
Chapter 4

Convex analysis

The phrase convex analysis refers to a body of generalized calculus that can
be developed for convex functions and sets. This topic, whose applications are
widespread, is the subject of the chapter. The central element of the theory is the
subdifferential, a construct which plays a role similar to that of the derivative. The
operation of conjugacy as it applies to convex functions will also be important, as
well as polarity of sets.

4.1 Subdifferential calculus

Let f : X →R∞ be a given function, where X is a normed space, and let x be a point
in dom f . An element ζ of X ∗ is called a subgradient of f at x (in the sense of
convex analysis) if it satisfies the following subgradient inequality :

f (y)− f (x) � 〈ζ , y− x〉, y ∈ X .

A function is called affine when it differs by a constant from a linear functional.
Thus, an affine function g has the form g(y) = 〈ζ , y〉+ c; the linear functional ζ
is called the slope of g. When the subgradient inequality above holds, the affine
function

y �→ f (x)+ 〈ζ , y− x〉

is said to support f at x; this means that it lies everywhere below f , and that equal-
ity holds at x. In geometric terms, we may formulate the situation as follows: the
hyperplane {(y,r) : r− f (x)−〈ζ , y− x〉 = 0} in the product space X ×R passes
through the point (x, f (x)), and the set epi f lies in the upper associated halfspace
(see p. 41 for the terminology). We refer to this as a supporting hyperplane.

The set of all subgradients of f at x is denoted by ∂ f (x), and referred to as the
subdifferential of f at x. It follows from the definition that the subdifferential
∂ f (x) is a convex set which is closed for the weak∗ topology, since, for each y, the
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60 4 Convex analysis

set of ζ satisfying the subgradient inequality is weak∗ closed and convex.1 The map
x �→ ∂ f (x) is set-valued: its values are subsets of X ∗. We use the term multifunction
in such a case: ∂ f is a multifunction from X to X ∗.

4.1 Example. We illustrate the geometry of subgradients with the help of Fig. 4.1,
which we think of as depicting the epigraph of a convex function f : Rn → R∞ .

Fig. 4.1
The epigraph of a convex function, and some supporting hyperplanes.

The function is smooth near the point A on the boundary of its epigraph; let this point
be (x1, f (x1)). There is a unique affine function y = 〈ζ , x〉+ c that supports f at
the point x1 ; its slope ζ is given by ∇ f (x1). The vector (∇ f (x1),−1) is orthogonal
to the corresponding supporting hyperplane, and generates the normal cone to epi f
at (x1, f (x1)) (here, a ray).

At the point B, which we take to be (x2 , f (x2)), the function f has a corner, and
there are infinitely many affine functions supporting f at x2 ; the set of all their
slopes constitutes ∂ f (x2). There is a supporting hyperplane to epi f at the point C
as well, but it is vertical, and therefore does not define a subgradient (it fails to
correspond to the graph of an affine function of x). The subdifferential of f is empty
at the corresponding value of x. �	

4.2 Exercise. (subdifferential of the norm) Let f be the function f (x) = ‖x‖.

(a) Prove that ∂ f (0) is the closed unit ball in X ∗.

(b) Let ζ ∈ ∂ f (x), where x �= 0. Prove that 〈ζ , x〉 = ‖x‖ and ‖ζ ‖∗ = 1. �	

It is clear from the definition of subgradient that f attains a minimum at x if and
only if 0 ∈ ∂ f (x). This version of Fermat’s rule is but the first of several ways in
which the reader will detect a kinship between the subdifferential and the derivative.
The following provides another example.

1 In speaking, the subdifferential ∂ f is often pronounced “dee eff ” or “curly dee eff ”.
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4.3 Proposition. Let f : X → R∞ be a convex function, and x ∈ dom f . Then

∂ f (x) =
{

ζ ∈ X ∗ : f ′(x ;v) � 〈ζ ,v〉 ∀v ∈ X
}
.

Proof. We recall that a convex function admits directional derivatives, as showed
in Prop. 2.22. If ζ ∈ ∂ f (x), then we have

f (x+ t v)− f (x) � 〈ζ , t v〉 ∀v ∈ X , t > 0 ,

by the subgradient inequality. It follows that f ′(x ;v) � 〈ζ ,v〉 ∀v. Conversely, if
this last condition holds, then (by Prop. 2.22) we have

f (x+ v)− f (x) � inf
t>0

f (x+ t v)− f (x)
t

� 〈ζ ,v〉 ∀v ∈ X ,

which implies ζ ∈ ∂ f (x). �	

It is a consequence of the proposition above that if f is differentiable at x, then
∂ f (x) = { f ′(x)}. The reduction of ∂ f (x) to a singleton, however, is more closely
linked to a weaker type of derivative, one that we proceed to introduce.

The Gâteaux derivative. Let F : X →Y be a function between two normed spaces.
We say that F is Gâteaux differentiable at x if the directional derivative F ′(x ;v)
exists for all v ∈ X , and if there exists Λ ∈ LC(X ,Y ) such that

F ′(x ;v) = 〈Λ ,v〉 ∀v ∈ X .

It follows that the element Λ is unique; it is denoted F ′
G(x) and referred to as the

Gâteaux derivative. It corresponds to a weaker concept of differentiability than the
Fréchet derivative F ′(x) that we met in §1.4. In fact, Gâteaux differentiability at x
does not even imply continuity of F at x. When F is Fréchet differentiable at x, then
F is Gâteaux differentiable at x, and F ′

G(x) = F ′(x). We stress that the unqualified
word “differentiable” always refers to the usual (Fréchet) derivative.

The following is a direct consequence of Prop. 4.3.

4.4 Corollary. Let f : X → R∞ be convex, with x ∈ dom f . If f is Gâteaux differ-
entiable at x, then ∂ f (x) = { f ′

G(x)}.

A characteristic of convex analysis that distinguishes it from classical differential
analysis is the close link that it establishes between sets and functions. The following
records an important (yet simple) example of this.

4.5 Exercise. Let x∈ S, where S is a convex subset of X . Prove that ∂ IS(x)= NS(x);
that is, the subdifferential of the indicator function is the normal cone. �	
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For the convex function f of Example 2.23, the reader may check that ∂ f (−1) and
∂ f (1) are empty, and that ∂ f (x) is a singleton when −1 < x <+1. It is possible for
the subdifferential of a convex function to be empty at points in the interior of its
effective domain: if Λ is a discontinuous linear functional, then ∂Λ(x) is empty for
each x, as the reader may care to show. This phenomenon does not occur at points
of continuity, however, as we now see.

4.6 Proposition. Let f : X → R∞ be a convex function, and let x ∈ dom f be a point
of continuity of f . Then ∂ f (x) is nonempty and weak∗compact. If f is Lipschitz of
rank K in a neighborhood of x, then ∂ f (x)⊂ KB∗ .

Proof. The continuity at x implies that int epi f �= /0. We separate int epi f and the
point (x, f (x)) (using the first case of Theorem 2.37) to deduce the existence of
ζ ∈ X ∗ and λ ∈ R such that

〈ζ , y〉+λ r < 〈ζ , x〉+λ f (x) ∀(y ,r) ∈ int epi f .

It follows that λ < 0; we may therefore normalize by taking λ =−1. Since

epi f ⊂ clepi f = cl
(

int epi f
)

(by Theorem 2.2), the separation inequality implies

〈ζ , y〉− r � 〈ζ , x〉− f (x) ∀(y ,r) ∈ epi f .

This reveals that ∂ f (x) contains ζ , and is therefore nonempty.

Theorem 2.34 asserts that f is Lipschitz on some neighborhood of x. Let K be a Lip-
schitz constant for f on B(x,r), and let ζ be any element of ∂ f (x). The subgradient
inequality yields

〈ζ , y− x〉 � f (y)− f (x) � | f (y)− f (x)| � K |y− x | ∀y ∈ B(x,r).

Putting y = x+ rv, where v is a unit vector, leads to

〈ζ ,v〉 � K |v | ∀v ∈ B ,

whence |ζ | � K. Thus, ∂ f (x) is bounded, and weak∗compact by Cor. 3.15. �	

4.7 Corollary. Let f : Rn → R be a convex function. Then for any x ∈ R
n, ∂ f (x) is

a nonempty convex compact set.

Proof. This follows from Cor. 2.35. �	

Recall that we have agreed to identify the dual of Rn with R
n itself. Thus, for a

function f defined on R
n, the subdifferential ∂ f (x) is viewed as a subset of Rn. The

very existence of a subgradient is the key to the proof of the next result, a well-
known inequality.
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4.8 Corollary. (Jensen’s inequality) Let ϕ : Rk → R be convex. Then, for any
summable function g : (0,1)→ R

k, we have

ϕ
( ∫ 1

0
g(t)dt

)
�

∫ 1

0
ϕ

(
g(t)

)
dt.

Proof. Let us define a point in R
k by

ḡ :=
∫ 1

0
g(t)dt ,

the integral being understood in the vector sense. By Cor. 4.7, ∂ϕ(ḡ) contains an
element ζ . Then, by definition, we have ϕ(y)−ϕ(ḡ) � 〈ζ , y− ḡ〉 ∀y ∈ R

k. Sub-
stituting y = g(t) and integrating over [0,1], we obtain the stated inequality. �	

4.9 Exercise.

(a) Modify the statement of Jensen’s inequality appropriately when the underlying
interval is [a,b ] rather than [0,1].

(b) Formulate and prove Jensen’s inequality in several dimensions, when the func-
tion g belongs to L1(Ω ,Rk), Ω being a bounded open subset of Rn. �	

The appealing calculus formula ∂( f + g)(x) = ∂ f (x)+ ∂g(x) turns out to be true
under mild hypotheses, as we see below. Note that some hypothesis is certainly
required in order to assert such a formula, since it fails when we take f = Λ and
g =−Λ , where Λ is a discontinuous linear functional.

4.10 Theorem. (Subdifferential of the sum) Let f ,g : X → R∞ be convex func-
tions which admit a point in dom f ∩ domg at which f is continuous. Then we have

∂
(

f +g
)
(x) = ∂ f (x)+∂g(x) ∀x ∈ dom f ∩ domg.

Proof. That the left side above contains the right follows directly from the defini-
tion of subdifferential. Now let ζ belong to ∂ ( f + g)(x); we must show that ζ be-
longs to the right side. We may (and do) reduce to the case x = 0, f (0) = g(0) = 0.
By hypothesis, there is a point x̄ in dom f ∩ domg at which f is continuous. Then
the subsets of X×R defined by

C = int epi f , D =
{
(w, t) : 〈ζ ,w〉−g(w) � t

}

are nonempty as a consequence of the existence of x̄ . They are also convex, and
disjoint as a result of the subgradient inequality for ζ . By Theorem 2.37, C and D
can be separated: there exist ξ ∈ X ∗ and λ ∈ R such that

〈ξ ,w〉+λ t < 〈ξ , u〉+λ s ∀(w, t) ∈ D , ∀(u ,s) ∈ int epi f .
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It follows that λ > 0; we can normalize by taking λ = 1. Since (by Theorem 2.2)
we have epi f ⊂ clepi f = cl(int epi f ), we deduce

〈ξ ,w〉+ t � 〈ξ , u〉+ s ∀(w, t) ∈ D , ∀(u ,s) ∈ epi f .

Taking (w, t) = (0,0), this implies −ξ ∈ ∂ f (0). Taking (u ,s) = (0,0) leads to the
conclusion ξ +ζ ∈ ∂g(0). Thus, ζ ∈ ∂ f (0)+∂g(0). �	

4.11 Exercise. Let C and D be convex subsets of X such that ( intC )∩ D �= /0. Let
x ∈ C ∩ D. Then NC ∩D(x) = NC(x) + ND(x). �	

The following Fermat-type result is related to that of Prop. 2.25; f is now non-
differentiable (which means “not necessarily differentiable”), but convex, and the
necessary condition turns out to be sufficient as well.

4.12 Proposition. Let f : X → R be a continuous convex function, A a convex sub-
set of X , and x a point in A. Then the following are equivalent :

(a) x minimizes f over the set A.

(b) −∂ f (x) ∩ NA(x) �= /0; or equivalently, 0 ∈ ∂ f (x)+NA(x).

Proof. If (a) holds, then x minimizes u �→ f (u)+ IA(u). Thus 0 ∈ ∂ ( f + IA)(x), by
Fermat’s rule. But we have

∂
(

f + IA
)
(x) = ∂ f (x)+∂ IA(x) = ∂ f (x)+NA(x) ,

by Theorem 4.10 and Exer. 4.5; thus, (b) holds. Conversely, if (b) holds, then we
have 0 ∈ ∂ ( f + IA)(x), which implies (a). �	

Recall that the adjoint of a linear application T is denoted T ∗ (see p. 22). It plays a
role in the next result, a calculus rule for a composition.

4.13 Theorem. Let Y be a normed space, T ∈ LC(X ,Y ), and let g : Y → R∞ be a
convex function. Let there be a point x0 in X such that g is continuous at T x0. Then
the function f (x) = g(T x) is convex, and we have

∂ f (x) = T ∗∂g(T x) ∀x ∈ dom f .

Note: the meaning of this formula is that, given any ζ ∈ ∂ f (x), there exists γ in
∂g(T x) such that

〈ζ ,v〉 = 〈 T ∗γ , v〉 = 〈γ , T v〉 ∀v ∈ X ,

and that, conversely, any element ζ of the form T ∗γ , where γ ∈ ∂g(T x), belongs to
∂ f (x).
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Proof. It is easily verified that f is convex, and that any element of T ∗∂g(T x) lies
in ∂ f (x). We now prove the opposite inclusion. Let ϕ : X×Y → R∞ be defined
by

ϕ(x,y) = g(y)+ Igr T (x,y) ,

where gr T is the graph of T : the set {(x, T x) ∈ X×Y : x ∈ X }. It follows from the
definition of subgradient that

ζ ∈ ∂ f (x) ⇐⇒ (ζ , 0) ∈ ∂ϕ(x,T x).

Because of the existence of x0 , we may apply Theorem 4.10 to ϕ , for any ζ as
above. There results (α , β ) ∈ Ngr T (x,T x) and γ ∈ ∂g(T x) such that

(ζ , 0) = (0,γ )+(α , β ).

The normal vector (α , β ) satisfies

〈α ,u− x〉+ 〈β , Tu−T x〉 � 0 ∀u ∈ X ,

which implies α =−T ∗β . We deduce ζ = T ∗γ ∈ T ∗∂g(T x), as required. �	

Subdifferentials in Euclidean space. The basic theory of the subdifferential takes
on a simpler form when we restrict attention to R

n. We focus on this case in the
remainder of this section.

4.14 Proposition. Let f : Rn → R be convex. Then

(a) The graph of ∂ f is closed : ζ i ∈ ∂ f (xi) , ζ i → ζ , xi → x =⇒ ζ ∈ ∂ f (x);

(b) For any compact subset S of R
n, there exists M such that

|ζ | � M ∀ζ ∈ ∂ f (x), x ∈ S;

(c) For any x, for any ε > 0, there exists δ > 0 such that

|y− x | < δ =⇒ ∂ f (y) ⊂ ∂ f (x)+ ε B.

Proof. Consider the situation described in (a). For any y ∈ R
n, we have

f (y)− f (xi) � 〈ζ i , y− xi 〉 ∀ i.

Taking limits, and bearing in mind that f is continuous (Cor. 2.35), we obtain in the
limit f (y)− f (x) � 〈ζ , y− x〉; thus, ζ ∈ ∂ f (x).

We know that f is locally Lipschitz. An elementary argument using compactness
shows that f is Lipschitz on bounded subsets of Rn (see Exer. 2.32). This, together
with Prop. 4.6, implies (b). Part (c) follows from an argument by contradiction,
using parts (a) and (b); we entrust this step to the reader. �	
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4.15 Exercise. (Mean value theorem) Let f : Rn → R be a convex function.

(a) We fix x,v ∈ R
n and we set g(t) = f (x+ t v) for t ∈ R. Show that g is convex,

and that

∂g(t) =
〈

∂ f (x+ t v),v〉 =
{
〈ξ ,v〉 : ξ ∈ ∂ f (x+ t v)

}
.

(b) Prove the following vaguely familiar-looking theorem: for all x, y ∈ R
n, x �= y,

there exists z ∈ (x,y) such that

f (y)− f (x) ∈
〈

∂ f (z), y− x〉.

(c) Let U be an open convex subset of Rn. Use the above to prove the following
subdifferential characterization of the Lipschitz property:

f is Lipschitz of rank K on U ⇐⇒ |ζ | � K ∀ζ ∈ ∂ f (x) , ∀x ∈ U. �	

4.16 Proposition. Let f : Rn → R be convex. Then f is differentiable at x if and
only if ∂ f (x) is a singleton, and f is continuously differentiable in an open subset
U if and only if ∂ f (x) reduces to a singleton for every x ∈ U .

Proof. If f is differentiable at x, then Cor. 4.4 asserts that ∂ f (x) is the singleton
{ f ′(x)}. Conversely, suppose that ∂ f (x) is a singleton {ζ}. We proceed to prove
that f ′(x) = ζ . Let xi be any sequence converging to x (xi �= x). Then, by Exer.
4.15, there exist zi ∈ (xi , x) and ζ i ∈ ∂ f (zi) such that

f (xi)− f (x) = 〈ζ i , xi − x〉.

By part (c) of Prop. 4.14, the sequence ζ i necessarily converges to ζ . Thus we
have

| f (xi)− f (x)−〈ζ , xi − x〉 |
|xi − x | =

| 〈ζ i −ζ , xi − x〉 |
|xi − x | → 0 ,

whence f ′(x) exists and equals ζ . The final assertion is now easily verified with the
help of part (c) of Prop. 4.14. �	

Strict convexity. Let U be a convex subset of X , and let f : U → R be given. We
say that f is strictly convex if the defining inequality of convexity is strict whenever
it has any chance of being so:

x, y ∈ U, x �= y, t ∈ (0,1) =⇒ f ((1− t)x+ t y) < (1− t) f (x)+ t f (y).

It is easy to see that a C2 function f of a single variable that satisfies f ′′(t)> 0 ∀ t
is strictly convex (see Exer. 8.26 for an extension of this criterion to several dimen-
sions). The role of strict convexity in optimization is partly to assure uniqueness of
a minimum: the reader may check that a strictly convex function cannot attain its
minimum at two different points.
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4.17 Exercise. Let U be an open convex subset of Rn, and let f : U → R be convex.

(a) Prove that f is strictly convex if and only if

x, y ∈ U, x �= y, ζ ∈ ∂ f (x) =⇒ f (y)− f (x) > 〈ζ , y− x〉.

(b) Prove that f is strictly convex if and only if ∂ f is injective, in the following sense:

x, y ∈ U, ∂ f (x) ∩ ∂ f (y) �= /0 =⇒ x = y. �	

4.2 Conjugate functions

Let X continue to designate a normed space, and let f : X → R∞ be a proper function
(that is, dom f �= /0). The conjugate function f ∗ : X ∗ → R∞ of f is defined by

f ∗(ζ ) = sup
x ∈ X

〈ζ , x〉− f (x).

(One also refers to f ∗ as the Fenchel conjugate.) Note that the properness of f
rules out the possibility that f ∗ has the value −∞; we say then that f ∗ is well
defined.

If g : X ∗ → R∞ is a proper function, its conjugate g∗ : X → R∞ is defined by

g∗(x) = sup
ζ ∈ X ∗

〈ζ , x〉−g(ζ ).

Note that g∗ is defined on X , and not on the dual of X ∗, which we wish to avoid here.
A special case arises when we take g to be f ∗; then we obtain the biconjugate of f ,
namely the function f ∗∗ : X → R∞ defined as follows (when f ∗ is proper):

f ∗∗(x) = sup
ζ ∈ X ∗

〈ζ , x〉− f ∗(ζ ).

Since taking upper envelopes preserves both convexity and lower semicontinuity, it
follows from the definition that f ∗ is convex lsc on the normed space X ∗, and that
f ∗∗ is convex lsc on X . The reader will observe that f � g =⇒ f ∗ � g∗.

4.18 Exercise.

(a) Show that for any function f : X → R∞ , we have f ∗∗ � f .

(b) If f is proper, prove Fenchel’s inequality :

f (x)+ f ∗(ζ ) � 〈ζ , x〉 ∀x ∈ X ∀ζ ∈ X ∗ ,

with equality if and only if ζ ∈ ∂ f (x).
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(c) Let f be the function |x | p/p on R
n (1 < p < ∞). Calculate f ∗, and show that

Fenchel’s inequality reduces in this case to Young’s inequality :

u • v � 1
p |u |

p + 1
p∗
|v | p∗ , u ,v ∈ R

n.

When does equality hold? �	

4.19 Proposition. Let f : X → R∞ be proper, and c ∈ R and ζ ∈ X ∗ be given. Then

f (x) � 〈ζ , x〉− c ∀x ∈ X ⇐⇒ f ∗(ζ ) � c.

If f is bounded below by a continuous affine function, then f ∗ and f ∗∗ are proper.

Proof. The first assertion, an equivalence, follows directly from the definition of f ∗;
it evidently implies that f ∗ is proper whenever f is bounded below by (majorizes,
some would say) a continuous affine function. Since f ∗∗ � f , and since f is proper,
we also deduce that f ∗∗ is proper. �	

4.20 Proposition. Let f be convex and lsc. Then f is bounded below by a contin-
uous affine function. More explicitly, let x0 be any point in X . If x0 ∈ dom f , then
for any ε > 0, there exists ζ ∈ dom f ∗ such that

f (x) > f (x0)+ 〈ζ , x− x0 〉− ε ∀x ∈ X . (1)

If f (x0) = +∞, then for any M ∈ R, there exists ζ ∈ dom f ∗ such that

f (x) > M+ 〈ζ , x− x0 〉 ∀x ∈ X . (2)

Proof. Consider first the case x0 ∈ dom f . We apply the separation theorem to the
point (x0 , f (x0)−ε) (a compact set) and the (closed) set epi f . There results ζ ∈ X ∗

and λ ∈ R such that

λ r+ 〈ζ , x〉 < λ f (x0)−λε + 〈ζ , x0〉 ∀(x,r) ∈ epi f .

It follows that λ < 0; we normalize to take λ =−1. This yields

f (x) > 〈ζ , x〉+ f (x0)− ε −〈ζ , x0〉 ∀x ∈ X ,

the required inequality (which implies ζ ∈ dom f ∗). The case f (x0) = +∞ is han-
dled similarly, by separating the point (x0 ,M) from epi f . �	

Notation. We denote by Γ (X) the collection of all functions f : X → R∞ that are
convex, lower semicontinuous, and proper. (This is classical notation in convex anal-
ysis.)

It follows from the two propositions above that when f ∈ Γ (X), then f ∗ and f ∗∗

are both proper, which is a propitious context for studying conjugacy.



4.2 Conjugate functions 69

4.21 Theorem. (Moreau) Let f : X → R∞ be a proper function. Then

f ∈ Γ (X) ⇐⇒ f ∗ is proper and f = f ∗∗.

Proof. When f ∗ is proper, then f ∗∗ is well defined (not −∞), and it is convex
and lsc as a consequence of the way it is constructed. Thus, if in addition we have
f = f ∗∗, then f belongs to Γ

(
X

)
.

Now for the converse; let f ∈ Γ
(
X

)
. Then f ∗ is proper by Prop. 4.19, and f ∗∗ is

well defined. Since f ∗∗ � f , it suffices to establish that, for any given x0 ∈ X , we
have f (x0) � f ∗∗(x0). We reason by the absurd, supposing therefore that f (x0) is
strictly greater than f ∗∗(x0).

Let M ∈ R and ε > 0 satisfy f (x0)> M > f ∗∗(x0)+2ε . Any ζ ∈ dom f ∗ admits
xζ ∈ dom f such that

f ∗(ζ ) � 〈ζ , xζ 〉− f (xζ )+ ε ,

whence
f ∗∗(x0) � 〈x0 ,ζ 〉− f ∗(ζ ) � 〈ζ , x0 − xζ 〉+ f (xζ )− ε .

These facts lead to

f (x0) > M > 〈ζ , x0 − xζ 〉+ f (xζ )+ ε . (3)

Now consider the case f (x0)<+∞. Then we choose ζ ∈ dom f ∗ so that (1) holds.
Then, using (3), we deduce

f (xζ ) > f (x0)+ 〈ζ , xζ − x0 〉− ε
> 〈ζ , x0 − xζ 〉+ f (xζ )+ ε + 〈ζ , xζ − x0 〉− ε = f (xζ ),

a contradiction. In the other case, when f (x0) = +∞, choose ζ so that (2) holds.
Then (3) yields

M > 〈ζ , x0 − xζ 〉+ f (xζ )> 〈ζ , x0 − xζ 〉+M+ 〈ζ , xζ − x0 〉 = M ,

a contradiction which completes the proof. �	

4.22 Corollary. Let g : X → R∞ be a proper function which is bounded below by a
continuous affine function. Then g∗∗, which is well defined, is the largest lsc convex
function on X which is bounded above by g.

Proof. We know that g∗ is proper and that g∗∗ is well defined, by Prop. 4.19. Since
g∗∗ � g, it is clear that g∗∗ is indeed a convex lsc function bounded above by g. Let
f be any other such function. Then f ∈ Γ (X) and, by the theorem,

f � g =⇒ f ∗ � g∗ =⇒ f = f ∗∗ � g∗∗. �	
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In the corollary above, one can show that epig∗∗ = co epig, which explains why
g∗∗ is sometimes referred to as the closed convex hull of g.

4.23 Corollary. A function g : X → R∞ is convex and lsc if and only if there exists
a family {ϕα}α of continuous affine functions on X whose upper envelope is g:

g(x) = sup
α

ϕα(x) ∀x ∈ X .

Proof. An envelope of the indicated type is always convex and lsc, so if g has that
form, it shares these properties. For the converse, we may suppose that g is proper (in
addition to being convex and lsc). According to the theorem, we then have

g(x) = g∗∗(x) = sup
ζ ∈X ∗

〈ζ , x〉−g∗(ζ ) ,

which expresses g as an upper envelope of the desired type. �	

4.24 Exercise. We study conjugacy as it applies to indicators and support functions.

(a) Let S be a nonempty subset of X . Prove that IS
∗ = HS . Deduce from this that if

S is closed and convex, then HS
∗ = IS .

(b) Let Σ ⊂ X ∗ be nonempty, convex, and weak∗closed. Prove that HΣ
∗ = IΣ . �	

The following result allows us to recognize support functions.

4.25 Theorem. Let g : X → R∞ be lsc, subadditive, and positively homogeneous,
with g(0) = 0. Then there exists a unique nonempty weak∗closed convex set Σ in
X ∗ such that g = HΣ . The set Σ is characterized by

Σ =
{

ζ ∈ X ∗ : g(v) � 〈ζ ,v〉 ∀v ∈ X
}
,

and is weak∗compact if and only if the function g is bounded on the unit ball.

Proof. Observe that the set Σ defined in the theorem statement is convex and
weak∗closed. We have (by definition)

g∗(ζ ) = sup
v∈X

〈ζ ,v〉−g(v) .

It follows from this formula and the positive homogeneity of g that g∗(ζ ) = ∞ if
ζ /∈ Σ , and otherwise g∗(ζ ) = 0; that is, we have g∗ = IΣ . But g ∈ Γ (X), which
allows us to write (by Theorem 4.21)

g(x) = g∗∗(x) = sup
ζ ∈X ∗

〈ζ , x〉− IΣ (ζ ) = HΣ (x) .

The uniqueness of Σ follows from Cor. 3.13. If g is bounded on B, then it is clear
that Σ is bounded, from its very definition. Then, as a weak∗closed subset of some
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ball, Σ is weak∗ compact (by Cor. 3.15). If, conversely, Σ is bounded, then g = HΣ
is evidently bounded on the unit ball B. �	

4.26 Corollary. Let f : X → R∞ be a convex function which is Lipschitz near a
point x. Then f ′(x ; ·) is the support function of ∂ f (x):

f ′(x ;v) = max
ζ ∈∂ f (x)

〈ζ ,v〉 ∀v ∈ X ,

and f is Gâteaux differentiable at x if and only if ∂ f (x) is a singleton.

Proof. Consider the function g(v) = f ′(x ;v). We invoke the convexity of f to
write

f
(

x+λ [(1− t)v+ tw]
)

� (1− t) f (x+λv)+ t f (x+λw) ,

from which we deduce that g((1− t)v+ tw) � (1− t)g(v)+ t g(w) . Thus g is con-
vex, and we see without difficulty that g is positively homogeneous and (from the
Lipschitz condition) satisfies |g(v)| � K ‖v‖ ∀v. It follows that g is subadditive
and continuous. Thus, g satisfies the hypotheses of Theorem 4.25. In light of Prop.
4.3, this implies the stated relation between f ′(x ; ·) and ∂ f (x).

The last assertion of the corollary is now apparent, in view of Cor. 4.4. �	

We remark that in more general circumstances than the above, the reduction of ∂ f (x)
to a singleton does not imply Gâteaux differentiability; see Exer. 8.21.

4.27 Exercise. (Subdifferential inversion) Let f ∈ Γ (X). For ζ ∈ dom f ∗, the
subdifferential ∂ f ∗(ζ ) consists, by definition, of the points x ∈ X such that

f ∗(ξ )− f ∗(ζ ) � 〈ξ −ζ , x〉 ∀ξ ∈ X ∗.

Prove that

ζ ∈ ∂ f (x) ⇐⇒ f (x)+ f ∗(ζ ) = 〈ζ , x〉 ⇐⇒ x ∈ ∂ f ∗(ζ ) . �	

4.28 Exercise. Prove that the points at which a function f ∈ Γ (X) attains its mini-
mum are those in ∂ f ∗(0). �	

4.3 Polarity

The geometric counterpart of conjugacy is polarity, an operation that plays an im-
portant role in the study of tangents and normals. That happens to be the context
in which the reader has already made its acquaintance, in §1.4, in connection with
defining the normal cone.
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Let A be a subset of a normed space X . The polar cone of A (or, more simply, the
polar), denoted A�, is defined by

A� =
{

ζ ∈ X ∗ : 〈ζ , x〉 � 0 ∀x ∈ A
}
.

It follows from the definition that A� is a weak∗closed convex cone. In the reverse
direction, the polar of a subset Σ of X ∗ is defined by

Σ� =
{

x ∈ X : 〈σ , x〉 � 0 ∀σ ∈ Σ
}
.

The reader is asked to verify that we always have A�� ⊃ A.

4.29 Exercise. Let A and Σ be nonempty cones in X and X ∗ respectively. Prove that
(IA)

∗ = IA� and (IΣ )
∗ = IΣ� . �	

4.30 Proposition. Let A be a nonempty subset of X . Then A is a closed convex cone
if and only if A�� = A.

Proof. The set A�� is always a closed convex cone, by construction. Thus, if it
equals A, then A has these properties. Conversely, let A be a closed convex cone. We
have IA = (IA)

∗∗ by Theorem 4.21. However, by Exer. 4.29, we also have

(IA)
∗∗ = (IA�)∗ = IA�� .

Thus, IA = IA�� , whence A�� = A. �	

4.31 Corollary. Let A be a nonempty subset of X . Then the bipolar A�� of A is the
smallest closed convex cone containing A.

Proof. If K is a closed convex cone such that K ⊃ A, then, by the proposition, we
deduce K = K�� ⊃ A��. �	

4.32 Corollary. Let x ∈ S, where S is a convex subset of a normed space X . Then
the tangent and normal cones at x are mutually polar:

TS(x) = NS(x)�, NS(x) = TS(x)� .

Proof. The second formula holds by definition. The first one then follows from
Prop. 4.30, since TS(x) is (closed and) convex when S is convex (Prop. 2.9). �	

We proceed now to focus on cones in X ∗.

4.33 Exercise. Let Σ be a nonempty cone in X ∗. Prove that HΣ = IΣ� . �	

For bipolarity relative to X ∗, the weak∗ topology plays a role once again, in allowing
us to refer back to X :
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4.34 Proposition. Let Σ be a nonempty subset of X ∗. Then Σ is a weak∗closed
convex cone if and only if Σ�� = Σ .

Proof. If Σ�� = Σ , then it follows that Σ is a weak∗closed convex cone, since Σ��

always has these properties. Let us now suppose that Σ is a weak∗closed convex
cone; we proceed to prove that it coincides with its bipolar. We know that Σ ⊂ Σ��.
For purposes of obtaining a contradiction, assume that the opposite inclusion fails,
and let ζ ∈ Σ��\Σ . By Theorem 3.2, there exists x ∈ X such that

〈ζ , x〉 > 〈σ , x〉 ∀σ ∈ Σ .

(This is where the weak∗closedness of Σ is used.) Since Σ is a cone, we get

〈ζ , x〉 > 0 � 〈σ , x〉 ∀σ ∈ Σ .

It follows that x ∈ Σ� and thus ζ /∈ Σ��, the required contradiction. �	

4.35 Exercise. Find A� and A��, when A ⊂ R
2 consists of the two points (1,0)

and (1,1). �	

4.4 The minimax theorem

Given a function f (u,v) of two variables, its infimum can be calculated either jointly
or successively, in either order:

inf
u

inf
v

f (u ,v) = inf
v

inf
u

f (u ,v) = inf
u ,v

f (u ,v).

When a supremum with respect to one of the variables is involved, however, the
inf sup and the sup inf will differ in general. The following theorem (said to be of
minimax type) gives conditions under which equality does hold. The first of many
such results, due to von Neumann (see Exer. 4.37 below), figured prominently in
game theory; they have since become a useful tool in analysis.

4.36 Theorem. (Ky Fan) Let U and V be nonempty convex sets in (possibly dif-
ferent) vector spaces. Let f : U×V → R be a function such that

u �→ f (u ,v) is convex on U ∀v ∈ V, and v �→ f (u ,v) is concave on V ∀u ∈ U.

Suppose in addition that there is a topology on U for which U is compact and f (·,v)
is lsc for each v ∈ V . Then we have

sup
v∈V

min
u∈U

f (u ,v) = min
u ∈U

sup
v∈V

f (u ,v) , where the case ∞ = ∞ is admitted.
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Proof. We set α = the supmin, β = the minsup. Since taking upper envelopes
preserves lower semicontinuity, the hypotheses authorize the use of “min” here. It
is easy to see that the inequality −∞ < α � β always holds; we may therefore
restrict attention to the case α < ∞. We now suppose that α < β , and we derive a
contradiction.

We claim that the sets U(v) = {u ∈ U : f (u,v) � α } satisfy
⋂

v∈V U(v) = /0.
If this were not the case, then there would be a point ū common to them all, so
that f (ū ,v) � α ∀ v ∈ V . But then β � supv f (ū ,v) � α < β , absurd. Since the
sets U(v) are closed subsets of the compact space U , the finite intersection property
must fail. Thus, there exist v1, . . . ,vn ∈ V such that

⋂n
1 U(vi) = /0. Consider now

the set

E =
{

x ∈ R
n : ∃ u ∈ U, ri � 0 such that xi = f (u ,vi)+ ri , i = 1, 2 . . . , n

}
.

It is easy to see that E is convex. Using the compactness of U and the lower semi-
continuity of each function f (·,vi), it is an exercise to show that the complement
of E is open (that is, E is closed). We claim that E does not contain the point
p :=(α ,α , . . . ,α ). For if it did, there would exist u∈ U and ri � 0 such that

α = f (u ,vi)+ ri ∀ i.

But then u ∈ ⋂n
1 U(vi), a contradiction. This proves the claim, and allows us to

invoke Theorem 2.37 to separate {p} and E. There results a vector ζ ∈ R
n and a

scalar γ such that

ζ • p < γ < ∑n
i=1 ζ i ( f (u ,vi)+ ri) ∀u ∈ U, ri � 0.

It follows that ζ is nonzero and has nonnegative components. We may normalize
to arrange ∑n

1 ζ i = 1. Then the point v̄ = ∑n
1 ζ i vi belongs to V , and the previous

inequality, combined with the concavity of f with respect to v, implies

α = ζ • p < min
u∈U

f (u , v̄) � α .

This contradiction completes the proof. �	

4.37 Exercise. Let M be an m×n matrix, and let S, T be closed, convex, nonempty
subsets of Rm and R

n respectively, at least one of which is bounded. Then

inf
x∈S

sup
y∈T

〈x,My〉 = sup
y∈T

inf
x∈S

〈x,My〉.
�	

4.38 Exercise. Let X be a normed space, and let g : X → R∞ be a convex function,
x0 ∈ X , and k > 0. Then

inf
x∈X

max
ζ ∈ kB∗

g(x)+ 〈ζ , x− x0〉 = max
ζ ∈ kB∗

inf
x∈X

g(x)+ 〈ζ , x− x0〉 .
�	
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