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Abstract Software reliability is of very important in software quality assurance, 
and software reliability model is the most effective method for software reliabil-
ity assessment. It stands a good chance that early failure behavior of the testing 
process may have less impact on later failure process; nonparametric test method 
is adopted to detect the trend of AE value when the value of m varies, and Sen’s 
slope estimator is applied to estimate the trend degree in the data sets.

Keywords  Software reliability prediction  •  Relevance vector machine  •   
Software reliability  •  Software reliability model

107.1  Introduction

In modern society, computers are used for many different applications, such as 
nuclear reactors, aircraft, banking systems, and hospital patient monitoring sys-
tems [1, 2]. As the demand of the application quality becomes higher and higher, 
the research on the computer software reliability becomes more and more essential 
[3, 4]. The software reliability is defined as the probability that the software will 
operate without a failure under a given environmental condition during a specified 
period of time. To date, the software reliability model is one of the most important 
tools in software reliability assessment [5, 6].

There are still some issues that need more discussions. For example, should all 
failure data or only recent failure data be used in model training? Due to the com-
mon knowledge in software testing, early failure behavior of the testing process 
may have less impact on later failure process. Many researchers suggested that not 
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all available failure data should be used in model training; rather only the last m 
recorded data should be used, but to our best knowledge, there were not any exper-
imental results to support this. We study this problem by analyzing the trend of AE 
serials when m changes on four data sets using the Mann–Kendall test method and 
Sen’s slope estimator and confirmed that early failure behavior of the testing pro-
cess may have less impact on later failure process.

107.2  Methods for Software Reliability Prediction

107.2.1  Support Vector Machine

SVM has gained an increasing attention from its original application in pattern 
recognition to the extended application in function approximation and regression 
estimation [7, 8].  Based  on  the  SRM  principle,  the  learning  scheme  of  SVM  is 
focused on minimizing an upper bound of the generalization error that includes the 
sum of the empirical training error and a regularized confidence interval, which 
will eventually result in better generalization performance. Moreover, unlike other 
gradient descent–based learning scheme with the danger of getting trapped into 
local minima, the regularized risk function of SVM can be minimized by solving 
a linearly constrained quadratic programing problem, which can always obtain a 
unique and global optimal solution. Thus, the possibility of being trapped at local 
minima can be effectively avoided.

The basic idea of SVM for function approximation is mapping the DATA x into 
a high-dimensional feature space by a nonlinear mapping and then performing a 
linear regression in this feature space. The SVM model used for function approxi-
mation is given by:

k(x , xi ) is defined as the kernel function, which is the inner product of two vectors 
in feature space ϕ(x) and ϕ(xi). By introducing the kernel function, we can deal 
with the feature spaces of arbitrary dimensionality without computing the mapping 
relationship ϕ(x) explicitly. Some commonly used kernel functions are polynomial 
kernel function and Gaussian kernel function. In this paper, we made the choice to 
utilize Gaussian data-center basis functions:

where r > 0 is a constant that defines the kernel width, and the value of r plays a 
very important role in SVM prediction.
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Thus, a nonlinear regression in the low-dimensional input space is transferred 
to a linear regression in a high-dimensional feature space. The coefficients w and b 
can be estimated by minimizing the following regularized risk function R

where

‖w‖2 is the weighting vector norm, which is used to constrain the model structure 
capacity in order to obtain better generalization performance. The second term is 
the Vapnik’s linear loss function with ε-insensitivity zone as a measure for empirical 
error. The loss is zero if the difference between the predicted and observed value is 
less than or equal to ε. For all other cases, the loss is equal to the magnitude of the 
difference between the predicted value and the radius ε of ε-insensitivity zone. C 
is the regularization constant, representing the trade-off between the approximation 
error and the model structure. ε is equivalent to the approximation accuracy require-
ment for the training data points. Further, two positive slack variables ξ and ξ∗ are 
introduced.

Thus, minimizing the risk function R in Eq. (107.2) is equivalent to minimizing 
the objective function:

107.2.2  Experiments

107.2.2.1  Data Sets

The performance of our proposed approach is tested using the same real-time 
control application and flight dynamic application data sets as cited in Park et al. 
and Karunanithi et al. We choose a common baseline to compare our results with 
related work cited in the literature. All six data sets used in the experiments are 
summarized as follows in Table 107.1:
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107.2.2.2  Measures for Evaluating Predictability

In comparing different models, it is necessary to quantify their prediction accu-
racy, in terms of some meaningful measures [9, 10]. Three distinct approaches 
that are very common in software reliability research community [1] are reviewed 
next. The need to predict the behavior at a distant future of the test phase using 
present failure history is very important [2]. Using the variable-term-predictability 
approach, a two-component predictability measure is average relative prediction 
error (AE) as follows:

where 
∧
ti denotes the predicted value of failure time, and ti denotes the actual value 

of failure time. AE is a measurement of how well a model predicts throughout the 
test phase.

107.3  Trend Test and Estimation

We computed the relative prediction error for DATA 1–4 in the cases m = 5–30, 
35, 40, 45, 50, 55, 60 on each models. All the values are computed with σ 2 = 1 
and αi = 0.5 (i = 1,2,3,…,m), and the value of r is 1, 2.2, 3.5 for DATA-1, 2, 3.7, 5 
for DATA-2, 1, 2.2, 4 for DATA-3 and 0.4, 1.2, 3 for DATA-4. We can see from the 
table that the values of AE change when m varies. For example, the values of AE 
vary from 0.27 (m = 26) to 1.72 (m = 60) when DATA-1 is used with r = 2.2 and 
1.64 (m = 10)–6.32 (m = 60) and when DATA-3 is used with r = 4. Due to the 
variation as well as the existence of outliers, it is difficult to visually discern any 
trends from Table 107.1 and the plots of the relative prediction error for each data. 
Because mere eyeballing does not suffice, we will apply statistical techniques for 
trend test and trend estimation in this section.

To verify the null hypothesis that a sample x1, x2, . . . xn does not exhibit a 
trend, Mann [3] used a linear function of a test statistic originally developed by 
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Table 107.1  Data sets

Data sets Description LOC Failure number

DATA 1 Real-time command and control application 21,700 136
DATA 2 Flight dynamic application 10,000 118
DATA 3 Flight dynamic application 22,500 180
DATA 4 Flight dynamic application 38,500 213
DATA 5 Class compiler project 1,000 27
DATA 6 On-line data entry 40,000 46
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Kendall [4] to test whether two sets of rankings are s-independent. The direct 
application of this test statistic S for our purposes is known as the Mann–Kendall 
test for trend. In this context, the value of the test statistic is computed by:

Of all n
′ =

(

n

2

)

= n (n − 1) /2 pairs of values xk , x j (k < j), S counts  

those pairs for which the earlier observation xk is smaller than x j and subtracts 
the number of pairs for which the latter observation is smaller. When a value of S 
is close to zero, it suggests that there is no trend in the data, whereas a high abso-
lute value of the test statistic hints at the existence of a trend. For the calculation 
of S, tied pairs, that is, those pairs for which xk = x j, are not taken into account. 
However, the existence of such tied pairs does influence the variance of the test 
statistic. The variance of S is given by:

Under null hypothesis, the distribution of S is always symmetric and the 
expected value of S is equal to zero. Moreover, for n approaching infinity, the dis-
tribution of S converges to the S-normal distribution. Allowing for a continuity 

correction, the value of the test statistic Zstatistic = S−sgn(S)√
Var(S)

 can be compared with 

the quantile of the standard S-normal distribution in order to check whether the 

null hypothesis of no trend in the data can be rejected.
The values of Z calculated for the series of AE on four data sets are listed in 

Table 107.1. Both are larger than λ0.975 = 1. 960, which is the 97.5 % quantile of 
the standard S–normal distribution. Consequently, in each case, the null hypoth-
esis shows that the time series with no trend can be rejected at a Type I error level 
(i.e., a long-term probability of rejecting the null hypothesis when it is true) of 5 %. 
This means that although we have not been able to visually discover any trends 
in Table 107.2, trends are present in the data, and these trends are S-significant. 
Moreover, the positive signs of the Z values show that the four trends are increasing.

To determine the estimates for the slopes, we apply a nonparametric proce-
dure developed. This method is not affected by outliers, and it is robust to miss-
ing data. Like the calculation of the value of the test statistic S, the approach 
focuses on all pairs of data points xl , xk (l < k). For each of these pairs, the slope 
qkl = (xl − xk)/(l − k) is calculated. Sen’s slope estimate is defined as the median 
of the n

′ = n (n − 1)/2 slopes obtained.
A two-sided S-confidence interval for the estimated slope can be derived by 

the procedure described in [4]: After sorting the n
′
 slopes in increasing order, 

the lower limit of the S-confidence interval is given by the 
(
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largest of these slopes, while the upper limit is given by the largest slope, where 
cα = λ1−α/2

√
Var(S).

At last, the slope estimates and their respective 95 % confidence intervals are 
shown in Table 107.2. As anticipated, after the calculation of the values of the sta-
tistic, the estimated slope is positive for both AE series. Moreover, none of the 
S-confidence intervals contains the value zero, and this corroborates the earlier 
finding that the trends are S-significant at a Type I error level of 5 %.

With regard to the AE series on all data sets, we would have expected an 
increasing trend rather than the decreasing one that we detected. A possible expla-
nation for the observed behavior is the fact that recent failure history records the 
latest characteristics of the testing process; thus, it could contribute to more accu-
rate prediction of near-future failure event.

107.4  Conclusion

In this paper, we have conducted comparative studies on model performance 
between  SVM-based  and ANN-based  SRMs.  Data  collected  from  real  software 
projects  are used  in  the  studies. Then, we have analyzed  the  trend of AE serials 
when m changes on four data sets using the Mann–Kendall test method and Sen’s 
slope estimator and confirmed that early failure behavior of the testing process 
may have less impact on later failure process.
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