restricted
to distinct permutations σ of λi [25]. In this basis, (D0,1 = |λ|), there is a partial
order on partitions for which D0,2 is triangular [35]. Its eigenvalues are the diagonal
matrix elements given by

∑
k λk(λk − 2βk) and the corresponding eigenvectors are

proportional to the Jack polynomials: Jα(zi) with α = 1/β .4

In (17), it is convenient to expand H in powers of 1/N so that the coefficient in
the expansion depend on the partition λ and are independent of N .

One remarkable property of the Calogero-Sutherland model is that there exists an
infinite set of commuting quantities En with eigenvalues

∑N−1
j=0 knj , with kj given

by (16). The N0 coefficient of these conserved quantities denoted D0,n are a β 	= 1
deformation of the generators

∑
i (zi∂i)

N of the W∞ algebra [21].5 The deformation
of W∞ related to the Calogero-Sutherland model has been pursued by Shiraishi and
his collaborators [5, 6], see also [34] for a more mathematical approach. I have
borrowed from this last paper the notation of the generators Dm,n which can be
thought as the quantization of zm(z∂z)

n.
At this point, we make a digression to interpret β as a Luttiger parameter. For

a free field compactified on a circle of radius 2π with the action g
4π

∫ |∂φ|2dz, g
is called the Luttinger parameter and has a deep physical meaning. Its partition
function on a cylinder with aspect ratio τ is due to the classical contribution of
harmonic periodic fields times the quantum fluctuations: Zc = 1

ηη̄

∑
n,m qΔn,m q̄Δ′n,m

with q = eiπτ and Δn,m = g(n+m/g)2/4, Δ′
n,m = g(n−m/g)2/4. One can com-

pare this spectrum with the Calogero spectrum, if one identifies the winding number
n with the number N of particles and the momentum m with the current

∑
i zi∂i . To

match the macroscopic dispersion relations around the Fermi momentum kf =Nβ

4Mathematicians use the inverse convention as physicists α = 1/β , and the Jack polynomials
eigenstates of Hβ are denoted J 1/β(zi ).
5Let us give a qualitative explanation of why we expect the W∞ algebra (also called Girvin-
Macdonald-Plazman algebra in this context) to arise in the QHE [10, 17]. If we couple the system
to an external probe V (x), in degenerate perturbation theory, one needs to project this poten-
tial into the LLL. Denoting the lowest Landau level orbitals uα 1 ≤ α ≤ dN (dN the dimension
of the LLL Hilbert space), the effect of this projection is to convert the potential into a matrix:
V (x)→ Vαβ = 〈α|V |β〉 =

∫
ūα(x)uβ(x)V (x). In this way, by an appropriate choice of V ’s, we

generate the space of dN × dN matrices acting inside the LLL which we view as the Lie algebra
is gl(dN ). The W∞ algebra occurs as the limit of gl(dN ) when we let N tend to infinity. So for
example, in the symmetric gauge, we can take the V = z̄nzm m,n≥ 0 which after integrating (2)
by part become (2l2∂z)nzm.
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when we modify the particle number and the current with the linearized free field
classical contribution (δn,m ∝ n+m/g), the comparison with (16) imposes to iden-
tify g with β .

We can allow the area (equivalently the degree of the polynomial) to increase
while keeping the number of particles fixed. This is realized by placing voids where
vanishing condition are imposed to the wave function compatible with its polyno-
mial nature. As we saw above, it can be achieved by inserting a fractional 1/β
charges at positions x−1

i , equivalently, by multiplying Ψβ by the kernel:

K(xi, zk)=
M∏

i=1

N∏

i=1

(1− xizk) (18)

The kernel K obeys the duality equation:

Hβ(z)+ βHβ−1
(x)K(x, z)= 0, (19)

enabling to separate the variables:

K(x, z)=
∑

λ

NλJ
α
λ (z)J α−1

λ′ (x) (20)

with λ,λ′ two conjugated partitions and λ contained in a rectangle with N rows
M columns. Therefore, the quasi-hole dynamics decouples from the particles and is
governed by a 1/β C.S. Hamiltonian.

Let us rewrite (17) in the collective variables coordinates introduced above. We
set
∑

i z
k
i = pk , k ≥ 1, then [2, 5, 20]:

D0,1 =
∑

n≥1

pnn∂pn

D0,2 = (1− β)
∑

n≥1

npnn∂pn +
∑

n,l≥1

pn+ln∂pn l∂pl
+ βplpn(n+ l)∂pl+n

(21)

If we introduce the potential φ with y = z∂zφ(z) and φ(z) = p0 + N log (z) +∑
n z

npn/n, (p−n defined by: p−n = β−1z−n∂pn for n > 0), and the zero mode p0
is conjugated to N , ep0N = (N + 1)ep0 . The conserved quantities can be expressed
in terms of the electric field y(z)= z∂zφ(z)

L = β

2

∫
dθ : y2 :

Hβ = β2
∫

dθ : β
−1 − 1

2
yH(∂θy)+ 1

3
y3 :

(22)

z = eiθ and H(zn) = ε(n)zn/i is the Hilbert transform. The normal order symbol
means that ∂pk

sits at the right of pl for k, l > 0.
This Hamiltonian is hermitian for p+n = β−1n∂pn , n∂+pn

= βpn, so φ is antiher-
mitian φ+ =−φ. Moreover, it obeys a duality relation reflecting (19):

Hβ(pn,n∂pn)+ βHβ−1(−βpn,−β−1n∂pn

)= 0 (23)
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It can be diagonalized in each angular momentum sector |λ| and its eigenvectors
are the Jack polynomials Jα

λ expressed in the pn basis.
In particular, if we take one quasihole M = 1, the kernel K(x, zi) is identified

with vertex operator creating a hole: V (x, t)= e−φ+(x)|0〉 [5]. The coefficient of xk

displaces the k outer orbitals by one unit, and therefore create a quasihole of charge
−β−1 inside the sea. By duality, the coefficients of the expansion of eβφ+(x)|0〉 are
eigenstates of charge 1.

In the classical limit β→∞ and in the flat limit where sums over n are replaced
by integrals over k, the classical Hamiltonian is:

Hc =
∫
−1

2
yHyx + 1

3
y3dx (24)

H(eikx)= ε(k)eikx/i being the Hilbert transform. This Hamiltonian was introduced
by Benjamin and Ono (B.O.) [7, 29] to describe the dynamics of waves in deep
water. From what preceeds, it should also describe the dynamics of the edge defor-
mations (Nl playing the role of the depth).6 Namely, we expect the field y(θ) to
describe the fluctuations of the disc boundary, or if we conformally map the disc
to the lower half plane, the fluctuations about y(x) = 0 (see [1] for a more com-
plete discussion and possible generalizations. Recently P. Wiegmann [38] has given
arguments to justify the occurrence of this equation in the Hall effect context).

The Poisson bracket of the field y is given by:
{
y(x), y

(
x′
)}=−δ′

(
x − x′

)
(25)

from which we obtain the dynamics it satisfies:

ẏ − 2yyx +Hyxx = 0 (26)

This equation can be interpreted as an Euler equation (ẏ + v(y)yx =−px ), with a
speed v(y) varying linearly with the density y through v(y)= V0−2y where V0 can
be eliminated by a Galilean transformation (x→ x +V0t, v(y)→ v(y)−V0). The
pressure term Hyx is nonlocal (without the Hilbert transform, the corresponding
term in (24) would be a pure derivative). It is the normal derivative of a harmonic
function in the lower half plane equal to y at the boundary.

The (imaginary) potential φ(x)=−i
∫ x

y(u)du satisfies iφ̇ = y2 −Hyx . If we
forget about the Hilbert transform, denoting φ± the projection of φ on its positive or
negative Fourier modes, the hole vertex operator V±(x, t)= e±φ+ satisfies the free
equation: V̇ =±iVxx which has the Galilean solution: V± = ei(kx∓k2t).

6In [12], we extended these observations to bulk wave functions described by a correlation function
of φ12 of the Ising conformal field theory which describes the Pfaffian state [27] vanishing when
three particles approach the same point [18]. The primary fields φ21(xk) represents the quasipar-
ticle [28]. Both the particle and the quasiparticle fields need to be dressed by a bosonic vertex
operator in order to make them mutually local (Their OPE needs to be regular instead of the square
root singularity of φ12.φ21). The kernel K is then given a correlator of dressed φ12(zi ), φ21(xk)

fields and is also a solution of (19) giving rise to a rank two generalization of the Benjamin Ono
Hamiltonian also appearing in [3].
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A stationary real solution is given by:

φ = log
x − vt − 2i/v

x − vt + 2i/v
(27)

The Lorentzian shape of this soliton should be contrasted with the exponential tail
of the KdV soliton which occurs for the local dispersion p =−yxx .

Let us attempt to make a connection to the edge excitations in the Hall effect.
Approach a unit charge at distance v−1 from the boundary y = 0. Together with its
mirror image, it creates a dipole moment 2v−1 and the induced potential is equal
to (27) at t = 0. Since the electric attraction between the charge and its image is v,
assuming there is a constant magnetic field of unit strength, the dipole must move at
speed v for the electromagnetic repulsion to compensate the attraction in agreement
with (27).

4 On the Sphere and on the Torus

It can be useful to consider Quantum Hall wave functions on surfaces without
boundary such as the sphere (CP 1) or the torus.

4.1 Sphere

We place N magnetic fluxes at the center of the unit sphere, and construct our wave
functions as a product of LLL orbitals.

The sphere is a Kähler manifold with metric μdzdz̄/π with μ= 1/(1+zz̄)2. We
consider the line bundle (L,h), h being the fiber metric with curvature equal to the
area form: μ=−∂z∂z̄ log(h), h= 1/(1+ zz̄).

Putting N fluxes amounts to raise L to the power N . In this way, we get an
inner product on holomorphic sections of LN (the LLL wave functions) which are
polynomials of degree N :

〈
ψ |ψ ′〉=

∫
dzdz̄

π(1+ z̄izi)2+N
ψ̄(z)ψ ′(z) (28)

An orthonormal basis is given by the orbitals:

ψn = 1

N + 1

(
N

n

)
zn, 0≤ n≤N (29)

As for the plane, the Laughlin wave function is obtained by raising the Slater de-
terminant of the N +1 LLL orbitals to the power m. On the other hand, the partition
function at inverse temperature m of a Coulomb gas of Ne particles interacting with
an electrostatic potential equal to the logarithm of the cord distance is given by:

Zm =
Ne∏

i=1

∫
d2zi

(1+ z̄izi)2+m(Ne−1)

∏

i<j

|zi − zj |2m (30)
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To identify this partition function with the squared norm of the Laughlin wave func-
tion, we must have m(Ne − 1)=N .

The shift S (S = m for the Laughlin wave function) relates the magnetic flux to
the number of particles through the formula:

Ne

ν
=N + S (31)

It can be thought as the residual area left when the sphere is maximally occupied.
Recently, it has been recognized as an important quantity [33], related to the Hall
viscosity [4] see Sect. 5.

In the simple case m = 1, the wave function is the antisymmetrized product of
the LLL orbitals and the shift relates the dimension of the LLL Hilbert space Ne =
dim H 0(CP 1, T N) to the flux through the sphere. This relation also results from the
expansion of the density in powers of 1/N :

ρ(z, z̄)=N + R

2
(32)

where R= 2 is the curvature of the sphere, and in that case the shift coincides with
the first Chern number of (L,h). For a Hall effect defined on a Riemann surfaces,
(32) has an obvious generalization, and it should be possible to give S defined by
(31) a more local characterization.

Taking a product of two wave functions amounts to construct a composite particle
by fusionning the particles of each wave function. The inverse filling fraction has
the interpretation of the charge (amount of area carried by a particle) and half the
shift is the spin. Under composition, these quantities add up. So, taking the product
of wave functions, the shift and the inverse filling fraction behave additively:

ν−1(ψ1ψ2) = ν−1(ψ1)+ ν−1(ψ2)

S(ψ1ψ2) = S(ψ1)+ S(ψ2)
(33)

4.2 Cylinder and Torus

The cylinder is parametrized by z= x+ τy, with τ = τ1+ iτ2, τ2 > 0, 0≤ x ≤ 2π .
The metric is (dx + τdy)(dx + τ̄ dy). From it, we obtain the Hamiltonian with N

fluxes per unit area (measured with dx ∧ dy):

H= gijπiπj = |τ |2π2
x + π2

y − τ1(πxπy + πyπx) (34)

where (in the Landau gauge) πx = −i∂x + Ny, πy = −i∂y and gij is the in-
verse metric matrix. The LLL eigenfunctions on the infinite cylinder periodic in
x → x + 2π are defined for k integer. They factorize into a nonholomorphic part

independent of k equal to ei
Nτ
2 y2

(the square of which defines the fiber metric hN ),
and a holomorphic part:

ψk(z)= ei
k2τ
2N eikz (35)
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We construct a basis of N LLL wave functions 0≤ k0 ≤N−1 on the torus y = y+1
by summing ψk over k = k0 modulo N :

ψk0(z)=
∑

k=k0[N ]
ei

k2τ
2N eikz (36)

The torus Hilbert space is characterized by the quasi-periodicity conditions:

ψ(z+ 2π) = ψ(z)

ψ(z+ τ) = e−iNze−iN τ
2 ψ(z)

(37)

Multi-particle states are obtained as linear combinations of a products of LLL
single particle wave functions. The Laughlin wave functions with filling fraction
1/m are the multi-particle states with the maximal number of variables which vanish
as (zi − zj )

m at short distance. For N a multiple of m, N =mNe (S = 0 in (31) as
expected) this space is m dimensional. An exact expression can be given [19]:

Ψm(zi)= F

(
Ne∑

i=1

zi

)
Ne∏

i<j

θ1(zi − zj )
m (38)

where,

θ1(z)=
∑

n∈Z+1/2

(−)n+1/2qn2
einz (39)

with q = ei
τ
2 . It obeys the quasi-periodicity conditions:

θ1(z+ 2π) = −θ1(z)

θ1(z+ τ) = −q−1e−izθ1(z)
(40)

F belongs to the m dimensional space of sections characterized by the quasi-
periodicity conditions:

F(z+ 2π) = (−)N−mF(z)

F (z+ τ) = (−)N−me−imze−im τ
2 F(z)

(41)

Let us see that as in the case of the plane, the wave function can be set as the
solution of a Hamiltonian. The m = 1 case is instructive and shows that it a the
solution of a modified Calogero-Sutherland Hamiltonian. From (36), we see that all
ψk are solutions of the same heat equation: (Nqd/dq+d/dz2)ψ(z)= 0. Therefore,
their exterior product is a solution of the modified Hamiltonian:

(
Nq∂q +

∑

i

∂2
zi

)
Ψ1(zi)= 0 (42)

Clearly, the C.S. must be modified by a derivative with respect to τ . Introducing the
periodic potential with a double pole at the origin:

V (z)=−∂2
z log θ1(z) (43)
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one can show that Ψm is an eigenstate of HβΨβ(zi)= 0:

Hβ =−Nβq∂q −
∑

i

∂2
zi
+ β(β − 1)

∑

i 	=j

V (zi − zj ) (44)

The modified Hamiltonian (44) was considered in [13, 23], and the fact that Ψm

is an eigenstate of (44) essentially results from the following identity [23]: Define
φ(z)= ∂z log θ1(z), then:

2φ(z1 − z2)φ(z2 − z3)+ q∂qθ1(z3 − z1)

θ1(z1 − z2)
+ cycl= 3c (45)

Using the heat equation −q∂qθ1(z)= ∂2
z θ1(z) (which follows from (39)), one is led

to show that
(
φ(z1 − z2)+ φ(z2 − z3)φ(z3 − z1)

)2

+ (φ′(z1 − z2)+ φ′(z2 − z3)+ φ′(z3 − z1)
)= 3c. (46)

Both terms of the sum (46) are doubly periodic in z1 and have a residue re-
spectively equal to ±1 at the double poles z1 = z2, z3. φ being odd, there are
no single poles, so, the sum must be a constant and c is the z coefficient of φ:
c=−1/12+ 2

∑∞
1 q2n/(1− q2n)2.

Observe that the factor F does not change the argument because it obeys the heat
equation, but is crucial to insure that the wave function obeys the proper quasiperi-
odicity conditions.

Remarkably, as in the case of the plane, quasihole excitations can be also recast
as solutions of the C.S. Hamiltonian. The identity similar to (19) [23]:

(
Hβ(z)+ βHβ−1

(x)
)
K(x, z)=EN,MK(x, z) (47)

with the kernel now given by:

K(x, z)=
Ne∏

i<j

θ1(zi − zj )
β

M∏

k<l

θ1(xk − xl)
1
β

Ne∏

i=1

M∏

k=1

θ1(xk − zj ) (48)

5 Some Remarks on Viscosity

Let us briefly review some recent results the viscosity mostly following [4, 32, 33,
36] which relates a purely geometric aspect, the Berry curvature, to the Coulomb
partition function (2) when it is reinterpreted as the norm of a Laughlin wave func-
tion.

The viscosity tensor expresses the linear response of the stress tensor to a defor-
mation of the substrate parametrized by its moduli. For example, the Q.H.E. ground
state torus wave function Ψm(zi) is also a holomorphic section of a line bundle on
the moduli space (H+/SL2(Z)) parametrized by τ . According to Avron Seiler and
Zograff, the (non dissipative) viscosity is related to the Berry curvature:
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μ=−∂τ ∂τ̄ logZmdτ ∧ dτ̄ . (49)

In the m = 1 case, Ψ1 is the exterior product of LLL sections (37) which are
normalized with (τ2N)1/4, where τ2 = Im(τ ) is the area of the torus. Therefore, the
area dependence is Z1 ∝ τ

Ne/2
2 , and μ=Ne/2, times the curvature of the upper half

plane H+.
For m 	= 1 it turns out that μ remains unchanged. The argument can be sum-

marized as follow, keeping the area fixed Ne → N ′
e = Ne/m, and from (38) Zm ∝

τ
mN ′

e/2
2 = Z1.

Geometrically, we can think of the wave function bundle over the torus moduli
space as closely related to the bundle SL2(R)→H+ = SL2(R)/SO(2) raised to the
power mNe/2. Each particle takes a phase eiθm/2 under the SO(2) rotation which
gives to m/2 the interpretation of a spin. In general, Read argues [32] that μ scales
as NeS/2 where S is the shift, which gives the shift S the status of a spin which
characterizes a Hall state.

To confirm the universality of this result, let us repeat the argument for the droplet
and verify that the same conclusions apply to an open system. We deform the com-
plex structure z→ x = z− t z̄ and consider the Lagrangian:

L= |ż− t ˙̄z|2 − i(z̄ż− z ˙̄z) (50)

Let us see that the Q.H.E. droplet ground state wave function Ψ (zi) is a holomorphic
section over the Poincaré t-disc. In terms of deformed oscillators:

at = a − ta+, a+t = a+ − t̄a (51)

where a = ∂z̄ + z, a+ =−∂z + z̄, the Hamiltonian is a harmonic oscillator:

H= 1

(1− t t̄ )2
a+t at (52)

The undeformed oscillators b = ∂z + z̄, b+ = −∂z̄ + z commute with at , a
+
t . From

the ground state annihilated by at and b:

ψ = e−zz̄+t z̄2
(53)

one generates the lowest Landau orbitals by acting with b+. Remarkably, after fac-
torizing ψ , they are polynomials in the orthogonal variables x = z − t z̄ generated
from 1 (the 0th orbital) by the action of:

B+ = x + t

2
∂x. (54)

In this way, we obtain a basis of orthogonal polynomials for the measure

|ψ |2d2z= e
− 2xx̄+t x̄2+t̄x2

1−t t̄
d2x

(1− t t̄ )
, (55)

which are given by Hermite polynomials, thus, recovering the result of [15].
Following [15], we can use a saddle point approximation to estimate the shape

of the Landau orbitals. The outcome is that the droplet shape equation is not mod-
ified in the z variable and given by: |z|2 =Ne/2. It corresponds to an ellipse in the
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orthogonal variables x, x̄. For the sake of completeness, we derive this result in the
Appendix.

To obtain the curvature, we observe that the LLL orbitals are holomorphic in t ,
the square of their norm is n!Zt where Zt is the 0th orbital square norm. So, the total
curvature is N times the contribution of each orbital. We have:

Zt =
∫
|ψ |2d2z= Z0

√
1− t t̄ (56)

From which we deduce that the Berry curvature is Ne/2 times the curvature of the
Poincaré t-disc.

The argument can be generalized to a Laughlin wave function if we assume that
the deformed wave function is given by

∏
i<j (xi − xj )

m
∏

i ψ(zi) which is the
lowest degree polynomial in xi vanishing as εm when two variables approach each
other. Its square norm coincides with the Coulomb plasma at temperature 1/m in
presence of a quadrupole field at infinity. Although quite natural, this form of the
wave function has been questioned recently [31].

Appendix: Shape of the Droplet

Let us obtain the shape of the droplet with a potential given by (55) using orthogonal
polynomials. Here we take t to be real: t = tanh(μ). Making the rescaling:

y = cosh(μ)x (57)

the measure (55) simplifies to:

e−2yȳ+t (ȳ2+y2)d2y (58)

and the creation operator (54) becomes:

b+ = y + α∂y

b = ∂y
(59)

with α = sinh(2μ)/4. The LLL orbitals obey b+bψn = nψn. In the WKB approxi-
mation, setting ψn = e

∫ y
pdy , one obtains for p:

αp2 + yp− n= 0 (60)

Putting

y = 2
√
nα sinhφ (61)

the admissible solution is given by p =√n/αe−φ , ψn = en(φ− e−2φ
2 ).

The square norm of the orbitals becomes:
∫

e−2yȳ+t (ȳ2+y2)+2n?(φ− e−2φ
2 )d2y (62)
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Setting e−φ = u, e−φ̄ = v, one obtains the saddle point equations:

u− u−1 + v/t − tv−1 = 0
v− v−1 + u/t − tu−1 = 0

with the solution uv = t , or |e−φ |2 = tanh(μ).
From (61), the orbital maxima lie on the curves:

yn(θ)=
√

n

2

(
e−μ cos(θ)+ eμ sin(θ)

)
(63)

So, the droplet has a constant density and is bounded by the domain delimited by
yNe .

Since y = cosh(μ)z − sinh(μ)z̄, in the z variables, the boundary is given by
|z| = √Ne/2.
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Ordinary Differential Equations on Rational
Elliptic Surfaces

Hidetaka Sakai

Abstract Corresponding to Oguiso-Shioda’s classification of rational elliptic sur-
faces, we give 2nd order algebraic ordinary differential equations which can be
solved by elliptic functions, in the form of the Hamiltonian system. There is a cri-
terion for determining the types of rational elliptic surfaces from given biquadratic
Hamiltonian systems. We also discuss about Bäcklund transformations which is dif-
ferent type from transformations that appear in a study of the Painlevé equations.

1 Introduction

The Painlevé equations were found by P. Painlevé and his coworkers through an
effort to classify 2nd order algebraic ordinary differential equations of normal form
with the Painlevé property (see [1, 11]). We say that the equation has the Painlevé
property if it does not have movable singular points except poles. Their way of clas-
sification is as follows: In the first place, make a list of 50 equations possessing the
Painlevé property by doing away with equations which has movable branch points;
in the second place, remove equations which can be solved by quadrature in terms
of elementary functions, or can be solved by using elliptic functions, or solutions
of linear differential equations; then, there remain only new equations called the
Painlevé equations.

In their list of 50 equations, there are many equations whose solutions can be
expressed in the terms of elliptic functions, and the form of the equations looks
like that of the Painlevé equations. Many of them can be obtained as autonomous
limit from the Painlevé equations. On the other hand we know a correspondence
between the Painlevé equations and some kind of rational surfaces. When we use
the terminology, these equations in the Painlevé-Gambier’s list, whose solutions
are expressed by the term of elliptic functions, are found to correspond to rational
elliptic surfaces.
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For example, the 8th equation in Gambier’s paper [1] is written as

d2y

dt2
= 2y3 + βy + γ,

and it is an autonomous limit of the second Painlevé equation. This equation corre-
sponds to the 43rd rational elliptic surface in the list of Oguiso-Shioda [6], except
some particular parameters.

In the classification of Painlevé and Gambier the terminology of algebraic geom-
etry is not used and they depend on the specific expression of differential equations
for the classification. However a simple transformation of dependent variable make
a change of the appearance of the equations, so an application of geometric point
of view to a classification would be preferable. In fact a classifications of the six
classical Painlevé equations was rewritten into a classification consist of eight types
of Painlevé equations in the light of geometry. In this paper we shall give ordinary
differential equations with the Painlevé property, whose solutions can be expressed
by the terms of elliptic functions, in the form of the Hamiltonian system, on the
basis of Oguiso-Shioda’s classification of rational elliptic surfaces.

These ordinary differential equations with the Painlevé property, possessing el-
liptic functions solutions, did not spur wide interest of many researchers, since they
can be solved simply by very well known functions. However, as in the paper of
K. Kajiwara et al. [2], the Hamiltonian functions of the Painlevé equations are writ-
ten in the terms of the elliptic curves which appear as fibers there, it shows that the
terminology of rational elliptic surfaces is effective also for a study of the Painlevé
equations. Besides, rational elliptic surfaces is richer in diversity than spaces of
initial conditions for the Painlevé equations, and we can also see the intriguing phe-
nomena about different types of Bäcklund transformations which do not appear in
the case of the Painlevé equations.

The text is organized as follows: In the next section we will see a correspondence
between rational elliptic surfaces and 9 points configurations, including infinitely
near points, in P

2, or 8 points configurations in P
1 × P

1. To give such a points-
configuration is the same thing as to give a rational elliptic surface. This section is a
review on a result in the paper [13], which we need in this article. In the third section
we construct Hamiltonian systems on the rational elliptic surfaces on the basis of
these data. In the fourth section we will consider a normal form of Hamiltonian
systems, using biquadratic forms. While we study a construction of equations from
the data of surfaces in the previous section, in this section we will start from the
normal forms of Hamiltonian and determine which type of a surface corresponds to
the Hamiltonian inversely. As the biquadratic forms are expressed by 3×3 matrices,
we will see a classification in the terms of 3× 3 matrices. In the fifth section we see
cases of plural singular fibers in detail, by taking D

(1)
5 as an example. In the sixth

section we will see a kind of Bäcklund transformations which change the types of
the normal form of the Hamiltonians. These types of Bäcklund transformations do
not appear in a study of the Painlevé equations.
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2 Review on Construction of Rational Elliptic Surfaces

K. Oguiso and T. Shioda classified rational elliptic surfaces in the paper [6]. In the
wake of the classification by Oguiso and Shioda, we treat only rational elliptic sur-
faces which admit a section in this paper. On the other hand, each rational elliptic
surface can be constructed by 9 points blowing-ups from P

2. Hence to give a con-
figuration of 9 points modulo the action of PGL3, including the case of infinitely
near points, is the same thing as to give a rational elliptic surface. We would like to
give such data of configuration for each elliptic surface in this section.

In fact we already have such data for more general surfaces, which we call gen-
eralized Halphen surfaces, in a previous paper [13]. Only a specialization of param-
eters is enough to get information about all of rational elliptic surfaces.

However description of generalized Halphen surfaces is based on one fixed anti-
canonical divisor. Therefore we need to fix one fiber among elliptic curves or its
degenerations as a ruling divisor. Any rational elliptic surface has at least one sin-
gular fiber, so we fix one of singular fibers as a ruling divisor. When there are more
than one singular fibers, we have different blowing-down structures depending on
the choice of the ruling divisor.

A classification of singular fibers for elliptic surfaces are given by K. Ko-
daira [3, 4]. The list of singular fibers which appear on rational elliptic surfaces
is as follows:

A
(1)∗
0 , A

(1)
1 , . . . ,A

(1)
8 A

(1)∗∗
0 , A

(1)∗
1 , A

(1)∗
2 D

(1)
4 , . . . ,D

(1)
8 E

(1)
6 , E

(1)
7 , E

(1)
8

I1, I2, . . . , I9 II , III , IV I∗0 , . . . , I∗4 IV ∗, III∗, II∗

The symbols in the lower row are Kodaira’s original symbols, and the upper sym-
bols denote Dynkin diagrams corresponding to the intersection form of the singular
fiber. We will use the symbols of Dynkin diagrams mainly.

Here we pay attention to the fact that we have two different realizations of singu-
lar fibers of type A

(1)
7 . The Picard lattice of a rational elliptic surface is isomorphic

to Lorentzian lattice of rank 10, and the orthogonal complement of each irreducible
components of the singular fiber of type A

(1)
7 , become a sublattice in the Picard

lattice. We denote it as A
(1)
7 when a generator of the sublattice has −8 as self-

intersection, and we denote it as A
(1)′
7 when a generator has −2 as self-intersection.

Remark 1 We consider only one singular fiber above, but when we consider the list
of Oguiso-Shioda’s classification of rational elliptic surfaces, there are 5 cases that
have two different embedding into the Picard lattice:

A⊕4
1 , A3 ⊕A⊕2

1 , A5 ⊕A1, A⊕2
3 , A7.

A⊕4
1 corresponds to 13th and 14th surfaces; A3⊕A⊕2

1 corresponds to 21st and 22nd
surfaces; A5 ⊕A1 corresponds to 28th and 29th surfaces; A⊕2

3 corresponds to 35th
and 36th surfaces; A7 corresponds to 44th and 45th surfaces.
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What it comes down to is that, for a given rational elliptic surface, we can con-
struct a blowing-down to P

2 when we fix a ruling divisor, and then we obtain 9 points
configuration possibly including infinitely near points. To give such a 9 points con-
figuration in P

2 is the same thing as to give a rational elliptic surface, and we can
use data of configurations already obtained in the previous paper [13].

Here we consider a blowing-down to P
2, but we also consider a blowing-down

to P
1 × P

1 except E
(1)
8 type surface. It would be better because we can express

an elliptic curve by a biquadratic form and then we can use calculation of 3 × 3
matrices. We will give data of 9 points configuration in P

2 which is same as in the
paper [13] and data of 8 points configuration in P

1 × P
1 below. Both of them may

include infinitely near points.

1. the case of E(1)
8 type singular fiber

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (0 : 1 : 0) ← p2 : (x/y, z/x)= (0,0) ← p3 :
(
x/y, yz/x2)= (0,0)

← p4 :
(
x

y
,
y2z

x3

)
= (0,1) ← p5 :

(
x

y
,
y(y2z− x3)

x4

)
= (0,0)

← p6 :
(
x

y
,
y2(y2z− x3)

x5

)
= (0,0) ← p7 :

(
x

y
,
y3(y2z− x3)

x6

)
= (0,0)

← p8 :
(
x

y
,
y4(y2z− x3)

x7

)
= (0, s) ← p9 :

(
x

y
,
y(y4(y2z− x3)− sx7)

x8

)

= (0, λ).

Here an arrow means that the right hand side is infinitely near, namely, the point of
the right hand side is in the exceptional divisor obtained by blowing-up of the left
hand side. In this case, p1 is the only point in P

2 and the others are infinitely near
points. We take x, y, z as a coordinate of P2, and infinitely near points are expressed
by coordinate of blowing-up.

The data give a rational elliptic surface if and only if λ= 0. When λ 	= 0, we get
a space of initial conditions of the first Painlevé equation. There remains an action
of PGL3 as

(x : y : z;λ; s)∼ (ν2x : ν3y : z;ν5λ;ν4s
) ∈ P

2 ×C
2, ν ∈C

× =C \ {0},
so we can normalize s as 0 or 1. When s = 0, there remains symmetry of ν ∈ C

×.
When s = 1, there remains symmetry of ν ∈ {1,−1,

√−1,−√−1}. When a rational
elliptic surface has a singular fiber of type E

(1)
8 , then it is isomorphic to the surface

obtained by blowing-up from P
2 with the data s = 0 or the surface with the data

s = 1.
The case of E(1)

8 is the only one exception. We cannot blow down these surfaces
to P

1 × P
1.
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2. E(1)
7

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (0 : 1 : 0) ← p2 : (x/y, z/x)= (0,0) ← p3 :
(
x/y, yz/x2)= (0,0)

← p6 :
(
x

y
,
y2z

x3

)
= (0,1) ← p7 :

(
x

y
,
y(y2z− x3)

x4

)
= (0,0)

← p8 :
(
x

y
,
y2(y2z− x3)

x5

)
= (0,−s) ← p9 :

(
x

y
,
y(y2(y2z− x3)+ sx5)

x6

)

= (0,−a0),

p4 : (0 : 0 : 1), p5 : (0 : a1 : 1).
Here p1, p4, and p5 are points in P

2, and the others are infinitely near points.
The condition to be a rational elliptic surface is λ= a0 + a1 = 0. There remains

an action of PGL3 as

(x : y : z;a1, a0; s)∼
(
ν2x : ν3y : z;ν3a1, ν

3a0;ν2s
) ∈ P

2 ×C
3, ν ∈C

×,

so we can normalize s as 0 or 1. When s = 0, there remains symmetry of ν ∈ C
×.

When s = 1, there remains symmetry of ν ∈ {1,−1}.
We give a 8 points blowing-up from P

1 × P
1:

P1 : (f, g)= (∞,∞) ← P2 : (1/f,f/g)= (0,0) ← P3 :
(
1/f,f 2/g

)

= (0,−1)

← P4 :
(
1/f,f

(
f 2 + g

)
/g
)= (0,0) ← P5 :

(
1/f,f 2(f 2 + g

)
/g
)= (0, s)

← P6 :
(
1/f,f

(
f 2(f 2 + g

)− sg
)
/g
)= (0, a0),

P7 : (f, g)= (∞,0) ← P8 : (1/f,fg)= (0,−a1).

Here we take a coordinate as (f, g) ∈ P
1×P

1, and correspondence with the previous
construction is given by (f, g)= (y/x,−x/z).

3. E(1)
6

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p2 : (x/y, z/x)= (0,0) ← p7 :
(
x/y, yz/x2)= (0,1)

← p8 :
(
x

y
,
y(yz− x2)

x3

)
= (0, s) ← p9 :

(
x

y
,
y(y(yz− x2)− sx3)

x4

)

= (0,−a0 + s2
)
,
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p4 : (0 : 0 : 1), p5 : (0 : a1 : 1), p3 : (1 : 0 : 0) ← p6 : (z/x, y/z)

= (0,−a2).

The surface is rational elliptic surface if and only if λ = a0 + a1 + a2 = 0, and
there remains an action of PGL3 as

(x : y : z;ai; s)∼
(
νx : ν2y : z;ν2ai;νs

) ∈ P
2 ×C

4, ν ∈C
×,

so we can normalize s as 0 or 1. When s = 0, there remains symmetry of ν ∈C
×.

Furthermore we give a 8 points blowing-up from P
1 × P

1:

P1 : (f, g)= (∞,∞) ← P2 : (1/g,g/f )= (0,1)

← P3 :
(
1/g,g(g − f )/f

)= (0, s)← P4 :
(
1/g,g

(
g(g − f )− sf

)
/f
)

= (0,−a0 + s2
)
,

P5 : (f, g)= (∞,0) ← P6 : (1/f,fg)= (0,−a2),

P7 : (f, g)= (0,∞) ← P8 : (1/g,fg)= (0, a1).

Here we put (f, g)(= (x/z, y/x)) ∈ P
1 × P

1.

4. D(1)
8

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p2 : (x/y, z/x)= (0,0) ← p3 :
(
x/y, yz/x2)= (0,0)

← p8 :
(
x

y
,
y2z

x3

)
= (0, s) ← p9 :

(
x

y
,
y(y2z− sx3)

x4

)
= (0,−λs),

p4 : (0 : 0 : 1) ← p5 :
(
y

z
,
x

y

)
= (0,0) ← p6 :

(
y

z
,
zx

y2

)
= (0,1)

← p7 :
(
y

z
,
z(zx − y2)

y3

)
= (0,0).

The condition that the surface is a rational elliptic surface is λ = 0, and there
remains an action of PGL3 as

(x : y : z;λ; s)∼ (x : νy : ν2z;νλ;ν4s
) ∈ P

2 ×C×C
×, ν ∈C

×,

so we can normalize s = 1, and symmetry of ν ∈ {1,−1,
√−1,−√−1} still re-

mains.
Putting (f, g)(= (x/z, y/x)) ∈ P

1 × P
1, we give a blowing-up from P

1 × P
1:

P1 : (f, g)= (∞,∞) ← P2 : (1/g,g/f )= (0,0)
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← P3 :
(
1/g,g2/f

)= (0, s)← P4 :
(
1/g,g

(
g2 − sf

)
/f
)= (0,−λs),

P5 : (f, g)= (0,∞) ← P6 : (fg,1/g)= (0,0)

← P7 :
(
fg,1/

(
fg2))= (0,1)← P8 :

(
fg,

(
1− fg2)/

(
f 2g3))= (0,0).

5. D(1)
7

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p2 : (x/y, z/x)= (0,0) ← p3 :
(
x/y, yz/x2)= (0,0)

← p8 :
(
x

y
,
y2z

x3

)
= (0, s) ← p9 :

(
x

y
,
y(y2z− sx3)

x4

)
= (0,−a0s),

p4 : (0 : 0 : 1) ← p6 : (x/z, y/x)= (0,0),

p5 : (0 : 1 : 1) ← p7 :
(
x

z
,
y − z

x

)
= (0, a1).

The surface is a rational elliptic surface if and only if λ = a0 + a1 = 0. Since an
action of PGL3

(x : y : z;ai; s)∼
(
x : νy : νz;νai;ν3s

) ∈ P
2 ×C

2 ×C
×, ν ∈C

×

remains, we can normalize s as 1. There remains symmetry of ν ∈ {1,ω,ω2}, where
ω2 +ω+ 1= 0.

Putting (f, g)(= ((yz)/x2,−x/z)) ∈ P
1 × P

1, we give a blowing-up from P
1 ×

P
1:

P1 : (f, g)= (0,∞) ← P2 :
(
f,1/(fg)

)= (0,0)

← P3 :
(
1/(fg), f 2g

)= (0,−s)← P4 :
(
1/(fg), fg

(
f 2g + s

))= (0,−a0s),

P5 : (f, g)= (∞,0) ← P6 :
(
g,1/(fg)

)= (0,0)

← P7 :
(
g,1/

(
fg2))= (0,1)← P8 :

(
g,

1

g

(
1

fg2
− 1

))
= (0, a1).

6. D(1)
6

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p2 :
(
x

y
,
z

x

)
= (0,1) ← p3 :

(
x

y
,
y(z− x)

x2

)
= (0,0)

← p8 :
(
x

y
,
y2(z− x)

x3

)
= (0, s) ← p9 :

(
x

y
,
y(y2(z− x)− sx3)

x4

)

= (0, s(b1 − a0)
)
,

p4 : (0 : 0 : 1), p5 : (0 : a1 : 1), p6 : (1 : 0 : 0), p7 : (1 : b1 : 0).
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The surface is a rational elliptic surface if and only if λ = a0 + a1 = b0 + b1 = 0.
Since an action of PGL3

(x : y : z;ai, bi; s)∼
(
x : νy : z;νai, νbi;ν2s

) ∈ P
2 ×C

4 ×C
×, ν ∈C

×

remains, we can normalize s as 1. There remains symmetry of ν ∈ {1,−1}.
Putting (f, g)(= (

y(z−x)
xz

, x
z−x

)) ∈ P
1 × P

1, We give data of a blowing-up from

P
1 × P

1:

P1 : (f, g)= (0,∞) ← P2 :
(
f,1/(fg)

)= (0,0)

← P3 :
(
1/(fg), f 2g

)= (0, s)← P4 :
(
1/(fg), fg

(
f 2g− s

))

= (0, s(b1 − a0)
)
,

P5 : (f, g)= (∞,0) ← P6 : (1/f,fg)= (0, a1),

P7 : (f, g)= (∞,−1) ← P8 :
(
1/f,f (g + 1)

)= (0, b1).

7. D(1)
5

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p2 :
(
x

y
,
z

x

)
= (0,1) ← p8 :

(
x

y
,
y(z− x)

x2

)
= (0, s)

← p9 :
(
x

y
,
y(y(z− x)− sx2)

x3

)
= (0, s(s − a0)

)
,

p3 : (1 : a2 : 1), p4 : (0 : 0 : 1), p5 : (0 : a1 : 1),
p6 : (1 : 0 : 0), p7 : (1 : a3 : 0).

The condition that the surface is a rational elliptic surface is λ= a0+a1+a2 = 0,
and there remains an action of PGL3 as

(x : y : z;ai; s)∼ (x : νy : z;νai;νs) ∈ P
2 ×C

4 ×C
×, ν ∈C

×,

so we can normalize s as 1.
Furthermore we give data of blowing-up form P

1 × P
1:

P1 : (f, g)= (0,∞) ← P2 : (1/g,fg)= (0, a1),

P3 : (f, g)= (1,∞) ← P4 :
(
1/g, (f − 1)g

)= (0, a3),

P5 : (f, g)= (∞,0) ← P6 : (1/f,fg)= (0,−a2),

P7 : (f, g)= (∞,−s) ← P8 :
(
1/f,f (g + s)

)= (0, s − a0).

Here we put (f, g)(= ( x
x−z

,
y(x−z)

xz
)) ∈ P

1 × P
1.
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8. D(1)
4

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0, s/(s − 1)
)

← p9 :
(
x

y
,
y(sx + (1− s)y)

x2

)
= (0, sa0/(s − 1)

)
,

p2 : (1 : −a2 : 1), p3 : (1 : −a1 − a2 : 1), p4 : (0 : 0 : 1),
p5 : (0 : a3 : 1), p6 : (1 : 0 : 0), p7 : (1 : a4 : 0).

The condition that the surface is a rational elliptic surface is λ= a0+ a1+ 2a2+
a3 + a4 = 0, and there remains an action of PGL3 as

(x : y : z;ai; s)∼ (x : νy : z;νai; s) ∈ P
2 ×C

5 × (C \ {0,1}), ν ∈C
×.

Putting (f, g)(= (z/(z− x), y/x)) ∈ P
1 × P

1, we give data of blowing-up from
P

1 × P
1:

P1 : (f, g)= (0,0), P2 : (0, a4), P3 : (∞,−a2), P4 : (∞,−a1 − a2),

P5 : (1,∞) ← P9 :
(
1/g,g(f − 1)

)= (0, a3),

P7 : (s,∞) ← P8 :
(
1/g,g(f − s)

)= (0, sa0).

9. A(1)∗
2

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (1 : 0 : 1), p2 : (1 : −a2 : 1), p3 : (1 : −a2 − a1 : 1),
p4 : (0 : 0 : 1), p5 : (0 : a6 : 1), p6 : (0 : a0 + a6 : 1),
p7 : (1 : a3 : 0), p8 : (1 : a3 + a4 : 0), p9 : (1 : a3 + a4 + a5 : 0).

The surface is a rational elliptic surface if and only if λ = a0 + a1 + 2a2 + 3a3 +
4a4 + a5 + 2a6 = 0, and there remains an action of PGL3 as

(x : y : z;ai)∼ (x : νy : z;νai) ∈ P
2 ×C

7, ν ∈C
×.

Putting (f, g)(= (y/x, y/(z− x))) ∈ P
1 × P

1, we can also construct the surface
by a blowing-up from P

1 × P
1:

P1 : (0,0), P2 : (a3,−a3), P3 : (a3 + a4,−a3 − a4),

P4 : (a3 + a4 + a5,−a3 − a4 − a5), P5 : (−a2,0), P6 : (−a1 − a2,0),

P7 : (0, a6), P8 : (0, a6 + a0).
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10. A(1)∗
1

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (1 : 0 : a2 + a7), p2 : (1 : 0 : a1 + a2 + a7),

p3 : (1 : 0 : a0 + a1 + a2 + a7), p4 :
(−a7 : 1 : a2

7

)
, p5 : (0 : 1 : 0),

p6 :
(
a3 : 1 : a2

3

)
, p7 :

(
a3 + a4 : 1 : (a3 + a4)

2),

p8 :
(
a3 + a4 + a5 : 1 : (a3 + a4 + a5)

2),

p9 :
(
a3 + a4 + a5 + a6 : 1 : (a3 + a4 + a5 + a6)

2).

The surface is a rational elliptic surface if and only if λ= a0 + 2a1 + 3a2 + 4a3 +
3a4 + 2a5 + a6 + 2a7 = 0, and there remains an action of PGL3 as

(x : y : z;ai)∼
(
νx : y : ν2z;νai

) ∈ P
2 ×C

8, ν ∈C
×.

11. A(1)∗∗
0

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

pi :
(
ci : 2 : c3

i

)
, (i = 1, . . . ,9),

c1 = −2a1 − a2 + a8

3
, c2 = a1 − a2 + a8

3
, c3 = a1 + 2a2 + a8

3
,

c4 = c3 + a3, c5 = c4 + a4, c6 = c5 + a5, c7 = c6 + a6,

c8 = c7 + a7, c9 = c8 + a0.

The surface is a rational elliptic surface if and only if λ= a0 + 2a1 + 4a2 + 6a3 +
5a4 + 4a5 + 3a6 + 2a7 + 3a8 = 0, and there remains an action of PGL3 as

(x : y : z;ai)∼
(
νx : y : ν3z;νai

) ∈ P
2 ×C

9, ν ∈C
×.

12. A(1)
8

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (1 : 0 : 0) ← p2 : (z/x, y/z)= (0,0) ← p6 :
(
z/x, xy/z2)= (0,−1),

p3 : (0 : 0 : 1) ← p4 : (y/z, x/y)= (0,0) ← p5 :
(
y/z, zx/y2)= (0,−1),

p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :
(
x/y, yz/x2)= (0,−1).

Here p1, p3, and p7 are points in P
2 and the others are infinitely near points.
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There remains an action of PGL3 as

(x : y : z)∼ (x : νy : ν2z
) ∈ P

2, ν3 = 1.

Putting P
1 × P

1, we give data of 8 points configuration, which include infinitely
near points, in P

1 × P
1:

P1 : (f, g)= (∞,∞) ← P2 : (1/f,f/g)= (0,−1),

P3 : (f, g)= (0,∞) ← P4 : (fg,1/g)= (0,0) ← P5 :
(
fg2,1/g

)

= (−1,0),

P6 : (f, g)= (∞,0) ← P7 : (1/f,fg)= (0,0) ← P8 :
(
1/f,f 2g

)

= (0,−1).

Here P1, P3, and P6 are points in P
1 × P

1, and the others are infinitely near points.

13. A(1)′
7

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (0 : 0 : 1) ← p3 : (x/z, y/z)= (0,0) ← p5 :
(
y/x, x2/yz

)= (0,1),

p2 : (1 : 0 : 0) ← p6 : (z/x, y/z)= (0, a1), p4 : (0 : 1 : 1),
p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :

(
x/y, yz/x2)= (0, a0).

The surface is a rational elliptic surface if and only if q = a0a1 = 1, and there
remains symmetry:

(x : y : z)∼ (νx : y : z) ∈ P
2, ν2 = 1.

The surface is also constructed by 8 blowing-up from P
1 × P

1 by using the data
of configuration:

P1 : (f, g)= (0,0) ← P2 : (f, g/f )= (0,1),

P3 : (f, g)= (∞,0) ← P4 : (1/f,fg)= (0, a1),

P5 : (f, g)= (0,∞) ← P6 : (fg,1/g)= (1,0),

P7 : (f, g)= (∞,∞) ← P8 : (g/f,1/g)= (a0,0).

Here we put (f, g)(= ( x
z
,
y
x
)) ∈ P

1 × P
1.

14. A(1)
7

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (1 : 0 : 1), p2 : (1 : 0 : 0) ← p6 : (z/x, y/z)= (0,1),
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p3 : (0 : 0 : 1) ← p4 : (y/z, x/y)= (0,0) ← p5 :
(
y/z, zx/y2)= (0, a0),

p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :
(
x/y, yz/x2)= (0, a1).

The condition that the surface is a rational elliptic surface is q = a0a1 = 1.
Putting (f, g)(= ( x

z
,
y
x
)) ∈ P

1 × P
1, we give data of 8 points configuration in

P
1 × P

1:

P1 : (f, g)= (1,0), P2 : (f, g)= (∞,0) ← P3 : (1/f,fg)= (0,1),

P4 : (f, g)= (0,∞) ← P5 : (fg,1/g)= (0,0) ← P6 :
(
fg,1/

(
fg2

))

= (0, a0),

P7 : (f, g)= (∞,∞) ← P8 : (g/f,1/g)= (a1,0).

15. A(1)
6

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (1 : 0 : 1), p2 : (1 : 0 : 0) ← p6 : (z/x, y/z)= (0, a1),

p3 : (0 : 0 : 1) ← p5 : (y/z, x/y)= (0, a0/b), p4 : (0 : 1 : 1),

p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :
(
x/y, yz/x2

)

= (0,−b).

The condition that the surface is a rational elliptic surface is q = a0a1 = 1.
Putting (f, g)(= ( x

z
,
y
x
)) ∈ P

1 × P
1, we give data of 8 points configuration in

P
1 × P

1:

P1 : (f, g)= (1,0), P2 : (f, g)= (∞,0) ← P3 : (1/f,fg)= (0, a1),

P4 : (f, g)= (0, b/a0), P5 : (f, g)= (0,∞) ← P6 : (fg,1/g)= (1,0),

P7 : (f, g)= (∞,∞) ← P8 : (g/f,1/g)= (−b,0).

16. A(1)
5

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (1 : 0 : 1), p2 : (a1 : 0 : 0), p4 : (0 : 1 : 1), p6 : (1 : −a2 : 0),
p3 : (0 : 0 : 1) ← p5 : (y/z, x/y)= (0, b1/a2),

p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :
(
x/y, yz/x2

)

= (0,−b0/a1).

The surface is a rational elliptic surface if and only if q = b0b1 = 1.
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The surface is also constructed by 8 points blowing-up from P
1 × P

1 by using
data of configuration:

P1 : (f, g)= (1,0), P2 : (f, g)= (a1,0), P3 : (f, g)= (0, a2/b1),

P4 : (f, g)= (∞,−a2), P5 : (f, g)= (0,∞) ← P6 : (fg,1/g)= (1,0),

P7 : (f, g)= (∞,∞) ← P8 : (g/f,1/g)= (−b0/a1,0).

Here we put (f, g)(= ( x
z
,
y
x
)) ∈ P

1 × P
1.

17. A(1)
4

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (1 : 0 : 1), p2 : (a2 : 0 : 1), p3 : (a1a2 : 0 : 1),
p4 : (0 : 1 : 1), p5 : (0 : 1 : a4), p6 : (1 : −a3 : 0),

p7 : (0 : 1 : 0) ← p8 : (x/y, z/x)= (0,0) ← p9 :
(
x/y, yz/x2

)

= (0, a0/a2).

The surface is a rational elliptic surface if and only if q = a0a1a2a3a4 = 1.
The surface is also constructed by 8 points blowing-up from P

1 × P
1 by using

data of configuration:

P1 : (f, g)= (a2,0), P2 : (f, g)= (a1a2,0), P3 : (f, g)= (1,∞),

P4 : (f, g)= (0,1), P5 : (f, g)= (0,1/a4), P6 : (f, g)= (∞, a3),

P7 : (f, g)= (∞,∞) ← P8 : (g/f,1/g)= (−a0/a2,0).

Here we put (f, g)(= ( x
z
,− y

x−z
)) ∈ P

1 × P
1.

18. A(1)
3

We give data of 9 points configuration, which include infinitely near points, in
P

2 as follows:

p1 : (1 : 0 : 1), p2 : (a2 : 0 : 1), p3 : (a1a2 : 0 : 1),
p4 : (0 : 1 : 1), p5 : (0 : 1 : a5), p6 : (1 : −a3 : 0),
p7 : (1 : −a3a4 : 0), p8 : (0 : 1 : 0) ← p9 : (x/y, z/x)= (0, a0).

The surface is a rational elliptic surface if and only if q = a0a1a
2
2a

2
3a4a5 = 1.

Putting (f, g)(= ( x
z
,− y

x−z
)) ∈ P

1 × P
1, we give data of 8 points configuration

in P
1 × P

1:

P1 : (f, g)= (a2,0), P2 : (a1a2,0), P3 : (1,∞), P4 : (1/a0,∞),
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P5 : (0,1), P6 : (0,1/a5), P7 : (∞, a3), P8 : (∞, a3a4).

Here we need no infinitely near points.

19. A(1)
2

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (1 : 0 : 1), p2 : (a2 : 0 : 1), p3 : (a1a2 : 0 : 1),
p4 : (0 : 1 : 1), p5 : (0 : 1 : a4), p6 : (0 : 1 : a4a5),

p7 : (1 : −a3 : 0), p8 : (1 : −a3a6 : 0), p9 : (1 : −a0a3a6 : 0).
The surface is a rational elliptic surface if and only if q = a0a1a

2
2a

3
3a

2
4a5a

2
6 = 1.

Putting (f, g)(= ( z−x
x

, z−x
y

)) ∈ P
1 × P

1, we can also construct the surface by a

blowing-up from P
1 × P

1:

P1 : (f, g)= (1/a2,0), P2 :
(
1/(a1a2),0

)
, P3 : (0, a4),

P4 : (0, a4a5), P5 : (1,1), P6 : (a3,1/a3),

P7 :
(
a3a6,1/(a3a6)

)
, P8 :

(
a0a3a6,1/(a0a3a6)

)
.

20. A(1)
1

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

p1 : (a2a7 : 0 : 1), p2 : (a1a2a7 : 0 : 1), p3 : (a0a1a2a7 : 0 : 1),
p4 :

(
1/a2

7 : 1/a7 : 1
)
, p5 : (1 : 1 : 1), p6 :

(
a2

3 : a3 : 1
)
,

p7 :
(
a2

3a
2
4 : a3a4 : 1

)
, p8 :

(
a2

3a
2
4a

2
5 : a3a4a5 : 1

)
,

p9 :
(
a2

3a
2
4a

2
5a

2
6 : a3a4a5a6 : 1

)
.

The surface is a rational elliptic surface if and only if

21. A(1)∗
0

Data of 9 points configuration, which include infinitely near points, in P
2 are

given as follows:

pi :
(

1

sin2 ci
− 1

3
: −2 cos ci

sin3 ci
: 1
)
, (i = 1, . . . ,9),

c1 = −2a1 − a2 + a8

3
, c2 = a1 − a2 + a8

3
, c3 = a1 + 2a2 + a8

3
,

c4 = c3 + a3, c5 = c4 + a4, c6 = c5 + a5, c7 = c6 + a6,

c8 = c7 + a7, c9 = c8 + a0.
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The surface is a rational elliptic surface if and only if λ= a0 + 2a1 + 4a2 + 6a3 +
5a4 + 4a5 + 3a6 + 2a7 + 3a8 = 0.

3 Ordinary Differential Equations on Rational Elliptic Surfaces

When a rational elliptic surface and its blowing-down are given, we obtain a pencil
of cubic curves in P

2 or a pencil of biquadratic forms on P
1 × P

1. We see these
pencils here. We follow a method which is treated in a paper of Kajiwara-Masuda-
Noumi-Ohta-Yamada [2], although their interest is mainly put on Painlevé’s cases.

Here the 62nd surface in the list of Oguiso-Shioda, which has a singular fiber of
type E

(1)
8 , is taken as an example, and we see the calculation with it in detail.

In general, a cubic curve in P
2 is written as

F = μ0x
3 +μ1y

3 +μ2z
3 +μ3x

2y +μ4x
2z+μ5y

2z+μ6y
2x +μ7z

2x +μ8z
2y

+μ9xyz= 0,

and it makes a 9 dimensional space modulo constant multiplication. It is enough to
determine one dimensional pencil by putting the condition that curves pass through
all of nine points. But, in this case, we must consider infinitely near points as well.
The 9th point p9 is expressed as (x/y, y(y4(y2z − x3) − sx7)/x8) = (0, λ), (we
can take s as 0 or 1). Taking an inhomogeneous coordinate (x/y, z/y), the point
p9 is written as z/y = ε3 + sε7 + λε8 by setting x/y = ε. Substituting this into F ,
consider the condition that the terms of degree less than 9 in ε vanish, namely,

F
(
ε,1, ε3 + sε7 + λε8)=O

(
ε9).

This has not only solution F = μ2z
3 =: μ2F0 but another solution F = μ0(x

3 −
y2z + sz2x) =: μ0F1 when λ = 0. Combining two of them, we find a pencil F =
μ2F0 +μ0F1. Here the condition λ= 0 is a condition for an elliptic surface.

The function which returns the value (μ0 : μ2) ∈ P
1 for each points in the rational

elliptic surface gives an elliptic fibration. When we put H =−F1/F0 and (f, g)=
(x/z, y/z), then

H = g2 − f 3 − sf,

and the pencil is written as {H +μ= 0 ; μ ∈ P
1}.

The rational 2-form which has a pole only at the singular fiber F0 = z3 = 0 is
determined up to constant, and is written as

ω= xdy ∧ dz+ ydz∧ dx + zdx ∧ dy

F0
= dg ∧ df.

We can construct an algebraic Hamiltonian system which preserves the fibration as
follows:

d

dt
f = ρ(H)

∂H

∂g
,

d

dt
g =−ρ(H)

∂H

∂f
.
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Here ρ is an arbitrary rational function in H , and the system is the Hamiltonian
system with the Hamiltonian

∫
ρ(H)dH .

Similar calculation is applicable for the other cases. All cases except E(1)
8 have a

blowing-down to P
1 × P

1, so H is written as a ratio of two biquadratic forms.
For E(1)

7 , E(1)
6 , D(1)

7 , D(1)
6 , D(1)

5 , we can take F0 = f 2
0 g2

0 as an image of the ruling
singular fiber, when we take a coordinate (f0 : f1;g0 : g1) in P

1 ×P
1. Then, setting

(f, g)= (f1/f0, g1/g0) and ω= dg ∧ df , and

H = (g2, g,1
)
M

⎛

⎝
f 2

f

1

⎞

⎠ ,

we can construct a similar system

d

dt
f = ρ(H)

∂H

∂g
,

d

dt
g =−ρ(H)

∂H

∂f
,

by using a 3× 3 matrix M . With respect to each surfaces defined in the previous
section, the matrix M can be written as follows:

M =ME7 =
⎛

⎝
0 0 1
1 0 s

0 a1 0

⎞

⎠ , ME6 =
⎛

⎝
0 1 0
−1 −s −a1
0 −a2 0

⎞

⎠ ,

MD7 =
⎛

⎝
1 0 0
0 a1 −1
0 s 0

⎞

⎠ , MD6 =
⎛

⎝
1 1 0
0 −a1 − b1 −s

0 −a1 0

⎞

⎠ ,

MD5 =
⎛

⎝
1 s 0
−1 −(a1 + a3 + s) sa2
0 a1 0

⎞

⎠ .

Here we can take s as 0 or 1 for E
(1)
7 ,E

(1)
6 , and we can take s as 1 for

D
(1)
7 ,D

(1)
6 ,D

(1)
5 .

For D
(1)
8 and D

(1)
4 , the image of the ruling singular fiber is F0 = f0f1g

2
0 , and

ω = 1
f
dg ∧ df = dg ∧ d(logf ). So logf and g are canonical coordinates. When

we write the system in a rational form,

d

dt
f = ρ(H)f

∂H

∂g
,

d

dt
g =−ρ(H)f

∂H

∂f
,

and H is expressed as

H = 1

f0f1g
2
0

(
g2

1, g1g0, g
2
0

)
M

⎛

⎝
f 2

1
f1f0

f 2
0

⎞

⎠= (g2, g,1
)
M

⎛

⎝
f

1
1/f

⎞

⎠ .
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Here the matrix M is

M =MD8 =
⎛

⎝
0 1 0
0 0 0
−s 0 −1

⎞

⎠ ,

MD4 =
⎛

⎝
1 −1− s s

a1 + 2a2 −a1 − 2a2 + (s − 1)a3 + a4 sa4
a2(a1 + a2) 0 0

⎞

⎠ .

We can take s as 1 for D
(1)
8 . For D

(1)
4 , s is an element in C \ {0,1}. We can’t nor-

malize s, but we can multiply all ai by ν ∈C
× without changing surfaces.

As a matter of course, if we do not stick to biquadratic form, we can write them
as usual rational Hamiltonian systems.

For D(1)
8 , putting f̂ = 1/f, ĝ =−fg, the symplectic form is written as ω= dĝ∧

df̂ , and the system is a usual Hamiltonian system with H = f̂ 2ĝ2 − f̂ − s/f̂ .
For D(1)

4 , putting ĝ = g/f , the symplectic form is written as ω= dĝ∧df , and the
system is a usual Hamiltonian system with a polynomial Hamiltonian H = f (f −
1)(f − s)g2 + {(a1 + 2a2)(f − 1)f + a3(s − 1)f + a4s(f − 1)}g+ a2(a1 + a2)f .
These are not biquadratic forms by using 3× 3 matrices.

Remark 2 In a paper of Kajiwara-Masuda-Noumi-Ohta-Yamada [2], it is found that
the Painlevé equations can be obtained as non-autonomous systems by taking s as
an independent variable.

Although, in the case of D
(1)
4 and D

(1)
8 , the Painlevé equations are not written

by using matrices of size 3 usually, we can write them as algebraic ODE’s by using
matrices of size 3, following a manner which we saw here.

The Painlevé equations correspond to 8 Dynkin diagrams of types D(1)
4 , . . . ,D

(1)
8 ,

and E
(1)
6 , E

(1)
7 , E

(1)
8 , and we saw analogous cases of rational elliptic surfaces so

far. These systems on elliptic surfaces are obtained as an autonomous limit of the
Painlevé equations. The correspondence between the Painlevé equations and the
Dynkin are given as follows:

D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8 E

(1)
6 E

(1)
7 E

(1)
8

PVI PV PIII(D6) PIII(D7) PIII(D8) PIV PII PI

These systems on elliptic surfaces can be constructed for A types also, differently
from the Painlevé’s cases. Of A types, for types A

(1)
3 , A(1)

4 , A(1)
5 , A(1)

6 , A(1)
7 , A(1)′

7 ,

and A
(1)
8 , the image of the ruling singular fiber can be taken as F0 = f0f1g0g1, when

we consider a blowing-down to P
1 × P

1.
A symplectic form is written as ω = 1

gf
dg ∧ df = d(logg) ∧ (logf ), and the

system is

d

dt
f = ρ(H)fg

∂H

∂g
,

d

dt
g =−ρ(H)fg

∂H

∂f
,
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and H is expressed as

H =
(
g,1,

1

g

)
M

⎛

⎝
f

1
1
f

⎞

⎠ .

The matrix M is parameterized as follow:

M =MA8 =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , MA7 =
⎛

⎝
0 −a0 0
1 0 0
0 −1 1

⎞

⎠ ,

MA′7 =
⎛

⎝
0 1 0
−a0 0 1

0 1 0

⎞

⎠ , MA6 =
⎛

⎝
0 1/b 0
1 0 −1/b
0 −a1 a1

⎞

⎠ ,

MA5 =
⎛

⎝
0 b1/a2 0
a0 0 −b1/a2

1/a1 −1− (1/a1) 1

⎞

⎠ ,

MA4 =
⎛

⎝
0 1 −1

a0/a2 0 1+ (1/a4)

−a0a3/a2 a0a3 + (1/a2a4) −1/a4

⎞

⎠ ,

MA3 =
⎛

⎝
a0a5 −(1+ a0)a5 a5

−(1+ a4)a0a3a5 0 −1− a5

1/(a1a
2
2) −(1+ a1)/a1a2 1

⎞

⎠ .

For remaining A
(1)∗
2 , A(1)∗

1 , A(1)∗∗
0 and A

(1)
2 , A(1)

1 , A(1)∗
0 , the expression is a little

bit complicated. As the ruling divisor F0, we can take

A
(1)∗
2 : F0 = f0g0(f0f1 + g0g1),

A
(1)∗
1 : F0 = (f1g0 + f0g1 − 2rf0g0)(f1g0 + f0g1),

A
(1)∗∗
0 : F0 = (f1g0 − f0g1)

2 − 8r2(f0f1g
2
0 + f 2

0 g0g1
)+ 16r4f 2

0 g2
0,

A
(1)
2 : F0 = f0g0(f1g1 − f0g0), A

(1)
1 : F0 =

(
f1g1 − r2f0g0

)
(f1g1 − f0g0),

A
(1)∗
0 : F0 = f 2

1 g2
0 + f 2

0 g2
1 −

(
r2 + 1

r2

)
f0f1g0g1 +

(
r2 − 1

r2

)2

f 2
0 g2

0,

for each types of surfaces (cf. [5]). Here r is a suitable number except 1 or 0.

Symplectic form is given as ω= f 2
0 g2

0
F0

dg ∧ df .

We don’t go into detail in the all cases, but, for A
(1)∗
2 , the symplectic form is

written as ω= dg ∧ d log(f + g). Putting F = f + g, the system is expressed as

dF

dt
= ρ(H)F

∂H

∂g
,

dg

dt
=−ρ(H)F

∂H

∂F
,
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by using

H = 1

F

(
g2, g,1

)
M

⎛

⎝
(F − g)2

F − g

1

⎞

⎠ .

For A
(1)
2 , the symplectic form is ω = d logg ∧ d log(fg − 1), and when we put

F = fg − 1, the system is

dF

dt
= ρ(H)Fg

∂H

∂g
,

dg

dt
=−ρ(H)Fg

∂H

∂F
,

with

H = 1

F

(
g2, g,1

)
M

⎛

⎝
(F − 1)2/g2

(F − 1)/g
1

⎞

⎠ .

4 Canonical Forms of Biquadratic Hamiltonians

In the previous section we constructed a Hamiltonian system based on data of a
rational elliptic surface. In this section we start from a Hamiltonian system and we
tell the type of the surface associated to the system.

We concentrate on two types of Hamiltonian systems. The first one is biquadratic
Hamiltonian and the biquadratic form is expressed as

H = (g2, g,1
)
M

⎛

⎝
f 2

f

1

⎞

⎠

by using 3× 3 matrix M . The system is

d

dt
f = ρ(H)

∂H

∂g
,

d

dt
g =−ρ(H)

∂H

∂f
.

For the second one we put

H =
(
g,1,

1

g

)
M

⎛

⎝
f

f
1
f

⎞

⎠

by using 3× 3 matrix M , and the system is given as

d

dt
f = ρ(H)fg

∂H

∂g
,

d

dt
g =−ρ(H)fg

∂H

∂f
.

In this article we call the former a polynomial Hamiltonian system, and the latter a
logarithmic Hamiltonian system.
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In the previous section we gave a system on an elliptic surface which has a singu-
lar fiber of type E

(1)
7 , E(1)

6 , D(1)
7 , D(1)

6 , D(1)
5 , respectively, and it was the polynomial

type. A system on a surface of A(1)
8 , A(1)′

7 , A(1)
7 , A(1)

6 , . . .A
(1)
3 was given in the form

of logarithmic type. To tell a conclusion of this section in advance, all of biquadratic
polynomial and logarithmic Hamiltonian systems in this sense coincide with one of
these systems. Furthermore we give a classification of such systems.

We see the polynomial case first. Here the matrix M is not arbitrary. If M has
all 0 in the first column or in the first row, then H +μ= 0 does not give an elliptic
curve. Neither does it, when a11 = a12 = a21 = 0. We do away with these cases.

There are the transformation (f, g) �→ (g, f ), and affine transformations (f, g) �→
(f + a,g + b), and they don’t change the type of systems. We see how they act on
the matrix M .

The interchange of dependent variables makes the matrix M transposed. The
affine transformations act on M as follows:

M �→
⎛

⎝
1 0 0

2b 1 0
b2 b 1

⎞

⎠M

⎛

⎝
1 2a a2

0 1 a

0 0 1

⎞

⎠ .

Putting M = (mi,j )i,j=1,2,3, the classification is described as follows:

m11 = 0→
⎧
⎨

⎩
m12m21 = 0, (m12,m21) 	= (0,0)→ E

(1)
7

m12m21 	= 0 → E
(1)
6

m11 	= 0→We can make m13 =m31 = 0 by affine transformation.

→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m12 =m21 = 0 → D
(1)
7

m12m21 = 0, (m12,m21) 	= (0,0)→ D
(1)
6

m12m21 	= 0 → D
(1)
5 .

Here we omitted the case that m11 = m12 = m21 = 0 because of elliptic curves’
absence. Hence this completes the classification.

When m11 	= 0, we can use solutions a, b to a2m11 + am12 +m13 = 0, b2m11 +
bm21 +m31 = 0 for an affine transformation in order to make m13 =m31 = 0.

In the next place we consider the logarithmic case. There are transformations of
dependent variables (f, g) �→ (g, f ), (f, g) �→ (1/f,g), and (f, g) �→ (f,1/g), and
they don’t change the type of the systems.

Now we introduce notation. To express an entry of a matrix, ∗ is an element of
C \ {0}, and empty means that this entry is occupied by an arbitrary element of C.
Then biquadratic forms, from A

(1)
8 to A

(1)
3 , are given as

A
(1)
8 :

⎛

⎝
∗ 0 0
0 ∗
0 ∗ 0

⎞

⎠ , A
(1)′
7 :

⎛

⎝
0 ∗ 0
∗ ∗
0 ∗ 0

⎞

⎠ , A
(1)
7 :

⎛

⎝
∗ 0 0
∗ ∗
0 ∗ 0

⎞

⎠ ,
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A
(1)
6 :

⎛

⎝
∗ ∗ 0
∗ ∗
0 ∗ 0

⎞

⎠ , A
(1)
5 :

⎛

⎝
∗ ∗
∗ ∗
0 ∗ 0

⎞

⎠ ,

A
(1)
4 :

⎛

⎝
∗ ∗

∗
∗ ∗ 0

⎞

⎠ , A
(1)
3 :

⎛

⎝
∗ ∗

∗ ∗

⎞

⎠ .

Inversely, it is found that the biquadratic forms with these matrices correspond to
these surfaces with suitable parameters.

If the matrix has all 0 in the 1st or 3rd column or row, then curves in the pencil
does not give elliptic curves. The matrix with m11 =m12 =m21 = 0 does not give
elliptic curves, too. Hence there remain only 7 types of matrices:

⎛

⎝
∗ ∗
0 0
0 ∗ 0

⎞

⎠ ,

⎛

⎝
∗ ∗ 0
0 0
0 ∗ ∗

⎞

⎠ ,

⎛

⎝
∗ 0 0
0 ∗
0 ∗ ∗

⎞

⎠ ,

⎛

⎝
∗ ∗ 0
∗ 0
0 ∗ ∗

⎞

⎠ ,

⎛

⎝
∗ ∗
0 ∗
0 ∗ 0

⎞

⎠ ,

⎛

⎝
0 ∗ ∗
∗ ∗
∗ ∗ 0

⎞

⎠ ,

⎛

⎝
∗ ∗
0
0 ∗ ∗

⎞

⎠ .

These all can be reduced to the systems of A
(1)
8 , . . . ,A

(1)
3 by simple transforma-

tions of dependent variables.

Remark 3 We take two of them as examples. We reduce 4th matrix to the matrix of
A

(1)
6 . It is enough to put F = fg:

(
g,1,

1

g

)⎛

⎝
a b 0
c d 0
0 e h

⎞

⎠

⎛

⎝
F/g

1
g/F

⎞

⎠=
(
g,1,

1

g

)⎛

⎝
0 b 0
a d h

c e 0

⎞

⎠

⎛

⎝
F

1
1/F

⎞

⎠ .

The next example is a transformation which change the 1st matrix into the matrix
of A(1)′

7 . For the biquadratic form

H +μ=
(
g,1,

1

g

)⎛

⎝
a b c

0 μ 0
0 d 0

⎞

⎠

⎛

⎝
f

1
1/f

⎞

⎠ ,

we take α as a solution to α2 − bα+ ac= 0, and H can be written as H = g( a
α
f +

1)( c
f
+ α)+ d

g
. Putting G= g( 1

f
+ α

c
), F = fG, we get

H = ac

α
F + cG+ d

F
+ dα

c

1

G
,

and this is the system of type A
(1)′
7 .

We can reduce the others to known systems similarly.
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Classification is given as follows:

A
(1)
8 :

⎛

⎝
∗ 0 0
0 ∗
0 ∗ 0

⎞

⎠ , A
(1)′
7 :

⎛

⎝
0 ∗ 0
∗ ∗
0 ∗ 0

⎞

⎠∼
⎛

⎝
∗ ∗
0 0
0 ∗ 0

⎞

⎠∼
⎛

⎝
∗ ∗ 0
0 0
0 ∗ ∗

⎞

⎠ ,

A
(1)
7 :

⎛

⎝
∗ 0 0
∗ ∗
0 ∗ 0

⎞

⎠∼
⎛

⎝
∗ 0 0
0 ∗
0 ∗ ∗

⎞

⎠ ,

A
(1)
6 :

⎛

⎝
∗ ∗ 0
∗ ∗
0 ∗ 0

⎞

⎠∼
⎛

⎝
∗ ∗ 0
∗ 0
0 ∗ ∗

⎞

⎠∼
⎛

⎝
∗ ∗
0 ∗
0 ∗ 0

⎞

⎠ ,

A
(1)
5 :

⎛

⎝
∗ ∗
∗ ∗
0 ∗ 0

⎞

⎠∼
⎛

⎝
0 ∗ ∗
∗ ∗
∗ ∗ 0

⎞

⎠∼
⎛

⎝
∗ ∗
0
0 ∗ ∗

⎞

⎠ ,

A
(1)
4 :

⎛

⎝
∗ ∗

∗
∗ ∗ 0

⎞

⎠ , A
(1)
3 :

⎛

⎝
∗ ∗

∗ ∗

⎞

⎠ .

5 Oguiso-Shioda’s Classification

We fixed one singular fiber as a ruling fiber so far for a study of dynamical systems
on rational elliptic surfaces. We have 21 types of singular fibers, if we count two
types for A

(1)
7 . But there are 74 types of surfaces in the classification of Oguiso-

Shioda ([6]). This is because a surface may have more than one singular fiber.
In Sect. 3 we constructed Hamilton systems on each surfaces. What we studied

there includes the cases of plural singular fibers. In this section we see cases of
plural singular fibers in detail, by taking D

(1)
5 as an example.

When we fix the fiber of type D
(1)
5 as the ruling fiber, the type of the surface is

one of 16th, 30th, 50th, 52th, or 72th surface in the list of Oguiso-Shioda. Reducible
singular fibers of each surfaces are described as

T =D5, D5 ⊕A1, D5 ⊕A2, D5 ⊕A⊕2
1 , D5 ⊕A3,

when we use Oguiso-Shioda’s notation. Irreducible singular fibers of types A
(1)∗
0 ,

A
(1)∗∗
0 may appear, but we don’t consider about them. K. Oguiso and T. Shioda

didn’t use them for their classification.
Our aim is to determine the type of the surface at each value of the parameters.

The matrix for type D
(1)
5 is

MD5 =
⎛

⎝
1 1 0
−1 −a1 − a3 − 1 a2
0 a1 0

⎞

⎠ .
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If the condition a1 = 0 (a2a3a0 	= 0), or a2 = 0 (a3a0a1 	= 0), or a3 = 0 (a0a1a2 	=
0), or a0 = −a1 − a2 − a3 = 0 (a1a2a3 	= 0) holds, a fiber of type A

(1)
1 exists and

the surface is 30th (T =D5 ⊕A1).
For the 30th surfaces, we see a calculation of singular fibers. In the pencil {H =

μ;μ ∈ P
1}, the fiber becomes type A

(1)
1 when the fiber is reducible. The curve H +

μ= g2f 2 − g2f + gf 2 − (a1 + a3 + 1)gf + a1g + a2f +μ can be factorized as

H+μ=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (g2f − g2 + gf − (a3 + 1)g+ a2), if a1 = 0 (a2a3a0 	= 0),μ= 0,

g(gf 2 − gf + f 2 − (a1 + a3 + 1)f + a1), if a2 = 0 (a3a0a1 	= 0),
μ= 0,

(f − 1)(g2f + gf − a1g + a2), if a3 = 0 (a0a1a2 	= 0),μ=−a2,

(g + 1)(gf 2 − gf + a2f + a1), if a0 = a1 − a2 − a3 = 0,
(a1a2a3 	= 0), μ= a1,

at each parameterizations, and they are the singular fibers of type A
(1)
1 .

The 50th surface (T = D5 ⊕ A2) appears when the parameters hold that a1 =
a2 = 0 (a3a0 	= 0), or that a2 = a3 = 0 (a1a0 	= 0), or that a0 = a1 = 0 (a2a3 	= 0).
The singular fibers of type A

(1)
2 are calculated as follows:

H +μ=

⎧
⎪⎪⎨

⎪⎪⎩

gf (gf − g + f − a3 − 1), if a1 = a2 = 0 (a3a0 	= 0),μ= 0,

g(f − 1)(gf + f − a1), if a2 = a3 = 0 (a0a1 	= 0),μ= 0,

(g + 1)f (gf − g + a2), if a0 = a1 = 0 (a2a3 	= 0),μ= 0.

The 52th surface (T = D5 ⊕ A⊕2
1 ) appears at a1 = a3 = 0 (a2a0 	= 0), or a2 =

a0 = 0 (a1a3 	= 0), or a0 = a3 = 0 (a1a2 	= 0). We can see the singular fiber of type
A

(1)
1 as

H +μ=
{
f (g2f − g2 + fg− g + a2), if μ= 0,

(f − 1)(g2f + fg + a2), if μ=−a2,

when the parameters hold that a1 = a3 = 0 (a2a0 	= 0). The singular fiber is

H +μ=
{
g(gf 2 − gf + f 2 − f + a1), if μ= 0,

(g + 1)(gf 2 − gf + a1), if μ= a1,

when a2 = a0 = 0 (a1a3 	= 0). The singular fiber is

H +μ=
{
(g + 1)(gf 2 − gf + a2f + a1), if μ= a1,

(f − 1)(g2f + gf − a1g + a2), if μ=−a2,

when a3 = a0 = 0 (a1a2 	= 0).
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The 72nd surface (T = D5 ⊕ A3) appears at a1 = a2 = a3 = a0 = 0, and the
singular fiber of type A

(1)
3 is expressed by

H +μ= gf (g + 1)(f − 1)

with μ= 0.
For the 30th, 50th, 52nd, and 72nd surfaces we can take the other singular fiber

as the ruling fiber. For example we can take the singular fiber of type A
(1)
3 for the

72nd surface. In this case the correspondence between two coordinates gives us a
transformation of our systems. We will see this later in the next section.

6 Bäcklund Transformations

We treat only birational transformations as Bäcklund transformations here. In a
study of the Painlevé equations we know non-birational algebraic transformations
called folding transformations at particular parameters. We have a classification of
such transformations [15]. Although we are also able to consider such transforma-
tions for systems on rational elliptic surfaces, we concentrate on a study of birational
transformations.

The systems on rational elliptic surfaces have Bäcklund transformations which
is similar to these for the Painlevé equations. As is well known in a study of the
Painlevé equations, the birational Bäcklund transformations are written in terms of
affine Weyl groups symmetries. Let’s see an example. In the case that the surface
has a singular fiber of type E

(1)
7 , the symmetry is written as affine Weyl group of

type A
(1)
1 which is generated by transformations

s1 : (f, g;α1) �→
(
f + α1

g
,g;−α1

)
,

π : (f, g;α1) �→
(−f,−g− f 2 − s;−α1

)
,

(s0 = π ◦ s1 ◦ π).

When the parameter α1 is 0, then the surface is the 65th type in the Oguiso-
Shioda’s list. In that case a singular fiber of type A

(1)
1 appear as well as E

(1)
7 , and

the transformation s1 becomes the identity.
We can use such data of the Painlevé equations for the rational elliptic surfaces

(see [7–10, 13]).
Among these elements of Weyl group, a translation can be calculated as an auto-

morphism of the surface. For the example above, s1 ◦π is a translation. These coin-
cide with well known discrete integrable systems called QRT mappings ([12, 14]).

Remark 4 QRT mapping is defined as follows:

ḡ = u1(f )− u2(f )g

u2(f )− u3(f )g
, f̄ = v1(ḡ)− v2([̄g])f

v2(ḡ)− v3(ḡ)f
,
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where
⎛

⎝
u1
u2
u3

⎞

⎠=M1

⎛

⎝
f 2

f

1

⎞

⎠×M0

⎛

⎝
f 2

f

1

⎞

⎠ ,

⎛

⎝
v1
v2
v3

⎞

⎠= tM1

⎛

⎝
ḡ2

ḡ

1

⎞

⎠× tM0

⎛

⎝
ḡ2

ḡ

1

⎞

⎠ .

In order to make it suit our story, it is enough to set M0 as the 3× 3 matrix which
define the ruling fiber, and put M1 =M . Here the mapping (f, g) �→ (f̄ , ḡ) leaves
the curve

(
g2, g,1

)
(M0 +μM1)

⎛

⎝
f 2

f

1

⎞

⎠= 0

invariant. Namely, the value of H =−(g2, g,1)M1
t (f 2, f,1)/((g2, g,1)M0

t (f 2,

f,1)) is also invariant. The proof is not difficult (see Appendix A of [12]).
This mapping is a Bäcklund transformation of our system, because it is a canoni-

cal transformation, that is, ω̄= ω. Here ω= dg ∧ df/((g2, g,1)M0
t (f 2, f,1)). To

prove this, we need the following calculation:

(v2 − v3f )2

v1v3 − v2
2

(
ḡ2, ḡ,1

)
M0

⎛

⎝
f̄ 2

f̄

1

⎞

⎠+ (ḡ2, ḡ,1
)
M0

⎛

⎝
f 2

f

1

⎞

⎠

= 1

v1v3 − v2
2

(
ḡ2, ḡ,1

)
M0

⎡

⎣

⎛

⎝
(v1 − v2f )2

(v1 − v2f )(v2 − v3f )

(v2 − v3f )2

⎞

⎠+ (v1v3 − v2
2

)
⎛

⎝
f̄ 2

f̄

1

⎞

⎠

⎤

⎦

= 1

v1v3 − v2
2

(
ḡ2, ḡ,1

)
M0

⎛

⎝
v1
v2
v3

⎞

⎠ (v3,−2v2, v1)

⎛

⎝
f̄ 2

f̄

1

⎞

⎠= 0,

and so on. Using these, we get

ω̄= v1v3 − v2
2

(v2 − v3f )2

dḡ ∧ df

(ḡ2, ḡ,1)M0

⎛

⎝
f̄ 2

f̄

1

⎞

⎠

=− dḡ ∧ df

(ḡ2, ḡ,1)M0

⎛

⎝
f 2

f

1

⎞

⎠

= dg ∧ df

(g2, g,1)M0

⎛

⎝
f 2

f

1

⎞

⎠

= ω.

On the other hand, when the surface has more than one singular fiber, we can
construct a transformation which change the types of systems in the list. Such a
transformation does not appear in the case of the Painlevé equations.
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Let’s look at an example of this kind of transformations. We see the surface of
Oguiso-Shioda’s 72nd type, which has singular fibers of type D

(1)
5 and of type A

(1)
3 .

If we set a singular fiber of type D
(1)
5 as the ruling fiber, then biquadratic form, in

general, is given by the matrix

M =
⎛

⎝
1 −1 0
1 −(a1 + a3 + 1) a1
0 a2 0

⎞

⎠ , a1 + a2 + a3 = 0.

When a1 = a2 = a3 = 0, then a singular fiber of type A
(1)
3 also appears. Setting

H = (f 2, f, q)M t(g2, g,1)= fg(f − 1)(g+ 1), the pencil {H = μ ; μ ∈ P
1} has

the fiber of type D
(1)
5 at μ=∞, and the fiber of type A

(1)
3 at μ= 0. Our system can

be given as

df

dt
= ρ(H)

∂H

∂g
,

dg

dt
=−ρ(H)

∂H

∂f
, H = fg(f − 1)(g + 1),

when we set the fiber of type D
(1)
5 as the ruling.

Our aim is to obtain a birational transformation which changes the form of the
system from type D

(1)
5 into type A

(1)
3 . The transformation of the independent vari-

ables is given by (F,G) = (
f−1
f

,
g+1
g

). The Hamiltonian becomes H̃ = 1/H =
(1− F)2(1−G)2/(FG), that is,

H̃ =
(
G,1,

1

G

)⎛

⎝
1 −2 1
−2 4 −2
1 −2 1

⎞

⎠

⎛

⎝
F

1
1
F

⎞

⎠ ,

and this is a 3× 3 matrix of type A
(1)
3 . The differential system is written as

dF

dt
= ρ̃(H̃ )FG

∂H̃

∂G
,

dG

dt
=−ρ̃(H̃ )FG

∂H̃

∂F
, ρ̃(H̃ )= ρ(1/H̃ )/H̃ .
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On the Spectral Gap of the Kac Walk and Other
Binary Collision Processes on d-Dimensional
Lattice

Makiko Sasada

Abstract We give a lower bound on the spectral gap for a class of binary collision
processes. In ALEA Lat. Am. J. Probab. Math. Stat. 4, 205–222 (2008), Caputo
showed that, for a class of binary collision processes given by simple averages on
the complete graph, the analysis of the spectral gap of an N -component system is
reduced to that of the same system for N = 3. In this paper, we give a comparison
technique to reduce the analysis of the spectral gap of binary collision processes
given by simple averages on d-dimensional lattice to that on the complete graph.
We also give a comparison technique to reduce the analysis of the spectral gap of
binary collision processes which are not given by simple averages to that given by
simple averages. Combining them with Caputo’s result, we give a new and elemen-
tary method to obtain spectral gap estimates. The method applies to a number of
binary collision processes on the complete graph and also on d-dimensional lat-
tice, including a class of energy exchange models which was recently introduced in
arXiv:1109.2356, and zero-range processes.

1 Introduction

A sharp lower bound on the spectral gap of the process is essential to prove the
hydrodynamic limit (cf. [8]). What is needed is that the gap, for the process confined
to cubes of linear size N , shrinks at a rate N−2. Up to constants, this is the best
possible lower bound for a wide class of models discussed in the context of the
study of the hydrodynamic limit.

Most of the techniques used to obtain the required lower bound rely on special
features of the model, or a recursive approach due to Lu and Yau [10]. Recently, Ca-
puto introduced a new and elementary method to obtain a lower bound on the spec-
tral gap for some general class of binary collision processes which are reversible
with respect to a family of product measures in [3]. In this paper, we extend his
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result in two ways. One way is that though in [3] only the process on the com-
plete graph was considered, we consider the process on d-dimensional lattice where
the interactions occur between nearest neighbor sites. We give a general method to
compare the spectral gap of the local version on d-dimensional lattice and the orig-
inal process on the complete graph. Secondly, we study a wider class of processes
than the class studied in [3] and give a simple comparison technique between their
spectral gaps. We emphasize that our technique can be applied to a wide class of
processes which are reversible with respect to a family of product measures, and it
allows to obtain the lower bound of the spectral gap easily. However, it is not nec-
essarily sharp, so if the estimate given by our method is not enough sharp, then we
need to try to use other techniques.

Following Caputo [3], we first consider the following energy conserving binary
collision model introduced by M. Kac in [7], called Kac walk. Let ν = νN,ω denote
the uniform probability measure on the N − 1 dimensional sphere of the radius

√
ω

SN−1(ω)=
{
η ∈R

N ;
N∑

i=1

η2
i = ω

}
,

and consider the ν-reversible Markov process on SN−1(ω) with infinitesimal gener-
ator given by

L∗f (η)= 1

2N

N∑

i,j=1

Di,jf (η)

where

Di,j f (η)= 1

2π

∫ π

−π

[
f
(
R

ij
θ η
)− f (η)

]
dθ,

and R
ij
θ , i 	= j is a clockwise rotation of angle θ in the plane (ηi, ηj ). As a conven-

tion, we take Rii
θ = Id.

This Kac walk represents a system of N particles in one dimension evolving
under a random collision mechanism. The state of the system is given by specifying
the N velocities η1, η2, . . . , ηN . The random collision mechanism under which the
state evolves is that at random times, a “pair collision” take place in such a way
that the total energy

∑N
i=1 η

2
i is conserved. Under the above dynamics, after the

particles i and j collide, the distribution of the velocities (ηi, ηj ) becomes uniform
on the plane (ηi, ηj ).

Note that −L∗ is a non-negative, bounded self-adjoint operator on L2(ν). Any
constant is an eigenfunction with eigenvalue 0 and the spectral gap λ∗ = λ∗(N,ω)

is defined as

λ∗(N,ω) := inf

{
ν(f (−L∗)f )

ν(f 2)

∣∣∣∣ν(f )= 0, f ∈ L2(ν)

}
(1)
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where ν(f ) stands for the expectation
∫
f dν. We define λ∗(N)= infω>0 λ

∗(N,ω).
For the Kac walk, by change of variables, it is easy to see that λ∗(N) = λ∗(N,ω)

for all ω > 0.
In [4], Carlen, Carvalho and Loss computed the exact value of λ∗(N) for ev-

ery N :

λ∗(N)= N + 2

4N
, N ≥ 2. (2)

Caputo gave a simplified method to show this. Recall Theorem 1.1 in [3].

Theorem 1 (Caputo) For N ≥ 3,

λ∗(N)= (3λ∗(3)− 1
)(

1− 2

N

)
+ 1

N
. (3)

In particular, (2) follows from (3) with λ∗(3)= 5
12 .

Now, we introduce the local version of the Kac walk. Fix d ∈ N and let ΛN the
d-dimensional cube of linear size N : ΛN = {1,2, . . . ,N}d . The local version of
the Kac walk is the ν = ν|ΛN |,ω = νNd,ω-reversible Markov process on S|ΛN |−1(ω)

with infinitesimal generator given by

L∗,locf (η)= 1

2

∑

x∈ΛN

∑

y∈ΛN‖x−y‖=1

Dx,yf (η) (4)

where ‖x − y‖ =∑d
i=1 |xi − yi |. We define the spectral gap λ∗,loc(N,ω) by (1)

with −L∗ replaced by −L∗,loc , and λ∗,loc(N) := infω>0 λ
∗,loc(N,ω). It is also easy

to see that λ∗,loc(N)= λ∗,loc(N,ω) for all ω > 0.
We give a comparison theorem for λ∗,loc(N) and λ∗(N).

Theorem 2

λ∗,loc(N)≥ 1

96dN2
λ∗
(|ΛN |

)
.

In particular, since λ∗(|ΛN |)≥ 1
4 for all N ≥ 2 by (2),

λ∗,loc(N)≥ 1

384dN2
. (5)

In the proof, we use the invariance of ν under the exchange of coordinates repeat-
edly, and the idea of “moving particle lemma” which was developed for the study of
the spectral gap of interacting particle systems with discrete spins (cf. [12]). Gener-
ally, it is not easy to show the estimate corresponding to “moving particle lemma”
for the systems with continuous spins. However, for the generator of the form (4),
we show that the estimate can be established. A proof of Theorem 2 is given in the
next subsection.
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Next, we consider a generalization of Kac walk introduced in [4] by Carlen et al.
Let ρ(θ) be a probability density on the circle, i.e.

∫ π

−π

ρ(θ)= 1.

Consider a ν = νN,ω-reversible Markov process on SN−1(ω) with infinitesimal gen-
erator given by

Lf (η)= 1

2N

N∑

i,j=1

∫ π

−π

[
f
(
R

ij
θ η
)− f (η)

]
ρ(θ)dθ.

We define the spectral gap λ(N,ω) by (1) with −L∗ replaced by −L and λ(N) :=
infω>0 λ(N,ω). For this generalization, λ(N)= λ(N,ω) holds for any ω > 0 again,
since L commutes with the unitary change of scale from SN−1(ω) to SN−1(ω′), for

any ω,ω′ > 0. Indeed, νN,ω′ is the image of νN,ω under the map T : η→
√
ω′η√
ω

and

if fT (η)= f (T η), then

νN,ω

(
fT (−L)fT

)= νN,ω′
(
f (−L)f

)
(6)

holds. Note that, to guarantee λ(N) > 0, we need some more assumptions on ρ.
We introduce the local version of this generalized Kac walk described by the

infinitesimal generator

Llocf (η)= 1

2

∑

x∈ΛN

∑

y∈ΛN‖x−y‖=1

∫ π

−π

[
f
(
R

xy
θ η

)− f (η)
]
ρ(θ)dθ

and define the spectral gap λloc(N,ω) and λloc(N), which satisfying λloc(N) =
λloc(N,ω) for all ω > 0, in the same manner as before. In [4], under the assumption
that ρ(θ) is continuous and ρ(0) > 0, it is shown that

λ(N)≥ λ(2)
N + 2

2N
, N ≥ 2. (7)

Under their assumption on ρ(θ), it is also proved that λ(2) > 0 and therefore
λ(N) > 0.

Our next result shows that the proof of (7) can be somewhat simplified, and we
also have a lower bound on λloc(N). Note that since we only assume that ρ(θ) is a
probability density on the circle, λ(2) is not necessarily positive.

Theorem 3

λ(N)≥ 2λ(2)λ∗(N), λloc(N)≥ 2λ(2)λ∗,loc(N).

In particular, with (2), we have (7) and with (5), we have

λloc(N)≥ λ(2)
1

192dN2
.
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In the next result, we also give an upper bound of λ(N) and λloc(N). Denote the
supremum of the spectral of −L for N = 2 by κ :

κ := sup
ω>0

sup

{
ν2,ω(f (−L)f )

ν2,ω(f 2)

∣∣∣∣ν2,ω(f )= 0, f ∈ L2(ν2,ω)

}
.

Theorem 4

λ(N)≤ 2κλ∗(N), λloc(N)≤ 2κλ∗,loc(N).

In particular, since κ ≤ 1, we have λ(N)≤ 2λ∗(N) and λloc(N)≤ 2λ∗,loc(N).

The key of the proofs of the above comparison theorems is the fact that
ν((Di,j f )2) is the expectation of the variance of f with respect to ν(·|Fi,j ) where
Fi,j is the sigma algebra generated by the coordinates {ηk; k 	= i, j}, and there-
fore this variance can be estimated by the term of λ(2) or κ and the corresponding
Dirichlet form. Proofs of Theorem 3 and Theorem 4 are given in the Sect. 1.2.

In Sect. 2, we shall show that variants of the same methods can be used to obtain
spectral gap estimates for several models sharing some of the features of the Kac
walk or the generalization of Kac walk. In Sec. 3, we give two examples of such
processes.

1.1 Proof of Theorem 2

We first introduce operators Ei,j appearing in the definition of L∗ and πi,j which
represents the exchange of the velocity of particles i and j :

Ei,jf (η)= 1

2π

∫ π

−π

f
(
R

ij
θ η
)
dθ, πi,j f (η)= f (πi,j η)

where

(πi,j η)k =

⎧
⎪⎨

⎪⎩

ηk if k 	= i, j ,

ηj if k = i,

ηi if k = j .

As a convention, we take πi,iη = η. Note that Ei,j is a projection which coincides
with ν-conditional expectation given σ -algebra Fi,j generated by variables {ηk; k 	=
i, j}. In other words, Ei,j f = ν(f |Fi,j ) is an average of f on the (ηi, ηj ) plane with
respect to ν. Therefore, we regard this model as a binary collision process given by
simple averages. Note that, by the definition Di,j =Ei,j − Id.

To compare the Dirichlet form with respect to the long range operators with that
of the local operators, we first prepare preliminary lemmas.
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Lemma 1 For any x, y and z ∈ΛN satisfying y 	= z,

ν
(
(Dx,yf )2)≤ 6ν

(
(πx,zf − f )2)+ 3ν

(
(Dz,yf )2)

for all f ∈ L2(ν).

Proof If x = y, then ν((Dx,yf )2) = 0, so the inequality obviously holds. On the
other hand, if x 	= y and y 	= z, then for any η,

Ex,yf (η)= πx,z

(
Ez,y(πx,zf )

)
(η)= (Ez,y(πx,zf )

)
(πx,zη).

Therefore, by Schwarz’s inequality and change of variables, we have

ν
(
(Dx,yf )2)= ν

(
(Ex,yf − f )2)= ν

({(
Ez,y(πx,zf )

)
(πx,zη)− f (η)

}2)

= ν
({(

Ez,y(πx,zf )
)
(η)− (Ez,yf )(η)

+ (Ez,yf )(η)− f (η)+ f (η)− f (πx,zη)
}2)

≤ 3ν
({(

Ez,y(πx,zf )
)
(η)− (Ez,yf )(η)

}2)+ 3ν
(
(Dz,yf )2)

+ 3ν
(
(πx,zf − f )2).

Finally, since ν({(Ez,y(πx,zf ))(η) − (Ez,yf )(η)}2) = ν({Ez,y(πx,zf − f )}2) ≤
ν(Ez,y(πx,zf − f )2)= ν((πx,zf − f )2), we complete the proof. �

Lemma 2 For any x, y ∈ΛN ,

ν
(
(πx,yf − f )2)≤ 4ν

(
(Dx,yf )2).

Proof Since Ex,yf (η)=Ex,yf (πx,yη), by Schwarz’s inequality, we have

ν
(
(πx,yf − f )2)= ν

(
(πx,yf −Ex,yf +Ex,yf − f )2)≤ 4ν

(
(Dx,yf )2).

�

Proof of Theorem 2 For each pair x, y ∈ ΛN (x 	= y), choose a canonical path
Γ (x, y)= (x = z0, z1, . . . , zn(x,y) = y) where n(x, y) ∈ N and ‖zi − zi+1‖ = 1 for
0 ≤ i ≤ n(x, y) − 1 by moving first in the first coordinate direction, then in the
second coordinate direction, and so on. Then, by Lemma 1, we have

ν
(
(Dx,yf )2)≤ 6ν

(
(πx,zn(x,y)−1f − f )2)+ 3ν

(
(Dzn(x,y)−1,y f )2). (8)

On the other hand, since

πx,zn(x,y)−1 = πz0,z1 ◦ πz1,z2 ◦ · · · ◦ πzn(x,y)−3,zn(x,y)−2 ◦ πzn(x,y)−2,zn(x,y)−1

◦ πzn(x,y)−3,zn(x,y)−2 ◦ · · · ◦ πz1,z2 ◦ πz0,z1 ,
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by Schwarz’s inequality

ν
(
(πx,zn(x,y)−1f − f )2)≤ 4n(x, y)

n(x,y)−2∑

i=0

ν
(
(πzi ,zi+1f − f )2). (9)

Therefore, combining the inequalities (8), (9) and Lemma 2, we have

ν
(
(Dx,yf )2)≤ 96 n(x, y)

n(x,y)−1∑

i=0

ν
(
(Dzi,zi+1f )2).

Then, by the construction of canonical paths,

ν
(
f
(−L∗)f )= 1

|ΛN |
∑

x,y∈ΛN

ν
(
(Dx,yf )2)

≤ 96dN
1

|ΛN |
∑

x,y∈ΛN

n(x,y)−1∑

i=0

ν
(
(Dzi,zi+1f )2)

≤ 96dN2
∑

x,y∈ΛN‖x−y‖=1

ν
(
(Dx,yf )2)= 96dN2ν

(
f
(−L∗,loc)f ).

�

Remark 1 The key ideas of the proof of Theorem 2, Lemmas 1 and 2 were exactly
same as the ideas presented in Sect. 2.5 of [1].

1.2 Proof of Theorem 3 and Theorem 4

We define an operator L0 on L2(ν2,ω) as

L0f (η)= 1

2

{∫ π

−π

[
f
(
R12

θ η
)− f (η)

]
ρ(θ)dθ +

∫ π

−π

[
f
(
R21

θ η
)− f (η)

]
ρ(θ)dθ

}

where η ∈ R
2. For N ≥ 3, η ∈ R

N , 1 ≤ i < j ≤ N and f : RN → R, define f
i,j
η :

R
2 →R as

f i,j
η (p, q)= f (η1, η2, . . . , ηi−1,p, ηi+1, . . . , ηj−1, q, ηj+1, . . . , ηN).

Then, we can rewrite the Markov generator as follows:

Lf (η)= 1

N

∑

i<j

Li,j f (η)
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where Li,j f (η) = (L0f
i,j
η )(ηi, ηj ). Note that f i,j

η does not depend on ηi and ηj .
Then, we have

ν
(
f (−Li,j )f

) = ν
(
f i,j
η (ηi, ηj )

(
(−L0)f

i,j
η

)
(ηi, ηj )

)

= ν
(
ν2,η2

i +η2
j

(
f i,j
η (−L0)f

i,j
η

))
. (10)

Note that for N = 2, L= 1
2L0. Therefore, by definition, we have for any ω > 0 and

g ∈ L2(ν2,ω),

2λ(2)ν2,ω
({

g − ν2,ω(g)
}2)≤ ν2,ω

(
g(−L0)g

)≤ 2κν2,ω
({

g− ν2,ω(g)
}2)

.

Since

ν
(
ν2,η2

i +η2
j

({
f i,j
η − ν2,η2

i +η2
j

(
f i,j
η

)}2)) = ν
({

f i,j
η − ν2,η2

i +η2
j

(
f i,j
η

)}2)

= ν
({f −Ei,jf }2

)
,

we have

2λ(2)ν
(
(Di,j f )2)≤ ν

(
f (−Li,j )f

)≤ 2κν
(
(Di,j f )2).

Finally, it follows that

2λ(2)ν
(
f
(−L∗)f )≤ ν

(
f (−L)f

)≤ 2κν
(
f
(−L∗)f )

and therefore 2λ(2)λ∗(N)≤ λ(N)≤ 2κλ∗(N). In the same way, 2λ(2)λ∗,loc(N)≤
λloc(N)≤ 2κλ∗,loc(N) is shown.

Now, it remains to show that κ ≤ 1. This follows from this simple inequality
obtained by Schwarz’s inequality:

ν2,ω
(
f (−L)f

)= 1

8
ν2,ω

(∫ π

−π

[
f
(
R12

θ η
)− f (η)

]2(
ρ(θ)+ ρ(−θ)

)
dθ

)

≤ 1

4
ν2,ω

(∫ π

−π

[
f
(
R12

θ η
)2 + f (η)2](ρ(θ)+ ρ(−θ)

)
dθ

)

= ν2,ω
(
f 2).

We use only here the assumption that ρ(θ) is a probability density on the circle.

2 General Setting

The general setting can be described as follows. We consider a product space
Ω =XN where X, the single component space is a measurable space equipped with
a probability measure μ. On Ω , we consider the product measure μN . Elements of
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Ω will be denoted by η = (η1, η2, . . . , ηN). Next, we take a measurable function
ξ :X→R

m, for a given m≥ 1, and we define the probability measure ν = νN,ω on
Ω as μN conditioned on the event

ΩN,ω :=
{
η ∈Ω;

N∑

i=1

ξ(ηi)= ω

}
,

where ω ∈ΘN is a given parameter and ΘN := {∑N
i=1 ξ(ηi);η ∈XN }. We interpret

the constraint on ΩN,ω as a conservation law.
In all the examples considered below there are no difficulties in defining the

conditional probability ν, therefore we do not attempt here at a justification of this
setting in full generality but rather refer to the examples for full rigor. As pointed
out in [3], the crucial property of ν is that, for any set of indices A, conditioned on
the σ -algebra FA generated by variables ηi, i /∈ A, ν becomes the μ-product law
over ηj , j ∈A, conditioned on the event

∑

j∈A
ξ(ηj )= ω−

∑

i /∈A
ξ(ηi).

We introduce some notations in analogy with the last section. For N ≥ 3, η ∈XN ,
1≤ i < j ≤N and f :XN →R, define f

i,j
η :X2 →R as

f i,j
η (p, q)= f (η1, η2, . . . , ηi−1,p, ηi+1, . . . , ηj−1, q, ηj+1, . . . , ηN).

For each ω ∈ Θ2, fix a well defined (possibly unbounded, with dense domain de-
noted by D(L0)) nonnegative self-adjoint operator L0 = Lω

0 defined on L2(ν2,ω)

satisfying L0f = 0 if f is a constant function. We are interested in the process on
ΩN,ω described by the infinitesimal generator

Lf (η)= 1

N

∑

i<j

Li,j f (η) (11)

where Li,j f (η)= (L0f
i,j
η )(ηi, ηj )= (Lξ(ηi )+ξ(ηj )

0 f
i,j
η )(ηi, ηj ). In all the examples

considered below there are no difficulties to see that for each ω ∈ ΘN there exits
a dense subset of L2(νN,ω) denoted by D(L) such that for all f ∈ D(L), Lf ∈
L2(νN,ω) is well defined, and f

i,j
η ∈D(L0) for all i < j and η ∈ΩN,ω. Moreover,

by the construction, L is nonnegative self-adjoint operator on D(L). As before, we
refer to the examples for fully rigorous formulations.

We also define the local version of the dynamics on ΩΛN,ω defined by

Llocf (η)=
∑

x,y∈ΛN‖x−y‖=1

Lx,yf (η)

where Lx,yf (η)= (L0f
x,y
η )(ηx, ηy). Here f

x,y
η is defined in the same way as f

i,j
η ,

and the sum runs over all unordered pairs x, y ∈ΛN satisfying ‖x − y‖ = 1.
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The spectral gap λ(N,ω) (resp. λloc(N,ω)) is defined by (1) with L2(ν) replaced
by D(L) (resp. D(Lloc)), and −L∗ replaced by −L (resp. −Lloc). As a convention,
we may set λ(N,ω)=+∞ if ω is such that the measure ν becomes a Dirac delta.
This convention shall apply also for λloc(N,ω), λ∗(N,ω) and λ∗,loc(N,ω) where
the last two terms will be defined below.

To obtain lower and upper bounds on λ(N,ω) and λloc(N,ω), we consider a
binary collision process given by simple averages, which was introduced by Caputo
in [3]. This process is described by the infinitesimal generator

L∗f (η)= 1

N

∑

b

{
ν[f |Fb] − f

}
(12)

where the sum runs over all
(
N
2

)
unordered pairs b = {i, j} and ν[f |Fb] is the

ν-conditional expectation of f given the variables ηk, k /∈ b. Setting, as before,
Di,j =Db = ν[·|Fb] − Id. As usual, we refer to the examples for fully rigorous for-
mulations. As in the last section, we also consider the local version of the process
described by the infinitesimal generator

L∗,locf (η)=
∑

x,y∈ΛN‖x−y‖=1

Dx,yf (η) (13)

where ‖x − y‖ =∑d
i=1 |xi − yi |. Note that in all the examples considered below,

it is easy to check that D(L∗) = D(L∗,loc) = L2(ν). The spectral gap λ∗(N,ω) is
defined by (1) and λ∗,loc(N,ω) is defined by (1) with −L∗ replaced by −L∗,loc.

Remark 2 L∗ can be seen as a special case of L in the form (11) with Lω
0 f =

ν2,ω(f )− f for f ∈ L2(ν2,ω).

First, we show a comparison theorem between λ∗,loc(N,ω) and λ∗(N,ω).

Theorem 5 For any N ≥ 2 and ω ∈ΘN ,

λ∗,loc(N,ω)≥ 1

96dN2
λ∗
(|ΛN |,ω

)
.

In particular,

inf
N≥2

inf
ω∈ΘN

λ∗(N,ω) > 0 (14)

implies

inf
N≥2

inf
ω∈Θ|ΛN |

N2λ∗,loc(N,ω) > 0. (15)

Proof We repeat the proof of Theorem 2. Indeed we only used the property that
the generators L∗ and L∗,loc are described in the forms (12), (13) with the special
operators Di,j . �



Spectral Gap of Binary Collision Processes 553

Now, we give a comparison theorem between λ(N,ω) (resp. λloc(N,ω)) and
λ∗(N,ω) (resp. λ∗,loc(N,ω)). Define λ(2)= infω∈Θ2 λ(2,ω) and κ as

κ := sup
ω∈Θ2

sup

{
ν2,ω(f (−L)f )

ν2,ω(f 2)

∣∣∣∣ν2,ω(f )= 0, f ∈D(L)

}

where L is the generator for N = 2, namely 1
2L0. Here, as a convention, we may

set sup{ ν2,ω(f (−L)f )

ν2,ω(f
2)

|ν2,ω(f )= 0, f ∈D(L)} = −∞ if ω is such that the measure

ν becomes a Dirac delta.

Theorem 6 For any N ≥ 2 and ω ∈ΘN ,

2λ(2)λ∗(N,ω)≤ λ(N,ω)≤ 2κλ∗(N,ω), (16)

2λ(2)λ∗,loc(N,ω)≤ λloc(N,ω)≤ 2κλ∗,loc(N,ω). (17)

In particular, if λ(2) > 0, then (14) implies

inf
N≥2

inf
ω∈ΘN

λ(N,ω) > 0 (18)

and inf
N≥2

inf
ω∈Θ|ΛN |

N2λloc(N,ω) > 0. (19)

On the other hand, if κ <∞, then (18) implies (14), (15) and (19).

Proof We repeat the steps of the proofs of Theorem 3 and 4 to show (16) and (17).
Indeed, this is a simple consequence of (10) with ξ(ηi)+ ξ(ηj ) in place of η2

i + η2
j ,

and the fact that L= 1
2L0 for N = 2, which always hold under our general setting.

Note that since we assume that L0f = 0 for any constant f , we have for any ω ∈Θ2

and g ∈ L2(ν2,ω),

ν2,ω
(
g(−L0)g

)= ν2,ω
({

g− ν2,ω(g)
}
(−L0)

{
g − ν2,ω(g)

})
,

and therefore,

2λ(2)ν2,ω
({

g − ν2,ω(g)
}2)≤ ν2,ω

(
g(−L0)g

)≤ 2κν2,ω
({

g− ν2,ω(g)
}2)

.

The latter part of the theorem follows from Theorem 5 and the former part of the
theorem immediately, noting that (18) implies λ(2) > 0. �

Remark 3 There exist many of models with the spectral gap satisfying λ(2,ω) > 0
for all ω ∈ Θ2, but λ(2) = 0. For these models, it is clear that the required lower
bound (18) or (19) does not hold. For these models, we should give the estimate of
λ(N,ω) not only in terms of N but also in ω (cf. [12, 13]).
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Remark 4 By definition, λ∗(2,ω) = 1
2 for all ω except for ω such that λ∗(2,ω) =

λ(2,ω)=+∞. Therefore, for N = 2, (16) states that the following trivial relation
holds:

λ(2)≤ λ(2,ω)≤ κ.

Theorem 7 Assume λ∗(3) := infω∈Θ3 λ
∗(3,ω) > 1

3 and λ(2) > 0. Then, (14), (15),
(18) and (19) hold.

Proof Caputo proved in [3] that for N ≥ 2 and ω ∈ΘN ,

λ∗(N,ω)≥ (3λ∗(3)− 1
)(

1− 2

N

)
+ 1

N

holds. Therefore, λ∗(3) > 1
3 implies (14) holds, and therefore (15) also holds by

Theorem 5. Then, since we assume λ(2) > 0, (18) and (19) also hold by Theo-
rem 6. �

Remark 5 Whether the condition λ∗(3) > 1
3 (or (14)) holds or not depends only on

the triplet (X, ξ,μ). Namely the analysis of the spectral gap of the process described
by the infinitesimal generator of the form (11) is reduced to the analysis of the
property of the triplet, that is, the state space, the conservation law and the reversible
measure, and the spectral gap of the same system for N = 2.

Remark 6 It is known that λ∗(3) > 1
3 is not the necessary condition for (14). In-

deed, Caputo showed in [3] that λ∗(4) := infω∈Rm λ∗(4,ω) > 1
4 and λ∗(3) > 0 also

implies (14).

3 Examples

3.1 Kac Walk

The model discussed in the introduction can be seen as a special case of our general
setting, so that Theorem 2, Theorem 3 and Theorem 4 become special cases of
Theorem 5 and Theorem 6, respectively. Here X = R, ξ(η)= η2 (with m= 1) and
μ is the centered Gaussian measure with variance v > 0. The choice of v does not
influence the determination of νN,ω. As shown in [3], this model satisfies λ∗(3) > 1

3
and therefore (14) holds.

3.2 Energy Exchange Model

Here we consider a special class of the energy exchange models introduced in [6] by
Grigo et al. We refer [6] for background and motivation on the model. Let X =R+,
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ξ(η) = η (with m = 1), and μ be the Gamma distribution with a shape parameter
γ > 0 and a scale parameter 1, i.e.

μ(dη)= ηγ−1 e−η

Γ (γ )
dη.

Note that the choice of the scale parameter does not influence the determination of
νN,ω. We consider a Markov process defined by its infinitesimal generator Lloc , and
L given by

Lf (η)= 1

N

∑

i<j

Li,j f (η), Llocf (η)=
∑

x,y∈ΛN‖x−y‖=1

Lx,yf (η)

where Li,j f (η)= (L0f
i,j
η )(ηi, ηj ), Lx,yf (η)= (L0f

x,y
η )(ηx, ηy),

L0f (η)=Λ(η1, η2)

∫

[0,1]
P(η1, η2, dα)

[
f (Tαη)− f (η)

]
.

Here, Λ : R2+ → R+ is a continuous function and P(η1, η2, dα) is a probability
measure on [0,1], which depends continuously on (η1, η2) ∈ R

2+. The maps Tα

model the energy exchange between two sites, and are defined by

Tαη= η+ [αη2 − (1− α)η1
][e1 − e2]

where ei denotes the i-th unit vector of R2. In words, the associated Markov process
given by Lloc with d = 1 goes as follows: Consider the one-dimensional lattice
{1,2, . . . ,N}. To every site i of this lattice we associate an energy ηi ∈ X = R+.
The collection of all the energies is denoted by η = (η1, . . . , ηN) ∈ XN . To each
nearest neighbor pair of the lattice we associate an independent exponential clock
with a rate Λ that depends on the energies of this pair ηi, ηi+1. As soon as one
of the N − 1 clocks rings, say for the pair (i, i + 1), then a number 0 ≤ α ≤ 1 is
drawn according to a distribution P , that only depends on the two energies ηi, ηi+1.
Then, the updated configuration of the energies is such that the new energy at site
i is α(ηi + ηi+1), the new energy at site i + 1 is (1− α)(ηi + ηi+1), and all other
energies remain unchanged.

To guarantee the reversibility of the process with respect to μN (or μΛN ), we
assume the following:

Assumption 1 The rate function Λ and the transition kernel P are of the form

Λ(η1, η2)=Λs(η1 + η2)Λr

(
η1

η1 + η2

)
,

P (η1, η2, dα)= P

(
η1

η1 + η2
, dα

)
.

(20)
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Moreover, Λs(σ )Λr(β) > 0 for all σ > 0 and 0 < β < 1, sup0<β<1 Λr(β) <∞,
and the Markov chain on [0,1] with transition kernel P(β,dα) has a unique invari-
ant distribution p(·) given by

p(dβ)= dβ
[
β(1− β)

]γ−1 Γ (2γ )

Γ (γ )2
Λr(β)

1

Z

where Z is the normalizing constant, and p is a reversible measure for the Markov
chain generated by P .

Remark 7 Grigo et al. pointed in [6] that the representation (20) naturally occurs in
models originating from mechanical systems.

Under Assumption 1, Grigo et al. showed in [6] that L (resp. Lloc) is reversible
with respect to the product measure μN (resp. μΛN ). Therefore, we define the spec-
tral gap λ(N,ω) of L and λloc(N,ω) of Lloc for each ω > 0 as before.

Theorem 8 If infσ>0 Λs(σ ) > 0, then

inf
N≥2

inf
ω>0

λ(N,ω) > 0 and inf
N≥2

inf
ω>0

N2λloc(N,ω) > 0.

To prove the theorem, we first study the spectral gap for the generator L∗ and
L∗,loc , which are the special case of the above model given by

Λ∗
s (σ )= 1, Λ∗

r (β)= 1, P ∗(β, dα)= Γ (2γ )

Γ (γ )2

{
α(1− α)

}d−1
dα.

By definition, we can easily check that

L∗f (η)= 1

N

∑

i<j

Di,j f (η), L∗,locf (η)=
∑

x,y∈ΛN‖x−y‖=1

Dx,yf (η),

and, by the unitary change of scale from ΩN,ω to ΩN,1, we have

λ∗(N,ω)= λ∗(N,1) := λ∗(N), λ∗,loc(N,ω)= λ∗,loc(N,1) := λ∗,loc(N).

To obtain the exact value of λ∗(N) for N ≥ 2, we recall Theorem 1.1 in [3]:

λ∗(N)≥ (3λ∗(3)− 1
)(

1− 1

N

)
+ 2

N
. (21)

Moreover, if there exists ψ :X→R such that the function

f3(η1, η2, η3)=
3∑

i=1

ψ(ηi)
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satisfies, for N = 3, L∗f3 =−λ∗(3)f3 + const., regardless of the value of
∑3

i=1 ηi

(although the constant may depend on this value), then (21) can be turned into an
identity for each N ≥ 2.

Next, we apply the method introduced by Carlen, et al. in [4] to solve the 3-
dimensional problem. This approach was already used in [3] to show that λ∗(N)=
N+1
3N if γ = 1.

Theorem 9 For any γ > 0,

λ∗(N)= γN + 1

N(2γ + 1)
. (22)

Proof As same way in Examples 2.2 in [3], we observe that when N = 3, then
L∗ + 1 coincides with the average operator P introduced in [4]. Therefore we can
apply the general analysis of Sect. 2 in [4]. The outcome is that

λ∗(3)≥ 1

3
min{2+μ1,2− 2μ2} (23)

where the parameters μ1 and μ2 are given by

μ1 = inf
φ

ν
(
φ(η1)φ(η2)

)
, μ2 = sup

φ

ν
(
φ(η1)φ(η2)

)

with φ chosen among all functions φ : X → R satisfying ν(φ(η1)
2) = 1 and

ν(φ(η1)) = 0. Here ν stands for ν3,ω but we have removed the subscripts for
simplicity. One checks that the parameters μ1,μ2 do not depend on ω. Write
Kφ(ζ ) = ν[φ(η2)|η1 = ζ ], ζ > 0. This defines a self-adjoint Markov operator on
L2(ν1), where ν1 is the marginal on η1 of ν. In particular, the spectrum Sp(K)

of K contains 1 (with eigen space given by the constants). Then μ1, μ2 are, re-
spectively, the smallest and the largest value in Sp(K) \ {1}, as we see by writ-
ing ν(φ(η1)φ(η2))= ν[φ(η1)Kφ(η1)]. This is now a one-dimensional problem and
μ1,μ2 can be computed as follows. To fix ideas we use the value ω = 1 for the
conservation law η1 + η2 + η3. In this case ν1 is the law on [0,1] with density

Γ (3γ )
Γ (2γ )Γ (γ )

ηγ−1(1− η)2γ−1. Moreover,

Kφ(η1)= Γ (2γ )

Γ (γ )2(1− η1)2γ−1

∫ 1−η1

0
φ(η2)

{
η2(1− η1 − η2)

}γ−1
dη2.

In particular, φ(η)= η− 1
3 is an eigenfunction of K with eigenvalue− 1

2 . Moreover,
K preserves the degree of polynomials so that if Qn denotes the space of all poly-
nomials of degree d ≤ n we have KQn ⊂ Qn. By induction we see that for each
n≥ 1 the polynomial ζ n+ qn−1(ζ ), for a suitable qn−1 ∈Qn−1, is an eigenfunction
with eigenvalue μn = (−1)n Γ (2γ )Γ (n+γ )

Γ (γ )Γ (n+2γ )
, and it is orthogonal to Qn−1 in L2(ν1).

Since the union of Qn,n≥ 1, is dense in L2(ν1) this shows that there is a complete
orthonormal set of eigenfunctions φn, where φn is a polynomial of degree n with
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eigenvalue μn and Sp(K)= {μn,n= 0,1, . . .}. Therefore we can take μ1 =− 1
2 and

μ2 = 1+γ
2(1+2γ )

in the formula (23) and we conclude that λ∗(3)≥ 1+3γ
3(1+2γ )

.

To end the proof, we take f = η2
1 + η2

2 + η2
3 and, using ν[η2

1|η2] = 1+γ
2(1+2γ )

(η2 −
1)2, we compute

L∗f (η)=− 1+ 3γ

3(1+ 2γ )
f (η)+ const.

Thus, λ∗(3)= 1+3γ
3(1+2γ )

. Clearly, the unitary change of scale does not alter the form
of the eigenfunction so that (22) follows. �

Remark 8 The consequence of Theorem 9 was shown in [5] with a different proof.

Remark 9 By Theorem 2.12 in [6], for d = 1, λ∗,loc(N) ≥ γ
2γ+1 sin2( π

N+2 ) holds.
However, to estimate the spectral gap with degenerate rate function, namely the case
where infσ>0 Λs(σ )= 0, we need to estimate the spectral gap on the complete graph
(see [13]).

Proof of Theorem 8 By Theorem 6, we only need to show that λ(2) =
infω>0 λ(2,ω) > 0. By the assumption, for N = 2,

ν
(
f (−L)f

)

=Λs(ω)ν

(
Λr

(
η1

η1 + η2

)∫

[0,1]
{
f (Tαη)− f (η)

}2
P

(
η1

η1 + η2
, dα

))
.

Therefore, by the unitary change of scale from Ω2,ω to Ω2,1, we have

λ(2,ω)= Λs(ω)

Λs(1)
λ(2,1).

Then, by our assumption, λ(2,1) > 0 and therefore λ(2) > 0. �

3.3 Zero-Range Processes

The class of zero-range processes is one of the well-studied interacting particle sys-
tems (cf. [8]). Though the process is of gradient type, the lower bound estimate of
the spectral gap itself has been considered as an interesting problem and studied by
several people ([2, 9, 11]). Here, we take X = N ∪ {0}, ξ(η) = η, and consider a
partition function Z(·) on R+ by

Z(α)=
∑

k≥0

αk

g(1)g(2) . . . g(k)
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where g : N→ R+ is a positive function. Let α∗ denote the radius of convergence
of Z:

α∗ = sup
{
α ∈R+;Z(α) <∞}.

In order to avoid degeneracy, we assume that the partition function Z diverges at the
boundary of its domain of definition:

lim
α↑α∗Z(α)=∞.

For 0≤ α < α∗, let pα be the probability measure on X given by

pα(η= k)= 1

Z(α)

αk

g(k)! , k ∈X

where g(k)! = g(1)g(2) . . . g(k). Note that the choice of 0≤ α < α∗ does not influ-
ence the determination of ν = νN,ω .

First, we consider L∗ defined by (12) and study the value of λ∗(3). Following the
same argument of the computation of λ∗(3) in Example 3.2, we can show that

λ∗(3)≥ 1

3
min{2+μ1,2− 2μ2}

where the parameters μ1, μ2 are, respectively, the smallest and the largest value in
{Sp(Kn) \ {1};n ∈N} and Kn = (K(n)

ij ) is the n× n matrix given by

K(n)
ij =

⎧
⎨

⎩

1
g(n−j)!g(i−1−(n−j))! (

∑i−1
l=0

1
g(l)!g(i−1−l)! )

−1 if i > n− j

0 if i ≤ n− j.

By the Perron-Frobenius theorem, μ1 >−1. Therefore, μ2 < 1
2 is a sufficient con-

dition for λ∗(3) > 1
3 . In [14], the set {Sp(Kn)\ {1};n ∈N} is completely determined

for the cases where g(k)= 1 for all k ∈ N or g(k)= k for all k ∈ N. In the former
case, μ2 = 1

3 and in the latter case μ2 = 1
4 . It concludes that λ∗(3) > 1

3 for both
cases and therefore (14) and (15) hold.

Next, we consider the generator of zero-range processes defined by

Lf (η)= 1

N

∑

i<j

Li,j f (η), Llocf (η)=
∑

x,y∈ΛN‖x−y‖=1

Lx,yf (η)

where Li,j f (η)= (L0f
i,j
η )(ηi, ηj ), Lx,yf (η)= (L0f

x,y
η )(ηx, ηy),

L0f (η1, η2) = g(η1)
{
f (η1 − 1, η2 + 1)− f (η1, η2)

}

+ g(η2)
{
f (η1 + 1, η2 − 1)− f (η1, η2)

}
.
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As a convention, we take g(0)= 0. To apply Theorem 7, we need to study λ(2)=
infω∈N≥0 λ(2,ω). For the choice g(k) = 1 for all k ∈ N, it is known that λ(2) = 0.
On the other hand, a sufficient condition for λ(2) > 0 was given in [9] as follows:

Proposition 1 Assume that the following two conditions are satisfied:

(i) supk |g(k + 1)− g(k)|<∞,
(ii) There exists k0 ∈N and C > 0 such that g(k)− g(j)≥ C for all k ≥ j + k0.

Then, we have λ(2) > 0.

Theorem 10 Assume that the two conditions in Proposition 1 are satisfied, and
μ2 < 1

2 . Then, (18) and (19) hold.

Proof By the above argument, we can apply Theorem 7 straightforwardly. �
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A Restricted Sum Formula for a q-Analogue
of Multiple Zeta Values

Yoshihiro Takeyama

Abstract We prove a new linear relation for a q-analogue of multiple zeta values.
It is a q-extension of the restricted sum formula obtained by Eie, Liaw and Ong for
multiple zeta values.

1 Introduction

Let α = (α1, . . . , αr) be a multi-index of positive integers. We call the values r and∑r
i=1 αi depth and weight of α, respectively. If α1 ≥ 2, we say that α is admissible.

For an admissible index (α1, . . . , αr), multiple zeta value (MZV) is defined by

ζ(α1, . . . , αr ) :=
∑

m1>···>mr>0

1

m
α1
1 · · ·mαr

r

.

Let I0(r, n) be the set of admissible indices of depth r and weight n. In [3], Eie,
Liaw and Ong proved the following relation called a restricted sum formula:

∑

α∈I0(b,n)

ζ
(
α1, . . . , αb,1a

)=
∑

β∈I0(a+1,a+b+1)

ζ(β1 + n− b− 1, β2, . . . , βa+1),

(1)

where a ≥ 0, b ≥ 1, n ≥ b + 1 and 1a is an abbreviation of the subsequence
(1, . . . ,1) of length a. It is a generalization of the sum formula proved in [4, 9],
which is the equality (1) with a = 0.

In this paper we prove a q-analogue of the restricted sum formula. Let 0 < q < 1.
For an admissible index α = (α1, . . . , αr), a q-analogue of multiple zeta value
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(qMZV) [1, 5, 10] is defined by

ζq(α1, . . . , αr) :=
∑

m1>···>mr>0

q(α1−1)m1+···+(αr−1)mr

[m1]α1 · · · [mr ]αr
,

where [n] is the q-integer [n] := (1 − qn)/(1 − q). In the limit q → 1, qMZV
converges to MZV. The main theorem of this article claims that qMZV’s also satisfy
the restricted sum formula:

Theorem 1 For any integers a ≥ 0, b ≥ 1 and n≥ b+ 1, it holds that
∑

α∈I0(b,n)

ζq
(
α1, . . . , αb,1a

)=
∑

β∈I0(a+1,a+b+1)

ζq(β1 + n− b− 1, β2, . . . , βa+1).

(2)

Setting a = 0 we recover the sum formula for qMZV obtained by Bradley [2].
In [7] Okuda and the author proved a q-analogue of Ohno-Zagier’s relation for
MZV’s [6]. It claims that the sum of qMZV’s of fixed depth, weight and height, the
number of elements αi grater than 1, is written as a polynomial of the values ζq(n)

(n ∈ Z≥2) with rational coefficients. The left hand side of (2) is a similar sum, which
contains only the qMZV’s with a tail 1a .

The strategy to prove Theorem 1 is similar to that of the proof for MZV’s. How-
ever we should overcome some new difficulties. In the calculation of the q-analogue
case, some additional terms are of the form

∑∞
n=1 q

kn/[n]k (k ∈ Z≥1). In the limit
of q→ 1, it becomes a harmonic sum

∑
1/nk , but it is presumably beyond the class

of q-series described by qMZV’s. To control such terms we make use of algebraic
formulation of multiple harmonic series given in Sect. 2.2. We introduce a noncom-
mutative polynomial algebra d which is an extension of the algebra used in the proof
of a q-analogue of Kawashima’s relation for MZV [8]. Then the proof of Theorem 1
is reduced to an algebraic calculation in d as will be seen in Sect. 2.3. We proceed
the algebraic computation in Sect. 2.4 and finish the proof of Theorem 1.

Throughout this article we assume that 0 < q < 1. We denote the set of multi-
indices of positive integers, including non-admissible ones, of depth r and weight n
by I (r, n).

2 Proof

2.1 Summation over Indices

For b ≥ 1, n≥ 2 and M ∈ Z≥1, define

Kb,n(M) :=
∑

α∈I0(b,n)

∑

m1>m2>···>mb−1>mb=M

b∏

j=1

q(αj−1)mj

[mj ]αj
.
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Since α1 ≥ 2, the infinite sum in the right hand side is convergent. Note that
K1,n(M)= q(n−1)M/[M]n.

For positive integers �,β,M and N (N >M), we set

f�(N,M) :=
∑

N=k1>k2>···>k�>M

qk1−M

[k1 −M]
�∏

j=2

1

[kj −M] ,

g�,β(M) :=
∑

M=m1≥m2≥···≥m�≥1

q(β−1)m1

[m1]β
�∏

j=2

qmj

[mj ] .

We set f�(N,M)= 0 unless N >M . Note that g1,β(M)=K1,β(M).

Lemma 1 For M ≥ 1, b ≥ 1 and n≥ 2, it holds that

Kb,n(M)= gb,n−b+1(M)−
b−1∑

s=1

∞∑

N=M+1

Kb−s,n−s(N)fs(N,M).

Proof For k ≥ 2 and m1 >m2, it holds that

∑

β∈I (2,k)

q(β1−1)m1+(β2−1)m2

[m1]β1 [m2]β2

= 1

[m1][m2]
((

qm1

[m1]
)k−1

−
(

qm2

[m2]
)k−1)/(

qm1

[m1] −
qm2

[m2]
)

= q(k−2)m2

[m2]k−1

1

[m1 −m2] −
q(k−2)m1

[m1]k−1

qm1−m2

[m1 −m2] .

Using the above formula repeatedly we get

Kb,n(M)=
∑

m1>···>mb−1>mb=M

qm1

[m1]
∑

β∈I (b,n−1)

b∏

j=1

q(βj−1)mj

[mj ]βj

=
∑

m1>···>mb−1>mb=M

qm1

[m1]

(
b−1∏

j=1

1

[mj −mb]

)
q(n−b−1)mb

[mb]n−b

−
b−1∑

s=1

∞∑

mb−s=M+1

Kb−s,n−s(mb−s)fs(mb−s ,M).
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The first term of the right hand side above is rewritten as follows. Setting mj =
�j + · · · + �b−1 +M (j = 1, . . . , b− 1), we have

∑

m1>···>mb−1>mb=M

qm1

[m1]

(
b−1∏

j=1

1

[mj −mb]

)
q(n−b−1)mb

[mb]n−b

= q(n−b−1)M

[M]n−b

∞∑

�1,...,�b−1=1

q�1+···+�b−1+M

[�1 + · · · + �b−1 +M]
b−1∏

j=1

1

[�j + · · · + �b−1] .

Now take the sum with respect to �1, �2, . . . , �b−1 successively using the equality

∞∑

�=1

q�+m

[�+m]
1

[�+ n] =
∞∑

�=1

(
q�+n

[�+ n] −
q�+m

[�+m]
)

qm−n

[m− n] =
qm−n

[m− n]
m−n∑

�=1

q�+n

[�+ n]

which holds for any m> n. Then we obtain gb,n−b+1(M). �

Lemma 1 implies the following proposition, which can be proved by induction
on b:

Proposition 1 For positive integers r, � and N1 > · · ·>Nr >M , set

hr,�(N1, . . . ,Nr,M) :=
∑

c∈I (r,�)

(
r−1∏

j=1

fcj (Nj ,Nj+1)

)
fcr (Nr,M). (3)

Then

Kb,n(M)= gb,n−b+1(M)

+
b−1∑

�=1

�∑

r=1

(−1)r
∑

N1>N2>···>Nr>M

gb−�,n−b+1(N1)hr,�(N1, . . . ,Nr,M)

(4)

for b ≥ 1, n≥ 2 and M ≥ 1.

Multiply Kb,n(M) by the harmonic sum

∑

M>m1>···>ma>0

a∏

j=1

1

[mj ] (5)

and take the sum over all M ≥ 1. Then we get the left hand side of (2). In order to
carry out the same calculation for the right hand side of (4), we prepare an algebraic
formulation for multiple harmonic sums.
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2.2 Algebraic Structure of Multiple Harmonic Sums

Denote by d the non-commutative polynomial algebra over Z freely generated by
the set of alphabets S = {zk}∞k=1 ∪ {ξk}∞k=1. For a positive integer m, set

Jzk (m) := q(k−1)m

[m]k , Jξk (m) := qkm

[m]k .

For a word w = u1 · · ·ur ∈ d (r ≥ 1, ui ∈ S) and M ∈ Z≥1, set

Aw(M) :=
∑

M>m1>···>mr>0

Ju1(m1) · · ·Jur (mr),

A�
w(M) :=

∑

M>m1≥···≥mr≥1

Ju1(m1) · · ·Jur (mr).

We extend the maps w �→ Aw(M) and w �→ A�
w(M) to the Z-module homomor-

phisms A(M),A�(M) : d→ R by A1(M) = 1,A�
1(M) = 1 and Z-linearity. Note

that Aza1
(M) is equal to the harmonic sum (5). If w is contained in the Z-linear

span of monomials zi1 · · · zir with i1 ≥ 2, Aw(M) becomes a linear combination of
qMZV’s in the limit M →∞.

Denote by dξ the Z-subalgebra of d generated by {ξk}∞k=1. Define a Z-bilinear
map ρ : dξ × d→ d inductively by ρ(1,w)=w(w ∈ d), ρ(v,1)= v(v ∈ dξ ) and

ρ(ξkv, z�w)= ξkρ(v, z�w)+ z�ρ(ξkv,w)+ zk+�ρ(v,w),

ρ(ξkv, ξ�w)= ξkρ(v, z�w)+ ξ�ρ(ξkv,w)+ ξk+�ρ(v,w)

for v ∈ dξ and w ∈ d.

Proposition 2 For v ∈ dξ ,w ∈ d and M ≥ 1, we have Av(M)Aw(M) =
Aρ(v,w)(M).

Proof It is enough to consider the case where v and w are words. If v = 1 or w = 1,
it is trivial. From the definition of A(M), it holds that

Aξkw(M)=
∑

M>m>0

qkm

[m]k Aw(m), Az�w(M)=
∑

M>n>0

q(�−1)n

[n]� Aw(n). (6)

Hence we find

Aξkv(M)Az�w(M)

=
( ∑

M>m>n>0

+
∑

M>n>m>0

+
∑

M>m=n>0

)
qkm

[m]k
q(�−1)n

[n]� Av(m)Aw(n)
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=
∑

M>m>0

qkm

[m]k Av(m)Az�w(m)+
∑

M>n>0

q(�−1)n

[n]� Aξkv(n)Aw(n)

+
∑

M>m>0

q(k+�−1)m

[m]k+�
Av(m)Aw(m)

and a similar formula for Aξkv(M)Aξ�w(M). Now the proposition follows from the
induction on the sum of length of v and w. �

For k ≥ 1, we define a Z-linear map ξk ◦ · : dξ → dξ inductively by ξk ◦1= 0 and
ξk ◦ (ξ�v)= ξk+�v for v ∈ dξ . Now consider the Z-linear map d : dξ → dξ defined
by d(1)= 1 and d(ξkv)= ξkd(v)+ ξk ◦ d(v) (v ∈ dξ ).

Proposition 3 For any v ∈ dξ and M ≥ 1, it holds that A�
v(M)=Ad(v)(M).

Proof From the definition of A(M) and A�(M) we have

A�
ξkv

(M)=
∑

M>m>0

qkm

[m]k A
�
v(m+ 1),

∑

M>m>0

qkm

[m]k Av(m+ 1)=Aξkv+ξk◦v(M).

To show the second formula, divide the sum Av(m + 1) into the two parts with
m1 =m and m1 <m. Combining the two formulas above, we obtain the proposition
by induction on length of v. �

2.3 Algebraic Formulation of the Main Theorem

To calculate the right hand side of (4) multiplied by the harmonic sum (5), we need
the following formula:

Lemma 2 For n1 > · · ·> ns > ns+1 > 0, set

p(n1, . . . , ns;ns+1) := qn1−ns+1

[n1 − ns+1]
s∏

j=2

1

[nj − ns+1] . (7)

Let s ≥ 1, v = z1 or ξ1, and N and M be positive integers such that N > M . Then
it holds that

∑

N>n1>···>ns+1>M

p(n1, . . . , ns;ns+1)Jv(ns+1)

=
∑

N>k1>···>ks+1>M

Jv(k1)p(k2, . . . , ks, ks+1;M)

+
s∑

i=1

∑

N>k1>···>ks+1>M

qk1

[k1]

(
i+1∏

j=2

1

[kj ]

)
p(ki+2, . . . , ks+1;M),

where p(∅;M)= 1.
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Proof Here we prove the lemma in the case of v = z1. The proof for v = ξ1 is
similar. Using

1

[n1 − ns+1][ns+1] =
1

[n1]
(

1

[n1 − ns+1] +
qns+1

[ns+1]
)
,

1

[nj − ns+1][ns+1] =
1

[nj ]
(

qnj−ns+1

[nj − ns+1] +
1

[ns+1]
)

(j = 2, . . . , s),

we find that

p(n1, . . . , ns;ns+1)Jv(ns+1)

=
s∑

i=0

q(1−δi,0)n1

[n1]

(
i+1∏

j=2

1

[nj ]

)
p(ni+1, . . . , ns;ns+1).

Now take the sum of the both hand sides over N > n1 > · · · > ns+1 > M . In the
right hand side, change the variables n1, . . . , ns+1 to k1, . . . , ks+1 by setting nt = kt
(1≤ t ≤ i+1), nt = ki+1−ki+2+kt+1 (i+2≤ t ≤ s) and ns+1 = ki+1−ki+2+M .
Then we get the desired formula. �

Let d1 be the Z-subalgebra of d generated by z1 and ξ1. Motivated by Lemma 2
we introduce the Z-module homomorphism ϕs : d1 → d1 (s ∈ Z≥0) defined in the
following way. Determine ϕs(w) for a word w ∈ d1 inductively on s and length of
w by ϕ0 = id, ϕs(1)= ξ1z

s−1
1 (s ≥ 1) and

ϕs(z1w)= z1ϕs(w)+ ξ1

s∑

i=1

zi1ϕs−i (w), ϕs(ξ1w)= ξ1

s∑

i=0

zi1ϕs−i (w),

and extend it by Z-linearity.

Proposition 4 For w ∈ d1 and any positive integers s, s′, �,β and N , we have

∑

N>M1>M2>0

fs′(N,M1)fs(M1,M2)Aw(M2) =
∑

N>M>0

fs′(N,M)Aϕs(w)(M),

∑

M1>M2>0

g�,β(M1)fs(M1,M2)Aw(M2) =
∑

M>0

g�,β(M)Aϕs(w)(M).

(8)

Proof Here we prove the first formula (8). The proof for the second is similar. It
suffices to consider the case where w = u1 · · ·ur (r ≥ 1, ui ∈ S) is a word. The left
hand side of (8) is equal to

∑
fs′(N,M1)p(M1, k1, . . . , ks−1;M2)

r∏

i=1

Jui
(mi),
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where p is defined by (7) and the sum is over M1, ki (1 ≤ i ≤ s − 1),M2,mi (1 ≤
i ≤ r) with the condition N > M1 > k1 > · · · > ks−1 > M2 > m1 > · · · > mr >

0. Changing the variables (k1, . . . , ks−1,M2) to (n1, . . . , ns) by ki = M1 − n1 +
ni+1 (1≤ i ≤ s − 1) and M2 =M1 − n1 +m1, we obtain

∑
fs′(N,M1)p(n1, . . . , ns;m1)

r∏

i=1

Jui
(mi),

where the sum is over N > M1 > n1 > · · · > ns > m1 > · · · > mr > 0. From
Lemma 2 and the definition of ϕs , we see by induction on r that it is equal to the
right hand side of (8). �

We define the Z-linear maps Φ� : d1 → d1 (�≥ 0) by Φ0 := id and

Φ� :=
�∑

r=1

(−1)r
∑

c∈I (r,�)
ϕc1 · · ·ϕcr ,

and Zs : d1 → d (s ≥ 0) by

Zs(w) :=
s∑

�=0

ρ
(
d
(
ξ s−�

1

)
,Φ�(w)

)
.

Proposition 5 For any integers a ≥ 0, b ≥ 1 and n≥ b+ 1, we have

∑

α∈I0(b,n)

ζq
(
α1, . . . , αb,1a

)=
b−1∑

s=0

∑

M>0

q(n−s−1)M

[M]n−s
AZs(z

a
1)
(M). (9)

Proof Using Proposition 4 repeatedly, we have

∑

N1>N2>···>Nr>M>0

gb,m(N1)hr,�(N1, . . . ,Nr,M)Aza1
(M)

=
∑

c∈I (r,�)

∑

M>0

gb,m(M)Aϕc1 ···ϕcr (z
a
1)
(M),

where hr,� is defined by (3). Hence Proposition 1 implies that

∑

α∈I0(b,m)

ζq
(
α1, . . . , αb,1a

)=
∑

M>0

Kb,m(M)Aza1
(M)

=
b−1∑

�=0

∑

M>0

gb−�,m−b+1(M)AΦ�(z
a
1)
(M).
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Substituting

gj,n(M)=
j−1∑

t=0

q(n+j−t−2)M

[M]n+j−t−1
A�

ξt
1
(M),

we get the desired formula from Propositions 2 and 3. �

As we will see in the next subsection, the elements Zs(z
a
1) (s, a ≥ 0) belong to

the subalgebra of d generated only by {zk}∞k=1 (see Propositions 6 and 8 below).
Thus the right hand side of (9) will turn out to be a linear combination of qMZV’s.

2.4 Proof of the Main Theorem

First we give a proof of Theorem 1 with a = 0, that is, the sum formula for qMZV’s.
To this aim we prepare a recurrence relation of d(ξk

1 ) (k ≥ 0).

Lemma 3 Let k ≥ 1. Then

d
(
ξk

1

)=
k∑

r=1

∑

c∈I (r,k)
ξc1 · · · ξcr .

Proof We prove the lemma by induction on k. The case of k = 1 is trivial. Let k ≥ 2.
From the definition of d and the hypothesis of induction we see that

d
(
ξk

1

)= d
(
ξ1 · ξk−1

1

)= ξ1

k−1∑

r=1

∑

c∈I (r,k−1)

ξc1 · · · ξcr + ξ1 ◦
(

k−1∑

r=1

∑

c∈I (r,k−1)

ξc1 · · · ξcr
)

=
k∑

r=2

∑

c∈I (r,k)
c1=1

ξc1 · · · ξcr +
k−1∑

r=1

∑

c∈I (r,k)
c1≥2

ξc1 · · · ξcr =
k∑

r=1

∑

c∈I (r,k)
ξc1 · · · ξcr .

This completes the proof. �

Corollary 1 For k ≥ 1 it holds that

d
(
ξk

1

)=
k∑

a=1

ξad
(
ξk−a

1

)
. (10)

The sum formula for qMZV’s follows from the following proposition.

Proposition 6 Zs(1)= δs,0 (s ≥ 0).
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Proof Using Φ� = −∑�
a=1 ϕaΦ�−a (� ≥ 1), we find that Φ�(1) = (−ξ1)

� (� ≥ 0)
by induction on �. Thus the proposition is reduced to the proof of

s∑

�=0

(−1)�ρ
(
d
(
ξ s−�

1

)
, ξ �

1

)= δs,0.

Let us prove it by induction on s. Denote the left hand side above by Ts . It is trivial
that T0 = 1. Let s ≥ 1. Divide Ts into the three parts

Ts = d
(
ξ s

1

)+
s−1∑

�=1

(−1)�ρ
(
d
(
ξ s−�

1

)
, ξ �

1

)+ (−1)sξ s
1 .

Rewrite the second part by using (10) and the definition of ρ and d . Then we get

s−1∑

a=1

ξa

s−a∑

�=1

(−1)�ρ
(
d
(
ξ s−a−�

1

)
, ξ �

1

)−
s−2∑

�=0

(−1)�ξ1ρ
(
d
(
ξ s−1−�

1

)
, ξ �

1

)

−
s−1∑

a=1

ξa+1Is−a−1. (11)

From (−1)sξ s
1 =−(−1)s−1ξ1ρ(d(ξ

0
1 ), ξ

s−1
1 ), which is the summand of the second

term of (11) with �= s − 1, and

d
(
ξ s

1

)=
s−1∑

a=1

ξaρ
(
d
(
ξ s−a

1

)
, ξ0

1

)+ ξs,

we obtain

Ts =
s−1∑

a=1

ξaTs−a + ξs − ξ1Ts−1 −
s−1∑

a=1

ξa+1Ts−a−1.

Therefore the induction hypothesis Ta = δa,0 (a < s) implies that Ts = 0. �

From Proposition 5 with a = 0 and Proposition 6, we see that

∑

α∈I0(b,n)

ζq(α1, . . . , αb)=
∑

M>0

q(n−1)M

[M]n A1(M)= ζq(n).

Thus we get Theorem 1 in the case of a = 0. To complete the proof of Theorem 1,
we should calculate Zs(z

a
1) for a ≥ 1. For that purpose we prepare several lemmas.

Lemma 4 For �≥ 0 and w ∈ d1, it holds that

Φ�(z1w)=
�∑

j=0

(−ξ1)
�−j z1Φj(w). (12)



Restricted Sum Formula for qMZV 571

Proof For non-negative integers a and n, set η0,n = δn,0 and

ηa,n :=
∑

c∈I (a,n)
ξ1z

c1
1 · · · ξ1z

ca
1 (a ≥ 1).

Then it holds that

ϕs

(
ξa

1 z1w
)=

s∑

t=0

(ηa,s−t + ηa+1,s−t−1)z1ϕt (w),

where ηa+1,−1 := 0, for a ≥ 0, s ≥ 0 and w ∈ d1. Using this formula we prove (12)
by induction on �. The case of �= 0 is trivial. Let �≥ 1. The induction hypothesis
and the relation Φ� =−∑�

a=1 ϕaΦ�−a imply that

Φ�(z1w)=
�−1∑

j=0

�−j∑

a=1

a∑

t=0

(η�−a−j,a−t + η�−a−j+1,a−t−1)z1ϕt

(
Φj(w)

)
.

Divide the sum into the two parts with t = 0 and t ≥ 1, and take the sum with respect
to a. Then we obtain

�−1∑

j=0

{
(−δ�−j,0 + (−1)�−j η�−j,0

)
z1ϕ0

(
Φj(w)

)−
�−j∑

t=1

δ�−j−t,0z1ϕt

(
Φj(w)

)
}
.

Since η�−j,0 = ξ
�−j

1 , ϕ0 = id and−∑�−1
j=0 ϕ�−jΦj = ϕ�, it is equal to the right hand

side of (12). �

Lemma 5 For k ≥ 0 and w ∈ d1, it holds that

k∑

�=0

ρ
(
d
(
ξk−�

1

)
, ξ �

1 z1w
)=

k∑

�=0

z�+1 ρ
(
d
(
ξk−�

1

)
,w
)
. (13)

Proof Denote the left hand side and the right hand side of (13) by Lk and Rk ,
respectively. The equality (13) holds when k = 0 because L0 = ρ(1, z1w)= z1w =
z1ρ(1,w)=R0. Hereafter we assume that k ≥ 1.

Divide Lk into the three parts

Lk = ρ
(
d
(
ξk

1

)
, z1w

)+
k−1∑

�=1

(−1)�ρ
(
d
(
ξk−�

1

)
, ξ �

1 z1w
)+ (−1)kξk

1 z1w. (14)

Let us rewrite the first part. Substitute (10) into d(ξk
1 ). From the definition of ρ we

see that the first part is equal to

k∑

a=1

(
ξaρ

(
d
(
ξk−a

1

)
, z1w

)+ z1ρ
(
ξad

(
ξk−a

1

)
,w
)+ za+1ρ

(
d
(
ξk−a

1

)
,w
))
.
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Note that the first term of the summand with a = k is equal to ξkz1w = ξkL0. Apply
(10) again to the second term, and we see that the first part of the right hand side
of (14) is equal to

ξkL0 +
k−1∑

a=1

ξaρ
(
d
(
ξk−a

1

)
, z1w

)+Rk. (15)

We proceed the same calculation for the second part of (14). Here we decompose
ξ�

1 z1w = ξ1 · ξ�−1
1 z1w and use (10). As a result we get

k−1∑

a=1

k−a∑

�=1

(−1)�ξaρ
(
d
(
ξk−�−a

1

)
, ξ �

1 z1w
)−

k−1∑

a=1

ξa+1Ik−a−1

−
k−2∑

�=0

(−1)lξ1ρ
(
d
(
ξk−1−�

1

)
, ξ �

1 z1w
)
. (16)

Note that the third part of (14) is equal to

−(−1)k−1ξ1ρ
(
d
(
ξ0

1

)
, ξ k−1

1 z1w
)
, (17)

which is the summand of the third term of (16) with �= k−1. Hence the three parts
(15), (16) and (17) add up to

ξkL0 +
k−1∑

a=1

ξaLk−a +Rk −
k−1∑

a=1

ξa+1Lk−a−1 − ξ1Lk−1 =Rk.

This completes the proof. �

Now we can prove the key formula to calculate Zs(z
a
1) for a ≥ 1:

Proposition 7 Let w ∈ d1 and s ≥ 0. Then Zs(z1w)=∑s
�=0 z�+1Zs−�(w).

Proof Using (12) we have

Zs(z1w)=
s∑

�=0

l∑

j=0

(−1)�−j ρ
(
d
(
ξ s−�

1

)
, ξ

�−j

1 z1Φj(w)
)
.

Because of Lemma 5 it is equal to

s∑

j=0

s−j∑

�=0

z�+1ρ
(
d
(
ξ
s−j−�

1

)
,Φj (w)

)=
s∑

�=0

z�+1Zs−l(w).

This completes the proof. �

Combining Proposition 6 and Proposition 7, we obtain the following formula:
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Proposition 8 For s ≥ 0 and a ≥ 1, it holds that

Zs

(
za1
)=

∑

γ∈I (a,s+a)

zγ1 · · · zγa .

At last let us prove Theorem 1 in the case of a ≥ 1. From Proposition 5 and
Proposition 8, it holds that

∑

α∈I0(b,n)

ζq
(
α1, . . . , αb,1a

)=
b−1∑

s=0

∑

γ∈I (a,s+a)

ζq(n− s − 1, γ1, . . . , γa).

Set β1 = b+ 1− s. The right hand side becomes

b+1∑

β1=2

∑

γ∈I (a,a+b+1−β1)

ζq(β1 + n− b− 1, γ1, . . . , γa)

=
∑

β∈I0(a+1,a+b+1)

ζq(β1 + n− b− 1, β2, . . . , βa+1).

This completes the proof of Theorem 1.
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A Trinity of the Borcherds Φ-Function

Ken-Ichi Yoshikawa

Abstract We discuss a trinity, i.e., three distinct expressions, of the Borcherds
Φ-function on the analogy of the trinity of the Dedekind η-function.

1 Introduction—A Trinity of Dedekind η-Function

The Dedekind η-function is the holomorphic function on the complex upper half-
plane H defined as the infinite product

η(τ) := q1/24
∏

n>0

(
1− qn

)
,

where q := e2πiτ . It is classical that η(τ)24 is a modular form for SL2(Z) of weight
12 vanishing at +i∞ and this property characterizes the Dedekind η-function up to
a constant.

Let us recall the trinity of the Dedekind η-function. Besides the definition as
above, the Dedekind η-function admits at least two other distinct expressions, one
analytic and the other algebro-geometric. Precisely speaking, we consider the Pe-
tersson norm

∥∥η(τ)
∥∥ := (@τ)1/4

∣∣η(τ)
∣∣

rather than the Dedekind η-function itself.
Let us explain an analytic counterpart of the Dedekind η-function. For τ ∈H, let

Eτ be the elliptic curve defined by

Eτ :=C/Z+ τZ,

which is equipped with the flat Kähler metric of normalized volume 1

gτ := dz⊗ dz̄/@τ.
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The Laplacian of (Eτ , gτ ) is the differential operator defined as

�τ := −@τ ∂2

∂z∂z̄
=−@τ

4

(
∂2

∂x2
+ ∂2

∂y2

)
.

The set of eigenvalues of �τ is given by {π2|mτ + n|2/@τ }(m,n)∈Z2 and hence the
spectral zeta function of �τ is defined as

ζτ (s) :=
∑

(m,n) 	=(0,0)

( @τ
π2 |mτ + n|2

)s

.

It is classical that ζτ (s) converges absolutely when ?s > 1 and extends to a mero-
morphic function on C. Moreover, ζτ (s) is holomorphic at s = 0. The value

det ∗�τ := exp
(−ζ ′τ (0)

)

is called the (regularized) determinant of �τ on the analogy of the identity for finite
dimensional, non-degenerate, Hermitian matrices

log detH =− d

ds

∣∣∣∣
s=0

TrH−s .

By Ray-Singer [29], the classical Kronecker limit formula can be stated as follows
in this setting:

Theorem 1 The following equality holds

det ∗�τ = 4
∥∥η(τ)

∥∥4
.

Let us explain an algebro-geometric counterpart of the Dedekind η-function. Let
Mm,n(K) be the set of m × n-matrices with entries in K ⊂ C. Recall that every
elliptic curve is expressed as the complete intersection of two quadrics of P3

EA :=
{
[x] ∈ P3; f1(x)= a11x

2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 = 0

f2(x)= a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 = 0

}
,

where A= (aij )= (a1,a2,a3,a4) ∈M2,4(C). For A ∈M2,4(C) and 1≤ i < j ≤ 4,
we define

Δij (A) := det(ai ,aj ).

Since the value ‖η(τ)‖ depends only on the isomorphism class of the elliptic curve
Eτ , it makes sense to set ‖η(Eτ )‖ := ‖η(τ)‖.

Theorem 2 With the same notation as above, the following equality holds

28
∥∥η(EA)

∥∥24 =
∏

1≤i<j≤4

∣∣Δij (A)
∣∣2 ·

(
2
√−1

π2

∫

EA

αA ∧ αA

)6

.
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Here αA ∈H 0(EA,Ω
1
EA

) is defined as the residue of f1, f2, i.e.,

αA :=Ξ |EA
,

where Ξ is a meromorphic 1-form on P3 satisfying the equation

df1 ∧ df2 ∧Ξ =
4∑

i=1

(−1)i−1xidx1 ∧ dxi−1 ∧ dxi+1 ∧ dx4.

For A= (aij ) ∈M2,4(C), one can associate another elliptic curve

CA :=
{
(x, y) ∈C2; y2 = 4(a11x + a21)(a12x + a22)(a13x + a23)(a14x + a24)

}
.

Namely, CA is the double covering of P1 with 4 branch points (a11 : −a21), (a12 :
−a22), (a13 : −a23), (a14 : −a24). If a11 = 0 and a12 = 1, then CA is an elliptic
curve expressed by the Weierstrass equation. It is not difficult to see CA

∼=EA and

28
∥∥η(CA)

∥∥24 =
∏

1≤i<j≤4

∣∣Δij (A)
∣∣2 ·

(√−1

2π2

∫

CA

dx

y
∧ dx

y

)6

.

(We shall study an analogue of EA and CA for K3 surfaces later.)
Theorem 2 is easily verified when EA is the projective embedding of Eτ by the

linear system |4Θ|. In this situation, the equations of EA are the linear relations
between the theta functions θa,b(z, τ ) (a, b ∈ {0, 1

2 }). General case of Theorem 2
follows from this special case by the invariance of the expression in Theorem 2
under the action of GL2(C)× (C∗)4. See [16] for the details.

In this survey, we explain a generalization of the trinity of the Dedekind η-
function as above to that of the Borcherds Φ-function. For this, we make the fol-
lowing replacements:

• elliptic curves =⇒ Enriques surfaces
• determinant of Laplacian =⇒ analytic torsion
• ∏1≤i<j≤4 Δij (A) =⇒ resultant of three quadratic forms in three variables

For the analytic aspect of the Borcherds Φ-function, our explanation is based on
[34, 36], while for the algebro-geometric aspect of the Borcherds Φ-function, our
explanation is based on [16]. In this survey, we will not give proofs. We refer the
reader to these papers for the details.

2 Borcherds Φ-Function

In this section, we recall the Borcherds Φ-function.
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2.1 Domains of Type IV and Its Realization as a Tube Domain

A free Z-module of finite rank equipped with a non-degenerate, integral, symmetric
bilinear form is called a lattice. The automorphism group of a lattice L is denoted
by O(L). For a lattice L= (Zr , 〈·, ·〉L) and k ∈Q, we set L(k) := (Zr , k〈·, ·〉L). We
define U := (Z2,

(0 1
1 0

)
). There exists a unique positive-definite, even, unimodular

lattice of rank 8, up to an isometry. This lattice is denoted by E8.
Let Λ be a lattice of signature (2, b−). We define an open manifold ΩΛ of di-

mension b− as

ΩΛ :=
{[Z] ∈ P(Λ⊗C); 〈Z,Z〉Λ = 0, 〈Z, Z̄〉Λ > 0

}
.

Then ΩΛ is the set of maximal positive-definite subspaces of Λ⊗R and is isomor-
phic to SO(2, b−)/SO(2) × SO(b−). Hence each connected component of ΩΛ is
isomorphic to a symmetric bounded domain of type IV of dimension b−.

Assume that there exists k ∈ Z>0 and a lattice of signature (1, b− − 1) such that
Λ = U(k) ⊕ L. Let {e, f} be a basis of U(k) with e2 = f2 = 0, e · f = k. We set
v := e ∈ U(k) and v′ := f/k ∈ U(k)∨. Then we have an isomorphism of complex
manifolds L⊗R+ iCL ∼=ΩΛ given by the map

L⊗R+ iCL � z→ Z =
[

v− 〈z, z〉L
2

v′ + z

]
∈ΩΛ.

Here CL := {x ∈ L⊗R; 〈x, x〉L > 0} is the positive cone of L. Since L is Lorentzian
and hence CL consists of two connected components, we choose one of them,
say C+L . Write Ω+

Λ for the component of ΩΛ corresponding to L ⊗ R + iC+L .

Then we have the decomposition ΩΛ = Ω+
Λ A Ω+

Λ . The subgroup of O(Λ)

preserving the connected components Ω+
Λ , Ω+

Λ is denoted by O+(Λ). Clearly,
[O(Λ) :O+(Λ)] = 2.

2.2 Automorphic Forms over Domains of Type IV

Let us recall the notion of automorphic forms over Ω+
Λ . There are several mutually

equivalent definitions.

2.2.1 Automorphic Form as a Multicanonical Form on Ω+
Λ

Let L be the tautological line bundle on Ω+
Λ :

L :=OP(Λ⊗C)(−1)|Ω+
Λ
⊂Ω+

Λ × (Λ⊗C).
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The natural action of O+(Λ) on Ω+
Λ × (Λ⊗ C) induces the O+(Λ)-action on L.

A holomorphic section f ∈ H 0(Ω+
Λ,Lk) is called an automorphic form for Γ ⊂

O+(Λ) of weight k with character χ if

f (γZ)= χ(γ )γf (Z)

for all Z ∈Ω+
Λ and γ ∈ Γ , where χ : Γ →C∗ is a finite character.

2.2.2 Automorphic Form as a Homogeneous Function on the Cone over Ω+
Λ

Let CΩ+
Λ

be the cone over Ω+
Λ obtained from L by contracting the zero section.

Then a holomorphic function F ∈O(CΩ+
Λ
) is called an automorphic form on Ω+

Λ

for Γ ⊂O+(Λ) of weight k with character χ if

F
(
γ (ζ )

)= χ(γ )F (ζ ), F (λ ζ )= λ−k F (ζ )

for all ζ ∈ CΩ+
Λ

, γ ∈ Γ and λ ∈C∗.

2.2.3 Automorphic Form as a Function on Ω+
Λ

Let � ∈Λ⊗R be such that 〈�, �〉 ≥ 0. Observe that

σ�(Z) := Z

〈�,Z〉 , Z ∈Ω+
Λ

is a nowhere vanishing holomorphic section of L. Via the assignment f �→ f/σ k
� ,

we can define automorphic forms as follows: A holomorphic function F(Z) ∈
O(Ω+

Λ) is an automorphic form for Γ of weight k with character χ if for all Z ∈Ω+
Λ

and γ ∈ Γ ,

F(γZ)= χ(γ )

( 〈�, γZ〉
〈�,Z〉

)k

F (Z).

The choice of � corresponds to the choice of a hyperplane at infinity of P(Λ⊗C).

2.2.4 Automorphic Form as a Function on L ⊗ R + iC+
L

We have the O+(Λ)-action on the tube domain L⊗R+ iC+L via the identification
Ω+

Λ
∼= L⊗R+ iC+L . Write J (γ, y) for the Jacobian determinant of γ ∈O+(Λ)⊂

Aut(L⊗R+ iC+L ). By the relation between the canonical line bundle of Ω+
Λ and L,

there is a holomorphic function j (γ, z) with

j (γ, z)dimΩΛ = J (γ, z).
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A holomorphic function F(z) ∈O(L⊗R+ iC+L ) is an automorphic form for Γ of
weight k with character χ if for all z ∈ L⊗R+ iC+L and γ ∈ Γ ,

F(γ · z)= χ(γ ) j (γ, z)k F (z).

2.3 Borcherds Φ-Function

Define the Enriques lattice Λ as

Λ :=U⊕U(2)⊕E8(−2).

Then Λ is an even lattice of signature (2,10). We define the discriminant divisor of
ΩΛ by

DΛ :=
∑

d∈Λ/±1, d2=−2

d⊥,

where d⊥ := {[Z] ∈Ω+
Λ ; 〈d,Z〉 = 0}. Define {c(n)} by the generating series:

∑

n∈Z

c(n)qn = η(τ)−8η(2τ)8η(4τ)−8.

2.3.1 Borcherds Φ-Function at the Level 1 Cusp

Let v be a primitive isotropic vector of U⊂Λ and set L1 := v⊥/v∼=U(2)⊕E8(2).
Then L1 ⊗R+ i C+L1

∼=Ω+
Λ .

Definition 1 The Borcherds Φ-function is the formal Fourier series on the tube
domain L1 ⊗R+ iC+L1

defined as

Φ1(z) :=
∏

λ∈L1∩C+L1
\{0}

(
1− eπi〈λ,z〉

1+ eπi〈λ,z〉

)c(λ2/2)

.

2.3.2 Borcherds Φ-Function at the Level 2 Cusp

Let v be a primitive isotropic vector of U(2)⊂Λ and set L2 = v⊥/v∼=U⊕ E8(2).
Then L2 ⊗R+ i C+L2

∼=Ω+
Λ .
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Definition 2 The Borcherds Φ-function is the formal Fourier series on the tube
domain L2 ⊗R+ i C+L2

defined as

Φ2(z) := 28e2πi〈ρ,z〉 ∏

λ∈L2, 〈λ,ρ〉>0 orλ∈Nρ

(
1− e2πi〈λ,z〉)(−1)〈ρ−ρ′,λ〉c(λ2/2)

,

where ρ = ((0,1),0), ρ′ = ((1,0),0) ∈ L2.

Theorem 3 (Borcherds [8, 9]) For j = 1,2, the formal Fourier series Φj(z) as
above converges absolutely for z ∈ Lj ⊗R+ i C+Lj

with @z� 0 and extends to an

automorphic form on Lj ⊗R+ i C+Lj
for O+(Λ) of weight 4. Regarded as holomor-

phic functions on Ω+
Λ , one has the equality up to a constant of modulus 1

Φ1 =Φ2.

In what follows, we write Φ(z) for Φ1(z) and Φ2(z).

Definition 3 The Petersson norm of Φ is the C∞ function on Lj⊗R+i C+Lj
defined

as
∥∥Φ(z)

∥∥2 := 〈@z,@z〉4∣∣Φj(z)
∣∣2.

Since the Petersson norm ‖Φ(z)‖ is O+(Λ)-invariant, we regard ‖Φ(z)‖ as a
function on the orthogonal modular variety Ω+

Λ/O+(Λ).
By [9, Th. 13.3], log‖Φ‖ is defined as the finite part of the divergent integral:

−4 log
∥∥Φ(Z)

∥∥− 8
(
Γ ′(1)+ log(2π)

)= Pf
∫

SL2(Z)\H
F(τ) ·ΘΛ(τ,Z)y

dxdy

y2
,

where F(τ) is a certain vector-valued elliptic modular form for Mp2(Z) (cf. [36,
Def. 7.6] with Λ=Λ) and ΘΛ(τ,Z) is the Siegel theta function [9] of the Enriques
lattice Λ. Then the expressions Φ1(z) and Φ2(z) are obtained by computing the
above integral at the level 1 cusp and the level 2 cusp, respectively. For the necessity
of the constant 28 in Φ2(z), see [9, Th. 13.3 (5)] and [36, Eq. (7.9)].

Remark 1 One can rewrite the expression of Φ(z) using the dual lattice of Λ. Set
L :=U⊕E8(−1). Since the dual lattice of Λ is given by Λ∨ =U⊕L(1/2), we get

Λ∨(2)=U(2)⊕L.

Then the Borcherds Φ-function can be expressed as a function on L⊗R+ i C+L

Φ(z)=
∏

λ∈L∩C+L \{0}

(
1− e2πi〈λ,z〉

1+ e2πi〈λ,z〉

)c(λ2/2)

=
∑

λ∈L∩C+L ,λ2=0,primitive

η(〈λ, z〉)16

η(2〈λ, z〉)8
.
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This identity is known as the denominator identity for the fake monster superalge-
bra. See [9, Example 13.7] and [30] for more details about the denominator identity
for the fake monster superalgebra. See [7, 8] for the Fourier expansion of Φ2(z).

3 Enriques Surfaces and Their Moduli Space

In this section, we recall Enriques surfaces.

3.1 K3 Surfaces

A compact connected complex surface X is a K3 surface if

H 1(X,OX)= 0, Ω2
X
∼=OX.

It is known that the diffeomorphism type underlying a K3 surface is unique. In
particular, the second integral cohomology group of a K3 surface equipped with the
cup-product pairing is isometric to the K3-lattice

LK3 :=U⊕U⊕U⊕E8(−1)⊕E8(−1).

For a K3 surface X, an isometry of lattices α : H 2(X,Z)∼= LK3 is called a marking.
Let X be a K3 surface and let α : H 2(X,Z) ∼= LK3 be a marking. Since Ω2

X

is trivial, there exists a unique nowhere vanishing holomorphic 2-form η on X, up
to a non-zero constant. By the Hodge decomposition, we get the natural inclusion
H 0(X,Ω2

X) ⊂ H 2(X,Z)⊗ C, so that the line Cη ∈ P(H 2(X,C)) is uniquely de-
termined by X. The period of (X,α) is defined as the point of P(LK3 ⊗ C) corre-
sponding to Cη via the marking α:

'(X,α) := [α(η)] ∈ΩLK3 .

Here we define ΩLK3 = {[Z] ∈ P(LK3 ⊗ C); 〈Z,Z〉 = 0, 〈Z, Z̄〉 > 0} as before.
Notice that [α(η)] ∈ΩLK3 by the Riemann-Hodge bilinear relations

∫
X
η ∧ η = 0

and
∫
X
η ∧ η > 0. For K3 surfaces and their moduli space, see [1] for more details.

3.2 Enriques Surfaces

A compact connected complex surface Y is an Enriques surface if

H 1(Y,OY )= 0, Ω2
Y 	∼=OY ,

(
Ω2

Y

)⊗2 ∼=OY .
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It is known that the universal covering of an Enriques surface is a K3 surface and
an Enriques surface is obtained as the quotient of its universal covering by a fixed-
point-free involution. Notice that a single K3 surface can cover many distinct En-
riques surfaces (cf. [25–28] and Subsect. 5.3 below).

Let Y be an Enriques surface and let Ỹ → Y be the universal covering. Let
ι : Y → Y be the non-trivial covering transformation of Ỹ → Y . Write H 2(Ỹ ,Z)+
and H 2(Ỹ ,Z)− for the invariant and anti-invariant subspaces of H 2(Ỹ ,Z) with re-
spect to the ι-action, respectively. Let I : LK3 → LK3 be the involution defined as

I (a, b, c, x, y) := (b, a,−c, y, x), a, b, c ∈U, x, y ∈ E8(−1).

By [13, 14], there exists a marking α : H 2(Ỹ ,Z)∼= LK3 such that

α ◦ ι∗ ◦ α−1 = I.

Let (LK3)+ and (LK3)− be the invariant and anti-invariant subspaces of LK3 with
respect to the I -action, respectively. Then we have isometries of lattices

α
(
H 2(Ỹ ,Z)+

)= (LK3)+ ∼=U(2)⊕E8(−2), α
(
H 2(Ỹ ,Z)−

)= (LK3)− ∼=Λ.

Since Y has no non-zero holomorphic 2-forms, we get H 0(Ỹ ,Ω2
Ỹ
)⊂H 2(Ỹ ,Z)− ⊗

C. Hence '(Ỹ ,α) ∈ ΩΛ if α is a marking as above. The period of an Enriques
surface Y = Ỹ /ι is defined as the period of its universal covering Ỹ , i.e.,

'(Y) := ['(Ỹ ,α)
] ∈Ω+

Λ/O+(Λ),

where α is a marking satisfying α ◦ ι∗ ◦α−1 = I and ['(Ỹ ,α)] denotes the O+(Λ)-
orbit of '(Ỹ ,α). It is known that the isomorphism class of an Enriques surface is
classified by its period:

Theorem 4 (Horikawa [13, 14]) There exists a coarse moduli space of Enriques
surfaces, denoted by M. The period mapping induces an isomorphism between the
analytic spaces

' : M � [Y ]→ [
'(Y)

] ∈ Ω+
Λ \DΛ

O+(Λ)
.

In what follows, we identify M with (Ω+
Λ \DΛ)/O+(Λ) by the map ' . We refer

the reader to [1] for more details about Enriques surfaces and their moduli space. By
Theorem 4, the period mapping for Enriques surfaces omit the discriminant locus.
The Borcherds Φ-function characterize exactly the discriminant locus DΛ.

Theorem 5 (Borcherds [8]) The Borcherds Φ-function vanishes exactly on DΛ of
order 1. In particular, Φ is a nowhere vanishing holomorphic section of the Hodge
line bundle on M.
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Since the line bundle of automorphic forms on an arithmetic quotient of a sym-
metric bounded domain is an ample line bundle by Baily-Borel, the moduli space of
Enriques surfaces is quasi-affine by Theorem 5 [8]. In fact, the quasi-affinity of the
moduli space holds for wider classes of K3 surfaces with involution. See [36].

4 Analytic Torsion and Borcherds Φ-Function: An Analytic
Counterpart

The notion of holomorphic analytic torsion was introduced by Ray-Singer [29] in
their works extending the classical notion of torsion in algebraic topology to certain
analytic settings; they extended the construction of torsion of finite-dimensional
acyclic complex to the setting of de Rham or Dolbeault complex, in which they
replaced the usual finite-dimensional determinant of the combinatorial Laplacian
to the regularized determinant of the Hodge-Kodaira Laplacian. In this section, we
explain the construction of the Borcherds Φ-function via analytic torsion.

4.1 Analytic Torsion

Let (M,hTM) be a compact connected Kähler manifold. Let �q = (∂̄ + ∂̄∗)2 be
the Hodge-Kodaira Laplacian acting on (0, q)-forms on M . Since M is compact,
the Hilbert space of square integrable (0, q)-forms on M splits into the direct
sum L

0,q
M =⊕λ∈σ(�q )

E(λ,�q), where σ(�q) ⊂ R≥0 is the spectrum of �q and
E(λ,�q) is the eigenspace of �q with respect to the eigenvalue λ. Then E(λ,�q)

is of finite-dimensional. The zeta function of �q is defined as

ζq(s) :=
∑

λ∈σ(�q )\{0}
λ−s dimE(λ,�q).

By the Weyl law of the asymptotic distribution of the eigenvalues of �q , ζq(s) con-
verges absolutely for s ∈C with @s > dimM . From the existence of the asymptotic
expansion of the trace of the heat operator e−t�q as t → 0, it follows that ζq(s) ex-
tends to a meromorphic function on C and that ζq(s) is holomorphic at s = 0. After
Ray-Singer [29], we make the following

Definition 4 The analytic torsion of (M,hTM) is the real number defined as

τ
(
M,hTM

) := exp

[
−
∑

q≥0

(−1)qq ζ ′q(0)
]
.

When dimM = 1, τ(M)−1 is exactly the determinant of Laplacian appearing in
the formula for ‖η(τ)‖. After Theorem 1, it is natural to expect that the determinant
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of Laplacian or analytic torsion may produce a nice function on the moduli space.
This is the main topic of this section.

One natural direction of such a generalization seems to be the study of the deter-
minant of Laplacian for compact Riemann surfaces of higher genus g > 1. Among
numbers of studies of the determinant of Laplacian for hyperbolic Riemann surfaces
of genus g > 1, it is Zograf [37] and McIntyre-Takhtajan [24] who obtained a holo-
morphic function with infinite product expression on the Schottky space by using
the determinant of Laplacian. On the other hand, Kokotov-Korotkin [17] considered
the determinant of Laplacian with respect to the flat (but degenerate) Kähler metric
ω⊗ ω, where ω is an Abelian differential on a compact Riemann surface of genus
g > 1. They proved that, as a function on the moduli space of pairs (C,ω), with
C being a marked Riemann surfaces of genus g > 1 and ω being an Abelian dif-
ferential on C, the determinant of Laplacian is expressed by using some classical
quantities like prime forms, theta function and periods. Hence there are two different
generalizations of Theorem 1 in higher genus g > 1.

Another direction of generalization is the study of analytic torsion for higher
dimensional varieties. (For several reasons, in higher dimensions, analytic torsion
seems to be more appropriate than a single determinant of Laplacian in consider-
ing a generalization of Theorem 1.) Among those varieties, we are interested in
Enriques surfaces, since they can be regarded as one of the natural generalizations
of elliptic curves in dimension 2. For other directions of generalization, we refer to
[11, 33], where analytic torsion produces the Siegel modular form characterizing the
Andreotti-Mayer locus and the section of certain line bundle on the moduli space of
Calabi-Yau threefolds characterizing the discriminant locus.

4.2 Borcherds Φ-Function as the Analytic Torsion of Enriques
Surface

As in the case of elliptic curves, we choose some special Kähler metric to construct
an invariant of an Enriques surface. Since c1(Y )R = 0 for an Enriques surface Y ,
there exists by Yau [31] a unique Ricci-flat Kähler form in each Kähler class on Y .
In contrast to elliptic curves, the condition of Ricci-flatness with normalized volume
1 does not determine a unique Kähler form on Y , because the space of Kähler classes
on Y has real dimension 10. Even though, we get the following:

Theorem 6 ([34]) Let Y be an Enriques surface and let γ be a Ricci-flat Kähler
metric on Y with normalized volume 1. Then the analytic torsion τ(Y, γ ) is indepen-
dent of the choice of such a Kähler metric γ . In particular, τ(Y, γ ) is an invariant
of Y .

After Theorem 6, we may write τ(Y ) for τ(Y, γ ). Then the analytic torsion gives
rise to the function on the moduli space of Enriques surfaces

τ : M � [Y ]→ τ(Y ) ∈R.
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Recall that the Petersson norm of the Borcherds Φ-function ‖Φ‖ is O+(Λ)-
invariant and hence it descends to a function on M. We write ‖Φ(Y)‖ for
‖Φ('(Ỹ ,α))‖.

Theorem 7 ([34]) There exists an absolute constant C 	= 0 such that for every En-
riques surface Y , the following equality holds

τ(Y )= C
∥∥Φ(Y)

∥∥−1/4
.

The proofs of Theorems 6 and 7 are based on the curvature formula for (equivari-
ant) Quillen metrics [4–6, 19] and the immersion formula for (equivariant) Quillen
metrics [2, 3]. We compare the ∂∂̄ of log τ and log‖Φ‖ as currents on the Baily-
Borel compactification of Ω+

Λ/O+(Λ). For this, the curvature formula and the im-
mersion formula for (equivariant) Quillen metrics play crucial roles. We refer the
reader to [34] for the details of the proofs of Theorems 6 and 7.

As in the case of elliptic curves, we get an analytic expression of the Borcherds
Φ-function by using analytic torsion. In fact, we can extend this result to arbitrary
K3 surfaces with anti-symplectic involution. Namely, for a K3 surface X equipped
with an involution ι : X→X acting non-trivially on H 0(X,Ω2

X), we can construct
an invariant τM(X, ι) by using the equivariant analytic torsion of (X, ι), the analytic
torsion of the fixed-point-set of ι and a certain Bott-Chern secondary class. Here M

refers to the isometry class of the invariant sublattice of H 2(X,Z) with respect to
the ι-action, which determines the topological type of ι. When M =U(2)⊕E8(−2),
we get the analytic torsion of Enriques surface τ as above. It is worth remarking that
we can construct the invariant τM(X, ι) without assuming the existence of Ricci-flat
Kähler metrics on X. After fixing M , i.e., the topological type of the involution,
the invariant τM(X, ι) gives rise to a function on the moduli space of K3 surfaces
with involution, which is again a certain arithmetic quotient of a symmetric bounded
domain of type IV, with the discriminant divisor removed. As before in Theorem 7,
the resulting function τM is the Petersson norm of an automorphic form on the
moduli space of K3 surfaces with involution. It is remarkable that the corresponding
automorphic form on the moduli space of K3 surfaces with involution thus obtained,
is very often expressed as the product of a certain Borcherds lift and Igusa’s Siegel
modular form. We refer the reader to [34, 36] for more details about the analytic
torsion invariant τM of K3 surfaces with involution.

5 Resultants and Borcherds Φ-Function: An Algebraic Counter
Part

In this section, we explain an algebro-geometric counterpart of the Borcherds Φ-
function.
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5.1 (2,2,2)-Model of an Enriques Surface

Let

f1(x), g1(x), h1(x) ∈C[x1, x2, x3], f2(x), g2(x), h2(x) ∈C[x4, x5, x6]
be homogeneous polynomials of degree 2. We define f,g,h ∈ C[x1, x2, x3, x4,

x5, x6] by

f (x) := f1(x)+ f2(x), g(x) := g1(x)+ g2(x), h(x) := h1(x)+ h2(x)

and the corresponding surface X(f,g,h) by

X(f,g,h) :=
{[x] ∈ P5; f (x)= g(x)= h(x)= 0

}
.

If the quadratic forms f1, g1, h1, f2, g2, h2 are generic enough, then X(f,g,h)

equipped with the line bundle OP5(1) is a K3 surface of degree 8 by the adjunc-
tion formula. Let ι be the involution on C6 defined as

ι(x1, x2, x3, x4, x5, x6) := (x1, x2, x3,−x4,−x5,−x6).

The involution on P5 induced by ι is again denoted by the same symbol ι. Since the
set of fixed points of the ι-action on P5 is the disjoint union of two projective planes
P1 := {x1 = x2 = x3 = 0} and P2 := {x4 = x5 = x6 = 0}, we see that Xι

(f,g,h), the
set of fixed points of the ι-action on X(f,g,h), is given by

Xι
(f,g,h) = (X(f,g,h) ∩ P1)A (X(f,g,h) ∩ P2).

For three quadratic forms in three variables q1(x, y, z), q2(x, y, z), q3(x, y, z), let
R(q1, q2, q3) be the resultant of q1, q2, q3. Then R(q1, q2, q3) is the polynomial of
degree 12 of the coefficients of q1, q2, q3 characterizing the existence of common
intersection points of the three conics of P2 defined by q1 = 0, q2 = 0 and q3 = 0.
Namely,

R(q1, q2, q3)= 0 ⇐⇒ {
(x : y : z) ∈ P2; q1 = q2 = q3 = 0

} 	= ∅.

If qi(x, y, z)= ai1x
2+ai2y

2+ai3z
2+ai4xy+ai5xz+ai6yz, then R(q1, q2, q3) is

expressed as an explicit integral linear combination of the polynomials of the form

[j1, j2, j3][k1, k2, k3][l1, l2, l3][m1,m2,m3],
where

[j1, j2, j3] :=
∣∣∣∣∣∣

a1,j1 a1,j2 a1,j3

a2,j1 a2,j2 a2,j3

a3,j1 a3,j2 a3,j3

∣∣∣∣∣∣
.

See [15, p. 215 Table 1] for an explicit formula for R(q1, q2, q3).
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If the quadrics f1, g1, h1, f2, g2, h2 are generic enough, then we may assume
that R(f1, g1, h1)R(f2, g2, h2) 	= 0, so that ι has no fixed points on X(f,g,h) in that
case. Hence, if R(f1, g1, h1)R(f2, g2, h2) 	= 0 and X(f,g,h) is smooth, then

Y(f,g,h) :=X(f,g,h)/ι

is an Enriques surface. Let us see that a generic Enriques surface is constructed in
this manner.

Assume that R(f1, g1, h1)R(f2, g2, h2) 	= 0 and that X(f,g,h) is smooth. For sim-

plicity, set X0 := X(f,g,h). Let S := Gr3(Sym2C6) ∼= Gr3(C(7
2)) be the Grassmann

variety of 3-dimensional subspaces in the vector space of quadratic forms in the
variables x1, . . . , x6. Then S is equipped with the ι-action induced from the one on
C6 and with the PGL(C6)-action induced from the standard GL(C6)-action on C6.
By choosing f1, g1, h1, f2, g2, h2 generic enough, we may assume that sl(C6) is a
subspace of the tangent space of S at the point Span{f,g,h} ∈ S.

For s ∈ S, we define Xs := {[x] ∈ P5;q(x) = 0 (∀q ∈ s)}. Then we get a flat
family π : X → S with π−1(s) = Xs . Write [X0] ∈ S for Span{f,g,h} ∈ S. We
get a flat deformation π : (X,X0)→ (S, [X0]) of K3 surfaces of degree 8. Since
ι preserves X0 and hence ι([X0]) = [X0], we get a subfamily π : (X|Sι , ι,X0)→
(Sι, [X0]) of K3 surfaces with involution, where Sι := {s ∈ S; ι(s)= s} is the fixed-
point-set of the ι-action on S. Since ι has no fixed points on X0 by assumption and
since the set of fixed points of the ι-action on X is a closed subset of X, we see that
ι has no fixed points on Xs if s ∈ Sι is sufficiently close to [X0]. We define Y :=
(X|Sι )/ι and Y0 :=X0/ι. Let p : Y → S be the projection induced from π : X→ S.
Since ι has no fixed points on Xs , Ys is an Enriques surface for s ∈ S sufficiently
close to [X0]. Hence p : (Y,Y0)→ (Sι, [X0]) is a flat deformation of Y0.

Let ρX0 : T[X0]S → H 1(X0,ΘX0) and ρY0 : T[X0]Sι → H 1(Y0,ΘY0) be the
Kodaira-Spencer maps of the deformations π : (X,X0)→ (S, [X0]) and p : (Y,Y0)

→ (Sι, [X0]), respectively. Let (T[X0]S)+ and H 1(X0,ΘX0)+ be the invariant sub-
spaces of T[X0]S and H 1(X0,ΘX0) with respect to the ι-action, respectively. Since
ρX0 commutes with the ι-action, we set (ρX0)+ := ρX0 |(T[X0]S)+ : (T[X0]S)+ →
H 1(X0,ΘX0)+. Since (ρX0)+ can be identified with ρY0 under the identifications
(T[X0]S)+ = T[X0]Sι and H 1(X0,ΘX0)+ =H 1(Y0,ΘY0), we get

kerρY0
∼= ker(ρX0)+ = sl

(
C6)∩ ker(ι∗ − 1)∼= sl

(
C3)⊕ sl

(
C3)⊕C∼=C17.

Here the second equality follows from the equality kerρX0 = sl(C6), which is a con-
sequence of the fact that Xs

∼=Xs′ as polarized K3 surfaces of degree 8 if and only
if s and s′ lie on the same PGL(C6)-orbit. (We can also see the equality kerρX0 =
sl(C6) as follows. Set L0 :=OP5(1)|X0 . We consider the semiuniversal deformation
q : ((X,L), (X0,L0))→ (Def(X0,L0), [X0]) of the polarized K3 surface (X0,L0)

of degree 8. Since L0 is very ample on X0, we may assume that L is very ample on
Xt for t ∈Def(X0,L0). Since degL|Xt

= 8, the image of the projective embedding
Φ|L|Xt | : Xt → P5 must be a (2,2,2)-complete intersection. Namely, (Xt ,L|Xt

) is
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isomorphic to (Xs,OP5(1)) for some s ∈ S. Hence the deformation germ of polar-
ized K3 surfaces π : (X,X0)→ (S, [X0]) is complete, which implies the equality
dim kerρX0 = dimS − dim Def(X0,L0)= 35= dim sl(C6). This, together with the
inclusion sl(C6)⊂ kerρX0 , yields the equality kerρX0 = sl(C6).)

Since dimSι = 27 and dim kerρY0 = 17, we get dim ImρY0 = 27 − 17 = 10 =
dimH 1(Y0,ΘY0). Hence the Kodaira-Spencer map ρY0 is surjective and the family
p : (Y,Y0)→ (Sι, [X0]) is complete.

Set U := {s ∈ Sι; SingXs =Xι
s = ∅}. Then U is a Zariski open subset of Sι. For

s ∈ U , Ys = Xs/ι is an Enriques surface. Let ' : U � s → '(Xs/ι) ∈M be the
period mapping for the family of Enriques surfaces p : Y |U → U . By the Borel-
Kobayashi-Ochiai extension theorem, ' extends to a rational map from Sι to the
Baily-Borel compactification of Ω+

Λ/O+(Λ). By the completeness of the deforma-
tion germ p : (Y,Y0)→ (Sι, [X0]), the image of ' contains a dense Zariski open
subset of M, say U . If Y is an Enriques surface with '(Y) ∈ U , then Y = Y(F,G,H)

for some quadratic forms F,G,H .

5.2 An Algebraic Expression of Borcherds Φ-Function

Since we have a nice projective model of Enriques surfaces of degree 4, it is natural
to expect that the Borcherds Φ-function may admit an algebraic expression analo-
gous to the one for the Dedekind η-function associated to the plane cubic model or
the (2,2)-complete intersection model. In fact, this is the case.

Theorem 8 ([16]) Let Y(f,g,h) be the (2,2,2)-model of an Enriques surface de-
fined by the quadric polynomials f = f1 + f2, g = g1 + g2, h = h1 + h2 ∈
C[x1, x2, x3, x4, x5, x6]. Then the following equality holds

∥∥Φ(Y(f,g,h))
∥∥2 = ∣∣R(f1, g1, h1)R(f2, g2, h2)

∣∣
(

2

π4

∫

X(f,g,h)

α(f,g,h) ∧ α(f,g,h)

)4

.

Here α(f,g,h) ∈H 0(X(f,g,h),Ω
2
X(f,g,h)

) is defined as the residue of f , g, h, i.e.,

α(f,g,h) :=Ξ |X(f,g,h)
,

where Ξ is a meromorphic 2-form on P5 satisfying the equation

df ∧ dg ∧ dh∧Ξ =
6∑

i=1

(−1)ixidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dx6.

We remark that a weaker version of this result was obtained by Maillot-Roessler
[20] under a certain arithmeticity assumption on X(f,g,h). In their formula, the con-
tribution from the resultants is understood as the contribution from the bad primes
with respect to the reductions of X(f,g,h). When f , g, h are defined over the ring
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of integers of a number field K , Theorem 8 implies that the Borcherds Φ-function
detects the degenerations of ι over Spec(OK), since R(f1, g1, h1)R(f2, g2, h2) ∈ p

for a prime ideal p ∈ Spec(OK) if and only if ι has non-empty fixed points on the
reduction X(f,g,h)(OK/p). This picture of the Borcherds Φ-function is quite analo-
gous to the corresponding picture of the Dedekind η-function: For an elliptic curve
E = {y2 = 4x3−g2x−g3} over K , ‖η‖24 is identified with the discriminant of E up
to the L2-norm of dx/y. Hence the algebraic part of ‖η‖ detects the degenerations
of E over Spec(OK). See [10] for more explanation of this view point.

The proof of Theorem 8 shall be given in [16]. The strategy is as follows. We
compare the ∂∂̄ of the both hand sides as currents on S. Then it turns out that they
satisfy the same ∂∂̄-equation of currents on S. For this, we use Theorem 7 and a
formula for the asymptotic behavior of equivariant analytic torsion for degenerating
family of algebraic manifolds [35]. In this way, we get the desired equality, up to
an absolute constant. To fix the absolute constant, we compare the behavior of the
both hand sides for certain explicit 2-parameter family of Enriques surfaces, whose
universal coverings are Kummer surfaces of product type.

In fact, Theorem 8 holds even if Y(f,g,h) has at most rational double points by the
continuity of the both hand sides at those points of Sι corresponding to Enriques sur-
faces with rational double points. This continuity is a consequence of the existence
of simultaneous resolution of 2-dimensional rational double points.

By Theorem 8, we get a Thomae type formula for the Borcherds Φ-function.

Corollary 1 ([16]) Let v,v′ ∈ H 2(X(f,g,h),Z) be anti-ι-invariant, primitive,
isotropic vectors with 〈v,v′〉 = 1 and let v∨ ∈H2(X(f,g,h),Z) be the Poincaré dual
of v. Under the identification of lattices (Zv+ Zv′)⊥ ∼= U(2)⊕ E8(−2) =: L, the
vector

z(f,g,h),v,v′ := α− 〈α,v′〉v− 〈α,v〉v′
〈α,v〉 ∈ L⊗R+ i C+L

is regarded as the period of Y(f,g,h). Then, by a suitable choice of the 2-cocycles
{v,v′}, one has

Φ(z(f,g,h),v,v′)
2 =R(f1, g1, h1)R(f2, g2, h2)

(
2

π2

∫

v∨
α(f,g,h)

)8

.

When X(f,g,h) is birational to a Kummer surface of product type, the 2-cycle v∨
can be given explicitly. See [16] for the details.
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5.3 A 4-Parameter Family of Enriques Surfaces Associated to
M3,6(C)

For a non-zero 3× 6-complex matrix A ∈M3,6(C), we define

XA :=

⎧
⎪⎨

⎪⎩
[x] ∈ P5;

f (x) = a11x
2
1 + a12x

2
2 + a13x

2
3 + a14x

2
4 + a15x

2
5 + a16x

2
6 = 0

g(x) = a21x
2
1 + a22x

2
2 + a23x

2
3 + a24x

2
4 + a25x

2
5 + a26x

2
6 = 0

h(x) = a31x
2
1 + a32x

2
2 + a33x

2
3 + a34x

2
4 + a35x

2
5 + a36x

2
6 = 0

⎫
⎪⎬

⎪⎭
.

For A= (a1, . . . ,a6) ∈M(3,6;C) and i < j < k, we define

Δijk(A)= det(ai ,aj ,ak).

A matrix A ∈M(3,6;C) is said to be non-degenerate if
∏

i<j<k Δijk(A) 	= 0. Then,
for a non-degenerate A ∈M3,6(C), XA is a K3 surface. We write αA for α(f,g,h).
As an immediate consequence of Theorem 8, we get the following:

Corollary 2 ([16]) Let A ∈M3,6(C) be non-degenerate. For a partition of 6 letters
{1,2,3,4,5,6}

(
ijk

lmn

)
:= {i, j, k} ∪ {l,m,n} = {1,2,3,4,5,6},

define an involution ι
( ijk
lmn)

on P5 by

ι
( ijk
lmn)

(xi, xj , xk, xl, xm, xn)= (xi, xj , xk,−xl,−xm,−xn).

Then ι
( ijk
lmn)

is a free involution on XA called a switch such that

∥∥Φ(XA/ι( ijk
lmn)

)
∥∥2 = ∣∣Δijk(A)

∣∣4∣∣Δlmn(A)
∣∣4
(

2

π4

∫

XA

αA ∧ αA

)4

.

By Corollary 2 , if A ∈M3,6(K) with K ⊂ C, then for any partitions
(
ijk
lmn

)
and

(
i′j ′k′
l′m′n′

)
, one has

‖Φ(XA/ι( ijk
lmn)

)‖2

‖Φ(XA/ι(
i′j ′k′
l′m′n′)

)‖2
= |Δijk(A)|4|Δlmn(A)|4
|Δi′j ′k′(A)|4|Δl′m′n′(A)|4 ∈K.

Since |Δijk(A)|4|Δlmn(A)|4/|Δi′j ′k′(A)|4|Δl′m′n′(A)|4 	= 1 for all pairs of parti-

tions
(
ijk
lmn

)
,
(
i′j ′k′
l′m′n′

)
for generic non-degenerate A, we conclude that all of the 10

Enriques surfaces XA/ι( ijk
lmn)

are mutually distinct for a generic choice of A.
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6 Theta Function and Borcherds Φ-Function

In this section, we explain a relation between the Borcherds Φ-function and Fre-
itag’s theta function.

6.1 The Matsumoto-Sasaki-Yoshida Model

Recall that, for A ∈M2,4(C), we could associate two distinct models EA and CA of
an elliptic curve. By a similar construction, we can associate another K3 surface to
A ∈M3,6(C) as follows. For A ∈M3,6(C), define a K3 surface

ZA :=
{
(
(x1 : x2 : x3), y

) ∈OP2(3); y2 =
6∏

i=1

(a1ix1 + a2ix2 + a3ix3)

}
,

which is identified with its minimal resolution. Then ZA is (the minimal resolution
of) the double covering of P2, whose branch divisor is the union of 6 lines in general
position a1ix1 + a2ix2 + a3ix3 = 0 (i = 1, . . . ,6). The period mapping and its in-
verse for the family of K3 surfaces ZA over a certain open subset of M3,6(C) were
worked out by Matsumoto-Sasaki-Yoshida [23] and Matsumoto [21].

We define a holomorphic 2-form ηA on ZA by

ηA := x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

y
.

By Matsumoto-Sasaki-Yoshida [23], there are 6 independent transcendental 2-
cycles {γij }1≤i<j≤4 on ZA and 16 independent algebraic 2-cycles on ZA, which
form a basis of H2(ZA,Q).

Following Matsumoto-Sasaki-Yoshida [23], define the period of ZA as the matrix

ΩA := 1

η34(A)

⎛

⎝ η14(A) − η13(A)−√−1η24(A)

1+√−1

− η13(A)+√−1η24(A)

1−√−1
−η23(A)

⎞

⎠ ,

where

ηij (A) :=
∫

γij

ηA.

By a suitable choice of the cycles {γij }1≤i<j≤4, one has

ΩA ∈D := {T ∈M2,2(C); (T − t T
)
/2i > 0

}
,

where D is isomorphic to a symmetric bounded domain of type IV of dimension 4.
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6.2 Theta Function on D

Write e(x) := exp(2πix).

Definition 5 For Ω ∈D and a, b ∈ Z[i]2, define the Freitag theta function as

Θ a
1+i

, b
1+i

(Ω)

:=
∑

n∈Z[i]2
e
[

1

2

(
n+ a

1+ i

)
Ωt

(
n+ a

1+ i

)
+?

(
n+ a

1+ i

)
t

(
b

1+ i

)]
.

Following [32], we identify the characteristic
(
a
b

)
with the partition

(
ijk
lmn

)
by the

rule:

(
a
b

)= (a1 a2
b1 b2

) (
i 0
0 i

) (
i 0
0 0

) (
i i
0 0

) (
i i
i i

) (0 i
0 0

) (0 0
0 0

) (0 0
i i

) (0 0
0 i

) (0 0
i 0

) (0 i
i 0

)

C C C C C C C C C C C(
ijk
lmn

) (123
456

) (124
356

) (125
346

) (126
345

) (134
256

) (135
246

) (136
245

) (145
236

) (146
235

) (156
234

)

Under this identification, we define

Θ
(ijk
lmn)

(Ω) :=Θ a
1+i

, b
1+i

(Ω)

and its Petersson norm by

∥∥Θ
(ijk
lmn)

(Ω)
∥∥2 := det

(
Ω − tΩ

2
√−1

)∣∣Θ
(ijk
lmn)

(Ω)
∣∣2.

Theorem 9 ([16]) For a non-degenerate A = (A1,A2) ∈M3,6(C) with A1,A2 ∈
M3(C), define

A∨ := (tA−1
1 , tA−1

2

)
.

Then
∥∥Φ(XA/ι( ijk

lmn)
)
∥∥= ∥∥Θ

(ijk
lmn)

(ZA∨)
∥∥4

.

The proof of Theorem 9 shall be given in [16]. We use Matsumoto-Terasoma’s
Thomae type formula [22] to rewrite the right hand side of Theorem 9. Comparing
this with Theorem 8, we get the result. See [16] for the details. We remark that, after
Freitag-Salvati-Manni [12, Th. 5.6], Theorem 9 is not very surprising, because they
proved that the Borcherds Φ-function itself is expressed as a linear combination of
certain additive Borcherds lifts.
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6.3 The Case of Jacobian Kummer Surfaces

For λ= (λ1, . . . , λ6) ∈ C6 with λi 	= λj (i 	= j), define a genus 2 curve Cλ by the
affine equation

Cλ :=
{
(x, y) ∈C2; y2 =

6∏

i=1

(x − λi)

}
.

Define holomorphic differentials ω1 and ω2 on Cλ by

ω1 := dx

y
, ω2 := xdx

y
.

Let {A1,A2,B1,B2} be a certain symplectic basis of H1(Cλ,Z) and set

Tλ :=
(∫

B1
ω1

∫
B2

ω1∫
B1

ω2
∫
B2

ω2

)−1(∫
A1

ω1
∫
A2

ω1∫
A1

ω2
∫
A2

ω2

)
∈S2.

Then the Kummer surface K(Cλ) of the Jacobian variety Jac(Cλ) is expressed as
follows:

K(Cλ)∼=XA, A=
⎛

⎝
1 1 1 1 1 1
λ1 λ2 λ3 λ4 λ5 λ6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

⎞

⎠ ∈M3,6(C).

By Theorem 9, we get the following.

Corollary 3 ([16]) If the partition
(
pqr
stu

)
corresponds to the characteristic (a, b),

then
∥∥Φ
(
K(Cλ)/ι(pqr

stu)

)∥∥= (det@Tλ)
2
∣∣θ?( a

1+i
),?( b

1+i
)
(Tλ) θ@( a

1+i
),@( b

1+i
)
(Tλ)

∣∣4.

Here θα,β(T ), α,β ∈ {0,1/2}2, is the Riemann theta constant

θα,β(T ) :=
∑

n∈Z2

e
[

1

2
(n+ α)T t (n+ α)+ (n+ α)tβ

]
, T ∈S2.

Recall that Igusa’s Siegel modular form Δ5 is defined as the product of all even
theta constants

Δ5(T ) :=
∏

(α,β) even

θα,β(T ), T ∈S2.

For a genus 2 curve C with period T ∈S2, its Petersson norm
∥∥Δ5(C)

∥∥2 := (det@T )5
∣∣Δ5(T )

∣∣2

is independent of the choice of a symplectic basis of H1(C,Z). Hence ‖Δ5(C)‖ is
an invariant of C. Form Corollary 3, it follows the following:
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Corollary 4 ([16]) The Igusa cusp form Δ5 is the average of Φ with respect to the
10 switches, i.e.,

∏

( ijk
lmn)

∥∥Φ
(
K(C)

)
/ι
( ijk
lmn)

∥∥= ∥∥Δ5(C)
∥∥8

.

7 Some Problems

Problem 1 For elliptic curves, two distinct models EA and CA yield distinct
algebro-geometric expressions of ‖η‖. For projective models of Enriques sur-
faces distinct from the (2,2,2)-complete intersection of P5, find the corresponding
algebro-geometric expressions of ‖Φ‖.

Problem 2 On a generic Jacobian Kummer surface, there exists 31 conjugacy
classes of free involutions ([25, 28]), which split into three families:

• 10 switches,
• 15 Hutchinson-Göpel involutions,
• 6 Hutchinson-Weber involutions.

Recall that, as the average of the Borcherds Φ-function by 10 switches, we get
Igusa’s Siegel modular form Δ5. Determine the Siegel modular form constructed as
the average of the Borcherds Φ-function by the 15 Hutchinson-Göpel involutions
(resp. 6 Hutchinson-Weber involutions).

Problem 3 As mentioned in Sect. 4.2, there exists an analytic torsion invariant τM
for K3 surfaces with involution [34], which is often expressed as the Petersson norm
of the tensor product of an explicit Borcherds lift and Igusa’s Siegel modular form
[36]. After Theorem 8, it is an interesting problem to find an algebro-geometric
expression of τM for general M .

Problem 4 (The inverse of the period mapping for Enriques surfaces) For elliptic
curves, the inverse of the period mapping was constructed by Jacobi by using theta
constants. We ask the same problem for the (2,2,2)-model of Enriques surfaces:
For 1≤ i < j ≤ 3 and 4≤ k < l ≤ 6, find a system of automorphic forms

α
(1)
ij (Z), α

(2)
kl (Z), β

(1)
ij (Z), β

(2)
kl (Z), γ

(1)
ij (Z), γ

(2)
kl (Z)

on Ω+
Λ for (a finite index subgroup of) O+(Λ) such that

YZ :=XZ/ι, ι(x)= (x1, x2, x3,−x4,−x5,−x6)
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is the Enriques surface whose period is the given by Z ∈Ω+
Λ . Here

XZ =

⎧
⎪⎨

⎪⎩
[x] ∈ P5;

∑
1≤i<j≤3 α

(1)
ij (Z)xixj +∑4≤k<l≤6 α

(2)
kl (Z)xkxl = 0

∑
1≤i<j≤3 β

(1)
ij (Z)xixj +∑4≤k<l≤6 β

(2)
kl (Z)xkxl = 0

∑
1≤i<j≤3 γ

(1)
ij (Z)xixj +∑4≤k<l≤6 γ

(2)
kl (Z)xkxl = 0

⎫
⎪⎬

⎪⎭
.

Kondō [18] and Freitag-Salvati-Manni [12] constructed certain (birational) projec-
tive embeddings of the moduli space of Enriques surfaces with some level structure.
Are the system of automorphic forms appearing in their embeddings regarded as
the set of coefficients of the defining equations of appropriately polarized Enriques
surfaces?
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Sum Rule for the Eight-Vertex Model
on Its Combinatorial Line

Paul Zinn-Justin

Abstract We investigate the conjectured ground state eigenvector of the 8-vertex
model inhomogeneous transfer matrix on its combinatorial line, i.e., at η = π/3,
where it acquires a particularly simple form. We compute the partition function of
the model on an infinite cylinder with certain restrictions on the inhomogeneities,
and taking the homogeneous limit, we obtain an expression for the squared norm
of the ground state of the XYZ spin chain as a solution of a differential recurrence
relation.

1 Introduction

The purpose of this article is to investigate the inhomogeneous eight-vertex model on
a particular one-dimensional family of the globally defined parameters of the model,
namely, with the conventions of Baxter [2], when η= π/3. More precisely, we study
a certain eigenvector (conjecturally, the ground state eigenvector in an appropriate
range of parameters) of the transfer matrix of this model with periodic boundary
conditions and an odd number of sites. Ultimately, the goal is to compare with some
observations and conjectures [6, 28] made for the homogeneous eight-vertex model
and the closely related XYZ spin chain, but the introduction of inhomogeneities
(spectral parameters) turns out to be quite useful, as was previously found for the
six-vertex model [12, 14, 29], a special case of the eight-vertex model.

In this section we briefly describe the model and some conjectured properties at
η= π/3. The rest of this paper is devoted to showing how some of these properties
arise from specializing formulae for the inhomogeneous model. The main object of
study will be the “partition function” of the model on an infinite cylinder (equiva-
lently, a quadratic functional of the ground state eigenvector), for which we derive an
inhomogeneous sum rule (with a certain restriction on the inhomogeneities, which
we call “half-specialization”) and a detailed discussion of its homogeneous limit.
Note that this paper is not meant to be fully mathematically rigorous; firstly, it is
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based on a conjecture (Conj. 1) which we hope to prove in future work [35]. Sec-
ondly, some calculations involving theta and elliptic functions are skipped; though
they are in principle elementary, they can be quite tedious.

It should be noted that a special case of the eight-vertex model on its combina-
torial line, namely the six-vertex model at Δ = −1/2, is much better understood
[1, 14, 26, 29, 32], and in this case many formulae of this work are already known
and proved; we provide in Appendix A the connection to earlier work by taking the
limit to the six-vertex point.

1.1 Inhomogeneous Eight-Vertex Transfer Matrix

The eight-vertex model is a two-dimensional statistical lattice model defined on the
square lattice by the assignment of arrows to each edge of the lattice, according to
eight possible local configurations around a vertex:

a b c d

They are given Boltzmann weights denoted by a, b, c, d which are parameterized as
follows:

a(x)= ϑ4
(
2η,p2)ϑ4

(
x,p2)ϑ1

(
x + 2η,p2)

b(x)= ϑ4
(
2η,p2)ϑ1

(
x,p2)ϑ4

(
x + 2η,p2)

c(x)= ϑ1
(
2η,p2)ϑ4

(
x,p2)ϑ4

(
x + 2η,p2)

d(x)= ϑ1
(
2η,p2)ϑ1

(
x,p2)ϑ1

(
x + 2η,p2)

(1)

where x is the spectral parameter and p = eiπτ , Im τ > 0, is the elliptic nome.
The weights have period 2π and pseudo-period 2πτ , i.e., they are multiplied by a
common factor when x is replaced with x + 2πτ .

Ordering the edge states as (↑,↓) and (→,←), these weights can be encoded
into the R-matrix

R(x)=

⎛

⎜⎜⎝

a(x) 0 0 d(x)

0 b(x) c(x) 0
0 c(x) b(x) 0

d(x) 0 0 a(x)

⎞

⎟⎟⎠
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We shall also need in what follows the Ř-matrix defined as

Ř(x)=PR(x)=

⎛

⎜⎜⎝

a(x) 0 0 d(x)

0 c(x) b(x) 0
0 b(x) c(x) 0

d(x) 0 0 a(x)

⎞

⎟⎟⎠

where P permutes factors of the tensor product.
The Boltzmann weights satisfy the Yang–Baxter equation and unitarity equation;

in terms of Ř, these are expressed as

Ři,i+1(x)Ři+1,i+2(x + y)Ři,i+1(y)= Ři+1,i+2(y)Ři,i+1(x + y)Ři+1,i+2(x) (2)

and

Ř(x)Ř(−x)= r(x)r(−x)1 (3)

where r(x)= ϑ4(0;p2)ϑ1(x − 2η;p2)ϑ4(x − 2η;p2).
We consider here the model in size L with periodic boundary conditions in the

horizontal direction, i.e., with the geometry of a cylinder of width L. The state of
the L vertical edges at same height on the cylinder are encoded by a sequence in
{↑,↓}L. The transfer matrix is a 2L × 2L matrix, or equivalently an operator on
(C2)⊗L with its standard basis indexed by {↑,↓}L, describing the transition from
one row of vertical edges to the next; the fully inhomogeneous transfer matrix has
the formal expression

TL(u|x1, . . . , xL)= Tr0 R01(x1 − u)R02(x2 − u) . . .R0L(xL − u)

where we use the following convention: the indices of operators R (and all other
local operators) are the spaces on which they act in the tensor product (C2)⊗L.
u,x1, . . . , xL are spectral parameters of the model. The system has rotational in-
variance in the sense that shifting cyclically sites in the tensor product and spectral
parameters leaves TL invariant. In what follows, all indices in {1, . . . ,L} must be
understood modulo L.

Finally we need Pauli matrices σx,y,z, which are local operators acting on one
site; we give alternate names to two of them. The flip operator (σx Pauli matrix)
is F = ( 0 1

1 0

)
and the spin operator (σz Pauli matrix) is σ = ( 1 0

0 −1

)
. Finally σy =

( 0 i
−i 0

)
. Denote F∗ =∏L

i=1 Fi .

The transfer matrix TL is invariant by reversal of all spins, i.e., [TL,F∗] = 0.

1.2 Combinatorial Line

In all the rest of this paper, we assume that L is an odd number, L = 2n+ 1, and
that η = π/3. This second condition is what we call “combinatorial line”, because
of the occurrence of integer numbers in the ground state, as we shall see below. The
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value η = π/3 was first noticed to have special significance by Baxter [3]; the im-
portance of odd L was emphasized by Stroganov [31]. More recently, Razumov and
Stroganov [28] and Bazhanov and Mangazeev [4–6] studied the model with such
conditions. It is also known [4, 17] that η = π/3 corresponds to a supersymmetric
point for the XYZ spin chain.

Although the work [28] is mostly concerned with the homogeneous limit (see
below), the following conjecture is made there (translated into our present conven-
tions): the transfer matrix TL(u|x1, . . . , xL) possesses the eigenvalue

tL(u|x1, . . . , xL)=
L∏

i=1

(
a(xi − u)+ b(xi − u)

)

In fact, this eigenvalue is found to be doubly degenerate; in [5, 6, 28], this degen-
eracy is lifted by fixing the parity of the number of ↑ in the eigenvector. Here we
find it more convenient to choose a different convention, which is to diagonalize
simultaneously F∗.

Note the identities at η= π/3:

r(x)= ϑ4
(
0,p2)ϑ1

(
x + η,p2)ϑ4

(
x + η,p2)= a(x)+ b(x)

1.3 Homogeneous Limit

If we assume that all xi are equal (homogeneous situation), then the transfer matrix
TL commutes with the XYZ Hamiltonian, which can be written as

HL =−1

2

L∑

i=1

(
J4σ

x
i σ

x
i+1 + J3σ

y
i σ

y

i+1 + J2σ
z
i σ

z
i+1

)

The numbering of the coupling constants will be explained later. The value η= π/3
implies that up to normalization, the three coupling constants can be expressed in
terms of a single quantity, which we choose to be

ζ =
(
ϑ1(η;p2)

ϑ4(η;p2)

)2

If we choose τ purely imaginary, then as p goes from 0 to 1, ζ goes from 0 to 1.
The coupling constants are given up to overall normalization by

J2 =−1

2
J3 = 1

1+ ζ
J4 = 1

1− ζ

The XXZ Hamiltonian (corresponding to the six-vertex transfer matrix), is the case
ζ = 0 (or p = 0). This case was already studied in detail, as mentioned in the intro-
duction.
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Another special case is ζ → 1 (or p→ 1), for which after rescaling the weights,
J2 = J3 = 0, so the model becomes the Ising model, but with a σxσx interac-
tion. The ground state becomes of course trivial; some details are provided in Ap-
pendix B.

The simple eigenvalue of the eight-vertex transfer matrix translates into a simple
eigenvalue of the Hamiltonian HL, namely

EL =−L

2
(J2 + J3 + J4)

It is conjectured to be the ground state eigenvalue of HL.
Many remarkable observations were made on the corresponding eigenvector, ΨL

in [6, 28]. Its entries can be chosen to be polynomials in ζ , and the form of some
of these polynomials was conjectured. We shall not discuss these conjectures here.
The values at ζ = 0 (XXZ model) of these polynomials were calculated in [29].

In both [6, 28], the squared norm of ΨL was introduced:

|ΨL|2 =
∑

α∈{↑,↓}L
Ψ 2

L;α (4)

where the normalization of the components is chosen so that they are coprime poly-
nomials in ζ , and ΨL;↑ · · · ↑︸ ︷︷ ︸

n

↓ · · · ↓︸ ︷︷ ︸
n+1

(ζ = 0)= 1. An expression for |ΨL|2 was con-

jectured in [6] in terms of certain polynomials, themselves defined by differential
recurrence relations which are special cases of certain Bäcklund transformations for
Painlevé VI. Since the formulae are rather complicated, we shall not write them out
here and derive our own (similar) formulae by specializing inhomogeneous expres-
sions.

The main result of this paper is the factorization of this squared norm into four
factors, as summarized in Sect. 4.1, which are all determined by differential bilinear
recurrence relations which are given explicitly in Appendix D.

2 Properties of the Ground State Eigenvector

We consider once again the eigenvector equation in size L= 2n+ 1

TL(u|x1, . . . , xL)ΨL(x1, . . . , xL)= tL(u|x1, . . . , xL)ΨL(x1, . . . , xL) (5a)

F∗ΨL(x1, . . . , xL)= (−1)nΨL(x1, . . . , xL) (5b)

for the inhomogeneous eight-vertex transfer matrix, where we recall that tL(u|x1,

. . . , xL) =∏L
i=1 r(xi − u), r(x) = a(x) + b(x) = ϑ4(0,p2)ϑ1(x + η,p2)ϑ4(x +

η,p2). The choice of eigenvalue of F∗ will turn out convenient in what follows.
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2.1 Pseudo-periodicity

Based on extensive study of the ground state entries by computer for small sizes
L= 3,5,7, the following conjecture seems valid:

Conjecture 1 The eigenvector equations (5a), (5b) possess a solution
ΨL(x1, . . . , xL) whose entries are theta functions of degree L− 1 = 2n and nome
p2 in each variable xi (generically non zero and without common factor); i.e., they
are holomorphic functions with pseudo-periodicity property:

ΨL(. . . , xi + 2πτ, . . .)= p−4nz2n
i

∏

j (	=i)

z−1
j ΨL(. . . , xi, . . .) (6a)

ΨL(. . . , xi + π, . . .)=
∏

j (	=i)

σjΨL(. . . , xi, . . .) (6b)

where the . . . mean unspecified variables x1, x2, etc, p = eiπτ and zi = e−2ixi ,
i = 1, . . . ,L.

(Note that the factor
∏

j (	=i) z
−1
j is to be expected since ΨL only depends on

differences of spectral parameters. The factor p−4n can be absorbed in a redefinition
of ΨL, but is convenient. The factor

∏
j (	=i) σj is again expected from the properties

of the R-matrix by shift of π ; it could be absorbed in a simultaneous redefinition of
the R-matrix and of ΨL.)

Similar properties have been observed and (in some cases) proved for models
based on trigonometric or rational solutions of the Yang–Baxter equation at special
points of their parameter space [7, 9–13, 29, 37, 38], except the entries are ordinary
polynomials of prescribed degree (the main difficulty being to prove this degree). In
particular, in the limit ζ → 0, ΨL reduces to the eigenvector of the inhomogeneous
six-vertex transfer matrix whose existence and uniqueness was proved rigorously in
[29] and references therein. Therefore, if such a solution of (5a), (5b) exists, it is
necessarily unique (for generic p) up to normalization. In principle this normaliza-
tion might contain a non-trivial function of the xi , which is why we added to the
conjecture the fact that the entries have no common factor. So there remains only an
arbitrary constant in the normalization of ΨL, which will be fixed later.

2.2 Exchange Relation

As a direct application of the Yang–Baxter equation, we have the following inter-
twining relation:

TL(u| . . . , xi+1, xi, . . .)Ři,i+1(xi+1−xi)= Ři,i+1(xi+1−xi)TL(u| . . . , xi, xi+1, . . .)

(7)
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(see Lemma 1 of [12] for the same formula in a similar setting, and its graphical
proof).

Now apply ΨL(x1, . . . , xL) to Eq. (7) and use the eigenvalue equation (5a):

TL(u|x1, . . . , xi+1, xi, . . . , xL)Ři,i+1(xi+1 − xi)ΨL(. . . , xi, xi+1, . . .)

= tL(u|x1, . . . , xL)Ři,i+1(xi+1 − xi)ΨL(. . . , xi, xi+1, . . .)

tL(u|x1, . . . , xL) being invariant by permutation of xi, xi+1, and F∗ commuting with
Ři,i+1, we conclude by the uniqueness of the solution of (5a), (5b) that

Ři,i+1(xi+1 − xi)ΨL(. . . , xi, xi+1, . . .)= ri(x1, . . . , xL)ΨL(. . . , xi+1, xi, . . .)

where ri is some scalar function which is a ratio of theta functions, but cannot have
a non-trivial denominator because it would be a common factor of the Ψα , which
would contradict Conj. 1; so it is a theta function of degree 2 in xi, xi+1 (and zero
in all others, hence a constant) with given pseudo-periodicity property; by applying
the identity twice and using unitarity equation (3), we find ri(xi, xi+1)ri(xi+1, xi)=
r(xi − xi+1)r(xi+1 − xi). The only theta function which divides the right hand side
and has the same pseudo-periodicity properties as ri(xi, xi+1) is r(xi+1 − xi); so
ri(xi, xi+1)=±r(xi+1 − xi). The simplest way to fix the sign is to use the ζ → 0
limit where it is known [29] that the correct sign is +. By continuity in ζ , we have
in the end ri(xi, xi+1)= r(xi+1 − xi), so that

Ři,i+1(xi+1 − xi)ΨL(. . . , xi, xi+1, . . .)= r(xi+1 − xi)ΨL(. . . , xi+1, xi, . . .) (8)

2.3 Spin Flip

Next, note that weights a(x) and b(x) (resp. c(x) and d(x)) are exchanged by shift
of x by πτ . More precisely, we have the following identity:

R01(x + πτ)=−p−1zF1R01(x)F1

where z= e−2ix and F1 is the operator that flips the second spin (of course the same
would be true with F1 replaced with F0, since the R matrix commutes with F0F1).

Applying this to the transfer matrix, we find:

TL(. . . , xi + πτ, . . .)Fi =−p−1ziFiTL(. . . , xi, . . .) (9)

where we recall that Fi flips spin i.
As in the previous section, apply ΨL(x1, . . . , xL) to Eq. (9) and use the eigenvalue

equation (5a):

TL(. . . , xi+πτ, . . .)FiΨL(. . . , xi, . . .)=−p−1zi tL(u| . . . , xi, . . .)FiΨL(. . . , xi, . . .)



606 P. Zinn-Justin

We have tL(u| . . . , xi + πτ, . . .) = −p−1zi tL(u| . . . , xi, . . .), as should be, and F∗
and Fi commute, so we conclude as before that

FiΨL(. . . , xi, . . .)= fi(x1, . . . , xL)ΨL(. . . , xi + πτ, . . .) (10)

where fi(x1, . . . , xL) is a scalar function with the following properties: it is a ratio
of theta functions, but cannot have a non-trivial denominator because it would be a
common factor of the Ψα , which would contradict Conj. 1; so it is a holomorphic
function, with pseudo-periodicity properties determined by shifting one of the xj by
π,πτ in Eq. (10) and comparing with (6a), (6b); we find

fi(. . . , xi + π, . . .)= fi(. . . , xi, . . .)

fi(. . . , xj + π, . . .)=−fi(. . . , xj , . . .) j 	= i

fi(. . . , xi + 2πτ, . . .)= p4nfi(. . . , xi, . . .)

fi(. . . , xj + 2πτ, . . .)= p−2fi(. . . , xj , . . .) j 	= i

This fixes it to be fi(x1, . . . , xL) = ce
2nixi−i

∑
j ( 	=i) xj . By rotational invariance, the

constant c is independent of i. Iterating Eq. (10) results in fi(. . . , xi, . . .)fi(. . . , xi+
πτ, . . .) = p4ne

4nixi−2i
∑

j ( 	=i) xj , which imposes that c = ±pn. In order to fix the
sign, we use the invariance by shift of all the spectral parameters and the fact that
F∗ΨL = (−1)nΨL with F∗ =∏L

i=1 Fi to conclude that cLp−L(L−1)/2 = (−1)n and
therefore c= (−p)n.

We finally obtain:

FiΨL(. . . , xi, . . .)= (−p)ne
2nixi−i

∑
j ( 	=i) xj ΨL(. . . , xi + πτ, . . .) (11)

2.4 Wheel Condition and Recurrence Relations

We are now interested in the situation where two successive spectral parameters
have difference 2η. In this paragraph, we denote to simplify T +L = TL(u| . . . , x, x+
2η, . . .) and T −L = TL(u| . . . , x + 2η,x, . . .) where the two specialized spectral pa-
rameters are at sites i, i+1. Applying the intertwining relation (7) with xi = x+2η,
xi+1 = x, we find:

T +L Ři,i+1(−2η)= Ři,i+1(−2η)T −L
A direct calculation shows that Ř(−2η)= 2ϑ4(2η,p2)ϑ1(2η,p2)ϑ4(0,p2)P where

P is the projector P = 1
2 (1−P)= 1

2

( 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

)
. Therefore the equality above says

that T +L leaves ImPi,i+1 stable (and that restricted to that subspace it is equal to the
projection of T −L : T +L |ImPi,i+1 = Pi,i+1T

−
L |ImPi,i+1 ).
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We shall need to check this explicitly. Set s = |↑↓〉 − |↓↑〉 =
( 0

1
−1
0

)
to be a

generator of the image of projector P , and compute R0,i (x)R0,i+1(x + 2η)si,i+1,
e.g.,

〈→|R0,i (x)R0,i+1(x + 2η)si,i+1|←〉 = +

− −

= (d(x)a(x + 2η)− b(x)d(x + 2η)
)|↓↓〉

+ (a(x)c(x + 2η)− c(x)b(x + 2η)
)|↑↑〉

= 0

〈→|R0,i (x)R0,i+1(x + 2η)si,i+1|→〉 = +

− −

= (a(x)b(x + 2η)− c(x)c(x + 2η)
)|↑↓〉

+ (d(x)d(x + 2η)− b(x)a(x + 2η)
)|↓↑〉

= r(x + 6η)r(x + 2η)si,i+1

and similarly with all arrows reversed. Thus, R0,i (x)R0,i+1(x + 2η)si,i+1 = r(x +
6η)r(x+ 2η)si,i+1⊗ 10, and therefore, after shift of x→ x−u, and use of η= π/3
to get rid of the 6η, we find

T +L |ImPi,i+1 = r(x − u)r(x + 2η− u)TL−2 (12)

where it is understood that TL−2 acts only on sites distinct from i, i + 1.
Now apply ΨL−2 (with parameters xj except xi, xi+1) tensor si,i+1 and use

eigenvector equation (5a):

T +L ΨL−2(. . .)⊗ si,i+1 = r(x − u)r(x + 2η− u)tL−2(u| . . .)ΨL−2(. . .)⊗ si,i+1

By definition, tL(u| . . . , x, x + 2η, . . .)= r(x − u)r(x + 2η− u)tL−2(u| . . .). Also,
from Eq. (5b), F∗ΨL−2 ⊗ si,i+1 = ((−1)n−1ΨL−2) ⊗ (−si,i+1) = (−1)nΨL−2 ⊗
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si,i+1. By uniqueness of the solution of (5a), (5b), we conclude that

ΨL(. . . , x
i

, x + 2η
i+1

, . . .)=ψi(x; . . .)ΨL−2(. . .)⊗ si,i+1 (13)

where, by the same kind of argument as in previous sections, ψi is a theta function
of its arguments of degree 1 in the xj , j 	= i, i + 1 and of degree 4n in x.

In order to fix the function ψi , we shall need the so-called wheel condition van-
ishing relation. Let us first consider a special case of it: suppose three successive
spectral parameters xi, xi+1, xi+2 are of the form x, x+ 2η,x+ 4η. Then according
to Eq. (13) applied at (i, i + 1) and (i + 1, i + 2),

Pi,i+1ΨL(. . . , x, x + 2η,x + 4η, . . .) = Pi+1,i+2ΨL(. . . , x, x + 2η,x + 4η, . . .)

= −ΨL(. . . , x, x + 2η,x + 4η, . . .)

But the action of the symmetric group S3 on C
2 ⊗ C

2 ⊗ C
2 does not possess the

sign representation as a sub-representation; therefore

ΨL(. . . , x, x + 2η,x + 4η, . . .)= 0

Now assume all other parameters xj , j 	= i, i + 1, i+ 2, are generic; then according
to Eq. (3), Ř(xj −xk) (j 	= i, i+1, i+2, k = i, i+1, i+2) is an invertible operator.
Applying repeatedly the exchange relation (8) to the equality above, we conclude
that

ΨL(. . . , x, . . . , x + 2η, . . . , x + 4η, . . .)= 0 (14)

where the location of the three arguments is now arbitrary, as long as the cyclic order
is respected. This is the general wheel condition (the equality is true for generic xj ,
therefore for all xj ).

Finally, using pseudo-periodicity relations (6a), (6b), as well as flip relation (11),
we conclude that the wheel condition vanishing relation (14) is valid provided the
triplet of spectral parameters forms a wheel x, x + 2η,x + 4η modulo π,πτ (not
just 2πτ ! a crucial technical point which will be used repeatedly below).

We can now come back to our recurrence relation (13). On the left hand
side, we notice that as soon as one of the xj , j 	= i, i + 1, is equal to x − 2η
(mod π,πτ), a wheel is formed and ΨL vanishes. Therefore ψi(x; . . .) contains
factors

∏
j (	=i,i+1) ϑ1(x−2η−xj ;p2)ϑ4(x−2η−xj ;p2); moreover these exhaust

its degree, and noting that these factors can also be written up to a multiplicative
constant as ϑ1(x − 2η− xj ;p), we can rewrite Eq. (13)

ΨL(. . . , x
i

, x + 2η
i+1

, . . .)= cst
∏

j (	=i,i+1)

ϑ1(x − 2η− xj ;p)ΨL−2(. . .)⊗ si,i+1 (15)

More explicitly, it means that
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ΨL;α1,...,αL
|xi+1=xi+2η

=
{

0 αi = αi+1
cstαi

∏
j (	=i,i+1) ϑ1(xi − 2η− xj ;p)ΨL−2;α1,...,αi−1,αi+2,...,αL

αi 	= αi+1

The constant remains undetermined at this stage, since we have not fixed the nor-
malization of ΨL yet.

A similar recurrence relation can be written for xi+1 = xi + 2η + πτ (the non-
zero result occurring when αi = αi+1), but we shall not need it.

3 Partition Function

In the rest of this paper, we denote ϑ(x) := ϑ1(x;p) and ϑk(x) := ϑk(x;p), k =
2,3,4. Since the contents of this section are not expected to generalize outside η=
π/3, we shall use 3η= 0 (mod π) to replace 2η with −η whenever possible.

3.1 Definition

We now introduce a quantity that naturally generalizes the squared norm of the XYZ
ground state (Eq. (4)) to the inhomogeneous case:

ZL(x1, . . . , xL)=
〈
ΨL(−x1, . . . ,−xL)|ΨL(x1, . . . , xL)

〉

where we have used the (real) scalar product: 〈Φ|Φ ′〉 =∑α∈{↑,↓}L ΦαΦ
′
α .

ZL(x1, . . . , xL) has the following interpretation: it is the “partition function” of
the inhomogeneous eight-vertex model on an infinite cylinder. Indeed, assuming that
we are in a regime of parameters where ΨL is associated to the largest eigenvalue
of the transfer matrix, ΨL(x1, . . . , xL) corresponds to the partition function on a
half-infinite cylinder (pointing upwards) with given arrows at the boundary at the
bottom. A vertical mirror symmetry of the eight vertices correspond in the weights
(1) to x →−2η − x and a change of sign of the weights a and b, the latter being
irrelevant with periodic boundary conditions. So the partition function of the other
half-infinite cylinder (pointing downwards) is ΨL(−x1, . . . ,−xL) (ΨL only depends
on the differences of its arguments so the−2η term is irrelevant). We mean partition
function in the following sense: a one-point correlation function will be expressed
as 〈O〉 = 1

Z

∑
α,β∈{↑,↓}L ΨL;α(−x1, . . . ,−xL)Oα,βΨL;β(x1, . . . , xL).
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3.2 Pseudo-periodicity

According to its definition and (6b), ZL is invariant by xi → xi +π for any given i.
Furthermore,

ZL(. . . , xi + πτ, . . .) =
∑

α∈{↑,↓}L

〈
ΨL(. . . ,−xi − πτ, . . .)|ΨL(. . . , xi + πτ, . . .)

〉

= (−p)ne
2ni(−xi−πτ)+i

∑
j ( 	=i) xj

〈
ΨL(. . . ,−xi, . . .)|Fi

(−p)−ne
−2nixi+i

∑
j ( 	=i) xj Fi |ΨL(. . . , xi, . . .)

〉
by Eq. (11)

= p−2nz2n
i

∏

j (	=i)

z−1
j ZL(. . . , xi, . . .)

where it is reminded that zj = e−2ixj .
We reach the conclusion that ZL is a theta function of degree 2n and nome p (as

opposed to p2 for ΨL) in each variable xi .

3.3 Symmetry

Given i = 1, . . . ,L− 1, we can use the exchange relation (8) and unitarity relation
(3) to write

ZL(x1, . . . , xi+1, xi, . . . , xL)

= 〈ΨL(−x1, . . . ,−xi+1,−xi, . . . ,−xL)
∣∣ΨL(x1, . . . , xi+1, xi, . . . , xL)

〉

=
〈
Ři,i+1(xi − xi+1)

r(xi − xi+1)
ΨL(−x1, . . . ,−xi,−xi+1, . . . ,−xL)

∣∣∣∣
∣∣∣∣
Ři,i+1(xi+1 − xi)

r(xi+1 − xi)
ΨL(x1, . . . , xi, xi+1, . . . , xL)

〉

= 〈ΨL(−x1, . . . ,−xi,−xi+1, . . . ,−xL)
∣∣ Ři,i+1(xi − xi+1)

r(xi − xi+1)

Ři,i+1(xi+1 − xi)

r(xi+1 − xi)

∣∣ΨL(x1, . . . , xi, xi+1, . . . , xL)
〉

= ZL(x1, . . . , xL)

where in the intermediate step we also used the fact that the Ř matrix is self-adjoint.
We conclude from this calculation that ZL is a symmetric function of its arguments.
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3.4 Recurrence Relation

The recurrence relation (15) for ΨL implies one for ZL:

ZL(. . . , x, x + 2η)

= 〈ΨL(. . . , x, x + 2η)|ΨL(. . . ,−x,−x − 2η)
〉

∝
L−2∏

i=1

ϑ(x − 2η− xi)
〈
ΨL−2(. . .)⊗ sL−1,L|ΨL(. . . ,−x,−x − 2η)

〉

∝
L−2∏

i=1

ϑ(x − 2η− xi)
〈
ΨL−2(. . .)⊗ sL−1,L|PL−1,L|ΨL(. . . ,−x,−x − 2η)

〉

∝
L−2∏

i=1

ϑ(x − 2η− xi)
〈
ΨL−2(. . .)⊗ sL−1,L|ΨL(. . . ,−x − 2η,−x)

〉

by Eq. (8) with xL−1 =−x, xL =−x − 2η

∝
L−2∏

i=1

ϑ(x − 2η− xi)ϑ
(
(−x − 2η)− 2η− (−xi)

)

〈
ΨL−2(x1, . . . , xL−2)⊗ sL−1,L|ΨL−2(−x1, . . . ,−xL−2)⊗ sL−1,L

〉

∝
L−2∏

i=1

ϑ2(x − 2η− xi)ZL−2(. . .)

where ∝ means equal up to a multiplicative constant. At this stage, we fix the nor-
malization of ΨL in such a way that this constant disappears in the recurrence for-
mula for ZL, which becomes:

ZL(. . . , x, x + η)=
L−2∏

i=1

ϑ2(x − η− xi)ZL−2(. . .) (16)

where we have also shifted x→ x + η and used 3η= 0 (mod π).
Combined with the symmetry in its arguments, the recurrence relation (16) satis-

fied by ZL means that we can express its specialization at x1 = x2 ± η, . . . , xL ± η

in terms of ZL−2. So we possess 4n values of ZL as a function of x1; since it is a
theta function of degree 2n, these relations are more than enough to determine ZL

inductively (say, by Lagrange interpolation).
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3.5 Half-specialization

At the moment, we do not know how to solve in a closed form the recurrence relation
above. However, note that we have twice as many recurrence relations as needed to
determine ZL. This suggests to “half-specialize” ZL in such a way that the number
of recurrence relations now matches the degree.

Explicitly, assume xi+n = −xi , i = 1, . . . , n, and xL = 0. After such a special-
ization, ZL is an even function of x1, . . . , xn, and it has a double zero at xi = ±η,
i = 1, . . . , n. Let us check the latter statement carefully. Since ZL is a symmetric
function of its arguments, let us assume that we order them as x,0,−x . . . (where x

is one of the xi ) and that we send x to −2η (which is equal to η modulo π ). Then
it is clear that ΨL(x,0,−x, . . .) forms a wheel and therefore ZL(x,0,−x, . . .) van-
ishes. However, ΨL(−x,0, x, . . .) does not vanish, so that to show that the zero is
double, we need to go further. Write

∂

∂x
ZL(x,0,−x, . . .)|x=−2η

=
〈
∂

∂x
ΨL(x,0,2η, . . .)

∣∣∣∣
x=−2η

− ∂

∂x
ΨL(−2η,0, x, . . .)

∣∣∣∣
x=2η

∣∣∣∣ΨL(2η,0,−2η, . . .)

〉
(17)

Now apply recurrence relation (15) to ΨL(x,0,2η, . . .); we find that it is propor-
tional to some vector at sites j 	= 2,3 tensor s2,3, and therefore the same its true of
its derivative w.r.t. x (one can be more explicit using x =−2η but we shall not need
it). Similarly, ΨL(−2η,0, x, . . .) and its derivative w.r.t. x are equal to s1,2 tensor
some vector at other sites.

On the other hand, applying the exchange relation (8) to ΨL(2η,0,−2η) at i = 1
implies that P1,2ΨL(2η,0,−2η, . . .) ∝ ΨL(0,2η,−2η, . . .) = 0 since a wheel is
formed. Similarly, the exchange relation at i = 2 implies that P2,3ΨL(2η,0,−2η,
. . .)= 0.

We conclude that the expression (17) is zero by inserting P2,3 (resp. P1,2) in the
first (resp. second) term. Therefore, taking into account evenness, we can write

ZL(x1, . . . , xn,−x1, . . . ,−xn,0)=
n∏

i=1

ϑ2(xi − η)ϑ2(xi + η)Xn(x1, . . . , xn) (18)

where Xn(x1, . . . , xn) has the following properties, as a direct consequence of the
corresponding properties for ZL:

• Xn is a symmetric function of its arguments, and an even theta function of degree
2(2n− 1) in each.

• It satisfies the recurrence relations:
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Xn(. . . , x, x + η) = ϕ2(x)ϕ2(x + η)

×
n−2∏

i=1

ϑ4(x − η− xi)ϑ
4(x − η+ xi)Xn−2(. . .) (19)

Xn(. . . , βk) = κk

ϑ2
k (η)

n−1∏

i=1

ϑ4
k (xi)Xn−1(. . .) k = 2,3,4 (20)

where ϕ(x) = ϑ(2x)
ϑ(x)

= 1
κ
ϑ2(x)ϑ3(x)ϑ4(x), κ = ϑ2ϑ3ϑ4

2 = ϑ2(η)ϑ3(η)ϑ4(η)

and κ2 = 1, κ3 = κ4 = −ν2n−1 (ν = e−2πi/3/
√
p) are pseudo-periodicity con-

stants where β2,3,4 are representatives of the three solutions of 2βk + η = 0
(mod π,πτ) excluding η, namely, β2 = π/2+ η, β3 = π/2+ πτ/2+ η, β4 =
πτ/2+ η.

We now have at our disposal the specializations x1 =±xi±η,±βk , i = 2, . . . , n,
k = 2,3,4, that is 4(n − 1) + 6 = 2(2n + 1). An even theta function of degree
2(2n− 1) being determined by 2× 2n values, we have enough recurrence relations
to determine Xn.

3.6 Solution as Pfaffians

We first introduce the function:

A2(x, y)=−ν2 ϑ2(η)

ϑ2(0)

(
ϑ3(x + η)ϑ3(x − η)ϑ2

4 (y)+ ϑ4(x + η)ϑ4(x − η)ϑ2
3 (y)

)

which has the following properties:

• It is symmetric function of x, y, and is an even theta function of degree 2 in each.
• It satisfies the following recurrence relations:

A2(x, x + η)=−ν2ϑ3(x)ϑ3(x + η)ϑ4(x)ϑ4(x + η) (21)

A2(x,βk)= ν3ϑ2
2 (η)ϑ

2
k (x) k = 3,4 (22)

Next we claim the following: define

An(x1, . . . , xn)=
∏

1≤i<j≤n

h(xi, xj )

ϑ(xi − xj )ϑ(xi + xj )
Pf Mn (23)

where

h(x, y)= ϑ(η+ x − y)ϑ(η+ x + y)ϑ(η− x − y)ϑ(η− x + y)
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and Mn is a skew-symmetric 2m× 2m matrix, m= En/2F, given by

(Mn)ij =

⎧
⎪⎪⎨

⎪⎪⎩

f(xi, xj ) n even or i, j < 2m
−1 n odd, i = 2m, j < 2m
1 n odd, j = 2m, i < 2m
0 n odd, i = j = 2m

(24)

and

f(x, y)= ϑ(x − y)ϑ(x + y)A2(x, y)

h(x, y)
(25)

Also define

Bn(x1, . . . , xn)=An+1(x1, . . . , xn,β2) (26)

Then:

• An (resp. Bn) is a symmetric function of its arguments, and an even theta function
of degree 2(n− 1) (resp. 2n) in each.

• They satisfy the recurrence relations:

An(. . . , x, x + η) = −ν2ϑ3(x)ϑ3(x + η)ϑ4(x)ϑ4(x + η)

×
n−2∏

i=1

ϑ2(x − η− xi)ϑ
2(x − η+ xi)An−2(. . .) (27)

Bn(. . . , x, x + η) = −ν2ϑ2
2 (x)ϑ

2
2 (x + 2η)ϑ3(x)ϑ3(x + η)ϑ4(x)ϑ4(x + η)

×
n−2∏

i=1

ϑ2(x − η− xi)ϑ
2(x − η+ xi)Bn−2(. . .) (28)

An(. . . , β2) = Bn−1(. . .) (29)

Bn(. . . , β2) = −ν2ϑ2
3 (η)ϑ

2
4 (η)

n−1∏

i=1

ϑ4
2 (xi)An−1(. . .) (30)

An(. . . , βk) = νnϑ2(η)
(
νϑ2(η)

)(−1)n

×
n−1∏

i=1

ϑ2
k (xi)An−1(. . .) k = 3,4 (31)

Bn(. . . , βk) = νn+1ϑ2(η)
(
νϑ2(η)

)−(−1)n ϑ
2
3 (η)ϑ

2
4 (η)

ϑ2
k (η)

×
n−1∏

i=1

ϑ2
k (xi)Bn−1(. . .) k = 3,4 (32)

where conventionally A0 = B0 = 1.
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Let us show for example (27) for n = 2m even. Assume that x2m−1 = x ap-
proaches x2m + η = x′. Then the matrix element (Mn)2m−1,2m develops a pole:
(Mn)2m−1,2m ∝ 1/(x − x′); and the other entries (Mn)ij (i < j ) remaining finite,
the only relevant contributions to the Pfaffian are those pairing 2m− 1 and 2m, so
we immediately have

An(. . . , x, x + η) =
n−2∏

i=1

h(xi, x)h(xi, x + η)

ϑ(xi − x)ϑ(xi − x − η)ϑ(xi + x)ϑ(xi + x + η)

×A2(x, x + η)An−2(. . .)

where we have cancelled all factors in common to An and An−2.
Now the remarkable phenomenon (using in a crucial way η = π/3) is that there

are compensations in the product, which simplifies to
∏n−2

i=1 ϑ2(x − η− xi)ϑ
2(x −

η + xi). Finally, we use Eq. (21) for A2 to reproduce the remaining prefactors on
the r.h.s. of Eq. (27).

The other equations follow from similar reasonings.
Finally, we find that AnBn satisfies all the recurrence relations of Xn, or more

precisely,

Xn(x1, . . . , xn)=
(−ν2κ2)−nAn(x1, . . . , xn)Bn(x1, . . . , xn)

3.7 Further Factorization as Determinants

Consider the following elliptic version of Tsuchiya’s determinant [23, 34]: (see a
similar determinant in [18])

H2m(x1, . . . , xm;xm+1, . . . , x2m)

=
∏m

i=1
∏2m

j=m+1 h(xi, xj )∏
1≤i<j≤m

or
m+1≤i<j≤2m

ϑ(xi − xj )ϑ(xi + xj )
det

1≤i≤m
m+1≤j≤2m

1

h(xi, xj )
(33)

Conventionally, H0 = 1. Note that H2 = 1 as well.
The expression of H2m has the disadvantage that it is only (apparently) symmetric

in the variables {x1, . . . , xm} and {xm+1, . . . , x2m}; in fact we show in Appendix C
that thanks to η= π/3, it is indeed symmetric in all variables. In terms of each, it is
an even theta function of degree 2(m− 1).

It is not hard to see that H2m satisfies the following recurrence relation:

H2m(. . . , x; . . . , x + η)=
∏

i=1,...,m−1,
m+1,...,2m

ϑ(x − η− xi)ϑ(x − η+ xi)H2m−2(. . . ; . . .)

(34)
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and the same if one exchanges x and x + η. These are the usual recurrence rela-
tions satisfied by such determinants, as in the classical case of the Izergin–Korepin
determinant [19–21], and similarly to the Pfaffians of Sect. 3.6; the reasoning to de-
rive Eq. (34) is identical—a pole develops in one of the entries of the determinant,
reducing it to a determinant one size smaller.

Now consider the function

A′2m(x1, . . . , x2m)

=H2m(x1, . . . , xm;xm+1, . . . , x2m)H2m+2(x1, . . . , xm,β3;xm+1, . . . , x2m,β4)

A′2m is an even theta function of its arguments, of degree 2(2m − 1), and using
Eq. (34), it satisfies the same recurrence relation (27) as A2m, for say x1 =±xj ±η,
j = m + 1, . . . ,2m. Thus the function is known at 2 × 2m values of x1, which
determines it uniquely. Combined with A′2 = A2 = 1, we conclude by induction
that A′2m =A2m.

Similar arguments can be made for A2m−1 and Bn. Together, we find

A2m(x1, . . . , x2m) = H2m(x1, . . . , x2m)H2m+2(x1, . . . , x2m,β3, β4) (35)

A2m−1(x1, . . . , x2m−1) = H2m(x1, . . . , x2m−1, β3)H2m(x1, . . . , x2m−1, β4) (36)

B2m(x1, . . . , x2m) = H2m+2(x1, . . . , x2m,β2, β3)

×H2m+2(x1, . . . , x2m,β2, β4) (37)

B2m−1(x1, . . . , x2m−1) = H2m(x1, . . . , x2m−1, β2)

×H2m+2(x1, . . . , x2m−1, β2, β3, β4) (38)

These are the only 8 possible specializations at β2,3,4, corresponding to subsets
of {β2, β3, β4}, since applying any such specialization twice amounts to the shift
n→ n− 2.

3.8 Alternative Determinant Formula

Here we follow the same general method as in [33] (see also Appendix B of [12]).
Define

g(x, y)= ϑ(2x)ϑ(2y)

h(x, y)

g(x, y) is an odd elliptic function of x and y. One further observes that for all x, y,

g(x, y)+ g(x + η,y)+ g(x + 2η,y)= 0

and similarly for y. Therefore, deti,j g(xi, xj ), as a function of any of its arguments,
satisfies the same three-term relation. Now define
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S2m(x1, . . . , x2m)

=
∏

1≤i<j≤2m

ϑ(xi − xj )
∏

1≤i≤j≤2m

ϑ(xi + xj )H2m(x1, . . . , x2m)

=
∏

1≤i<j≤m
or

m+1≤i<j≤2m

2∏

k=0

ϑ(xi − xj + kη)ϑ(xi + xj + kη) det
1≤i≤m

m+1≤j≤2m

g(xi, xj )

Since the prefactor is invariant by xi → xi + η for any i, we have the same three-
term relation for S2m. In summary:

• S2m is a skew-symmetric function of its arguments xi , and an odd theta function
of degree 6m in each.

• It satisfies

S2m(. . . , x, . . .)+ S2m(. . . , x + η, . . .)+ S2m(. . . , x + 2η, . . .)= 0

The space of odd theta functions of degree 6m is of dimension 3m, a possible
basis being

sk(x)= e2ikxϑ3
(
kπτ +6mx,p6m)− e−2ikxϑ3

(
kπτ −6mx,p6m) 0≤ k ≤ 3m−1

sk(x) satisfies the relation sk(x)+ sk(x + η)+ sk(x + 2η) = 0 iff k 	= 0 (mod 3).
The sequence (1,2,4,5, . . . ,3m− 2,3m− 1)= (k1, . . . , k2m) is of cardinality 2m,
which is the number of variables of S2m, so we conclude that S2m is proportional to
the “Slater determinant”

S2m(x1, . . . , x2m)∝ det
i,j=1,...,2m

skj (xi) (39)

We shall not need the proportionality constant, only that it is nonzero (for generic p).

3.9 Uniformization

Although the formulae above are simple to derive, they are a bit too cumbersome
to be used, especially in the homogeneous limit. Since all functions we consider are
theta functions of definite parity, there is a rational uniformization, and we use from
now on the following parameterization:

w(x)= (1− ζ 2)−1/3 ϑ2(x)

ϑ(x − η)ϑ(x + η)
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In terms of the original Boltzmann weights (1), we have (1 − ζ 2)w(x) =
(a(x−η)+b(x−η))2

a(x−η)b(x−η)
.

Note the special values

w(β2)=−1

2
= J2 w(β3)= 1

1+ ζ
= J3 w(β4)= 1

1− ζ
= J4

which explains the labelling we have chosen for the coupling constants J2,3,4.
This parameterization has the advantage that the wheel condition becomes simple

to express: three spectral parameters form a “wheel” ±x,±(x + η),±(x + 2η) iff
the corresponding variables w,w′,w′′ satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w+w′ +w′′ = 3+ ζ 2

1− ζ 2

ww′w′′ = 1

1− ζ 2

(40)

and therefore, two parameters form a “2-string” ±x,±(x+ η) iff the corresponding
variables w,w′ satisfy h(w,w′)= 0, where

h
(
w,w′

)= 1− (3+ ζ 2)ww′ + (1− ζ 2)ww′
(
w+w′

)
(41)

This formula allows to rewrite the recurrence formulae in this new parameteriza-
tion, but due to the fact that it is quadratic in w and w′, the result is somewhat
cumbersome and we shall not write it explicitly.

We also redefine the functions by dividing them by a “reference” even theta func-
tion of degree 2 to the appropriate power, here ϑ(x − η)ϑ(x + η), and absorbing
some constants in the normalization. That is, we define

An

(
w(x1), . . . ,w(xn)

)= an
An(x1, . . . , xn)∏n

i=1(ϑ(xi − η)ϑ(xi + η))n−1

Bn

(
w(x1), . . . ,w(xn)

)= bn
Bn(x1, . . . , xn)∏n

i=1(ϑ(xi − η)ϑ(xi + η))n−1

where an and bn are constants which are implicitly defined by the expressions below,
and whose explicit expression we shall not need.

In particular,

A2
(
w,w′

)=ww′ − (w+w′
)+ 1+ ζ 2

1− ζ 2

and if we define

f
(
w,w′

)= (w−w′)A2(w,w′)
h(w,w′)
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which is such that f (w(x),w(y))=−ζq/
√
pf(x, y), then we have:

An(w1, . . . ,wn)=
∏

1≤i<j≤n

h(wi,wj )

wi −wj

PfMn (42)

where Mn is identical to Mn, except entries f(xi, xj ) are replaced with entries
f (wi,wj ); and

Bn(w1, . . . ,wn)=An+1(w1, . . . ,wn, J2)

as well as

Xn(w1, . . . ,wn)= 2n+1An(w1, . . . ,wn)Bn(w1, . . . ,wn)

where the numerical coefficient has been adjusted so that in the rational limit, the
normalization of Xn coincides with the one discussed in Sect. 1.3.

A further advantage of this new normalization is that An and Bn are polynomials
in w1, . . . ,wn and also of ζ , up to a conventional denominator in powers of 1− ζ 2

which we have added for convenience.
Similarly, we can define

H2m(w1, . . . ,w2m)=
∏m

i=1
∏2m

j=m+1 h(wi,wj )∏
1≤i<j≤m

or
m+1≤i<j≤2m

(wi −wj)
det

1≤i≤m
m+1≤j≤2m

1

h(wi,wj )

and then the relations (35)–(38) expressing A,B in terms of H remain the same;
more compactly, one can write:

Xn(. . .)= 2n+1
∏

S⊂{J2,J3,J4}|S|=n (mod 2)

Hn+|S|(. . . , S)

There are various alternative formulae, for example

H2m+2(w1, . . . ,w2m,J3, J4)=
∏m

i=1
∏2m

j=m+1 h(wi,wj )∏
1≤i<j≤m

or
m+1≤i<j≤2m

(wi −wj)
det

1≤i≤m
m+1≤j≤2m

A2(wi,wj )

h(wi,wj )

Finally, the transformations

ζ →−ζ ζ → ζ + 3

ζ − 1

generate the group of permutations of the three coupling constants J2, J3, J4. Via
the uniformization w(x)=wζ (x), this translates into the symmetry of permutations
of non-trivial solutions of 2x + η = 0. The function h(w,w′) = hζ (w,w′) itself
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possesses this symmetry, in the sense that

hζ

(
w,w′

)= h−ζ

(
w,w′

)
hζ

(
w,w′

)= h(ζ+3)/(ζ−1)

(
ζ − 1

2
w,

ζ − 1

2
w′
)

which is consistent with wζ (β3,4)=w−ζ (β4,3) and

w(ζ+3)/(ζ−1)(β2)=−1/2= ζ − 1

2
J4

w(ζ+3)/(ζ−1)(β3)= ζ − 1

2(ζ + 1)
= ζ − 1

2
J3

w(ζ+3)/(ζ−1)(β4)= 1− ζ

4
= ζ − 1

2
J2

4 Homogeneous Limit of the Partition Function

4.1 Summary

The homogeneous limit is obtained by setting all spectral parameters equal; in the
half-specialized partition function Xn, this is achieved by sending all xi to zero.

In this section, we use the following notation: we omit parameters that are set to
zero, e.g., H2m =H2m(0, . . . ,0︸ ︷︷ ︸

2m

). This is unambiguous because the total number of

variables is given in subscript. Here are some values of H2m for m= 0,1,2,3:

H2m = 1, 1, 3+ ζ 2, 26+ 29ζ 2 + 8ζ 4 + ζ 6

2m−1H2m(J2) = 1, 7+ ζ 2, 143+ 99ζ 2 + 13ζ 4 + ζ 6

H2m(J3) = 1, 2+ ζ + ζ 2, 11+ 12ζ + 21ζ 2 + 10ζ 3

+7ζ 4 + 2ζ 5 + ζ 6

H2m(J4) = 1, 2− ζ + ζ 2, 11− 12ζ + 21ζ 2 − 10ζ 3

+7ζ 4 − 2ζ 5 + ζ 6

2m−1H2m(J2, J3) = 1, 5+ 2ζ + ζ 2, 66+ 63ζ + 81ζ 2 + 30ζ 3

+12ζ 4 + 3ζ 5 + ζ 6

2m−1H2m(J2, J4) = 1, 5− 2ζ + ζ 2, 66− 63ζ + 81ζ 2 − 30ζ 3

+12ζ 4 − 3ζ 5 + ζ 6

H2m(J3, J4) = 1, 1+ ζ 2, 3+ 9ζ 2 + 3ζ 4 + ζ 6

2m−1H2m(J2, J3, J4) = 3+ ζ 2, 21+ 39ζ 2 + 3ζ 4 + ζ 6
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We recognize the reciprocal polynomials of those occurring in Conjecture E of
[6]: the correspondence of notations is that for m ≥ 1, H2m = ζm(m−1)qm−1(1/ζ ),
H2m(J3) = ζm(m−1)pm−1(1/ζ ), 2m−1H2m(J2, J4) = ζm(m−1)p−m(1/ζ ),
2m−1H2m(J2, J3, J4)= ζm(m−1)q−m(1/ζ ). All other sequences can be obtained by
permutations of the {J2, J3, J4}, and can therefore be obtained by iterating the trans-
formations ζ →−ζ and ζ → ζ+3

ζ−1 , as explained at the end of last section. All the
properties listed in Conjecture E of [6] can thus be checked on the H2m.

If we recombine the H2m in pairs to form An and Bn, we recognize the reciprocal
polynomials of the sn of [6]: (see their Appendix A)

An = ζ 2Gn2/4Hsn
(
1/ζ 2) n≥ 0 (43)

Bn = (2/3)nζ 2G(n+1)2/4Hs−n−1
(
1/ζ 2) n≥ 0 (44)

from which we conclude

Xn = 2n+1AnBn = 2(4/3)nζ n(n+1)sn
(
1/ζ 2)s−n−1

(
1/ζ 2)

which coincides with the expression given in Conjecture 1 of [6] up to the factor of
two (which is due to our slightly different way of lifting the two-fold degeneracy:
F∗ΨL = (−1)nΨL effectively duplicates every entry of ΨL compared to [6]).

See also Appendix A for an explanation of the constant terms of the various
polynomials above.

In the rest of this section, it is convenient to denote α = 1− ζ 2. We shall show
that the various polynomials above satisfy (differential) recurrence relations.

4.2 Linear Relations

We first derive certain linear relations satisfied by H2m(w1, . . . ,w2m). We shall need
them to relate the various derivatives of H2m at wi = 0.

Define

D2m(w1, . . . ,wm;wm+1, . . . ,w2m)= det
1≤i≤m

m+1≤j≤2m

g(wi,wj ) (45)

with g(u, v)= 1
h(u,v)

; we recall that h(u, v)= 1+ uv(α(u+ v + 1)− 4). In other
words,

H2m(w1, . . . ,w2m)=
∏m

i=1
∏2m

j=m+1 h(wi,wj )∏
1≤i<j≤m

or
m+1≤i<j≤2m

(wi −wj)
D2m(w1, . . . ,wm;wm+1, . . . ,w2m)

(46)
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Also define

S2m(w1, . . . ,w2m)=
∏

1≤i<j≤2m

(wi −wj)H2m(w1, . . . ,w2m) (47)

4.2.1 A First Order Differential/Divided Difference Equation

We start from the following identity, which can be checked directly:

ρ(u)∂ug(u, v)+ ρ(v)∂vg(u, v)

+ 2(1− α)(8+ α)∂αg(u, v)+
(
σ(u)+ σ(v)

)
g(u, v)+ (δu + δv)g(u, v)= 0

where ρ(u)= (1+2u)(4−6u+uα+u2α), σ(u)= 5u(α−4+4αu), ∂u is the usual
partial derivative ∂

∂u
, and δu is the divided difference operator: δuφ(u)= φ(u)−φ(0)

u

for any function φ(u).
Then, one can easily prove starting from (45) (for example by writing D2m as a

sum over permutations and grouping together the summands for values of the index
connected by the permutation)

(
2m∑

i=1

(
ρ(wi)∂wi

+ σ(wi)+ δwi

)+ 2(1− α)(8+ α)∂α

)

×D2m(w1, . . . ,wm;wm+1, . . . ,w2m)= 0 (48)

In principle, by using relation (46), one can reformulate this identity in terms of
H2m, but the result is not particularly illuminating and we shall not need it.

4.2.2 A Second Order Differential Equation

Starting from the differential equation satisfied by ϑ3, namely, ( ∂2

∂x2 +4p ∂
∂p

)ϑ3(x;p)

= 0, we find
(

∂2

∂x2
+ 24mp

∂

∂p

)
sk = k2sk

According to Eq. (39), this implies that

(
2m∑

i=1

∂2

∂x2
i

+ 24mp
∂

∂p

)
S2m(x1, . . . , x2m)= cmS2m(x1, . . . , x2m) (49)

where cm is m(6m2 − 1) plus some p-dependent constant related to the normaliza-
tion of S2m.
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After switching to our rational parameterization and from p to α, we find the
following equation for S2m:

(
2m∑

i=1

(
γ2(wi)∂

2
i + γ1(wi)∂i + γ0(wi)

)+ 24mα(1− α)(8+ α)∂α

)

× S2m(w1, . . . ,w2m)= 0 (50)

where the coefficients are entirely determined except the constant term of γ0(w).
The latter is determined by the large w = (w1, . . . ,w2m) expansion: from (45)–(47)
one easily derives

S2m(w1, . . . ,w2m)= αm(m−1)
2m∏

i=1

wm−1
i

∏

1≤i<j≤2m

(wi −wj)
(
1+O

(
w−3))

and expanding (50) up to second subleading order fixes the constant. We find the
rather unpleasant expressions:

γ0(w) = 18α2(m− 1)(3m− 2)w2 + 6α(α − 4)(3m− 2)(4m− 3)w

+ 64m2 − 12α2m+ 96αm− 192m+ 80+ 5α2 − 40α

+ 10α2m2 − 20αm2

γ1(w) = −36α2(m− 1)w3 − 6α(α − 4)(10m− 9)w2

+ 6
(
3α2 − 24α − 4α2m+ 12αm− 32m+ 48

)
w− 36α

γ2(w) = 6w(αw− 4)
(
α + αw2 + 2αw− 4w

)

4.2.3 Homogeneous Limit

We now take the homogeneous limit in two steps: we first send w1, . . . ,wm to u

and wm+1, . . . ,w2m to v and then expand around u,v = 0. H2m, being a sym-
metric function of w1, . . . ,w2m, only has one independent first derivative (resp.
two independent second derivatives), which with our specialization correspond to
∂
∂u

H2m = ∂
∂v

H2m (resp. ∂2

∂u2 H2m = ∂2

∂v2 H2m and ∂2

∂u∂v
H2m).

Taking this limit in Eqs. (48) and (50) is a rather tedious procedure which we
shall not describe in detail. Expanding to first non-trivial order these equations pro-
duces the same result, namely the first equation below. This equation is a first order
differential equation, and so we can differentiate it once w.r.t. α, resulting in a sec-
ond order equation (second equation below). Expanding to the next order Eqs. (48)
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and (50) produces two distinct second order differential equations. Finally, we find:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2(4m+ 1)

0 0
2m×

(1− α)(α + 8)
2(4m+ 1) 0

2(2m+ 1) 4m 0
2m×

(1− α)(α + 8)
m(m2 −m+ 1)
×(2+ α)

(4m2 +m− 2)
×2α

−2α×
m(4m+ 1)

0 0
m(2m+ 1)
×(α − 4)2

2m(1− α)(α + 8)
m2(m− 1)
×(2+ α)

(α + 2)m2(m− 1)
−m(4α + 14)

m2(m− 1)

0
m2(m− 1)
×(4− α)

0
−(m− 1)m2

×(2m+ 1)
×α(α − 4)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂u∂v
H2m

∂2

∂u2 H2m
∂2

∂α2 H2m
∂2

∂u∂α
H2m

∂
∂u

H2m
∂
∂α

H2m
H2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (51)

There are 4 relations for seven derivatives, so they can all be expressed in terms
of derivatives w.r.t. α only.

A similar reasoning can be made when all variables are specialized to 0 except
one, or two, or three, are specialized to a subset of {J2, J3, J4}. The result is given
in Appendix D.

4.3 Bilinear Recurrence Relations

We now show how to derive differential bilinear recurrence relations for H2m and
its variants. In fact these relations were mentioned, but not written explicitly, in
paragraph 3 of [6].

Similarly to the previous paragraph, we first consider the quantity

H2m(u, . . . , u︸ ︷︷ ︸
m

,v, . . . , v︸ ︷︷ ︸
m

)= g(u, v)−m2
det

0≤i,j≤m−1

(
1

i!j !
∂i+j

∂ui∂vj
g(u, v)

)

A standard application of the Jacobi–Desnanot identity (see [22] for the simpler
case of the Izergin–Korepin determinant) to the determinant in the right hand side
produces the Toda lattice equation:

1

m2

∂2

∂u∂v
logH2m(u, . . . , v, . . .) = − ∂2

∂u∂v
logg(u, v)
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+ H2(m+1)(u, . . . , v, . . .)H2(m−1)(u, . . . , v, . . .)

g(u, v)2H2m(u, . . . , v, . . .)2

The left hand side involves first and second derivative of H2m(u, . . . , v, . . .), which
at u= v = 0 can be reexpressed in terms of derivatives w.r.t. α thanks to Eq. (51).
The result is:

C0H2(m+1)H2(m−1) = C1H2mH ′′
2m −C2

(
H ′

2m

)2 +C3H2mH ′
2m +C4H

2
2m (52)

where all derivatives are w.r.t. α, and

C0 = 4α(4m− 1)(4m+ 1)2(4m+ 3)

C1 = 4(α − 1)2α(α + 8)2(4m+ 1)2

C2 = 4(α − 1)2α(α + 8)2(4m− 1)(4m+ 3)

C3 = 2(α − 1)(α + 8)
(
α2 + 28α+ 24α2m2 + 304αm2 − 256m2 + 20α2m

+ 208αm− 192m− 32
)

C4 = 6α2 − 24α + 4α3m4 − 1008α2m4 + 3408αm4 + 512m4 − 4α3m3

− 984α2m3 + 4032αm3 − 128m3 + α3m2 − 142α2m2 + 1028αm2

− 320m2 − α3m+ 28α2m− 44αm− 64m

Note that contrary to Eq. (51), Eq. (52) is a closed relation allowing to compute
inductively the H2m as polynomials of α = 1− ζ 2.

A similar computation produces differential recurrence relations of the same
form for the other factors of Xn. The coefficients are given in Appendix D. To-
gether, they allow to compute the full squared norm Xn inductively.

5 Conclusion and Prospects

In this paper, we have considered the inhomogeneous eight-vertex model with peri-
odic boundary conditions in odd size and crossing parameter η= π/3. We have pro-
vided a basic setup for the computation of the fully inhomogeneous generalization
of the ground state eigenvector of the XYZ spin chain, and then went on to compute
the partition function on an infinite cylinder, which generalizes the squared norm of
the ground state eigenvector, when the spectral parameters are “half-specialized”,
i.e., form pairs x,−x. We have provided a variety of explicit expressions for this
partition function in terms of Pfaffians and determinants. Interestingly, one can then
obtain self-contained expressions in the homogeneous limit for the squared norm,
without any more reference to the inhomogeneous case, by allowing differentiation
w.r.t. the variable parameterizing the line η = π/3 (elliptic nome, or ζ ). These ex-
pressions take the form of bilinear differential recurrence relations (cf. Eq. (52)).
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In order to derive such differential relations, we have used certain differential
(and divided difference) relations satisfied by the inhomogeneous partition function.
In fact, we have strictly limited ourselves to the relations that were needed for our
purposes, but it seems that this is only the tip of the iceberg: one should investigate
in more detail the structure of the set of such equations. It would be interesting to
understand the role of the full symmetry of arguments of the Izergin–Korepin type
determinant (33).

Note that we have not been able to obtain an expression for the fully inhomoge-
neous partition function, but if we compare to the work of Rosengren for the 8VSOS
model [30] there is also no simple expression for the fully inhomogeneous partition
function. Inversely, it would be interesting to see if the “half-specialization” trick
helps in this context. More generally, as noted in [6], there are many ressemblances
between the work [30] and our present setup, which should be clarified.

Another connection which should be more thoroughly explored is with the su-
persymmetric models of lattice fermions of [16, 17].

It is clear that the present methods should allow to compute more quantities such
as individual entries of the ground state, or certain correlation functions (see the
recent work [8] in the XXZ setting).

Some more directions which should be explored are: the relation to the quantum
Knizhnik–Zamolodchikov–Bernard (qKZB) equation and to the qKZB heat equa-
tion [15], which should be the right framework for part of Sect. 2, especially in view
of a generalization to arbitrary η; the connection to nonsymmetric elliptic Macdon-
ald polynomials; the use of matrix model techniques to analyze the determinants of
Izergin–Korepin type found here, as in [36]; and the meaning of the connection to
the Painlevé VI equation, which is emphasized in [5, 6].

Finally, it would be interesting to find a combinatorial interpretation for the (pos-
itive integer) entries of the polynomials of Sect. 4.1, beyond their value at ζ = 0.

Acknowledgements P.Z.J. is supported in part by ERC grant 278124 “LIC”. P.Z.J. would like to
thank R. Weston for his help in the framework of a parallel project, V. Bazhanov and Mangazeev
for useful conversations, H. Rosengren for explaining his work [30] as well as further unpublished
work, and P. Di Francesco for discussions. Part of this work was performed during the author’s
stay at MSRI, Berkeley.

Appendix A: The ζ → 0 Trigonometric Limit

The trigonometric limit is obtained by sending ζ to 0. The Boltzmann weights (1)
of the eight-vertex model turn into those of the six-vertex (the weight d go to zero).
In this limit the results of this paper should be closely related to the computations
of [14]. Note that the “quadratic” sum rule considered here was actually not com-
puted in [14]—instead the quantity

∑
α Ψα(z1, . . . , zL)

2 was used there. However,
the same argument of degeneracy of the scalar product allows to conclude that

ZL(x1, . . . , xL)= 3−n

(∑

α

Ψα(x1, . . . , xL)

)(∑

α

Ψα(−x1, . . . ,−xL)

)
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= 3−n2
sYL

(z1, . . . , zL)sYL

(
z−1

1 , . . . , z−1
L

)
(53)

where sλ is the Schur function associated to partition λ, and YL = (G(L −
i)/2H)i=1,...,L. In the homogeneous limit,

sYn(1, . . . ,1)= 3n(n−1)/2
n∏

j=1

(3j)!(j − 1)!
(2j)!(2j − 1)!

and together we have ZL =AHT (L), where AHT (L)= 1,3,25,588 . . . is the num-
ber of Half-Turn Symmetric Alternating Sign Matrices [23, 27].

The half-specialization of Sect. 3.5 produces the following factorization:

sYL

(
1, z1, z

−1
1 , . . . , zn, z

−1
n

)=
n∏

i=1

(
1+zi+z−1

i

)
χYn(z1, . . . , zn)χYn+1(z1, . . . , zn,ω)

(54)
where χλ is the symplectic character, defined by:

χλ(z1, . . . , zn)= det(z
λj+n−j+1
i − z

−λj−n+j−1
i )

det(zn−j+1
i − z

−n+j−1
i )

,

and ω= eiπ/3; this formula can be proved by induction, or can be seen as a byprod-
uct of this paper, as we now show.

In the limit ζ → 0, the parameterization w is related to the multiplicative spectral
parameter z by w = (z− 1)2/(1+ z+ z2); this way we find

h
(
z, z′

)= 9(z2 + zz′ + z′2)(1+ zz′ + z2z′2)
(1+ z+ z2)2(1+ z′ + z′2)2

The denominator factors out of Pfaffians and determinants.

A.1 Pfaffians

We now recognize the Pfaffian An (Eq. (42)) in even size:

A2m(w1, . . . ,w2m)

= 3m
n∏

i=1

zi
∏

1≤i<j≤2m

3(z2
i + zizj + z2

j )(1+ zizj + z2
i z

2
j )

(1+ zi + z2
i )(1+ zj + z2

j )(zi − zj )(1− zizj )

× Pf
(zi − zj )(1− zizj )

(z2
i + zizj + z2

j )(1+ zizj + z2
i z

2
j )

which up to some prefactors is exactly the Pfaffian given in [11] (Eq. (3.27)) for the
square of the partition function ZUASM of U-turn symmetric ASMs of [23]. The
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latter is known to coincide with χY2m(z1, . . . , z2m) [25] and so we reproduce the
first factor of the l.h.s. of Eq. (54). More precisely, we find A2m(w1, . . . ,w2m) =
32m2 ∏2m

i=1(1+ zi + z−1
i )−2m+1χY2m(z1, . . . , z2m)2. The odd case can be reduced to

the even case by sending one of the zi to zero (something which did not make sense
in the elliptic setting), so that for both parities we have

An(w1, . . . ,wn)= 32Gn/2HG(n+1)/2H
n∏

i=1

(
1+ zi + z−1

i

)−n+1
χYn(z1, . . . , zn)

2

or in terms of the original quantities,

An(x1, . . . , xn)= 3−2Gn/2HG(n−1)/2HχYn(z1, . . . , zn)
2

The second factor is simply obtained by noting that w = J2 =−1/2 corresponds
to z= ω= eiπ/3, so

Bn(w1, . . . ,wn)= 2−n32Gn/2+1HG(n+1)/2H
n∏

i=1

(
1+ zi + z−1

i

)−n
χYn+1(z1, . . . , zn,ω)2

or Bn(x1, . . . , xn)= 3−2Gn/2HG(n+1)/2HχYn+1(z1, . . . , zn,ω)2. Finally,

Zn =
n∏

i=1

(
1+ zi + z−1

i

3

)2

Xn

= 3−n2
n∏

i=1

(
1+ zi + z−1

i

)2
χYn(z1, . . . , zn)

2χYn+1(z1, . . . , zn,ω)2

which is consistent with Eqs. (53) and (54).

A.2 Determinants

Similarly, the determinants simplify as ζ → 0. Noting that w = J3 and w = J4 both
correspond to z = 0, we conclude that there are only two distinct determinants for
each parity; Tsuchiya’s determinant [23, 34] is known to be equal at a cubic root of
unity to the symplectic character introduced above [25]

∏
1≤i≤m,

m+1≤j≤2m
(z2

i + zizj + z2
j )(1+ zizj + z2

i z
2
j )

∏
1≤i<j≤m,

m+1≤i<j≤2m
(zj − zi)(1− zizj )

× det
1≤i≤m,

m+1≤j≤2m

1

(z2
i + zizj + z2

j )(1+ zizj + z2
i z

2
j )
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= χY2m(z1, . . . , z2m)

and then we have:

H2m(w1, . . . ,w2m) = 3m(m−1)
2m∏

i=1

(
1+ zi + z−1

i

)−m+1

× χY2m(z1, . . . , z2m)

H2m(w1, . . . ,w2m−1, J2) = 3m(m−1)
2m−1∏

i=1

(
1+ zi + z−1

i

)−m+1

× χY2m(z1, . . . , z2m−1,ω)

H2m(w1, . . . ,w2m−1, J3/4) = 3m(m−1)
2m−1∏

i=1

(
1+ zi + z−1

i

)−m+1

× χY2m−1(z1, . . . , z2m−1)

H2m+2(w1, . . . ,w2m,J2, J3/4) = 3m(m+1)2−m
2m∏

i=1

(
1+ zi + z−1

i

)−m

× χY2m+1(z1, . . . , z2m,ω)

H2m+2(w1, . . . ,w2m,J3, J4) = 3m(m+1)
2m∏

i=1

(
1+ zi + z−1

i

)−m

× χY2m(z1, . . . , z2m)

H2m+2(w1, . . . ,w2m−1, J2, J3, J4) = 3m(m+1)
2m−1∏

i=1

(
1+ zi + z−1

i

)−m

× χY2m(z1, . . . , z2m−1,ω)

A.3 More Determinants

The expression (39) of S2m as a Slater determinant reduces to the numerator of our
definition of the symplectic character χY2m (since kj = Y2m;m+1−j + 2m− j + 1,
j = 1, . . . ,2m)

S2m(z1, . . . , z2m)= det
i,j=1,...,2m

(
z
kj
i − z

−kj
i

)

The differential equation (49) reduces to

2m∑

i=1

(
zi

∂

∂zi

)2

S2m(z1, . . . , z2m)=m
(
6m2 − 1

)
S2m(z1, . . . , z2m)
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A.4 Homogeneous Limit

Finally, A1/2
2m =H2m = 3−m(m−1)χY2m(1, . . . ,1)= 1,1,3,26,646 . . . is the number

of Vertically Symmetric Alternating Sign Matrices of size 2m+ 1 (also, the number
of Off-diagonally Symmetric Alternating Sign Matrices of size 2m, and the number
of Descending Plane Partitions of size m which are symmetric w.r.t. all reflections,
i.e., Cyclically Symmetric Transpose Complement Plane Partitions of a hexagon of
size (m+ 1)× (m− 1) with a triangular hole cut out), while A

1/2
2m−1 =H2m(J3/4)=

3−(m−1)2
χY2m−1(1, . . . ,1)= 1,2,11,170 . . . is the number of Cyclically Symmetric

Transpose Complement Plane Partitions of size m (also, the number of VSASMs of
size (2m− 1)× (2m+ 1) with a defect on the mth row, the symmetry line). Note
that the square of the number of VSASMs also appears in the observations of [28].

The sequence of numbers

2mB
1/2
2m = 2mH2m(J2, J3/4)= 3−m(m−1)χY2m+1(1, . . . ,1,ω)= 1,5,66,2431 . . .

appears as one of the factors of the enumeration of UUASMs in [23]. The last se-
quence,

2m(B2m−1/3)1/2 =H2m(J2)= 3−(m−1)2
χY2m(1, . . . ,1,ω)= 1,7,143,8398, . . .

is the number of ASMs of order 2m+ 1 divided by the number of VSASMs of size
2m+ 1.

As mentioned before, the last two cases, namely H2m(J3, J4), and
H2m(J2, J3, J4), are related to H2m and H2m(J2) by multiplication by powers of
3 and 2.

Appendix B: The ζ → 1 Limit

Besides the ζ → 0 limit, there is another trigonometric limit, namely ζ → 1 or
α→ 0. It is expected to be somewhat trivial since the corresponding Hamiltonian
is the Ising Hamiltonian with interaction σxσx . Indeed, we find that the building
block H2m of the partition function becomes:

H2m(w1, . . . ,w2m)|ζ=1 =
∏

1≤i≤m
m+1≤j≤2m

(1− 4wiwj )

∏
1≤i<j≤m

or
m+1≤i<j≤2m

(wi −wj)
det

1≤i≤m
m+1≤j≤2m

1

1− 4wiwj

= 2m(m−1)

This formula is valid as long as the wi stay finite as ζ → 1. One special case is if
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one wi is equal to J4 = 1/(1− ζ ). Then we find instead

H2m(w1, . . . ,w2m−1, J4)|ζ=1 = 2(m−1)2

so that

Xn(. . .)= 2n(n+1)+1

This is compatible with a constant value of Ψn,α = 2n(n−1)/2 since X2m =
22n+1Ψ 2

2m,α .

Appendix C: Proof of Symmetry of H2m

The symmetry of H2m, defined by (33) can be seen as a particular case of a general
result, which can be formulated as follows: (see also Thm. 4.2 in [24])

Proposition Let φ1, φ2 be two functions (with values in C) such that

(i) φ(x, y)=−φ(y, x),
(ii) φ(x1, x2)φ(x3, x4) − φ(x1, x3)φ(x2, x4) + φ(x1, x4)φ(x2, x3) = 0 for φ =

φ1, φ2.

Then, in the domain of the (xi)1≤i≤2m such that φ2(xi, xj ) 	= 0 for all 1≤ i, j ≤ 2m,

Δ2m(x1, . . . , x2m)=
det i=1,...,m

j=m+1,...,2m
(
φ1(xi ,xj )

φ2(xi ,xj )
)

∏
1≤i<j≤m

or
m+1≤i<j≤2m

φ2(xi, xj )

is symmetric in all arguments {x1, . . . , x2m}.

Actually it is well-known that functions that satisfy (i) and (ii) are 2 × 2 de-
terminants

∣∣ a(x) a(y)

b(x) b(y)

∣∣, so that, removing symmetric factors, one may without loss of
generality write φi(x1, x2)= φi(x1)−φi(x2), i = 1,2. The proposition then follows
from the following representation (characteristic of Toda chain tau functions): start-

ing from
φ1(xi )−φ1(xj )

φ2(x1)−φ2(xj )
= 1

2πi

∮
C

dy
(y−φ2(xi ))(y−φ2(xj ))

φ1(y) where C is any contour
that surrounds once counterclockwise the φ2(xj ), j = 1, . . . ,2m, and expanding
the determinant in Δ2m we get

Δ2m(x1, . . . , x2m)

= 1

m!(2πi)m

∮

Cm

m∏

i=1

dyiφ1(yi)
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×
deti=1,...,m

j=1,...,m
( 1
yi−φ2(xj )

)

∏
1≤i<j≤m(φ2(xi)− φ2(xj ))

det i=1,...,m
j=m+1,...,2m

( 1
yi−φ2(xj )

)

∏
m+1≤i<j≤2m(φ2(xi)− φ2(xj ))

= 1

m!(2πi)m

∮

Cm

m∏

i=1

dyiφ1(yi)

∏
1≤i<j≤m(yi − yj )

2

∏m
i=1

∏2m
j=1(yi − φ2(xj ))

which is explicitly symmetric in the xi .
The application to H2m consists in writing φ2(x, y)= h(x, y)ϑ(x − y)ϑ(x + y),

φ1(x, y) = ϑ(x − y)ϑ(x + y) and checking that they satisfy (i) and (ii), so that
H2m(x1, . . . , x2m) =∏1≤i<j≤2m h(xi, xj )Δ2m(x1, . . . , x2m). It is slightly easier to
apply it to H2m, i.e., after the change of variables from x to w, since we then have the
more explicit expressions φ1(w)=w, φ2(w)=w/(1+ (3+ ζ 2)w2 − (1− ζ 2)w3).

Note that other identities following from integrability of the Toda chain, for ex-
ample the Hankel determinant form

Δ2m(x1, . . . , x2m) = det(si+j )i,j=0,...m−1,

sk =
2m∑

i=1

φ2(xi)
k

∏
j (	=i)(φ2(xi)− φ2(xj ))

φ1(xi).

They also provide an alternative derivation of Eq. (39) (“first quantized” form of the
tau function).

Appendix D: Differential Equations

We provide here analogues of Eqs. (51) and (52) when H2m (that is, the function
H2m with all arguments set to zero) is replaced with H2m(S), S ⊂ {J2, J3, J4} (again,
with all other arguments set to zero). Because of the permutation symmetry w.r.t.
{J2, J3, J4}, we only need to provide one formula for each possible cardinality of S.
When taking derivatives w.r.t. u or v, the convention is that the arguments that are
specialized to J2, J3, J4 are among the u’s.

After transposition (for display purposes), Eq. (51) is of the form

(
∂2

∂u∂v
H2m,

∂2

∂u2
H2m,

∂2

∂α2
H2m,

∂2

∂u∂α
H2m,

∂

∂u
H2m,

∂

∂α
H2m, H2m

)
P

= 0
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For H2m itself, the matrix P is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2(2m+ 1)
0 0 4m
0 −2m(α − 1)(α + 8) 0
0 −2(−4m− 1) −2m(α − 1)(α + 8)

2(4m+ 1) 0 m(m2 −m+ 1)(α + 2)
−2m×

(α − 1)(α + 8)
m2(m− 1)(α + 2)
−m(4α + 14)

0

(m− 1)m2

×(α + 2)
(m− 1)m2 −(m− 1)m2(α − 4)

2(4m2 +m− 2)α
−2m(4m+ 1)α

0
0

m(2m+ 1)(α − 4)2

0
−(m− 1)m2(2m+ 1)(α − 4)α

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For H2m(J2):

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 −2(m− 1)(α − 1)(α + 8)
0 −2(1− 4m)

2(4m− 1) 0
−2(m− 1)×
(α − 1)(α + 8)

(m− 1)×
(αm2 + 2m2 − αm− 4m− 4α − 12)

(m− 1)2×
(αm+ 2m− 2)

(m− 1)2m

2(2m+ 1) 2(4m2 − 5m− 1)α
4m −2m(4m− 1)α
0 0

−2m(α − 1)(α + 8) 0
m3(α + 2)

−m(m− 1)(α + 4)
m(2m− 1)α2

−16m2(α − 2)
0 0

−(m− 1)m×
(αm− 4m+ 4)

−(m− 1)m2α×
(2αm− 8m− α + 8)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For H2m(J3, J4):
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 −2(m− 2)(α − 1)(α + 8)
0 2(4m− 3)

2(4m− 3) 0
−2(m− 2)×
(α − 1)(α + 8)

(m− 2)×
(αm2 + 2m2 − αm− 4α − 14)

(m− 2)m×
(αm+ 2m− α)

(m− 2)(m− 1)m

2(2m+ 1) 2(4m2 − 11m+ 4)α
4m −2m(4m− 3)α
0 0

−2m(α − 1)(α + 8) 0
m(α + 2)(m2 + 1)

−αm2
m(2m− 1)α2

−16m(m− 1)(α − 2)
0 0

−(m− 2)m×
(αm− 4m− α)

−(m− 2)(m− 1)mα×
(2αm− 8m− α)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For H2m(J2, J3, J4):
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 −2(m− 3)(α − 1)(α + 8)
0 2(4m− 5)

2(4m− 5) 0
−2(m− 3)×
(α − 1)(α + 8)

m(m− 1)(m− 3)(α + 2)
−(m− 3)(4α + 14)

(m− 3)(m− 1)m
×(α + 2)

(m− 3)(m− 1)m

2(2m+ 1) 2(m− 1)(4m− 13)α
4m −2m(4m− 5)α
0 0

−2m(α − 1)(α + 8) 0
m(m2 −m+ 1)(α + 2) m(2m− 3)(α − 4)2

0 0

−(m− 3)m2(α − 4)
−(m− 3)m2(2m− 3)

×(α − 4)α

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As to Eq. (52):

C0H2(m+1)H2(m−1) = C1H2mH ′′
2m −C2

(
H ′

2m

)2 +C3H2mH ′
2m +C4H

2
2m
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The coefficients for H2m are:

C0 = 4α(4m− 1)(4m+ 1)2(4m+ 3)

C1 = 2(α − 1)2α(α + 8)2(4m+ 1)2

C2 = 4(α − 1)2α(α + 8)2(4m− 1)(4m+ 3)

C3 = (α − 1)(α + 8)
(
α2 + 28α + 24α2m2 + 304αm2 − 256m2 + 20α2m

+ 208αm− 192m− 32
)

C4 = 6α2 − 24α+ 4α3m4 − 1008α2m4 + 3408αm4 + 512m4 − 4α3m3

− 984α2m3 + 4032αm3 − 128m3 + α3m2 − 142α2m2 + 1028αm2

− 320m2 − α3m+ 28α2m− 44αm− 64m

For H2m(J2):

C0 = 4α(4m− 3)(4m− 1)2(4m+ 1)

C1 = 2(4m− 1)2(−1+ α)2α(8+ α)2

C2 = 4(4m− 3)(1+ 4m)(−1+ α)2α(8+ α)2

C3 = (−1+ α)(8+ α)
(
64m− 256m2 − 4α− 96mα+ 304m2α + α2 − 4mα2

+ 24m2α2)

C4 = −128m+ 768m2 − 1152m3 + 512m4 − 36α+ 336mα − 204m2α

− 2784m3α+ 3408m4α + 18α2 − 126mα2 − 6m2α2 + 1032m3α2

− 1008m4α2 −mα3 + 9m2α3 − 12m3α3 + 4m4α3

For H2m(J3, J4):

C0 = 4α(4m− 5)(4m− 3)2(4m− 1)

C1 = 2(4m− 3)2(−1+ α)2α(8+ α)2

C2 = 4(4m− 5)(4m− 1)(−1+ α)2α(8+ α)2

C3 = (−1+ α)(8+ α)
(−192+ 448m− 256m2 + 204α− 512mα + 304m2α

+ 21α2 − 44mα2 + 24m2α2)

C4 = 384m2 − 896m3 + 512m4 + 720α− 5208mα+ 11892m2α − 10848m3α

+ 3408m4α − 90α2 + 1074mα2 − 2958m2α2 + 3000m3α2 − 1008m4α2

+ 3mα3 − 3m2α3 − 4m3α3 + 4m4α3
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For H2m(J2, J3, J4):

C0 = 4α(4m− 7)(4m− 5)2(4m− 3)

C1 = 2(4m− 5)2(−1+ α)2α(8+ α)2

C2 = −4(4m− 7)(4m− 3)(−1+ α)2α(8+ α)2

C3 = (−1+ α)(8+ α)
(−480+ 704m− 256m2 + 540α− 816mα+ 304m2α

+ 45α2 − 68mα2 + 24m2α2)

C4 = −960m+ 2368m2 − 1920m3 + 512m4 + 8400α− 27740mα+ 33572m2α

− 17664m3α+ 3408m4α − 2100α2 + 7240mα2 − 9142m2α2 + 5016m3α2

− 1008m4α2 − 5mα3 + 13m2α3 − 12m3α3 + 4m4α3
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