
Chapter 6

Lebesgue spaces

The Lebesgue spaces L p(Ω) play a central role in many applications of functional
analysis. This chapter focuses upon their basic properties, as well as certain atten-
dant issues that will be important later. Notable among these are the semicontinuity
of integral functionals, and the existence of measurable selections.

6.1 Uniform convexity and duality

We begin by identifying a geometric property of the norm which, when present,
turns out to have a surprising consequence. Let X be a normed space.

6.1 Definition. X is uniformly convex if it satisfies the following property:

∀ ε > 0 , ∃ δ > 0 such that x ∈ B , y ∈ B , ‖x− y‖> ε =⇒
∥
∥
∥

x+ y
2

∥
∥
∥ < 1−δ .

In geometric terms, this is a way of saying that the unit ball is curved.1 The property
depends upon the choice of the norm on X , even among equivalent norms, as one
can see even in R

2.

6.2 Exercise. The following three norms on R
2 are equivalent:

‖(x,y)‖1 = |x |+ |y | , ‖(x,y)‖2 = |(x,y)| =
{

|x |2 + |y |2}1/2
,

‖(x,y)‖∞ = max
(

|x |, |y |
)

.

Which ones make R
2 a uniformly convex normed space? ��

1 It turns out that the ball in R is curved in this sense, although it may seem rather straight to the
reader.
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106 6 Lebesgue spaces

Despite the fact that uniform convexity is a norm-dependent property, the very ex-
istence of such a norm yields an intrinsic property of the underlying space, one that
does not depend on the choice of equivalent norm.

6.3 Theorem. (Milman) Any uniformly convex Banach space is reflexive.

Proof. Let θ ∈ X∗∗ satisfy ‖θ ‖∗∗ = 1, and fix any ε > 0. We shall prove the ex-
istence of x ∈ B such that ‖Jx− θ ‖∗∗ � ε . Since JB is closed in X∗∗ (see Prop.
5.3), this implies JB = B∗∗, and consequently that JX = X∗∗, so that X is reflex-
ive.

Let δ correspond to ε as in the definition of uniform convexity. We choose ζ ∈ X ∗,
‖ζ ‖∗ = 1, such that 〈θ ,ζ 〉> 1−δ/2, and we set

V =
{

θ ′ ∈ X∗∗ :
∣
∣〈θ ′ −θ ,ζ 〉

∣
∣ < δ/2

}

,

which is an open neighborhood of θ in the topology σ
(

X∗∗, X ∗). By Goldstine’s
lemma (see the proof of Theorem 5.47), V intersects JB: there exists x ∈ B such
that

∣
∣〈ζ , x〉−〈θ ,ζ 〉

∣
∣ =

∣
∣〈Jx−θ ,ζ 〉

∣
∣ < δ/2.

We claim that ‖Jx−θ ‖∗∗ � ε . We reason from the absurd, by supposing that θ lies
in W , where W is the complement in X∗∗ of the set Jx+ ε B∗∗ .

Since Jx+ε B∗∗ is closed in σ
(

X∗∗, X ∗), W is open in σ
(

X∗∗, X ∗). Thus V ∩W is an
open neighborhood of θ in this topology. By Goldstine’s lemma, there exists y ∈ B
such that Jy ∈ V ∩ W . Thus we have |〈ζ ,y〉−〈θ ,ζ 〉|< δ/2 by definition of V . We
calculate

1−δ/2 < 〈θ ,ζ 〉= 1
2

{

〈θ ,ζ 〉−〈ζ ,y〉
}

+ 1
2

{

〈θ ,ζ 〉−〈ζ ,x〉
}

+ 1
2 〈ζ , x+ y〉

< δ/4+δ/4+‖x+ y‖/2 .

It follows that ‖x+ y‖/2 > 1−δ , whence ‖x− y‖ � ε (from uniform convexity).
However, Jy ∈ W yields ε < ‖Jy− Jx‖ = ‖y− x‖, a contradiction which com-
pletes the proof. ��

There exist reflexive spaces which fail to admit an equivalent norm that is uniformly
convex; thus, the existence of such a norm is not a necessary condition for reflex-
ivity. But it is a useful sufficient condition, notably in the study of the Lebesgue
spaces introduced in Example 1.9.

6.4 Theorem. If 1 < p < ∞, the Banach space L p(Ω) is reflexive.

Proof. We treat first2 the case 2 � p < ∞. Then, we claim, L p(Ω) is uniformly
convex, and therefore reflexive by Theorem 6.3.

2 We follow Brézis [8, théorème IV.10].
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When p � 2, it is easy to show (by examining its derivative) that the function

θ(t) =
(

t 2 +1
)p/2 − t p −1

is increasing on [0,∞), which implies, by writing θ(0) � θ(α/β ), the inequal-
ity

α p +β p �
(

α 2 +β 2)p/2 ∀α, β � 0 .

Now let a, b ∈ R and take α = |a+b |/2, β = |a−b |/2; we find

∣
∣
∣
∣

a+b
2

∣
∣
∣
∣

p

+

∣
∣
∣
∣

a−b
2

∣
∣
∣
∣

p

�
( ∣
∣
∣
∣

a+b
2

∣
∣
∣
∣

2

+

∣
∣
∣
∣

a−b
2

∣
∣
∣
∣

2 )p/2

=

(
a2

2
+

b2

2

)p/2

� a p

2
+

b p

2

(the last estimate uses the convexity of the function t �→ | t |p/2, which holds because
p � 2). This yields Clarkson’s inequality:

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

p

L p
+

∥
∥
∥
∥

f −g
2

∥
∥
∥
∥

p

L p
� 1

2

( ∥
∥ f

∥
∥ p

L p +
∥
∥g

∥
∥p

L p

)

∀ f , g ∈ L p(Ω) .

Fix ε > 0, and suppose that f , g in the unit ball of L p(Ω) satisfy ‖ f − g‖L p > ε .
From Clarkson’s inequality we deduce

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

p

L p
< 1−

( ε
2

)p
=⇒

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

L p
< 1−δ ,

where δ = 1− [1− (ε/2) p ]1/p. This verifies the uniform convexity, and completes
the proof of the case p � 2.

We now prove that L p(Ω) is reflexive for 1 < p < 2. Let q = p∗ , and consider the
operator T : L p(Ω)→ Lq(Ω)∗ defined as follows: for u ∈ L p(Ω), the effect of Tu
on Lq(Ω) is given by

〈Tu ,g〉 =

∫

Ω
u(x)g(x)dx ∀g ∈ Lq(Ω) .

Then we have (see Exer. 1.31)

‖Tu‖Lq(Ω)∗ = ‖u‖L p(Ω) .

Thus T is an isometry between L p(Ω) and a closed subspace of Lq(Ω)∗ (since
L p(Ω) is complete, see Prop. 5.3). Now q > 2, so Lq(Ω) is reflexive (by the case
of the theorem proved above); thus, its dual Lq(Ω)∗ is reflexive (Prop. 5.43). Then
T (L p(Ω)), as a closed subspace, is reflexive (Exer. 5.49), and therefore L p(Ω) is
reflexive as well (Prop. 5.42). ��

6.5 Corollary. The spaces AC p[a,b ] are reflexive for 1 < p < ∞.
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6.6 Exercise. Let Λ : [0,1]×R×R→ R be a continuous function having the prop-
erty that, for almost every t ∈ [0,1], the function (x,v) �→ Λ(t, x,v) is convex (see
Example 2.30). We suppose in addition that, for certain numbers r > 1, α > 0 and
β , we have

Λ(t, x, v) � α |v |r +β ∀(t, x,v) ∈ [0,1]×R×R .

Fix x0 , x1 ∈ R, and consider the following minimization problem (P):

min f (x) =
∫ 1

0
Λ
(

t, x(t), x ′(t)
)

dt : x ∈ AC[0,1] , x(0) = x0 , x(1) = x1 .

Prove that (P) admits a solution. ��

6.7 Exercise. Let 1 < r < ∞, and let xi be a bounded sequence of functions in
ACr[a,b ]. Prove the existence of x∗ ∈ ACr[a,b ] and a subsequence xi j such that

xi j → x∗ uniformly on [a,b ] , xi j
′ → x∗′ weakly in Lr(a,b) . ��

6.8 Theorem. (Riesz) For 1 < p < ∞, the dual space of L p(Ω) is isometric to
Lq(Ω), where q is the conjugate exponent of p. More precisely, each ζ of the dual
admits a function g ∈ Lq(Ω) (necessarily unique) such that

〈ζ , f 〉 =

∫

Ω
f (x)g(x)dx ∀ f ∈ L p(Ω) .

We then have ‖ζ ‖L p(Ω)∗ = ‖g‖Lq(Ω) .

Proof. Let the linear mapping T : Lq(Ω)→ L p(Ω)∗ be defined by

〈T g , f 〉 =

∫

Ω
f (x)g(x)dx ∀ f ∈ L p(Ω) .

Then, as we know, ‖T g‖L p(Ω)∗ = ‖g‖Lq(Ω) (see Exer. 1.31), so that T is injective.
We proceed to prove that T is surjective, which implies the theorem.

Since T (Lq(Ω)) is closed (as the image of a Banach space under an isometry, see
Prop. 5.3), it suffices to prove that T (Lq(Ω)) is dense in L p(Ω)∗. To prove this, it
suffices in turn to prove that (see Theorem 2.39)

θ ∈ L p(Ω)∗∗, 〈θ , T g〉 = 0 ∀g ∈ Lq(Ω) =⇒ θ = 0 .

We proceed to establish this now. Since L p(Ω) is reflexive, there exists f ∈ L p(Ω)
such that θ = J f . Then

〈θ ,T g〉 = 0 = 〈J f ,T g〉 = 〈T g , f 〉 =
∫

Ω
f (x)g(x)dx ∀g ∈ Lq(Ω) .

We discover f = 0, by taking g = | f | p−2 f (which lies in Lq(Ω)) in the preceding
relation, whence θ = 0. ��



6.1 Uniform convexity and duality 109

6.9 Exercise. Characterize the dual of AC p[a,b ] for 1 < p < ∞. ��

We now proceed to characterize the dual of L1(Ω); the proof can no longer rely on
reflexivity, however.

6.10 Theorem. The dual of L1(Ω) is isometric to L∞(Ω). More precisely, ζ be-
longs to L1(Ω)∗ if and only if there exists z ∈ L∞(Ω) (necessarily unique) such
that

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx ∀ f ∈ L1(Ω).

When this holds we have ‖ζ ‖L1(Ω)∗ = ‖z‖L∞(Ω) .

Proof. That any z ∈ L∞(Ω) can be used as indicated to engender an element ζ in
the dual of L1(Ω) is clear, since

〈ζ , f 〉 � ‖z‖L∞(Ω) ‖ f ‖L1(Ω) .

Thus any ζ defined in this way satisfies ‖ζ ‖L1(Ω)∗ � ‖z‖L∞(Ω) . Let us prove the
opposite inequality, for which we may limit attention to the case ‖z‖L∞(Ω) > 0. For
any ε > 0, there exists a measurable subset S ⊂ Ω of positive finite measure such
that

|z(x)| � ‖z‖L∞(Ω)− ε , x ∈ S a.e.

Set f (x) = z(x)/|z(x)| for x ∈ S, and f = 0 elsewhere. Then f ∈ L1(Ω), and we
find

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx �

(

‖z‖L∞(Ω)− ε
)

meas S =
(

‖z‖L∞(Ω)− ε
)

‖ f ‖L1(Ω) .

It follows that
‖ζ ‖L1(Ω)∗ � ‖z‖L∞(Ω)− ε .

Since ε > 0 is otherwise arbitrary, the assertion concerning ‖ζ ‖L1(Ω)∗ is proved.

There remains to show that every ζ ∈ L1(Ω)∗ is generated by some z as above. We
prove this first under the additional hypothesis that Ω is bounded.

Let ζ ∈ L1(Ω)∗. Any f ∈ L2(Ω) belongs to L1(Ω), since Ω is bounded; by Hölder’s
inequality we have:

〈ζ , f 〉 � ‖ζ ‖L1(Ω)∗ ‖ f ‖L1(Ω) � ‖ζ ‖L1(Ω)∗
[

meas(Ω)
]1/2 ‖ f ‖L2(Ω) .

It follows that ζ can be viewed as an element of L2(Ω)∗. According to Theorem 6.8,
there is a unique z in L2(Ω) such that (by the preceding inequality)

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx � ‖ζ ‖L1(Ω)∗ ‖ f ‖L1(Ω) ∀ f ∈ L2(Ω) .
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Thus, for any f ∈ L∞(Ω) ⊂ L2(Ω), we have (by rewriting):
∫

Ω

{

‖ζ ‖L1(Ω)∗ | f (x) |− z(x) f (x)
}

dx � 0 .

This implies (here we must beg the reader’s pardon for a regrettable forward refer-
ence: see Theorem 6.32)

‖ζ ‖L1(Ω)∗ | f |− z(x) f � 0 ∀ f ∈ R , x ∈ Ω a.e. ,

which yields |z(x)| � ‖ζ ‖L1(Ω)∗ a.e. Thus z belongs to L∞(Ω), and satisfies

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx ∀ f ∈ L∞(Ω) .

Given any f ∈ L1(Ω), there is a sequence fi ∈ L∞(Ω) such that

‖ f − fi ‖L1(Ω) → 0 .

For instance, let fi(x) = f (x) if | f (x)| � i, and 0 otherwise. We have, by the
above

〈ζ , fi 〉 =
∫

Ω
z(x) fi(x)dx ∀ i � 1.

Recalling that ζ is continuous, and passing to the limit, we obtain the same conclu-
sion for f ; it follows that z represents ζ on L1(Ω), as we wished to show. That z is
the unique function doing this is left as an exercise.

There remains to treat the case in which Ω is unbounded. Let ζ ∈ L1(Ω)∗. For any
sufficiently large positive integer k, the set Ω k := Ω ∩ B◦(0,k) is nonempty. Then
ζ induces an element of L1(Ω k)

∗: we simply extend to Ω any function f ∈ L1(Ω k)
by setting it equal to 0 on Ω\Ω k , then apply ζ to the extension. By the above, there
is a function zk ∈ L∞(Ω k) such that

〈ζ , f 〉=
∫

Ω k

zk(x) f (x)dx ∀ f ∈ L1(Ω k), ‖zk‖L∞(Ω k)
= ‖ζ ‖L1(Ω k)

∗ � ‖ζ ‖L1(Ω)∗ .

It is clear that each of the functions zk is necessarily an extension of the preceding
ones (by uniqueness), so they define a function z ∈ L∞(Ω). We claim that this z
represents ζ as required. Let f be any element of L1(Ω), and let f k be the function
which agrees with f on Ω k and which is zero on Ω\Ω k . Then

〈ζ , f k 〉 =
∫

Ω k

z(x) f k(x)dx =

∫

Ω
z(x) f k(x)dx .

But f k → f in L1(Ω), so in the limit we obtain

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx .

��
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6.11 Exercise. Let fi be a sequence in L∞(0,1) such that, for each g ∈ L1(0,1), we
have

inf
i � 1

∫ 1

0
fi(t)g(t)dt > −∞ .

Prove the existence of M such that ‖ fi ‖L∞(0,1) � M ∀ i. ��

6.12 Exercise. Let θ belong to L∞(0,1). Prove the existence of a solution to the
following minimization problem:

min
v∈L1(0 ,1)

∫ 1

0
e [ (v(t)−1)2 ] dt subject to

∫ 1

0
θ(t)v(t)dt = 0 .

��

6.13 Proposition. The spaces L1(Ω) and L∞(Ω) are not reflexive.

Proof. For ease of exposition, as they say, let us suppose that Ω contains a ball
B(0,r). We define a function z in L∞(Ω) as follows:

z(x) =

{

1−2−n if 2−n−1r � |x |< 2−nr , n = 0, 1, 2 . . .
0 otherwise.

Note that ‖z‖L∞(Ω) = 1. If f �= 0 is any nonnegative function in L1(Ω), then
∫

Ω
f (x)z(x)dx <

∫

Ω
f (x)dx = ‖ f ‖L1(Ω) .

If we denote by ζ the element of L1(Ω)∗ corresponding to z as in Theorem 6.10, it
follows that the supremum

sup
{

〈ζ , f 〉 : ‖ f ‖L1(Ω) � 1
}

= ‖ζ ‖L1(Ω)∗

is not attained. But if the unit ball in L1(Ω) were weakly compact, this supremum
would be attained. We deduce from Theorem 5.47 that L1(Ω) is not reflexive. It
then follows from Theorem 6.10 and Prop. 5.42 that L∞(Ω) is not reflexive. ��

We examine next the separability or otherwise of the Lebesgue spaces.

6.14 Proposition. L p(Ω) is separable for 1 � p < ∞.

Proof. We sketch the proof in the case p = 1, the other cases being much the same.
We also take Ω bounded, a reduction that is easy to justify. Let f ∈ L1(Ω), and
let fi be the function which coincides with f when | f | � i, and which equals 0
otherwise. Then fi is measurable, and it follows that fi → f in L1(Ω). By Lusin’s
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theorem3 there exists a continuous function gi on Ω having compact support, which
is bounded in absolute value by i, and which agrees with fi except on a set Si of
measure less than 1/i 2. Then

∫

Ω
| fi −gi |dx =

∫

Ω\Si

| fi −gi |dx +
∫

Si

| fi −gi |dx � (2 i)/i 2 → 0 .

Since fi → f , we deduce that C(Ω ) is dense in L1(Ω). However, the set of polyno-
mials with rational coefficients is dense in C(Ω ), by the Weierstrass approximation
theorem, whence the separability of L1(Ω). ��

The proof shows that Cc(Ω), the continuous functions on Ω having compact support
in Ω , is dense in L1(Ω). It can be shown that C∞

c (Ω) has the same property.

6.15 Exercise. Prove that L∞(Ω) is not separable. ��

Weak compactness without reflexivity. Certain useful compactness properties do
hold in L1(Ω) and L∞(Ω), despite the fact that these spaces fail to be reflexive. We
identify two such cases below, in each of which the separability of L1(Ω) plays a
role.

6.16 Exercise. Let fi be a bounded sequence in L∞(Ω). Prove the existence of a
subsequence fi j and f ∈ L∞(Ω) such that

g ∈ L1(Ω) =⇒
∫

Ω
g(x) fi j(x)dx →

∫

Ω
g(x) f (x)dx .

��

In applications to come, the reader will find that it is common to deal with a sequence
of functions fi in L1(0,T ) satisfying a uniform bound of the type | fi(t)| � k(t) a.e.,
where k is summable. The following establishes a sequential compactness result that
applies to such a situation.

6.17 Proposition. Let k(·) ∈ L1(Ω), where Ω is an open subset of R
n. Then the

set
K =

{

f ∈ L1(Ω) : | f (x)| � k(x) , x ∈ Ω a.e.
}

is weakly compact and sequentially weakly compact in L1(Ω).

Proof. Let us set

X = L∞(Ω) equipped with the weak∗ topology σ
(

L∞(Ω), L1(Ω)
)

,

Y = L1(Ω) equipped with the weak topology σ
(

L1(Ω), L∞(Ω)
)

.

3 Let Ω be a bounded open subset of Rn, and let ϕ : Ω → R be measurable, |ϕ(x)| � M a.e. For
every ε > 0 there exists g : Ω → R, continuous with compact support, having supΩ |g | � M , such
that meas{x ∈ Ω : ϕ(x) �= g(x)}< ε . See Rudin [37, p. 53].
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We define a linear functional Λ : X → Y by Λ g = k g. We claim that Λ is continu-
ous. By Theorem 3.1, we need only show that, for any h ∈ L∞(Ω), the map

f �→
∫

Ω
h(x)k(x) f (x)dx

is continuous on X . This follows from the fact that hk ∈ L1(Ω), so that the map
in question is an evaluation of the type that is rendered continuous by the topology
σ(L∞(Ω), L1(Ω)).

Then K is the image under the continuous map Λ of the unit ball in L∞(Ω), which
is compact in X by Theorem 3.15. Thus K is compact in Y .

Now let fi be a sequence in K ; then fi = k gi , where gi lies in the unit ball of
L∞(Ω). (One may take gi(x) = fi(x)/k(x) when k(x) �= 0, and gi(x)= 0 otherwise.)
Because L1(Ω) is separable, the weak∗ topology on the ball is metrizable (Theorem
3.21). Thus, a subsequence gi j converges weak∗ to a limit g in L∞(Ω). This means
that ∫

Ω
gi j(x)h(x)dx →

∫

Ω
g(x)h(x)dx ∀h ∈ L1(Ω).

It follows that
∫

Ω
gi j(x)k(x)u(x)dx →

∫

Ω
g(x)k(x)u(x)dx ∀u ∈ L∞(Ω) ,

which implies that fi j := k gi j converges weakly in L1(Ω) to gk. ��

6.18 Exercise. For each x ∈ Ω , let F(x) be a closed convex subset of R satisfying
|F(x)| � k(x). Prove that the set

Φ =
{

f ∈ L1(Ω) : f (x) ∈ F(x) , x ∈ Ω a.e.
}

is sequentially weakly compact in L1(Ω). ��

6.19 Exercise. A sawtooth function x on [0,1] is a Lipschitz, piecewise affine func-
tion x : [0,1] → R with x(0) = x(1) = 0 such that |x ′(t)| = 1 a.e. Let xi be a se-
quence of such functions satisfying

‖xi ‖C[0 ,1] � 1/i ,

and set vi = x ′
i . Prove that vi converges weakly in L1(0,1) to 0. Deduce that the set

{

f ∈ L1(0,1) : f (x) ∈ {−1,1} a.e.
}

is not weakly compact. ��
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6.2 Measurable multifunctions

Let Ω be a subset of Rm. A multifunction Γ from Ω to R
n is a mapping from Ω to

the subsets of Rn; thus, we associate with each x ∈ Ω a set Γ (x) in R
n, possibly the

empty set. Such mappings arise rather frequently later on, and a recurrent issue will
be that of finding a measurable selection of Γ . This means a measurable function
γ : Ω → R

n such that γ (x) belongs to Γ (x) for almost all x ∈ Ω .

Consider the following simple example, in which n = m. Let U be an open convex
subset of Rn, and f : U → R a convex function. We have learned that the subdif-
ferential Γ (x) := ∂ f (x) is nonempty for each x ∈ U . It follows from the axiom of
choice that there is a function ζ : U → R

n such that ζ (x) ∈ ∂ f (x) ∀x ∈ U . Is there,
however, a measurable function having this property?

Answering a question such as this requires a theory. We develop one in this section,
in the context of Euclidean spaces.

Notation. We write Γ : Ω � R
n to denote a multifunction Γ that maps a subset Ω

of Rm to the subsets of Rn.

One of the major ingredients in the theory is the following extension to multifunc-
tions of the concept of measurable function.

Measurable multifunctions. The multifunction Γ : Ω � R
n is measurable pro-

vided that Ω is measurable, and provided that the set

Γ −1(V ) =
{

x ∈ Ω : Γ (x)∩ V �= /0
}

is (Lebesgue) measurable for every closed subset V of Rn.

We obtain an equivalent definition by taking compact sets V in the definition. To see
this, observe that any closed set V is the union of countably many compact sets Vi .
Then we have

Γ −1(V ) =
⋃

i�1
Γ −1(Vi) .

If each Γ −1(Vi) is measurable, then so is Γ −1(V ), as the countable union of mea-
surable sets. The reader may show by a somewhat similar argument that when Γ is
measurable, then the set Γ −1(V ) is measurable for every open set V (this property,
however, does not characterize measurability).

6.20 Exercise. Suppose that Γ is a singleton {γ (x)} for each x. Prove that the mul-
tifunction Γ is measurable if and only if the function γ is measurable. ��

The effective domain dom Γ of the multifunction Γ : Ω � R
n is defined as follows:

dom Γ =
{

x ∈ Ω : Γ (x) �= /0
}

.
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By taking V = R
n in the definition of measurability, it follows that the effective do-

main of a measurable multifunction is measurable. We remark that as in the case
of a function, redefining Γ on a set of measure zero does not affect its measurabil-
ity, so in discussing measurable multifunctions we deal implicitly with equivalence
classes, as we do with Lebesgue spaces.

6.21 Exercise. Let u : Rm → R
n and r : Rm → R+ be measurable functions, and

let W be a measurable subset of Rn. Prove that the multifunction Γ from R
m to R

n

defined by Γ (x) = W +B(u(x),r(x)) is measurable. ��

It is not hard to show that if γ i is a sequence of measurable functions, then the
multifunction Γ (x) = {γ i(x) : i � 1} is measurable. The following shows that all
closed-valued measurable multifunctions are in fact generated this way. (Γ is said
to be closed-valued, of course, when Γ (x) is a closed set for each x ∈ Ω .)

6.22 Theorem. Let Γ : Ω � R
n be closed-valued and measurable. Then there ex-

ists a countable family {γ i : dom Γ → R
n } of measurable functions such that

Γ (x) = cl
{

γ i(x) : i � 1
}

, x ∈ dom Γ a.e.

Proof. Let Δ = dom Γ . We begin by noting that, for any u in R
n, the function

s → dΓ (s)(u) restricted to Δ is measurable (where dΓ (s) is as usual the Euclidean
distance function). This follows from the identity (for 0 � r < R)

dΓ (·)(u)
−1(r,R) = {s ∈ Δ : Γ (s)∩ B(u,r) = /0} ∩ Γ −1(B◦(u,R)) .

Now let {u j } j�1 be a dense sequence in R
n, and define a function f0 : Δ → R

n as
follows:

f0(s) = the first u j such that dΓ (s)(u j) � 1.

Lemma. The functions s→ f0(s) and s→ dΓ (s)( f0(s)) are measurable on Δ .

To see this, observe that f0 assumes countably many values, and that we have, for
each i � 1:

{

s : f0(s) = ui
}

=
⋂ i−1

j=1

{

s : dΓ (s)(u j)> 1
} ⋂ {

s : dΓ (s)(ui) � 1
}

.

This implies that f0 is measurable. Since the function (s,u) �→ dΓ (s)(u) is measur-
able in s and continuous in u, it is known (and actually proved in the next section,
in the midst of more general goings on) that the function s → dΓ (s)( f0(s)) is mea-
surable. The lemma is proved.

We pursue the process begun above by defining for each integer i � 0 a function
fi+1 such that fi+1(s) is the first u j for which both the following hold:

|u j − fi(s)| � 2
3 dΓ (s)

(

fi(s)
)

, dΓ (s)(u j) � 2
3 dΓ (s)

(

fi(s)
)

.
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It follows as above that each fi is measurable. Moreover, we deduce

dΓ (s)
(

fi+1(s)
)

�
( 2

3

)i+1 dΓ (s)
(

f0(s)
)

�
( 2

3

)i+1
,

together with | fi+1(s)− fi(s)| � (2/3) i+1. This implies that { fi(s)} is a Cauchy
sequence converging for each s ∈ Δ to a value which we denote by γ 0(s), and that
γ 0(x)∈ Γ (x) a.e. in Δ . As a limit of measurable functions, γ 0 is measurable.

For every pair of positive integers i, j , we define a multifunction Γi, j : Ω � R
n as

follows:

Γi, j(x) =

⎧

⎪⎪⎨

⎪⎪⎩

/0 if x /∈ Δ

Γ (x) ∩ B(ui ,1/ j) if x ∈ Δ and Γ (x) ∩ B(ui ,1/ j) �= /0

{γ 0(x)} otherwise.

For any closed subset V of Rn, the set Γ −1
i, j (V ) is given by

{

x : Γ (x)∩V ∩ B(ui ,1/ j) �= /0
}⋃ [{

x ∈ Δ : Γ (x)∩ B(ui ,1/ j) = /0
}

∩ γ−1
0 (V )

]

.

It follows that Γi, j is measurable and closed-valued; its effective domain is Δ . By the
argument above (applied to Γi, j rather than Γ ), there exists a measurable function
γ i, j such that γ i, j(x) ∈ Γi, j(x) , x ∈ Δ a.e.

We claim that the countable collection γ i, j , together with γ 0 , satisfies the conclusion
of the theorem.

To see this, let Si, j be the null set of x ∈ Δ for which the inclusion γ i, j(x) ∈ Γ (x)
fails. Now let x ∈ Δ\ [∪ i, j Si, j ], and fix any γ ∈ Γ (x), γ �= γ 0(x). There exists
a sequence uik in {ui } and an increasing sequence of integers jk → ∞ such that
|uik − γ |< 1/jk . Then we have

γ ik , jk(x) ∈ B(uik ,1/jk) =⇒ |γ ik , jk(x)−uik |< 1/jk =⇒ |γ ik , jk(x)− γ |< 2/jk .

Thus, Γ (x) = cl{γ i, j(x)}, x ∈ Δ a.e. ��

6.23 Corollary. (Measurable selections) Let Γ : Ω � R
n be closed-valued and

measurable. Then there exists a measurable function γ : dom Γ → R
n such that

γ (x) ∈ Γ (x) , x ∈ dom Γ a.e.

6.24 Exercise. Let Γ : Ω � R
n and G : Ω � R

n be two measurable closed-valued
multifunctions. Prove that Γ +G is measurable. ��

The measurable multifunctions that the reader is likely to encounter will most often
have the following structure.
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6.25 Proposition. Let Ω be a measurable subset of Rm, and ϕ : Ω×R
n×R

� → R

a function with the following properties:

• The mapping x �→ ϕ(x, p,q) is measurable on Ω for each (p,q) ∈ R
n×R

�, and

• The mapping (p,q) �→ ϕ(x, p,q) is continuous for each x ∈ Ω .

Let P, Q : Ω � R
n be measurable closed-valued multifunctions, and c,d : Ω → R

measurable functions. Then Γ : Ω � R
n defined by

Γ (x) =
{

p ∈ P(x) : c(x) � ϕ(x, p,q) � d(x) for some q ∈ Q(x)
}

is measurable.

Proof. Let pi be a countable family of measurable selections of P that generate the
multifunction P as described in Theorem 6.22, and similarly, let qi generate Q. Let
Δ P and Δ Q be the effective domains of P and Q.

Then, if V is a compact subset of Rn, it follows (fairly easily, though we beg the
reader’s indulgence for the next expression) that

Γ −1(V ) =
⋃

i�1

⋂

j �1

⋃

k �1

{

x ∈ Δ P ∩ Δ Q :

pk(x)∈
(

V + j−1B
)

, |qk(x)| � i, c(x)− j−1 < ϕ
(

x, pk(x), qk(x)
)

< d(x)+ j−1
}

.

This is recognized to be a measurable set, since the function

x �→ ϕ(x, pk(x), qk(x))

is measurable (a known result on measurable functions, see Props. 6.34 and 6.35
below). ��

6.26 Corollary. The intersection of two closed-valued measurable multifunctions
Γ1, Γ2 : Ω � R

n is measurable.

Proof. Let Δ1 and Δ 2 be the effective domains of Γ1 and Γ2 . Define a function ϕ on
Ω×R

n by

ϕ(x, p) =

{

dΓ1(x)(p)+dΓ2(x)(p) if x ∈ Δ1 ∩ Δ 2 ,

−1 otherwise.

The proof of Theorem 6.22 showed that ϕ is measurable in x; it is evidently contin-
uous in p. Then the multifunction

Γ1(x) ∩ Γ2(x) =
{

p : ϕ(x, p) = 0
}

is measurable by Prop. 6.25. ��
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The graph of a multifunction Γ : Ω � R
n is the set

gr Γ =
{

(x,γ ) ∈ Ω×R
n : γ ∈ Γ (x)

}

.

6.27 Corollary. Let Ω ⊂ R
m be measurable. If Γ : Ω � R

n has the property that
gr Γ is closed, then Γ is measurable.

Proof. We may assume that gr Γ �= /0; then the function (x,v) �→ dgr Γ (x,v) is
continuous. For any x ∈ Ω , the set Γ (x) is given by {v ∈ R

n : dgr Γ (x,v) = 0},
which leads to the required conclusion with the help of Prop. 6.25. ��

6.28 Corollary. Let G : Ω � R
n be measurable and closed-valued. Then the mul-

tifunction Γ defined by Γ (x) = co G(x) is measurable.

Proof. Let Σ denote the set of all nonnegative vectors λ = (λ0,λ1, . . . ,λn) ∈ R
n+1

whose coordinates sum to 1. It is not hard to see that the multifunction

Q(x) = Σ×G(x)×G(x)×·· ·×G(x)

is measurable (where the Cartesian product contains n+ 1 factors equal to G(x)).
Let f be defined by

f (λ , g0 , g1, . . . , gn) = ∑n
i=0 λ i gi ,

where each gi lies in R
n. Then, by Prop. 2.6, the set Γ (x) is described by

{

v ∈ R
n : |v− f (λ , g0 , g1, . . . , gn)| = 0 for some (λ , g0 , g1, . . . , gn) ∈ Q(x)

}

.

The result now follows from Prop. 6.25. ��

6.29 Proposition. Let Ω ⊂R
m be measurable, and let G : Ω � R

n be a multifunc-
tion whose values are nonempty compact convex sets. Let HG(x)(·) be the support
function of the set G(x). Then G is measurable if and only if, for any p ∈ R

n, the
function x �→ HG(x)(p) is measurable on Ω .

Proof. Suppose first that the support function has the stated measurability property.
Let V be a nonempty compact subset of Rn, and let {v j } be a countable dense set in
V . Let { pk } be a countable dense set in R

n. Then (invoking the separation theorem
for the last step) it follows that
{

x ∈ Ω : G(x)∩ V = /0
}

=
⋃

ε >0

{

x ∈ Ω : G(x)∩ [V + ε B ] = /0
}

=
⋃

i�1

⋂

j �1

{

x ∈ Ω : G(x)∩ B(v j , i−1) = /0
}

=
⋃

i�1

⋂

j �1

⋃

k �1

{

x ∈ Ω : HG(x)(pk) < 〈 pk ,v j 〉+ i−1| pk |
}

.

This implies that
{

x∈Ω : G(x)∩V = /0
}

is measurable, so G is measurable.
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Conversely, let G be measurable, and let the functions γ i generate G as in Theorem
6.22. Then we have

HG(x)(p) = sup
{

〈 p ,γ i(x)〉 : i � 1
}

∀x ∈ Ω ,

which reveals the required measurability in x of the function on the left. ��

6.30 Exercise. Let G : Ω � R
n be measurable and closed-valued. If u : Rm → R

n

is measurable, prove that the function x �→ dG(x)(u(x)) is measurable on dom G. ��

The following fact, already invoked in proving Theorem 6.10, will be useful again
later. It bears upon interchanging the integral and the supremum.

6.31 Theorem. Let Ω be an open subset of R
m, and let ϕ : Ω×R

n → R be a func-
tion such that ϕ(x, p) is measurable in the x variable and continuous in the p vari-
able. Let P : Ω � R

n be measurable and closed-valued. Let Σ denote the set of all
functions p ∈ L∞(Ω ,Rn

)

which satisfy

p(x) ∈ P(x) , x ∈ Ω a.e.,

and for which the integral
∫

Ω
ϕ
(

x, p(x)
)

dx

is well defined, either finitely or as +∞. Then, if Σ is nonempty, the integral
∫

Ω
sup

p∈P(x)
ϕ(x, p)dx

is well defined, either finitely or as +∞, and we have
∫

Ω
sup

p∈P(x)
ϕ(x, p)dx = sup

p(·)∈Σ

∫

Ω
ϕ
(

x, p(x)
)

dx ,

where both sides may equal +∞.

Proof. The hypotheses imply that P(x) �= /0 for x ∈ Ω a.e. By Theorem 6.22, there
exists a countable collection { pi } of measurable selections of P such that

P(x) = cl{ pi(x)} , x ∈ Ω a.e.

Since ϕ(x, ·) is continuous, we have

σ(x) := sup
p∈P(x)

ϕ(x, p) = sup
i�1

ϕ
(

x, pi(x)
)

a.e.,

which shows that σ : Ω → R∞ is measurable, as a countable supremum of measur-
able functions.
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Let p̄ be any element of Σ . Then σ(x) is bounded below by the function ϕ(x, p̄(x)),
and it follows that the integral of σ is well defined, possibly as +∞; this is the first
assertion of the theorem.4

If the integral over Ω of the function ϕ(x, p̄(x)) is +∞, then the remaining assertion
is evident. We may proceed under the assumption, therefore, that the integral in
question is finite. Fix a positive integer N, and define

σN(x) = sup
{

ϕ(x, p) : p ∈ P(x)∩ B( p̄(x),N)
}

.

Using Cor. 6.26, and arguing as above, we find that σN is measurable. Evidently we
have ϕ(x, p̄(x)) � σN(x) � σ(x) , x ∈ Ω a.e. The multifunction

Γ (x) =
{

p ∈ P(x)∩ B( p̄(x),N) : σN(x) = ϕ(x, p)
}

is measurable by Prop. 6.25; since its values on Ω are closed and nonempty, it
admits a measurable selection pN . It follows that pN ∈ Σ , whence

sup
p(·)∈Σ

∫

Ω
ϕ
(

x, p(x)
)

dx �
∫

Ω
ϕ
(

x, pN(x)
)

dx →
∫

Ω
σ(x)dx ,

by monotone convergence. But the supremum on the left in this expression is evi-
dently bounded above by the integral on the right (and neither depend on N ). Thus
we obtain equality. ��

The point of the next result is that a local minimum in L1(Ω) translates into a global
minimum (almost everywhere) at the pointwise level.

6.32 Theorem. Let Ω , ϕ , P, and Σ be as described in Theorem 6.31, and let p̄ ∈ Σ
be such that the integral

∫

Ω
ϕ(x, p̄(x))dx

is finite. Suppose that for some δ > 0, we have:

p(·) ∈ Σ ,

∫

Ω
| p(x)− p̄(x)|dx � δ =⇒

∫

Ω
ϕ
(

x, p(x)
)

dx �
∫

Ω
ϕ
(

x, p̄(x)
)

.

Then, for almost every x ∈ Ω , we have ϕ(x, p) � ϕ(x, p̄(x)) ∀ p ∈ P(x).

Proof. We reason by the absurd. If the conclusion fails, there exist positive numbers
ε and M such that the multifunction

Γ (x) =
{

p ∈ P(x)∩ B( p̄(x),M) : ϕ
(

x, p̄(x)
)

−M � ϕ(x, p) � ϕ
(

x, p̄(x)
)

− ε
}

4 We have used the following fact from integration: if two measurable functions f and g satisfy
f � g, and if the integral of g is well defined, either finitely or as +∞, then the integral of f is well
defined, either finitely or as +∞.
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has an effective domain of positive measure. Then, for any m > 0 sufficiently small,
we may use a measurable selection γ of Γ to define a function p as follows: let Sm
be a measurable subset of dom Γ satisfying meas(Sm) = m, and set p(x) = γ (x)
if x ∈ Sm , and p(x) = p̄(x) otherwise. It follows that p ∈ Σ . But for m sufficiently
small, p satisfies

∫

Ω
| p(x)− p̄(x)|dx � δ ,

∫

Ω
ϕ
(

x, p(x)
)

dx <

∫

Ω
ϕ
(

x, p̄(x)
)

,

which is the desired contradiction. ��

6.3 Integral functionals and semicontinuity

A technical issue of some importance to us later concerns the measurability of cer-
tain composite functions f arising in the following way:

f (t) = Λ
(

t, x(t), x ′(t)
)

.

Here, x is an element of AC[0,1] (say), so that x ′(·) is merely Lebesgue measurable.
When the function Λ(t,x,v) is continuous (in all its variables (t,x,v)), then, as the
reader will recall, it is a basic result in measurability theory that f is Lebesgue
measurable (a continuous function of a measurable function is measurable). This is
a minimal requirement for considering the integral of f , as we do later in the calculus
of variations. When Λ is less than continuous, the issue is more complex.

To illustrate this point, let S be a non measurable subset of [0,1], and define a subset
G of R2 as follows:

G =
{

(s,s) : s ∈ S
}

.

Since G is a subset of the diagonal in R
2, a set of measure zero, it follows that G is

a null set for two-dimensional Lebesgue measure, which is complete. Thus G is a
measurable set and its characteristic function χG is measurable.

Let us define Λ(t, x,v) = Λ(t,x) = 1−χG(t,x), a measurable function. The reader
may verify that Λ(t,x) is lower semicontinuous separately in each variable; in par-
ticular, measurable as a function of t for each x, and lower semicontinuous as a
function of x for each t. When we proceed to substitute the function x(t) = t into Λ ,
we obtain

f (t) = Λ(t, t) = 1−χG(t, t).

This function f fails to be measurable, however, since
{

t ∈ [0,1] : f (t) < 1/2
}

=
{

t ∈ [0,1] : χG(t, t) = 1
}

= S

is not a measurable set.
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LB measurability. We shall prove below that when Λ is measurable in t and con-
tinuous in (x,v), then the composition f is measurable, as desired. The example
above demonstrates, however, that when Λ fails to be continuous in (x,v), as it will
later on occasion, mere measurability in (x,v), or even lower semicontinuity (which
is a natural hypothesis in the contexts to come), does not suffice to guarantee the
measurability of f .

One could compensate for the lack of continuity by simple requiring that Λ , as a
function of (t,x,v), be Borel measurable. This is because of the fact that the com-
position of a Borel measurable function with a measurable one is measurable. Since
lower semicontinuous functions are Borel measurable, it follows, as a special case,
that our measurability concerns would disappear if we took Λ to be lower semicon-
tinuous in the entirety of its variables (t,x,v). This is overly restrictive as a global
hypothesis, however, and even Borel measurability is asking too much, since mere
Lebesgue measurability in t is desirable in certain applications.

A more common way to deal with the measurability issue is to employ a hybrid
hypothesis of the following type:

6.33 Definition. A function F : Rm×R
n →R of two variables (x,y), where x ∈ R

m

and y ∈ R
n, is said to be LB measurable in x and y when it is the case that F is

measurable with respect to the σ -algebra L×B generated by products of Lebesgue
measurable subsets of R

m (for x) and Borel measurable subsets of R
n (for y).

Can the reader can go so far back as to remember that a σ -algebra is a family
of sets closed under taking complements, countable intersections, and countable
unions? We remark that if F : Rm×R

n → R is lower semicontinuous, then F is
Borel measurable, which implies that F is LB measurable.

Returning to the context of the function Λ , we say that Λ(t,x,v) is LB measurable
if Λ is LB measurable in the variables t and (x,v); that is, measurable with respect
to the σ -algebra generated by products of Lebesgue measurable subsets of [a,b ]
(for t) and Borel measurable subsets of R2 (for (x,v)). This property guarantees the
measurability of the function f above, and is satisfied in the important case in which
Λ(t,x,v) is measurable with respect to t and continuous with respect to (x,v), as we
proceed to show in the next two results.

6.34 Proposition. Let F be LB measurable as in Def. 6.33, and let g : Rm → R
n be

Lebesgue measurable. Then the mapping x �→ F(x, g(x)) is Lebesgue measurable.

Proof. Let U be a Lebesgue measurable set in R
m and V a Borel set in R

n. Then
the set

{

x ∈ R
m :

(

x, g(x)
)

∈ U×V
}

= U ∩ g−1(V )

is clearly Lebesgue measurable. Let us denote by A the collection of all subsets S of
R

m×R
n having the property that the set
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{

x ∈ R
m : (x, g(x)) ∈ S

}

is Lebesgue measurable. It is easy to verify that A is a σ -algebra, and it contains the
products U×V . It follows that A contains the σ -algebra L×B generated by products
of Lebesgue measurable subsets of Rm and Borel measurable subsets of Rn.

Now let W be any open subset of Rn. Since F is LB measurable, the set F−1(W ) is
LB measurable, and hence lies in A. As a consequence of this fact, we deduce that
the set

{

x : F
(

x, g(x)
)

∈ W
}

=
{

x :
(

x, g(x)
)

∈ F−1(W )
}

is Lebesgue measurable. This confirms the required measurability. ��

6.35 Proposition. If a function F : Rm×R
n → R of two variables (x,y) is measur-

able in x and continuous in y, then F is LB measurable in x and y.

Proof. Let {ui } be a dense sequence in R
n, and for each positive integer k define

a function fk(x,y) = F(x,u j), where u j is the first point of the dense set satisfying
|u j − y | � k−1. (Thus, j depends on y and k.) Then F(x,y) = limk→∞ fk(x,y) for
every (x,y), by the continuity of F in y.

It suffices therefore to prove that each fk is LB measurable. Let W be any open
subset of R. Then the set f−1

k (W ) is the union over j � 1 of the sets

{

x : F(x,u j) ∈ W
}

×
{

y : |u j − y | � k−1 and |ui − y |> k−1 (i = 1, . . . , j−1)
}

.

This reveals f−1
k (W ) to be a countable union of products of the type which generate

the σ -algebra L×B, whence the required measurability. ��

We remark that a function F of two variables having the properties described in
Prop. 6.35 is often referred to as a Carathéodory function.

The next result says that inserting a measurable function into a continuous slot pre-
serves LB measurability.

6.36 Proposition. Let F : Rm×R
�×R

n → R satisfy the following:

(a) The map (x, z) �→ F(x,u, z) is LB measurable for each u ;

(b) The function u �→ F(x,u, z) is continuous for each (x, z).

Then, for any Lebesgue measurable function g : Rm → R
�, the function

(x, z) �→ F(x, g(x), z)

is LB measurable.

Proof. Let {ui } be a dense sequence in R
�, and for each positive integer k define a

function fk(x, z) = F(x,u j , z), where u j is the first term of the sequence satisfying
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|u j −g(x)| � k−1. (Thus, j depends on x and k.) Then fk(x, z) converges pointwise
to F(x, g(x), z), so it suffices to prove that each fk is LB measurable. This follows
from the identity

f−1
k (W ) =

⋃

j �1

{

(x, z) : F(x,u j , z)) ∈ W
}

∩
{

(x, z) : |u j −g(x)| � k−1 and |ui −g(x)|> k−1 (i = 1, . . . , j−1)
}

(where W is any open subset of R), which expresses f−1
k (W ) as a countable union

of sets belonging to L×B. ��

Semicontinuity of integral functionals. Let Ω be an open subset of Rm. We study
the semicontinuity of the following integral functional:

J(u,z) =
∫

Ω
F
(

x, u(x), z(x)
)

dx .

Here, F : Ω×R
�×R

n → R is a function whose three arguments are generically
denoted by x, u, z . We are also given a subset Q of Ω×R

� which defines a restriction
on the functions u : Ω → R

� involved in the discussion: they must satisfy
(

x, u(x)
)

∈ Q , x ∈ Ω a.e.

We shall impose the following hypotheses on the data:

6.37 Hypothesis.

(a) F is lower semicontinuous in (u, z), and convex with respect to z ;

(b) For every measurable u : Ω → R
� having (x, u(x)) ∈ Q a.e., and for every mea-

surable z : Ω → R
n, the function x �→ F(x, u(x), z(x)) is measurable;

(c) There exist α ∈ L1(Ω), β ∈ L∞(Ω ,Rn) such that

F(x,u, z) � α(x)+ 〈 β (x), z〉 ∀(x,u) ∈ Q , z ∈ R
n;

(d) Q is closed in Ω×R
�.

An immediate consequence of these hypotheses is that, for every measurable func-
tion u : Ω → R

� having (x, u(x)) ∈ Q a.e., and for every summable function
z : Ω → R

n, the function
x �→ F(x,u(x), z(x))

is measurable, and it is bounded below as follows:

F(x,u(x), z(x)) � α(x)+ 〈β (x), z(x)〉 , x ∈ Ω a.e.
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Since the right side of this inequality is summable over Ω , the integral J(u,z) is
well defined, either finitely or as +∞ (a fact from integration theory). It is the lower
semicontinuity of J that is the essential point being considered.

Remark. In view of our earlier results, we are able to identify certain cases in
which hypothesis (b) above is guaranteed to hold:

• F(x,u, z) is measurable in x and continuous in (u,z) (see Prop. 6.35);

• F(x,u, z) is LB measurable in x and (u,z) (by Prop. 6.34);

• F(x,u, z) is continuous in u and LB measurable in (x,z) (by Prop. 6.36).

The theorem below will provide one of the main ingredients in the recipe that we
call the direct method.

6.38 Theorem. (Integral semicontinuity) Let ui be a sequence of measurable func-
tions on Ω having (x, ui(x))∈ Q a.e. which converges almost everywhere to a limit
u∗ . Let zi be a sequence of functions converging weakly in Lr(Ω ,Rn) to z∗ , where
r > 1. Then

J(u∗ , z∗) � liminf
i→∞

J(ui , zi) .

Proof. Fix δ > 0, and define, for (x,u) ∈ Q , z ∈ R
n, the function

H(x,u, p) = sup
{

〈 p,w〉−F(x,u,w)−δ |w |r/r : w ∈ R
n} .

The properties of H play an essential role in the proof.

Lemma 1. There is a positive constant c such that

H(x,u, p) � c| p−β (x)|r∗ −α(x) ∀(x,u) ∈ Q , p ∈ R
m,

where r∗ is the conjugate exponent to r.

Proof. Observe that, by the inequality in Hypothesis 6.37 (c), we have:

H(x,u, p) = sup
w

{

〈 p,w〉−F(x,u,w)−δ |w |r/r
}

� sup
w

{

〈 p,w〉−α(x)−〈β (x),w〉−δ |w |r/r
}

= c| p−β (x)|r∗ −α(x) (by explicit calculation)

where c := (r∗ δ r∗−1)−1. ��

Lemma 2. Fix (x,u) ∈ Q and p ∈ R
n. Then:

(a) The function H(x,u, ·) is continuous at p.

(b) The function v �→ H(x,v, p) is upper semicontinuous at u in the following sense:
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(x,vi) ∈ Q ∀ i , vi → u =⇒ H(x,u, p) � limsup
i→∞

H(x,vi , p) .

(c) For all w ∈ R
n, we have

F(x,u,w)+δ |w |r/r = sup
p∈Rn

{

〈w, p〉−H(x,u, p)
}

.

Proof. Since the function p �→ H(x,u, p) is convex and finite on R
n (by Lemma

1), we know it to be continuous, as affirmed in (a). We now fix x and p and turn to
assertion (b).

Let vi be a sequence converging to u for which lim i→∞ H(x,vi , p) � � ∈ R. We
establish (b) by proving that H(x,u, p) � �. Note that the supremum defining
H(x,vi , p) may be restricted to those w satisfying

〈 p,w〉−α(x)−〈β (x),w〉−δ |w |r/r � H(x,vi , p)−1 ,

and consequently, to the points w in a compact set. It follows that the supremum is
attained at a point wi , and that the sequence wi is bounded. Taking a subsequence
if necessary, and without relabeling, we may assume wi → w. Invoking the lower
semicontinuity of F , we have

H(x,u, p) � 〈 p,w〉−F(x,u,w)−δ |w |r/r

� 〈 p,w〉− liminf
i→∞

F
(

x,vi ,wi
)

−δ |w |r/r

= limsup
i→∞

{

〈 p,wi 〉−F
(

x,vi ,wi
)

−δ |wi |r/r
}

= lim
i→∞

H(x,vi , p) � � ,

as required.

For the final assertion, note that H(x,u, ·) is defined as the conjugate of the convex
lower semicontinuous function

w �→ F(x,u,w)+δ |w |r/r.

Thus the equality is a consequence of Theorem 4.21. ��

Lemma 3. Let u : Ω → R
� be a measurable function having (x,u(x))∈ Q a.e., and

let p : Ω → R
n be measurable. Then the function x �→ H(x,u(x), p(x)) is measur-

able.

Proof. Note that the function w �→ F(x,u,w) is continuous, since it is convex and
finite. It follows that if {wi } is a countable dense set in R

n, we have (almost every-
where)

H
(

x,u(x), p(x)
)

= sup
i�1

{

〈 p(x),wi 〉−F(x,u(x),wi)−δ |wi |r/r
}

.
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Thus the left side is the upper envelope of a countable family of measurable func-
tions, and is therefore measurable. ��

Note that the limit function u∗ satisfies

(x,u∗(x)) ∈ Q a.e. ,

in view of Hypothesis 6.37 (d). We now write, without claiming that J(u∗ , z∗) is
finite:

J(u∗ , z∗) =
∫

Ω
F
(

x, u∗(x), z∗(x)
)

dx

�
∫

Ω

{

F
(

x, u∗(x), z∗(x)
)

+δ |z∗(x)|r } dx

=
∫

Ω
sup

p∈Rn

{

〈z∗(x), p〉−H(x,u∗(x), p)
}

dx (by (c) of Lemma 2)

= sup
p(·)∈L∞(Ω)

∫

Ω

{

〈z∗(x), p(x)〉−H
(

x,u∗(x), p(x)
) }

dx

(we use Theorem 6.31 and Lemma 3 to switch integral and supremum)

� sup
p(·)∈L∞(Ω)

[

lim
i→∞

∫

Ω
〈 p(x),zi(x)〉dx−

∫

Ω
limsup

i→∞
H
(

x,ui(x), p(x)
)

dx
]

(since zi converges weakly to z∗ , and ui to u a.e., and since H is upper semicontin-
uous in u, by Lemma 2)

� sup
p(·)∈L∞(Ω)

[

lim
i→∞

∫

Ω
〈 p(x),zi(x)〉dx− limsup

i→∞

∫

Ω
H
(

x,ui(x), p(x)
)

dx
]

(Fatou ’s lemma applies, since ui has values in Q, p ∈ L∞(Ω), and the terms in H
are uniformly integrably bounded above, by Lemma 1; Lemma 3 is used to assert
that the integrand is measurable)

= sup
p(·)∈L∞(Ω)

[

liminf
i→∞

∫

Ω

{

〈 p(x),zi(x)〉−H
(

x,ui(x), p(x)
) }

dx
]

� liminf
i→∞

sup
p(·)∈L∞(Ω)

[ ∫

Ω

{

〈 p(x),zi(x)〉−H
(

x,ui(x), p(x)
) }

dx
]

= liminf
i→∞

∫

Ω
sup

p∈Rn

{

〈 p,zi(x)〉−H
(

x,ui(x), p
) }

dx (by Theorem 6.31)

= liminf
i→∞

∫

Ω

{

F
(

x,ui(x),zi(x)
)

+δ |zi(x)|r } dx (by (c) of Lemma 2)

� liminf
i→∞

J(ui,zi)+δ limsup
i→∞

‖zi ‖r
r .
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Since zi is weakly convergent in Lr(Ω ,Rn), the sequence zi is norm bounded, so
that limsup i→∞ ‖zi ‖r

r is finite. Since δ > 0 is arbitrary, we obtain the required con-
clusion.

We remark that the crux of the proof is to find a way to exploit the (merely) weak
convergence of the sequence zi ; this has been done by rewriting certain expressions
so as to have zi appear only in linear terms. ��

6.4 Weak sequential closures

In things to come, the reader will find that the closure properties of differential
inclusions of the type

x ′(t) ∈ Γ
(

t, x(t)
)

,

where Γ is a multifunction, will play an important role. The following abstract re-
sult is a basic tool in this connection. Note that weak convergence in L1 is now
involved.

6.39 Theorem. (Weak closure) Let [a,b ] be an interval in R and Q a closed subset
of [a,b ]×R

�. Let Γ (t,u) be a multifunction mapping Q to the closed convex subsets
of R

n. We assume that

(a) For each t ∈ [a,b ], the set

G(t) =
{

(u,z) : (t,u,z) ∈ Q×R
n, z ∈ Γ (t,u)

}

is closed and nonempty;

(b) For every measurable function u on [a,b ] satisfying (t,u(t)) ∈ Q a.e. and every
p ∈ R

n, the support function map

t �→ HΓ (t,u(t))(p) = sup
{

〈 p,v〉 : v ∈ Γ
(

t,u(t)
)}

is measurable;

(c) For a summable function k, we have Γ (t,u) ⊂ B(0, k(t)) ∀(t,u) ∈ Q .

Let ui be a sequence of measurable functions on [a,b ] having (t,ui(t)) ∈ Q a.e.
and converging almost everywhere to u∗ , and let zi : [a,b ] → R

n be a sequence
of functions satisfying |zi(t)| � k(t) a.e. whose components converge weakly in
L1(a,b) to those of z∗ . Suppose that, for certain measurable subsets Ω i of [a,b ]
satisfying lim i→∞ meas Ω i = b−a, we have

zi(t) ∈ Γ
(

t,ui(t)
)

+B
(

0,ri(t)
)

, t ∈ Ω i a.e.,
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where ri is a sequence of nonnegative functions converging in L1(a,b) to 0. Then
we have in the limit z∗(t) ∈ Γ (t,u∗(t)) , t ∈ [a,b ] a.e.

Proof. Let H : Q×R
n → R be the support function associated with Γ :

H(t,u, p) = sup
{

〈 p,v〉 : v ∈ Γ (t,u)
}

.

Note that |H(t,u, p)| � | p|k(t), in view of hypothesis (c); it follows that for each
(t,u)∈ Q, the function p �→ H(t,u, p) is continuous with respect to p, as the support
function of a nonempty bounded set. Furthermore, for any t ∈ [a,b ], using the fact
that G(t) is closed, it is not hard to show that for fixed p, the map u �→ H(t,u, p) is
upper semicontinuous on the set {u : (t,u) ∈ Q} (exercise).

In view of Prop. 2.42, and because Γ is convex-valued, the conclusion that we
seek may now be restated as follows: for some null set N, for all t ∈ [a,b ]\N ,
we have

H
(

t,u∗(t), p
)

� 〈 p, z∗(t)〉 ∀ p ∈ R
n. (∗)

By the continuity of H in p, it is equivalent to obtain this conclusion for all p having
rational coordinates. Then, if (∗) holds for each such p except on a null set (depend-
ing on p), we obtain the required conclusion, since the countable union of null sets
is a null set.

We may summarize to this point as follows: it suffices to prove that for any fixed
p ∈ R

n, the inequality in (∗) holds almost everywhere.

This assertion in turn would result from knowing that the following inequality holds
for any measurable subset A of [a,b ]:

∫

A

{

H
(

t,u∗(t), p
)

−〈 p, z∗(t)〉
}

dt � 0 .

(Note that the integrand in this expression is measurable by hypothesis (b), and
summable because of the bound on H noted above.) But we have
∫

A

{

H
(

t,u∗(t), p
)

−〈 p,z∗(t)〉
}

dt �
∫

A

{

limsup
i→∞

H
(

t,ui(t), p
)

−〈 p,z∗(t)〉
}

dt

� limsup
i→∞

∫

A

{

H
(

t,ui(t), p
)

−〈 p,zi(t)〉
}

dt ,

as a result of the almost everywhere convergence of ui to u∗, the upper semicontinu-
ity of H in u, Fatou’s lemma, and the weak convergence of zi to z∗ . The last integral
above may be written in the form

∫

A∩ Ω i

{

H(t,ui, p)−〈 p,zi 〉
}

dt +
∫

A\Ω i

{

H(t,ui, p)−〈 p,zi 〉
}

dt . (∗∗)

We have now reduced the proof to showing that the lower limit of this expression is
nonnegative.
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Using the bound on |H | noted above, together with the given bound on |zi |, we see
that the second term in (∗∗) is bounded above in absolute value by

∫

[a,b ]\Ω i

2 | p|k(t)dt

which tends to 0 as i → ∞, since meas Ω i → b−a.

As for the first term in (∗∗), the hypotheses imply

H
(

t,ui(t), p) � 〈 p,zi(t)〉− ri(t)| p| , t ∈ Ω i a.e.,

so that it is bounded below by

−
∫

A∩ Ω i

ri(t)| p|dt � −
∫ b

a
ri(t)| p|dt

(recall that the functions ri are nonnegative). But this last term also converges to 0,
since ri converges to 0 in L1(a,b) by hypothesis. The proof is complete. ��

6.40 Exercise. Let A be a compact convex subset of R, and vi a sequence converg-
ing weakly in L1(a,b) to a limit v∗ , where, for each i, we have vi(t) ∈ A a.e. Prove
that v∗(t) ∈ A a.e. Show that this may fail when A is not convex. ��

In later chapters, Theorem 6.39 will be used when u : [a,b ] → R
n is absolutely

continuous (that is, each component of u belongs to AC[a,b ]) and zi = u ′
i . Further-

more, the convergence hypotheses will most often be obtained with the help of the
following well-known result, which we promote to the rank of a theorem:

6.41 Theorem. (Gronwall’s lemma) Let x : [a,b ]→ R
n be absolutely continuous

and satisfy
|x ′(t)| � γ (t)|x(t)|+β (t) , t ∈ [a,b ] a.e.,

where γ , β ∈ L1(a,b), with γ nonnegative. Then, for all t ∈ [a,b ], we have

|x(t)− x(a)| �
∫ t

a
exp

(∫ t

s
γ (r)dr

){

γ (s)|x(a)|+β (s)
}

ds .

Proof. Let r(t) = |x(t)−x(a)|, a function which is absolutely continuous on [a,b ],
as the composition of a Lipschitz function and an absolutely continuous one. Let t
be in that set of full measure in which both x ′(t) and r ′(t) exist. If x(t) �= x(a), we
have

r ′(t) =
〈 x(t)− x(a)

|x(t)− x(a)| , x ′(t)
〉

,

and otherwise r ′(t) = 0 (since r attains a minimum at t). Thus we have



6.4 Weak sequential closures 131

r ′(t) � |x ′(t)| � γ (t)|x(t)|+β (t) � γ (t)|x(t)− x(a)|+ γ (t)|x(a)|+β (t)
= γ (t)r(t)+ γ (t)|x(a)|+β (t) .

We may rewrite this inequality in the form

[

r ′(t)− γ (t)r(t)
]

exp
(

−
∫ t

a
γ
)

� exp
(

−
∫ t

a
γ
){

γ (t)|x(a)|+β (t)
}

.

Note that the left side is the derivative of the function

t �→ r(t)exp
(

−
∫ t

a
γ
)

.

With this in mind, integrating both sides of the preceding inequality from a to t
yields the required estimate. ��

6.42 Exercise. Let pi : [a,b ] → R
n be a sequence of absolutely continuous func-

tions with | pi(a)| uniformly bounded, and such that, for certain functions γ , β in
L1(a,b), we have, for each i :

| p ′
i (t)| � γ (t)| pi(t)|+β (t) , t ∈ [a,b ] a.e.

Then there exist an absolutely continuous function p : [a,b ] → R
n and a subse-

quence pi j such that (componentwise)

pi j → p uniformly on [a,b ] , p ′
i j
→ p ′ weakly in L1(a,b) . ��
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