
Chapter 9

Optimization and multipliers

I think the restriction to smooth manifolds is dictated only by
technical reasons and is unsatisfactory...non-smooth manifolds
exist naturally.
Shiing-Shen Chern

Consider God’s handiwork: who can straighten what He hath
made crooked?
Ecclesiastes 7:13

The abstract optimization problem minA f consists of minimizing a cost function
f (x) over the points x belonging to the admissible set A. The set A incorporates the
constraints imposed upon the points that are allowed to compete in the minimiza-
tion. The nature of A, and also of the function f , determine whether our problem is
classical or modern, discrete or continuous, finite or infinite dimensional, smooth or
convex.

Optimization is a rich and varied subject with numerous applications. The core
mathematical issues, however, are always the same:

• Existence: Is there, in fact, a solution of the problem? (This means a point x∗ ∈ A
at which minA f is attained.)

• Necessary conditions: What special properties must a solution have, properties
that will help us to identify it?

• Sufficient conditions: Having identified a point that is suspected of being a solu-
tion, what tools can we apply to confirm the suspicion?

Many other issues than these can, and do arise, depending on the nature of the
problem. Consider for example the calculus of variations, which we take up later
on, in which the variable x refers to a function. The regularity of the minimizing
function x∗ reveals itself to be a central question, one that we shall study rather
thoroughly. In contrast, issues such as modeling, computation, and implementation,
which are crucial to applied optimization of all sorts, are not on our agenda.

Deductive and inductive methods. A familiar optimization problem that the
reader has encountered is that of minimizing a differentiable function f : Rn → R

over all points x belonging to A = R
n. This is a “free” optimization problem, since

the admissible points x are subject to no explicit constraint (except, of course, that
they reside in the underlying space R

n).
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The existence question might be treated by imposing a supplementary hypothesis
on f , for example, a growth condition: f (x) → +∞ as |x | → +∞. Then, bearing
in mind that f is continuous (since it is differentiable), it follows that a solution x∗
does exist. We would like to identify it, however.

For that purpose, we turn to necessary conditions, proceeding to invoke Fermat’s
rule: a solution x∗ must satisfy ∇ f (x∗) = 0. (It is in order to write this equation that
f was taken to be differentiable, rather than merely continuous.) Thus, we search
for a solution among the critical points of f .

Then, we could conclude in one of two ways. If we know that a solution exists, and
if we have examined the critical points in order to find the best critical point x∗ (that
is, the one assigning the lowest value to the cost f ), it follows logically that x∗ is
the solution to the minimization problem. This approach is known as the deductive
method.1

There is a potential fallacy lurking here, one that is rather common in certain areas of
application. It consists of applying the deductive reasoning above without knowing
with certainty that a solution exists. In the absence of guaranteed existence, it is
quite possible for the necessary conditions to identify a unique admissible point x,
which then fails to be a solution (because there isn’t one).

An alternative approach, one that does not necessitate finding all the critical points,
or knowing ahead of time that a solution exists, is to find an argument tailored
precisely to a given suspect x∗. Let us give three examples of how this might work.
First, suppose we find it possible to rewrite f (x) as follows:

f (x) =
[

ϕ(x)−ϕ(x∗)
]2
+ c ,

for some function ϕ and constant c. Then, evidently, x∗ minimizes f .

Another strategy would be to postulate the convexity of the function f ; then, the
stationarity condition ∇ f (x∗) = 0 implies, without further argument, that x∗ is a
global minimum for f .

Finally, let us mention a third tactic: if f is twice continuously differentiable, the
condition ∇2 f (x∗) > 0 (positive definite) together with ∇ f (x∗) = 0, is enough to
imply that f is at least a local minimum.

Note that all three of these alternate arguments do not require an existence theorem.
They are examples of the inductive method.2 These two approaches to solving
optimization problems, the deductive and the inductive, will play a role in shaping
the things to come.

We turn now to the issue of necessary conditions in the presence of constraints.

1 Deductive: reasoning from the general to the particular.
2 Inductive reasoning: wherein one argues from the particular to the general.
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9.1 The multiplier rule

Consider the following special case of our problem minA f :

Minimize f (x) subject to h(x) = 0 . (P0)

Here, the admissible set is given by A = {x ∈ R
n : h(x) = 0}, and we are dealing

with a constrained optimization problem, one in which admissibility is defined via
an equality constraint. To keep things simple, we suppose for now that f and h are
continuously differentiable, and that h is real-valued.

There is a famous technique for obtaining necessary conditions in this case, known
as Lagrange multipliers. It should be part of any mathematical education, for it is a
serious nominee for the most useful theorem in applied mathematics.

The method consists of seeking the solutions of the constrained problem (P0) above
among the critical points, not of f (for this would ignore the constraint), but of
f + λ h, where the multiplier λ is a parameter whose value is not known for the
moment. The resulting equation ∇( f +λ h)(x) = 0 may appear to be a step in the
wrong direction, since it involves an additional unknown λ , but this is compensated
for by the constraint equation h(x) = 0. The idea is to solve the two equations for x
and λ simultaneously, and thus identify x (and λ , for whatever that’s worth).

The theorem we have alluded to is known as the multiplier rule. We now discuss
in some detail (but in general terms) how to prove such necessary conditions for
optimality, as they are known.

Terminology: Various branches of optimization employ different synonyms for a
“solution” of the underlying problem. A point x∗ that solves the minimization prob-
lem can be called optimal, or it can be referred to as a minimizer, or it can be said that
it provides a minimum. The word “local” is used in addition, when the minimum in
question is a local one in some prescribed sense.

The first approach to proving the multiplier rule is geometric. Let x∗ solve (P0), and
consider, for ε > 0, the relation of the set

f−1
ε := {x ∈ R

n : f (x) = f (x∗)− ε
}

to the admissible set A = {x ∈ R
n : h(x) = 0}. Clearly, these two sets (which we

imagine as surfaces in R
n) do not intersect, for otherwise x∗ cannot be a solution of

(P0). As ε decreases to 0, the surfaces f−1
ε “converge” to the level set

{x ∈ R
n : f (x) = f (x∗)} ,

which does have a point in common with A, namely x∗ . (Have we mentioned that
we are arguing in general terms?) Thus, the value ε = 0 corresponds to a point of
first contact (or “osculation”) between these surfaces. We conclude that the normal
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vectors at x∗ of these two surfaces are parallel, that is, multiples of one another.
Since normals to level sets are generated by gradients, we deduce the existence of a
scalar λ such that ∇ f (x∗)+λ∇h(x∗) = 0. This is precisely the multiplier rule we
seek to establish.

The argument given above has the merit of explaining the geometric meaning behind
the multiplier rule. It is difficult to make it rigorous, however. A more manageable
classical approach is to consider the nature of the solutions (x,r) ∈ R

n×R of the
equation

F(x,r) :=
(

f (x)− f (x∗)+ r, h(x)
)
= (0,0) .

The reader will observe that the point (x∗ , 0) satisfies the equation.

If the Jacobian matrix Dx F(x∗ , 0) has (maximal) rank 2, then, by the implicit func-
tion theorem, the equation F(x,r) = (0,0) admits a solution x(r) for every r near 0,
where lim r→0 x(r) = x∗ . But then, for r > 0 sufficiently small, we obtain a point
x(r) arbitrarily near x∗ which is admissible, and for which f (x(r)) < f (x∗). This
contradicts even the local optimality of x∗ . It follows that the rows of Dx F(x∗ , 0),
namely the vectors ∇ f (x∗) and ∇h(x∗) (modulo transpose), must be linearly depen-
dent. If we assume that ∇h(x∗) �= 0 (as is usually done), this implies that, for some
λ , we have ∇ f (x∗)+λ∇h(x∗) = 0. Ergo, the multiplier rule.

This classical argument is satisfyingly rigorous, but it is difficult to adapt it to dif-
ferent types of constraints, notably inequality constraints g(x) � 0, and unilateral
constraints x ∈ S. Other considerations, such as replacing R

n by an infinite dimen-
sional space, or allowing the underlying functions to be nondifferentiable, further
complicate matters.

Let us turn, then, to an entirely different argument for proving the multiplier rule,
one that we invite the reader to criticize. It is based upon considering the following
perturbed problem (Pα ):

Minimize f (x) subject to h(x) = α . (Pα )

Note that the original problem (P0) has been imbedded in a family of problems
depending on the parameter α . We define V (α) to be the value of the minimum in
the problem (Pα ). Thus, by definition of V , and since x∗ solves (P0) by assumption,
we have V (0) = f (x∗). On the other hand, for any x, the very definition of V implies
that V (h(x)) � f (x). (There is a pause here while the reader checks this.) We may
summarize these two observations as follows:

f (x)−V
(
h(x)

)
� 0 ∀x, with equality for x = x∗ .

By Fermat’s rule, the gradient of the function in question must vanish at x∗ . By the
chain rule, we obtain:

∇ f (x∗)−V ′(h(x∗)
)

∇h(x∗) = ∇ f (x∗)−V ′(0)∇h(x∗) = 0 .
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Behold, once again, the multiplier rule, with λ = −V ′(0). We have also gained
new insight into the meaning of the multiplier λ : it measures the sensitivity of the
problem with respect to perturbing the equality constraint h = 0 to h = α . (This
interpretation is well known in such fields as operations research, mechanics, or
economics.)

Nonsmoothness. The “value function proof” that we have just presented is com-
pletely rigorous, if it so happens that V is differentiable at 0. It must be said at once,
however, that value functions are notoriously nonsmooth. Note that V above is not
even finite-valued, necessarily: V (α) = +∞ when the set {x : h(x) = α } is empty.
And simple examples show that V is not necessarily differentiable, even when it is
finite everywhere. This raises the issue of rescuing the proof through the use of gen-
eralized derivatives and nonsmooth calculus, subjects that we develop in subsequent
chapters.

Let us mention one more approach to proving the multiplier rule, one that uses
an important technique in optimization: exact penalization. Our interest remains
focused on the problem minA f , but we consider the (free!) minimization of the
function f (x)+ k dA(x), where k is a positive number and, as usual, dA denotes the
distance function associated with A. Under mild hypotheses, it turns out that for k
sufficiently large, the solution x∗ of the constrained problem will be a local solution
of this unconstrained problem. We might say that the constraint has been absorbed
into the cost by penalization.

At this point, we are tempted to write Fermat’s rule: ∇( f +k dA)(x∗) = 0. There is a
difficulty, once more having to do with regularity, in doing so: distance functions like
dA are not differentiable. Once again, then, we require some generalized calculus in
order to proceed. A further issue also arises: given that A is the set {h = 0}, how
may we interpret the generalized derivative of dA? Is it characterized by ∇h some-
how, and would this lead (yet again) to the multiplier rule? We shall develop later
the “nonsmooth geometry” required to answer such questions (positively).

We have explained how considerations of theory lead to nonsmoothness. In fact,
there are many important problems that feature data that are nondifferentiable from
the start. They arise in such areas as elasticity and mechanics, shape optimization
and optimal design, operations research, and principal-agent analysis in economics.
However, we begin our study with the smooth case, in a more general setting as
regards the constraints that define admissibility.

The basic problem. The focus of this chapter is the following basic problem of
constrained optimization:

Minimize f (x) subject to g(x)� 0 , h(x) = 0 , x ∈ S (P)

where the functions

f : X → R , g : X → R
m , h : X → R

n,
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together with the set S in the Banach space X , constitute the given data. The vector
inequality g(x) � 0 means, of course, that each component gi(x) of g(x) satisfies
gi(x) � 0 (i = 1, 2 , . . . , m). An optimization problem of this type is sometimes
referred to as a program, which is why the term mathematical programming is a
synonym for certain kinds of optimization.

Terminology. We say that x ∈ X is admissible for the problem (P) if it lies in S and
satisfies both the inequality constraint g(x)� 0 and the equality constraint h(x) = 0.
The requirement x ∈ S is also referred to as the unilateral constraint. A solution x∗
of (P) is an admissible point which satisfies f (x∗) � f (x) for all other admissible
points x, where f is the cost function. We also say that x∗ is optimal for the problem,
or is a minimizer.

9.1 Theorem. (Multiplier rule) Let x∗ be a solution of (P) that lies in the interior
of S. Suppose that all the functions involved are continuously differentiable in a
neighborhood of x∗ . Then there exists (η ,γ ,λ ) ∈ R×R

m×R
n satisfying the non-

triviality condition
(η ,γ ,λ ) �= 0 ,

together with the positivity and complementary slackness conditions

η = 0 or 1 , γ � 0 , 〈γ , g(x∗)〉 = 0,

and the stationarity condition
{

η f + 〈γ , g〉+ 〈λ ,h〉
}′
(x∗) = 0 .

Remarks on the multiplier rule. The triple (η ,γ ,λ ) is called a multiplier. The
theorem asserts that the existence of such a multiplier is a necessary condition for x∗
to be a solution. The term Lagrange multiplier is often used, in honor of the person
who used the concept to great effect in classical mechanics; in fact, the idea goes
back to Euler (1744). The hypothesis that the functions involved are smooth, and
that x∗ lies in the interior of S, makes the setting of the theorem a rather classical
one, though the combination of an infinite dimensional underlying space with the
presence of mixed equality/inequality constraints is modern.

Because we have assumed x∗ ∈ int S, the set S plays no role in the necessary condi-
tions. In fact, S merely serves (for the present) to localize the optimization problem.
Suppose, for example, that x∗ is merely a local minimum for (P), when the unilateral
constraint x ∈ S is absent. Then, by adding the constraint x ∈ S, where S is a suffi-
ciently small neighborhood of x∗ , we transform x∗ into a global minimum. Another
possible role of S is to define a neighborhood of x∗ in which certain hypotheses hold
(in this case, continuous differentiability).

The reader will observe that the nontriviality condition is an essential component of
the multiplier rule, since the theorem is vacuous in its absence: the triple (0,0,0)
satisfies all the other conclusions, for any x∗ .
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The complementary slackness condition 〈γ , g(x∗)〉 = 0 is equivalent to

i ∈ {1, 2 , . . . , m} , gi(x∗) < 0 =⇒ γ i = 0 .

This equivalence follows from the observation that, since γ � 0 and g(x∗) � 0,
the inner product 〈γ , g(x∗)〉 is necessarily nonpositive, and equals zero if and only
if each term γ i gi(x∗) is zero. Thus, we may rephrase the complementary slack-
ness condition as follows: if the constraint gi � 0 is not saturated at x∗ (that is, if
gi(x∗) < 0), then the function gi does not appear in the necessary conditions (the
corresponding γ i is equal to 0). This makes perfect sense, for if gi(x∗)< 0, then (by
the continuity of g) we have gi(x) < 0 for all nearby points x, so that (locally) the
constraint is redundant, and can be ignored.

The case η = 0 of the multiplier rule yields necessary conditions that do not in-
volve the cost function f . Typically, this rather pathological situation arises when
the equality and inequality constraints are so “tight” that they are satisfied by just
one point x∗ , which is then de facto optimal, independently of f . The case η = 0 is
referred to as the abnormal case. In contrast, when η = 1, we say that we are in the
normal case.

The proof of Theorem 9.1 is postponed to §10.4, where, using techniques of nons-
mooth analysis, a more general result can be proved.

Absence of certain constraints. Either equality or inequality constraints can be
absent in the problem treated by Theorem 9.1, which then holds without reference
to the missing data. Consider first the case of the problem in which there are no
inequality constraints. We can simply introduce a function g that is identically −1,
and then apply the theorem. When we examine the resulting necessary conditions,
we see that the multiplier γ corresponding to g must be 0, and therefore the con-
clusions can be couched entirely in terms of a nontrivial multiplier (η ,λ ), with
no reference to g. Note that the resulting multiplier must be normal if the vectors
h ′

j(x∗) ( j = 1, 2 , . . . , n) are independent. This assumption, a common one, is said
to correspond to the nondegeneracy of the equality constraints.

Consider next the problem having no equality constraints. Let us introduce another
variable y ∈ R on which f and g have no dependence. In X×R, we redefine S to
be S×R, and we impose the equality constraint h(y) := y = 0. We then proceed to
apply Theorem 9.1 to this augmented problem. There results a multiplier (η ,γ ,λ );
the stationarity with respect to y yields λ = 0. Then all the conclusions of the
theorem hold for a nontrivial multiplier (η ,γ ) (with no reference to h and λ ).

The meaning of the multiplier rule. Consider the problem (P) in the case when
only inequality constraints are present. For any admissible x, we denote by I(x) the
set of indices for which the corresponding inequality constraint is active at x :

I(x) =
{

i ∈ {1, 2 , . . . , m} : gi(x) = 0
}
.
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Now let x∗ be optimal. As a consequence of this optimality, we claim that there
cannot exist v ∈ X such that, simultaneously,

〈 f ′(x∗),v〉< 0 and 〈gi
′(x∗),v〉< 0 ∀ i ∈ I(x∗) .

Such a v would provide a direction in which, for a small variation, the function f ,
as well as each gi for i ∈ I(x∗), would simultaneously decrease. Thus, for all t > 0
sufficiently small, we would have

f (x∗+ t v) < f (x∗) , gi(x∗+ t v) < gi(x∗) = 0 ∀ i ∈ I(x∗) .

But then, by further reducing t if necessary, we could arrange to have

gi(x∗+ t v) � 0 for all indices i ∈ {1, 2 , . . . , m} ,

as well as f (x∗+ t v) < f (x∗). This would contradict the optimality of x∗ .

The nonexistence of such a direction v is equivalent to the positive linear dependence
of the set {

f ′(x∗), gi
′(x∗) : i ∈ I(x∗)

}
,

as Exer. 2.40 points out. We conclude, therefore, that the necessary conditions of
the multiplier rule correspond to the nonexistence of a decrease direction (in the
above sense). (In fact, this is a common feature of first-order necessary conditions
in various contexts.) We remark that in the presence of equality constraints, it is
much harder to argue along these lines, especially in infinite dimensions.

9.2 Exercise. We wish to minimize f (x) subject to the constraints g1(x) � 0 and
g2(x)� 0, where f , g1 and g2 are continuously differentiable functions defined on
R

3. At four given points xi in R
3 (i = 1, 2, 3, 4), we have the following data:

g1 g2 ∇ f ∇g1 ∇g2

x1 0 0 (2 ,−2 , 4) (−2 ,0 ,0) (0 ,1,−2)

x2 0 −1 (0 ,1,1) (0 ,−1, 0) (0 , 0 ,−1)

x3 0 1 (0 , 0 ,1) (0 , 0 ,−1) (0 , 0 ,−1)

x4 0 0 (1,1,1) (0 ,−1, 0) (1,0,1)

(a) Only one of these four points could solve the problem. Which one is it?

(b) For each point xi that is admissible but definitely not optimal, find a direction
in which a small displacement can be made so as to attain a “better” admissible
point. ��

9.3 Example. We allow ourselves to hope that the reader has seen the multiplier
rule applied before. However, just in case the reader’s education has not included
this topic, we consider now a simple ‘toy problem’ (to borrow a phrase from the
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physicists) of the type that the author seems to recall having seen in high school
(but that was long ago). Despite its simplicity, some useful insights emerge.

The problem is that of designing a soup can of maximal volume V , given the area
q of tin that is available for its manufacture. It is required, for reasons of solidity,
that the thickness of the base and of the top must be double that of the sides. More
specifically then, we wish to find the radius x and the height y of a cylinder such that
the volume V = π x2y is maximal, under the constraint 2π xy+ 4π x 2 = q. We do
not doubt the reader’s ability to solve this problem without recourse to multipliers,
but let us do so by applying Theorem 9.1.

We could view the constraint 2π xy+4π x 2 = q as an equality constraint (which it
is), but we can also choose to replace it by the inequality constraint

g(x,y) := 2π xy+4π x 2 −q � 0 ,

since it is clear that the solution will use all the available tin. Doing so offers the
advantage of knowing beforehand the sign of the multiplier that will appear in the
necessary conditions.

The problem has a natural (implicit) constraint that x and y must be nonnegative, a
feature of many optimization problems that motivates the following definition.

Notation. We denote by R
n
+ the set {x ∈ R

n : x � 0}, also referred to as the
positive orthant.

To summarize, then, we have the case of problem (P) in which (x,y) ∈ R
2 and

f (x,y) := −π x 2y , g(x,y) = 2π xy+4π x 2 −q , S = R
2
+

with the equality constraint h = 0 being absent. (Note the minus sign in f , reflecting
the fact that our theory was developed for minimization rather than maximization.)
If we take q strictly positive, it is easy to prove that a solution (x∗,y∗) of the problem
exists, and that we have x∗ > 0, y∗ > 0 (thus, the solution lies in int S ).

The usual first step in applying Theorem 9.1 is to rule out the abnormal case η = 0;
we proceed to do so. If η = 0, then the necessary conditions imply that ∇g(x∗,y∗)
equals (0,0), which leads to x∗ = y∗ = 0, which is absurd. Thus, we may take
η = 1. (Note that the abnormal case corresponds to an exceedingly tight constraint,
the case q = 0.) With η = 1, the resulting stationarity condition becomes

−2π x∗ y∗+ γ (2π y∗+8π x∗) = 0 , −π x 2
∗ + γ (2π x∗) = 0 .

The second equation gives x∗ = 2γ , whence γ > 0; substituting in the first equa-
tion then produces y∗ = 8γ . Since γ > 0, the inequality constraint is saturated (as
expected). The equality g(x∗,y∗) = 0 then leads to

γ =
√

q/
(

4
√

3π
)
, y∗ = 4x∗ , f (x∗,y∗) = −q 3/2/

(
6
√

3π
)
.
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Thus the height of the optimal soup can is four times its radius. As regards our own
(non soup oriented) intentions, it is more to the point to note that the derivative of the
optimal volume q 3/2/(6

√
3π ) with respect to q is precisely the multiplier γ , thus

confirming the interpretation of γ (suggested in the introduction) as a sensitivity with
respect to changing the constraint (that is, the amount of available tin). Economists
would refer to γ as a shadow price.3 ��

9.2 The convex case

The next item on the agenda is to impart to the reader an appreciation of the “convex
case” of the problem (P). We shall see in this section that the multiplier rule holds in
a stronger form in this setting, and that it is normally sufficient as well as necessary.
In the following section, another characteristic feature of convex optimization is ex-
amined: the possibility of defining a useful dual problem. Together, these elements
explain why, other things being equal, the convex case of (P) is preferred, if we can
so arrange things.

The problem (P) is unaltered: it remains that of minimizing f (x) subject to the
constraints

g(x) � 0 , h(x) = 0 , x ∈ S ,

but in the following framework, referred to as the convex case:

• S is a convex subset of a real vector space X ;

• The following functions are convex:

f : S → R and gi : S → R (i = 1, 2, . . . , m);

• Each function h j : S → R ( j = 1, 2 , . . . , n) is affine; that is, h j is of the form
〈ζ j , x〉+ c j , where ζ j is a linear functional on S and c j ∈ R.

Note that these functions need only be defined on S. In the following counterpart to
Theorem 9.1, it is not required that x∗ lie in the interior of S; indeed, no topology is
imposed on X .

9.4 Theorem. (Kuhn-Tucker) Let x∗ be a solution of (P) in the convex case. Then
there exists (η ,γ ,λ ) ∈ R×R

m×R
n satisfying the nontriviality condition

(η ,γ ,λ ) �= 0 ,

3 The shadow price would be used, for example, to decide whether the soup can (which is optimal
for the specified volume) should be made larger (in order to increase profit). To decide, one com-
pares pγ (the marginal effect on revenue of using more tin, where p is the unit price of soup) to
the marginal cost of tin; at optimality, the two marginal effects are equal.



9.2 The convex case 183

the positivity and complementary slackness conditions

η = 0 or 1 , γ � 0 , 〈γ , g(x∗)〉 = 0 ,

and the minimization condition
{

η f + 〈γ , g〉+ 〈λ ,h〉
}
(x) �

{
η f + 〈γ , g〉+ 〈λ ,h〉

}
(x∗) = η f (x∗) ∀x ∈ S .

Proof. We consider the following subset of R×R
m×R

n :

C =
{(

f (x)+δ , g(x)+Δ , h(x)
)

: δ � 0 , Δ � 0 , x ∈ S
}
.

It is easy to see that C is convex (that’s what the convexity hypotheses on the data
are for). We claim that the point ( f (x∗), 0, 0) lies in the boundary of C .

If this were false, C would contain, for some ε > 0, a point of the form
(

f (x)+δ , g(x)+Δ , h(x)
)
= ( f (x∗)− ε , 0, 0) , where x ∈ S , δ � 0 , Δ � 0 .

But then x is admissible for (P) and assigns to f a strictly lower value than does x∗ ,
contradicting the optimality of x∗ .

Since C is finite dimensional, the normal cone (in the sense of convex analysis) to
C at this boundary point is nontrivial (Cor. 2.48). This amounts to saying that there
exists (η ,γ ,λ ) �= 0 such that

η( f (x)+δ )+ 〈γ , g(x)+Δ 〉+ 〈λ ,h(x)〉 � η f (x∗) ∀x ∈ S , δ � 0 , Δ � 0 .

Note that this yields the minimization condition of the theorem. It also follows read-
ily that η � 0 and γ � 0. Taking

x = x∗ , δ = 0 , Δ = 0

in the inequality gives 〈γ , g(x∗)〉 � 0, which is equivalent to the complemen-
tary slackness condition 〈γ , g(x∗)〉 = 0, since g(x∗) � 0 and γ � 0. Finally, if
η > 0, note that we can normalize the multiplier (η ,γ ,λ ); that is, replace it by
(1,γ/η , λ/η). Thus, in all cases, we can assert that η equals 0 or 1. ��

Remark. We refer to the vector (η ,γ ,λ ) as a multiplier in the convex sense. The
difference between such a multiplier and a classical one (as given in Theorem 9.1)
is that the stationarity is replaced by an actual minimization. Furthermore, no differ-
entiability of the data is assumed here, and, as we have said, there is no requirement
that x∗ lie in the interior of S.

In the same vein as our discussion following Theorem 9.1, it is easy to see that the
theorem above adapts to the cases in which either the equality or inequality con-
straint is absent, by simply deleting all reference to the missing constraint.
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9.5 Example. (du Bois-Raymond lemma) The following situation arises in the
calculus of variations, where the conclusion below will be of use later on. We are
given an element θ ∈ L1(a,b) such that

∫ b

a
θ(t)ϕ ′(t)dt = 0 ∀ϕ ∈ Lip0 [a,b ],

where Lip0 [a,b ] is the set of Lipschitz functions on [a,b ] that vanish at a and b.
Evidently, the stated condition holds if θ is constant; our goal is to prove that this is
the only case in which it holds.

Let X be the vector space of all ϕ ∈ Lip[a,b ] satisfying ϕ(a) = 0, and define

f (ϕ) =
∫ b

a
θ(t)ϕ ′(t)dt , h(ϕ) = ϕ(b) .

Then, by hypothesis, we have f (ϕ) � 0 for all ϕ ∈ X satisfying h(ϕ) = 0. Thus the
function ϕ∗ ≡ 0 solves the corresponding version of the optimization problem (P).
We proceed to apply Theorem 9.4. Accordingly, there exists a multiplier (η ,λ ) �= 0
with η equal to 0 or 1, such that

η
∫ b

a
θ(t)ϕ ′(t)dt +λϕ(b) =

∫ b

a

{
ηθ(t)+λ

}
ϕ ′(t)dt � 0 ∀ϕ ∈ X .

It follows that η = 0 cannot occur, for then we would have λ = 0 too, violating
nontriviality. Thus we may set η = 1, and we obtain

∫ b

a

{
θ(t)+λ

}
ϕ ′(t)dt � 0 ∀ϕ ∈ X .

For a positive integer k, let Ak be the set { t ∈ (a,b) : |θ(t)| � k}, and let χk be its
characteristic function. Taking

ϕ(t) = −
∫ t

a

{
θ(s)+λ

}
χk(s)ds

in the inequality above (note that ϕ ∈ X) yields

−
∫

Ak

{
θ(t)+λ

}2 dt � 0 .

Thus the integral is 0 for every k, and we discover θ(t)+λ = 0 a.e. ��

9.6 Exercise. Let x∗ be a solution of the problem encountered in Exer. 5.53. Show
that the problem fits into the framework of Theorem 9.4 if one takes

g(x) = ∑∞
i=1 x i −1, S =

{
x ∈ �r : 0 � x i ∀ i , ∑∞

i=1 x i < ∞, f (x) < ∞
}
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and if no equality constraint is imposed. Deduce the existence of a nonnegative
constant γ such that, for each i, the value x∗ i minimizes the function t �→ fi(t)+ γ t
over [0,∞). In that sense, all the x∗ i are determined by a single scalar γ . ��

Remark. In many cases, the minimization condition in the theorem can be ex-
pressed in equivalent terms as a stationarity condition, via the subdifferential and
the normal cone of convex analysis. This brings out more clearly the common as-
pects of Theorem 9.1 and Theorem 9.4, as we now see.

9.7 Exercise.

(a) Let x∗ be admissible for (P) in the convex case, and suppose there exists a normal
multiplier (1,γ ,λ ) associated with x∗ . Prove that x∗ is optimal.

(b) In addition to the hypotheses of Theorem 9.4, suppose that X is a normed space,
and that f , g, and h are convex and continuous on X . Prove that the minimization
condition in the conclusion of the theorem is equivalent to

0 ∈ ∂
{

η f + 〈γ , g〉+ 〈λ ,h〉
}
(x∗)+NS(x∗) .

Under what additional hypotheses would this be equivalent to the stationarity
conclusion in Theorem 9.1? ��

The exercise above expresses the fact that in the convex case of (P), the necessary
conditions, when they hold normally, are also sufficient for optimality. Another posi-
tive feature of the convex case is the possibility of identifying reasonable conditions
in the presence of which, a priori, the necessary conditions must hold in normal
form. We are referring to the Slater condition, which is said to hold when:

• X is a normed space;

• There exists a strictly admissible point x0 for (P):

x0 ∈ int S , g(x0)< 0 , h(x0) = 0 ;

• The affine functions of the equality constraint are independent, meaning that the
set {h ′

j : j = 1, 2 , . . . , n} is independent.

9.8 Theorem. In the convex case of problem (P), when the Slater condition holds,
the multiplier whose existence is asserted by Theorem 9.4 is necessarily nor-
mal : η = 1.

Proof. We reason ad absurdum, by supposing that (0,γ ,λ ) is an abnormal (nontriv-
ial) multiplier. The minimization condition, when expressed at the point x0 provided
by the Slater condition, gives 〈γ , g(x0)〉 � 0. Since every component of g(x0) is
strictly negative, and since γ � 0, we deduce γ = 0. Then the minimization condi-
tion becomes: 〈λ , h(x)〉 � 0 ∀x ∈ S. Since equality holds at x0 ∈ int S, we have



186 9 Optimization and multipliers

∑ i λ i h ′
i = 0 by Fermat’s rule. Then the linear independence implies λ = 0, con-

tradicting the nontriviality of the multiplier. ��

We now illustrate the use of the Slater condition by means of a simple problem
arising in statistics.

9.9 Exercise. Let z1, z2 , . . . , zn be the n distinct values of a random variable Z , and
let pi be the probability that Z = zi . Let us suppose that we know from observation
that Z has mean value m, so that ∑ i z i pi = m. However, the probabilities pi are not
known. A common way to estimate the probability distribution p = (p1, p2 , . . . , pn)
in this case is to postulate that it maximizes the entropy

E = −∑n
i=1 pi ln pi .

The optimization problem, then, is to maximize E subject to the constraints

p ∈ R
n
+ , ∑n

i=1 pi = 1 , ∑n
i=1 zi pi = m .

We place this in the context of Theorem 9.4 by taking X = R
n and S = R

n
+ , and by

defining

f (p) = ∑ i pi ln pi , h1(p) =
(
∑ i pi

)
−1 , h2(p) =

(
∑ i z i pi

)
−m .

Thus, the equality constraint has two components, and the inequality constraint is
absent. Note that the function t �→ t ln t has a natural value of 0 at t = 0.

(a) Prove that f is convex on S.

(b) Prove that a solution to the problem exists, and that it is unique.

We suppose henceforth that min i z i < m < max i z i . If this were not the case, m
would equal either min i z i or max i z i , which means that the distribution has all
its mass on a single value: a case of overly tight constraints which, of themselves,
identify the solution.

(c) Prove that the Slater condition is satisfied. Deduce that the solution admits a
normal multiplier in the convex sense.

(d) Deduce from the minimization condition of the multiplier that the solution p
satisfies pi > 0 ∀ i ∈ {1, 2 , . . . , n}.

(e) Prove that the solution p corresponds to an exponential distribution: for certain
constants c and k, we have

pi = exp
(

c+ k zi
)
, i = 1, 2 , . . . , n . ��

The next result gives a precise meaning (in the current convex setting) to the inter-
pretation of multipliers in terms of sensitivity.
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9.10 Theorem. Let there exist a solution x∗ of the problem (P) in the convex case,
where the Slater condition is satisfied. We define the value function V on R

m×R
n

as follows:

V (α,β ) = inf
{

f (x) : x ∈ S , g(x) � α , h(x) = β
}
.

Then V is a convex function with values in (−∞,+∞ ]. The vector (1,γ ,λ ) is a
multiplier associated with x∗ if and only if (γ ,λ ) ∈ −∂ V (0,0).

Proof. According to Theorems 9.4 and 9.8, there exists a normal multiplier (1,γ ,λ )
associated to x∗ . Let P(α,β ) denote the optimization problem that defines the value
of V (α,β ), and let x be any point admissible for P(α,β ):

x ∈ S , g(x) � α , h(x) = β .

Then, using γ � 0 and −g(x) � −α , we have

f (x) = f (x)+ 〈γ , g(x)〉+ 〈γ ,−g(x)〉+ 〈λ , h(x)−β 〉
� f (x)+ 〈γ , g(x)〉+ 〈γ ,−α 〉+ 〈λ , h(x)−β 〉
� f (x∗)−〈γ ,α 〉−〈λ ,β 〉 = V (0,0)−〈(γ ,λ ),(α,β )〉 ,

by the minimization condition of the multiplier (1,γ ,λ ). Taking the infimum over
x, we deduce

V (α,β ) � V (0,0)−〈(γ ,λ ),(α ,β )〉 ,

which confirms V >−∞, and that −(γ ,λ ) belongs to ∂ V (0,0), the subdifferential
of V at (0,0). As for the convexity of V , it follows easily from its definition (or it
can be deduced from Exer. 8.10).

As the reader well knows, it is not our custom to abandon a proof in midstream. On
this occasion, however, we would ask the reader to kindly supply the converse; it
happens to be the subject of the exercise that follows. ��

9.11 Exercise. Under the hypotheses of Theorem 9.10, prove that an element (γ ,λ )
belonging to −∂ V (0,0) determines a normal multiplier (1,γ ,λ ). ��

9.3 Convex duality

An important feature of convex optimization is the possibility of developing a theory
in which one associates to the original, or primal, problem another optimization
problem, the dual, which is linked to the primal through multipliers (of some type
or other). This idea has important theoretical and even numerical consequences, in
such areas as game theory, optimal transport, operations research, mechanics, and
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economics. We take a brief look at the topic in this section, in order to establish its
connection to the multiplier rule.

We continue to be interested in the problem (P) of the preceding section, which
we think of as the primal. The dual problem (D) associated to (P) is defined as
follows:

Maximize ϕ(γ ,λ ) subject to (γ ,λ ) ∈ R
m
+×R

n (D)

where the (concave) function ϕ : Rm×R
n → [−∞,+∞) is defined by

ϕ(γ ,λ ) = inf
x ∈ S

{
f + 〈γ , g〉+ 〈λ ,h〉

}
(x) .

The dual problem is of greatest interest when it can be rendered more explicit. Let’s
illustrate this now.

9.12 Example. We are given c ∈ R
n, b ∈ R

m, and a matrix M which is m×n, and
we consider the following instance of the problem (P):

Minimize 〈c, x〉 subject to x ∈ R
n
+ , Mx � b .

(As usual, points in Euclidean space, in their dealings with matrices, are viewed as
columns.) This is a problem in what is called linear programming. We are dealing,
then, with the convex case of (P), in the absence of equality constraints. Let us make
explicit the dual problem (D). We have

ϕ(γ ) = inf
{
〈c, x〉+ 〈γ ,Mx−b〉 : x ∈ R

n
+

}

= inf
{
〈c+M ∗γ , x〉−〈γ ,b〉 : x ∈ R

n
+

}
=

⎧
⎨

⎩
−〈γ ,b〉 if c+M ∗γ � 0

−∞ otherwise.

It turns out then, that (D) can be expressed as follows:

Maximize 〈−b,γ 〉 subject to γ ∈ R
m
+ , −M ∗γ � c.

Thus, the dual problem has essentially the same form as the primal; this fact is
exploited to great effect in the subject. ��

We now describe the link between the primal and the dual problem.

9.13 Theorem. (Lagrangian duality) We consider the basic problem (P) in the
convex case. We suppose that there is a solution of (P) which admits a normal
multiplier. Then

min (P) = max (D) .

Furthermore, any solution x∗ of (P) admits a normal multiplier, and a vector
(1,γ∗ ,λ∗) ∈ R×R

m
+×R

n is a multiplier for x∗ if and only if (γ∗ ,λ∗) solves the
dual problem (D).
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Proof.

A. Let (γ ,λ ) ∈ R
m
+×R

n. Observe that

ϕ(γ ,λ ) �
{

f + 〈γ , g〉+ 〈λ ,h〉
}
(x∗) � f (x∗) = min (P) .

It follows that sup (D) � min (P). Now let (1,γ∗ ,λ∗) be a multiplier for a solution
x∗ of (P). (By hypothesis, at least one such normal multiplier and solution exist.)
The minimization condition asserts
{

f + 〈γ∗ , g〉+ 〈λ∗ , h〉
}
(x) �

{
f + 〈γ∗ , g〉+ 〈λ∗ , h〉

}
(x∗) = f (x∗) ∀x ∈ S ,

whence
sup (D) � ϕ(γ∗ ,λ∗) � f (x∗) = min (P) � sup (D) .

We deduce that (γ∗ ,λ∗) solves the dual problem, and that min (P) = max (D).

B. Now let (γ∗ ,λ∗) be any solution of the dual problem, and let x∗ be any solution
of the primal problem. Then γ∗ ∈ R

m
+ , and we have

sup (D) = ϕ(γ∗ ,λ∗) �
{

f +〈γ∗ , g〉+〈λ∗ , h〉
}
(x∗) � f (x∗) = min (P) = sup (D) ,

which implies 〈γ∗ , g(x∗)〉 = 0, the complementary slackness condition. We also
have, for any x ∈ S,

{
f + 〈γ∗ , g〉+ 〈λ∗ , h〉

}
(x) � ϕ(γ∗ ,λ∗) = sup (D) = min (P) = f (x∗) ,

which yields the minimization condition for (1,γ∗ ,λ∗), and confirms that this vector
has all the properties of a multiplier for x∗ . ��

9.14 Exercise. Under the hypotheses of Theorem 9.13, let x∗ be a solution of (P),
and let (1,γ∗ ,λ∗) be a (normal) multiplier associated to x∗ . The Lagrangian L of the
problem is defined to be the function

L(x,γ ,λ ) =
{

f + 〈γ , g〉+ 〈λ ,h〉
}
(x) .

Prove that (x∗ ,γ∗ ,λ∗) is a saddle point of L, meaning that

L(x∗ ,γ , λ ) � L(x∗ ,γ∗ , λ∗) � L(x,γ∗ ,λ∗) ∀x ∈ S , γ ∈ R
m
+ , λ ∈ R

n. ��

Remark. If x is admissible for (P), we know, of course, that min (P) � f (x). Sim-
ilarly, if (γ ,λ ) is admissible for (D), we obtain max (D) � ϕ(γ ,λ ). But now, sup-
pose that duality holds: min (P) = max (D). Then we deduce

ϕ(γ ,λ ) � min (P) � f (x) .

The generating of bilateral bounds of this type is of evident interest in develop-
ing numerical methods, a task to which duality has been effectively applied. Under
more subtle hypotheses than those of Theorem 9.13 (in linear programming, or in
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the presence of infinite-dimensional equality constraints, for example), it can be a
delicate matter to establish duality.

Another salient point, as evidenced by Theorem 9.10, is the possibility of finding
the multipliers for the primal problem by solving the dual problem. We illustrate
this procedure now.

9.15 Exercise. We are given n continuous, convex functions fi : [0,∞)→ R, and a
positive parameter q. We study the following simple allocation problem, of a type
that frequently arises in economics and operations research:

Minimize f (x) = ∑n
i=1 fi(xi) subject to x ∈ S := R

n
+ , ∑n

i=1 xi � q . (P)

Note that this is a convex case of (P), with no equality constraints.

The i-th cost component fi depends only on xi ; the difficulty (especially when n is
large) lies in determining what optimal xi � 0 to allocate to fi , while respecting
the upper bound on the sum of the xi .

(a) Prove that a solution x∗ exists, verify the Slater condition, and deduce that x∗
admits a normal multiplier (1,γ∗).

(b) Prove that, for each index i, the value x∗ i is a solution of the problem

min
{

fi(u)+ γ∗ u : u ∈ R+

}
.

It turns out then, that if we know γ∗, we may use it to calculate x∗ one coordinate at
a time, while completely ignoring the constraint ∑ i x i � q. The problem is said to
have been decomposed.4

How might we effectively calculate γ∗ , however? For this purpose, we define the
following function closely related to the conjugate of fi :

θ i(γ ) = inf
{

γ u+ fi(u) : u � 0
}
, γ ∈ R .

(c) Show that the dual problem (D) consists of maximizing over R+ the following
function of a single variable:

ϕ(γ ) = ∑n
i=1 θ i(γ )− γ q .

Why is this problem relatively simple? How do we know a maximum exists?

We suppose henceforth, in order to permit explicit calculation, that each fi has the
form

fi(u) = pi u+u ln u for u > 0, with fi(0) = 0.

4 Thus, the computation could be envisaged on a decentralized basis, where each component, hav-
ing been informed of the internal unit cost γ∗ , can calculate its own allocation x∗ i by maximizing
its own profit. These individually motivated calculations would lead to global optimality: Adam
Smith’s invisible hand at work.
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(d) Let ψ : R+ → R be defined by

ψ(u) = u ln u for u > 0, ψ(0) = 0,

and let c ∈ R. Prove that the function u �→ ψ(u)− cu attains a minimum over
R+ at u = ec−1, the corresponding value of ψ being −ec−1.

e) Deduce from this the evident solution to problem (P) when q is no less than

σ :=
n

∑
i=1

e−pi−1.

Prove that when q < σ , the solution γ∗ of the dual problem is ln(σ/q). Use this
to show that the optimal allocation is given by x∗ i = e−pi−1q/σ .

(f) Prove that the value V (q) of the problem (P) is given by

V (q) =

{
−σ if q � σ

q
(

ln q−1− ln σ
)

if q � σ .

Show that V ′(q) =−γ∗ (the expected sensitivity relation). ��
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