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Preface

The famous old road from Vézelay in Burgundy to Compostela in Spain is a long
one, and very few pilgrims walk the entire route. Yet every year there are those
who follow some part of it. We do not expect that many readers of this book will
accompany us step by step from the definition of a norm on page 3, all the way to an
advanced form of the Pontryagin maximum principle in the final chapter, though we
would welcome their company. In describing the itinerary, therefore, we shall make
some suggestions for shorter excursions.

The book consists of four parts. The first of these is on functional analysis, the last
on optimal control. It may appear that these are rather disparate topics. Yet they
share the same lineage: functional analysis (Part I) was born to serve the calculus
of variations (Part III), which in turn is the parent of optimal control (Part IV). Add
to this observation the need for additional elements from optimization and nons-
mooth analysis (Part II), and the logic of the four parts becomes clear. We proceed
to comment on them in turn.

Part I: Functional analysis. The prerequisites are the standard first courses in real
analysis, measure and integration, and general topology. It seems likely to us, then,
that the reader’s backpack already contains some functional analysis: Hilbert spaces,
at least; perhaps more. But we must set off from somewhere, and we do not, strictly
speaking, assume this. Thus, Part I serves as an introduction to functional analysis.
It includes the essential milestones: operators, convex sets, separation, dual spaces,
uniform boundedness, open mappings, weak topologies, reflexivity. . .

Our course on functional analysis leads to a destination, however, as does every
worthwhile journey. For this reason, there is an emphasis on those elements which
will be important later for optimization, for the calculus of variations, and for control
(that is, for the rest of the book).

Thus, compactness, lower semicontinuity, and minimization are stressed. Convex
functions are introduced early, together with directional derivatives, tangents, and
normals. Minimization principles are emphasized. The relevance of the smoothness
of the norm of a Banach space, and of subdifferentials, is explained. Integral func-
tionals are studied in detail, as are measurable selections. Greater use of optimiza-
tion is made, even in proving classical results. These topics manage to walk hand in
hand quite amiably with the standard ones.

The reader to whom functional analysis is largely familiar territory will nonetheless
find Part I useful as a guide to certain areas.

vii
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Part II: Optimization and nonsmooth analysis. The themes that we examine in
optimization are strictly mathematical: existence, necessary conditions, sufficient
conditions. The goal is certainly not to make the reader an expert in the field, in
which modeling and numerical analysis have such an important place. So we are
threading our way on a fairly narrow (if scenic) path. But some knowledge of the
subject and its terminology, some familiarity with the multiplier rule, a good under-
standing of the deductive (versus the inductive) method, an appreciation of the role
of convexity, are all important things to acquire for future purposes. Some students
will not have this background, which is why it is supplied here.

Part II also contains a short course on nonsmooth analysis and geometry, together
with closely related results on invariance of trajectories. These subjects are certainly
worth a detour in their own right, and the exposition here is streamlined and inno-
vative in some respects. But their inclusion in the text is also based on the fact that
they provide essential infrastructure for later chapters.

Part III: Calculus of variations. This is meant to be a rather thorough look at the
subject, from its inception to the present. In writing it, we have tried to show the
reader not only the landmarks, but also the contours of this beautiful and ongoing
chapter in mathematics. This is done in part by advancing in stages, along a path
that reveals its history.

A notable feature in this landscape is the presence of recent advanced results on reg-
ularity and necessary conditions. In particular, we encounter a refined multiplier rule
that is completely proved. We know of no textbook which has such a thing; certainly
not with the improvements to be found here. Another important theme is the exis-
tence question, where we stress the need to master the direct method. This is made
possible by the earlier groundwork in functional analysis. There are also substan-
tial examples and exercises, involving such topics as viscosity solutions, nonsmooth
Lagrangians, the logarithmic Sobolev inequality, and periodic trajectories.

Part IV: Optimal control. Control theory is a very active subject that regularly
produces new kinds of mathematical challenges. We focus here upon optimality, a
topic in which the central result is the Pontryagin maximum principle. This impor-
tant theorem is viewed from several different angles, both classical and modern, so
as to fully appreciate its scope. We demonstrate in particular that its extension to
nonsmooth data not only unifies a variety of special cases mathematically, but is
itself of intrinsic interest.

Our survey of optimal control does not neglect existence theory, without which the
deductive approach cannot be applied. We also discuss Hamilton-Jacobi methods,
relaxation, and regularity of optimal controls. The exercises stem in part from sev-
eral fields of application: economics, finance, systems engineering, and resources.
The final chapter contains general results on necessary conditions for differential
inclusions. These theorems, which provide a direct route to the maximum princi-
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ple and the multiplier rule, appear here for the first time in a text; they have been
polished and refined for the occasion.

A full proof of a general maximum principle, or of a multiplier rule, has never been
an easy thing; indeed, it has been famously hard. One may say that it has become
more streamlined; it has certainly become more general, and more unified; but it has
not become easy. Thus, there is a difficult stretch of road towards the end of Part IV;
however, it leads to a fully self-contained text.

Intended users. The author has himself used the material of this book many times,
for various courses at the first-year or second-year graduate level. Accordingly,
the text has been planned with potential instructors in mind. The main question is
whether to do in detail (most of) Part I, or just refer to it as needed for background
material. The answer must depend on the experience and the walking speed of the
audience, of course.

The author has given one-semester courses that did not stray from Part I. For some
audiences, this could be viewed as a second course on functional analysis, since,
as we have said, the text adopts a somewhat novel emphasis and choice of material
relative to other introductions. The instructor must also decide on how much of
Chapter 8 to cover (it’s nothing but problems). If the circumstances of time and
audience permit, one could tread much of Part I and still explore some chapters
from Part II (as an introduction to optimization and nonsmooth analysis) or Part
III (the calculus of variations). As an aid in doing so, Part I has been organized in
such a way that certain material can be bypassed without losing one’s way. We refer
especially to Sections 4.3–4.4, 5.4, 6.2–6.4, and Sections 7.2–7.4 (or all of Chapter
7, if in fact the audience is familiar with Hilbert spaces).

Here is a specific example. To give a course on functional analysis and calculus
of variations, one could choose to travel lightly and drop from Part I the material
just mentioned. Then, Chapter 9 might be done (minus the last section, perhaps).
Following this, one could skip ahead to the first three or four chapters of Part III; they
constitute in themselves a viable introduction to the calculus of variations. (True, the
proof of Tonelli’s theorem in Chapter 16 uses unseen elements of Chapter 6, but we
indicate a shortcut to a special case that circumvents this.)

For advanced students who are already competent in functional analysis, an en-
tirely different path can be taken, in which one focuses entirely on the latter half of
the book. Then Part I (and possibly Part II) can play the role of a convenient and
strangely relevant appendix (one that happens to be at the front), to be consulted as
needed. As regards the teaching of optimal control, we strongly recommend that it
be preceded by the first three or four chapters of Part III, as well as Section 19.1 on
verification functions.

In addition to whatever merits it may have as a text, we believe that the book has con-
siderable value as a reference. This is particularly true in the calculus of variations
and optimal control; its advanced results make it stand out in this respect. But its ac-
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cessible presentation of certain other topics may perhaps be appreciated too (convex
analysis, integral semicontinuity, measurable selections, nonsmooth analysis, and
metric regularity, for example). We dare to hope that it will be of interest to both the
mathematics and the control engineering communities for all of these reasons, as
well as to certain related ones (such as operations research and economics).

A word about the exercises: there are hundreds. Some of them stand side by side
with the text, for the reader to meet at an early stage. But additional exercises (many
of them original in nature, and more difficult) lie waiting at the end of each part, in
a separate chapter. Solutions (full, partial, or just hints) are given for quite a few of
them, in the endnotes. A list of notation is given at the beginning of the index.
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Part I

Functional Analysis



Chapter 1

Normed Spaces

There are only two kinds of math books: those you cannot read
beyond the first sentence, and those you cannot read beyond the
first page.
C. N. Yang

What we hope ever to do with ease, we must learn first to do
with diligence.
Samuel Johnson

We now set off on an expedition through the vast subject of functional analysis. No
doubt the reader has some familiarity with this place, and will recognize some of
the early landmarks of the journey. Our starting point is the study of normed spaces,
which are situated at the confluence of two far-reaching mathematical abstractions:
vector spaces, and topology.

1.1 Basic definitions

The setting is that of a vector space over the real numbers R. There are a dozen or
so axioms that define a vector space (the number depends on how they are phrased),
bearing upon the existence and the properties of certain operations called addition
and scalar multiplication. It is more than probable that the reader is fully aware of
these, and we shall say no more on the matter. We turn instead to the central idea of
this chapter.

A norm on the vector space X corresponds to a reasonable way to measure the size
of an element, one that is consistent with the vector operations. Given a point x ∈ X ,
the norm of x is a nonnegative number, designated ‖x‖. We also write ‖x‖X at
times, if there is a need to distinguish this norm from others. In order to be a norm,
the mapping x �→ ‖x‖ must possess the following properties:

• ‖x‖ � 0 ∀x ∈ X ; ‖x‖ = 0 if and only if x = 0 (positive definiteness);

• ‖x+ y‖ � ‖x‖+‖y‖ ∀x, y ∈ X (the triangle inequality);

• ‖ t x‖ = | t |‖x‖ ∀ t ∈ R , x ∈ X (positive homogeneity).

Once it has been equipped with a norm, the vector space X , or, more precisely
perhaps, the pair (X , ‖ · ‖), is referred to as a normed space.

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 1,
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4 1 Normed Spaces

We have implied that vector spaces and topology are to meet in this chapter; where,
then, is the topology? The answer lies in the fact that a norm induces a metric on
X in a natural way: the distance d between x and y is d(x,y) = ‖x− y‖. Thus, a
normed space is endowed with a metric topology, one (and this is a crucial point)
which is compatible with the vector space operations.

Some notation. The closed and open balls in X are (respectively) the sets of the
form

B(x,r) =
{

y ∈ X : ‖y− x‖ � r
}
, B◦(x,r) =

{
y ∈ X : ‖y− x‖< r} ,

where the radius r is a positive number. We sometimes write B or BX for the closed
unit ball B(0,1), and B◦ for the open unit ball B◦(0,1). A subset of X is bounded
if there is a ball that contains it.

If A and C are subsets of X and t is a scalar (that is, an element of R), the sets A+C
and tA are given by

A+C =
{

a+ c : a ∈ A , c ∈ C
}
, t A =

{
t a : a ∈ A

}
.

(Warning: A+A is different from 2A in general.) Thus, we have B
(
x,r

)
=

{
x
}
+r B.

We may even ask the reader to tolerate the notation B(x, r) = x+ r B. The closure
of A is denoted clA or A, while its interior is written int A or A◦.

Given two points x and y in X , the closed interval (or segment) [x,y ] is defined as
follows:

[x,y ] =
{

z = (1− t)x+ t y : t ∈ [0,1]
}
.

When t is restricted to (0,1) in the definition, we obtain the open interval (x,y). The
half-open intervals [x,y) and (x,y ] are defined in the evident way, by allowing t to
vary in [0,1) and (0,1] respectively.

The compatibility between the vector space and its norm topology manifests itself
by the fact that if U is an open subset of X , then so is its translate x+U and its
scalar multiple tU (if t 	= 0). This follows from the fact that balls, which generate
the underlying metric topology, cooperate most courteously with the operations of
translation and dilation:

B(x,r) = x + B(0,r) , B(0, t r) = t B(0,r) (t > 0).

It follows from this, for example, that we have int (tA) = t int A when t 	= 0, and
that a sequence xi converges to a limit x if and only if the difference xi−x converges
to 0. There are topologies on X that do not respect the vector operations in this way,
but they are of no interest to us. We shall have good reasons later on to introduce
certain topologies on X that differ from that of the norm; they too, however, will be
compatible with the vector operations.
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A vector space always admits a norm. To see why this is so, recall the well-known
consequence of Zorn’s lemma which asserts that any vector space has a basis {eα},
in the sense of linear algebra. This means that any x has a unique representation
x = ∑α xα eα , where all but a finite number of the coefficients xα are 0. The reader
will verify without difficulty that ‖x‖ := ∑α |xα | defines a norm on X . In practice,
however, there arises the matter of choosing a good norm when a space presents
multiple possibilities.

Sometimes a good norm (or any norm) is hard to find. An example of this: the space
of all continuous functions f from R to R. Finding an explicit norm on this space is
problematic, and the space itself has found use only when endowed with a topology
that is not that of a norm. In other cases, several norms may come to mind.

1.1 Example. The vector space of continuous functions f from [0,1] to R admits,
among others, the two following norms:

‖ f ‖∞ = max
t ∈ [0,1]

| f (t)| , ‖ f ‖1 =
∫ 1

0
| f (t)|dt ,

both of which are well defined. One of these (the first, it turns out) is a better choice
than the other, for reasons that will become completely clear later. 
�

Two norms ‖ · ‖1 and ‖ · ‖2 on X are said to be equivalent if there exist positive
constants c, d such that

‖x‖1 � c‖x‖2 , ‖x‖2 � d‖x‖1 ∀x ∈ X .

As the reader may verify, this amounts to saying that each ball around 0 of one
type contains a ball around 0 of the other type. This property, in turn, is easily seen
to characterize the equality of the topologies induced by the two metrics. Thus we
may say: two norms on X are equivalent if and only if they induce the same metric
topology.

1.2 Exercise. Are the two norms of Example 1.1 equivalent? 
�

When we restrict attention to a linear subspace of a normed space, the subspace
is itself a normed space, since the restriction of the norm is a norm. This is an
internal mechanism for creating smaller normed spaces. Another way to create new
(larger) normed spaces is external, via Cartesian products. In this case, there is some
flexibility in how to define the norm on the product.

Let X and Y be normed spaces, with norms ‖ · ‖X and ‖ · ‖Y . Then the Cartesian
product Z = X×Y may be equipped with any of the norms

‖x‖X +‖y‖Y ,
{
(‖x‖X )

2 +(‖y‖Y )
2}1/2

, max
{
‖x‖X , ‖y‖Y

}
,
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among others. That these are all norms on X×Y is simple to check, and it is not much
more work to go on to verify that all these product norms are equivalent.

1.3 Example. We denote Euclidean n-space by R
n; this is the vector space consist-

ing of n-tuples x = (x1, x2, . . . , xn) of real numbers. By default, we always consider
that it is equipped with the Euclidean norm

|x | =
{

x 2
1 + x 2

2 + · · ·+ x 2
n
}1/2

, x ∈ R
n.

No other norm is awarded the honor of being written with single bars. 
�

1.4 Example. (Continuous functions on a compact set) Let K be a compact met-
ric space. We denote by C(K), or C(K,R) if more precision is desired, the vector
space of continuous functions f : K → R , equipped with the norm

‖ f ‖ = ‖ f ‖C(K) = max
x ∈ K

| f (x)|. 
�

Notation: When K is an interval [a,b ] in R , we write C[a,b ] for C(K).

1.5 Exercise. Prove that C[0,1] is an infinite dimensional vector space, by exhibit-
ing a linearly independent set with infinitely many elements. 
�

1.6 Example. (Spaces of sequences) Some useful examples of normed spaces are
obtained by considering sequences with certain properties. For fixed p ∈ [1,∞), we
define

‖x‖p =
{
∑ i�1 |xi |p

}1/p
,

where x = (x1, x2 , . . .) is any sequence of real numbers. As we show below, the set
of all sequences x for which ‖x‖p < ∞ is a vector space. It is equipped with the
norm ‖ ·‖p , and designated � p. The vector space of all bounded sequences, denoted
�∞, is turned into a normed space with the norm ‖x‖∞ := sup i�1 |xi |.

We shall require Hölder’s inequality, which, in the present context, asserts that

∑ i � 1 |xi yi | � ‖x‖p ‖y‖p∗

for any two sequences x = (x1, x2 , . . .) and y = (y1, y2 , . . .). Here, p lies in [1,∞ ],
and p∗ signifies the conjugate exponent of p, the unique number in [1,∞ ] such that
1/p +1/p∗ = 1. (Thus, p∗ = ∞ when p = 1, and vice versa.)

Other members of the cast include the following spaces of convergent sequences:

c =
{

x = (x1, x2 , . . .) : lim
i→∞

xi exists
}
, c0 =

{
x = (x1, x2 , . . .) : lim

i→∞
xi = 0

}
.

Another vector space of interest consists of those sequences having finitely many
nonzero terms; it is denoted �∞c . (The letter c in this context stands for compact
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support.) We equip c, c0 , and �∞c with the same norm as �∞, of which they are
evidently linear subspaces. It is easy to see that all these normed spaces are infinite
dimensional; that is, an algebraic basis for the underlying vector space must have
infinitely many elements. 
�

1.7 Proposition. For 1 � p � ∞, � p is a vector space and ‖ · ‖p is a norm on � p.

Proof. The cases p = 1, p = ∞ are simple, and are left to the reader as exercises.
For 1 < p < ∞, the inequality1

(a+b) p � 2 p(a p +b p ), a, b � 0

implies that � p is stable under addition. It is clearly stable under scalar multiplication
as well; thus, � p is a vector space. We need only verify that the putative norm ‖ · ‖p
satisfies the triangle inequality. To this end, we observe first the following:

|xi + yi | p � |xi + yi | p−1|xi | + |xi + yi | p−1|yi | .

Then, we take the sum over i, and we proceed to invoke Hölder’s inequality for the
two terms on the right; the triangle inequality results. 
�

1.8 Exercise.

(a) Let 1 � p < q � ∞. Show that � p ⊂ � q, and that the injection (that is, the
identity map Λ x = x from � p to � q ) is continuous.

(b) It is clear that � 1 is a subspace of c0 , and that c0 is a subspace of �∞. In which
case can we say closed subspace? 
�

1.9 Example. (Lebesgue spaces) We proceed to revisit some familiar facts and es-
tablish some notation. Let Ω be a nonempty open subset of Rn, and let f : Ω → R

be a Lebesgue measurable function. We write dx for Lebesgue measure on R
n. The

(Lebesgue) integral ∫

Ω
| f (x)|dx

is then well defined, possibly as +∞. When it is finite, we say that f is summable
(on Ω ). The class of summable functions f is denoted by L1(Ω). More generally,
for any p ∈ [1,∞), we denote by L p(Ω), or by L p(Ω ,R), the set of all functions f
such that | f | p is summable, and we write

‖ f ‖p = ‖ f ‖L p(Ω) :=
{ ∫

Ω
| f (x)| p dx

}1/p
.

There remains the case p = +∞. The function f is essentially bounded when, for
some number M, we have | f (x)| � M a.e. The abbreviation “a.e.” stands for “al-
most everywhere,” which in this context means that the inequality holds except for

1 This inequality will be evident to us quite soon, once we learn that the function t �→ t p is convex
on the interval (0,∞); see page 36.
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the points x in a null set (that is, a subset of Ω of measure zero). We define L∞(Ω) to
be the class of measurable functions f : Ω → R that are essentially bounded, with
norm

‖ f ‖∞ = ‖ f ‖L∞(Ω) = inf
{

M : | f (x)| � M , x ∈ Ω a.e.
}
.

Since the infimum over the empty set is +∞, we see that ‖ f ‖∞ = +∞ precisely
when f fails to be essentially bounded. Thus, for any p in [1,∞ ], we may say that a
measurable function f belongs to L p(Ω) if and only if ‖ f ‖p < ∞. 
�

1.10 Exercise. Let f ∈ L∞(Ω). Prove that | f (x)| � ‖ f ‖∞ , x ∈ Ω a.e. 
�

Notation: When Ω is an interval (a,b) in R, we write L p(a,b) for L p(Ω).

We shall affirm below that L p(Ω) is a vector space and ‖ · ‖p is a norm, but let
us first recall a familiar convention. We identify two elements f and g of L p(Ω)
when f (x) = g(x) for almost every x ∈ Ω . Thus, the elements of L p(Ω) are really
equivalence classes of functions { f }, where g ∈ { f } if and only if f (x) = g(x) a.e.
This distinction is not reflected in our notation,2 but it explains why it is absurd to
speak of (for example) the set of functions f ∈ L p(0,1) satisfying f (1/2) = 0: this
does not correspond to a property of an equivalence class. On the other hand, it
makes sense to speak of those f ∈ L p(Ω) which satisfy | f (x)| � 1 a.e. in Ω : this
property is stable with respect to elements in an equivalence class.

Let us once again recall Hölder’s inequality, which, in the current context, affirms
that if f ∈ L p(Ω) and g ∈ L p∗(Ω), where 1 � p � ∞, then the function f g belongs
to L1(Ω), and we have

‖ f g‖1 � ‖ f ‖p ‖g‖p∗ .

We can use this to adapt the proof of Prop. 1.7, and we obtain

1.11 Proposition. For each p ∈ [1,∞ ], the class L p(Ω) is a vector space, and ‖ ·‖p
is a norm on L p(Ω).

1.12 Exercise. Show that Lq(0,1) is a strict subspace of L p(0,1) if 1 � p < q � ∞.
(This is true generally of L p(Ω), when Ω is bounded; compare Exer. 1.8.) 
�

1.13 Example. (Absolutely continuous functions) Let [a,b ] be an interval in R.
A function x : [a,b ] → R is said to be absolutely continuous if x is continuous in
the following sense: for every ε > 0, there exists δ > 0 such that, for every finite
collection { [ai ,bi ]} of disjoint subintervals of [a,b ], we have

∑
i
(bi −ai) < δ =⇒ ∑

i
|x(bi)− x(ai)| < ε .

It is shown in elementary courses in integration that a continuous function x pos-
sesses this property if and only if it is an indefinite integral; that is, there exists a
function v ∈ L1(a,b) such that

2 Rudin: “We relegate this distinction to the status of a tacit understanding.”
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x(t) = x(a)+
∫ t

a
v(τ)dτ , t ∈ [a,b ]. (∗)

In this case, the theory of integration tells us that x is differentiable at almost every
point in (a,b), with x ′(t) = (d/dt)x(t) = v(t), t ∈ (a,b) a.e. Thus, absolutely
continuous functions are well behaved, in that they coincide with the integral of
their derivative. For this reason, they constitute the customary class in which the
theory of ordinary differential equations is developed, and they will play a central
role later when we study the calculus of variations.

The vector space of absolutely continuous functions on [a,b ] is denoted AC[a,b ],
and we endow it with the norm

‖x‖AC = |x(a)|+
∫ b

a
|x ′(t)|dt .

More generally, for 1 � p � ∞, we denote by AC p[a,b ] the class of continuous
functions x which admit a representation of the form (∗) with v ∈ L p(a,b). The
norm on AC p[a,b ] is given by

‖x‖AC p = |x(a)|+‖x ′‖L p(a,b) .

The function x on [a,b ] is called Lipschitz if there exists M such that

|x(s)− x(t)| � M |s− t | ∀s, t ∈ [a,b ].

Such a function x is easily seen to be absolutely continuous, with a derivative x ′ (al-
most everywhere) that satisfies |x ′(t)| � M a.e. Thus, a Lipschitz function belongs
to AC∞[a,b ]. Conversely, one shows that an element x of AC∞[a,b ] satisfies the
Lipschitz condition above, the minimal M for this being ‖x ′‖L∞(a,b) . 
�

1.14 Exercise. Show that the function x(t) =
√

t is absolutely continuous on the
interval [0,1], but is not Lipschitz. 
�

1.2 Linear mappings

A linear map (or application, or transformation)Λ between two vector spaces X and
Y is one that exhibits a healthy respect for the underlying vector space structure; it
preserves linear combinations:

Λ(t1x1 + t2 x2) = t1Λ(x1)+ t2Λ(x2), x1, x2 ∈ X , t1, t2 ∈ R .

Such maps turn out to be of central importance in the theory of normed spaces. Note
that they constitute in themselves a vector space, since a linear combination of two
linear maps is another linear map.
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Notation: When Λ is linear, Λ(x) is also written as Λ x or 〈Λ , x〉.

The vector space of linear applications from X to Y is denoted by L(X ,Y ). If Λ
belongs to L(X ,Y ), thenΛ(0)= 0 necessarily. IfΛ is continuous at 0, thenΛ−1(BY )
contains a neighborhood of 0, and therefore a ball rBX in X . Thus

‖x‖X � r =⇒ Λ x ∈ BY ,

or, in a formulation that is easily seen to be equivalent to this,

‖Λ x‖Y � (1/r)‖x‖X ∀x ∈ X .

It also follows readily that the continuity of Λ at 0 is equivalent to its continuity
everywhere, and to its being bounded above on a neighborhood of 0. In summary,
and without further proof, we may say:

1.15 Proposition. Let X and Y be normed spaces, and let Λ ∈ L(X ,Y ). Then the
following are equivalent:

(a) Λ is continuous ;

(b) Λ is bounded above on a neighborhood of 0 ;

(c) There exists M such that ‖Λ x‖Y � M ∀x ∈ B(0,1) ;

(d) There exists M such that ‖Λ x‖Y � M ‖x‖X ∀x ∈ X .

1.16 Exercise. Let yi (i = 1, 2, . . . , n) be elements in a normed space Y , and let
Γ : Rn → Y be defined by

Γ λ = Γ (λ1, λ 2 , . . . , λn) = ∑n
i=1 λ i yi .

Prove that Γ is continuous. 
�

The elements of L(X ,Y ) are often referred to as operators. We reserve the term lin-
ear functional for the elements of L(X ,R); that is, the real-valued linear applications
on X . For any element Λ of L(X ,Y ) we write

‖Λ ‖ = ‖Λ ‖L(X ,Y ) = sup
{
‖Λx‖Y : x ∈ X , ‖x‖X � 1

}
.

1.17 Exercise. Let Λ ∈ L(X ,Y ), where X ,Y are normed spaces. Then

‖Λ ‖ = sup
x ∈ X ,‖x‖=1

‖Λx‖Y = sup
x ∈ X ,‖x‖<1

‖Λ x‖Y = sup
x ∈ X , x 	=0

‖Λ x‖Y

‖x‖X
.


�

The reader will notice that two of the expressions displayed in this exercise are
inappropriate if X happens to be the trivial vector space {0}. Thus, it is implicitly
assumed that the abstract space X under consideration is nontrivial; that is, that X
contains nonzero elements. If the exclusion of the trivial case occasionally goes
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unmentioned, we hope that it will be seen as an implicit assumption, and not an
oversight.

It follows from Prop. 1.15 that an element Λ of L(X ,Y ) is continuous if and only
if ‖Λ ‖ < ∞. The set of continuous linear mappings from X to Y is denoted by
LC(X ,Y ). It is a vector space in its own right, and the operator norm ‖ · ‖L(X ,Y )
turns it into a normed space. It is easy to see that equivalent norms on X and on Y
generate the same set LC(X ,Y ) of continuous linear mappings.

1.18 Exercise. We define a mapping S : � p → � p as follows: S sends (x1, x 2 , x3, . . .)
to (x 2 , x3, x4, . . .). (S is a shift to the left.) Prove that S belongs to LC(�

p, � p), and
evaluate its operator norm. 
�

1.19 Proposition. Let X be a normed space of finite dimension n, and let the set
{ei : i = 1, 2, . . . , n} be a basis for X . Let T : X → R

n be the mapping that asso-
ciates to each x in X its coordinates λ = (λ1, λ 2 , . . . , λn) with respect to this basis.
Then T is continuous.

Proof. By definition, T x = λ is the unique element of Rn for which x = ∑n
i=1 λ i ei .

It follows readily that T is a linear mapping. Thus, by Prop. 1.15, it suffices to prove
that |T | is bounded on BX .

We argue by contradiction. Accordingly, let x j be a sequence of elements in BX such
that |T x j | diverges to +∞. Setting λ j = T x j, we have

x j = ∑n
i=1 λ

j
i ei = Γ (λ j ) , (∗)

where Γ is a mapping of the form defined in Exer. 1.16. By taking an appropriate
subsequence, we may suppose that λ j/|λ j| converges to a unit vector λ ∈ R

n.
Dividing across by |λ j| in (∗) and passing to the limit (using the continuity of Γ ),
we obtain

lim
j→∞

x j/|λ j| = 0 = Γ (λ ) = ∑n
i=1 λ i ei .

This contradicts the linear independence of the ei , and completes the proof. 
�

As we now proceed to show, a linear operator whose domain is finite-dimensional
must be continuous.

1.20 Corollary. If the normed space X is finite dimensional, then any Λ ∈ L(X ,Y )
is continuous.

Proof. Let {ei : 1 � i � n} be a basis for X , and let T x = λ be the mapping of
the proposition above. Set yi = Λei . By linearity, we have

Λ x = ∑n
i=1 λ i Λei = ∑n

i=1 λ i yi = Γ ◦T (x) ∀x ∈ X ,

where Γ is defined in Exer. 1.16. Then Λ , as the composition of two continuous
functions, is continuous. 
�
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Discontinuous linear functionals. It is one of the striking differences between
finite and infinite dimensional normed spaces that in the latter case, there exist linear
functionals which are discontinuous. A simple example of this is provided by the
vector space of polynomial functions f on [0,1], equipped with the norm of C[0,1 ].
If we define Λ f = f ′(0), the reader may verify that Λ is a discontinuous linear
functional: the closeness of f to 0 does not imply that f ′(0) is close to 0.

It is possible to give an abstract construction of a discontinuous linear functional,
valid in any infinite dimensional normed space X . We sketch it now. Let {ei} be a
countable collection of linearly independent unit vectors in X . Then setting f (ei) = i
for each i induces a unique linear functional on the vector subspace of X generated
by {ei}. An application of Zorn’s lemma (along similar lines to the proof of Theo-
rem 1.32) implies that f can be extended to X while remaining linear. However, f
cannot be continuous at 0: the sequence ei/i converges to 0 in X (since ‖ei ‖ = 1),
yet we have f (ei/i) = 1 ∀ i.

The axiom of choice plays a role in a construction such as the above, as it does in
future, rather more important ones. We may as well confess to the reader that we
suffer no angst in regard to this fact.

Isometries. How can we make precise the statement that two normed spaces are
essentially the same? Or that the “only” normed space of dimension n is Rn? Such
an equivalence needs to bear upon four different factors: on the underlying sets (we
need a bijection), on the vector space structure (the bijection must be linear), on
the topologies (it must be continuous, with continuous inverse; that is, a homeo-
morphism), and on the norms (which must be preserved). Thus we are led to the
definition of an isometry between two normed spaces X and Y :

a bijective linear mapping T : X → Y such that ‖T x‖Y = ‖x‖X ∀x ∈ X .

It follows from this definition that T is continuous, and that its inverse T−1 is con-
tinuous as well; in fact, T−1 is an isometry “in the other direction.” We say that X
and Y are isometric.

When two normed spaces are isometric, they are identical as normed spaces; only
the labels on the points (x or T x) change in considering one or the other.

1.21 Exercise. Show that the space AC p[a,b ] (see Example 1.13) is isometric to
R×L p(a,b). 
�

The assertion that Rn is the only normed space of dimension n may now be given a
precise meaning.

1.22 Theorem. Let X be a normed space of finite dimension n. Then there exists
an equivalent norm on X relative to which X is isometric to R

n.
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Proof. It is understood that Rn is equipped with its default Euclidean norm | · |. By
hypothesis, the vector space X admits an algebraic basis consisting of n elements
{e1, e2 , . . . , en}. As in Prop. 1.19, let T be the mapping such that T x = λ ∈ R

n is
the vector of coordinates of x with respect to the basis. Let us define ‖x‖′ = |λ |.
Then ‖ · ‖′ is a norm on X , and relative to it, T is an isometry: |T x |= ‖x‖′.

In order to complete the proof, it suffices to show that the norm ‖ · ‖′ is equivalent
to the original norm on X . From the relation x = ∑n

i=1 λ i ei we deduce

‖x‖ � ∑n
i=1 |λ i |‖ei ‖ �

(
max

i
‖ei ‖

)
n |λ | = c‖x‖′,

where c :=
(

max i ‖ei ‖
)

n. To finish, we need to prove the existence of d such that
‖x‖′ � d‖x‖ ∀x. But we know from Prop. 1.19 that T is continuous on (X ,‖ · ‖),
so this follows from Prop. 1.15. 
�

There are many different topologies on R
n, but only one norm topology:

1.23 Corollary. Any norm on R
n is equivalent to the Euclidean norm.

The following useful fact follows from Theorem 1.22.

1.24 Corollary. A finite dimensional subspace of a normed space X is closed.

Proof. Let S be a finite dimensional subspace of X . Then, by the theorem, there is
a norm ‖ · ‖S on S such that c‖x‖X � ‖x‖S � d‖x‖X ∀x ∈ S, and an isometry
T : Rn → (S,‖ · ‖S). Let xi be a sequence in S that converges in X to a limit x ∈ X .
It suffices to prove that x ∈ S. To see this, note that we have

|T−1xi −T−1x j | = ‖xi − x j ‖S � d‖xi − x j ‖X ,

from which we deduce that T−1xi is a Cauchy sequence in R
n. Then (by a known

property of Rn), there is a point λ ∈ R
n such that |T−1xi −λ | → 0. By the con-

tinuity of T , we have ‖xi −Tλ ‖S → 0. It follows that ‖xi −Tλ ‖X → 0, so that
x = T λ ∈ S. 
�

Compact sets. In seeking to minimize a function f over a set A, the continuity of
f and the compactness of A (for some topology) are highly relevant. This is because
of the well-known theorem of Weierstrass (who was a pioneer in topology, as well
as in the calculus of variations) stating that a continuous function on a compact set
attains its minimum.

In R
n, compact sets abound, and are easy to characterize: they are the sets that are

closed and bounded. In infinite dimensional normed spaces, however, it turns out
that compact sets are rather scarce, in a manner of speaking. They do exist, of course:
finite sets and closed intervals are compact, for example, as is the intersection of a
closed ball with a finite dimensional subspace.
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The next theorem encapsulates why infinite dimensional normed spaces are a chal-
lenge for minimization. Its proof introduces the distance function dA associated to
a subset A of X :

dA(x) = inf
z ∈ A

‖x− z‖.

We remark that when A is closed, then dA(x) = 0 if and only if x ∈ A.

1.25 Theorem. The closed unit ball in a normed space X is compact if and only if
X is of finite dimension.

Proof. Let X be of finite dimension n, with norm ‖ ·‖1. Then there is an equivalent
norm ‖ · ‖2 on X for which X is isometric to R

n, by Theorem 1.22. But the unit ball
in R

n is compact, and an isometry sends the ball to the ball. It follows that the ball
B2 in X relative to ‖ · ‖2 is compact, as the image of a compact set by a continuous
function. Then rB2 is compact for any r > 0. For r sufficiently large, the ball B1
relative to ‖ · ‖1 is a closed subset of rB2 , and is therefore compact.

To prove the converse, let us suppose that X has infinite dimension. Then there exists
a sequence Ln of vector subspaces of X of finite dimension (closed, by Cor. 1.24)
such that Ln−1 � Ln .

Using the lemma given below, we construct a sequence xn with xn ∈ Ln , ‖xn ‖ = 1,
and dLn−1(xn) � 1/2. It follows that ‖xn − xm ‖ � 1/2 for m 	= n. Therefore the
sequence xn admits no convergent subsequence, which proves that the unit ball is
not compact.

Lemma. Let X be a normed space and L a closed subspace, L 	= X . For any ε > 0,
there exists x ∈ X with ‖x‖ = 1 such that dL(x) � 1− ε .

To prove the lemma, pick any v ∈ X \L ; we have d := dL(v) > 0, since L is closed.
Choose z ∈ L such that d � ‖v− z‖ � d/(1− ε), and set

x = (v− z)/‖v− z‖.

We claim that x is the required point. For if y ∈ L, we have

‖x− y‖ =
∥
∥
∥

v− z
‖v− z‖ − y

∥
∥
∥ =

‖v− (z+‖v− z‖y)‖
‖v− z‖ � d

‖v− z‖ � 1− ε

in view of the fact that z+‖v− z‖y ∈ L. 
�

1.26 Corollary. A normed space contains a compact set with nonempty interior if
and only if it is finite dimensional.
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1.3 The dual space

The elements of L(X ,R), as the reader has been told, are referred to as linear
functionals (on X). The ones that happen to be continuous, that is, those lying in
LC(X ,R), constitute what is called the dual space of X . It is destined for great
things. We denote it by X ∗ (often pronounced X star), and equip it with the dual
norm: for ζ ∈ X ∗, we set

‖ζ ‖∗ = ‖ζ ‖X ∗ = sup
{
〈ζ , x 〉 : x ∈ X , ‖x‖ � 1

}
.

We concede that ‖ζ ‖∗ is simply the usual operator norm in this special case, where
the evaluation of ζ ∈ X ∗ at a point x ∈ X has been expressed using what is called
the duality pairing of X and X ∗, denoted by 〈ζ , x 〉. The closed unit ball in X ∗ is
denoted by B∗(0,1), or just B∗ .

1.27 Example. In certain cases, it is possible (and sometimes it is highly useful) to
exhibit an isometry that depicts the dual space in explicit terms, as we now illustrate.
Let us establish, for 1 � p < ∞, that (� p)∗ is isometric to � q, where q = p∗ is the
conjugate exponent to p.

We begin by observing that any sequence v = (v1, v2 , . . .) in � q induces an element
ζv in (� p)∗ by means of the definition

〈ζv , u〉 = ∑∞
i=1 vi ui , u ∈ � p.

This definition makes sense (that is, the sum is well defined) as a result of Hölder’s
inequality, which yields |〈ζv , u〉| � ‖v‖q ‖u‖p . It follows that the dual norm of ζv
is no greater than ‖v‖q . When we take u to be the element of � p whose i-th term is
vi |vi |q−2 (or 0 if vi = 0), then we obtain equality in the preceding:

|〈ζv , u〉| = ∑∞
i=1 |vi |q = ‖v‖q

q = ‖v‖q ‖u‖p ,

whence ‖ζv ‖∗ = ‖v‖q .

It follows that the linear application T which maps v ∈ � q to ζv ∈ (� p)∗ preserves
the norm, which implies that it is continuous and injective. To see that it constitutes
the sought-for isometry, we need only check that it is onto. We proceed to do this
for the case p 	= 1 (so that q is finite).

Let ei be the element of � p whose terms are all zero except for the i-th, which equals
1. Let ζ be any element of (� p)∗, and define w to be the sequence whose i-th term is
〈ζ ,ei 〉. We claim that w belongs to � q. To see this, let u n be the element of � p whose
i-th term is wi |wi |q−2 for i � n, and 0 for i > n. Applying ζ to u n, we deduce
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〈ζ , u n 〉 =
〈
ζ , ∑n

1 u n
i ei

〉
= ∑n

1 |wi |q � ‖ζ ‖∗ ‖un‖p

= ‖ζ ‖∗
{
∑n

1 |wi |(q−1)p
}1/p

= ‖ζ ‖∗
{
∑n

1 |wi |q
}1/p

.

We derive from this the inequality

{
∑n

1 |wi |q
}1−1/p

=
{
∑n

1 |wi |q
}1/q

� ‖ζ ‖∗ .

Since the right side is independent of n, it follows that w belongs to � q, as claimed.

We have 〈ζ , u〉 = 〈T w, u〉 for all u ∈ �∞c , a set which is evidently dense in � p. By
the continuity of ζ and T w, we deduce ζ = T w, proving that T is onto. 
�

1.28 Exercise. Complete the argument above in the case p = 1. 
�

Dual spaces of Cartesian products are easily characterized; in a certain sense, we
can identify

(
X×Y

)∗ with X ∗×Y ∗.

1.29 Proposition. Let Z = X ×Y be the Cartesian product of two normed spaces,
where Z is equipped with one of the usual product norms. Then ζ ∈ Z ∗ if and only
if there exist ζ1 ∈ X ∗ and ζ 2 ∈ Y ∗ such that

〈ζ , (x,y)〉 = 〈ζ1 , x〉+ 〈ζ 2 , y〉, x ∈ X , y ∈ Y.

The proof is omitted, as is the proof of the next result.

1.30 Proposition. The dual of R
n is isometric to R

n: every element ζ of (Rn)∗

admits a unique u ∈ R
n such that 〈ζ , x〉 = u • x ∀x ∈ R

n. Then ‖ζ ‖∗ = |u |, and
the map ζ → u is an isometry.

Notation. The notation u • x above refers of course to the usual dot product in R
n.

Since the dual of Rn can be identified with R
n itself, we also write 〈u, x〉 (the effect

of u on x, or vice versa) for the dot product.

When the dual of a space is isometric to the space itself, as above, then to know
the dual is to know the space. But this is not the case in general, and the question
of whether the dual determines the space is a subtle one that will be taken up later.

1.31 Exercise. Let 1 � p � ∞, and let u∈ L p(Ω). Let q be the conjugate exponent
to p. Show that

〈Tu , g〉 :=
∫

Ω
u(x)g(x)dx , g ∈ Lq(Ω)

defines an element Tu in the dual of Lq(Ω), and that ‖Tu ‖Lq(Ω)∗ = ‖u‖L p(Ω) . 
�
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The characterization of the dual space of a subspace L of X is more delicate than that
of a product; describing the relationship between L∗ and X ∗ depends upon knowing
that continuous linear functionals on L can be extended continuously to X .

The following famous theorem was designed for precisely that purpose. Note that
the norm on X plays no role here for the moment.

1.32 Theorem. (Hahn-Banach extension) Let X be a vector space, and p : X → R

a function satisfying

(a) p(t x) = t p(x) ∀x ∈ X , t � 0 (positive homogeneity);

(b) p(x+ y) � p(x)+ p(y) ∀x, y ∈ X (subadditivity).

Let L be a linear subspace of X , and let λ : L → R be a linear functional such that
λ � p on L. Then there exists a linear functional Λ on X which extends λ (that is,
Λ(x) = λ (x) ∀x ∈ L) and which satisfies Λ � p on X .

Proof. The proof is based upon an application of Zorn’s lemma.3 We consider the
set P of all couples (D(h), h) where D(h) is a subspace of X which contains L,
and where h : D(h)→ R is a linear functional which extends λ and which satisfies
h � p on D(h). Note that P is nonempty, since it contains (L, λ ).

We write (D(h1), h1) � (D(h2), h2) when D(h1) ⊂ D(h2) and h2 extends h1. This
defines a partial order on P. If {(D(hα), hα )}α is a totally ordered subset of P, then
a majorant (D(h), h) for the set is obtained by setting

D(h) =
⋃

α
D(hα) , h(x) = hα(x) when x ∈ D(hα).

The reader may verify that D(h) is a subspace and that h is well defined, as a conse-
quence of the fact that the subset is totally ordered.

Thus the set P is inductive, and by Zorn’s lemma, it admits a maximal element
(D(Λ),Λ). If D(Λ) = X , then Λ is the extension we seek. To conclude the proof,
we suppose that there is a point x0 ∈ X\D(Λ), and we proceed to derive a contra-
diction.

Let D(h) be the vector subspace of X generated by D(Λ)∪{x0}; every element of
D(h) is expressible (uniquely) in the form x+ t x0 , where x ∈ D(Λ) and t ∈ R. We
define h : D(h)→ R by

h(x+ t x0) = Λ(x)+β t ,

where the scalar β remains to be determined. Whatever choice of β is made, the
mapping h extends Λ . But in order to have h � p on D(h) (so that (D(h), h) is an

3 Let Q be a subset of a partially ordered set (P,�). A majorant of Q is an element p ∈ P such
that q � p ∀q ∈ Q. The set Q is totally ordered if every pair x, y of points in Q satisfies either
x � y or y � x. P is inductive if every totally ordered subset Q of P admits a majorant. Zorn’s
lemma affirms that every (nonempty) inductive partially ordered set P admits a maximal element:
a point m such that x ∈ P, m � x implies x = m.
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element of P), we must have

Λ(x)+β t � p(x+ t x0) ∀ t ∈ R , x ∈ D(Λ).

Let t > 0. Then the inequality above can be divided by t, and (using the linearity of
Λ and the positive homogeneity of p) is seen to be equivalent to

Λ(x)+β � p(x+ x0) ∀x ∈ D(Λ),

since either x or x/t can be used to indicate a generic element of D(Λ). In other
words, the required inequality for t > 0 reduces to the case t = 1. The case t < 0 is
treated similarly, by reduction to t =−1. We summarize: to have h � p on D(h), it
is necessary and sufficient that

Λ(x)+β � p(x+ x0) ∀x ∈ D(Λ) , Λ(y)−β � p(y− x0) ∀y ∈ D(Λ).

To put this yet another way, we require that β satisfy

sup
y ∈ D(Λ)

Λ(y)− p(y− x0) � β � inf
x ∈ D(Λ)

p(x+ x0)−Λ(x).

Such a choice of β is possible if and only if

Λ(x)+Λ(y) � p(x+ x0)+ p(y− x0) ∀x, y ∈ D(Λ).

But the left side of this inequality coincides with Λ(x+ y),which is bounded above
by p(x+y), which, in turn, is bounded above by the right side (in view of the subad-
ditivity of p). Thus (D(h), h) belongs to P (for a suitable choice of β ), contradicting
the maximality of (D(Λ),Λ). 
�

1.33 Corollary. Let L be a linear subspace of the normed space X , and let λ : L→ R

be a continuous linear functional. Then there exists Λ ∈ X ∗ extending λ such that
‖Λ ‖X ∗ = ‖λ ‖L∗ .

Proof. Use the theorem with p(x) = ‖λ ‖L∗ ‖x‖. 
�

The corollary above spawns one of its own, which resolves the problem of describ-
ing the dual space of a subspace:

1.34 Corollary. Let L be a subspace of the normed space X . Then the dual space of
L consists of the restrictions to L of elements of the dual of X :

L∗ =
{
ζ L : ζ ∈ X ∗}.

1.35 Exercise. Given any x0 ∈ X , prove the existence of ζ0 ∈ X ∗ such that

‖ζ0‖∗ = ‖x0‖ , 〈ζ0 , x0〉 = ‖x0‖2.

Deduce the formula ‖x‖ = max
{
〈ζ , x〉 : ‖ζ ‖∗ � 1

}
∀x ∈ X . 
�
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1.4 Derivatives, tangents, and normals

It is a very useful technique to approximate the nonlinear by the linear. For func-
tions, this involves the use of derivatives. For sets, it is tangent and normal vectors
which are involved. We proceed to introduce these basic constructs, beginning with
the one the reader knows best.

Derivatives. Let F : X → Y be a mapping between two normed spaces. The deriva-
tive of F at a point x, when it exists, is an element F ′(x) of LC(X ,Y ) such that

lim
u→ x
x 	=u

∥
∥F(u)−F(x)−〈F ′(x) , u− x〉

∥
∥

Y

‖u− x‖X
= 0.

We say that F is differentiable at x when such a mapping F ′(x) exists; in that case, it
is unique. Differentiability4 does not depend on the choice among equivalent norms.
A function which is differentiable at x is necessarily continuous at x.

Notation: The derivative F ′(x) is also denoted DF(x) at times. If F is a function
of two variables x and u, the derivative of the function F(·,u) at x (for a given value
of u) is denoted by either DxF(x,u) or F ′

x(x,u).

We summarize below some familiar facts from differential calculus; the usual proofs
adapt without difficulty to the setting of normed spaces.

1.36 Proposition. Let X , Y, and Z be normed spaces.

(a) (Linearity) Let F and H be functions from X to Y, each differentiable at x, and
let c, k ∈ R. Then cF + k H is differentiable at x, and

(cF + k H)′(x) = cF ′(x)+ k H ′(x) .

(b) (Chain rule) Let F : X → Y be differentiable at x and let θ : Y → Z be a function
which is differentiable at F(x). Then θ ◦F is differentiable at x, and we have

(θ ◦F)′(x) = θ ′(F(x)
)
◦F ′(x).

(c) (Fermat’s rule) Let f : X → R attain a local minimum at x, a point at which f is
differentiable. Then f ′(x) = 0.

(d) (Mean value theorem) Let f : X → R be continuous at each point of the segment
[u,v ], and differentiable at each point of (u,v). Then there exists w ∈ (u,v) such
that

f (v) − f (u) = 〈 f ′(w), v−u 〉.

4 Strictly speaking, F ′(x) is known as the Fréchet derivative, to distinguish it from (surprisingly
many!) other objects of similar type.
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The function F : X → Y is said to be continuously differentiable at x if F ′(u) exists
for all u in a neighborhood of x, and if the mapping u �→ F ′(u) is continuous at x.
The continuity referred to here is that of a mapping between the normed spaces X
and LC(X ,Y ); it is equivalent to requiring

lim
u→x

∥
∥F ′(u)−F ′(x)

∥
∥

LC(X ,Y ) = 0.

Given a function F : X → Y and v ∈ X , the directional derivative of F at x in the
direction v, denoted F ′(x ;v), refers to the following limit (when it exists):

F ′(x ;v) = lim
t ↓ 0

F(x+ t v)−F(x)
t

.

Functions can admit directional derivatives even when they fail to be differentiable.
(Consider f (x) = |x | at x = 0.) Thus, the introduction of directional derivatives is
a step toward requiring less smoothness of the data. It is easy to show that if F is
differentiable at x, then F has directional derivatives at x given by

F ′(x ;v) = 〈F ′(x),v〉, v ∈ X .

Thus, in this case, the mapping v �→ F ′(x ;v) turns out to be linear; in general, it is
merely positively homogeneous:

F ′(x ; t v) = t F ′(x ;v), t > 0 .

The tangent and normal cones. Roughly speaking, it may be said that tangent
vectors to a set, at a point x in the set, correspond to “directions that stay in the
set” as one follows them from x. Normal vectors, on the other hand, correspond to
“orthogonal” directions which leave the set in an efficient way.

In the classical setting of smooth manifolds, tangent vectors form a linear subspace;
this is analogous to the derivative being a linear mapping. In contexts that are less
smooth, then, just as we replace the derivative by a (positively homogeneous) di-
rectional derivative, so it is that the tangent space is replaced by the more general
construct known as a cone. A cone K in a vector space is a nonempty set which is
stable under multiplication by a positive scalar: v ∈ K, t > 0 =⇒ t v ∈ K. Thus, a
subspace is a cone, but the converse fails; in R

2, for example, the first quadrant is a
cone. Note that a closed cone necessarily contains 0.

Let S be a subset of X . The tangent cone to S at a point x ∈ S, denoted TS(x),
consists of all points v ∈ X expressible in the form

v = lim
i→∞

xi − x
ti

,

where xi is a sequence in S converging to x, and ti is a positive sequence decreasing
to 0. The reader should note that, like the derivative of a function, the tangent cone
TS(x) is a local construct: it depends only upon the nature of the set S in a neigh-
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borhood of the point x. We remark that TS(x) is also referred to as the Bouligand
tangent cone.

1.37 Exercise. Let x be a point in S.

(a) Prove that TS(x) is a closed cone.

(b) Show that an alternate definition of tangency is provided by the following:

v ∈ TS(x) if and only if there is a sequence vi in X converging to v, and a positive
sequence ti decreasing to 0, such that x+ ti vi ∈ S ∀ i.

(c) Prove that v ∈ TS(x) if and only if liminf t ↓0 dS(x+ t v)/t = 0. (Recall that dS
refers to the distance function of S.) 
�

The normal cone NS(x) to S at x is the subset of the dual space defined by

NS(x) =
{
ζ ∈ X ∗ : 〈ζ ,v〉 � 0 ∀v ∈ TS(x)

}
.

We say that the normal cone is obtained from the tangent cone by polarity. The polar
of any subset A of X is defined and denoted as follows:

A� =
{
ζ ∈ X ∗ : 〈ζ , x〉 � 0 ∀x ∈ A

}
.

(Polarity is studied in detail in §4.3.) It is apparent from the definition that NS(x) is
a closed cone in X ∗. Note also that

x ∈ int S =⇒ TS(x) = X , NS(x) = {0}.

1.38 Exercise.

(a) Let K be a closed cone in X . Prove that TK(0) = K .

(b) Let L be a closed subspace of X . Show that, for any x ∈ L, we have

TL(x) = L and NL(x) =
{
ζ ∈ X ∗ : 〈ζ , x〉 = 0 ∀x ∈ L

}
.

(c) Let A and E be subsets of normed spaces X and Y respectively, and let (x,y)
belong to A×E . Prove that

TA×E (x,y) = TA(x)×TE(y) , NA×E (x,y) = NA(x)×NE(y). 
�

Optimization. The next result shows how the normal cone arises in expressing
Fermat’s rule in a context of constrained minimization.

1.39 Proposition. Let f : X → R be differentiable, and let f attain a minimum over
the set A at a point x. Then we have

− f ′(x) ∈ NA(x) and 〈 f ′(x),v〉 � 0 ∀v ∈ TA(x) .
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Proof. We proceed to prove the second assertion. Let v belong to TA(x). Then, ac-
cording to Exer. 1.37, there exists a sequence vi in X converging to v, and a positive
sequence ti decreasing to 0, such that, for each index i, we have x+ ti vi ∈ A. The
optimality of x implies

f (x+ tivi)− f (x) � 0 ∀ i .

Dividing this inequality across by ti and passing to the limit as i → ∞, we obtain
〈 f ′(x),v〉 � 0, which confirms the second assertion of the proposition.

The first assertion follows immediately from the second, and in fact is equivalent to
it, in view of the way NA(x) is defined through polarity with TA(x). 
�

Derivatives, tangents, and normals come together when we consider sets that are
defined by functional relations, as in the following.

1.40 Exercise. Let X and Y be normed spaces, and let S be given by

S =
{

u ∈ X : F(u) = 0
}
,

where the function F : X → Y is differentiable at a point x ∈ S. Prove that

TS(x) ⊂
{

v ∈ X : 〈F ′(x),v〉 = 0
}
, NS(x) ⊃

{
ζ = Λ◦F ′(x) : Λ ∈ Y ∗}. 
�

The following construct is frequently used in formulas such as the last one above.

Adjoint operators. Let X and Y be normed spaces and T ∈ LC(X ,Y ). It is not
difficult to see that one defines a unique element T ∗ of LC(Y ∗, X ∗) by the formula

〈 T ∗y∗, x 〉 = 〈 y∗, T x 〉, x ∈ X , y∗ ∈ Y ∗.

T ∗ is called the adjoint of the operator T . One often meets the adjoint in differential
calculus, notably in connection with the chain rule. In Prop. 1.36, the latter was
expressed in the form

(θ ◦F)′(x) = θ ′(F(x)
)
◦F ′(x).

Using the adjoint, one may write instead

(θ ◦F)′(x) = 〈F ′(x)∗, θ ′(F(x)
)
〉.

In terms of the adjoint, the second estimate in Exer. 1.40 asserts NS(x) ⊃ F ′(x)∗Y ∗.

The issue of when equality holds in such estimates is a delicate one related to im-
plicit functions; it will be studied later, together with more general cases in which
TS(x) is a cone rather than a subspace. We shall see as well that normal and tangent
cones enjoy a calculus of their own, as hinted at by the following.

1.41 Exercise. Let x ∈ S1∩ S2 , where S1 and S2 are closed subsets of X . Prove that

TS1∩S2(x) ⊂ TS1(x) ∩ TS2(x) , NS1∩S2(x) ⊃ NS1(x)+NS2(x). 
�
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Tangents and normals in Euclidean space. In R
n, the normal and tangent cones

can be thought of as living in the same space (since we identify the dual of Rn with
itself). This allows us to picture the geometry of tangent and normal cones more
intuitively.

1.42 Exercise.

(a) Find the normal cone to the interval [−1,1] ⊂ R at the point −1, and at 1.

(b) Find the normal cone to the cube [−1,1]3 ⊂ R
3 at the point (−1,0,1). 
�

The following confirms our understanding of the normal cone as consisting of di-
rections that leave the set.

1.43 Proposition. Let x ∈ S ⊂ R
n. Then TS(x) ∩ NS(x) = {0}. For any nonzero

ζ ∈ NS(x), for all r > 0 sufficiently small, we have x+ rζ /∈ S. More generally,
there exists r > 0 such that

S ∩
(

x+NS(x)
)
∩ B(x,r) = {x}.

Proof. Let v belong to both TS(x) and NS(x). Then, by definition of the normal
cone, we have v • v � 0, whence v = 0, which proves the first assertion. We now
prove the final assertion, which can easily be seen to subsume the other. We argue
by contradiction.

If the desired conclusion fails, then there is a sequence of nonzero elements ζ i in
NS(x) converging to 0 such that x+ ζ i ∈ S ∀ i. By taking a subsequence, we may
suppose that ζ i/|ζ i | converges to a unit vector ζ . Since NS(x) is a closed cone, we
have ζ ∈ NS(x). It follows from the definition of tangent cone that

ζ = lim
i→∞

(x+ζ i − x)/|ζ i | ∈ TS(x).

Then ζ ∈ TS(x)∩ NS(x), whence ζ = 0, which is the required contradiction. 
�

Manifolds. The sets S we meet in practice are sometimes defined as level sets. This
means that S consists of the points u ∈ R

n which satisfy the equation F(u) = 0, for
some given function F : Rn → R

k. The reader will have encountered the classical
case of such a set in which F is continuously differentiable, 1 � k < n, and the
following rank condition is postulated: the k×n Jacobian matrix DF(x) has maximal
rank (that is, rank k) at each point x in S. Then S is called a manifold.5 We shall
establish later (§5.4) that for manifolds, the two estimates appearing in Exer. 1.40
hold with equality. In that case, the cones TS(x) and NS(x) turn out to be orthogonal
subspaces of R

n of dimension n−k and k respectively. The former is the null space
of the matrix DF(x), while the latter is its row space.

5 We have used the same notation DF(x) for the Jacobian as for the derivative of F . This is justified
by the fact that the linear mapping from R

n to R
k which the matrix induces by matrix multiplication

(on the left) is precisely the derivative of F at x.
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1.44 Example. The following modest portfolio of examples illustrates the nature of
tangents and normals in various cases.

The first set in Fig. 1.1 below corresponds to a manifold defined as above, where

n = 2 , k = 1, F(x,y) = x2 + y2 −1.

Thus, S is the unit circle here. As indicated, the tangent space at the point (1,0) is
the y-axis (so to speak), and the normal space is its orthogonal complement, namely
the x-axis.

The second set in Fig. 1.1 is also smooth, but it is defined now by an inequality
x2 + y2 − 1 � 0; that is, S is the unit disc. This is an instance of a manifold with
boundary, and its tangent cone at (1,0) is the halfspace {(x,y) : x � 0}. The normal
cone is the single ray consisting of the positive x-axis.

Fig. 1.1
The unit circle, the unit disc, their tangent and normal cones at (1,0).

In Fig. 1.2, the reader finds two examples of nonsmooth sets. In (a), S is the first
quadrant. This is already a closed cone, so it coincides with its tangent cone at
(0,0). Applying polarity, we find that the normal cone at (0,0) is given by the third
quadrant.

The first set S in Fig. 1.2 is convex, an important class of sets whose acquaintance
the reader is just about to make. We shall see later that a direct definition of normal
cone (without reference to tangents) can be given for convex sets.



1.4 Derivatives, tangents, and normals 25

Fig. 1.2
The first quadrant, the closure of its complement, their tangent and normal cones at (0,0).

The set in Fig. 1.2 (b), on the other hand, is neither smooth nor convex (it is the
closure of the complement of the first quadrant). Once again, its tangent cone at the
origin is the set itself. The normal cone, however, reduces here to {0}; we say then
that it is trivial. We know that the normal cone always contains 0, from the way it is
defined. 
�



Chapter 2

Convex sets and functions

The class of convex sets plays a central role in functional analysis. The reader may
already know that a subset C of the vector space X is said to be convex if the fol-
lowing implication holds:

t ∈ (0,1) , x, y ∈ C =⇒ (1− t)x+ t y ∈ C .

Thus, a convex set is one that always contains the segment between any two of its
points. When X is a normed space, as we assume in this chapter, the triangle inequal-
ity implies that open or closed balls are convex; the complement of a ball fails to be
convex. A moment’s thought confirms as well that convex sets share an important
property of closed sets: an arbitrary intersection of convex sets is convex.

As we shall see, the possibility of separating two disjoint convex sets by a hyper-
plane is a fundamental issue. The celebrated Hahn-Banach theorem, that bears on
this point, is perhaps the single most useful tool in the classical theory. We shall also
meet convex functions in this chapter. These counterparts of convex sets turn out to
be equally important to us later on.

2.1 Properties of convex sets

A convex combination of finitely many points x1, x2 , . . . , xm in X (m � 2) means
any element x of the form

x =
m

∑
i=1

ti x i ,

where the coefficients ti of the convex combination are nonnegative numbers sum-
ming to one: ti � 0 and ∑m

i=1 ti = 1.

2.1 Exercise. The set C is convex if and only if any convex combination of points
in C belongs to C. 
�
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The following facts are essential, not surprising, yet tricky to prove if one doesn’t
go about it just right.

2.2 Theorem. Let C be a convex subset of the normed space X . Then

(a) C is convex;

(b) x ∈ C , y ∈ C◦ =⇒ (x,y ] ⊂ C◦;

(c) C◦ is convex;

(d) C◦ 	= /0 =⇒ C = C◦ and C◦ =
(

C
)◦.

Proof. Let x, y ∈ C and 0 < t < 1. In order to prove that the point (1− t)x+ t y
lies in C (thus proving (a)), we must show that, given any neighborhood U of 0, the
set (1− t)x+ t y+U meets C (that is, has nonempty intersection with C). Let V be
a neighborhood of 0 such that (1− t)V + tV ⊂ U . Then we have

(1− t)x+ t y+U ⊃ (1− t)(x+V )+ t (y+V ).

But x+V and y+V both meet C, since x and y belong to C . Because C is convex,
we obtain the desired conclusion.

We turn now to (b). Let 0 < t < 1; we wish to show that (1−t)x+t y ∈ C◦. There is
a neighborhood V of 0 satisfying y+V +V ⊂ C. Furthermore, x− tV/(1− t) meets
C , so there exist v ∈ V, c ∈ C such that x = c+ t v/(1− t). We then find

(1− t)x+ t y+ tV = (1− t)c+ t (y+ v+V ) ⊂ (1− t)c+ tC ⊂ C ,

in light of the convexity of C. Since tV is a neighborhood of 0, the conclusion
follows.

The reader will observe that part (c) of the theorem follows immediately from (b).
We turn then to (d). Let y be a point in C◦, and x ∈ C . By part (b), we have the con-
tainment (x,y ] ⊂ C◦; this implies x ∈ C◦ . The inclusion C ⊃ C◦ being evident,
the first assertion follows. To prove the other, it suffices to show that

x ∈
(

C
)◦

=⇒ x ∈ C◦.

If x belongs to the set on the left, there is a neighborhood V of 0 such that x+V ⊂ C ,
whence, by part (b), we have

(1− t)(x+V )+ t y ⊂ C◦ ∀ t ∈ (0,1].

Now for t > 0 sufficiently small, the point t(x− y)/(1− t) belongs to V . For such a
value of t, we deduce

x = (1− t)
(

x+
t (x− y)

1− t

)
+ t y ∈ (1− t)(x+V )+ t y ⊂ C◦.


�
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2.3 Exercise. Show that the hypothesis C◦ 	= /0 in the last assertion of Theorem 2.2
is required for the conclusion, as well as the convexity of C. 
�

Convex envelopes. Let S be a subset of X . The convex envelope of S, denoted
co S, is the smallest convex subset of X containing S. This definition is meaningful,
since there is at least one convex set containing S (the space X itself), and since the
intersection of convex sets is convex; thus, co S is the intersection of all convex sets
containing S. The convex envelope of S can also be described as the set of all convex
combinations generated by S:

2.4 Exercise. Show that

co S =
{
∑m

i=1 ti x i : m � 1, xi ∈ S , ti � 0, ∑m
i=1 ti = 1

}
,

and deduce that co(S1 +S2) ⊂ co S1 + co S2 . 
�

The closed convex envelope of S is the smallest closed convex set containing S. It is
denoted by co S. Clearly, it corresponds to the intersection of all closed convex sets
containing S.

2.5 Exercise. Prove that co S = cl(co S). 
�

The characterization of co S given in Exer. 2.4 involves arbitrarily large integers m.
In finite dimensions, however, this can be improved upon:

2.6 Proposition. (Carathéodory’s theorem) Let S be a subset of a normed space
X of finite dimension n. Let x ∈ co S. Then there is a subset A of S containing at
most n+1 points such that x is a convex combination of the points of A.

Proof. Let x = ∑ k
0 ti x i be a convex combination of k+1 elements of S for k > n.

We proceed to show that x is, in fact, the convex combination of k of these elements,
which implies the result.

We may suppose ti > 0, 0 � i � k, for otherwise there is nothing to prove. The
vectors xi − x0 (1 � i � k) are linearly dependent in X , since k > n. There exist,
therefore, scalars ri (1 � i � k), not all zero, such that ∑ k

1 ri (xi − x0) = 0. Now
define r0 = −∑ k

1 ri . Then we have ∑ k
0 ri = 0, ∑ k

0 ri xi = 0. We pick an index j
for which ri/ti is maximized:

ri/ti � r j/t j , i = 0, 1, . . . , k .

Then r j > 0 (since the ri are not all zero and sum to zero). We proceed to set

ci = ti − ri t j/r j , 0 � i � k .

We then find ci � 0, ∑ k
0 ci = 1, x = ∑ k

0 ci xi as well as c j = 0, which expresses
x in the required way. 
�
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2.7 Exercise. In R
2, let S consist of the points (x,y) on the unit circle that lie in the

first quadrant, together with the points (−1,0) and (0,−1). Certain points in co S
can be expressed as a convex combination of two points in S; others require three.
Which points require three? 
�

2.8 Exercise. Let S be a compact subset of Rn. Prove that co S is compact. 
�

When the underlying set is convex, the tangents and normals that we met in §1.4
admit alternate characterizations, as we now see. The reader may wish to ponder
these in connection with the two of the four sets in Figures 1.1 and 1.2 (pp. 24–25)
that are convex.

2.9 Proposition. Let S be a convex set in X , and let x ∈ S. Then TS(x) is convex,
S ⊂ x + TS(x), and we have

TS(x) = cl
{ u− x

t
: t > 0, u ∈ S

}
, NS(x) =

{
ζ ∈ X ∗ : 〈ζ , u− x〉 � 0 ∀u ∈ S

}
.

Proof. First, we call upon the reader to show (with the help of Theorem 2.2) that
the following set W is convex:

cl
{ u− x

t
: t > 0 , u ∈ S

}
.

It is clear from the definition of tangent vector that TS(x)⊂ W . To prove the opposite
inclusion, it suffices to show that any vector of the form v = (u−x)/t , where u is in
S and t > 0, belongs to TS(x), since the latter is closed. We do this now.

Let ε i be a positive sequence decreasing to 0. Then, for i sufficiently large, the point
xi = x+ ε i(u− x) belongs to S, since S is convex. For such i, we have v equal to
(xi − x)/(tε i). This (constant) sequence converges to v, which makes it clear that
v∈ TS(x) by definition of the tangent cone. The characterization of TS(x) is therefore
proved; clearly, it implies S ⊂ x + TS(x). Finally, since the normal cone is defined
by polarity with respect to the tangent cone, the stated expression for NS(x) is a
direct consequence of that characterization as well. 
�

2.2 Extended-valued functions, semicontinuity

It will be very useful for later purposes to consider functions with values in the
extended reals; that is, functions f : X →R∪{+∞}. The reader is not to suppose by
this that we are slipping into informality; the idea is to accommodate such extended-
valued functions without lowering our customary standards of rigor.
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Notation and terminology: we denote R∪{+∞} by R∞ . The effective domain of
an extended-valued function f , denoted dom f , is the set

dom f =
{

x ∈ X : f (x)< ∞
}
.

The function f is called proper when dom f 	= /0. The epigraph of f is the set of
points on or above the graph:

epi f =
{
(x,r) ∈ X×R : f (x) � r

}
.

The following two types of extended-valued functions play an important role.

2.10 Definition. Let Σ be a nonempty subset of X ∗. The support function of Σ is
the mapping HΣ : X → R∞ defined by

HΣ (x) = sup
σ ∈Σ

〈σ , x〉, x ∈ X .

Let S be a subset of X . Its indicator function IS : X → R∞ is the function which
has value 0 on S and +∞ elsewhere.

It is unreasonable to ask of such functions that they be continuous. A more appropri-
ate regularity property for these and other extended-valued functions that we shall
encounter, is the following. We state it in an arbitrary topological space.

2.11 Definition. Let E be a set endowed with a topology. A function f : E → R∞
is said to be lower semicontinuous (abbreviated lsc) if, for all c ∈ R, the sublevel
set {u ∈ E : f (u) � c} is closed.

It is clear that the product of an lsc function f by a positive scalar is lsc. A lower
semicontinuous function is locally bounded below, as follows:

2.12 Proposition. Let f : E → R∞ be lsc. If x ∈ dom f , then for any ε > 0, there
is a neighborhood V of x such that f (u)> f (x)− ε ∀u ∈ V . If f (x) = ∞, then for
any M ∈ R, there is a neighborhood V of x such that f (u)> M ∀u ∈ V .

We omit the elementary proof of this, as well as of the following.

2.13 Proposition.

(a) A positive linear combination of lsc functions is lsc.

(b) A function f : E → R∞ is lsc if and only if epi f is closed in E ×R.

(c) The upper envelope of a family of lsc functions is lsc : if fα is lsc for each index
α , then the function f defined by f (x) = supα fα(x) is lsc.
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A function f such that − f is lower semicontinuous is called upper semicontinuous.
Because we choose to emphasize minimization and convexity (rather than maxi-
mization and concavity), this property will play a lesser role.

Lower semicontinuity is a suitable replacement for continuity in Weierstrass’s cele-
brated result concerning the existence of a minimum:

2.14 Exercise. Let E be a compact topological space and let f : E →R∞ be a proper
lsc function. Prove that infE f is finite, and that f attains its minimum on E. 
�

If f is lsc, and if xi is a sequence in E converging to x, then it follows easily that
f (x) � liminf i→∞ f (xi). In a metric setting, lower semicontinuity can be charac-
terized in such sequential terms:

2.15 Proposition. Let E be a metric space, and f : E → R∞. Then f is lsc if and
only if for every x ∈ E and � ∈ R we have

lim
i→∞

xi = x, lim
i→∞

f (xi) � � =⇒ f (x) � � .

2.3 Convex functions

The convexity of functions is destined to play an important role in later develop-
ments. The reader may as well see the definition immediately. Let f : X → R∞ be a
given extended-valued function. We say that f is convex if it satisfies

f
(
(1− t)x+ t y

)
� (1− t) f (x)+ t f (y), x, y ∈ X , t ∈ (0,1).

In the inequality (and always in future), we interpret t×∞ as ∞ for t > 0. We seek to
avoid the indeterminate expression 0×∞ ; this is why t = 0 and t = 1 were excluded
above. With this convention in mind, and by iterating, it follows that f is convex if
and only if

f
(
∑m

i=1 ti x i

)
� ∑m

i=1 ti f (xi)

for every convex combination of points xi ∈ X , m � 2, ti � 0, ∑m
i=1 ti = 1.

A function g is called concave when the function −g is convex.1

2.16 Exercise. Let Y be a vector space, Λ ∈ L(X ,Y ), and y a point in Y . If the
function g : Y → R∞ is convex, then the function f (x) = g(Λ x+ y) is convex. 
�

1 Although X is a normed space throughout this chapter, it is clear that these basic definitions
require only that X be a vector space.
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2.17 Exercise. Let f : X → R∞ be positively homogeneous and subadditive. Prove
that f is convex.2 
�

2.18 Exercise. Let Σ be a nonempty subset of X ∗, and S a subset of X .

(a) The support function HΣ (see Def. 2.10) is positively homogeneous and subad-
ditive (and therefore, convex), as well as proper and lsc.

(b) The indicator function IS is convex if and only if S is convex, lsc if and only if S
is closed, and proper if and only if S is nonempty. 
�

On occasion it is useful to restrict attention to the values of f on a specified convex
subset U of X . We say that f is convex on U if

f
(
(1− t)x+ t y

)
� (1− t) f (x)+ t f (y), x, y ∈ U , t ∈ (0,1).

It is clear that f is convex on U if and only if the function f +IU (that is, the function
which coincides with f on U and which equals ∞ elsewhere) is convex.

We leave as an exercise the proof of the following.

2.19 Proposition. Let f : X → R∞ be an extended-valued function. Then f is
convex if and only if, for every segment [x,y ] in X , the function g defined by
g(t) = f ((1− t)x+ t y) is convex on (0,1).

The class of convex functions is closed under certain operations, in rather similar
fashion to lower semicontinuous ones (see Prop. 2.13):

2.20 Proposition.

(a) A positive linear combination of convex functions is convex.

(b) A function f : E → R∞ is convex if and only if epi f is a convex subset of E ×R.

(c) The upper envelope of a family of convex functions is convex.

Proof. We prove only the last assertion. Let the function f be defined as

f (x) = sup
α

fα(x),

where, for each α , the function fα : X → R∞ is convex. Let x, y ∈ X , t ∈ (0,1) be
given. Then

f
(
(1− t)x+ t y

)
= sup

α
fα
(
(1− t)x+ t y

)
� sup

α

{
(1− t) fα(x)+ t fα(y)

}

� (1− t) sup
α

fα(x)+ t sup
α

fα(y) = (1− t) f (x)+ t f (y). 
�

2 We say that f is positively homogeneous if f (t x) = t f (x) whenever t is a positive scalar. Subad-
ditivity is the property f (x+ y) � f (x)+ f (y).
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2.21 Exercise. If h : Rn → R is convex, and if θ : R→ R is convex and increasing,
prove that the function f (x) = θ(h(x)) is convex. 
�

In the course of events, the reader will come to recognize the following recurrent
theme: a convex function automatically benefits from a certain regularity, just be-
cause it is convex. Here is a first result of this type.

2.22 Proposition. Let f : X → R∞ be convex, and x ∈ dom f . Then the directional
derivative f ′(x ;v) exists for every v ∈ X , with values in [−∞,+∞ ], and we have

f ′(x ;v) = inf
t > 0

f (x+ t v)− f (x)
t

.

Proof. It suffices to show that the function g(t) = ( f (x+ t v)− f (x))/t is nonde-
creasing on the domain t > 0. Simply regrouping terms shows that, for 0 < s < t ,
we have

g(s) � g(t) ⇐⇒ f (x+ sv) � (s/t) f (x+ t v)+
(
1− (s/t)

)
f (x).

But this last inequality holds because f is convex. 
�

2.23 Example. The function f : R→ R∞ given by

f (x) =

{
−
√

1− x 2 if |x | � 1

+∞ if |x | > 1

is convex, with dom f = [−1,1]. We find f ′(1;−1) = −∞ and f ′(1;1) = +∞.
Note that the derivative of f exists in the interior of dom f , but becomes unbounded
as one approaches the boundary of dom f . 
�

2.24 Exercise. Let f : X → R∞ be convex. Prove the following assertions.

(a) f attains a minimum at x ∈ dom f if and only if f ′(x ;v) � 0 ∀v ∈ X .

(b) A finite local minimum of f is a global minimum. 
�

The necessary condition for a minimum expressed in Prop. 1.39 becomes a sufficient
condition for optimality when the data are convex, as we now see.

2.25 Proposition. Let f : X → R be convex and differentiable, and let A ⊂ X be
convex. The point x ∈ A minimizes f over A if and only if − f ′(x) ∈ NA(x).

Proof. We know the necessity of the condition − f ′(x) ∈ NA(x) from Prop. 1.39;
there remains to prove that this is a sufficient condition for x to be a solution of the
optimization problem minA f (when f and A are convex).
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Let u be any point in A. Then v := u−x belongs to TA(x), by Prop. 2.9, and we have
(by Prop. 2.22)

f (u)− f (x) = f (x+ v)− f (x) � 〈 f ′(x),v〉.

This last term is nonnegative, since − f ′(x) ∈ NA(x), and since the normal cone is
the polar of the tangent cone; it follows that f (u) � f (x). 
�

Criteria for convexity. The following first and second order conditions given in
terms of derivatives are useful for recognizing the convexity of a function.

2.26 Theorem. Let U be an open convex set in X , and let f : U → R be a function
which is differentiable at each point of U .

(a) f is convex on U if and only if

f (y)− f (x) �
〈

f ′(x), y− x 〉, x, y ∈ U. (∗)

(b) If in addition f is twice continuously differentiable in U , then f is convex on U
if and only if f ′′(x) is positive semidefinite for every x ∈ U .

Proof.

(a) Fix any two points x, y ∈ U . If f is convex, then

〈
f ′(x), y− x 〉 = f ′(x ; y− x) �

f
(
x+(y− x)

)
− f (x)

1
,

in light of Prop. 2.22, whence (∗). Conversely, let us posit (∗). For 0 < t < 1, set
z = (1− t)x+ t y. Then z ∈ U , since U is convex. Invoking (∗) reveals

f (y)− f (z) �
〈

f ′(z), y− z 〉, f (x)− f (z) �
〈

f ′(z), x− z 〉.

We multiply these inequalities by t and 1− t respectively, and then add in order to
obtain

f
(
(1− t)x+ t y

)
� (1− t) f (x)+ t f (y) ,

which confirms the convexity of f .

(b) Let x, y be distinct points in U . Restricting f to an open segment containing x
and y, and applying Lagrange’s celebrated theorem (also known as the Taylor ex-
pansion with the Lagrange form of the remainder) on the real line, we obtain

f (y)− f (x)−〈 f ′(x), y− x〉= (1/2)〈 f ′′(z)(y− x), y− x〉 for some z ∈ (x,y).

(Note that f ′′(z) lies in LC(X ,X ∗).) If f ′′(·) is known to be positive semidefinite
everywhere on U , the right side above is nonnegative, and the convexity of f follows
from part (a) of the theorem.
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For the converse, let us assume that f is convex. Then the left side above is non-
negative, by part (a). For v ∈ X fixed, set y = x+ t v, which lies in U when t > 0 is
sufficiently small. We deduce

t 2〈 f ′′(z)v,v〉 � 0 for some z ∈ (x, x+ t v).

Dividing by t 2 and letting t ↓ 0, we arrive at 〈 f ′′(x)v,v〉 � 0. Since x ∈ U and
v ∈ X are arbitrary, it follows that f ′′(·) is positive semidefinite on U . 
�

Recall that for a C2 function f : Rn → R, the Hessian matrix refers to the n×n
symmetric matrix ∇2 f (x) defined by

∇ 2 f (x) =

[
∂ 2 f

∂xi ∂x j
(x)

]
(

i, j = 1, 2, . . . , n
)
.

It induces the quadratic form corresponding to f ′′(x). The well-known characteri-
zation of positive semidefinite matrices by means of eigenvalues leads to:

2.27 Corollary. Let U be an open convex subset of R
n, and let f : U → R be C2.

Then f is convex on U if and only if, for every x ∈ U , all the eigenvalues of the
Hessian matrix ∇2 f (x) are nonnegative.

A consequence of the corollary is that the convexity of a C2 function f on an interval
(a,b) in R is equivalent to the condition f ′′(t) � 0 ∀ t ∈ (a,b). This fact immedi-
ately implies the inequality used in the proof of Prop. 1.7, as the reader may show.
We must emphasize, however, that the convexity of a function of several variables
cannot be verified “one variable at a time.”

2.28 Exercise. Prove that each of the following three functions is convex separately
as a function of x (for each y) and as a function of y (for each x):

exp(x+ y) , exp(xy) , exp x+ exp y .

However, at least one of them fails to be convex on R
2 (that is, jointly in (x,y)).

Which ones are convex on R
2 ? 
�

2.29 Exercise. Show that x �→ ln x is concave on the set x > 0. Deduce from this
the inequality between the geometric and arithmetic means:

n√a1 ·a2 · . . . ·an � a1 +a2 + · · ·+an

n
(ai > 0) . 
�

2.30 Example. Integral functionals, which are very important to us, are naturally
extended-valued in many cases. Let Λ : [0,1]×R×R → R be continuous and
bounded below. For x ∈ X = AC[0,1], we set

f (x) =
∫ 1

0
Λ
(
t, x(t), x ′(t)

)
dt.



2.3 Convex functions 37

Under the given hypotheses, the composite function t �→ Λ(t, x(t), x ′(t)) is mea-
surable and bounded below, so that its (Lebesgue) integral is well defined, possibly
as +∞. When x is identically zero, or more generally, when x is a Lipschitz func-
tion, x ′(t) is bounded, and it follows that f (x) is finite. Thus f : X → R∞ is proper.
However, it is easy to construct an example in which x ′ is summable but unbounded
(x(t) = t1/2, say) and for which f (x) = +∞ (take Λ(t,x,v) = v2).

We claim that f is lsc. To see this, let xi be a sequence in X converging to x, with
lim i→∞ f (xi) � �. (We intend to use the criterion of Prop. 2.15.) Then x ′

i converges
in L1(0,1) to x ′, and xi(a)→ x(a). It follows easily from this that xi(t)→ x(t) for
each t. Furthermore, there is a subsequence of x ′

i (we do not relabel) that converges
almost everywhere to x ′. Then, by Fatou’s lemma, we calculate

f (x) =
∫ 1

0
Λ
(
t, x(t), x ′(t)

)
dt =

∫ 1

0
liminf

i→∞
Λ
(
t, xi(t), x ′

i (t)
)

dt

� liminf
i→∞

∫ 1

0
Λ
(
t, xi(t), x ′

i (t)
)

dt = lim
i→∞

f (xi) � � ,

whence the lower semicontinuity.

We ask the reader to show that if, for each t ∈ [0,1], the function (x,v) �→Λ(t,x,v)
is convex, then f is convex.

The integral functional f may be restricted to the subspace AC p[0,1] of AC[0,1], an
observation that has some importance when we consider calculating its directional
derivatives. Suppose that Λ is C1, and consider the case p =∞ (thus, only Lipschitz
functions x are involved). We suggest that the reader justify the formula

f ′(x ; y) =
∫ 1

0

{
Λx(t)y(t)+Λv(t)y ′(t)

}
dt ,

where Λx(t) and Λv(t) denote the partial derivatives of the function Λ evaluated at
(t, x(t), x ′(t)). (The proof involves switching a limit and an integral, a step for which
Lebesgue’s dominated convergence theorem can be invoked.) As we shall see later,
deriving the formula is considerably more delicate when 1 � p < ∞. 
�

The following functional property plays an important role in things to come.

2.31 Definition. (The Lipschitz property) Let S be a subset of X , and let Y be a
normed space. The function g : S → Y is said to be Lipschitz (of rank K, on S) if

‖g(x)−g(y)‖Y � K ‖x− y‖X ∀x, y ∈ S.

It is said to be Lipschitz near x if, for some neighborhood Vx of x and some constant
Kx , g is defined and Lipschitz on Vx of rank Kx . Finally, g is called locally Lipschitz
on an open set U ⊂ X if it is Lipschitz near x for every x ∈ U .
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It is easy to see that a linear combination of functions that are Lipschitz on S is
Lipschitz on S. Another useful fact is the following: if f : X → R is continuously
differentiable in a neighborhood of a point x, then f is Lipschitz near x; this is a
consequence of the mean value theorem.

2.32 Exercise.

(a) Let f : X → R be Lipschitz near each point x of a compact set C. Prove that f is
Lipschitz on C.

(b) Let A be a nonempty subset of X . Show that the distance function dA is Lipschitz
of rank 1 on X .

(c) Let { fα : S →R}α be a family of functions, each of which is Lipschitz of rank K
on S, such that the upper envelope f (x) = supα fα(x) is finite-valued on S. Prove
that f is Lipschitz of rank K on S. 
�

2.33 Proposition. Let S be a nonempty subset of X , and let f : S → R be Lipschitz
of rank K. Then there exists F : X → R extending f , and which is Lipschitz of rank
K on X .

Proof. The reader is asked to verify (with the help of part (c) of the preceding
exercise) that F(x) := supy∈S{ f (y)−K‖x− y‖} does the trick. 
�

It turns out that convex functions have a natural predisposition to be continuous,
even Lipschitz. This can only happen in the interior of the effective domain, of
course. But even there, something more must be postulated. This can be seen by
considering a discontinuous linear functional: it is convex, and its effective domain
is the whole space, yet it is continuous at no point. The following shows that if a
convex function f is “reasonable” at least at one point, then it is locally Lipschitz in
the interior of dom f .

2.34 Theorem. Let f : X → R∞ be a convex function which admits a nonempty
open set upon which f is bounded above. Then f is locally Lipschitz in the set
int dom f .

Proof. We require the following:

Lemma 1. Let f : X → R∞ be convex, and let C be a convex set such that, for
certain positive constants δ and N, we have | f (x)| � N ∀x ∈ C+ δB. Then f is
Lipschitz on C of rank 2N/δ .

To prove the lemma, let us fix two distinct points x and y in C. The point z defined
by z = y+δ (y− x)/‖y− x‖ belongs to C+δB, and satisfies

y =
δ

δ +‖y− x‖ x +
‖y− x‖

δ +‖y− x‖ z .
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The convexity of f yields

f (y) � δ
δ +‖y− x‖ f (x) +

‖y− x‖
δ +‖y− x‖ f (z),

which implies

f (y)− f (x) �
[

f (z)− f (x)
]
‖y− x‖

δ +‖y− x‖ � 2N
δ

‖y− x‖.

Since x and y are arbitrary points in C, this proves the lemma.

In view of Lemma 1, the theorem is now seen to follow from:

Lemma 2. Let x0 be a point such that, for certain numbers M and ε > 0, we have
f (x) � M ∀x ∈ B(x0 ,ε). Then, for any x ∈ int dom f , there exists a neighborhood
V of x and N � 0 such that | f (y)| � N ∀y ∈ V .

Without loss of generality, we prove the lemma for x0 = 0. Let x ∈ int dom f . There
exists r ∈ (0,1) such that x/r ∈ dom f . Then

V := x+(1− r)B(0,ε) = B
(

x,(1− r)ε
)

is a neighborhood of x. Every point u in this neighborhood can be expressed in the
form r(x/r)+(1−r)y for some y ∈ B(0,ε), whence (by the convexity of f )

f (u) � r f (x/r)+(1− r)M =: M ′.

Thus f is bounded above by M ′ on V . Now let y ∈ V . There exists u ∈ V such that
(y+u)/2 = x. Then we have

f (x) � (1/2) f (y)+(1/2) f (u) � (1/2) f (y)+M ′/2 ,

which reveals that, on V , f is bounded below by 2 f (x)−M ′. Since f is bounded
both below and above on V , the required conclusion follows. 
�

We remark that Theorem 2.34 is false if “bounded above” is replaced by “bounded
below.” (Consider f (x) = |Λ(x)|, whereΛ is a discontinuous linear functional.)

2.35 Corollary. If X is finite dimensional, then any convex function f : X →R∞ is
locally Lipschitz in the set int dom f .

Proof. With no loss of generality, we may take X = R
n. Let x0 be any point in

int dom f . By the theorem, it suffices to prove that f is bounded above in a neigh-
borhood V of x0. To see this, observe that, for some r > 0, we have

V := co
{

x0 ± rei
}

i ⊂ dom f ,
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where the ei (i = 1, 2, . . . , n) are the canonical basis vectors in R
n. Then, by the

convexity of f , we deduce

f (y) � M := max i
(
| f (x0 + rei)|+ | f (x0 − rei)|

)
∀y ∈ V. 
�

The gauge function. A convex set C for which int C 	= /0 is referred to as a convex
body. For such a set, when 0 ∈ intC , the (Minkowski) gauge of C is the function g
defined on X as follows:

g(x) = inf
{
λ > 0 : x ∈ λC

}
.

It is clear that g(x) � 1 if x ∈ C. We claim that g(x) � 1 if x /∈ C. For suppose the
contrary: then there exists λ ∈ (0,1) such that x/λ ∈ C. But then

x = (1−λ )0+λ (x/λ )

expresses x as a convex combination of two points in the convex set C, whence
x ∈ C, a contradiction. When x /∈ C, then, roughly speaking, g(x) is the factor by
which the set C must be dilated in order to include the point x.

It is easy to see that the gauge of the unit ball is precisely the norm. The next result
may be viewed as a generalization of this fact.

2.36 Theorem. Let C be a convex subset of the normed space X for which 0∈ intC,
and let g be its gauge. Then

(a) g has values in [0,∞).

(b) g(t x) = t g(x) ∀x ∈ X , t � 0.

(c) g(x+ y) � g(x)+g(y) ∀x, y ∈ X .

(d) g is locally Lipschitz (and hence, continuous).

(e) int C =
{

x : g(x)< 1
}
⊂ C ⊂

{
x : g(x) � 1

}
= cl C .

Proof. The first two assertions follow easily. If x/λ and y/μ belong to C, then the
identity

x+ y
λ +μ

=
λ

λ +μ
x
λ

+
μ

λ +μ
y
μ

shows that (x+ y)/(λ +μ) belongs to C. This observation yields the third assertion
(subadditivity). A function which is positively homogeneous and subadditive (as is
g) is convex. Further, we have g(x) � 1 on C. It follows from Theorem 2.34 that g
is locally Lipschitz. The final assertion is left as an exercise. 
�
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2.4 Separation of convex sets

A set of the form
{

x ∈ X : 〈ζ , x
〉
= c

}
, where 0 	= ζ ∈ X ∗ and c is a scalar, is

referred to as a hyperplane. The sets
{

x ∈ X : 〈ζ , x〉 � c
}

and
{

x ∈ X : 〈ζ , x〉 � c
}

are the associated halfspaces. Roughly speaking, we speak of two sets K1 and K2
as being separated if there is a hyperplane such that K1 is contained in one of the
associated halfspaces, and K2 in the other.

The reader may be interested to know that the next result, which is known as the
separation theorem, has often been nominated as the most important theorem in
functional analysis.

2.37 Theorem. (Hahn-Banach separation) Let K1 and K2 be nonempty, disjoint
convex subsets of the normed space X . They can be separated in the two following
cases:

(a) If K1 is open, there exist ζ ∈ X ∗ and γ ∈ R such that

〈ζ , x〉 < γ � 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 .

(b) If K1 is compact and K2 is closed, there exist ζ ∈ X ∗ and γ1, γ 2 ∈ R such that

〈ζ , x〉 < γ1 < γ 2 < 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 .

The second type of separation above is called strict.

Proof.

(a) Fix x̄ ∈ K1 and ȳ ∈ K2 , and set z = ȳ − x̄ and C = K1 −K2 + z . Then C is an
open convex set containing 0; let p be its gauge function. Since z /∈ C (because K1
and K2 are disjoint), we have p(z) � 1. We prepare an appeal to Theorem 1.32, by
defining L = Rz and λ (t z) = t . We proceed to verify the hypotheses.

If t � 0, then λ (t z) = t � t p(z) = p(t z). Consider now the case t < 0. Then
we evidently have λ (t z) = t � 0 � p(t z). Thus, we have λ � p on L. Invoking
the theorem, we deduce the existence of a linear functional ζ defined on X which
extends λ (thus, ζ is nonzero) and which satisfies ζ � p on X . In particular, we
have ζ � 1 on C (a neighborhood of 0), which implies that ζ is continuous.

Now let x ∈ K1, y ∈ K2. Then x−y+ z ∈ C. Bearing in mind that 〈ζ , z〉 and 〈λ , z〉
are equal to 1, we calculate

〈ζ , x〉−〈ζ , y〉+1 = 〈ζ , x− y+ z〉 � p(x− y+ z) < 1,
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whence 〈ζ , x〉 < 〈ζ , y〉. It follows that ζ (K1) and ζ (K2) are disjoint convex sets
in R (that is, intervals), with ζ (K1) lying to the left of ζ (K2). Furthermore, ζ (K1) is
an open interval, by the lemma below. We set γ = sup ζ (K1) to obtain the desired
conclusion.

Lemma. Let ζ be a nonzero linear functional on X , and let V be an open subset of
X . Then ζ (V ) is an open subset of R.

To prove the lemma, take any point x such that ζ (x) = 1; we may assume that V
is nonempty. Let ζ (v) (for v ∈ V ) be a point in ζ (V ). Since V is open, there exists
ε > 0 such that v+ t x ∈ V whenever | t | < ε . Then ζ (V ) contains a neighborhood
(ζ (v)− ε , ζ (v)+ ε) of ζ (v), proving the lemma.

(b) We now examine the second case of the theorem. A routine argument uses the
compactness of K1 in order to derive the existence of an open convex neighborhood
V of 0 such that K1 +V and K2 are disjoint.3 We may now apply the first case of the
theorem: there exists ζ ∈ X ∗ such that ζ (K1 +V ) is an interval lying to the left of
ζ (K2). But ζ (K1) is a compact subset of the open interval ζ (K1+V ), so that

max ζ (K1) < sup ζ
(
K1 +V

)
� inf ζ (K2).

This implies the existence of γ1,γ 2 as required. 
�

The conclusion of the separation theorem may fail if the sets K1 and K2 do not
satisfy the extra hypotheses of either the first or the second case:

2.38 Exercise. Let X = �2, and set

K1 =
{

x = (x1, x2, . . .) ∈ X : xi > 0 ∀ i
}
, K2 = �∞c

(see Example 1.6). Show that these sets are disjoint convex subsets of X , but that
there is no ζ ∈ X ∗ that satisfies 〈ζ , x〉 < 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 . 
�

The rest of this section derives some consequences of the separation theorem.

2.39 Theorem. Let X be a normed space.

(a) X ∗ separates points in X : x, y ∈ X , x 	= y =⇒ ∃ ζ ∈ X ∗ : 〈ζ , x〉 	= 〈ζ , y〉.

(b) Let L be a subspace of X . If x 	∈ L , then there exists ζ ∈ X ∗ such that 〈ζ , x〉 = 1
and ζ ≡ 0 on L. Consequently, if the following implication holds:

ζ ∈ X ∗, 〈ζ , L〉 = 0 =⇒ ζ = 0,

then L is dense in X .

Proof. Left as an exercise. 
�
3 Each x ∈ K1 admits r(x) > 0 such that B(x, 2r(x)) ⊂ X\K2 . Let {B(xi , r(xi))} be a finite sub-
covering of K1 . Then we may take V = ∩ i B◦(0, r(xi)).
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Positive linear independence. A given set of vectors {ζ i : i = 1, 2 , . . . , k} in
X ∗ is said to be positively linearly independent if the following implication holds:

∑ k
i=1 λ i ζ i = 0 , λ i � 0 =⇒ λ i = 0 ∀ i ∈ {1, 2 , . . . , k}.

This property is related to the existence of a decrease direction v for the given set:
an element v satisfying 〈ζ i ,v〉 < 0 ∀ i. This concept plays an important role in con-
strained optimization. The nonexistence of such a direction is equivalent to positive
linear dependence, as we now see.

2.40 Exercise. The goal is to prove the following:

Proposition. Let {ζ i : i = 1, 2 , . . . , k} be a finite subset in X ∗. The following are
equivalent:

(a) There is no v ∈ X such that 〈ζ i ,v〉< 0 ∀ i ∈ {1,2 , . . . , k} ;

(b) The set {ζ i : i = 1, 2 , . . . , k} is positively linearly dependent: there exists a
nonzero nonnegative vector γ ∈ R

k such that ∑k
1 γ i ζ i = 0.

Show first that (b) =⇒ (a). Now suppose that (a) holds. Why does Theorem 2.37
apply to the sets

K1 =
{

y ∈ R
k : yi < 0 ∀ i ∈ {1, 2 , . . . , k}

}
,

K2 =
{(

〈ζ1 ,v〉,〈ζ2 ,v〉, . . . ,〈ζk ,v〉
)

: v ∈ X
}

?

Use separation to deduce (b). 
�

2.41 Exercise. Let E be a vector space, and let f0 , f1, . . . , fn be linear functionals
on E. Use the separation theorem to prove that the following are equivalent:

(a) There exists (λ1 , . . . , λn) ∈ R
n such that f0 = ∑n

i=1λ i fi ;

(b) There exists M � 0 such that | f0(x)| � M max1� i�n | fi(x)| ∀x ∈ E ;

(c) x ∈ E, fi(x) = 0 ∀ i ∈ {1, . . . , n} =⇒ f0(x) = 0. 
�

Support functions redux. We defined earlier the support function HΣ of a subset
Σ of X ∗ (see Def. 2.10), a function that is defined on X . We now consider the support
function of a nonempty subset S of X . This refers to the function HS : X ∗ → R∞
defined on X ∗ by

HS(ζ ) = sup
x ∈ S

〈ζ , x〉, ζ ∈ X ∗.

The support function transforms certain inclusions into functional inequalities:

2.42 Proposition. Let C and D be nonempty subsets of X , with D closed and con-
vex. Then C ⊂ D if and only if HC � HD .
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Proof. It is clear that the inclusion implies the inequality. Let us prove the converse
by contradiction, supposing therefore that the inequality holds, but that there is a
point α ∈ C\D. We may separate the sets {α} and D according to the second case
of Theorem 2.37: there exists ζ ∈ X ∗ and scalars γ i such that

〈ζ , x〉< γ1 < γ 2 < 〈ζ ,α 〉 ∀x ∈ D.

(The order of the separation has been reversed, which simply corresponds to replac-
ing ζ by −ζ . ) But this implies HD(ζ )< HC(ζ ), a contradiction. 
�

2.43 Corollary. Closed convex subsets of X are characterized by their support
functions: two closed convex sets coincide if and only if their support functions
are equal.

2.44 Exercise. Let D be a compact convex subset of Rn and f : [a,b ]→ D a mea-
surable function. Prove that

1
b−a

∫ b

a
f (t)dt ∈ D.


�

2.45 Exercise. Let C and D be nonempty subsets of X , with D closed and convex.
Let S be a nonempty bounded subset of X . Prove that

C ⊂ D ⇐⇒ C+S ⊂ D+S.

Proceed to show that this equivalence is false in general, even in one dimension, if
S is not bounded, or if D is not closed, or if D is not convex. 
�

Separation in finite dimensions. When the underlying space X is finite dimen-
sional, the separation theorem can be refined somewhat, as we now show. Let D
be a convex subset of Rn. The geometric content of the following is that there is a
hyperplane that passes through any boundary point of D in such a way that D lies
entirely in one of the associated halfspaces. The reader is invited to observe that this
does not correspond to either of the cases treated by Theorem 2.37.

2.46 Proposition. Let D be a convex subset of R
n, and let α be a point in its bound-

ary: α ∈ ∂D. Then α ∈ ∂D, and there exists a nonzero vector ζ ∈ R
n such that

〈ζ , x−α 〉 � 0 ∀x ∈ D.

Proof. By translating, we may do the proof en français. . . non, pardon, we may
reduce to the case α = 0. We proceed to prove that 0 ∈ int D =⇒ 0 ∈ int D; this
will establish the first assertion of the proposition.

There exists r > 0 such that the points ±rei (i = 1, 2 , . . . , n) lie in D, where
the ei are the canonical basis vectors of R

n. Let these 2n points be denoted by
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x1, x2 , . . . , x2n . Then, for some δ > 0, we have 2δB ⊂ co{x j} j . For each j , let
y j be a point in D satisfying |y j − x j | < δ . Then (see Exer. 2.4)

δB+δB = 2δB ⊂ co
{

y j +(x j − y j)
}

j ⊂ co{y j} j +δB.

Since co{y j}j is compact and convex (Exer. 2.8), we deduce from this

δB ⊂ co {y j} j ⊂ D

(see Exer. 2.45). It follows that 0 ∈ int D.

We now prove the second assertion of the proposition. We have 0 ∈ ∂D, whence
there is a sequence xi of points in R

n\D converging to 0. Let yi be the closest point
in D to xi . It is clear that yi → 0.

Now set ζ i = xi − yi 	= 0, and extract a subsequence (if necessary) so that ζ i/|ζ i |
converges to a limit ζ . Fix any x ∈ D. For 0 < t < 1, the point (1− t)yi + t x be-
longs to D , since D is convex by Theorem 2.2. Since yi is closest to xi in D, we
deduce

|(1− t)yi + t x− xi | � |yi − xi |.

Squaring both sides and simplifying, we find 2t 〈ζ i , x−yi 〉− t 2|x−yi |2 � 0. This
leads to 〈ζ i , x− yi 〉 � 0, and, in the limit, to 〈ζ , x〉 � 0, as required. 
�

As a corollary, we obtain a third case that can be added to the two of the separation
theorem. Note that no openness or compactness hypotheses are made here concern-
ing the sets to be separated; it is the finite dimensionality that compensates.

2.47 Corollary. If X is finite dimensional, and if K1 and K2 are disjoint convex
subsets of X , then there exists ζ ∈ X ∗ different from 0 such that

〈ζ , x〉 � 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 .

Proof. We may take X =R
n without loss of generality. Let D = K1 −K2 , a set not

containing 0. If 0 is not in the boundary of D, then, for ε > 0 sufficiently small,
the sets K1 + εB and K2 are disjoint; the first case of Theorem 2.37 applies to this
situation, and yields the result. If, to the contrary, we have 0 ∈ ∂D, then the required
conclusion is a direct consequence of Prop. 2.46. 
�

Existence of nonzero normals. The existence of nonzero normals is closely re-
lated to separation. The reader will recall (Prop. 2.9) that when C is convex, and
when α ∈ C, the normal cone to C at α is described by

NC(α) =
{
ζ ∈ X ∗ : 〈ζ , x−α 〉 � 0 ∀x ∈ C

}
.

It follows that this normal cone is trivial (that is, reduces to {0}) when α ∈ intC. In
certain applications, the question of whether NC(α) is nontrivial for a point α in the
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boundary of C is crucial. The following result summarizes the two principal cases
in which this can be asserted directly.

2.48 Corollary. Let C be a convex subset of X , and α a point in the boundary of C.
Suppose that one of the two following conditions holds: intC 	= /0, or X is of finite
dimension. Then NC(α) 	= {0}.

Proof. Consider first the case in which X is finite dimensional. Then (for a suitable
equivalent norm) it is isometric to R

n for some positive integer n (Theorem 1.22),
via some isometry T : X → R

n. It follows that Tα ∈ ∂ (TC), so that, by Prop. 2.46,
there is a nonzero ζ ∈ NTC(Tα). The following lemma, whose simple proof is
omitted, then yields the required assertion.

Lemma. If ζ ∈ NTC(Tα), then the formula Λx = 〈ζ ,T x〉 ∀x ∈ X defines an
element Λ ∈ NC(α).

(In fact, we have Λ = T ∗ζ , where T ∗ is the adjoint of T ; see §1.4.)

Consider now the case intC 	= /0. We may then separate the open set intC (which
is convex by Theorem 2.2) from the set {α}, according to the first case of Theorem
2.37. There results an element ζ of X ∗ such that

〈ζ , x〉 < 〈ζ ,α 〉 ∀x ∈ intC.

Note that ζ is necessarily nonzero. Since C = intC (by Theorem 2.2), the preced-
ing inequality implies 〈ζ , x〉 � 〈ζ ,α 〉 ∀x ∈ C . Thus, ζ is a nonzero element of
NC(α). 
�

2.49 Exercise. The reader may feel a need to see an example of a closed convex set
admitting a boundary point at which the normal cone is trivial; we give one now.
Let X = �2, and consider

C =
{

x ∈ X : | xi | � 1/i ∀ i
}
.

Show that C is closed and convex, that 0 ∈ ∂C , and that NC(0) = {0}. 
�



Chapter 3

Weak topologies

It has been said that the existence of a minimum for an optimization problem such
as minA f may be a sensitive issue in an infinite dimensional space X , since the
compactness of A may be difficult to secure. The compactness fails, notably, when
A is the unit ball, and it is quite possible that a continuous linear functional may
not attain a minimum over BX . What if we were to change the topology on X , in an
attempt to mitigate this lack of compactness?

We would presumably want to have fewer open sets: this is called weakening the
topology. The reason behind this is simple: the fewer are the open sets in a topology,
the more likely it becomes that a given set is compact. (Fewer open sets means
there are fewer open coverings that must admit finite subcoverings.) On the other
hand, the fewer open sets there are, the harder it is for a function defined on the
space to be continuous (or lower semicontinuous), which is the other main factor in
guaranteeing existence. The tension between these two contradictory pressures, the
problem of finding the “right” topology that establishes a useful balance between
them, is one of the great themes of functional analysis. In this chapter, we study
the issue of weakening the topology (but in a way that remains consistent with the
vector space structure).

3.1 Induced topologies

Let X be a vector space, and let Φ be a vector space of linear functionals defined on
X . We require that Φ be separating: for every x 	= 0, there exists ϕ ∈ Φ such that
ϕ(x) 	= 0. We shall study the topology1 on X that is induced in a natural way by the
family Φ .

1 A topology on X is a collection of subsets of X that contains X itself and the empty set, and which
is closed under taking arbitrary unions and finite intersections. The members of the collection are
referred to as the open sets of the topology.
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Consider the subsets of X having the form

V (x,ϕ ,r) =
{

y ∈ X : |ϕ(y− x)|< r
}
, where x ∈ X , ϕ ∈ Φ , r > 0.

The collection of all such sets generates a topology on X , the weakest (smallest, least
open sets) topology on X that contains all members of the collection. We denote this
topology σ(X ,Φ).

The topology σ(X ,Φ) is evidently the weakest topology on X rendering each ele-
ment ϕ of Φ continuous, since ϕ is continuous if and only if V (x,ϕ ,r) is open for
every x ∈ X and r > 0. It is common to refer to σ(X ,Φ) as the weak topology in-
duced by Φ . The sets V (x,ϕ ,r) form a sub-base for σ(X ,Φ), which means that the
collection of finite intersections of such sets forms a base for σ(X ,Φ). This, in turn,
means that a set is open for the topology σ(X ,Φ) if and only if it can be written as
a union of sets each having the form

⋂

i∈F
V (xi,ϕ i ,ri), where F is finite, xi ∈ X , ϕ i ∈ Φ , ri > 0.

The sets V (x,ϕ ,r) generate the topology σ(X ,Φ) in this way. They play the role of
the balls in the norm topology. Note that

V (x,ϕ ,r) = x+V (0,ϕ ,r), V (0,ϕ , tr) = tV (0,ϕ ,r) (t > 0).

It follows from this that when U is an open set in σ(X ,Φ), then x+U and tU (for
t 	= 0) are open as well. This allows us to say, for example, that if xi → x in the
topology σ(X ,Φ), then xi −x → 0. Thus, the topology σ(X ,Φ) is compatible with
the vector space operations, as was the norm topology.

The following summarizes what we need to know about σ(X ,Φ).

3.1 Theorem. (The induced topology)

(a) The subsets of the form
⋂

i∈F
V (0,ϕ i ,r)

(
r > 0, ϕ i ∈Φ , F finite

)

are open neighborhoods of 0 in σ(X ,Φ) which form a local base at 0: every
neighborhood of 0 in the topology σ(X ,Φ) contains such a set.

(b) The topology σ(X ,Φ) is Hausdorff, and (for the relevant product topologies)
renders the mappings (x,u) �→ x+u and (t,x) �→ t x continuous. The operations
of translation and dilation preserve open sets:

U ∈ σ(X ,Φ), x ∈ X , t 	= 0 =⇒ U + x ∈ σ(X ,Φ) and tU ∈ σ(X ,Φ).

The sets of the form
⋂

i∈F
V (x,ϕ i ,r)

(
r > 0, ϕ i ∈Φ , F finite

)
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constitute a base of open sets at x.

(c) A linear functional is continuous on the topological space (X ,σ(X ,Φ)) if and
only if it belongs to Φ .

(d) A sequence xi in X converges in the topology σ(X ,Φ) to a limit x if and only if
the sequence ϕ(xi) converges to ϕ(x) (in R) for every ϕ ∈ Φ .

(e) If Z is a topological space, then the mapping ψ : Z → (X ,σ(X ,Φ)) is continuous
if and only if the mapping ϕ ◦ψ : Z → R is continuous for each ϕ ∈ Φ .

Proof.

(a) The assertion amounts to showing that any set of the form
⋂

i∈F V (xi,ϕ i ,ri),
when it contains 0, also contains a set of the form

⋂
i∈F V (0,ϕ i ,r) for r > 0 suffi-

ciently small. We have by hypothesis |ϕ i(xi)| < ri for each i; it suffices to choose
r < min i∈F {ri −|ϕ i(xi)|}.

(b) We show that σ(X ,Φ) is Hausdorff. Let x, z be distinct points in X . Since Φ
is separating, there exists ϕ ∈ Φ such that ϕ(x− z) 	= 0. It follows that, for r > 0
sufficiently small, V (x,ϕ ,r) and V (z,ϕ ,r) are disjoint neighborhoods of x and z
respectively.

We now verify the continuity of (x,u) �→ x + u at (0,0), for illustrative pur-
poses. Let W be any neighborhood of 0 in the topology σ(X ,Φ). It contains a
set of the form V =

⋂
i∈F V (0,ϕ i,r), by the above. If x,u belong to the open set⋂

i∈F V (0,ϕ i ,r/2), we then have x+ u ∈ V ⊂ W , confirming the continuity. The
remaining assertions of part (b) are left as exercises.

(c) The elements of Φ are continuous for the topology σ(X ,Φ) by construction.
Now let f0 be a linear functional that is continuous for σ(X ,Φ). It follows that f0 is
bounded on a set of the form V =

⋂
i∈F V (0,ϕ i ,r). Then, for some M > 0,

x ∈ X , ϕ i(x) = 0 ∀ i ∈ F =⇒ | f0(x)| � M.

But when this holds, we actually have

x ∈ X , ϕ i(x) = 0 ∀ i ∈ F =⇒ f0(x) = 0,

since x can be replaced by t x for any t ∈ R. Then, by Exer. 2.41, f0 is a linear combi-
nation of the ϕ i , i∈ F . SinceΦ is a vector space, we find f0 ∈Φ , as claimed.

(d) It is clear that xi → x implies ϕ(xi)→ ϕ(x), since each ϕ ∈ Φ is continuous.
Now let xi be a sequence such that ϕ(xi) converges to ϕ(x) for each ϕ ∈ Φ . Let W
be any neighborhood of x ; it contains a set of the form V =

⋂
j∈F V (x,ϕ j,r). For

each j ∈ F , there exists Nj such that

i � Nj =⇒ |ϕ j(xi − x)| < r.

Let us now set N = max j∈F Nj. Then it follows that
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i � N =⇒ xi ∈
⋂

j∈F
V (x,ϕ j,r) ⊂ W,

confirming that xi → x for the topology σ(X ,Φ).

(e) Left as an exercise. 
�

Separation for the induced topology. The separation theorem 2.37, which plays
such a central role in normed spaces, may be extended to the induced topology. As
before, Φ is taken to be a separating vector space of linear functionals defined on
the vector space X .

3.2 Theorem. Let K1 and K2 be nonempty disjoint convex subsets of X .

(a) If K1 is open for the topology σ(X ,Φ), there exist ζ ∈ Φ and γ ∈ R such that

〈ζ , x〉 < γ � 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 .

(b) If K1 is compact and K2 is closed for the topology σ(X ,Φ), there exist ζ ∈ Φ
and γ 1, γ 2 ∈ R such that

〈ζ , x〉 < γ1 < γ 2 < 〈ζ , y〉 ∀x ∈ K1, y ∈ K2 .

Proof. It is a matter of adapting the proof of Theorem 2.37. As before, we consider
first the case in which K1 is open. Fix x̄ ∈ K1 and ȳ ∈ K2 , and set

z = ȳ − x̄ , C = K1 −K2 + z .

Then C is convex, open for the topology σ(X ,Φ), and contains 0; let p be its gauge.
The point z does not belong to C , since K1 and K2 are disjoint; therefore, we have
p(z)� 1. Arguing as before, we proceed to invoke Theorem 1.32 with L = Rz and
λ (t z) = t. We deduce the existence of a linear functional ζ which extends λ and
which satisfies Λ � p on X . In particular, we have ζ � 1 on C .

Lemma. ζ is continuous for the topology σ(X ,Φ).

We observe that ζ �−1 on −C , whence |ζ | � 1 on the set W :=−C ∩ C , which
is open for σ(X ,Φ). Then, for any ε > 0, we have |ζ (εW )| � ε , which implies the
continuity at 0, and hence everywhere, of the linear functional ζ for the topology
σ(X ,Φ). This proves the lemma.

Part (c) of Theorem 3.1 reveals that ζ ∈ Φ . It follows as before that ζ (K1) and
ζ (K2) are intervals, with ζ (K1) lying to the left of ζ (K2), and that ζ (K1) is open;
we conclude by setting γ = supΛ(K1).

The reduction of the second case of the theorem to the first is carried out essentially
as it was in the proof of Theorem 2.37; we omit the details. 
�
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3.2 The weak topology of a normed space

An important case of the general scheme described above occurs when X is a
normed space and Φ = X ∗. Note that X ∗ is separating, by Theorem 2.39. The result-
ing topology, designated σ(X ,X ∗), is referred to as the weak topology of X.

The weak topology of X is certainly contained in the original norm topology, since
the norm topology renders each ϕ ∈ X ∗ continuous, and since σ(X ,X ∗) is the weak-
est topology having that property. For that reason, the original norm topology is
referred to as the strong topology of X ; we denote it by σ(X ,‖ · ‖X).

3.3 Proposition. Let X be finite dimensional. Then the weak topology on X coin-
cides with the strong topology.

Proof. It is enough to show that a ball B(0,r) contains a weak neighborhood of 0,
for this implies that every strongly open set is weakly open. For some n, there is an
isometry T : X →R

n. Then T B(0,r) is a neighborhood of 0 in R
n, and so contains a

set of the form {u ∈ R
n : |ei • u |< ε ∀ i}, where ε > 0 and the ei are the canonical

basis vectors in R
n. It follows that B(0,r) contains the set

{x ∈ X : |ei • T x |< ε ∀ i}.

But this set contains 0 and is weakly open, since the map x �→ ei • T x defines a
continuous linear functional on X . 
�

The reader will quite rightly conclude from the above that, in finite dimensions,
introducing the weak topology has not changed a thing. In the infinite dimensional
case, however, the weak topology is always strictly weaker than the strong, as the
next result shows.

3.4 Proposition. Let X be a normed space of infinite dimension. Then every weak
neighborhood of 0 contains a nontrivial subspace of X , and the weak topology is
strictly contained in the strong topology.

Proof. Let W be a weak neighborhood of 0. Then W contains a set of the form⋂n
i=1 V (0,ϕ i ,r). Now the linear map

x → ϕ(x) =
(
〈ϕ1, x〉,〈ϕ 2 , x〉, . . . ,〈ϕn , x〉

)
∈ R

n

cannot be injective, for otherwise X would be isomorphic as a vector space to the
subspace ϕ(X) of R

n, whence dim X � n. Thus, there exists x0 	= 0 such that
ϕ(x0) = 0. But then W contains the subspace Rx0 . Since the unit ball cannot con-
tain a nontrivial subspace, it follows that it is not a weak neighborhood of 0, and
that the weak topology is strictly weaker than the strong. 
�
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3.5 Example. When one weakens a topology, one makes it more likely that a given
sequence will be convergent. One expects, therefore, to find (in infinite dimensions)
sequences that converge weakly and not strongly. We illustrate this now.

Let 1 < p < ∞, and let ei be the element of � p whose every term is 0 except for
the i-th, which equals 1. Note that ‖ei ‖� p = 1, so certainly, the sequence ei does
not converge to 0 in the norm topology. We claim that ei converges weakly to 0,
however.

In view of part (d) of Theorem 3.1, we may prove this by showing that 〈ζ , ei 〉 → 0
for any ζ ∈ (� p)∗. Setting q = p∗ , we know from Example 1.27 that ζ may be
identified with an element (ζ1,ζ2 , . . .) ∈ �q, and we have 〈ζ , ei 〉= ζ i . But clearly
ζ i → 0, since ∑ i�1 |ζ i |q < ∞. 
�

There is one thing that the strong and weak topologies do agree on, and that is the
following: which convex sets are closed?

3.6 Theorem. Let C be a convex subset of X . Then the weak closure of C coincides
with the strong closure of C. In particular, a convex subset of X is strongly closed if
and only if it is weakly closed.

Proof. Let Fs be the collection of all strongly closed sets A containing C. Then
the closure of C with respect to the strong topology, denoted cls C , coincides with⋂

A∈Fs A. Similarly, the closure of C with respect to the weak topology, denoted
clw C , coincides with

⋂
A∈Fw A, where Fw is the collection of all weakly closed sets

A containing C . Since a weakly closed set is strongly closed (this is clear from
considering its complement), we have Fw ⊂ Fs , whence cls C ⊂ clw C .

To prove the opposite inclusion, we suppose that there is a point x ∈ clw C\cls C ,
and we derive a contradiction. By the separation theorem 2.37, there exist ζ ∈ X ∗,
γ ∈ R such that

〈ζ , x〉 < γ < 〈ζ , y〉 ∀y ∈ cls C.

It follows that x does not belong to the set S = ζ−1[γ ,∞). But S is weakly closed,
since ζ is weakly continuous, and contains C. We deduce that x /∈ clw C , a contra-
diction which completes the proof. 
�

3.7 Corollary. Let f : X → R∞ be a convex function. Then f is lsc if and only if f
is weakly lsc (that is, lsc relative to the weak topology).

Proof. The weak topology for X×R is just the product topology σ(X ,X ∗)×τ ,
where τ denotes the usual topology on R. The strong topology for X×R is the
product topology σ(X ,‖ · ‖X)×τ . The lower semicontinuity of f on a topological
space (X ,σ) is equivalent to epi f being closed for the product topology σ×τ . But
epi f is a convex set when f is a convex function. Consequently, weak and strong
lower semicontinuity coincide in this case, by the theorem. 
�
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3.8 Exercise. If xn → x strongly, then ‖x‖ = limn→∞ ‖xn‖. If xn → x weakly,
then ‖x‖ � liminfn→∞ ‖xn‖. (Note: Example 3.5 describes a case in which strict
inequality holds.) 
�

The strong and weak topologies definitely disagree when it comes to the closure of
sets which are not convex, as the following illustrates.

3.9 Example. Let X be an infinite dimensional normed space. Then the weak clo-
sure of the unit sphere in X is the closed unit ball.

The unit ball B is a weakly closed set, by Theorem 3.6, and it contains the unit sphere
S. It is clear, then, that B contains the weak closure of S. To obtain the opposite
inclusion, it suffices to prove that for any x ∈ B, for any weak neighborhood V of x,
we have V ∩ S 	= /0. We may suppose in so doing that V is of the canonical form

{
u ∈ X : | 〈ζ i ,u− x〉|< r ∀ i ∈ F

}
,

where {ζ i : i ∈ F } is a finite collection in X ∗ and r > 0. Arguing as we did in the
proof of Prop. 3.4, we see that the infinite dimensionality of X implies the existence
of x0 	= 0 such that 〈ζ i , x0 〉= 0 ∀ i ∈ F . Then, for every λ ∈ R, the point x+λ x0
belongs to V . The function g(λ ) := λ �→ ‖x+λ x0‖ is continuous, with g(0) � 1
and limλ→∞ g(λ ) = ∞. It follows that, for some λ � 0, we have ‖x+λ x0‖ = 1;
then x+λ x0 ∈ V ∩ S. 
�

3.10 Exercise. (Mazur’s theorem) Let xi be a sequence in X which converges
weakly to x. We set

C = co
{

xi : i = 1, 2 . . .
}
,

the convex hull of the set {xi : i � 1}. Prove the existence of a sequence yi in C
such that ‖yi − x‖X → 0. (Thus, there is a sequence of convex combinations of the
terms xi of the sequence that converges strongly to x.) 
�

We follow the usual practice in which a topological property on a normed space X ,
in the absence of any qualifier, is understood to be relative to the strong topology;
thus “a closed set” means a strongly closed set.

3.3 The weak∗ topology

Another important special case of the general scheme studied in Theorem 3.1 arises
when we take X = Y ∗, where Y is a normed space, and where we take Φ to be the
collection of all evaluations ey at a point y ∈ Y :

ey(x) = x(y) , x ∈ X = Y ∗.
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Note that Φ is indeed a separating vector space of linear functionals on X , as re-
quired. The resulting topology on Y ∗ is called the weak∗ topology of Y ∗, and is
denoted by σ(Y ∗, Y ). (Note: weak∗ is usually pronounced “weak star.”)

A sequence ζ j in Y ∗ converges to a limit ζ in the topology σ(Y ∗, Y ) if and only if,
for each y ∈ Y , the sequence of reals 〈ζ j, y〉 converges to 〈ζ , y〉 for each y (this
follows from Theorem 3.1 (d)). For this reason, the weak∗ topology is sometimes
called the topology of pointwise convergence.

3.11 Example. Let ζ j be the element of �∞ whose first j terms are 0, and whose
terms are all equal to 1 thereafter. Evidently, the sequence ζ j does not converge to
0, since ‖ζ j ‖= 1 ∀ j . We claim that the sequence ζ j converges in the weak∗ sense
to 0. Note a convention here: strictly speaking, this assertion requires that �∞ be
itself a dual space, whereas we only know it to be isometric to the dual space

(
�1
)∗;

however, the underlying isometry is relegated to the status of a tacit understanding.

In view of Theorem 3.1(d), we need to verify that we have 〈ζ j, y〉 → 0 for any
y ∈ �1. But 〈ζ j, y〉 = ∑ i> j yi , which converges to 0 since ∑∞

1 |yi | < ∞. 
�

We remark that the sequence ζ j in the exercise above does not converge weakly to 0.
(This follows from Exer. 3.10.) Thus, we are dealing with three types of convergence
in X ∗: strong, weak, and weak∗.

In the normed space X , (strongly) closed convex sets and weakly closed convex sets
coincide, so there is only one kind of closed convex set, so to speak. The situation is
generally different in X ∗, since convex sets that are (strongly) closed in X ∗ (that is,
for the topology of the dual norm) may fail to be closed for the weak∗ topology (see
Exer. 8.16). This distinction makes itself felt in the following result, in which the
hypothesis specifies weak∗ closedness, in order to obtain separation by an element
of X , rather than by an element of the dual of X ∗.

3.12 Proposition. Let Σ be a nonempty weak∗closed convex subset of X ∗, and let
ζ ∈ X ∗\Σ . Then there exists x ∈ X and γ ∈ R such that

〈σ , x〉 < γ < 〈ζ , x〉 ∀σ ∈ Σ .

Proof. This is a special case of Theorem 3.2, since the continuous linear functionals
for σ(Y ∗, Y ) are precisely the evaluations, by Theorem 3.1, part (c). 
�

Let Σ be a nonempty subset of X ∗. We have met its support function HΣ : X → R∞ ,
defined on X by HΣ (x) = supσ ∈Σ 〈σ , x〉. When Σ is convex and weak∗ closed, this
function characterizes Σ , as we now see.

3.13 Corollary. Let Σ and Δ be nonempty subsets of X ∗, with Δ weak∗closed and
convex. Then Σ ⊂ Δ ⇐⇒ HΣ � HΔ .
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Proof. We need only prove that if HΣ � HΔ , then Σ ⊂ Δ . Suppose to the contrary
that there is a point ζ ∈ Σ \Δ . Invoking Prop. 3.12, we find a point x ∈ X and γ ∈ R

such that
〈ψ , x〉 < γ < 〈ζ , x〉 � HΣ (x) ∀ψ ∈ Δ .

But then HΔ (x)< HΣ (x), a contradiction. 
�

The weak∗ topology possesses a precious compactness property:

3.14 Theorem. (Alaoglu) Let V be a neighborhood of 0 in the normed space X .
Then the set

Γ =
{
Λ ∈ X ∗ : |Λ x | � 1 for all x ∈ V

}

is weak∗ compact in X ∗.

Proof. We set
P = ∏ x∈X R = R

X =
{
ζ : X → R

}
.

The product topology on P is (by definition) the weakest topology that renders con-
tinuous each projection π x : P→ R, defined by πx ζ = ζ (x) for ζ ∈ P. The elements
ζ of P which belong to Γ are those which satisfy the conditions

π x+y ζ = π x ζ +π y ζ , π t x ζ = tπ x ζ ∀x, y ∈ X , t ∈ R,

as well as |π v ζ | � 1 ∀v ∈ V . This reveals that Γ is closed in P.

Let ζ ∈ Γ . For each x ∈ X , there exists tx > 0 such that tx x ∈ V . Thus, π xζ lies in
[−1/tx ,1/tx ]. We deduce from this:

Γ ⊂ ∏ x∈X

[
−1/tx ,1/tx

]
.

The set on the right is compact in the product topology by Tychonov’s theorem, and
it follows that Γ is compact in P.

A sub-base for the topology of P consists of the sets
{
ζ ∈ P : |π x ζ − t |< r

}
, x ∈ X , t ∈ R, r > 0.

The weak∗ topology σ(X ∗, X) on X ∗, for its part, is generated by the sub-basic ele-
ments {

ζ ∈ X ∗ : | 〈ζ , x〉− t |< r
}
, x ∈ X , t ∈ R , r > 0.

We conclude therefore that the topology σ(X ∗, X) is nothing else but the trace topol-
ogy of X ∗ viewed as a topological subspace of P. It follows that Γ is weak∗ compact
in X ∗. 
�

3.15 Corollary. The dual ball B∗ = {ζ ∈ X ∗ : ‖ζ ‖∗ � 1} is weak∗compact.
More generally, a subset of X ∗which is bounded and weak∗closed is weak∗compact.
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Proof. The set Γ of the theorem reduces to B∗ when V = B(0,1), which yields the
first assertion. It follows that rB∗ is weak∗compact for every r > 0, since dilation is
a homeomorphism for induced topologies.

For the second assertion, let Σ be a bounded and weak∗closed subset of X ∗. Then,
for some r > 0, Σ is a weak∗closed subset of rB∗ , which is weak∗compact; thus, Σ
inherits the weak∗compactness. 
�

3.16 Exercise. Let xi (i = 0, 1, . . . , n) be given points in X . Prove the existence of
a point ζ0 ∈ X ∗ which minimizes the function ζ �→ 〈ζ , x0〉 over the set

{
ζ ∈ X ∗ : ‖ζ ‖∗ � 1, 〈ζ , xi 〉 = 0 (i = 1, 2 , . . . , n)

}
. 
�

3.4 Separable spaces

A normed space X is separable if it contains a countable set S = {xi : i � 1}
which is dense: cl S = X . The reader will have met this property in topology, where
one learns, for example, that the normed space C(K) is separable whenever K is a
compact subset of Rn (a consequence of the Weierstrass polynomial approximation
theorem).

3.17 Example. Let us study the separability or otherwise of the spaces of sequences
defined in Example 1.6. Consider the set S consisting of the elements of �∞c whose
terms are all rational numbers. Then S is countable, as the countable union over
n � 1 of those countably many points having at most n nonzero terms. It is easy to
see that S is dense in �∞c . Consider now x ∈ �1, and let ε > 0. Then

∑ i�1 |xi | < ∞ =⇒ lim
n→∞ ∑ i�n |xi | = 0.

Thus there exists N such that

∑ i�N |xi |< ε .

For each of the finitely many terms xi with i < N , there is a rational number yi such
that |yi − xi | < ε/(N −1). Set yi = 0 for i � N. Then y ∈ S, and ‖y− x‖1 < 2ε .
We have proved that �1 is separable. A similar argument shows that every space � p

when 1 � p < ∞, is separable. We claim, however, that �∞ fails to be separable. Let
us prove this by contradiction, by supposing that there is a countable dense subset
S = {xi} of X = �∞. Then the balls B(xi,1/3) cover X . Consider now the elements
d = (d1, d2 , d3 . . .) of �∞ which correspond to the binary expansions .d1d2 d3 . . . of
the real numbers in (0,1). Note that any two distinct elements generated this way are
of distance 1 from one another. There are uncountably many such elements, so there
is a ball B(xi,1/3) containing two distinct ones. But then (by the triangle inequality)
the distance between the two does not exceed 2/3 : contradiction. 
�
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3.18 Exercise. Prove that c and c0 are separable. 
�

We shall prove in Chapter 6 that the Lebesgue spaces L p(Ω) defined in Example
1.9 are separable, provided 1 � p < ∞.

It can be shown that a linear subspace of a separable space is separable; this is simply
a special case of a more general fact regarding metric spaces. It is clear that the finite
Cartesian product of separable spaces is itself separable. Since isometry preserves
the density of a set, and since the space AC p[a,b ] is isometric to R×L p(a,b), it
follows that AC p[a,b ] is separable when 1 � p < ∞.

Concerning the dual space, it is the separability of the child that is inherited by the
parent:

3.19 Theorem. If the dual of a normed space X is separable, then X is separable.

Proof. Let ζn be a dense sequence in X ∗. By definition of ‖ζn‖∗ , there exist xn ∈ B
such that 〈ζn , xn 〉 � ‖ζn‖∗/2. Let L0 be the vector space over the rationals Q

generated by these points xn :

L0 = vectQ{x1} ∪ vectQ{x1, x2
}
∪ . . .

We observe that L0 is countable. Let L be the vector space over R generated by
the points xn. Then L0 is dense in L , and in order to prove the theorem, it suffices
to show that L is dense in X . We accomplish this by proving the implication (see
Theorem 2.39)

ζ ∈ X ∗, 〈ζ , x〉 = 0 ∀x ∈ L =⇒ ζ = 0 .

Given ε > 0, there exists n such that ‖ζ −ζn‖∗ < ε . We have

‖ζn‖∗/2 � 〈ζn , xn 〉 = 〈ζn −ζ , xn 〉 + 〈ζ , xn 〉 = 〈ζn −ζ , xn 〉 < ε .

It follows that ‖ζ ‖∗ � ‖ζ −ζn‖∗+‖ζn‖∗ � 3ε , whence ζ = 0. 
�

That the converse of Theorem 3.19 fails may be illustrated with the case X = �1.
As we know, X is a separable normed space. Its dual, however, is isometric to �∞,
and therefore fails to be separable.

An important consequence of separability is the following.

3.20 Theorem. If the dual of a normed space X is separable, and if S is a bounded
subset of X , then the weak topology of X , when restricted to S, is metrizable.

Proof. The goal here is to exhibit a metric ρ on S inducing a topology which is
the same (has the same open sets) as the trace (or restriction) of the weak topology
σ(X , X ∗) to S. Let {ζ i } be a countable dense set in the dual; then the function
defined by
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ρ(x,y) = ∑∞
i=1

| 〈ζ i , x− y 〉 |
1+ | 〈ζ i , x− y〉 |

2−i

will serve the purpose (there are other possible choices). It is routine to verify that
ρ is a metric on S (or indeed, on X). Let

Bρ(x,R) =
{

y ∈ X : ρ(x,y) � R
}
.

Then the equivalence of the resulting metric topology on S to the restriction to S of
the weak topology amounts to showing two things:

(a) Each set of the form Bρ(x,R) contains an element
⋂

i∈F V (x,ϕ i,r) of the canon-
ical base for the weak topology (see §3.1);

(b) Each element V (x,ϕ ,r) of the canonical sub-base for the weak topology contains
a set of the form Bρ(x,R)∩ S.

The details are not of the greatest interest, and we omit them. We remark, however,
that it is the second step above that requires the boundedness of S. 
�

Note: The theorem does not say that the weak topology on X is metrizable (when
X ∗ is separable); indeed, this is never the case in infinite dimensions, as is shown in
Exer. 8.43.

As regards the weak∗ topology, the analogous result is the following:

3.21 Theorem. If the normed space X is separable, then the weak∗ topology of X ∗,
when restricted to a bounded set, is metrizable.

The motivating factor behind our interest in metrizability is the possibility of invok-
ing sequential compactness in certain contexts to come. The reader will recall that
in general topological spaces, the properties of compactness and sequential com-
pactness differ; in metric topologies, however, they coincide. Since (in infinite di-
mensions) the weak topologies are not metric ones, the extraction of a convergent
subsequence must therefore be justified, even if the sequence lies in a compact set.
This is what a result such as Theorem 3.21 allows us to do.

The following exercise serves to illustrate these considerations.

3.22 Exercise. Let ζ i be a bounded sequence of continuous linear functionals on a
separable normed space X . Prove the existence of a subsequence ζ i j such that, for
each x ∈ X , we have 〈ζ i j , x〉 → 〈ζ , x〉 as j → ∞. 
�



Chapter 4

Convex analysis

The phrase convex analysis refers to a body of generalized calculus that can
be developed for convex functions and sets. This topic, whose applications are
widespread, is the subject of the chapter. The central element of the theory is the
subdifferential, a construct which plays a role similar to that of the derivative. The
operation of conjugacy as it applies to convex functions will also be important, as
well as polarity of sets.

4.1 Subdifferential calculus

Let f : X →R∞ be a given function, where X is a normed space, and let x be a point
in dom f . An element ζ of X ∗ is called a subgradient of f at x (in the sense of
convex analysis) if it satisfies the following subgradient inequality :

f (y)− f (x) � 〈ζ , y− x〉, y ∈ X .

A function is called affine when it differs by a constant from a linear functional.
Thus, an affine function g has the form g(y) = 〈ζ , y〉+ c; the linear functional ζ
is called the slope of g. When the subgradient inequality above holds, the affine
function

y �→ f (x)+ 〈ζ , y− x〉

is said to support f at x; this means that it lies everywhere below f , and that equal-
ity holds at x. In geometric terms, we may formulate the situation as follows: the
hyperplane {(y,r) : r− f (x)−〈ζ , y− x〉 = 0} in the product space X ×R passes
through the point (x, f (x)), and the set epi f lies in the upper associated halfspace
(see p. 41 for the terminology). We refer to this as a supporting hyperplane.

The set of all subgradients of f at x is denoted by ∂ f (x), and referred to as the
subdifferential of f at x. It follows from the definition that the subdifferential
∂ f (x) is a convex set which is closed for the weak∗ topology, since, for each y, the
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set of ζ satisfying the subgradient inequality is weak∗ closed and convex.1 The map
x �→ ∂ f (x) is set-valued: its values are subsets of X ∗. We use the term multifunction
in such a case: ∂ f is a multifunction from X to X ∗.

4.1 Example. We illustrate the geometry of subgradients with the help of Fig. 4.1,
which we think of as depicting the epigraph of a convex function f : Rn → R∞ .

Fig. 4.1
The epigraph of a convex function, and some supporting hyperplanes.

The function is smooth near the point A on the boundary of its epigraph; let this point
be (x1, f (x1)). There is a unique affine function y = 〈ζ , x〉+ c that supports f at
the point x1 ; its slope ζ is given by ∇ f (x1). The vector (∇ f (x1),−1) is orthogonal
to the corresponding supporting hyperplane, and generates the normal cone to epi f
at (x1, f (x1)) (here, a ray).

At the point B, which we take to be (x2 , f (x2)), the function f has a corner, and
there are infinitely many affine functions supporting f at x2 ; the set of all their
slopes constitutes ∂ f (x2). There is a supporting hyperplane to epi f at the point C
as well, but it is vertical, and therefore does not define a subgradient (it fails to
correspond to the graph of an affine function of x). The subdifferential of f is empty
at the corresponding value of x. 
�

4.2 Exercise. (subdifferential of the norm) Let f be the function f (x) = ‖x‖.

(a) Prove that ∂ f (0) is the closed unit ball in X ∗.

(b) Let ζ ∈ ∂ f (x), where x 	= 0. Prove that 〈ζ , x〉 = ‖x‖ and ‖ζ ‖∗ = 1. 
�

It is clear from the definition of subgradient that f attains a minimum at x if and
only if 0 ∈ ∂ f (x). This version of Fermat’s rule is but the first of several ways in
which the reader will detect a kinship between the subdifferential and the derivative.
The following provides another example.

1 In speaking, the subdifferential ∂ f is often pronounced “dee eff ” or “curly dee eff ”.
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4.3 Proposition. Let f : X → R∞ be a convex function, and x ∈ dom f . Then

∂ f (x) =
{
ζ ∈ X ∗ : f ′(x ;v) � 〈ζ ,v〉 ∀v ∈ X

}
.

Proof. We recall that a convex function admits directional derivatives, as showed
in Prop. 2.22. If ζ ∈ ∂ f (x), then we have

f (x+ t v)− f (x) � 〈ζ , t v〉 ∀v ∈ X , t > 0 ,

by the subgradient inequality. It follows that f ′(x ;v) � 〈ζ ,v〉 ∀v. Conversely, if
this last condition holds, then (by Prop. 2.22) we have

f (x+ v)− f (x) � inf
t>0

f (x+ t v)− f (x)
t

� 〈ζ ,v〉 ∀v ∈ X ,

which implies ζ ∈ ∂ f (x). 
�

It is a consequence of the proposition above that if f is differentiable at x, then
∂ f (x) = { f ′(x)}. The reduction of ∂ f (x) to a singleton, however, is more closely
linked to a weaker type of derivative, one that we proceed to introduce.

The Gâteaux derivative. Let F : X →Y be a function between two normed spaces.
We say that F is Gâteaux differentiable at x if the directional derivative F ′(x ;v)
exists for all v ∈ X , and if there exists Λ ∈ LC(X ,Y ) such that

F ′(x ;v) = 〈Λ ,v〉 ∀v ∈ X .

It follows that the element Λ is unique; it is denoted F ′
G(x) and referred to as the

Gâteaux derivative. It corresponds to a weaker concept of differentiability than the
Fréchet derivative F ′(x) that we met in §1.4. In fact, Gâteaux differentiability at x
does not even imply continuity of F at x. When F is Fréchet differentiable at x, then
F is Gâteaux differentiable at x, and F ′

G(x) = F ′(x). We stress that the unqualified
word “differentiable” always refers to the usual (Fréchet) derivative.

The following is a direct consequence of Prop. 4.3.

4.4 Corollary. Let f : X → R∞ be convex, with x ∈ dom f . If f is Gâteaux differ-
entiable at x, then ∂ f (x) = { f ′

G(x)}.

A characteristic of convex analysis that distinguishes it from classical differential
analysis is the close link that it establishes between sets and functions. The following
records an important (yet simple) example of this.

4.5 Exercise. Let x∈ S, where S is a convex subset of X . Prove that ∂ IS(x)= NS(x);
that is, the subdifferential of the indicator function is the normal cone. 
�
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For the convex function f of Example 2.23, the reader may check that ∂ f (−1) and
∂ f (1) are empty, and that ∂ f (x) is a singleton when −1 < x <+1. It is possible for
the subdifferential of a convex function to be empty at points in the interior of its
effective domain: if Λ is a discontinuous linear functional, then ∂Λ(x) is empty for
each x, as the reader may care to show. This phenomenon does not occur at points
of continuity, however, as we now see.

4.6 Proposition. Let f : X → R∞ be a convex function, and let x ∈ dom f be a point
of continuity of f . Then ∂ f (x) is nonempty and weak∗compact. If f is Lipschitz of
rank K in a neighborhood of x, then ∂ f (x)⊂ KB∗ .

Proof. The continuity at x implies that int epi f 	= /0. We separate int epi f and the
point (x, f (x)) (using the first case of Theorem 2.37) to deduce the existence of
ζ ∈ X ∗ and λ ∈ R such that

〈ζ , y〉+λ r < 〈ζ , x〉+λ f (x) ∀(y ,r) ∈ int epi f .

It follows that λ < 0; we may therefore normalize by taking λ =−1. Since

epi f ⊂ clepi f = cl
(

int epi f
)

(by Theorem 2.2), the separation inequality implies

〈ζ , y〉− r � 〈ζ , x〉− f (x) ∀(y ,r) ∈ epi f .

This reveals that ∂ f (x) contains ζ , and is therefore nonempty.

Theorem 2.34 asserts that f is Lipschitz on some neighborhood of x. Let K be a Lip-
schitz constant for f on B(x,r), and let ζ be any element of ∂ f (x). The subgradient
inequality yields

〈ζ , y− x〉 � f (y)− f (x) � | f (y)− f (x)| � K |y− x | ∀y ∈ B(x,r).

Putting y = x+ rv, where v is a unit vector, leads to

〈ζ ,v〉 � K |v | ∀v ∈ B ,

whence |ζ | � K. Thus, ∂ f (x) is bounded, and weak∗compact by Cor. 3.15. 
�

4.7 Corollary. Let f : Rn → R be a convex function. Then for any x ∈ R
n, ∂ f (x) is

a nonempty convex compact set.

Proof. This follows from Cor. 2.35. 
�

Recall that we have agreed to identify the dual of Rn with R
n itself. Thus, for a

function f defined on R
n, the subdifferential ∂ f (x) is viewed as a subset of Rn. The

very existence of a subgradient is the key to the proof of the next result, a well-
known inequality.
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4.8 Corollary. (Jensen’s inequality) Let ϕ : Rk → R be convex. Then, for any
summable function g : (0,1)→ R

k, we have

ϕ
( ∫ 1

0
g(t)dt

)
�

∫ 1

0
ϕ
(

g(t)
)

dt.

Proof. Let us define a point in R
k by

ḡ :=
∫ 1

0
g(t)dt ,

the integral being understood in the vector sense. By Cor. 4.7, ∂ϕ(ḡ) contains an
element ζ . Then, by definition, we have ϕ(y)−ϕ(ḡ) � 〈ζ , y− ḡ〉 ∀y ∈ R

k. Sub-
stituting y = g(t) and integrating over [0,1], we obtain the stated inequality. 
�

4.9 Exercise.

(a) Modify the statement of Jensen’s inequality appropriately when the underlying
interval is [a,b ] rather than [0,1].

(b) Formulate and prove Jensen’s inequality in several dimensions, when the func-
tion g belongs to L1(Ω ,Rk), Ω being a bounded open subset of Rn. 
�

The appealing calculus formula ∂( f + g)(x) = ∂ f (x)+ ∂g(x) turns out to be true
under mild hypotheses, as we see below. Note that some hypothesis is certainly
required in order to assert such a formula, since it fails when we take f = Λ and
g =−Λ , where Λ is a discontinuous linear functional.

4.10 Theorem. (Subdifferential of the sum) Let f ,g : X → R∞ be convex func-
tions which admit a point in dom f ∩ domg at which f is continuous. Then we have

∂
(

f +g
)
(x) = ∂ f (x)+∂g(x) ∀x ∈ dom f ∩ domg.

Proof. That the left side above contains the right follows directly from the defini-
tion of subdifferential. Now let ζ belong to ∂ ( f + g)(x); we must show that ζ be-
longs to the right side. We may (and do) reduce to the case x = 0, f (0) = g(0) = 0.
By hypothesis, there is a point x̄ in dom f ∩ domg at which f is continuous. Then
the subsets of X×R defined by

C = int epi f , D =
{
(w, t) : 〈ζ ,w〉−g(w) � t

}

are nonempty as a consequence of the existence of x̄ . They are also convex, and
disjoint as a result of the subgradient inequality for ζ . By Theorem 2.37, C and D
can be separated: there exist ξ ∈ X ∗ and λ ∈ R such that

〈ξ ,w〉+λ t < 〈ξ , u〉+λ s ∀(w, t) ∈ D , ∀(u ,s) ∈ int epi f .
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It follows that λ > 0; we can normalize by taking λ = 1. Since (by Theorem 2.2)
we have epi f ⊂ clepi f = cl(int epi f ), we deduce

〈ξ ,w〉+ t � 〈ξ , u〉+ s ∀(w, t) ∈ D , ∀(u ,s) ∈ epi f .

Taking (w, t) = (0,0), this implies −ξ ∈ ∂ f (0). Taking (u ,s) = (0,0) leads to the
conclusion ξ +ζ ∈ ∂g(0). Thus, ζ ∈ ∂ f (0)+∂g(0). 
�

4.11 Exercise. Let C and D be convex subsets of X such that ( intC )∩ D 	= /0. Let
x ∈ C ∩ D. Then NC∩D(x) = NC(x) + ND(x). 
�

The following Fermat-type result is related to that of Prop. 2.25; f is now non-
differentiable (which means “not necessarily differentiable”), but convex, and the
necessary condition turns out to be sufficient as well.

4.12 Proposition. Let f : X → R be a continuous convex function, A a convex sub-
set of X , and x a point in A. Then the following are equivalent:

(a) x minimizes f over the set A.

(b) −∂ f (x) ∩ NA(x) 	= /0; or equivalently, 0 ∈ ∂ f (x)+NA(x).

Proof. If (a) holds, then x minimizes u �→ f (u)+ IA(u). Thus 0 ∈ ∂ ( f + IA)(x), by
Fermat’s rule. But we have

∂
(

f + IA
)
(x) = ∂ f (x)+∂ IA(x) = ∂ f (x)+NA(x) ,

by Theorem 4.10 and Exer. 4.5; thus, (b) holds. Conversely, if (b) holds, then we
have 0 ∈ ∂ ( f + IA)(x), which implies (a). 
�

Recall that the adjoint of a linear application T is denoted T ∗ (see p. 22). It plays a
role in the next result, a calculus rule for a composition.

4.13 Theorem. Let Y be a normed space, T ∈ LC(X ,Y ), and let g : Y → R∞ be a
convex function. Let there be a point x0 in X such that g is continuous at T x0. Then
the function f (x) = g(T x) is convex, and we have

∂ f (x) = T ∗∂g(T x) ∀x ∈ dom f .

Note: the meaning of this formula is that, given any ζ ∈ ∂ f (x), there exists γ in
∂g(T x) such that

〈ζ ,v〉 = 〈T ∗γ , v〉 = 〈γ , T v〉 ∀v ∈ X ,

and that, conversely, any element ζ of the form T ∗γ , where γ ∈ ∂g(T x), belongs to
∂ f (x).
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Proof. It is easily verified that f is convex, and that any element of T ∗∂g(T x) lies
in ∂ f (x). We now prove the opposite inclusion. Let ϕ : X×Y → R∞ be defined
by

ϕ(x,y) = g(y)+ Igr T (x,y) ,

where gr T is the graph of T : the set {(x, T x) ∈ X×Y : x ∈ X }. It follows from the
definition of subgradient that

ζ ∈ ∂ f (x) ⇐⇒ (ζ , 0) ∈ ∂ϕ(x,T x).

Because of the existence of x0 , we may apply Theorem 4.10 to ϕ , for any ζ as
above. There results (α , β ) ∈ Ngr T (x,T x) and γ ∈ ∂g(T x) such that

(ζ , 0) = (0,γ )+(α , β ).

The normal vector (α , β ) satisfies

〈α ,u− x〉+ 〈β , Tu−T x〉 � 0 ∀u ∈ X ,

which implies α =−T ∗β . We deduce ζ = T ∗γ ∈ T ∗∂g(T x), as required. 
�

Subdifferentials in Euclidean space. The basic theory of the subdifferential takes
on a simpler form when we restrict attention to R

n. We focus on this case in the
remainder of this section.

4.14 Proposition. Let f : Rn → R be convex. Then

(a) The graph of ∂ f is closed : ζ i ∈ ∂ f (xi) , ζ i → ζ , xi → x =⇒ ζ ∈ ∂ f (x);

(b) For any compact subset S of R
n, there exists M such that

|ζ | � M ∀ζ ∈ ∂ f (x), x ∈ S;

(c) For any x, for any ε > 0, there exists δ > 0 such that

|y− x | < δ =⇒ ∂ f (y) ⊂ ∂ f (x)+ εB.

Proof. Consider the situation described in (a). For any y ∈ R
n, we have

f (y)− f (xi) � 〈ζ i , y− xi 〉 ∀ i.

Taking limits, and bearing in mind that f is continuous (Cor. 2.35), we obtain in the
limit f (y)− f (x) � 〈ζ , y− x〉; thus, ζ ∈ ∂ f (x).

We know that f is locally Lipschitz. An elementary argument using compactness
shows that f is Lipschitz on bounded subsets of Rn (see Exer. 2.32). This, together
with Prop. 4.6, implies (b). Part (c) follows from an argument by contradiction,
using parts (a) and (b); we entrust this step to the reader. 
�



66 4 Convex analysis

4.15 Exercise. (Mean value theorem) Let f : Rn → R be a convex function.

(a) We fix x,v ∈ R
n and we set g(t) = f (x+ t v) for t ∈ R. Show that g is convex,

and that

∂g(t) =
〈
∂ f (x+ t v),v〉 =

{
〈ξ ,v〉 : ξ ∈ ∂ f (x+ t v)

}
.

(b) Prove the following vaguely familiar-looking theorem: for all x, y ∈ R
n, x 	= y,

there exists z ∈ (x,y) such that

f (y)− f (x) ∈
〈
∂ f (z), y− x〉.

(c) Let U be an open convex subset of Rn. Use the above to prove the following
subdifferential characterization of the Lipschitz property:

f is Lipschitz of rank K on U ⇐⇒ |ζ | � K ∀ζ ∈ ∂ f (x) , ∀x ∈ U. 
�

4.16 Proposition. Let f : Rn → R be convex. Then f is differentiable at x if and
only if ∂ f (x) is a singleton, and f is continuously differentiable in an open subset
U if and only if ∂ f (x) reduces to a singleton for every x ∈ U .

Proof. If f is differentiable at x, then Cor. 4.4 asserts that ∂ f (x) is the singleton
{ f ′(x)}. Conversely, suppose that ∂ f (x) is a singleton {ζ}. We proceed to prove
that f ′(x) = ζ . Let xi be any sequence converging to x (xi 	= x). Then, by Exer.
4.15, there exist zi ∈ (xi , x) and ζ i ∈ ∂ f (zi) such that

f (xi)− f (x) = 〈ζ i , xi − x〉.

By part (c) of Prop. 4.14, the sequence ζ i necessarily converges to ζ . Thus we
have

| f (xi)− f (x)−〈ζ , xi − x〉 |
|xi − x | =

| 〈ζ i −ζ , xi − x〉 |
|xi − x | → 0 ,

whence f ′(x) exists and equals ζ . The final assertion is now easily verified with the
help of part (c) of Prop. 4.14. 
�

Strict convexity. Let U be a convex subset of X , and let f : U → R be given. We
say that f is strictly convex if the defining inequality of convexity is strict whenever
it has any chance of being so:

x, y ∈ U, x 	= y, t ∈ (0,1) =⇒ f ((1− t)x+ t y) < (1− t) f (x)+ t f (y).

It is easy to see that a C2 function f of a single variable that satisfies f ′′(t)> 0 ∀ t
is strictly convex (see Exer. 8.26 for an extension of this criterion to several dimen-
sions). The role of strict convexity in optimization is partly to assure uniqueness of
a minimum: the reader may check that a strictly convex function cannot attain its
minimum at two different points.
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4.17 Exercise. Let U be an open convex subset of Rn, and let f : U → R be convex.

(a) Prove that f is strictly convex if and only if

x, y ∈ U, x 	= y, ζ ∈ ∂ f (x) =⇒ f (y)− f (x) > 〈ζ , y− x〉.

(b) Prove that f is strictly convex if and only if ∂ f is injective, in the following sense:

x, y ∈ U, ∂ f (x) ∩ ∂ f (y) 	= /0 =⇒ x = y. 
�

4.2 Conjugate functions

Let X continue to designate a normed space, and let f : X → R∞ be a proper function
(that is, dom f 	= /0). The conjugate function f ∗ : X ∗ → R∞ of f is defined by

f ∗(ζ ) = sup
x ∈ X

〈ζ , x〉− f (x).

(One also refers to f ∗ as the Fenchel conjugate.) Note that the properness of f
rules out the possibility that f ∗ has the value −∞; we say then that f ∗ is well
defined.

If g : X ∗ → R∞ is a proper function, its conjugate g∗ : X → R∞ is defined by

g∗(x) = sup
ζ ∈ X ∗

〈ζ , x〉−g(ζ ).

Note that g∗ is defined on X , and not on the dual of X ∗, which we wish to avoid here.
A special case arises when we take g to be f ∗; then we obtain the biconjugate of f ,
namely the function f ∗∗ : X → R∞ defined as follows (when f ∗ is proper):

f ∗∗(x) = sup
ζ ∈ X ∗

〈ζ , x〉− f ∗(ζ ).

Since taking upper envelopes preserves both convexity and lower semicontinuity, it
follows from the definition that f ∗ is convex lsc on the normed space X ∗, and that
f ∗∗ is convex lsc on X . The reader will observe that f � g =⇒ f ∗ � g∗.

4.18 Exercise.

(a) Show that for any function f : X → R∞ , we have f ∗∗ � f .

(b) If f is proper, prove Fenchel’s inequality :

f (x)+ f ∗(ζ ) � 〈ζ , x〉 ∀x ∈ X ∀ζ ∈ X ∗ ,

with equality if and only if ζ ∈ ∂ f (x).
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(c) Let f be the function |x | p/p on R
n (1 < p < ∞). Calculate f ∗, and show that

Fenchel’s inequality reduces in this case to Young’s inequality :

u • v � 1
p |u |

p + 1
p∗
|v | p∗ , u ,v ∈ R

n.

When does equality hold? 
�

4.19 Proposition. Let f : X → R∞ be proper, and c ∈ R and ζ ∈ X ∗ be given. Then

f (x) � 〈ζ , x〉− c ∀x ∈ X ⇐⇒ f ∗(ζ ) � c.

If f is bounded below by a continuous affine function, then f ∗ and f ∗∗ are proper.

Proof. The first assertion, an equivalence, follows directly from the definition of f ∗;
it evidently implies that f ∗ is proper whenever f is bounded below by (majorizes,
some would say) a continuous affine function. Since f ∗∗ � f , and since f is proper,
we also deduce that f ∗∗ is proper. 
�

4.20 Proposition. Let f be convex and lsc. Then f is bounded below by a contin-
uous affine function. More explicitly, let x0 be any point in X . If x0 ∈ dom f , then
for any ε > 0, there exists ζ ∈ dom f ∗ such that

f (x) > f (x0)+ 〈ζ , x− x0 〉− ε ∀x ∈ X . (1)

If f (x0) = +∞, then for any M ∈ R, there exists ζ ∈ dom f ∗ such that

f (x) > M+ 〈ζ , x− x0 〉 ∀x ∈ X . (2)

Proof. Consider first the case x0 ∈ dom f . We apply the separation theorem to the
point (x0 , f (x0)−ε) (a compact set) and the (closed) set epi f . There results ζ ∈ X ∗

and λ ∈ R such that

λ r+ 〈ζ , x〉 < λ f (x0)−λε+ 〈ζ , x0〉 ∀(x,r) ∈ epi f .

It follows that λ < 0; we normalize to take λ =−1. This yields

f (x) > 〈ζ , x〉+ f (x0)− ε−〈ζ , x0〉 ∀x ∈ X ,

the required inequality (which implies ζ ∈ dom f ∗). The case f (x0) = +∞ is han-
dled similarly, by separating the point (x0 ,M) from epi f . 
�

Notation. We denote by Γ (X) the collection of all functions f : X → R∞ that are
convex, lower semicontinuous, and proper. (This is classical notation in convex anal-
ysis.)

It follows from the two propositions above that when f ∈ Γ (X), then f ∗ and f ∗∗

are both proper, which is a propitious context for studying conjugacy.
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4.21 Theorem. (Moreau) Let f : X → R∞ be a proper function. Then

f ∈ Γ (X) ⇐⇒ f ∗ is proper and f = f ∗∗.

Proof. When f ∗ is proper, then f ∗∗ is well defined (not −∞), and it is convex
and lsc as a consequence of the way it is constructed. Thus, if in addition we have
f = f ∗∗, then f belongs to Γ

(
X
)
.

Now for the converse; let f ∈ Γ
(
X
)
. Then f ∗ is proper by Prop. 4.19, and f ∗∗ is

well defined. Since f ∗∗ � f , it suffices to establish that, for any given x0 ∈ X , we
have f (x0) � f ∗∗(x0). We reason by the absurd, supposing therefore that f (x0) is
strictly greater than f ∗∗(x0).

Let M ∈ R and ε > 0 satisfy f (x0)> M > f ∗∗(x0)+2ε . Any ζ ∈ dom f ∗ admits
xζ ∈ dom f such that

f ∗(ζ ) � 〈ζ , xζ 〉− f (xζ )+ ε ,

whence
f ∗∗(x0) � 〈x0 ,ζ 〉− f ∗(ζ ) � 〈ζ , x0 − xζ 〉+ f (xζ )− ε .

These facts lead to

f (x0) > M > 〈ζ , x0 − xζ 〉+ f (xζ )+ ε . (3)

Now consider the case f (x0)<+∞. Then we choose ζ ∈ dom f ∗ so that (1) holds.
Then, using (3), we deduce

f (xζ ) > f (x0)+ 〈ζ , xζ − x0 〉− ε
> 〈ζ , x0 − xζ 〉+ f (xζ )+ ε+ 〈ζ , xζ − x0 〉− ε = f (xζ ),

a contradiction. In the other case, when f (x0) = +∞, choose ζ so that (2) holds.
Then (3) yields

M > 〈ζ , x0 − xζ 〉+ f (xζ )> 〈ζ , x0 − xζ 〉+M+ 〈ζ , xζ − x0 〉 = M ,

a contradiction which completes the proof. 
�

4.22 Corollary. Let g : X → R∞ be a proper function which is bounded below by a
continuous affine function. Then g∗∗, which is well defined, is the largest lsc convex
function on X which is bounded above by g.

Proof. We know that g∗ is proper and that g∗∗ is well defined, by Prop. 4.19. Since
g∗∗ � g, it is clear that g∗∗ is indeed a convex lsc function bounded above by g. Let
f be any other such function. Then f ∈ Γ (X) and, by the theorem,

f � g =⇒ f ∗ � g∗ =⇒ f = f ∗∗ � g∗∗. 
�
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In the corollary above, one can show that epig∗∗ = co epig, which explains why
g∗∗ is sometimes referred to as the closed convex hull of g.

4.23 Corollary. A function g : X → R∞ is convex and lsc if and only if there exists
a family {ϕα}α of continuous affine functions on X whose upper envelope is g:

g(x) = sup
α

ϕα(x) ∀x ∈ X .

Proof. An envelope of the indicated type is always convex and lsc, so if g has that
form, it shares these properties. For the converse, we may suppose that g is proper (in
addition to being convex and lsc). According to the theorem, we then have

g(x) = g∗∗(x) = sup
ζ ∈X ∗

〈ζ , x〉−g∗(ζ ) ,

which expresses g as an upper envelope of the desired type. 
�

4.24 Exercise. We study conjugacy as it applies to indicators and support functions.

(a) Let S be a nonempty subset of X . Prove that IS
∗ = HS . Deduce from this that if

S is closed and convex, then HS
∗ = IS .

(b) Let Σ ⊂ X ∗ be nonempty, convex, and weak∗closed. Prove that HΣ
∗ = IΣ . 
�

The following result allows us to recognize support functions.

4.25 Theorem. Let g : X → R∞ be lsc, subadditive, and positively homogeneous,
with g(0) = 0. Then there exists a unique nonempty weak∗closed convex set Σ in
X ∗ such that g = HΣ . The set Σ is characterized by

Σ =
{
ζ ∈ X ∗ : g(v) � 〈ζ ,v〉 ∀v ∈ X

}
,

and is weak∗compact if and only if the function g is bounded on the unit ball.

Proof. Observe that the set Σ defined in the theorem statement is convex and
weak∗closed. We have (by definition)

g∗(ζ ) = sup
v∈X

〈ζ ,v〉−g(v) .

It follows from this formula and the positive homogeneity of g that g∗(ζ ) = ∞ if
ζ /∈ Σ , and otherwise g∗(ζ ) = 0; that is, we have g∗ = IΣ . But g ∈ Γ (X), which
allows us to write (by Theorem 4.21)

g(x) = g∗∗(x) = sup
ζ ∈X ∗

〈ζ , x〉− IΣ (ζ ) = HΣ (x) .

The uniqueness of Σ follows from Cor. 3.13. If g is bounded on B, then it is clear
that Σ is bounded, from its very definition. Then, as a weak∗closed subset of some



4.3 Polarity 71

ball, Σ is weak∗ compact (by Cor. 3.15). If, conversely, Σ is bounded, then g = HΣ
is evidently bounded on the unit ball B. 
�

4.26 Corollary. Let f : X → R∞ be a convex function which is Lipschitz near a
point x. Then f ′(x ; ·) is the support function of ∂ f (x):

f ′(x ;v) = max
ζ ∈∂ f (x)

〈ζ ,v〉 ∀v ∈ X ,

and f is Gâteaux differentiable at x if and only if ∂ f (x) is a singleton.

Proof. Consider the function g(v) = f ′(x ;v). We invoke the convexity of f to
write

f
(

x+λ [(1− t)v+ tw]
)
� (1− t) f (x+λv)+ t f (x+λw) ,

from which we deduce that g((1− t)v+ tw) � (1− t)g(v)+ t g(w) . Thus g is con-
vex, and we see without difficulty that g is positively homogeneous and (from the
Lipschitz condition) satisfies |g(v)| � K ‖v‖ ∀v. It follows that g is subadditive
and continuous. Thus, g satisfies the hypotheses of Theorem 4.25. In light of Prop.
4.3, this implies the stated relation between f ′(x ; ·) and ∂ f (x).

The last assertion of the corollary is now apparent, in view of Cor. 4.4. 
�

We remark that in more general circumstances than the above, the reduction of ∂ f (x)
to a singleton does not imply Gâteaux differentiability; see Exer. 8.21.

4.27 Exercise. (Subdifferential inversion) Let f ∈ Γ (X). For ζ ∈ dom f ∗, the
subdifferential ∂ f ∗(ζ ) consists, by definition, of the points x ∈ X such that

f ∗(ξ )− f ∗(ζ ) � 〈ξ −ζ , x〉 ∀ξ ∈ X ∗.

Prove that

ζ ∈ ∂ f (x) ⇐⇒ f (x)+ f ∗(ζ ) = 〈ζ , x〉 ⇐⇒ x ∈ ∂ f ∗(ζ ) . 
�

4.28 Exercise. Prove that the points at which a function f ∈ Γ (X) attains its mini-
mum are those in ∂ f ∗(0). 
�

4.3 Polarity

The geometric counterpart of conjugacy is polarity, an operation that plays an im-
portant role in the study of tangents and normals. That happens to be the context
in which the reader has already made its acquaintance, in §1.4, in connection with
defining the normal cone.
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Let A be a subset of a normed space X . The polar cone of A (or, more simply, the
polar), denoted A�, is defined by

A� =
{
ζ ∈ X ∗ : 〈ζ , x〉 � 0 ∀x ∈ A

}
.

It follows from the definition that A� is a weak∗closed convex cone. In the reverse
direction, the polar of a subset Σ of X ∗ is defined by

Σ� =
{

x ∈ X : 〈σ , x〉 � 0 ∀σ ∈ Σ
}
.

The reader is asked to verify that we always have A�� ⊃ A.

4.29 Exercise. Let A and Σ be nonempty cones in X and X ∗ respectively. Prove that
(IA)

∗ = IA� and (IΣ )∗ = IΣ� . 
�

4.30 Proposition. Let A be a nonempty subset of X . Then A is a closed convex cone
if and only if A�� = A.

Proof. The set A�� is always a closed convex cone, by construction. Thus, if it
equals A, then A has these properties. Conversely, let A be a closed convex cone. We
have IA = (IA)

∗∗ by Theorem 4.21. However, by Exer. 4.29, we also have

(IA)
∗∗ = (IA�)∗ = IA�� .

Thus, IA = IA�� , whence A�� = A. 
�

4.31 Corollary. Let A be a nonempty subset of X . Then the bipolar A�� of A is the
smallest closed convex cone containing A.

Proof. If K is a closed convex cone such that K ⊃ A, then, by the proposition, we
deduce K = K�� ⊃ A��. 
�

4.32 Corollary. Let x ∈ S, where S is a convex subset of a normed space X . Then
the tangent and normal cones at x are mutually polar:

TS(x) = NS(x)�, NS(x) = TS(x)� .

Proof. The second formula holds by definition. The first one then follows from
Prop. 4.30, since TS(x) is (closed and) convex when S is convex (Prop. 2.9). 
�

We proceed now to focus on cones in X ∗.

4.33 Exercise. Let Σ be a nonempty cone in X ∗. Prove that HΣ = IΣ� . 
�

For bipolarity relative to X ∗, the weak∗ topology plays a role once again, in allowing
us to refer back to X :
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4.34 Proposition. Let Σ be a nonempty subset of X ∗. Then Σ is a weak∗closed
convex cone if and only if Σ�� = Σ .

Proof. If Σ�� = Σ , then it follows that Σ is a weak∗closed convex cone, since Σ��

always has these properties. Let us now suppose that Σ is a weak∗closed convex
cone; we proceed to prove that it coincides with its bipolar. We know that Σ ⊂ Σ��.
For purposes of obtaining a contradiction, assume that the opposite inclusion fails,
and let ζ ∈ Σ��\Σ . By Theorem 3.2, there exists x ∈ X such that

〈ζ , x〉 > 〈σ , x〉 ∀σ ∈ Σ .

(This is where the weak∗closedness of Σ is used.) Since Σ is a cone, we get

〈ζ , x〉 > 0 � 〈σ , x〉 ∀σ ∈ Σ .

It follows that x ∈ Σ� and thus ζ /∈ Σ��, the required contradiction. 
�

4.35 Exercise. Find A� and A��, when A ⊂ R
2 consists of the two points (1,0)

and (1,1). 
�

4.4 The minimax theorem

Given a function f (u,v) of two variables, its infimum can be calculated either jointly
or successively, in either order:

inf
u

inf
v

f (u ,v) = inf
v

inf
u

f (u ,v) = inf
u ,v

f (u ,v).

When a supremum with respect to one of the variables is involved, however, the
inf sup and the sup inf will differ in general. The following theorem (said to be of
minimax type) gives conditions under which equality does hold. The first of many
such results, due to von Neumann (see Exer. 4.37 below), figured prominently in
game theory; they have since become a useful tool in analysis.

4.36 Theorem. (Ky Fan) Let U and V be nonempty convex sets in (possibly dif-
ferent) vector spaces. Let f : U×V → R be a function such that

u �→ f (u ,v) is convex on U ∀v ∈ V, and v �→ f (u ,v) is concave on V ∀u ∈ U.

Suppose in addition that there is a topology on U for which U is compact and f (·,v)
is lsc for each v ∈ V . Then we have

sup
v∈V

min
u∈U

f (u ,v) = min
u ∈U

sup
v∈V

f (u ,v) , where the case ∞ = ∞ is admitted.
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Proof. We set α = the supmin, β = the minsup. Since taking upper envelopes
preserves lower semicontinuity, the hypotheses authorize the use of “min” here. It
is easy to see that the inequality −∞ < α � β always holds; we may therefore
restrict attention to the case α < ∞. We now suppose that α < β , and we derive a
contradiction.

We claim that the sets U(v) = {u ∈ U : f (u,v) � α } satisfy
⋂

v∈V U(v) = /0.
If this were not the case, then there would be a point ū common to them all, so
that f (ū ,v) � α ∀ v ∈ V . But then β � supv f (ū ,v) � α < β , absurd. Since the
sets U(v) are closed subsets of the compact space U , the finite intersection property
must fail. Thus, there exist v1, . . . ,vn ∈ V such that

⋂n
1 U(vi) = /0. Consider now

the set

E =
{

x ∈ R
n : ∃ u ∈ U, ri � 0 such that xi = f (u ,vi)+ ri , i = 1, 2 . . . , n

}
.

It is easy to see that E is convex. Using the compactness of U and the lower semi-
continuity of each function f (·,vi), it is an exercise to show that the complement
of E is open (that is, E is closed). We claim that E does not contain the point
p :=(α ,α , . . . ,α ). For if it did, there would exist u∈ U and ri � 0 such that

α = f (u ,vi)+ ri ∀ i.

But then u ∈ ⋂n
1 U(vi), a contradiction. This proves the claim, and allows us to

invoke Theorem 2.37 to separate {p} and E. There results a vector ζ ∈ R
n and a

scalar γ such that

ζ • p < γ < ∑n
i=1 ζ i ( f (u ,vi)+ ri) ∀u ∈ U, ri � 0.

It follows that ζ is nonzero and has nonnegative components. We may normalize
to arrange ∑n

1 ζ i = 1. Then the point v̄ = ∑n
1 ζ i vi belongs to V , and the previous

inequality, combined with the concavity of f with respect to v, implies

α = ζ • p < min
u∈U

f (u , v̄) � α .

This contradiction completes the proof. 
�

4.37 Exercise. Let M be an m×n matrix, and let S, T be closed, convex, nonempty
subsets of Rm and R

n respectively, at least one of which is bounded. Then

inf
x∈S

sup
y∈T

〈x,My〉 = sup
y∈T

inf
x∈S

〈x,My〉.

�

4.38 Exercise. Let X be a normed space, and let g : X → R∞ be a convex function,
x0 ∈ X , and k > 0. Then

inf
x∈X

max
ζ ∈ kB∗

g(x)+ 〈ζ , x− x0〉 = max
ζ ∈ kB∗

inf
x∈X

g(x)+ 〈ζ , x− x0〉 .

�



Chapter 5

Banach spaces

A normed space X is said to be a Banach space if its metric topology is complete.
This means that every Cauchy sequence xi in X , that is, one that satisfies

lim
i, j→∞

‖xi − x j ‖ = 0 ,

admits a limit in X : there exists a point x ∈ X such that ‖xi − x‖→ 0.

Informally, the reader may understand the absence of such a point x as meaning
that the space has a hole where x should be. For purposes of minimization, one of
our principal themes, it is clear that the existence of minimizers is imperiled by
such voids. Consider, for example, the vector space Q of rational numbers. The
minimization of the function (x 2 − 2)2 does not admit a solution over Q, as the
Greek mathematicians of antiquity were able to prove.

The existence of solutions to minimization problems is not the only compelling rea-
son to require the completeness of a normed space, as we shall see. The property is
essential in making available to us certain basic tools, such as uniform boundedness
and weak compactness.

5.1 Completeness of normed spaces

It is easy to see that the completeness of a normed space is invariant with respect to
equivalent norms.1 Two other relevant properties that follow easily are the follow-
ing: a closed subspace of a Banach space is itself a Banach space, and the Cartesian
product of two Banach spaces is a Banach space. A less evident fact, one that we
prove now, is that the dual space is always a Banach space.

1 This in contrast to the purely metric case, in which completeness depends on the choice of metric,
even among those inducing the same topology.
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5.1 Theorem. The dual X ∗of a normed space X is a Banach space.

Proof. It is understood, of course, that X ∗ is equipped with its usual dual norm
‖ · ‖∗. The issue here is to show that a given Cauchy sequence ζn in X ∗ admits a
limit ζ ∈ X ∗. For each x ∈ X , it follows that 〈ζn , x〉 is a Cauchy sequence in R,
since ∣

∣〈ζn , x〉−〈ζm , x〉
∣
∣ � ‖ζn −ζm ‖∗ ‖x‖ .

Since R is complete, the sequence converges to a limit, denoted 〈ζ , x〉. The function
ζ so defined is a linear functional; we now show that it is continuous.

Fix N such that m, n � N =⇒‖ζm−ζn‖∗ � 1. Then, for n � N, and for any x ∈ B,
we have:

| 〈ζn , x〉| � | 〈ζn −ζN , x〉| + | 〈ζN , x〉| � 1+‖ζN ‖∗ .

Letting n→∞, we deduce | 〈ζ , x〉| � 1+‖ζN ‖∗ , which implies that ζ ∈ X ∗.

To conclude, we must confirm that ‖ζn−ζ ‖∗ → 0. Let ε > 0. There exists Nε such
that m, n � Nε =⇒ ‖ζn−ζm‖∗ < ε . Fix n � Nε . Then, for any x ∈ B and m > Nε ,
we have

| 〈ζn −ζ , x〉| � | 〈ζn −ζm , x〉| + | 〈ζm −ζ , x〉| � ε+ | 〈ζm −ζ , x〉| .

Now 〈ζm −ζ , x〉→ 0 as m →∞, whence | 〈ζn −ζ , x〉| � ε . Since x is an arbitrary
point in B, this reveals ‖ζn −ζ ‖∗ � ε ∀n � Nε . 
�

The proof of the theorem readily adapts to prove

5.2 Corollary. If Y is a Banach space, then LC(X ,Y ) is a Banach space.

We remark that any space that is isometric to a dual space is necessarily a Banach
space, in view of the following fact:

5.3 Proposition. Let T : X → Y be a norm-preserving map from a Banach space X
to a normed space Y . Then T is closed : T (S) is closed in Y whenever S is closed in
X . If T is an isometry from X to Y , then Y is a Banach space.

Proof. Let S be a closed subset of X ; we prove that T (S) is closed. Let xi be a
sequence in S such that T xi converges to a point y ∈ Y . To deduce that T (S) is
closed, we wish to prove that y ∈ T (S).

Since T xi is a convergent sequence, it is Cauchy: ‖T xi −T x j ‖Y → 0 as i, j → ∞.
Because T is norm preserving, this implies that xi is Cauchy. Since S is closed and X
is complete, the sequence xi admits a limit u ∈ S. By continuity, T xi → Tu = y; we
have proved, as required, that y∈ T (S). When T is an isometry (and thus surjective),
the proof (applied to S = X) shows that Y is complete, and hence is a Banach space.


�
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5.4 Exercise. We return to the spaces of sequences defined in Example 1.6.

(a) Show that �1 is a Banach space.

(b) Use Theorem 5.1 and Prop. 5.3 to prove that � p (1 < p � ∞) is a Banach space,
and deduce that the spaces c and c0 are Banach spaces.

(c) Show that �∞c is not a Banach space. 
�

We now invite the reader to meet a chosen few of the many other Banach spaces that
live in the world of analysis.

Spaces of continuous functions. We have met in Example 1.4 the normed space
C(K) of continuous functions on a compact metric space K. If fi is a Cauchy se-
quence in C(K), then, for each x ∈ K, the sequence fi(x) is Cauchy in R. If we
denote its limit by f (x), then an argument not unlike the proof of Theorem 5.1
shows that f ∈ C(K) and ‖ fi − f ‖C(K) → 0. Thus, C(K) is a Banach space.

We observed earlier in Example 1.1 that when K = [0,1], another norm on the
vector space C[0,1] is provided by

‖ f ‖1 =
∫ 1

0
| f (t)|dt .

This norm is not complete, however:

5.5 Exercise. Show that the sequence fi(t) = [min(2 t ,1)] i is Cauchy relative to
‖ · ‖1 , but that fi does not converge in that norm to an element of C[0,1]. 
�

The compactness of K is not used in an essential way to deduce that C(K) is com-
plete; it is there to guarantee that an element f ∈ C(K) is bounded. An alternative
to compactness is to incorporate this in the definition, as in the following:

5.6 Proposition. Let X be a normed space and Y be a Banach space. Then the
vector space Cb(X ,Y ) of bounded continuous functions g : X → Y is a Banach
space when equipped with the norm

‖g‖Cb(X ,Y ) = sup
x∈X

‖g(x)‖Y .

(The function g is called “bounded” precisely when the right side above is finite.)
Once again, the proof (which we omit) can be patterned after that of Theorem 5.1.
We turn now to Lipschitz functions.

5.7 Proposition. Let X be a normed space and Y be a Banach space. The vector
space Lipb(X ,Y ) of bounded, Lipschitz functions ϕ : X → Y equipped with the
norm
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‖ϕ ‖Lipb(X ,Y ) = ‖ϕ ‖Cb(X ,Y ) + sup
x,u ∈X
x 	=u

‖ϕ(x)−ϕ(u)‖Y

‖x−u‖X

is a Banach space.

Proof. Note the tacit assumption that X is not trivial. It is easy to see that we do
have a normed space; we verify that it is complete. Let ϕn be a Cauchy sequence in
Lipb(X ,Y ). Then ϕn is also a Cauchy sequence in Cb(X ,Y ), which is complete. In
consequence, there exists ϕ ∈ Cb(X ,Y ) such that ‖ϕn −ϕ ‖Cb(X ,Y ) → 0. Note that
the functions ϕn have a common Lipschitz constant, which we denote by L. Passing
to the limit in the inequality

‖ϕn(x)−ϕn(u)‖Y � L‖x−u‖X ,

we see that ϕ is Lipschitz. Thus ϕ ∈ Lipb(X ,Y ).

We complete the proof by showing that ‖ϕn −ϕ ‖Lipb(X ,Y ) → 0, which amounts to
showing that

lim
n→∞

sup
x,u

‖(ϕn −ϕ)(x)− (ϕn −ϕ)(u)‖Y

‖x−u‖X
= 0 .

The left side of this desired equality coincides with

lim
n→∞

sup
x,u

lim
m→∞

‖(ϕn −ϕm)(x)− (ϕn −ϕm)(u)‖Y

‖x−u‖X

� lim
n→∞

lim
m→∞

sup
x,u

‖(ϕn −ϕm)(x)− (ϕn −ϕm)(u)‖Y

‖x−u‖X

� lim
n→∞

lim
m→∞

‖ϕn −ϕm‖Lipb(X ,Y ) = 0 ,

since the sequence ϕn is Cauchy in Lipb(X ,Y ). 
�

Lebesgue spaces and Sobolev spaces. It is shown in courses on integration that the
Lebesgue space L p(Ω) (1 � p � ∞) is complete.2 Since AC p[a,b ] (see Example
1.13) is isometric to R×L p(a,b), it follows that it too is a Banach space (by Prop.
5.3).

We introduce now certain functions that may be thought of as extensions of abso-
lutely continuous functions to several dimensions. They play a central role in the
multiple integral calculus of variations, and in partial differential equations. Let u
be an element of L p(Ω ,R), where Ω is a nonempty open subset of Rn. Then u is
said to admit a weak derivative in L p if there exists an element

2 See for example Royden [36].
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(
g1, g2 , . . . , gn

)
∈ L p(Ω ,Rn)

such that, for each index i, we have
∫

Ω
u(x)

∂ϕ
∂xi

(x)dx = −
∫

Ω
gi(x)ϕ(x)dx ∀ϕ ∈ C∞

c (Ω ,R) .

Here, C∞
c (Ω ,R) refers to the functions ϕ : Ω → R which admit partial derivatives

of all orders, and which have compact support in Ω .

We shall prove in Chapter 6 that C∞
c (Ω ,R) is a dense subset of L p(Ω); this implies

that the weak derivative g = (g1, g2 , . . . , gn) of u is unique when it exists. It is
clear from the integration by parts formula that if u happens to be continuously
differentiable, then its weak derivative is precisely its gradient. This justifies, by
extension, the use of the notation Du for the weak derivative g of u. We also write
Diu for the function gi .

It is easy to see that if two functions u and v admit the weak derivatives Du and Dv,
and if c,k are scalars, then cu+ kv admits the weak derivative cDu+ kDv.

Let 1 � p � ∞. The Sobolev space W 1, p(Ω) is by definition the vector space of
all functions u ∈ L p(Ω ,R) which admit weak derivatives in L p, equipped with the
following norm:

‖u‖W 1, p(Ω) = ‖u‖L p(Ω) + ∑n
i=1 ‖Di u‖L p(Ω) .

The space W 1,2(Ω) is usually denoted H1(Ω).

5.8 Exercise. Let u j be a sequence in W 1, p(Ω) (1 � p < ∞) such that u j con-
verges weakly in L p(Ω) to a limit u, and such that, for each i = 1, 2 , . . . , n, the
sequence Di u j converges weakly in L p(Ω) to a limit vi . Prove that u ∈ W 1, p(Ω),
and that Du = (v1, v2 , . . . , vn). 
�

The following exercise shows that, when n = 1, with Ω = (a,b), the functions u in
W 1,1(Ω) are essentially the elements of AC[a,b ].

5.9 Exercise. Prove that u lies in W 1,1(a,b) if and only if there is a function f in
AC[a,b ] such that u(t) = f (t) , t ∈ [a,b ] a.e., in which case we have Du = f ′. 
�

In a context such as this, bearing in mind that the elements of L p(a,b) are really
equivalence classes, it is common to say that u admits a continuous representative.
When n > 1, it is no longer the case that an element of W 1, p(Ω) necessarily admits
a continuous representative, or even a locally bounded one.

5.10 Exercise. Prove that W 1, p(Ω) is a Banach space. 
�
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The uniform boundedness principle. The following very useful fact, also known
as the Banach-Steinhaus theorem, plays a central role in the theory, and should be
part of the reader’s repertoire.

5.11 Theorem. Let X be a Banach space and Y a normed space. Let Γ be a col-
lection of operators in LC(X ,Y ). If Γ is simply bounded (meaning that, for every
x ∈ X , the image set {Λ x : Λ ∈ Γ } is bounded in Y ), then Γ is uniformly bounded:
there exists M � 0 such that

‖Λ ‖LC(X ,Y ) � M ∀Λ ∈ Γ .

The theorem affirms that if the set Γ in LC(X ,Y ) is simply bounded, then it is, quite
simply, bounded.

Proof. For each integer n, we define a subset of X by

Fn =
{

x ∈ X : ‖Λ x‖Y � n ∀Λ ∈ Γ
}
.

Note that Fn is closed, since, for each Λ ∈ Γ , the function x �→ ‖Λx‖Y is continu-
ous. By hypothesis, we have X = ∪n�1 Fn . Since X is complete, Baire’s theorem3

tells us that, for some N, there exists z ∈ X and r > 0 such that B(z,r)⊂ FN . Thus
we have

‖Λ(z+ r u)‖Y � N ∀u ∈ B , Λ ∈ Γ .

We deduce

r‖Λu‖Y � N +‖Λ z‖Y � N +N = 2N ∀u ∈ B , Λ ∈ Γ .

Taking the supremum over u ∈ B, we obtain

‖Λ ‖ = sup
u∈B

‖Λ u‖Y � (2N)/r =: M ∀Λ ∈ Γ .

�

The next three exercises are rather immediate corollaries of the uniform bounded-
ness principle. In each case, one may find counterexamples to show the necessity of
the completeness hypothesis.

5.12 Exercise. Let Λn be a sequence of continuous linear operators mapping a
Banach space X to a normed space Y . Suppose that for each x ∈ X , the limit
Λ x := limn→∞Λn x exists. Prove that the (linear) mapping Λ is continuous. 
�

5.13 Exercise. Prove that a weakly compact subset of a normed space is bounded.
Deduce that a weakly convergent subsequence in a normed space is bounded. 
�

3 We have in mind: Theorem. Let (E,d) be a complete metric space, and Fn a sequence of closed
subsets of E such that int {⋃n Fn } 	= /0. Then there exists N such that int FN 	= /0.



5.1 Completeness of normed spaces 81

5.14 Exercise. Let X be a Banach space and let ζn be a sequence in X ∗ converging
weak∗ to 0 ; that is, such that for every x ∈ X , we have limn→∞〈ζn , x〉 = 0. Prove
that ζn is bounded in X ∗. 
�

Support functions and boundedness. As we now see, in a normed space, and in
the dual of a Banach space, the boundedness of a (nonempty) set is equivalent to its
support function being finite-valued.

5.15 Proposition. Let X be a normed space. A subset S of X is bounded if and only
if

HS(ζ ) := sup
x∈S

〈ζ , x〉 < ∞ ∀ζ ∈ X ∗.

If X is a Banach space, then a subset Σ of X ∗ is bounded if and only if

HΣ (x) := sup
σ ∈Σ

〈σ , x〉 < ∞ ∀x ∈ X .

Proof. We may assume that the sets involved are nonempty. If S is bounded, then
S ⊂ r B for some r, whence

HS(ζ ) � sup
x∈ r B

〈ζ , x〉 � r‖ζ ‖∗ ‖x‖ .

Thus HS is finite-valued; a similar argument is valid for HΣ .

Suppose now that HS is finite-valued, and let us deduce from this that S is bounded.
Every x ∈ S engenders an element Λx of LC(X ∗, R) via Λx(ζ ) = 〈ζ , x〉, and one
has ‖Λx ‖ = ‖x‖. The family Γ = {Λx }x∈S is simply bounded since, for a given
ζ ∈ X ∗, we have

inf
x∈S

〈ζ , x〉 = −HS(−ζ ) > −∞ , sup
x∈S

〈ζ , x〉 = HS(ζ ) < +∞.

Then, since X ∗ is a Banach space (Theorem 5.1), the family Γ is bounded by The-
orem 5.11. Because we have ‖Λx ‖ = ‖x‖, it follows that S is bounded.

The argument for Σ is similar, using the family {Λζ }, whereΛζ (x) = 〈ζ , x〉. Note
that now we need to posit that X is complete, however, in order to call upon the
uniform boundedness principle. 
�

5.16 Exercise. In the second assertion of the preceding theorem, X is taken to be a
Banach space. Show that this is essential: give an example of an unbounded set Σ
in the dual of a normed space X whose support function HΣ is everywhere finite-
valued. 
�

Continuity of convex functions. In a Banach space, the convexity of a lower semi-
continuous function automatically implies its Lipschitz continuity (compare with
Theorem 2.34):
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5.17 Theorem. Let X be a Banach space, and let f : X → R∞ be convex and lsc.
Then f is locally Lipschitz in the set int dom f .

Proof. [Exercise] Let x0 ∈ int dom f . In view of Theorem 2.34, it suffices to prove
that the (closed) set

C =
{

y ∈ X : f (x0 + y) � f (x0)+1
}

has nonempty interior.

(a) Prove that, for every point z ∈ X , there exists t > 0 such that t z ∈ C .

(b) Invoke Baire’s theorem to deduce that intC 	= /0. 
�

That the lower semicontinuity hypothesis in Theorem 5.17 is required follows from
considering a discontinuous linear functional (which cannot be lsc).

5.18 Exercise. We set X = �∞c and, for x = (x1, x2 , . . .) ∈ X , we define f (x) to
equal ∑ i |xi |. Show that the function f : X → R is convex and lsc, but fails to be
continuous. 
�

We deduce from this example that the completeness hypothesis in Theorem 5.17 is
also essential.

5.2 Perturbed minimization

It is clear that the completeness of a normed space is an important factor in the quest
to identify a set of ingredients allowing us to affirm that minimization problems
admit a solution. But completeness is not enough: we generally require a pinch of
compactness as well. Later, we shall find a way to obtain it by exploiting the weak
topology. Here, however, we examine a more modern consideration that has been
very productive, an approach in which the original problem (that may not admit a
minimum) is slightly perturbed to obtain a new problem that does have one. We
refer to a theorem making this type of assertion as a minimization principle, for
short; a more descriptive but even longer term would be “perturbed minimization
principle.”

In 1944, the analyst J. E. Littlewood formulated his famous “three principles” in
analysis, that the reader may very well have seen. (One is that every measurable
function is nearly continuous.4) We venture to propose a fourth principle: every
function that is bounded below nearly attains a minimum. Of course, the trick is
how to interpret the word “nearly” in making this precise.

4 The other two are: every convergent sequence of functions is nearly uniformly convergent, and
every measurable set is nearly a finite union of intervals.
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We shall prove a first such result in this section, and several others in Chapter 7.
The later ones will require that the underlying space be “smooth” in some sense.
In contrast, the following minimization principle is valid in the general setting of a
complete metric space.

5.19 Theorem. (Ekeland) Let (E, d) be a complete metric space and let the func-
tion f : E → R∞ be proper, lsc, and bounded below. If ε > 0 and u ∈ E satisfy
f (u) � infE f + ε , then, for any λ > 0, there exists z ∈ E such that

(a) f (z) � f (u)

(b) d(u, z) � λ

(c) f (w)+(ε/λ )d(w, z) > f (z) ∀w ∈ E , w 	= z .

We may summarize the conclusions of the theorem as follows: there is a point z
which is λ -close to u (satisfies (b)), which is “at least as good as u” (satisfies (a)),
such that the perturbed function f (·)+ (ε/λ )d(·, z) attains a (unique) minimum at
z (conclusion (c)).

Proof. We fix α > 0. The partial order of Bishop-Phelps on E×R is defined as
follows:

(x1,r1) � (x2,r2) ⇐⇒ r1 +α d(x1, x2) � r2 .

The reader will easily verify that this relation is reflexive (we have (x,r) � (x,r) )
and transitive: if (x,r)� (y,s) and (y,s)� (z, t), then (x,r)� (z, t). It is also anti-
symmetric: if (x,r)� (y,s) and (y,s)� (x,r), then (x,r) = (y,s).

We also remark that when E×R is equipped with the product topology, the partial
order � is sequentially closed, in the following sense:

(xi ,ri) � (y,s) , (xi ,ri)→ (x,r) =⇒ (x,r) � (y,s)

(x,r) � (yi ,si) , (yi ,si)→ (y,s) =⇒ (x,r) � (y,s) .

Lemma. Let P be a closed nonempty subset of E×R which is bounded below, in
the sense that

inf
{

r ∈ R : ∃ x ∈ X , (x,r) ∈ P
}

> −∞ .

Then P contains a minimal element (x∗ ,r∗); that is, an element (x∗ ,r∗) having the
property that the only point (x,r) ∈ P which satisfies (x,r) � (x∗ ,r∗) is (x∗ ,r∗)
itself.

Proof. We wish to invoke Zorn’s lemma, in its “minimal element” rather than
“maximal element” form. Accordingly, to verify that P is inductive, we show that
any nonempty totally ordered subset Q of P admits a minorant in P.

Set r∗ = inf
{

r : (x,r) ∈ Q
}

, a number in R. Suppose first that there is a point of
the form (x∗ ,r∗) in Q. Then it is clear that (x∗ ,r∗) is a minorant for Q:
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(x∗ ,r∗) � (x,r) ∀(x,r) ∈ Q,

since, for (x,r) ∈ Q different from (x∗ ,r∗), we cannot have (x,r)� (x∗ ,r∗) (by the
way r∗ is defined), and since Q is totally ordered.

We may therefore limit attention to the second case, in which the level r = r∗ is not
attained in Q. Then there is a sequence (xi ,ri) in Q such that ri strictly decreases to
r∗ . From the fact that Q is totally ordered, we deduce

ri+1 − ri +α d(xi , xi+1) � 0 ∀ i � 1

(the opposite being impossible). It follows that xi is a Cauchy sequence. Since E is
complete, there exists x∗ ∈ E such that xi → x∗ ; we also have (xi ,ri)→ (x∗ ,r∗).
We now claim that (x∗ ,r∗), which lies in P since P is closed, is the minorant of Q
that we seek.

Let (x,r) be any point in Q. Suppose that (x,r) � (xi ,ri) infinitely often. Passing
to the limit, we derive (x,r) � (x∗ ,r∗); that is r +α d(x, x∗) � r∗ . This implies
r = r∗ , contradicting our assumption that r∗ is not attained in Q. Thus we must have
(xi ,ri) � (x,r) for all i sufficiently large, and as a result, (x∗ ,r∗) � (x,r). This
shows that (x∗ ,r∗) is a minorant for Q. The lemma is proved. 
�

We now prove the theorem by a direct application of the lemma, in which we
take

P =
{
(z,r) ∈ epi f : (z,r) �

(
u, f (u)

)}
.

Then P is nonempty, closed because f is lsc, , and bounded below in the sense of the
lemma, since f is bounded below. We take α = ε/λ in the definition of �.

It follows that P admits a minimal element (z,r), and the minimality implies that
r = f (z). Since (z, f (z)) ∈ P, we have (z, f (z)) � (u, f (u)), that is

f (v)+(ε/λ )d(u, z) � f (u) , (∗)

which implies conclusion (a) of the theorem.

Let w satisfy
w ∈ E , w ∈ dom f , w 	= z .

If (w, f (w)) ∈ P, then we do not have (w, f (w))� (z, f (z)), since (z, f (z)) is min-
imal relative to P. Thus

f (w)+(ε/λ )d(w, z) > f (z) ,

which is the inequality in conclusion (c) of the theorem. In the opposite case, when
(w, f (w)) /∈ P, the relation (w, f (w))� (u, f (u)) necessarily fails (by definition of
P), so that
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f (w) > f (u)− (ε/λ )d(w, u)

� f (z)+(ε/λ )d(u, z)− (ε/λ )d(w, u) (by (∗))
� f (z)− (ε/λ )d(w, z) ,

by the triangle inequality. We obtain once again the inequality in (c), which holds
therefore for all w 	= v.

There remains conclusion (b). From f (u) � infE f +ε we deduce f (z) � f (u)−ε .
Together with (∗), this implies

f (z) � f (z)+(ε/λ )d(u, z)− ε ,

whence d(u, z) � λ . 
�

Fermat’s rule asserts that f ′(x) is zero at a minimizer x. It is not true that “ f ′(x)
is almost zero when x is almost a minimizer.” However, as the following may be
interpreted as saying, if x is almost minimizing, then there is a point which is almost
the same point, at which the derivative is almost zero. (The result also estimates the
three “almosts.”)

5.20 Corollary. Let f : X → R be differentiable and bounded below, where X is a
Banach space. Let ε > 0 and x ∈ X satisfy f (x) � infX f + ε . Then there exists xε
such that

‖x− xε ‖ �
√
ε , f (xε) � f (x) , ‖ f ′(xε)

∥
∥
∗ �

√
ε .

Proof. We apply Theorem 5.19 with u = x, E = X , λ =
√
ε . We derive the exis-

tence of xε ∈ B(x,
√
ε ) such that f (xε) � f (x) and

f (y)+
√
ε ‖y− xε ‖ � f (xε) ∀y ∈ X .

For fixed w ∈ X , let us substitute y = xε + tw (t > 0) in this inequality; then we
divide by t and let t decrease to 0. This leads to 〈 f ′(xε),w〉 � −

√
ε ‖w‖. Since w

is arbitrary, we conclude that ‖ f ′(xε)‖∗ �
√
ε . 
�

Another consequence of the theorem bears upon the density of points at which the
subdifferential of a convex function is nonempty.5

5.21 Proposition. Let X be a Banach space, and let f : X → R∞ be convex and
lsc. Then ∂ f (x) 	= /0 for all x in a dense subset of dom f . More precisely, for every
x ∈ dom f and δ > 0, there exists xδ satisfying

‖xδ − x‖ � δ , | f (x)− f (xδ )| � δ , ∂ f (xδ ) 	= /0.

5 Prop. 4.6 established the nonemptiness of the subdifferential at points of continuity.
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Proof. We consider first the case in which f satisfies an extra assumption: f is
bounded below.

Let x ∈ dom f be given. By the lower semicontinuity of f , there exists η > 0 such
that f � f (x)− δ on B(x,η). Now invoke Theorem 5.19 with ε = f (x)− infX f
and λ = min(δ ,η). (We may assume ε > 0, for otherwise we have 0 ∈ ∂ f (x), and
there is nothing left to prove.)

There results a point xδ ∈ B(x,λ )⊂ B(x,δ ) which minimizes the function

u �→ f (u)+(ε/λ )‖u− xδ ‖

over X , and which satisfies f (xδ ) � f (x). Note that f (xδ ) � f (x)− δ , whence
| f (x)− f (xδ )| � δ . By Theorem 4.10, we have

0 ∈ ∂ f (xδ )+B(0,ε/λ ),

so that ∂ f (xδ ) 	= /0.

Consider now the general case. By Cor. 4.23, there exists ζ ∈ X∗ such that the
function f (u)−〈ζ , u〉 is bounded below. It is a simple exercise to apply the case
proved above to this function, in order to obtain the required conclusion; we entrust
the details to the reader. 
�

The decrease principle. Let f : X → R be a differentiable function on a Banach
space. If f ′(x) 	= 0, then clearly we have, for any r > 0,

inf
B(x,r)

f < f (x) .

This is simply Fermat’s rule in contrapositive form. It is possible to give a calibrated
version of this fact, as we now see. Note that when the function f is differentiable
at x, there is equivalence between the derivative being nonzero and the existence of
“directions of decrease,” in the following sense:

‖ f ′(u)‖∗ � δ ⇐⇒ inf
‖v‖�1

f ′(u ;v) � −δ ⇐⇒ inf
‖v‖=1

f ′(u ;v) � −δ .

The theorem below postulates pointwise decrease along these lines, but in a weaker
sense, and without supposing that f is differentiable.

5.22 Theorem. (Decrease principle) Let f : X → R∞ be lower semicontinuous.
Suppose that for some x ∈ dom f and positive numbers δ and r we have

liminf
w→u, w 	=u

f (w)− f (u)
‖w−u‖ � −δ ∀u ∈ B◦(x,r)∩ dom f .

Then
inf

{
f (u) : u ∈ B◦(x,r)

}
� f (x)−δ r.
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Proof. Assume that the conclusion of the theorem fails. Then there exists η in
(0,r/2) sufficiently small so that

inf { f (u) : u ∈ B(x,r−η)}+δ (r−2η) � f (x).

We deduce from Theorem 5.19, with E = B(x,r−η), that for any λ ∈ (0,r−η)
there exists z ∈ B(x,λ ) such that

f (w)+
δ (r−2η)

λ
‖w− z‖ > f (z) ∀w ∈ B(x,r−η), w 	= z.

Since ‖z−x‖ � λ < r−η , we derive from the hypothesis of the theorem (invoked
for u = z), and from the preceding inequality, the following:

−δ � liminf
w→ z, w 	=z

f (w)− f (z)
‖w− z‖ � δ (2η− r)

λ
.

If λ is taken greater than r−2η , this provides the sought-for contradiction. 
�

5.23 Exercise. Let f : X → R∞ be lower semicontinuous and admit directional
derivatives at points in dom f . Suppose that for some x ∈ dom f and positive num-
bers δ and r we have

inf
‖v‖�1

f ′(u ;v) � −δ ∀u ∈ B◦(x,r)∩ dom f .

Prove that the conclusion of Theorem 5.22 holds. 
�

5.3 Open mappings and surjectivity

The following result bears upon the surjectivity of an operator.

5.24 Theorem. Let X be a Banach space and Y a normed space, and let T : X → Y
be a continuous linear operator. Then

δ > 0 , cl
(
T BX

)
⊃ δBY =⇒ T B◦

X ⊃ δB◦
Y .

Proof.

Fix any α ∈ δB◦
Y , α 	= 0. We proceed to show that α ∈ T B◦

X , which proves the
theorem (since 0 ∈ T B◦

X is evident). Reasoning ad absurdum, let us suppose that
α /∈ T B◦

X and derive a contradiction.

Consider the convex function f (x) = ‖T x−α ‖. (The norm is that of Y .) With an
eye to applying Theorem 5.22, we claim that
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inf
‖v‖�1

f ′(u ;v) � −δ ∀u ∈ B◦
X .

Indeed, fix u ∈ B◦
X . From the hypothesis cl

(
T BX

)
⊃ δBY , we know that, for any

η > 0, there exist v ∈ BX and z ∈ BY such that

T v = δ
α−Tu

‖α−Tu‖ +η z

(we have used the assumption α /∈ T B◦
X in writing this). For t > 0 we have

T (u+ tv)−α = Tu−α+ t T v = (Tu−α)
(

1− t δ
‖α−Tu‖

)
+ tη z

so that, for t small enough,

‖T (u+ tv)−α ‖ � ‖Tu−α ‖
(

1− t δ
‖α−Tu‖

)
+ tη

and thus

f (u+ tv)− f (u)
t

=
‖T (u+ tv)−α ‖−‖Tu−α ‖

t
� −δ +η .

Proposition 2.22 and the arbitrariness of η > 0 then imply that f ′(u ;v) � −δ ,
which establishes the claim.

It now follows from the decrease principle (see Exer. 5.23) that

0 � inf
{
‖Tu−α ‖ : u ∈ B◦

X
}
� f (0)−δ = ‖α ‖−δ < 0 ,

which is the desired contradiction. 
�

A mapping T : X → Y is called open if T (U) is an open set in Y whenever U is an
open set in X .

5.25 Exercise. Let X and Y be normed spaces and T : X → Y a linear map. Show
that T is open if and only if T (BX ) contains a neighborhood of 0. Deduce from this
that an open linear mapping is surjective. 
�

The converse of this last conclusion is (another) celebrated theorem of Banach.

5.26 Theorem. (Open mapping theorem) Let X and Y be Banach spaces, and let
T : X → Y be a continuous linear operator which is surjective. Then T is an open
mapping. If in addition T is injective, then the inverse mapping T−1 is continuous.

Proof. Define C = cl T (BX ). Since T is linear and surjective, we have

T X = Y =
⋃

i�1
cl T (iBX ) =

⋃

i�1
iC.
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Because Y is a Banach space, and hence complete, Baire’s theorem tells us that there
is a point α ∈ intC. But then C (which is symmetric and convex) is a neighborhood
of 0, by the following argument:

0 ∈ int
(
C/2−α/2

)
⊂ int

(
C/2−C/2

)
= int

(
C/2+C/2

)
= intC .

By Theorem 5.24, T (BX ) contains a neighborhood of 0. This, together with Exer.
5.25, yields the first part of the theorem.

The second part is immediate: for any open set U in X , (T−1)−1(U) = T (U) is
open, whence the continuity of T−1. 
�

5.27 Exercise. Let X be a Banach space relative to two norms ‖ · ‖1 and ‖ · ‖2 .
Suppose there exists c > 0 such that

‖x‖1 � c‖x‖2 ∀x ∈ X .

Prove that the norms are equivalent; that is, for some constant d > 0, we have
‖x‖2 � d‖x‖1 ∀x ∈ X . (This fails without completeness; the norms of Example
1.1 provide a counter-example.) 
�

The graph of a mapping T : X → Y refers to the set

gr T =
{
(x,T x) ∈ X×Y : x ∈ X

}
.

5.28 Theorem. (Closed graph theorem) Let T : X → Y be a linear mapping be-
tween two Banach spaces X and Y . Then T is continuous if and only if its graph is
closed.

Proof. It is clear that the continuity of T implies that G := gr T is closed. For the
converse, let G be closed. Then G is a closed subspace of the Banach space X×Y ,
thus a Banach space itself.

The projection πX : G → X defined by πX (x,y) = x is continuous and bijective. By
the open mapping theorem, π−1

X is continuous. But we may write T = πY ◦ π−1
X ,

where πY : X×Y → Y is the projection on Y (also continuous). It follows that T , as
a composition of continuous functions, is continuous. 
�

5.29 Exercise. Let X and Y be Banach spaces and T : X → Y a linear mapping such
that

xn → 0 , Λ ∈ Y ∗ =⇒ Λ T xn → 0 .

Then T is continuous. 
�
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5.4 Metric regularity

We consider now the solutions of a given equation

ϕ(x,y) = 0 ,

where ϕ : X×Y → [0, ∞) is continuous and X , Y are Banach spaces. Our study
focuses upon the stability of the set of solutions x to the equation for given values
of the parameter y.

We are given a base solution (x̄ , ȳ) of the underlying equation: a point such that
ϕ(x̄ , ȳ) = 0. In many cases, as we shall see, an important question is whether the
equation still admits a solution when the parameter value ȳ is perturbed; that is,
changed to a nearby value y.

Notation: For each fixed y, the (possibly empty) set of solutions x ∈ X of the
equation ϕ(x,y) = 0 is denoted by S(y).

Thus, we have x̄ ∈ S(ȳ), and the first question is whether S(y) is nonempty when y
is sufficiently near ȳ . More than this, however, we would like to be able to assert a
stability property: namely, that when y is near ȳ , then S(y) contains a point which is
“proportionally close” to the original solution x̄ . We shall interpret this last phrase
to mean that (for a suitable constant K ) we have

d(x̄ , S(y)) � Kϕ(x̄ , y),

where d(x, S) denotes the distance from x to the set S. (Recall that the function ϕ
has nonnegative values.) Thus, it is ϕ itself which calibrates how close the perturbed
solution should be. Note that such an inequality, when it holds, forces S(y) to be
nonempty, since d(x̄ , S(y)) = +∞ when S(y) = /0. In fact, we shall be able to assert
stability with respect to perturbations of the x variable as well as the y variable; thus,
joint stability with respect to (x,y). The conclusion will be of the form

d(x, S(y)) � Kϕ(x,y) for (x,y) near (x̄ , ȳ).

This type of assertion has become known as metric regularity, and it has a number
of important applications in analysis and optimization.

Of course, some hypothesis will be required in order to arrive at such a conclusion.
It turns out to be very useful to allow nondifferentiable functions ϕ in the theory, and
the hypothesis is framed with that in mind. Below, the notation ϕ ′

x(x,y ; v) denotes
the directional derivative with respect to the x variable; thus, we have by defini-
tion

ϕ ′
x(x,y ; v) = lim

t ↓ 0

ϕ(x+ t v, y)−ϕ(x,y)
t

.

Our missing hypothesis is that ϕ admits (uniform) decrease directions (in x) at
nearby points where it is positive; explicitly:
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5.30 Hypothesis. There is an open neighborhood V of (x̄ , ȳ) and δ > 0 with the
following property: at any point (x,y) ∈ V for which ϕ(x,y) > 0, the directional
derivatives ϕ ′

x(x, y ; v) exist for every v and satisfy

inf
‖v‖�1

ϕ ′
x(x, y ; v) � −δ .

5.31 Theorem. In the presence of Hypothesis 5.30, setting K = 1/δ , there exists
a neighborhood U of (x̄ , ȳ) such that

d(x, S(y)) � Kϕ(x, y) ∀(x,y) ∈ U.

Proof. It is a consequence of Hypothesis 5.30 that there exist R > 0 and a neigh-
borhood W of ȳ such that

y ∈ W , ‖x− x̄ ‖ < R , ϕ(x,y) > 0 =⇒ inf
‖v‖�1

ϕ ′
x(x,y ; v) � −δ . (∗)

We claim that the following implication holds:

y ∈ W , ‖x− x̄ ‖+ϕ(x,y)/δ < R =⇒ d(x, S(y)) � ϕ(x,y)/δ .

This evidently yields the theorem, since the conditions on the left are satisfied when
(x,y) is sufficiently close to (x̄ , ȳ). We establish the claim by the absurd. If it is
false, there exist (x,y) and ε > 0 such that all the following hold:

y ∈ W , ‖x− x̄ ‖+ϕ(x,y)/δ < R , d
(
x, S(y)

)
> ϕ(x,y)/δ + ε =: r.

We may reduce ε as required to further satisfy

‖x− x̄ ‖+ϕ(x,y)/δ + ε < R .

It follows that B(x,r) ⊂ B◦(x̄ ,R) and that ϕ(u,y) > 0 for all u ∈ B(x,r). We now
invoke the decrease principle (Theorem 5.22), which applies to f := ϕ(·, y) on
B(x,r) in view of the condition (∗) above (as noted in Exer. 5.23). We obtain:

inf
{
ϕ(u,y) : u ∈ B◦(x,r)

}
� ϕ(x,y)−δ r = −δ ε < 0,

which is the required contradiction (since ϕ is nonnegative). 
�

Stability of equations. The remainder of this section obtains various consequences
of Theorem 5.31. The first of these was an early precursor of the more general
metric regularity presented above; it is useful in dealing with an explicit equa-
tion F(x) = y. (Below, the notation F−1(y) refers to the set of points x satis-
fying this equation.) In the theory developed above, this corresponds to taking
ϕ(x,y) = ‖F(x)− y‖.
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5.32 Theorem. (Graves-Lyusternik) Let F : X → Y be a mapping which is con-
tinuously differentiable in a neighborhood of a point x̄ , and such that F ′(x̄) is sur-
jective: F ′(x̄)X = Y . Set ȳ = F(x̄). Then there is a neighborhood U of (x̄ , ȳ) and
K > 0 such that

d
(

x,F−1(y)
)
� K ‖F(x)− y‖Y ∀(x,y) ∈ U.

Proof. By the open mapping theorem 5.26, there exists δ > 0 such that

F ′(x̄)BX ⊃ 3δBY .

Furthermore, the continuity of the map x �→ F ′(x) in a neighborhood of x̄ implies
the existence of R > 0 such that

x ∈ BX (x̄ ,R) =⇒
[

F ′(x̄)−F ′(x)
]
BX ⊂ δBY . (1)

For such x, we have

δBY +2δBY = 3δBY ⊂ F ′(x̄)BX =
{
[F ′(x̄)−F ′(x)]+F ′(x)

}
BX

⊂ [F ′(x̄)−F ′(x)]BX +F ′(x)BX ⊂ δBY +F ′(x)BX (by (1)),

which implies 2δBY ⊂ cl (F ′(x)BX ) (see Exer. 2.45). By Theorem 5.24, we ob-
tain

x ∈ BX (x̄ ,R) =⇒ F ′(x)B◦
X ⊃ δBY . (2)

Now let us define ϕ(x,y) = ‖F(x)− y‖Y (there is no harm in supposing that F is
globally defined and continuous, so that ϕ is as well). Note that ϕ(x̄ , ȳ) = 0. We
proceed to prepare an appeal to Theorem 5.31, by verifying Hypothesis 5.30.

Let x ∈ BX (x̄ ,R) and y ∈ Y be such that ϕ(x,y) > 0. By (2), there exists v ∈ B◦
X

such that

F ′(x)v = −δ F(x)− y
‖F(x)− y‖Y

.

Then ϕ ′
x(x,y ; v) is given by

lim
t ↓0

{
‖F(x+ tv)− y‖−‖F(x)− y‖

}
/t

= lim
t ↓0

{
‖F(x)+ tF ′(x)v− y‖−‖F(x)− y‖

}
/t (we may neglect o(t))

= lim
t ↓0

{∥
∥
∥F(x)− y−δ t

F(x)− y
‖F(x)− y‖

∥
∥
∥−‖F(x)− y‖

}
/t = −δ .

This verifies Hypothesis 5.30, and allows us to invoke Theorem 5.31, which imme-
diately gives the result (for K = 1/δ ). 
�



5.4 Metric regularity 93

5.33 Corollary. If the mapping F : X → Y is continuously differentiable in a neigh-
borhood of a point x̄ , and if F ′(x̄) is surjective, then, for every ε > 0, the set
F(B(x̄ ,ε)) contains a neighborhood of F(x̄).

5.34 Exercise. Prove the corollary. 
�

Remark. When F : Rn → R
k is differentiable at x̄ , we may identify F ′(x̄) with the

linear mapping induced by the k×n Jacobian matrix DF(x). The surjectivity of the
mapping, as we know from linear algebra, is equivalent to this matrix having rank k
(which can only happen if k � n).

The tangent space of a Banach manifold. The next use of metric regularity is to
give conditions under which the tangent cone to a level set is determined by the
derivative of the underlying function. The discussion centered around Exer. 1.40
will now be completed.

5.35 Theorem. Let X and Y be Banach spaces, and let S be given by

S =
{

u ∈ X : F(u) = 0
}
,

where the map F : X → Y is continuously differentiable near x ∈ S. If F ′(x) is
surjective, then TS(x) and NS(x) are the linear subspaces described as follows:

TS(x) =
{

v ∈ X : 〈F ′(x),v〉= 0
}
, NS(x) = F ′(x)∗Y ∗

and we have
TS(x) = NS(x)�, NS(x) = TS(x)�.

The equality for the normal cone in this final assertion always holds, of course, by
definition; we are stressing the fact that in this setting, the tangent and normal cones
are mutually polar (actually, orthogonal) linear subspaces. In regard to the normal
cone, the theorem asserts that an element ζ of NS(x) is precisely one that can be
expressed in the form F ′(x)∗Λ for some Λ ∈ Y ∗, where F ′(x)∗ denotes the adjoint
of F ′(x); then we have

〈ζ ,u〉 = 〈F ′(x)∗Λ ,u〉 = 〈Λ ,F ′(x)u〉 ∀u ∈ X .

Proof. First, let v∈ TS(x); we show that 〈F ′(x),v〉= 0. Now v, as a tangent vector,
can be expressed in the form lim i→∞(xi−x)/ti for sequences xi → x (in S) and ti ↓ 0.
Let us set vi = (xi − x)/ti . Then

〈F ′(x),v〉 = lim
i→∞

F(x+ ti v)−F(x)
ti

= lim
i→∞

F(x+ ti vi)

ti
= lim

i→∞

F(xi)

ti
= 0,

where the second equality holds because F is Lipschitz near x, and F(x) = 0.
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Conversely, let v satisfy 〈F ′(x),v〉= 0; we show that v ∈ TS(x). Take any sequence
ti ↓ 0. By Theorem 5.32, there exists, for all i sufficiently large, a point xi such
that

F(xi) = 0, ‖x+ ti v− xi‖X � K ‖F(x+ ti v)‖Y + t 2
i

(the last term is there to reflect the fact that the distance d(x+ ti v,F−1(0)) may not
be attained). Dividing by ti and letting i tend to ∞ reveals

lim
i→∞

(xi − x)/ti = v,

which confirms that v ∈ TS(x).

We turn now to the formula TS(x) = NS(x)�. Let us define a convex cone (in fact,
subspace) in X ∗ as follows:

Σ = F ′(x)∗Y ∗ =
{
Λ◦F ′(x) : Λ ∈ Y ∗}.

Then

v ∈ Σ� ⇐⇒ 〈Λ◦F ′(x),v〉 � 0 ∀Λ ∈ Y ∗ ⇐⇒ 〈F ′(x),v〉 = 0,

which shows that the polar of Σ is TS(x). If Σ is weak∗closed, then we have

NS(x) = TS(x)� = Σ�� = Σ

(see Prop. 4.34), which implies TS(x) = NS(x)�, the required conclusion.

There remains to verify, however, that Σ is weak∗closed. This is simple to do when
Y is finite dimensional, but for the general case treated here we call upon Exer. 8.48,
according to which it suffices to prove:

Lemma. The set ΣB = B∗ ∩ Σ is weak∗closed.

By the open mapping theorem, there exists δ > 0 such that F ′(x)BX ⊃ δBY . It
follows that

‖Λ◦F ′(x)‖X ∗ � δ ‖Λ ‖Y ∗ ∀Λ ∈ Y ∗.

This implies that the set

Γ =
{
Λ ∈ Y ∗ : ‖Λ◦F ′(x)‖X ∗ � 1

}
=

⋂

v∈B

{
Λ ∈ Y ∗ : 〈Λ ,F ′(x)v〉 � 1

}

is bounded; it follows directly from the way it is defined that it is weak∗ closed.
Then it is weak∗ compact, by Cor. 3.15.

We claim that the map T : Y ∗ → X ∗ defined by TΛ = Λ ◦F ′(x) is continuous for
the weak∗ topologies of Y ∗ and X ∗. To prove this, it suffices, by Theorem 3.1(e), to
verify that, for any v ∈ X , the map Λ �→ 〈Λ ◦F ′(x),v〉 is continuous for σ(Y ∗, Y ).
But this is evidently the case, since the map amounts to evaluation of Λ at the point
F ′(x)v. Since ΣB is the image of the weak∗compact set Γ under this continuous
map, we deduce that ΣB is weak∗compact, and hence weak∗closed. 
�
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Classical manifolds. Let F : Rn → R
k be continuously differentiable, where the

integer k satisfies 1 � k < n. The set S = F−1(0) then corresponds to a classical
manifold, when the following rank condition is posited:

F(x) = 0 =⇒ rank DF(x) = k ,

where DF(x) is the k×n Jacobian matrix.

5.36 Exercise. Prove that the rank condition is equivalent to:

F(x) = 0 , λ ∈ R
k, 0 = D〈λ ,F 〉(x) =⇒ λ = 0 . 
�

As remarked upon earlier, it is natural to view normal vectors to sets in R
n as points

in R
n itself, as is done in the next result.

5.37 Corollary. If the rank condition holds, and if x ∈ S, then TS(x) and NS(x) are
orthogonal subspaces of R

n of dimension n − k and k respectively. NS(x) is the
subspace spanned by the k independent vectors DF i(x) (i = 1, 2 , . . . , k).

Proof. We know from linear algebra that the surjectivity of F ′(x) is equivalent to
the rank condition, so Theorem 5.35 applies. We find that TS(x) is the null space of
the matrix DF(x), a vector subspace of Rn of dimension n− k. Then NS(x) is the
orthogonal complement of that subspace, and has the basis described. 
�

The inverse function theorem. When X = Y and the injectivity of F ′(x̄ ) is added
to the hypotheses of Theorem 5.32, we obtain a Banach space version of the inverse
function theorem. (The proof is outlined in Exer. 8.37.)

5.38 Theorem. Let F : X → X be a mapping which is continuously differentiable in
a neighborhood of a point x̄ , and such that F ′(x̄ ) is a bijection. Set ȳ = F(x̄ ). Then
there exist open neighborhoods A of x̄ and W of ȳ and a continuously differentiable
function x̂ : W → X such that

x̂(ȳ ) = x̄ , F
(

x̂(y)
)
= y ∀y ∈ W , x̂

(
F(x)

)
= x ∀x ∈ A .

5.39 Example. (Systems of inequalities) Let us consider the stability of the solu-
tions x of a system of inequalities g(x) � 0. We remark that classical implicit func-
tion methods do not readily apply here.

We are given g : X → R
m continuously differentiable. For y ∈ R

m, we define

Γ (y) =
{

x ∈ X : g(x) � y
}
,

where the inequality is understood in the vector sense. In order to use Theorem 5.31,
we now require a function ϕ which equals zero precisely when x belongs to Γ (y).
Letting g = (g1, g2, . . . , gm), and writing y = (y1, y 2 , . . . , y m), we choose
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ϕ(x,y) = max
{

0, g1(x)− y1, g2(x)− y 2, . . . , gm(x)− y m}
.

It follows that ϕ is continuous and nonnegative, and that ϕ(x,y) = 0 if and only if
x ∈ Γ (y).

Notation: Let the point x̄ satisfy g(x̄) � 0. We denote by I(x̄) the set of indices i
in {1, 2 , . . . ,m} such that gi(x̄) = 0 (if any).

We are ready to state a consequence of Theorem 5.31.

Proposition. Suppose that the elements {Dgi(x̄) : i ∈ I(x̄)} in X ∗ are positively
linearly independent. Then there exist K and a neighborhood U of (x̄ ,0) in X×R

m

such that
d
(

x,Γ (y)
)
� Kϕ(x,y), (x,y) ∈ U.

The stated stability property follows directly from Theorem 5.31, provided that Hy-
pothesis 5.30 holds for (x,y) in a neighborhood of (x̄ ,0). This is easily verified with
the help of some upcoming results from nonsmooth analysis which characterize the
directional derivatives of a nondifferentiable “max function” such as ϕ . We resume
the analysis later, therefore, in Example 10.25. 
�

5.5 Reflexive spaces and weak compactness

The key to obtaining weak compactness in a normed space X turns out to lie in the
fact that X has a clone living in its bidual X∗∗, by which we mean (X ∗)∗, the dual of
the dual. Note that X∗∗, as a dual, is a Banach space by Theorem 5.1.

The canonical injection is the linear mapping J : X → X∗∗ defined as follows: for
given x ∈ X , we take Jx to be the element of X∗∗ determined by the formula

〈Jx,ζ 〉 = 〈ζ , x〉 , ζ ∈ X ∗.

It is clear that this defines a linear functional on X ∗. We calculate

‖Jx‖X∗∗ = sup
ζ ∈B∗

〈Jx,ζ 〉 = sup
ζ ∈B∗

〈ζ , x〉 = ‖x‖X .

Thus, J is norm preserving, and therefore continuous; in fact, J is an isometry from
X to the subspace J(X) of X∗∗. Thus the bidual space X∗∗ contains a copy J(X) of X
(and therefore can only be “bigger” than X).

5.40 Exercise. Prove that the mapping J : X → X∗∗ is continuous when X is
equipped with its weak topology and the bidual X∗∗ is equipped with the topol-
ogy σ(X∗∗, X ∗). 
�
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We say that X is reflexive when JX = X∗∗. Note that this property is invariant with
respect to the choice of equivalent norm on X (since the dual and the bidual remain
unchanged).

Since a dual space is always a Banach space (Theorem 5.1), it is immediate from
Prop. 5.3 that a reflexive normed space is a Banach space. It also follows that the
Cartesian product of two reflexive spaces is reflexive. We shall see later that a closed
subspace of a reflexive space is reflexive.

5.41 Exercise. Prove that a normed space X is reflexive if and only if JBX = B∗∗ ,
where B∗∗ denotes the closed unit ball in X∗∗. 
�

5.42 Proposition. Let X , Y be isometric normed spaces. If Y is reflexive, then X is
reflexive.

Proof. Let T : X → Y be an isometry. Note that ζ belongs to Y ∗ if and only if ζ◦T
belongs to X ∗; that is, we have X ∗ = Y ∗◦T (or X ∗ = T ∗Y ∗, if we use the adjoint
of T to express this fact). Now let z ∈ X∗∗. The goal is to exhibit an element x̄ ∈ X
such that z = JX (x̄).

We proceed to define a linear functional f on Y ∗ by

f (ζ ) = 〈z , ζ ◦T 〉 ∀ζ ∈ Y ∗.

Then we have

| f (ζ )| � ‖z‖X∗∗ ‖ζ ◦T ‖X ∗ � ‖z‖X∗∗ ‖ζ ‖Y ∗ .

It follows that f ∈ Y ∗∗, so there exists ȳ ∈ Y such that JY (ȳ) = f . Let x̄ = T−1ȳ .
Then, for any ζ ∈ Y ∗, we calculate

f (ζ ) = 〈z,ζ ◦T 〉 = 〈JY (ȳ),ζ 〉 = 〈ζ , ȳ 〉 = 〈ζ ◦T, x̄ 〉 .

Since Y ∗◦T = X ∗, this implies 〈z , ξ 〉 = 〈ξ , x̄〉 ∀ξ ∈ X ∗. Thus z = JX (x̄). 
�

5.43 Proposition. Let X be a Banach space. Then

(a) X is reflexive ⇐⇒ X ∗ is reflexive.

(b) X is reflexive and separable ⇐⇒ X ∗ is reflexive and separable.

Proof. Let X be reflexive, and fix any f ∈ X∗∗∗. We define an element ζ ∈ X ∗ by
the formula

〈ζ , x〉 = 〈 f , Jx〉 , x ∈ X .

We proceed to show that f = J∗ ζ , where J∗ is the canonical injection of X ∗ into
X∗∗∗. For this purpose, let θ be any point in X∗∗. Since X is reflexive, there exists
x ∈ X such that Jx = θ . Then we have
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〈J∗ ζ ,θ 〉 = 〈θ , ζ 〉 = 〈Jx,ζ 〉 = 〈ζ , x〉 = 〈 f , Jx〉 = 〈 f ,θ 〉.

Thus J∗ ζ = f , and X ∗ is reflexive.

Now suppose that X ∗ is reflexive. If J X 	= X∗∗, we may separate (see Theorem 2.39)
to find f ∈ X∗∗∗ such that f (J X) = 0, f 	= 0. (We have used the fact that J(X) is
closed by Prop. 5.3.) By hypothesis, we have f = J∗ ζ for some ζ ∈ X ∗. Then, for
any x ∈ X ,

0 = 〈 f , Jx〉 = 〈J∗ ζ , Jx〉 = 〈Jx,ζ 〉 = 〈ζ , x〉.

There results ζ = 0, whence f = J∗ ζ = 0, a contradiction which proves that X is
reflexive.

If X is reflexive and separable, then X∗∗ = J X is separable, as an isometric image,
and consequently X ∗ is separable (Theorem 3.19) as well as reflexive (by the above).
The converse is evident. 
�

5.44 Exercise. Let X be a Banach space. We set X{0} = X , and then

X{n+1} =
(

X{n})∗, n = 0, 1, 2 , . . .

By means of the canonical injections, we may consider that two nondecreasing se-
quences of successive biduals are obtained: X{2n} (n � 0), and X{2n+1} (n � 0).
Prove that only the two following cases arise: either both sequences are strictly in-
creasing, or else both sequences are constant. 
�

5.45 Proposition. Let X and Y be normed spaces that admit isometriesΛ : X → Y ∗

and T : Y → X ∗ such that

〈Λ x,y〉 = 〈T y, x〉 ∀x ∈ X , y ∈ Y.

Then X and Y are reflexive Banach spaces.

Proof. We show that X is reflexive. To this end, let θ ∈ X∗∗. Then the formula
ψ(y) = 〈θ ,T y〉 (y ∈ Y ) defines an element ψ of Y ∗. Thus, there exists x̄ ∈ X such
that ψ = Λ x̄ .

Now let ζ ∈ X ∗. There exists y ∈ Y such that T y = ζ . We calculate

〈θ ,ζ 〉 = 〈θ ,T y〉 = 〈ψ , y〉 = 〈Λ x̄ , y〉 = 〈T y, x̄ 〉 (by hypothesis) = 〈ζ , x̄〉 .

Thus, 〈θ ,ζ 〉 = 〈ζ , x̄ 〉 ∀ζ ∈ X ∗; that is, θ = J x̄ . 
�

We shall apply the criterion above to study the reflexivity of the sequence spaces � p

defined in Example 1.6.

5.46 Proposition. The Banach space � p (1 � p � ∞) is reflexive if and only if
1 < p < ∞.
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It may be instructive to mention here an incorrect way to prove the reflexivity of
� p for 1 < p < ∞. We know that the dual of � p is isometric to � q, where q is the
conjugate exponent (see Example 1.27). The dual of � q, in turn, is isometric to � p.
Thus � p is isometric to its bidual. It is tempting to assert, simply on the strength
of this, that � p is reflexive. But this reasoning is incorrect, for in the definition of
reflexivity, it is specified that the isometry is the canonical injection; it is not enough
that X and X∗∗ be isometric. (Yes, we assure the reader that there do exist Banach
spaces that are isometric to their bidual, but are not reflexive.)

Proof. We know that �1 is separable (see Example 3.17). If �1 were reflexive, then
(�1)

∗
would be separable and reflexive, in view of Prop. 5.43. But �∞ is isometric to

(�1)
∗
, so that �∞ would be separable, which is not the case. We conclude that �1 is

not reflexive. Since �1 is not reflexive, neither is its dual (�1)
∗
, and therefore, neither

is �∞.

There remains to prove that X = � p is reflexive for 1 < p < ∞; we do so with the
help of Prop. 5.45. Let q be the exponent conjugate to p, and set Y = �q. We have
an isometry T : �q → (� p)∗ which operates as follows: let g ∈ �q; then T g is the
element of (� p)∗ such that

〈T g , f 〉 = ∑ i�1 fi gi ∀ f ∈ � p.

Similarly, there exists Λ : � p → (�q)∗ such that

〈Λ f , g〉 = ∑ i�1 fi gi ∀g ∈ �q.

Then 〈Λ f , g〉 = 〈T g, f 〉 ∀ f ∈ � p, g ∈ �q, and it follows from Prop. 5.45 that � p

is reflexive. 
�

Weak compactness. In R
n, the fact that closed bounded sets are compact is a highly

useful one, as the reader knows. We prove below that reflexive spaces enjoy a some-
what similar property: a closed, bounded, convex subset of a reflexive Banach space
is weakly compact. The key is the following.

5.47 Theorem. A Banach space X is reflexive if and only if its closed unit ball is
weakly compact.

Proof. Suppose first that X is reflexive; thus JB = B∗∗ (see Exer. 5.41). Let {Vα}
be a covering of B by weakly open sets. We prove the existence of a finite subcover.
Without loss of generality, we may suppose that each Vα is the trace on the ball of a
canonical base element for the weak topology:

Vα =
⋂

i∈Fα

{
x ∈ X , ‖x‖ � 1 :

∣
∣〈ζα, i , x− xα 〉

∣
∣< rα

}
,

where {ζα, i : i ∈ Fα } is a finite collection in X ∗ for each α , and where xα ∈ X and
rα > 0. We observe that the sets
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JVα =
⋂

i∈Fα

{
Jx ∈ X∗∗, ‖Jx‖ � 1 :

∣
∣〈Jx− Jxα , ζα, i 〉

∣
∣< rα

}

=
⋂

i∈Fα

{
θ ∈ X∗∗, ‖θ ‖ � 1 :

∣
∣〈θ −θα , ζα, i 〉

∣
∣< rα

}

constitute a covering of JB = B∗∗ , where θα := Jxα . (The reflexivity of X is essen-
tial here.) Further, these sets are the trace on the ball B∗∗ of sets which are open for
the topology σ(X∗∗, X ∗) (by the very definition of this topology). But in the space
X∗∗ equipped with this topology, B∗∗ is compact (Cor. 3.15). We may therefore ex-
tract a finite subcover, which leads to the required subcover of {Vα} in an evident
way.

The converse uses the following result known as Goldstine’s lemma:

Lemma. For the topology σ(X∗∗, X ∗), J(B) is dense in B∗∗ .

To see this, fix θ ∈ B∗∗ and let V be any neighborhood of θ in the topology
σ(X∗∗, X ∗). We desire to prove that V ∩ J(B) 	= /0. Without loss of generality, we
may suppose that V has the canonical form

V =
⋂n

i=1

{
θ ′ ∈ X∗∗ :

∣
∣〈θ ′ −θ , ζ i 〉

∣
∣< r

}
,

where ζ i ∈ X ∗ and r > 0. Thus we seek to prove the existence of x ∈ B such
that ∣

∣〈Jx,ζ i 〉−〈θ ,ζ i 〉
∣
∣ =

∣
∣〈 ζ i , x〉−〈θ ,ζ i 〉

∣
∣ < r , i = 1, 2 , . . . , n.

Let us define ϕ : X → R
n by ϕ(x) = (〈ζ1, x〉,〈ζ2 , x〉, . . . ,〈ζn , x〉) , and set

v =
(
〈θ ,ζ1 〉,〈θ ,ζ2 〉, . . . ,〈θ ,ζn 〉

)
∈ R

n.

It suffices to show that v ∈ clϕ(B). If such is not the case, we may invoke the strict
case of the separation theorem 2.37 in order to deduce the existence of β ∈ R

n and
γ ∈ R such that

ϕ(x) •β < γ < v • β ∀x ∈ B.

Thus, for all x ∈ B, we have
〈
∑n

1 β i ζ i , x
〉
= ∑n

1 β i 〈ζ i , x〉 = ϕ(x) •β < γ < v • β

= ∑n
1 β i 〈θ ,ζ i 〉 =

〈
θ , ∑n

1 β i ζ i

〉
�

∥
∥
∥∑n

1 β i ζ i

∥
∥
∥
∗
,

since ‖θ ‖∗∗ � 1. Taking the supremum over x ∈ B on the left leads to a contradic-
tion, which completes the proof of the lemma.

Suppose now that the ball B is weakly compact. Then JB is compact in X∗∗ equipped
with the topology σ(X∗∗, X ∗) (by Exer. 5.40). In a Hausdorff topology such as
σ(X∗∗, X ∗), a compact set is also closed. Then, by the lemma, we deduce JB = B∗∗ ,
which is equivalent to the reflexivity of X . 
�
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5.48 Corollary. Any closed, bounded, convex subset A of a reflexive Banach space
is weakly compact.

5.49 Exercise. Prove that a closed subspace L of a reflexive Banach space X is
reflexive. 
�

The weak topology is never metrizable when the underlying normed space is
infinite-dimensional (Exer. 8.43). In certain non metrizable spaces, there is a dis-
tinction between sets which are compact and those which are sequentially compact.
It turns out that this potential distinction does not arise in the current context:

5.50 Theorem. Any closed, bounded, convex subset A of a reflexive Banach space
is weakly sequentially compact.

Proof. The proof is short, but it manages to provide a review of many prior results.
Let xi be a sequence in A. We prove the existence of x ∈ A and a subsequence xni

converging to x.

For some r > 0, all the terms xi of the sequence are contained in the ball rB. Let L
be the closed subspace of X generated by the sequence xi . Then L is separable (see
the argument given in the proof of Theorem 3.19). Furthermore, L is reflexive by
Exer. 5.49. It follows that the closed ball BL is weakly compact in L, by Theorem
5.47, as is rBL .

We know that L∗ is separable by Prop. 5.43. Then the weak topology of L, when
restricted to rBL , is metrizable, by Theorem 3.20. This implies weak sequential
compactness of rBL , whence the existence of a subsequence xni converging weakly
in L to a limit x. Thus, we have

〈ζ , xni 〉 → 〈ζ , x〉 ∀ζ ∈ L∗.

But (by Cor. 1.34) this is equivalent to the weak convergence in X of xni to x.
Finally, the point x belongs to A, since A is weakly closed, being closed and convex
(Theorem 3.6). 
�

The Direct Method. If this were a multimedia presentation, the reader might hear
a drumroll at this point, and possibly trumpets, for we are on the brink of attain-
ing a long-sought goal: to formulate a general existence theorem for minimization.
Several of the tools we have studied (lower semicontinuity, convexity, weak com-
pactness) were invented for precisely such a purpose.

The problem we consider is the familiar one:

Minimize f (x) subject to x ∈ A . (P)

A solution of (P) refers, of course, to a point x̄ ∈ A such that f (x̄) = infA f .
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5.51 Theorem. Under the following hypotheses, infA f is finite, and the problem
(P) admits a solution:

(a) A is a closed convex subset of a reflexive Banach space X ;

(b) f : X → R∞ is convex and lower semicontinuous, and dom f ∩ A 	= /0 ;

(c) For every M ∈ R, the set
{

x ∈ A : f (x) � M
}

is bounded.

In fact, any minimizing sequence xn for the problem (P) admits a subsequence con-
verging weakly to a solution x̄ of the problem.

The proof is carried out by invoking weak compactness and lower semicontinuity in
connection with a minimizing sequence, a technique that has become known as the
direct method, following its introduction under this name by Tonelli, in the context
of the calculus of variations.

Proof. Since A ∩ dom f 	= /0, there exists a point x0 ∈ A such that f (x0)<∞. Thus
infA f is either finite or −∞. Let xn be any minimizing sequence; that is, a sequence
of points in A such that

f (xn) → inf
A

f < f (x0)+1.

For n sufficiently large, we have f (xn)� f (x0)+1, so that, by the growth condition
(c), the sequence xn is bounded. Since X is reflexive, there exists by Theorem 5.50
a subsequence xni of xn converging weakly to a limit x̄ ∈ X .

Because A is convex and closed, A is weakly closed (Theorem 3.6), whence x̄ ∈ A.
Because f is lsc and convex, f is weakly lsc (Cor. 3.7), whence

f (x̄) � lim
i→∞

f
(
xni

)
= inf

A
f .

It follows that infA f is finite and attained at x̄ , which solves the problem (P). 
�

The growth condition. We remark that the growth condition (c) used in the theo-
rem, a joint one involving both f and A, can result in certain cases from a property
of either the set A or the function f alone. The following cases are notable ones
implying (c):

• The set A is bounded, or

• The function f is coercive: lim‖x‖→∞ f (x) = ∞.

5.52 Exercise. Let S be a closed, convex, nonempty subset of a Banach space X .

(a) If X is reflexive, show that for each x ∈ X there exists at least one closest point
in S to x; that is, a point p ∈ S such that dS(x) = ‖x− p‖. Deduce, in particular,
that S contains an element of least norm.
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(b) Let X be the Banach space C[0,1], and let S be the set of points f ∈ X such that

∫ 1/2

0
f (t)dt −

∫ 1

1/2
f (t)dt = 1.

Prove that S is nonempty, closed, and convex, but that S does not possess an
element of least norm. Deduce from this that C[0,1] is not reflexive. 
�

The most interesting applications of the direct method lie ahead, but the reader will
find that the salient points nonetheless emerge in the following illustration.

5.53 Exercise. Let fi : R→ R+ be a sequence of convex functions such that

∑∞
i=1 fi(0) < +∞.

For given r ∈ (1,∞), define f : �r → R∞ by

f (x) = ∑∞
i=1 fi(xi),

and set
A =

{
x ∈ �r : 0 � xi ∀ i , ∑∞

i=1 xi � 1
}
.

Prove that infA f is finite and attained. Show that this assertion fails for r = 1. 
�



Chapter 6

Lebesgue spaces

The Lebesgue spaces L p(Ω) play a central role in many applications of functional
analysis. This chapter focuses upon their basic properties, as well as certain atten-
dant issues that will be important later. Notable among these are the semicontinuity
of integral functionals, and the existence of measurable selections.

6.1 Uniform convexity and duality

We begin by identifying a geometric property of the norm which, when present,
turns out to have a surprising consequence. Let X be a normed space.

6.1 Definition. X is uniformly convex if it satisfies the following property:

∀ ε > 0 , ∃ δ > 0 such that x ∈ B , y ∈ B , ‖x− y‖> ε =⇒
∥
∥
∥

x+ y
2

∥
∥
∥ < 1−δ .

In geometric terms, this is a way of saying that the unit ball is curved.1 The property
depends upon the choice of the norm on X , even among equivalent norms, as one
can see even in R

2.

6.2 Exercise. The following three norms on R
2 are equivalent:

‖(x,y)‖1 = |x |+ |y | , ‖(x,y)‖2 = |(x,y)| =
{
|x |2 + |y |2}1/2

,

‖(x,y)‖∞ = max
(
|x |, |y |

)
.

Which ones make R
2 a uniformly convex normed space? 
�

1 It turns out that the ball in R is curved in this sense, although it may seem rather straight to the
reader.
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Despite the fact that uniform convexity is a norm-dependent property, the very ex-
istence of such a norm yields an intrinsic property of the underlying space, one that
does not depend on the choice of equivalent norm.

6.3 Theorem. (Milman) Any uniformly convex Banach space is reflexive.

Proof. Let θ ∈ X∗∗ satisfy ‖θ ‖∗∗ = 1, and fix any ε > 0. We shall prove the ex-
istence of x ∈ B such that ‖Jx− θ ‖∗∗ � ε . Since JB is closed in X∗∗ (see Prop.
5.3), this implies JB = B∗∗, and consequently that JX = X∗∗, so that X is reflex-
ive.

Let δ correspond to ε as in the definition of uniform convexity. We choose ζ ∈ X ∗,
‖ζ ‖∗ = 1, such that 〈θ ,ζ 〉> 1−δ/2, and we set

V =
{
θ ′ ∈ X∗∗ :

∣
∣〈θ ′ −θ ,ζ 〉

∣
∣ < δ/2

}
,

which is an open neighborhood of θ in the topology σ
(
X∗∗, X ∗). By Goldstine’s

lemma (see the proof of Theorem 5.47), V intersects JB: there exists x ∈ B such
that ∣

∣〈ζ , x〉−〈θ ,ζ 〉
∣
∣ =

∣
∣〈Jx−θ ,ζ 〉

∣
∣ < δ/2.

We claim that ‖Jx−θ ‖∗∗ � ε . We reason from the absurd, by supposing that θ lies
in W , where W is the complement in X∗∗ of the set Jx+ εB∗∗ .

Since Jx+εB∗∗ is closed in σ
(
X∗∗, X ∗), W is open in σ

(
X∗∗, X ∗). Thus V ∩W is an

open neighborhood of θ in this topology. By Goldstine’s lemma, there exists y ∈ B
such that Jy ∈ V ∩ W . Thus we have |〈ζ ,y〉−〈θ ,ζ 〉|< δ/2 by definition of V . We
calculate

1−δ/2 < 〈θ ,ζ 〉= 1
2

{
〈θ ,ζ 〉−〈ζ ,y〉

}
+ 1

2

{
〈θ ,ζ 〉−〈ζ ,x〉

}
+ 1

2 〈ζ , x+ y〉
< δ/4+δ/4+‖x+ y‖/2 .

It follows that ‖x+ y‖/2 > 1−δ , whence ‖x− y‖� ε (from uniform convexity).
However, Jy ∈ W yields ε < ‖Jy− Jx‖ = ‖y− x‖, a contradiction which com-
pletes the proof. 
�

There exist reflexive spaces which fail to admit an equivalent norm that is uniformly
convex; thus, the existence of such a norm is not a necessary condition for reflex-
ivity. But it is a useful sufficient condition, notably in the study of the Lebesgue
spaces introduced in Example 1.9.

6.4 Theorem. If 1 < p < ∞, the Banach space L p(Ω) is reflexive.

Proof. We treat first2 the case 2 � p < ∞. Then, we claim, L p(Ω) is uniformly
convex, and therefore reflexive by Theorem 6.3.

2 We follow Brézis [8, théorème IV.10].



6.1 Uniform convexity and duality 107

When p � 2, it is easy to show (by examining its derivative) that the function

θ(t) =
(
t 2 +1

)p/2 − t p −1

is increasing on [0,∞), which implies, by writing θ(0) � θ(α/β ), the inequal-
ity

α p +β p �
(
α 2 +β 2)p/2 ∀α, β � 0 .

Now let a, b ∈ R and take α = |a+b |/2, β = |a−b |/2; we find

∣
∣
∣
∣

a+b
2

∣
∣
∣
∣

p

+

∣
∣
∣
∣

a−b
2

∣
∣
∣
∣

p

�
( ∣
∣
∣
∣

a+b
2

∣
∣
∣
∣

2

+

∣
∣
∣
∣

a−b
2

∣
∣
∣
∣

2 )p/2

=

(
a2

2
+

b2

2

)p/2

� a p

2
+

b p

2

(the last estimate uses the convexity of the function t �→ | t |p/2, which holds because
p � 2). This yields Clarkson’s inequality:

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

p

L p
+

∥
∥
∥
∥

f −g
2

∥
∥
∥
∥

p

L p
� 1

2

( ∥
∥ f

∥
∥ p

L p +
∥
∥g

∥
∥p

L p

)
∀ f , g ∈ L p(Ω) .

Fix ε > 0, and suppose that f , g in the unit ball of L p(Ω) satisfy ‖ f − g‖L p > ε .
From Clarkson’s inequality we deduce

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

p

L p
< 1−

( ε
2

)p
=⇒

∥
∥
∥
∥

f +g
2

∥
∥
∥
∥

L p
< 1−δ ,

where δ = 1− [1− (ε/2) p ]1/p. This verifies the uniform convexity, and completes
the proof of the case p � 2.

We now prove that L p(Ω) is reflexive for 1 < p < 2. Let q = p∗ , and consider the
operator T : L p(Ω)→ Lq(Ω)∗ defined as follows: for u ∈ L p(Ω), the effect of Tu
on Lq(Ω) is given by

〈Tu ,g〉 =

∫

Ω
u(x)g(x)dx ∀g ∈ Lq(Ω) .

Then we have (see Exer. 1.31)

‖Tu‖Lq(Ω)∗ = ‖u‖L p(Ω) .

Thus T is an isometry between L p(Ω) and a closed subspace of Lq(Ω)∗ (since
L p(Ω) is complete, see Prop. 5.3). Now q > 2, so Lq(Ω) is reflexive (by the case
of the theorem proved above); thus, its dual Lq(Ω)∗ is reflexive (Prop. 5.43). Then
T (L p(Ω)), as a closed subspace, is reflexive (Exer. 5.49), and therefore L p(Ω) is
reflexive as well (Prop. 5.42). 
�

6.5 Corollary. The spaces AC p[a,b ] are reflexive for 1 < p < ∞.
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6.6 Exercise. Let Λ : [0,1]×R×R→ R be a continuous function having the prop-
erty that, for almost every t ∈ [0,1], the function (x,v) �→ Λ(t, x,v) is convex (see
Example 2.30). We suppose in addition that, for certain numbers r > 1, α > 0 and
β , we have

Λ(t, x, v) � α |v |r +β ∀(t, x,v) ∈ [0,1]×R×R .

Fix x0 , x1 ∈ R, and consider the following minimization problem (P):

min f (x) =
∫ 1

0
Λ
(
t, x(t), x ′(t)

)
dt : x ∈ AC[0,1] , x(0) = x0 , x(1) = x1 .

Prove that (P) admits a solution. 
�

6.7 Exercise. Let 1 < r < ∞, and let xi be a bounded sequence of functions in
ACr[a,b ]. Prove the existence of x∗ ∈ ACr[a,b ] and a subsequence xi j such that

xi j → x∗ uniformly on [a,b ] , xi j
′ → x∗′ weakly in Lr(a,b) . 
�

6.8 Theorem. (Riesz) For 1 < p < ∞, the dual space of L p(Ω) is isometric to
Lq(Ω), where q is the conjugate exponent of p. More precisely, each ζ of the dual
admits a function g ∈ Lq(Ω) (necessarily unique) such that

〈ζ , f 〉 =

∫

Ω
f (x)g(x)dx ∀ f ∈ L p(Ω) .

We then have ‖ζ ‖L p(Ω)∗ = ‖g‖Lq(Ω) .

Proof. Let the linear mapping T : Lq(Ω)→ L p(Ω)∗ be defined by

〈T g , f 〉 =
∫

Ω
f (x)g(x)dx ∀ f ∈ L p(Ω) .

Then, as we know, ‖T g‖L p(Ω)∗ = ‖g‖Lq(Ω) (see Exer. 1.31), so that T is injective.
We proceed to prove that T is surjective, which implies the theorem.

Since T (Lq(Ω)) is closed (as the image of a Banach space under an isometry, see
Prop. 5.3), it suffices to prove that T (Lq(Ω)) is dense in L p(Ω)∗. To prove this, it
suffices in turn to prove that (see Theorem 2.39)

θ ∈ L p(Ω)∗∗, 〈θ , T g〉 = 0 ∀g ∈ Lq(Ω) =⇒ θ = 0 .

We proceed to establish this now. Since L p(Ω) is reflexive, there exists f ∈ L p(Ω)
such that θ = J f . Then

〈θ ,T g〉 = 0 = 〈J f ,T g〉 = 〈T g , f 〉 =
∫

Ω
f (x)g(x)dx ∀g ∈ Lq(Ω) .

We discover f = 0, by taking g = | f | p−2 f (which lies in Lq(Ω)) in the preceding
relation, whence θ = 0. 
�
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6.9 Exercise. Characterize the dual of AC p[a,b ] for 1 < p < ∞. 
�

We now proceed to characterize the dual of L1(Ω); the proof can no longer rely on
reflexivity, however.

6.10 Theorem. The dual of L1(Ω) is isometric to L∞(Ω). More precisely, ζ be-
longs to L1(Ω)∗ if and only if there exists z ∈ L∞(Ω) (necessarily unique) such
that

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx ∀ f ∈ L1(Ω).

When this holds we have ‖ζ ‖L1(Ω)∗ = ‖z‖L∞(Ω) .

Proof. That any z ∈ L∞(Ω) can be used as indicated to engender an element ζ in
the dual of L1(Ω) is clear, since

〈ζ , f 〉 � ‖z‖L∞(Ω) ‖ f ‖L1(Ω) .

Thus any ζ defined in this way satisfies ‖ζ ‖L1(Ω)∗ � ‖z‖L∞(Ω) . Let us prove the
opposite inequality, for which we may limit attention to the case ‖z‖L∞(Ω) > 0. For
any ε > 0, there exists a measurable subset S ⊂ Ω of positive finite measure such
that

|z(x)| � ‖z‖L∞(Ω)− ε , x ∈ S a.e.

Set f (x) = z(x)/|z(x)| for x ∈ S, and f = 0 elsewhere. Then f ∈ L1(Ω), and we
find

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx �

(
‖z‖L∞(Ω)− ε

)
meas S =

(
‖z‖L∞(Ω)− ε

)
‖ f ‖L1(Ω) .

It follows that
‖ζ ‖L1(Ω)∗ � ‖z‖L∞(Ω)− ε .

Since ε > 0 is otherwise arbitrary, the assertion concerning ‖ζ ‖L1(Ω)∗ is proved.

There remains to show that every ζ ∈ L1(Ω)∗ is generated by some z as above. We
prove this first under the additional hypothesis that Ω is bounded.

Let ζ ∈ L1(Ω)∗. Any f ∈ L2(Ω) belongs to L1(Ω), since Ω is bounded; by Hölder’s
inequality we have:

〈ζ , f 〉 � ‖ζ ‖L1(Ω)∗ ‖ f ‖L1(Ω) � ‖ζ ‖L1(Ω)∗
[

meas(Ω)
]1/2 ‖ f ‖L2(Ω) .

It follows that ζ can be viewed as an element of L2(Ω)∗. According to Theorem 6.8,
there is a unique z in L2(Ω) such that (by the preceding inequality)

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx � ‖ζ ‖L1(Ω)∗ ‖ f ‖L1(Ω) ∀ f ∈ L2(Ω) .
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Thus, for any f ∈ L∞(Ω) ⊂ L2(Ω), we have (by rewriting):
∫

Ω

{
‖ζ ‖L1(Ω)∗ | f (x) |− z(x) f (x)

}
dx � 0 .

This implies (here we must beg the reader’s pardon for a regrettable forward refer-
ence: see Theorem 6.32)

‖ζ ‖L1(Ω)∗ | f |− z(x) f � 0 ∀ f ∈ R , x ∈ Ω a.e. ,

which yields |z(x)| � ‖ζ ‖L1(Ω)∗ a.e. Thus z belongs to L∞(Ω), and satisfies

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx ∀ f ∈ L∞(Ω) .

Given any f ∈ L1(Ω), there is a sequence fi ∈ L∞(Ω) such that

‖ f − fi ‖L1(Ω) → 0 .

For instance, let fi(x) = f (x) if | f (x)| � i, and 0 otherwise. We have, by the
above

〈ζ , fi 〉 =
∫

Ω
z(x) fi(x)dx ∀ i � 1.

Recalling that ζ is continuous, and passing to the limit, we obtain the same conclu-
sion for f ; it follows that z represents ζ on L1(Ω), as we wished to show. That z is
the unique function doing this is left as an exercise.

There remains to treat the case in which Ω is unbounded. Let ζ ∈ L1(Ω)∗. For any
sufficiently large positive integer k, the set Ω k := Ω ∩ B◦(0,k) is nonempty. Then
ζ induces an element of L1(Ω k)

∗: we simply extend to Ω any function f ∈ L1(Ω k)
by setting it equal to 0 on Ω\Ω k , then apply ζ to the extension. By the above, there
is a function zk ∈ L∞(Ω k) such that

〈ζ , f 〉=
∫

Ω k

zk(x) f (x)dx ∀ f ∈ L1(Ω k), ‖zk‖L∞(Ω k)
= ‖ζ ‖L1(Ω k)

∗ � ‖ζ ‖L1(Ω)∗ .

It is clear that each of the functions zk is necessarily an extension of the preceding
ones (by uniqueness), so they define a function z ∈ L∞(Ω). We claim that this z
represents ζ as required. Let f be any element of L1(Ω), and let f k be the function
which agrees with f on Ω k and which is zero on Ω\Ω k . Then

〈ζ , f k 〉 =
∫

Ω k

z(x) f k(x)dx =

∫

Ω
z(x) f k(x)dx .

But f k → f in L1(Ω), so in the limit we obtain

〈ζ , f 〉 =
∫

Ω
z(x) f (x)dx .


�
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6.11 Exercise. Let fi be a sequence in L∞(0,1) such that, for each g ∈ L1(0,1), we
have

inf
i � 1

∫ 1

0
fi(t)g(t)dt > −∞ .

Prove the existence of M such that ‖ fi ‖L∞(0,1) � M ∀ i. 
�

6.12 Exercise. Let θ belong to L∞(0,1). Prove the existence of a solution to the
following minimization problem:

min
v∈L1(0 ,1)

∫ 1

0
e [ (v(t)−1)2 ] dt subject to

∫ 1

0
θ(t)v(t)dt = 0 .


�

6.13 Proposition. The spaces L1(Ω) and L∞(Ω) are not reflexive.

Proof. For ease of exposition, as they say, let us suppose that Ω contains a ball
B(0,r). We define a function z in L∞(Ω) as follows:

z(x) =

{
1−2−n if 2−n−1r � |x |< 2−nr , n = 0, 1, 2 . . .
0 otherwise.

Note that ‖z‖L∞(Ω) = 1. If f 	= 0 is any nonnegative function in L1(Ω), then
∫

Ω
f (x)z(x)dx <

∫

Ω
f (x)dx = ‖ f ‖L1(Ω) .

If we denote by ζ the element of L1(Ω)∗ corresponding to z as in Theorem 6.10, it
follows that the supremum

sup
{
〈ζ , f 〉 : ‖ f ‖L1(Ω) � 1

}
= ‖ζ ‖L1(Ω)∗

is not attained. But if the unit ball in L1(Ω) were weakly compact, this supremum
would be attained. We deduce from Theorem 5.47 that L1(Ω) is not reflexive. It
then follows from Theorem 6.10 and Prop. 5.42 that L∞(Ω) is not reflexive. 
�

We examine next the separability or otherwise of the Lebesgue spaces.

6.14 Proposition. L p(Ω) is separable for 1 � p < ∞.

Proof. We sketch the proof in the case p = 1, the other cases being much the same.
We also take Ω bounded, a reduction that is easy to justify. Let f ∈ L1(Ω), and
let fi be the function which coincides with f when | f | � i, and which equals 0
otherwise. Then fi is measurable, and it follows that fi → f in L1(Ω). By Lusin’s
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theorem3 there exists a continuous function gi on Ω having compact support, which
is bounded in absolute value by i, and which agrees with fi except on a set Si of
measure less than 1/i 2. Then

∫

Ω
| fi −gi |dx =

∫

Ω\Si

| fi −gi |dx +
∫

Si

| fi −gi |dx � (2 i)/i 2 → 0 .

Since fi → f , we deduce that C(Ω ) is dense in L1(Ω). However, the set of polyno-
mials with rational coefficients is dense in C(Ω ), by the Weierstrass approximation
theorem, whence the separability of L1(Ω). 
�

The proof shows that Cc(Ω), the continuous functions onΩ having compact support
in Ω , is dense in L1(Ω). It can be shown that C∞

c (Ω) has the same property.

6.15 Exercise. Prove that L∞(Ω) is not separable. 
�

Weak compactness without reflexivity. Certain useful compactness properties do
hold in L1(Ω) and L∞(Ω), despite the fact that these spaces fail to be reflexive. We
identify two such cases below, in each of which the separability of L1(Ω) plays a
role.

6.16 Exercise. Let fi be a bounded sequence in L∞(Ω). Prove the existence of a
subsequence fi j and f ∈ L∞(Ω) such that

g ∈ L1(Ω) =⇒
∫

Ω
g(x) fi j(x)dx →

∫

Ω
g(x) f (x)dx .


�

In applications to come, the reader will find that it is common to deal with a sequence
of functions fi in L1(0,T ) satisfying a uniform bound of the type | fi(t)| � k(t) a.e.,
where k is summable. The following establishes a sequential compactness result that
applies to such a situation.

6.17 Proposition. Let k(·) ∈ L1(Ω), where Ω is an open subset of R
n. Then the

set
K =

{
f ∈ L1(Ω) : | f (x)| � k(x) , x ∈ Ω a.e.

}

is weakly compact and sequentially weakly compact in L1(Ω).

Proof. Let us set

X = L∞(Ω) equipped with the weak∗ topologyσ
(
L∞(Ω), L1(Ω)

)
,

Y = L1(Ω) equipped with the weak topologyσ
(
L1(Ω), L∞(Ω)

)
.

3 Let Ω be a bounded open subset of Rn, and let ϕ : Ω → R be measurable, |ϕ(x)| � M a.e. For
every ε > 0 there exists g :Ω → R, continuous with compact support, having supΩ |g | � M , such
that meas{x ∈ Ω : ϕ(x) 	= g(x)}< ε . See Rudin [37, p. 53].
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We define a linear functional Λ : X → Y by Λ g = k g. We claim that Λ is continu-
ous. By Theorem 3.1, we need only show that, for any h ∈ L∞(Ω), the map

f �→
∫

Ω
h(x)k(x) f (x)dx

is continuous on X . This follows from the fact that hk ∈ L1(Ω), so that the map
in question is an evaluation of the type that is rendered continuous by the topology
σ(L∞(Ω), L1(Ω)).

Then K is the image under the continuous map Λ of the unit ball in L∞(Ω), which
is compact in X by Theorem 3.15. Thus K is compact in Y .

Now let fi be a sequence in K ; then fi = k gi , where gi lies in the unit ball of
L∞(Ω). (One may take gi(x) = fi(x)/k(x) when k(x) 	= 0, and gi(x)= 0 otherwise.)
Because L1(Ω) is separable, the weak∗ topology on the ball is metrizable (Theorem
3.21). Thus, a subsequence gi j converges weak∗ to a limit g in L∞(Ω). This means
that ∫

Ω
gi j(x)h(x)dx →

∫

Ω
g(x)h(x)dx ∀h ∈ L1(Ω).

It follows that
∫

Ω
gi j(x)k(x)u(x)dx →

∫

Ω
g(x)k(x)u(x)dx ∀u ∈ L∞(Ω) ,

which implies that fi j := k gi j converges weakly in L1(Ω) to gk. 
�

6.18 Exercise. For each x ∈ Ω , let F(x) be a closed convex subset of R satisfying
|F(x)| � k(x). Prove that the set

Φ =
{

f ∈ L1(Ω) : f (x) ∈ F(x) , x ∈ Ω a.e.
}

is sequentially weakly compact in L1(Ω). 
�

6.19 Exercise. A sawtooth function x on [0,1] is a Lipschitz, piecewise affine func-
tion x : [0,1] → R with x(0) = x(1) = 0 such that |x ′(t)| = 1 a.e. Let xi be a se-
quence of such functions satisfying

‖xi ‖C[0 ,1] � 1/i ,

and set vi = x ′
i . Prove that vi converges weakly in L1(0,1) to 0. Deduce that the set

{
f ∈ L1(0,1) : f (x) ∈ {−1,1} a.e.

}

is not weakly compact. 
�
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6.2 Measurable multifunctions

Let Ω be a subset of Rm. A multifunction Γ from Ω to R
n is a mapping from Ω to

the subsets of Rn; thus, we associate with each x ∈ Ω a set Γ (x) in R
n, possibly the

empty set. Such mappings arise rather frequently later on, and a recurrent issue will
be that of finding a measurable selection of Γ . This means a measurable function
γ : Ω → R

n such that γ (x) belongs to Γ (x) for almost all x ∈ Ω .

Consider the following simple example, in which n = m. Let U be an open convex
subset of Rn, and f : U → R a convex function. We have learned that the subdif-
ferential Γ (x) := ∂ f (x) is nonempty for each x ∈ U . It follows from the axiom of
choice that there is a function ζ : U → R

n such that ζ (x) ∈ ∂ f (x) ∀x ∈ U . Is there,
however, a measurable function having this property?

Answering a question such as this requires a theory. We develop one in this section,
in the context of Euclidean spaces.

Notation. We write Γ : Ω � R
n to denote a multifunction Γ that maps a subset Ω

of Rm to the subsets of Rn.

One of the major ingredients in the theory is the following extension to multifunc-
tions of the concept of measurable function.

Measurable multifunctions. The multifunction Γ : Ω � R
n is measurable pro-

vided that Ω is measurable, and provided that the set

Γ−1(V ) =
{

x ∈ Ω : Γ (x)∩ V 	= /0
}

is (Lebesgue) measurable for every closed subset V of Rn.

We obtain an equivalent definition by taking compact sets V in the definition. To see
this, observe that any closed set V is the union of countably many compact sets Vi .
Then we have

Γ−1(V ) =
⋃

i�1
Γ−1(Vi) .

If each Γ−1(Vi) is measurable, then so is Γ−1(V ), as the countable union of mea-
surable sets. The reader may show by a somewhat similar argument that when Γ is
measurable, then the set Γ−1(V ) is measurable for every open set V (this property,
however, does not characterize measurability).

6.20 Exercise. Suppose that Γ is a singleton {γ (x)} for each x. Prove that the mul-
tifunction Γ is measurable if and only if the function γ is measurable. 
�

The effective domain dom Γ of the multifunction Γ : Ω � R
n is defined as follows:

dom Γ =
{

x ∈ Ω : Γ (x) 	= /0
}
.
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By taking V = R
n in the definition of measurability, it follows that the effective do-

main of a measurable multifunction is measurable. We remark that as in the case
of a function, redefining Γ on a set of measure zero does not affect its measurabil-
ity, so in discussing measurable multifunctions we deal implicitly with equivalence
classes, as we do with Lebesgue spaces.

6.21 Exercise. Let u : Rm → R
n and r : Rm → R+ be measurable functions, and

let W be a measurable subset of Rn. Prove that the multifunction Γ from R
m to R

n

defined by Γ (x) = W +B(u(x),r(x)) is measurable. 
�

It is not hard to show that if γ i is a sequence of measurable functions, then the
multifunction Γ (x) = {γ i(x) : i � 1} is measurable. The following shows that all
closed-valued measurable multifunctions are in fact generated this way. (Γ is said
to be closed-valued, of course, when Γ (x) is a closed set for each x ∈ Ω .)

6.22 Theorem. Let Γ : Ω � R
n be closed-valued and measurable. Then there ex-

ists a countable family {γ i : dom Γ → R
n } of measurable functions such that

Γ (x) = cl
{
γ i(x) : i � 1

}
, x ∈ dom Γ a.e.

Proof. Let Δ = dom Γ . We begin by noting that, for any u in R
n, the function

s → dΓ (s)(u) restricted to Δ is measurable (where dΓ (s) is as usual the Euclidean
distance function). This follows from the identity (for 0 � r < R)

dΓ (·)(u)
−1(r,R) = {s ∈ Δ : Γ (s)∩ B(u,r) = /0} ∩ Γ−1(B◦(u,R)) .

Now let {u j } j�1 be a dense sequence in R
n, and define a function f0 : Δ → R

n as
follows:

f0(s) = the first u j such that dΓ (s)(u j) � 1.

Lemma. The functions s→ f0(s) and s→ dΓ (s)( f0(s)) are measurable on Δ .

To see this, observe that f0 assumes countably many values, and that we have, for
each i � 1:

{
s : f0(s) = ui

}
=

⋂ i−1

j=1

{
s : dΓ (s)(u j)> 1

} ⋂ {
s : dΓ (s)(ui) � 1

}
.

This implies that f0 is measurable. Since the function (s,u) �→ dΓ (s)(u) is measur-
able in s and continuous in u, it is known (and actually proved in the next section,
in the midst of more general goings on) that the function s → dΓ (s)( f0(s)) is mea-
surable. The lemma is proved.

We pursue the process begun above by defining for each integer i � 0 a function
fi+1 such that fi+1(s) is the first u j for which both the following hold:

|u j − fi(s)| � 2
3 dΓ (s)

(
fi(s)

)
, dΓ (s)(u j) � 2

3 dΓ (s)
(

fi(s)
)
.
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It follows as above that each fi is measurable. Moreover, we deduce

dΓ (s)
(

fi+1(s)
)
�

( 2
3

)i+1 dΓ (s)
(

f0(s)
)
�

( 2
3

)i+1
,

together with | fi+1(s)− fi(s)| � (2/3) i+1. This implies that { fi(s)} is a Cauchy
sequence converging for each s ∈ Δ to a value which we denote by γ 0(s), and that
γ 0(x)∈ Γ (x) a.e. in Δ . As a limit of measurable functions, γ 0 is measurable.

For every pair of positive integers i, j , we define a multifunction Γi, j : Ω � R
n as

follows:

Γi, j(x) =

⎧
⎪⎪⎨

⎪⎪⎩

/0 if x /∈ Δ

Γ (x) ∩ B(ui ,1/ j) if x ∈ Δ and Γ (x) ∩ B(ui ,1/ j) 	= /0

{γ 0(x)} otherwise.

For any closed subset V of Rn, the set Γ−1
i, j (V ) is given by

{
x :Γ (x)∩V ∩ B(ui ,1/ j) 	= /0

} ⋃ [{
x ∈ Δ : Γ (x)∩ B(ui ,1/ j) = /0

}
∩ γ−1

0 (V )
]
.

It follows that Γi, j is measurable and closed-valued; its effective domain is Δ . By the
argument above (applied to Γi, j rather than Γ ), there exists a measurable function
γ i, j such that γ i, j(x) ∈ Γi, j(x) , x ∈ Δ a.e.

We claim that the countable collection γ i, j , together with γ 0 , satisfies the conclusion
of the theorem.

To see this, let Si, j be the null set of x ∈ Δ for which the inclusion γ i, j(x) ∈ Γ (x)
fails. Now let x ∈ Δ\ [∪ i, j Si, j ], and fix any γ ∈ Γ (x), γ 	= γ 0(x). There exists
a sequence uik in {ui } and an increasing sequence of integers jk → ∞ such that
|uik − γ |< 1/jk . Then we have

γ ik , jk(x) ∈ B(uik ,1/jk) =⇒ |γ ik , jk(x)−uik |< 1/jk =⇒ |γ ik , jk(x)− γ |< 2/jk .

Thus, Γ (x) = cl{γ i, j(x)}, x ∈ Δ a.e. 
�

6.23 Corollary. (Measurable selections) Let Γ : Ω � R
n be closed-valued and

measurable. Then there exists a measurable function γ : dom Γ → R
n such that

γ (x) ∈ Γ (x) , x ∈ dom Γ a.e.

6.24 Exercise. Let Γ : Ω � R
n and G : Ω �R

n be two measurable closed-valued
multifunctions. Prove that Γ +G is measurable. 
�

The measurable multifunctions that the reader is likely to encounter will most often
have the following structure.
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6.25 Proposition. Let Ω be a measurable subset of Rm, and ϕ : Ω×R
n×R

� → R

a function with the following properties:

• The mapping x �→ ϕ(x, p,q) is measurable on Ω for each (p,q) ∈ R
n×R

�, and

• The mapping (p,q) �→ ϕ(x, p,q) is continuous for each x ∈ Ω .

Let P, Q : Ω � R
n be measurable closed-valued multifunctions, and c,d : Ω → R

measurable functions. Then Γ : Ω � R
n defined by

Γ (x) =
{

p ∈ P(x) : c(x) � ϕ(x, p,q) � d(x) for some q ∈ Q(x)
}

is measurable.

Proof. Let pi be a countable family of measurable selections of P that generate the
multifunction P as described in Theorem 6.22, and similarly, let qi generate Q. Let
ΔP and ΔQ be the effective domains of P and Q.

Then, if V is a compact subset of Rn, it follows (fairly easily, though we beg the
reader’s indulgence for the next expression) that

Γ−1(V ) =
⋃

i�1

⋂

j�1

⋃

k�1

{
x ∈ ΔP ∩ ΔQ :

pk(x)∈
(
V + j−1B

)
, |qk(x)| � i, c(x)− j−1 < ϕ

(
x, pk(x), qk(x)

)
< d(x)+ j−1

}
.

This is recognized to be a measurable set, since the function

x �→ ϕ(x, pk(x), qk(x))

is measurable (a known result on measurable functions, see Props. 6.34 and 6.35
below). 
�

6.26 Corollary. The intersection of two closed-valued measurable multifunctions
Γ1, Γ2 : Ω � R

n is measurable.

Proof. Let Δ1 and Δ2 be the effective domains of Γ1 and Γ2 . Define a function ϕ on
Ω×R

n by

ϕ(x, p) =

{
dΓ1(x)(p)+dΓ2(x)(p) if x ∈ Δ1 ∩ Δ2 ,

−1 otherwise.

The proof of Theorem 6.22 showed that ϕ is measurable in x; it is evidently contin-
uous in p. Then the multifunction

Γ1(x) ∩ Γ2(x) =
{

p : ϕ(x, p) = 0
}

is measurable by Prop. 6.25. 
�
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The graph of a multifunction Γ : Ω � R
n is the set

gr Γ =
{
(x,γ ) ∈ Ω×R

n : γ ∈ Γ (x)
}
.

6.27 Corollary. Let Ω ⊂ R
m be measurable. If Γ : Ω � R

n has the property that
gr Γ is closed, then Γ is measurable.

Proof. We may assume that gr Γ 	= /0; then the function (x,v) �→ dgr Γ (x,v) is
continuous. For any x ∈ Ω , the set Γ (x) is given by {v ∈ R

n : dgr Γ (x,v) = 0},
which leads to the required conclusion with the help of Prop. 6.25. 
�

6.28 Corollary. Let G : Ω � R
n be measurable and closed-valued. Then the mul-

tifunction Γ defined by Γ (x) = co G(x) is measurable.

Proof. Let Σ denote the set of all nonnegative vectors λ = (λ0,λ1, . . . ,λn) ∈ R
n+1

whose coordinates sum to 1. It is not hard to see that the multifunction

Q(x) = Σ×G(x)×G(x)×·· ·×G(x)

is measurable (where the Cartesian product contains n+ 1 factors equal to G(x)).
Let f be defined by

f (λ , g0 , g1, . . . , gn) = ∑n
i=0 λ i gi ,

where each gi lies in R
n. Then, by Prop. 2.6, the set Γ (x) is described by

{
v ∈ R

n : |v− f (λ , g0 , g1, . . . , gn)| = 0 for some (λ , g0 , g1, . . . , gn) ∈ Q(x)
}
.

The result now follows from Prop. 6.25. 
�

6.29 Proposition. Let Ω ⊂R
m be measurable, and let G : Ω � R

n be a multifunc-
tion whose values are nonempty compact convex sets. Let HG(x)(·) be the support
function of the set G(x). Then G is measurable if and only if, for any p ∈ R

n, the
function x �→ HG(x)(p) is measurable on Ω .

Proof. Suppose first that the support function has the stated measurability property.
Let V be a nonempty compact subset of Rn, and let {v j } be a countable dense set in
V . Let { pk } be a countable dense set in R

n. Then (invoking the separation theorem
for the last step) it follows that
{

x ∈Ω : G(x)∩ V = /0
}
=

⋃

ε>0

{
x ∈Ω : G(x)∩ [V + ε B ] = /0

}

=
⋃

i�1

⋂

j�1

{
x ∈Ω : G(x)∩ B(v j , i−1) = /0

}
=

⋃

i�1

⋂

j�1

⋃

k�1

{
x ∈Ω : HG(x)(pk) < 〈 pk ,v j 〉+ i−1| pk |

}
.

This implies that
{

x∈Ω : G(x)∩V = /0
}

is measurable, so G is measurable.
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Conversely, let G be measurable, and let the functions γ i generate G as in Theorem
6.22. Then we have

HG(x)(p) = sup
{
〈 p ,γ i(x)〉 : i � 1

}
∀x ∈ Ω ,

which reveals the required measurability in x of the function on the left. 
�

6.30 Exercise. Let G : Ω � R
n be measurable and closed-valued. If u : Rm → R

n

is measurable, prove that the function x �→ dG(x)(u(x)) is measurable on dom G. 
�

The following fact, already invoked in proving Theorem 6.10, will be useful again
later. It bears upon interchanging the integral and the supremum.

6.31 Theorem. Let Ω be an open subset of R
m, and let ϕ : Ω×R

n → R be a func-
tion such that ϕ(x, p) is measurable in the x variable and continuous in the p vari-
able. Let P : Ω � R

n be measurable and closed-valued. Let Σ denote the set of all
functions p ∈ L∞

(
Ω ,Rn

)
which satisfy

p(x) ∈ P(x) , x ∈ Ω a.e.,

and for which the integral ∫

Ω
ϕ
(
x, p(x)

)
dx

is well defined, either finitely or as +∞. Then, if Σ is nonempty, the integral
∫

Ω
sup

p∈P(x)
ϕ(x, p)dx

is well defined, either finitely or as +∞, and we have
∫

Ω
sup

p∈P(x)
ϕ(x, p)dx = sup

p(·)∈Σ

∫

Ω
ϕ
(
x, p(x)

)
dx ,

where both sides may equal +∞.

Proof. The hypotheses imply that P(x) 	= /0 for x ∈ Ω a.e. By Theorem 6.22, there
exists a countable collection { pi } of measurable selections of P such that

P(x) = cl{ pi(x)} , x ∈Ω a.e.

Since ϕ(x, ·) is continuous, we have

σ(x) := sup
p∈P(x)

ϕ(x, p) = sup
i�1

ϕ
(
x, pi(x)

)
a.e.,

which shows that σ : Ω → R∞ is measurable, as a countable supremum of measur-
able functions.
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Let p̄ be any element of Σ . Then σ(x) is bounded below by the function ϕ(x, p̄(x)),
and it follows that the integral of σ is well defined, possibly as +∞; this is the first
assertion of the theorem.4

If the integral over Ω of the function ϕ(x, p̄(x)) is +∞, then the remaining assertion
is evident. We may proceed under the assumption, therefore, that the integral in
question is finite. Fix a positive integer N, and define

σN(x) = sup
{
ϕ(x, p) : p ∈ P(x)∩ B( p̄(x),N)

}
.

Using Cor. 6.26, and arguing as above, we find that σN is measurable. Evidently we
have ϕ(x, p̄(x)) � σN(x) � σ(x) , x ∈ Ω a.e. The multifunction

Γ (x) =
{

p ∈ P(x)∩ B( p̄(x),N) : σN(x) = ϕ(x, p)
}

is measurable by Prop. 6.25; since its values on Ω are closed and nonempty, it
admits a measurable selection pN . It follows that pN ∈ Σ , whence

sup
p(·)∈Σ

∫

Ω
ϕ
(
x, p(x)

)
dx �

∫

Ω
ϕ
(
x, pN(x)

)
dx →

∫

Ω
σ(x)dx ,

by monotone convergence. But the supremum on the left in this expression is evi-
dently bounded above by the integral on the right (and neither depend on N ). Thus
we obtain equality. 
�

The point of the next result is that a local minimum in L1(Ω) translates into a global
minimum (almost everywhere) at the pointwise level.

6.32 Theorem. Let Ω ,ϕ , P, and Σ be as described in Theorem 6.31, and let p̄ ∈ Σ
be such that the integral ∫

Ω
ϕ(x, p̄(x))dx

is finite. Suppose that for some δ > 0, we have:

p(·) ∈ Σ ,

∫

Ω
| p(x)− p̄(x)|dx � δ =⇒

∫

Ω
ϕ
(
x, p(x)

)
dx �

∫

Ω
ϕ
(
x, p̄(x)

)
.

Then, for almost every x ∈ Ω , we have ϕ(x, p) � ϕ(x, p̄(x)) ∀ p ∈ P(x).

Proof. We reason by the absurd. If the conclusion fails, there exist positive numbers
ε and M such that the multifunction

Γ (x) =
{

p ∈ P(x)∩ B( p̄(x),M) : ϕ
(
x, p̄(x)

)
−M � ϕ(x, p) � ϕ

(
x, p̄(x)

)
− ε

}

4 We have used the following fact from integration: if two measurable functions f and g satisfy
f � g, and if the integral of g is well defined, either finitely or as +∞, then the integral of f is well
defined, either finitely or as +∞.
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has an effective domain of positive measure. Then, for any m > 0 sufficiently small,
we may use a measurable selection γ of Γ to define a function p as follows: let Sm
be a measurable subset of dom Γ satisfying meas(Sm) = m, and set p(x) = γ (x)
if x ∈ Sm , and p(x) = p̄(x) otherwise. It follows that p ∈ Σ . But for m sufficiently
small, p satisfies

∫

Ω
| p(x)− p̄(x)|dx � δ ,

∫

Ω
ϕ
(
x, p(x)

)
dx <

∫

Ω
ϕ
(
x, p̄(x)

)
,

which is the desired contradiction. 
�

6.3 Integral functionals and semicontinuity

A technical issue of some importance to us later concerns the measurability of cer-
tain composite functions f arising in the following way:

f (t) = Λ
(
t, x(t), x ′(t)

)
.

Here, x is an element of AC[0,1] (say), so that x ′(·) is merely Lebesgue measurable.
When the function Λ(t,x,v) is continuous (in all its variables (t,x,v)), then, as the
reader will recall, it is a basic result in measurability theory that f is Lebesgue
measurable (a continuous function of a measurable function is measurable). This is
a minimal requirement for considering the integral of f , as we do later in the calculus
of variations. When Λ is less than continuous, the issue is more complex.

To illustrate this point, let S be a non measurable subset of [0,1], and define a subset
G of R2 as follows:

G =
{
(s,s) : s ∈ S

}
.

Since G is a subset of the diagonal in R
2, a set of measure zero, it follows that G is

a null set for two-dimensional Lebesgue measure, which is complete. Thus G is a
measurable set and its characteristic function χG is measurable.

Let us define Λ(t, x,v) = Λ(t,x) = 1−χG(t,x), a measurable function. The reader
may verify that Λ(t,x) is lower semicontinuous separately in each variable; in par-
ticular, measurable as a function of t for each x, and lower semicontinuous as a
function of x for each t. When we proceed to substitute the function x(t) = t into Λ ,
we obtain

f (t) = Λ(t, t) = 1−χG(t, t).

This function f fails to be measurable, however, since
{

t ∈ [0,1] : f (t) < 1/2
}
=

{
t ∈ [0,1] : χG(t, t) = 1

}
= S

is not a measurable set.
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LB measurability. We shall prove below that when Λ is measurable in t and con-
tinuous in (x,v), then the composition f is measurable, as desired. The example
above demonstrates, however, that when Λ fails to be continuous in (x,v), as it will
later on occasion, mere measurability in (x,v), or even lower semicontinuity (which
is a natural hypothesis in the contexts to come), does not suffice to guarantee the
measurability of f .

One could compensate for the lack of continuity by simple requiring that Λ , as a
function of (t,x,v), be Borel measurable. This is because of the fact that the com-
position of a Borel measurable function with a measurable one is measurable. Since
lower semicontinuous functions are Borel measurable, it follows, as a special case,
that our measurability concerns would disappear if we took Λ to be lower semicon-
tinuous in the entirety of its variables (t,x,v). This is overly restrictive as a global
hypothesis, however, and even Borel measurability is asking too much, since mere
Lebesgue measurability in t is desirable in certain applications.

A more common way to deal with the measurability issue is to employ a hybrid
hypothesis of the following type:

6.33 Definition. A function F : Rm×R
n →R of two variables (x,y), where x ∈ R

m

and y ∈ R
n, is said to be LB measurable in x and y when it is the case that F is

measurable with respect to the σ -algebra L×B generated by products of Lebesgue
measurable subsets of R

m (for x) and Borel measurable subsets of R
n (for y).

Can the reader can go so far back as to remember that a σ -algebra is a family
of sets closed under taking complements, countable intersections, and countable
unions? We remark that if F : Rm×R

n → R is lower semicontinuous, then F is
Borel measurable, which implies that F is LB measurable.

Returning to the context of the function Λ , we say that Λ(t,x,v) is LB measurable
if Λ is LB measurable in the variables t and (x,v); that is, measurable with respect
to the σ -algebra generated by products of Lebesgue measurable subsets of [a,b ]
(for t) and Borel measurable subsets of R2 (for (x,v)). This property guarantees the
measurability of the function f above, and is satisfied in the important case in which
Λ(t,x,v) is measurable with respect to t and continuous with respect to (x,v), as we
proceed to show in the next two results.

6.34 Proposition. Let F be LB measurable as in Def. 6.33, and let g : Rm → R
n be

Lebesgue measurable. Then the mapping x �→ F(x, g(x)) is Lebesgue measurable.

Proof. Let U be a Lebesgue measurable set in R
m and V a Borel set in R

n. Then
the set {

x ∈ R
m :

(
x, g(x)

)
∈ U×V

}
= U ∩ g−1(V )

is clearly Lebesgue measurable. Let us denote by A the collection of all subsets S of
R

m×R
n having the property that the set
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{
x ∈ R

m : (x, g(x)) ∈ S
}

is Lebesgue measurable. It is easy to verify that A is a σ -algebra, and it contains the
products U×V . It follows that A contains the σ -algebra L×B generated by products
of Lebesgue measurable subsets of Rm and Borel measurable subsets of Rn.

Now let W be any open subset of Rn. Since F is LB measurable, the set F−1(W ) is
LB measurable, and hence lies in A. As a consequence of this fact, we deduce that
the set {

x : F
(
x, g(x)

)
∈ W

}
=

{
x :

(
x, g(x)

)
∈ F−1(W )

}

is Lebesgue measurable. This confirms the required measurability. 
�

6.35 Proposition. If a function F : Rm×R
n → R of two variables (x,y) is measur-

able in x and continuous in y, then F is LB measurable in x and y.

Proof. Let {ui } be a dense sequence in R
n, and for each positive integer k define

a function fk(x,y) = F(x,u j), where u j is the first point of the dense set satisfying
|u j − y | � k−1. (Thus, j depends on y and k.) Then F(x,y) = limk→∞ fk(x,y) for
every (x,y), by the continuity of F in y.

It suffices therefore to prove that each fk is LB measurable. Let W be any open
subset of R. Then the set f−1

k (W ) is the union over j � 1 of the sets

{
x : F(x,u j) ∈ W

}
×
{

y : |u j − y | � k−1 and |ui − y |> k−1 (i = 1, . . . , j−1)
}
.

This reveals f−1
k (W ) to be a countable union of products of the type which generate

the σ -algebra L×B, whence the required measurability. 
�

We remark that a function F of two variables having the properties described in
Prop. 6.35 is often referred to as a Carathéodory function.

The next result says that inserting a measurable function into a continuous slot pre-
serves LB measurability.

6.36 Proposition. Let F : Rm×R
�×R

n → R satisfy the following:

(a) The map (x, z) �→ F(x,u, z) is LB measurable for each u ;

(b) The function u �→ F(x,u, z) is continuous for each (x, z).

Then, for any Lebesgue measurable function g : Rm → R
�, the function

(x, z) �→ F(x, g(x), z)

is LB measurable.

Proof. Let {ui } be a dense sequence in R
�, and for each positive integer k define a

function fk(x, z) = F(x,u j , z), where u j is the first term of the sequence satisfying
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|u j −g(x)| � k−1. (Thus, j depends on x and k.) Then fk(x, z) converges pointwise
to F(x, g(x), z), so it suffices to prove that each fk is LB measurable. This follows
from the identity

f−1
k (W ) =

⋃

j�1

{
(x, z) : F(x,u j , z)) ∈ W

}
∩

{
(x, z) : |u j −g(x)| � k−1 and |ui −g(x)|> k−1 (i = 1, . . . , j−1)

}

(where W is any open subset of R), which expresses f−1
k (W ) as a countable union

of sets belonging to L×B. 
�

Semicontinuity of integral functionals. Let Ω be an open subset of Rm. We study
the semicontinuity of the following integral functional:

J(u,z) =
∫

Ω
F
(
x, u(x), z(x)

)
dx .

Here, F : Ω×R
�×R

n → R is a function whose three arguments are generically
denoted by x, u, z . We are also given a subset Q ofΩ×R

� which defines a restriction
on the functions u : Ω → R

� involved in the discussion: they must satisfy
(

x, u(x)
)
∈ Q , x ∈ Ω a.e.

We shall impose the following hypotheses on the data:

6.37 Hypothesis.

(a) F is lower semicontinuous in (u, z), and convex with respect to z ;

(b) For every measurable u : Ω → R
� having (x, u(x)) ∈ Q a.e., and for every mea-

surable z : Ω → R
n, the function x �→ F(x, u(x), z(x)) is measurable;

(c) There exist α ∈ L1(Ω), β ∈ L∞(Ω ,Rn) such that

F(x,u, z) � α(x)+ 〈 β (x), z〉 ∀(x,u) ∈ Q , z ∈ R
n;

(d) Q is closed in Ω×R
�.

An immediate consequence of these hypotheses is that, for every measurable func-
tion u : Ω → R

� having (x, u(x)) ∈ Q a.e., and for every summable function
z : Ω → R

n, the function
x �→ F(x,u(x), z(x))

is measurable, and it is bounded below as follows:

F(x,u(x), z(x)) � α(x)+ 〈β (x), z(x)〉 , x ∈ Ω a.e.
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Since the right side of this inequality is summable over Ω , the integral J(u,z) is
well defined, either finitely or as +∞ (a fact from integration theory). It is the lower
semicontinuity of J that is the essential point being considered.

Remark. In view of our earlier results, we are able to identify certain cases in
which hypothesis (b) above is guaranteed to hold:

• F(x,u, z) is measurable in x and continuous in (u,z) (see Prop. 6.35);

• F(x,u, z) is LB measurable in x and (u,z) (by Prop. 6.34);

• F(x,u, z) is continuous in u and LB measurable in (x,z) (by Prop. 6.36).

The theorem below will provide one of the main ingredients in the recipe that we
call the direct method.

6.38 Theorem. (Integral semicontinuity) Let ui be a sequence of measurable func-
tions on Ω having (x, ui(x))∈ Q a.e. which converges almost everywhere to a limit
u∗ . Let zi be a sequence of functions converging weakly in Lr(Ω ,Rn) to z∗ , where
r > 1. Then

J(u∗ , z∗) � liminf
i→∞

J(ui , zi) .

Proof. Fix δ > 0, and define, for (x,u) ∈ Q , z ∈ R
n, the function

H(x,u, p) = sup
{
〈 p,w〉−F(x,u,w)−δ |w |r/r : w ∈ R

n} .

The properties of H play an essential role in the proof.

Lemma 1. There is a positive constant c such that

H(x,u, p) � c| p−β (x)|r∗ −α(x) ∀(x,u) ∈ Q , p ∈ R
m,

where r∗ is the conjugate exponent to r.

Proof. Observe that, by the inequality in Hypothesis 6.37 (c), we have:

H(x,u, p) = sup
w

{
〈 p,w〉−F(x,u,w)−δ |w |r/r

}

� sup
w

{
〈 p,w〉−α(x)−〈β (x),w〉−δ |w |r/r

}

= c| p−β (x)|r∗ −α(x) (by explicit calculation)

where c := (r∗ δ r∗−1)−1. 
�

Lemma 2. Fix (x,u) ∈ Q and p ∈ R
n. Then:

(a) The function H(x,u, ·) is continuous at p.

(b) The function v �→ H(x,v, p) is upper semicontinuous at u in the following sense:
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(x,vi) ∈ Q ∀ i , vi → u =⇒ H(x,u, p) � limsup
i→∞

H(x,vi , p) .

(c) For all w ∈ R
n, we have

F(x,u,w)+δ |w |r/r = sup
p∈Rn

{
〈w, p〉−H(x,u, p)

}
.

Proof. Since the function p �→ H(x,u, p) is convex and finite on R
n (by Lemma

1), we know it to be continuous, as affirmed in (a). We now fix x and p and turn to
assertion (b).

Let vi be a sequence converging to u for which lim i→∞ H(x,vi , p) � � ∈ R. We
establish (b) by proving that H(x,u, p) � �. Note that the supremum defining
H(x,vi , p) may be restricted to those w satisfying

〈 p,w〉−α(x)−〈β (x),w〉−δ |w |r/r � H(x,vi , p)−1 ,

and consequently, to the points w in a compact set. It follows that the supremum is
attained at a point wi , and that the sequence wi is bounded. Taking a subsequence
if necessary, and without relabeling, we may assume wi → w. Invoking the lower
semicontinuity of F , we have

H(x,u, p) � 〈 p,w〉−F(x,u,w)−δ |w |r/r

� 〈 p,w〉− liminf
i→∞

F
(
x,vi ,wi

)
−δ |w |r/r

= limsup
i→∞

{
〈 p,wi 〉−F

(
x,vi ,wi

)
−δ |wi |r/r

}
= lim

i→∞
H(x,vi , p) � � ,

as required.

For the final assertion, note that H(x,u, ·) is defined as the conjugate of the convex
lower semicontinuous function

w �→ F(x,u,w)+δ |w |r/r.

Thus the equality is a consequence of Theorem 4.21. 
�

Lemma 3. Let u :Ω → R
� be a measurable function having (x,u(x))∈ Q a.e., and

let p : Ω → R
n be measurable. Then the function x �→ H(x,u(x), p(x)) is measur-

able.

Proof. Note that the function w �→ F(x,u,w) is continuous, since it is convex and
finite. It follows that if {wi } is a countable dense set in R

n, we have (almost every-
where)

H
(
x,u(x), p(x)

)
= sup

i�1

{
〈 p(x),wi 〉−F(x,u(x),wi)−δ |wi |r/r

}
.
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Thus the left side is the upper envelope of a countable family of measurable func-
tions, and is therefore measurable. 
�

Note that the limit function u∗ satisfies

(x,u∗(x)) ∈ Q a.e. ,

in view of Hypothesis 6.37 (d). We now write, without claiming that J(u∗ , z∗) is
finite:

J(u∗ , z∗) =
∫

Ω
F
(
x, u∗(x), z∗(x)

)
dx

�
∫

Ω

{
F
(
x, u∗(x), z∗(x)

)
+δ |z∗(x)|r } dx

=
∫

Ω
sup

p∈Rn

{
〈z∗(x), p〉−H(x,u∗(x), p)

}
dx (by (c) of Lemma 2)

= sup
p(·)∈L∞(Ω)

∫

Ω

{
〈z∗(x), p(x)〉−H

(
x,u∗(x), p(x)

) }
dx

(we use Theorem 6.31 and Lemma 3 to switch integral and supremum)

� sup
p(·)∈L∞(Ω)

[
lim
i→∞

∫

Ω
〈 p(x),zi(x)〉dx−

∫

Ω
limsup

i→∞
H
(
x,ui(x), p(x)

)
dx

]

(since zi converges weakly to z∗ , and ui to u a.e., and since H is upper semicontin-
uous in u, by Lemma 2)

� sup
p(·)∈L∞(Ω)

[
lim
i→∞

∫

Ω
〈 p(x),zi(x)〉dx− limsup

i→∞

∫

Ω
H
(
x,ui(x), p(x)

)
dx

]

(Fatou ’s lemma applies, since ui has values in Q, p ∈ L∞(Ω), and the terms in H
are uniformly integrably bounded above, by Lemma 1; Lemma 3 is used to assert
that the integrand is measurable)

= sup
p(·)∈L∞(Ω)

[
liminf

i→∞

∫

Ω

{
〈 p(x),zi(x)〉−H

(
x,ui(x), p(x)

) }
dx

]

� liminf
i→∞

sup
p(·)∈L∞(Ω)

[ ∫

Ω

{
〈 p(x),zi(x)〉−H

(
x,ui(x), p(x)

) }
dx

]

= liminf
i→∞

∫

Ω
sup

p∈Rn

{
〈 p,zi(x)〉−H

(
x,ui(x), p

) }
dx (by Theorem 6.31)

= liminf
i→∞

∫

Ω

{
F
(
x,ui(x),zi(x)

)
+δ |zi(x)|r } dx (by (c) of Lemma 2)

� liminf
i→∞

J(ui,zi)+δ limsup
i→∞

‖zi ‖r
r .
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Since zi is weakly convergent in Lr(Ω ,Rn), the sequence zi is norm bounded, so
that limsup i→∞ ‖zi ‖r

r is finite. Since δ > 0 is arbitrary, we obtain the required con-
clusion.

We remark that the crux of the proof is to find a way to exploit the (merely) weak
convergence of the sequence zi ; this has been done by rewriting certain expressions
so as to have zi appear only in linear terms. 
�

6.4 Weak sequential closures

In things to come, the reader will find that the closure properties of differential
inclusions of the type

x ′(t) ∈ Γ
(
t, x(t)

)
,

where Γ is a multifunction, will play an important role. The following abstract re-
sult is a basic tool in this connection. Note that weak convergence in L1 is now
involved.

6.39 Theorem. (Weak closure) Let [a,b ] be an interval in R and Q a closed subset
of [a,b ]×R

�. Let Γ (t,u) be a multifunction mapping Q to the closed convex subsets
of R

n. We assume that

(a) For each t ∈ [a,b ], the set

G(t) =
{
(u,z) : (t,u,z) ∈ Q×R

n, z ∈ Γ (t,u)
}

is closed and nonempty;

(b) For every measurable function u on [a,b ] satisfying (t,u(t)) ∈ Q a.e. and every
p ∈ R

n, the support function map

t �→ HΓ (t,u(t))(p) = sup
{
〈 p,v〉 : v ∈ Γ

(
t,u(t)

)}

is measurable;

(c) For a summable function k, we have Γ (t,u) ⊂ B(0, k(t)) ∀(t,u) ∈ Q .

Let ui be a sequence of measurable functions on [a,b ] having (t,ui(t)) ∈ Q a.e.
and converging almost everywhere to u∗ , and let zi : [a,b ] → R

n be a sequence
of functions satisfying |zi(t)| � k(t) a.e. whose components converge weakly in
L1(a,b) to those of z∗ . Suppose that, for certain measurable subsets Ω i of [a,b ]
satisfying lim i→∞meas Ω i = b−a, we have

zi(t) ∈ Γ
(
t,ui(t)

)
+B

(
0,ri(t)

)
, t ∈ Ω i a.e.,
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where ri is a sequence of nonnegative functions converging in L1(a,b) to 0. Then
we have in the limit z∗(t) ∈ Γ (t,u∗(t)) , t ∈ [a,b ] a.e.

Proof. Let H : Q×R
n → R be the support function associated with Γ :

H(t,u, p) = sup
{
〈 p,v〉 : v ∈ Γ (t,u)

}
.

Note that |H(t,u, p)| � | p|k(t), in view of hypothesis (c); it follows that for each
(t,u)∈ Q, the function p �→ H(t,u, p) is continuous with respect to p, as the support
function of a nonempty bounded set. Furthermore, for any t ∈ [a,b ], using the fact
that G(t) is closed, it is not hard to show that for fixed p, the map u �→ H(t,u, p) is
upper semicontinuous on the set {u : (t,u) ∈ Q} (exercise).

In view of Prop. 2.42, and because Γ is convex-valued, the conclusion that we
seek may now be restated as follows: for some null set N, for all t ∈ [a,b ]\N ,
we have

H
(
t,u∗(t), p

)
� 〈 p, z∗(t)〉 ∀ p ∈ R

n. (∗)

By the continuity of H in p, it is equivalent to obtain this conclusion for all p having
rational coordinates. Then, if (∗) holds for each such p except on a null set (depend-
ing on p), we obtain the required conclusion, since the countable union of null sets
is a null set.

We may summarize to this point as follows: it suffices to prove that for any fixed
p ∈ R

n, the inequality in (∗) holds almost everywhere.

This assertion in turn would result from knowing that the following inequality holds
for any measurable subset A of [a,b ]:

∫

A

{
H
(
t,u∗(t), p

)
−〈 p, z∗(t)〉

}
dt � 0 .

(Note that the integrand in this expression is measurable by hypothesis (b), and
summable because of the bound on H noted above.) But we have
∫

A

{
H
(
t,u∗(t), p

)
−〈 p,z∗(t)〉

}
dt �

∫

A

{
limsup

i→∞
H
(
t,ui(t), p

)
−〈 p,z∗(t)〉

}
dt

� limsup
i→∞

∫

A

{
H
(
t,ui(t), p

)
−〈 p,zi(t)〉

}
dt ,

as a result of the almost everywhere convergence of ui to u∗, the upper semicontinu-
ity of H in u, Fatou’s lemma, and the weak convergence of zi to z∗ . The last integral
above may be written in the form

∫

A∩Ω i

{
H(t,ui, p)−〈 p,zi 〉

}
dt +

∫

A\Ω i

{
H(t,ui, p)−〈 p,zi 〉

}
dt . (∗∗)

We have now reduced the proof to showing that the lower limit of this expression is
nonnegative.
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Using the bound on |H | noted above, together with the given bound on |zi |, we see
that the second term in (∗∗) is bounded above in absolute value by

∫

[a,b ]\Ω i

2 | p|k(t)dt

which tends to 0 as i → ∞, since meas Ω i → b−a.

As for the first term in (∗∗), the hypotheses imply

H
(
t,ui(t), p) � 〈 p,zi(t)〉− ri(t)| p| , t ∈ Ω i a.e.,

so that it is bounded below by

−
∫

A∩Ω i

ri(t)| p|dt � −
∫ b

a
ri(t)| p|dt

(recall that the functions ri are nonnegative). But this last term also converges to 0,
since ri converges to 0 in L1(a,b) by hypothesis. The proof is complete. 
�

6.40 Exercise. Let A be a compact convex subset of R, and vi a sequence converg-
ing weakly in L1(a,b) to a limit v∗ , where, for each i, we have vi(t) ∈ A a.e. Prove
that v∗(t) ∈ A a.e. Show that this may fail when A is not convex. 
�

In later chapters, Theorem 6.39 will be used when u : [a,b ] → R
n is absolutely

continuous (that is, each component of u belongs to AC[a,b ]) and zi = u ′
i . Further-

more, the convergence hypotheses will most often be obtained with the help of the
following well-known result, which we promote to the rank of a theorem:

6.41 Theorem. (Gronwall’s lemma) Let x : [a,b ]→ R
n be absolutely continuous

and satisfy
|x ′(t)| � γ (t)|x(t)|+β (t) , t ∈ [a,b ] a.e.,

where γ , β ∈ L1(a,b), with γ nonnegative. Then, for all t ∈ [a,b ], we have

|x(t)− x(a)| �
∫ t

a
exp

(∫ t

s
γ (r)dr

){
γ (s)|x(a)|+β (s)

}
ds .

Proof. Let r(t) = |x(t)−x(a)|, a function which is absolutely continuous on [a,b ],
as the composition of a Lipschitz function and an absolutely continuous one. Let t
be in that set of full measure in which both x ′(t) and r ′(t) exist. If x(t) 	= x(a), we
have

r ′(t) =
〈 x(t)− x(a)

|x(t)− x(a)| , x ′(t)
〉
,

and otherwise r ′(t) = 0 (since r attains a minimum at t). Thus we have
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r ′(t) � |x ′(t)| � γ (t)|x(t)|+β (t) � γ (t)|x(t)− x(a)|+ γ (t)|x(a)|+β (t)
= γ (t)r(t)+ γ (t)|x(a)|+β (t) .

We may rewrite this inequality in the form

[
r ′(t)− γ (t)r(t)

]
exp

(
−
∫ t

a
γ
)
� exp

(
−
∫ t

a
γ
){

γ (t)|x(a)|+β (t)
}
.

Note that the left side is the derivative of the function

t �→ r(t)exp
(
−
∫ t

a
γ
)
.

With this in mind, integrating both sides of the preceding inequality from a to t
yields the required estimate. 
�

6.42 Exercise. Let pi : [a,b ] → R
n be a sequence of absolutely continuous func-

tions with | pi(a)| uniformly bounded, and such that, for certain functions γ , β in
L1(a,b), we have, for each i :

| p ′
i (t)| � γ (t)| pi(t)|+β (t) , t ∈ [a,b ] a.e.

Then there exist an absolutely continuous function p : [a,b ] → R
n and a subse-

quence pi j such that (componentwise)

pi j → p uniformly on [a,b ] , p ′
i j
→ p ′ weakly in L1(a,b) . 
�



Chapter 7

Hilbert spaces

We now pursue our study of Banach spaces in an important special case, one that is
characterized by the existence of a certain bilinear function having special proper-
ties. Let X be a normed space. A mapping

(x,y) �→ 〈x ,y〉X

from X×X to R is called bilinear if the map x �→ 〈x ,y〉X is a linear functional for
each y ∈ X , as is y �→ 〈x ,y〉X for each x. We also impose commutativity:

〈x ,y〉X = 〈y , x〉X ∀x, y ∈ X .

A Banach space X is said to be a Hilbert space if there is a mapping that has these
properties and generates its norm, in the following sense:

‖x‖2 = 〈x , x〉X ∀x ∈ X .

It follows in this case that 〈x , x〉X � 0 ∀x, with equality if and only if x = 0. The
bilinear mapping is referred to as an inner product on X .

Canonical cases of Hilbert spaces include Rn, L2(Ω), and �2. We have, for example,
the following inner products:1

〈u ,v〉Rn = u • v , 〈 f , g〉L2(Ω) =
∫

Ω
f (x)g(x)dx .

It turns out that some rather remarkable consequences for the structure of the space
X follow from the mere existence of a scalar product. We suspect that the reader
may be familiar with the more immediate ones. Nonetheless, let us begin with a
review of the basic theory of Hilbert spaces.

1 In dealing with vector spaces defined over the complex number field rather than the reals, inner
products are correspondingly complex-valued. In that case, the condition 〈x ,y〉X = 〈y , x〉X is
imposed, where the bar refers to complex conjugate. We continue to limit attention throughout,
however, to the real-valued case.
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7.1 Basic properties

The first conclusion below is called the Cauchy-Schwarz inequality, and the sec-
ond is known as the parallelogram identity.

7.1 Proposition. Let X be a Hilbert space, and let x,y be points in X . Then

| 〈x,y〉X | � ‖x‖‖y‖ and
∥
∥
∥

x+ y
2

∥
∥
∥

2
+

∥
∥
∥

x− y
2

∥
∥
∥

2
=

1
2
(
‖x‖2 +‖y‖2 ) .

Proof. We may suppose x, y 	= 0. For any λ > 0, we have

0 � ‖x−λy‖2 = 〈x−λy , x−λy〉X = ‖x‖2 −2λ 〈x ,y〉+λ 2‖y‖2.

This yields 2〈x ,y〉 � ‖x‖2/λ +λ‖y‖2. Putting λ = ‖x‖/‖y‖ gives the required
inequality. The identity is proved by writing the norms in terms of the inner product
and expanding. 
�

It follows from the parallelogram identity that the squared norm is strictly convex,
in the sense that

x 	= y =⇒
∥
∥
∥

x+ y
2

∥
∥
∥

2
<

1
2
(
‖x‖2 +‖y‖2 ) .

In fact, we obtain uniform convexity of the space, as we now see.

7.2 Theorem. Any Hilbert space is uniformly convex, and therefore reflexive. To
every element ζ in X ∗ there corresponds a unique u ∈ X such that

ζ (x) = 〈u , x〉X ∀x ∈ X , ‖ζ ‖∗ = ‖u‖ .

Proof. Let ε > 0 and x, y ∈ B satisfy ‖x−y‖> ε . It is not difficult to show that by
the parallelogram identity we have

∥
∥
∥

x+ y
2

∥
∥
∥

2
< 1− ε 2

4
=⇒

∥
∥
∥

x+ y
2

∥
∥
∥ < 1−δ ,

where δ := 1− [1−ε 2/4 ]1/2. This confirms that X is uniformly convex, and there-
fore reflexive by Theorem 6.3. Let us now consider the linear operator T : X → X ∗

defined by
〈T x , y〉 = 〈x , y〉X ∀y ∈ X .

We deduce ‖T x‖∗ = ‖x‖, by the Cauchy-Schwarz inequality. Thus T is norm-
preserving, and T (X) is a closed subspace of X ∗ by Prop. 5.3. To conclude the
proof of the theorem, it suffices to prove that T (X) is dense in X ∗. Assume the
contrary; then there exists θ ∈ X∗∗ different from 0 such that 〈θ , T (X)〉 = 0 (see
Theorem 2.39). Because X is reflexive, we may write θ = J x̄ for some point x̄ ∈ X .
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Then
0 = 〈θ , T x〉 = 〈J x̄ , T x〉 = 〈T x , x̄ 〉 = 〈x , x̄ 〉X ∀x ∈ X ,

whence x̄ = 0 and θ = 0, a contradiction. 
�

Convention. The mapping ζ �→ u above is an isometry from X ∗ to X . It is natural,
therefore, to identify the dual X ∗of a Hilbert space X with the space itself, which is
customary. Having done so, we may drop the symbol X in writing the inner product,
since it is equivalent to interpret 〈x ,y〉 as either the inner product, or else the effect
of x (viewed as an element of the dual) upon the point y (or vice versa).

Projection. An operation of fundamental importance in Hilbert space is that of
projection onto closed convex sets.

7.3 Proposition. Let C be a closed, convex, nonempty subset of a Hilbert space X ,
and let x ∈ X . Then there exists a unique u ∈ C satisfying dC(x) = ‖x−u‖.

Proof. The existence of a closest point u is known (Exer. 5.52). The uniqueness
follows from the strict convexity of the squared norm, as follows. If v is a different
closest point, then writing the strict convexity inequality for the squared norm (with
u− x and v− x) yields

∥
∥
∥

u+ v
2

− x
∥
∥
∥

2
<

1
2
(
‖u− x‖2 +‖v− x‖2 ) = dC(x)2,

a contradiction, since (u+ v)/2 ∈ C . 
�

The point u is called the projection of x onto C , denoted projC(x). We proceed to
characterize it geometrically. (Since we identify X ∗ with X , the normal cone NC(u)
below is naturally viewed as lying in the space X itself.)

7.4 Proposition. Let C be a closed, convex, nonempty subset of a Hilbert space X ,
and let x ∈ X , u ∈ C. Then

u = projC(x) ⇐⇒ x−u ∈ NC(u) ⇐⇒ 〈x−u , y−u〉 � 0 ∀y ∈ C.

Proof. The reader will recall that the last condition in the three-way equivalence
is simply a restatement of the fact that x−u is a normal vector in the convex sense
(Prop. 2.9). Let us first consider u = projC(x). Let y ∈ C and 0 < t < 1. Since C is
convex, the fact that u is a closest point allows us to write

‖x−u‖2 � ‖x− (1− t)u− t y‖2 = ‖(x−u)+ t (u− y)‖2.

We expand on the right in order to obtain 2 t〈x−u , y−u〉 � t 2‖y−u‖2. Now divide
by t, and then let t decrease to 0; we derive the conclusion x−u ∈ NC(u).

Conversely, let x−u ∈ NC(u). Then for all y ∈ C , we deduce
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‖x−u‖2 −‖y− x‖2 = 2〈x−u , y−u〉−‖u− y‖2 � 0 ,

whence u = projC(x). 
�

7.5 Exercise. Let C be as in Prop. 7.4. Then

‖projC(x)−projC(y)‖ � ‖x− y‖ ∀x, y ∈ X . 
�

Another special feature of Hilbert spaces is that subspaces admit complements. For
a subset A of X , we define

A⊥ =
{
ζ ∈ X : 〈ζ , x〉 = 0 ∀x ∈ A

}
.

The closed subspace A⊥ (often pronounced “A perp”) is the orthogonal to A.

7.6 Exercise. Let M be a subspace of X . Show that M ∩ M⊥ = {0}. 
�

7.7 Proposition. Let M be a closed subspace of a Hilbert space X . Then every point
x ∈ X admits a unique representation x = m+ μ where m ∈ M and μ ∈ M⊥ ; the
point m coincides with projM(x).

Proof. Let x ∈ X , and set m = projM(x). By Prop. 7.4, we have

〈x−m , y−m〉 � 0 ∀y ∈ M.

Since M is a subspace, we deduce from this 〈x−m , y〉 = 0 ∀y ∈ M; that is, the
point x−m lies in M⊥. Then x = m+(x−m) expresses x in the desired fashion. If
x = m ′+μ ′ is another such decomposition, then

m−m ′ = μ ′ −μ ∈ M ∩ M⊥ = {0} ,

whence m ′ = m and μ ′ = μ . The representation is therefore unique. 
�

7.8 Exercise. In the context of Prop. 7.7, show that the mapping projM : X → X
belongs to LC(X ,X) (thus, projection onto a subspace is a linear operator). 
�

Orthonormal sets. Prop. 7.7 showed how to decompose a given element x into two
components relative to a given closed subspace M, a first component that lies in M,
and another that is orthogonal to the first. A more refined use of this decomposition
technique can be developed, based on the following concept. Two nonzero points u
and v in a Hilbert space X are orthogonal if they satisfy 〈u ,v〉 = 0. A collection
of points {uα : α ∈ A} in X is said to be orthonormal if

‖uα ‖ = 1 ∀α , 〈uα , uβ 〉 = 0 when α 	= β .

7.9 Exercise. Prove that an orthonormal set is independent. 
�



7.1 Basic properties 137

The following result characterizes projection onto finite-dimensional subspaces.

7.10 Proposition. Let X be a Hilbert space, and let M be a subspace of X generated
by a finite orthonormal set {ui : i = 1, . . . , n}. Then

projM(x) = ∑n
i=1 〈x,ui 〉ui , we have x−projM(x) ∈ M⊥,

and
dM(x)2 = ‖x‖2 −∑n

i=1 |〈x , ui 〉|2.

Proof. By expressing the norm in terms of the inner product and expanding, we
find ∥

∥x−∑n
i=1λ i ui

∥
∥2

= ‖x‖2 −2∑n
i=1 λ i 〈x, ui 〉+ ∑n

i=1 λ
2
i .

The right side defines a convex function of λ = (λ1, λ2 , . . . , λn) which attains a
global minimum where its gradient vanishes; that is, for

λ i = 〈x , ui 〉 , i = 1, . . . , n .

The corresponding linear combination of the ui is therefore projM(x). We know that
x−projM(x) ∈ M⊥ from Prop. 7.7. Finally, the expression for dM(x)2 follows from
expanding ‖x−projM(x)‖2. 
�

Remark. A finite dimensional subspace M always admits an orthonormal basis
{ui : i = 1, . . . , n}. For example, if M is of dimension two, let u and v be any two
independent elements of M. We set u1 = u/‖u‖, and then we calculate

ṽ = v−〈v , u〉u1 .

This subtracts from v what is referred to as its component in the u1 direction. Note
that ṽ 	= 0, since u1 and v are independent. We proceed to define u2 = ṽ/‖ ṽ ‖. Then
{u1, u2} is an orthonormal set whose vector span is that of {u ,v}; that is, M. The
procedure we have just described can be extended to any finite dimension, and is
known as Gram-Schmidt orthogonalization.

Hilbert bases. Given an orthonormal set {uα : α ∈ A} in a Hilbert space X , and a
point x ∈ X , we define x̂α = 〈x , uα 〉. These are the Fourier coefficients of x with
respect to the orthonormal set.

7.11 Theorem. (Bessel) Let {uα : α ∈ A} be an orthonormal set in a Hilbert space
X , and let x ∈ X . Then the set

A(x) =
{
α ∈ A : x̂α 	= 0

}

is finite or countable, and we have

∑
α∈A

| x̂α |2 = ∑
α∈A(x)

| x̂α |2 � ‖x‖2 ∀x ∈ X .
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Proof. By definition, the sum on the left is given by

sup
{
∑α ∈F | x̂α |2 : F ⊂ A , F finite

}
,

so the inequality follows from the last assertion of Prop. 7.10 (since dM(x)2 � 0).
We also deduce that for each i, the set of indices α for which | x̂α | > 1/i is finite,
which implies that A(x) is countable. 
�

7.12 Exercise. Let {ui : i � 1} be an orthonormal set in a Hilbert space X . Show
that the sequence ui (considered as a sequence in X ∗) converges weakly to 0. Prove
that for any x ∈ X , the points

SN = ∑N
i=1 x̂i ui

define a Cauchy sequence in X . 
�

A maximal orthonormal set {uα : α ∈ A} is called a Hilbert basis for X .

7.13 Exercise. Use Zorn’s lemma to prove that a Hilbert basis exists. Show that the
distance between any two distinct elements of an orthonormal set in a Hilbert space
is
√

2. Deduce that a Hilbert basis for a separable Hilbert space must be finite or
countable. 
�

7.14 Proposition. If {uα : α ∈ A} is a Hilbert basis for a Hilbert space X , then
the finite linear combinations of the uα constitute a dense set in X .

Proof. If the vector space spanned by {uα : α ∈ A} is not dense in X , then its
closure M is such that M⊥ is nontrivial (by Prop. 7.7). This leads directly to a con-
tradiction of the maximality of the orthonormal set {uα : α ∈ A}, as the reader
may easily show. 
�

7.15 Corollary. A Hilbert space is separable if and only if it admits a Hilbert basis
that is finite or countable.

Proof. If a Hilbert space admits a finite or countable Hilbert basis, then it follows
from the proposition that the countable set of finite linear combinations of the basis
elements with rational coefficients is dense. The converse follows from Exer. 7.13.


�

Remark. Of course, a Hilbert basis is not a basis in the algebraic sense; when X is
infinite-dimensional but separable, it admits a countable Hilbert basis, by the corol-
lary above, whereby no countable vector space basis exists (Exer. 8.4). A Hilbert
basis allows us to express any point in the space as a (limiting) sum of its orthogo-
nal components, as we now see, but there are in general an infinite number of terms
in the sum.
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7.16 Proposition. Let the countable family {ui : i � 1} be a Hilbert basis for a
Hilbert space X . Then x can be recovered from its Fourier coefficients:

x = ∑ i�1 x̂ i ui := lim
N→∞

∑N
i=1 x̂ i ui .

Proof. The infinite sum S = ∑ i�1 x̂ i ui is well defined as a result of Exer. 7.12. For
fixed i, we have 〈

∑N
i=1 x̂ i ui − x , ui

〉
= 0 ∀N > i ,

whence 〈S− x , ui 〉 = 0 ∀ i; it follows from Prop. 7.14 that S = x. 
�

7.17 Exercise. Prove that the representation for x in Prop. 7.16 is unique:

x = ∑ i�1 ci ui =⇒ ci = x̂ i ∀ i � 1. 
�

A Hilbert space isomorphism between two Hilbert spaces X and Y refers to an
isometry T : X → Y that also preserves the inner product:

〈T x,Tu〉Y = 〈x,u〉X ∀x, u ∈ X .

7.18 Theorem. (Parseval) Let X be a separable Hilbert space, and let {ui : i ∈ I }
be a finite or countable Hilbert basis for X . Then we have

x = ∑ i∈ I x̂ i ui , ‖x‖2 = ∑ i∈ I | x̂ i |2, 〈x ,y〉 = ∑ i∈ I x̂ i ŷ i ∀x, y ∈ X .

X is finite dimensional if and only if X admits a finite Hilbert basis, in which case
X is isomorphic as a Hilbert space to R

n for some integer n. When X is infinite
dimensional, then X is isomorphic as a Hilbert space to �2.

Proof. We merely sketch the lines of the proof (which can be extended to the case
of a non countable Hilbert basis). The first assertion is Exer. 7.16; the third one
(which implies the second) follows from the identity

〈
∑N

i=1 x̂ i ui , ∑N
i=1 ŷ i ui

〉
= ∑N

i=1 x̂ i ŷ i ,

where, if the basis is infinite, we pass to the limit as N → ∞ (and use the continuity
of the map (x,y) �→ 〈x , y〉).

If X is finite dimensional, then using Gram-Schmidt orthogonalization, we may find
a finite orthonormal vector basis for X ; it then follows easily that X is isomorphic
as a Hilbert space to some Rn. (The converse is evident.) In the infinite dimensional
case, there is a countable Hilbert basis {ui : i � 1} for X . Then the map

x �→
(
〈x,u1〉, 〈x,u2〉, . . .

)

defines an isomorphism from X to �2. 
�
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7.19 Exercise. The goal is to prove the following result, the Lax-Milgram theorem.
(It is a tool designed to solve certain linear equations in Hilbert space.)

Theorem. Let b(u ,v) be a bilinear form on a Hilbert space X . We suppose that b is
continuous, and coercive in the following sense: there exist c > 0, C > 0 such that

|b(u ,v)| � C‖u‖‖v‖ , b(u ,u) � c‖u‖2 ∀u,v ∈ X .

Then for any ϕ ∈ X , there exists a unique uϕ ∈ X such that

b(uϕ ,v) = 〈ϕ ,v〉 ∀v ∈ X .

If b is symmetric (that is, if b(u ,v) = b(v, u) ∀u,v ∈ X ), then uϕ may be charac-
terized as the unique point in X minimizing the function u �→ 1

2 b(u,u)−〈ϕ , u〉.

(a) Show that the map u �→ T u := b(u, ·) defines an element of LC(X , X ∗) satisfying
‖T u‖∗ � c‖u‖.

(b) Prove that T X is closed.

(c) Prove that T is onto, and then deduce the existence and uniqueness of uϕ .

(d) Now let b be symmetric, and define f (u) = b(u,u)/2. Show that f is strictly
convex, and that f ′(u ;v) = b(u,v) ∀u,v.

(e) Prove that the function u �→ (1/2)b(u,u)− 〈ϕ , u〉 attains a unique minimum
over X at a point uϕ . Write Fermat’s rule to conclude. 
�

7.2 A smooth minimization principle

The Banach space of differentiable functions defined below will be used later in the
proof of the main result of this section. It combines features of the spaces Cb(X ,R)
and Lipb(X ,X ∗) that the reader met in §5.1.

7.20 Proposition. Let X be a normed space. The vector space C1,1
b (X) of bounded

continuously differentiable functions g : X → R whose derivative g′ is bounded and
Lipschitz is a Banach space when equipped with the norm

‖g‖C1,1
b (X)

= ‖g‖Cb(X ,R) + ‖g′‖Lipb(X ,X∗) .

Proof. It is evident that we do have a normed space; it is a matter of verifying
that it is complete. Accordingly, let gn be a Cauchy sequence in C1,1

b (X). Then gn is
Cauchy in the Banach space Cb(X ,R), so there exists g∈ Cb(X ,R) such that

‖gn −g‖Cb(X ,R) = sup
x∈X

|gn(x)−g(x)| → 0 .
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It also follows that the sequence g ′
n is Cauchy in the space Lipb(X ,X ∗), which we

know to be complete; thus, there also exists ϕ ∈ Lipb(X ,X ∗) such that

‖g ′
n −ϕ‖Lipb(X ,X∗) → 0 .

We now claim that g ′ exists and coincides with ϕ . Note that the functions g ′
n have a

common Lipschitz constant L . Let x and u be distinct points in X . Then

g(u)−g(x)−〈ϕ(x), u− x〉 = lim
n→∞

gn(u)−gn(x)−〈g ′
n(x), u− x〉

= lim
n→∞

〈g ′
n(zn)−g ′

n(x), u− x〉,

for some zn ∈ (x,u), by the mean value theorem. We deduce

|g(u)−g(x)−〈ϕ(x), u− x〉| � lim
n→∞

L‖zn − x‖‖u− x‖ � L‖u− x‖2.

This estimate reveals that g ′ = ϕ , and it follows that ‖gn −g‖C1,1
b (X)

→ 0. 
�

Differentiability of the norm. Given a normed space X , we shall refer to the func-
tion

θ : X → R , x �→ θ(x) = ‖x‖2,

naturally enough, as the squared norm function. It is a crucial property of Hilbert
spaces that this function is smooth.

7.21 Proposition. Let X be a Hilbert space. Then the squared norm function θ is
continuously differentiable, with θ ′(x) = 2x.

Proof. We calculate

θ(x+h)−θ(x)−〈2x , h〉
‖h‖ = ‖h‖ ,

which goes to 0 as h does. By definition, then, θ ′(x) = 2x. 
�

It follows from the above (and the chain rule) that, in a Hilbert space, the norm is
differentiable. (The reader must hear, sotto voce, the words “except at the origin”
in such a sentence; a norm can never be differentiable at 0, because of positive
homogeneity.) In a general Banach space, however, this is not necessarily the case.
In fact, a space may admit no equivalent norm which is differentiable.

Bump functions. Recall that the support of a function ϕ : X →R is the set

suppϕ = cl {x : ϕ(x) 	= 0}.

We say that a function ϕ is a bump function when ϕ is continuous and has
nonempty bounded support. Any normed space admits a Lipschitz bump function;
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one may take, for example

ϕ(x) = min(0 , ‖x‖−1) .

But does a normed space necessarily admit a smooth bump function?

The reader has no doubt seen such bump functions on R in a calculus course, per-
haps the following one:

ϕ(t) =

{
e−1/[ t 2−1 ]2 if | t | � 1

0 otherwise.

It is a standard exercise to show that this function is smooth, in fact C∞. The con-
struction (or others like it) can easily be extended to R

n.

In infinite dimensions, however, the existence of a smooth bump function is prob-
lematic. The question turns out to be delicate, and linked very closely to the differ-
entiability properties of the norm (or of some equivalent norm) on the space. We
shall prove later, without delving too deeply into the issue, that L1(0,1) (for exam-
ple) does not admit a smooth norm or bump function. But Hilbert spaces do not
disappoint us in this regard, as we now see.

7.22 Proposition. If X is a Hilbert space, then C1,1
b (X) contains a bump function.

Proof. Let r > 0, and let τ : R→ R be any twice continuously differentiable func-
tion which has compact support in [−r,r ] and has τ(0) > 0. Then the function ϕ
defined by

ϕ(x) = τ (‖x‖2)

is a bump function in C1,1
b (X), as is easily seen with the help of Prop. 7.21. Note

how the smoothness of the norm on X is essential to this construction. 
�

The following “smooth minimization principle” is to be compared with Theorem
5.19. One observes that the perturbation term is now provided by a continuously
differentiable function, whereas before it exhibited a corner.2

7.23 Theorem. Let X be a Hilbert space, and let f : X → R∞ be proper, lower semi-
continuous, and bounded below. Then, for any positive ε , there exists g ∈ C1,1

b (X)
such that

|g(x)| � ε , ‖g ′(x)‖∗ � ε , ‖g ′(x)−g ′(y)‖∗ � ε‖x− y‖ ∀x, y ∈ X ,

and such that f +g attains a minimum over X .

2 This is a special case of a theorem due to Borwein and Preiss, and also of a general result due to
Deville, Godefroy, and Zizler; the proof is taken from [20, p.11].
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Proof. Let G be a Banach space of bounded continuous functions g : X → R with
the following properties:

(a) For every t > 0 and g ∈ G, the function h : x �→ h(x) := g(t x) belongs to G.

(b) We have ‖g‖G � supx∈X |g(x)| ∀g ∈ G.

(c) The norm on G is invariant under translation: for every u ∈ X and g ∈ G, the
function h : x �→ h(x) := g(x+u) belongs to G and satisfies ‖h‖G = ‖g‖G .

(d) G contains a bump function ϕ .

Note that in view of Props. 7.20 and 7.22, the space G = C1,1
b (X) satisfies these

conditions. The proof will show that for any such G, there is a dense set of elements
g ∈ G for which f +g attains a minimum. When G is taken to be C1,1

b (X), we obtain
the statement of the theorem.

Consider the set Un defined by
{

g ∈ G : ∃ x0 ∈ X such that ( f +g)(x0)< inf
[
( f +g)(x) : x ∈ X\B(x0 ,1/n)

]}
.

It follows from condition (b) that Un is an open set in G. We proceed to show that it
is also dense. Let g ∈ G and ε > 0. We wish to exhibit h ∈ G with ‖h‖G < ε such
that g+h ∈ Un ; that is, such that, for some x0 ,

( f +g+h)(x0) < inf
[
( f +g+h)(x) : x ∈ X\B(x0 ,1/n)

]
.

By properties (c) and (d) above, there is a bump function ϕ ∈ G such that ϕ(0) 	= 0.
Replacing ϕ(x) by α ϕ(τ x) for appropriate values of α and τ > 0, we may arrange
to have

ϕ(0)> 0 , ‖ϕ ‖G < ε , ϕ(x) = 0 when ‖x‖ � 1/n .

Since f +g is bounded below, we can find x0 ∈ X such that

( f +g)(x0) < infX ( f +g)+ϕ(0) .

Let h(x) = −ϕ(x− x0). By property (a), h ∈ G ; we also have ‖h‖G < ε . More-
over,

( f +g+h)(x0) = ( f +g)(x0)−ϕ(0) < infX ( f +g) .

For any x ∈ X\B(x0 ,1/n), we have

( f +g+h)(x) = ( f +g)(x) � infX ( f +g) > ( f +g+h)(x0) ,

whence g+h ∈ Un as required. This proves that Un is dense.

Baire’s category theorem (see Royden [36]) asserts that, in a complete metric space,
the countable intersection of open dense sets is dense. Thus, the set

S =
⋂

n�1

Un
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is dense in G. The last step in the proof is to show that for any g ∈ S, the function
f +g attains a minimum on X .

Let xn ∈ X be such that

( f +g)(xn) < inf
[
( f +g)(x) : x ∈ X\B(xn ,1/n)

]
.

(Such a point exists because g ∈ Un .) We claim that xp ∈ B(xn ,1/n) for p � n. If
this fails, then, by the choice of xn , we have

( f +g)(xp) > ( f +g)(xn) .

However, since ‖xn − xp‖> 1/n � 1/p, the definition of xp implies

( f +g)(xn) > ( f +g)(xp) ,

a contradiction which establishes the claim.

It follows from the claim that xn is a Cauchy sequence, converging to some x̄ ∈ X .
Invoking the lower semicontinuity of f , we find

( f +g)(x̄) � liminf
n→∞

( f +g)(xn)

� liminf
n→∞

{
inf

[
( f +g)(x) : x ∈ X\B(xn ,1/n)

]}
(by the choice of xn)

� inf
[
( f +g)(x) : x ∈ X\{x̄}

]
.

Therefore f +g attains a global minimum at x̄ . 
�

We remark that the proof of the theorem applies to any Banach space X whose
squared norm function is continuously differentiable, and whose derivative is Lips-
chitz on bounded sets.

7.24 Exercise. Let X be a Hilbert space, and let f : X →R be a twice continuously
differentiable function that is bounded below. Prove that for every ε > 0, there is a
point z in X that satisfies

‖ f ′(z)‖∗ � ε and 〈 f ′′(z)v,v〉 � −ε‖v‖2 ∀v ∈ X . 
�

7.3 The proximal subdifferential

The reader has seen the useful notion of subgradient used in the context of convex
functions. We now proceed to extend the use of subgradients, in a local fashion, and
for functions that are not necessarily convex. The basic concept below and some of
its immediate properties can be developed in the setting of any normed space. How-
ever, we shall soon see the reasons for limiting attention to Hilbert spaces.
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Let X be a normed space, and let f : X → R∞ be given, with x ∈ dom f .

7.25 Definition. We say that ζ ∈ X ∗ is a proximal subgradient of f at x if, for
some σ = σ(x,ζ ) � 0, for some neighborhood V =V (x,ζ ) of x, we have

f (y)− f (x)+σ ‖y− x‖2 � 〈ζ , y− x〉 ∀y ∈ V.

The proximal subdifferential of f at x, denoted ∂P f (x), is the set of all such ζ .

We are not dealing with convex functions f in this section, but let us note that if f
does happen to be convex, then we recover with this definition a familiar construct
from convex analysis, namely the subdifferential:3

7.26 Proposition. Let f be convex. Then ∂P f (x) = ∂ f (x).

Proof. It follows directly from the definition of (convex) subgradient that any ele-
ment ζ of ∂ f (x) belongs to ∂P f (x); the inequality of Def. 7.25 holds with V = X
and σ = 0. We need only show, therefore, that an element ζ ∈ ∂P f (x) belongs to
∂ f (x). To do so, note that for such a ζ , the convex function

y �→ g(y) = f (y)+σ ‖y− x‖2 −〈ζ , y〉

attains a local minimum at y = x (by definition of proximal subgradient). By Fer-
mat’s rule, we have 0 ∈ ∂g(x). By the sum rule (Theorem 4.10), and because
the subdifferential at 0 of the squared norm function is {0} (exercise), we obtain
ζ ∈ ∂ f (x), as required. 
�

7.27 Exercise. Let f be a function of two variables as follows: f (x,y) = g(x− y),
and let (ζ ,ψ) belong to ∂P f (x,y). Prove that ζ +ψ = 0. 
�

Geometrical interpretation. When f is convex, an element ζ of the subdifferential
∂ f (x) satisfies the inequality that appears in Def. 7.25 globally and with σ = 0. As
we know, this corresponds to the epigraph of f having a supporting hyperplane at
(x, f (x)). In the case of a proximal subgradient, however, the proximal subgradient
inequality merely asserts that locally, f is bounded below by the function

y �→ f (x)+ 〈ζ , y− x〉−σ ‖y− x‖2.

The graph of this last function, rather than being a plane, corresponds to a (down-
ward opening) parabola which passes through the point (x, f (x)), and which, at the
point x, has derivative ζ . Geometrically then, proximal subgradients are the slopes
at x of locally supporting parabolas to epi f .

3 We remark that, just as one says “ f prime” or “dee f ” for the derivative of f , the conclusion
of Prop. 7.26 is often voiced as follows: dee P f equals dee f (or “curly dee f ”); a saving of
considerably many syllables.
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Fig. 7.1
An epigraph, and some locally supporting parabolas.

7.28 Example. Figure 7.1 shows the epigraph of a lower semicontinuous function
f : R→ R∞ , and focuses on five points in the boundary of epi f .

In a neighborhood of A = (xA, f (xA)), the function f coincides with the smooth
(in fact, affine) function x �→ x+ k, for some constant k. There are infinitely many
parabolas that will locally support the epigraph at the point A (two of them are
indicated), but they all have slope 1 at xA; accordingly, we have ∂P f (xA) = {1}.

Near the point B = (xB, f (xB)), epi f is locally the same as the epigraph of the
following function:

g(x) =

{
0 if x � xB

∞ if x > xB.

We find ∂P f (xB) = [0, ∞), these being the “contact slopes” of all possible locally
supporting parabolas at B.

At the point C, the function is locally of the form −|x− xC |+ k, and has a concave
corner at xC . Thus, no parabola can locally support epi f at C (curvature will simply
not allow it); consequently, we have ∂P f (xC) = /0.

The point D corresponds to a convex corner: f is locally of the form |x− xD |+ k.
Then ∂P f (xD) agrees with the subdifferential ∂ f (xD) = [−1, 1] in the sense of
convex analysis. The point E , like C , gives rise to an empty proximal subdifferential,
but for a different reason: the infinite slope precludes any supporting parabola. 
�

Relation to derivatives. Let us turn now to the relation between proximal subgra-
dients and derivatives. Suppose that f is Gâteaux differentiable at x. We claim that
the only possible element of ∂P f (x) is f ′

G(x). To see this, fix any v ∈ R
n. Observe
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that we may set y = x+ t v in the proximal subgradient inequality to obtain

( f (x+ t v)− f (x))/t � 〈ζ ,v〉−σ t‖v‖2 for all t > 0 sufficiently small.

Passing to the limit as t ↓ 0, this yields 〈 f ′
G(x),v〉 � 〈ζ ,v〉. Since v is arbitrary, we

must have ζ = f ′
G(x). We have proved:

7.29 Proposition. If f is Gâteaux differentiable at x, then ∂P f (x) ⊂ { f ′
G(x)}.

7.30 Example. The last proposition may fail to hold with equality; in general,
∂P f (x) may be empty even when f ′

G(x) exists. To develop more insight into this
question, the reader should bear in mind that the proximal subdifferential is philo-
sophically linked to (local) convexity, as mentioned above. At points where f has
a “concave corner”, there will be no proximal subgradients. A simple example is
provided by the function f (x) =−|x |, where x ∈ R

n. If ζ ∈ ∂P f (0), then, by defi-
nition,

−|y |−0+σ |y |2 � 〈ζ ,y〉 for all y near 0 .

Fix any point v ∈ X , and substitute y = t v in the inequality above, for t > 0 suffi-
ciently small. Dividing across by t and then letting t ↓ 0 leads to

〈ζ ,v〉 � −|v | ∀v ∈ X ,

a condition that no ζ can satisfy. Thus, we have ∂P f (0) = /0.

The proximal subdifferential ∂P f (x) can be empty even when f is continuously
differentiable. Consider the function f (x) = −|x |3/2 on R

n, which is continuously
differentiable with derivative 0 at 0. We claim that ∂P f (0) = /0. To see this, let ζ
belong to ∂P f (0). By Prop. 7.29, ζ must be 0. But then the proximal subgradient
inequality becomes

−|y |3/2 −0 +σ |y |2 � 0 for all y near 0 .

We let the reader verify that this cannot hold; thus, ∂P f (0) = /0 once again. 
�

It might be thought that a subdifferential which can be empty is not going to be
of much use; for example, its calculus might be very poor. In fact, the possible
emptiness of ∂P f is a positive feature in some contexts, as in characterizing cer-
tain properties (we shall see this in connection with viscosity solutions later). And
the calculus of ∂P f is complete and rich (but fuzzy, in a way that will be made
clear).

It is evident that if f has a (finite) local minimum at x, then ∂P f (x) is nonempty,
since we have 0 ∈ ∂P f (x) (Fermat’s rule). This simple observation will be the key
to proving the existence (for certain Banach spaces) of a dense set of points at which
∂P f is nonempty. First, we require a simple rule in proximal calculus:
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7.31 Proposition. Let x ∈ dom f , and let g : X →R be differentiable in a neighbor-
hood of x, with g ′ Lipschitz near x. Then

∂P( f +g)(x) = ∂P f (x)+{g ′(x)} .

Proof. We begin with

Lemma. There exists δ > 0 and M such that

y, z ∈ B(x,δ ) =⇒ |g(u)−g(x)−〈g ′(x), u− x〉| � M ‖u− x‖2.

To see this, we invoke the Lipschitz hypothesis on g ′ to find δ > 0 and M such
that

y, z ∈ B(x,δ ) =⇒ ‖g ′(y)−g ′(z)‖∗ � M‖y− z‖ .

For any u ∈ B(x,δ ), by the mean value theorem, there exists z ∈ B(x,δ ) such
that g(u) = g(x) + 〈g ′(z), u − x〉. Then, by the Lipschitz condition for g ′, we
have

|g(u)−g(x)−〈g ′(x), u− x〉| =
| 〈g ′(z)−g ′(x), u− x〉| � M ‖z− x‖‖u− x‖ � M‖u− x‖2,

which proves the lemma.

Now let ζ ∈ ∂P
(

f + g
)
(x). Then, for some σ � 0 and neighborhood V of x, we

have
f (y)+g(y)− f (x)−g(x)+σ ‖y− x‖2 � 〈ζ , y− x〉 ∀y ∈ V .

It follows from the lemma that

f (y)− f (x)+(σ +M)‖y− x‖2 � 〈ζ −g ′(x), y− x〉 ∀y ∈ Vδ := V ∩ B(x,δ ) ,

whence ζ−g ′(x)∈ ∂P f (x) by definition. Conversely, if ψ ∈ ∂P f (x), then, for some
σ � 0 and neighborhood V of x, we have

f (y)− f (x)+σ ‖y− x‖2 � 〈ψ , y− x〉 ∀y ∈ V .

We deduce from the lemma that

f (y)+g(y)− f (x)−g(x)+
(
σ +M

)
‖y− x‖2 � 〈ψ+g ′(x), y− x〉 ∀y ∈ Vδ ,

whence ψ+g ′(x) ∈ ∂P
(

f +g
)
(x). 
�

By taking f ≡ 0 in the proposition above, we obtain

7.32 Corollary. Let g : X → R be differentiable in a neighborhood of x, with g ′

Lipschitz near x. Then ∂P g(x) = {g ′(x)}.
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7.33 Exercise. Let X and Y be normed spaces. Let F : X → Y be Lipschitz near x,
and g : Y → R be C2 near F(x). Set f (u) = g(F(u)). Prove that

∂P f (x) = ∂P〈g ′(F(x)), F(·)〉(x) ,

where the notation on the right refers to the proximal subdifferential at x of the
mapping u �→ 〈g ′(F(x)), F(u)〉. (The reader will recognize the chain rule.) 
�

We now prove that in a Hilbert space, the set of points in dom f at which at least
one proximal subgradient exists is dense in dom f . Minimization will be the key to
the proof.

7.34 Theorem. (Proximal density) Let X be a Hilbert space, and let f : X → R∞
be lower semicontinuous. Let x ∈ dom f and ε > 0 be given. Then there exists a
point y ∈ x+ εB satisfying ∂P f (y) 	= /0 and | f (y)− f (x)| � ε .

Proof. By lower semicontinuity, there exists δ with 0 < δ < ε so that

u ∈ B(x,δ ) =⇒ f (u) � f (x)− ε . (1)

We define

h(u) =

{ [
δ 2 −‖u− x‖2

]−1 if ‖u− x‖< δ ,
+∞ otherwise.

Then h is lsc, h(u)→∞ as u approaches the boundary of B◦(x,δ ), h is differentiable
on B◦(x,δ ), and h ′ is locally Lipschitz there (see Prop. 7.21). Now consider the
function f +h, which is lsc and bounded below on B(x,δ ), in fact on X .

Suppose for a moment that X is finite dimensional. Then the function f +h attains a
minimum at some point y in B◦(x,δ ); thus, 0 ∈ ∂P( f +h)(y). It now follows from
Prop. 7.31 that −h ′(y) ∈ ∂P f (y), and in particular that ∂P f (y) 	= /0. In view of (1),
we may conclude by showing that f (y)� f (x). We deduce this by noting that y is a
minimum of f +h, and that h(x)� h(y), and hence

f (y) � f (x)+
(
h(x)−h(y)

)
� f (x) .

The proof is thus complete (and elementary) if X is finite dimensional.

In infinite dimensions, we have to deal with the possible non existence of minimiz-
ers. We invoke Theorem 7.23 to deduce that for some g ∈ C1,1

b (X) having norm less
than ε/2, the function f +h+g attains a minimum at a point y. Then

0 ∈ ∂P( f +h+g)(y) = ∂P f (y)+h ′(y)+g ′(y)

by Prop. 7.31, whence ∂P f (y) 	= /0. (Note that invoking Theorem 5.19 would not
lead to this.) By (1), we have f (y) � f (x)− ε . In order to conclude, therefore,
we need only a corresponding upper bound on f (y). Because f + h+ g attains a
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minimum at y, we have

f (y) � f (x)+h(x)+g(x)−h(y)−g(y) � f (x)+g(x)−g(y)< f (x)+ ε . 
�

The proximal density theorem extends to any Banach space for which (for some
equivalent norm) the squared norm function is continuously differentiable, with Lip-
schitz derivative, on a neighborhood of the origin. (Those are the Hilbert space prop-
erties used in the proof.) We close this section by proving that proximal density fails
in general, which suggests that proximal calculus is intrinsically limited to Banach
spaces having certain smoothness properties.

7.35 Proposition. There is a Lipschitz function on the Banach space X = L1(0,1)
whose proximal subdifferential is empty at every point.

Proof. Let f (x) = −‖x‖L1(0,1). Suppose that ζ ∈ ∂P f (x) for some x, and let us
derive a contradiction. We may identify ζ with a function z in L∞(0,1), in view of
Theorem 6.10. Then, for some σ and r > 0, the proximal subgradient inequality of
Def. 7.25 yields

∫ 1

0
|v(t)|dt < r =⇒

∫ 1

0

{
|x(t)|− |x(t)+ v(t)|− z(t)v(t)

}
dt +σ ‖v‖2

1 � 0 .

In view of the inequality ‖v‖2
1 �

∫ 1

0
|v(t)|2dt , we deduce

∫ 1

0
|v(t)|dt < r =⇒

∫ 1

0

{
|x(t)|− |x(t)+ v(t)|− z(t)v(t)+σ |v(t)|2}dt � 0 .

It now follows from Theorem 6.32 that for almost every t ∈ [0,1], we have

|x(t)|− |x(t)+ v |+σ |v |2 − z(t)v � 0 ∀v ∈ R . (2)

This cannot hold when x(t) = 0 (by the argument given in Example 7.30), so we
have x(t) 	= 0 a.e. Then the derivative with respect to v of the left side of (2) must
vanish, whence z(t) =−x(t)/|x(t)| a.e.

Let S be a set of positive measure such that, for some M, we have |x(t)| � M ∀ t ∈ S.
For every λ > 0 sufficiently small, there is a measurable subset Sλ of S having
measure λ . We define an element v ∈ L1(0,1) by setting v(t) = −x(t)+ z(t) when
t ∈ Sλ , and 0 otherwise. Then ‖v‖1 � (M+1)λ , and

t ∈ Sλ =⇒ |x(t)|− |x(t)+ v(t)|− z(t)v(t) = −2 .

This, together with the proximal subgradient inequality, implies

−2λ +σ(M+1)2λ 2 � 0

for all λ > 0 sufficiently small, which provides the desired contradiction. 
�



7.4 Consequences of proximal density 151

In view of the proximal density theorem (as extended to certain Banach spaces), the
proposition implies that no equivalent norm on L1(0,1) exists whose squared norm
function has a Lipschitz derivative near 0. The same conclusion holds for L∞(0,1)
(see Exer. 8.49).

7.36 Exercise. A point ζ ∈ X ∗ is said to be a proximal supergradient of f at
x ∈ dom f if, for some σ = σ(x,ζ )� 0, for some neighborhood V =V (x,ζ ) of x,
we have

f (y)− f (x)−σ ‖y− x‖2 � 〈ζ , y− x〉 ∀y ∈ V.

The set of such ζ , the proximal superdifferential, is denoted ∂ Pf (x). Show that

∂ Pf (x) = −∂P(− f )(x) .

Suppose that both ∂P f (x) and ∂ Pf (x) are nonempty at x. Prove that f is differen-
tiable at x, and that each of these sets reduces to the singleton { f ′(x)}. 
�

7.4 Consequences of proximal density

A continuous convex function on a Banach space may fail to be differentiable any-
where (see Exer. 8.49). In Hilbert spaces, however, this cannot happen.

7.37 Proposition. Let f : U → R be convex and lsc on an open convex subset U of
a Hilbert space. Then f is differentiable at a dense set of points in U .

Proof. f is continuous by Theorem 5.17, so that, by Prop. 4.6, ∂ f (x) is nonempty
for all x ∈U . Moreover, we have ∂ f (x) = ∂P f (x) by Prop. 7.26. The proximal den-
sity theorem, applied to − f , implies that ∂P(− f )(x) =−∂ Pf (x) is nonempty at all
points x in a dense subset of U . At these points, f is differentiable by Exer. 7.36. 
�

The inf-convolution of two functions f , g is the function h defined as follows:

h(x) = inf
u∈X

{
f (u)+g(x−u)

}
.

The term “convolution” is suggested by the visual resemblance of this formula to
the classical integral convolution formula. Our interest here involves only such inf-
convolutions formed between a function f and the quadratic function u �→ α‖u‖2,
where α > 0. Such functions have surprisingly far-reaching properties, in combina-
tion with the proximal density theorem.

Given f , we define fα : X → R by

fα(x) = inf
u∈X

{
f (u)+α‖x−u‖2} . (1)
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These functions are known as the Moreau-Yosida approximations of f .

7.38 Theorem. Let X be a Hilbert space, and let f : X → R∞ be proper, lower
semicontinuous, and bounded below by a constant c. Then fα is bounded below by
c, and is Lipschitz on each bounded subset of X (and in particular is finite-valued).
Furthermore, suppose x ∈ X is such that ∂P fα(x) is nonempty. Then there exists a
point y ∈ X satisfying the following:

(a) If ui is a minimizing sequence for the infimum in (1), then lim i→∞ ui = y ;

(b) The infimum in (1) is attained uniquely at y ;

(c) The derivative f ′
α(x) exists and equals 2α (x− y), and ∂P fα(x) = {2α (x− y)} ;

(d) We have 2α (x− y) ∈ ∂P f (y) .

Note that in writing conclusions (c) and (d) of the theorem, the dual of the Hilbert
space X has been identified with the space X itself.

Proof. Suppose we are given f and α > 0 as above. It is clear from the definition
that fα is bounded below by c. We now show that fα is Lipschitz on any bounded
set S ⊂ X . For any fixed x0 ∈ dom f 	= /0, note that fα(x) � f (x0)+α‖x−x0‖2 for
all x ∈ X , whence m := sup{ fα(x) : x ∈ S} < ∞. Since α > 0, and f is bounded
below, we have that, for any ε > 0, the following set is bounded:

C =
{

z : ∃ u ∈ S such that f (z)+α‖u− z‖2 � m+ ε
}
.

Now let x and u belong to S and ε > 0. Since fα(·) is given as an infimum, there
exists z ∈ C so that fα(u) � f (z)+α‖u− z‖2 − ε . Thus we have

fα(x)− fα(u) � fα(x)− f (z)−α ‖u− z‖2 + ε

� f (z)+α ‖x− z‖2 − f (z)−α‖u− z‖2 + ε

= α ‖x−u‖2 −2α 〈x−u , z−u〉+ ε
� K ‖x−u‖+ ε , where

K = α sup
{
‖s ′ − s‖+2‖z− s‖ : s ′, s ∈ S , z ∈ C

}
< ∞ .

Reversing the roles of x and u, and then letting ε ↓ 0, the above shows that fα is
Lipschitz of rank K on S.

We now consider the other assertions in the theorem. Suppose x ∈ X is such that
there exists at least one ζ ∈ ∂P fα(x). By the proximal subgradient inequality, there
exist positive constants σ and η so that

〈ζ , u− x〉 � fα(u)− fα(x)+σ ‖u− x‖2 ∀u ∈ B(x,η) . (2)

Now suppose ui is any minimizing sequence of (1); thus, there exists a sequence
ε i ↓ 0 such that
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fα(x) � f (ui)+α‖ui − x‖2 = fα(x)+ ε 2
i . (3)

We observe that
fα(u) � f (ui)+α‖ui −u‖2, (4)

since fα is defined as an infimum over X . Inserting the inequalities (3) and (4) into
(2) yields for each u ∈ B(x,η) the conclusion

〈ζ ,u− x〉 � α‖ui −u‖2 −α‖ui − x‖2 + ε 2
i +σ ‖u− x‖2

= 2α〈x−ui , u− x〉+ ε 2
i +(α+σ)‖u− x‖2,

which, rewritten, asserts

〈ζ −2α (x−ui), u− x〉 � ε 2
i +(α+σ)‖u− x‖2 ∀u ∈ B(x,η) . (5)

Now let v ∈ B. Note that u := x+ε i v ∈ B(x,η) for large i, since ε i ↓ 0. Hence, for
all large i, we can invoke (5) to deduce

〈ζ −2α (x−ui),v〉 � ε i(1+α+σ) .

Since v ∈ B is arbitrary, it follows that ‖ζ − 2α (x− ui)‖ � ε i(1+α +σ) . Set
y = x−ζ/(2α), and observe that (a) immediately follows by letting i →∞.

To see that y achieves the infimum in (1), it suffices to observe from (a) that

fα(x) � f (y)+α‖y− x‖2 � liminf
i→∞

[
f (ui)+α‖ui − x‖2 ] = fα(x) ,

where the last equality stems from (3). It is also clear that y is unique, since if u is
another minimizer of (1), the constant sequence ui := u is minimizing, and therefore
must converge to y by (a). Hence (b) holds.

The following observation about a supergradient (see Exer. 7.36) will be useful in
proving the differentiability assertion:

ζ = 2α (x− y) ∈ ∂ Pfα(x) . (6)

To prove this, let u ∈ X and observe that fα(u)� f (y)+α‖u− y‖2, with equality
holding if u = x. Then we see that

fα(u)− fα(x) � f (y)+α
∥
∥u− y

∥
∥2 − f (y)−α‖x− y‖2

= 〈2α (x− y), u− x〉+α‖u− x‖2.

This confirms (6), which, in light of Exer. 7.36, implies (c) of the theorem.

As for part (d), observe that the function u �→ f (u)+α‖u−x‖2 attains a minimum
at u = y, so that its proximal subdifferential there contains 0. With the help of Prop.
7.31, this translates to precisely statement (d). 
�
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The distance function. The distance function is destined to play a major role later,
when we develop nonsmooth geometry. The following shows that points at which
its proximal subdifferential is nonempty have a special character.

7.39 Proposition. Let S be a nonempty closed subset of a Hilbert space X , and let
dS be its distance function. Let x /∈ S be such that ∂P dS(x) 	= /0. Then projS(x) is a
singleton {sx}, and

∂P dS(x) =
{

x− sx

‖x− sx ‖

}
.

Proof. Consider the function f = IS and its quadratic inf-convolution

f1(y) = inf
u∈X

{
IS(u)+‖y−u‖2} = dS(y)2.

We have
∂P f1(x) = 2dS(x) ∂P dS(x) ,

according to Exer. 7.33. Thus, ∂P f1(x) 	= /0, so that by Theorem 7.38, there is a
unique point sx at which the infimum defining f1(x) is attained. It follows that
projS(x) = {sx}. Furthermore, Theorem 7.38 asserts that ∂P f1(x) is the singleton
2(x− sx). The formula for ∂P dS(x) follows from this. 
�

Closest points. A closed convex set in a Hilbert space admits a unique projection
from any point (Prop. 7.3). In general, both the existence and the uniqueness fail in
the absence of convexity. However, we have the following density result:

7.40 Exercise. Let S be a nonempty closed subset of a Hilbert space X . Then, for
every point x in a dense subset of X , there exists a unique closest point in S to x. 
�

A linear minimization principle. The following minimization principle is philo-
sophically related to the two others the reader has seen (Theorems 5.19 and 7.23),
but it allows the perturbation term to be linear.

7.41 Theorem. (Stegall) Let S be a nonempty, closed, and bounded subset of a
Hilbert space X , and let f : S → R∞ be lower semicontinuous and bounded below.
Suppose that S ∩ dom f 	= /0. Then there exists a dense set of points x in X having
the property that the function u �→ f (u)−〈x,u〉 attains a unique minimum over S.

Proof. Define

g(x) = inf
u∈X

{
f (u)+ IS(u)− 1

2 ‖u‖2 + 1
2 ‖x−u‖2} , (7)

which is easily seen to be a function of the form fα as in (1), where the role of f is
played by

f̃ (u) := f (u)+ IS(u)− 1
2 ‖u‖2,
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and where α = 1/2 . (Note that f̃ is bounded below, in part because S is bounded.)
Furthermore, expression (7) for g(x) can be simplified to

g(x) = inf
u∈S

{
f (u)−〈x,u〉

}
+ 1

2 ‖x‖2. (8)

It is clear that for fixed x ∈ X , the points u attaining the infima in (7), in (8), as well
as in

inf
u∈S

{
f (u)−〈x,u〉

}
(9)

all coincide. The proximal density theorem says that ∂Pg(x) is nonempty for a dense
set of points x, and Theorem 7.38 says that for each such x, the infimum in (7) is
uniquely attained. Hence, for a dense set of x ∈ X , the infimum in (9) is attained at
a unique point in S, which is the assertion of the theorem. 
�



Chapter 8

Additional exercises for Part I

8.1 Exercise. Give an example of a locally Lipschitz function f : X → R defined
on a Hilbert space X which is not bounded below on the unit ball. Could such a
function be convex? 
�

8.2 Exercise. Let A be a bounded subset of a normed space X . Prove that

co
(
∂A

)
⊃ cl A . 
�

8.3 Exercise. Let X be a normed space, and let A be an open subset having the
property that each boundary point x of A admits a supporting hyperplane; that is,
there exist 0 	= ζx ∈ X ∗ and cx ∈ R such that

〈ζx , x〉 = cx , 〈ζx , u〉 � cx ∀u ∈ A .

Prove that A is convex. Prove that the result remains valid if the hypothesis “A is
open” is replaced by “A is closed and has nonempty interior.” 
�

8.4 Exercise. Let X be an infinite dimensional Banach space. Prove that any vector
space basis for X is not countable. By considering �∞c , observe that this fact fails for
infinite dimensional normed spaces that are not complete. 
�

8.5 Exercise. Let αn be a sequence of real numbers, and let 1 � p � ∞. Suppose
that, for every x = (x1, x2, . . .) in l p, we have ∑n�1 |αn| |xn | < ∞. Prove that the
sequence α belongs to l q, where q is the conjugate exponent to p. 
�

8.6 Exercise. We record a direct definition of the normal cone when S is a subset of
R

n, one that does not explicitly invoke polarity to the tangent cone. Let x ∈ S. Show
that ζ ∈ NS(x) if and only if, for every ε > 0, there is a neighborhood V of x such
that

〈ζ , u− x〉 � ε |u− x | ∀u ∈ S ∩ V . 
�
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8.7 Exercise. Let f : Rn → R be given by f (x) = 〈x,Mx〉, where the matrix M is
n by n. Prove that f is convex if and only if f (x)� 0 ∀x. 
�

8.8 Exercise. Let X be a normed space, and let C, D be closed convex subsets of X .
Show by a counterexample in R

2 that C+D may not be closed. Prove that C+D is
closed if one of C or D is compact. 
�

8.9 Exercise. Let X be a normed space.

(a) Let Σ and Δ be bounded, convex, weak∗closed subsets of X ∗. Prove that Σ +Δ
has the same properties.

(b) Let Σ i be bounded, convex, weak∗closed subsets of X ∗, i = 1, 2, . . . , n. Prove
that the set co

{⋃n

i=1
Σ i

}
is weak∗closed. 
�

8.10 Exercise. Let f : X×Y → R∞ be a convex function, where X ,Y are vector
spaces. If, for every x ∈ X , we have g(x) := infy∈Y f (x,y) > −∞, then prove that
g is convex. 
�

8.11 Exercise. Let ζ : X → R be a nonzero linear functional on a normed space X .
Prove that the following are equivalent:

(a) ζ is continuous;

(b) The null space N(ζ ) :=
{

x ∈ X : 〈ζ , x〉= 0
}

is closed;

(c) N(ζ ) is not dense in X .

Deduce from this that if ζ is a discontinuous linear functional on X , then its null
space is dense. 
�

8.12 Exercise. Construct a Lipschitz function f : R→ R such that f ′(0;1) fails to
exist. 
�

8.13 Exercise. (von Neumann) Let X = � p, 1 < p < ∞, and denote by en (as
usual) the element of X whose n-th term is 1 and whose other terms are all 0. Then,
as we know, the sequence en converges weakly, but not strongly, to 0 (Example 3.5).

(a) Prove that the set A := {en +nem : m > n � 1} is strongly closed in X .

(b) Show that any weak neighborhood of 0 contains infinitely many elements of A,
but no sequence in A converges weakly to 0.

Deduce that the set of all weak limits of sequences in A fails to be weakly closed;
thus, the weak closure of A is not obtained by taking all limits of weakly convergent
sequences. (This phenomenon cannot occur when a topology is metrizable.) 
�
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8.14 Exercise. Let xn be a sequence in � p (1 < p < ∞), where we write

xn = (xn,1 , xn,2 , xn,3 . . .) .

Prove that xn converges weakly to 0 in � p if and only if the sequence xn is bounded
in � p and, for each i, we have limn→∞ xn,i = 0. 
�

8.15 Exercise. Prove that in �1, a sequence converges weakly if and only if it con-
verges strongly. 
�

8.16 Exercise. Let X = �∞, and let C consist of those points (x1, x2 , . . .) in X for
which xi ∈ [0,1] ∀ i and lim i→∞ xi = 1. Prove that C is a convex, weakly closed,
bounded subset of X , but that C is not weak∗closed. 
�

8.17 Exercise. Let f : X → R∞ be convex and lsc, where X is a normed space, and
suppose that lim‖u‖→∞ f (u) = ∞. Prove the existence of α > 0 and β such that

f (u) � α‖u‖−β ∀u ∈ X . 
�

8.18 Exercise. Let X be a normed space.

(a) Let C be a closed subset of X such that x, y ∈ C =⇒ (x+ y)/2 ∈ C. Prove that
C is convex.

(b) Let f : X → R∞ be a lower semicontinuous function such that

f
(
(x+ y)/2

)
� 1

2 f (x)+ 1
2 f (y) ∀x, y ∈ X .

Prove that f is convex. 
�

8.19 Exercise. Let f : Rn → R be convex and differentiable, and suppose that, for
certain positive constants a and b, we have

0 � f (x) � a+b|x |2 ∀x ∈ R
n.

Identify constants c and d such that |∇ f (x)| � c+d |x | ∀x ∈ R
n. 
�

8.20 Exercise. Let gi : Rn →R be convex and differentiable (i = 1, 2 , . . . , m), and
set f (x) = max{gi(x) : 1 � i � m}. We define

I(x) =
{

the indices i ∈ {1, 2 , . . . ,m} such that gi(x) = f (x)
}
.

Prove that ∂ f (x) = co{g ′
i (x) : i ∈ I(x)}. 
�

8.21 Exercise. Construct a convex function f : X → R∞ on a Hilbert space X such
that ∂ f (0) is a singleton yet f fails to be Gâteaux differentiable at 0. 
�
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8.22 Exercise. We are interested in minimizing over R3 the function

f (x) = 1
2 〈x,Q x〉+ 〈b, x〉 subject to −1 � xi � 1, i = 1,2 ,3 ,

where

Q =

⎡

⎣
13 12 −2
12 17 6
−2 6 12

⎤

⎦ , b =

⎡

⎣
−22.0
−14.5

13.0

⎤

⎦ .

Prove that the minimum is attained at the point x∗ = (1,1/2 ,−1). (Given: the char-
acteristic polynomial of Q is −λ 3 +42λ 2 −397λ +100.) 
�

8.23 Exercise. Let C and D be closed convex subsets of a normed space X such that
int (C−D) 	= /0. The goal is to prove that, for any point x in C ∩ D, we have

NC∩D(x) = NC(x)+ ND(x) .

(Note how this sharpens the result of Exer. 4.11.) We may reduce to the case x = 0.
Prove the inclusion ⊃. Now, let ζ ∈ NC∩D(0). Show that we can separate (0 ,0)
from the set

int
{(

c−d , δ −〈ζ , d 〉
)

: δ � 0 , c ∈ C , d ∈ D
}
,

and conclude. 
�

8.24 Exercise. (Gâteaux differentiability) Let f : X → R, where X is a normed
space.

(a) Give an example with X = R
2 in which f is discontinuous at the origin yet

Gâteaux differentiable there.

(b) Suppose that f is Gâteaux differentiable at each point u in a neighborhood of x.
Suppose in addition that the map u → f ′

G(u) is continuous at x. Prove that f is
differentiable at x.

(c) Let X =R
n, and let f be Gâteaux differentiable at x and Lipschitz on a neighbor-

hood of x. Prove that f is differentiable at x. 
�

8.25 Exercise. Let X be a normed space whose dual ball is strictly convex:

ζ1, ζ 2 ∈ B∗ , ζ1 	= ζ 2 =⇒
∥
∥(ζ1 +ζ 2)/2

∥
∥
∗ < 1.

Prove that x �→ ‖x‖ is Gâteaux differentiable at every nonzero point. 
�

8.26 Exercise. Let U be an open convex subset of Rn, and let f : U → R be C2.
Suppose that for all x in U with the exception of at most countably many, the Hessian
matrix ∇ 2 f (x) has strictly positive eigenvalues. Prove that f is strictly convex. 
�
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8.27 Exercise. Let f : X → R be convex, where X is a normed space. Show that the
multifunction ∂ f (·) is monotone:

〈ζ1 −ζ2 , x1 − x2 〉 � 0 ∀x1, x2 ∈ X , ζ i ∈ ∂ f (xi) (i = 1, 2) .

Prove that if f : X → R is a Gâteaux differentiable function satisfying

〈 f ′
G(x1)− f ′

G(x2), x1 − x2 〉 � 0 ∀x1, x2 ∈ X ,

then f is convex. 
�

8.28 Exercise. Let T : X → Y be a continuous linear operator, where X and Y are
Banach spaces. The goal is to prove the following characterization of surjectivity.
(T ∗ refers to the adjoint of T .)

Theorem. The following are equivalent:

1) T is surjective;

2) For some δ > 0, we have T BX ⊃ δ BY ;

3) For some δ > 0, we have ‖T ∗y∗‖X ∗ � δ ‖y∗‖Y ∗ ∀y∗ ∈ Y ∗.

The proof is to be carried out by means of the following steps.

(a) Prove that (1) and (2) are equivalent.

(b) Prove that (2) implies (3).

(c) We assume now that (3) holds, and we prove that T is surjective. We reason by
the absurd. Let y ∈ Y be a point which is not in the range T (X) of T . Show
that, for any ε > 0, there exists xε ∈ X which minimizes over X the function
h(x) = ‖T x− y‖Y + ε‖x− xε ‖X .

(d) Apply subdifferential calculus to deduce that T xε = y, provided ε has been
chosen sufficiently small. This contradiction completes the proof. 
�

8.29 Exercise. (Steiner points) Let k distinct points x1, x2 , . . . , xk in R
n be given

(k � 3), and consider the problem of finding a point that is “central” with respect
to them, by which we mean that we seek x ∈ R

n that minimizes the function

f (x) = ∑ k
i=1 |x− xi |

(the sum of the distances) over Rn. We refer to a point x∗ that minimizes f as a
Steiner point.

(a) Prove that the set of Steiner points is nonempty, convex, and compact.

(b) A natural question is whether one of the points x j can itself be a Steiner point.
For given j ∈ {1, 2 , . . . , k}, prove that x j is a Steiner point if and only if
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∣
∣
∣∑ i 	= j

x j − xi

|x j − xi |

∣
∣
∣ � 1 .

(c) The case n = 2, k = 3 was considered by Torricelli (a contemporary of Galileo).
Let θ ∈ [0, π ] be the angle formed by the segments [x1, x2 ] and [x2 , x3 ]. Prove
his theorem stating that (in the current terminology) x2 is a Steiner point if and
only if θ � 2π/3.

(d) When n = 2, a Steiner point can be found mechanically, as follows. Pass strings
through k holes in a table, the holes being located at the points xi ; let unit masses
hang from each string under the table, and join all the strings together on the
table top at a nexus point x (see the figure below). Explain why (in the absence of
friction, and using massless strings) the nexus will then move to a Steiner point.

(e) Find all the Steiner points when n = 2 and the k = 4 points involved are

(1,1) , (−1,1) , (−1,−1) , (1,−1) . 
�

8.30 Exercise. Let f : X → R∞ be convex and lower semicontinuous, where X is a
normed space. Prove that f is bounded below on bounded sets. 
�

8.31 Exercise. It turns out that differentiability and strict convexity are dual prop-
erties relative to conjugacy, as we now see.

(a) Let f : Rn → R be strictly convex, as well as coercive: lim |x |→∞ f (x)/|x | = ∞.
Prove that f ∗ is continuously differentiable.

(b) Let g : Rn → R be convex, coercive, and differentiable. Prove that g∗ is strictly
convex. 
�

8.32 Exercise. Let f : E → [0,∞ ] be proper and lsc, where (E,d) is a complete
metric space. Let g : E → E be a function such that
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f
(

g(x)
)
+d

(
x, g(x)

)
� f (x) ∀x ∈ E .

Prove that g admits a fixed point. (This is Caristi’s fixed point theorem.) 
�

8.33 Exercise. Prove that the set of operators T ∈ LC(X ,X) for which T−1 exists
and belongs to LC(X ,X) is open, and that the mapping T �→ T−1 is continuous.
[ Hint. If T is small, then a well-known series shows that (I −T )−1 exists. ] 
�

8.34 Exercise. Let X and Y be Banach spaces, and let T : X → Y be a continuous
linear operator which is surjective. Let g : X → Y be continuously differentiable. We
study the solutions of the equation

T x+ r g(x) = 0 , (∗)

where r is a real parameter. Prove the existence of two positive numbers δ and K
having the property that, for every r ∈ [−δ ,δ ], there exists a solution xr of (∗)
satisfying

‖xr‖X � K |r | ,

and such that (letting N(T ) be the null space of T ) we have

d
(

x, N(T )
)
� K‖T x‖Y ∀x ∈ X . 
�

8.35 Exercise. Let f : Rn → R be convex. Prove the existence of a measurable
function ζ : Rn → R

n such that ζ (x) ∈ ∂ f (x) a.e. 
�

8.36 Exercise. Let f : Rn → R be continuous and have superlinear growth:

lim
|u |→∞

f (u)/|u | = ∞ .

For x ∈ R
n, let the set of points in R

n which minimize the function u �→ f (u)−u • x
be denoted by Γ (x). Prove that Γ admits a measurable selection. 
�

8.37 Exercise. (Inverse function theorem) The goal is to prove Theorem 5.38.

(a) Prove the existence of η > 0 such that F ′(x̄ )∗B∗ ⊃ 2ηB∗ . [ Hint. Prove that
F ′(x̄ )∗ is continuous and surjective. ]

(b) Justify the existence of a neighborhood A of x̄ such that

x ∈ A =⇒
[

F ′(x)−F ′(x̄)
]
B ⊂ ηB .

(c) Prove that
x, u ∈ A =⇒ ‖F(x)−F(u)‖ ≥ η‖x−u‖ .

[ Hint. Let ζ ∈ B∗ satisfy 〈ζ , x− u〉 = ‖x− u‖, and then let ψ ∈ B∗ satisfy
F ′(x̄)∗ψ = 2ηζ (ψ exists by (a)). Then apply the mean value theorem to the
function z �→ 〈ψ ,F(z)〉 on the interval [x,u ]. ]
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(d) Invoke Theorem 5.32 to deduce the existence of a neighborhood W of ȳ such
that, for each y ∈ W , the equation F(x) = y has a unique solution x̂(y) ∈ A.

(e) Prove that x̂ is Lipschitz (one may need to reduce W ).

(f) Prove that Dx̂(ȳ ) exists and equals F ′(x̄)−1. [ Hint. Write

F(x̂(y)) = F(x̄)+F ′(x̄)
(

x̂(y)− x̄
)
+o

(
x̂(y)− x̄

)

and show that the last term is of the form o(y− ȳ ). ]

(g) Prove that x̂ is continuously differentiable near ȳ , and complete the proof. [ Hint.
Obtain the formula of the preceding step for y near ȳ , and use Exer. 8.33. ] 
�

8.38 Exercise. Let S be a nonempty closed subset of a Hilbert space X , with S 	= X .
Prove the existence of a point x ∈ X at which the distance function dS fails to be
differentiable. 
�

8.39 Exercise. (Motzkin’s theorem) Let S be a nonempty closed subset of Rn, and
for any x ∈ S, let projS(x) denote as usual the (nonempty) set of points u ∈ S satis-
fying dS(x) = |u− x |. We prove the following theorem due to Motzkin:

S is convex if and only if projS(x) is a singleton for each x.

The necessity is known to us (see Prop. 7.3), so we turn to the hard part: showing
that the uniqueness of closest points implies the convexity of S. We denote by sx the
unique projection of x onto S.

(a) For fixed x,v, let pt be the projection of x+ t v on S. Prove that lim t ↓0 pt = sx .

(b) Show that for t > 0 we have

|x+ t v− pt |2 −|x− pt |2 � d 2
S (x+ t v)−d 2

S (x) � |x+ t v− sx |2 −|x− sx |2.

Deduce that the function d 2
S (x) is Gâteaux differentiable at x, with derivative

2(x− sx).

(c) Prove that the function ϕ(x) =
(
|x |2 −d 2

S (x)
)
/2 is convex.

(d) Let f (x) = |x |2/2+ IS(x). Prove that f ∗ = ϕ .

(e) We set g = f ∗∗ = ϕ ∗, and we prove that domg ⊃ co S. To this end, note that

g(x) = ϕ ∗(x) = sup
y∈Rn

{
x • y−|y |2/2+dS(y)2/2

}

= sup
y∈Rn

inf
s∈S

{
x • y−|y |2/2+ |y− s |2/2

}

� inf
s∈S

sup
y∈Rn

{
x • y−|y |2/2+ |y− s |2/2

}

= inf
s∈S

sup
y∈Rn

{
(x− s) • y+ |s |2/2

}
,
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which equals +∞ if x /∈ S, and |x |2/2 otherwise. We deduce domg ⊃ S, whence
domg ⊃ co S.

(f) Let x be a point for which ∂g(x) 	= /0. Show that x ∈ S. [Hint: subdifferential
inversion.]

(g) Let A be the set of points x such that ∂g(x) 	= /0. Show that

S ⊃ A ⊃ domg ⊃ co S ⊃ S .

This implies S = coS, which reveals that S is convex. 
�

8.40 Exercise. Let (E , d) be a complete metric space. Given two points u,v in E ,
the open interval (u,v) refers to the set (possibly empty) of points x different from
u or v such that d(u,v) = d(u,x)+d(x,v). Let g : E → E be a continuous mapping
satisfying, for a certain c ∈ [0,1):

v ∈ E , v 	= g(v) =⇒ ∃ w ∈
(

v, g(v)
)

such that d
(
g(v), g(w)

)
� cd(v,w) .

Then g admits a fixed point. 
�

8.41 Exercise. Let K be a compact subset of R
n containing at least two points.

Show that C(K) is not uniformly convex. 
�

8.42 Exercise. Prove that the dual space c ∗
0 of c0 is isometric to �1. It follows that

c0 is not reflexive. Find an element in the set c ∗∗
0 \(J c0). 
�

8.43 Exercise. Let X be a normed space. We show that if the weak topology of
X admits a countable base of open sets at 0, then X is finite dimensional. (Thus,
the weak topology on an infinite dimensional normed space is never metrizable.)
Suppose that such a countable base does exist.

(a) Prove the existence of a countable set {ζn} in X ∗ such that every ζ ∈ X ∗ is a
finite linear combination of the ζn .

(b) Derive from this that X ∗ is finite dimensional, and then that X is finite dimen-
sional. 
�

8.44 Exercise. Let X be a uniformly convex Banach space, and let xn be a sequence
converging weakly to x. Prove that if limsupn→∞ ‖x n‖ � ‖x‖ , then xn converges
strongly to x. 
�

8.45 Exercise. Let S be a nonempty subset of Rn, and set X = L2(0,1)n. We define
a subset A of X as follows:

A =
{

f ∈ X : f (t) ∈ S , t ∈ [0,1] a.e.
}
.

Prove that A is closed if and only if S is closed, that A is convex if and only if S is
convex, and that A is weakly compact if and only if S is compact and convex. 
�
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8.46 Exercise. Let g : R→ R be continuous and bounded below, and define

f (v) =
∫ b

a
g(v(t))dt , v ∈ L1(0,1) .

Show that f is lower semicontinuous. Show that f is weakly lower semicontinuous
if and only if g is convex. 
�

8.47 Exercise. Prove that if a Banach space X is reflexive, then a subset of X ∗ is
weak∗ closed if and only if it is weakly closed. 
�

8.48 Exercise. Let X be a Banach space.

(a) Let σ and ζ be nonzero points in X ∗ such that ζ does not lie on the ray R+σ .
Prove the existence of x ∈ X such that 〈ζ , x〉 < 0 < 〈σ , x〉.

(b) Deduce that the ray is weak∗closed.

(c) Prove that a convex cone Σ in X ∗ is weak∗closed if and only if the set Σ ∩B∗ is
weak∗closed. 
�

8.49 Exercise. Show that the norm on the Banach space X = L∞(0,1) fails to be
Gâteaux differentiable at any point. Deduce from this that the proximal subdifferen-
tial ∂P f of the function f (x) =−‖x‖ is empty at every point. 
�

8.50 Exercise. Characterize the (dense) set of points at which the (usual supremum)
norm on C[0,1] is Gâteaux differentiable. Are there any points at which the norm is
(Fréchet) differentiable? 
�

8.51 Exercise. Let X be a reflexive Banach space, and let S and Σ be closed, convex,
nonempty subsets of X and X ∗ respectively, at least one of which is bounded. Then

inf
x∈S

sup
σ ∈Σ

〈σ , x〉 = sup
σ ∈Σ

inf
x∈S

〈σ , x〉 . 
�

8.52 Exercise. Let X be a Banach space, and q : X×X → R a function such that,
for each (u ,v) ∈ X×X , the mappings w �→ q(u,w) and w �→ q(w,v) belong to X ∗.
Thus, q(u ,v) is bilinear and continuous with respect to each of its variables.

(a) Prove the existence of M such that |q(u ,v)| � M‖u‖‖v‖ ∀(u,v) ∈ X×X .

(b) Prove that the function f (x) = q(x, x) is Gâteaux differentiable at every x, and
find an expression for the directional derivative f ′(x ;v) in terms of q.

We now suppose that the bilinear form q is symmetric and coercive:

q(u ,v) = q(v,u) ∀(u ,v) , ∃ c > 0 such that f (x) = q(x, x) � c‖x‖2 ∀x ∈ X .

(c) Prove that f is strictly convex and continuous.
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We now suppose that X is reflexive. Let K be a nonempty closed convex subset of
X , and ζ ∈ X ∗.

(d) Prove the existence of a unique point x∗ which minimizes over K the function
x �→ 1

2 f (x)−〈ζ , x〉.

(e) Deduce that x∗ satisfies the necessary condition − 1
2 f ′

G(x∗)+ ζ ∈ NK(x∗), and
that this is equivalent to the following variational inequality :

q(x∗ , u− x∗) � 〈ζ , u− x∗〉 ∀u ∈ K .

(f) Prove that x∗ is the unique solution of the variational inequality (which arises
notably in certain problems in elasticity).

(The last three assertions together constitute Stampacchia’s theorem on variational
inequalities.) 
�

8.53 Exercise. Show by an example that Theorem 7.23 fails to hold in an arbitrary
Banach space. 
�

8.54 Exercise. The goal here is to prove a special case of a theorem due to Borwein
and Preiss, a minimization principle in which the perturbation term is differentiable,
as it is in Theorem 7.23, but having additional features. The result involves two
parameters that serve to relate the conclusion to a pre-given point x of interest; in
that sense, it resembles Theorem 5.19.

Theorem. Let f : X → R∞ be lsc and bounded below, where X is a Hilbert space.
Let ε > 0. Suppose that x is a point satisfying f (x) < infX f + ε . Then, for any
λ > 0 there exist points y and z with

‖z− x‖ � λ , ‖y− z‖ � λ , f (y) � f (x)+λ ,

and having the property that the function

w �→ f (w)+
2ε
λ 2 ‖w− z‖2

has a unique minimum at w = y .

(a) Consider the inf-convolution fα (as in Theorem 7.38) with α = 2ε/λ 2 :

fα(u) = inf
w∈X

{
f (w)+

2ε
λ 2 ‖w−u‖2

}
.

Prove the existence of z ∈ x+λB satisfying

fα(z) � fα(x)+min (ε ,λ ) , ∂P fα(z) 	= /0 .
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(b) Prove that there is a unique point y at which the infimum defining fα(z) is at-
tained, and that f (y) � f (x)+λ .

(c) Prove that ‖y− z‖ � λ . 
�

Extreme points. Let K be a nonempty subset of a normed space X . An extreme
point of K refers to a point x ∈ K which cannot be written in the form (1− t)y+ t z ,
where t ∈ (0 ,1) and y, z are distinct points in K. (In other words, x fails to lie in any
open segment determined by two points of K .)

8.55 Exercise. Let K be convex, and let D ⊂ K be such that co D = K . Prove that
D contains all the extreme points of K . 
�

8.56 Exercise. The preceding exercise implies that in seeking subsets of K that gen-
erate K by convexification, we must include the extreme points. Will these suffice?
The following result provides a positive answer, when K is compact.

Theorem. (Krein-Milman) If K is a compact convex subset of X , and if E is the
set of its extreme points, then we have K = co E.

Proof. 1 We extend the concept of extreme point to subsets S of K. We say that S is
an extreme set if S is nonempty and

x ∈ K , y ∈ K , 0 < t < 1 , (1− t)x+ t y ∈ S =⇒ x ∈ S , y ∈ S .

Let P denote the family of all compact extreme sets; then P is nonempty, since
K ∈ P. Prove the following two lemmas:

Lemma 1. Let {Sα} be a collection of extreme sets such that
⋂

α Sα 	= /0. Then⋂
α Sα ∈ P .

Lemma 2. Let S ∈ P and Λ ∈ X ∗. Then the set SΛ = {x ∈ S : Λ x = maxSΛ }
belongs to P.

We claim that every S ∈ P contains an extreme point. To prove this, set

PS =
{

A ∈ P : A ⊂ S
}
.

We define a partial order on PS as follows: S1 � S2 if and only if S1 ⊃ S2 .

(a) Prove (with the help of Lemma 1) that PS is inductive, and apply Zorn’s lemma
to deduce that PS admits a maximal element M.

(b) Invoke the separation theorem to prove (with the help of Lemma 2) that M is a
singleton {x}.

(c) Show that x is an extreme point of S, which establishes the claim.

1 The proof follows Rudin [38, Theorem 3.21].
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The remainder of the proof goes as follows. Let E be the (nonempty) set of extreme
points of K, and set H = coE . The arguments above show that H ∩ S 	= /0 for every
extreme set S ∈ P. We have cl H ⊂ K, and so cl H is compact. We now conclude
by showing that cl H = K, arguing by contradiction.

Suppose there is a point x̄ ∈ K\cl H. By the separation theorem, there existΛ ∈ X ∗

and γ such that
Λx < γ < Λ x̄ ∀x ∈ cl H.

This implies cl H ∩ KΛ = /0, where

KΛ = {x ∈ K : Λ x = max
K

Λ }.

But KΛ ∈ P by Lemma 2; this is the required contradiction. 
�

The reader should note a corollary of the theorem:

A nonempty compact convex subset of a normed space admits an extreme point.

8.57 Exercise. The (strong) compactness of K in the theorem above is at times
a restrictive hypothesis. Show that the proof can be adapted to the two following
cases, in which compactness is provided by weak topologies:

(a) X is a reflexive Banach space, and K is closed, convex, and bounded.

(b) X is the dual of a normed space Y , and K is the unit ball in X . 
�

8.58 Exercise. For 1 � p � ∞, let X be the Banach space L p(0,1), and B its closed
unit ball.

(a) If p = 1, show that B has no extreme points.

(b) Deduce from Exer. 8.57 that L1(0,1) is not isometric to the dual of a normed
space (which implies that it is not reflexive).

(c) If 1 < p < ∞, show that every point in the unit sphere is an extreme point of B.

(d) Determine the extreme points of B in the case p = ∞. 
�
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Chapter 9

Optimization and multipliers

I think the restriction to smooth manifolds is dictated only by
technical reasons and is unsatisfactory...non-smooth manifolds
exist naturally.
Shiing-Shen Chern

Consider God’s handiwork: who can straighten what He hath
made crooked?
Ecclesiastes 7:13

The abstract optimization problem minA f consists of minimizing a cost function
f (x) over the points x belonging to the admissible set A. The set A incorporates the
constraints imposed upon the points that are allowed to compete in the minimiza-
tion. The nature of A, and also of the function f , determine whether our problem is
classical or modern, discrete or continuous, finite or infinite dimensional, smooth or
convex.

Optimization is a rich and varied subject with numerous applications. The core
mathematical issues, however, are always the same:

• Existence: Is there, in fact, a solution of the problem? (This means a point x∗ ∈ A
at which minA f is attained.)

• Necessary conditions: What special properties must a solution have, properties
that will help us to identify it?

• Sufficient conditions: Having identified a point that is suspected of being a solu-
tion, what tools can we apply to confirm the suspicion?

Many other issues than these can, and do arise, depending on the nature of the
problem. Consider for example the calculus of variations, which we take up later
on, in which the variable x refers to a function. The regularity of the minimizing
function x∗ reveals itself to be a central question, one that we shall study rather
thoroughly. In contrast, issues such as modeling, computation, and implementation,
which are crucial to applied optimization of all sorts, are not on our agenda.

Deductive and inductive methods. A familiar optimization problem that the
reader has encountered is that of minimizing a differentiable function f : Rn → R

over all points x belonging to A = R
n. This is a “free” optimization problem, since

the admissible points x are subject to no explicit constraint (except, of course, that
they reside in the underlying space R

n).
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The existence question might be treated by imposing a supplementary hypothesis
on f , for example, a growth condition: f (x) → +∞ as |x | → +∞. Then, bearing
in mind that f is continuous (since it is differentiable), it follows that a solution x∗
does exist. We would like to identify it, however.

For that purpose, we turn to necessary conditions, proceeding to invoke Fermat’s
rule: a solution x∗ must satisfy ∇ f (x∗) = 0. (It is in order to write this equation that
f was taken to be differentiable, rather than merely continuous.) Thus, we search
for a solution among the critical points of f .

Then, we could conclude in one of two ways. If we know that a solution exists, and
if we have examined the critical points in order to find the best critical point x∗ (that
is, the one assigning the lowest value to the cost f ), it follows logically that x∗ is
the solution to the minimization problem. This approach is known as the deductive
method.1

There is a potential fallacy lurking here, one that is rather common in certain areas of
application. It consists of applying the deductive reasoning above without knowing
with certainty that a solution exists. In the absence of guaranteed existence, it is
quite possible for the necessary conditions to identify a unique admissible point x,
which then fails to be a solution (because there isn’t one).

An alternative approach, one that does not necessitate finding all the critical points,
or knowing ahead of time that a solution exists, is to find an argument tailored
precisely to a given suspect x∗. Let us give three examples of how this might work.
First, suppose we find it possible to rewrite f (x) as follows:

f (x) =
[
ϕ(x)−ϕ(x∗)

]2
+ c ,

for some function ϕ and constant c. Then, evidently, x∗ minimizes f .

Another strategy would be to postulate the convexity of the function f ; then, the
stationarity condition ∇ f (x∗) = 0 implies, without further argument, that x∗ is a
global minimum for f .

Finally, let us mention a third tactic: if f is twice continuously differentiable, the
condition ∇2 f (x∗) > 0 (positive definite) together with ∇ f (x∗) = 0, is enough to
imply that f is at least a local minimum.

Note that all three of these alternate arguments do not require an existence theorem.
They are examples of the inductive method.2 These two approaches to solving
optimization problems, the deductive and the inductive, will play a role in shaping
the things to come.

We turn now to the issue of necessary conditions in the presence of constraints.

1 Deductive: reasoning from the general to the particular.
2 Inductive reasoning: wherein one argues from the particular to the general.
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9.1 The multiplier rule

Consider the following special case of our problem minA f :

Minimize f (x) subject to h(x) = 0 . (P0)

Here, the admissible set is given by A = {x ∈ R
n : h(x) = 0}, and we are dealing

with a constrained optimization problem, one in which admissibility is defined via
an equality constraint. To keep things simple, we suppose for now that f and h are
continuously differentiable, and that h is real-valued.

There is a famous technique for obtaining necessary conditions in this case, known
as Lagrange multipliers. It should be part of any mathematical education, for it is a
serious nominee for the most useful theorem in applied mathematics.

The method consists of seeking the solutions of the constrained problem (P0) above
among the critical points, not of f (for this would ignore the constraint), but of
f + λ h, where the multiplier λ is a parameter whose value is not known for the
moment. The resulting equation ∇( f +λ h)(x) = 0 may appear to be a step in the
wrong direction, since it involves an additional unknown λ , but this is compensated
for by the constraint equation h(x) = 0. The idea is to solve the two equations for x
and λ simultaneously, and thus identify x (and λ , for whatever that’s worth).

The theorem we have alluded to is known as the multiplier rule. We now discuss
in some detail (but in general terms) how to prove such necessary conditions for
optimality, as they are known.

Terminology: Various branches of optimization employ different synonyms for a
“solution” of the underlying problem. A point x∗ that solves the minimization prob-
lem can be called optimal, or it can be referred to as a minimizer, or it can be said that
it provides a minimum. The word “local” is used in addition, when the minimum in
question is a local one in some prescribed sense.

The first approach to proving the multiplier rule is geometric. Let x∗ solve (P0), and
consider, for ε > 0, the relation of the set

f−1
ε := {x ∈ R

n : f (x) = f (x∗)− ε
}

to the admissible set A = {x ∈ R
n : h(x) = 0}. Clearly, these two sets (which we

imagine as surfaces in R
n) do not intersect, for otherwise x∗ cannot be a solution of

(P0). As ε decreases to 0, the surfaces f−1
ε “converge” to the level set

{x ∈ R
n : f (x) = f (x∗)} ,

which does have a point in common with A, namely x∗ . (Have we mentioned that
we are arguing in general terms?) Thus, the value ε = 0 corresponds to a point of
first contact (or “osculation”) between these surfaces. We conclude that the normal
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vectors at x∗ of these two surfaces are parallel, that is, multiples of one another.
Since normals to level sets are generated by gradients, we deduce the existence of a
scalar λ such that ∇ f (x∗)+λ∇h(x∗) = 0. This is precisely the multiplier rule we
seek to establish.

The argument given above has the merit of explaining the geometric meaning behind
the multiplier rule. It is difficult to make it rigorous, however. A more manageable
classical approach is to consider the nature of the solutions (x,r) ∈ R

n×R of the
equation

F(x,r) :=
(

f (x)− f (x∗)+ r, h(x)
)
= (0,0) .

The reader will observe that the point (x∗ , 0) satisfies the equation.

If the Jacobian matrix Dx F(x∗ , 0) has (maximal) rank 2, then, by the implicit func-
tion theorem, the equation F(x,r) = (0,0) admits a solution x(r) for every r near 0,
where lim r→0 x(r) = x∗ . But then, for r > 0 sufficiently small, we obtain a point
x(r) arbitrarily near x∗ which is admissible, and for which f (x(r)) < f (x∗). This
contradicts even the local optimality of x∗ . It follows that the rows of Dx F(x∗ , 0),
namely the vectors ∇ f (x∗) and ∇h(x∗) (modulo transpose), must be linearly depen-
dent. If we assume that ∇h(x∗) 	= 0 (as is usually done), this implies that, for some
λ , we have ∇ f (x∗)+λ∇h(x∗) = 0. Ergo, the multiplier rule.

This classical argument is satisfyingly rigorous, but it is difficult to adapt it to dif-
ferent types of constraints, notably inequality constraints g(x) � 0, and unilateral
constraints x ∈ S. Other considerations, such as replacing R

n by an infinite dimen-
sional space, or allowing the underlying functions to be nondifferentiable, further
complicate matters.

Let us turn, then, to an entirely different argument for proving the multiplier rule,
one that we invite the reader to criticize. It is based upon considering the following
perturbed problem (Pα ):

Minimize f (x) subject to h(x) = α . (Pα )

Note that the original problem (P0) has been imbedded in a family of problems
depending on the parameter α . We define V (α) to be the value of the minimum in
the problem (Pα ). Thus, by definition of V , and since x∗ solves (P0) by assumption,
we have V (0) = f (x∗). On the other hand, for any x, the very definition of V implies
that V (h(x)) � f (x). (There is a pause here while the reader checks this.) We may
summarize these two observations as follows:

f (x)−V
(
h(x)

)
� 0 ∀x, with equality for x = x∗ .

By Fermat’s rule, the gradient of the function in question must vanish at x∗ . By the
chain rule, we obtain:

∇ f (x∗)−V ′(h(x∗)
)
∇h(x∗) = ∇ f (x∗)−V ′(0)∇h(x∗) = 0 .
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Behold, once again, the multiplier rule, with λ = −V ′(0). We have also gained
new insight into the meaning of the multiplier λ : it measures the sensitivity of the
problem with respect to perturbing the equality constraint h = 0 to h = α . (This
interpretation is well known in such fields as operations research, mechanics, or
economics.)

Nonsmoothness. The “value function proof” that we have just presented is com-
pletely rigorous, if it so happens that V is differentiable at 0. It must be said at once,
however, that value functions are notoriously nonsmooth. Note that V above is not
even finite-valued, necessarily: V (α) = +∞ when the set {x : h(x) = α } is empty.
And simple examples show that V is not necessarily differentiable, even when it is
finite everywhere. This raises the issue of rescuing the proof through the use of gen-
eralized derivatives and nonsmooth calculus, subjects that we develop in subsequent
chapters.

Let us mention one more approach to proving the multiplier rule, one that uses
an important technique in optimization: exact penalization. Our interest remains
focused on the problem minA f , but we consider the (free!) minimization of the
function f (x)+ k dA(x), where k is a positive number and, as usual, dA denotes the
distance function associated with A. Under mild hypotheses, it turns out that for k
sufficiently large, the solution x∗ of the constrained problem will be a local solution
of this unconstrained problem. We might say that the constraint has been absorbed
into the cost by penalization.

At this point, we are tempted to write Fermat’s rule: ∇( f +k dA)(x∗) = 0. There is a
difficulty, once more having to do with regularity, in doing so: distance functions like
dA are not differentiable. Once again, then, we require some generalized calculus in
order to proceed. A further issue also arises: given that A is the set {h = 0}, how
may we interpret the generalized derivative of dA? Is it characterized by ∇h some-
how, and would this lead (yet again) to the multiplier rule? We shall develop later
the “nonsmooth geometry” required to answer such questions (positively).

We have explained how considerations of theory lead to nonsmoothness. In fact,
there are many important problems that feature data that are nondifferentiable from
the start. They arise in such areas as elasticity and mechanics, shape optimization
and optimal design, operations research, and principal-agent analysis in economics.
However, we begin our study with the smooth case, in a more general setting as
regards the constraints that define admissibility.

The basic problem. The focus of this chapter is the following basic problem of
constrained optimization:

Minimize f (x) subject to g(x)� 0 , h(x) = 0 , x ∈ S (P)

where the functions

f : X → R , g : X → R
m , h : X → R

n,
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together with the set S in the Banach space X , constitute the given data. The vector
inequality g(x) � 0 means, of course, that each component gi(x) of g(x) satisfies
gi(x) � 0 (i = 1, 2 , . . . , m). An optimization problem of this type is sometimes
referred to as a program, which is why the term mathematical programming is a
synonym for certain kinds of optimization.

Terminology. We say that x ∈ X is admissible for the problem (P) if it lies in S and
satisfies both the inequality constraint g(x)� 0 and the equality constraint h(x) = 0.
The requirement x ∈ S is also referred to as the unilateral constraint. A solution x∗
of (P) is an admissible point which satisfies f (x∗) � f (x) for all other admissible
points x, where f is the cost function. We also say that x∗ is optimal for the problem,
or is a minimizer.

9.1 Theorem. (Multiplier rule) Let x∗ be a solution of (P) that lies in the interior
of S. Suppose that all the functions involved are continuously differentiable in a
neighborhood of x∗ . Then there exists (η ,γ ,λ ) ∈ R×R

m×R
n satisfying the non-

triviality condition
(η ,γ ,λ ) 	= 0 ,

together with the positivity and complementary slackness conditions

η = 0 or 1 , γ � 0 , 〈γ , g(x∗)〉 = 0,

and the stationarity condition
{
η f + 〈γ , g〉+ 〈λ ,h〉

}′
(x∗) = 0 .

Remarks on the multiplier rule. The triple (η ,γ ,λ ) is called a multiplier. The
theorem asserts that the existence of such a multiplier is a necessary condition for x∗
to be a solution. The term Lagrange multiplier is often used, in honor of the person
who used the concept to great effect in classical mechanics; in fact, the idea goes
back to Euler (1744). The hypothesis that the functions involved are smooth, and
that x∗ lies in the interior of S, makes the setting of the theorem a rather classical
one, though the combination of an infinite dimensional underlying space with the
presence of mixed equality/inequality constraints is modern.

Because we have assumed x∗ ∈ int S, the set S plays no role in the necessary condi-
tions. In fact, S merely serves (for the present) to localize the optimization problem.
Suppose, for example, that x∗ is merely a local minimum for (P), when the unilateral
constraint x ∈ S is absent. Then, by adding the constraint x ∈ S, where S is a suffi-
ciently small neighborhood of x∗ , we transform x∗ into a global minimum. Another
possible role of S is to define a neighborhood of x∗ in which certain hypotheses hold
(in this case, continuous differentiability).

The reader will observe that the nontriviality condition is an essential component of
the multiplier rule, since the theorem is vacuous in its absence: the triple (0,0,0)
satisfies all the other conclusions, for any x∗ .
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The complementary slackness condition 〈γ , g(x∗)〉 = 0 is equivalent to

i ∈ {1, 2 , . . . , m} , gi(x∗) < 0 =⇒ γ i = 0 .

This equivalence follows from the observation that, since γ � 0 and g(x∗) � 0,
the inner product 〈γ , g(x∗)〉 is necessarily nonpositive, and equals zero if and only
if each term γ i gi(x∗) is zero. Thus, we may rephrase the complementary slack-
ness condition as follows: if the constraint gi � 0 is not saturated at x∗ (that is, if
gi(x∗) < 0), then the function gi does not appear in the necessary conditions (the
corresponding γ i is equal to 0). This makes perfect sense, for if gi(x∗)< 0, then (by
the continuity of g) we have gi(x) < 0 for all nearby points x, so that (locally) the
constraint is redundant, and can be ignored.

The case η = 0 of the multiplier rule yields necessary conditions that do not in-
volve the cost function f . Typically, this rather pathological situation arises when
the equality and inequality constraints are so “tight” that they are satisfied by just
one point x∗ , which is then de facto optimal, independently of f . The case η = 0 is
referred to as the abnormal case. In contrast, when η = 1, we say that we are in the
normal case.

The proof of Theorem 9.1 is postponed to §10.4, where, using techniques of nons-
mooth analysis, a more general result can be proved.

Absence of certain constraints. Either equality or inequality constraints can be
absent in the problem treated by Theorem 9.1, which then holds without reference
to the missing data. Consider first the case of the problem in which there are no
inequality constraints. We can simply introduce a function g that is identically −1,
and then apply the theorem. When we examine the resulting necessary conditions,
we see that the multiplier γ corresponding to g must be 0, and therefore the con-
clusions can be couched entirely in terms of a nontrivial multiplier (η ,λ ), with
no reference to g. Note that the resulting multiplier must be normal if the vectors
h ′

j(x∗) ( j = 1, 2 , . . . , n) are independent. This assumption, a common one, is said
to correspond to the nondegeneracy of the equality constraints.

Consider next the problem having no equality constraints. Let us introduce another
variable y ∈ R on which f and g have no dependence. In X×R, we redefine S to
be S×R, and we impose the equality constraint h(y) := y = 0. We then proceed to
apply Theorem 9.1 to this augmented problem. There results a multiplier (η ,γ ,λ );
the stationarity with respect to y yields λ = 0. Then all the conclusions of the
theorem hold for a nontrivial multiplier (η ,γ ) (with no reference to h and λ ).

The meaning of the multiplier rule. Consider the problem (P) in the case when
only inequality constraints are present. For any admissible x, we denote by I(x) the
set of indices for which the corresponding inequality constraint is active at x :

I(x) =
{

i ∈ {1, 2 , . . . , m} : gi(x) = 0
}
.
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Now let x∗ be optimal. As a consequence of this optimality, we claim that there
cannot exist v ∈ X such that, simultaneously,

〈 f ′(x∗),v〉< 0 and 〈gi
′(x∗),v〉< 0 ∀ i ∈ I(x∗) .

Such a v would provide a direction in which, for a small variation, the function f ,
as well as each gi for i ∈ I(x∗), would simultaneously decrease. Thus, for all t > 0
sufficiently small, we would have

f (x∗+ t v) < f (x∗) , gi(x∗+ t v) < gi(x∗) = 0 ∀ i ∈ I(x∗) .

But then, by further reducing t if necessary, we could arrange to have

gi(x∗+ t v) � 0 for all indices i ∈ {1, 2 , . . . , m} ,

as well as f (x∗+ t v) < f (x∗). This would contradict the optimality of x∗ .

The nonexistence of such a direction v is equivalent to the positive linear dependence
of the set {

f ′(x∗), gi
′(x∗) : i ∈ I(x∗)

}
,

as Exer. 2.40 points out. We conclude, therefore, that the necessary conditions of
the multiplier rule correspond to the nonexistence of a decrease direction (in the
above sense). (In fact, this is a common feature of first-order necessary conditions
in various contexts.) We remark that in the presence of equality constraints, it is
much harder to argue along these lines, especially in infinite dimensions.

9.2 Exercise. We wish to minimize f (x) subject to the constraints g1(x) � 0 and
g2(x)� 0, where f , g1 and g2 are continuously differentiable functions defined on
R

3. At four given points xi in R
3 (i = 1, 2, 3, 4), we have the following data:

g1 g2 ∇ f ∇g1 ∇g2

x1 0 0 (2 ,−2 , 4) (−2 ,0 ,0) (0 ,1,−2)

x2 0 −1 (0 ,1,1) (0 ,−1, 0) (0 , 0 ,−1)

x3 0 1 (0 , 0 ,1) (0 , 0 ,−1) (0 , 0 ,−1)

x4 0 0 (1,1,1) (0 ,−1, 0) (1,0,1)

(a) Only one of these four points could solve the problem. Which one is it?

(b) For each point xi that is admissible but definitely not optimal, find a direction
in which a small displacement can be made so as to attain a “better” admissible
point. 
�

9.3 Example. We allow ourselves to hope that the reader has seen the multiplier
rule applied before. However, just in case the reader’s education has not included
this topic, we consider now a simple ‘toy problem’ (to borrow a phrase from the
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physicists) of the type that the author seems to recall having seen in high school
(but that was long ago). Despite its simplicity, some useful insights emerge.

The problem is that of designing a soup can of maximal volume V , given the area
q of tin that is available for its manufacture. It is required, for reasons of solidity,
that the thickness of the base and of the top must be double that of the sides. More
specifically then, we wish to find the radius x and the height y of a cylinder such that
the volume V = π x2y is maximal, under the constraint 2π xy+ 4π x 2 = q. We do
not doubt the reader’s ability to solve this problem without recourse to multipliers,
but let us do so by applying Theorem 9.1.

We could view the constraint 2π xy+4π x 2 = q as an equality constraint (which it
is), but we can also choose to replace it by the inequality constraint

g(x,y) := 2π xy+4π x 2 −q � 0 ,

since it is clear that the solution will use all the available tin. Doing so offers the
advantage of knowing beforehand the sign of the multiplier that will appear in the
necessary conditions.

The problem has a natural (implicit) constraint that x and y must be nonnegative, a
feature of many optimization problems that motivates the following definition.

Notation. We denote by R
n
+ the set {x ∈ R

n : x � 0}, also referred to as the
positive orthant.

To summarize, then, we have the case of problem (P) in which (x,y) ∈ R
2 and

f (x,y) := −π x 2y , g(x,y) = 2π xy+4π x 2 −q , S = R
2
+

with the equality constraint h = 0 being absent. (Note the minus sign in f , reflecting
the fact that our theory was developed for minimization rather than maximization.)
If we take q strictly positive, it is easy to prove that a solution (x∗,y∗) of the problem
exists, and that we have x∗ > 0, y∗ > 0 (thus, the solution lies in int S ).

The usual first step in applying Theorem 9.1 is to rule out the abnormal case η = 0;
we proceed to do so. If η = 0, then the necessary conditions imply that ∇g(x∗,y∗)
equals (0,0), which leads to x∗ = y∗ = 0, which is absurd. Thus, we may take
η = 1. (Note that the abnormal case corresponds to an exceedingly tight constraint,
the case q = 0.) With η = 1, the resulting stationarity condition becomes

−2π x∗ y∗+ γ (2π y∗+8π x∗) = 0 , −π x 2
∗ + γ (2π x∗) = 0 .

The second equation gives x∗ = 2γ , whence γ > 0; substituting in the first equa-
tion then produces y∗ = 8γ . Since γ > 0, the inequality constraint is saturated (as
expected). The equality g(x∗,y∗) = 0 then leads to

γ =
√

q/
(

4
√

3π
)
, y∗ = 4x∗ , f (x∗,y∗) = −q 3/2/

(
6
√

3π
)
.
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Thus the height of the optimal soup can is four times its radius. As regards our own
(non soup oriented) intentions, it is more to the point to note that the derivative of the
optimal volume q 3/2/(6

√
3π ) with respect to q is precisely the multiplier γ , thus

confirming the interpretation of γ (suggested in the introduction) as a sensitivity with
respect to changing the constraint (that is, the amount of available tin). Economists
would refer to γ as a shadow price.3 
�

9.2 The convex case

The next item on the agenda is to impart to the reader an appreciation of the “convex
case” of the problem (P). We shall see in this section that the multiplier rule holds in
a stronger form in this setting, and that it is normally sufficient as well as necessary.
In the following section, another characteristic feature of convex optimization is ex-
amined: the possibility of defining a useful dual problem. Together, these elements
explain why, other things being equal, the convex case of (P) is preferred, if we can
so arrange things.

The problem (P) is unaltered: it remains that of minimizing f (x) subject to the
constraints

g(x) � 0 , h(x) = 0 , x ∈ S ,

but in the following framework, referred to as the convex case:

• S is a convex subset of a real vector space X ;

• The following functions are convex:

f : S → R and gi : S → R (i = 1, 2, . . . , m);

• Each function h j : S → R ( j = 1, 2 , . . . , n) is affine; that is, h j is of the form
〈ζ j , x〉+ c j , where ζ j is a linear functional on S and c j ∈ R.

Note that these functions need only be defined on S. In the following counterpart to
Theorem 9.1, it is not required that x∗ lie in the interior of S; indeed, no topology is
imposed on X .

9.4 Theorem. (Kuhn-Tucker) Let x∗ be a solution of (P) in the convex case. Then
there exists (η ,γ ,λ ) ∈ R×R

m×R
n satisfying the nontriviality condition

(η ,γ ,λ ) 	= 0 ,

3 The shadow price would be used, for example, to decide whether the soup can (which is optimal
for the specified volume) should be made larger (in order to increase profit). To decide, one com-
pares pγ (the marginal effect on revenue of using more tin, where p is the unit price of soup) to
the marginal cost of tin; at optimality, the two marginal effects are equal.
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the positivity and complementary slackness conditions

η = 0 or 1 , γ � 0 , 〈γ , g(x∗)〉 = 0 ,

and the minimization condition
{
η f + 〈γ , g〉+ 〈λ ,h〉

}
(x) �

{
η f + 〈γ , g〉+ 〈λ ,h〉

}
(x∗) = η f (x∗) ∀x ∈ S .

Proof. We consider the following subset of R×R
m×R

n :

C =
{(

f (x)+δ , g(x)+Δ , h(x)
)

: δ � 0 , Δ � 0 , x ∈ S
}
.

It is easy to see that C is convex (that’s what the convexity hypotheses on the data
are for). We claim that the point ( f (x∗), 0, 0) lies in the boundary of C .

If this were false, C would contain, for some ε > 0, a point of the form
(

f (x)+δ , g(x)+Δ , h(x)
)
= ( f (x∗)− ε , 0, 0) , where x ∈ S , δ � 0 , Δ � 0 .

But then x is admissible for (P) and assigns to f a strictly lower value than does x∗ ,
contradicting the optimality of x∗ .

Since C is finite dimensional, the normal cone (in the sense of convex analysis) to
C at this boundary point is nontrivial (Cor. 2.48). This amounts to saying that there
exists (η ,γ ,λ ) 	= 0 such that

η( f (x)+δ )+ 〈γ , g(x)+Δ 〉+ 〈λ ,h(x)〉 � η f (x∗) ∀x ∈ S , δ � 0 , Δ � 0 .

Note that this yields the minimization condition of the theorem. It also follows read-
ily that η � 0 and γ � 0. Taking

x = x∗ , δ = 0 , Δ = 0

in the inequality gives 〈γ , g(x∗)〉 � 0, which is equivalent to the complemen-
tary slackness condition 〈γ , g(x∗)〉 = 0, since g(x∗) � 0 and γ � 0. Finally, if
η > 0, note that we can normalize the multiplier (η ,γ ,λ ); that is, replace it by
(1,γ/η , λ/η). Thus, in all cases, we can assert that η equals 0 or 1. 
�

Remark. We refer to the vector (η ,γ ,λ ) as a multiplier in the convex sense. The
difference between such a multiplier and a classical one (as given in Theorem 9.1)
is that the stationarity is replaced by an actual minimization. Furthermore, no differ-
entiability of the data is assumed here, and, as we have said, there is no requirement
that x∗ lie in the interior of S.

In the same vein as our discussion following Theorem 9.1, it is easy to see that the
theorem above adapts to the cases in which either the equality or inequality con-
straint is absent, by simply deleting all reference to the missing constraint.
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9.5 Example. (du Bois-Raymond lemma) The following situation arises in the
calculus of variations, where the conclusion below will be of use later on. We are
given an element θ ∈ L1(a,b) such that

∫ b

a
θ(t)ϕ ′(t)dt = 0 ∀ϕ ∈ Lip0 [a,b ],

where Lip0 [a,b ] is the set of Lipschitz functions on [a,b ] that vanish at a and b.
Evidently, the stated condition holds if θ is constant; our goal is to prove that this is
the only case in which it holds.

Let X be the vector space of all ϕ ∈ Lip[a,b ] satisfying ϕ(a) = 0, and define

f (ϕ) =
∫ b

a
θ(t)ϕ ′(t)dt , h(ϕ) = ϕ(b) .

Then, by hypothesis, we have f (ϕ) � 0 for all ϕ ∈ X satisfying h(ϕ) = 0. Thus the
function ϕ∗ ≡ 0 solves the corresponding version of the optimization problem (P).
We proceed to apply Theorem 9.4. Accordingly, there exists a multiplier (η ,λ ) 	= 0
with η equal to 0 or 1, such that

η
∫ b

a
θ(t)ϕ ′(t)dt +λϕ(b) =

∫ b

a

{
ηθ(t)+λ

}
ϕ ′(t)dt � 0 ∀ϕ ∈ X .

It follows that η = 0 cannot occur, for then we would have λ = 0 too, violating
nontriviality. Thus we may set η = 1, and we obtain

∫ b

a

{
θ(t)+λ

}
ϕ ′(t)dt � 0 ∀ϕ ∈ X .

For a positive integer k, let Ak be the set { t ∈ (a,b) : |θ(t)| � k}, and let χk be its
characteristic function. Taking

ϕ(t) = −
∫ t

a

{
θ(s)+λ

}
χk(s)ds

in the inequality above (note that ϕ ∈ X) yields

−
∫

Ak

{
θ(t)+λ

}2 dt � 0 .

Thus the integral is 0 for every k, and we discover θ(t)+λ = 0 a.e. 
�

9.6 Exercise. Let x∗ be a solution of the problem encountered in Exer. 5.53. Show
that the problem fits into the framework of Theorem 9.4 if one takes

g(x) = ∑∞
i=1 x i −1, S =

{
x ∈ �r : 0 � x i ∀ i , ∑∞

i=1 x i < ∞, f (x) < ∞
}
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and if no equality constraint is imposed. Deduce the existence of a nonnegative
constant γ such that, for each i, the value x∗ i minimizes the function t �→ fi(t)+ γ t
over [0,∞). In that sense, all the x∗ i are determined by a single scalar γ . 
�

Remark. In many cases, the minimization condition in the theorem can be ex-
pressed in equivalent terms as a stationarity condition, via the subdifferential and
the normal cone of convex analysis. This brings out more clearly the common as-
pects of Theorem 9.1 and Theorem 9.4, as we now see.

9.7 Exercise.

(a) Let x∗ be admissible for (P) in the convex case, and suppose there exists a normal
multiplier (1,γ ,λ ) associated with x∗ . Prove that x∗ is optimal.

(b) In addition to the hypotheses of Theorem 9.4, suppose that X is a normed space,
and that f , g, and h are convex and continuous on X . Prove that the minimization
condition in the conclusion of the theorem is equivalent to

0 ∈ ∂
{
η f + 〈γ , g〉+ 〈λ ,h〉

}
(x∗)+NS(x∗) .

Under what additional hypotheses would this be equivalent to the stationarity
conclusion in Theorem 9.1? 
�

The exercise above expresses the fact that in the convex case of (P), the necessary
conditions, when they hold normally, are also sufficient for optimality. Another posi-
tive feature of the convex case is the possibility of identifying reasonable conditions
in the presence of which, a priori, the necessary conditions must hold in normal
form. We are referring to the Slater condition, which is said to hold when:

• X is a normed space;

• There exists a strictly admissible point x0 for (P):

x0 ∈ int S , g(x0)< 0 , h(x0) = 0 ;

• The affine functions of the equality constraint are independent, meaning that the
set {h ′

j : j = 1, 2 , . . . , n} is independent.

9.8 Theorem. In the convex case of problem (P), when the Slater condition holds,
the multiplier whose existence is asserted by Theorem 9.4 is necessarily nor-
mal : η = 1.

Proof. We reason ad absurdum, by supposing that (0,γ ,λ ) is an abnormal (nontriv-
ial) multiplier. The minimization condition, when expressed at the point x0 provided
by the Slater condition, gives 〈γ , g(x0)〉 � 0. Since every component of g(x0) is
strictly negative, and since γ � 0, we deduce γ = 0. Then the minimization condi-
tion becomes: 〈λ , h(x)〉 � 0 ∀x ∈ S. Since equality holds at x0 ∈ int S, we have
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∑ i λ i h ′
i = 0 by Fermat’s rule. Then the linear independence implies λ = 0, con-

tradicting the nontriviality of the multiplier. 
�

We now illustrate the use of the Slater condition by means of a simple problem
arising in statistics.

9.9 Exercise. Let z1, z2 , . . . , zn be the n distinct values of a random variable Z , and
let pi be the probability that Z = zi . Let us suppose that we know from observation
that Z has mean value m, so that ∑ i z i pi = m. However, the probabilities pi are not
known. A common way to estimate the probability distribution p = (p1, p2 , . . . , pn)
in this case is to postulate that it maximizes the entropy

E = −∑n
i=1 pi ln pi .

The optimization problem, then, is to maximize E subject to the constraints

p ∈ R
n
+ , ∑n

i=1 pi = 1 , ∑n
i=1 zi pi = m .

We place this in the context of Theorem 9.4 by taking X = R
n and S = R

n
+ , and by

defining

f (p) = ∑ i pi ln pi , h1(p) =
(
∑ i pi

)
−1 , h2(p) =

(
∑ i z i pi

)
−m .

Thus, the equality constraint has two components, and the inequality constraint is
absent. Note that the function t �→ t ln t has a natural value of 0 at t = 0.

(a) Prove that f is convex on S.

(b) Prove that a solution to the problem exists, and that it is unique.

We suppose henceforth that min i z i < m < max i z i . If this were not the case, m
would equal either min i z i or max i z i , which means that the distribution has all
its mass on a single value: a case of overly tight constraints which, of themselves,
identify the solution.

(c) Prove that the Slater condition is satisfied. Deduce that the solution admits a
normal multiplier in the convex sense.

(d) Deduce from the minimization condition of the multiplier that the solution p
satisfies pi > 0 ∀ i ∈ {1, 2 , . . . , n}.

(e) Prove that the solution p corresponds to an exponential distribution: for certain
constants c and k, we have

pi = exp
(

c+ k zi
)
, i = 1, 2 , . . . , n . 
�

The next result gives a precise meaning (in the current convex setting) to the inter-
pretation of multipliers in terms of sensitivity.
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9.10 Theorem. Let there exist a solution x∗ of the problem (P) in the convex case,
where the Slater condition is satisfied. We define the value function V on R

m×R
n

as follows:

V (α,β ) = inf
{

f (x) : x ∈ S , g(x) � α , h(x) = β
}
.

Then V is a convex function with values in (−∞,+∞ ]. The vector (1,γ ,λ ) is a
multiplier associated with x∗ if and only if (γ ,λ ) ∈ −∂V (0,0).

Proof. According to Theorems 9.4 and 9.8, there exists a normal multiplier (1,γ ,λ )
associated to x∗ . Let P(α,β ) denote the optimization problem that defines the value
of V (α,β ), and let x be any point admissible for P(α,β ):

x ∈ S , g(x) � α , h(x) = β .

Then, using γ � 0 and −g(x) � −α , we have

f (x) = f (x)+ 〈γ , g(x)〉+ 〈γ ,−g(x)〉+ 〈λ , h(x)−β 〉
� f (x)+ 〈γ , g(x)〉+ 〈γ ,−α 〉+ 〈λ , h(x)−β 〉
� f (x∗)−〈γ ,α 〉−〈λ ,β 〉 = V (0,0)−〈(γ ,λ ),(α,β )〉 ,

by the minimization condition of the multiplier (1,γ ,λ ). Taking the infimum over
x, we deduce

V (α,β ) � V (0,0)−〈(γ ,λ ),(α ,β )〉 ,

which confirms V >−∞, and that −(γ ,λ ) belongs to ∂V (0,0), the subdifferential
of V at (0,0). As for the convexity of V , it follows easily from its definition (or it
can be deduced from Exer. 8.10).

As the reader well knows, it is not our custom to abandon a proof in midstream. On
this occasion, however, we would ask the reader to kindly supply the converse; it
happens to be the subject of the exercise that follows. 
�

9.11 Exercise. Under the hypotheses of Theorem 9.10, prove that an element (γ ,λ )
belonging to −∂V (0,0) determines a normal multiplier (1,γ ,λ ). 
�

9.3 Convex duality

An important feature of convex optimization is the possibility of developing a theory
in which one associates to the original, or primal, problem another optimization
problem, the dual, which is linked to the primal through multipliers (of some type
or other). This idea has important theoretical and even numerical consequences, in
such areas as game theory, optimal transport, operations research, mechanics, and
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economics. We take a brief look at the topic in this section, in order to establish its
connection to the multiplier rule.

We continue to be interested in the problem (P) of the preceding section, which
we think of as the primal. The dual problem (D) associated to (P) is defined as
follows:

Maximize ϕ(γ ,λ ) subject to (γ ,λ ) ∈ R
m
+×R

n (D)

where the (concave) function ϕ : Rm×R
n → [−∞,+∞) is defined by

ϕ(γ ,λ ) = inf
x ∈ S

{
f + 〈γ , g〉+ 〈λ ,h〉

}
(x) .

The dual problem is of greatest interest when it can be rendered more explicit. Let’s
illustrate this now.

9.12 Example. We are given c ∈ R
n, b ∈ R

m, and a matrix M which is m×n, and
we consider the following instance of the problem (P):

Minimize 〈c, x〉 subject to x ∈ R
n
+ , Mx � b .

(As usual, points in Euclidean space, in their dealings with matrices, are viewed as
columns.) This is a problem in what is called linear programming. We are dealing,
then, with the convex case of (P), in the absence of equality constraints. Let us make
explicit the dual problem (D). We have

ϕ(γ ) = inf
{
〈c, x〉+ 〈γ ,Mx−b〉 : x ∈ R

n
+

}

= inf
{
〈c+M ∗γ , x〉−〈γ ,b〉 : x ∈ R

n
+

}
=

⎧
⎨

⎩
−〈γ ,b〉 if c+M ∗γ � 0

−∞ otherwise.

It turns out then, that (D) can be expressed as follows:

Maximize 〈−b,γ 〉 subject to γ ∈ R
m
+ , −M ∗γ � c.

Thus, the dual problem has essentially the same form as the primal; this fact is
exploited to great effect in the subject. 
�

We now describe the link between the primal and the dual problem.

9.13 Theorem. (Lagrangian duality) We consider the basic problem (P) in the
convex case. We suppose that there is a solution of (P) which admits a normal
multiplier. Then

min (P) = max (D) .

Furthermore, any solution x∗ of (P) admits a normal multiplier, and a vector
(1,γ∗ ,λ∗) ∈ R×R

m
+×R

n is a multiplier for x∗ if and only if (γ∗ ,λ∗) solves the
dual problem (D).
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Proof.

A. Let (γ ,λ ) ∈ R
m
+×R

n. Observe that

ϕ(γ ,λ ) �
{

f + 〈γ , g〉+ 〈λ ,h〉
}
(x∗) � f (x∗) = min (P) .

It follows that sup (D) � min (P). Now let (1,γ∗ ,λ∗) be a multiplier for a solution
x∗ of (P). (By hypothesis, at least one such normal multiplier and solution exist.)
The minimization condition asserts
{

f + 〈γ∗ , g〉+ 〈λ∗ , h〉
}
(x) �

{
f + 〈γ∗ , g〉+ 〈λ∗ , h〉

}
(x∗) = f (x∗) ∀x ∈ S ,

whence
sup (D) � ϕ(γ∗ ,λ∗) � f (x∗) = min (P) � sup (D) .

We deduce that (γ∗ ,λ∗) solves the dual problem, and that min (P) = max (D).

B. Now let (γ∗ ,λ∗) be any solution of the dual problem, and let x∗ be any solution
of the primal problem. Then γ∗ ∈ R

m
+ , and we have

sup (D) = ϕ(γ∗ ,λ∗) �
{

f +〈γ∗ , g〉+〈λ∗ , h〉
}
(x∗) � f (x∗) = min (P) = sup (D) ,

which implies 〈γ∗ , g(x∗)〉 = 0, the complementary slackness condition. We also
have, for any x ∈ S,

{
f + 〈γ∗ , g〉+ 〈λ∗ , h〉

}
(x) � ϕ(γ∗ ,λ∗) = sup (D) = min (P) = f (x∗) ,

which yields the minimization condition for (1,γ∗ ,λ∗), and confirms that this vector
has all the properties of a multiplier for x∗ . 
�

9.14 Exercise. Under the hypotheses of Theorem 9.13, let x∗ be a solution of (P),
and let (1,γ∗ ,λ∗) be a (normal) multiplier associated to x∗ . The Lagrangian L of the
problem is defined to be the function

L(x,γ ,λ ) =
{

f + 〈γ , g〉+ 〈λ ,h〉
}
(x) .

Prove that (x∗ ,γ∗ ,λ∗) is a saddle point of L, meaning that

L(x∗ ,γ , λ ) � L(x∗ ,γ∗ , λ∗) � L(x,γ∗ ,λ∗) ∀x ∈ S , γ ∈ R
m
+ , λ ∈ R

n. 
�

Remark. If x is admissible for (P), we know, of course, that min (P) � f (x). Sim-
ilarly, if (γ ,λ ) is admissible for (D), we obtain max (D) � ϕ(γ ,λ ). But now, sup-
pose that duality holds: min (P) = max (D). Then we deduce

ϕ(γ ,λ ) � min (P) � f (x) .

The generating of bilateral bounds of this type is of evident interest in develop-
ing numerical methods, a task to which duality has been effectively applied. Under
more subtle hypotheses than those of Theorem 9.13 (in linear programming, or in
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the presence of infinite-dimensional equality constraints, for example), it can be a
delicate matter to establish duality.

Another salient point, as evidenced by Theorem 9.10, is the possibility of finding
the multipliers for the primal problem by solving the dual problem. We illustrate
this procedure now.

9.15 Exercise. We are given n continuous, convex functions fi : [0,∞)→ R, and a
positive parameter q. We study the following simple allocation problem, of a type
that frequently arises in economics and operations research:

Minimize f (x) = ∑n
i=1 fi(xi) subject to x ∈ S := R

n
+ , ∑n

i=1 xi � q . (P)

Note that this is a convex case of (P), with no equality constraints.

The i-th cost component fi depends only on xi ; the difficulty (especially when n is
large) lies in determining what optimal xi � 0 to allocate to fi , while respecting
the upper bound on the sum of the xi .

(a) Prove that a solution x∗ exists, verify the Slater condition, and deduce that x∗
admits a normal multiplier (1,γ∗).

(b) Prove that, for each index i, the value x∗ i is a solution of the problem

min
{

fi(u)+ γ∗ u : u ∈ R+

}
.

It turns out then, that if we know γ∗, we may use it to calculate x∗ one coordinate at
a time, while completely ignoring the constraint ∑ i x i � q. The problem is said to
have been decomposed.4

How might we effectively calculate γ∗ , however? For this purpose, we define the
following function closely related to the conjugate of fi :

θ i(γ ) = inf
{
γ u+ fi(u) : u � 0

}
, γ ∈ R .

(c) Show that the dual problem (D) consists of maximizing over R+ the following
function of a single variable:

ϕ(γ ) = ∑n
i=1 θ i(γ )− γ q .

Why is this problem relatively simple? How do we know a maximum exists?

We suppose henceforth, in order to permit explicit calculation, that each fi has the
form

fi(u) = pi u+u ln u for u > 0, with fi(0) = 0.

4 Thus, the computation could be envisaged on a decentralized basis, where each component, hav-
ing been informed of the internal unit cost γ∗ , can calculate its own allocation x∗ i by maximizing
its own profit. These individually motivated calculations would lead to global optimality: Adam
Smith’s invisible hand at work.
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(d) Let ψ : R+ → R be defined by

ψ(u) = u ln u for u > 0, ψ(0) = 0,

and let c ∈ R. Prove that the function u �→ ψ(u)− cu attains a minimum over
R+ at u = ec−1, the corresponding value of ψ being −ec−1.

e) Deduce from this the evident solution to problem (P) when q is no less than

σ :=
n

∑
i=1

e−pi−1.

Prove that when q < σ , the solution γ∗ of the dual problem is ln(σ/q). Use this
to show that the optimal allocation is given by x∗ i = e−pi−1q/σ .

(f) Prove that the value V (q) of the problem (P) is given by

V (q) =

{
−σ if q � σ

q
(

ln q−1− lnσ
)

if q � σ .

Show that V ′(q) =−γ∗ (the expected sensitivity relation). 
�



Chapter 10

Generalized gradients

The goal of this chapter is to develop a generalized calculus on Banach spaces,
one that reduces to differential calculus for smooth functions, and to subdifferential
calculus for convex functions. A natural question arises: what class of functions to
consider? This leads us to ponder what smooth functions and convex functions have
in common. One answer to this is: the local Lipschitz property. If f : X → R is a
continuously differentiable function on a Banach space X , then, as we know, f is
locally Lipschitz. If, instead, f is convex, then once again it has that property, as
we have seen (Theorem 5.17). We choose, therefore, to work in the class of locally
Lipschitz functions.

This class has other features that recommend it as an environment for the task. It
is closed under familiar operations such as sum, product, and composition. But it
is also closed under less classical ones, such as taking lower or upper envelopes.
Finally, the class of locally Lipschitz functions includes certain nonsmooth, non-
convex functions that are important in a variety of applications. A notable example
is provided by distance functions.

Figure 10.1 below shows the graph of a distance function dS , where S is the union of
two segments in R. This simple example illustrates the fact that distance functions
are generally neither smooth nor convex.

Fig. 10.1 The graph of a distance function dS

The next example of nonsmoothness arises in optimization.
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10.1 Example. (Robust optimization) Many situations in applied optimization in-
volve uncertainties that must be taken into account. In designing a product, engi-
neers may have at their disposal a design parameter x, and the goal may be to mini-
mize a cost f (x). However, a perturbation q may intervene in the manufacture. It is
known, we suppose, that q lies in a certain compact set Q, but nothing else. We de-
note the resulting inaccuracy by e(x,q), and we suppose that this must be no greater
than a specified acceptable level E. We assume that e is continuously differentiable.

Since q is unknown, the design parameter x must be chosen so that g(x)� 0, where
g is defined by

g(x) = max
q∈Q

e(x,q)−E .

The function g is unlikely to be differentiable, even though e is smooth, and will
fail in general to be convex. It is easy to show, however, that g is locally Lipschitz.
Thus the minimization of f is subject to an inequality constraint specified by a
nonsmooth, nonconvex function.

This type of problem has been one of the motivations to consider optimization with
nonsmooth and nonconvex data, among others that arise in such areas as optimal
design, eigenvalue placement, and elasticity. Note that the classical multiplier rule
(Theorem 9.1) cannot be applied here unless Q is a finite set. We shall see later (in
Exer. 10.26) how to obtain necessary conditions for this problem via nonsmooth
calculus. 
�

In this chapter, we develop the calculus of the generalized gradient of a locally
Lipschitz function f , denoted ∂C f (x). This leads to a unified treatment of smooth
and convex calculus. It also gives rise to an associated geometric theory of tangents
and normals to arbitrary closed sets.

10.1 Definition and basic properties

Throughout this chapter, X denotes a Banach space. Let f : X → R be Lipschitz of
rank K near a given point x ∈ X ; that is, for some ε > 0, we have

| f (y)− f (z)| � K‖y− z‖ ∀y, z ∈ B(x,ε) .

The generalized directional derivative of f at x in the direction v, denoted f ◦(x ;v),
is defined as follows:

f ◦(x ;v) = limsup
y→ x
t ↓ 0

f (y+ t v)− f (y)
t

,
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where y lives in X and t is a positive scalar. Note that this definition does not presup-
pose the existence of any limit (since it involves an upper limit only), that it involves
only the behavior of f arbitrarily near x, and that it differs from the traditional defi-
nition of the directional derivative in that the base point y of the difference quotient
varies. The utility of f ◦ stems from the basic properties recorded below. We recall
that a function g is said to be positively homogeneous if g(λv) = λ g(v) for λ � 0,
and subadditive if g(v+w) � g(v)+g(w) for all v,w.

10.2 Proposition. Let f be Lipschitz of rank K near x. Then:

(a) The function v �→ f ◦(x ;v) is finite, positively homogeneous, and subadditive on
X , and satisfies | f ◦(x ;v)| � K‖v‖, v ∈ X ;

(b) For every v ∈ X , the function (u,w) �→ f ◦(u ;w) is upper semicontinuous at
(x,v); the function w �→ f ◦(x ;w) is Lipschitz of rank K on X ;

(c) We have f ◦(x ;−v) = (− f )◦(x ;v), v ∈ X .

Proof. In view of the Lipschitz condition, the absolute value of the difference quo-
tient in the definition of f ◦(x ;v) is bounded by K‖v‖ when y is sufficiently near
x and t sufficiently near 0. It follows that | f ◦(x ;v)| admits the same upper bound.
The fact that f ◦(x ;λv) = λ f ◦(x ;v) for any λ � 0 is immediate, so let us turn now
to the subadditivity. With all the upper limits below understood to be taken as y → x
and t ↓ 0, we calculate:

f ◦(x ;v+w) = limsup
f (y+ t v+ tw)− f (y)

t

� limsup
f (y+ t v+ tw)− f (y+ tw)

t
+ limsup

f (y+ tw)− f (y)
t

(since the upper limit of a sum is bounded above by the sum of the upper limits). The
first upper limit in this last expression is f ◦(x ;v), since the term y+ tw represents
in essence just a dummy variable converging to x. We conclude

f ◦(x ;v+w) � f ◦(x ;v)+ f ◦(x ;w) .

which establishes (a).

Now let xi and vi be arbitrary sequences converging to x and v, respectively. For
each i, by definition of the upper limit, there exist yi in X and ti > 0 such that
‖yi − xi ‖+ ti < 1/i and

f ◦(xi ;vi)−
1
i
� f (yi + ti vi)− f (yi)

ti

=
f (yi + ti v)− f (yi)

ti
+

f (yi + ti vi)− f (yi + ti v)
ti

.
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Note that the last term is bounded in magnitude by K‖vi − v‖ (in view of the Lips-
chitz condition). Upon taking upper limits (as i → ∞), we derive

limsup
i→∞

f ◦(xi ;vi) � f ◦(x ;v) ,

which establishes the upper semicontinuity claimed in (b). Now let any v and w in
X be given. By the Lipschitz property, we have

f (y+ t v)− f (y) � f (y+ tw)− f (y)+K‖v−w‖ t

for all y near x and positive t near 0. Dividing by t and taking upper limits as y → x,
t ↓ 0 leads to

f ◦(x ;v) � f ◦(x ;w)+K‖v−w‖ .

Since this also holds with v and w switched, the remaining assertion of (b) follows.
To prove (c), we calculate:

f ◦(x ;−v) = limsup
y→ x
t ↓ 0

f (y− t v)− f (y)
t

= limsup
u→ x
t ↓ 0

(− f )(u+ t v)− (− f )(u)
t

, where u := y− t v

= (− f )◦(x ;v) ,

which confirms the stated formula. 
�

A function such as v �→ f ◦(x ;v) which is positively homogeneous and subadditive
on X , and bounded on the unit ball, is the support function of a uniquely determined
weak∗ compact convex set in X∗, as we have seen in Theorem 4.25.

10.3 Definition. The generalized gradient of the function f at x, denoted ∂C f (x),
is the unique nonempty weak∗compact convex subset1 of X∗ whose support func-
tion is f ◦(x ; ·). We have therefore

ζ ∈ ∂C f (x) ⇐⇒ f ◦(x ;v) � 〈ζ ,v〉 ∀v ∈ X ,

f◦(x ;v) = max
{
〈ζ ,v〉 : ζ ∈ ∂C f (x)

}
∀v ∈ X .

10.4 Exercise. Let f be Lipschitz near x, and Gâteaux differentiable at x. Prove that
f ′
G(x) belongs to ∂C f (x). 
�

10.5 Proposition. Let f be Lipschitz of rank K near x. Then ∂C f (x)⊂ B∗(0,K).

Proof. For any ζ ∈ ∂C f (x), we have 〈ζ ,v〉� K‖v‖ ∀v ∈ X , by Prop. 10.2. 
�

1 The compact convex set ∂C f is often pronounced “dee cee eff”.
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10.6 Example. Let f (x) = ‖x‖, a function which is Lipschitz of rank 1. It follows
from Prop. 10.2 that we have f ◦(0;v) � ‖v‖ ∀v ∈ X . But f ′(0;v), the usual di-
rectional derivative, is given by ‖v‖, and of course we have f ◦(0;v) � f ′(0;v).
These facts yield:

f ◦(0;v) = ‖v‖ ∀v ∈ X .

Now we may proceed to calculate ∂C f (0) from Def. 10.3, according to which ζ
belongs to ∂C f (0) if and only if

f ◦(0;v) = ‖v‖ � 〈ζ ,v〉 ∀v ∈ X .

We discover ∂C f (0) = B∗(0,1). We remark that, just as derivatives are rarely cal-
culated directly from difference quotients in practice, so too will the calculation of
generalized gradients generally be done with the help of calculus rules. 
�

10.7 Exercise. Let f : X → R be locally Lipschitz.

(a) Prove Fermat’s rule for ∂C : If f has a local minimum or maximum at x, then
0 ∈ ∂C f (x).

(b) A unit vector v ∈ X is said to be a descent direction for f at x if

limsup
t ↓ 0

f (x+ t v)− f (x)
t

< 0 .

Prove that if 0 	∈ ∂C f (x), then a descent direction exists.

(c) Let X be a Hilbert space, and suppose that 0 	∈ ∂C f (x). Let ζ be the element of
minimal norm in ∂C f (x). Prove that v :=−ζ/|ζ | is a descent direction satisfy-
ing

limsup
t ↓ 0

f (x+ t v)− f (x)
t

� −d
(
0,∂C f (x)

)
< 0 .

Such descent directions play an important role in numerical algorithms for nons-
mooth optimization. 
�

Smooth and convex functions. A function f : X → R which is continuously dif-
ferentiable near a point x is locally Lipschitz near x, by the mean value theorem. A
function f : X →R∞ which is convex and lsc is locally Lipschitz in int dom f (The-
orem 5.17). In both these cases, as we now see, ∂C f reduces to the familiar concept:
the derivative or the subdifferential.

10.8 Theorem. If f is continuously differentiable near x, then ∂C f (x) = { f ′(x)}.
If f is convex and lsc, and if x ∈ int dom f , then ∂C f (x) = ∂ f (x).

Proof. In both cases addressed by the theorem, one is asserting an equality between
two convex, weak∗ compact sets. We may establish it by showing that their support
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functions coincide, in view of Cor. 3.13. The support function of the set appearing
on the left (in either assertion) is f ◦(x ;v), by definition of ∂C f (x).

In the smooth case, the support function of the set on the right (evaluated at v) is
〈 f ′(x),v〉= f ′(x ;v). Thus, we must show that f ◦(x ;v) = f ′(x ;v). Let yi → x and
ti ↓ 0 be sequences realizing f ◦(x ;v), in the sense that

f ◦(x ;v) = lim
i→∞

f (yi + ti v)− f (yi)

ti
.

Then we have

f ◦(x ;v) = lim
i→∞

f (yi + ti v)− f (yi)

ti
= lim

i→∞
〈 f ′(zi),v〉

(for zi ∈ [yi , yi + ti v ], by the mean value theorem)

= 〈 f ′(x),v〉 = f ′(x ;v),

since f ′ is continuous. The first part of the theorem follows.

We turn now to the convex case. We know that f ′(x ; ·) is the support function of
∂ f (x), by Cor. 4.26. Now f ′(x ;v) � f ◦(x ;v) by the way these are defined; it suf-
fices therefore to prove the opposite inequality. Fix δ > 0. Then

f ◦(x ;v) = lim
ε ↓ 0

sup
‖y−x‖� δ ε

sup
0< t<ε

f (y+ t v)− f (y)
t

= lim
ε ↓ 0

sup
‖y−x‖� δ ε

f (y+ ε v)− f (y)
ε

(since t �→ [ f (y+ t v)− f (y)]/t is increasing; see Prop. 2.22)

� lim
ε ↓ 0

f (x+ ε v)− f (x)
ε

+ 2δK

(where K is a Lipschitz constant for f in a neighborhood of x)

= f ′(x ;v)+2δK.

Since δ > 0 is arbitrary, this completes the proof. 
�

10.9 Exercise. Let f be Lipschitz near x, and suppose that ∂C f (x) is a singleton
{ζ }. Prove that f is Gâteaux differentiable at x, and that f ′

G(x) = ζ . 
�
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We remark that ∂C f (x) can fail to be a singleton when f is differentiable at x (see
Exer. 13.10). This reflects the fact that the generalized gradient extends the notion
of continuous differentiability, as evidenced by the following.

10.10 Proposition. Let f be Lipschitz of rank K near x, and let xi and ζ i be se-
quences in X and X∗ such that

xi → x and ζ i ∈ ∂C f (xi) ∀ i.

If ζ is a weak∗ cluster point of the sequence ζ i , (in particular, if ζ i converges to ζ
in X∗), then we have ζ ∈ ∂C f (x).

Proof. Fix v ∈ X . For each i, we have f ◦(xi ;v) � 〈ζ i ,v〉. The sequence 〈ζ i ,v〉
is bounded in R, and contains terms that are arbitrarily near 〈ζ ,v〉. Let us extract a
subsequence of ζ i (without relabeling) such that 〈ζ i ,v〉 → 〈ζ ,v〉. Then passing to
the limit in the preceding inequality, and using the fact that f ◦ is upper semicontin-
uous in x (Prop. 10.2), we deduce

f ◦(x ;v) � 〈ζ ,v〉.

Since v is arbitrary, it follows that ζ ∈ ∂C f (x). 
�

10.2 Calculus of generalized gradients

The reader, like many mathematicians, may have first learned to love mathematics
by doing calculus. We now have an opportunity to do calculus all over again.

10.11 Proposition. For any scalar λ , we have ∂C(λ f )(x) = λ ∂C f (x).

Proof. Note that the function λ f is Lipschitz near x. When λ is nonnegative, then
(λ f )◦(x ; ·) = λ f ◦(x ; ·), and the result follows, since these are the support func-
tions of the two convex, weak∗ compact sets involved. To complete the proof, it suf-
fices to consider now the case λ =−1. An element ζ of X∗ belongs to ∂C(− f )(x) if
and only if (− f )◦(x ;v) � 〈ζ ,v〉 for all v. By Proposition 10.2 (c), this is equivalent
to: f ◦(x ;−v) � 〈ζ ,v〉 for all v, which is equivalent to −ζ belonging to ∂C f (x), by
definition of ∂C f (x). 
�

We now pause for a moment in order to introduce a certain functional property that
will be useful in our development of generalized gradient calculus.

10.12 Definition. We say that f is regular at x provided f is Lipschitz near x and
admits directional derivatives f ′(x ;v) satisfying f ◦(x ;v) = f ′(x ;v) ∀v ∈ X .
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Let us point out that, as showed in the proof of Theorem 10.8, a continuously dif-
ferentiable function is regular at any point, as is a lower semicontinuous convex
function (at points in the interior of its effective domain).

On the other hand, let f be a continuous concave function that has a corner at x; that
is, such that for some v, we have f ′(x ;v) 	=− f ′(x ;−v). Then f fails to be regular at
x. To see this, bear in mind that − f is convex and therefore regular, whence

f ′(x ;v) 	= − f ′(x ;−v) = (− f )′(x ;−v) = (− f )◦(x ;−v) = f ◦(x ;v).

Thus f ◦(x ;v) 	= f ′(x ;v), so that f is not regular at x. Roughly speaking, we can
think of regular functions as those that, at each point, are either smooth, or else have
a corner of convex type.

Certain general calculus rules become “more exact” when the underlying functions
are regular, as illustrated by the following.

10.13 Theorem. (Sum rule) Let f and g be Lipschitz near x. Then

∂C( f +g)(x) ⊂ ∂C f (x)+∂C g(x) .

Equality holds if f and g are regular at x.

Proof. Both sides of the inclusion are weak∗ closed convex subsets (see Exer. 8.8),
so (for the first assertion of the theorem) it suffices, by Cor. 3.13, to verify the
following inequality between support functions: H1 � H2 , where H1 is the sup-
port function of the set on the left, and H2 of the set on the right. Now H1(v) is
( f + g)◦(x ;v), and H2(v) is f ◦(x ;v) + g◦(x ;v). The following lemma therefore
completes the proof of the first assertion.

Lemma. ( f +g)◦(x ;v) � f ◦(x ;v)+g◦(x ;v) ∀v ∈ X .

This follows directly from

limsup
y→ x
t ↓ 0

( f +g)(y+ t v)− ( f +g)(y)
t

� limsup
y→ x
t ↓ 0

f (y+ t v)− f (y)
t

+ limsup
y→ x
t ↓ 0

g(y+ t v)−g(y)
t

.

When f and g are regular at x, the inequality of the lemma becomes an equality,
since

f ◦(x ;v)+g◦(x ;v) = f ′(x ;v)+g ′(x ;v) = ( f +g)′(x ;v) � ( f +g)◦(x ;v).

Then equality holds between the sets as well. 
�
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We obtain a simple example of strict containment in the sum rule as follows: take
f (x) = ‖x‖ and g(x) =−‖x‖. Then

{0} = ∂C( f +g)(0) � ∂C f (0)+∂C g(0) = 2B∗(0,1).

The following exercise implies, for example, that the sum of a continuously differ-
entiable function and a convex function is regular.

10.14 Exercise. Show that a positive linear combinations of functions regular at x
is regular at x. 
�

The extension of the sum rule to finite linear combinations is immediate, in view of
Proposition 10.11 and Exer. 10.14:

10.15 Proposition. Let fi be Lipschitz near x, and let λ i be scalars (i = 1, 2, . . . , n).
Then f := ∑n

i=1λ i fi is Lipschitz near x, and we have

∂C

(
∑n

i=1λ i fi

)
(x) ⊂ ∑n

i=1λ i ∂C fi(x) .

Equality holds if, for each i, fi is regular at x and λ i � 0.

10.16 Exercise. Let f be Lipschitz near x, and let g be continuously differentiable
near x. Prove that

∂C( f +g)(x) = ∂C f (x)+{g ′(x)}. 
�

Just as Lagrange’s mean value theorem is a basic tool in classical calculus, the fol-
lowing result (due to Lebourg) is of frequent use.

10.17 Theorem. (Mean value theorem) Let x and y belong to X , and suppose that
f is Lipschitz on a neighborhood of the line segment [x ,y ]. Then there exists a point
z in (x ,y) such that

f (y)− f (x) ∈ 〈∂C f (z), y− x〉.

Proof. We will need the following special case of the chain rule for the proof. We
denote by xt the point x+ t (y− x).

Lemma. The function g : [0,1]→ R defined by g(t) = f (xt) is Lipschitz on (0,1),
and we have ∂C g(t) ⊂

〈
∂C f (xt), y− x

〉
.

Proof. That g is Lipschitz is clear. The two closed convex sets appearing in the
inclusion are in fact intervals in R, so it suffices to prove that for v = ±1, we
have

max
{
∂C g(t)v

}
� max

{
〈 ∂C f (xt), y− x〉v

}
.

Now the left-hand side of this inequality is just g◦(t;v), by the definition of ∂C g(t).
Writing out in turn the definition of g◦(t;v), we calculate
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limsup
s→ t
λ ↓ 0

g(s+λv)−g(s)
λ

= limsup
s→ t
λ ↓ 0

f (x+[s+λv ](y− x))− f (x+ s(y− x))
λ

� limsup
z→ xt
λ ↓ 0

f (z+λv(y− x))− f (z)
λ

= f ◦
(
xt ;v(y− x)

)
= max

〈
∂C f (xt), v(y− x)

〉
,

which completes the proof of the lemma. 
�

Now for the proof of the theorem. Consider the (continuous) function θ on [0,1]
defined by

θ(t) = f (xt)+ t [ f (x)− f (y)] .

Note that θ(0) = θ(1) = f (x), so that there is a point t in (0,1) at which θ attains
a local minimum or maximum (by continuity). By Exer. 10.7, we have 0 ∈ ∂Cθ(t).
We may calculate ∂Cθ(t) by appealing to Propositions 10.11 and 10.15, and the
lemma. We deduce

0 ∈ f (x)− f (y)+ 〈∂C f (xt), y− x〉,

which is the assertion of the theorem (take z = xt ). 
�

10.18 Exercise. Let K be a nonempty cone in X , and let f : X → R be locally
Lipschitz. We say that f is decreasing relative to K provided that, for any x ∈ X ,
y ∈ x+K =⇒ f (y) � f (x). Prove that f has this property if and only if, for every
x ∈ X , we have

HK(ζ ) := max
v ∈ K

〈ζ ,v〉 � 0 ∀ζ ∈ ∂C f (x) . 
�

10.19 Theorem. (Chain rule 1) Let Y be a Banach space, and let F : X → Y be
continuously differentiable near x. Let g : Y → R be Lipschitz near F(x). Then the
function f := g◦F is Lipschitz near x, and we have

∂C f (x) ⊂ F ′(x)∗∂C g
(

F(x)
)
,

where ∗ denotes the adjoint. If F ′(x) : X → Y is onto, then equality holds.

Proof. The fact that f is Lipschitz near x is straightforward. In terms of support
functions, we must prove that given any v, there is some element ζ of ∂C g(F(x))
such that

f ◦(x ;v) � 〈v,F ′(x)∗ζ 〉 = 〈ζ ,F ′(x)v〉.

Let the sequences yi → x and ti ↓ 0 realize f ◦(x ;v); that is

lim
i→∞

f (yi + ti v)− f (yi)

ti
= f ◦(x ;v).

We have, for all i sufficiently large,
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f (yi + ti v)− f (yi)

ti
=

〈
ζ i ,

F(yi + ti v)−F(yi)

ti

〉

for some ζ i ∈ ∂C g(zi), where zi lies in the segment (F(yi),F(yi + ti v)), by the
mean value theorem 10.17. Since the sequence ζ i is bounded (by a suitable Lips-
chitz constant for g), it admits a cluster point ζ in the weak∗ topology by Alaoglu’s
theorem (see Cor. 3.15).

We may extract a subsequence of ζ i (without relabeling) for which 〈ζ i ,F ′(x)v〉
converges to 〈ζ ,F ′(x)v〉. The required inequality now follows, using the fact that
[F(yi + ti v)−F(yi)]/ti converges (strongly) to F ′(x)v.

Now suppose that F ′(x) is onto. Then F maps every neighborhood of x to a neigh-
borhood of F(x) (Cor. 5.33). This fact justifies the equality

limsup
y→ F(x)

t ↓ 0

g
(

y+ tF ′(x)v
)
−g(y)

t
= limsup

u→ x
t ↓ 0

g
(
F(u)+ tF ′(x)v

)
−g

(
F(u)

)

t
.

Since [F(u+ t v)−F(u)− tF ′(x)v ]/t goes to zero as u → x and t ↓ 0, and since g is
Lipschitz locally, this leads to

g◦
(
F(x) ; F ′(x)v

)
= limsup

y→ F(x)
t ↓ 0

g
(

y+ tF ′(x)v
)
−g(y)

t

= limsup
u→ x
t ↓ 0

g
(

F(u+ t v)
)
−g

(
F(u)

)

t
= f ◦(x ;v).

Since v is arbitrary, this implies equality between the two sets figuring in the state-
ment of the theorem, as asserted. 
�

10.20 Theorem. (Chain rule 2) Let F : X → R
n be Lipschitz near x, and let the

function g : Rn → R be continuously differentiable near F(x). Then f := g ◦F is
Lipschitz near x, and we have

∂C f (x) = ∂C 〈g ′(F(x)
)
, F(·)〉(x).

To clarify this equality, let us write γ for g ′(F(x)). The right side above is ∂C h(x),
where the real-valued function h is defined by z �→ h(z) = 〈γ ,F(z)〉.

Proof. The fact that f is Lipschitz near x follows easily. We claim that it suf-
fices to prove, for any ε > 0, the existence of a neighborhood Vε of x in which
we have

| f (y)−h(y)− ( f (z)−h(z))| � ε |y− z | ∀y, z ∈ Vε .

For then ∂C( f −h)(x) is contained in B∗(0,ε) by Prop. 10.5, whence
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∂C f (x) ⊂ ∂C( f −h)(x)+∂Ch(x) ⊂ ∂C h(x)+B∗(0,ε),

by the sum rule 10.13. Switching f and h leads to ∂C h(x) ⊂ ∂C f (x)+B∗(0,ε), and
the required equality follows. To prove the claim, we observe that, for all y and z
near x, we may write

f (y)−h(y)− f (z)+h(z) = g(F(y))−g(F(z))−〈 γ , F(y)−F(z)〉
= 〈 g ′(u)− γ , F(y)−F(z)〉
� |g ′(u)− γ | |F(y)−F(z)| � KF |g ′(u)− γ |‖y− z‖,

where u lies between F(y) and F(z), and where KF is a Lipschitz constant for F . It
suffices to observe that by restricting y, z to a sufficiently small neighborhood of x,
we can arrange to have KF |g ′(u)− γ |< ε . 
�

10.21 Exercise. Let f and g be Lipschitz near x. Then the product f g is Lipschitz
near x. Use Theorem 10.20 to prove that

∂C
(

f g
)
(x) = ∂C

(
f (x)g(·)+g(x) f (·)

)
(x) ⊂ f (x)∂C g(x)+g(x)∂C f (x).

Show that equality holds if f and g are regular at x and f (x)g(x)� 0. 
�

Upper envelopes. The taking of upper (or lower) envelopes, even of smooth func-
tions, destroys smoothness; this is why there is no classical formula for the deriva-
tive of an envelope. However, taking envelopes preserves the Lipschitz property. We
turn now to an early result in nonsmooth analysis that characterizes the directional
derivatives of certain “max functions” defined this way.

Let Q be a compact metric space. Given an open subset V of X and a continuous
function g : V×Q → R, we define f on V as follows:

f (x) = max
q ∈ Q

g(x,q) , Q(x) =
{

q ∈ Q : f (x) = g(x,q)
}
.

We suppose that g ′
x(x,q) (the derivative with respect to x) exists for every (x,q) in

V×Q , and that the mapping (x,q) �→ g ′
x(x,q) from V×Q to X∗ (equipped with the

dual norm) is continuous.

10.22 Theorem. (Danskin’s formula) f is regular at any point x ∈V , and we have

∂C f (x) = co
{

g ′
x(x,q) : q ∈ Q(x)

}
,

where the closed convex hull is taken in the weak∗ sense. The directional derivatives
of f are given by the formula

f ′(x ;v) = max
q ∈ Q(x)

〈 g ′
x(x,q),v〉, v ∈ X .

If Q(x) is a singleton {q}, then f ′(x) exists and equals g ′
x(x,q).
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Proof. We leave as an exercise the fact that f is locally Lipschitz in V (one uses the
continuity of the derivative and Exer. 2.32).

Lemma 1.
f ◦(x ;v) � max

q ∈ Q(x)
〈g ′

x(x,q),v〉

We may suppose v 	= 0. Let xi and ti be sequences realizing f ◦(x ;v), and let qi
belong to Q(xi+ ti v). Invoking the compactness of Q, we may suppose that qi → q;
it follows that q ∈ Q(x) (we ask the reader to show why). Then we may write, for
some zi ∈ (xi ,xi + ti v),

f (xi + ti v)− f (xi)

ti
� g(xi + ti v, qi)−g(xi ,qi)

ti
= 〈g ′

x(zi , qi),v〉.

Passing to the limit, we obtain the inequality of Lemma 1.

Lemma 2.
max

q ∈ Q(x)
〈g ′

x(x, y),v〉 � liminf
t ↓ 0

f (x+ t v)− f (x)
t

.

To see this, let q ∈ Q(x). Then

f (x+ t v)− f (x)
t

� g(x+ t v, q)−g(x, q)
t

= 〈g ′
x(z, q),v〉

for some z ∈ (x, x+ t v). Taking lower limits leads to the stated inequality.

We turn now to the proof of the theorem. Since we always have

limsup
t ↓ 0

( f (x+ t v)− f (x))/t � f ◦(x ;v),

the lemmas immediately imply the stated formula, and that f is regular at x.

Suppose now that Q(x) is a singleton {q}, and let xi be a sequence converging to
x (x 	= xi ). For every i sufficiently large, there exist zi ∈ (x, xi) and ζ i ∈ ∂C f (zi)
such that f (xi)− f (x) = 〈ζ i , xi − x〉. Then

f (xi)− f (x) � f ◦(zi ; xi − x) = 〈g ′
x(zi , qi), xi − x〉

for some qi ∈ Q(zi) in view of the formula proved above, applied at zi . A routine
argument show that qi → q. We deduce

f (xi)− f (x)−〈g ′
x(x,q), xi − x〉 � 〈g ′

x(zi , qi)−g ′
x(x,q), xi − x〉 ,

whence

limsup
i→∞

{
f (xi)− f (x)−〈g ′

x(x,q), xi − x〉
}
/|xi − x | � 0.
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A symmetric argument using − f ◦(zi ; x− xi) shows that the corresponding lim inf
is nonnegative; it follows that f ′(x) exists and equals g ′

x(x,q). 
�

10.23 Corollary. (A special case) Let fi : X →R (i = 1, 2, . . . , n) be continuously
differentiable functions on an open set V . Define f (x) = max1� i � n fi(x). Then f
is regular at any point x ∈ V , and we have

∂C f (x) = co
{

f ′
i (x) : i ∈ I(x)

}
, f ′(x ;v) = max

i ∈ I(x)
〈 f ′

i (x),v〉 ∀v,

where I(x) denotes the set of indices i such that fi(x) = f (x).

This result gives a meaning (perhaps) to the phrase “the derivative of the max is the
max of the derivatives.”

10.24 Exercise. Prove the corollary. 
�

10.25 Example. Let us use the above to complete the stability analysis of systems
of inequalities begun in Example 5.39. The missing step was to verify Hypothesis
5.30 for the locally Lipschitz function

ϕ(x,y) = max
{

0, g1(x)− y1, g2(x)− y2 , . . . , gm(x)− y m}
,

for some δ > 0, and for (x,y) in a neighborhood of (x̄ ,0). Theorem 10.22 assures
us that ϕ has directional derivatives. We also know, as a consequence of the positive
linear independence condition, that there exists a unit vector v̄ such that

〈Dgi(x̄), v̄ 〉 < 0 ∀ i ∈ I(x̄),

in view of Exer. 2.40.

Now suppose that Hypothesis 5.30 does not hold, and let us derive a contradiction.
Since the hypothesis fails, there is a sequence (x j , y j)→ (x̄ ,0) along which we have
ϕ(x j , y j)> 0, and such that

inf
‖v‖�1

ϕ ′
x(x j , y j ; v) > −1/ j.

Because ϕ(x j , y j)> 0, Cor. 10.23 tells us that for some index i j , we have

ϕ(x j , y j) = gi j(x j)− y
i j
j , 〈Dgi j(x j), v̄ 〉 � −1/ j.

By taking an appropriate subsequence, we may suppose i j → i0 ; it follows that
ϕ(x̄ ,0) = gi0(x̄), whence i0 ∈ I(x̄) 	= /0. We also obtain

〈Dgi0(x̄), v̄ 〉 � 0,

which contradicts the defining property of v̄. 
�
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10.26 Exercise. We return to the robust optimization problem of Example 10.1,
which leads to the following special case of problem (P):

Minimize f (x) subject to g(x) := max
q ∈ Q

e(x,q)−E � 0.

We shall suppose that x lives in R
n, and that Q is a compact metric space. We further

assume that f is continuously differentiable, and that the derivative e ′
x with respect

to x exists and is continuous in (x,q).

The goal is to express appropriate necessary conditions for optimality. Later, we
shall have at our disposal a multiplier rule that applies directly to the problem. Now,
however, we show how to proceed on the strength of a certain reduction device for
inequality constraints, together with the use of Danskin’s theorem.

Let x∗ solve the problem, and assume that the inequality constraint is saturated:
g(x∗) = 0. (Otherwise, the inequality constraint is locally irrelevant, and we have
f ′(x∗) = 0.) We denote by Q∗ the set of points q ∈ Q such that e(x∗,q) = E .

Proposition. There exist η = 0 or 1, a finite collection {qi : 1 � i � k} of k points
in Q∗ , for some k � n+1, and γ ∈ R

k
+ such that (η ,γ ) 	= 0 and

0 = η f ′(x∗)+∑k
i=1 γ i e ′

x(x∗ , qi).

For purposes of the proof, we extend the parameter space Q to Q×Z := Q×{0,1},
and we define

h(x,q, z) =

{
f (x)− f (x∗) if z = 0
e(x,q)−E if z = 1.

We further introduce F(x) = max {h(x, q, z) : (q, z) ∈ Q×Z }. Then F is locally
Lipschitz, as follows from Theorem 10.22.

(a) Prove that F(x)� 0 ∀x, and that F(x∗) = 0.

(b) Deduce that 0 ∈ ∂CF(x∗), and use Theorem 10.22 to obtain the stated necessary
conditions.

(c) If the set {e ′
x(x∗ , q) : q ∈ Q∗ } is assumed to be positively linearly independent,

show that the assertion of the proposition may be strengthened: we may take
η = 1 and reduce the number of points qi involved to at most n.

(d) Suppose now that Q consists of finitely many points. Then the constraint g(x)� 0
is equivalent to a finite number of inequality constraints ei(x)� E, and Theorem
9.1 can be applied to the problem. Show that the necessary conditions of the
theorem are equivalent to those of the proposition above.

(e) Suppose that f is convex, and that e is convex in x. Prove that any point x∗ that
satisfies g(x∗)� 0 together with the conclusions of the proposition with η = 1 is
a solution of the problem. 
�
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The gradient formula. The celebrated theorem of Rademacher asserts that if a
function f : Rn → R is Lipschitz on an open set U , then it is differentiable almost
everywhere on U (in the sense of Lebesgue measure). It turns out that the derivative
of f can be used to generate its generalized gradient, as depicted in the formula
below, one of the most useful computational tools in nonsmooth analysis.

It shows that in R
n, ∂C f (x) can be generated by the values of ∇ f (u) at nearby points

u at which f ′(u) exists, and furthermore, that points u belonging to any prescribed
set of measure zero can be ignored in the construction without changing the re-
sult. This latter property of ∂C f (x) is referred to as being “blind to sets of measure
zero.”

10.27 Theorem. (Gradient formula) Let x ∈ R
n, and let f : Rn → R be Lipschitz

near x. Let E be any subset of zero measure in R
n, and let E f be the set of points at

which f fails to be differentiable. Then

∂C f (x) = co
{

lim
i→∞

∇ f (xi) : xi → x, xi /∈ E ∪ E f

}
.

The meaning of the formula is the following: consider any sequence xi converging
to x while avoiding both E and E f , and such that the sequence ∇ f (xi) converges to
a limit; then the convex hull of all such limits is ∂C f (x).2 The proof is postponed
for a moment while we study a simple example.

10.28 Example. We proceed to use the gradient formula in order to calculate
∂C f (0,0), where the function f on R

2 is given by

f (x,y) = max
{

min [2x+ y , x ] , 2y
}
.

Since the Lipschitz property is preserved by max and min, it follows that f is Lips-
chitz, and in fact piecewise affine. One calculates (see Fig. 10.2)

f (x,y) =

⎧
⎪⎨

⎪⎩

2x+ y for (x,y) ∈ A =
{
(x,y) : y � 2x and y �−x

}

x for (x,y) ∈ B =
{
(x,y) : y � x/2 and y �−x

}

2y for (x,y) ∈ C =
{
(x,y) : y � 2x or y � x/2

}
.

Note that A∪B∪C = R
2, and that the boundaries of these three sets form (together)

a set E of measure 0. If (x,y) does not lie in E, then f is differentiable at (x,y), and
∇ f (x,y) is one of the points (2,1), (1,0), or (0,2). The gradient formula implies
that ∂C f (0,0) is the triangle obtained as the convex hull of these three points. 
�

10.29 Exercise. We refer to the function f of the example above.

(a) Prove that f does not admit a local minimum at (0,0), and find a descent direction
for f at (0,0) (see Exer. 10.7).

2 As usual, we identify the dual of Rn with the space itself; for this reason, we view ∂C f (x) as a
subset of Rn.
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(b) Show that f is not convex, and that f is not regular at (0,0). 
�

Fig. 10.2 A function f and its generalized gradient at 0

We continue the analysis of f later, in Exer. 10.49.

Proof of Theorem 10.27. Let us note, to begin with, that there is a plenitude of
sequences which converge to x and avoid E ∪E f , since the latter has measure 0 near
x (by Rademacher’s theorem). Since ∇ f is locally bounded near x (in view of the
Lipschitz condition), one may extract a subsequence for which ∇ f (xi) converges.
It follows that the set on the right in the putative formula is nonempty. We know
that ∇ f (xi) belongs to ∂C f (xi) for each i (Exer. 10.4); then the limit of any such
sequence must belong to ∂C f (x) by the closure property of ∂C f proved in Prop.
10.10. It follows that the set

{
lim
i→∞

∇ f (xi) : xi → x, xi /∈ E ∪ E f
}

is contained in ∂C f (x). Therefore it is bounded, and in fact compact, since it is
closed by its very definition.

Since ∂C f (x) is convex, we deduce that the left side of the formula asserted by the
theorem contains the right. Now, the convex hull of a compact set in R

n is compact
(Exer. 2.8), so to complete the proof, we need only show that the support function
of the left side (that is, f ◦(x ; ·)) never exceeds that of the right. This is what the
following lemma does:

Lemma. For any v 	= 0 in R
n, for any ε > 0, we have

f ◦(x ;v)− ε � limsup
{
∇ f (y) • v : y → x, y /∈ E ∪ E f

}
.
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To prove this, let the right-hand side be denoted α . Then by definition, there is a
δ > 0 such that

y ∈ B(x,δ ), y /∈ E ∪ E f =⇒ ∇ f (y) • v � α+ ε .

We also choose δ small enough so that f is Lipschitz on B(x,δ ); thus, E ∪ E f has
measure 0 in B(x,δ ). Now consider the line segments

Ly =
{

y+ t v : 0 < t < δ/(2|v |)
}
.

Since E ∪ E f has measure 0 in x+ δB, it follows from Fubini’s theorem that for
almost every y in x+(δ/2)B, the line segment Ly meets E ∪ E f in a set of 0 one-
dimensional measure. Let y be any point in x+(δ/2)B having this property, and let
0 < t < δ/(2|v |). Then

f (y+ t v)− f (y) =
∫ t

0
∇ f (y+ sv) • vds,

since f ′ exists a.e. on Ly. Since we have ‖y+ sv− x‖ < δ for 0 < s < t, it follows
that ∇ f (y+ sv) • v � α+ ε , whence

f (y+ t v)− f (y) � t (α+ ε).

Since this is true for all y within δ/2 of x except those in a set of measure 0, and for
all t in (0,δ/(2|v |)), and since f is continuous, it is in fact true for all such y and t.
We deduce f ◦(x ;v)� α+ ε , which completes the proof of Theorem 10.27.

10.30 Exercise. Let Ω be a nonempty open bounded subset of Rn. Suppose that the
function g : Ω → R is Lipschitz, equal to zero on the boundary of Ω , and satisfies
∇g = 0 a.e. in Ω . Prove that g is identically zero. 
�

10.3 Tangents and normals

Throughout this section, S denotes a nonempty closed subset of a Banach space X .
The reader will recall that the distance function associated with the set S is defined
by

dS(x) = inf
y ∈ S

‖y− x‖,

a function which is globally Lipschitz of rank 1. Its generalized gradient will lead
to a useful theory of tangents and normals for sets S which are neither classically
defined smooth sets, nor convex. The results will encompass these special cases, but
others as well.
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Exact penalization. The distance function is a useful tool in optimization, for rea-
sons that we proceed to explain. Consider the following constrained optimization
problem:

Minimize f (x) subject to x ∈ S. (P)

There is a simple yet important technique called exact penalization that consists of
adding a penalty to the cost function, in order to obtain an equivalence between the
original constrained problem and the new penalized, unconstrained one. The fol-
lowing result gives an explicit example of this method in action, using the distance
function to express the penalty term.

10.31 Proposition. Let f be Lipschitz of rank k on an open set U that contains S.

(a) If x∗ ∈ S solves (P), then, for any K � k, the function x �→ f (x)+KdS(x) attains
its (unconstrained) minimum over U at x = x∗.

(b) Conversely, suppose that, for some K > k, the function x �→ f (x)+KdS(x) at-
tains its minimum over U at x = x∗. Then x∗ belongs to S and solves (P).

Proof. Suppose first that x∗ ∈ S solves (P). Let x ∈ U and ε > 0, and choose s ∈ S
such that ‖x− s‖ � dS(x)+ ε . The fact that f is minimized over S at x∗, and the
Lipschitz property, yield

f (x∗) � f (s) � f (x)+ k‖s− x‖ � f (x)+ k dS(x)+ kε .

Letting ε ↓ 0 shows that f + k dS attains its minimum over U at x = x∗. That this
also holds when k is replaced by any K > k is evident.

We turn now to the converse. Let the point x∗ ∈ U minimize f +KdS over U , where
K > k. We first show that x∗ ∈ S, reasoning by the absurd. Suppose to the contrary
that x∗ ∈ U \S; then dS(x∗)> 0, since S is closed. Pick s ∈ S so that

‖s− x∗ ‖ < (K/k)dS(x∗)

(this is possible because K > k). Since f is Lipschitz of rank k, we have

f (s) � f (x∗)+ k‖s− x∗ ‖.

Recall that x∗ minimizes x �→ f (x)+KdS(x) over U ; since s∈ S⊂U , we have

f (x∗)+KdS(x∗) � f (s) � f (x∗)+ k‖s− x∗ ‖ < f (x∗)+KdS(x∗),

a contradiction that proves x∗ ∈ S. Given this fact, it follows that x∗ minimizes f
over S, since dS = 0 on S. 
�

In view of Prop. 10.31, solutions of (P) give rise to critical points of f +KdS :

0 ∈ ∂C( f +KdS)(x) ⊂ ∂C f (x)+∂C dS(x).
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This is already a multiplier rule of sorts, one that becomes all the more interesting
to the extent that the term ∂C dS(x) can be interpreted geometrically. In fact, it turns
out that the distance function opens a natural gateway to generalized tangents and
normals, as we now see.

10.32 Definition. Let x be a point in S. The (generalized) tangent and normal
cones to S at x are defined as follows:

T C
S (x) =

{
v ∈ X : d◦S (x ; v) = 0

}

NC
S (x) = T C

S (x)� =
{
ζ ∈ X∗ : 〈ζ ,v〉 � 0 ∀v ∈ T C

S (x)
}
.

The reader will observe that we would obtain the same set of tangents by impos-
ing instead the condition d◦S (x ;v) � 0, since we always have d◦S (x ;v) � 0, as a
result of the fact that dS attains a minimum at x. The definition is a natural one, if
we consider that a tangent direction is one in which the distance function will not
increase.

It is clear that both definitions above lead to sets which are, in fact, cones. It follows
too that when x belongs to int S, then T C

S (x) = X and NC
S (x) = {0}. More generally,

two sets which coincide in a neighborhood of x admit the same tangent and normal
cones at x (since the distance functions agree locally). For this reason, the theory
could be developed just as well for sets that are locally closed near the point x of
interest. (This means that, for some δ > 0, the set S ∩ B(x,δ ) is closed.) However,
we shall not insist on this refinement.

In Def. 10.32, the normal cone is obtained from the tangent cone by polarity; the
reader will recall that this was also the modus operandi adopted earlier in the clas-
sical setting (§1.4).

10.33 Exercise. In any reasonable concept of normality, we expect normals to prod-
ucts to coincide with products of normals, and similarly for tangents. To be precise,
let Si be a subset of the space Xi , and let xi ∈ Si (i = 1, 2). Observe that

dS1×S2(u1, u2) = dS1(u1)+dS2(u2) ∀(u1, u2) ∈ X1×X2 .

Use this to prove that

NC
S1×S2

(x1, x2) = NC
S1
(x1)×NC

S2
(x2) and T C

S1×S2
(x1, x2) = T C

S1
(x1)×T C

S2
(x2).

(The analogous facts for the classical tangent and normal cones TS(x) and NS(x)
have already been noted in Exer. 1.38.) 
�

It is not always the case that applying polarity to the classical normal cone NS(x)
brings one back to TS(x). (This must fail when TS(x) is nonconvex, notably.) How-
ever, in the generalized setting, full duality holds, as we now see. (Below, cl∗ de-
notes weak∗ closure.)
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10.34 Theorem. Let x ∈ S. Then

(a) T C
S (x) is a closed convex cone contained in TS(x).

(b) NC
S (x) is a weak∗ closed convex cone containing NS(x).

(c) We have NC
S (x) = cl∗

{
λζ : λ � 0, ζ ∈ ∂C dS(x)

}
and T C

S (x) = NC
S (x)

�.

Proof. In light of Def. 10.3, we have

T C
S (x) =

{
v : 〈ζ ,v〉 � 0 ∀ζ ∈ ∂CdS(x)

}
,

which reveals T C
S (x) as a closed convex cone. Let v ∈ T C

S (x). Then d◦S (x ;v) � 0,
so there is a sequence ti decreasing to 0 such that lim i→∞ dS(x+ ti v)/ti = 0. For
each i, let xi ∈ S satisfy

‖xi − x− ti v‖ � dS(x+ ti v)+ t 2
i .

Then v = lim i→∞ (xi − x)/ti , which proves that v ∈ TS(x). The first part of the
theorem is proved.

As a set defined by polarity, NC
S (x) is automatically a weak∗ closed convex cone.

Since NS(x) is defined from TS(x) via polarity, and since taking polars reverses
inclusions, we have

NC
S (x) = T C

S (x)� ⊃ TS(x)� = NS(x) ,

which proves (b).

Let Σ be the set whose closure appears in (c). Let λ i ζ i (i = 1, 2) be two nonzero
points in Σ , and let t ∈ [0,1]. Then

(1− t)λ1ζ1 + tλ2 ζ2 =
[
(1− t)λ1 + t λ2

]
ζ ,

where

ζ :=
(1− t)λ1

(1− t)λ1 + tλ2
ζ1 +

t λ2

(1− t)λ1 + tλ2
ζ2 ∈ ∂C dS(x).

It follows that Σ is a convex cone. Its weak∗ closure Σ is a weak∗ closed convex
cone. It is clear that ∂C f (x), Σ , and Σ all have the same polar, namely T C

S (x). By
Prop. 4.34, we have

Σ = Σ ��
= T C

S (x)� = NC
S (x) ,

which confirms the first assertion of (c). The other one follows from Prop. 4.30,
applied to T C

S (x). 
�

It is occasionally useful to have the following alternate, direct, characterization of
T C

S (x) on hand, and it is reassuring to know that tangency does not depend on the
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choice of equivalent norms for X (as dS does). The following is to be compared with
the characterization of the classical tangent cone TS(x) given in Exer. 1.37.

10.35 Proposition. We have v ∈ T C
S (x) if and only if, for every sequence xi in S

converging to x and positive sequence ti decreasing to 0, there exists a sequence vi
converging to v such that xi + ti vi ∈ S ∀ i.

Proof. Suppose first that v ∈ T C
S (x), and that a sequence xi in S converging to x,

along with a sequence ti decreasing to 0, are given. We must produce the sequence
vi alluded to in the statement of the theorem. Since d◦S (x ;v) = 0 by assumption, we
have

lim
i→∞

dS(xi + ti v)−dS(xi)

ti
= lim

i→∞

dS(xi + ti v)
ti

= 0 .

Let si be a point in S which satisfies ‖xi + ti v− si ‖ � dS(xi + ti v)+ ti/i, and let
us set vi = (si − xi)/ti . Then vi → v as a consequence of the above, and we have
xi + ti vi = si ∈ S, as required.

Now for the converse. Let v have the stated property concerning sequences, and
choose a sequence yi converging to x and ti decreasing to 0 such that

lim
i→∞

dS(yi + ti v)−dS(yi)

ti
= d◦S (x ;v) .

Our purpose is to prove this quantity nonpositive, for then v belongs to T C
S (x) by

definition.

Let si in S satisfy ‖si − yi ‖ � dS(yi)+ ti/i. It follows that si converges to x. Thus
there is a sequence vi converging to v such that si + ti vi ∈ S. But then, since dS is
Lipschitz of rank 1, we have

dS(yi + ti v)� dS(si + ti vi)+‖yi − si‖+ ti‖v− vi‖ � dS(yi)+ ti(‖v− vi‖+1/i).

We deduce that the limit above is nonpositive, which completes the proof. 
�

The following result continues the theme of exact penalization, and contains the
basic idea by which it induces multiplier rules.

10.36 Proposition. Let f : X → R be Lipschitz of rank k near x, and suppose that
x∗ minimizes f over S. Then

0 ∈ ∂C( f + k dS)(x∗) ⊂ ∂C f (x∗)+ k∂C dS(x∗) ⊂ ∂C f (x∗)+NC
S (x∗).

Proof. We may suppose that S is contained in an open set U on which f is Lipschitz
of rank k; otherwise, just replace S by S∩B(0,ε), which affects neither the hypothe-
ses nor the conclusion. According to Prop. 10.31, x∗ locally minimizes f + k dS .
Then 0 ∈ ∂C ( f + k dS)(x∗) by Fermat’s rule; the other inclusions follow from the
sum rule 10.13 and Theorem 10.34. 
�
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10.37 Exercise. Optimization problems sometimes involve multiple criteria. Con-
sider the case in which it is of interest to minimize both f1 and f2 relative to a set
A, where the functions are continuously differentiable and A is closed.

A point x∗ is Pareto optimal if there is no x ∈ A that satisfies both f1(x) < f1(x∗)
and f2(x) < f2(x∗). We proceed to derive a necessary condition for a point to be
optimal in this sense.

(a) Show that a Pareto optimal point x∗ minimizes over A the function

f (x) = max
{

f1(x)− f1(x∗) , f2(x)− f2(x∗)
}
.

(b) Deduce the existence of t ∈ [0,1] such that

0 ∈ (1− t) f1
′(x∗)+ t f2

′(x∗)+NC
A (x∗). 
�

Regular sets. Prop. 10.36 becomes more useful when we are able to interpret the
normal cone NC

S appropriately in various special cases. The rest of this section is de-
voted to such results. A useful element in this undertaking is the following concept,
which extends regularity from functions to sets.

The set S is said to be regular at a point x ∈ S provided that TS(x) = T C
S (x). Note

that when S is regular at x, we also have, by polarity:

NC
S (x) = T C

S (x)� = TS(x)� = NS(x).

In fact, this provides an alternate, equivalent way to characterize regularity:

10.38 Proposition. S is regular at x if and only if NC
S (x) = NS(x).

Proof. We have already observed the necessity. For the sufficiency, suppose that
NC

S (x) = NS(x). Then, taking polars,

T C
S (x) = NC

S (x)
� = NS(x)� = TS(x)�� ⊃ TS(x) ⊃ T C

S (x).

It follows that we have equality throughout, and that S is regular at x. 
�

We shall see below that convex sets, as well as sets defined by smooth (nondegen-
erate) equalities and inequalities (such as manifolds with or without boundary), are
regular, and that the new tangents and normals defined above coincide with the fa-
miliar ones.

10.39 Theorem. Let x ∈ S, where S is closed and convex. Then S is regular at x,
and we have

T C
S (x) = TS(x) = cl

{ u− x
t

: u ∈ S, t > 0
}

NC
S (x) = NS(x) =

{
ζ ∈ X∗ : 〈ζ , u− x〉 � 0 ∀u ∈ S

}
.
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Proof. We recall that the given characterizations of TS and NS are known results
(see Prop. 2.9). To prove the theorem, it suffices to prove NC

S (x) ⊂ NS(x), for then
the two normal cones coincide (by Theorem 10.34), and regularity follows from
Prop. 10.38.

To prove NC
S (x)⊂ NS(x), it suffices to show that

ζ ∈ ∂C dS(x) =⇒ ζ ∈ NS(x).

Now by Theorem 10.8, such a ζ belongs to ∂dS(x), since the distance function of
a convex set is convex. We may write, therefore, the subgradient inequality:

dS(u)−dS(x) � 〈ζ , u− x〉 ∀u ∈ X ,

which implies 〈ζ , u− x〉 � 0 ∀u ∈ S, and thus ζ ∈ NS(x). 
�

10.40 Exercise. We develop here a geometrical characterization of the generalized
normal cone in finite dimensions. S is a nonempty closed subset of Rn, and projS(x)
denotes as usual the (nonempty) set of points u ∈ S satisfying dS(x) = |x−u |.

(a) Prove that 0 ∈ ∂C dS(x) ∀x ∈ S.

(b) Use Prop. 10.36 to prove that if x /∈ S and y ∈ projS(x), then

x− y
|x− y | ∈ ∂C dS(y).

(These “perpendiculars” to the set S at y generate the proximal normal cone to S
at y, an object that we shall encounter later.)

(c) Prove that if the derivative d ′
S(x) exists at a point x ∈ S, then d ′

S(x) = 0.

(d) Suppose that x /∈ S and that d ′
S(x) exists. Let y ∈ projS(x) and v ∈ R

n. Show that

lim
t ↓ 0

|x+ t v− y |− |x− y |
t

� ∇dS(x) • v .

Deduce that ∇dS(x) = (x− y)/|x− y |, and that y is the unique point in projS(x).

(e) Let x ∈ ∂S. Use the gradient formula (Theorem 10.27), together with the above,
to obtain the following characterization of ∂C dS(x):

∂C dS(x) = co
{

0, lim
i→∞

xi − yi

|xi − yi |
: xi /∈ S, xi → x, yi ∈ projS(xi)

}
.

(f) Let x ∈ ∂S. Prove the following characterization of the generalized normal cone:

NC
S (x) = co

{
λ lim

i→∞

xi − yi

|xi − yi |
: λ � 0, xi /∈ S, xi → x, yi ∈ projS(xi)

}
.


�
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10.41 Exercise. Let S be the following subset of R2 :

S =
{
(x,y) : x � 0

}
∪

{
(x,y) : y � 0

}
.

We have seen in §1.4 (see Fig. 1.2 (b), p. 25) that the classical tangent cone TS(0,0)
coincides with S, and that NS(0,0) reduces to {(0,0)}.

(a) Using Exer. 10.40, prove that NC
S (0,0) =

{
(x,y) : x � 0, y � 0

}
.

(b) Deduce that T C
S (0,0) =

{
(x,y) : x � 0, y � 0

}
. 
�

The exercise illustrates the general fact that (relative to the classical constructs)
generalized tangent vectors are more stringent, and generalized normal vectors more
permissive.

Level and sublevel sets. The sets we meet in practice are often defined by func-
tional relations, notably by equalities and inequalities.

10.42 Theorem. Let f : X → R be a locally Lipschitz function, and define

S = {u ∈ X : f (u) � 0}.

If the point x ∈ S satisfies 0 /∈ ∂C f (x), then we have

T C
S (x) ⊃

{
v ∈ X : f ◦(x ;v) � 0

}
and NC

S (x) ⊂
{
λζ : λ � 0, ζ ∈ ∂C f (x)

}
.

If, in addition, f is regular at x, then equality holds in both estimates, S is regular at
x, and we have T C

S (x) = TS(x) , NC
S (x) = NS(x).

Proof.

A. We begin with the inclusion involving T C
S (x). We observe first that there exists

v0 such that f ◦(x ;v0) < 0, for otherwise (since f ◦(x ; ·) is the support function of
∂C f (x) ) we would have 0 ∈ ∂C f (x), contrary to hypothesis. If v belongs to the
set

D := {v ∈ X : f ◦(x ;v) � 0},

then, for any ε > 0, we have f ◦(x ;v+ ε v0) < 0, by subadditivity. Since T C
S (x) is

closed, we see, therefore, that it suffices to prove the inclusion only for points v
satisfying f ◦(x ;v)< 0.

For such a v, it follows from the definition of f ◦(x ;v) that, for certain positive
numbers ε and δ , we have

f (y+ t v)− f (y) � −δ t ∀y ∈ B(x,ε), t ∈ (0,ε).

We shall prove that v ∈ T C
S (x) by means of the characterization furnished by Prop.

10.35. Accordingly, let xi be any sequence in S converging to x, and ti any sequence
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decreasing to 0. By definition of S, we have f (xi) � 0. For all i sufficiently large,
we also have

f (xi + ti v) � f (xi)−δ ti � −δ ti .

It follows that xi + ti v ∈ S, which confirms that v ∈ T C
S (x).

B. We examine next the inclusion involving NC
S (x). Consider the convex cone

K =
{
λζ : λ � 0, ζ ∈ ∂C f (x)

}
,

whose polar is {v ∈ X : f ◦(x ;v) � 0}. If K is weak∗ closed, then K�� = K by
Prop. 4.34, and the estimate for NC

S (x) follows by polarity from that for T C
S (x), as

follows:

NC
S (x) = T C

S (x)� ⊂
{

v ∈ X : f ◦(x ;v) � 0
}�

= K�� = K.

The following general result supplies the required fact (take Σ = ∂C f (x) ).

Lemma. Let Σ be a weak∗ compact convex set not containing 0. Then R+Σ is
weak∗ closed.

Proof. The definition ‖σ ‖∗ = sup{〈σ , u〉 : u ∈ B} reveals that the norm is weak∗

lsc, as an upper envelope of such functions. It follows from compactness that ‖σ ‖∗
is strictly bounded away from 0 for σ ∈ Σ .

It is easily seen that the set R+Σ is a convex cone. Thus, by Exer. 8.48, it suffices to
prove that the set

ΣB = B∗ ∩R+Σ =
{

tσ : σ ∈ Σ , t � 0, ‖ tσ ‖ � 1
}

is weak∗ closed.

Fix u ∈ X . When X∗ is equipped with the weak∗ topology, the map fu from R×X∗

to R defined by fu(t,σ) = 〈 tσ , u〉 is continuous (Theorem 3.1). This observation
reveals that the set

Γ =
{
(t,σ) ∈ R+×Σ : fu(t,σ) � 1 ∀u ∈ B

}
=

{
(t,σ) ∈ R+×Σ : ‖ tσ ‖ � 1

}

is weak∗ closed. It is also bounded, as a consequence of the fact that Σ is weak∗ com-
pact, and because ‖σ ‖∗ is bounded away from 0 on Σ . Thus Γ is weak∗ compact
(Cor. 3.15). But ΣB is the image of Γ under the continuous map (t,σ) �→ tσ . Thus
ΣB is weak∗ compact, and hence weak∗ closed. 
�

C. We now suppose that f is regular at x. Let v ∈ TS(x). By definition, there exist
sequences xi in S and ti ↓ 0 such that vi := (xi − x)/ti → v. Then

f ◦(x ;v) = f ′(x ;v) = lim
i→∞

f (x+ ti v)− f (x)
ti

= lim
i→∞

f (x+ ti vi)− f (x)
ti

= lim
i→∞

f (xi)− f (x)
ti

� 0,
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since f (x) = 0 and f (xi) � 0. By part (A), we deduce TS(x) ⊂ T C
S (x). Since we

always have T C
S ⊂ TS , this implies the equality of the two tangent cones, as well as

equality in the initial estimate for T C
S (x).

We deduce from this the corresponding equalities involving the normal cones:

NS(x) = TS(x)� =
{

v : f ◦(x ;v) � 0
}�

=
[
∂C f (x)�

]�

= K�� = K ⊃ NC
S (x) ⊃ NS(x).

(Note that K was defined in part (B).) 
�

Remark. The nondegeneracy hypothesis (or constraint qualification) 0 /∈ ∂C f (x)
is essential in Theorem 10.42. The reader may show this with an example in R (take
f (u) = u2).

10.43 Exercise. Let S ⊂ X be closed, bounded, and convex, with nonempty inte-
rior. Prove the existence of a function ϕ : X → R, convex and Lipschitz, such that

S =
{

x ∈ X : ϕ(x) � 0
}

and x ∈ ∂S =⇒ 0 /∈ ∂ϕ(x). 
�

Manifolds with boundary. The preceding exercise shows that the closure of a con-
vex body is a Lipschitz manifold with boundary. We study next an important class
of sets, used in differential geometry and elsewhere, that can be described by a finite
number of inequalities as follows:

S =
{

u ∈ X : fi(u) � 0, i = 1, 2 , . . . , k
}
,

where each function fi : X → R is C1 (locally, at least). To avoid degeneracy, it
is usually assumed that at the point x ∈ S of interest, the relevant vectors f ′

i (x) are
linearly independent (we shall improve upon this). The word “relevant” here is taken
to refer to the set I(x) of indices i for which fi(x) = 0. (In the absence of any such
indices, x lies in the interior of S, and there is no local geometry to elucidate.)

We shall derive the following as a consequence of Theorem 10.42.

10.44 Corollary. Let x ∈ S, where S is given as above, where I(x) is nonempty, and
where the set { f ′

i (x) : i ∈ I(x)} is positively linearly independent. Then

T C
S (x) = TS(x) =

{
v ∈ X : 〈 f ′

i (x),v〉 � 0, i ∈ I(x)
}
,

NC
S (x) = NS(x) =

{
∑ i ∈ I(x) λ i f ′

i (x) : λ i � 0
}
.

When the hypothesis above holds, we say that “the active constraints are positively
linear independent.” The reader may observe that, even in R

2 (for example), in con-
trast to linear independence, any number of vectors can be positively linear inde-
pendent.
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Proof. We set f (u) = max i=1,2 ,...,k fi(u), a function which is Lipschitz near x
(since each fi is). Then S is the set described in Theorem 10.42. Furthermore, f is
regular, and we have

∂C f (x) = co
{

f ′
i (x) : i ∈ I(x)

}
,

by Danskin’s theorem 10.22. We see that the hypothesis of positive linear indepen-
dence is precisely the same as requiring 0 /∈ ∂C f (x). Thus, Theorem 10.42 applies;
the result follows. 
�

Banach manifolds. We return now to the context of Theorem 5.35, that of a set
S defined as the solution set of an equation F(u) = 0. We shall verify that, under
the appropriate nondegeneracy hypothesis, the classical and generalized tangent and
normal cones coincide.

10.45 Theorem. Let x belong to the set S = {u ∈ X : F(u) = 0}, where F is
continuously differentiable in a neighborhood of x and F ′(x) is surjective. Then

TS(x) = T C
S (x) =

{
v ∈ X : F ′(x) v = 0

}
and

NS(x) = NC
S (x) =

{
ζ = Λ◦F ′(x) ∈ X∗ : Λ ∈ Y ∗} = F ′(x)∗Y ∗.

Proof. It suffices to show that any point v that satisfies F ′(x)v = 0 belongs to
T C

S (x). For then we derive TS(x)⊂ T C
S (x), in view of Theorem 5.35, whence equal-

ity holds. (The equality of the normal cones then follows from taking polars.)

Accordingly, let F ′(x)v = 0. It follows (exercise) that we have

lim
y→ x, t ↓0

(F(y+ t v)−F(y))/t = 0. (1)

By Theorem 5.32, there exists K and a neighborhood W of x in which

d
(
u, F−1(0)

)
� K ‖F(u)‖Y ∀u ∈ W.

Let yi → x and ti ↓ 0 be sequences realizing d◦S (x ;v); then choose zi ∈ S to satisfy
‖yi−zi ‖ < dS(yi)+ t 2

i ; thus F(zi) = 0. We have, for all i sufficiently large,

dS(zi + ti v) = d
(
zi + ti v,F−1(0)

)
� K ‖F(zi + ti v)−F(zi)‖Y .

This leads to

d◦S (x ;v) = lim
i→∞

dS(yi + ti v)−dS(yi)

ti
� limsup

i→∞

dS(yi + ti v)−‖yi − zi ‖+ t2
i

ti
.

Because dS is Lipschitz of rank 1, the last expression is bounded above by

limsup
i→∞

dS(zi + ti v)
ti

� limsup
i→∞

K ‖F(zi + ti v)−F(zi)‖Y

ti
= 0,
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in light of (1). It follows that d◦S (x ;v) � 0; that is, v ∈ T C
S (x). 
�

We now examine how the characterizations of normal cones to level and sublevel
sets that we have proved above contribute to proving and extending the multiplier
rule.

10.4 A nonsmooth multiplier rule

We have seen in Prop. 10.36 that when f has a local minimum at x∗ relative to S,
then the following necessary condition holds:

0 ∈ ∂C f (x∗)+NC
S (x∗).

If the set S is a level or sublevel set, we can exploit the corresponding characteriza-
tion of NC

S to translate this into explicit multiplier form. For example, when Theorem
10.45 is invoked in connection with the necessary condition above, we obtain the
following:

10.46 Proposition. Let x∗ minimize f relative to the set S = {x ∈ X : F(x) = 0},
where f is continuously differentiable, F : X → Y is a continuously differentiable
mapping to another Banach space Y , and F ′(x∗) is surjective. Then there exists
Λ ∈ Y ∗ such that { f +Λ◦F

}′
(x∗) = 0.

The reader will note that, in contrast to Theorem 9.1, the equality constraint here
is (potentially) infinite dimensional. We now prove a version of the multiplier rule
that conserves this advance and subsumes the smooth case (Theorem 9.1), while
allowing the data to be nonsmooth (and nonconvex). Thus, consider anew the prob-
lem

Minimize f (x) subject to g(x)� 0, h(x) = 0, x ∈ S (P)

where, as before, the functions f , g, and h map X to R, Rm, Rn respectively. We
assume that S is closed.

10.47 Theorem. Let x∗ be a solution of (P), where f , g, and h are Lipschitz near
x∗. Then there exists (η ,γ ,λ ) ∈ R×R

m×R
n satisfying the nontriviality condition

(η ,γ ,λ ) 	= 0,

the positivity and complementary slackness conditions

η = 0 or 1, γ � 0, 〈γ , g(x∗)〉 = 0,

and the stationarity condition

0 ∈ ∂C
{
η f + 〈γ , g〉+ 〈λ ,h〉

}
(x∗) +NC

S (x∗).
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This theorem differs from the classical case (Theorem 9.1), in permitting x∗ to lie
in the boundary of S. When this is the case, the normal cone NC

S (x∗) provides an
additional term that (necessarily) figures in the new stationarity condition. The latter
reduces to the earlier one:

{
η f + 〈γ , g〉+ 〈λ ,h〉

}′
(x∗) = 0

when x∗ ∈ int S, and when the functions involved are smooth. Thus, the proof below
is simultaneously a proof of Theorem 9.1.

Proof. Without loss of generality, we may suppose that the functions f , g, h are
globally Lipschitz on a neighborhood of the set S, for when S ∩ B(x∗,δ ) replaces
S (for an arbitrarily small δ > 0), neither the conclusions nor the hypotheses of the
theorem are affected.

A. We define, for a fixed ε ∈ (0,1):

M =
{
μ = (η ,γ ,λ ) ∈ R+×R

m
+×R

n : |(η ,γ ,λ )| = 1
}

Gε(x) = max
μ ∈ M

(η ,γ ,λ ) •
(

f (x)− f (x∗)+ ε , g(x), h(x)
)
.

We claim that G(x) > 0 ∀x ∈ S. If, to the contrary, G(x) � 0, then it follows from
this, in view of the way Gε is defined, that

g(x) � 0, h(x) = 0, f (x) � f (x∗)− ε ,

contradicting the optimality of x∗ for (P). We also observe G(x∗) = ε . It follows that
G(x∗) � inf x ∈ S G(x)+ ε . By Theorem 5.19 with λ =

√
ε and E = S, we deduce

the existence of xε ∈ S such that ‖xε − x∗ ‖ �
√
ε , and

min
x ∈ S

G(x)+
√
ε ‖x− xε ‖ = G(xε).

Since ( f ,g,h), and therefore G, is globally Lipschitz in a neighborhood of S, there
exists by Theorem 10.31 a number K such that the function

H(x) = G(x)+
√
ε ‖x− xε ‖+KdS(x)

attains a local minimum at xε . Notice that K depends only on a Lipschitz constant
for G(x)+

√
ε ‖x−xε ‖, and may therefore be taken to be independent of ε .

The presence of a local minimum, together with nonsmooth calculus (see Prop. 10.5
and Theorem 10.13) implies

0 ∈ ∂C H(xε) ⊂ ∂C G(xε)+
√
ε B∗+K∂C dS(xε).

B. The next result examines a certain max function that helps us to interpret the
last inclusion above.
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Lemma. Let ϕ : X → R
k be Lipschitz near x. Let M be a compact set in R

k, and
define G : X → R by

G(x) = max
μ∈M

μ •ϕ(x).

Then G is Lipschitz near x. For any u near x, we set

M(u) = {μ ∈ M : G(u) = μ •ϕ(u)}, u ∈ X .

Then, if M(x) is a singleton {μ0 }, we have

∂C G(x) ⊂ ∂C(μ0 •ϕ )(x).

The fact that G is Lipschitz near x is left to the reader to show. To prove the stated
inclusion, it suffices to prove that, for all v ∈ X , we have

G◦(x ;v) � (μ0 •ϕ )◦(x ;v).

Let yi → x and ti ↓ 0 be sequences realizing G◦(x ;v), and let μ i ∈ M(yi + ti v).
Taking a subsequence if necessary, we may suppose that μ i converges to a limit μ̄ .
We see easily that μ̄ ∈ M(x), whence μ̄ = μ0 . Then G◦(x ;v) is given by

lim
i→∞

G(yi + ti v)−G(yi)

ti
� limsup

i→∞

μ i •ϕ(yi + ti v)−μ i •ϕ(yi)

ti

� limsup
i→∞

μ0 •ϕ(yi + ti v)−μ0 •ϕ(yi)

ti
+ limsup

i→∞
|μ i −μ0 |

|ϕ(yi + ti v)−ϕ(yi)|
ti

� (μ0 •ϕ )◦(x ;v)+ limsup
i→∞

K |μ i −μ0 |‖v‖ (K is a Lipschitz constant for ϕ)

= (μ0 •ϕ )◦(x ;v) ,

proving the lemma.

C. We now show that there is a unique point με = (ηε, γ ε, λε) in M(xε), the
subset of M at which the maximum defining G(xε) is attained. To see this, suppose
that (η i, γ i, λ i) (i = 1, 2) are two distinct such points. Then there exists t > 1 such
that the point

(η ,γ ,λ ) =
t
2
(
η1, γ 1, λ 1)+

t
2
(
η 2, γ 2, λ 2)

belongs to M. But then

G(xε) � (η ,γ ,λ ) •
(

f (xε)− f (x∗)+ ε , g(xε), h(xε)
)
= t G(xε) > G(xε),

since G(xε)> 0. This contradiction shows that M(xε) is a singleton (ηε, γ ε, λε).

We may therefore invoke the lemma to deduce the existence of ζε ∈ X∗ with
‖ζε ‖∗ �

√
ε such that

ζε ∈ ∂C
{
(ηε, γ ε, λε) • ( f ,g,h)

}
(xε)+K∂C dS(xε). (1)
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D. We obtain the conclusion (1) for a sequence ε i ↓ 0. We denote by xi ,(η i, γ i, λ i)
and ζ i the corresponding sequences xε ,(ηε, γ ε, λε) and ζε . We may suppose, by
taking a subsequence, that (η i, γ i, λ i) converges to a limit (η ,γ ,λ ) ∈ M. Of course,
we have xi → x∗, ζ i → 0. It follows from (1) and the sum rule (Theorem 10.13)
that

ζ i ∈ ∂C
{
(η ,γ ,λ ) • ( f ,g,h)

}
(xi)+K∂C dS(xi)+

∣
∣(η i, γ i, λ i)− (η ,γ ,λ )

∣
∣K B∗ .

Passing to the limit (and using Prop. 10.10), we find

0 ∈ ∂C
{
(η ,γ ,λ ) • ( f ,g,h)

}
(x∗)+K∂C dS(x∗),

which yields the desired stationarity condition, since ∂C dS(x∗) is contained in
NC

S (x∗).

Suppose now that g j(x∗) < 0 for a certain component g j of g. Then for i sufficiently
large, we have g j(xi)< 0. The fact that μ i := (η i, γ i, λ i) maximizes

μ •
(

f (xi)− f (x∗)+ ε i , g(xi), h(xi)
)

subject to μ ∈ M,

and that the maximum is strictly positive, implies that (γ i) j = 0. We obtain in the
limit γ j = 0. Thus we derive the complementary slackness condition:

〈γ , g(x∗)〉 = ∑ j γ
j g j(x∗) = 0 .

If η = 0, the multiplier (0,γ ,λ ) satisfies all the required conclusions. If η > 0,
we may replace (η ,γ ,λ ) by

(
1, γ/η , λ/η

)
to obtain the normalized (and normal)

multiplier. 
�

10.48 Exercise. We consider the problem

Minimize f (x) subject to ϕ(x) ∈ Φ , (Q)

where Φ is a closed subset of Rk. We suppose that f : X → R and ϕ : X → R
k are

locally Lipschitz. The problem (Q) may appear to be more general than our standard
problem (P), since the latter evidently corresponds to the case in which

ϕ(x) =
(

g(x), h(x), x
)
∈ Φ := R

n
−×{0}×S .

Show, however, that (Q) can in turn be obtained as a special case of (P). Thus, the
two abstract problems are equivalent.

We remark that the (Q) form of the optimization problem, though it is classically
less familiar, has the advantage of subsuming the cases in which the equality or
inequality constraints are absent, without the need to treat them separately.

The appropriate multiplier rule for (Q) is that, for a solution x∗, there exists η = 0
or 1 and ν ∈ NC

Φ (ϕ(x∗)) such that (η ,ν) 	= 0 and
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0 ∈ ∂C
{
η f + 〈ν,ϕ 〉

}
(x∗) .

Derive this multiplier rule from Theorem 10.47. Conversely, show that Theorem
10.47 follows from it. 
�

10.49 Example. We consider the problem of minimizing f (x,y) over the points
(x,y) in the unit ball: x2 + y2 � 1, where f is the function of Example 10.28.

Since the set of admissible points is compact and f is continuous, it is clear that
the minimum is attained. We know that f is neither convex nor smooth, so the only
multiplier rule that applies here is Theorem 10.47. It yields the stationarity condition

(0,0) ∈ ∂C
{
η f + γ (x2 + y2 −1)

}
= η∂C f (x,y)+2γ (x,y) ,

(see Exer. 10.16). If η = 0, then γ > 0, which implies that the inequality constraint
is saturated: x2 + y2 = 1. The resulting stationarity condition (x,y) = (0,0) then
provides a contradiction. Thus, we may take η = 1.

Now if γ = 0, we have (0,0) ∈ ∂C f (x,y). However, we claim that ∂C f (x,y) never
contains (0,0). We know this is true at the origin (see Example 10.28); at points in
the interior of the zones A,B, or C, ∂C f is a nonzero singleton. So in proving the
claim, we may limit attention to nonzero points on the boundaries between zones.

From the gradient formula, we see that at such points, ∂C f is a line segment, either
co{(2,1),(0,2)} (the A/C boundary) or co{(2,1),(1,0)} (the A/B boundary) or
co{(1,0),(0,2)} (the B/C boundary); none of these segments contains (0,0). Con-
clusion: γ > 0, and the solution (x,y) lies on the unit circle. In light of this, the
stationarity condition reduces to

(x,y) ∈ −1/(2γ )∂C f (x,y).

Suppose the solution (x,y) lies in the interior of zone A. Then the stationarity con-
dition affirms that (x,y) is a negative multiple of (2,1); but this is inconsistent with
being in A, as the reader may easily verify. A similar argument rules out the interiors
of B and C.

There remain three candidates: the points along the inter-zone boundaries lying on
the unit circle. For the B/C boundary, this is a point of the form (2ε ,ε) (for ε > 0),
a negative multiple of which would have to lie in the segment co{(1,0),(0,2)}, by
the stationarity condition; this is impossible, as it is easy to see. The A/B bound-
ary provides a point of the form (ε ,−ε), a negative multiple of which would have
to lie in the segment co{(2,1),(1,0)}: impossible. The A/C boundary provides a
point of the form (−ε ,−2ε), a negative multiple of which would lie in the segment
co{(2,1),(0,2)}. This is possible, and it identifies (x,y) = −(1, 2)/

√
5 as the only

point satisfying the necessary conditions.

Since we know a solution exists and the necessary conditions must hold, we deduce
(from the aptly named deductive method) that this is the unique solution. 
�



Chapter 11

Proximal analysis

We proceed in this chapter to develop the calculus (and the geometry) associated
with the proximal subdifferential. The reader will no doubt remember having en-
countered this object in Chapter 7 (§7.3). As we saw at that time, the utility of
the proximal subdifferential is intrinsically limited to cases in which the underlying
normed space X is smooth, in a certain sense that is always true of Hilbert spaces.
In this chapter, we limit attention to the case X = R

n.

Let us revisit the basic definition, for which we require a function f : Rn → R∞,
and a point x ∈ dom f . We say that ζ ∈ R

n is a proximal subgradient of f at x
if for some σ = σ(x,ζ ) � 0, and for some neighborhood V = V (x,ζ ) of x, we
have

f (y)− f (x)+σ |y− x |2 � 〈ζ , y− x〉 ∀y ∈ V.

This is referred to as the proximal subgradient inequality. In writing it, we generally
prefer the notation of the duality pairing 〈ζ , y − x〉 to that of the inner product
ζ • (y− x).

Proximal subgradients (which may be referred to as P-subgradients, or even P-
gradients, for short) admit a natural geometrical interpretation, as pointed out in
Example 7.28: they correspond to the contact slopes of locally supporting parabolas
to the epigraph of f at the point (x, f (x)). The collection of all such ζ as described
above (which may be empty) constitutes the proximal subdifferential of f at x; it is
denoted ∂P f (x).

11.1 Proximal calculus

Here is a first connection between proximal subgradients, generalized gradients, and
classical derivatives:

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 11,
© Springer-Verlag London 2013
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11.1 Proposition. Let f be Lipschitz near x. Then ∂P f (x) ⊂ ∂C f (x). If f is C1

near x and f ′ is Lipschitz near x (in particular, if f is C2 near x), then we have

∂P f (x) = { f ′(x)} = ∂C f (x).

Proof. An immediate consequence of the proximal subgradient inequality is that,
for any given v, for all t > 0 sufficiently small, we have

(
f (x+ t v)− f (x)

)
/t � 〈ζ ,v〉−σ t |v |2.

It follows from this, and the definition of f ◦(x ;v), that f ◦(x ;v) � 〈ζ ,v〉, whence
ζ belongs to ∂C f (x) by definition of the generalized gradient.

If f is C1 near x, then ∂C f (x) = { f ′(x)} by Theorem 10.8, and the argument above
yields ∂P f (x) ⊂ { f ′(x)}. The fact that equality holds when f ′ is Lipschitz near x
follows directly from Cor. 7.32. 
�

It is clear from the definition that for any k > 0, we have ∂P(k f )(x) = k∂P f (x).
In contrast to the generalized gradient, however, this fails when k is negative. For
example, as we have seen earlier, when f (x) = |x |, we have (see Prop. 7.26 and
Example 7.30)

∂P f (0) = B(0,1) , ∂P(− f )(0) = /0.

We now begin a systematic study of proximal calculus. The following theorem
due to Clarke and Ledyaev is the cornerstone of our development. It is a multi-
directional extension of the mean value theorem that gives, in certain cases, a more
subtle bound on certain increments, where the classic mean value theorem gives an
upper bound on all of them. In its statement, the interval notation [x,Y ] refers to
co{{x}∪ Y }, the convex hull of the set Y and the point x.

11.2 Theorem. (Mean value inequality) Let x ∈ dom f , where f : Rn → R∞ is
lower semicontinuous, and let Y be a compact convex subset of R

n. Then, for any
real number r < minY f − f (x) and every ε > 0, there exists x∗ ∈ [x,Y ]+ εB and
ζ in ∂P f (x∗) such that

r � 〈ζ , y− x〉 ∀y ∈ Y.

The point x∗ may be taken to satisfy

f (x∗) � min
{

f (u) : u ∈ [x,Y ]
}
+ |r | .

Proof.

Without loss of generality we take x = 0 and f (0) = 0 ; we may also assume that
f is globally bounded below by −m, for some m > |r |. By lower semicontinuity,
there exists δ ∈ (0,ε) such that

u ∈ Y +δB =⇒ f (u) > r .
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We choose k > 0 large enough so that

y ∈ Y, k |y−u |2 � m+ r =⇒ u ∈ Y +δB.

We now consider the minimization of the function

g(u,y, t) := f (u)+ k | t y−u |2 − r t over u ∈ R
n, y ∈ Y, t ∈ [0,1].

The minimum is attained at a point (x∗,y∗, t∗). Since g(0,y, 0) = 0, we must
have g(x∗,y∗, t∗) � 0. We claim that t∗ < 1. Let us suppose the contrary. Then
g(x∗,y∗,1) � 0. But

g(x∗,y∗,1) = f (x∗)+ k |y∗ − x∗ |2 − r,

so we derive k |y∗ − x∗ |2 � m+ r , which in turn implies x∗ ∈ Y + δB by choice
of k, whence g(x∗,y∗,1) > 0 by choice of δ . This contradiction establishes that
t∗ 	= 1.

We now verify the upper bound on f (x∗). Specializing to the points x = t y in the
minimization of g yields

f (x∗)− r t∗ � g(x∗,y∗, t∗) � min
{

f (t y)− r t : y ∈ Y, t ∈ [0,1]
}
,

whence

f (x∗) � min
{

f (t y)+ r(t∗ − t) : y ∈ Y, t ∈ [0,1]
}

� min
[0 ,Y ]

f + |r |.

We proceed to write the necessary conditions corresponding to the minimization of
g over Rn×Y×[0,1), using Prop. 7.31 (for u) and Prop. 1.39 (for y):

ζ := 2k ( t∗y∗ − x∗) ∈ ∂P f (x∗), 2kt∗(x∗ − t∗y∗) = ν ∈ NY (y∗), 〈ζ , y∗ 〉 � r,

with equality in the last relation if t∗ > 0.

Consider now the case t∗ > 0. From the above we have ζ =−ν/t∗ , so that, writing
the inequality for a normal vector in the sense of convex analysis, we derive

〈ζ , y∗ − y〉 � 0 ∀y ∈ Y.

Since we also have 〈ζ ,y∗ 〉 = r , it follows that 〈ζ ,y〉 � r ∀y ∈ Y , which is the
required conclusion.

There remains the case t∗ = 0. Then ζ = −2k x∗ , and the necessary conditions
above hold (with this ζ ) for any y∗ in Y (since the choice of y∗ has no effect on the
cost). The conditions above then yield 〈ζ , y∗〉 � r ∀y∗ ∈ Y , which, once more, is
the required conclusion. 
�
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Note that the theorem does not exclude the case minY f = ∞ ; that is, the case in
which dom f ∩ Y = /0. A slightly simpler statement is obtained when this possibility
is excluded:

11.3 Corollary. If we add to the hypotheses of Theorem 11.2 the condition that
Y ∩ dom f 	= /0, then, for any ε > 0, there is a point x∗ ∈ [x,Y ] + εB and ζ in
∂P f (x∗) such that

min
Y

f − f (x) � 〈ζ , y− x〉+ ε ∀y ∈ Y, f (x∗) � max
(

f (x), min
Y

f
)
.

Proof. We apply the theorem with r = minY f − f (x)− ε . The new upper bound
on f (x∗) follows from the previous one, as may easily be seen by considering sepa-
rately the two cases r > 0 and r � 0. 
�

11.4 Exercise. In the context of Theorem 11.2, suppose that dom f ∩ Y = /0. Prove
that for every ε > 0, there exists a point z ∈ [x,Y ]+ ε B and ζ ∈ ∂P f (z) such that
|ζ | > 1/ε . 
�

The following “uni-directional case” of the theorem, in which Y is a singleton, cor-
responds to the familiar classical mean value theorem, extended here to lower semi-
continuous functions:

11.5 Corollary. Let f : Rn → R∞ be lsc, and let x, y be points in dom f . For every
ε > 0, there exists x∗ ∈ [x,y ]+ ε B such that, for some ζ ∈ ∂P f (x∗), one has

f (y)− f (x) � 〈ζ , y− x〉+ ε .

11.6 Exercise.

(a) Prove Corollary 11.5.

(b) In the context of that corollary, take n = 2 and

f (x1, x2) = −|x2 | , x = (−1,0) , y = (1,0) .

Show that the point x∗ does not lie in the segment [x, y ].

(c) Let ϕ : [a,b ]→ R be a continuous function such that

t ∈ (a,b) , ζ ∈ ∂Pϕ(t) =⇒ ζ � 0 .

Prove that ϕ(b) � ϕ(a). 
�

It is a familiar fact in calculus that a continuously differentiable function f is Lip-
schitz of rank K if and only if |∇ f (x)| � K ∀x. The following consequence of
Theorem 11.2 extends that result to lsc functions, and hints at the advantage of
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proximal characterizations: one need only check points that are special, in the sense
that ∂P f (x) 	= /0.

11.7 Corollary. Let U be an open convex set in R
n. Let f : U → R∞ be lsc, and let

K � 0. Prove that

| f (y)− f (x)| � K |y− x | ∀x, y ∈ U ⇐⇒ |ζ | � K ∀ζ ∈ ∂P f (x) ∀x ∈ U.

We now focus for a moment upon the directionality aspect of Theorem 11.2, with a
smooth function f for the sake of simplicity.

11.8 Corollary. Let f : Rn → R be continuously differentiable in a neighborhood
of the compact convex subset Y of R

n, and let x ∈ Y . Then there exists x∗ ∈ Y such
that f (x∗) � f (x) and

min
y ∈ Y

(
f (y)− f (x)

)
� min

y ∈ Y
〈 f ′(x∗), y− x 〉.

Proof. Let ε i be a positive sequence decreasing to 0, and apply Cor 11.3. There
results a point xi in Y + ε i B such that f (xi) � f (x) and

minY f − f (x) � min
y ∈ Y

〈 f ′(xi), y− x 〉+ ε i .

We may suppose (by taking a subsequence) that xi converges to a limit x∗ , a point
which is easily seen to satisfy all the stated conditions. 
�

The classical mean value theorem would provide above an estimate of the form

max
y ∈ Y

(
f (y)− f (x)

)
� max

y ∈ Y
max

z ∈ [x,y ]
〈 f ′(z), y− x〉,

an upper bound on the increments of the type that is such a familiar tool in anal-
ysis. Cor. 11.8, however, provides a lower version of the estimate, with different
consequences. Here is an example:

11.9 Exercise. Let f : Rn → R be continuously differentiable. Suppose that, for a
certain δ > 0, one has

x ∈ B(0,1) =⇒ | f ′(x)| � δ .

Invoke Cor. 11.8 to prove that min B(0,1) f � f (0)− δ . (Notice that an estimate of
the type provided by the traditional mean value theorem does not help here.) 
�

Fuzzy calculus. Theorem 11.2 illustrates the general situation in proximal calcu-
lus, whereby formulas can only be asserted to a given positive tolerance ε . The
calculus is said to be fuzzy, an adjective that is not meant pejoratively.
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The proof of Cor. 11.8 illustrates how to pass to the limit in a fuzzy conclusion
in order to obtain a sharp one, when f is smooth. Something similar can be done
in a nonsmooth setting as well, by applying a closure operation to the proximal
subdifferential, as we now proceed to do.

11.10 Definition. The limiting subdifferential ∂L f (x) is defined as follows:

∂L f (x) =
{
ζ = lim

i→∞
ζ i : ζ i ∈ ∂P f (xi), xi → x, f (xi)→ f (x)

}
.

In this definition, we consider all sequences xi converging to x which admit a corre-
sponding convergent sequence ζ i , and are such that f (xi)→ f (x). (The last require-
ment is, of course, superfluous if f is continuous at x.) It follows from this definition
that the L-subdifferential ∂L f (x) contains the P-subdifferential ∂P f (x), and that, by
its very construction, the graph of the multifunction x �→ ∂L f (x) is closed:

ζ i ∈ ∂L f (xi) , xi → x, ζ i → ζ =⇒ ζ ∈ ∂L f (x) .

We remark that ∂L , like ∂P , but unlike ∂C , is truly a subdifferential, and that
∂L(− f )(x) 	=−∂L f (x) in general. When we calculate ∂L f (x) via limits of the form
lim i→∞ ζ i , where ζ i ∈ ∂P f (xi), no points xi can be ignored a priori, without po-
tentially affecting the result. In particular, and in contrast to the gradient formula
(Theorem 10.27), ∂L f fails to be “blind to sets of measure 0.” We illustrate this
now.

Fig. 11.1 A function f

11.11 Example. We consider a function f whose graph is contained between the
x-axis and the graph of y = x; f is piecewise affine, with slopes alternating between
±2; see Fig. 11.1. The function f is clearly Lipschitz, and, by the gradient formula,
we find that ∂C f (0) is the interval [−2, 2 ].

Let E consist of the origin, together with all points at which f is nondifferentiable.
Then E is countable, and for x /∈ E, we have ∂P f (x) equal to either {2} or {−2}. If
we were to ignore the points in E in calculating ∂L f (0), we would obtain {−2, 2}.
But this is incorrect, for at all points x > 0 in E for which f (x) = 0, we have
∂P f (x) = [−2, 2 ]; thus, ∂L f (0) = [−2, 2 ] = ∂C f (0). (We invite the reader to prove
that ∂P f (0) = /0.) 
�
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11.12 Proposition. Let f be Lipschitz near x. Then /0 	= ∂L f (x) ⊂ ∂C f (x). If f is
C1 near x, we have ∂L f (x) = { f ′(x)}. If f is convex, we have ∂L f (x) = ∂ f (x).

Proof. According to the proximal density theorem 7.34, there exist points xi con-
verging to x which admit elements ζ i ∈ ∂P f (xi) such that | f (xi)− f (x)| < 1/i.
If K is a Lipschitz constant for f in a neighborhood of x, then we have, for all i
sufficiently large,

ζ i ∈ ∂P f (xi) ⊂ ∂C f (xi) ⊂ B(0,K).

Thus, ζ i is a bounded sequence. By passing to a subsequence, we may suppose that
ζ i converges to a limit ζ , and then we obtain ζ ∈ ∂L f (x) by definition. That ∂L f (x)
is contained in ∂C f (x) is a consequence of Propositions 10.10 and 11.1. This proves
the first assertion.

When f is C1 near x, we have /0 	= ∂L f (x) ⊂ ∂C f (x) = { f ′(x)}, which implies
∂L f (x) = { f ′(x)}. If f is convex, and if ζ = lim ζ i as in the definition of ∂L f (x),
then we have by Prop. 7.26:

f (y)− f (xi) � 〈ζ i , y− xi 〉 ∀y ∈ R
n.

Passing to the limit gives f (y)− f (x) � 〈ζ , y− x〉, whence ζ ∈ ∂ f (x). It follows
that ∂L f (x)⊂ ∂ f (x) = ∂P f (x)⊂ ∂L f (x), whence equality holds. 
�

11.13 Example. Let us determine ∂P f (0,0) and ∂L f (0,0) for the function f of
Example 10.28; recall that we have already calculated ∂C f (0,0). Let (a,b) belong
to ∂P f (0,0). Then, for some σ � 0, near (0,0), we have

f (x,y)+σ
(
|x |2 + |y |2 ) � f (0,0)+ax+by = ax+by.

For points (x,y) of the form (2y,y), this becomes 2y+ 5σ x2 � 2ay+ by, for y
near 0; this holds if and only if 2a+ b = 2. A similar analysis for points of the
form (x, 2x) yields a+ 2b = 4. These two equations identify a unique possibility:
(a,b) = (0,2).

We can show that this is in fact an element of ∂P f (0,0), by verifying the proxi-
mal subgradient inequality in each of the three zones A, B, C. In B, for example,
f (x,y) = x, so that the proximal inequality requires: x � 2y, which is true in B; the
other two follow similarly. We conclude that ∂P f (0,0 is the singleton {(0,2)}.

In order to calculate ∂L f (0,0), we need to examine the origin itself (we know that
∂P f (0,0) = {(0,2)}), the points interior to the zones A, B, and C (where ∂P f is a
singleton, one of the three gradient values), as well as the boundaries between the
zones, since, as we know, they cannot be ignored despite being of measure zero.

Near the boundary between A and B (points of the form (ε ,−ε), ε > 0 ), the
function f coincides with the function min (2x+ y, x), a concave function which
is nondifferentiable at (ε ,−ε); it follows that ∂P f = /0 at these points. Near the B/C
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boundary, f is locally given by max (x, 2y), a convex function whose subdifferen-
tial (at (2ε ,ε)) is the segment [(1,0), (0,2)]. A similar analysis shows that along
the A/C boundary, ∂P f is the segment [(0,2), (2,1)].

We conclude that ∂L f (0,0) is the (nonconvex) set consisting of these two segments.
Note that the convex hull of ∂L f (0,0) is ∂C f (0,0), a general fact to be proved later.

The reader will understand from the above that the actual calculation of ∂L f is gen-
erally much more problematic than that of ∂C f . For this reason, most numerical
applications of nonsmooth analysis use the generalized gradient, or else limit atten-
tion to regular functions f , for which ∂L f (x) = ∂C f (x) (see Prop. 11.23). 
�

Returning now to the mean value inequality, here is a limiting version of Cor. 11.5
which illustrates the role of ∂L in expressing “non-fuzzy” conclusions:

11.14 Corollary. Let f : Rn → R∞ be Lipschitz on a neighborhood of the segment
[x, y ]. Then there exists x∗ ∈ [x, y ] such that, for some ζ ∈ ∂L f (x∗), one has

f (y)− f (x) � 〈ζ , y− x〉.

Proof. Let ε i be a positive sequence decreasing to 0, and apply Cor. 11.5 with
ε = ε i . The resulting x∗i and ζ i are bounded, so that, by passing to a subsequence,
they can be supposed to converge to limits x∗ and ζ . Then ζ ∈ ∂L f (x∗), and the
result follows. 
�

11.15 Exercise. If f is Lipschitz near x, and if ∂L f (x) is a singleton {ζ}, then f is
differentiable at x, with ∇ f (x) = ζ . 
�

The following “fuzzy sum rule” is a basic result in proximal calculus.

11.16 Theorem. (Proximal sum rule) Let f1, f2 : Rn → R∞ be lsc, and let x be a
point in dom f1 ∩ dom f2 . Let ζ belong to ∂P( f1 + f2)(x). Then, for every ε > 0,
there exist x1, x2 ∈ B(x,ε) with | fi(xi)− fi(x)|< ε (i = 1, 2) such that

ζ ∈ ∂P f1(x1)+∂P f2(x2)+B(0,ε).

If at least one of the functions is Lipschitz near x, we have

∂L( f1 + f2)(x) ⊂ ∂L f1(x)+∂L f2(x).

Proof. To lighten the notation, we take x = 0.

A. We treat first the case ζ = 0, assuming additionally that the function f1 + f2
attains a local minimum at 0. We recognize the following as a special case of the
inclusion in the theorem statement:

Lemma. For any ε > 0, there exist x1, x2 ∈ B(0,ε) such that
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| fi(xi)− fi(0)|< ε (i = 1, 2) and 0 ∈ ∂P f1(x1)+∂P f2(x2)+B(0,ε).

Proof. Fix ε > 0, and let δ > 0 satisfy δ +δ 2 < ε as well as

|u | � δ +δ 2 =⇒ fi(u) > fi(0)− ε (i = 1, 2) ,

and be such that f1 + f2 is minimized over B(0,δ ) at 0. For purposes of the proof,
we introduce

Y =
{
(v,v) : v ∈ R

n , |v | � δ
}
, f (x,y) = f1(x)+ f2(y) .

Then, in view of the local minimum, we have minY f − f (0,0) = 0. We proceed
to apply the mean value inequality (more precisely, the version given by Cor. 11.3)
on R

n×R
n, with ε = δ 2, x = (0,0). There results the existence of points x1, x2 in

B(0,δ +δ 2) ⊂ B(0,ε) and
(
ζ1,ζ2

)
∈ ∂P f (x1,x2) = ∂P f1(x1)×∂P f2(x2)

such that

f1(x1)+ f2(x2) � f1(0)+ f2(0) , 〈(ζ1,ζ2),(v,v)〉 � −δ 2 ∀(v,v) ∈ Y.

The second condition implies |ζ1 +ζ2 | � δ < ε . The first, given how δ was cho-
sen, yields

−ε < f1(x1)− f1(0) = f1(x1)+ f2(x2)− f2(x2)− f1(0)
� f1(0)+ f2(0)− f2(x2)− f1(0) = f2(0)− f2(x2) < ε .

Thus | fi(xi)− fi(0)|< ε (i = 1, 2). The lemma is proved. 
�

B. We now treat the inclusion in the general case. It follows from the definition of
proximal subgradient that, for a certain σ � 0, the function

x �→ f1(x)+ f2(x)+σ |x |2 −〈ζ , x〉

attains a local minimum at 0. We reduce the situation to that of the lemma, replacing
f1(x) by

f̃1(x) = f1(x)+σ |x |2 −〈ζ , x〉.

Hence f̃1 + f2 attains a local minimum at 0. Given ε > 0, we may now apply the
lemma above for any ε ′ < ε . By taking ε ′ sufficiently small, and with the help of
Prop. 7.31, we obtain the required conclusion; we omit the details.

C. Suppose now that f1 is Lipschitz near 0, and let ζ ∈ ∂L( f1 + f2)(0). Then, by
the way ∂L is defined, there is a sequence x j converging to 0, with ( f1 + f2)(x j)
converging to ( f1 + f2)(0), and corresponding points ζ j ∈ ∂P( f1 + f2)(x j) which
converge to ζ . Note that f1(x j)→ f1(0), since f1 is continuous; therefore, we also
have f2(x j)→ f2(0).
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Let ε j be a positive sequence decreasing to 0. We apply the inclusion proved above
to write

ζ j = ζ j
1 +ζ j

2 +u j , where ζ j
1 ∈ ∂P f1

(
x j

1

)
, ζ j

2 ∈ ∂P f2
(

x j
2

)
,

for certain points u j , x j
1 , x j

2 satisfying

u j ∈ ε j B , x j
i ∈ B(x j ,ε j), | fi(x

j
i )− fi(x j)|< ε j (i = 1, 2) .

Since f1 is Lipschitz near 0, the sequence ζ j
1 is bounded; we may suppose ζ j

1 → ζ1

by taking a subsequence (without relabeling). Necessarily, then, ζ j
2 also converges

to a limit, denoted by ζ2 . We have ζ = ζ1 + ζ2 . We find that, by definition, ζ i
belongs to ∂L fi(0) (i = 1, 2), which completes the proof. 
�

11.17 Exercise. Let F : Rn → R
m be Lipschitz near x. Then

xi → x, λ i → λ , ζ i → ζ , ζ i ∈ ∂P〈λ i ,F 〉(xi) ∀ i =⇒ ζ ∈ ∂L〈λ ,F 〉(x). 
�

Dini derivates. Differentiable functions, as well as convex functions, admit direc-
tional derivatives, as the reader knows. This is not the case for merely lower semi-
continuous (or even Lipschitz) functions, however. A useful tool in such a context
is the following generalized directional derivative, whose definition (somewhat ex-
tended here) can be traced back to Ulisse Dini’s influential nineteenth century book
on analysis.

11.18 Definition. Let x ∈ dom f , where f : Rn → R∞. The (lower) Dini derivate
in the direction v is given by

d f (x ;v) = liminf
w → v
t ↓ 0

f (x+ tw)− f (x)
t

.

11.19 Exercise. Let f : Rn → R be given.

(a) Let f be Lipschitz near x. Prove that d f (x ;v) is given by a simpler expression:

d f (x ;v) = liminf
t ↓ 0

f (x+ t v)− f (x)
t

.

(b) Let f be differentiable at x. Prove that d f (x ;v) = 〈 f ′(x),v〉∀ v ∈ R
n. 
�

Subbotin’s theorem. It turns out that if, from a given point, a function has a certain
minimal rate of increase in all directions taken from a convex set (as measured
by Dini derivates), then there is a nearby proximal subgradient that reflects that
increase uniformly. This is an important fact in proximal analysis, one whose precise
statement follows.
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11.20 Theorem. (Subbotin) Let f : Rn → R∞ be lsc and let x ∈ dom f . Suppose
that we have

d f (x ;w) > ρ ∀w ∈ W ,

where W is a compact convex subset of Rn and ρ ∈ R. Then, for every ε > 0, there
exists x∗ ∈ B(x,ε) with | f (x∗)− f (x)| < ε such that, for some ζ ∈ ∂P f (x∗), one
has

〈ζ ,w〉 > ρ ∀w ∈ W .

Proof. We claim that, for all sufficiently small t > 0, we have

f
(

x+ tw+ t 2u
)
− f (x) > ρ t + t 2 ∀w ∈ W, ∀u ∈ B. (1)

Were this not so, there would be sequences ti ↓ 0, wi ∈ W , ui ∈ B such that

f
(

x+ tiwi + t 2
i ui

)
− f (x)

ti
� ρ+ ti .

Invoking the compactness of W , there is a subsequence (we do not relabel) of wi
converging to a point w ∈ W . Then wi + tiui converges to w as well, and we deduce
d f (x ;w) � ρ , contradicting the hypothesis and establishing the claim.

Now fix ε > 0, and choose t > 0 so that (1) holds, as well as

tW + t 2B ⊂ ε B , |ρ t + t 2|< ε , f (y)> f (x)− ε ∀y ∈ x+ tW + t 2B .

We proceed to apply the mean value inequality (Theorem 11.2) with data

Y = x+ tW , r = ρ t + t 2 , ε = t 2/2.

The point x∗ that results satisfies

x∗ ∈ [x, x+ tW ]+ (t 2/2)B ⊂ x+ tW + t 2 B ⊂ x+ εB ,

so that f (x∗)> f (x)− ε . We also have

f (x∗) � f (x)+ |ρ t + t 2| < f (x)+ ε ,

whence | f (x∗)− f (x)|< ε . Finally, the element ζ ∈ ∂P f (x∗) satisfies

ρ t + t 2 � 〈ζ , tw〉 + t 2/2 ∀w ∈ W .

We find that all the requirements of the theorem statement are met. 
�

11.21 Exercise. Show that Subbotin’s theorem is false in the absence of the con-
vexity hypothesis on W . 
�

11.22 Corollary. If f is differentiable at x, then, for every ε > 0, there exists a
point x∗ ∈ B(x,ε) and ζ ∈ ∂P f (x∗) such that |ζ − f ′(x)| � ε .
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Proof. The hypotheses of Subbotin’s theorem are satisfied at x by the data

f̃ (y) = f (y)−〈 f ′(x), y〉 , W = B , ρ = −ε ,

since d f̃ (x ;v) = 0 ∀v. Applying the theorem yields a point x∗ ∈ B(x,ε), together
with

ψ ∈ ∂P f̃ (x∗) = ∂P f (x∗)− f ′(x)

(by Prop. 7.31) such that 〈ψ ,u〉 >−ε ∀u ∈ B. Then ψ = ζ − f ′(x) for some ζ in
∂P f (x∗). It follows that |ζ − f ′(x)|< ε . 
�

We now see that the limiting subdifferential generates the generalized gradient, in
the following sense:

11.23 Proposition. If f : Rn →R is Lipschitz near x, then ∂C f (x) = co ∂L f (x). If,
in addition, f is regular at x (in particular, if f is convex or continuously differen-
tiable), then ∂C f (x) = ∂L f (x).

Proof. We know that ∂C f (x) ⊃ ∂L f (x) by Prop. 11.12. To prove the opposite in-
clusion, it suffices, in light of the gradient formula for ∂C f (x) (Theorem 10.27), to
show that, for some δ > 0,

y ∈ B(x,δ ) , f ′(y) exists , ε > 0 =⇒
∃ z ∈ B(y,ε) , ζ ∈ ∂P f (z) such that |ζ − f ′(y)| � ε .

But we know this, by Cor. 11.22.

Now suppose that f is regular at x, and let ζ ∈ ∂C f (x). We wish to prove that
ζ ∈ ∂L f (x). Define f̃ (y) = f (y)−〈ζ ,y〉. Then, for all v ∈ W := B, we have

d f̃ (x ;v) = f̃ ′(x ;v) = f ′(x ;v)−〈ζ ,v〉 = f ◦(x ;v)−〈ζ ,v〉 � 0,

since ζ ∈ ∂C f (x). We invoke Theorem 11.20 to deduce the existence, for any ε > 0,
of z ∈ B(x,ε) and θ ∈ ∂P f̃ (z) = ∂P f (z)− ζ such that

〈θ ,v〉 � −ε ∀v ∈ B .

Writing θ = ξ −ζ for some element ξ ∈ ∂P f (z), we obtain

〈ξ −ζ ,v〉 � −ε ∀v ∈ B ,

whence |ξ −ζ | � ε . Letting ε decrease to 0, we discover ζ ∈ ∂L f (x). 
�

11.24 Example. (Exercise) Although ∂P may be empty at some points and can be
computationally difficult to use (compared to ∂C ), it offers certain theoretical ad-
vantages, for example in yielding the most refined characterization of Lipschitz be-
havior (see Cor. 11.7): the smaller the subdifferential in such a characterization, and
the more often it may be empty, the fewer points there are to check.
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The “importance of being empty” will now be illustrated with an example involving
generalized solutions of a simple ordinary differential equation. (This theme will
be extended and developed at greater length in Chapter 19, in connection with the
Hamilton-Jacobi equation.) We consider the boundary-value problem

|ϕ ′(t)|2 = 1, 0 < t < 1, ϕ(0) = ϕ(1) = 0, (∗)

where ϕ : [0,1] → R. There is no doubt that the most desirable type of solution
would be a function ϕ continuous on [0,1] and differentiable in (0,1) for which the
equation |ϕ ′(t)|2 = 1 holds at every t ∈ (0,1). This is a classical solution.

(a) Show that no classical solution of (∗) exists.

This is the trouble with classical solutions: we like them, but they may not be there
for us. An alternative (and familiar) solution concept is the following: a Lipschitz
function ϕ on [0,1] is said to be an almost everywhere solution of (∗) if ϕ satisfies
the boundary conditions, and if |ϕ ′(t)|2 = 1 a.e. (recall that ϕ ′(t) exists for almost
every t ∈ (0,1)). With this solution concept, we gain existence. In fact, too much
existence:

(b) Show that there exist an infinite number of almost everywhere solutions of (∗).

We now define a proximal solution of (∗): a continuous function ϕ : [0,1]→R such
that ϕ(0) = ϕ(1) = 0 and

t ∈ (0,1) , ζ ∈ ∂Pϕ(t) =⇒ |ζ |2 = 1.

We proceed to prove that there is exactly one proximal solution, the function

ϕ∗(t) =

{
t if t ∈ [0,1/2 ]

1− t if t ∈ (1/2,1 ].

(c) Show that ϕ∗ is a proximal solution of (∗).

Now let ϕ be any proximal solution of (∗); we show in the following steps that
ϕ = ϕ∗ .

(d) Prove that ϕ(t)− t is decreasing and ϕ(t)+ t is increasing. Deduce that ϕ � ϕ∗ .

(e) Prove that
min

t ∈ [0,1]
ϕ(t) � ϕ(1/2)−1/2.

[ Hint: apply the mean value inequality with Y = [δ ,1−δ ] and x = 1/2. ]

(f) Deduce that ϕ(1/2) = 1/2, and conclude. [ Hint: if ϕ(1/2)< 1/2, then ϕ attains
a minimum in (0,1), by the preceding. ]

(g) Why is −ϕ∗ not a proximal solution? (The answer to this question illustrates the
importance of ∂P being empty.) 
�
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The analysis above highlighted the use of monotonicity, a subject that plays an im-
portant role in differential equations and control, and one for which proximal analy-
sis is ideally suited. We shall examine the topic of monotone trajectories in the next
chapter.

11.2 Proximal geometry

We now develop the geometric aspect of proximal analysis. In this section, S is al-
ways taken to be a nonempty closed subset of Rn. The starting point is the following
concept.

11.25 Definition. Let x ∈ S. A vector ζ ∈ R
n is a proximal normal to the set S at

the point x if and only if there exists σ = σ(x,ζ ) � 0 such that

〈ζ , u− x〉 � σ |u− x |2 ∀u ∈ S. (1)

The set N P
S (x) of all such ζ defines the proximal normal cone to S at x.

The inequality that appears above is referred to as the proximal normal inequality.
It is evident that N P

S (x) is a convex cone containing 0.

11.26 Proposition. We have N P
S (x) ⊂ NS(x).

Proof. Let ζ satisfy the proximal normal inequality. Since NS(x) is defined as
TS(x)�, we must show that 〈ζ ,v〉 � 0, where v is any element of TS(x). Now we
have (by definition) v = lim i (xi − x)/ti , where xi is a sequence in S converging to
x. For each i, we have 〈ζ , xi − x〉 � σ |xi − x |2. Dividing by ti and passing to the
limit, we deduce 〈ζ ,v〉 � 0. 
�

The following result confirms that, despite the global nature of the proximal normal
inequality, proximal normals are a local construct.

11.27 Proposition. Suppose that, for some σ � 0, for some positive δ , we have

〈ζ , u− x〉 � σ |u− x |2 ∀u ∈ S ∩ B(x,δ ).

Then ζ ∈ N P
S (x).

Proof. If the conclusion fails, then for each integer i there is a point ui ∈ S such
that 〈ζ , ui−x〉 > i |ui−x |2. It follows that ui → x. But then, when i is sufficiently
large so that |ui − x |< δ and i > σ , a contradiction ensues. 
�

The reader will no doubt recall that the indicator IS of S is the function that equals 0
on S and +∞ elsewhere.
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11.28 Proposition. Let x ∈ S. Then ζ ∈ N P
S (x) ⇐⇒ ζ ∈ ∂PIS(x), and

N P
S (x) =

{
λζ : λ � 0, ζ ∈ ∂P dS(x)

}
.

Proof. The equivalence is essentially Prop. 11.27; we turn now to the stated equal-
ity. Let ζ ∈ N P

S (x). Then, for a certain σ � 0, the function

y �→ ϕ(y) := −〈ζ ,y〉+σ |y− x |2

attains a minimum relative to S at y = x. (This is an evident interpretation of the
proximal normal inequality.) Fix any ε > 0. Then, on a sufficiently small neighbor-
hood of x, the function ϕ is Lipschitz of rank |ζ |+ ε . It follows from Prop. 10.31
that x is a local minimum of the function ϕ(y)+( |ζ |+ ε )dS(y), whence

0 ∈ ∂P
{
−〈ζ ,y〉+σ |y− x |2 +( |ζ |+ ε )dS(y)

}
(x) =−ζ +( |ζ |+ ε )∂P dS(x),

by Prop. 7.31. Thus, ζ/( |ζ |+ ε ) ∈ ∂P dS(x) for every ε > 0. This shows that the
left side of the desired set equality is contained in the right. The opposite inclusion
follows easily from the definition of ζ ∈ ∂P dS(x), which immediately implies the
proximal normal inequality. 
�

Projection generates proximal normals. The next result shows that proximal nor-
mals at x correspond to “closest point” directions emanating (outwards) from the
point x, and that they are generated by projection onto the set. (Need we remind the
reader that projS(y) is the set of points s ∈ S such that |y− s | = dS(y)?)

11.29 Proposition. A nonzero vector ζ satisfies the proximal normal inequality (1)
if and only if x ∈ projS(y), where y := x+ζ/(2σ). More generally, ζ lies in N P

S (x)
if and only if there is a point z /∈ S for which x ∈ projS(z) and such that ζ = t (y−x)
for some t > 0.

Proof. We have

x ∈ projS(x+ζ/(2σ)) ⇐⇒ |ζ/(2σ)| � |x+ζ/(2σ)− y | ∀y ∈ S

⇐⇒ |ζ/(2σ)|2 � |x+ζ/(2σ)− y |2 ∀y ∈ S

⇐⇒ 0 � |x− y |2 + 〈ζ/σ , x− y〉 ∀y ∈ S

(by expanding the squared norm)

⇐⇒ 〈ζ , y− x〉 � σ |x− y |2 ∀y ∈ S .

This proves the first assertion. The characterization of N P
S (x), which follows from

it, is left as an exercise. 
�
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The situation is illustrated in Fig. 11.2. Note that for all ε > 0 sufficiently small, the
point y− εζ lies outside S and has unique closest point x in S.

Fig. 11.2 A proximal normal
direction ζ to S at x

The horizontal approximation theorem. We proceed to study the important case
of proximal normals to the epigraph of a function f : Rn → R∞ . In the remainder
of this section, f denotes a lower semicontinuous function; recall that its epigraph
epi f is then a closed set.

11.30 Exercise. Let x ∈ dom f , and suppose that (ζ ,−λ ) ∈ NP
epi f (x,r). Prove that

λ � 0. If λ > 0, show that r = f (x) necessarily. 
�

11.31 Theorem. (Rockafellar) Let x ∈ dom f , and let ζ 	= 0 satisfy

(ζ ,0) ∈ NP
epi f (x,r) .

Then, for every ε > 0, there exist

xε ∈ B(x,ε) , λε ∈ (0,ε) , ζε ∈ B(ζ ,ε )

such that | f (xε)− f (x)|< ε and (ζε ,−λε) ∈ NP
epi f (xε , f (xε)).

Proof.

A. We may assume, without loss of generality, that |ζ | = 1. There exists δ > 0
such that the point (x+δ ζ ,r) has unique closest point (x,r) in epi f (see the remark
following Prop. 11.29):

|(u, f (u)+ ε)− (x+δ ζ ,r)| � |(x,r)− (x+δ ζ ,r)| = δ ∀u ∈ dom f , ε � 0 .

Substituting ε+(r− f (x)) for ε in this inequality, we obtain

|(u, f (u)+ ε)− (x+δ ζ , f (x))| � δ ∀u ∈ dom f , ε � 0 .



11.2 Proximal geometry 243

Thus, (ζ ,0) ∈ NP
epi f (x, f (x)), by Prop. 11.29. Note also that the conclusion of the

theorem is unrelated to the value of r. The moral of this argument: it suffices to
prove the theorem in the case r = f (x), which we proceed to do.

B. Let t > 0. Then for any (u,λ ) ∈ epi f , we have, by the uniqueness,

|(x+δ ζ , f (x)− t)− (u,λ )| = |(x+δ ζ , f (x))− (u,λ + t)|
> |(x+δ ζ , f (x))− (x, f (x))| .

Letting d be the distance function for epi f , the conclusion is that

d(x+δ ζ , f (x)− t ) > d(x+δ ζ , f (x)) ∀ t > 0 .

It follows that there exists a sequence (xi , ti) → (x+ δ ζ ,0) with ti > 0 such that
∇d(xi , f (x)− ti) exists and has strictly negative second component. We know (see
Exer. 10.40) that

∇d(xi , f (x)− ti) = (xi − yi , f (x)− ti − ri)/d(xi , f (x)− ti) ,

where (yi , ri) is a closest point in epi f to (xi , f (x)− ti); we have ri = f (yi) neces-
sarily (since ri > f (x)− ti ). Thus

(xi − yi , f (x)− ti − f (yi)
)
/d(xi , f (x)− ti) ∈ NP

epi f
(
yi , f (yi)

)
,

and (yi , f (yi))→ (x, f (x)) necessarily (by uniqueness of the closest point). But
(

xi − yi , f (x)− ti − f (yi)
)
/d

(
xi , f (x)− ti

)
→ (δ ζ ,0)/δ = (ζ ,0) ,

and the result follows. 
�

The following reflects the familiar fact from classical calculus that the vector
(∇ f (x),−1) is a downward-pointing normal vector to the graph of f .

11.32 Theorem. Let x ∈ dom f . Then

ζ ∈ ∂P f (x) ⇐⇒ (ζ ,−1) ∈ NP
epi f

(
x, f (x)

)
.

Proof. Suppose first that ζ ∈ ∂P f (x). Then, by definition, there exist σ � 0 and a
neighborhood V of x such that

f (y)− f (x)+σ |y− x |2 � 〈ζ , y− x〉 ∀y ∈ V.

Rewriting yields

〈(ζ ,−1),(y− x, f (y)− f (x))〉 � σ |y− x |2 ∀y ∈ V,

which in turn implies
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〈(ζ ,−1), [ (y ,α)− (x , f (x))]〉 � σ |(y ,α)− (x , f (x))|2 (2)

for all points (y ,α) ∈ epi f in a neighborhood of (x , f (x)). It follows that (ζ ,−1)
belongs to NP

epi f (x, f (x)).

Let us now turn to the converse: suppose that (ζ ,−1) ∈ N P
epi f (x, f (x)). Then, by

definition, there exists σ � 0 such that (2) holds for all (y ,α) ∈ epi f . Now fix
M greater than σ (1+ |ζ |2). We claim that, for all y in a neighborhood of x, we
have

f (y)− f (x)+M |y− x |2 � 〈ζ , y− x〉.

If this is not the case, there is a sequence yi → x for which the inequality fails:

f (yi)− f (x)+M |yi − x |2 < 〈ζ , yi − x〉.

Note that yi 	= x necessarily. Now set

α i = f (x)+ 〈ζ , yi − x〉−M |yi − x |2.

By the preceding inequality, we have (yi ,α i) ∈ epi f . Substituting in (2), we de-
rive

(M−σ)|yi − x |2 � σ
∣
∣〈ζ ,yi − x〉−M |yi − x |2∣∣2

.

Dividing across by |yi − x |2 and letting i → ∞, we deduce M−σ � σ |ζ |2, which
contradicts the way M was chosen. 
�

Given the geometrical meaning of proximal normals (closest points) and proximal
subgradients (locally supporting parabolas), we may interpret the theorem above as
saying that when the underlying set is an epigraph, it is equivalent to have a contact
sphere and a contact parabola at a given point (x, f (x)), provided that the normal
direction is non horizontal.

Limiting normals. We define the limiting normal cone N L
S (x) by means of a clo-

sure operation applied to N P
S :

N L
S (x) =

{
ζ = lim

i→∞
ζ i : ζ i ∈ N P

S (xi) , xi → x, xi ∈ S
}
.

(Strictly speaking, it is superfluous to say that the points xi lie in S, since the normal
cone N P

S (xi) is not defined otherwise.) The cone N P
S (x) is always convex (by defini-

tion), but may not be closed; the cone N L
S (x) is always closed (by construction), but

may not be convex.

11.33 Exercise. Consider the set S in R
2 of Exer. 10.41. Prove that

N L
S (0,0) =

{
(δ ,0) : δ � 0

}
∪
{
(0 ,λ ) : λ � 0

}
.

Observe that NS(0,0), N L
S (0,0), and NC

S (0,0) are all different. 
�
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11.34 Proposition. Let x ∈ S. Then

ζ ∈ N L
S (x) ⇐⇒ ζ ∈ |ζ |∂L dS(x) ,

and
N L

S (x) =
{
λ ζ : λ � 0, ζ ∈ ∂L dS(x)

}
= ∂L IS(x) .

Proof. Let 0 	= ζ ∈ N L
S (x). Then there is a sequence ζ i converging to ζ and a

sequence xi in S converging to x such that ζ i ∈ N P
S (xi). The proof of Prop. 11.28

showed that ζ i/(|ζ i |+ε)∈ ∂P dS(xi), for any ε > 0. We deduce that ζ/|ζ | belongs
to ∂L dS(x).

For the converse, we may restrict attention to the case |ζ | = 1. There exists a
sequence xi converging to x and a sequence ζ i ∈ ∂P dS(xi) converging to ζ . If
xi ∈ S infinitely often, then ζ i ∈ N P

S (xi) by Prop. 11.28, whence ζ ∈ N L
S (x). In

the other case, we have xi /∈ S for all i sufficiently large. It follows from Prop. 7.39
that ζ i = (xi − si)/dS(xi), where projS(xi) = si . Then, by Prop. 11.29, we have
ζ i ∈ N P

S (si). Since si → x, we deduce ζ ∈ N L
S (x).

The remaining assertions of the proposition are left as a simple exercise. 
�

11.35 Corollary. Let x be a local minimum of the function f (u) subject to the con-
straint u ∈ S, where f is Lipschitz near x. Then 0 ∈ ∂L f (x)+N L

S (x).

Proof. The function f + IS has a local minimum at x, whence

0 ∈ ∂P
(

f + IS
)
(x) ⊂ ∂L

(
f + IS

)
(x).

We invoke the sum rule (Theorem 11.16) and the theorem above to conclude. 
�

11.36 Theorem. Let x ∈ S. Then

NS(x) ⊂ N L
S (x) ⊂ NC

S (x) = co N L
S (x) ,

with equality if and only if S is regular at x.

Proof. Recall (Theorem 10.34) that

NC
S (x) = co

{
λζ : λ � 0, ζ ∈ ∂C dS(x)

}
.

By Prop. 11.23, we also have ∂C dS(x) = co∂LdS(x). Then, in view of Prop. 11.34,
we may write

co N L
S (x) = co

{ ⋃

λ�0
λ ∂L dS(x)

}
= co

{ ⋃

λ�0
co

[
λ ∂L dS(x)

]}

= co
{ ⋃

λ�0
λ ∂C dS(x)

}
= NC

S (x).
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In order to complete the proof of the theorem, (that is, to prove the first inclusion),
we need only show that any element ζ of NS(x) belongs to N L

S (x)+B(0,ε), for an
arbitrary ε > 0, which we proceed to do.

The definition of NS(x) implies (see Exer. 8.6) the existence of a neighborhood V of
x such that 〈ζ ,u− x〉 � ε |u− x | ∀u ∈ S ∩ V . Then x is a local minimum for the
function 〈−ζ ,u− x〉+ ε |u− x | relative to u ∈ S. Calling upon Cor. 11.35, we may
then write

0 ∈ ∂L
{
〈−ζ ,u〉+ ε |u− x |

}
(x)+N L

S (x) ⊂ −ζ +B(0,ε)+N L
S (x) ,

the required conclusion.

Finally, regularity of S at x is characterized by equality between NC
S (x) and NS(x),

whence the last assertion of the theorem. 
�

It follows that all the normal cones that we currently dispose of coincide when the
underlying set is convex or sufficiently smooth (for example, a C2 manifold). In
general, they may all be different, however.

We remark that, in contrast to the nonsmooth geometry associated with generalized
gradients, tangency does not enter into proximal geometry: the latter is based en-
tirely on normality. We further remark that, even though we have taken the set S
to be closed above, it would suffice (for purposes of studying normal cones) that it
be locally closed near the point x of interest. This is because proximal normals are
entirely determined by the local structure of the underlying set.

11.3 A proximal multiplier rule

It is a truth universally acknowledged that a subdifferential in possession of a good
calculus, must be in want of a multiplier rule. We examine now the proximal version
of this adage, in the context of the following optimization problem:

Minimize f (x) subject to ϕ(x) ∈ Φ , (Q)

where the functions f : Rn → R∞ and ϕ : Rn → R
k, together with a subset Φ of

R
k, are the given data of the problem. It will always be assumed that f is lsc and

Φ is closed. As pointed out in Exer. 10.48, (Q) is equivalent to the problem (P)
considered earlier (while being notationally more convenient on occasion).

The following illustrates a now familiar theme: we derive a fuzzy proximal asser-
tion, together with its limiting exact version. Note that, at the fuzzy level, the multi-
plier rule below always holds in normal form.
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11.37 Theorem. Let x∗ be a local minimizer for (Q), where ϕ is Lipschitz near x∗ .
Then, for any ε > 0, there exist

xε ∈ B(x∗ , ε), yε ∈ B
(
ϕ(x∗), ε

)
∩ Φ , νε ∈ NP

Φ(yε)

with | f (xε)− f (x∗)|< ε such that

0 ∈ ∂P
{

f + 〈νε ,ϕ 〉
}
(xε)+B(0,ε) .

If f is Lipschitz near x∗ , there exist η equal to 0 or 1 and ν ∈ N L
Φ(ϕ(x∗)) such that

(η ,ν) 	= 0 and
0 ∈ ∂L

{
η f + 〈ν,ϕ 〉

}
(x∗).

Proof.

A. Fix r > 0 such that ϕ is Lipschitz on B(x∗ ,r), and such that x∗ is optimal for
(Q) relative to this ball. Let us now define V : Rk → R∞ as follows:

V (α) = inf
{

f (x)+ |x− x∗ |2 : x ∈ B(x∗ ,r) , ϕ(x) ∈ Φ−α
}
.

It is clear that V (0) = f (x∗), and that the infimum defining V (α) is attained
when V (α) < ∞ ; that is, when the set {x ∈ B(x∗ ,r)∩ dom f : ϕ(x) ∈ Φ − α }
is nonempty.

Lemma. V is lower semicontinuous.

Proof. Let α i be a sequence converging to α , and such that lim i V (α i) � � ∈ R;
we wish to prove V (α)� � (see Prop. 2.15). Let xi be a point at which the infimum
defining V (α i) is attained. Then

xi ∈ B(x∗ ,r) , ϕ(xi) ∈ Φ−α i , V (α i) = f (xi)+ |xi − x∗ |2.

By taking a subsequence, we may suppose xi → x̄. Then x̄ is admissible for the
problem defining V (α), whence

V (α) � f (x̄)+ | x̄ − x∗ |2 � lim
i→∞

{ f (xi)+ |xi − x∗ |2} = lim
i→∞

V (α i) � �.

B. According to the proximal density theorem 7.34, there is a sequence α i → 0
such that

V (α i)< ∞ , V (α i)→ V (0) , ∂P V (α i) 	= /0 .

Let ζ i ∈ ∂P V (α i), and let xi be a point at which the minimum defining V (α i) is at-
tained. Then f (xi)+ |xi−x∗ |2 → f (x∗); since xi ∈ B(x∗ ,r)∀ i, we may suppose (by
taking a subsequence) that xi converges to a limit x̄. It follows that x̄ is admissible
for (Q) and satisfies

f (x̄)+ | x̄ − x∗ |2 � f (x∗),
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whence x̄ = x∗ (for otherwise the optimality of x∗ would fail). Thus f (xi)→ f (x∗)
and, of course, ϕ(xi)→ ϕ(x∗). We now fix any i sufficiently large so that xi belongs
to B◦(x∗ ,r).

By the definition of proximal subgradient, there exist σ i > 0 and a neighborhood
Ui of α i such that

V (α)+σ i |α−α i |2 −〈ζ i ,α 〉 � V (α i)−〈ζ i ,α 〉 ∀α ∈ Ui . (1)

There exists yi ∈ Φ such that ϕ(xi) = yi −α i . Now let Vi be a neighborhood of xi
and Wi a neighborhood of yi such that

x ∈ Vi , y ∈ Wi ∩ Φ =⇒ x ∈ B(x∗ ,r), y−ϕ(x) ∈ Ui .

For such a choice of x and y, and with α := y−ϕ(x), we have therefore

f (x)+ |x− x∗ |2 � V (α)

by definition of V , since ϕ(x) = y−α and x ∈ B(x∗ ,r). We also have

V (xi) = f (xi)+ |xi − x∗ |2, α ∈ Ui .

Substituting in (1), we deduce that the function

(x,y) �→ f (x)+ |x− x∗ |2 +σ i |y−ϕ(x)− yi +ϕ(xi)|2 −〈ζ i , y−ϕ(x)〉

attains a minimum over Vi×(Wi ∩ Φ ) at (x,y) = (xi ,yi). The same therefore holds
for the function

(x,y) �→ f (x)+ |x− x∗ |2 +2σ i |y− yi |2 +2σ i K 2 |x− xi |2 −〈ζ i , y−ϕ(x)〉,

where K is a Lipschitz constant for ϕ on B(x∗ ,r).

Fix y = yi in the context of this minimization; we obtain from Fermat’s rule

0 ∈ ∂P { f + 〈ζ i ,ϕ 〉}+2(xi − x∗). (2)

Now fix x = xi ; we derive ζ i ∈ NP
Φ(yi). For i sufficiently large, we obtain the first

part of the theorem, by taking xε = xi , yε = ϕ(xi)+α i , νε = ζ i .

C. We turn now to the last assertion of the theorem. If, for at least a subsequence,
the ζ i are bounded, we take a subsequence for which they converge to a limit ν ,
which necessarily lies in N L

Φ(ϕ(x∗)). Then we pass to the limit in (2), obtaining
(see Exer. 11.17) 0 ∈ ∂L{ f + 〈ν,ϕ 〉}(x∗). This is the desired conclusion, in the
normal case.

In the remaining case, we have lim i |ζ i | = ∞. We then take a subsequence such
that ζ i/|ζ i | → ν , and we divide across in (2) by |ζ i | before passing to the limit.
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We discover 0 ∈ ∂L{〈ν,ϕ 〉}(x∗), where ν 	= 0; this is the abnormal version of the
required conclusion. 
�

Normal vectors to functionally defined sets. A useful geometrical consequence
of Theorem 11.37 is one bearing upon sets defined by functional constraints of the
form ϕ(x) ∈ Φ . The nondegeneracy of the constraint formulation corresponds in
this setting to the constraint qualification postulated in the theorem below. The
reader has actually met two special cases of it already: the rank condition (p. 95) or
surjectivity condition for equality constraints (as in Theorem 10.45), and the posi-
tive linear independence hypothesis for inequalities (see Cor. 10.44).

11.38 Theorem. Let E be the set defined by {u ∈ R
n : ϕ(u) ∈ Φ}, where Φ is a

closed subset of Rk, and where ϕ : Rn → R
k is Lipschitz near x ∈ E. We posit the

following constraint qualification:

0 ∈ ∂L〈ν,ϕ 〉(x) , ν ∈ N L
Φ
(
ϕ(x)

)
=⇒ ν = 0 .

Then if ζ ∈ N L
E (x), there exists ν ∈ N L

Φ(ϕ(x)) such that ζ ∈ ∂L〈ν,ϕ 〉(x).

Proof. There exist sequences xi → x, ζ i → ζ such that ζ i ∈ NP
E (xi). By definition

of NP
E , for a certain σ i , the point xi is a local minimum for the function

x �→ 〈−ζ i , x〉+σ i |x− xi |2

relative to ϕ(x) ∈ Φ . We invoke Theorem 11.37: there exist η i = 0 or 1, and ν i in
N L
Φ(ϕ(xi)) such that

0 ∈ ∂L
{
−η i〈ζ i , x〉+η iσ i |x− xi |2 + 〈ν i ,ϕ(x)〉

}
(xi) .

This implies η iζ i ∈ ∂L〈ν i ,ϕ 〉(xi). Dividing by |(η i,ν i)|, and taking a suitable
subsequence, we deduce in the limit (see Exer. 11.17) ηζ ∈ ∂L〈ν0 ,ϕ 〉(x), where
ν0 ∈ N L

Φ(ϕ(x)), η � 0, and |(η ,ν0)| = 1. The constraint qualification implies that
η is nonzero, whence

ζ ∈ ∂L〈ν0/η ,ϕ 〉(x) .

Setting ν = ν0/η , we recognize the required conclusion. 
�

11.39 Theorem. Let x ∈ S1 ∩ S2 , where S1 and S2 are closed subsets of R
n which

are transversal at x, in the sense that −N L
S1
(x)∩ N L

S2
(x) = {0}. Then

N L
S1∩ S2

(x) ⊂ N L
S1
(x)+N L

S2
(x) .

If, in addition, S1 and S2 are regular at x, then this holds with equality, in which case
S1 ∩ S2 is also regular at x, and we have TS1∩ S2(x) = TS1(x)∩ TS2(x).

Proof. Define ϕ(x,x) = (x,x) and Φ = S1×S2. If (ν1,ν2) ∈ N L
S1
(x)×N L

S2
(x),

then
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0 ∈ ∂L〈(ν1 ,ν2),ϕ 〉(x, x) =⇒ ν1 +ν2 = 0 =⇒ ν1 = ν2 = 0 ,

in view of transversality. This verifies the constraint qualification of Theorem 11.38.
Note that the set E of that theorem is S1×S2 . Accordingly, we have

ζ ∈ N L
S1∩S2

(x) =⇒ ζ ∈ ∂L〈(ν1 ,ν2),ϕ 〉(x) = ν1 +ν2

for certain (ν1 ,ν2) ∈ N L
S1
(x)×N L

S2
(x), which yields the desired conclusion.

Suppose now that S1 and S2 are regular at x.

Lemma. N L
S1
(x)+N L

S2
(x) is closed and convex.

Proof. We verify the closedness first. Let ζ i +ξ i be a sequence in N L
S1
(x)+N L

S2
(x)

converging to a limit ψ . If ζ i admits a bounded subsequence, then, by taking a
suitable subsequence, it follows that ψ ∈ N L

S1
(x)+N L

S2
(x), since each of these cones

is closed.

If, to the contrary, |ζ i | → ∞, then we divide across by |ζ i | and (again, for a suitable
subsequence) obtain in the limit nonzero elements ζ ∈ N L

S1
(x), ξ ∈ N L

S2
(x) whose

sum is zero. This contradicts the transversality hypothesis, and proves that the sum
is closed. That the sum is convex is evident, since N L and NC agree at regular points
(Theorem 11.36), and NC is convex.

Now we calculate (see Exer. 1.38 (c))

T C
S1∩S2

(x) ⊂ TS1∩S2(x) ⊂ TS1(x)∩ TS2(x) = T C
S1
(x)∩ T C

S2
(x) ,

in view of the regularity. Recall that when S is regular at x, then NS(x), N L
S (x), and

NC
S (x) all agree (Theorem 11.36). Taking polars above, we find

NC
S1∩S2

(x) ⊃ NS1∩S2(x) ⊃
[

T C
S1
(x)∩ T C

S2
(x)

]� ⊃
[

T C
S1
(x)

]�
+
[

T C
S2
(x)

]�

= NC
S1
(x)+NC

S2
(x) = NS1(x)+NS2(x) = N L

S1
(x)+N L

S2
(x)

= co
{

N L
S1
(x)+N L

S2
(x)

}
⊃ co N L

S1∩S2
(x) = NC

S1∩S2
(x) ,

where we have used both the lemma and the inclusion established in the first part of
the proof. Thus, equality holds throughout, which yields the remaining assertions of
the theorem. 
�

11.40 Exercise. Let E be defined as {x ∈ S : g(x) � 0, h(x) = 0}, where g and
h are continuously differentiable functions with values in R

m and R
k respectively,

and S is a closed subset of Rn. Suppose that the following constraint qualification
holds at a point x ∈ E:

0 ∈ Dx{〈γ , g〉+ 〈λ ,h〉}(x)+N L
S (x), γ � 0, 〈γ , g(x)〉= 0 =⇒ γ = 0, λ = 0.
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Prove, with the help of Theorem 11.38, that if ζ ∈ N L
E (x), then there exist γ ∈ R

m
+ ,

λ ∈ R
k, with 〈γ , g(x)〉= 0, such that

ζ ∈ Dx{〈γ , g〉+ 〈λ ,h〉}(x)+N L
S (x) . 
�

The proximal chain rule. Unexpectedly, perhaps, it turns out that the multiplier
rule admits the chain rule as an immediate consequence.

We consider a composite function f of the form f = g ◦ h, where h : Rn → R
k,

and where g : Rk → R∞ is lower semicontinuous. We are given a point x such that
h(x) ∈ domg, and we suppose that h is Lipschitz near x.

11.41 Theorem. Let ζ ∈ ∂P f (x). Then, for any ε > 0, there exist

yε ∈ B
(

h(x),ε
)
, θε ∈ ∂P g(yε), and xε ∈ B(x,ε)

with |g(yε)−g(h(x))|< ε such that ζ ∈ ∂P〈θε ,h〉(xε)+B(0,ε). If g is Lipschitz
near h(x), then we have

ζ ∈ ∂L f (x) =⇒ ∃ θ ∈ ∂L g
(

h(x)
)

such that ζ ∈ ∂L〈θ ,h〉(x).

Proof. There exists σ � 0 such that the function u �→ f (u)+σ |u− x |2 −〈ζ ,u〉
attains a local minimum at x. Then the function

(u,y) �→ g(y)+σ |u− x |2 −〈ζ ,u〉

attains a local minimum at (x,h(x)), relative to the constraint h(u)− y = 0. We
apply Theorem 11.37 to obtain the desired conclusion. When g is Lipschitz near
h(x), it is straightforward to pass to the limit in order to obtain the final assertion
(see Exer. 11.17). 
�

11.4 Dini and viscosity subdifferentials

The Dini derivate d f (x ;v) that we met in Def. 11.18 leads to a natural subdifferential
construct.

11.42 Definition. Let f : Rn → R∞ and x ∈ dom f . The Dini subdifferential of f
at x, denoted ∂D f (x), consists of the elements ζ ∈ R

n such that

d f (x ;v) � 〈ζ ,v〉 ∀v ∈ R
n.

Each such ζ is referred to as a Dini subgradient.
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This is at least the third subdifferential concept to enter the lists; the reader will soon
understand our reasons for introducing it. We proceed now to a brief summary of
the main features of ∂D f , beginning with the following, whose proof is left as an
exercise.

11.43 Proposition. Let f : Rn → R∞ and x ∈ dom f .

(a) ζ belongs to ∂D f (x) if and only if there exists a function o(·) : R+ → R+ such
that limr ↓ 0 o(r)/r = 0 and

f (x+u)− f (x)−〈ζ ,u〉+o(|u |) � 0 ∀u ∈ R
n;

(b) ∂D f (x) is closed and convex, and contains ∂P f (x) ;

(c) If f is differentiable at x, then ∂D f (x) = { f ′(x)}.

Note that, in contrast to ∂P , ∂L , or ∂C , the Dini subdifferential ∂D always reduces
to the derivative when it exists. There is no duality here between the directional
and subdifferential constructs, however; that is, we cannot reconstruct d f (x ; ·) from
∂D f (x), in contrast to the pair f ◦(x ; ·) and ∂C f (x), where the former is the support
function of the latter.

11.44 Proposition. We have ζ ∈ ∂D f (x) if and only if there exists a continuous
function g : Rn → R which is differentiable at x, with g ′(x) = ζ , such that f − g
attains a local minimum at x.

Proof. If a function g as described exists, then we have

d( f −g)(x ;v) = d f (x ;v)−〈g ′(x),v〉 � 0 ∀v ,

whence ζ = g ′(x) ∈ ∂D f (x). We turn now to the converse: let ζ ∈ ∂D f (x).

Let us define
o1(t) = t sup

{
o(r)/r : 0 < r � t

}
� o(t) ,

where o is the function provided by Prop. 11.43. It is not hard to show that o1
satisfies the same properties as o, but with the additional property that t �→ o1(t)/t
is increasing on (0,+∞) (and hence continuous except at countably many points).
Next, we set

o2(t) = 2 t
∫ 2 t

t

o1(r)
r2 dr .

The reader may verify (using the fact that t �→ o1(t)/t is increasing) that

o1(2 t) � o2(t) � o1(t) ∀ t > 0 ,

from which it follows that o2 satisfies all the properties mentioned for o1 , in addition
to being continuous. Observe that
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f (y) � g(y) := f (x)+ 〈ζ , y− x〉−o2
(
|y− x |

)
∀y ∈ R

n ,

with equality at y = x (since o2(0) = 0). Thus f −g attains a minimum at x. Clearly
g is continuous.

There remains to prove that g ′(x) exists and equals ζ ; that is, that the function
w(y) = o2( |y− x |) satisfies w ′(x) = 0. But this is evident, since, for any y 	= x,
we have

0 � w(y)−w(x)
|y− x | =

o2( |y− x |)
|y− x | ,

and the last term converges to 0 as y → x. 
�

The characterization in Prop. 11.44 is the one most often used in the literature of
viscosity solutions, which explains why viscosity subdifferential is a synonym for
the Dini subdifferential ∂D f .

We proceed to show, using Subbotin’s theorem, that even though ∂D f (x) is some-
times strictly bigger than ∂P f (x), the difference between the two is negligible, in a
certain sense.

11.45 Theorem. Let f : Rn → R∞ be lsc. Suppose that ζ ∈ ∂D f (x). Then, for any
ε > 0, there exist z ∈ x+ ε B and ξ ∈ ∂P f (z) such that

| f (x)− f (z)| < ε , |ζ −ξ | < ε .

Proof. Set ϕ(y) = f (y)−〈ζ ,y〉. Then dϕ(x ;v) � 0 ∀v∈ R
n. Thus, for any δ > 0,

we have
dϕ(x ;v)>−δ ∀v ∈ B.

We apply Subbotin’s theorem 11.20: there exists z and ψ ∈ ∂Pϕ(z) such that

z ∈ x+δ B, |ϕ(z)−ϕ(x)| < δ , 〈ψ ,v〉 >−δ ∀v ∈ B.

It follows that |ψ |< δ and

| f (z)− f (x)| � |ϕ(z)−ϕ(x)|+ |ζ | |x− z | < (1+ |ζ |)δ .

We also have ∂Pϕ(z) = ∂P f (z)− ζ , by Prop. 7.31, which implies the existence of
ξ ∈ ∂P f (z) such that ψ = ξ − ζ . Then, choosing δ < ε/(1+ |ζ |), we find that z
and ξ satisfy the required conditions. 
�

11.46 Corollary. Let f be differentiable at x. Then, for any positive ε , there exists
z ∈ x+ ε B admitting ζ ∈ ∂P f (z) such that | f (x)− f (z)|< ε and | f ′(x)−ζ |< ε .

A further consequence of the theorem is that when we apply the sequential closure
operation to ∂D f as we did for ∂P f , the resulting limiting construct is the same as
before:
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11.47 Corollary. Let f : Rn → R∞ be lsc. Then we have

∂L f (x) =
{
ζ = lim

i→∞
ζ i : ζ i ∈ ∂D f (xi), xi → x, f (xi)→ f (x)

}
.

It also follows from Theorem 11.45 that ∂D f possesses the same fuzzy calculus as
∂P. (One fuzziness subsumes the other, so to speak.) To give but one example, we
state the following sum rule, which now follows immediately from the proximal
sum rule given by Theorem 11.16.

11.48 Corollary. Let f1, f2 : Rn → R∞ be lsc, with x ∈ dom f1 ∩ dom f2 . Let ζ
belong to ∂D( f1 + f2)(x). Then, for every ε > 0, there exist x1, x2 ∈ B(x,ε) such
that

| fi(xi)− fi(x)| < ε (i = 1, 2) and ζ ∈ ∂D f1(x1)+∂D f2(x2)+B(0,ε) .

A moral of the discussion is that (in finite dimensions) the development of subdif-
ferential calculus can just as well be based on ∂D (instead of ∂P).

We conclude by showing that the Dini subdifferential can be used to characterize
regularity at a point.

11.49 Theorem. If f : Rn → R is Lipschitz near x, then

∂D f (x) ⊂ ∂L f (x) ⊂ ∂C f (x) ,

with equality throughout if and only if f is regular at x.

Proof. The inclusions are known facts. Suppose now that f is regular at x, and let
ζ belong to ∂C f (x). Then (using Exer. 11.19)

d f (x ;v) = f ′(x ;v) = f ◦(x ;v) � 〈ζ ,v〉 ∀v ∈ R
n,

which implies ζ ∈ ∂D f (x). Hence equality holds throughout in the inclusions.

Conversely, suppose that equality holds in the stated inclusions. Fix v ∈ R
n. There

exists ζ ∈ ∂C f (x) satisfying f ◦(x ;v) = 〈ζ ,v〉. Then ζ ∈ ∂D f (x), whence

〈ζ ,v〉 � d f (x ;v) = liminf
t ↓ 0

[ f (x+ t v)− f (x)]/t � f ◦(x ;v) = 〈ζ ,v〉.

It follows that f ′(x ;v) exists and agrees with f ◦(x ;v). Thus, f is regular at x. 
�



Chapter 12

Invariance and monotonicity

A venerable notion from the classical theory of dynamical systems is that of flow
invariance. When the basic model consists of an autonomous ordinary differential
equation x ′(t) = f (x(t)) and a set S, then flow invariance of the pair (S, f ) is the
property that for every point α ∈ S, the solution x(·) of the differential equation
with initial condition x(0) = α remains in S : x(t) ∈ S for all t � 0. In this section,
we study a highly useful generalization of this concept to situations wherein the
differential equation is replaced by an inclusion.

Specifically, let F be a multifunction from R
n to R

n; that is, F(x) is a subset of Rn

for each x. A trajectory x of the multifunction F , on a given interval [a,b ], refers
to a function x : [a,b ] → R

n whose n components are absolutely continuous, and
which satisfies the differential inclusion

x ′(t) ∈ F(x(t)), t ∈ [a,b ] a.e.

When F(x) is a singleton { f (x)} for each x, the differential inclusion reduces to
an ordinary differential equation. Otherwise, the reader will agree, we would expect
there to be multiple trajectories from the same initial condition. In such a context,
the invariance question bifurcates: do we require some of, or all of, the trajectories to
remain in S? This will be the difference between weak and strong invariance.

Terminology: We extend the notation AC[a,b ], as well as the meaning of the
phrase “absolutely continuous” to include vector-valued functions x : [a,b ] → R

n

whose components are absolutely continuous. We shall often refer to such a func-
tion as an arc, for brevity’s sake; sometimes the underlying interval is implicitly
defined by the context, as is the dimension n.

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 12,
© Springer-Verlag London 2013

255

http://dx.doi.org/10.1007/978-1-4471-4820-3_12


256 12 Invariance and monotonicity

12.1 Weak invariance

Throughout this section, we deal with a multifunction F defined on a given measur-
able subset Δ of Rn, which may or may not coincide with the set S whose invariance
is being studied. The following is always in force:

12.1 Hypothesis. For every x ∈ Δ ,

(a) The set F(x) is nonempty, convex, and compact ;

(b) The graph of F is closed at x:

xi ∈ Δ , xi → x , vi → v , vi ∈ F(xi) =⇒ v ∈ F(x) ;

(c) F is bounded near x: there exists r = r(x)> 0 and M = M(x) such that

y ∈ Δ ∩ B(x,r) , v ∈ F(y) =⇒ |v | � M.

We also write the last property in the form |F(y)| � M. We remark that these
hypotheses imply that F is a measurable multifunction, by Prop. 6.27.

12.2 Exercise. Prove that (under Hypothesis 12.1, of course) F is bounded on
compact sets: for every compact subset C of Δ , there exists M = M(C) such that
|F(x)| � M ∀x ∈ C. Show, too, that F is upper semicontinuous at each x ∈ Δ :

∀ε > 0 ∃ r > 0 such that y ∈ B(x,r)∩ Δ =⇒ F(y) ⊂ F(x)+B(0,ε). 
�

Another relevant property of F (but imposed only selectively) is that of linear
growth: this is said to hold on Δ when there exist constants c and d such that

x ∈ Δ , v ∈ F(x) =⇒ |v | � c|x |+d. (1)

In light of Exer. 12.2, linear growth holds automatically when Δ is compact.

Existence. The basic result below identifies conditions under which we can assert
the existence of a trajectory which remains in a given set S at all times. It turns out,
naturally perhaps, that we can achieve this with hypotheses that bear solely upon the
values that F takes in S itself.

The theorem is framed with the help of the lower Hamiltonian hF associated to F ;
this is the function defined by

hF(x,ζ ) = min
{
〈ζ ,v〉 : v ∈ F(x)

}
.

Note that, in the current context, hF : Δ×R
n → R is finite-valued.
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12.3 Theorem. Let S be closed, and let F satisfy Hypothesis 12.1 for Δ = S, to-
gether with linear growth. Suppose that

x ∈ S =⇒ hF
(

x,N P
S (x)

)
� 0.

Then, for any α ∈ S, there is a trajectory x for F defined on [0,∞) which satisfies

x(0) = α , x(t) ∈ S ∀ t � 0.

Remark. The Hamiltonian inequality hF(x,N P
S (x)) � 0 in the statement of the

theorem means that
hF(x,ζ ) � 0 ∀ζ ∈ N P

S (x) .

Note that this is automatically satisfied at one of the points ζ ∈ N P
S (x), namely the

point ζ = 0, since hF(x,0) = 0 by the way hF is defined. Since N P
S (x) reduces to

{0} when x ∈ int S, the Hamiltonian inequality is automatically satisfied there; thus,
only boundary points of S are really involved in considering that inequality.

Concerning the boundary points, the reader will recall that we think of a nonzero
proximal normal vector ζ at x as “pointing out” of the set. In this light, the inequality
hF(x,ζ ) � 0 requires that for each such ζ , there be an available velocity direction
v ∈ F(x) such that 〈ζ ,v〉 � 0. This is very natural, then; in the absence of such v,
all trajectories would be forced to leave the set. This is the intuitive interpretation of
the Hamiltonian inequality.

Proof.

A. We first prove the theorem under an additional temporary hypothesis [TH]
whose removal will be the last step in the proof.

[TH] F is uniformly bounded: ∃ M such that F(x) ⊂ B(0,M) ∀x ∈ S.

We proceed to extend the multifunction F as follows, for any x ∈ R
n :

F(x) = co
{

v ∈ F(s) : s ∈ projS(x)
}
.

Note that this agrees with F(x) when x ∈ S. It is easy to verify (with the help of
Exer. 12.2) that the set whose convex hull is being taken is compact, and it follows
readily that this new F satisfies Hypothesis 12.1 for Δ = R

n, and, in addition, is
globally bounded by M.

Note that any trajectory x(t) for the extended F that satisfies x(t) ∈ S ∀ t � 0 is a
trajectory for the original F . The moral of all this is that, in the presence of [TH], it
suffices to prove the theorem when F is globally defined, satisfies Hypothesis 12.1
globally, and is globally bounded by M. We assume this henceforth, until the last
step (the removal of [TH]).

B. Let us define a function f as follows: for each x in R
n, choose any s = s(x) in

projS(x), and let v ∈ F(s) be any point minimizing the function v �→ 〈v, x− s〉 over
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the set F(s). We set f (x) = v. Since x− s ∈ N P
S (s) (see Prop. 11.29), this minimum

is nonpositive by hypothesis:

〈 f (x), x− s(x)〉 � 0 ∀x ∈ R
n.

By construction, we also have | f (x)| � M ∀x. We do not claim any other properties
for f , such as continuity or even measurability; this will suffice.

Fix any T > 0, and let

πN =
{

t0 , t1, . . . , tN−1, tN
}

be a uniform partition of [0,T ], where t0 = 0 and tN = T . We proceed by con-
sidering, on the interval [ t0 , t1 ], the differential equation with constant right-hand
side

x ′(t) = f (x0) , x(t0) = x0 := α .

Of course this has a unique affine solution x(t) on [ t0 , t1]; we define x1 = x(t1).
Next, we iterate, by considering on [ t1, t2 ] the initial-value problem

x ′(t) = f (x1) , x(t1) = x1 .

The next so-called node of the scheme is x2 := x(t2). We proceed in this manner
until an arc xπN (which is in fact piecewise affine) has been defined on all of [0,T ];
it is usually referred to as the Euler polygonal arc corresponding to the partition πN .
Because | f | � M, the polygonal arc xπN is Lipschitz of rank M, and by Ascoli’s
theorem, a subsequence of the equicontinuous family xπN converges uniformly on
[0,T ] to a Lipschitz arc x.

Let yN(t) be defined as the node xi , for the index i in the partition πN such that
t ∈ [ ti , ti+1). Then the yN are measurable, piecewise constant functions on [0,T ]
converging uniformly to x. We have

xπN
′(t) ∈ FS

(
yN(t)

)
, t ∈ [0,T ] a.e.

Let us prepare the way for an appeal to the weak closure theorem 6.39. Since f
is bounded, there is a subsequence of the functions xπN

′ converging in L1(0,T ) to
a function w (see Prop. 6.17). Since each xπN is the indefinite integral of x ′

πN
, it

follows that w = x ′ a.e. Let us verify hypothesis (b) of the weak closure theorem.
We wish to show that for a given p∈ R

n, the function t �→ HF(u(t))(p) is measurable,
for any measurable function u(·). This would follow from the fact that the map
x �→ HF(x)(p) is Borel measurable. But this is indeed the case, since the hypotheses
on F imply that it is upper semicontinuous.

We conclude that in the limit along a subsequence, we obtain x ′(t) ∈ F(x(t)) a.e.
Thus, x is a trajectory for F . There remains only to prove that x(t) ∈ S ∀ t ∈ [0,T ],
for then the theorem follows (under [TH], still) by iterating the current step on the
interval [T,2T ], etc.
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C. Let xπN be one of the sequence of polygonal arcs constructed above converging
uniformly to x on [0,T ]. As before, we denote its node at ti by xi (i = 0,1, . . . , N);
thus, x0 = x(0) = α . There exists for each i a point si ∈ projS(xi) such that
〈 f (xi), xi − si 〉 � 0, as we saw earlier. Note that s0 = α . We calculate

d 2
S (x1) � |x1 − s0 |2 (since s0 ∈ S )

= |x1 − x0 |2 + |x0 − s0 |2 +2〈x1 − x0 , x0 − s0 〉

� M 2(t1 − t0)
2 +d 2

S (x0)+2
∫ t1

t0

〈x ′
πN

(t), x0 − s0〉dt

= M 2(t1 − t0)
2 +d 2

S (x0)+2
∫ t1

t0

〈 f (x0), x0 − s0〉dt

� M 2(t1 − t0)
2 +d 2

S (x0) .

The same estimates at any node apply to give

d 2
S (xi) � d 2

S (xi−1)+M 2(t i − ti−1)
2,

whence

d 2
S (xi) � d 2

S (x0)+M 2 ∑ i
�=1 (t�− t�−1)

2

� d 2
S (α)+(T M 2/N)∑ i

�=1 (t�− t�−1) � (T M)2/N.

Now consider the subsequence of xπN which converges uniformly to x. Since the
last estimate holds at every node, we deduce in the limit dS(x(t)) � 0 ∀ t ∈ [0,T ].
Thus the trajectory x remains in S. This completes the proof of the theorem when
[TH] holds.

D. Instead of [TH], we assume now only the linear growth condition (1), in which
we can suppose that c > 0; we set T0 = 1/(2c). Fix any point α in S, and proceed
to choose R > 0 so that

R
cR+ c|α |+d

= T0 .

(The reader will note that this is possible.) Let us observe that for any point x in
S ∩ B(α ,R), for any v ∈ F(x), we have

|v | � c|x |+d � c|x−α |+ c|α |+d � cR+ c|α |+d =: M.

We redefine F by setting

F(x) = co
{

F(s) : s ∈ projS∩B(α ,R)(x)
}
.

Note that the new F agrees with the old on S ∩ B(α,R). It is easy to see that the
redefined F satisfies Hypothesis 12.1 on S, and, in addition, is globally bounded by
M (that is, [TH] holds).
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Accordingly, we may apply the case of Theorem 12.3 proved above to find a trajec-
tory x on [0,∞) for the redefined F which lies in S, and which satisfies x(0)= α . But
for t � R/M = T0 , we necessarily have x(t) ∈ B(α ,R); it follows that on [0,T0 ],
the arc x is a trajectory for the original F itself.

The theorem statement now follows by iteration: we proceed to find, as above, a
trajectory on [T0 , 2T0 ] starting at x(T0) which lies in S, and so on. The essential
point here is that T0 does not depend on the initial condition. 
�

The role of linear growth. In the last step of the proof above, the linear growth
condition was invoked in order to obtain an a priori estimate for the trajectory.
It is well known (in some circles, at least), that in the absence of this condition,
what is called “finite-time blowup” can occur. This is the phenomenon in which the
solution x(t) of a differential equation fails to be defined beyond a certain point at
which |x(t)| tends to +∞. A classic example (n = 1) is the (unique) solution to the
Cauchy problem

x ′(t) = x(t)2 +1, x(0) = 0,

which happens to be the function x(t)= tan t. Then x is defined only for t < π/2; the
interval of definition is intrinsically restricted. This phenomenon does not happen
when the right side of the differential equation has linear growth (as in the case of a
linear differential equation), as can be seen from Gronwall’s lemma (Theorem 6.41).
It is often convenient to postulate linear growth in order to avoid having to mention
maximal intervals of definition.

Lurking within Theorem 12.3 is an existence theorem for differential inclusions,
one that makes no reference to a set S.

12.4 Corollary. For a given α ∈ R
n, let F satisfy Hypothesis 12.1 for Δ = B(α,r),

where r > 0. Then there exists a trajectory x for F on an interval [0,T ], T > 0,
satisfying x(0) = α . If F satisfies Hypothesis 12.1 for Δ = R

n, as well as (global )
linear growth, we can assert that the trajectory is defined on [0,∞).

Proof. We seek to apply Theorem 12.3, with S = B(α ,r). The trick is to redefine
F on the boundary of this ball so that the proximal criterion holds, while retaining
Hypothesis 12.1. The proximal criterion is certainly satisfied if the new F contains
0. Accordingly, we redefine F(x) (when x ∈ ∂S ) to be the set

F(x) = co{F(x) ∪ {0}}.

Then Theorem 12.3 applies, and yields a trajectory for the new F which, until it
reaches the boundary of the ball, is also a trajectory for the original F .

When the strengthened global conditions hold, we concatenate trajectory pieces of
fixed length to obtain one defined on [0,∞), as in the proof of Theorem 12.3. 
�

The property of admitting a trajectory that evolves in the set S turns out to be an
important one, meriting a definition.
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12.5 Definition. The system (S,F) is called weakly invariant provided that, for
any α ∈ S, there exists T > 0 and a trajectory x for F on [0,T ] such that

x(0) = α , x(t) ∈ S ∀ t ∈ [0,T ].

Note that we speak of this property (which is also called viability) as being one of
the pair (S,F), and not just of S. Since F is autonomous (has no dependence on t),
the choice of t = 0 as the initial time of the trajectories is simply a convenient one
that has no intrinsic meaning.

We remark that in contrast to Theorem 12.3, the trajectories here are not necessarily
defined on all of R+ . Thus, there is a local nature to the property (the T above
depends on α ). However, when linear growth holds, it follows as in Cor. 12.4 that
weak invariance can be characterized by globally defined trajectories:

12.6 Corollary. Let S be closed, and let F satisfy Hypothesis 12.1 for Δ = S, as
well as linear growth on S. Then (S,F) is weakly invariant if and only if for any α
in S, there exists a trajectory x for F on [0,∞) such that x(0) = α , x(t)∈ S ∀ t � 0.

In the absence of linear growth, weak invariance remains a purely local property.
This is reflected by the local nature of the characterizations given below.

12.7 Theorem. (Weak invariance criteria) Let S be closed, and let F satisfy Hy-
pothesis 12.1 for Δ = S. Then the following are equivalent:

(a) (S,F) is weakly invariant.

(b) F(x)∩ TS(x) 	= /0 ∀x ∈ S.

(c) F(x)∩ coTS(x) 	= /0 ∀x ∈ S.

(d) hF
(

x,N P
S (x)

)
� 0 ∀x ∈ S.

(e) hF
(

x,N L
S (x)

)
� 0 ∀x ∈ S.

Remark. The list may seem excessively long, but we assure the reader that there is
a point to it. To rule out weak invariance, for example, it suffices to exhibit a single
point x ∈ S for which F(x)∩ TS(x) = /0; for this purpose, (b) is better than (c). But
to verify weak invariance, it is easier to check (c) rather than (b). Similar remarks
hold concerning the normal cone criteria.

Proof. We have (see Prop. 11.26)

N P
S (x) ⊂ NS(x) = TS(x)� = [coTS(x)]�.

It follows easily that (b)⇒ (c)⇒ (d). A simple limiting argument shows that (d) and
(e) are equivalent (this uses the fact that F is locally bounded). Let us now prove
that (a) implies (b).
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Accordingly, let us suppose (a), and fix α ∈ S. There is a trajectory x on an interval
[0,T ] such that x(0) = α and x(t) ∈ S ∀ t � 0. Since F is bounded near α , x is
Lipschitz on some interval [0,δ ], δ > 0. We may therefore choose a sequence ti
decreasing to 0 such that v := lim (x(ti)− x(0))/ti exists. Note that v ∈ TS(α) by
definition.

Now fix ε > 0. By the graph-closedness and local boundedness of F , there exists
τ > 0 such that

F(x(t)) ⊂ F(x(0))+B(0,ε) ∀ t ∈ [0,τ ]

(see Exer. 12.2). Now let us observe that

x(ti)− x(0)
ti

=
1
ti

∫ ti

0
x ′(s)ds.

For all i sufficiently large, the integrand above has values almost everywhere in
F(x(s)), which is contained in F(x(0))+B(0,ε). Since this last set is convex, we
deduce from Exer. 2.44 (for such i):

x(ti)− x(0)
ti

∈ F(x(0))+B(0,ε).

Passing to the limit, we derive v ∈ F(x(0))+B(0,ε). Since ε > 0 is arbitrary, we
have v ∈ F(x(0)) = F(α), and (b) follows.

We complete the proof of the theorem by showing that (d) implies (a). Fix any
α ∈ S. There exists r > 0 and M such that

x ∈ S ∩ B(α,r), v ∈ F(x) =⇒ |v | � M.

We redefine F by setting

F(x) = co
{

F(s) : s ∈ projS∩B(α,r)(x)
}
.

Note that the new F agrees with the old on S ∩ B(α,R). It is easy to see that the
redefined F satisfies Hypothesis 12.1 on S, and, in addition, is globally bounded
by M (and so, exhibits linear growth). We may therefore apply Theorem 12.3 to
find a trajectory x on [0,∞) for the redefined F which lies in S, and which satisfies
x(0) = α . But for t � r/M =: T , we necessarily have x(t) ∈ B(α,R); it follows
that, on [0,T ], x is a trajectory for the original F ; this establishes (a). 
�

12.8 Corollary. Let F satisfy Hypothesis 12.1 on S, and suppose that at each point
x ∈ ∂S, either F(x)∩ coTS(x) 	= /0, or else hF(x ,ζ ) � 0 ∀ζ ∈ N P

S (x). Then (S,F)
is weakly invariant.

Proof. In view of the theorem, it suffices to prove that coTS(x) ⊂ [N P
S (x)]

�, for
then the proximal criterion holds at every x. The required fact follows from taking
polars in N P

S (x)⊂ NS(x) = [TS(x)]� = [coTS(x)]�. 
�
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The point of the corollary is that we can apply different criteria at different points
x (tangential or normal, the weaker one in each case), depending upon which one
is more convenient at that point. For example, suppose that N P

S (x) reduces to {0}
at a certain x. Then there is no need to examine TS(x), since hF(x,0) = 0; at other
points, it may be easier to do so.

Remark. It is clear that in using the tangential or normal criteria of the theorem,
only boundary points need be examined, since, when x lies in the interior of S,
we have TS(x) = R

n and N P
S (x) = {0}, in which case all the criteria are trivially

satisfied. The tangential criteria only make sense in S, of course, since the tangent
cone is undefined outside the set. The proximal criterion, however, can be verified
“from the outside,” in a sense that we now explain.

Suppose that, for any y /∈ S and x ∈ projS(y), there exists v ∈ F(x) such that
〈v, y− x〉 � 0. Since all proximal normals are generated this way (Prop. 11.29),
it follows that condition (d) of Theorem 12.7 holds, so that S is weakly invariant.
This observation motivates us to define f (y) = v, and to conjecture that the differ-
ential equation y ′ = f (y) has solutions that “move towards S.”

Making this vague statement precise is beyond the scope of our present discussion,
in part because f will not be continuous in general (so a new solution concept for
the differential equation needs to be introduced). But this proximal aiming technique
has been useful in feedback design and stabilization.

12.9 Example. Let S = {x ∈ R
n : fi(x) � 0, i = 1, 2, . . . , k} be a manifold with

boundary, as studied in Cor. 10.44. Thus, each fi is continuously differentiable. We
wish to characterize the weak invariance of S with respect to the trajectories of a
multifunction F which satisfies Hypothesis 12.1 as well as linear growth on R

n.
In doing so, we shall suppose that the functional description of S is nondegenerate,
which in this context means that at every boundary point x of S, the active constraints
defining S are positively linearly independent.

Then Cor. 10.44 describes the tangent and normal cones to S at x. We deduce, using
the tangential criterion, that (S,F) is weakly invariant if and only if, for every x in
∂S, there exists v ∈ F(x) such that 〈 f ′

i (x),v〉 � 0 ∀ i ∈ I(x). The normal criterion,
for its part, is easily seen to amount to the inequality

max
λ ∈ R

n
+

min
v∈ F(x)

〈
∑ i∈ I(x) λ i f ′

i (x) , v
〉
� 0 .

Invoking the minimax theorem 4.36 in order to switch the max and the min, it fol-
lows (exercise) that this condition is equivalent to the existence of v ∈ F(x) such
that 〈 f ′

i (x),v〉 � 0 ∀ i ∈ I(x). Thus, we obtain the same criterion as the tangential
one identified above (as expected). 
�
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12.2 Weakly decreasing systems

We now turn to a functional counterpart of weak invariance, one that plays an im-
portant role in control theory and differential equations. It turns out to subsume and
extend weak invariance, and to be useful in the study of such topics as Lyapunov
functions and viscosity solutions.

Let Ω be an open subset of Rn. An arc x such that x(0) ∈ Ω is said to be maximally
defined relative to Ω if either:

• x is defined on [0,∞) and x(t) ∈ Ω ∀ t � 0, or

• x is defined on a finite interval [0,T ], and satisfies

x(t) ∈ Ω (0 � t < T ), x(T ) ∈ ∂Ω .

The T of the second case is referred to as the exit time, and we denote it by T (x,Ω).
In the first case above, we set T (x,Ω) = +∞.

We remark that when F satisfies Hypothesis 12.1 on Δ = cl Ω as well as linear
growth, then, given any α ∈ Ω , there is a trajectory x for F that is maximally defined
relative to Ω and which satisfies x(0) = α . This is a consequence of Cor. 12.4.
The question we now address is whether we can find such a trajectory that has
the additional property of not increasing the value of a given function ϕ . This odd
question turns out to be of real interest in several settings.

Let ϕ : Rn → R∞ be a given function, and let F be a multifunction defined on an
open subset Ω of R

n. We say that (ϕ ,F) is weakly decreasing in Ω provided
that, for every α ∈ Ω ∩ domϕ , there exists a trajectory x for F , maximally defined
relative to Ω , such that

x(0) = α , ϕ
(
x(t)

)
� ϕ(α) ∀ t ∈

[
0 ,T (x,Ω)

)
.

When Ω = R
n, the use of indicator functions and epigraphs reveals the close link

between weak decrease and weak invariance.

12.10 Exercise. Let F satisfy Hypothesis 12.1 for Δ = R
n, as well as linear growth.

(a) Let S be a subset of Rn. Show that (IS ,F) is weakly decreasing in R
n if and only

if (S,F) is weakly invariant.

(b) Let ϕ : Rn → R∞ be given. Show that (ϕ ,F) is weakly decreasing in R
n if and

only if (epiϕ , F×{0}) is weakly invariant. 
�

Because weak decrease requires that the trajectory be maximally defined, it is not an
entirely local concept, in contrast to weak invariance. For this reason, linear growth
is a natural hypothesis to retain in studying weak decrease.
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12.11 Theorem. Let F satisfy Hypothesis 12.1 on Δ = cl Ω , as well as linear
growth. Let ϕ : Rn → R∞ be lower semicontinuous. Then (ϕ ,F) is weakly decreas-
ing in Ω if and only if

hF
(

x, ∂Pϕ(x)
)
� 0 ∀x ∈ Ω .

Remark. In keeping with that of Theorem 12.3, the notation hF(x, ∂Pϕ(x)) � 0 is
understood to mean hF(x,ζ ) � 0 ∀ζ ∈ ∂Pϕ(x), a condition which is automatically
satisfied when ∂Pϕ(x) is empty or when ϕ(x) = +∞. As before, the proximal crite-
rion has a natural interpretation. In the fully smooth case, the derivative d/dtϕ(x(t))
(which, for decrease, should be nonpositive) equals 〈∇ϕ(x(t)), x ′(t)〉; thus, we want
x ′(t) to be a value v ∈ F(x(t)) for which this inner product is nonpositive, whence
the proximal inequality. The inequality, incidentally, is a nonsmooth version of the
classical Hamilton-Jacobi inequality that arises in many different contexts.

Proof.

A. We redefine F on the boundary of Ω as follows. For x ∈ ∂Ω , we set

F0(x) = co
{
{0} ∪ F(x)

}
.

It follows easily that F0 continues to satisfy Hypothesis 12.1, as well as linear
growth, on clΩ . We observe that the weak decrease property of (ϕ ,F) is unaf-
fected by this redefinition, so there is no loss of generality in proving the theorem
for F0.

B. Consider now the system (S,F+), where

S =
(

clΩ×R
)
∩ epiϕ , F+(x,y) = F0(x)×{0} , (x,y) ∈ R

n×R .

Lemma 1. The weak decrease of (ϕ ,F) in Ω is equivalent to the weak invariance
of the system (S,F+).

Proof. Let (ϕ ,F) be weakly decreasing in Ω , and let (α,r)∈ S. (Thus, ϕ(α) � r.)
If α ∈ ∂Ω , then F+(α,r) contains (0,0), so that the constant function (x(t),y(t))
given by (α ,r) is a trajectory for F+ that remains in S.

Otherwise, if α ∈ Ω , there is a maximally defined trajectory x for F such that
ϕ(x(t)) � ϕ(α) � r for t ∈ [0,T (x,Ω)). The function (x(t),r) is a trajectory for
F+ that lies in S for all t ∈ [0,T (x,Ω)); we have proved that (S,F+) is weakly
invariant.

Now suppose that (S,F+) is weakly invariant. Then by Theorem 12.7, we have

hF+(x,y,ζ ,−λ ) � 0 ∀(x,y) ∈ S , (ζ ,−λ ) ∈ N P
S (x,y) .

Let α ∈ Ω ∩ domϕ be given; then the point (α,ϕ(α)) lies in S. Since F+ satisfies
linear growth, we may deduce from Theorem 12.3 the existence of a trajectory (x,y)
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for F+ on [0,∞) which satisfies

(x(0),y(0)) = (α,ϕ(α)) , (x(t),y(t)) ∈ S ∀ t � 0 .

It follows that, for all t � 0, we have y(t) = ϕ(α), ϕ(x(t)) � ϕ(α). The arc x(t)
is a trajectory for F on the interval [0,T (x,Ω)), and as such is maximally defined
relative to Ω . It therefore confirms the weak decrease property for (ϕ ,F).

C. We now invoke Theorem 12.7, in the light of Lemma 1: The weak decrease of
(ϕ ,F) in Ω is equivalent to the condition

hF+(x,y,ζ ,−λ ) � 0 ∀(x,y) ∈ S , (ζ ,−λ ) ∈ N P
S (x,y).

The Hamiltonian inequality is automatically satisfied at points (x,y) for which
x ∈ ∂Ω , since F+(x,y) contains (0,0) at such points. We may therefore limit the
preceding condition to x ∈ Ω , obtaining one that is fully equivalent:

hF(x,ζ ) � 0 ∀(ζ ,−λ ) ∈ NP
epiϕ(x,r) , ∀(x,r) ∈ epiϕ ∩

(
Ω×R

)
. (1)

To prove the theorem, it now suffices to establish:

Lemma 2. The condition (1) and the following condition (2) are equivalent:

hF(x,ζ ) � 0 ∀ζ ∈ ∂Pϕ(x) ∀x ∈ Ω . (2)

Assume first that (1) holds, and let ζ ∈ ∂Pϕ(x), where x ∈ Ω . Then, by Theorem
11.32, we have (ζ ,−1) ∈ NP

epiϕ(x,ϕ(x)). It follows from (1) that hF(x,ζ ) � 0,
which verifies (2).

Now assume that (2) holds, and let (ζ ,−λ ) ∈ NP
epiϕ(x,r), x ∈ Ω . We wish to show

that hF(x,ζ ) � 0, so we may assume ζ 	= 0.

If λ > 0, then r = ϕ(x) necessarily, and we have ζ/λ ∈ ∂Pϕ(x) by Theorem
11.32. Then, invoking the hypothesis for ∂Pϕ(x), we have hF(x,ζ/λ ) � 0, whence
hF(x,ζ ) � 0 by positive homogeneity.

If λ = 0, then, by Theorem 11.31, there exist sequences xi and ζ i, and a corre-
sponding positive sequence λ i , such that

(ζ i ,−λ i)→ (ζ ,0) , (ζ i ,−λ i) ∈ NP
epiϕ

(
xi ,ϕ(xi)

)
, (xi ,ϕ(xi))→ (x,ϕ(x)) .

By the preceding argument (since λ i > 0), we have hF(xi ,ζ i) � 0. Thus there
exists vi ∈ F(xi) such that 〈ζ i ,vi 〉 � 0. Since F is locally bounded (in view of linear
growth), the sequence vi is bounded, and we may suppose vi → v; by Hypothesis
12.1, we have v ∈ F(x). But then 〈ζ ,v〉 � 0, whence hF(x,ζ ) � 0. 
�

12.12 Exercise. Prove that, under the hypotheses of Theorem 12.11, (ϕ ,F) is
weakly decreasing in Ω if and only if hF(x,∂L ϕ(x)) � 0 ∀x ∈ Ω . (Thus, the
subdifferential criterion can be phrased in terms of ∂L ϕ .) 
�
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12.3 Strong invariance

The system (S,F) is said to be strongly invariant if it is weakly invariant, and, in
addition, every trajectory x for F on an interval [0,T ] (T > 0) which has x(0) ∈ S
satisfies x(t)∈ S ∀ t ∈ [0,T ]. It turns out that this property, unlike weak invariance,
cannot be assured by purely “internal” hypotheses that hold only within S itself, of
the type that are listed in Theorem 12.7, unless the behavior of F is strengthened.
The following example illustrates the phenomenon.

12.13 Exercise. Let f : R→ R be the function f (x) = x1/3.

(a) Show that there are three distinct arcs x(t) on [0,1] of the form ct p that solve the
ordinary differential equation x ′(t) = f (x(t)). (One of these is evident: x ≡ 0.)

(b) Let S = {0} and let F be the multifunction F(x) = { f (x)}. Observe that F
satisfies Hypothesis 12.1. Show that the system (S,F) is weakly, but not strongly,
invariant.

The point here is that, even though F(0)⊂ TS(0), some trajectories of F nonetheless
manage to escape S. 
�

Note that the (weak) quantifier “there exists” in the definition of weak invariance
(Def. 12.5) is replaced in the definition of strong invariance by the (strong) quantifier
“every.” Correspondingly, in the theorem below, it will be a strong Hamilton-Jacobi
inequality (a maximum bounded above) that characterizes the property, as opposed
to the weak inequality hF(x,ζ )� 0 (a minimum bounded above). The inequality in
question will be formulated with the upper Hamiltonian HF , the function defined
by

HF(x,ζ ) = max
{
〈ζ ,v〉 : v ∈ F(x)

}
.

As explained above, the characterization of strong invariance requires an additional
hypothesis on F , a Lipschitz property that will also be important later in a different
context.

12.14 Definition. The multifunction F is said to be Lipschitz on a set C if F(x) is
defined and nonempty for every x ∈ C and, for some constant K, we have

x, y ∈ C , v ∈ F(x) =⇒ ∃ w ∈ F(y) : |v−w | � K |x− y | ,

or, equivalently, if x, y ∈ C =⇒ F(x) ⊂ F(y)+K |x− y |B. A multifunction F is
said to be Lipschitz near x if there is a neighborhood V of x such that F is Lipschitz
on V .

In characterizing strong invariance, the list of tangential and normal criteria is even
longer than that of Theorem 12.7 (for weak invariance), since T C

S and NC
S may now

join the fray. The reader may as well see the result.
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12.15 Theorem. (Strong invariance criteria) Let S be closed. Let F satisfy Hy-
pothesis 12.1 on S, and let F be Lipschitz near every point in ∂S. Then the following
are equivalent:

(a) HF
(

x,NC
S (x)

)
� 0 ∀x ∈ S (e) HF

(
x,N P

S (x)
)
� 0 ∀x ∈ S

(b) F(x) ⊂ T C
S (x) ∀x ∈ S (f) HF

(
x,N L

S (x)
)
� 0 ∀x ∈ S

(c) F(x) ⊂ TS(x) ∀x ∈ S (g) (S,F) is strongly invariant.

(d) F(x) ⊂ coTS(x) ∀x ∈ S

Note: the Lipschitz hypothesis requires that F be defined on a somewhat larger set
than S itself.

Proof.

A. Because NC
S (x) and T C

S (x) are polars of one another, the equivalence of (a)
and (b) is immediate. That (b) =⇒ (c) =⇒ (d) is evident, since T C

S (x) ⊂ TS(x).
From

coTS(x) ⊂ [TS(x) ]�� = [NS(x) ]� ⊂ NP
S (x)

�,

we deduce that (d) =⇒ (e). That (e) implies (f) follows from a simple limiting argu-
ment.

B. We now address the implication (f) =⇒ (g). When (f) holds, the system (S,F) is
weakly invariant, by Theorem 12.7. Now let x be any trajectory for F on an interval
[0,T ] such that x(0) = α ∈ ∂S. We undertake to show that, for some ε ∈ (0,T ], we
have x(t) ∈ S ∀ t ∈ [0,ε ]; this is easily seen to imply strong invariance.

Hypothesis 12.1 implies that, for some r > 0 and M, we have |F(y)| � M for all
y ∈ B(α,r). We may also take r sufficiently small so that F is Lipschitz on the ball
B(α,r), with constant K. There exists ε ∈ (0,T ] such that

t ∈ [0,ε ] , s ∈ projS
(
x(t)

)
=⇒ x(t) ∈ B(α,r), s ∈ B(α,r).

It follows that x is Lipschitz (with constant M) on the interval [0,ε ]. We proceed to
define f (t) = dS(x(t)); observe that f is Lipschitz on [0,ε ].

Lemma. f ′(t) � K f (t), t ∈ (0,ε) a.e.

Proof. Let τ ∈ (0,ε) be such that f ′(τ) exists, x ′(τ) exists, and x ′(τ) ∈ F(x(τ))
(almost all points in (0,ε) satisfy these conditions). We show that f ′(τ) � K f (τ).
If f (τ) = 0, then f attains a minimum at τ , whence f ′(τ) = 0, and the required in-
equality holds. We may assume, then, that f (τ) > 0. Let s ∈ projS(x(τ)). Then,
by the closest point characterization of proximal normals (see Prop. 11.29), we
have

ζ := (x(τ)− s)/|x(τ)− s | ∈ N P
S (s).

By the Lipschitz condition for F on B(α,r), there exists v ∈ F(s) such that
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|v− x ′(τ)| � K |x(τ)− s |.

Then, using (f), and bearing in mind that ζ is a unit vector, we derive

〈ζ , x ′(τ)〉 � 〈ζ ,v〉+ 〈ζ , x ′(τ)− v〉 � HF(s,ζ )+K |x(τ)− s | � K |x(τ)− s |.

This leads to

f ′(τ) = lim
δ→0

dS
(

x(τ+δ )
)
−dS

(
x(τ)

)

δ
� lim

δ→0

|x(τ+δ )− s |− |x(τ)− s |
δ

= 〈ζ , x ′(τ)〉 � K |x(τ)− s | = K f (τ) ,

and the lemma is proved. 
�

Since f is Lipschitz, nonnegative, and 0 at 0, it follows from the lemma, together
with Gronwall’s lemma (Theorem 6.41), that f is identically zero on [0,ε ], com-
pleting the proof that (f) =⇒ (g).

C. We now show that (g) =⇒ (e), limiting ourselves to points in the boundary of
S. Consider any x ∈ ∂S, and fix any v in F(x). There is a ball B(x,r), r > 0, upon
which F is bounded and Lipschitz.

Let f (u) be the closest point in F(u) to v. It is easy to prove that f is continuous on
a ball B(x,ρ), for some ρ ∈ (0,r). Note that f (x) = v. We define a multifunction
F̃(u) that equals { f (u)} for u ∈ B(x,ρ), and otherwise equals

co
{

w : w ∈ F(u), u ∈ B(x,ρ)
}
.

We also define the closed set S̃ = (S ∩ B(x,ρ))
⋃
(Rn\B◦(x,ρ)).

It is routine to check that F̃ satisfies Hypothesis 12.1 globally, as well as linear
growth. Then trajectories of F̃ , defined on [0,∞), exist from any initial condition, by
Cor. 12.4. The strong invariance of (S,F) implies that the system (S̃, F̃) is strongly,
and hence weakly, invariant.

Letting h̃ be the lower Hamiltonian of F̃ , we deduce from Theorem 12.7 that, for
any ζ ∈ N P

S (x):
h̃(x,ζ ) = 〈ζ , f (x)〉 = 〈ζ ,v〉 � 0 .

Since v is arbitrary in F(x), (e) follows.

D. To complete the proof of the theorem, it suffices to prove that (e)=⇒ (b). Let x lie
in ∂S, and let v ∈ F(x); we need to show that v belongs to N L

S (x)
� = T C

S (x).

Now any element ζ of N L
S (x) is of the form ζ = lim i ζ i , where ζ i ∈ N P

S (xi) and
xi → x. Letting K be a Lipschitz constant for F in a neighborhood of x, there is, for
each i sufficiently large, a point vi ∈ F(xi) such that |vi − v | � K |xi − x |, and (by
(e)) we have 〈ζ i ,vi 〉 � 0. We obtain in the limit 〈ζ ,v〉 � 0 as required. 
�

In similar manner to Cor. 12.8, we have:
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12.16 Corollary. In the context of the theorem, suppose that at each x ∈ ∂S, we
have either F(x) ⊂ coTS(x), or else HF(x,N P

S (x)) � 0. Then the system (S,F) is
strongly invariant.

Strongly decreasing systems. Let ϕ : Rn → R∞ be a given function. We say that
the system (ϕ ,F) is strongly decreasing in an open set Ω provided that, for every
α in Ω ∩ domϕ , there exists a trajectory x for F , maximally defined relative to Ω ,
such that x(0) = α and

s, t ∈ [0, T (x,Ω)) , s � t =⇒ ϕ(x(t)) � ϕ(x(s)) ,

and provided this monotonicity holds for every maximally defined trajectory.

12.17 Theorem. Let F satisfy Hypothesis 12.1 on Δ = clΩ , as well as linear
growth. Let F be locally Lipschitz in Ω , and let ϕ : Rn → R∞ be lower semicontin-
uous. Then (ϕ ,F) is strongly decreasing in Ω if and only if

HF(x,ζ ) � 0 ∀ζ ∈ ∂Pϕ(x) ∀x ∈ Ω .

Proof. As in the proof of Theorem 12.11, and for the same auxiliary system (S,F+)
as defined there, it follows that

Lemma 1. The strong decrease of (ϕ ,F) in Ω is equivalent to the strong invariance
of the system (S,F+).

The corresponding Hamiltonian equivalence is established in somewhat the same
fashion as before, but the Lipschitz condition now plays a role.

Lemma 2. The following are equivalent:

HF(x,ζ ) � 0 ∀ζ ∈ ∂Pϕ(x) , ∀x ∈ Ω (1)

HF(x,ζ ) � 0 ∀(ζ ,−λ ) ∈ NP
epiϕ(x,r) , ∀(x,r) ∈ epiϕ ∩

(
Ω×R

)
(2)

To prove this, assume first that (2) holds, and let ζ ∈ ∂Pϕ(x), where x ∈ Ω . Then,
by Theorem 11.32, we have (ζ ,−1) ∈ NP

epiϕ(x,ϕ(x)). It follows from (2) that
HF(x,ζ ) � 0, which verifies (1).

Now assume that (1) holds, and let (ζ ,−λ ) ∈ NP
epiϕ(x,r), where x ∈ Ω . We wish

to show that HF(x,ζ ) � 0. Clearly we may suppose ζ 	= 0. Fix any v ∈ F(x); we
wish to prove 〈ζ ,v〉� 0.

If λ > 0, then r = ϕ(x) necessarily (see Exer. 11.30), and we have ζ/λ ∈ ∂Pϕ(x)
by Theorem 11.32. Then, by the hypothesis for ∂Pϕ(x), we have HF(x,ζ/λ ) � 0,
whence 〈ζ ,v〉 � 0 by positive homogeneity.

If λ = 0, then, by Theorem 11.31, there exist sequences xi and ζ i, and a corre-
sponding positive sequence λ i , such that
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(ζ i ,−λ i)→ (ζ ,0) , (ζ i ,−λ i) ∈ NP
epiϕ

(
xi ,ϕ(xi)

)
, (xi ,ϕ(xi))→ (x,ϕ(x)) .

By the preceding argument (since λ i > 0), we have HF(xi ,ζ i) � 0. There exists
vi ∈ F(xi) such that |vi − v | � K |xi − x |, by the Lipschitz condition for F . But
then 〈ζ i ,vi 〉 � 0, whence 〈ζ ,v〉 � 0, as required. 
�

Lyapunov functions. The reader will encounter applications of system monotonic-
ity later, in connection with generalized solutions of the Hamilton-Jacobi equation,
and sufficient conditions in optimal control. We pay a brief visit here to another of
its applications, the theory of Lyapunov functions.

For purposes of illustration, let the multifunction F satisfy Hypothesis 12.1 on R
n, as

well as linear growth. Suppose that ϕ : Rn → R+ is continuous and satisfies

ϕ(x)> 0 =⇒ hF
(

x, ∂Pϕ(x)
)
� −ω ,

where ω is a positive constant. Then the very existence of such a function ϕ says
something about the controllability of the system described by F: from any initial
condition, there is a trajectory that is driven to the set {ϕ = 0} (which turns out to
be nonempty necessarily).

12.18 Proposition. For any α ∈ R
n, there is a trajectory x for F with x(0) = α such

that, for some T � ϕ(α)/ω , we have x(T ) ∈ ϕ−1(0).

Proof. We can assume ϕ(α)> 0. For an augmented state (x,y)∈ R
n×R, consider

the system data

Ω =
(
R

n\ϕ−1(0)
)
×R , F+(x,y) = F(x)×{1} , ϕ+(x,y) = ϕ(x)+ω y.

Then F+ satisfies Hypothesis 12.1 as well as linear growth. Note that any element
(ζ ,θ) of ∂Pϕ+(x,y) is of the form (ζ ,ω), where ζ ∈ ∂Pϕ(x). It follows that

hF+(x,y,ζ ,θ) � 0 ∀(x,y) ∈ Ω , ∀(ζ ,θ) ∈ ∂Pϕ+(x,y).

We may therefore apply Theorem 12.11 to these data, with the choice of initial con-
dition α+ := (α ,0) ∈ Ω . We obtain a trajectory x for F with x(0) = α , maximally
defined with respect to R

n\ϕ−1(0), such that

ϕ(x(t))+ω t � ϕ(α) ∀ t ∈ [0,T ) ,

where T is the exit time from R
n\ϕ−1(0). Since ϕ is nonnegative, it follows that

T � ϕ(α)/ω , for otherwise we obtain ϕ(x(t))< 0, a contradiction. 
�

In the best known case of the above, the founding one, ϕ is taken to be smooth (on
R

n\{0}) and positive definite (that is, ϕ(0) = 0 and ϕ(x)> 0 ∀x 	= 0), and F(x) is
of the form { f (x)}, where f is a continuous function. Then Prop. 12.18 asserts that,
when such a ϕ exists, the differential equation x ′ = f (x) is globally asymptotically
stable. This means that globally defined solutions exist from any initial condition,
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and all of them converge to the zero set of ϕ , namely {0}. The function ϕ is referred
to as a Lyapunov function.

This celebrated technique to verify stability was introduced in 1900 by Lyapunov.
Note that in this setting, HF and hF coincide, and strong and weak coalesce: stability
equals controllability.1

In the general case, when F is not a singleton, controllability is a different issue, and
induces a number of interesting questions of its own. One of these is the following:
given a Lyapunov function ϕ , taken to be smooth for simplicity, how can we use it
to design a feedback mechanism that has the effect of steering x to the origin? This
refers to a selection f of F with the property that the solutions of the differential
equation x ′ = f (x) approach the set {ϕ = 0} in a suitable sense.

The obvious attempt is to choose f (x) ∈ F(x) to be a “steepest descent” direction,
in order to obtain the decrease rate 〈∇ϕ(x), f (x)〉 � −ω . However, this leads to
discontinuous functions f in general, which complicates matters in an intriguing
fashion; but this is another story. . .

1 It is of interest to know under what conditions the existence of a Lyapunov function ϕ is nec-
essary, as well as sufficient, for system stability; we shall not pursue the issue of such converse
Lyapunov theorems, however.



Chapter 13

Additional exercises for Part II

13.1 Exercise. Let M be an n×n symmetric matrix. Consider the constrained opti-
mization problem

Minimize 〈x,Mx〉 subject to h(x) := 1−|x |2 = 0, x ∈ R
n.

(a) Observe that a solution x∗ exists, and write the conclusions of the multiplier
rule (Theorem 9.1) for this problem. Show that they cannot hold abnormally. It
follows that the multiplier in this case is of the form (1,λ ).

(b) Deduce that λ is an eigenvalue of M, and that λ = 〈x∗ ,Mx∗〉.

(c) Prove that λ coincides with the first, or least eigenvalue λ1 of M (this statement
makes sense because the eigenvalues are real). Deduce the Rayleigh formula,
which asserts that λ1 is given by min{〈x,Mx〉 : |x | = 1}. 
�

13.2 Exercise. The linear-quadratic optimization problem is that of minimizing

f (x) = 〈x,Q x〉+ 〈b, x〉

over x ∈ R
n, and under the constraint Ax = c. Here, the given data consist of points

b ∈ R
n, c ∈ R

k, a symmetric n×n matrix Q , and a k×n matrix A (with k � n). A is
assumed to have maximal rank.

(a) Write the necessary conditions of Theorem 9.4 for this problem, and verify that
they can hold only in normal form.

We suppose henceforth that Q is positive definite.

(b) Prove the existence of a solution x∗ to the problem.

(c) Show that the k×k matrix AQ−1AT is invertible and positive definite.

(d) Show that the unique solution x∗ is given by
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x∗ =
1
2

Q−1
{

AT (AQ−1AT )−1(2c+AQ−1b
)
−b

}
.

(e) Find the unique multiplier λ . What information does it contain? 
�

13.3 Exercise. Show that (1,1) is the projection of (2,2) onto the convex set
{
(x,y) : x 2 +2y 2 � 3 , x 2 − y � 0

}
. 
�

13.4 Exercise. We consider the problem

min
∫ 1

0
Λ(t, v(t))dt : v ∈ L∞(0,1), v(t) � 0 a.e. ,

∫ 1

0
v(t)dt � q.

We suppose that the function (t,v) �→ Λ(t,v)∈ R is continuous in t and convex in v,
and that q > 0. Prove that the admissible function v∗ is a minimizer for the problem
if and only if there exists γ ∈ R+ such that

−γ ∈ ∂vΛ(t,v∗(t))+N [0 ,∞)(v∗(t)) , t ∈ [0,1] a.e. 
�

13.5 Exercise. A system consists of n masses m1, m2, . . . , mn joined by cords of
lengths �1, �2 , . . . , �n+1 , and hanging from two fixed points (0,0) and (Δ ,0), where
Δ > 0; see the figure below. It is assumed that the mass of the cord is negligible.

(a) Let x1 be the (signed) vertical difference (or change in height) between (0,0)
and the first mass m1, x2 between m1 and m2 , etc., up to xn . Let xn+1 be the
vertical difference between the last mass mn and the point (Δ ,0). Thus, x1 < 0
and xn+1 > 0.

Now define wi = ∑n
i m j (for 1 � i � n) and wn+1 = 0. Show that the equilib-

rium position (the one that minimizes potential energy) corresponds to finding
the x ∈ R

n+1 minimizing the function ∑n+1
1 wi xi subject to the constraints

−� i � xi � � i , ∑n+1
1 xi = 0 , ∑n+1

1

√
� 2

i − x 2
i = Δ .
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We define

f (x) = ∑n+1
1 wi xi , h(x) = ∑n+1

1 xi , g(x) = Δ − ∑n+1
1

√
� 2

i − x2
i

S =
{

x ∈ R
n+1 : −� i � xi � � i , i = 1, 2, . . . , n+1

}

(b) With these data, show that the problem of finding the equilibrium has the form
of the problem (P) considered in §9.2. Observe that the constraint g(x) = 0 has
been replaced by an inequality; what justifies this change? Note that with this
modification, the problem lies within the convex case.

(c) Prove that the problem admits a solution x̄ , provided that ∑ i � i � Δ .

(d) Write the necessary conditions of Theorem 9.4, and show that the Slater condi-
tion is satisfied if and only if ∑ i � i > Δ (which we assume henceforth).

(e) If it so happens that for some i ∈ {1, 2, . . . , n}, we have
∣
∣
∣∑ i−1

j=1 � j − ∑ n+1
j= i+1 � j

∣
∣
∣ � � i ,

then show that the solution is given by

x̄ k =

⎧
⎪⎪⎨

⎪⎪⎩

−�k if 1 � k � i−1

∑ i−1
j=1 � j − ∑ n+1

j= i+1 � j if k = i

�k if i+1 � k � n+1

This is the case in which the system hangs with some slack in the cord that joins
mi−1 and mi , each mass being as low as it could possibly be. We rule it out by
supposing henceforth that | x̄ i |< � i (i = 1, 2, . . . , n+1).

(f) Show that the multiplier γ corresponding to g is nonzero.

(g) Prove the existence of γ > 0 and λ such that

x̄ i =
−(wi +λ ) �i√
(wi +λ )2 + γ 2

, i = 1, 2, . . . , n+1.

Thus, the solution x̄ is completely determined by the two scalar multipliers γ and λ .
We now turn to duality to suggest how these multipliers might be found.

(h) Show that the dual problem consists of maximizing on R
2 the function

(γ ,λ ) �→ Δ γ − ∑ i � i

√
(wi +λ )2 + γ 2

subject to γ � 0. (Note that this problem has two unknowns, regardless of n.) It
is clear that the resulting multiplier λ is negative; why is this consistent with its
sensitivity interpretation? 
�



276 13 Additional exercises for Part II

13.6 Exercise. Solve the problem described in Exer. 6.12. 
�

13.7 Exercise. (Fenchel duality) Let f : X → R∞ and g : X → R∞ be convex and
bounded below, where X is a normed space. We posit the existence of a point x0 in
dom f ∩ domg at which g is continuous. The goal is to prove

inf
x ∈ X

f (x)+g(x) = max
ζ ∈ X∗

− f ∗(ζ )−g∗(−ζ ) .

(Note the use of “max” on the right side.) Without loss of generality, we may take
x0 = 0. Define V : X → R∞ by

V (α) = inf
x ∈ X

f (x)+g(x−α).

(a) Show that

V (0) = inf
x ∈ X

f (x)+g(x) � sup
ζ ∈ X∗

− f ∗(ζ )−g∗(−ζ ).

(b) Prove that V is convex, and bounded above in a neighborhood of 0.

(c) Prove the existence of ζ ∈ ∂V (0).

(d) Show that − f ∗(ζ )−g∗(−ζ ) � V (0), and conclude. 
�

13.8 Exercise. Let S be a nonempty, closed, and convex subset of a normed space
X . Show that for any y ∈ X we have

dS(y) = max
{
〈ζ ,y〉−HS(ζ ) : ‖ζ ‖∗ � 1

}
,

where HS is the support function of S. 
�

13.9 Exercise. The following problem arises in signal processing. It consists of
finding x ∈ X = L2(−π ,π) which minimizes

∫ π

−π
|x(t)|dt

under the constraints

E(x) � E0 , Fk(x) = ck (k = 1, 2, . . . , n),

where
E(x) =

∫ π

−π
|x(t)|2 dt , Fk(x) =

1√
π

∫ π

−π
(coskt )x(t)dt.

(We seek the best estimate of the bounded energy signal displaying certain known
Fourier coefficients.)

(a) Prove the existence of a solution x∗ .

(b) Write the necessary conditions of Theorem 9.4, justifying their use.
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(c) We assume henceforth ∑n
1 c2

k < E0 ; prove then that the Slater condition holds.

(d) We assume henceforth ∑n
1 c2

k > 0; prove then that E(x∗) = E0 . (Hint: show that
the multiplier associated with the constraint is nonzero.)

(e) Prove the existence of γ∗ > 0 and λ∗ ∈ R
n such that the solution x∗ is given, for

almost every t, by

x∗(t) =
−1

2
√
π γ∗

[
| p(t)|−

√
π

]

+

p(t)
| p(t)| ,

where
p(t) := ∑n

k=1 λ∗k cos(kt) ,

and where [q ]+ means max [q ,0 ]. (Note that the formula for x∗(t) is naturally
interpreted as yielding 0 when p(t) = 0.) [ Hint: Theorem 6.31 is useful here. ]

(f) Formulate explicitly the dual problem whose solution is (γ∗ ,λ∗). 
�

13.10 Exercise. Let f : R→ R be given by

f (x) = |x |3/2 sin
(

1
√

|x |

)
,

where we set f (0) = 0. Show that f is locally Lipschitz and differentiable, with
f ′(0) = 0. Prove that ∂P f (0) = /0 and ∂C f (0) = [−1/2,1/2 ]. (The question of
which of the three sets ∂P f (0), { f ′(0)}, or ∂C f (0) best reflects the nature of f near
0 is open to debate.) 
�

13.11 Exercise. Find the tangent cones T and T C, as well as the normal cones N,
N L and NC, for each of the following subsets of R2, at the origin:

S1 =
{
(x ,y) : xy = 0

}
S2 =

{
(x ,y) : y � 2 |x |

}

S3 = cl
{
R

2\S2
}

S4 =
{
(x,y) : y �

√
|x |

}
. 
�

13.12 Exercise. Let f be the function of Example 10.28.

(a) Calculate ∂C f1(0) and ∂C f2(0), where f1(x) = f (x,0) and f2(y) = f (0,y).

(b) Show that ∂C f1(0)×∂C f2(0) 	⊂ ∂C f (0,0) 	⊂ ∂C f1(0)×∂C f2(0). 
�

13.13 Exercise. Let f : X → R and g : X → R be regular at x, where X is a Banach
space. Prove that max ( f ,g) is regular at x. 
�

13.14 Exercise. (Eigenvalue design) Certain optimal design problems involving
discrete structures or electrical networks are phrased in terms of the eigenvalues
of an n×n symmetric matrix M = M(y) depending on a design parameter y ∈ R

m.
To be specific, suppose that each entry mi j of M is a smooth function of y (and that
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mi j(y) = m j i(y) ∀ i, j). Set Λ(y) equal to the maximal eigenvalue of M(y). Then
the object might be to minimizeΛ , subject perhaps to certain constraints on y. Prove
that the function y �→ Λ(y) is locally Lipschitz and regular.

In general, we expect the function Λ to be nonsmooth and nonconvex. Verify that
such is the case in the following example (n = m = 2):

M(y1 ,y2) =

⎡

⎣
y 2

1 y2
2 −1

y 2
2 −1 y 2

1

⎤

⎦ .

�

13.15 Exercise. In the context of the multiplier rule of Theorem 10.47, suppose in
addition that the functions f , g, and h are continuously differentiable. Prove that the
stationarity condition may be expressed as follows:

{
η f + 〈γ , g〉+ 〈λ ,h〉

}′
(x∗ ; v) � 0 ∀v ∈ T C

S (x∗). 
�

13.16 Exercise. Let f : Rm×R
n → R be a continuous function such that, for each

u ∈ R
m, the function gu : Rn → R defined by gu(v) = f (u,v) is convex. Prove that

(θ ,ζ ) ∈ ∂L f (u,v) =⇒ ζ ∈ ∂gu(v). 
�

13.17 Exercise. We establish the following refinement of Cor. 11.7.

Proposition. Suppose that f : Rn → R∞ is lsc, and that x ∈ dom f . Let there be
positive constants ε, K such that

u ∈ B(x,ε) , f (u)< f (x)+ ε , ζ ∈ ∂P f (u) =⇒ |ζ | � K .

Then f is Lipschitz of rank K near x.

(a) Let g(u) := min [ f (u), f (x)+ε/2 ]. Show that if ζ belongs to ∂Pg(u), then either
ζ ∈ ∂P f (u) with f (u) < f (x)+ ε , or else ζ = 0.

(b) Use this fact to prove that g is Lipschitz near x.

(c) Deduce that f Lipschitz near x. 
�

13.18 Exercise. Let f : U → R be continuous, where U ⊂ R
n is open and convex.

Let Si (i = 1, 2 , . . . , k) be subsets of U satisfying

clU = cl
{⋃ k

i=1
Si
}
,

and suppose that, for some constant K, the function f restricted to Si is Lipschitz of
rank K for each i. Prove that f is Lipschitz of rank K. 
�

13.19 Exercise. Let S be a nonempty closed subset of Rn, and let x /∈ S. Prove that

∂L dS(x) =
{
(x− s)/|x− s | : s ∈ projS(x)

}
. 
�
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13.20 Exercise. Prove the following theorem, a proximal version of the decrease
principle (Theorem 5.22):

Theorem. Let f : Rn → R∞ be lower semicontinuous. Suppose that for some x in
dom f and positive numbers δ and r we have

u ∈ B◦(x,r)∩ dom f , ζ ∈ ∂P f (u) =⇒ |ζ | � δ .

Then
inf

{
f (u) : u ∈ B◦(x,r)

}
� f (x)−δ r . 
�

13.21 Exercise. With the help of Exer. 13.20, and taking X = R
n, prove that The-

orem 5.31 continues to hold if Hypothesis 5.30 is replaced by the following one,
which does not require the existence of directional derivatives: There is an open
neighborhood V of (x̄ , ȳ) and δ > 0 with the following property:

(x,y) ∈ V , ϕ(x,y)> 0 , ζ ∈ ∂Pϕ(x,y) =⇒ |ζ | � δ .

Here, the proximal subdifferential is taken with respect to the x variable. (We con-
tinue to assume that ϕ is continuous.) 
�

13.22 Exercise.

(a) Find the tangent and normal cones at (0,0,0) to each of the following sets:

S1 =
{
(x,y,z) ∈ R

3 : x3 − y+ z2 = 0, x = y
}
,

S2 =
{
(x,y,z) ∈ R

3
+ : x− y+ z � x2}.

(Why is there no ambiguity about which types of tangents or normals are in-
volved?)

(b) Show that if (a,b,c,d) ∈ N L
E (0,0,0,0), where E is the set

E =
{
(x,y,z,u) ∈ R

4 : x+ y+ |u | � 0, x = z
}
,

then a = b− c, b � 0, and d = ±b. 
�

13.23 Exercise. Let Λ : Rn → R be convex. Fix v∗ ∈ R
n and define

f (α) = Λ(v∗/α)α , α > 0 .

Prove that f is convex on (0,+∞), and that if γ ∈ ∂ f (1), then there exists an ele-
ment ζ in ∂Λ(v∗) such that γ = Λ(v∗)− v∗ • ζ . 
�

13.24 Exercise. The exercise establishes a measurability property of the multifunc-
tions ∂L f and ∂C f . We consider a function f : R×R

n → R such that

• t �→ f (t, x) is measurable for each x ∈ R
n.

• x �→ f (t, x) is locally Lipschitz for each t ∈ R.
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The notation ∂L f (t, x) below (for example) refers to the L-subdifferential of the
function f (t, ·) evaluated at x, for t fixed. The goal is to prove

Proposition. Let u : Rn → R be measurable. Then the multifunctions

t �→ ∂L f
(
t,u(t)

)
and t �→ ∂C f

(
t,u(t)

)

are measurable.

Define, for any positive integer i, the function

θ i(t, x,ζ
)
= min

{
f (t, x+ y)− f (t, x)−〈ζ ,y〉+ i |y |2 : |y | � 1/i

}
.

(a) Show that θ i : R×R
n×R

n →R is measurable with respect to t and locally Lips-
chitz with respect to x and ζ , and prove that

ζ ∈ ∂P f (t, x) ⇐⇒ ∃ i � 1 such that θ i
(
t,x,ζ

)
= 0.

(b) Prove that for any compact subset V of Rn, the following set is measurable:
{

t : ∂L f
(
t,u(t)

)
∩ V 	= /0

}
,

and deduce the proposition. 
�

13.25 Exercise. The Dini derivate and subdifferential may be used to define tangent
and normal cones. Given a closed subset S of Rn, we could, for example, use its
indicator function IS in order to define

T D
S (x) =

{
v ∈ R

n : dIS(x ;v) � 0
}
, N D

S (x) = ∂D IS(x) .

(The use of the distance function dS instead of the indicator function would yield
the same constructs.) Show that we obtain in this way exactly the classical tangent
and normal cones TS(x) and NS(x) of §1.4 (p. 20). 
�

13.26 Exercise. Let f : R2 → R be defined by

f (x,y) = max
{

min (x,y), −[max (0,−x)]3/2}.

Prove that at (0,0), the sets ∂P f , ∂D f , ∂L f , and ∂C f are all different. Building
upon this, find a closed subset E of R3 containing (0,0,0) such that, at the origin,
the cones N P

E , N D
E (= NE , see Exer. 13.25), N L

E , and NC
E are all different. 
�

13.27 Exercise. The sense in which an arc x solves the differential equation

x ′(t) = g(x(t)) , t ∈ [a,b] a.e.

is open to question when the underlying function g fails to be continuous. Requiring
pointwise equality almost everywhere, for example, is unsatisfactory: solutions in
this sense tend not to exist.
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Let g : Rn → R
n be locally bounded, and let us construct a multifunction as follows:

G(x) =
⋂

δ >0

co g(B(x,δ )) .

We may then define a solution of x ′(t) = g(x(t)) to mean an arc x satisfying the dif-
ferential inclusion x ′(t) ∈ G(x(t)) a.e.1 Using this solution concept, prove a local
existence theorem for the associated Cauchy problem (that is, when x(a) is pre-
scribed). Show that if g happens to be continuous, then a solution in this new ex-
tended sense is in fact a solution in the usual sense. 
�

13.28 Exercise. Invariance can be studied in a non autonomous setting, for example
when the set S depends on t, as we illustrate now. Accordingly, let S be a multifunc-
tion from R+ to the subsets of Rn.

We now say that the system (S,F) is weakly invariant provided that, for any τ ∈ R+,
for any α ∈ S(τ), there exists T > τ and a trajectory x for F on [τ ,T ] such that

x(τ) = α , x(t) ∈ S(t) ∀ t ∈ [τ ,T ] .

It is clear that this definition coincides with the earlier one (see Def. 12.5) if S
happens to not depend on t. We assume that the graph of S, the set

G =
{
(t,x) ∈ R+×R

n : x ∈ S(t)
}
,

is closed. Our goal is to prove

Theorem. The system (S,F) is weakly invariant if and only if

(t,x) ∈ G , (θ ,ζ ) ∈ NP
G(t,x) =⇒ θ +hF(x ,ζ ) � 0 .

The proof is based on a device known as “absorbing t into the dynamics.” We relabel
t as a new initial coordinate x0 of the state x, and we define F+(x0, x) = {1}×F(x).

(a) Prove that (S,F) is weakly invariant if and only if the (autonomous!) system
(G,F+) is weakly invariant.

(b) Apply Theorem 12.7 to conclude the proof, and show that the new theorem re-
duces to the former one if S does not depend on t.

(c) Extend the other criteria in Theorem 12.7 to the non autonomous setting. 
�

13.29 Exercise. In a similar vein to the preceding exercise, we study the weak de-
crease of a system (ϕ ,F) in an open subset Ω of R

n, but in a non autonomous
setting. We let F satisfy the same hypotheses as in Theorem 12.11; however, we
now let ϕ : R×R

n →R∞ be a lower semicontinuous function that depends on (t, x).

1 Filippov and Krasovskii have pioneered this type of approach.
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We say that (ϕ ,F) is weakly decreasing in Ω provided that, for every (τ ,α) in
(R×Ω )∩ domϕ , there exists a trajectory x for F defined on [τ ,T (x,Ω)) such that

x(τ) = α , ϕ(t, x(t)) � ϕ(τ ,α) ∀ t ∈ [τ ,T (x,Ω)) .

Here, T (x,Ω) is, as before, the exit time from Ω (but now, relative to τ ):

T (x,Ω) = inf
{

T > τ : x(T ) ∈ ∂Ω
}
.

Prove the following:

Theorem.
(
ϕ ,F

)
is weakly decreasing in Ω if and only if

(t, x) ∈ domϕ , (θ ,ζ ) ∈ ∂Pϕ(t, x) =⇒ θ +hF(x ,ζ ) � 0.

Observe that this reduces to Theorem 12.11 if ϕ does not depend on t. 
�

13.30 Exercise. We define the property that (ϕ ,F) is strongly increasing by simply
reversing the inequality involving ϕ in the definition of strongly decreasing (p. 270).
Under the hypotheses of Theorem 12.17, prove that strong increase is characterized
by the following proximal Hamilton-Jacobi inequality:

hF(x ,ζ ) � 0 ∀ζ ∈ ∂Pϕ(x) ∀x ∈ Ω . 
�

13.31 Exercise. The goal is to prove the following result on the existence of zeros.

Theorem. Let K be a nonempty compact convex subset of R
n, and let h : K → R

n

be a Lipschitz function satisfying h(x) ∈ TK(x) ∀ x ∈ K. Then there exists z ∈ K
such that h(z) = 0.

(a) Why can we assume that h is globally Lipschitz and bounded on R
n?

(b) Fix δ > 0. By classical results, for any α ∈ R
n, there is a unique solution xα(·)

defined on [0,δ ] of the Cauchy problem

x ′
α(t) = h(xα(t)) , 0 < t < δ , xα(0) = α .

Prove that α ∈ K =⇒ xα(δ ) ∈ K.

(c) Classical theory implies that the function fδ : K → R
n which maps α to xα(δ ) is

continuous. Thus, in light of the preceding conclusion, we may invoke Brouwer’s
fixed point theorem to deduce the existence of a fixed point zδ ∈ K of the function
fδ . Complete the proof be letting δ ↓ 0. 
�

Generalized Jacobians. Let F : Rm → R
n be locally Lipschitz. The generalized

Jacobian ∂F(x) is defined as follows:

∂F(x) = co
{

lim
i→∞

DF(xi) : xi → x , xi /∈ E ∪ EF

}
,
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where E ⊂ R
m is any set of measure zero, EF is the set of points at which F fails to

be differentiable, and DF is the Jacobian matrix. Then ∂F(x) is a nonempty convex
set2 of n×m matrices, and is compact when viewed as a subset of Rnm.

13.32 Exercise. Prove the two following properties of the generalized Jacobian:

(a) For any ζ ∈ R
n, we have ∂C〈ζ ,F 〉(x) = ζ ∗∂F(x) (∗ refers here to transpose).

(b) ∂F is graph-closed: xi → x , Mi ∈ ∂F(xi), Mi → M =⇒ M ∈ ∂F(x). 
�

13.33 Exercise. When n = m , we say that the generalized Jacobian ∂F(x) defined
above is nonsingular if each element of ∂F(x) is nonsingular (invertible). The goal
is to prove the following (nonsmooth) version of Theorem 5.32:

Theorem. Let F : Rn → R
n be a mapping which is Lipschitz in a neighborhood

of a point x̄ , and such that ∂F(x̄) is nonsingular. Set ȳ = F(x̄). Then there is a
neighborhood U of (x̄ , ȳ) and K > 0 such that

d
(

x,F−1(y)
)
� K |F(x)− y | ∀(x,y) ∈ U .

Proof. Let ϕ(x,y) = |F(x)− y |. With the help of the chain rule and Exer. 13.32,
prove the existence of a neighborhood V of (x̄ , ȳ) and δ > 0 such that

(x,y) ∈ V, ϕ(x, y)> 0 , ζ ∈ ∂Pϕ(x, y) =⇒ |ζ | � δ ,

where ∂P is taken with respect to x. Now use Exer. 13.21 to conclude. 
�

13.34 Exercise. The goal is to build upon Exer. 13.33 in order to obtain the Lips-
chitz inverse function theorem:

Theorem. (Clarke 1973) If F : Rn → R
n is Lipschitz near x̄ and ∂F(x̄) is non-

singular, then there exist a neighborhood W of F(x̄), a neighborhood A of x̄ , and a
Lipschitz function x̂ : W → R

n such that x̂(F(x̄)) = x̄ and

F(x̂(y)) = y ∀y ∈ W , x̂(F(u)) = u ∀u ∈ A.

In order to prove the theorem, establish first that F is locally injective; more specif-
ically, that there exist a neighborhood Ω of x and η > 0 such that

|F(u)−F(x)| � η |u− x | ∀u , x ∈ Ω .

Combine this with Exer. 13.33 in order to complete the proof. 
�

13.35 Exercise. Show that the theorem of Exer. 13.34 applies to the case

n = 2 , F(x,y) =
[
|x |+ y , 2x+ |y |

]
at (0,0). 
�

2 As in the gradient formula (Theorem 10.27), it can be shown that the definition is independent of
the choice of the null set E.
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Chapter 14

The classical theory

We will now discuss in a little more detail the Struggle for
Existence.
Charles Darwin (The Origin of Species)

Life is grey, but the golden tree of theory is always green.
Goethe (Journey by Moonlight)

It’s the question that drives us, Neo.
Morpheus (The Matrix)

The basic problem in the subject that is referred to as the calculus of variations
consists in minimizing an integral functional of the type

J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

over a class of functions x defined on the interval [a,b ], and which take prescribed
values at a and b.

The study of this problem (and its numerous variants) is over three centuries old,
yet its interest has not waned. Its applications are numerous in geometry and differ-
ential equations, in mechanics and physics, and in areas as diverse as engineering,
medicine, economics, and renewable resources. It is not surprising, then, that mod-
eling and numerical analysis play a large role in the subject today. In the following
chapters, however, we present a course in the calculus of variations which focuses on
the core mathematical issues: necessary conditions, sufficient conditions, existence
theory, regularity of solutions.

For those like the reader who have a sensitive mathematical conscience, the state-
ment of the basic problem, as rendered above, may well create an uneasiness, a
craving for precision. What, exactly, is the class of functions in which x lies? What
hypotheses are imposed on the function Λ? Is the integral well defined? Does a
solution exist?

In the early days of the subject, these questions went unaddressed, at least explicitly.
(Implicitly: everything was taking place in a very smooth universe in which prob-
lems evidently had solutions.) Our era, more attuned to the limits of smoothness,
requires a more deliberate approach, and a well-defined setting. And this is just as
well, for, as the reader will come to understand, the history, the development, and
the most useful insights into the subject are inextricably wrapped up with the very
questions just posed.

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 14,
© Springer-Verlag London 2013
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Hypotheses. The focus of our attention is the integral functional J(x) defined
above, where Λ is a function of three variables, and where [a,b ] is a given in-
terval in R. Λ(t, x,v) is referred to as the Lagrangian, and the generic notation for
its three variables is (t, x,v): time, state, velocity.

This chapter deals with the case in which these variables are one-dimensional and all
the functions involved are smooth. We take Λ : R3 → R to be a twice continuously
differentiable function, and we limit attention to functions x : [a,b ]→ R that belong
to C2[a,b ]. This means that x lies in C[a,b ], the derivatives x ′ and x ′′ exist and are
continuous in (a,b), and both x ′ and x ′′ admit continuous extensions to [a,b ]. It is
clear that this is more than adequate to guarantee that the integral defining J(x) is
well defined for each competing x.

Given in addition two points A and B in R, we now consider the basic problem in
the calculus of variations:

minimize J(x) : x ∈ C2[a,b ] , x(a) = A , x(b) = B. (P)

J(x) is referred to as the cost corresponding to x. A function x : [a,b ]→ R is termed
admissible if it satisfies the boundary constraints and lies in the appropriate class, in
this case C2[a,b ]. A solution x∗ of (P) refers to an admissible function x∗ such that
J(x∗) � J(x) for all other admissible functions x. We also refer to x∗ as a minimizer
for the problem.

14.1 Example. (A minimal surface problem) The well-known problems to which
the calculus of variations was first applied arise in geometry and mechanics. A fa-
mous example of the problem (P) that goes back to Euler’s seminal monograph of
1744 is to find the shape of the curve x(t) joining (a,A) to (b,B) whose associated
surface of rotation (about the t -axis) has minimal area.

This can be given a physical interpretation: when a soap surface is spanned by two
concentric rings of radius A and B, the resulting surface will be a surface of rotation
of a curve x(t), and we expect the area of the surface to be a minimum. This expecta-
tion (confirmed by experiment) is based upon d’Alembert’s principle, which affirms
that in static equilibrium, the observed configuration minimizes total potential en-
ergy (which, for a soapy membrane desperately seeking to contract, is proportional
to its area).

In concrete terms, the soap bubble problem consists of minimizing

∫ b

a
x(t)

√
1+ x ′(t)2 dt subject to x(a) = A, x(b) = B.

This is the case of the basic problem (P) in which Λ(t, x,v) = x
√

1+ v2 . (The
surface area is in fact given by 2π times the integral, but we can omit this multi-
plicative factor, which does not effect the minimization.) We shall be seeing this
problem again later. 
�
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14.1 Necessary conditions

The following result identifies the first necessary condition that a minimizing x must
satisfy; it is in effect an analogue of Fermat’s rule that f ′(x) = 0 at a minimum.

Notation: The partial derivatives of the function Λ(t, x,v) with respect to x and to
v are denoted by Λ x and Λv .

14.2 Theorem. (Euler 1744) If x∗ is a solution of (P), then x∗ satisfies the Euler
equation:

d
dt

{
Λv

(
t, x∗(t), x∗′(t)

)}
= Λ x

(
t, x∗(t), x∗′(t)

)
∀ t ∈ [a,b ]. (1)

Proof. Euler’s proof of this result used discretization, but the now standard proof
given here uses Lagrange’s idea: a variation, from which the subject derives its
name. In the present context, a variation means a function y ∈ C2[a,b ] such that
y(a) = y(b) = 0. We fix such a y, and proceed to consider the following function g
of a single variable:

g(λ ) = J(x∗+λy) =
∫ b

a
Λ
(
t, x∗+λy, x ′

∗+λy ′)dt . (2)

(The reader will notice that we have yielded to the irresistible temptation to leave out
certain arguments in the expression for the integral; thus x∗ should be x∗(t) and y is
really y(t), and so on. Having already succumbed the first time, we shall do so rou-
tinely hereafter.) It follows from standard results in calculus that g is differentiable,
and that we can “differentiate through the integral” to obtain

g ′(λ ) =
∫ b

a

[
Λ x

(
t, x∗+λy, x∗′+λy ′)y+Λv

(
t, x∗+λy, x∗′+λy ′)y ′ ]dt . (3)

Observe now that for each λ , the function x∗+λy is admissible for (P), whence

g(λ ) = J(x∗+λy) � J(x∗) = g(0).

It follows that g attains a minimum at λ = 0, and hence that g ′(0) = 0; thus:

∫ b

a

[
α(t)y(t)+β (t)y ′(t)

]
dt = 0,

where we have set

α(t) = Λ x
(
t, x∗(t), x∗′(t)

)
, β (t) = Λv

(
t, x∗(t), x∗′(t)

)
.

Using integration by parts, we deduce
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∫ b

a

[
α(t)−β ′(t)

]
y(t)dt = 0.

Since this is true for any variation y, it follows that the continuous function which
is the coefficient of y under the integral sign must vanish identically on [a,b ] (left
as an exercise). But this conclusion is precisely Euler’s equation. 
�

A function x ∈ C2[a,b ] satisfying Euler’s equation is referred to as an extremal.
The Euler equation (1) is (implicitly) a differential equation of order two for x∗,
and one may expect that, in principle, the two boundary conditions will single out a
unique extremal. We shall see, however, that it’s more complicated than that.

14.3 Exercise.

(a) Show that all extremals for the LagrangianΛ(t, x,v) =
√

1+ v 2 are affine. Why
is this to be expected?

(b) Show that the Euler equation for the Lagrangian Λ(t, x,v) = x2 +v 2 is given by
x ′′ − x = 0.

(c) Find the unique admissible extremal for the problem

min
∫ 1

0

(
x ′(t)2 + x(t)2)dt : x ∈ C2[0,1] , x(0) = 0, x(1) = 1.


�

Local minima are extremals. The Euler equation is the first-order necessary con-
dition for the calculus of variations problem (P), and we would expect it to hold for
merely local minima (suitably defined). We develop this thought now.

A function x∗ admissible for (P) is said to provide a weak local minimum if, for
some ε > 0, for all admissible x satisfying ‖ x− x∗ ‖ � ε and ‖ x ′ − x∗′ ‖ � ε , we
have J(x) � J(x∗). The anonymous norm referred to in a context such as this one
will always be that of L∞[a,b ] (or C[a,b ]); thus, for example, the notation above
refers to

‖x− x∗‖ = max
{
|x(t)− x∗(t)| : t ∈ [a,b ]

}
.

The proof of the necessity of Euler’s equation goes through for a local minimizer
just as it did for a global one: the function g defined in (2) attains a local minimum
at 0 rather than a global one; but we still have g ′(0) = 0, which is what leads to the
Euler equation. Thus any weak local minimizer for (P) must be an extremal.

The Erdmann condition. The Lagrangian Λ is said to be autonomous if it has
no explicit dependence on the t variable. The following consequence of the Euler
equation can be a useful starting point in the identification of extremals.

14.4 Proposition. Let x∗ be a weak local minimizer for (P), where Λ is au-
tonomous. Then x∗ satisfies the Erdmann condition: for some constant h, we have
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x∗′(t)Λv
(
x∗(t), x∗′(t)

)
−Λ

(
x∗(t), x∗′(t)

)
= h ∀ t ∈ [a,b ].

Proof. It suffices to show that the derivative of the function on the left side is zero,
which follows from the Euler equation: we leave this as an exercise. 
�

14.5 Example. (continued) We return to the soap bubble problem (Example 14.1),
armed now with some theory. Suppose that x∗ is a weak local minimizer for the
problem, with x∗(t) > 0 ∀ t . The reader may verify that the Euler equation is given
by

x ′′(t) = (1+ x ′(t)2)/x(t).

We deduce from this that x∗′ is strictly increasing (thus x∗ is strictly convex). Since
Λ is autonomous, we may invoke the Erdmann condition (Prop. 14.4). This yields
the existence of a positive constant k such that

(
x∗(t) ′

)2
= x∗(t)2/k 2 −1 , t ∈ [a,b ].

If x∗′ is positive throughout [a,b ], we may solve this to reveal the separated differ-
ential equation

k dx
√

x2 − k2
= dt .

Mathematics students used to know by heart a primitive for the left side: the function
k cosh−1(x/k). It follows that x∗ is of the form

x∗(t) = k cosh
(

t + c
k

)
.

A curve of this type is called a catenary.1

If, instead of being positive, x∗′ is negative, a similar analysis shows that, once again,
x∗ is a catenary:

x∗(t) = κ cosh
(

t +σ
κ

)
,

for certain constants σ ,κ (different from c and k, on the face of it). Since x∗′ is
strictly increasing, the general case will have x∗′ negative, up to a point τ (say),
and then positive thereafter. Thus, x∗ is a catenary (with constants σ ,κ ) followed
by another catenary (with constants c,k). The smoothness of x∗, it can be shown,
forces the constants to coincide, so we can simply assert that x∗ is a catenary.

Notice that the detailed analysis of this problem is not a trivial matter. Furthermore,
the only rigorous conclusion reached at the moment is the following: if there exists a
weak local minimizer x∗ ∈ C2[a,b ] which is positive on [a,b ], then x∗ is a catenary.

1 Not every choice of interval [a,b ] and prescribed endpoints A,B will define a catenary; we do
not pursue this issue, which is carefully analyzed in Bliss [5].
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Our impulse may be to accept that conclusion, especially since soap bubbles do
demonstrably exist, and have the good grace to cooperate (frequently) by being cate-
naries. But the example illustrates a general fact in optimization: “real” problems are
rarely so impressed by the theory that they immediately reveal their secrets.

An ad hoc analysis, sometimes difficult, is often required. In the soap bubble case,
for example, note the use of the (presupposed) regularity of x∗ , which allowed us
to match up the catenaries. (We return to this regularity issue later.) In this text, we
stress the theory, rather than the details of particular problems. But we prefer to have
warned the reader that no amount of general theory reduces a difficult problem to a
simple exercise. 
�

Our next example involves an important topic in classical mechanics.

14.6 Example. (Least action principle) In 1744, Euler (in that same monograph
we mentioned before) extended d’Alembert’s principle to mechanical systems which
are in motion, rather than in static equilibrium. His celebrated Principle of Least
Action2 postulates that the movement between two time instants t1 and t2 mini-
mizes the action ∫ t2

t1

(
K −V

)
dt ,

where K refers to kinetic energy and V to potential energy.

We proceed to illustrate the principle of least action in a simple case: the (unforced)
oscillation in the plane of a pendulum of length � whose mass m is entirely in the
bob. The angle θ (see Fig. 14.1) is a convenient choice of generalized coordinate;
the motion of the pendulum is described by the corresponding function θ(t). In
terms of θ , the kinetic energy K = mv2/2 is given by m

(
�θ ′)2/2.

Fig. 14.1
The pendulum

If one uses θ = 0 as the reference level for calculating potential energy mgh, then
it is given in terms of θ by mg�(1− cosθ), as a little trigonometry shows. Thus the
action between two instants t1 and t2 is given by

∫ t2

t1

{
1
2 m

(
�θ ′(t)

)2 −mg�
(
1− cosθ(t)

)}
dt .

2 Sometimes mistakenly attributed to Maupertuis; see the discussion in [27].
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We apply the least action principle: it follows that the resulting motion θ(t) satisfies
Euler’s equation for the action functional. The reader may check that this yields the
following differential equation governing the pendulum’s movement:

θ ′′(t)+(g/�) sinθ(t) = 0.

This equation, which can also be deduced from Newton’s law, is in fact the one
which describes the movement of the pendulum. But does it really minimize the
action? Perhaps in a local sense?

Consider the analogy with the minimization of a function f (x) (on R, say). The
Euler equation corresponds to the necessary condition f ′(x∗) = 0, the stationarity
of f at a given point x∗. Further evidence of a local minimum would be the second-
order condition f ′′(x∗) � 0. And if we knew in addition that f ′′(x∗)> 0, then we
could say with certainty that x∗ provides at least a local minimum. In this light, it
seems reasonable to pursue second-order conditions in the calculus of variations.
The honor of first having done so belongs to Legendre, although, to some extent, he
was scorned for his efforts, for reasons that we shall see. 
�

In studying second-order conditions, and for the rest of this chapter, we strengthen
the regularity hypothesis on the Lagrangian by assuming that Λ is C 3.

14.7 Theorem. (Legendre’s necessary condition, 1786) Let x∗ be a weak local
minimizer for (P). Then we have

Λvv
(
t, x∗(t), x∗′(t)

)
� 0 ∀ t ∈ [a,b ].

Proof. We consider again the function g defined by (2). We observe that the for-
mula (3) for g ′(λ ) implies that g ′ is itself differentiable. We proceed to develop an
expression for g ′′(0). Differentiating under the integral in g ′(λ ), and then setting
λ = 0, we obtain

g ′′(0) =
∫ b

a

[
Λ xx(t)y2 +2Λ xv(t)yy ′+Λvv(t)y ′ 2

]
dt,

where Λ xx(t) (for example) is an abbreviation for Λ xx(t, x∗(t), x∗′(t)), and where
we have invoked the fact that Λ xv and Λvx coincide. We proceed to define

P(t) = Λvv
(
t, x∗(t), x∗′(t)

)
(4)

Q(t) = Λ xx
(
t, x∗(t), x∗′(t)

)
− d

dt
Λ xv

(
t, x∗(t), x∗′(t)

)
. (5)

(Note that Q is well defined, in part becauseΛ is C3.) Using this notation, integration
by parts shows that the last expression for g ′′(0) may be written

g ′′(0) =
∫ b

a

[
P(t)y ′ 2

(t)+Q(t)y2(t)
]

dt . (6)
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Since g attains a local minimum at 0, we have g ′′(0) � 0. We now seek to exploit
the fact that this holds for every variation y. To begin with, a routine approximation
argument (see Ex. 21.13) shows that for any Lipschitz (rather than C2 ) variation y
in Lip0[a,b ] (the class of Lipschitz functions on [a,b ] that vanish at a and b), we
still have the inequality (6).

Now let [c,d ] be any subinterval of [a,b ], and let ε be any positive number. We
define a function ϕ ∈ Lip0[a,b ] as follows: ϕ vanishes on [a,c ] and [d,b ], and, in
between (that is, on [c,d ]), ϕ is a sawtooth function whose derivative is alternately
+1 and −1, with the effect that for all t ∈ [c,d ] we have |ϕ(t)| < ε . Then, by
taking y = ϕ in (6), we deduce

∫ d

c

[
P(t)+ |Q(t)|ε 2 ] dt � 0.

Since ε > 0 is arbitrary, we conclude that the integral of the continuous function
P(t) over [c,d ] is nonnegative. Since in turn the subinterval [c,d ] is arbitrary, we
have proved, as required, that P is nonnegative on [a,b ]. 
�

14.2 Conjugate points

In contrast to the Euler equation, the Legendre necessary condition has the potential
to distinguish between a maximum and a minimum: at a local maximizer x∗ of J
(that is, a local minimizer of −J ), we have Λvv(t, x∗(t), x∗′(t))� 0.

To illustrate the distinction, consider the functional

J(x) =
∫ b

a

√
1+ x ′(t)2 dt .

Legendre’s condition tells us that it is useless to seek local maxima of J, since here
we have Λvv = {1+v2 }−3/2 > 0; only local (or global) minima may exist.

Legendre proceeded to prove (quite erroneously) that his necessary condition, when
strengthened to strict inequality, was also a sufficient condition for a given extremal
to provide a weak local minimum. He was scathingly criticized by Lagrange for his
sins.3

Legendre’s proof went as follows. Using the same function g as above, together with
the (Lagrange!) expansion

g(1)−g(0) = g ′(0)+(1/2)g ′′(λ ) = (1/2)g ′′(λ )

3 The reader will be relieved to know that Legendre’s reputation recovered; his name is one of 72
inscribed on the Eiffel tower. . .
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(the Euler equation corresponds to g ′(0) = 0), routine calculations (given in the
proof of Theorem 14.8 below) lead to the inequality

J(x∗+ y)− J(x∗) �
1
2

∫ b

a

[
(P−δ )y ′ 2

+Qy2
]

dt (1)

for all variations y in a suitable weak neighborhood of 0 (that is, such that ‖y‖ and
‖y ′ ‖ are sufficiently small). Here, P and Q have the same meaning as before, and
δ > 0 is chosen so that P(t)− δ > 0 on [a,b ] (this is where the supposed strict
positivity of P is used). There remains only to show, therefore, that the integral term
in (1), which we label I, is nonnegative.

To this end, let w be any continuously differentiable function, and note that

I =
∫ b

a

[
(P−δ )y ′ 2

+Qy2 ]dt =

∫ b

a

[
[(P−δ )y ′ 2

+Qy2 +
(
wy2)′ ]dt

=

∫ b

a
(P−δ )

[
y ′ 2

+
Q+w ′

P−δ
y2 +2

w
P−δ

yy ′
]

dt

=

∫ b

a
(P−δ )

[
y ′+

w
P−δ

y
]2

dt � 0,

where the factorization in the last integral expression depends upon having chosen
the function w (heretofore arbitrary) to satisfy

Q+w ′

P−δ
=

(
w

P−δ

)2

⇐⇒ w ′ =
w2

P−δ
− Q .

The proof appears to be complete. It has a serious defect, however.

Even in the present sophisticated era, students are sometimes surprised that such an
innocent-looking differential equation as the one above can fail to have a solution w
defined on the entire interval [a,b ]. In fact, the equation is nonlinear, and we know
only that a solution exists if b is taken sufficiently close to a, from well-known local
existence theorems. In light of this, perhaps we can forgive Legendre his error (tak-
ing for granted the existence of w), especially since his approach, suitably adapted,
did in fact turn out to be highly fruitful.

We summarize what can be asserted on the basis of the discussion so far.

14.8 Theorem. Let x∗ ∈ C2[a,b ] be an admissible extremal satisfying the strength-
ened Legendre condition Λvv(t, x∗(t), x∗′(t)) > 0 ∀ t ∈ [a,b ]. Suppose there exists
a function w ∈ C1[a,b ] satisfying the differential equation

w ′(t) =
w(t)2

P(t)
− Q(t) , t ∈ [a,b ].

Then x∗ is a weak local minimizer for (P).
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Proof. We begin with the estimate mentioned above.

Lemma. There is a constant M such that the following inequality holds for every
variation y having ‖y‖+‖y ′ ‖ � 1:

J(x∗+ y)− J(x∗) � 1
2

∫ b

a

[
Py ′ 2

+Qy2
]

dt −M
{
‖y‖+‖y ′‖

}∫ b

a
y ′ 2 dt.

To prove this, we first observe that, for some λ ∈ (0,1),

J(x∗+ y)− J(x∗) = g(1)−g(0) =
1
2

g ′′(λ ),

by the second-order mean value theorem of Lagrange (also known as the Taylor
expansion), since g ′(0) = 0 (x∗ being an extremal). Calculating as we did in the
proof of Theorem 14.7, we find

g ′′(λ ) =
∫ b

a

[
Λλ

vv(t)y ′ 2
+2Λλ

xv(t)yy ′+Λλ
xx(t)y2

]
dt , (2)

where, for example, Λλ
vv(t) is shorthand for

Λvv(t, x∗+λy, x∗′+λy ′).

The partial derivatives Λvv ,Λ x v and Λ xx , being continuously differentiable, admit
a common Lipschitz constant K on the ball around (0,0,0) of radius

|a |+ |b |+‖ x∗‖+‖x∗′‖+1.

This allows us to write, for any variation y as described in the statement of the
lemma,

∣
∣Λλ

vv(t)−Λ 0
vv(t)

∣
∣ � K |λ | |(y(t), y ′(t))| � K |(y(t), y ′(t))|,

and similarly for the other two terms in (2). This leads to

J(x∗+ y)− J(x∗) � 1
2

∫ b

a

[
Λ 0

vv(t)y ′ 2
+2Λ 0

xv(t)yy ′+Λ 0
xx(t)y2 ]dt

−2
[
‖y‖+‖y ′‖

] ∫ b

a

[
y ′ 2

+2|yy ′ |+ y2 ]dt .

The proof of Theorem 14.7 showed that the first term on the right is precisely

1
2

∫ b

a

[
Py ′ 2

+Qy2 ]dt .

To complete the proof of the lemma, therefore, it now suffices to know that for some
constant c, we have
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∫ b

a

[
2|yy ′ |+ y2 ]dt � c

∫ b

a
y ′2 dt .

This consequence of the Cauchy-Schwartz inequality is entrusted to the reader as an
exercise.

We now complete the proof of the theorem. We proceed to pick δ > 0 sufficiently
small so that P(t)> δ on [a,b ], and (calling upon a known fact in differential equa-
tions), also so that the following differential equation admits a solution wδ :

wδ
′(t) =

wδ (t)2

P(t)−δ
− Q(t) , t ∈ [a,b ].

(The hypothesized existence of the solution w = w0 for δ = 0 is crucial here for
being able to assert that the solution wδ of the perturbed equation exists for suitably
small δ ; see [28].) We then pick any variation y satisfying

‖y‖+‖y ′‖ � min
(
δ/4M , 1

)
.

We then find (exactly as in Legendre’s argument)

∫ b

a

[
(P−δ )y ′ 2

+Qy2 ]dt =

∫ b

a
(P−δ )

{
y ′+(wδ y)/(P−δ )

}2 dt � 0.

Applying the lemma, we deduce

J(x∗+ y)− J(x∗) � 1
2

∫ b

a

[
Py ′ 2

+Q y2 ]dt − δ
4

∫ b

a
y ′ 2 dt

= 1
2

∫ b

a

[
(P−δ )y ′ 2

+Q y2 ]dt + δ
4

∫ b

a
y ′ 2 dt � 0. 
�

14.9 Example. The function x∗ ≡ 0 is an admissible extremal for the problem

min
∫ 1

0

{ 1
2 x ′(t)2 + t x ′(t)sinx(t)

}
dt : x ∈ C2[0,1] , x(0) = x(1) = 0,

as the reader may verify. We wish to show that it provides a weak local minimum.
We calculate

P(t) = 1 , Q(t) = −1.

Thus, the strengthened Legendre condition holds, and it suffices (by Theorem 14.8)
to exhibit a solution w on [0,1] of the differential equation w ′ = w2 +1. The func-
tion w(t) = tan t serves the purpose. Note that this w would fail to be defined, how-
ever, if the underlying interval were [0,2 ] (say). 
�

The following exercise demonstrates that merely pointwise conditions such as the
Euler equation and the strengthened Legendre condition cannot always imply op-
timality; some extra element must be introduced which refers to the interval [a,b ]
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or, more precisely, its length. We arrive in this way at a new idea: extremals can be
optimal in the short term, without being optimal globally on their entire interval of
definition.

14.10 Exercise. (Wirtinger’s inequality) We study the putative inequality

∫ T

0
x2(t)dt �

∫ T

0
x ′(t)2 dt

for smooth functions x : [0,T ]→ R which vanish at 0 and T (here, T > 0 is fixed).
We rephrase the issue as follows: we study whether the function x∗ ≡ 0 solves the
following special case of the problem (P):

min J(x) =
∫ T

0

[
x ′ 2 − x 2 ] dt : subject to x ∈ C2[a,b ] , x(0) = x(T ) = 0. (∗)

(a) Show that, whatever the value of T , the function x∗ is an extremal and satisfies
the strengthened Legendre condition on [0,T ].

(b) For any x admissible for (∗), we have J(λ x) = λ 2J(x) ∀λ > 0. Deduce from
this homogeneity property that x∗ is a weak local minimizer for (∗) if and only if
it is a global minimizer.

(c) Let T � 1, and let x be admissible for (∗). Use the Cauchy-Schwarz inequality
to prove

| x(t)|2 �
∫ T

0
x ′(s)2 ds , t ∈ [0,T ].

Deduce that J(x) � 0 = J(x∗), so that x∗ does solve problem (∗).

(d) Now let T � 4. Show that the function x defined by x(0) = 0 and

x ′(t) =

⎧
⎪⎨

⎪⎩

1 if 0 � t � 1
0 if 1 < t < T −1

−1 if T −1 � t � T

satisfies J(x) < 0. Note that x is Lipschitz, but not C2; however, approximation
(see Exer. 21.13) leads to the conclusion that for T � 4, the extremal x∗ fails to
solve (∗).

It follows that the optimality of x∗ for (∗) ceases to hold at some value of T between
1 and 4. We surmise that it must be a notable number; we shall identify it in due
course. 
�

Conjugate points. We know from local existence theorems that the differential
equation that appears in the statement of Theorem 14.8 admits a solution w on an
interval [a, a + ε ], for some ε > 0 (in the presence of the other hypotheses). It
follows that the extremal x∗ , restricted to [a, a+ ε ], is a weak local minimizer for
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the truncated version of the basic problem for which it is admissible (that is, the
problem whose boundary values at a and a+ε are those of x∗). The difficulty is that
a+ ε may have to be strictly less than b.

A half-century after Legendre, Jacobi found a way to calibrate the extent of an
extremal’s optimality. We now examine this theory, which is based upon a certain
second-order differential equation. Let x∗ be an extremal on [a,b ], and let P and Q
be defined as before:

P(t) = Λvv
(
t, x∗(t), x∗′(t)

)

Q(t) = Λ xx
(
t, x∗(t), x∗′(t)

)
− d

dt
Λ xv

(
t, x∗(t), x∗′(t)

)
.

The Jacobi equation corresponding to x∗ is the following second-order differential
equation:

− d
dt

{
P(t)u ′(t)

}
+Q(t)u(t) = 0, u ∈ C2[a,b ].

The somewhat unusual way in which this differential equation is expressed (as in a
classical Sturm-Liouville problem) is traditional.

14.11 Definition. The point τ in (a,b ] is said to be conjugate to a (relative to the
given extremal x∗) if there is a nontrivial solution u of the associated Jacobi equation
which satisfies u(a) = u(τ) = 0.

In seeking conjugate points, it turns out that any nontrivial solution u of Jacobi’s
equation vanishing at a can be used: any other such u will generate the same conju-
gate points (if any). Let us see why this is so. Consider two such functions u1 and
u2 . We claim that u ′

1(a) 	= 0. The reason for this is that the only solution u of Ja-
cobi’s equation (a linear homogeneous differential equation of order two) satisfying
u(a) = u ′(a) = 0 is the zero function (by the well-known uniqueness theorem for
the initial-value problem). Similarly, we have u ′

2(a) 	= 0. It follows that for certain
nonzero constants c, d, we have

cu ′
1(a)+d u ′

2(a) = 0.

But then the function u := cu1 +d u2 is a solution of Jacobi’s equation which van-
ishes, together with its derivative, at a. Thus u ≡ 0; that is, u2 is a nonzero multiple
of u1 . It follows, then, that u1 and u2 have the same zeros, and hence determine the
same conjugate points.

A nontrivial solution u of Jacobi’s equation that vanishes at a has a first zero τ > a,
if it has one at all (for otherwise we find u ′(a) = 0, a contradiction. Thus, it makes
sense to speak of the nearest conjugate point τ (if any), which is located at a strictly
positive distance to the right of a.

In the study of conjugate points, it is always assumed that the underlying extremal
x∗ satisfies the strengthened Legendre condition: P(t) > 0 ∀ t ∈ [a,b ].
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14.12 Theorem. (Jacobi 1838) Let x∗ ∈ C2[a,b ] be an extremal of the basic prob-
lem (P) which satisfies the boundary conditions of (P) as well as the strengthened
Legendre condition. Then

(a) (Necessary condition) If x∗ is a weak local minimizer for (P), there is no conju-
gate point to a in the interval (a,b).

(b) (Sufficient condition) Conversely, if there is no point conjugate to a in the interval
(a,b ], then x∗ is a weak local minimizer for (P).

Proof. The proof of necessity is postponed (see Ex. 15.6). We prove here the suf-
ficiency. Accordingly, let x∗ be an admissible extremal satisfying the strengthened
Legendre condition, and admitting no conjugate point in (a,b ].

Lemma. Jacobi’s equation

− d
dt

{
P(t)u ′(t)

}
+Q(t)u(t) = 0

admits a solution ū on [a,b ] which is nonvanishing.

To see this, let us consider first the solution u0 on [a,b ] of Jacobi’s equation with
initial condition u(a) = 0, u ′(a) = 1 (such a solution exists because of the linearity
of Jacobi’s equation).

Since there is no conjugate point in the interval (a,b ] (by hypothesis), it follows that
u0 is nonvanishing on the interval (a,b ]. Because u ′

0 is continuous, we can therefore
find ε > 0 and d ∈ (a,b) such that

u ′
0(t)> ε (t ∈ [a,d ]) , |u0(t)| > ε , (t ∈ [d,b ]).

Now consider the solution uη of the Jacobi equation satisfying the initial conditions
u(a) = η , u ′(a) = 1, where η is a small positive parameter. According to the
“imbedding theorem” (see [28]) whereby solutions of differential equations depend
continuously upon initial conditions, for η sufficiently small we have

∣
∣uη

′(t)−u ′
0(t)

∣
∣ <

ε
2
, |uη(t)−u0(t)| <

ε
2
, t ∈ [a,b ].

(In order to apply the imbedding theorem, we rewrite the second-order differential
equation as a system of two first-order equations, in the usual way; the positivity of
P is used in this.) Note that uη clearly cannot vanish on [d,b ]; it also cannot vanish
on [a,d ], since we have uη(a) > 0 and uη

′ > 0 on [a,d ]. Thus uη is nonvanishing
on [a,b ]. This proves the lemma: take ū = uη .

We now complete the proof of the theorem. We set

w(t) = −ū ′(t)P(t)/ū(t) ,
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which is possible because ū is nonvanishing. This clever change of variables was
discovered by Jacobi; it linearizes the differential equation that appears in the state-
ment of Theorem 14.8, in the sense that, as follows by routine calculation, the re-
sulting function w satisfies

w ′(t) =
w(t)2

P(t)
− Q(t) , t ∈ [a,b ].

Thus x∗ is revealed to be a weak local minimizer, by Theorem 14.8. 
�

14.13 Corollary. Let x∗ ∈ C2[a,b ] be an extremal of the basic problem (P) which
satisfies the boundary conditions of (P) as well as the strengthened Legendre con-
dition. Suppose there exists a solution u of Jacobi’s equation which does not vanish
on [a,b ]. Then x∗ is a weak local minimizer.

Proof. As shown in the proof of Theorem 14.12, u induces a solution of the differ-
ential equation that appears in the statement of Theorem 14.8; thus, the conclusion
follows from that result. 
�

14.14 Example. Consider the basic problem

min
∫ 1

0
x ′(t)3 dt : x ∈ C2 [0,1] , x(0) = 0, x(1) = 1.

The Euler equation is
d
dt

{
3 x ′ 2} = 0 ,

which implies that x ′ is constant. Thus, the unique admissible extremal is x∗(t) = t .
The corresponding functions P and Q are given by P(t) = 6 and Q = 0. It follows
that the strengthened Legendre condition holds along x∗ , and the Jacobi equation is

− d
dt

{
6u ′} = 0 .

A suitable solution of this equation (for finding conjugate points) is u(t) = t . Since
this has no zeros in (0,1], and hence generates no conjugate points, we deduce from
Theorem 14.12 that x∗ provides a weak local minimum. 
�

14.15 Exercise. Prove that the problem considered in Example 14.14 admits no
weak local maximizer. 
�

In the classical situations of mechanics, extremals of the action functional satisfy the
strengthened Legendre condition, because the kinetic energy term is positive definite
and quadratic. Jacobi’s theorem therefore confirms the principle of least action as a
true minimization assertion: the action is in fact minimized locally and in the short
term by any extremal (relative to the points that it joins).



302 14 The classical theory

14.16 Exercise. Consider the soap bubble problem (Example 14.5), with

[a,b ] = [0,T ] , (T > 0) , A = 1, B = cosh T .

Let x∗ be the catenary cosh t . Prove that, if T is sufficiently small, then x∗ provides
a weak local minimum for the problem. 
�

14.17 Exercise. (Wirtinger’s inequality, continuation) Find Jacobi’s equation for
the extremal and Lagrangian of the problem arising from the Wirtinger inequality
(Exer. 14.10). Show that the point τ = π (a notable number) is the first point conju-
gate to a = 0. Deduce the following result:4

Proposition. Let T ∈ [0,π ]. Then, for any x ∈ C2[0,T ] which vanishes at 0 and
T , we have ∫ T

0
x(t)2 dt �

∫ T

0
x ′(t)2 dt .

The general inequality fails if T > π . 
�

14.18 Exercise. We study the following problem in the calculus of variations:

minimize
∫ T

0
e−δ t( x ′(t)2 − x(t)2 )dt : x ∈ C2[0,T ] , x(0) = 0, x(T ) = 0,

where T > 0 and δ � 0 are given.

(a) Show that x∗ ≡ 0 is a weak local minimizer when δ � 2, for any value of T > 0.

(b) If δ � 2, prove that x∗ is in fact a global minimizer. [ Hint: J(λ x) = λ 2J(x). ]

(c) When δ < 2, show that, for a certain τ > 0, x∗ is a local minimizer if T < τ ,
but fails to provide a local minimum if T > τ . 
�

14.3 Two variants of the basic problem

We conclude this chapter’s survey of the classical theory with two well-known vari-
ants of the underlying problem.

The transversality condition. In certain variational problems, the endpoint val-
ues of the competing functions x are not fully prescribed. In such cases, the extra
flexibility at the boundary gives rise to additional conclusions in the necessary con-
ditions, conclusions that say something about the initial and/or final values of x.
These are known as transversality conditions.

4 See Exer. 21.14 for an equivalent version of Wirtinger’s inequality, one that is formulated on
intervals of arbitrary length.
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The following provides a simple example. We consider the problem of minimiz-
ing

�
(

x(b)
)
+

∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

over the functions x ∈ C2[a,b ] satisfying the initial condition x(a) = A. The given
function � (which we take to be continuously differentiable) corresponds to an extra
cost term that depends on the (now unprescribed) value of x(b).

14.19 Theorem. Let x∗ be a weak local minimizer of the problem. Then x∗ is an
extremal for Λ , and x∗ also satisfies the following transversality condition:

−Λv
(

b, x∗(b), x∗′(b)
)
= � ′

(
x∗(b)

)
.

The main point to be retained is that the extra information provided by the transver-
sality condition exactly compensates for the fact that x∗(b) is now unknown. Thus
the overall balance between known and unknown quantities is preserved: there is
conservation of information. We shall see other instances later of this general prin-
ciple for necessary conditions.

Proof. It is clear that x∗ is a weak local minimizer for the version of the original
problem (P) in which we impose the final constraint corresponding to B := x∗(b).
Thus, x∗ is an extremal by Theorem 14.2.

Let us now choose any function y ∈ C2[a,b ] for which y(a) = 0 (but leaving y(b)
unspecified). We define g as follows:

g(λ ) = �
(

x∗(b)+λy(b)
)
+ J(x∗+λy).

It follows that g has a local minimum at λ = 0; thus g ′(0) = 0. As in the proof of
Theorem 14.2, this leads to

� ′
(

x∗(b)
)

y(b)+
∫ b

a

[
α(t)y(t)+β (t)y ′(t)

]
dt = 0.

Since α = β ′ (as we know from the Euler equation), integration by parts shows that
the integral is equal to β (b)y(b). We derive therefore

[
� ′
(

x∗(b)
)
+β (b)

]
y(b) = 0.

Since y(b) is arbitrary, we deduce � ′
(

x∗(b)
)
+β (b) = 0, which is the desired con-

clusion. 
�

14.20 Exercise. Given that the following problem has a unique solution x∗:

minimize
∫ 3

0

( 1
2 x ′(t)2 + x(t)

)
dt : x ∈ C2[0,3 ] , x(0) = 0 ,
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show that x∗ is of the form t 2/2+ ct . Use the transversality condition to show that
c =−3. Find the solution when the problem is modified as follows:

minimize x(3)+
∫ 3

0

( 1
2 x ′(t)2 + x(t)

)
dt : x ∈ C2[0,3 ] , x(0) = 0.


�

The isoperimetric problem. This phrase refers to the classical problem of mini-
mizing the same functional J(x) as in the basic problem (P), under the same bound-
ary conditions, but under an additional equality constraint defined by a functional of
the same type as J :

∫ b

a
ψ
(
t, x(t), x ′(t)

)
dt = 0.

The method of multipliers was introduced in this context by Euler (yes, in that very
same monograph), but, as we know, is most often named after Lagrange, who made
systematic use of it in his famous treatise on mechanics. Because of our experience
with the multiplier rule in optimization, the reader will find that the next result has
a familiar look.

14.21 Theorem. Let x∗ ∈ C2[a,b ] be a weak local minimizer for the isoperimetric
problem, where Λ and ψ are C2. Then there exists (η ,λ ) 	= 0, with η = 0 or 1,
such that x∗ is an extremal for the Lagrangian ηΛ +λψ .

Proof. We merely sketch the proof; a much more general multiplier rule will be
established later. The idea is to derive the conclusion from Theorem 9.1, for the
purposes of which we define

f (x) = JΛ (x∗+ x) , h(x) = Jψ(x∗+ x) ,

where JΛ and Jψ are the integral functionals corresponding toΛ and ψ , and where x
lies in the vector space X = C2

0 [a,b ] consisting of those elements in C2 [a,b ] which
vanish at a and b. We may conveniently norm X by ‖x‖X = ‖x ′′ ‖∞ , turning it into
a Banach space.

Then f (x) attains a local minimum in X relative to h(x) = 0 at x = 0. It is elemen-
tary to show that f and h are continuously differentiable. It follows from Theorem
9.1 that for (η ,λ ) as described, we have (η f +λ h)′(0; y) = 0 for every y ∈ X . As
in the proof of Theorem 14.2, this implies that x∗ is an extremal of ηΛ +λψ . 
�

14.22 Exercise. A homogeneous chain of length L is attached to two points (a,A)
and (b,B), where a < b. Hanging in equilibrium, it describes a curve x(t) which
minimizes the potential energy, which can be shown to be of the form

σ
∫ b

a
x(t)

√
1+ x ′(t)2 dt ,
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where σ > 0 is the (constant) mass density. Thus, we seek to minimize this func-
tional relative to all curves in C2[a,b ] having the same endpoints and the same
length:

x(a) = A , x(b) = B ,

∫ b

a

√
1+ x ′(t)2 dt = L .

We assume that the chain is long enough to make the problem meaningful: L is
greater than the distance between (a,A) and (b,B).

Show that if x∗ is a solution to the problem, then, for some constant λ , the function
x∗+λ is an extremal of the Lagrangian x

√
1+ v 2 . Invoke Example 14.5 to reveal

that x∗ is a translate of a catenary. 
�

We remark that the problem treated in the exercise above is a continuous version of
the discrete one considered in Exer. 13.5. The conclusion explains the etymology:
“catena” means “chain” in Latin.

14.23 Exercise. Assuming that a solution exists (this will be confirmed later), solve
the following isoperimetric problem:

min
∫ π

0
x ′(t)2 dt : x ∈ C2[0,π ] ,

∫ π

0
x(t)2 dt = π/2 , x(0) = x(π) = 0.

(The analysis is continued in Exer. 16.12.) 
�

14.24 Exercise. By examining the necessary conditions for the problem

min
∫ π

0
x(t)2 dt : x ∈ C2[0,π ] ,

∫ π

0
x ′(t)2 dt = π/2 , x(0) = x(π) = 0,

show that it does not admit a solution. What is the infimum in the problem? 
�



Chapter 15

Nonsmooth extremals

Is it always satisfactory to consider only smooth solutions of the basic problem,
as we have done in the previous chapter? By the middle of the 19th century, the
need to go beyond continuously differentiable functions had become increasingly
apparent.1

15.1 Example. Consider the following instance of the basic problem:

minimize J(x) =
∫ 1

−1
x(t)2 [ x ′(t)−1 ]2 dt subject to x(−1) = 0, x(1) = 1.

Note that J(x) � 0 ∀x. Let x lie in C1[−1,1] and satisfy the given boundary con-
ditions. Then there exists τ ∈ (−1,1) such that x ′(τ) = 1/2. Therefore there is a
neighborhood of τ in which x vanishes at most once and x ′ 	= 1; it follows that
J(x)> 0. Consider now the continuous, piecewise-smooth function

x∗(t) =

{
0 if −1 � t � 0

t if 0 � t � 1,

which has a corner at t = 0. Then J(x∗) = 0. Furthermore, it is easy to show that the
infimum of J over the admissible functions in C1[−1,1] (or in C2[−1,1]) is 0, an
infimum that is therefore not attained in that class. To summarize, the problem has
a natural solution in the class of piecewise-smooth functions, but has no solution in
that of smooth functions. 
�

The example shows that the very existence of solutions is an impetus for admit-
ting nonsmooth arcs. The need also became apparent in physical applications (soap
bubbles, for example, generally have corners and creases). Spurred by these consid-
erations, the theory of the basic problem was extended to the context of piecewise-
smooth functions. In this chapter, we develop this theory, but within the more gen-
eral class of Lipschitz functions x ; that is, absolutely continuous functions whose

1 The calculus of variations seems to have been the first subject to acknowledge a need to consider
nonsmooth functions.
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derivatives x ′ exist almost everywhere and are essentially bounded. Of course, we
are only able to deal with this class since we have the benefit of Lebesgue’s legacy
in measure and integration (which was not available until roughly 1900).

Hypotheses. We extend the setting of the basic problem in one more way, by al-
lowing x to be vector-valued. Thus, the admissible class now becomes the Lipschitz
functions mapping [a,b ] to R

n, for which we simply write Lip[a,b ]. Each compo-
nent of x, then, is an element of the space AC∞ [a,b ] introduced in Example 1.13.
The phrase “basic problem” refers in this chapter to

minimize J(x) : x ∈ Lip[a,b ] , x(a) = A, x(b) = B. (P)

The hypotheses on Λ(t, x,v) are also weakened: we suppose that the gradients Λ x
and Λv exist and, together with Λ , are continuous functions of (t, x,v). Note that
under these hypotheses, the functional

J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

is well defined (as a Lebesgue integral) for every x ∈ Lip[a,b ].

It can be shown (see Exer. 21.13) that a minimum over C2[a,b ] is also a minimum
over Lip[a,b ], so the extension of the classical theory to Lipschitz functions is a
faithful one.

15.1 The integral Euler equation

The first order of business is to see what becomes of the basic necessary condi-
tion, namely the Euler equation, when the basic problem (P) is posed over the class
Lip[a,b ].

The definition of weak local minimum x∗ is essentially unchanged: the minimum is
relative to the admissible functions x that satisfy ‖ x− x∗ ‖ � ε and ‖ x ′ − x∗′ ‖ � ε
(recall that ‖ · ‖ refers to the L∞ norm). However, we must inform the reader of
the regrettable fact that the proof of Theorem 14.2 fails when x ∈ Lip[a,b ]. The
problem is that the function t �→ Λv(t, x∗(t), x∗′(t)) is no longer differentiable, so the
integration by parts that was used in the argument can no longer be justified. There
is, however, a good way to extend the Euler equation to our new situation.

15.2 Theorem. (du Bois-Raymond 1879) Let x∗ ∈ Lip[a,b ] be a weak local min-
imizer for the basic problem (P). Then x∗ satisfies the integral Euler equation: for
some constant c ∈ R

n, we have

Λv
(
t, x∗(t), x∗′(t)

)
= c+

∫ t

a
Λ x

(
s, x∗(s), x∗′(s)

)
ds , t ∈ [a,b ] a.e.
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Proof. We define g(λ ) as we did in the proof of Theorem 14.2, where now the
variation y lies in Lip0[a,b ], the set of Lipschitz functions on [a,b ] that vanish at a
and b. The difference quotient whose limit is g ′(0) is given by

∫ b

a

Λ(t, x∗+λy , x∗′+λy ′)−Λ(t, x∗, x∗′)
λ

dt .

Our hypotheses imply that Λ is Lipschitz with respect to (x,v) on bounded sets.
Since all the functions appearing inside the integral above are bounded, there is a
constant K such that, for all λ near 0, the integrand is bounded by K |(y(t),y ′(t))|. It
now follows from Lebesgue’s dominated convergence theorem that g ′(0) exists and
is given by

g ′(0) =
∫ b

a

[
α(t) • y(t)+β (t) • y ′(t)

]
dt = 0,

where (as before, but now with gradients instead of partial derivatives)

α(t) = Λ x
(
t, x∗(t), x∗′(t)

)
, β (t) = Λv

(
t, x∗(t), x∗′(t)

)
.

Note that these are essentially bounded functions. We apply integration by parts, but
now to the first term in the integral; this yields

∫ b

a

[
β (t)−

∫ t

a
α(s)ds

]
• y ′(t)dt = 0.

For any c ∈ R
n, we also have

∫ b

a

[
β (t)− c−

∫ t

a
α(s)ds

]
• y ′(t)dt = 0.

This holds, then, for all Lipschitz variations y and all constants c ∈ R
n. We now

choose c such that the function

y(t) =
∫ t

a

[
β (t)− c−

∫ t

a
α(s)ds

]
dt

defines a variation (that is, such that y(b) = 0). With this choice of y, we dis-
cover ∫ b

a

∣
∣
∣β (t)− c−

∫ t

a
α(s)ds

∣
∣
∣

2
dt = 0,

which implies the desired conclusion. 
�

When x∗ ∈ C2[a,b ] and n = 1, it is evident that the integral Euler equation is equiv-
alent to the original one obtained in Theorem 14.2 (which can be thought of as the
“differentiated form”). So we have lost nothing in this new formulation. Note, how-
ever, that when n > 1, we are dealing with a system of equations, since the gradients
Λ x and Λv are vector-valued. In other words, there are n unknown functions in-
volved, the n component functions of x.
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15.3 Example. Consider a particle of mass m that is free to move in the x-y plane
under the sole influence of a conservative force field F given by a potential V :
F(x,y) =−∇V (x,y). The action in this case is the integral functional

∫ t1

t0

{ m
2

∣
∣(x ′(t), y ′(t)

)∣∣2 −V
(
x(t), y(t)

)}
dt .

Thus, the Lagrangian is given by

Λ(t, x,y,v,w) =
m
2
|(v,w)|2 −V (x, y) .

In its original (differentiated) form, the Euler equation, which is now a system of
two differential equations, asserts

d
dt

[
m x ′(t), my ′(t) ] = −∇V

(
x(t), y(t)

)
= F

(
x(t), y(t)

)
,

which we recognize as Newton’s Law: F = mA. We ask the reader to verify that
the integral form of the Euler equation gives exactly the same conclusion in this
case. 
�

The costate. In the context of Theorem 15.2, let us define

p(t) = c+
∫ t

a
Λ x

(
s, x∗(s), x∗′(s)

)
ds .

Then the function p : [a,b ]→ R
n belongs to Lip[a,b ] and satisfies

(
p ′(t), p(t)

)
= ∇x,vΛ

(
t, x∗(t), x∗′(t)

)
a.e.

This is a convenient way to write the integral Euler equation of Theorem 15.2, one
that highlights the fact that the mapping

t �→ Λv
(
t, x∗(t), x∗′(t)

)

must have removable discontinuities (even though x∗′ is not necessarily continu-
ous).2 In some cases, as we shall see, this implies the continuity of x∗′ .

In classical mechanics, p is referred to as the generalized momentum; another syn-
onym is adjoint variable. In optimal control, where p figures in the celebrated Pon-
tryagin maximum principle, p is often called the costate; we shall retain this termi-
nology.

In addition to its role in the integral Euler equation, the costate is also convenient
for expressing the appropriate transversality condition when the values of x at the

2 This is known classically as the first Erdmann condition, whereas the conclusion of Prop. 14.4 is
the second Erdmann condition. There does not seem to be a third.
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boundary are not fully prescribed. In the context of Theorem 14.19, the condition
we found, extended now to n > 1, was

−p(b) = ∇�
(
x∗(b)

)
.

Later on, we shall admit boundary costs and constraints of a more general nature,
and corresponding transversality conditions. If, for example, the endpoint constraint
is given by x(b) ∈ E , then the resulting transversality condition is

−p(b) ∈ NL
E
(
x(b)

)
.

Facts such as these suggest the possibility of using (x, p) as new coordinates, a
procedure which Legendre was the first to employ. In classical mechanics, the phase
coordinates (x, p) can be used to rewrite the integral Euler equation in Hamiltonian
form as follows:

−p ′(t) = Hx
(
t, x(t), p(t)

)
, x ′(t) = Hp

(
t, x(t), p(t)

)
,

where the Hamiltonian function H is obtained from the Lagrangian Λ via the Leg-
endre transform (the precursor of the Fenchel transform in convex analysis). The
transform is explained in Exer. 21.28; it continues to play an important role in math-
ematical physics to this day.

In general, the Euler equation may admit more solutions in Lip[a,b ] than in
C2[a,b ], as illustrated by the following.

15.4 Example. Consider the basic problem

min
∫ 1

0
x ′(t)3 dt , x(0) = 0, x(1) = 1,

which we have met in Example 14.14, in the context of C2[0,1]. The integral Euler
equation is (

p ′(t), p(t)
)
=

(
0, 3x ′(t)2) a.e.,

which implies x ′(t)2 = c2, for some constant c. If x is restricted to C2[a,b ] by
assumption, then there results a unique admissible extremal: x(t) = t . If, however,
we work in Lip[a,b ], then there are infinitely many possibilities, including (for any
c > 1) any piecewise affine admissible function whose derivative is almost every-
where ± c. 
�

The last example underscores the need for additional conditions that will help re-
duce the number of candidates. The Weierstrass necessary condition that we shall
meet later plays a useful role in this vein, especially when it is extended to problems
with additional constraints. Another important tool is that of regularity theorems,
the next topic.



312 15 Nonsmooth extremals

15.2 Regularity of Lipschitz solutions

A regularity theorem is one which affirms that, under some additional hypotheses,
solutions of the basic problem, which initially are known to lie merely in the class
in which (P) is posed (currently, Lip[a,b ]), actually lie in a smaller class of more
regular functions (below, C1[a,b ] ). This is a way of having your cake and eating
it too: we allow nonsmooth functions in formulating the problem, yet we obtain
solutions that are smooth.

15.5 Theorem. Let x∗ ∈ Lip[a,b ] satisfy the integral Euler equation, where, for
almost every t ∈ [a,b ], the function v �→ Λ(t, x∗(t),v) is strictly convex. Then x∗
lies in C1[a,b ].

Proof. The goal is to find a continuous function v̄ on [a,b ] which agrees with x∗′

almost everywhere. For such a function, we have

x∗(t) = x∗(a)+
∫ t

a
x∗′(s)ds = x∗(a)+

∫ t

a
v̄(s)ds ∀ t ∈ [a,b ] ,

from which it follows that x∗ ∈ C1[a,b ]. We define the set

W =
{

t ∈ (a,b) : x∗′(t) exists and p(t) = Λv
(
t, x∗(t), x∗′(t)

)}
.

Then W is of full measure. Fix any τ ∈ [a,b ], and let {si} and {ti} be any two
sequences in W converging to τ , and such that

�s := lim
i→∞

x∗′(si) , �t := lim
i→∞

x∗′(ti)

both exist. Passing to the limit in the equation p(si) = Λv(si, x∗(si), x∗′(si)) yields
p(τ) = Λv(τ , x∗(τ), �s). Similarly, we derive p(τ) = Λv(τ , x∗(τ), �t). It follows
that the strictly convex function v �→ Λ(τ , x∗(τ),v) has the same gradient at �s and
�t , whence �s = �t (see Exer. 4.17).

Let us now define a function v̄ on [a,b ] as follows: take any sequence {si} in W
converging to τ and such that lim i x∗′(si) exists (such sequences exist because W
is of full measure, and because x∗′ is bounded); set v̄(τ) = lim i x∗′(si). In view of
the preceding remarks, v̄ is well defined. But v̄ is continuous by construction, as is
easily seen, and agrees with x∗′ on W . 
�

Note that the theorem applies to problems involving the classical action (such as
Example 15.3), but fails to apply to that of Example 15.1, for instance.

15.6 Exercise. As an application of Theorem 15.5, we prove the necessity of Ja-
cobi’s condition; the setting is that of Theorem 14.12. We reason ad absurdum, by
supposing that a conjugate point τ ∈ (a,b) exists.
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Recall that the proof of Theorem 14.7 showed that, for every y ∈ Lip0[a,b ], we
have

I(y) :=
∫ b

a

{
P(t)y ′(t)2 +Q(t)y(t)2} dt � 0.

(a) By assumption there is a nontrivial solution u of Jacobi’s equation vanishing at a
and τ . Prove that u ′(τ) 	= 0, and that

∫ τ

a

{
P(t)u ′(t)2 +Q(t)u(t)2} dt = 0.

(b) Extend u to [a,b ] by setting it equal to 0 between τ and b. It follows that u
minimizes the functional I(y) above relative to the arcs y ∈ Lip0[a,b ]. Apply
Theorem 15.5 to obtain a contradiction. 
�

Higher regularity. It is possible to go further in the regularity theory, and show
that, under suitable conditions, the solutions of the basic problem inherit the full
regularity of the Lagrangian.

15.7 Theorem. (Hilbert-Weierstrass c. 1875) Let x∗ ∈ Lip[a,b ] satisfy the inte-
gral Euler equation, where Λ is of class Cm (m � 2) and satisfies

t ∈ [a,b ] ,v ∈ R
n =⇒ Λvv(t, x∗(t),v) > 0 (positive definite).

Then x∗ belongs to Cm[a,b ].

Proof. The hypotheses imply the strict convexity of the function v �→ Λ(t, x∗(t),v)
for each t. It follows from Theorem 15.5 that x∗ belongs to C1[a,b ]. We deduce that
the costate p(·) belongs to C1[a,b ], since, by the integral Euler equation,

p ′(t) = Λ x
(
t, x∗(t), x∗′(t)

)
(continuous on [a,b ] ).

Note that for fixed t , the unique solution v of the equation p(t) = Λv(t, x∗(t),v) is
v = x∗′(t) (since Λvv > 0). It follows from the implicit function theorem that x∗′ lies
in C1[a,b ], since p is C1 and Λv is Cm−1 with m � 2. Thus x∗ lies in C2[a,b ]. This
conclusion now implies p ′ ∈ C1[a,b ] and p(·)∈ C2[a,b ]. If m > 2 , we may iterate
the argument given above to deduce x∗′ ∈ C2[a,b ]. We continue in this fashion until
we arrive at x∗′ ∈ Cm−1[a,b ]; that is, x∗ ∈ Cm[a,b ]. 
�

15.8 Exercise. We consider the basic problem (P) when Λ has the form

Λ(t, x,v) = g(x)
√

1+ | x ′ |2 ,

where g is Cm (m � 2). Let x∗ ∈ Lip[a,b ] be a weak local minimizer, and suppose
that g(x∗(t))> 0 ∀ t ∈ [a,b ]. Prove that x∗ ∈ Cm[a,b ]. 
�
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15.3 Sufficiency by convexity

The following inductive method par excellence, a basic fact concerning convex La-
grangians, went completely unobserved in the classical theory.3

15.9 Theorem. Let x∗ ∈ Lip[a,b ] be admissible for (P) and satisfy the integral
Euler equation. Suppose that Λ(t, x,v) is convex in (x,v) for each t. Then x∗ is a
global minimizer for (P).

Proof. Let x ∈ Lip[a,b ] be any admissible function for (P), and let p be the costate
corresponding to x∗ in the integral Euler equation. Then

J(x)− J(x∗) =

∫ b

a

{
Λ
(
t, x, x ′ )−Λ

(
t, x∗, x∗′

)}
dt

�
∫ b

a

(
p ′, p

)
•
(

x− x∗ , x ′ − x∗′
)

dt

(by the subgradient inequality, since (p ′, p) = ∇x,vΛ(t, x∗ , x∗′ ) a.e. )

=

∫ b

a
(d/dt)

{
p • (x− x∗)

}
dt = 0,

since x and x∗ agree at a and b. 
�

Remark. In Theorem 15.9, it is clear that if x∗ happens to lie in C2 [a,b ], then it
follows that x∗ yields a global minimum relative to C2 [a,b ]. The conclusion dif-
fers in several respects, however, from the classical sufficient conditions obtained by
Legendre and Jacobi (Theorem 14.12). Aside from the reduced regularity hypothe-
ses, there is no need for the strengthened Legendre condition, and (especially) one
asserts the presence of a global minimum rather than a weak local one. In addition,
it is easy to adapt the proof of Theorem 15.9 to certain cases in which the problem
includes side constraints of the form (for example)

x(t) ∈ S , x ′(t) ∈ V ,

where S and V are convex sets.

15.10 Example. Geodesics The problem of finding the curve of shortest length
joining two distinct given points (the geodesic) is a venerable one in the subject.
In the case of curves in the plane that join (a,A) and (b,B), the problem is naturally
expressed in terms of two unknown functions (x(t), y(t)) parametrized on a given
interval.

3 This is but one example showing that our revered ancestors did not know about convex functions
and their useful properties.
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It is customary to take x and y to be Lipschitz, with x ′2 + y ′2 � ε > 0. Parametriz-
ing by arc length would yield x ′2 + y ′2 = 1 a.e., but we prefer to fix [0,1] as the
underlying parameter interval (with no loss of generality). Then the functional to be
minimized is ∫ 1

0

{
x ′(t)2 + y ′(t)2}1/2 dt ,

subject to the given boundary conditions
(

x(0), y(0)
)
= (a,A) ,

(
x(1), y(1)

)
= (b,B).

The integral Euler equation (a system of two differential equations) asserts the exis-
tence of constants (c,d) satisfying

c =
x ′

{
x ′2 + y ′2}1/2 , d =

y ′
{

x ′2 + y ′2}1/2 .

This implies that x ′ and y ′ are constant, as the reader may show. Thus, the shortest
curve is a line segment (a reassuring conclusion).

When a < b, it is reasonable to expect that the class of curves of interest may be
restricted to those which can be parametrized in the form (t,y(t)), in which case
we return to the case of a single unknown function. In general, however, several
unknown functions will be involved, as in the general problem of finding geodesics
on a given surface S in R

3, where S is described by the equation ψ(x,y,z) = 0. Then
the problem becomes that of minimizing

∫ 1

0

{(
ψ x x ′ )2

+
(
ψy y ′ )2

+
(
ψz z ′ )2 }1/2 dt

subject to not only the boundary conditions, but also to a pointwise constraint

ψ
(
x(t), y(t), z(t)

)
= 0 ∀ t ∈ [0,1]

that is imposed all along the admissible arcs. We shall discuss this type of problem,
for which a multiplier rule exists, later in Chapter 17. Note the distinction with the
isoperimetric problem: there are an infinite number of equality constraints here, one
for each t.

In some cases the surface constraint can be made implicit by a suitable choice of
coordinates, and we obtain a simpler form of the geodesic problem. Let us examine
one such case now, that of the cylinder S in R

3 defined by

ψ(x, y, z) = x2 + y2 −1 = 0 .

Then any curve on S may be parametrized in the form
(
x(t), y(t), z(t)

)
=

(
cosθ(t), sinθ(t), z(t)

)
, 0 � t � 1
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for certain functions θ and z. And conversely, any curve parametrized this way
necessarily lies on S.

Suppose (without loss of generality) that the initial point is given by (θ ,z) = (0,0),
and the final point by (θ f , z f ), with θ f ∈ (−π ,π ] and (θ f , z f ) 	= (0,0). In this
context we have
(
ψ x x ′ )2

+
(
ψy y ′ )2

+
(
ψz z ′ )2

= [(−sinθ)θ ′ ]2+[(cosθ)θ ′ ]2 + z ′2 = θ ′2 + z ′2,

so that the geodesic problem reduces to the following:

min
∫ 1

0

{
θ ′(t)2 + z ′(t)2}1/2 dt subject to

(θ , z)(0) = (0,0) , (θ , z)(1) = (θ f +2π k, z f ) , k ∈ Z ,

where the term 2π k reflects the possibility of winding around the cylinder several
times. For fixed k, this is the same problem as that of finding geodesics in the (θ , z)
plane, for which we know (see above) that the extremals are affine, whence:

(
θ(t), z(t)

)
=

(
t (θ f +2π k), t z f

)
, t ∈ [0,1].

The resulting cost is calculated to be

{(
θ f +2π k

)2
+ z2

f
}1/2

,

which is minimized relative to k by the choice k = 0. Thus the geodesic describes a
helix (θ(t), z(t)) = ( t θ f , t z f ) having at most a half turn around the z-axis.4

The analysis as it stands can quite properly be criticized on the basis that we do
not know that a shortest curve actually exists. (Only a mathematician would worry
about this; the reader should realize that we mean that as a compliment.) We may
address this point, however, by exploiting convexity.

The Lagrangian here is given by

Λ(t,θ , z,v,w) =
{

v2 +w2}1/2
.

Since this function is convex in (θ , z,v,w), it follows from Theorem 15.9 that the
extremal globally minimizes the integral (subject to the boundary conditions). 
�

15.11 Exercise.

(a) In the context of Theorem 15.9, prove that if the convexity of Λ with respect to
(x,v) is strict for almost every t, then x∗ is the unique solution of (P). Do we
require strict convexity with respect to both variables?

4 When θ f = π , the final point is antipodal to the initial point, and there is another (equally good)
possibility: k =−1. When θ f = 0, the geodesic reduces to a vertical segment.
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(b) Prove that the admissible extremal found in Exer. 14.3 (c) is a unique global
minimizer for the problem. 
�

Another variant of the theme whereby convexity renders necessary conditions suffi-
cient is provided by the following.

15.12 Exercise. Consider the problem

min �
(
x(b)

)
+

∫ b

a
Λ
(
t, x, x ′ )dt : x ∈ Lip[a,b ], x(a) = A,

where � is convex and differentiable, and where Λ is convex in (x,v). Let x∗ be
admissible for the problem, and suppose that x∗ satisfies the integral Euler equation
for Λ , together with the transversality condition of Theorem 14.19 (now for n � 1):

−p(b) = ∇�
(
x∗(b)

)
.

Prove that x∗ is a global minimizer for the problem. 
�

The following illustrates the use of convexity in connection with an isoperimetric
problem.

15.13 Exercise. Consider the problem (Q):

min
∫ π

0
x ′(t)2 dt : x ∈ Lip[0,π ],

∫ π

0
(sin t) x(t)dt = 1, x(0) = 0, x(π) = π .

(a) Suppose for the moment that a solution x∗ exists, and belongs to C2[0,π ]. Show
that the necessary condition provided by Theorem 14.21 holds in normal form
(η = 1), and use it to identify x∗.

[
Given:

∫ π

0
sin2 t dt = π/2 ,

∫ π

0
t sin t dt = π .

]

(b) Exploit the convexity in (x,v) of the Lagrangian Λ+ = v2 +λ (sin t)x to deduce
that the x∗ identified above is in fact a global minimum for the problem (Q). 
�

15.4 The Weierstrass necessary condition

There remains one fundamental necessary condition in the classical theory that the
reader has not yet met. It applies to a different, stronger type of local minimum than
the weak local minimum we have considered so far.
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A function x∗ admissible for (P) is said to provide a strong local minimum for
the problem if there exists ε > 0 such that, for all admissible functions x satisfying
‖ x− x∗ ‖ � ε , we have J(x) � J(x∗).

Observe that a strong local minimizer is automatically a weak local minimizer. By
extension, we shall say later on that a given property holds in a strong neighborhood
of x∗ provided that, for some ε > 0, it holds at points of the form (t , x) for which
t ∈ [a,b ] and |x− x∗(t)| � ε .

The costate p introduced earlier (p. 310) makes another appearance in expressing
the following result.

15.14 Theorem. (Weierstrass c. 1880) If x∗ ∈ Lip[a,b ] is a strong local mini-
mizer for (P), then for almost every t ∈ [a,b ], we have

Λ
(
t, x∗(t), x∗′(t)+ v

)
−Λ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v〉 ∀v ∈ R

n.

The theorem will be proved in a more general setting later (Theorem 18.1).

When Λ is differentiable, as it is at present, and when Λ(t, x,v) is known to be con-
vex with respect to the v variable (which is very often the case in classical problems),
the inequality in the theorem is automatically satisfied; the necessary condition of
Weierstrass provides no new information. This is because the integral Euler equation
implies that the costate p satisfies

p(t) = ∇vΛ(t, x∗(t), x∗′(t)) a.e.

By convexity therefore, for almost every t , the element p(t) is a subgradient at x∗′(t)
of the convex function v �→ Λ(t, x∗(t),v). The assertion of the theorem is simply
the corresponding subgradient inequality (§4.1).

When Λ is nondifferentiable, however, or when it fails to be convex with respect to
v (or when additional constraints are present), the Weierstrass necessary condition
may furnish significant information about solutions, as we shall see later.

15.15 Example. Consider again the problem discussed in Example 14.14:

min
∫ 1

0
x ′(t)3 dt : x(0) = 0, x(1) = 1.

We have seen that the arc x∗(t) = t provides a weak local minimum relative to
C2[0,1]. Thus, it is a weak local minimizer relative to Lip[0,1] as well (by Exer.
21.13). However, it is not difficult to see that the Weierstrass condition asserted by
Theorem 15.14 cannot hold at any point, since the subdifferential (in the sense of
convex analysis) of the function v �→ v3 is empty everywhere. We conclude that x∗
is not a strong local minimizer. 
�



Chapter 16

Absolutely continuous solutions

The theory of the calculus of variations at the turn of the twentieth century lacked
a critical component: it had no existence theorems. These constitute an essential in-
gredient of the deductive method for solving optimization problems, the approach
whereby one combines existence, rigorous necessary conditions, and examination of
candidates to arrive at a solution. (The reader may recall that in Chapter 9, we dis-
cussed at some length the relative merits of the inductive and deductive approaches
to optimization.)

The deductive method, when it applies, often leads to the conclusion that a global
minimum exists. Contrast this, for example, to Jacobi’s theorem 14.12, which as-
serts only the existence of a local minimum. In mechanics, a local minimum is a
meaningful goal, since it generally corresponds to a stable configuration of the sys-
tem. In many modern applications however (such as in engineering or economics),
only global minima are of real interest.

Along with the quest for the multiplier rule (which we discuss in the next chapter), it
was the longstanding question of existence that dominated the scene in the calculus
of variations in the first half of the twentieth century.1

16.1 Example. Suppose that we are asked to solve the following instance of the
basic problem:

min
∫ 1

0

(
1+ x(t)

)
x ′(t)2 dt : x ∈ C2[0,1] , x(0) = 0, x(1) = 3.

We proceed to apply the necessary conditions for a solution x∗. Since the problem
is autonomous, the Erdmann condition (Prop. 14.4) implies

(
1+ x∗(t)

)
x∗′(t)2 = c, t ∈ [0,1]

1 One of Hilbert’s famous problems, in the list that he composed in 1900, concerned this issue;
another concerned the regularity of solutions.
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for some constant c. If c= 0, then x∗ cannot leave its initial value 0, and thus x∗ ≡ 0,
a contradiction. We deduce therefore that c > 0. It follows that x∗′ is never 0, and
therefore x∗′(t)> 0 for all t, and x∗ satisfies

√
1+ x∗(t) x∗′(t) =

√
c , t ∈ [0,1].

We easily solve this separable differential equation and invoke the boundary condi-
tions to find the unique extremal

x∗(t) = (7t +1)2/3 −1,

with associated cost J(x∗) = (14/3)2. Having achieved this, we may very well have
the impression of having solved the problem.

This is far from being the case, however, since the infimum in the problem is −∞.
This can be seen as follows. Consider a function y that is affine between (0,0)
and (1/3,−3), and also between (2/3,−3) and (1,3). Between (1/3,−3) and
(2/3,−3), we take y to be of “sawtooth” form, with values of y between −4 and
−2, and derivative y ′ satisfying |y ′ | = M a.e. By taking M increasingly large, we
can arrange for J(y) to approach −∞. (The sawtooth function can be approximated
in order to achieve the same conclusion using functions in C2[a,b ].)

The serious mistake in the analysis consists of assuming that a solution exists. The
purpose of the example is to demonstrate the fallacy of using deductive reasoning
when we don’t know this to be true.

The sufficient conditions of Theorem 14.12 can be applied to show that x∗ is a weak
local minimizer; this is an inductive approach. It is also possible (deductively) to
show that the function x∗ found above is the unique global minimizer when the state
constraint x(t) � 0 is added to the problem (see Exer. 21.16). 
�

The key step in developing existence theory is to extend the context of the basic
problem to functions that belong to the larger class AC[a,b ] of absolutely contin-
uous functions, rather than C2[a,b ] or Lip[a,b ] as in the preceding sections. Of
course, this step could not be taken until Lebesgue had done his great work.

As we did in Chapter 12, we refer to an absolutely continuous function x mapping
an interval [a,b ] to R

n as an arc; recall that the notation AC[a,b ] is used for arcs
on [a,b ], even in the vector-valued case. The fact that an arc x has a derivative x ′

that may be unbounded means that we have to pay some attention to whether J(x)
is well defined. (Under our previous hypotheses, this was automatic.)

The phrase “basic problem” now refers to

minimize J(x) : x ∈ AC[a,b ], x(a) = A, x(b) = B. (P)
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An arc x is admissible if it satisfies the constraints of the problem, and if J(x) is
well defined and finite. An arc x∗ admissible for the basic problem (P) is said to be
a solution (or a minimizer) if J(x∗) � J(x) for all other admissible arcs x.

16.1 Tonelli’s theorem and the direct method

The celebrated theorem of Tonelli identifies certain hypotheses under which a so-
lution to (P) exists in the class of arcs. It features a Lagrangian Λ that is con-
tinuous and bounded below. Note that, in this case, for any arc x, the function
t �→ Λ(t, x(t), x ′(t)) is measurable and bounded below. In this setting, then, the
integral J(x) is well defined for any arc x, possibly as +∞.

The following result, a turning point in the theory, was the concrete predecessor
of the abstract direct method depicted in Theorem 5.51. Note, however, that the
functional J is not necessarily convex here, which adds to the complexity of the
problem.

16.2 Theorem. (Tonelli 1915) Let the Lagrangian Λ(t, x,v) be continuous, convex
in v, and coercive of degree r > 1: for certain constants α > 0 and β we have

Λ(t, x,v) � α |v |r +β ∀(t, x,v) ∈ [a,b ]×R
n×R

n.

Then the basic problem (P) admits a solution in the class AC[a,b ].

Proof. It is clear that there exist admissible arcs x for which J(x) is finite (for ex-
ample, take x to be the unique affine admissible arc). Accordingly, there exists a
minimizing sequence xi of admissible functions for (P):

lim
i→∞

J(xi) = inf (P) (finite).

For all i sufficiently large, in view of the coercivity, we have

∫ b

a

{
α
∣
∣x ′

i
∣
∣r +β

}
dt �

∫ b

a
Λ
(
t, xi , x ′

i
)

dt � inf (P)+1.

This implies that the sequence x ′
i is bounded in Lr[a,b ]n. By reflexivity and weak

sequential compactness, we may assume without loss of generality that each com-
ponent converges weakly in Lr[a,b ]; we label the vector limit v∗ .

We proceed to define an element x∗ of ACr[a,b ]n via

x∗(t) = A+
∫ t

a
v∗(s)ds , t ∈ [a,b ].

For each t ∈ [a,b ], the weak convergence implies that
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∫ t

a
x ′

i (s)ds =

∫ b

a
x ′

i (s)χ(a, t)(s)ds →
∫ b

a
v∗(s)χ(a, t)(s)ds =

∫ t

a
v∗(s)ds

(where χ(a, t) is the characteristic function of the interval (a, t)), from which we
deduce that xi(t) converges pointwise to x∗(t). (The convergence can be shown to
be uniform.) It follows that x∗(b) = B , so that x∗ is admissible for (P).

We now proceed to invoke the integral semicontinuity theorem 6.38, taking Q to be
[a,b ]×R

n, zi = x ′
i and ui = xi ; the convexity ofΛ in v is essential here. (Of course,

Tonelli does not refer to convex functions in his proof.) We conclude that

J(x∗) � lim
i→∞

J(xi) = inf (P).

Since x∗ is admissible for (P), it follows that x∗ is a global minimizer. 
�

16.3 Exercise. In the following, we outline a more elementary proof of Tonelli’s
theorem in the case of a “separated” Lagrangian having the form

Λ(t, x,v) = f (t, x)+g(t,v).

The technicalities are sharply reduced in this case (since no appeal to Theorem 6.38
is required), but the main ideas are the same. We assume (consistently with Theorem
16.2) that f and g are continuous, g is convex in v, f is bounded below, and that we
have (for some α > 0 and r > 1)

g(t,v) � α |v |r ∀(t,v) ∈ [a,b ]×R
n.

(a) Prove that a minimizing sequence xi exists, and that x ′
i is bounded in Lr(a,b).

(b) Prove that the sequence xi is bounded and equicontinuous, and that, for some
subsequence (not relabeled), there is an arc x∗ admissible for (P) such that

xi → x∗ uniformly, x ′
i → x∗′ weakly in Lr(a,b).

(c) Prove that ∫ b

a
f
(
t, x∗(t)

)
dt = lim

i→∞

∫ b

a
f
(
t, xi(t)

)
dt.

(d) Prove that the mapping

v �→
∫ b

a
g
(
t,v(t)

)
dt

is lower semicontinuous on Lr(a,b).

(e) Prove that ∫ b

a
g
(
t, x∗′(t)

)
dt � liminf

i→∞

∫ b

a
g
(
t, x ′

i (t)
)

dt

and then conclude that x∗ is a solution of (P). 
�
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We proceed now to illustrate how Tonelli’s theorem fails if either of the coercivity
or the convexity hypotheses is absent. We begin with the convexity.

16.4 Example. Consider the basic problem with n = 1,

J(x) =
∫ 1

0

(
x(t)2 +

[
x ′(t)2 −1

]2 )dt ,

and constraints x(0) = 0, x(1) = 0. Then the Lagrangian Λ(t, x,v), which here is
the function x2+(v2−1)2, is continuous, and is also coercive of degree 4. We claim
that nonetheless, the problem has no solution.

To see this, note that J(x) > 0 for any arc x, since we cannot have both x ≡ 0 and
| x ′(t) | = 1 a.e. But the infimum in the problem is 0, since, for any positive ε , there
is a sawtooth function x whose derivative is ±1 a.e. and which satisfies ‖x‖ < ε
(whence J(x)< ε 2 ).

It is clearly the convexity hypothesis (in v) that is missing here, which is why
Tonelli’s theorem is inapplicable. Informally, we may say that the sawtooth func-
tion “chatters” between the derivative values ±1 (the locus where (v2 −1)2 attains
its minimum) and “almost succeeds” in giving x = 0 as well (the locus where x2

attains its minimum). But complete success is not possible: in the limit, x goes to 0,
but x ′ converges weakly to 0 (see Exer. 6.19). 
�

The following shows that the degree of coercivity in Tonelli’s theorem cannot be
lowered to r = 1.

16.5 Exercise. Let g : R→ R be given by g(v) = v [1+min{v, 0} ].

(a) Show that g is convex, continuously differentiable, and satisfies

g(v) � max
{

v , |v |−1
}

∀v .

(b) Deduce that any arc x admissible for the problem

min J(x) =
∫ 1

0

(
x2 +g(x ′)

)
dt : subject to x ∈ AC[0,1] , x(0) = 0, x(1) = 1

satisfies J(x)> 1.

(c) Show that the functions

xi(t) =

{
0 if 0 � t � 1−1/i

i [ t −1+1/i ] if 1−1/i < t � 1

satisfy lim i→∞ J(xi)→ 1.

(d) Conclude that the problem defined in (b) admits no solution. What hypothesis of
Tonelli’s theorem is missing? 
�
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16.6 Exercise. Let T > 0 be fixed. Prove that the following problem has a solution:

minimize
∫ T

0

{ 1
2

m
(
�θ ′(t)

)2−mg�
(
1− cosθ(t)

)}
dt :

θ ∈ AC[0,T ], θ(0) = 0 = θ(T ).

Note that the integral is the action of Example 14.6. Show that if T is large, the
solution2 spends a lot of time near the unstable equilibrium θ = π . 
�

Simple variants of the theorem. The proof of Tonelli’s theorem adapts to numer-
ous variants of the basic problem. Some typical ones appear below; they maintain
the central elements (coercivity of the Lagrangian, and its convexity in v).

16.7 Exercise. Show that Tonelli’s theorem holds when Λ is measurable in t and
continuous in (x,v) (rather than continuous in all its variables). An extra hypothesis
is now required, however, to ensure the existence of an admissible arc x for which
J(x) < ∞ (and hence, of a minimizing sequence). A simple one that suffices: for
every x and v in R

n, the function t �→ Λ(t, x+ t v,v) is summable. 
�

16.8 Exercise. Under the same hypotheses as the previous exercise, verify that the
proof of Tonelli’s theorem is unaffected by the presence in the underlying problem
of a unilateral state constraint

x(t) ∈ S, t ∈ [a,b ],

where S is a given closed subset of Rn. Note that in this setting, the coercivity of Λ
need only hold when x lies in S. 
�

16.9 Exercise. Extend Tonelli’s theorem to the problem

minimize �
(
x(a), x(b)

)
+

∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt ,

(
x(a), x(b)

)
∈ E ,

where Λ satisfies the hypotheses of the previous exercise, � is continuous, E is
closed, and one of the following projections is bounded:

{
y ∈ R

n : ∃ z ∈ R
n : (y, z) ∈ E

}
,

{
z ∈ R

n : ∃ y ∈ R
n : (y, z) ∈ E

}
. 
�

16.10 Exercise. One may extend Tonelli’s theorem to certain cases in which the
Lagrangian is not necessarily bounded below. A simple instance of this is obtained
by weakening the coercivity condition as follows:

Λ(t, x,v) � α |v |r − γ |x |s +β ∀(t, x,v) ∈ [a,b ]×R
n×R

n,

2 This example shows that the principle of least action does not describe physical reality in the
long term, although, as we have seen, it does do so in the short term (and locally).
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where γ � 0, 0 < s < r , and where, as before, r > 1, α > 0. Note that the (pos-
itive) growth in v is of higher order than the (possibly negative) growth in x. With
this reduced growth condition, the other hypotheses on Λ being unchanged, show
that Tonelli’s theorem continues to hold. 
�

The exercise above allows one to assert existence when the Lagrangian is given by
|v |2 −|x |, for example.

16.11 Exercise. Let Λ satisfy the hypotheses of Tonelli’s theorem, except that the
coercivity is weakened to

Λ(t, x,v) � α |v |r
(1+ |x |)s + β ∀(t, x,v) ∈ [a,b ]×R

n×R
n,

where 0 < s < r . Establish the existence of a solution to the basic problem. 
�

The Direct Method. In view of the variants evoked above, the reader may well
feel that some general (albeit ungainly) theorem might be fabricated to cover a host
of special cases. Indeed, we could take a stab at this, but experience indicates that
circumstances will inevitably arise which will not be covered. It is better to master
the method, now known as the direct method. (Tonelli, upon introducing it, had
called it a direct method.)

The underlying approach, then, combines three ingredients: the analysis of a mini-
mizing sequence xi in order to establish the existence of a subsequence converging
in an appropriate sense; the lower semicontinuity of the cost with respect to the
convergence; the persistence of the constraints after taking limits. The convergence
is generally in the sense that x ′

i converges weakly and xi pointwise or uniformly;
the lower semicontinuity typically results from the integral semicontinuity theorem
6.38. To deduce the persistence in the limit of the constraints, the weak closure the-
orem 6.39 is often helpful. This approach applies to a broad range of problems in
dynamic optimization.

In applying the direct method, it is essential to grasp the distinction between con-
straints that persist under uniform convergence (of xi ) and those that survive weak
convergence (of x ′

i ): convexity is the key to the latter. Consider, for example, the
basic problem in the presence of two additional unilateral state and velocity con-
straints:

(a) : x(t) ∈ S ∀ t ∈ [a,b ] , and (b) : x ′(t) ∈ V, t ∈ [a,b ] a.e.

Uniform (or pointwise) convergence of the sequence xi will preserve the constraint
(a) in the limit, provided only that S is closed. In order for weak convergence to
preserve the constraint (b) in the limit, however, we require that V be convex as
well as closed (as in the weak closure theorem 6.39); compactness does not suffice
(see Exer. 8.45). Thus, the appropriate hypotheses for an existence theorem in this
context would include: S closed, V closed and convex.
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As regards the hypotheses giving the weak sequential compactness of the sequence
x ′

i , we would only require the coercivity ofΛ to hold for points x ∈ S. The coercivity
could also be replaced by compactness of V . (Note that the integral semicontinuity
theorem 6.38 does not require a coercive Lagrangian.) Hybrid possibilities can also
be envisaged; for example, coercivity of Λ with respect to certain coordinates of v,
and compactness of V with respect to the others.

An example of these considerations occurs in the second problem of Exer. 14.23, in
which we saw that the problem

minimize
∫ π

0
x(t)2 dt subject to

∫ π

0
x ′(t)2 dt = π/2

does not admit a solution. In order that the isoperimetric constraint

∫ b

a
ψ
(
t, x(t), x ′(t)

)
dt = 0

be preserved in the limit, ψ needs to be linear with respect to v. On the other hand,
the robustness under convergence of a constraint of the form

∫ b

a
ψ
(
t, x(t), x ′(t)

)
dt � 0

requires only convexity of ψ with respect to v (as in the integral semicontinuity
theorem). In this setting, the required weak compactness could result from various
hypotheses. The Lagrangian Λ itself being coercive (as before) would do; but we
could require, instead, that the Lagrangian ψ of the isoperimetric constraint be co-
ercive. In general, then, a combination of circumstances will come into play.

16.12 Exercise. Prove that the problem of Exer. 14.23 admits a solution if C2[0,π ]
is replaced by AC[0,π ]. (Note, however, that Theorem 14.21 cannot be applied in
order to identify it; existence has been achieved, but the necessary conditions have
been lost. The analysis is continued in Exer. 17.11.) 
�

16.2 Regularity via growth conditions

Now that we are armed with an existence theory, we would like to use it in the de-
ductive method, the next step in which is the application of necessary conditions.
In examining Theorem 15.2, which asserts the integral Euler equation for the ba-
sic problem (P), however, we spot a potential difficulty when absolutely continu-
ous functions are involved. The proof invoked the dominated convergence theorem,
which no longer seems to be available when x∗′ is unbounded; it appears, in fact, that
the differentiability of g cannot be asserted.
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Is this problem in proving the existence of g ′(0) simply a technical difficulty in
adapting the argument, or is it possible that the basic necessary condition for (P) can
actually fail? It turns out to be the latter: even for an analytic Lagrangian satisfying
the hypotheses of Tonelli’s theorem, the integral Euler equation may not hold3 at
the unique minimizing arc x∗. The reader may detect a certain irony here: in order
to be able to apply the deductive approach, the basic problem has been extended
to AC[a,b ]. However, with solutions in this class, the necessary conditions can no
longer be asserted.

Another disturbing fact about the extension to arcs is the possibility of the Lavren-
tiev phenomenon. This is said to occur when the infimum in the basic problem over
AC[a,b ] is strictly less than the infimum over Lip[a,b ], and it can happen even
for smooth Lagrangians satisfying the hypotheses of Tonelli’s theorem. From the
computational point of view, this is disastrous, since most numerical methods hinge
upon minimizing the cost over a class of smooth (hence Lipschitz) functions (for
example, polynomials). In the presence of the Lavrentiev phenomenon, such meth-
ods cannot approach the minimum over AC[a,b ]. The extension from Lip[a,b ] to
AC[a,b ], then, is not necessarily a faithful one (a completion), as was the extension
from C2[a,b ] to Lip[a,b ].

However, all is not lost. There is a way to recover, in many cases, the happy sit-
uation in which we can both invoke existence and assert the necessary conditions,
while excluding the Lavrentiev phenomenon. This hinges upon identifying addi-
tional structural hypotheses on Λ which serve to rule out the pathological situations
cited above. We shall see two important examples of how to do this. The first one be-
low recovers the integral Euler equation under an “exponential growth” hypothesis
on the Lagrangian.

Remark. Local minima in the class of arcs are defined essentially as before. For
example, an admissible arc x∗ is a weak local minimizer if, for some ε > 0, we have
J(x∗) � J(x) for all admissible arcs x satisfying ‖ x−x∗ ‖ � ε and ‖ x ′ −x∗′ ‖ � ε .
Recall that the meaning of the word “admissible” in the preceding sentence includes
the integral being well defined.

16.13 Theorem. (Tonelli-Morrey) Let Λ admit gradients Λ x,Λv which, along
with Λ , are continuous in (t, x,v). Suppose further that for every bounded set
S in R

n, there exist a constant c and a summable function d such that, for all
(t, x,v) ∈ [a,b ]×S×R

n, we have
∣
∣Λ x(t, x,v)

∣
∣+

∣
∣Λv(t, x,v)

∣
∣ � c

(
|v |+

∣
∣Λ(t, x,v)

∣
∣)+d(t). (∗)

Then any weak local minimizer x∗ satisfies the Euler equation in integral form.

Proof. It follows from the hypotheses on Λ that the function

3 The first examples of this phenomenon are quite recent, and exhibit the feature that the function
Λ x(t, x∗(t), x∗′(t)), which is the derivative of the costate, is not summable.
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f (t) = Λv
(
t, x∗(t), x∗′(t)

)
−

∫ t

a
Λ x

(
s, x∗(s), x∗′(s)

)
ds

lies in L1(a,b)n. Let y : [a,b ]→ R
n be a function which belongs to Lip[a,b ], van-

ishes at a and b, and satisfies ‖y‖+‖y ′‖ � 1. We prove that

∫ b

a
f (t) • y ′(t)dt = 0

for any such y, which, by Example 9.5, implies the integral Euler equation.

For any t ∈ [a,b ] such that x∗′(t) and y ′(t) exist, and such that |y(t)|+ |y ′(t)| � 1
(thus, for almost every t), we define

g(t,s) = Λ
(
t, x∗(t)+ sy(t), x∗′(t)+ sy ′(t)

)
−Λ

(
t, x∗(t), x∗′(t)

)
, s ∈ [0,1].

Note that g(t,0) = 0 a.e., and, since x∗ is a weak local minimizer,

∫ b

a
g(t,s)dt � 0 for s sufficiently small. (1)

The structural hypothesis (∗) yields, for almost every t, for s ∈ [0,1] a.e.,

∣
∣
∣

d
ds

g(t,s)
∣
∣
∣ � c

{
1+ |x∗′(t)|+

∣
∣Λ(t, x∗(t), x∗′(t))

∣
∣+ |g(t,s)|

}
+d(t)

= c|g(t,s)|+ k(t) ,

for a certain summable function k. This estimate, together with Gronwall’s lemma,
leads to |g(t,s)| � sM k(t) for a certain constant M, for all s sufficiently small. In
view of this, we may invoke Lebesgue’s dominated convergence theorem to deduce
(with the help of (1))

0 � lim
s↓0

∫ b

a

g(t,s)−g(t,0)
s

dt =
∫ b

a

d
ds

g(t,s)dt

=

∫ b

a

{
Λ x

(
t, x∗(t), x∗′(t)

)
• y(t)+Λv

(
t, x∗(t), x∗′(t)

)
• y ′(t)

}
dt

=
∫ b

a
f (t) • y ′(t)dt ,

after an integration by parts. Since y may be replaced by −y, equality must hold,
and the proof is complete. 
�

16.14 Exercise. Let Λ(t, x,v) have the form f (t, x)+g(v), where f and g are con-
tinuously differentiable and, for some constant c, the function g satisfies

∣
∣∇g(v)

∣
∣ � c

(
1+ |v |+ |g(v)|

)
∀v ∈ R

n.

Prove that any weak local minimizer for (P) satisfies the integral Euler equation. 
�
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Nagumo growth. The following localized and weakened form of coercivity is use-
ful in regularity theory. It asserts thatΛ has superlinear growth in v along x∗ .

16.15 Definition. We say thatΛ has Nagumo growth along x∗ if there exists a func-
tion θ : R+ → R satisfying lim t→∞ θ(t)/t = +∞, such that

t ∈ [a,b ] ,v ∈ R
n =⇒ Λ(t, x∗(t),v) � θ( |v |).

As an illustrative example, we observe that when the Lagrangian satisfies the hy-
pothesis of Exer. 16.10, then Nagumo growth holds along any arc.

16.16 Corollary. Under the hypotheses of Theorem 16.13, ifΛ(t, x,v) is convex in
v and has Nagumo growth along x∗ , then x∗ is Lipschitz.

Proof. Under the additional hypotheses, the costate p is the subgradient of Λ in v
along x∗ , whence

Λ
(
t, x∗(t), 0

)
−Λ

(
t, x∗(t), x∗′(t)

)
� −p(t) • x∗′(t) a.e.

Nagumo growth, along with this inequality, reveals:

θ
(
|x∗′(t)|

)
� Λ

(
t, x∗(t), x∗′(t)

)
� Λ

(
t, x∗(t),0

)
+ p(t) • x∗′(t) a.e.,

which implies that x∗′ is essentially bounded, since θ has superlinear growth and
both Λ(t, x∗(t),0) and p(t) are bounded. 
�

The desirability of Lipschitz regularity. Note that when the basic problem (P) ad-
mits a global solution x∗ which is Lipschitz, then the Lavrentiev phenomenon does
not occur, and the necessary conditions can be asserted. This is why the Lipschitz
regularity of the solution is a desirable property. It offers the further advantage of
giving us access to the higher regularity results of §15.2, which would allow us to
deduce the smoothness of the solution

16.17 Exercise. Use the results above to prove that any solution θ∗ to the problem
of Exer. 16.6 is Lipschitz. Proceed to show by the results of §15.2 that θ∗ is C∞. 
�

Remark. Future developments will make it possible to assert the Euler equation
and Lipschitz regularity under a weaker growth condition than (∗) of Theorem
16.13. Specifically, we shall obtain Theorem 16.13 and Cor. 16.16 in §17.3 un-
der the following structural assumption: There exist constants ε > 0 and c, and a
summable function d , such that, for almost every t,

∣
∣Λ x

(
t, x, x∗′(t)

)∣∣ � c
∣
∣Λ

(
t, x, x∗′(t)

)∣∣+d(t) ∀x ∈ B(x∗(t),ε).
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16.3 Autonomous Lagrangians

We now prove that under hypotheses of Tonelli type, solutions to the basic prob-
lem in the calculus of variations are Lipschitz when the Lagrangian is autonomous.
The reader will recall that the problem (P), or its Lagrangian Λ , are said to be au-
tonomous when Λ has no dependence on the t variable.

16.18 Theorem. (Clarke-Vinter) Let x∗ ∈ AC[a,b ] be a strong local minimizer
for the problem (P), where the Lagrangian is continuous, autonomous, convex in v,
and has Nagumo growth along x∗. Then x∗ is Lipschitz.

Proof. Let x∗ be a solution of (P) relative to ‖x− x∗‖� ε . By uniform continuity,
there exists δ ∈ (0,1/2) with the property that

t , τ ∈ [a,b ] , | t − τ | � (b−a)δ/(1−δ ) =⇒ | x∗(t)− x∗(τ)|< ε .

A. Let us consider any measurable function α : [a,b ] → [1− δ ,1+ δ ] satisfying

the equality
∫ b

a
α(t)dt = b−a. For any such α , the relation

τ(t) = a+
∫ t

a
α(s)ds

defines a bi-Lipschitz one-to-one mapping from [a,b ] to itself; it follows readily
that the inverse mapping t(τ) satisfies

d
dτ

t(τ) =
1

α
(
t(τ)

) , | t(τ)− τ | � (b−a)δ/(1−δ ) a.e.

Proceed now to define an arc y by y(τ) = x∗(t(τ)). Then y is admissible for the
problem (P), and satisfies ‖y− x∗‖< ε (by choice of δ ), whence

∫ b

a
Λ
(
y(τ), y ′(τ)

)
dτ � J(x∗).

Applying the change of variables τ = τ(t) to the integral on the left, and noting that
y ′(τ) = x ′(t(τ))/α(t(τ)) a.e., we obtain

∫ b

a
Λ
(
y(τ), y ′(τ)

)
dτ =

∫ b

a
Λ
(
y(τ(t)), y ′(τ(t))

)
τ ′(t)dt

=

∫ b

a
Λ
(
x∗(t), x∗′(t)/α(t)

)
α(t)dt � J(x∗).

Note that equality holds when α is the function α∗ ≡ 1, so we see that α∗ solves
a certain minimization problem. Let us formulate this problem more explicitly by
introducing
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Φ(t,α) = Λ
(
x∗(t), x∗′(t)/α

)
α

It is straightforward to verify that for each t, the function Φ(t, ·) is convex on the
interval (0,∞). Consider the functional f given by

f (α) =
∫ b

a
Φ
(
t,α(t)

)
dt .

Then f (α) is well defined when α is measurable and has values in the interval
[1−δ ,1+δ ], possibly as +∞, and it follows that f is convex.

For almost every t, by continuity, there exists δ (t) ∈ (0,δ ] such that

Φ(t,1)−1 � Φ(t,α) � Φ(t,1)+1 ∀α ∈ [1−δ (t),1+δ (t)] .

It follows from measurable selection theory (§6.2) that we may take δ (·) measur-
able.4 We define S to be the convex subset of X := L∞[a,b ] whose elements α
satisfy α(t) ∈ [1−δ (t),1+δ (t)] a.e.

Consider now an optimization problem (Q) defined on the vector space X . It consists
of minimizing f over S subject to the equality constraint

h(α) =
∫ b

a
α(t)dt − (b−a) = 0.

The argument given above shows that the function α∗ ≡ 1 solves (Q).

B. We now apply the multiplier rule, more precisely, the version given by Theorem
9.4. We obtain a nonzero vector ζ = (η ,λ ) in R

2 (with η = 0 or 1) such that

η f (α)+λ h(α) � η f (α∗) ∀α ∈ S.

It follows easily from Theorem 6.31 that η = 1. Rewriting the conclusion, we have,
for any α in S, the inequality

∫ b

a

{
Λ
(
x∗(t), x∗′(t)/α(t)

)
α(t)+λα(t)

}
dt �

∫ b

a

{
Λ
(
x∗(t), x∗′(t)

)
+λ

}
dt .

Invoking Theorem 6.31, we deduce that, for almost every t, the function

α �→ θ t(α) := Λ(x∗(t), x∗′(t)/α)α+λα

attains a minimum over the interval [1−δ (t),1+δ (t)] at the interior point α = 1.
Fix such a value of t. Then the generalized gradient of θ t at 1 must contain zero. It
follows from nonsmooth calculus (see Exer. 13.23, strangely relevant) that

Λ
(
x∗(t), x∗′(t)

)
−〈x∗′(t),ζ (t)〉=−λ a.e., (1)

4 Because (0,δ ] is not closed, there is an implicit (but not difficult) exercise involved here.
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where ζ (t) lies in the subdifferential at x∗′(t) of the convex function v �→Λ(x∗(t),v).

C. The last step in the proof is to show (using (1)) that x∗′(t) is essentially bounded.
Let t be such that x∗′(t) exists, and such that (1) holds. We have

Λ
(
x∗(t), x∗′(t)

{
1+ |x∗′(t)|

}−1)−Λ(x∗(t), x∗′(t))

�
[ {

1+ |x∗′(t)|
}−1 −1

]
〈x∗′(t),ζ (t)〉 (by the subgradient inequality)

=
[ {

1+ |x∗′(t)|
}−1 −1

]{
Λ
(
x∗(t), x∗′(t)

)
+λ

}
,

in light of (1). Letting M be a bound for all values of Λ at points of the form
(x∗(t),w) with t ∈ [a,b ] and w∈ B, this leads to (in view of the Nagumo growth)

θ
(
|x∗′(t)|

)
� Λ

(
x∗(t), x∗′(t)

)
� M+

(
M+ |λ |

)
|x∗′(t)|.

The superlinearity of θ implies that |x∗′(t)| is essentially bounded, as required. 
�

Remark. When Λ is taken to be differentiable in v, then the ζ (t) that appears in
the proof is none other than the costate p(t) = Λv(x∗(t), x∗′(t)), and we see that (1)
extends the Erdmann condition (see Prop. 14.4) to the current setting (with h = λ ).
It has now been obtained for x∗ merely Lipschitz rather than C2; the simple proof
used before no longer pertains.

The reader may verify that the coercivity was not used to obtain the Erdmann con-
dition, and that its proof goes through unchanged in the presence of an explicit state
constraint x(t) ∈ S in the problem (P), and also when a constraint x ′(t) ∈ C is im-
posed, provided that C is a cone. We summarize these observations:

16.19 Corollary. Let Λ be continuous and autonomous and, with respect to v, be
convex and differentiable. Let x∗ be a strong local minimizer for the problem

minimize J(x) : x ∈ AC[a,b ], x(t) ∈ S, x ′(t) ∈ C, x(a) = A, x(b) = B,

where S is a subset of Rn and C is a cone in R
n. Then, for some constant h, the arc

x∗ satisfies the Erdmann condition

〈 x∗′(t),Λv(x∗(t), x∗′(t))〉−Λ(x∗(t), x∗′(t)) = h a.e.

If in addition Λ has Nagumo growth along x∗ , then x∗ is Lipschitz.

The reader will notice that as a result of the above, and in contrast to Chapter 14, the
Erdmann condition is now available as a separate necessary condition for optimality
in certain situations in which the Euler equation cannot be asserted (because of the
additional constraints, or simply because x∗ is not known to be Lipschitz). Exers.
21.15 and 21.16 illustrate its use in such situations.

16.20 Exercise. Consider the problem of Exer. 16.6. Letting its solution be θ∗ ,
show that the Erdmann condition asserts
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1
2

m
(
�θ ′

∗(t)
)2
+mg�

(
1− cosθ∗(t)

)
= h.

Note that this corresponds to conservation of energy, which is often the interpreta-
tion of the Erdmann condition in classical mechanics. 
�

16.21 Example. We illustrate now the use of the existence and regularity theorems,
and also their role in studying boundary-value problems in ordinary differential
equations. Consider the following version of the basic problem (P), with n = 1:

min
∫ T

0

{
x(t)4

4
− x(t)2

2
+

x ′(t)2

2

}
dt : x ∈ AC[0,T ], x(0) = 0, x(T ) = 0.

The Lagrangian
Λ(x,v) = v2/2+ x4/4− x2/2

is continuous and convex in v, and (it can easily be shown) coercive of degree 2.
According to Tonelli’s theorem, there exists a solution x∗ of (P).

It follows now from Theorem 16.18 that x∗ is Lipschitz, since Λ is autonomous. An
alternative to calling upon Theorem 16.18 is to argue as follows. We have

|Λ x |+ |Λv |
1+ |v |+ |Λ(x,v)| � |v |+ |x |3 + |x |

1+ |v | � 1+ |x |3 + |x | ,

which shows that the structural hypothesis (∗) of Theorem 16.13 holds. This allows
us to invoke Cor. 16.16 in order to conclude that x∗ is Lipschitz.

In either case, it follows that x∗ satisfies the integral Euler equation. We then appeal
to Theorem 15.7 in order to deduce that x∗ ∈ C∞[0,T ]. This allows us to write the
Euler equation in fully differentiated form:

x ′′(t) = x(t)
(

x(t)2 −1
)
.

In summary, there is a solution x∗ of the boundary-value problem

x ′′(t) = x(t)
(

x(t)2 −1
)
, x ∈ C∞[0,T ], x(0) = 0, x(T ) = 0, (2)

one that also solves the problem (P).

However, it is clear that the zero function is a solution of (2), and we would wish
to know when there is a nontrivial solution. This will certainly be the case if the
zero function, which is evidently an extremal for Λ , admits a conjugate point in
the interval (0,T ). For in that case, it cannot be a solution of (P), by the necessary
condition of Jacobi (Theorem 14.12), whence x∗ 	≡ 0.

The Jacobi equation (for the zero function) is u ′′(t)+ u(t) = 0, which yields the
conjugate point τ = π . We arrive therefore at the following conclusion: there exists
a nontrivial solution of (2) when T > π . 
�
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16.22 Exercise. We consider the following problem (P):

minimize
∫ 1

0
exp

{
x(t)+ x ′(t)2}dt : x ∈ AC[0,1], x(0) = 0, x(1) = 1.

(a) Use the direct method to prove that (P) admits a solution.

(b) Prove that (P) admits a unique solution.

(c) Observe that the Lagrangian does not satisfy hypothesis (∗) of Theorem 16.13.

(d) Prove that the solution of (P) is Lipschitz.

(e) Deduce the existence of a unique solution x to the following boundary-value
problem:

x ′′(t) =
1− x ′(t)2

1+ x ′(t)2 , x ∈ C∞[0,1], x(0) = 0, x(1) = 1.

�

Remark. We are now able to reflect with hindsight on the role of each of the three
different function spaces that have figured in the theory. The choice of C2[a,b ]
is agreeable for evident reasons of simplicity and smoothness. We venture on to
Lip[a,b ] because this space still leads to a good theory, including the basic nec-
essary conditions, while allowing nonsmooth solutions; further, there are regularity
results that establish a bridge back to C2[a,b ]. Finally, we advance to AC[a,b ]
because it makes existence theorems possible; and again, there exist bridges from
AC[a,b ] that lead back to Lip[a,b ] in many cases. 5

5 Note that the class PWS of piecewise-smooth functions would not fit into this scheme: there are
no bridges from AC[a,b] to PWS.



Chapter 17

The multiplier rule

The reader has been told that the great twentieth-century quests in the calculus of
variations have involved existence and multiplier rules. Progress in functional anal-
ysis, together with the direct method, has largely resolved the former issue; we turn
now to that of multipliers.

For this purpose, we consider the classical problem of Lagrange. It consists of the
basic problem (P) to which has been grafted an additional pointwise equality con-
straint ϕ(t, x, x ′) = 0, where ϕ has values in R

k ; thus the problem becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Minimize J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to
x ∈ AC[a,b ] , x(a) = A , x(b) = B

ϕ
(
t, x(t), x ′(t)

)
= 0, t ∈ [a,b ] a.e.

( L )

As before, the arcs x have values in R
n. The additional constraint makes the problem

(L) much more complex than (P), or even the isoperimetric problem. In part, this is
because we now have infinitely many constraints, one for each t.

Given our experience in optimization, it is not hard to fathom the general nature
of the necessary conditions we seek. We expect the multiplier rule to assert, in a
now familiar pattern, that if x∗ solves this problem, then there exist multipliers η ,λ ,
not both zero, with η = 0 or 1, such that x∗ satisfies (some or all of) the necessary
conditions for the Lagrangian ηΛ + λ (t) •ϕ . Note that λ is a function of t here,
which is to be expected, since there is a constraint ϕ(t, x, x ′) = 0 for each t.

We are not surprised that a result of this type requires non degeneracy of the con-
straint. More explicitly, a rank condition is postulated: it requires that Dvϕ(t, x,v)
have rank k at relevant points (thus, k � n necessarily).

There are various results of this type, and proving any of them is an arduous task,
even if one is generous with hypotheses. But prove them we will, later on, in a
more general context. In this chapter, we proceed to describe some representative
theorems of multiplier rule type, in an attempt to convey to the reader the central
issues. Inevitably, one of these is regularity: in which class is the solution?
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17.1 A classic multiplier rule

Let x∗ be a weak local minimizer for the problem (L) above, where we take ϕ andΛ
to be continuously differentiable. If x∗ is also smooth, as it is in the classical setting,
then the rank condition can be postulated in a pointwise manner. Accordingly, we
make the assumption that the solution x∗ is piecewise C1. Let x∗ have one of its
(finitely many) corners at τ ∈ (a,b); we denote by x∗′(τ+) and x∗′(τ−) its derivatives
from the right and from the left at τ (these exist by assumption).

The rank condition in this context is the following:

The Jacobian matrix Dvϕ(t, x∗(t), x∗′(t)) has rank k for every t ∈ [a,b ], where, if x∗
has a corner at τ , this holds with both the one-sided derivatives x∗′(τ+) and x∗′(τ−)
in the place of x∗′(τ).

17.1 Theorem. Under the hypotheses above, there exist η equal to 0 or 1, an arc p,
and a bounded measurable function λ : [a,b ]→ R

k such that
(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ],

and such that x∗ satisfies the Euler equation:
(

p ′(t), p(t)
)
= ∇x,v

{
ηΛ + 〈λ (t),ϕ 〉

}(
t, x∗(t), x∗′(t)

)
a.e.

Observe that the theorem asserts the integral form of the Euler equation, as ex-
pressed through the costate p, for the Lagrangian ηΛ+〈λ (t),ϕ 〉. The proof (given
in Cor. 25.16) will show that we can also add a local Weierstrass condition to this
classical result: for some δ > 0, for every non corner point t of x∗ , we have

|v− x∗′(t)|< δ , ϕ(t, x∗(t),v) = 0 =⇒
ηΛ

(
t, x∗(t),v

)
−ηΛ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉 .

17.2 Example. Let us revisit the problem of the hanging chain (see Example
14.22), in the case in which the chain is not homogeneous. Let the mass density
be σ(y) at the point y along the length of the chain, 0 � y � L. Letting x(·) be the
shape of the chain at equilibrium (as before), the potential energy is given by

∫ b

a
σ
(∫ t

a

√
1+ x ′(t)2 ds

)
x(t)

√
1+ x ′(t)2 dt .

We seek to minimize this functional subject to

x(a) = A, x(b) = B,
∫ b

a

√
1+ x ′(t)2 dt = L .
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Note that when the function σ is nonconstant, this does not have the form of the
basic problem, and, on the face of it, we do not know how to proceed. However, let
us introduce a new state variable y(t) to stand in for the argument of σ in the integral
above; that is, y must satisfy

y ′(t) =
√

1+ x ′(t)2 , y(a) = 0, y(b) = L .

Then the problem may be rephrased as follows:
⎧
⎪⎨

⎪⎩

minimize
∫ b

a
σ
(
y(t)

)
x(t)

√
1+ x ′(t)2 dt subject to

(
x(a), y(a)

)
= (A,0),

(
x(b), y(b)

)
= (B, L), ϕ

(
x(t), y(t), x ′(t), y ′(t)

)
= 0,

where ϕ(x,y,v,w) = w−
√

1+ v 2 . This has the form of the basic problem, with
state (x,y), and in the presence of an additional pointwise constraint specified by ϕ ;
a problem of Lagrange, quoi.

Observe that the rank condition is satisfied, since

Dv,wϕ(x,y,v,w) =
(
− v/

√
1+ v2 , 1

)

always has rank one. If the multiplier rule above is invoked, it leads to the augmented
Lagrangian

ησ(y) x
√

1+ v2 + λ (t)
(
w−

√
1+ v2

)
.

If η = 0, the extremals correspond to affine functions. This abnormal case may be
ruled out; thus, we take η = 1. We proceed to write the integral Euler equation:
there exist arcs p and q such that

p ′ = σ(y)
√

1+ x ′2 p =

(
σ(y) x−λ

)
x ′

√
1+ x ′2

q ′ = σ ′(y) x
√

1+ x ′2 q = λ .

Introducing an additional state v satisfying x ′ = v, we may rewrite this (after some
fiddling) as a first-order system; we obtain the following boundary-value problem
for four functions (x,v, y, λ ):

x ′ = v v ′ = σ(y)
(
1+ v2

)
/(σ(y) x−λ )

y ′ =
√

1+ v2 λ ′ = σ ′(y) x
√

1+ v2

(
x(a), y(a)

)
= (A,0),

(
x(b), y(b)

)
= (B, L).

We are now in the (easily-reached) zone where explicit closed-form solutions are
unlikely; the boundary-value problem itself must be viewed as the “answer.” It is
easy to verify, however, that this reduces to the case considered in Example 14.22
when σ is constant (the homogeneous chain), in which case x is a catenary. 
�
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The following exercise reveals another context in which problems of Lagrange arise:
functionals in which occur higher derivatives of the state. (Such problems are com-
mon in elasticity.)

17.3 Exercise. Let x∗ minimize the functional
∫ 1

0
Λ
(
t, x(t), x ′(t), x ′′(t)

)
dt

subject to the constraints

x ∈ AC[0,1], x ′ ∈ AC[0,1], x(0) = x0 , x(1) = x1 , x ′(0) = v0 , x ′(1) = v1 ,

where the Lagrangian Λ(t, x,v,w) lies in C 2. We suppose that x∗ ∈ C 3[0,1]. To
treat this situation, let us introduce an additional state variable y together with the
constraint y− x ′ = 0. Show that when rephrased in this way, the problem becomes
one to which Theorem 17.1 can be applied. Go on to show that, in doing so, η = 1
necessarily. Then deduce that x∗ satisfies the second-order Euler equation

− d 2

dt 2

{
Λw(∗)

}
+

d
dt

{
Λv(∗)

}
= Λ x(∗), t ∈ [0,1],

where (∗) refers to evaluation at the point (t, x∗(t), x∗′(t), x∗′′(t)). 
�

17.2 A modern multiplier rule

A more general multiplier rule than that of Theorem 17.1 would be one that reduces
the assumed regularity of the solution, asserts other necessary conditions in addition
to the Euler equation, and offers the possibility of treating other types of pointwise
constraints, notably inequalities like ϕ(t, x, x ′ ) � 0. We record now a multiplier
rule that incorporates these extensions, for the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to
x ∈ AC[a,b ],

(
x(a), x(b)

)
∈ E

ϕ
(
t, x(t), x ′(t)

)
∈ Φ , t ∈ [a,b ] a.e.

( L′ )

where E ⊂ R
n×R

n and Φ ⊂ R
k are closed sets. We take the functions ϕ and Λ to

be continuously differentiable.

Note that (L′ ) extends the problem (L) (p. 335) by allowing pointwise constraints of
a more general nature, and also more general boundary conditions.
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Let x∗ be a Lipschitz arc providing a strong local minimum for problem (L′ ). We
shall posit the following rank condition (or constraint qualification), which is taken
to hold in a strong neighborhood of x∗: for some ε > 0,

t ∈ [a,b ], |x− x∗(t)| � ε , ϕ(t, x,v) ∈ Φ , λ ∈ NL
Φ(ϕ(t, x,v)),

0 = Dv〈λ ,ϕ 〉(t, x,v) =⇒ λ = 0.

The reader may verify that when Φ = {0} (as in the problem (L) considered ear-
lier), this is equivalent to requiring that Dvϕ have rank k at (nearby) points for
which ϕ = 0, a familiar type of hypothesis. For the case of inequality constraints
(that is, when Φ = R

k
−), we would obtain a condition along the lines of positive

linear independence.

17.4 Theorem. Under the hypotheses above, there exist η equal to 0 or 1, an arc
p, and a bounded measurable function λ : [a,b ]→ R

k with
(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ], λ (t) ∈ NL

Φ
(
ϕ(t, x∗(t), x∗′(t))

)
a.e.

such that x∗ satisfies the Euler equation:
(

p ′(t), p(t)
)
= ∇x,v

{
ηΛ + 〈λ (t),ϕ〉

}(
t, x∗(t), x∗′(t)

)
a.e.,

the Weierstrass condition: for almost every t,

v ∈ R
n, ϕ

(
t, x∗(t),v

)
∈ Φ =⇒

ηΛ
(
t, x∗(t),v

)
−ηΛ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉,

as well as the transversality condition:
(

p(a),−p(b)
)
∈ N L

E
(

x∗(a), x∗(b)
)
.

Notice that the theorem assumes a priori that x∗ is Lipschitz. In some cases, this
would be guaranteed by the Lagrange constraint itself, if it so happens that the con-
dition ϕ(t, x(t), x ′(t)) ∈ Φ forces x ′ to be bounded.

The proof of a multiplier rule such as this is far from simple, and, in fact, we are
not prepared to give one now. Theorem 17.4 will follow from later results (see Cor.
25.15). Let us proceed nonetheless to illustrate its use.

17.5 Example. We consider the problem

minimize
∫ 3

0

{
x ′(t)2 +4 x(t)

}
dt : x ′(t) � −2 a.e., x(0) = 0 = x(3),

where x ∈ AC[0,3 ] and n = 1. Let us assume that a Lipschitz solution x∗ exists.
The problem can be put into the form of the problem (L′ ) of Theorem 17.4 by taking
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Λ(t, x,v) = v2 +4 x , ϕ(t, x,v) =−v−2 , Φ = (−∞ , 0 ].

The rank condition of Theorem 17.4 is easily seen to hold, since we have here
Dv〈λ ,ϕ 〉 = −λ . We may now invoke the theorem to deduce the existence of η ,
λ , and p as described. The condition λ (t) ∈ NL

Φ (ϕ(t, x∗(t),x∗′(t))) translates in the
current setting as follows: for almost every t ,

λ (t) � 0, and λ (t) = 0 if x∗′(t)>−2 .

We may exclude the abnormal case η = 0. For then we would have p(t) 	= 0 ∀ t,
whence λ (t) 	= 0 a.e. (from the Euler equation), so that the inequality constraint
is saturated: x∗′ = −2 a.e. But this is inconsistent with x∗(0) = x∗(3) = 0. Setting
η = 1, therefore, the Euler equation becomes

p ′ = 4 , p = 2x∗′ −λ a.e.

Thus p is strictly increasing. We now examine the Weierstrass condition. This as-
serts that, for almost every t, the value x∗′(t) minimizes the function v �→ v2 − p(t)v
subject to v �−2. This implies

x∗′(t) =

{
−2 if p(t) � −4

p(t)/2 >−2 if p(t) > −4

which, in turn, implies that x∗′ is continuous on (0,3).

It follows from this analysis that there is a point τ ∈ [0,3) having the property that

t < τ =⇒ x∗′(t) =−2 , t > τ =⇒ x∗′(t) >−2 .

On the interval [τ ,3 ], we have λ = 0 a.e. and x∗′′ = 2. If τ = 0, then x∗ is the
function t 2−3t , which cannot be the case, since this function violates the constraint
x ′′ � −2. Thus τ > 0.

To summarize to this point, we know that x∗ is continuously differentiable on (0,3)
and takes the form

x∗(t) =

{
−2 t if t � τ
(t −3)2 + c(t −3) if t � τ

for some τ ∈ (0,3) and constant c. The continuity of both x∗ and x∗′ at τ provides
two equations for τ and c ; we find τ = 3−

√
6 , c = 2(

√
6 −1).

The conclusion of our analysis is that if a Lipschitz solution exists, it can only be
the arc x∗ that we have identified. We continue the analysis later by showing that, in
fact, x∗ does provide a global minimum for the problem (see Example 18.9). 
�
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The classical state constraint. As we saw in connection with geodesics, certain
problems are such that the competing arcs are naturally restricted to a surface S
defined by ψ(x) = 0. We discuss such a case now, for the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to
x ∈ AC[a,b ], x(a) = A, x(b) ∈ E1

x(t) ∈ S = {u ∈ R
n : ψ(x) = 0}, t ∈ [a,b ].

( L′′ )

Here, ψ : Rn → R
k is taken to be C2, with 1 � k < n, and Λ is continuously

differentiable; E1 is closed.

The problem only makes sense if ψ(A) = 0, since admissible arcs x begin at A; this
leads to an evident reduction: an arc x will satisfy the initial condition and remain
in S if and only if it satisfies

d
dt

ψ
(
x(t)

)
= Dψ

(
x(t)

)
x ′(t) = 0 a.e.

Thus, the state constraint may be replaced by the Lagrange condition ϕ(x, x ′) = 0,
where ϕ(x,v) is defined to be Dψ(x)v. Then we may seek to apply Theorem 17.4,
whose rank hypothesis concerns Dvϕ(x,v) = Dψ(x). Now it is quite reasonable to
assume that this has maximal rank k at points in S (as we do). Indeed, this classical
rank condition is a customary one when considering manifolds, and we posit it
for our purposes. In its presence, one can justify invoking Theorem 17.4 in order to
express necessary conditions.

There is a complication, however, as we proceed to explain. Let x be any arc admis-
sible for (L′′ ), and define

p(t) = ∇〈λ ,ψ 〉
(
x(t)

)
,

where λ is any nonzero constant vector in R
k. The reader may verify that, with η

taken to be 0, and because of the particular structure of ϕ , this costate p satisfies the
nontriviality condition, the Euler equation, and the Weierstrass condition of Theo-
rem 17.4. If the remaining necessary condition, the transversality condition, always
holds as well (which is certainly the case when E1 is a singleton), then we must ac-
knowledge that the necessary conditions obtained in this way are trivial (since they
are satisfied by any admissible arc).

This explains the requirement for some extra hypothesis that serves to exclude the
triviality described above. For this purpose, we introduce the following endpoint
compatibility condition :

N L
S (x) ∩ N L

E1
(x) = {0} ∀x ∈ E1 ∩ S.
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Besides excluding triviality, it will allow us to state necessary conditions in normal
form. Note that N L

S (x) = NS(x) here, since S is a classical manifold.

When E1 = R
n, so that the right endpoint is free, then the endpoint compatibility

condition certainly holds, since the normal cone N L
E1

reduces to {0}. At the other
extreme, when E1 is a singleton {x1}, the compatibility condition clearly fails, since
N L

E1
(x1) is the whole space and N L

S (x1) is a subspace of dimension n− k � 1 (by
Cor. 5.37). However, we shall see below in a corollary how to recover this important
special case.

17.6 Theorem. Let x∗ ∈ Lip[a,b ] be a strong local minimizer for problem (L′′ ),
under the rank and compatibility hypotheses above. Set φ(x,v) = Dψ(x)v. Then
there exist an arc p and a bounded measurable function λ : [a,b ]→ R

k such that x∗
satisfies the Euler equation:

(
p ′(t), p(t)

)
= ∇x,v

{
Λ + 〈λ (t),ϕ 〉

}(
t, x∗(t), x∗′(t)

)
a.e.,

the Weierstrass condition: for almost every t,

v ∈ R
n, Dψ(x∗(t))v = 0 =⇒

Λ
(
t, x∗(t),v

)
−Λ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉,

as well as the transversality condition:

−p(b) ∈ N L
E1

(
x∗(b)

)
.

Proof. As pointed out above, the state constraintψ(x(t)) = 0 is equivalent to

d
dt

ψ(x(t)) = φ(x(t), x ′(t)) = 0 a.e.,

where ϕ(x,v) = Dψ(x)v. It is a routine exercise to show that the matrix Dψ(x)
has maximal rank in a strong neighborhood of x∗ ; this implies the rank hypothesis
of Theorem 17.4 bearing upon Dvϕ(x,v) = Dψ(x). Thus, we may apply Theorem
17.4. It remains to show, however, that η 	= 0. We do so by contradiction. If η = 0,
then

p(t) = ∇〈λ (t),ψ 〉
(
x∗(t)

)
a.e.,

and transversality yields

−p(b) = −∇〈λ ,ψ 〉
(
x∗(b)

)
∈ N L

E1

(
x∗(b)

)
,

for some essential cluster point λ of λ (·) at b. But the point −∇〈λ ,ψ 〉(x∗(b)) is an
element of NS(x∗(b)) (see Theorem 5.35), so by the compatibility condition it must
equal zero. It follows from this, together with the rank condition, that λ = 0. Then
p(b) = 0, and the nontriviality condition of Theorem 17.4 is violated. This is the
required contradiction. 
�
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17.7 Corollary. The theorem continues to hold when E1 is a singleton {x1}.

Proof. Define Ẽ1 = (x1 +NS(x1))∩ B(x1,r), where r > 0 has the property that
the intersection of the set so defined with S is the singleton {x1}; such r exists by
Prop. 1.43. Then we obtain the same problem (locally) if the endpoint constraint is
replaced by x(b) ∈ Ẽ1. But this modified problem satisfies the compatibility condi-
tion, since

NẼ1
(x1) = NS(x1)

� = TS(x1)

(because NS(x1) is a subspace) and since TS(x1)∩ NS(x1) = {0}. Then we may
apply Theorem 17.6, which gives the required conclusion. 
�

17.8 Exercise. A particle of mass m is restricted to the x-y plane, more precisely to
the curve y = x2, and is acted upon only by gravity. The principle of least action as-
serts that (for small time intervals) the path (x(t), y(t)) of the particle will minimize
the action; accordingly, we consider, for T > 0 fixed, the problem

min
∫ T

0

{ 1
2

m
∣
∣(x ′(t), y ′(t)

)∣∣2 −mgy(t)
}

dt

subject to the state constraint

ψ
(
x(t), y(t)

)
= x(t)2 − y(t) = 0, t ∈ [0,T ].

The values of the state are prescribed at 0 and T .

(a) Prove that a solution (x,y) of the minimization problem exists.

(b) Invoke Cor. 16.19 to deduce that the solution is Lipschitz.

(c) Verify that Cor. 17.7 applies. Use the Weierstrass condition to prove that x ′ is
absolutely continuous; go on to deduce that y ′ is absolutely continuous.

(d) Deduce from the Euler equation that the multiplier λ (t) is absolutely continuous.

(e) Obtain the governing dynamics for x(t):

x ′′(t) =
−2 x(t)[g+2 x ′(t)2 ]

1+4 x(t)2
. 
�

Remark. There is a theory of necessary conditions for problems incorporating in-
equality state constraints of the form g(x(t)) � 0. The distinction with an equality
constraint is that the inequality may only be saturated on certain subintervals. It
turns out that the costate p(t) is typically discontinuous at points t for which the
state constraint becomes, or ceases to be, active. For that reason, the results for such
problems, which we do not consider here, are usually phrased in terms of costates p
of bounded variation.
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17.3 The isoperimetric problem

In both the classical (Theorem 17.1) and modern (Theorem 17.4) forms of the mul-
tiplier rule that we have seen, an a priori assumption regarding the solution x∗ was
made (piecewise smooth or Lipschitz).

It is possible to do away with such assumptions if additional structural hypothe-
ses are made concerning the Lagrangian. We illustrate this now in the case of the
problem

minimize J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to boundary conditions x(a) = A, x(b) = B, and the isoperimetric con-
straint ∫ b

a
ψ(t, x(t), x ′(t)) = 0,

where ψ has values in R
k. The functions ψ and Λ are continuously differentiable.

For a given strong local minimizer x∗ ∈ AC[a,b], here is the structural growth
hypothesis that we postulate:

There exist ε > 0, a constant c, and a summable function d such that, for almost
every t,

∣
∣Dx

(
Λ ,ψ

)(
t, x, x∗′(t)

)∣∣ � c
∣
∣(Λ ,ψ

)
(t, x, x∗′(t))

∣
∣+d(t) ∀x ∈ B(x∗(t),ε).

The reader will observe that this condition is automatically satisfied when x∗ is
Lipschitz, since in that case the left side admits a uniform bound.

The norm of a Jacobian matrix appeared in this last inequality; perhaps this is a good
time to mention:

Notation. The norm |M | of an m×n matrix M is defined to be the Euclidean norm
of its entries viewed as an element of Rmn.

We remark that with this choice, and viewing points in R
n as columns, we obtain

the general inequality |M u | � |M ||u |.

17.9 Theorem. Under the hypotheses above, there exist η equal to 0 or 1, an arc
p, and λ ∈ R

k with (η ,λ ) 	= 0 such that x∗ satisfies the Euler equation:
(

p ′(t), p(t)
)
= ∇x,v

{
ηΛ + 〈λ ,ψ 〉

}(
t, x∗(t), x∗′(t)

)
a.e.

and the Weierstrass condition: for almost every t, for every v ∈ R
n,

(
ηΛ + 〈λ ,ψ 〉

)(
t, x∗(t),v

)
−
(
ηΛ + 〈λ ,ψ 〉

)(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉.
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Remark. Note that no rank condition is imposed here. Thus, nothing prevents us
from taking ψ to be identically zero. In that case, the growth condition of the the-
orem bears upon Λ alone, and constitutes a considerable weakening of the Tonelli-
Morrey structural hypothesis (∗) of Theorem 16.13.

Furthermore, in contrast to the classical isoperimetric multiplier rule, the Weier-
strass condition now accompanies the Euler equation in the conclusion. We empha-
size that the theorem (which is proved later as a consequence of more general results;
see Cor. 22.18) neither requires that x∗ be Lipschitz nor asserts that it is.

17.10 Example. The following isoperimetric problem arises in the study of peri-
odic Hamiltonian trajectories: to minimize

∫ 1

0
Λ
(
− y ′, x ′)dt subject to

∫ 1

0
y • x ′ dt = 1, x(0) = x(1) = 0, y(0) = y(1) = 0.

Here, x and y are arcs with values in R
n, the Lagrangian Λ is continuously differen-

tiable and convex, and Λ satisfies, for a certain positive constant κ ,

κ |(v,w)|2 � Λ(v,w) ∀(v,w) ∈ R
n×R

n.

For the purposes of finding the periodic trajectory, it is required to prove the exis-
tence of a solution, and to assert the necessary conditions (that is, an appropriate
multiplier rule).

The existence of a (unique) solution (x∗,y∗) is a straightforward application of the
direct method. We focus here on the issue of writing the necessary conditions.

In this context, it would be cheating (or shall we say, highly inappropriate) to simply
assume that (x∗,y∗) is either piecewise smooth or Lipschitz. We require a multiplier
rule that makes no such prior assumption. Thus, we seek to apply Theorem 17.9, for
the purposes of which we need to check that its growth hypothesis holds. But in the
present context, we have

Dx,yΛ = (0,0) , Dx,yψ(x, y, x∗′(t), y′∗(t)) = (0, x∗′(t)),

where ψ(x,y,v,w) is given by y • v. We may therefore take c = 0 and d(t) = |x∗′(t)|
in order to verify the required hypothesis. This allows us to invoke Theorem 17.9,
and the analysis proceeds from there; see Exer. 21.30 for the details. 
�

17.11 Exercise. In Exer. 16.12, one shows that the problem

min
∫ π

0
x ′(t)2dt : x ∈ AC[0,π ] ,

∫ π

0
x(t)2dt = π/2 , x(0) = x(π) = 0

admits a solution. Prove that it lies in C∞[0,π ], so that it is, in fact, the solution of
the problem examined earlier in Exer. 14.23. 
�
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17.12 Exercise. (The Sturm-Liouville problem)

The following type of boundary-value problem arises in a variety of applications in
partial differential equations and physics, notably in elasticity and acoustics:

− d
dt

{
P(t)u ′(t)

}
+Q(t)u(t) = λ R(t)u(t) , u ∈ C2[0,1], u(0) = u(1) = 0. (∗)

Here, P, Q, and R are given continuously differentiable functions, with P and R
assumed positive; λ ∈ R is an undetermined parameter. Evidently, the zero function
is a solution of (∗), for any λ . It turns out that only for certain (countably many)
values of λ will the problem (∗) admit a nontrivial solution (that is, one which is not
identically zero). Such a λ is called an eigenvalue.

A complete variational characterization of the eigenvalues can be obtained. We con-
tent ourselves here with proving that there is a minimal eigenvalue λ∗ , and that it
can be characterized with the help of the following problem in the calculus of vari-
ations:1

minimize I(x) :=
∫ 1

0

{
P(t) x ′(t)2 +Q(t) x(t)2} dt subject to

x ∈ AC[0,1] , H(x) :=
∫ 1

0
R(t) x(t)2 dt = 1, x(0) = x(1) = 0. (∗∗)

(a) Prove that a solution x∗ of the problem (∗∗) exists.

(b) Apply necessary conditions in order to deduce that x∗ lies in C2[0,1], and that
the function u = x∗ satisfies (∗) for some λ∗ ∈ R.

(c) Let λ be any eigenvalue. Show that there is an associated nontrivial solution u of
(∗) satisfying ∫ 1

0
R(t)u(t)2 dt = 1.

Deduce that λ = I(u) � I(x∗).

(d) Prove that

λ∗ = I(x∗) = min
{ I(x)

H(x)
: x ∈ C2[0,1], x(0) = x(1) = 0, H(x)> 0

}

is the minimal eigenvalue of the boundary-value problem (∗).

The functional I(x)/H(x) appearing here is known as the Rayleigh quotient; the
reader will discern a relationship between this result and Exer. 13.1. 
�

1 The analysis will be more complete than some, however, in that no tacit assumption is made
concerning the existence and the regularity of the solution to the variational problem.



Chapter 18

Nonsmooth Lagrangians

We now take a step in a direction never envisaged by the classical theory: the intro-
duction of nonsmooth Lagrangians (as opposed to nonsmooth solutions). This is a
modern issue that stems from new applications in such disciplines as engineering,
economics, mechanics, and operations research. At the same time, this factor will
play an essential role in the proof of such theorems as the multiplier rules of the
preceding chapter, even when the underlying problems have smooth data.

18.1 The Lipschitz problem of Bolza

We consider a version of what is known in the calculus of variations as the problem
of Bolza: the minimization of the (Bolza) functional

J(x) = �0
(

x(a)
)
+ �1

(
x(b)

)
+

∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

over all arcs x : [a,b ]→ R
n satisfying the constraints

x(a) ∈ C0 , x(b) ∈ C1 , x ′(t) ∈ V (t) a.e.

where [a,b ] is a given fixed interval in R. The reader will recall that an arc x is
said to be admissible for the problem if x satisfies the given constraints, and if the
integral in the cost J(x) above is well defined and finite.

We are given an admissible arc x∗ which is a strong local minimizer: for some ε > 0,
for any admissible arc x satisfying ‖x−x∗‖ � ε , we have J(x∗) � J(x). We proceed
to state the main result of the chapter, beginning with its hypotheses.

Hypotheses. The Lagrangian Λ(t, x,v), a mapping from [a,b ]×R
n×R

n to R, is
measurable with respect to t and Lipschitz with respect to (x,v) near x∗ in the fol-
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lowing sense: for a summable function k : [a,b ]→ R, we have, for almost all t, for
all x, y ∈ B(x∗(t),ε) and v,w ∈ V (t),

∣
∣Λ(t, x,v)−Λ(t,y,w)

∣
∣ � k(t)

{
| x− y |+ |v−w |

}
. (LH)

(Observe that differentiability of Λ is not assumed.) The other assumptions on the
data are as follows: C0 ,C1 are closed subsets of Rn, the real-valued functions �0 , �1
are locally Lipschitz on R

n, and V is a measurable mapping from [a,b ] to the closed
convex subsets of Rn.

Finally, we require the following Interiority Hypothesis: there is a positive δ such
that

B
(

x∗′(t),δ
)
⊂ V (t) a.e.

We observe that the Lipschitz hypothesis (LH) above evidently holds if V is uni-
formly bounded and Λ is locally Lipschitz. Thus, the following theorem applies
in particular to a weak local minimum x∗ in the class Lip[a,b ], and for a locally
Lipschitz Lagrangian Λ , by taking V (t) to be of the form B(x∗′(t),δ ).

18.1 Theorem. Under the above hypotheses, there exists an arc p which satisfies
the Euler inclusion:

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ ∂LΛ

(
t, x∗(t), x∗′(t)

)}
a.e. t ∈ [a,b ] (E)

together with the Weierstrass condition: for almost every t,

Λ
(
t, x∗(t),v

)
−Λ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉 ∀v ∈ V (t) (W)

and the transversality condition:

p(a) ∈ ∂L�0
(
x∗(a)

)
+N L

C0

(
x∗(a)

)
, −p(b) ∈ ∂L�1

(
x∗(b)

)
+N L

C1

(
x∗(b)

)
. (T)

In this theorem statement, the reader will note that the Weierstrass condition has a
familiar look. The transversality condition is rather more complicated than the ones
we have seen, but is along the same lines. The Euler inclusion (E), however, is truly
novel in appearance; let us examine it more closely.

In writing it, by convention, the limiting subdifferential ∂L Λ (Def. 11.10) is taken
with respect to the (x,v) variables for each fixed t. As we know, this reduces to a
singleton (the gradient) whenΛ is continuously differentiable in (x,v). Thus, in that
case, (E) is equivalent to

p ′(t) = ∇xΛ
(
t, x∗(t), x∗′(t)

)
, p(t) = ∇vΛ

(
t, x∗(t), x∗′(t)

)
.

This is the familiar integral form of the Euler equation expressed in terms of the
costate p.
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The examples that follow suggest why it is useful to weaken the regularity hypothe-
ses on the Lagrangian; other such instances will be encountered later.

18.2 Example. Consider the problem of finding the path of least time between the
points (0,0) and (2,2), where the speed of travel is v0 (constant) in the left halfspace
t < 1, and v1 in the right halfspace t > 1. The problem may be cast as follows:

minimize
∫ 2

0
μ(t)

√
1+ x ′(t)2 dt ,

where
μ(t) =

{
v−1

0 if t < 1

v−1
1 if t > 1.

Note that the Lagrangian is discontinuous in its t variable. Suppose now that x∗
in Lip[0,2 ] is a solution of the problem. Limiting attention to [0,1], we see that
the restriction of x∗ to [0,1] solves a version of the basic problem in which the
Lagrangian is (1+ v2)1/2. It follows (as we have seen) that it is an affine function.
The same conclusion holds on [1,2 ]. Thus, x∗ is piecewise affine on [0,2 ], with a
possible corner at t = 1.

Because the costate p is continuous, the necessary conditions of Theorem 18.1 go
beyond this in implying

p(1) =
μ(1−) x∗′(1−)
√

1+ x∗′(1−)2
=

μ(1+) x∗′(1+)
√

1+ x∗′(1+)2
,

which, together with the boundary conditions, uniquely specifies the piecewise
affine function. In a more geometric vein, let us denote by θ0 and θ1 the angles
of incidence of the path with the line t = 1. Then the relation found above is equiv-
alent to

sin θ0

v0
=

sin θ1

v1
,

which we recognize as Snell’s law of refraction. This is not a coincidence, of course:
Fermat’s principle in optics asserts that light rays propagating in inhomogeneous
media follow paths that minimize time. 
�

18.3 Example. We turn now to an example involving friction in mechanics. The
classical differential equation governing the free oscillation of the pendulum in the
plane is, as we have seen (Example 14.6):

m�θ ′′(t)+mg sin θ(t) = 0.

When an external constant force f (tangentially applied to the mass) is present, the
governing equation becomes

m�θ ′′(t)+mg sinθ(t) = f .
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This is still the Euler equation for the action, now defined, however, as follows:
∫ t2

t1

{
1
2 m

(
�θ ′(t)

)2 −mg�
(
1− cosθ(t)

)
+ f �θ(t)

}
dt .

Suppose now that the pendulum is subject to a frictional force, one that equals −1
when θ > 0 and +1 when θ < 0 (thus, it is a force opposing movement in any
direction from equilibrium). Then the governing equation becomes

m�θ ′′(t)+mg sinθ(t) =

{
+1 if θ < 0

−1 if θ > 0.

This “discontinuous differential equation” corresponds to the action functional
∫ t2

t1

{
1
2 m

(
�θ ′(t)

)2 −mg�
(
1− cosθ(t)

)
+ � |θ(t)|

}
dt .

Note that this integrand is nondifferentiable with respect to the state θ . The ex-
tremals of this action functional, in the sense of Theorem 18.1, satisfy the discontin-
uous differential equation. The Euler inclusion further implies that, for a minimizing
function, θ ′ is absolutely continuous, since (E) asserts in part that p(t) = m�2θ ′(t).
The Euler inclusion also leads to a natural interpretation of the “equation” at θ = 0:

m�θ ′′(t)+mg sinθ(t) ∈ [−1,+1] if θ = 0. 
�

18.4 Exercise. Show that the arc p of Theorem 18.1 satisfies
(

p ′(t), p(t)
)
∈ ∂CΛ

(
t, x∗(t), x∗′(t)

)
a.e.

(This form of the Euler inclusion is often easier to calculate in practice.) 
�

The transversality condition. Consider the problem of Bolza in the case in which
�1 is smooth, C0 is a singleton, and C1 = R

n; thus, x(a) is prescribed, and x(b) is
unconstrained. Then the first part of (T) gives no information, since the normal cone
to a singleton is the whole space. The second part affirms −p(b) = ∇�1(x∗(b)),
since the normal cone to the whole space is {0}. We recover, therefore, the classical
transversality condition encountered earlier in Theorem 14.19.

Evidently, the formulation of the boundary costs and constraints is more general
in the problem of Bolza than it was before. Theorem 18.1 expresses the appropri-
ate transversality conditions, as regards the endpoint constraint sets C0 and C1, en-
tirely in geometric form, with normal vectors. These sets are not restricted to being
classical manifolds (with or without boundary). When they are defined by func-
tional equalities and inequalities, however, we can deduce alternate formulations of
transversality that are stated in terms of multipliers, by means of characterizations
such as Theorem 11.38.
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Regularity. The following exercise shows that the regularity theorem 15.5 carries
over to locally Lipschitz Lagrangians. Thus, solutions can inherit more regularity
than the Lagrangian has to bequeath.

18.5 Exercise. In addition to the hypotheses of Theorem 18.1, suppose that x∗ is
Lipschitz, and that, for almost every t, the function v �→ Λ(t, x∗(t),v) is strictly
convex. Prove that x∗ lies in C1[a,b ]. 
�

18.2 Proof of Theorem 18.1

When the Lagrangian Λ is nondifferentiable, entirely new methods must be found
for deriving necessary conditions, as a look back to the classical theory will con-
firm. A complex of ideas based upon nonsmooth calculus, penalization, and inf-
convolution makes its first appearance in the proof below.

The following technical result will be needed (and used again later). It concerns a
function f (t, x,v) of three variables whose limiting subdifferential with respect to
the (x,v) variables is denoted by ∂L f .

18.6 Proposition. Let f : [a,b ]×R
n×R

n → R be measurable in t and locally Lip-
schitz in (x,v), with

∂L f (t, x,v) ⊂ k(t)B ∀(t, x,v),

where k is summable. Let qi , pi , xi , and vi be sequences of measurable functions
with values in R

n such that

qi → q weakly in L1(a,b), pi(t)→ p(t) a.e., xi(t)→ x(t) a.e., vi(t)→ v(t) a.e.

and satisfying |qi(t)| � k(t) a.e. for each i. For certain constants c � d , suppose
that we have

qi(t) ∈ co
{
ω :

(
ω , pi(t)

)
∈ [c,d ]∂L f

(
t, xi(t),vi(t)

)
+ ε i B

}
, t ∈ Ω i a.e.,

where ε i ↓ 0, and where Ω i is a sequence of measurable subsets of [a,b ] such that
meas(Ω i)→ b−a. Then we have in the limit

q(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ [c,d ]∂L f

(
t, x(t),v(t)

)}
a.e.

(The notation [c,d ]∂L f refers here to {rζ : r ∈ [c,d ], ζ ∈ ∂L f }.)

Proof. Let us define the multifunction Γ as follows:

Γ (t, x,v, p,ε) = co
{
ω : (ω , p) ∈ [c,d ]∂L f (t, x,v)+ |ε |B

}
.

Then we have
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qi(t) ∈ Γ
(
t, xi(t),vi(t), pi(t), ε i

)
, t ∈ Ω i a.e.

If the weak closure theorem 6.39 can be invoked, with Q = [a,b ]×R
3n+1 and

ri = 0, then it gives precisely the desired conclusion. We proceed to verify that the
theorem applies, beginning with the hypothesis that Γ (t, ·) has closed graph.

Let (x j,v j, p j,ε j,q j) be a sequence of points in the graph of Γ (t, ·) converging to
(x,v, p,ε ,q). Then (by Carathéodory’s theorem 2.6) each q j is expressible in the
form

q j = ∑n
m=0 λ

m
j ω m

j ,

where λm
j (m = (0,1) . . . , n) are the coefficients of a convex combination and ω m

j
satisfies, for each m ∈ {(0,1), . . . , n},

(ω m
j , p j) ∈ rm

j ζm
j + ε j B , for some rm

j ∈ [c,d ], ζm
j ∈ ∂L f (t, x j,v j).

Because the multifunction (x,v) �→ ∂L f (t, x,v) is bounded, we may suppose, by
taking subsequences, that all data sequences converge as j → ∞. Because the mul-
tifunction (x,v) �→ ∂L f (t, x,v) has closed graph, we obtain in the limit

q = ∑n
m=0 λ

mω m,

where λm (m = (0,1) . . . , n) are the coefficients of a convex combination and each
ω m satisfies

(ω m, p) ∈ rm ζm + ε B , for some rm ∈ [c,d ], ζm ∈ ∂L f (t, x,v).

It follows that (x,v, p,ε ,q) lies in the graph of Γ (t, ·), as required.

Hypothesis (c) of Theorem 6.39 holds as a direct result of the assumptions made.
We verify now the measurability hypothesis (b) of the theorem. This requires that,
for any measurable functions

x(t) , v(t) , p(t) , ε(t) ,

and for any point z ∈ R
n, the function

t �→ max
{
〈z ,ω 〉 :

(
ω , p(t)

)
∈ [c,d ]∂L f

(
t, x(t),v(t)

)
+ |ε(t)|B

}

be measurable. But this function may be expressed as

max
{
〈(z ,0), (ω , p(t))〉 :

(
ω , p(t)

)
∈ [c,d ]∂L f

(
t, x(t),v(t)

)
+ |ε(t)|B

}
,

so that its measurability would follow (by Prop. 6.29) from the measurability of the
multifunction

t �→
{(

ω , p(t)
)

:
(
ω , p(t)

)
∈ [c,d ]∂L f

(
t, x(t),v(t)

)
+ |ε(t)|B

}
.

But this is the intersection of the two multifunctions
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Γ1(t) = [c,d ]∂L f
(
t, x(t),v(t)

)
+ |ε(t)|B , Γ2(t) = R

n×{ p(t)},

and each of these is easily seen to be measurable (using Exer. 13.24 and Exer. 6.24
for the first, and Exer. 6.21 for the second). The required measurability therefore
follows from Cor. 6.26. 
�

Reductive hypotheses. Before beginning the actual proof of Theorem 18.1, we
identify certain additional hypotheses that can be added “for free” (without any loss
of generality) by simple reformulations. We claim first that the theorem’s hypotheses
and conclusions are unaffected if we redefine

Λ(t, x,v) := Λ
(
t, π1

t (x), π 2
t (v)

)
,

where π1
t (x) denotes the projection of x onto the set B(x∗(t),ε) and π 2

t (v) is the
projection of v onto V (t). The optimality of x∗ in the stated sense is clearly preserved
by this modification, as are the required conclusions. As regards the measurability
in t of the new data, note that we have (for example):

{
π 2

t (v)
}
=

{
w ∈ V (t) : dV (t)(v) = |v−w |

}
.

It follows from Prop. 6.25 and Exer. 6.30 that t �→ π 2
t (v) is measurable.

Since π1
t and π 2

t are globally Lipschitz, the redefinition above allows us to suppose
that the Lipschitz condition (LH) (p. 348) holds globally. By similar arguments, we
may suppose that �0 and �1 are bounded below and globally Lipschitz, and that C0
is compact.

It is clear that we change nothing in taking k(t) � 1. It is also easy to see, by a simple
reformulation, that we may take x∗ ≡ 0 and [a,b ] = [0,1]. The final reduction that
we make is the following:

18.7 Proposition. It suffices to prove the theorem when V is replaced by

Vη(t) :=
{

v ∈V (t) ∩ B
(
0,1/η

)
: v+ηB ⊂ V (t)

}
,

for any η > 0 sufficiently small.

Proof. Note that x∗ = 0 continues to be admissible and optimal for the problem
when V is replaced by Vη , for η < δ . If the reduced theorem is proved as stated,
then there is a sequence of arcs pi satisfying the conclusions of the theorem for V
replaced by Vηi , where ηi ↓ 0. It follows from the Euler inclusion that

|(p ′
i (t), pi(t)| � k(t) a.e.

This implies (exercise) min[0,1] | pi(t)| is bounded above independently of i. It
then follows that pi is bounded in C[0,1], as well as equicontinuous. By As-
coli’s theorem, and by weak compactness in L1[0,1] (see Prop. 6.17), taking sub-
sequences (without relabeling), we find an arc p such that pi → p ′ weakly and
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pi(t) → p(t) ∀ t. It is clear that the arc p continues to satisfy the transversality con-
dition (T), and easy to see that it satisfies (W) for V (t). That p satisfies the Euler
inclusion (E) follows from Prop. 18.6, with f =Λ , c = d = 1. 
�

We now prove the theorem (a fairly arduous task with many implicit exercises),
under the reductive hypotheses above, with V replaced by Vη (η < δ ), and under an
additional hypothesis whose removal will constitute the last step in the proof.

Temporary hypothesis:

(TH) C1 = R
n (so that there is no explicit constraint on x(1)).

A. We proceed to define via penalization a sequence of decoupled problems con-
verging in an appropriate sense to (P). (The reader will come to understand this
cryptic phrase, in time.) We introduce, for a given sequence of positive numbers ni
tending to ∞, the functions

�1
i (y) = min

β ∈ Rn

{
�1(β )+ni |y−β |2

}
. (1)

These quadratic inf-convolutions, the Moreau-Yosida approximations to �1, have
been encountered before in §7.4. Since �1 is globally Lipschitz (of rank K1, say),
we calculate

�1
i (y) � min

β ∈ Rn

{
�1(y)−K1|y−β |+ni |y−β |2

}
= �1(y)−K 2

1 /(4ni).

Thus there is a constant c independent of i such that

�1
i � �1 � �1

i + c/ni .

We set
Λ i(t, x,v) = min

u ∈ Rn

{
Λ(t,u,v)+ni k(t)|u− x | 2}.

(This decouples x and v.) The global Lipschitz condition (LH) implies that the min-
imum is attained. Because Λ(t,u,v) is continuous in u, the minimum over u is the
same as the infimum for u with rational coordinates. Then Λ i is the countable infi-
mum of functions which are LB measurable, since, for each u, the function

(t, x,v) �→ Λ(t,u,v)+ni k(t)|u− x |2

is measurable in t and continuous in (x,v). Thus Λ i is itself LB measurable, and the
following functional is well defined:

Ji(x) := �0
(
x(0)

)
+ �1

i
(
x(1)

)
+

∫ 1

0
Λ i

(
t, x(t), x ′(t)

)
dt .

We define Ii to be the infimum of Ji(x) over all arcs x satisfying
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x(0) ∈ C0 , x ′(t) ∈ Vη(t) a.e., |x(0)| � ε/2 ,
∫ 1

0
|x ′(t)|dt � ε/2 . (2)

Note that these constraints imply |x(t)| � ε . Because Vη is bounded, we have (for
some constant c0)

c0 � Ii � Ji(0) � �0(0)+ �1(0)+
∫ 1

0
Λ(t,0,0)dt = J(0).

Let yi be an arc satisfying the constraints (2) together with Ji(yi) � Ii+n−1
i .

Lemma 1. There is a measurable function wi such that wi(t) is (almost every-
where) a point at which the minimum definingΛ i(t, yi(t), y ′

i (t)) is achieved :

Λ i
(
t, yi(t), y ′

i (t)
)
= Λ

(
t,wi(t), y ′

i (t)
)
+ni k(t)|wi(t)− yi(t)|2 a.e.

The proof of the lemma uses the multifunction Γ defined by

Γ (t) =
{

w ∈ R
n : Λ i

(
t, yi(t), y ′

i (t)
)
= Λ

(
t,w, y ′

i (t)
)
+ni k(t)|w− yi(t)|2

}
.

Note that, for almost every t, the set Γ (t) is nonempty (since the minimum defining
Λ i is attained) and closed (by the continuity in w). As pointed out previously, the
functionΛ i is LB measurable, so that the map t �→ Λ i(t, yi(t), y ′

i (t)) is measurable.
It follows that, for a certain function g(t,w) that is measurable in t and continuous
in w, we have

Γ (t) =
{

w ∈ R
n : g(t,w) = 0

}
.

Then Γ is closed-valued and measurable (Prop. 6.25) and therefore admits a mea-
surable selection (Cor. 6.23), as asserted by Lemma 1.

Recall that x∗ = 0. It is in the following sense that the sequence of decoupled prob-
lems converges to the original one:

Lemma 2. lim i→∞ Ii = J(0).

To see this, let wi be the function provided by Lemma 1. The equality defining it,
together with the Lipschitz hypothesis (LH), gives rise to the following estimate:
|wi(t)− yi(t)| � n−1

i a.e. With the help of this, we now calculate

Ii +n−1
i � Ji(yi)

= �0
(
yi(0)

)
+ �1

i
(
yi(1)

)
+

∫ 1

0

{
Λ
(
t,wi, y ′

i
)
+ni k(t)|wi − yi |2}dt

� �0
(
yi(0)

)
+ �1

(
yi(1)

)
− c/ni +

∫ 1

0

{
Λ
(
t, yi, y ′

i
)
− k(t)|wi − yi |

}
dt

� J(0)− c/ni −‖k‖1/ni ,

and the assertion of Lemma 2 follows.



356 18 Nonsmooth Lagrangians

We may view the problem defining Ii as one that is defined relative to the couples
(x(0), x ′) in the complete metric space R

n×L1 lying in the closed set S defined by
(2). The lemma implies that the couple (0,0) is ε 2

i -optimal for the problem (that
is, gives a value to the cost that is within ε 2

i of the infimum), for some positive
sequence ε i tending to 0. We apply Theorem 5.19 to deduce the existence of an
element (xi(0), x ′

i ) ∈ S satisfying

|xi(0)|+
∫ 1

0

∣
∣x ′

i (t)
∣
∣dt � ε i , (3)

and which minimizes over S the functional J̃i defined by

J̃i
(
x(0), x ′) = �0

(
x(0)

)
+ ε i |x(0)− xi(0)|+ �1

i
(
x(1)

)

+
∫ 1

0
min

u

{
Λ
(
t,u, x ′(t)

)
+ni k(t)|u− x(t)|2 + ε i |x ′(t)− x ′

i (t)|
}

dt .

We pass to a subsequence (without relabeling) so as to have x ′
i (t) → 0 a.e.

B. We now fix i and reformulate the optimality of xi for J̃i in a more useful manner,
one that will allow us to identify an arc pi that is “close” to satisfying the neces-
sary conditions. Let ui be a measurable function such that, almost everywhere, the
minimum

min
u

{
Λ
(
t,u, x ′

i (t)
)
+ni k(t)|u− xi(t)|2

}

is achieved at ui(t); as in Lemma 2, we have |ui(t)− xi(t)| � n−1
i a.e., which im-

plies that ui(t)→ 0 a.e.

Now let β i be a point achieving the minimum in (1) when y = xi(1). It follows
readily that β i → x∗(1) = 0. We proceed to define an arc pi via

p ′
i(t) = 2ni k(t)

(
xi(t)−ui(t)

)
, pi(1) =−2ni

(
xi(1)−β i

)
.

Then we have (by choice of β i )

− pi(1) ∈ ∂P �1
(
β i
)
. (4)

Observe that, from the way �1
i (y) is defined, we have

�1
i (y) � �1

(
β i
)
+ni|y−β i |2 ∀y ,

with equality for y = xi(1). We shall also need below the identity

ni k|u−x |2 = ni k|ui−xi |2−〈 p ′
i ,u−ui〉+〈 p ′

i , x−xi〉+ni k
∣
∣(x−xi)−(u−ui)

∣
∣2
.

Define the cost functional Φ(u,α ,v) on L∞×R
n×L1 by
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�0(α)+ ε i |α− xi(0)|− 〈 pi(0),α 〉+ni |x(1)−β i |2 + 〈 pi(1), x(1)〉

+
∫ 1

0

{
Λ
(
t, u(t),v(t)

)
−〈 pi(t),v(t)〉−〈 p ′

i (t), u(t)〉+ ε i |v(t)− x ′
i (t)|

}
dt

+ 2ni

∫ 1

0
k(t)

{
|u(t)−ui(t)|2 + | x(t)− xi(t)|2

}
dt ,

where
x(t) = α+

∫ t

0
v(s)ds .

Then an elementary calculation using the observation and identity above, together
with integration by parts, shows that the optimality of (xi(0), x ′

i ) for J̃i translates
into the following: for a certain constant ci , we have

Φ(u,α,v) � J̃i
(
xi(0), x ′

i
)
+ ci

whenever (u,α ,v) satisfies

α ∈ C0 , |α | � ε/2 , v(t) ∈ Vη(t) a.e.,
∫ 1

0
|v(t)|dt � ε/2 , (5)

with equality when (u,α ,v) = (ui , xi(0), x ′
i ). Thus, Φ(u,α ,v) is minimized rela-

tive to the constraints (5) at (ui , xi(0), x ′
i ).

It is easy to see (by substituting for x and p) that the last two boundary terms in the
expression for Φ may be rewritten in the form

ni
{
|x(1)− xi(1)|2 + |β i |2 −|xi(1)|2}.

It follows then that the modified functionalΨ(u,α ,v) defined by

�0(α)+ ε i |α− xi(0)|− 〈 pi(0),α 〉+ni |x(1)− xi(1)|2

+

∫ 1

0

{
Λ(t,u(t),v(t))−〈 pi(t),v(t)〉−〈 p ′

i (t), u(t)〉+ ε i |v(t)− x ′
i (t)|

}
dt

+ 2ni

∫ 1

0
k(t)

{
|u(t)−ui(t)|2 + | x(t)− xi(t)|2 }

dt

is minimized relative to the constraints (5) at (ui , xi(0), x ′
i ).

C. The next step consists of a variational analysis (for i still fixed) of the mini-
mum of Ψ just mentioned. Let us first fix u = ui and v = x ′

i . Then the function
α �→ Ψ(ui ,α , x ′

i ) attains a local minimum (for i sufficiently large, since xi(0)→ 0)
relative to α ∈ C0 at xi(0). The corresponding necessary condition is

pi(0) ∈ ∂L
{
�0 + IC0

}(
xi(0)

)
+ ε i B . (6)

This, together with (4), is the precursor of the transversality condition (T).
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We now exploit the minimum in v of Ψ(ui , xi(0),v) to derive a forerunner of the
Weierstrass condition. The constraint on v in (5) is slack for i sufficiently large, and
a simple argument by contradiction shows that we have, for almost every t,

〈 pi(t),v〉−Λ
(
t,ui(t),v

)
− ε i |v− x ′

i (t)| �
〈 pi(t), x ′

i (t)〉−Λ
(
t,ui(t), x ′

i (t)
)
∀v ∈Vη(t). (7)

Let us give this argument. If (7) does not hold, then there exists r > 0 and a subset
Σ of [a,b ] of positive measure m such that, for some measurable function w defined
on Σ and taking values in Vη(t), we have

Λ(t,ui(t),w(t))+ ε i |w(t)− x ′
i (t)|− 〈 pi(t),w(t)〉 �
Λ(t,ui(t), x ′

i (t))−〈 pi(t), x ′
i (t)〉− r , t ∈ Σ a.e.

Of course, m can be taken arbitrarily small. If we let v be the function equal to w on
Σ and equal to x ′

i elsewhere, and if x(t) signifies

xi(0)+
∫ t

0
v(s)ds ,

then we have ‖x− xi‖ � Km for a constant K independent of m (the boundedness
of Vη is used for this). It follows that for m sufficiently small we have

Ψ
(
ui , xi(0),v

)
−Ψ

(
ui , xi(0), x ′

i
)
� −r m+K2ni

(
1+2‖k‖1

)
m2 < 0 .

Furthermore, v satisfies the constraint in (5) if m is small enough. This contradicts
the optimality of (ui, xi(0), x ′

i ) and concludes the argument.

Making use of the evident estimate

|x(t)− xi(t)|2 � 2 |x(0)− xi(0)|2 +2
∫ 1

0
|x ′(s)− x ′

i (s)|2 ds

and rearranging, we deduce that the cost functionalΨ+(u,α ,v) defined by

�0(α)+ ε i
∣
∣α− xi(0)

∣
∣−〈 pi(0),α 〉+6ni |α− xi(0)|2

+
∫ 1

0

{
Λ
(
t,u(t),v(t)

)
−〈 pi(t),v(t)〉−〈 p ′

i (t), u(t)〉+ ε i |v(t)− x ′
i (t)|

}
dt

+ 2ni

∫ 1

0
k(t)|u(t)−ui(t)|2 dt +6ni

∫ 1

0
k(t)|v(t)− x ′

i (t)|2 dt

also attains a minimum relative to the constraints (5) at (ui , xi(0), x ′
i ).

Setting α = xi(0) and v = x ′
i in Ψ+ , the attainment of the minimum relative to

u ∈ L∞ implies (by measurable selections) that for t a.e., it is the case that ui(t)
minimizes freely the integrand inΨ+. This fact yields
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p ′
i (t) ∈ ∂P

{
Λ
(
t, ·, x ′

i (t)
)}(

ui(t)
)

a.e.,

which in turn gives ∣
∣ p ′

i(t)
∣
∣ � k(t) a.e. (8)

When the constraint on v in (5) is slack, it follows (Theorem 6.32) that for almost
every t, the minimum with respect to (u,v) ∈ R

n×Vη(t) of the integrand in Ψ+

is attained at (ui(t), x ′
i (t)); this implies an intermediate version of the Euler inclu-

sion: (
p ′

i (t), pi(t)
)
∈ ∂LΛ

(
t,ui(t), x ′

i (t)
)
+{0}×ε i B , t ∈ Ω i a.e. (9)

where Ω i := { t ∈ [0,1] : x ′
i (t) ∈ intVη(t)}. (The limiting subdifferential arises

upon applying the sum rule of Theorem 11.16.) One may show (exercise) that the
measure of Ω i tends to 1 as i → ∞, in light of the Interiority Hypothesis.

D. The next step is to let i tend to infinity. The conditions (8) and (4) allow us to
deduce (for a subsequence, without relabeling) that pi converges uniformly to an
arc p and p ′

i converges weakly in L1(0,1) to p ′ (see Exer. 6.42). Passing to the limit
in (4) and (6) (taking note of (3), and recalling that β i → x∗(1) = 0), we see that p
satisfies the transversality condition (T) (for C1 = R

n). From (7) (recalling that ui
and x ′

i converge almost everywhere to 0) we conclude that almost everywhere we
have

〈 p(t),v〉−Λ(t,0,v) ≤ 〈 p(t),0〉−Λ(t,0,0) ∀v ∈ Vη(t) ,

which is the desired Weierstrass condition. Finally, the Euler inclusion (E) follows
from (9), in view of Prop. 18.6 (with c = d = 1).

The theorem has therefore been proved, in the presence of the Temporary Hypothe-
sis (TH).

E. We now proceed to the removal of the Temporary Hypothesis. The case of an
arbitrary C1 can be reduced to the one in which C1 = R

n by an exact penalization
device, as follows. A simple argument by contradiction shows that for some K > 0
sufficiently large, x∗ solves the problem of minimizing

JK(x) := �0
(
x(0)

)
+ �1

(
x(1)

)
+KdC1

(
x(1)

)
+

∫ 1

0
Λ
(
t, x(t), x ′(t)

)
dt

over the arcs x satisfying

x(0) ∈ C0 , ‖x− x∗‖ � ε/2 , x ′(t) ∈ Vη(t) a.e.

The argument goes as follows. If the assertion is false, then there exists for each
positive integer j an arc x j admissible for this problem with Jj(x j)< Jj(x∗)= J(x∗).
Since Jj(x j) is bounded below, it follows that dC1(x j(1))→ 0. Let σ j be a closest
point in C1 to x j(1). Then for j sufficiently large, the arc

y j(t) := x j(t)+ t
(
σ j − x j(1)

)
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satisfies
y j(0) ∈ C0 , y j(1) ∈ C1 , y ′

j(t) ∈ V (t) a.e.

(This uses the fact that Vη(t)+ηB ⊂ V (t).) A routine estimate using the Lipschitz
hypothesis shows that, for a certain constant K, we have

J(y j) � J(x j)+K |σ j − x j(1)| = J(x j)+K dC1

(
x j(1)

)
.

Then, for j > K , we deduce

J(y j) � J(x j)+K dC1

(
x j(1)

)
� Jj(x j) < J(x∗) ,

contradicting the optimality of x∗ .

The new penalized problem above satisfies (TH), so we may apply the theorem
(which has been proved under this additional hypothesis) to deduce the existence of
an arc p satisfying the Euler inclusion, the Weierstrass condition (for Vη , as agreed),
and the transversality condition corresponding to the new penalized cost. At t = 0,
this is already what we wish to have. It remains to see that the correct transversality
holds at t = 1. The arc p satisfies

−p(1) ∈ ∂L
(
�1 +KdC1

)(
x∗(1)

)
⊂ ∂L�1

(
x∗(1)

)
+K∂L dC1

(
x∗(1)

)

⊂ ∂L�1
(
x∗(1)

)
+N L

C1

(
x∗(1)

)
,

by Theorem 11.16 and Prop. 11.34, confirming (T).

This completes the proof of Theorem 18.1.

18.3 Sufficient conditions by convexity

As the reader well knows, we generally ask of our necessary conditions that they be
sufficient when the problem is convex. The following illustrates this for the problem
of Bolza, and extends Theorem 15.9.

18.8 Theorem. Let x∗ ∈ AC[a,b ] be admissible for the problem of minimizing

J(x) = �0
(
x(a)

)
+ �1

(
x(b)

)
+

∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to
x(a) ∈ C0 , x(b) ∈ C1 .

Let the functions �0 , �1 and the sets C0 , C1 be convex, and suppose that Λ(t, x,v)
is measurable in t and convex in (x,v). If there exists an arc p satisfying the Euler
inclusion (E) and the transversality condition (T) of Theorem 18.1, then x∗ is a
global minimizer.
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Proof. Since Λ(t , ·, ·) is convex, ∂LΛ coincides with the subdifferential of convex
analysis (Prop. 11.23), and the Euler inclusion asserts that the point (p ′(t), p(t))
belongs to ∂Λ(t, x∗(t), x∗′(t)) a.e. (We remark that the Weierstrass condition (W)
follows from this.) Thus, for any arc x satisfying the constraints of the problem, we
have

Λ(t, x, x ′) � Λ
(
t, x∗, x∗′

)
+(p ′, p) • (x− x∗ , x ′ − x∗′) a.e.,

which implies that J(x) is well defined. Since the sets C0 , C1 and the functions �0 ,
�1 are convex, the transversality condition yields the existence of

ν0 ∈ NC0

(
x∗(a)

)
, ν1 ∈ NC1

(
x∗(b)

)
, ζ0 ∈ ∂�0

(
x∗(a)

)
, ζ1 ∈ ∂�1(x∗(b))

such that
p(a) = ζ0 +ν0 , −p(b) = ζ1 +ν1,

where the normal cones and subdifferentials are understood in the sense of convex
analysis. We write

J(x)− J(x∗) = �0
(
x(a)

)
− �0

(
x∗(a)

)
+ �1

(
x(b)

)
− �1

(
x∗(b)

)

+

∫ b

a

{
Λ(t, x, x ′)−Λ(t, x∗, x∗′)

}
dt

� 〈ζ0 , x(a)− x∗(a)〉+ 〈ζ1, x(b)− x∗(b)〉

+
∫ b

a
(p ′, p) • (x− x∗ , x ′ − x∗′) dt

= 〈 p(a)−ν0 , x(a)− x∗(a)〉−〈 p(b)+ν1 , x(b)− x∗(b)〉
+ 〈 p(b), x(b)− x∗(b)〉−〈 p(a), x(a)− x∗(a)〉

= 〈−ν0 , x(a)− x∗(a)〉−〈ν1, x(b)− x∗(b)〉 � 0,

by the characterization of normal vectors to a convex set. 
�

18.9 Example. We had identified in Example 17.5 an arc x∗ that, potentially, might
be the solution of the problem considered there. Let us show how convexity can be
exploited to confirm that it is so. Recall that x∗ was identified via the multiplier rule:
for a certain bounded function λ (t) � 0 a.e., it is an extremal of the augmented
Lagrangian

Λ +λ ϕ = v2 +4 x−λ (t)(v+2).

Because this function is convex in (x,v), it follows from Theorem 18.8 that, for any
arc x satisfying the boundary conditions, we have

∫ 3

0

{
x ′ 2 +4 x−λ (t)

(
x ′+2

)}
dt �

∫ 3

0

{
x∗′ 2 +4 x∗ −λ (t)

(
x∗′+2

)}
dt

=

∫ 3

0

{
x∗′ 2 +4 x∗

}
dt ,
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since, almost everywhere, λ (t) = 0 whenever x∗′(t)+ 2 	= 0. Suppose now that x
also satisfies x ′(t) �−2 a.e. Then, because λ (t)� 0 a.e., we deduce

∫ 3

0

{
x ′ 2 +4 x

}
dt �

∫ 3

0

{
x∗′ 2 +4 x∗

}
dt ,

confirming x∗ as a solution of the original problem. 
�

18.10 Exercise. Let the horizon T > 0 be fixed.

(a) Prove that the problem

min
∫ T

0

{
|x ′(t)|2/2+ |x(t)|

}
dt : x(0) = A , x(T ) = B , x ∈ Lip[0,T ]

has a unique solution x∗ , and that x∗ ∈ C1[0,T ].

(b) Show that for n = 1, A =−1, B = 1, and in the case T > 2
√

2 (thus, for suffi-
ciently long horizons), the solution x∗ is given by:

x∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−t 2/2+
√

2 t −1 if 0 � t �
√

2

0 if
√

2 < t < T −
√

2

t 2/2− (T −
√

2 ) t +(T −
√

2 )2/2 if T −
√

2 � t � T .

The segment of x∗ for which the constant value (here, 0) is maintained is known
in certain economic models as a turnpike.

(c) In the case T � 2
√

2 (short horizon), show that x∗ is given by:

x∗(t) =

{
−t 2/2+[(8+T 2)/(4T )] t −1 if 0 � t � T/2

(t −T )2/2+[(8+T 2)/(4T )](t −T )+1 if T/2 � t � T .

We observe that there is no turnpike component in this case.

(d) Consider now the problem

min
∫ T

0

{
|x ′(t)|2/2−|x(t)|

}
dt : x(0) = A , x(T ) = B , x ∈ Lip[0,T ].

(Note the change of sign in the second term of the integrand.) Prove that the
problem has at least one solution x∗, and that any solution lies in C1[0,T ].

(e) In contrast with the previous case, show that, regardless of the value of T , a
solution x∗ is never constant on a subinterval. 
�
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18.4 Generalized Tonelli-Morrey conditions

We study in this section the problem of Bolza that consists of minimizing the func-
tional

J(x) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

subject to the boundary conditions (x(a), x(b)) ∈ E. The Lagrangian Λ(t, x,v) is
assumed to be finite-valued, and LB measurable in t and (x,v); however, in contrast
to the previous sections, Λ will not be taken to be locally Lipschitz. We continue
to assume, however, that the endpoint cost function � is locally Lipschitz, and that
E ⊂ R

n×R
n is closed.

We shall define a new structural hypothesis for such Lagrangians leading to an ex-
tension of the classical necessary conditions. In contrast to Theorem 18.1, which
postulated Lipschitz regularity of Λ relative to the given local minimum (this is
a “solution specific” hypothesis), the new hypothesis is framed so as to not make
specific reference to the minimizing arc.

In the following definition and subsequent theorem, the notation ∂PΛ and ∂LΛ
refers to subdifferentials of the functionΛ(t, x,v) taken with respect to just the (x,v)
variables.

18.11 Hypothesis. The LagrangianΛ satisfies the generalized Tonelli-Morrey con-
dition: for every bounded subset S of R

n, there exist a constant c and a summable
function d such that, for almost every t , for every (x,v) ∈ S×R

n, one has

|ζ |
1+ |ψ | � c( |v |+ |Λ(t, x,v)|)+d(t) ∀

(
ζ ,ψ

)
∈ ∂PΛ(t, x,v).

18.12 Exercise. Let Λ(t, x,v) = f (t, x)+g(t,v) where f is locally Lipschitz. Show
that Hypothesis 18.11 holds. 
�

The reader will recall that an arc x is said to be admissible for the problem if it
satisfies the endpoint constraints, and if the integral in J(x) is well defined and finite.
Let the admissible arc x∗ be a strong local minimizer for the problem.

18.13 Theorem. Under the hypotheses above, there exists an arc p which satisfies
the Euler inclusion:

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ ∂LΛ

(
t, x∗(t), x∗′(t)

)}
, t ∈ [a,b ] a.e.

together with the Weierstrass condition: for almost every t,

Λ
(
t, x∗(t),v

)
−Λ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉 ∀v ∈ R

n

and the transversality condition:
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(
p(a),−p(b)

)
∈ ∂L�

(
x∗(a), x∗(b)

)
+N L

E
(
x∗(a), x∗(b)

)
.

If Λ is autonomous, then in addition the Erdmann condition holds: there is a con-
stant h such that

〈 p(t), x∗′(t)〉−Λ
(
x∗(t), x∗′(t)

)
= h , t ∈ [a,b ] a.e.

Remark. The generalized Tonelli-Morrey structural hypothesis used here extends
the classical one expressed by (∗) in Theorem 16.13, even for smooth Lagrangians.
To see this, suppose for example that Λ satisfies

∣
∣Λx(t, x,v)

∣
∣ � c( |v |+ |Λ(t, x,v)|)+d(t)

(
1+ |Λv(t, x,v)|

)
∀(t, x,v). (1)

Bearing in mind that any point (ζ ,ψ) belonging to ∂PΛ(t, x,v) is of the form
(Λx(t, x,v),Λv(t, x,v)), it is easy to see that the generalized Tonelli-Morrey con-
dition 18.11 then holds. Note, however, that the structural hypothesis (1) is weaker
than the classical condition (∗) in Theorem 16.13: the term |Λv | has migrated to the
right side of the inequality, making the hypothesis less restrictive.

We mention, too, that the Erdmann condition is asserted here without the convexity
in v that was required in Cor. 16.19. The theorem follows from later results on
differential inclusions, and its proof is postponed to §25.3.

18.14 Exercise. Show that the following Lagrangian (n = 1) satisfies Hypothesis
18.11, but not the condition (∗) of Theorem 16.13:

Λ(t, x,v) = exp
{(

1+ x2 + t 2)v2} . 
�

Regularity consequences. There is a close link between necessary conditions and
the regularity of the solution. If we know the solution to be regular, then we can
usually assert the necessary conditions; conversely, if we can write the necessary
conditions, then we may be able to deduce regularity from them. The following is
an illustration of this principle.

18.15 Corollary. Under the hypotheses of Theorem 18.13, suppose in addition that
Λ has Nagumo growth along x∗ , and is bounded above on bounded subsets. Then
x∗ is Lipschitz.

Proof. Theorem 18.13 provides an arc p exists which satisfies the Weierstrass con-
dition. Let M be an upper bound on the values

Λ
(
t, x∗(t), x∗′(t)/

(
1+ |x∗′(t)|

))
, t ∈ [a,b ].

Then, taking v = x∗′(t)/(1+ |x∗′(t)|) in the Weierstrass inequality leads to

Λ
(
t, x∗(t), x∗′(t)

)
� M+ | p(t)| |x∗′(t)| a.e.
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By the Nagumo growth hypothesis (see Def. 16.15), we then have

θ
(
|x∗′(t)|

)
� M+ | p(t)| |x∗′(t)| a.e.

Since | p(t)| is bounded, and since θ has superlinear growth, this implies that x∗′ is
essentially bounded. 
�

18.16 Example. We study a problem that features a discontinuous Lagrangian and
a free endpoint. It consists of minimizing

∫ τ

0

{
|x(t)|+g

(
|x ′(t)|

)}
dt

over the arcs x : [0,τ ]→ R satisfying the endpoint constraint x(τ) = β , with x(0)
being free, where g is the (discontinuous) function

g(r) =

{
1+ r2/2 if r 	= 0

0 if r = 0.

(Such functions arise in applications in which zero velocity has no fuel cost, whereas
any nonzero velocity requires running the engine, which forces a minimal (positive)
fuel consumption.) Note that the direct method is inapplicable here, since the La-
grangianΛ(x,v) = |x |+g( |v |) is not convex in v, so that existence theory does not
apply. Let us assume for now that a solution x∗ exists, and let us proceed to extract
information from the necessary conditions.

We observe that Λ is LB measurable, and lower semicontinuous in (x,v), and sat-
isfies Hypothesis 18.11 (see Exer. 18.12). Thus, Theorem 18.13 is applicable, and
provides a costate p satisfying (almost everywhere)

p(0) = 0, | p ′(t)| � 1 , (2)

x∗′(t) 	= 0 =⇒ p(t) = x∗′(t) , x∗(t) 	= 0 =⇒ p ′(t) = x∗(t)/|x∗(t)|.

We also deduce, for almost every t,

x∗′(t) 	= 0 =⇒ 0−1−|x∗′(t)|2/2 � −p(t)x∗′(t)

x∗′(t) = 0 =⇒ 1+ |v |2/2−0 � p(t)v ∀v ∈ R\{0}

as a consequence of the Weierstrass condition (specialized to v = 0 in the first case).
The first of these inequalities forces | p(t)| �

√
2 , and the second forces the oppo-

site, so we may restate as follows: for almost every t

x∗′(t) 	= 0 =⇒ | p(t)| �
√

2 and x∗′(t) = p(t) ; x∗′(t) = 0 =⇒ | p(t)| �
√

2 . (3)

By (2) we have | p(t)| <
√

2 for t <
√

2 , whence x∗′(t) = 0 a.e. for t �
√

2. It
follows that when the horizon τ satisfies τ �

√
2 , then x∗ is identically β .

Let us now consider longer horizons τ >
√

2 , beginning with the case β > 0.
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Then x∗ must satisfy x∗′(t) = 0 a.e. on [0,
√

2 ]. Thus, there is a constant α such that

x∗(t) = α , t ∈ [0,
√

2 ].

Let us consider first the case α > 0. Then p ′(t) = 1 for t ∈ [0,
√

2 ], so that
p(
√

2 ) =
√

2. After this, there is at least a small interval during which p(t)>
√

2
(since p ′ = x∗/|x∗|= 1 for t near

√
2 ), and in which we have x∗′

(
t
)
	= 0, by (3). In

that interval, we have

x∗′′ = 1, x∗′ = p > 0, p ′ = 1.

It follows that x∗, x∗′ and p are strictly increasing, so that, in fact, the situation in the
interval persists thereafter. We proceed to solve x ′′ = 1 with the conditions

x
(√

2
)
= α , x ′(√2

)
= p

(√
2
)
=

√
2

to reveal

x∗(t) =
(

t −
√

2
)2
/2+

√
2
(
t −

√
2
)
+α , t ∈

[√
2 , τ

]
,

where α < β necessarily. Then x∗(τ) = β determines α ; we find

α = β −
(
τ−

√
2
)2
/2−

√
2
(
τ−

√
2
)
.

We had imposed α > 0, however, which (in view of the expression for α ) forces
τ < (2β+2)1/2. If this fails, that is, if τ � (2β+2)1/2, we must, once more, modify
the proposed solution; we do so by introducing the possibility α = 0. In this case,
during the initial period in which x∗(t) = 0, the Euler inclusion now gives | p ′ |� 1,
so the inequality | p(t)|<

√
2 (and x∗(t) = 0 ) can persist beyond t =

√
2 , to some

value σ >
√

2 , say. Then x∗ will become positive, whence p(σ) = x∗′(σ) =
√

2 .
For t > σ , we have x∗′′ = 1; together with x(σ) = 0 and x(τ) = β , this leads to

x∗(t) = (t −σ)2/2+
√

2 (t −σ) ,

where σ = τ+
√

2 − (2β +2)1/2.

When β < 0, symmetry implies that the solution is obtained by merely changing the
sign of x∗ (and replacing β by |β | in the formulas above); the solution is evidently
x∗ ≡ 0 when β = 0.

Summing up, we have used the necessary conditions to identify a unique possible
solution to the problem for every value of (τ ,β ), without, for the moment, being
able to assert that these are really solutions. The deductive method, the classical
sufficiency theory, convexity arguments: all fail to apply. We complete the analysis
later (see Example 19.3), when another inductive method will have become avail-
able, one that we turn to now. 
�



Chapter 19

Hamilton-Jacobi methods

In the preceding chapters, the predominant issues have been those connected with
the deductive method: existence on the one hand, and the twin issues of regularity
and necessary conditions on the other. We proceed now to describe the method of
verification functions, a technique which unifies all the main inductive methods. The
reader will see that this leads to a complex of ideas centered around the Hamilton-
Jacobi inequality (or equation).

19.1 Verification functions

Let us illustrate the basic idea with a simple example, that of minimizing

J(x) =
∫ 1

0

∣
∣x ′(t)

∣
∣2 dt

over the continuously differentiable functions x : [0,1] → R
n satisfying the con-

straints x(0) = 0, x(1) = θ , where θ ∈ R
n is a given unit vector. Solving this prob-

lem by the deductive method requires the following steps:

• A solution x∗ ∈ AC[0,1] to the problem is known to exist by Tonelli’s theorem.

• A regularity theorem implies that x∗ ∈ Lip[0,1] (Cor. 16.16 or Theorem 16.18).

• Since x∗ is Lipschitz, the integral Euler equation applies; we deduce that x∗ is C2

and satisfies x∗′′ = 0.

• It follows that the linear arc x∗(t) = θ t is the unique solution.

This approach involves advanced infrastructure and a lot of machinery. What if we
wished to prove to a first-year undergraduate (or an economist) that x∗ is indeed
the solution? Here is an argument that recommends itself by its elementary nature.

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 19,
© Springer-Verlag London 2013
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First, observe the general inequality (recall that θ is a unit vector)

|v |2 =
(
|v |−1

)2
+2|v |−1 � 2|v |−1 � 2〈v,θ 〉−1.

Next, proceed to replace v by x ′(t), where x is any function admissible for the prob-
lem. Now integrate over [0,1] to get a lower bound on J(x), for any such x:

J(x) =

∫ 1

0

∣
∣x ′(t)

∣
∣2 dt �

∫ 1

0

{
2〈x ′(t),θ 〉−1

}
dt

= 2〈x(1)− x(0),θ 〉−1 = 2 |θ |2 −1 = 1.

Finally, observe that when x is x∗, the inequalities above hold with equality (prior
to and after integrating); thus J(x∗) = 1. It follows from this completely elementary
argument that x∗ minimizes J subject to the given boundary conditions.1

We now describe in general terms the method of verification functions that is in-
volved here. Recall the basic problem (P):

minimize J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt

over the arcs x ∈ AC[a,b ] satisfying x(a) = A , x(b) = B. Suppose that an admis-
sible suspect x∗ is at hand, and that our goal is to confirm that x∗ solves (P).

The basic idea is very simple. Suppose that a C1 function ϕ(t, x) exists such that,
for all t ∈ [a,b ] and (x,v) ∈ R

n×R
n, we have

Λ(t, x,v) � ϕ t(t, x)+ 〈ϕx(t, x), v〉 (1)

Equality holds almost everywhere in (1) along x∗ . (2)

This last phrase means that (1) holds with equality, for almost all t, when (t,x,v) is
replaced by (t, x∗(t), x∗′(t)). We claim that the existence of such a ϕ , which we call
a verification function, confirms the optimality of x∗ for (P).

To see this, let x be any arc admissible for (P), and write the inequality (1) with
(t, x,v) = (t, x(t), x ′(t)). Then integrate over [a,b ] to obtain

J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt �

∫ b

a

d
dt

ϕ
(
t, x(t)

)
dt = ϕ(b,B)−ϕ(a,A).

This last constant is therefore a lower bound on J(x). But observe that if x = x∗ ,
then this lower bound is attained; hence x∗ solves (P). In the example above, where
Λ(t,x,v) = |v |2, the argument corresponds to taking ϕ(t,x) = 2〈x,θ 〉− t .

1 We could also invoke convexity in this example, depending on the student. As we shall see, the
argument by convexity is a special case of the technique we are describing.
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The principal questions concerning this inductive method come quickly to mind.
Does there always exist a verification function ϕ to confirm that x∗ is optimal (when
it is)? And how do we find verification functions?

The following value function V (τ ,β ) provides a great deal of insight into both these
issues:

V (τ ,β ) = inf
∫ τ

a
Λ(t, x, x ′)dt : x ∈ AC[a,τ ], x(a) = A , x(τ) = β .

We refer to the problem defined by the right side as P(τ ,β ). Note that (τ ,β ) is
simply the parameter specifying the horizon and endpoint constraint of a family of
problems, in which the original problem (P) = P(b,B) has been imbedded.

Suppose now that x∗ solves (P) and that ϕ is a verification function for x∗. Without
loss of generality, we may take ϕ(a,A) = 0 (a verification function is indifferent to
an additive constant). Let x be any arc on [a,τ ] with the prescribed boundary values
x(a) = A , x(τ) = β . Integrate the inequality (1) evaluated along x to obtain

∫ τ

a
Λ(t, x, x ′)dt � ϕ(τ ,β ).

Taking the infimum over all arcs x feasible for P(τ ,β ) gives

V (τ ,β ) � ϕ(τ ,β ). (3)

Now, for each τ ∈ (a,b ], it follows from the optimality of x∗ for (P) that x∗
solves P(τ , x∗(τ)). This inherited optimality for certain subproblems is sometimes
called the principle of optimality. Interpreted in terms of V , this fact reads as fol-
lows:

V
(
τ , x∗(τ)

)
=

∫ τ

a
Λ(t, x∗, x∗′)dt = ϕ

(
τ , x∗(τ)

)
, a < τ � b. (4)

We may summarize (3) and (4) by saying that V majorizes2 ϕ , while agreeing with
ϕ along x∗. We have seen earlier that value functions are not always differentiable.
The possible relevance of this fact to the verification technique is the following: if
V is not differentiable, if V has a “concave corner” at a point (τ ,β ) = (τ , x∗(τ))
(that is, a corner that has the nature of y �→ −|y | at y = 0), then no smooth function
ϕ can agree with V at that point while it is majorized by V everywhere. Thus the
existence of any such ϕ would be ruled out.3

On the other hand, if V happens to be smooth, our calculation suggests that ϕ could
possibly be taken to be V itself. Of course, the very definition of V is somewhat

2 Borrowing from French (or is it Latin?), we say that f majorizes g if f � g.
3 A concave corner is precisely the type of nondifferentiability that a value function is likely to
develop: consider the one-dimensional example V (x) = min{xu : u ∈ [−1,1]} = −|x |.
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difficult at t = a. It would seem natural to define V (a,A) to be 0, but V (a,β ) for
β 	= A should probably be assigned the value +∞.

The concern expressed above turns out to be justified. There are very regular prob-
lems (P) (with smooth Lagrangians) that generate value functions V having the type
of corner alluded to. Thus the solutions of these problems do not admit (smooth)
verification functions.

As for our second thought, the possibility that V itself could be a verification func-
tion, let us now confirm that there are some grounds for optimism.

19.1 Proposition. Let Λ be continuous, and suppose that the infimum defining
V (τ ,β ) is attained for each (τ ,β ) ∈ Ω = (a,b)×R

n, and that V is differentiable
in Ω . Then ϕ := V satisfies (1) for (t, x,v) ∈ Ω×R

n, and if x∗ solves (P), then V
satisfies (2) as well.

Proof. The second assertion is an immediate consequence of differentiating (4).
As for the first assertion, fix (τ ,β ), let x solve P(τ ,β ), and let any v be given. By
considering the arc z that agrees with x(t) for t � τ and that equals x(τ)+(t − τ)v
for t > τ , we derive, for any δ > 0 sufficiently small, by definition of V :

V
(
τ+δ , β +δv

)
�

∫ τ+δ

a
Λ
(
t, z , z ′

)
dt

=

∫ τ

a
Λ
(
t, x, x ′)dt +

∫ τ+δ

τ
Λ
(
t, x(τ)+(t − τ)v, v

)
dt.

The first term on the right coincides with V (τ ,β ). If we subtract it from both sides,
divide by δ , and let δ tend to zero, we obtain precisely (1), at the point (τ ,β ,v), and
for ϕ = V . 
�

Ideally, the fact that V may be a verification function might be used as follows.
We formulate a conjecture regarding the solutions of P(τ ,β ) for all (τ ,β ); then
we calculate V provisionally through substitution of the conjectured solutions. If,
then, (1) and (2) hold for ϕ = V , the conjecture is verified. When this procedure is
successful, we have actually solved a whole family of problems rather than just (P)
itself.

Let us illustrate this by an example, the one with which we began this section. The
parametrized problem P(τ ,β ) is given by

minimize
∫ τ

0

∣
∣x ′(t)

∣
∣2dt subject to x(0) = 0, x(τ) = β .

We suspect the solution to be the linear arc x(t) = tβ/τ , for which the integral in
question turns out to be ϕ(τ ,β ) = |β |2/τ . (Note that we had proposed a different
verification function before.) We verify that (1) holds for t > 0:
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Λ(t, x,v)−ϕ t(t, x)−〈ϕx(t, x), v〉 = |v |2 + |x |2/t 2 −2〈x, v〉/t

= |v− x/t |2 � 0.

As for (2), it holds automatically, from the way in which ϕ is constructed. This
almost completes the proof that x∗(t)≡ tθ solves P(1,θ ), except for the bothersome
detail of dealing with the awkward behavior of |β |2/τ at τ = 0.

If the argument proving the sufficiency of (1) and (2) is modified so that we integrate
only over [ε ,1] for small ε > 0, it yields

∫ 1

ε

∣
∣x ′(t)

∣
∣2 dt � 1− |x(ε)|2

ε

for any admissible arc x. In the limit as ε ↓ 0, provided that |x(ε)|2/ε tends to
zero, this inequality gives the required conclusion. If we have chosen to restrict the
problem to smooth functions x, then this is indeed the case. Otherwise, we could
argue that we know the solutions of P(τ ,β ) to be Lipschitz by our earlier regularity
results; once again, this guarantees that |x(ε)|2/ε tends to zero. (The reader will
note how regularity remains a pervasive issue even in this context.)

Alternatively, we could have avoided the difficulty with V at τ = 0 in the above
example by “backing up ” the problem to the larger interval [−δ ,1] for some δ > 0,
as we now demonstrate. Consider the parametrized problem

minimize
∫ τ

−δ

∣
∣x ′(t)

∣
∣2 dt subject to x(−δ ) =−δ θ , x(τ) = β .

(Notice that this extension is designed to be compatible with x∗(t)= tθ , our putative
solution.) Again we suspect that the solution is the sole admissible linear arc. Calcu-
lating the value function Vδ (τ ,β ) on the basis of this conjecture, we obtain

Vδ (τ ,β ) =
∣
∣β +δ θ

∣
∣2

τ+δ
.

This function satisfies (1) and (2) for the new extended interval (for x∗(t) = tθ
extended to [−δ ,1]), and all the more for the original one. Further, observe that
Vδ presents no difficulties at τ = 0: there is no bothersome detail at 0 when this
verification function is used.

This backing-up idea lies at the heart of a technique in the classical calculus of
variations due to Hilbert and Weierstrass. A given extremal x∗ on [0,T ] (say) is ex-
tended to one on [−δ ,T ]. A pencil of extremals, all passing through (−δ , x∗(−δ ))
is shown to cover a neighborhood of the graph of x∗ on [0,T ] (if no conjugate points
are present); it is said that x∗ is imbedded in a field.

Then V (τ ,β ), defined as the integral over [−δ ,T ] along the (unique) element of the
field passing through (τ ,β ), is a smooth function (locally, and for τ � 0), satisfying
(1) and (2) (if the Weierstrass condition holds). This celebrated theory leads to the
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confirmation of x∗ as a strong local minimum. We remark that the approach of §14.2
can be given a similar interpretation, in which Legendre’s extra term leads to a
verification function (for a weak local minimum).

In this light, the verification function method may be seen as a unifying one that
subsumes the classical setting, while applying to other situations, especially when it
is extended to allow nonsmooth verification functions (as we shall see).

The reader will have understood that there is no uniqueness of verification func-
tions. In the example above, using value functions, an entire family of suitable ones
(parametrized by δ ) was found. Note also that the verification function we gave
initially in discussing the example (that is, ϕ(t, x) = 2〈x,θ 〉− t ) is seemingly un-
related to these value functions. Is it possible that it was simply devised in an ad hoc,
trial-and-error fashion? This would not be a systematic method like value functions
or field theory (or the Hamilton-Jacobi equation to be discussed presently), but it
remains a persistently useful way to find verification functions.

Let us consider now sufficiency results based upon convexity, to see how they relate
to verification functions. We expect that an arc x∗ which solves (P) will admit a
costate arc p satisfying the integral Euler equation

(
p ′(t), p(t)

)
= ∇x,vΛ

(
t, x∗(t), x∗′(t)

)
a.e.

Now suppose that Λ(t, ·, ·) is convex for each t. Then the subdifferential inequality
for convex functions asserts that we have, for almost every t :

Λ(t, x,v)−Λ
(
t, x∗(t), x∗′(t)

)
�

〈 p ′(t), x− x∗(t)〉+ 〈 p(t),v− x∗′(t)〉 ∀(x,v) ∈ R
n×R

n.

If we proceed to define

ϕ(t, x) = 〈 p(t), x− x∗(t)〉+
∫ t

a
Λ
(
s, x∗(s), x∗′(s)

)
ds,

then by construction, (2) holds. Furthermore, the last inequality above is precisely
(1), thus demonstrating that ϕ is a verification function for x∗, one that was con-
structed with the help of the necessary conditions. We conclude, therefore, that the
convex case, too, is subsumed by the verification method. (We now confess to the
reader that the function ϕ(t, x) = 2〈x,θ 〉− t used at the very beginning of the sec-
tion was found in this way.)

The Hamiltonian H corresponding to Λ is the function

H(t, x, p) = sup
v ∈ Rn

{〈 p,v〉−Λ(t, x,v)} .

In terms of H, the fact that inequality (1) holds for all v can be expressed as a
Hamilton-Jacobi inequality
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ϕ t(t, x)+H
(
t, x,ϕx(t, x)

)
� 0.

In the idealized context of Prop. 19.1, if one assumes in addition that solutions
x∗ are smooth, the proof of the proposition implies that V satisfies this inequality
with equality. As we shall see in §19.3, it is this value function that yearns to be
the solution, though it is regrettably prone to being nondifferentiable. In fact, the
Hamilton-Jacobi equation does not generally admit a smooth global solution. Note,
however, that we only need subsolutions (of the inequality) in particular applications
where we wish to apply the verification function technique.

The following identifies a context in which locally Lipschitz verification functions
can be used; it allows us to integrate the Hamilton-Jacobi inequality when it holds
in the almost everywhere sense.

19.2 Proposition. Let Λ(t, x,v) be LB measurable, continuous in (t, x), as well as
bounded below on bounded sets. Let Ω be an open subset of (a,b)×R

n, and W a
subset of R

n. Suppose that ϕ : Ω → R is a locally Lipschitz function satisfying the
Hamilton-Jacobi inequality in the almost everywhere sense:

ϕ t(t, x)+ 〈ϕ x(t, x),v〉 � Λ(t, x,v) ∀v ∈ W, (t, x) ∈ Ω a.e. (5)

Then, for any x ∈ Lip[a,b ] satisfying
(
t, x(t)

)
∈ Ω , x ′(t) ∈ W, t ∈ (a,b) a.e.,

we have

J(x) � limsup
ε ↓ 0

{
ϕ
(
b− ε , x(b− ε)

)
−ϕ

(
a+ ε , x(a+ ε)

)}
. (6)

We omit the proof, as a more general result will be proved later (see Prop. 24.5).

Of course, the intended use of Prop. 19.2 is to extend the verification procedure
to nonsmooth functions ϕ , as follows. Consider the minimization of J(x) over the
Lipschitz arcs x satisfying certain boundary conditions, and suppose that for all such
arcs x, the upper limit appearing in (6) is no less than a certain value J0 . Then J0 is
a lower bound on the value of the problem. If we exhibit an admissible arc x∗ for
which J(x∗) = J0 , then it follows that x∗ is a solution of the problem.

Because of its adaptability, we view the verification function approach as a tech-
nique more than a theory. Accordingly, we proceed in the rest of the section (and in
the next) to illustrate its use in varied contexts.

19.3 Example. We continue the analysis of the problem studied in Example 18.16,
which had been left incomplete. In order to implement the verification function
method, it is useful to know the cost ϕ(t, x) that corresponds to the arcs that appear
in our conjecture, where (t, x) corresponds to the parameter values (τ ,β ) in the
endpoint constraint of the problem. Substitution and routine calculation yield
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ϕ(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t|x | if 0 � t �
√

2

t( |x |+1)− t 3/6−
√

2
3
/3 if

√
2 � t �

√
2|x |+2

√
2|x |+2

3
/3−

√
2

3
/3 if t �

√
2|x |+2 .

It is not hard to see that this function is locally Lipschitz on R+×R (with the help
of Exer. 13.18, say). Let us now verify the Hamilton-Jacobi inequality (5). Consider
first the case 0 < t <

√
2 and x 	= 0. If v = 0, we have

Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 = |x |− |x | = 0.

If v 	= 0, then (using t <
√

2)

Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 = | x |+1+ v2/2−| x |− t xv/|x |

� 1+ v2/2−
√

2 |v | =
(
|v |/

√
2 −1

)2 � 0.

Consider next the case
√

2 < t <
√

2|x |+2 and x 	= 0. If v = 0, we have

Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 = |x |− ( |x |+1)+ t 2/2 = −1+ t 2/2 � 0,

since t >
√

2 . If v 	= 0, then

Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 = |x |+1+ v2/2− ( |x |+1)+ t 2/2− t xv/|x |

� v2/2+ t 2/2− t|v | =
(
|v |− t

)2
/2 � 0.

The remaining case ( t >
√

2|x |+2 ) is treated similarly.

Since ϕ is continuous, and because we have ϕ(0, ·) = 0, Prop. 19.2 yields

J(x) � ϕ(τ ,β )−ϕ(0, x(0)) = ϕ(τ ,β )

for any Lipschitz arc x joining the points (0, x(0)) and (τ ,β ). But this lower bound
is achieved by our proposed solutions: they were used to calculate ϕ . Thus, their
optimality is confirmed.

Note that the argument in this example required the boundary condition ϕ(0, ·) = 0;
this corresponds to x(0) being free in the problem. Note, too, that the analysis has
led us to solve a family of problems; this is a characteristic of the method. 
�

The next case in point illustrates the use of verification functions in the presence of
auxiliary constraints (as does the next section).

19.4 Example. (A problem with a differential constraint)
On a given interval [0,T ], it is required to build up the quantity x(t) of stock of a
given material good from its initial value x(0) = 0 to its required final level Q. The
corresponding problem is the following:
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min
∫ T

0

{
x ′(t)2 +4 x(t)

}
dt : x(0) = 0, x(T ) = Q ,

where the first term in the integral is a production cost, and the second reflects the
cost of storing the stock. Note the conflicting factors: we would prefer to postpone
production as much as possible (to reduce storage costs), but rapid production near
the end of the period would be very costly (because of the quadratic term).

The nature of the model imposes an auxiliary constraint: x ′(t) � 0 (since we do not
envisage negative production rates). If we ignore this differential constraint and pro-
ceed to solve this (convex) problem, the Euler equation x ′′ = 2 leads to the unique
solution

x(t) = t 2 +
(
Q/T −T

)
t.

This function has a nonnegative derivative on [0,T ] if T �
√

Q ; it follows that it
solves the problem in that case. If T >

√
Q , however, x ′ becomes negative in the

interval; it is therefore unacceptable as a solution. We must find the solution which
respects the differential constraint.

For longer horizons, we may guess that there will be an initial period [0,σ ] during
which x = 0, following which x(t) will be strictly positive. On [σ ,T ] the Euler
equation applies, so that x(t) has the form (t −σ)2 + c(t −σ) for some constant c.

The Erdmann condition x ′2 − 4 x = h holds on [0,T ] (even when the differential
constraint is present; see Cor. 16.19), and we must have h = 0 (in light of the initial
period). We deduce from this c = 0, and then x(T ) = Q gives σ = T −

√
Q . In

summary, here is our educated guess:

x(t) =

⎧
⎨

⎩

0 if 0 � t � T −
√

Q

(t −σ)2 if T −
√

Q � t � T.

How do we confirm this conjecture? We proceed to calculate by substitution the cost
ϕ(T,Q) associated to the proposed strategy:

ϕ(T,Q) =

⎧
⎨

⎩

2QT −T 3/3+Q2/T if T �
√

Q

(8/3)Q 3/2 if T >
√

Q .

Then ϕ is locally Lipschitz on (0,∞)×R+ (by Exer. 13.18). Now we proceed to
check (5) for t > 0 and v � 0. The restriction to x � 0 may also be made because
admissible arcs are nonnegative, so that the values of a verification function when
x < 0 are irrelevant. When 0 < t <

√
x , we find

Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 = v2 −2v(t + x/t)+ t 2 +2 x+ x2/ t 2

=
(

v+(t + x/t)
)2 � 0.

When t >
√

x , we find
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Λ(x,v)−ϕ t(t, x)−〈ϕ x(t, x),v〉 =
(

v+2
√

x
)2 � 0.

Now let x be any Lipschitz admissible arc for the problem (thus, x � 0). Integration
of the inequality (5), with the help of Prop. 19.2, leads to

J(x) � ϕ(T,Q)− liminf
ε ↓0

ϕ
(
ε , x(ε)

)
.

Since x is Lipschitz, there is a constant K such that |x(ε)| � Kε . This (together with
the definition of ϕ) implies that the lower limit in the inequality above is zero. Thus,
the lower bound ϕ(T,Q) is obtained for J(x), one that is attained for the proposed
solution, which is therefore confirmed as optimal.

Note that the formal proof is elementary and requires no theory; it suffices to be
armed with the function ϕ (which was, admittedly, identified with the help of the
necessary conditions). We remark that for this problem (in contrast to that of the
preceding example), a deductive approach is also available (see Exer. 21.19). 
�

19.2 The logarithmic Sobolev inequality

We give in this section an elementary proof of a celebrated inequality. The analysis
will illustrate the use of the verification function technique for isoperimetric prob-
lems, and in proving inequalities. The logarithmic Sobolev inequality, published
by Leonard Gross in 1976, states that for any continuously differentiable complex-
valued function u on R

n, we have
∫

Rn
|u(x)|2 ln |u(x)|dμn(x) � 1

2
‖∇u‖2 + ‖u‖2 ln‖u‖ , (1)

where μn denotes Gaussian measure:

dμn(x) = π−n/2 exp
(
−|x |2)dx ,

and ‖ · ‖ denotes the norm on the Hilbert space L2(Rn, dμn):

‖ν ‖2 =

∫

Rn
|ν(x)|2 dμn(x) .

This inequality, which has important applications in quantum field theory and else-
where, is usually proved via lengthy probabilistic arguments. We now give a proof
using only elementary calculus.

We begin by making several reductions. First, it can be shown that we need prove
(1) only for the case n = 1; one verifies that the general case then follows (as noted
by Gross) by induction on n. Next, observe that (1) is homogeneous with respect to
scaling in u, so we may assume hereafter that ‖u‖ = 1. We may also assume that
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‖u ′ ‖<∞, or else there is nothing to prove. Under these assumptions, the change of
variable u(t) = ν(t)exp(t 2/2) leads to the equivalent formulation:

∫

R

|ν(t)|2 dt =
√
π =⇒

∫

R

( 1
2
|ν ′(t)|2 − |ν(t)|2 ln |ν(t)|

)
dt �

√
π

2
. (2)

Since | |ν |′ | � |ν ′ | a.e., we may assume in proving (2) that ν is nonnegative and
real-valued, as well as locally Lipschitz. For technical reasons, we shall assume
that ν(t) > 0 ∀ t ∈ R; this is justified by a simple density argument. Finally, it is
convenient to split (2) into two half-line problems, each equivalent to

∫ ∞

0
ν(t)2dt =

√
π

2
=⇒

∫ ∞

0

( 1
2
ν ′(t)2 − ν(t)2 lnν(t)

)
dt �

√
π

4
. (3)

We summarize to this point: it is a matter of proving (3) when ν is a locally Lipschitz
function satisfying

ν(t)> 0,
∫ ∞

0
ν(t)2dt =

√
π

2
,

∫ ∞

0
ν ′(t)2dt < ∞. (4)

For s, r > 0, we define a function V as follows:

V (s,r) =
{

gs2 + r
(

1−g2 −2 lns
)}

/2 ,

where g(s,r) = h−1(r/s2), and where h itself is given by

h(t) = e t 2
∫ ∞

t
e−τ

2
dτ .

It is not difficult to check that h is strictly decreasing on R: this is evident for t � 0,
and for t > 0, the inequality h ′(t)< 0 is equivalent to

∫ ∞

t
e−τ

2
dτ < e−t 2

/(2 t) =

∫ ∞

t
(−e−τ

2
/(2τ))′dτ ,

which in turn follows from the inequality e−τ
2
< (−e−τ

2
/(2τ))′. It also follows that

the strictly decreasing function h−1 : (0,∞)→ R satisfies

h−1(
√
π/2) = 0, (h−1)′(ρ) = {2ρ h−1(ρ)−1}−1,

from which the partial derivatives of V may then be computed:

Vs = gs , Vr = −g2/2− ln s.

Let us set F(s,u) = u2/2− s2 lns. Then for s > 0 and u ∈ R, one has

Vs u−Vr s2 +F(s,u) =
1
2
(u+gs)2 � 0. (5)



378 19 Hamilton-Jacobi methods

Accordingly, if ν satisfies (4), we have, using (5),

d
dt

V
(
ν(t),

∫ ∞

t
ν(τ)2dτ

)
= Vs ν ′(t)−Vr ν(t)2 � −F

(
ν(t),ν ′(t)

)

and
∫ ∞

0
F
(
ν(t),ν ′(t)

)
dt � −

∫ ∞

0

d
dt

V
(
ν(t),

∫ ∞

t
ν(τ)2 dτ

)
dt

� V
(
ν(0),

√
π

2

)
− liminf

t→∞
V
(
ν(t),

∫ ∞

t
ν(τ)2 dτ

)
.

Now we have
Vs(s,

√
π/2) = h−1(√π/(2s2)

)
s ,

which is negative for 0 < s < 1, and positive for s > 1. This implies that the func-
tion s �→ V (s,

√
π/2) attains a minimum over (0,∞) at s = 1, the minimum being

V (1,
√
π/2) =

√
π/4. It follows that the desired inequality (3) will have been es-

tablished once we have proved the following lemma.

Lemma. If ν satisfies (4) then

liminf
t→∞

V
(
ν(t),

∫ ∞

t
ν(τ)2 dτ

)
� 0.

Proof. It is readily checked that h(τ)< 1/τ for all τ > 0. Hence h−1(t)< 1/t for
all t > 0, and g(s,r)s2 < s4/r. Similarly,

h(τ)<
√
π exp(τ 2) (τ � 0) =⇒ h−1(t) � −

√
ln(t/

√
π) (t �

√
π ),

and hence
g(s,r)2 � ln r− ln s2 − ln

√
π for

√
π s2 � r.

Evidently g(s,r)2 � 0 if r <
√
π s2, and so

r (1−g2 −2 ln s) � max
{

r
(
1+ ln

√
π− ln r

)
,
√
π s2(1− ln s2)} ∀r, s > 0.

We deduce from these estimates

V (s,r) � s4

2r
+

1
2

max
{

r
(
1+ ln

√
π− ln r

)
,
√
π s2(1− lns2)}. (6)

If ν satisfies (4), then the three functions

s = ν(t), r =

∫ ∞

t
ν(τ)2 dτ , and ε =

∫ ∞

t
ν ′(τ)2 dτ

all tend to zero as t tends to infinity. Moreover,
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s4 = ν(t)4 �
(

2
∫ ∞

t
ν(τ)

∣
∣ν ′(τ)

∣
∣dτ

)2
� 4r ε

by Hölder’s inequality. Thus, by (6), liminf t→∞V (s,r) � 0, as required. 
�

Remark. The reader undoubtedly suspects (correctly) that the eminently useful
function V that lies at the heart of the proof is a value function. If we consider the
parametrized problem

minimize J(ν) =
∫ ∞

0
F(ν,ν ′)dt subject to

∫ ∞

0
ν 2dt = r and ν(0) = s ,

then the multiplier rule for the isoperimetric problem (Theorem 14.21) suggests that
a minimum is attained at the function ν(t,s,r) = c exp(−(t+b)2), where c and b are
determined by the two constraints involving s and r. We cannot be sure about this,
since we are unable (initially) to affirm that a solution exists, and since the multiplier
rule was not proved for infinite horizon problems such as the current one.

However, all’s fair in provisionally calculating a verification function: the end will
justify the means (if we are right). Thus, we proceed to define V (s,r) = J(ν(·,s,r))
(precisely the function V of the proof), and the verification of the inequality (5)
simply shows that V satisfies the appropriate Hamilton-Jacobi inequality. 4

19.3 The Hamilton-Jacobi equation

We study in this section the following Cauchy problem for the Hamilton-Jacobi
equation:

(HJ)

⎧
⎨

⎩

ut +H(x, u x) = 0, (t, x) ∈ Ω := (0,∞)×R
n

u(0, x) = �(x) , x ∈ R
n.

The Hamiltonian H : Rn×R
n → R is given, as well as the function � : Rn → R

defining the boundary values at time t = 0.

Classical solutions. The function u is a classical solution of (HJ) if u belongs to
the class C1(Ω ) and satisfies5

ut(t, x)+H
(
x, u x(t, x)

)
= 0 , (t, x) ∈ Ω and u(0, x) = �(x) ∀x ∈ R

n.

4 The results of this section appear in [1].
5 The function u belongs to C1(Ω ) if it is continuously differentiable in Ω , and if u, as well as all
its first-order partial derivatives, admit continuous extensions to Ω .
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Of course, this pointwise solution concept is natural and desirable. However, nonlin-
ear differential equations (even physically meaningful ones) do not generally admit
smooth, globally defined solutions (as Legendre belatedly discovered).

The following LagrangianΛ , obtained from H via the Legendre-Fenchel transform,
plays a central role in clarifying the issue:

Λ(x,v) = max{〈v, p〉−H(x, p) : p ∈ R
n }. (1)

We shall be supposing throughout that the Hamiltonian H is continuous, and convex
with respect to p. Then, as we know from the theory of conjugate convex functions
(see Theorem 4.21), applying the transform to Λ brings us back to H:

H(x, p) = max{〈 p,v〉−Λ(x,v) : v ∈ R
n }. (2)

In a setting such as this, it was known to our ancestors (informally, at least) that the
natural solution of (HJ) is the function

u∗(τ ,β ) = min �
(
x(0)

)
+

∫ τ

0
Λ
(
x(t), x ′(t)

)
dt ,

where the minimum is taken over the arcs x on [0,τ ] satisfying x(τ) = β (the initial
value x(0) being free). As a value function, however, u∗ is generally lacking in
smoothness; in that case, it cannot be a classical solution.

19.5 Exercise. Let u be a classical solution of (HJ) relative to the restricted domain
D = (0,T )×R

n, where H and Λ are continuous functions satisfying (2). Prove that
u � u∗ on D. 
�

19.6 Example. Consider (HJ) with the data n = 1 and

H(x, p) = p2 e x/4 , �(x) = −e−x.

We calculate Λ(x,v) = e−x v2. In an attempt to identify the solution to the problem
above that defines u∗(τ ,β ), we write the Euler equation x ′′ = (x ′)2/2. Combined
with the transversality condition (see Theorem 18.1), this implies

p(0) = e−x(0) = 2e−x(0)x ′(0),

which yields x ′(0) = 1/2. Together with the boundary condition x(τ) = β , we are
led to propose the solution

x(t) =−2 ln(ct + k), where c = e−β/2/(τ−4) , k =−4c.

The resulting cost from this arc is readily calculated:

u(τ ,β ) = 4e−β/(τ−4).
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We do not necessarily affirm that this is really u∗, but certainly we have u∗ � u,
since u is the cost of certain admissible arcs, and u∗ is the least cost.

Since u(τ ,β ) ↓ −∞ as τ ↑ 4, it follows that u∗, and (by Exer. 19.5) any classical
solution defined at least on (0,4)×R, cannot be appropriately defined beyond t = 4.
The moral that we wish to draw is that certain growth conditions must be imposed
on the data if we are to have globally defined solutions of (HJ) (smooth or not). 
�

Almost everywhere solutions. Due to the possible nonexistence of classical so-
lutions, we are motivated to seek a generalization that will authorize nonsmooth
functions as solutions. The reader has met such a concept in connection with veri-
fication functions (see Prop. 19.2), as well as in Example 11.24, one that depends
on the fact that a locally Lipschitz function is differentiable almost everywhere. We
define u to be an almost everywhere solution if it is locally Lipschitz on Ω , satisfies
the boundary condition u(0, ·) = �(·), and satisfies the Hamilton-Jacobi equation at
almost all points where u is differentiable:

ut(t, x)+H
(
x, u x(t, x)

)
= 0, (t, x) ∈ Ω a.e.

The difficulty with the almost everywhere approach (from the point of view of the
elegance of the theory) is that such solutions are not unique in general; there will be
many solutions of that type.6

19.7 Example. Consider (HJ) with data H(x, p) = | p |2−1, �(x) ≡ 0. There exists
a classical solution which is bounded below: the function u(t, x) = t. (Results to
come will tell us it is unique.) However, there also exist different solutions in the
almost everywhere sense, for example u(t, x) = min(t , |x |). That this (Lipschitz)
function defines such a solution is easy to see, since, almost everywhere, x is nonzero
and |x | 	= t , and then u coincides locally with either t , x, or −x ; in each case, u
satisfies locally ut + |u x |2 −1 = 0. 
�

Proximal solutions. The moral of the example above is that uniqueness, if it is
to be asserted, will require that we look at the points of nondifferentiability of the
candidate solutions, and not simply ignore them as being of measure zero. A natural
way to do this is to involve a subdifferential in the definition of the extended solution
concept.

We say that a function u : [0,∞)×R
n → R is a proximal solution to (HJ) provided

• u is locally Lipschitz on [0,∞)×R
n and satisfies u(0, x) = �(x) ∀x ∈ R

n;

• (t, x) ∈ (0,∞)×R
n, (θ ,ζ ) ∈ ∂P u(t, x) =⇒ θ +H(x,ζ ) = 0.

6 In the context of verification functions, however (where, furthermore, we are dealing with an
inequality rather than an equality), non uniqueness is rather desirable, since the more verification
functions there are, the easier (presumably) it will be to find one.
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19.8 Exercise.

(a) Suppose that u is a classical solution of (HJ). Prove that u is a proximal solution
of (HJ).

(b) Conversely, let u be a proximal solution of (HJ), where u lies in C1(Ω ) and H is
continuous. Prove that u is a classical solution of (HJ).

(c) Show that a proximal solution of (HJ) is also an almost everywhere solution.

(d) Show that the almost everywhere solution u(t, x) = min(t , |x |) adduced in Ex-
ample 19.7 fails to be a proximal solution of (HJ). 
�

19.9 Exercise. Let u be a proximal solution to (HJ) for the boundary function �1 ,
and let v be a proximal solution for the boundary function �2 . Prove that min (u,v)
is a proximal solution to (HJ) for the boundary function � := min (�1 , �2). 
�

An existence and uniqueness theorem. The following hypotheses are made con-
cerning the data of the problem.7

19.10 Hypothesis.

(a) � is locally Lipschitz and bounded below;

(b) H(x, p) is locally Lipschitz, and is convex as a function of p for each x ;

(c) H has superlinear growth in p in the following sense:

lim
| p |→∞

H(x, p)/| p | = ∞ uniformly for x in bounded sets;

(d) There exist positive constants C , κ > 1 and σ < κ such that

H(x, p) � C| p |κ
(

1+ |x |
)σ ∀(x, p) ∈ R

n×R
n.

19.11 Theorem. Under Hypothesis 19.10, there is a unique proximal solution u∗
of (HJ) which is bounded below.

The proof will make use of the Lagrangian Λ defined by (1).

19.12 Exercise. Prove that Λ is locally Lipschitz, and coercive in the following
sense: for certain positive constants c1 , r > 1, and s < r we have

Λ(x,v) � c1|v |r
(1+ |x |)s ∀ x,v ∈ R

n. 
�

7 There are other sets of hypotheses that would serve here; these are intended to be indicative.
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A characterization of the solution. In proving Theorem 19.11, we shall also de-
rive the following characterization of u∗:

For each (τ ,β ) ∈ [0,∞)×R
n, u∗(τ ,β ) is the minimum in the following problem

P(τ ,β ) in the calculus of variations :

P(τ ,β )

⎧
⎨

⎩
minimize Jτ(x) = �

(
x(0)

)
+

∫ τ

0
Λ
(

x(t), x ′(t)
)

dt

over the arcs x on [0,τ ] satisfying x(τ) = β .

The hypotheses imply that this problem admits a solution (another exercise in the
direct method; see Exer. 16.11). The necessary conditions of Theorem 18.1 can
be helpful in solving P(τ ,β ), which features a free initial value and a (generally)
nonsmooth Lagrangian. We remark that under the hypotheses of Theorem 19.11,
even when the data � and H are smooth, the solution u∗ of (HJ) may not be smooth
(see Exer. 21.33).

The proof of Theorem 19.11 is given in the next section.

19.13 Exercise. Show that Theorem 19.11 applies to the following problem, and
find the corresponding solution:

(HJ)

⎧
⎨

⎩

ut + |u x |2 = 0, (t, x) ∈ (0,∞)×R
n

u(0, x) = |x |2, x ∈ R
n. 
�

19.14 Exercise. Find the unique nonnegative (proximal or classical) solution to the
boundary-value problem

(HJ)

⎧
⎨

⎩

ut + |u x |2 −1 = 0 , (t, x) ∈ (0,∞)×R
n

u(0, x) = |x | , x ∈ R
n. 
�

19.15 Exercise. (The Hopf-Lax formula) In the context of Theorem 19.11, sup-
pose in addition that H is differentiable and independent of x. Let u∗ be the solution
of (HJ) provided by the theorem. Prove that we have

u∗(τ ,β ) = min
α ∈ Rn

{
�(α)+ τ Λ

(
(β −α)/τ

)}
, τ > 0 , β ∈ R

n. 
�

Viscosity solutions. We now forge a link between the proximal solution studied
above, and the well-known viscosity solutions of (HJ). This refers to a continuous
function u on [0,∞)×R

n satisfying the boundary condition, such that, for every
(t, x) ∈ (0,∞)×R

n, we have

θ +H(x,ζ ) � 0 ∀(θ ,ζ ) ∈ ∂D u(t, x) , θ +H(x,ζ ) � 0 ∀(θ ,ζ ) ∈ ∂ Du(t, x) .
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Here, ∂Du refers to the Dini (or viscosity) subdifferential (see §11.4), and ∂ Du , the
Dini superdifferential, is defined by ∂ Du = −∂D(−u). The connection to proximal
solutions will be made by means of the next result.

19.16 Proposition. Let g : Rn → R be convex and f : Ω → R locally Lipschitz,
where Ω is an open subset of R

n. Then

g(ζ ) � 0 ∀ζ ∈ ∂ Df (x) (x ∈ Ω) ⇐⇒ g(ζ ) � 0 ∀ζ ∈ ∂P f (x) (x ∈ Ω).

Proof. It turns out to be convenient to prove somewhat more than what is stated,
namely the equivalence of the following six properties:

(1) g(ζ ) � 0 ∀ζ ∈ ∂ Df (x), x ∈ Ω (2) g(ζ ) � 0 ∀ζ ∈ −∂L(− f )(x), x ∈ Ω
(3) g(ζ ) � 0 ∀ζ ∈ ∂C f (x), x ∈ Ω (4) g(ζ ) � 0 ∀ζ ∈ ∂L f (x), x ∈ Ω
(5) g(ζ ) � 0 ∀ζ ∈ ∂D f (x), x ∈ Ω (6) g(ζ ) � 0 ∀ζ ∈ ∂P f (x), x ∈ Ω .

That (1) =⇒ (2) follows because ∂L(− f ) is obtained from ∂D(− f ) = −∂ Df via a
sequential closure operation (see Cor. 11.47), and since g (being convex and finite)
is continuous. We see that, in fact, (1) and (2) are equivalent.

Lemma. Let x ∈ Ω . Then

max
∂L f (x)

g(ζ ) = max
∂C f (x)

g(ζ ) = max
−∂L(− f )(x)

g(ζ ).

Proof. The first equality holds because ∂C f = co∂L f and g is convex; the maxi-
mum of a convex function over a compact set and over its convex hull coincide. The
second is essentially the same fact as the first, since ∂C f =−∂C(− f ).

Returning to the proof of the proposition, we observe that, by the lemma, (2)=⇒ (3).
That (3) =⇒ (4) =⇒ (5) =⇒ (6) is evident, since the sets are becoming smaller.
Now suppose that (6) holds. Since ∂D f can be approximated by ∂P f (see Theorem
11.45), we deduce (5). Because ∂L f is obtained from ∂D f by sequential closure
(Cor. 11.47), we then deduce (4). By the lemma, this yields in turn (2), or equiva-
lently, (1). 
�

19.17 Corollary. Let H(x, p) be continuous in (x, p) and convex in p. A locally
Lipschitz function u on (0,∞)×R

n satisfies

θ +H(x,ζ ) = 0 ∀(θ ,ζ ) ∈ ∂Pu(t, x) , (t, x) ∈ (0,∞)×R
n (3)

if and only if it satisfies

θ +H(x,ζ ) � 0 ∀(θ ,ζ ) ∈ ∂D u(t, x) , (t, x) ∈ (0,∞)×R
n (4)

and θ +H(x,ζ ) � 0 ∀(θ ,ζ ) ∈ ∂ Du(t, x) , (t, x) ∈ (0,∞)×R
n. (5)
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Proof. If (3) holds, then (4) holds as well, since ∂Du is approximated by ∂Pu , in the
sense of Theorem 11.45. In addition, (5) follows from the proposition. Conversely,
if (4) and (5) hold, then, for any (t, x) ∈ (0,∞)×R

n, for any (θ ,ζ ) ∈ ∂Pu(t, x) , we
have

θ +H(x,ζ ) � 0,

by (4), since ∂Pu ⊂ ∂D u. But we also deduce θ +H(x,ζ ) � 0, by applying the
proposition to (5). Thus θ +H(x,ζ ) = 0. 
�

The corollary implies that, in the context of Theorem 19.11, the function u∗ is the
unique locally Lipschitz viscosity solution of (HJ) that is bounded below. The topic
of generalized solutions of the Hamilton-Jacobi equation is revisited in a different
context in Exer. 26.30.

19.4 Proof of Theorem 19.11

We note without proof a useful bound which results from the coercivity of Λ estab-
lished in Exer. 19.12.

19.18 Proposition. For each bounded subset S of [0,∞)×R
n and number N, there

exists M such that

(τ ,β ) ∈ S , x an arc on [0,τ ] , x(τ) = β , Jτ(x)� N =⇒
∫ τ

0

∣
∣x ′(t)

∣
∣rdt � M.

19.19 Corollary. There exists Q such that, for any (τ ,β ) ∈ S, for any solution xτ ,β
of the problem P(τ ,β ), we have |xτ ,β (t)| � Q for all t ∈ [0,τ ].

Proof. This follows from the easily-proved fact that u∗(τ ,β ), as the value of the
problem P(τ ,β ), is bounded above on bounded sets. 
�

We shall require the following estimate:

19.20 Proposition. If S ⊂ [0,∞)×R
n is bounded, there exists m such that

(τ ,β ) ∈ S =⇒ ess min
{
|x ′

τ ,β (t)| : t ∈ [0,τ ]
}
� m .

Proof. We have seen above that |xτ ,β (t)| is uniformly bounded for (τ ,β ) ∈ S and
t ∈ [0,τ ], by a constant Q. In light of Exer. 19.12, we have Λ(x,v) � c |v |r for
some constant c > 0, whenever |x | � Q. Let K� be a Lipschitz constant for � on
the appropriate bounded set. If y denotes the arc which is identically β , the in-
equality Jτ(xτ ,β ) � Jτ(y) (which reflects the optimality of xτ ,β ) leads to (putting
x = xτ ,β )
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∫ τ

0
c|x ′ |r dt � �(β )− �

(
x(0)

)
+ τ Λ(β ,0) � K� |x(0)− x(τ)|+ τΛ(β ,0)

� K�

∫ τ

0
|x ′ |dt + τ Λ(β ,0).

In turn this gives
∫ τ

0

{
c |x ′ |r −K� |x ′ |

}
dt � τΛ(β ,0) ,

which implies

ess min
{

c
∣
∣x ′(t)

∣
∣r −K�

∣
∣x ′(t)

∣
∣ : t ∈ [0,τ ]

}
� Λ(β ,0) ,

which yields the desired result since Λ is bounded on bounded sets. 
�

We know that, for some constant λ = λτ ,β , the solution x = xτ ,β satisfies

Λ
(
x(t), x ′(t)

)
− x ′(t) • ζ (t) = λ , t ∈ [0,τ ] a.e.,

where ζ (t) ∈ ∂vΛ(x(t), x ′(t)) a.e. (see Step B of the proof of Theorem 16.18; this
is an Erdmann condition). The preceding proposition now leads to:

19.21 Exercise. Prove that if S ⊂ [0,∞)×R
n is bounded, there exists λS such that

(τ ,β ) ∈ S =⇒ |λτ ,β | � λS .

Deduce from this that there exists a constant ES such that

(τ ,β ) ∈ S, t ∈ [0,τ ] =⇒
∣
∣x ′

τ ,β (t)
∣
∣ � ES . 
�

Armed as we now are with the fact that |x ′
τ ,β (t)| is uniformly bounded for (τ ,β ) in

bounded sets, we can easily show:

19.22 Proposition. For each bounded subset S of [0,∞)×R
n there exists KS such

that
(τ ,α), (τ ,β ) ∈ S =⇒

∣
∣u∗(τ ,α)−u∗(τ ,β )

∣
∣ � KS |α−β |.

Proof. We know that |xτ ,β (t)| and |x ′
τ ,β (t)| are uniformly bounded for (τ ,β ) in

S and t ∈ [0,τ ]. Let K� and KΛ be Lipschitz constants for � and Λ on a suitable
neighborhood of the bounded set in question. If we define

y(t) = xτ ,β (t)+(τ− t)(α−β ) , t ∈ [0,τ ] ,

then (setting x = xτ ,β )
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u∗(τ ,α)� Jτ(y) (by the definition of u∗ as a value)

= �
(
x(0)+ τ (α−β )

)
+

∫ τ

0
Λ
(
x+(τ− t)(α−β ), x ′ − (α−β )

)
dt

� �
(
x(0)

)
+K�|τ ||α−β |+

∫ τ

0
{Λ(x, x ′)+KΛ (τ+1)|α−β |}dt

� �
(
x(0)

)
+

∫ τ

0
Λ(x, x ′)dt +

{
K� |τ |+KΛτ (τ+1)

}
|α−β |

� u∗(τ ,β )+KS|α−β |

for a suitable choice of KS. 
�

The reader is asked to complete the proof that u∗ is locally Lipschitz:

19.23 Exercise. Prove that if S ⊂ [0,∞)×R
n is bounded, then the function u∗ is

also Lipschitz on S relative to the τ variable. Deduce that u∗ is locally Lipschitz. 
�

Next, we verify the proximal Hamilton-Jacobi equation.

19.24 Proposition. Let (θ ,ζ ) ∈ ∂Pu∗(τ ,β ), where τ > 0. Then θ +H(β ,ζ ) = 0.

Proof. There exists σ � 0 such that, for all (t, x) in a neighborhood of (τ ,β ), the
proximal subgradient inequality holds:

u∗(t, x)−u∗(τ ,β ) � θ(t − τ)+ζ • (x−β )−σ
{
| t − τ |2 + |x−β |2

}
.

Fix any v ∈ R
n, and let y be the arc that extends xτ ,β beyond τ with constant deriva-

tive v. Then, for all ε > 0 sufficiently small,

Jτ+ε(y)− Jτ
(
xτ ,β

)
=

∫ τ+ε

τ
Λ
(
y(t), v

)
dt � u∗

(
τ+ ε , β + ε v

)
−u∗(τ ,β )

� θ ε+ ε ζ • v−σ ε 2{1+ |v |2 }.

Dividing by ε and letting ε decrease to 0 reveals θ + ζ • v−Λ(β ,v) � 0. Since H
is the conjugate of Λ and v is arbitrary, we derive

H(β ,ζ ) = sup
v
ζ • v−Λ(β ,v) � −θ .

It suffices now to exhibit one value v = v0 for which ζ • v0−Λ(β ,v0) � −θ , which
we proceed to do. We have (setting x = xτ ,β ), for all ε sufficiently small,

−
∫ τ

τ−ε
Λ(x, x ′)dt =

∫ τ−ε

0
Λ(x, x ′)dt −

∫ τ

0
Λ(x, x ′)dt

= u∗
(
τ− ε , x(τ− ε)

)
−u∗(τ ,β )

� −ε θ +ζ •
(

x(τ− ε)− x(τ)
)
−σ

{
ε 2 + |x(τ− ε)− x(τ)|2

}
.
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Dividing across by ε , we obtain

θ +
1
ε

∫ τ

τ−ε

{
ζ • x ′ −Λ(x, x ′)

}
dt � −σ

{
ε+ |x(τ− ε)− x(τ)|2/ε

}
.

Note that the right side tends to 0 as ε → 0, since x is Lipschitz. The integral on the
left, for given ε , is bounded above by a term of the form

ζ • vε −Λ(x(tε),vε),

for some tε in [τ − ε ,τ ] and vε in k B, where k is a Lipschitz constant for x. (This
follows from the mean value theorem 10.17 for the generalized gradient, along with
the gradient formula 10.27.) Selecting a subsequence ε i ↓ 0 for which vε i converges
to a limit v0 , we deduce θ +ζ • v0 −Λ(β ,v0) � 0. 
�

Since � is bounded below and Λ is nonnegative, it follows from its very definition
as a value function that u∗ is bounded below. There remains to show that u∗ is the
unique proximal solution to (HJ) that is bounded below. We begin with:

19.25 Proposition. Let u be a proximal solution to (HJ). Then u � u∗ .

Proof. Fix any τ > 0 and β ∈ R
n. We prove that u(τ ,β ) � u∗(τ ,β ). To this end,

let x = xτ ,β and consider the (continuous) function

f (t) = u
(
t, x(t)

)
− �

(
x(0)

)
−

∫ t

0
Λ
(
x(s), x ′(s)

)
ds.

Note that f (0) = 0 and f (τ) = u(τ ,β )− u∗(τ ,β ). It suffices therefore to prove
that f (τ) � 0. But this is a direct consequence of Prop. 19.2, since u is an almost
everywhere solution of (HJ) (see Exer. 19.8). 
�

The final step in the proof of Theorem 19.11 is the following:

19.26 Proposition. Let u be a proximal solution to (HJ) that is bounded below.
Then u � u∗ .

Proof. Fix (τ ,β ) ∈ (0,∞)×R
n. We shall prove that u∗(τ ,β ) � u(τ ,β ).

By hypothesis, there exists a constant μ > 0 such that u �−μ .

Lemma 1. There exists L such that, for any x on [0,τ ] with x(τ) = β , for any
δ ∈ (0,τ ],

∫ τ

τ−δ
Λ(x, x ′ )dt � u(τ ,β )+μ =⇒ |x(t)−β | � L | t − τ | t ∈ [τ−δ ,τ ].

The lemma, whose relevance will become apparent, follows from elementary ar-
guments (using Hölder’s inequality and the coercivity of Λ ) that lead to a uniform
estimate of the type
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∫ τ

t

∣
∣x ′(s)

∣
∣ds � C .

Lemma 2. There exists an arc x on the interval [0,τ ] satisfying x(τ)= β and

u
(
t, x(t)

)
+

∫ τ

t
Λ
(
x(s), x ′(s)

)
ds � u(τ ,β ) ∀ t ∈ [0,τ ]. (1)

Proof. We define the compact “triangle” Δ by

Δ =
{
(t, x) : t ∈ [0,τ ], |x−β | � L | t − τ |

}

(where L is given by Lemma 1), as well as a bigger triangle Δ+ containing Δ :

Δ+ =
{
(t, x) : t ∈ [0,τ ], |x−β | � L | t − τ−1 |

}
.

Let K be a Lipschitz constant for u on the set Δ+, and let R be an upper bound for
|x | over all points (t, x) ∈ Δ+. Due to the coercivity of Λ , there is a constant M
sufficiently large so that the following implication holds:

|x | � R, | p | � K =⇒
max
|v |� M

{
〈 p,v〉−Λ(x,v)

}
= max

v ∈ Rn

{
〈 p,v〉−Λ(x,v)

}
= H(x, p). (2)

Now let N satisfy

|x | � R , |v | � M =⇒ |Λ(x,v)| � N .

The data above will help us define a system for which Theorem 12.11 can be in-
voked, yielding the lemma. This involves treating t as a component of the state,
introducing an additional state coordinate y to absorb Λ into the dynamics, and re-
versing time. (So the notation is a wee bit complex.) We define

F(t, x,y) =
{
(−1,w,r) : |w | � M, Λ(x,−w) � r � N

}
.

Then it can be verified that F satisfies Hypothesis 12.1 for Δ̃ := Δ+×R, as well as
linear growth. We further define

Ω+ =
(

int Δ+
)
×R , ϕ(t, x,y) = u(t, x)+ y .

We claim that the system (ϕ ,F) is weakly decreasing on Ω+, a claim that will be
established by verifying the proximal criterion of Theorem 12.11. (This is where
the proximal inequality θ +H(x,ζ ) � 0 satisfied by u will play a role; only the
opposite inequality has actually been needed so far.)

Accordingly, let (θ ,ζ ,γ ) belong to ∂Pϕ(t, x,y), where (t, x,y) ∈ Ω+. It follows
that γ = 1 and (θ ,ζ ) ∈ ∂Pu(t, x); thus, θ +H(x,ζ ) = 0. We also have |ζ | � K
(the Lipschitz constant for u), whence
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hF
(
t, x,y,θ ,ζ ,γ

)
= min

{
〈(θ ,ζ ,γ),(−1,w,r)〉 : (−1,w,r) ∈ F(t, x,y)

}

= min
{
−θ + 〈ζ ,w〉+Λ(x,−w) : |w | � M

}

= −θ −max
{
〈ζ ,−w〉−Λ(x,−w) : w ∈ R

n} (by (2))
= −θ −H(x,ζ ) = 0 .

By Theorem 12.11 and the definition of weak decrease, there is a trajectory for
F , originating at the point (τ ,β ,0), having the form (τ − t, x̃(t), y(t)), maximally
defined on an interval [0,T ) relative to Ω+, such that, for t in this interval, we
have

ϕ
(
τ− t, x̃(t), y(t)

)
= u

(
τ− t, x̃(t)

)
+

∫ t

0
Λ
(
x̃(s),−x̃ ′(s)

)
ds

� ϕ(τ ,β ,0) = u(τ ,β ).

The change of variables t = t − τ , together with the definition x(t) := x̃(τ − t),
yields an arc satisfying the inequality in (1) on any interval [δ ,τ ] (δ > 0) during
which (t, x(t)) remains in int Δ+. However, the inequality of Lemma 1 holds, as is
easily seen (in view of the lower bound on u), so that (t, x(t)) never leaves Δ as we
decrease t from its initial value of τ ; thus, (t, x(t)) lies in int Δ+ ∀ t ∈ (0,τ). The
lemma is proved. 
�

It is now a simple matter to deduce Prop. 19.26. Taking t = 0 in Lemma 2, and
bearing in mind how u∗(τ ,β ) is defined, we obtain

u∗(τ ,β ) � �
(
x(0)

)
+

∫ τ

0
Λ
(
x(s), x ′(s)

)
ds � u(τ ,β ),

as required. 
�

This completes the proof of Theorem 19.11.



Chapter 20

Multiple integrals

This chapter is an introduction to the multiple integral calculus of variations.
Throughout the discussion, Ω denotes a nonempty open bounded subset of Rn, and
the problem under consideration is the minimization of the functional

J(u) =
∫

Ω
F
(

x, u(x),Du(x)
)

dx

over a class X of real-valued functions u defined on Ω . The values of the admissible
functions are prescribed on the boundary of Ω :

u(x) = ϕ(x) ∀x ∈ Γ := ∂Ω ,

where ϕ : Γ → R is a given function.

The reader may recognize this as an extension to multiple integrals of the problem
in the calculus of variations that was so very thoroughly studied in the preceding
chapters. Accordingly, we refer to it as the basic problem in (or relative to) the
class X . It turns out that, as was the case for single integrals (n = 1), it is perhaps
the choice of X that makes the greatest difference in the ensuing theory.

We may as well admit what the reader has already observed: there has been a severe
discontinuity in the notation from the single integral case. (It is best, at times, to
bow to tradition.) The underlying domain [a,b ] has become Ω , and n now refers
to its dimension. Furthermore, the Lagrangian, the independent variable, and the
competing functions have mutated as follows:

Λ −→ F , t −→ x , x(t) −→ u(x).

We now use the generic notation x, u, and z for the three variables that appear in the
Lagrangian. Thus we write F(x,u,z), for (x,u,z) ∈ R

n×R×R
n.
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© Springer-Verlag London 2013
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20.1 The classical context

We begin again with the case in which the competing functions are smooth, so
smooth that we need not really think about that aspect of the problem. To be precise,
we take u in the class X = C2(Ω ), where this means that u is twice continuously
differentiable in Ω , and that u, as well as all its partial derivatives up to order two,
admit continuous extensions to Ω . We also assume that the Lagrangian F is itself
C2.

In this agreeable setting, the cost functional is well defined everywhere on the un-
derlying space, and the basic necessary condition asserts:

20.1 Theorem. Any solution u∗ of the basic problem in the class C2(Ω ) satisfies
the Euler equation:

div ∇z F
(
x,u∗(x),Du∗(x)

)
:=

n

∑
i =1

∂
∂xi

{
Fzi

(
x,u∗(x),Du∗(x)

)}

= Fu
(
x,u∗(x),Du∗(x)

)
∀x ∈ Ω .

The notation ‘div’ refers here to the divergence operator. The proof below introduces
notation such as F(∗), a convenient shorthand for F(x,u∗(x),Du∗(x)).

Proof. We merely sketch the standard variational argument. It suffices to prove that,
for any ψ ∈ C2

c (Ω), we have
∫

Ω
{div ∇z F(∗)−Fu(∗)}ψ(x)dx = 0. (1)

(C2
c (Ω) is the space of functions of class C2 in Ω which have compact support

in Ω , and which are therefore equal to zero near the boundary.) To see this, ob-
serve that the function g defined by g(λ ) = J(u∗+λψ) has a minimum at λ = 0,
whence

g ′(0) =
∫

Ω
{Fu(∗)ψ(x)+ 〈Fz(∗),Dψ(x)〉} dx = 0.

The classical divergence theorem transforms this conclusion into (1). 
�

Many of the single integral considerations we have seen earlier have their counter-
parts in the multiple integral case. For example, it is clear that a suitably defined
local minimum would suffice to obtain the Euler equation above. Another example
concerns the principle of least action, which extends to multiple integrals and the
mechanics of continua, as we now illustrate.

20.2 Example. (Vibrating string) A homogeneous extensible string of mass m is
stretched between two points that are distance � apart, and a vibration is then in-
duced. The profile of the string at every time instant t is described by a function
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x �→ u(t, x), 0 � x � �. For fixed t , the following expressions give the kinetic
energy K and the potential energy V of this physical system in terms of u :

K =
m
2�

∫ �

0
ut(t, x)2 dx , V = τ

∫ �

0

(√
1+u x(t, x)2 −1

)
dx,

where the (known) elasticity parameter τ > 0 relates potential energy to the tension
of the string, as measured by the extent that it is stretched from equilibrium.

The action between two instants t1 and t2 is defined as usual by

∫ t2

t1

(K −V )dt =

∫ t2

t1

∫ �

0

{
mut(t, x)2/(2�)− τ

√
1+u x(t, x)2 + τ

}
dx dt .

The principle of least action asserts that the actual motion u of the string will mini-
mize this functional (subject to the appropriate boundary conditions). Note that this
leads to a special case of the basic problem, one in which Ω is a rectangle in R

2.

Exercise. Show that the Euler equation for this functional is

ut t =
�τ
m

∂
∂x

(
u x√

1+u2
x

)
.

For vibrations of small amplitude (that is, when |u x | is small), the integrand in the
expression above for the potential energy V is approximated by (1/2)u2

x . If this
approximation is used in writing the action, then the resulting Euler equation is the
much more tractable (since linear) differential equation

ut t =
�τ
m

u x x .

This is the vibrating string equation that one finds in classical mechanics. 
�

20.3 Example. (The Dirichlet principle) A celebrated example in the multiple
integral calculus of variations arises in connection with Laplace’s equation, in di-
mension n = 2, in which we seek a solution u = u(x,y) of the following partial
differential equation with boundary condition:

uxx + uyy = 0 for (x, y) ∈ Ω , u Γ = ϕ .

Consider the basic problem in the calculus of variations with data

F(u,z) = 1
2 |z |

2 = 1
2

(
z 2

1 + z2
2
)
, J(u) =

∫

Ω
1
2

(
u2

x +u2
y
)

dxdy.

Then, the Euler equation of Theorem 20.1 becomes

div Du =
∂
∂x

u x +
∂
∂y

u y = uxx + uyy = 0,
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that is, Laplace’s equation. Thus, it would appear, it suffices to find a function u
minimizing J(u) (subject to the boundary condition) in order to have a solution of
Laplace’s equation. (This is an observation due to Dirichlet.)

The issue is in fact quite complicated (and much studied), since the existence of a
minimum depends on the choice of function class, the nature of Ω , and the proper-
ties of the boundary function ϕ . It turns out that we cannot progress in this direction
if we limit attention to functions u in the class C2(Ω ). Accordingly, we shall return
later to the Dirichlet problem. 
�

20.4 Example. (The problem of Plateau) This is the problem of finding minimal
surfaces. It involves the minimization of the surface area functional

A(u) =
∫

Ω

√
1+

∣
∣Du(x)

∣
∣2 dx

relative to the hypersurfaces u = u(x) (x ∈ Ω) having prescribed boundary values:
u = ϕ on Γ . 
�

It turns out that minimal surfaces will generally be nonsmooth. Once again, there-
fore, we are motivated to consider the basic problem with functions that are less
regular, a topic that we turn to now.

20.2 Lipschitz solutions

The classical context of the preceding section does not allow for nonsmooth solu-
tions, even though these can manifest themselves physically. Further, it is not suit-
able for developing existence theory. An appealing class of functions offering us
some relief on both these fronts is the space Lip(Ω) of functions that are globally
Lipschitz on Ω .

A Lipschitz function u is differentiable almost everywhere, by Rademacher’s the-
orem, so that the term Du in the functional J can still be interpreted as the usual
derivative. Furthermore, a function u in Lip(Ω) admits natural values on the bound-
ary of Ω . More precisely, since Ω is bounded and u is uniformly continuous, u has
a unique extension to an element of Lip(Ω ). We see therefore that the boundary
condition u = ϕ on Γ retains an unambiguous (pointwise) meaning.

Another goal of ours is to relax the smoothness hypotheses on the Lagrangian F
itself. We shall do this as follows:

20.5 Hypothesis. F is measurable in t and locally Lipschitz in (u,z), in the follow-
ing sense: for every bounded subset S of R×R

n, there exists k ∈ L1(Ω) such that,
for almost every x ∈ Ω , we have
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∣
∣F(x,u1,z1)−F(x,u2 ,z2)

∣
∣ � k(x)

∣
∣(u1,z1)− (u2 ,z2)

∣
∣ , (ui , zi) ∈ S (i = 1, 2).

In this Lipschitz setting, we obtain a generalized form of the Euler equation:

20.6 Theorem. (Clarke) Let u∗ solve the basic problem relative to Lip(Ω), under
Hypothesis 20.5. Then there exist summable functions p : Ω → R

n and q : Ω → R

such that (
q(x), p(x)

)
∈ ∂C F

(
x,u∗(x),Du∗(x)

)
a.e. x ∈ Ω , (E1)

and such that
∫

Ω
q(x)ψ(x)+ 〈 p(x),Dψ(x)〉dx = 0 ∀ψ ∈ Lip0(Ω). (E2)

The generalized gradient ∂C F appearing above is taken with respect to the (u,z)
variables; Lip0(Ω) refers to the functions in Lip(Ω) which vanish on ∂Ω .

Proof. Fix any ψ ∈ X = Lip0(Ω). For any λ > 0 (sufficiently small, if we have
just a local minimum), optimality implies

∫

Ω

F(x, u∗+λψ , Du∗+λDψ)−F(∗)
λ

dx � 0 .

Taking the upper limit as λ ↓ 0 yields (with the help of Fatou’s lemma):
∫

Ω
F ◦(∗ ;(ψ , Dψ)

)
dx � 0,

where F ◦ denotes the generalized directional derivative with respect to the (u,z)
variables. We have, for almost every x,

F ◦(∗ ;(ψ(x), Dψ(x))
)
= max

(q,p)∈∂CF(∗)
(q, p) •

(
ψ(x), Dψ(x)

)
,

so we deduce

min
ψ∈X

∫

Ω
max

(q,p)∈∂C F(∗)
(q, p) •

(
ψ(x), Dψ(x)

)
dx = 0 .

Let Y denote the set of all measurable functions x �→ (q(x), p(x)) on Ω satisfying
(E1). By measurable selection theory (see Exer. 13.24), there exists, for given ψ ,
an element (q, p) of Y such that the maximum in the preceding integral is attained
almost everywhere at x. This implies

min
ψ∈X

max
(q, p)∈Y

∫

Ω

(
q(x), p(x)

)
•
(
ψ(x), Dψ(x)

)
dx = 0 .

Every element (q, p) of Y satisfies |(q(x), p(x)| � k(x) for a certain summable func-
tion k, by Prop. 10.5. It follows that Y is weakly compact in L1(Ω) (see Prop. 6.17).
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Accordingly, by the minimax theorem 4.36, we may commute min and max in the
last equation above, which gives the conclusion of the theorem. 
�

The weak Euler equation. Together, (E1) and (E2) constitute the Euler equation in
the current setting. When q and p satisfy (E2), it is customary to say that div p= q in
the weak sense (or in the sense of distributions). For that reason, the term weak Euler
equation is used. In the presence of this convention, (E1) and (E2) can be expressed
as an inclusion for p, one that is reminiscent of the Euler inclusion encountered in
Theorem 18.1, or in Exer. 18.4:

(
div p(x), p(x)

)
∈ ∂C F

(
x,u∗(x),Du∗(x)

)
a.e.

When F is locally Lipschitz (in all its variables), it follows from the proof of The-
orem 20.6 that q and p are essentially bounded. When F is continuously differen-
tiable, the weak Euler equation (Lipschitz version) may be written

∫

Ω
{Fu(∗)ψ(x)+ 〈Fz(∗),Dψ(x)〉} dx = 0 ∀ψ ∈ Lip0(Ω).

If in addition the mapping x �→ Fz(x, u∗(x),Du∗(x)) is locally Lipschitz, the weak
Euler equation implies the classical Euler equation of Theorem 20.1 (almost every-
where in Ω ). This can be proved with the help of the following integration by parts
formula in Lip(Ω) (whose proof we omit).

20.7 Theorem. (Green’s theorem for Lipschitz functions)
Let f ∈ Lip(Ω) and g ∈ Lip0(Ω). Then, for each i = 1,2 , . . . , n, we have

∫

Ω
f (x)

∂g
∂xi

(x)dx = −
∫

Ω

∂ f
∂xi

(x)g(x)dx .

It should not be inferred from the presence of the word “weak” above that the neces-
sary condition itself is defective. In fact, as we now prove, the weak Euler equation
is a sufficient condition for optimality when F is convex in (u,z) (compare with
Theorem 15.9).

20.8 Proposition. Let the Lagrangian F(x,u, z) be measurable in t and convex with
respect to (u,z), and let u∗ ∈ Lip(Ω) be such that J(u∗) is defined and finite. Sup-
pose that there exist summable functions p and q satisfying (E1) and (E2). Then,
for any u ∈ Lip(Ω) having the same values as u∗ on ∂Ω , we have J(u) � J(u∗).
If the convexity of F(x, ·) is strict for each x, and if u 	= u∗ , then strict inequality
holds.

Proof. The hypotheses imply that F is continuous with respect to (u,z) (Cor. 2.35),
so that F is LB measurable (Prop. 6.35). Fix any ψ ∈ Lip0(Ω). Then the func-
tion

x �→ q(x)ψ(x)+ 〈 p(x),Dψ(x)〉
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is summable, and bounded above (for almost every x) by the directional derivative
F ′(∗ ;(ψ(x),Dψ(x)) (by Cor. 4.26). But this in turn is bounded above by

F
(
x,u∗(x)+ψ(x), Du∗(x)+Dψ(x)

)
−F

(
x,u∗(x), Du∗(x)

)
,

by Prop. 2.22. This reveals that J(u∗+ψ) is well defined and satisfies

J(u∗+ψ) � J(u∗).

Since ψ ∈ Lip0(Ω) is arbitrary, we obtain the first conclusion. The second follows
from the strict convexity of J(·). 
�

The Dirichlet problem: weak solutions. Consider the n-dimensional Dirichlet
boundary value problem (D) that consists of finding a function u that satisfies

�u(x) = 0 (x ∈ Ω) , u Γ = ϕ , (D)

where � is the Laplacian operator:

�u =
n

∑
i=1

∂ 2

∂x 2
i

u .

(This extends Example 20.3, in which n equals 2.) We take ϕ : Rn → R to be Lip-
schitz. In the context of functions u belonging to Lip(Ω), a weak solution of (D)
means that, besides satisfying the boundary condition, u satisfies

∫

Ω
Du(x) • Dψ(x)dx = 0 ∀ψ ∈ Lip0(Ω).

The following facts clarify the notion of weak solution.

20.9 Exercise.

(a) Show that if u ∈ C2(Ω ) satisfies the boundary condition and the equation
�u(x) = 0 in Ω , then u is a weak solution of the problem (D) above.

(b) Let û ∈ ϕ +Lip0(Ω). Prove that û is a weak solution of (D) if and only if û
minimizes the (Dirichlet) functional

u �→
∫

Ω

∣
∣Du(x)

∣
∣2dx

relative to u ∈ ϕ+Lip0(Ω).

(c) Deduce that there is at most one weak solution of (D). 
�

It follows from the above that if (D) admits a classical solution in C2(Ω ), it is the
unique weak solution. Furthermore, a minimizer of the Dirichlet functional provides
a weak solution of the Dirichlet problem. Notice, however, that at this point we have
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no existence theory allowing us to assert that the Dirichlet functional admits a min-
imizer, Lipschitz or otherwise. We turn now to a celebrated approach to precisely
that issue.

20.3 Hilbert-Haar theory

It turns out that, by exploiting certain properties of the boundary condition, existence
of solutions to the basic problem in Lip(Ω) can be asserted in some situations. This
is the subject of the classical Hilbert-Haar approach, initiated by Hilbert, and then
contributed to by many others.

The method will now be described for the case in which the Lagrangian F(x,u,z)
is a convex function of z , with no dependence on x and u: this assumption is made
throughout this section. (It follows that F is continuous.) This is a significant sim-
plification of the basic problem, of course; note, however, that this class of problems
does include the Dirichlet principle and the problem of Plateau.1

We begin by showing that affine functions automatically enjoy a minimality prop-
erty in the current context.

20.10 Proposition. Let u∗(x) = 〈v∗ , x〉+ c be an affine function. Then, for every
u ∈ Lip(Ω) satisfying u Γ = u∗ Γ , we have

J(u) =
∫

Ω
F
(
Du(x)

)
dx � J(u∗).

Proof. Let ζ ∈ ∂F(v∗) (which is nonempty by Cor. 4.7). Then, by the subdifferen-
tial inequality, we have

J(u)− J(u∗) =
∫

Ω

{
F(Du(x))−F(Du∗(x))

}
dx ≥

∫

Ω
〈ζ ,D(u−u∗)(x)〉dx = 0,

using integration by parts (Theorem 20.7). 
�

We denote by Lip(k,Ω) the set of functions u : Ω → R which are Lipschitz of rank
k on Ω :

|u(x)−u(y)| � k |x− y | ∀x, y ∈ Ω .

20.11 Proposition. Let ϕ : Γ → R satisfy a Lipschitz condition of rank K. Then,
for any k � K , the problem of minimizing J(u) over the functions u ∈ Lip(k,Ω)
which agree with ϕ on Γ has a solution.

1 The Hilbert-Haar approach extends to somewhat more general Lagrangians (see [6] and the
references therein), but we shall not pursue this here.
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Proof. We employ, naturally, the direct method. There is a function in Lip(k,Ω)
which extends ϕ to Ω (see Exer. 2.33). Since k � K , it follows that this function is
admissible for the problem. Because Ω is bounded, J(u) is well defined and finite
for any admissible u. Thus, there is a minimizing sequence ui for the problem Pk
that consists of minimizing J relative to the functions in Lip(k,Ω) which agree with
ϕ on the boundary.

Since Dui is a bounded sequence in L∞(Ω)n, and therefore in L2(Ω)n, we may sup-
pose (by taking subsequences) that each sequence D j ui ( j = 1,2, . . . , n) converges
weakly in L2 to a limit h j. The ui are equicontinuous, since they have a common
Lipschitz constant k; they are also uniformly bounded on Ω . By Ascoli’s theorem,
we may further suppose (by taking a subsequence) that the sequence ui converges
uniformly to a limit u∗. It follows that u∗ ∈ Lip(k,Ω), and that u∗ coincides with ϕ
on Γ . Thus, u∗ is admissible for Pk .

We prove next that Du∗ = h := (h1,h2 , . . . , hn) a.e. Let g ∈ Lip0(Ω). Then, for any
j, we have (see Theorem 20.7):

∫

Ω
D j u∗(x)g(x)dx = −

∫

Ω
u∗(x)D j g(x)dx =− lim

i→∞

∫

Ω
ui(x)D j g(x)dx

= lim
i→∞

∫

Ω
D j ui(x)g(x)dx =

∫

Ω
h j(x)g(x)dx .

Since this holds for any g ∈ Lip0(Ω), we deduce Du∗ = h, as claimed.

It is now a direct consequence of Theorem 6.38 that

J(u∗) � lim
i→∞

J(ui) = inf Pk ,

which confirms that u∗ (which is admissible for Pk ) is a solution of Pk . 
�

Minimizers. A function u ∈ Lip(k,Ω) is called a minimizer for Lip(k,Ω) if u
minimizes J relative to the elements of Lip(k,Ω) having the same boundary values
as itself.

The following technical result will be of use.

20.12 Proposition. Let u1 and u2 belong to Lip(k,Ω), and define w by

w(x) = max{u1(x), u2(x)}.

Then w ∈ Lip(k,Ω). If the derivatives Dw(x), Du1(x), and Du2(x) exist at a point
x ∈ Ω for which u1(x) = u2(x), then they all coincide.

Proof. The fact that w ∈ Lip(k,Ω) is long since familiar to the reader (see Exer.
2.32). To prove the remaining assertion, fix any z ∈ R

n, and observe that, for any
t > 0, we have

w(x+ t z)−w(x) � u1(x+ t z)−u1(z).
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Dividing by t and letting t decrease to 0, we deduce Dw(x) • z � Du1(x) • z . Since
z is arbitrary, we find Dw(x) = Du1(x). The same argument applies to u2 , so the
result follows. 
�

Since the set of points x ∈ Ω for which Dw(x), Du1(x), and Du2(x) all exist is of
full measure, we deduce:

20.13 Corollary. We have Du1 = Du2 a.e. on the set {x ∈ Ω : u1(x) = u2(x)}.

20.14 Proposition. Let u be a minimizer for Lip(k,Ω).

(a) If Ω ′ is an open subset of Ω , then u Ω ′ is a minimizer for Lip(k,Ω ′).

(b) Let τ ∈ R
n, and define Ωτ = Ω + τ . Then the function uτ(x) = u(x− τ) is a

minimizer for Lip(k,Ωτ).

(c) For every constant c, the function u+ c is a minimizer for Lip(k,Ω).

(d) Any affine function belonging to Lip(k,Ω) is a minimizer for Lip(k,Ω).

Proof. We prove (a), reasoning by the absurd. If the function u Ω ′ (which certainly
belongs to Lip(k,Ω ′)) is not a minimizer for Lip(k,Ω ′), then there exists an ele-
ment u ′ in Lip(k,Ω ′) having the same values on ∂Ω ′ as u, and such that

∫

Ω ′
F
(
Du ′(x)

)
dx <

∫

Ω ′
F
(
Du(x)

)
dx .

Let us define

v(x) =

{
u ′(x) for x ∈ Ω ′

u(x) for x ∈ Ω\Ω ′.

It is clear that v is continuous on Ω , and has the same values as u on Γ . Let us show
that v is Lipschitz of rank k. In order to establish

|v(x)− v(y) | � k| x− y | ∀x, y ∈ Ω ,

it suffices to limit attention to the case x ∈ Ω\Ω ′, y ∈ Ω ′.

There exists a first t ∈ [0,1 ] such that the point

z = (1− t) x+ t y ∈ [ x,y ]

lies in ∂Ω ′. Then u(z) = u ′(z), and

|v(x)− v(y)| = |u(x)−u ′(y)| = |u(x)−u(z)+u ′(z)−u ′(y)|
� k| x− z |+ k|z− y | = k| x− y |,

which confirms that v ∈ Lip(k,Ω).
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In Ω\Ω ′, we have Dv = Du a.e., by Cor. 20.13. In Ω ′, we have Dv = Du ′.
Thus

∫

Ω

{
F
(
Dv(x)

)
−F

(
Du(x)

)}
dx =

∫

Ω ′

{
F
(
Du ′(x)

)
−F

(
Du(x)

)}
dx < 0.

This contradicts the fact that u is a minimizer for Lip(k,Ω).

The last assertion of the theorem is a restatement of Prop. 20.10. The two remaining
ones are left to the reader. 
�

20.15 Theorem. (The comparison principle) Let F be strictly convex, and let
u1,u2 be minimizers for Lip(k,Ω) such that u1 � u2 on Γ . Then u1 � u2 in Ω .

Proof. We define an element w in Lip(k,Ω) as follows:

w(x) = max{u1(x), u2(x)}.

Note that w = u2 on Γ . Since u2 is a minimizer, we have

J(u2) � J(w) =
∫

{u2 <u1}
F
(
Du1(x)

)
dx+

∫

{u1 �u2}
F
(
Du2(x)

)
dx ,

by Cor. 20.13. We deduce
∫

{u2 <u1}
F
(
Du2(x)

)
dx �

∫

{u2 <u1}
F
(
Du1(x)

)
dx .

An analogous argument using min{u1 , u2} leads to the opposite inequality; thus,
we have ∫

{u2 <u1}
F
(
Du2(x)

)
dx =

∫

{u2 <u1}
F
(
Du1(x)

)
dx .

It follows that

J(u2) =

∫

Ω
F(Du2(x))dx =

∫

Ω
F(Dw(x))dx = J(w).

Now F is strictly convex, so if Du2 	= Dw on a set of nonzero measure, we would
have

J((u2 +w)/2) < J(u2)/2+ J(w)/2 = J(u2).

This would contradict the fact that u2 is a minimizer (since (u2 +w)/2 coincides
with u2 on Γ ). Thus Du2 and Dw agree almost everywhere in Ω , which implies
w = u2 in Ω (by Exer. 10.30), which is precisely the required conclusion. 
�

20.16 Exercise. Let u∗ be a minimizer for Lip(k,Ω), where F is strictly convex.
Prove that the maximum of u∗ over the (compact) set Ω is attained at some point in
∂Ω . (This is sometimes referred to as the maximum principle.) 
�
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The bounded slope condition. It turns out that the nature of the boundary condi-
tion can have substantial influence in determining the regularity of the solution. The
following property will be central in this regard.

20.17 Definition. We say that ϕ : Γ → R satisfies the bounded slope condition
with constant K if, for every point γ ∈ Γ , there exist two affine functions f−, f+

defined on R
n of the form

f−(y) = 〈ζ−
γ , y− γ 〉+ϕ(γ) , f+(y) = 〈ζ+

γ , y− γ 〉+ϕ(γ)

(thus, agreeing with ϕ at γ ) with |ζ−
γ | � K , |ζ+

γ | � K , and such that

f−(y) � ϕ(y) � f+(y) ∀y ∈ Γ .

The reader will observe that the bounded slope condition is a joint property of the
function ϕ and the set Ω , a rather subtle one, as it turns out. The following makes
certain observations about it.

20.18 Proposition.

(a) If ϕ satisfies the bounded slope condition with constant K, then ϕ is Lipschitz of
rank K on Γ .

(b) If ϕ coincides on Γ with an affine function, then ϕ satisfies the bounded slope
condition, for a certain constant K.

(c) If ϕ does not coincide onΓ with an affine function, and if ϕ satisfies the bounded
slope condition for a certain constant K, then Ω is convex.

Proof. We leave the first two assertions as an exercise. For the third, let us consider
any γ ∈ Γ . We see that the corresponding slopes ζ−

γ and ζ+
γ in Def. 20.17 must

differ, for otherwise ϕ would coincide on Γ with an affine function. The nonzero
vector ζ = ζ−

γ −ζ+
γ then satisfies

〈ζ , y− γ 〉 � 0 ∀y ∈ Γ .

The same inequality then holds for all y ∈ coΓ , which contains Ω since Ω is
bounded (see Exer. 8.2). This shows that Ω admits a supporting hyperplane at each
of its boundary points, and is therefore convex (Exer. 8.3). 
�

20.19 Exercise. Let n = 2, take Ω to be the unit ball in R
2, and let ϕ be the func-

tion ϕ(x) = x1| x1|1/2. Show that ϕ is continuously differentiable. Prove that the
bounded slope condition fails to hold for any K. 
�

The following result has evolved from Hilbert’s seminal work in 1904 on justifying
the Dirichlet principle, with various mutations supplied over time by Hilbert, Haar,
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Rado, von Neumann, Hartman, Nirenberg, and Stampacchia. It is generally named
only for the first two, however, for evident reasons.

20.20 Theorem. (The Hilbert-Haar theorem) We consider the basic problem rel-
ative to the class Lip(Ω), where the Lagrangian F(z) is convex, and does not depend
on x or u. If ϕ satisfies the bounded slope condition with constant K, then the prob-
lem admits a solution u∗ which belongs to Lip(K,Ω).

Proof. We first prove the theorem under a temporary additional hypothesis, whose
removal will constitute the final step in the proof: F is strictly convex.

Choose k > K. Since ϕ is Lipschitz of rank K (see Exer. 20.18), Prop. 20.11 asserts
the existence of u∗ ∈ Lip(k,Ω) which minimizes J over that set, subject to the
boundary condition imposed by ϕ . We claim that u∗ is Lipschitz on Ω of rank K,
which turns out to be the main point of the proof.

To this end, fix any x0 ∈ Ω and τ such that x0 − τ ∈ Ω . We shall prove that

u∗(x0 − τ) � u∗(x0)+K |τ |, (1)

which will establish the claim. Set Ω ′ = Ω ∩ (Ω+τ), an open subset of Ω contain-
ing x0. We denote by u1 the restriction to Ω ′ of the function x �→ u∗(x− τ), and by
u2 the restriction to Ω ′ of the function x �→ u∗(x)+K |τ |. According to Prop. 20.14,
both u1 and u2 are minimizers for Lip(k,Ω ′). We proceed to show that u1 � u2 on
∂Ω ′. Let y ∈ ∂Ω ′. Then either y or y− τ belongs to ∂Ω .

In the first case, by the bounded slope condition, there exists an affine function f ,
Lipschitz of rank K , such that f (y) = ϕ(y) = u∗(y) and, onΓ , u∗ = ϕ � f . Since f
and u∗ are minimizers for Lip(k,Ω), the comparison principle 20.15 implies u∗ � f
in Ω , whence

u1(y) = u∗(y− τ) � f (y− τ) � f (y)+K |τ | = u∗(y)+K |τ | = u2(y).

In the second case, there exists an affine function g, Lipschitz of rank K , such that
g(y−τ) = ϕ(y−τ) = u∗(y−τ) and, onΓ , u∗ = ϕ � g. Comparison yields u∗ � g
in Ω , whence

u1(y) = u∗(y− τ) = g(y− τ) � g(y)+K |τ | � u∗(y)+K |τ | = u2(y).

In either case, then, we have u1 � u2 on ∂Ω ′. This implies u1 � u2 in Ω ′, by the
comparison principle once more. In particular, u1(x0) � u2(x0), which is precisely
inequality (1), confirming the fact that u∗ is Lipschitz on Ω of rank K.

We now prove that u∗ solves the basic problem relative to Lip(Ω). Let u in Lip(Ω)
be another admissible function. Then, for λ ∈ (0,1) sufficiently small, the function
(1−λ )u∗+λu is Lipschitz of rank less than k (since K < k), and equals ϕ on the
boundary. Since u∗ minimizes J over Lip(k,Ω), we have
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J(u∗) � J
(
(1−λ )u∗+λu

)
� (1−λ )J(u∗)+λJ(u).

We discover J(u∗) � J(u). The theorem is proved, under the temporary additional
hypothesis.

There remains to remove the hypothesis that F is strictly convex. Let ε i ↓ 0, and, for
a fixed i, set Fi(z) = F(z)+ ε i |z |2, which is strictly convex. We apply the strictly
convex case of the theorem to obtain a function ui ∈ Lip(K,Ω) which solves the
basic problem (with Lagrangian Fi ) relative to Lip(Ω).

As in the proof of Prop. 20.11, we may extract a subsequence (we do not relabel)
converging uniformly to a limit u∗ ∈ Lip(K ,Ω) and such that

J(u∗) � liminf
i→∞

J(ui).

Then, for any u ∈ Lip(Ω) having u Γ = ϕ , we have

J(u∗) � liminf
i→∞

∫

Ω
F
(
Dui(x)

)
dx

� liminf
i→∞

∫

Ω

{
F
(
Dui(x)

)
+ ε i |Dui(x)|2}dx = liminf

i→∞

∫

Ω
Fi
(
Dui(x)

)
dx

� liminf
i→∞

∫

Ω
Fi
(
Du(x)

)
dx = liminf

i→∞

∫

Ω

{
F
(
Du(x)

)
+ ε i |Du(x)|2}dx

=

∫

Ω
F
(
Du(x)

)
dx = J(u).

It follows that u∗ solves the basic problem relative to Lip(Ω). 
�

We have seen in Prop. 20.18 that, except when ϕ is affine, the bounded slope condi-
tion can only hold when Ω is convex. Thus, in seeking to exploit the bounded slope
condition (as we do below), there is little to lose by supposing a priori that Ω is
convex.

We say thatΩ is uniformly strictly convex if, in addition to being convex,Ω admits
c > 0 such that, at every boundary point γ ∈ ∂Ω , there is a hyperplane H passing
through γ which satisfies:

dH(y) � c|y− γ |2 ∀y ∈ Ω .

20.21 Proposition. The open convex set Ω is uniformly strictly convex (with con-
stant c ) if and only if any point γ ∈ ∂Ω admits a unit normal vector ν ∈ Ncl Ω (γ )
such that

〈ν, x− γ 〉 � −c| x− γ |2 ∀x ∈ Ω .

Proof. The following geometrical fact will be useful:

Lemma. Let ν be a unit vector, let γ ∈ ∂Ω , and let H be the hyperplane
{

x ∈ R
n : 〈ν, x− γ 〉 = 0

}
.
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Suppose that 〈ν, x− γ 〉 < 0 ∀x ∈ Ω . Then

projH(x) = x+dH(x)ν ∀x ∈ Ω .

The hypotheses of the lemma evidently imply H ∩ Ω = /0; fix any x ∈ Ω , and set
p = projH(x) 	= x. Then p minimizes the function y �→ |y − x | over the points
y ∈ H. The corresponding necessary condition is (p−x)/| p−x | ∈ −NH(p), which
implies that p− x = rν for some scalar r (since NH = Rν). We find that r > 0, as
follows:

r = 〈 p− x,ν 〉 = 〈 p− γ ,ν 〉+ 〈γ− x,ν 〉 = 0+ 〈γ− x,ν 〉 > 0.

Then r = |r | = | p− x | = dH(x), and the lemma is proved.

Now suppose that Ω is uniformly strictly convex with constant c. Fix any γ ∈ ∂Ω ,
and let the hyperplane H provided by the definition of uniform strict convexity be
given by {x ∈ R

n : 〈ν, x− γ 〉 = 0}, where ν is a unit vector. Then

〈ν, x− γ 〉 	= 0 ∀x ∈ Ω .

Since the image under a linear functional of a convex set is convex, it follows that
〈ν, x− γ 〉 is either strictly positive, or else strictly negative, on Ω . We choose ν in
order to have the latter, which implies ν ∈ NclΩ (γ) (by the definition of a normal
vector in the convex case).

Let x be any point in Ω , and set p = projH(x). Then, by the lemma, we have

〈ν, x−γ 〉= 〈ν, p−dH(x)ν−γ 〉=−dH(x)+〈ν, p−γ 〉 �−dH(x) � −c|x−γ |2.

This proves the “only if” implication of the proposition; we turn now to the con-
verse.

Let us postulate the property relating to normal vectors; we wish to establish uniform
strict convexity. Fix any γ ∈ ∂Ω , and consider the hyperplane

H =
{

x : 〈ν, x− γ 〉 = 0
}
,

where ν is the unit normal vector corresponding to γ . Let x be any point in Ω , and
set p = projH(x). Then we calculate

dH(x) = | p− x | � 〈 p− x,ν 〉= 〈 p− γ ,ν 〉+ 〈γ− x,ν 〉= 〈γ− x,ν 〉� c|x− γ |2,

which establishes uniform strict convexity. 
�

20.22 Exercise. Show that the unit ball in R
n is uniformly strictly convex, and that

the unit square is not. 
�
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It turns out that when the boundary of Ω is “uniformly curved” in the sense of
uniform strict convexity, then second order smoothness of ϕ is enough to imply the
bounded slope condition. (Exer. 20.19 shows that continuous differentiability of ϕ
does not suffice, however.)

20.23 Theorem. (Miranda) If Ω is bounded and uniformly strictly convex, then
any function ϕ : Γ → R which is the restriction to Γ of a function in C2(Rn) satis-
fies the bounded slope condition (for a certain constant K depending on ϕ).

Proof. We define k = max{|∇ϕ(x)| : x ∈ Γ } together with

L = max
{
−〈w,∇2ϕ(x)w〉/(2c) : |w | � 1, x ∈ Ω

}

and K = L+k, and we proceed to prove that ϕ satisfies the bounded slope condition
with constant K.

Fix any γ ∈ Γ , and let ν ∈ NclΩ (γ) be associated with γ as in Prop. 20.21. De-
fine

ζ = ∇ϕ(γ )+Lν , f (x) = 〈ζ , x− γ 〉+ϕ(γ ).

Note that |ζ | � K. Now let y be any point in Γ . The Taylor-Lagrange expansion
yields a point z in Ω such that

ϕ(y)−ϕ(γ )−〈∇ϕ(γ), y− γ 〉 = 1
2
〈(y− γ )∇2ϕ(z), y− γ 〉 � −cL|y− γ |2.

We calculate

ϕ(y)− f (y) = ϕ(y)−〈ζ , y− γ 〉−ϕ(γ )
= ϕ(y)−ϕ(γ )−〈∇ϕ(γ ), y− γ 〉−L〈ν, y− γ 〉
� −cL|y− γ |2 + cL|y− γ |2 = 0.

Thus, f provides the function f− in Def. 20.17. The proof of the existence of f+ is
similar; we omit it. 
�

We remark that the bounded slope condition forces ϕ to be affine on the ‘flat parts’
of Γ ; see Exer. 21.40.

Together, the results proved above give a justification in Lipschitz terms of the
Dirichlet principle (see Exer. 20.9):

20.24 Corollary. Let Ω ⊂ R
n be uniformly strictly convex, and let ϕ : Rn → R be

of class C2. Then there exists a unique u∗ ∈ Lip(Ω) which agrees with ϕ on ∂Ω
and which satisfies Laplace’s equation in the weak sense:

∫

Ω
〈Du∗(x),Dψ(x)〉dx = 0 ∀ψ ∈ Lip0(Ω).
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Proof. The bounded slope condition holds by Theorem 20.23, so that Theorem
20.20 is applicable. The resulting solution u∗ satisfies Laplace’s equation (in the
weak sense) by Theorem 20.6 and, as seen in Exer. 20.9, corresponds to the unique
weak solution. 
�

We remark that the function u∗ of the corollary turns out to be smooth in the open
set Ω : it can be shown to be harmonic there (a result known as Weyl’s lemma). The
fact that it is Lipschitz on Ω is an independent conclusion, of course.

20.25 Exercise. Formulate an existence result for the problem of Plateau (Example
20.4) based upon Theorems 20.20 and 20.23. 
�

20.4 Solutions in Sobolev space

The previous section dealt with Lagrangians depending only on Du. More general
problems will fail, in general, to have solutions in Lip(Ω). In the single-dimensional
case (n = 1), the problem was extended to the class of absolutely continuous func-
tions in order to develop an existence theory. As we have seen (p. 79), the general-
ization of this class to n > 1 is provided by the Sobolev spaces W 1, p(Ω), which are
indeed the context for general existence theorems in the multiple integral calculus of
variations. However, the theory becomes much more complex, for a variety of rea-
sons, notably the regrettable fact that Sobolev functions may not be continuous (that
is, may not admit a continuous representative). The following example of this phe-
nomenon is a standard one that can be verified by elementary calculations.

20.26 Proposition. Let α > 0 and let Ω = B◦(0,1), the open unit ball in R
n.

(a) The function u(x) = |x |−α belongs to L1(Ω) if and only if α < n.

(b) The function u belongs to W 1, p(Ω) if and only if α < (n− p)/p.

It follows from the above that when n > 1, then W 1,1(Ω) contains discontinuous
(and not locally bounded) functions.

20.27 Exercise. Prove that any u ∈ Lip(Ω) belongs to W 1,∞(Ω).2 Deduce that u
belongs to W 1, p(Ω) for every p � 1. (Recall: Ω is bounded by assumption.) 
�

We have seen (Exer. 5.10) that W 1, p(Ω) is a Banach space. We now verify that (for
the expected values of p) it has the important property of being reflexive.

20.28 Theorem. W 1, p(Ω) is reflexive if 1 < p < ∞.

2 It can be shown that the converse is true when the boundary of Ω is “reasonable.”
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Proof. Consider the following subspace L of the space X = L p(Ω)×
[

L p(Ω)
]n:

L =
{
(u ,Du) ∈ X : u ∈ W 1, p(Ω)

}
.

Note that the space X is a reflexive Banach space, as the product of such spaces. It
follows from Exer. 5.8 that L is closed; thus, L is a reflexive Banach space (Exer.
5.49). We define a mapping T : W 1, p(Ω) → L via T u = (u ,Du). Note that T is
an isometry between W 1, p(Ω) and L, for the right choice of (equivalent) product
norms on X . Thus W 1, p(Ω) is revealed as being isometric to a reflexive Banach
space, so that it inherits reflexivity by Prop. 5.42. 
�

It follows that H1(Ω) := W 1,2(Ω) is a Hilbert space with inner product

〈 u ,v 〉H1(Ω) = 〈 u ,v 〉L2(Ω) + ∑n
i=1 〈Di u ,Di v 〉L2(Ω) .

Boundary conditions. The possible discontinuity of Sobolev functions makes the
issue of prescribing boundary conditions on Γ a nontrivial one in itself. When u
and ϕ are continuous functions (as in the classical or the Lipschitz case of the ba-
sic problem), the meaning of “u = ϕ on Γ ” is clear. If u belongs to a Sobolev
space W 1, p(Ω), however, then we may redefine u to equal ϕ on Γ , and we obtain
the “same” u (that is, the same equivalence class). Clearly, then, pointwise equality
cannot provide a meaningful way to specify the boundary condition in a Sobolev
setting.

The same issue for the space L p(Ω) would have no satisfactory resolution: there
is no way to reasonably speak of the value on ∂Ω of a function u ∈ L p(Ω) (see
Exer. 21.36). Sobolev functions, however, are much more continuous (so to speak)
than L p functions. (Their discontinuities are few and averageable, a vague assertion
that we have no intention of making precise.) It turns out that there is a natural (and
unique) way to assign to u ∈ W 1, p(Ω) its value tr u on ∂Ω , where tr u , the trace of
u, is a function in L p(Γ ).

We adopt here a less technical route to specifying boundary values, one that is ade-
quate for our purposes. It consists of defining an appropriate subspace of W 1, p(Ω).
Recall that C∞

c (Ω) is the space of functions in C∞(Ω) having compact support in
Ω , and which are therefore zero near the boundary.

20.29 Definition. Let 1 � p < ∞. We define

W 1, p
0 (Ω) =

{
lim
i→∞

ui : ui ∈ C∞
c (Ω)

}
,

where the limit is taken in W 1, p(Ω) (thus, with respect to the Sobolev norm).

To put it another way, W 1, p
0 (Ω) is the closure of C∞

c (Ω) in W 1, p(Ω). It follows that
W 1, p

0 (Ω) is a Banach space.
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We interpret this new space as consisting of those elements in W 1, p(Ω) which are
zero at the boundary. That this interpretation is reasonable depends on several non-
trivial facts (not proved here), notably the following: when Γ is a C1 manifold, and
when u belongs to both W 1, p(Ω) and C(Ω), then

u = 0 on Γ ⇐⇒ u ∈ W 1, p
0 (Ω).

Armed with this concept of how to assert that a Sobolev function is zero on the
boundary, we can formulate the basic problem relative to W 1, p(Ω):

minimize J(u) =
∫

Ω
F
(
x, u(x),Du(x)

)
dx

relative to the functions u ∈ W 1, p(Ω) which satisfy u−ϕ ∈ W 1, p
0 (Ω).

The reader will notice how the boundary condition is expressed by saying that the
difference u−ϕ vanishes at the boundary. Evidently, this formulation of the basic
problem forces ϕ to belong to W 1, p(Ω) (in fact, we shall take ϕ ∈ Lip(Ω)). Another
point to retain is that the term Du in the integral now refers to the weak derivative
of u (see p. 78).

Existence of a minimum. We now consider the existence question.

20.30 Theorem. Let ϕ ∈ Lip(Ω). Suppose that the Lagrangian F(x,u,z) is contin-
uous in (x,u,z), convex with respect to (u,z), and coercive in the following sense:
for certain constants α > 0, r > 1 and β , for some function γ ∈ Lr∗(Ω) (where r∗
is the conjugate exponent to r), we have

F(x,u,z) � α
{
|u |r + |z |r

}
+β − γ (x)|u | ∀(x,u,z) ∈ Ω×R×R

n.

Then the basic problem relative to W 1,r(Ω) admits a solution.

Proof. The hypotheses imply that the functional J is well defined and convex on
X = W 1,r(Ω). It follows from Fatou’s lemma that J is lower semicontinuous, rela-
tive to the norm topology of X . In view of the estimate (Hölder’s inequality)

∫

Ω
|γ (x)| |u(x)|dx � ‖γ ‖Lr∗(Ω) ‖u‖Lr(Ω) ,

the pointwise coercivity of F gives rise to the functional coercivity

J(u) � α̃
{
‖u‖r

Lr(Ω) +‖Du‖r
Lr(Ω)

}
+ β̃ = α̃ ‖u‖r

W 1,r(Ω) + β̃ ,

for certain constants α̃ > 0 and β̃ . Since X is reflexive (Theorem 20.28), we may
now apply directly the basic existence theorem 5.51. 
�
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The reader might have expected, based upon the single integral case, that an exis-
tence theorem such as the above would hold without coercivity in the u variable.
This expectation is quite justified, in fact:

20.31 Theorem. Theorem 20.30 continues to hold if the coercivity is weakened to

F(x,u,z) � α |z |r +β − γ (x)|u | ∀(x,u,z) ∈ Ω×R×R
n.

Modifying the proof of Theorem 20.30 requires some Sobolev tools that we don’t
possess. Exer. 21.39 identifies these missing items, and shows how they can be used,
together with the direct method, to prove Theorem 20.31.

The weak Euler equation. When a solution to the basic problem in W 1,1(Ω) ex-
ists, it is problematic to write the necessary conditions. The reader is already aware
of this fact from the single integral theory: technical difficulties arise when Du is
unbounded. One remedy is familiar, and works here too: we postulate additional
structural assumptions of Tonelli-Morrey type, as in Theorem 16.13.

20.32 Theorem. Let the Lagrangian F(x,u,z) be measurable in x and locally Lips-
chitz in (u,z). Suppose that, for some constant c and function d ∈ L1(Ω), for almost
every x ∈ Ω , we have

∣
∣(Fu(x, u,z), Fz(x, u,z)

)∣∣ � c
{
|u |+ |z |+

∣
∣F(x, u,z)

∣
∣}+d(x)

for almost all (u,z) where the derivatives exist. Then, if u∗ solves the basic problem
relative to W 1,1(Ω), there exist summable functions p : Ω → R

n and q : Ω → R

such that (
q(x), p(x)

)
∈ ∂C F

(
x,u∗(x),Du∗(x)

)
a.e. x ∈ Ω , (E1)

and such that
∫

Ω
q(x)ψ(x)+ 〈 p(x),Dψ(x)〉dx = 0 ∀ψ ∈ Lip0(Ω). (E2)

We remark that the conclusion is the same weak Euler equation (E1) (E2) asserted
in the Lipschitz setting by Theorem 20.6. As before, the generalized gradient ∂C F
appearing above is taken with respect to the (u,z) variables.

Proof. Fix ψ ∈ Lip0(Ω), where |(ψ(x),Dψ(x))| � 1 a.e., and define

g(x,s) = F
(
x,u∗(x)+ sψ(x),Du∗(x)+ sDψ(x)

)
−F(∗) , s ∈ [0,1],

as in the proof of Theorem 16.13, where (∗) denotes evaluation at (x,u∗(x),Du∗(x)).
From the gradient formula (Theorem 10.27), we deduce that, for almost every x, we
have, for all (u,z):

|(α ,β )| � 1 =⇒ F ◦(x,u, z ; (α , β )) � c
{
|u |+ |z |+

∣
∣F(x, u, z)

∣
∣}+d(x).
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Whenever gs(x,s) exists, this implies that |gs(x,s)| is bounded above by

c
{

2+ |u∗(x)|+ |Du∗(x)|+ |F(∗)|+ |g(x,s)|
}
+d(x).

Then the argument given in the proof of Theorem 16.13 allows us to bound g in such
a way that we may invoke the dominated convergence theorem to derive

∫

Ω
F ◦(∗ ;(ψ ,Dψ)

)
dx � 0.

Following this, the argument given in the proof of Theorem 20.6 leads to the re-
quired conclusion. 
�

Sufficiency of the weak Euler equation. The reader has come to expect our neces-
sary conditions to become sufficient in a suitably convex setting. With due attention
to integrability issues, this is the case in the Sobolev setting as well.

20.33 Theorem. We suppose that the Lagrangian F(x,u,z) is measurable in x and
convex with respect to (u,z). Let u∗ ∈ W 1,r(Ω) (1 � r � ∞) be such that J(u∗) is
defined and finite. If there exist p and q in Lr∗(Ω) satisfying

(
q(x), p(x)

)
∈ ∂C F

(
x,u∗(x),Du∗(x)

)
a.e. x ∈ Ω and

∫

Ω
q(x)ψ(x)+ 〈 p(x),Dψ(x)〉dx = 0 ∀ψ ∈ C∞

c (Ω) ,

then
J(u) � J(u∗) ∀u ∈ u∗+W 1,r

0 (Ω).

Proof. The hypotheses imply that the linear functional

ψ �→
∫

Ω

{
q(x)ψ(x)+ 〈 p(x),Dψ(x)〉

}
dx

is defined and continuous on W 1,r(Ω). Fix any ψ ∈ W 1,r
0 (Ω). Since this space is

defined as the closure of C∞
c (Ω), we deduce

∫

Ω

{
q(x)ψ(x)+ 〈 p(x),Dψ(x)〉

}
dx = 0.

The integrand on the left is bounded above almost everywhere by the generalized
directional derivative F ◦(∗ ;(ψ ,Dψ)) (see Def. 10.3), which coincides (since F is
convex in (u,z), see Theorem 10.8) with the directional derivative F ′(∗ ;(ψ ,Dψ)).
But we have

F ′(∗ ;(ψ ,Dψ)
)
� F

(
x,u∗+ψ ,Du∗+Dψ

)
−F

(
x,u∗,Du∗

)
,

by Prop. 2.22. Upon integrating, we discover 0 � J(u∗+ψ)− J(u∗). Since ψ is
arbitrary in W 1,r

0 (Ω), the conclusion follows. 
�
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The next result shows, in particular, that the Lipschitz solutions of the basic problem
provided by the Hilbert-Haar method (Theorem 20.20) are also solutions of the
Sobolev version of the problem. In more general contexts, this can fail: the infimum
of J (for given boundary conditions) over W 1,r(Ω) may be strictly less than over
Lip(Ω) (another instance of the Lavrentiev phenomenon).

20.34 Corollary. Let ϕ ∈ Lip(Ω), and let the Lagrangian F(z) be convex. Then if
u∗ solves the basic problem relative to Lip(Ω), it also solves it relative to W 1,r(Ω),
for any r ∈ [1,∞).

Proof. Fix any r ∈ [1,∞), and let p and q be the functions provided by Theorem
20.6; in the present setting, these functions are bounded. Then p and q lie in Lr∗(Ω),
so the conclusion follows from Theorem 20.33. 
�

20.35 Exercise. Consider the following boundary value problem (DV), a variant of
the Dirichlet problem studied earlier:

−�u(x) + u(x) = f (x) (x ∈ Ω) , u Γ = 0 , (DV)

where f ∈ L2(Ω) is given. The space H1
0(Ω) = W 1,2

0 (Ω) is the natural choice in
which to consider weak solutions. A weak solution of (DV) in the H1

0(Ω) sense
refers to a function u in H1

0(Ω) such that
∫

Ω
{〈Du(x),Dψ(x)〉+u(x)ψ(x)}dx =

∫

Ω
f (x)ψ(x)dx ∀ψ ∈ H1

0(Ω). (1)

One can show that if a classical solution in C2(Ω ) of (DV) exists, then it is also a
weak solution. The goal here is to prove

Theorem. The functional

J(u) =
∫

Ω

{
1
2

∣
∣Du(x)

∣
∣2
+ 1

2 u(x)2 − f (x)u(x)
}

dx

defined on H1
0(Ω) attains a minimum at a unique point u which is the unique weak

solution of (DV).

The proof is carried out in the following steps.

(a) Invoke Theorem 20.30 to deduce that J attains a minimum over H1
0(Ω).

(b) Why is the minimizer u∗ unique?

(c) Prove that u∗ satisfies the weak Euler equation of Theorem 20.32.

(d) Prove that u∗ is a weak solution of (DV) in the H1
0(Ω) sense.

(e) Now let u be any weak solution of (DV). Invoke Theorem 20.33 to prove that u
minimizes J over H1

0(Ω), so that u = u∗. 
�
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Once we know that a weak solution to a boundary-value problem such as (DV)
exists, it is natural to ask whether it has greater regularity than merely that of a
function in a Sobolev space. This topic is an important (and delicate) one in partial
differential equations, one that we do not address.

20.36 Exercise. Hilbert space methods can also be used to study the boundary value
problem (DV) of the preceding exercise, as we now see, under the same hypotheses.

(a) Prove that the map

u �→
∫

Ω
f (x)u(x)dx

defines a continuous linear functional on H1
0(Ω).

(b) Invoke Theorem 7.2 to establish the existence of u ∈ H1
0(Ω) satisfying (1).

Thus, we obtain the existence of a weak solution of (DV); uniqueness is easy to
prove. An alternative route is the following:

(c) Obtain the theorem of the preceding exercise as a special case of the Lax-
Milgram theorem (see Exer. 7.19). 
�

The use of Hilbert space methods as described in the exercise is effective when
the underlying differential equation is linear, so that the associated Lagrangian is
quadratic. The variational method, however, extends to other cases as well, as we
now illustrate.

20.37 Example. We consider the following boundary value problem (D′):

�u(x) =

⎧
⎪⎨

⎪⎩

+1 if u(x) > 0
−1 if u(x) < 0
∈ [−1,1 ] if u(x) = 0

(
x ∈ Ω

)
, u Γ = ϕ . (D′)

We remark that the “Laplace inclusion” above is often expressed in the notation

�u(x) = sgn u(x),

where sgn is the signum function. A function u ∈ H1(Ω) is a weak solution of (D′)
if u−ϕ ∈ H1

0(Ω), and if there exists a measurable function q satisfying
∫

Ω
q(x)ψ(x)+ 〈Du(x),Dψ(x)〉dx = 0 ∀ψ ∈ H1

0(Ω) (2)

as well as, for almost every x ∈ Ω :

q(x) =

⎧
⎪⎨

⎪⎩

+1 if u(x) > 0
−1 if u(x) < 0
∈ [−1,1] if u(x) = 0.

(3)
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We proceed to prove that if ϕ ∈ Lip(Ω), then a unique such u exists.

The first step involves the minimization over H1(Ω) of the functional
∫

Ω

{
1
2 |Du(x)|2 + |u(x)|

}
dx

subject to u−ϕ ∈ H1
0(Ω). It is clear that we may apply Theorem 20.31, with r = 2;

thus, a minimizing u∗ exists. The convexity of the Lagrangian, which is strict in Du,
can be shown to imply its uniqueness as a minimizer. We leave this as an exercise,
along with a hint: use Poincaré’s inequality (see Exer. 21.39).

Next, we wish to show that u∗ is a weak solution of (D′). It is not difficult to verify
that the Lagrangian of the problem satisfies the hypotheses of Theorem 20.32. Then,
the function q provided by that theorem satisfies (3), and p(x) reduces to Du∗(x). It
follows that (2) holds for every ψ ∈ C∞

c (Ω). Invoking density, it therefore holds for
every ψ ∈ H1

0(Ω). This confirms that u∗ is a weak solution of (D′).

Finally, we observe that any other weak solution of (D′) is a minimizer for the
problem above, by Theorem 20.33; it must therefore coincide with u∗ . 
�



Chapter 21

Additional exercises for Part III

21.1 Exercise. Consider the problem

min
∫ 3

1

{
t
(
x ′(t)

)2 − x(t)
}

dt : x ∈ C2[1,3 ], x(1) = 0, x(3) =−1.

(a) Find the unique admissible extremal x∗.

(b) Prove that x∗ is a global minimizer for the problem.

(c) Prove that the problem

min J(x) =
∫ 3

−2

{
t
(
x ′(t)

)2 − x(t)
}

dt : x ∈ C2[−2 ,3 ], x(−2) = A , x(3) = B

admits no local minimizer, regardless of the values of A and B. 
�

21.2 Exercise. Let Λ(x,v) = v2(1+ v)2, and consider the problem

min
∫ 1

0
Λ
(
x ′(t)

)
dt : x ∈ C2[0,1], x(0) = 0, x(1) = m.

(a) Is Λ convex?

(b) Show that x∗(t) = t m is an admissible extremal.

(c) Show that when m =−1/6, x∗ is a weak local minimizer.

(d) Show that when m =−1/2, x∗ is a weak local maximizer.

(e) Show that when m =−1/6, x∗ is not a global minimizer. 
�

21.3 Exercise. Consider the following problem:

min
∫ 1

0

{
x ′(t)2

+2 t 2x(t)+ x(t)2}dt : x ∈ Lip[0,1] , x(0) = 0, x(1) = 1.
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(a) Find the unique admissible extremal x∗.

(b) Prove that x∗ is a global minimizer.

(c) What arc x solves the problem if the constraint x(1) = 1 is removed? 
�

21.4 Exercise. We consider the problem

min
∫ 1

0
e x(t)(1+ x ′(t)2 )dt : x ∈ C2[0,1], x(0) = 0, x(1) = 1.

(a) Show that the function x∗(t) = t is an admissible extremal.

(b) Is the Lagrangian convex in (x,v)?

(c) Prove that x∗ provides a weak local minimum relative to C2[0,1].

(d) Prove that x∗ provides a global minimum. 
�

21.5 Exercise. (Queen Dido’s problem) We consider arcs x ∈ C2[0,1] satisfying

x(t) � 0 ∀ t ∈ [0,1], x(0) = x(1) = 0,

and such that the corresponding curve has prescribed length:

∫ 1

0

√
1+ x ′(t)2 dt = L > 1.

The classical problem of Dido is to find the arc x∗ which maximizes the area under
the curve, under the given constraints. Note that the area in question is given by

∫ 1

0
x(t)dt.

If Theorem 14.21 applies here, which is not completely clear (because of the pres-
ence of the state constraint x � 0), we are led to consider the augmented Lagrangian

−x+λ
√

1+ v2 .

The corresponding Euler equation is

d
dt

λ x ′
√

1+ x ′ 2
= −1,

which implies λ x ′/
√

1+ x ′ 2 = −t + k. Solving this separable differential equa-
tion leads to the conclusion

(
x(t)− c

)2
+( t − k )2 = λ 2,
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for certain constants c and k. Thus, the curve x∗ we are seeking describes, perhaps,
a circular arc. By symmetry, the arc should probably be centered at a point of the
form (1/2, z). Observe that this conjecture is feasible only if L < π/2. We make
this assumption, and we proceed to prove by an inductive argument that we have
identified a curve that maximizes the area.

(a) Show that the circular arc corresponds to an extremal of the Lagrangian

Λ+(x,v) = −x+λ
√

1+ v 2

for a certain λ > 0.

(b) Observe that Λ+ is convex, and use this to prove that x∗ solves the problem

min
∫ 1

0
Λ+

(
x(t), x ′(t)

)
dt : x ∈ C2[0,1], x(0) = x(1) = 0.

(c) Conclude that x∗ is the sought-for maximizing curve. 
�

21.6 Exercise. Among all curves joining a given point (0,A) on the positive x-axis
to some point (b,0) on the t-axis (where b > 0 is unspecified) and enclosing a given
area S together with the t -axis, find the curve which generates the least area when
rotated about the t -axis. 
�

21.7 Exercise. Find a Lagrangian Λ(t, x,v) whose Euler equation is

a) x ′′ = x3 b) x ′′+ x ′ −1 = 0 c) x ′′x+ x ′ = 1. 
�

21.8 Exercise. Prove that for T > 0 sufficiently large, there exists a nontrivial so-
lution x(·) ∈ C∞[0,T ] of the boundary-value problem

x ′′(t)+ sin x(t)+
(

sin x(t)
)3

= 0, t ∈ [0,T ], x(0) = x(T ) = 0. 
�

21.9 Exercise. Consider the basic problem (P) with a LagrangianΛ ∈ C3. Let x∗ in
C2[a,b ] be an admissible extremal satisfying the strengthened Legendre condition.
Show that x∗ admits no conjugate points in (a,b) if one of the following holds:

(a) Λ(t, x,v) is of the form Λ(t,v) (independent of x);

(b) Λ(t, x,v) is convex in (x,v). 
�

21.10 Exercise. Find the solution of the following problem, or else prove that none
exists:

min
∫ 1

0
e x(t)e x ′(t) dt : x ∈ Lip[0,1], x(0) = 0, x(1) = 1. 
�

21.11 Exercise. When the soap bubble problem (see Example 14.5) is restricted to
the class of curves parametrizable in the form t(x), it amounts to minimizing
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J(t(·)) =
∫ B

A
x
√

1+ t ′(x)2 dx .

Use this to strengthen the conclusion of Exer. 14.16 as follows: for any T > 0, the
catenary cosh t is a global minimizer on [0,T ] relative to such curves. 
�

21.12 Exercise. Find all the weak local minima and maxima of the functional
∫ 1

0
(1+ t)x ′(t)2 dt

over AC[0,1], under the boundary conditions x(0) = 0, x(1) = 1. 
�

21.13 Exercise. (Approximation of Lipschitz arcs)
Let h : [a,b ]→ R be a Lipschitz function. We prove:

Theorem. For any ε > 0, there exists a polynomial g(t) with g(a) = h(a) and
g(b) = h(b) such that

‖g ′ ‖ � ‖h ′ ‖+ ε , ‖g−h‖+‖g ′ −h ′ ‖L1 < ε .

(As usual, the anonymous norm is that of L∞.)

(a) Invoke Lusin’s theorem (which is stated on p. 112) to find a continuous function
f on [a,b ] such that

‖ f ‖ � ‖h ′ ‖ , f = h ′ except on a set of measure at most ε .

(b) Use the Weierstrass approximation theorem to find a polynomial p for which
‖ f − p‖< ε .

(c) Set ϕ(t) = h(a)+
∫ t

a
p(s)ds. Show that, for a certain constant c satisfying

|c | � ε
{

b−a+2‖h ′‖
}
/(b−a),

the function g(t) = ϕ(t)+ c(t −a) agrees with h at a and b and satisfies

‖g ′ ‖ � ‖h ′ ‖+ ε+ |c | ,
max

[
‖g−h‖ , ‖g ′ −h ′‖L1

]
� ε

{
b−a+2‖h ′‖

}
+(b−a)|c |.

Use these estimates to deduce the theorem (for a suitably redefined ε).

(d) We proceed to apply the theorem to the functional

J(x) =
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt ,
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whereΛ is locally Lipschitz. Prove that for any x∈ Lip[a,b ], for any ε > 0, there
exists a polynomial y having the same values as x at a and b such that ‖x−y‖< ε
and |J(x)− J(y)|< ε . (Such a result is referred to as a fairing theorem.)

(e) Consider now the problem

min J(x) : x ∈ X , x(a) = A, x(b) = B , ‖x‖< r , ‖x ′‖< R ,

where X is a subset of Lip[a,b ] and r, R ∈ (0,∞ ]. Show that the infimum in the
problem is the same for any X that contains all polynomials.

(f) Prove that if x∗ ∈ C2[a,b ] is a weak local minimizer for the basic problem (P)
relative to C2[a,b ], where Λ is locally Lipschitz, then it is also a weak local
minimizer relative to Lip[a,b ]. Show that the same holds for a strong local min-
imizer. 
�

21.14 Exercise. (Wirtinger’s inequality, conclusion) Prove the following inequal-
ity for any function y ∈ Lip[a,b ] which vanishes at a and b :

∫ b

a
y(t)2 dt � (b−a)2

π 2

∫ b

a
y ′(t)2 dt ,

with equality if and only if y(t) = c sin[π (t −a)/(b−a)] for some constant c. 
�

21.15 Exercise. It follows from Exer. 14.17 that the infimum in the following prob-
lem is −∞ :

min
∫ 2π

0

(
x ′(t)2 − x(t)2 )dt : x ∈ AC[0,2π ], x(0) = 0 .

Solve the problem when the auxiliary state constraint 0 � x(t) � 1 is imposed. 
�

21.16 Exercise. We return to the problem of Example 16.1:

min
∫ 1

0

(
1+ x(t)

)
x ′(t)2 dt : x ∈ C2[0,1], x(0) = 0, x(1) = 3.

(a) Show that the function x∗(t) = (7t + 1)2/3 − 1 is a weak local minimizer. (We
have seen that x∗ is not a global minimum.)

(b) Suppose now that the auxiliary constraint x(t) � 0 is added to the problem. Show
that x∗ provides a global minimum in that case. 
�

21.17 Exercise. We study the solutions x ∈ C∞[0,T ] of the following boundary
value problem:

x ′′(t) = x3(t)+b x2(t)+ c x(t)+d sint , 0 � t � T, x(0) = x(T ) = 0, (1)

where T > 0 is given, as well as the parameters b, c, d .
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(a) Formulate a problem (P) in the calculus of variations whose Euler equation is the
differential equation above, and show with its help that there exists a solution x
of (1).

(b) Prove that the solution of (1) is unique when b2 � 3c.

The question of the nontriviality of the solution of (1) arises when d = 0, since in
that case, x ≡ 0 is a solution. When d = 0 and b2 � 3c, the unique solution of (1)
is x ≡ 0, by the preceding.

(c) Prove that for d = 0 and c < 0, there is a nontrivial solution of (1) when the
horizon T satisfies T > π |c |−1/2. 
�

21.18 Exercise. We study the existence question for certain variational problems
with auxiliary constraints.

(a) Consider the problem

minimize
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt : x ′(t) ∈ V a.e., x(a) = A , x(b) = B ,

where Λ is continuous in (t, x,v) and convex in v, and where V is a compact
convex subset of Rn. Prove that a solution x∗ ∈ Lip[a,b ] exists, provided there
exists at least one admissible arc.

(b) Consider next the isoperimetric problem

minimize
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt subject to

∫ b

a
〈 h(t, x(t)), x ′(t)〉dt = c , x(a) = A , x(b) = B ,

where Λ satisfies the hypotheses of Theorem 16.2, h : [a,b ]×R
n → R

n is con-
tinuous, and c ∈ R is given. Prove that a solution x∗ ∈ AC[a,b ] exists, provided
there is at least one admissible arc.

(c) Consider now the problem

minimize
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt subject to

g
(
t, x(t), x ′(t)

)
� 0 a.e., x(a) = A , x(b) ∈ E ,

where Λ and g are continuous in (t, x,v) and convex in v, E is closed, and where
either Λ or g satisfies the coercivity hypothesis of Theorem 16.2. Prove that a
solution x∗ ∈ AC[a,b ] exists, provided there is at least one admissible arc. 
�

21.19 Exercise. Solve the problem of Example 19.4 deductively; that is, by proving
existence and applying appropriate necessary conditions. 
�
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21.20 Exercise. Let � : R→ [0,∞) be a continuous function. Prove that the follow-
ing problem admits a solution:

min �(x(1))+
∫ 1

0

{
x(t)3 + x ′(t)2}dt : x ∈ Lip[0,1] , x ′(t) � 0 a.e. , x(0) = 0.


�

21.21 Exercise. Consider the following problem (P) in the calculus of variations:

min
∫ 1

0

{√
1+ x ′(t)2 − x(t)

}
dt : x ∈ AC[0,1] , x(0) = 1 , x(1) = 0 .

(a) Show that x∗(t) =
√

1− t 2 is an admissible function for the problem, one that
fails to lie in Lip[0,1].

(b) Show that x∗ satisfies the integral Euler equation.

(c) Prove that x∗ is the unique solution of (P).

(d) Deduce that x∗ is the unique solution of the isoperimetric problem

min
∫ 1

0

√
1+ x ′(t)2 dt : x ∈ AC[0,1] ,

∫ 1

0
x(t)dt =

π
4
, x(0) = 1, x(1) = 0 .

(e) Prove that (P) admits no solution when the underlying space is taken to be
Lip[0,1] rather than AC[0,1]. 
�

21.22 Exercise. Prove that the boundary-value problem

x ′′(t) = x(t)sin x(t)− cos x(t) , x(0) = 0 , x(1) = 0

admits a solution x ∈ C∞[0,1]. 
�

21.23 Exercise. Consider the problem depicted in Exer. 17.3.

(a) Suppose that x∗ ∈ C 4[a,b ] satisfies the second-order Euler equation and the
given boundary conditions. If Λ is convex with respect to (x,v,w), prove that x∗
is a global solution of the problem.

(b) Prove that the problem of minimizing

∫ 1

0

{
x ′′(t)2 −48 x(t)

}
dt

subject to

x ∈ AC[0,1], x ′ ∈ AC[0,1], x(0) = 0, x(1) = 1, x ′(0) = 1, x ′(1) = 1

has a solution, and identify it. 
�
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21.24 Exercise. Let f : Rn → R be locally Lipschitz and linearly bounded:

| f (x)| � c+d |x | ∀x ∈ R
n.

Let A ,B be given points in R
n. Prove that there exists x ∈ C1[a,b ] with x ′ in

AC[0,1] satisfying

x ′′(t) ∈ ∂C f
(
x(t)

)
, t ∈ [0,1] a.e. , x(0) = A , x(1) = B . 
�

21.25 Exercise. Find a smooth function ϕ : (0,π)×R→ R such that

v 2 − x 2 � ϕ t(t , x)+ϕ x(t ,v) ∀(t ,v) ∈ (0,π)×R.

Use ϕ to give an elementary proof that, for any x ∈ Lip0[ 0,π ], we have
∫ π

0

{
x ′(t)2 − x(t)2}dt � 0.


�

21.26 Exercise. The classical problem of Zenodoros consists of finding the solid of
revolution of maximal volume having given surface area; the conjecture is that the
solution is provided by a semicircle.1 Using a substitution due to Euler, the problem
can be reduced to proving that the arc x∗(t) = 2 t−2 t 2 solves the following problem
(P) in the calculus of variations:

minimize J(x) = −
∫ 1

0

√
x(t)

(
4− x ′(t)2

)
dt

subject to x(t) � 0, |x ′(t)| � 2 , x(0) = x(1) = 0 .

Note that the problem includes both a state constraint and a differential constraint,
and that admissible arcs necessarily satisfy 0 � x(t) � 2 t .

(a) Prove that t � 0, 2 t � x � 0 =⇒ 2(t − x)2 + t 2v2 +4 t(t − x)v � 0 ∀v .

We obtain (2 t − xv+ t v)2 � x(4− v2)(2 t − x), by rearranging. If we restrict
attention to |v | � 2, then 2 t − xv+ t v � 0, and we deduce:

2 t − xv+ t v �
√

x
(
4− v2

)
(2 t − x) .

(b) Show that, for all t ∈ (0,1], 0 � x < 2 t , |v | � 2, we have

Λ(t, x, v) � (−2 t + xv− t v)/
√

2 t − x = ϕ t(t, x)+ϕ x(t,x)v,

where Λ is the Lagrangian of the problem (P), and where

ϕ(t, x) = −(2/3)(t + x)
√

2 t − x .

1 See Troutman [39].
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(c) Let x be any admissible arc for (P) that satisfies x(t) < 2 t for t ∈ (0,1]. Prove
that J(x) � −2

√
2/3.

(d) Extend this conclusion to all admissible arcs. [ Hint: replace x by λ x with λ < 1,
and invoke the preceding. ]

(e) Show that the lower bound is attained for x∗(t) = 2 t − 2 t 2, which is therefore
revealed as the solution to (P).

Can you explain how the very useful function ϕ was found? 
�

21.27 Exercise. (An indirect existence method) The purpose of this exercise is to
illustrate an indirect approach to existence when the Lagrangian fails to possess the
coercivity postulated in Tonelli’s theorem.2 We consider the following problem (P):

min J(x) =
∫ b

a
g
(
x(t)

)√
1+ | x ′(t)|2 dt : x(a) = A , x(b) = B, x ∈ Lip[a,b ],

where g : Rn → R is continuous and bounded below by a positive constant δ . We
establish the existence of a solution x∗ to (P) belonging to C1[a,b ].

The proof consists of examining a sequence of perturbed problems which are coer-
cive and admit solutions, and showing that these solutions are regular, and converge
appropriately to a solution of the original problem.

(a) Why does Tonelli’s theorem not apply in this setting?

(b) Let ε i be a positive sequence strictly decreasing to 0, and set

Λ i(x,v) = g(x)
√

1+ |v |2 + ε i |v |2.

For given i, prove the existence of a function xi which solves

min
∫ b

a
Λ i

(
x(t), x ′(t)

)
dt : x ∈ AC[a,b ], x(a) = A , x(b) = B.

(c) Show that xi belongs to C1[a,b ], and that there exists a constant λ i such that

g(xi(t))√
1+ | x ′

i (t)|2
− ε i |x ′

i (t)|2 = λ i , t ∈ [a,b ] a.e.

(d) Prove the existence of M such that
∫ b

a
Λ i

(
xi(t), x ′

i (t)
)

dt � M ∀ i .

2 See Clarke [14] for more general developments along this line.
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Deduce from this the existence of a constant R such that ‖xi‖ � R for all i, and
prove that

min
a� t �b

|x ′
i (t)| � M/

(
δ (b−a)

)
=: m ∀ i.

(e) Show that λ i � δ/(2
√

1+m2 ) for all i sufficiently large.

(f) Set g0 = max{g(x) : |x | � R}. Deduce that, for all i sufficiently large, we have

max
a� t �b

|x ′
i (t)|2 � 4

(
1+m2)g2

0/δ
2 −1.

(g) Prove the existence of a subsequence of xi converging uniformly to a function
x∗ ∈ Lip[a,b ] such that J(x∗) � J(x) whenever x is admissible for (P).

(h) Prove that x∗ lies in C1[a,b ] and conclude. 
�

21.28 Exercise. (The Legendre transform) We suppose that Λ : Rn×R
n → R is

a Lagrangian of class C2 satisfying Λvv > 0 globally.

(a) Let x̄ , v̄ , p̄ in R
n satisfy the equation p = Λv(x,v). Prove that this equation

defines a function v(x, p) of class C1 on a neighborhood of (x̄ , p̄) such that
v(x̄ , p̄) = v̄. We set

H(x, p) = 〈 p,v〉−Λ(x,v) ,

where v = v(x, p). H is the Hamiltonian obtained from Λ by applying the Leg-
endre transform. Prove that H is of class C1 in a neighborhood of (x̄ , p̄).

(b) Now let x∗ ∈ C2[a,b ], and define a function p∗ and a set S by

p∗(t) = Λv
(
x∗(t), x∗′(t)

)
, S =

{(
x∗(t), p∗(t)

)
: t ∈ [a,b ]

}
.

Prove that there is a neighborhood V of S on which is defined a unique function
v of class C1 such that

p = Λv
(
x,v(x, p)

)
∀(x, p) ∈ V , v

(
x∗(t), p∗(t)

)
= x∗′(t) ∀ t ∈ [a,b ].

In this neighborhood V , we define H as above.

(c) Prove that x∗ solves the Euler equation on [a,b ], that is, satisfies

d
dt

Λv
(
x(t), x ′(t)

)
= Λ x

(
x(t), x ′(t)

)

if and only if (x∗ , p∗) satisfies the Hamiltonian system

−p ′(t) = Hx
(
x(t), p(t)

)
, x ′(t) = Hp

(
x(t), p(t)

)
.

If this is the case, show that H is constant along (x∗ , p∗).



21 Additional exercises for Part III 425

(d) We suppose now that Λ is coercive of degree r > 1 (see Theorem 16.2). Prove
that H coincides with the Fenchel conjugate of Λ , in the sense that

H(x, p) = max
v ∈ Rn

{〈 p,v〉−Λ(x,v)} .

Deduce that H is convex in the p variable. 
�

21.29 Exercise. (Duality) Let Λ(x,v) be continuously differentiable, and set

L(p, q) = inf
{
Λ(x,v)−〈 p,v〉−〈q, x〉 : x,v ∈ R

n}.

We assume that L is finite-valued.

(a) Show that L is concave, and that

−〈A, p(a)〉+
∫ b

a
L
(

p(t), p ′(t)
)

dt � 〈β , x(b)〉+
∫ b

a
Λ
(
x(t), x ′(t)

)
dt

for all x, p ∈ C1[a,b ] satisfying x(a) = A, p(b) = −β . (Why are the integrals
well defined?)

(b) Let (P) be the problem

minimize 〈β , x(b)〉+
∫ b

a
Λ
(
x(t), x ′(t)

)
dt : x ∈ C1[a,b ], x(a) = A.

Let (D) be the problem

maximize −〈A, p(a)〉+
∫ b

a
L
(

p(t), p ′(t)
)

dt : p ∈ C1[a,b ], p(b) =−β .

Prove that sup(D) � inf (P).

(c) If (P) admits a solution x∗ , and if Λ is convex, prove that max(D) = min(P),
and that the costate p∗(t) = Λ v(x∗(t), x∗′(t)) lies in C1[a,b ] and solves (D).

(d) Formulate a set of hypotheses guaranteeing that (P) admits a solution. 
�

21.30 Exercise. ( Periodic Hamiltonian trajectories 1 ) Let H : Rn×R
n → R be

a given continuously differentiable function. We study the Hamiltonian system of
equations

− p ′(t) = Hx
(
x(t), p(t)

)
, x ′(t) = Hp

(
x(t), p(t)

)
(2)

where x and p are arcs. More specifically, the problem we consider is the possible
existence on some interval [0,T ] of a solution (x, p) of these equations satisfying
x(0) = x(T ), p(0) = p(T ), and also H(x, p) = c, where c is a given constant. (It
is easy to see that any solution to (2) automatically lies on a level surface of H.)
We call such a solution periodic. Thus we seek a periodic trajectory of (2) having
prescribed energy c (that is, lying in H−1(c)); the period T is unknown, however.
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The existence of a periodic trajectory can only be guaranteed under suitable con-
ditions on H. We shall use here a variational method known as the dual action
principle 3 in order to obtain the following result.

Theorem. Let H−1(c) be the boundary of a compact, strictly convex set containing
0 in its interior, and suppose ∇H 	= 0 on H−1(c). Then, for some T > 0, there is a
periodic solution of (2) on H−1(c).

The reader is asked to prove each of the claims in the proof below.

Define h(x, p) to be λ 2, where λ is the unique positive scalar such that (x, p)/λ lies
in H−1(c) (we set h(0,0) = 0). We recognize h as the square of the gauge function
corresponding to H−1(c) (see Theorem 2.36); evidently, we have h−1(1) = H−1(c).

Claim:

1) h is C1. [ Hint: use the implicit function theorem. ]

2) h is positively homogeneous of degree 2 :

h
(
λα ,λβ

)
= λ 2 h

(
α ,β

)
∀λ > 0, ∀(α ,β ).

3) h is strictly convex, and, for certain positive constants δ , Δ , we have

δ
∣
∣(α ,β )

∣
∣2 � h(α ,β ) � Δ

∣
∣(α ,β )

∣
∣2 ∀(α,β ) ∈ R

n×R
n.

4) |∇h | is bounded away from zero on H−1(c) and, for any (x, p) in H−1(c), the
vector ∇h(x, p) is a nonzero multiple of ∇H(x, p).

Suppose now that we have a periodic solution (x, p) of (2) for H replaced by h,
and with (x, p) lying in h−1(1). Let its period be T . Then, by the above, there is a
bounded function λ on [0,T ], bounded away from 0, such that

−p ′(t) = λ (t)Hx
(
x(t), p(t)

)
, x ′(t) = λ (t)Hp

(
x(t), p(t)

)
, t ∈ [0,T ] a.e.

One may take λ to be measurable. The bi-Lipschitz time rescaling

τ(t) =
∫ t

0
λ (s)ds

gives rise to functions

(
x̃(τ), p̃(τ)

)
:=

(
x(t(τ)), p(t(τ))

)
, 0 � τ �

∫ T

0
λ (t)dt

which are bona fide periodic solutions of (2), and which lie on H−1(c).

The upshot of the foregoing is the following conclusion: it suffices to prove the
theorem for H = h and c = 1. This we now do.

3 See Clarke [12].
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We define Λ to be the Fenchel conjugate of h:

Λ(v,w) = max
(α,β )

{
(v,w) • (α,β )−h(α,β )

}
.

Claim. Λ is C1 and strictly convex, and, for some κ > 0, satisfies

κ
∣
∣(v,w)

∣
∣2 � Λ(v,w) ∀(v,w).

Consider now the following isoperimetric problem: to minimize

∫ 1

0
Λ
(
− y ′, x ′)dt subject to

∫ 1

0
y • x ′ dt = 1, x(0) = x(1) = 0, y(0) = y(1) = 0.

Claim. There exists a (global) solution (x∗,y∗) of this problem. [ Hint: Exer. 21.18. ]

We now seek to write necessary conditions. It was pointed out in Example 17.10
that the structural hypothesis of Theorem 17.9 is satisfied. That result implies the
existence of η ,λ not both zero (with η = 0 or 1) such that (x∗,y∗) satisfies the
integral Euler equation for the Lagrangian ηΛ(−y ′, x ′)+λ y • x ′.

This yields constants c1, c2 such that

ηΛw(−y ′
∗ , x∗′ )+λ y∗ = c1 , −ηΛv(−y ′

∗ , x∗′ ) = c2 +λ x∗ a.e.

It follows that if η = 0, then y∗ is constant, which is not possible in view of
the isoperimetric constraint. Hence we may assume η = 1. Now if λ = 0, then
∇Λ(−y ′

∗ , x∗′ ) is constant, which implies that (x∗′ , y ′
∗) is constant (since Λ is strictly

convex, see Exer. 4.17). This is not possible, since y∗ is nonconstant and periodic.

The foregoing allows us to assert that the functions x̂ =−λ x∗ − c2 , ŷ = c1 −λ y∗
satisfy

(x̂, ŷ) = ∇Λ
(

ŷ ′/λ ,−x̂ ′/λ
)
.

This is equivalent to
−
(
− ŷ ′, x̂ ′ )/λ = ∇h( x̂ , ŷ )

by subdifferential inversion (see Exer. 4.27), and it follows (additional exercise) that
( x̂ , ŷ ) lies on a level surface h−1(b) for some positive b. We now define

x(t) = x̂
(
− t/λ

)
/
√

b , y(t) = ŷ(−t/λ )/
√

b

if λ is negative, and otherwise we set

x(t) = x̂
(
1− t/λ

)
/
√

b , y(t) = ŷ(1− t/λ )/
√

b .

Since h is positively homogeneous of degree 2 , we derive that ∇h is homogeneous
of degree 1 (yet another exercise). It then follows easily that (x,y) satisfies (2) and
is periodic on the interval [0, |λ | ], and that (x,y) lies on h−1(1). 
�
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21.31 Exercise. ( Periodic Hamiltonian trajectories 2 ) The previous exercise con-
sidered the question of periodic trajectories of prescribed energy. Here we study the
case of prescribed period, in the context of Newton’s equation. It is not possible to
prescribe both the energy and the period (unsurprisingly).

Let V : Rn → R be convex and satisfy

V (x) � c|x |R +d ∀x ∈ R
n (3)

for certain constants c, d, R with R < 2, together with

liminf
x→ 0

V (x)/|x |2 > 0. (4)

Under these hypotheses, we prove that, for any T > 0, there exists x ∈ C1[0,T ]
(vector-valued) with x ′ ∈ AC[0,T ] such that

x ′′(t) ∈ −∂V
(
x(t)

)
a.e., x(0) = x(T ) , x ′(0) = x ′(T ) , (5)

and such that x has true, or minimal, period T . (We mean by this that there is no
integer k > 1 for which x(0) = x(T/k), x ′(0) = x ′(T/k).)

The proof uses (as for the prescribed energy case treated in the preceding problem)
a dual action principle. We consider the following problem (P):

minimize
∫ 1

0

{
V ∗(−q ′(t)

)
+ |y ′(t)|2/2+T q ′(t) • y(t)

}
dt

subject to zero boundary conditions on the arcs y, q ∈ AC[0,1]. (V ∗ refers to the
convex conjugate of V , as usual; see §4.2.)

(a) Show by the direct method, and with the help of hypothesis (3) that this problem
admits a global solution (y, q).

(b) Prove that the solution (y, q) is Lipschitz.

(c) Invoke necessary conditions to deduce that y ′ ∈ AC[0,1] and satisfies, for some
constant α :

−y ′′(t) ∈ T ∂V
(
T y(t)−α

)
, t ∈ [0,1] a.e.

(d) Set x(t) = T y(t/T )−α , and verify that x satisfies (5).

(e) Use hypothesis (4) to show that the minimum in (P) is strictly negative.

(f) Deduce from this the minimality of the period T . 
�

21.32 Exercise. We study the problem of minimizing

∫ 1

0

{√
|x(t)− x ′(t)| + x ′(t)

}
dt
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over the arcs x on [0,1] satisfying x(0) = 0. This is a special case of the problem
treated in §18.4 with

n = 1 , � ≡ 0 , E = {0}×R , Λ(x,v) =
√

|x− v | + v .

Observe that Λ is continuous, but neither locally Lipschitz in x nor convex in v.

(a) Verify that Λ satisfies the growth condition of Hypothesis 18.11.

(b) Show that x∗ ≡ 0 fails to be a strong local minimizer.

(c) Prove that x∗ is a weak local minimizer. 
�

21.33 Exercise. Consider the Hamilton-Jacobi problem (HJ) of §19.3. In the con-
text of Theorem 19.10, recall that the solution u = u∗ is given by

u(τ ,β ) = min �
(
x(0)

)
+

∫ τ

0
Λ
(
x(t), x ′(t)

)
dt ,

where Λ is the Lagrangian corresponding to H, and where the minimum (attained)
is taken over the arcs x satisfying x(τ) = β (with x(0) free).

(a) Let x∗ be a solution of the problem defining u(τ ,β ). Prove that

u
(
s, x∗(s)

)
= �

(
x∗(0)

)
+

∫ s

0
Λ
(
x∗(t), x∗′(t)

)
dt , s ∈ [0,τ ].

Deduce that when H, x∗ and u are continuously differentiable near the points in
question, then

x∗′(s) = Hp
(
x∗(s),ux(s, x∗(s))

)
.

We now examine the case of (HJ) in which

n = 1, H(x, p) = p2/2− cos x−1 , �(x) = 0.

The corresponding Lagrangian is Λ(x,v) = cos x+ v 2/2+1, which is more or less
that of the action integral of Example 14.6. Note that the minimum value of Λ(x,v)
is 0, attained at x = π , v = 0 (which, oddly perhaps, corresponds to the unstable
equilibrium in which the pendulum is inverted).

We wish to prove that the solution u to (HJ) provided by Theorem 19.10 is not
a classical one, despite the smoothness of the data. We proceed by contradiction,
assuming the contrary.

(b) Prove that for τ sufficiently large, we have u(τ ,0)< τ .

Let x∗ be a minimizer for the problem defining u(τ ,0), for a value of τ as above.

(c) Prove that x∗ ∈ C1[0,τ ], and that there exists a constant h such that

x∗′(t)2/2− cos x∗(t) = h ∀ t ∈ [0,τ ].
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(d) Observe that u(τ , ·) is an even function, so that ux(τ ,0) = 0. Use this fact, to-
gether with the conclusion of (a), to deduce that h =−1.

(e) Obtain a contradiction to conclude the proof. 
�

21.34 Exercise. Let ζ be an element of the dual of W 1, p
0 (Ω), 1 � p < ∞ , and let

q be the conjugate exponent to p. Prove the existence of functions

fi ∈ Lq(Ω) (i = (0,1), . . . , n) such that

〈ζ , u〉 =
∫

Ω
f0(x)u(x)dx + ∑n

i=1

∫

Ω
fi(x)Di u(x)dx ∀u ∈W 1, p

0 (Ω).

Show that these functions are not uniquely determined, however. (The dual of a
Sobolev space is not particularly agreeable, alas.) 
�

21.35 Exercise. Let ui be a sequence in W 1, p(Ω) (1 < p < ∞) converging weakly
to u∗, and suppose that Dui(x) ∈ C a.e. for each i , where C is a compact convex
subset of Rn. Prove that Du∗(x) ∈ C a.e. 
�

21.36 Exercise. Let 1 � p < ∞ , and let Ω be the open unit ball in R
n. Prove the

nonexistence of a continuous linear operator T : L p(Ω)→ L p(∂Ω) such that

Tu = u ∂Ω ∀u ∈ C(Ω ) ⊂ L p(Ω).

Thus, the functions in L p(Ω) do not admit natural boundary values, unlike the func-
tions in W 1, p(Ω). 
�

21.37 Exercise. (The Neumann problem) As usual, Ω is taken to be a nonempty
bounded open subset of Rn.

(a) Show that if F satisfies the hypotheses of Theorem 20.30, then the functional
J : W 1,r(Ω)→ R∞ defined by

J(u) =
∫

Ω
F
(
x,u(x),Du(x)

)
dx

attains a minimum (in the absence of any prescribed boundary conditions).

(b) The absence of boundary conditions leads to additional information about the
minimizer (a transversality condition). We illustrate this, in the case n = r = 2,
Ω = the unit ball, with the following notation and Lagrangian F :

x = (x,y), z = (v,w), F(x,y,u,v,w) = (u2 + v2 +w2)/2−θ(x,y)u ,

where θ : R2 → R is continuous. Prove that if the minimizing function u of part
(a) lies in C2(Ω ), then it satisfies

−�u+u = θ ∀(x,y) ∈ Ω and Du(x,y) • ν(x,y) = 0 ∀(x,y) ∈ ∂Ω ,
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where ν(x,y) is the unit normal vector to Ω at (x,y). (This is known as a Neu-
mann boundary value problem in the theory of partial differential equations; the
notion of weak solutions can be extended to such problems.) 
�

21.38 Exercise. Consider the Dirichlet problem

�u(x) = 0 (x ∈ Ω) , u Γ = ϕ , (6)

where n = 2 , Ω =
{
(x,y) : 2 x2 + y2 < 2

}
, ϕ(x,y) = 1+2 x2 +3y2.

Recall that in the Lipschitz context, a weak solution of (6) refers to a function u in
Lip(Ω) which satisfies the boundary condition as well as

∫

Ω
Du(x) • Dψ(x)dx = 0 ∀ψ ∈ Lip0(Ω).

Prove that there is a unique weak solution u of the problem (6) above, and that it
satisfies u(x,y) � 3 ∀(x,y) ∈ Ω . 
�

21.39 Exercise. We outline the proof of Theorem 20.31 (recall that Ω is bounded).

In order to apply the direct method, two celebrated theorems are required. The first
of these is Poincaré’s inequality, which asserts the existence of a constant C such
that

‖u‖Lr(Ω) � C‖Du‖Lr(Ω) ∀u ∈ W 1,r
0 (Ω).

The reader will note the commonality with Wirtinger’s inequality of Exer. 21.14.

The second is the Rellich-Kondrachov theorem, which asserts that when a sequence
converges weakly in W 1,r

0 (Ω), then some subsequence converges strongly in Lr(Ω).
This is akin to Exer. 6.7.

The proofs of these facts are arduous, and involve quite a bit of approximation;
we admit them for the purposes of this exercise. We turn now to the proof of the
theorem. It is clear that a minimizing sequence ui exists.

(a) Show that Dui is bounded in Lr(Ω).

(b) Use Poincaré’s inequality to deduce that ui is bounded in L2(Ω).

(c) Prove that some subsequence (we do not relabel) is such that ui −ϕ converges
weakly in W 1,r(Ω) to a limit û . Show that u∗ := û +ϕ is admissible for the
basic problem.

(d) With the help of the Rellich-Kondrachov theorem, establish that some further
subsequence ui is such that ui converges almost everywhere to u∗ , and Dui con-
verges weakly to Du∗.

(e) Conclude by invoking the integral semicontinuity theorem 6.38. 
�
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21.40 Exercise. Let Ω be a nonempty bounded open subset of Rn, and let ϕ be a
real-valued function defined on Γ = ∂Ω . We say that ϕ satisfies the lower bounded
slope condition with constant K if, given any point γ ∈ Γ , there exists an affine
function of the form y �→ 〈ζγ , y− γ 〉+ϕ(γ ) with |ζγ | � K such that

〈ζγ , y− γ 〉+ϕ(γ ) � ϕ(y) ∀y ∈ Γ .

This requirement can be viewed as a partial, one-sided, or lower version of the
classical bounded slope condition (see p. 402). It has an alternate characterization:

Proposition. In order for ϕ to satisfy the lower bounded slope condition with con-
stant K, it is necessary and sufficient that ϕ be the restriction to Γ of a function
f : Rn → R which is convex and globally Lipschitz of rank K.

(a) Prove the sufficiency.

(b) Prove the necessity, with the help of the function f defined by

f (x) = sup
γ ∈ Γ

〈ζγ , x− γ 〉+ϕ(γ ) .

(c) Prove that ϕ satisfies the bounded slope condition if and only if ϕ is both the
restriction to Γ of a convex function f : Rn → R , as well as the restriction to Γ
of a concave function g : Rn → R . Deduce from this that any ϕ satisfying the
bounded slope condition must be affine when restricted to any segment contained
in Γ .

As it happens, there is a version of the Hilbert-Haar theorem 20.20 in which the
bounded slope condition is replaced by the lower bounded slope condition. Unsur-
prisingly, we obtain less regularity of the solution u∗ than before. Nonetheless, the
conclusion includes the crucial property that u∗ is locally Lipschitz in Ω (but not
necessarily Lipschitz on Ω ); see Clarke [15] for details. 
�



Part IV

Optimal Control



Chapter 22

Necessary conditions

The proof of the maximum principle, given in the book of
Pontryagin, Boltyanskii, Gamkrelidze and Mischenko...
represents, in a sense, the culmination of the efforts of
mathematicians, for considerably more than a century,
to rectify the Lagrange multiplier rule.
L. C. Young
(Calculus of Variations and Optimal Control Theory)

As a child, I merely knew this; now I can explain it.
David Deutsch (The Fabric of Reality)

More than any other mathematical tool, it is differential equations that have been
used to describe the way the physical world behaves. Systems of ordinary differen-
tial equations of the form

x ′(t) = f
(
t, x(t)

)

are routinely used today to model a wide range of phenomena, in areas as diverse
as aeronautics, power generation, robotics, economic growth, and natural resources.
The great success of this paradigm is due in part to the fact that it suggests a natural
mechanism through which the behavior of the system can be influenced by external
factors.

This is done by introducing an explicit control variable in the differential equation,
a time-varying parameter that can be chosen (within prescribed limits) so as to attain
a certain goal. This leads to the main object of our attention in this and subsequent
chapters, the controlled differential equation

x ′(t) = f
(
t, x(t), u(t)

)
, u(t) ∈ U.

The couple ( f ,U) is referred to as the control system.

In the classical calculus of variations, in studying such phenomena as the shape
of a soap film or the motion of a pendulum, the principal goal is descriptive: to
determine the underlying governing equations, and in doing so, reveal the “natural”
behavior of the system. This has typically been done with the aid of such axioms as
d’Alembert’s principle, or the principle of least action. In the case of the pendulum,
we have seen (Example 14.6) how this leads to the differential equation

θ ′′(t)+(g/�) sinθ(t) = 0.

In control theory, however, the governing equations are the starting point of the
analysis. The system is viewed as a tool for imposing desired behavior. A canonical
example in contemporary courses in control is the inverted pendulum, in which one
seeks to design a control law for the controlled system

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 22,
© Springer-Verlag London 2013
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θ ′′(t)+(g/�) sinθ(t) = u(t)

having the effect that the pendulum will be driven to its unstable equilibrium θ = π .
Such undignified behavior would be considered highly inappropriate by a classical
pendulum.

Thus, control theory makes a profound break, at the philosophical level, with the
calculus of variations. This explains why a number of new issues of central impor-
tance arise. For example, controllability (the very possibility of steering the state
to a given target set) becomes a key question, as well as stabilization and feedback
control (in which u is a function of x). Cost functionals become more flexible: they
can even be invented, in order to induce desired responses.

The issue that we turn to now is that of optimality, the one that is most closely
linked to the calculus of variations. We begin the discussion of the optimal control
problem by first introducing the reader to some standard terminology. We are given
an interval [a,b ], the dynamics function

f : [a,b ]×R
n×R

m → R
n,

as well as a subset U of R
m, the control set. A control is a measurable function on

[a,b ] with values in U . The state, or state trajectory, corresponding to the control u
refers to a solution x of the initial-value problem

x ′(t) = f
(
t, x(t), u(t)

)
, x(a) = x0 , t ∈ [a,b ] a.e. ,

where x0 ∈ R
n is a prescribed initial condition. Thus, x : [a,b ] → R

n is an arc (a
vector-valued function with absolutely continuous components). This differential
equation linking the control u and the state x is referred to as the state equation. We
wish to choose the control u generating the state x in such a way as to minimize a
cost J(x,u) defined by

J(x,u) = �
(

x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt ,

where Λ (the running cost) and � (the endpoint cost) are given functions. In so
doing, we must also respect the endpoint constraint x(b) ∈ E, where E, the target
set, is a prescribed subset of Rn.

It is common to refer to a couple (x,u) obtained as above as a process of the under-
lying control system ( f ,U). Thus, a process means a pair (x,u) consisting of an arc
x and a measurable function u which satisfy

x ′(t) = f
(
t, x(t), u(t)

)
, u(t) ∈ U, t ∈ [a,b ] a.e.

In summary then, here is the standard optimal control problem (OC):
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = f
(
t, x(t), u(t)

)
, t ∈ [a,b ] a.e.

u(t) ∈ U, t ∈ [a,b ] a.e.

x(a) = x0 , x(b) ∈ E.

(OC)

In this section, we shall take U to be bounded, and we posit the following standard
regularity assumptions on the data:

22.1 Hypothesis. (The classical regularity hypotheses) The function � is contin-
uously differentiable. The functions f and Λ are continuous, and admit derivatives
Dx f (t, x,u) and DxΛ(t, x,u) relative to x which are themselves continuous in all
variables (t, x,u).

These hypotheses, which are imposed globally for simplicity, imply that the cost
J(x,u) is well defined for any process. They do not imply that every measurable
control u generates a state arc x. We could make a linear growth assumption on the
dynamics function to guarantee this, but there is no need to do so at present.

Let (x∗ ,u∗) be a given process satisfying the constraints of (OC). We call it a local
minimizer provided that, for some ε > 0, for any other process (x,u) satisfying the
constraints, as well as ‖x− x∗‖ � ε , we have J(x∗ ,u∗) � J(x,u).1 It is also com-
mon to refer to a local minimizer (x∗ ,u∗) as an optimal (or locally optimal) process.
In this terminology, u∗ is an optimal control and x∗ is an optimal trajectory.

We do make one exception to the classical regularity context, for the sake of effi-
ciency. Instead of considering separately various cases in which the target set E is
either a point, the whole space, a smooth manifold, or a manifold with boundary, as
is often done, we simply take E, from the start, to be any closed set. In so doing, the
special cases will all be appropriately subsumed.

A good understanding of optimal control begins with the study of its ancestor, the
calculus of variations, which the reader is expected to be acquainted with to some
extent. (If necessary, we are quite willing to pause here while the reader scans at
least the first three or four chapters of Part III.)

The very terminology of optimal control is often inspired by its predecessor, an
example of this phenomenon being the following.

The Hamiltonian function Hη : [a,b ]×R
n×R

n×R
m → R associated to the prob-

lem (OC) is defined by

Hη(t, x, p,u) = 〈 p, f (t, x,u)〉−ηΛ(t, x,u).

1 As in the calculus of variations, the anonymous norm ‖x‖ always refers to the relevant supremum
norm, in this case sup t ∈ [a,b ] |x(t)|.
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The parameter η in this expression will usually be either 1 or 0, the normal and ab-
normal cases, respectively. When η = 1, we usually write H for H 1. The maximized
Hamiltonian of the problem2 is the function Mη defined by

Mη(t,x, p) = sup
u ∈U

Hη(t, x, p,u).

These functions play a role in writing the necessary conditions that an optimal pro-
cess must satisfy, a topic that we turn to now.

22.1 The maximum principle

The following seminal result dates from about 1960; it is known in the trade as the
Pontryagin maximum principle.

22.2 Theorem. Let the process (x∗ ,u∗) be a local minimizer for the problem (OC)
under the classical regularity hypotheses, and where U is bounded. Then there exists
an arc p : [a,b ] → R

n and a scalar η equal to 0 or 1 satisfying the nontriviality
condition (

η , p(t)
)
	= 0 ∀ t ∈ [a,b ],

the transversality condition

−p(b) ∈ η∇�
(

x∗(b)
)
+N L

E
(

x∗(b)
)
,

the adjoint equation for almost every t :

−p ′(t) = Dx Hη(t, x∗(t), p(t), u∗(t)
)
,

as well as the maximum condition for almost every t :

Hη(t, x∗(t), p(t), u∗(t)
)
= Mη(t, x∗(t), p(t)

)
.

If the problem is autonomous (that is, if f and Λ do not depend on t), then one may
add to these conclusions the constancy of the Hamiltonian: for some constant h,
we have

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
= h a.e.

Remarks.

(a) The maximum principle is a hybrid multiplier rule that combines conclusions of
stationarity (as in Theorem 9.1) and separation (as in Theorem 9.4). Its proof, not

2 We bow here to the usage which has come to prevail. It would be more accurate to refer to H as
the pre-Hamiltonian. The true Hamiltonian of the problem is in fact M. Ah well.
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an easy task, is postponed (§22.6). In the meantime, we shall strive to understand
its implications, and familiarize ourselves with a few of its variants.

(b) The adjoint equation may be expressed without using Hη , as follows:

−p ′(t) = Dx f
(
t, x∗(t), u∗(t)

)∗p(t)−ηΛx
(
t, x∗(t), u∗(t)

)
,

where the symbol ∗ denotes the transpose (or adjoint) of the Jacobian matrix
Dx f . This explains the provenance of the term “adjoint.” We refer to the arc p as
the costate; it is also known as the adjoint arc. The adjoint and state equations
may be expressed together as follows:

x ′ = Hη
p (t,x, p,u) , −p ′ = Hη

x (t,x, p,u) .

This resembles a classical Hamiltonian system of differential equations, but with
an extra control term present.

(c) We expect the reader to find the transversality condition rather familiar, in view
of our earlier results in the calculus of variations. When the set E is defined by
functional relations, such as equalities and inequalities, the transversality condi-
tion can be formulated equivalently in terms of multipliers; see below.

(d) In order to assert the necessary conditions of the maximum principle, it suffices,
unsurprisingly, that the regularity hypotheses 22.1 hold near x∗ and U ; that is, on
a set of the form

{
(t, x,u) : t ∈ [a,b ] , |x− x∗(t)|< ε , dU(u)< ε

}
.

But we shall go well beyond this later in formulating more refined hypotheses
that bear only upon the points (t,x,u) for which u lies in U . Another issue that
will be addressed is that of unbounded controls.

(e) The presence of the “normality multiplier” η in the above statement of the max-
imum principle is familiar from the various forms of the multiplier rule seen
earlier (for example, Theorem 9.1). As before, the abnormal case arises when the
constraints are so restrictive (tight) that, of themselves, they identify the optimal
solution regardless of the cost. (An example is given in Exer. 22.4 below.)

Note that in the abnormal case η = 0, the two components of the cost, � and Λ , do
not explicitly appear in the conclusions of the maximum principle. The following
result asserts that this pathology does not happen when the final state value x(b) is
(locally) unconstrained.

22.3 Corollary. In the context of Theorem 22.2, suppose that E = R
n, or more

generally, that x∗(b) ∈ int E. Then the maximum principle holds with η = 1.

Proof. Let us suppose that the maximum principle holds with η = 0, and obtain
from this a contradiction. The transversality condition implies that p(b) = 0, since,
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when x∗(b) ∈ int E, we have N L
E (x∗(b)) = {0}. When η = 0, the adjoint equation

reduces to the following linear differential equation for p:

−p ′(t) = Dx f
(
t, x∗(t), u∗(t)

)∗p(t) .

But any solution p of such a linear differential equation that vanishes at one point
necessarily vanishes everywhere (by Gronwall’s lemma, Theorem 6.41). Then the
nontriviality condition of Theorem 22.2 is violated: contradiction. 
�

22.4 Exercise. Consider the following problem, in which n = m = 2 and Λ = 0:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,y, u,v) = y(1)

subject to
(x ′(t), y ′(t)) = (u(t),v(t)), t ∈ [0,1] a.e.

(u(t),v(t)) ∈ U := {(u,v) : u2 + v2 � 1} , t ∈ [0,1] a.e.

(x(0), y(0)) = (0,0) , x(1) = 1.

Show that (in view of the boundary conditions) the optimal control is the only feasi-
ble one: (u(t),v(t)) = (1,0) a.e. Prove that the maximum principle (Theorem 22.2)
holds only in abnormal form. 
�

We now record an alternative statement of the maximum principle, one that ex-
presses nontriviality in a different way.

22.5 Proposition. The conclusions of Theorem 22.2 are equivalent to the existence
of a scalar η � 0 and an arc p that satisfy the modified nontriviality condition
η+‖ p‖= 1, together with the other conclusions.

Proof. Suppose first that we have the assertions of Theorem 22.2. Then the scalar
r := η+‖ p‖ is positive, and we can redefine η and p as follows:

η̃ = η/r , p̃ = p/r .

Then (η̃ , p̃) satisfies all the other conclusions, as well as η̃+‖ p̃‖ = 1.

Conversely, let η � 0 and p satisfy η + ‖ p‖ = 1, together with the other conclu-
sions of the maximum principle. If η > 0, then we redefine again:

η̃ = 1, p̃ = p/η ,

and this yields a pair (η , p) in the sense of Theorem 22.2. If η = 0, then ‖ p‖= 1,
and the only thing to check is that p(t) is never 0. This follows from Gronwall’s
lemma, as shown in the proof of Corollary 22.3. 
�

Treating time as a state component. There is a well-known device by which,
under certain conditions, the time variable t can be “absorbed into the dynamics” by
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a reformulation. We explain this now, in the context of the problem (OC) in its full
non autonomous generality.

Let us define a new (initial) state component z lying in R, so that the new augmented
state x+ corresponds to (z ,x) in R

n+1. We impose the additional dynamics z ′ = 1,
and we redefine the data of the optimal control problem as follows:

f+(z ,x,u) =
(
1, f (z ,x,u)

)
, Λ+(z ,x,u) = Λ(z ,x,u) ,

U+ = U, x0+ = (a,x0), E+ = R×E .

Then an augmented process (x+ ,u) is admissible for the new augmented problem
(where x+ = (z ,x)) if and only if z(t) = t on [a,b ] and (x,u) is an admissible
process for the original problem.

So we have done nothing but relabel the time t, it seems (by absorbing it in the
dynamics and calling it z). However, the new augmented problem is autonomous.
Thus, the extra conclusion asserted by the maximum principle in that case, the con-
stancy of the Hamiltonian, is available. To assert this, however, we require that f+
and Λ+ be differentiable with respect to z; that is, that f and Λ be differentiable
with respect to t, which was not in the original hypotheses. This explains the need
for the extra hypothesis in the corollary below:

22.6 Corollary. In addition to the hypotheses of Theorem 22.2, suppose that f and
Λ admit derivatives with respect to t that are continuous in all variables (t, x,u).
Then we may add to the conclusions the following: for every t ∈ [a,b ], we have

Mη(t,x∗(t), p(t)
)
+

∫ b

t
H η

t
(
s, x∗(s), p(s), u∗(s)

)
ds = Mη(b, x∗(b), p(b)

)
,

where H η
t refers to the partial derivative of H η with respect to the t variable.

22.7 Exercise.

(a) Derive the corollary, using the reformulation device described above.

(b) Show that the conclusion coincides with constancy of the Hamiltonian as ex-
pressed in Theorem 22.2 when the problem is autonomous. 
�

The reformulation method is inappropriate when the t dependence of f and Λ is not
differentiable; we shall see such cases later. A further type of t dependence that is not
reducible in this way occurs when the control set U depends on t (even “smoothly”).
If t is interpreted as a new state component z , then the constraint becomes u ∈ U(z),
in which the control set depends on the state. We examine later (§25.4) this type
of mixed constraint, which makes the problem more complex; it is not covered by
Theorem 22.2.
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The transversality condition. In the context of Theorem 22.2, suppose that the
target set E is defined by

E =
{

x ∈ S : g(x) � 0, h(x) = 0
}
, (1)

where g and h are continuously differentiable functions with values in R
k1 and R

k2

respectively, and S is a closed subset of Rn. Then the statement of the maximum
principle can be formulated so as to make g and h appear explicitly in the transver-
sality condition.

22.8 Corollary. Let (x∗ ,u∗) be a local minimizer for the problem (OC) under the
classical regularity hypotheses, where U is bounded and E is given by (1). Then
there exist a costate arc p : [a,b ] → R

n, a scalar η equal to 0 or 1, and multipli-
ers γ ∈ R

k1 , λ ∈ R
k2 satisfying the nontriviality, positivity, and complementary

slackness conditions
(
η , p(t), γ , λ

)
	= 0 ∀ t ∈ [a,b ] , γ � 0 , 〈γ , g(x∗(b))〉= 0 ,

together with the explicit transversality condition

−p(b) ∈ η∇�
(

x∗(b)
)
+Dx

{
〈γ , g〉+ 〈λ ,h〉

}(
x∗(b)

)
+N L

S
(

x∗(b)
)
,

as well as the adjoint equation and the maximum condition.

Proof. Suppose first that the natural constraint qualification for the set E is satisfied
at x∗(b) (see Exer. 11.40). Then we simply invoke Theorem 22.2 directly, and the
transversality condition of that theorem yields the explicit transversality condition,
in view of the available characterization of N L

E .

Otherwise, if that constraint qualification fails, then there exist γ in R
k1 and λ in

R
k2 , not both zero, with γ � 0 and 〈γ , g(x∗(b))〉= 0, such that

0 ∈ Dx
{
〈γ , g〉+ 〈λ ,h〉

}(
x∗(b)

)
+N L

S
(

x∗(b)
)
.

Then we simply take η = 0 and p ≡ 0 to obtain all the required conclusions. 
�

We remark that a corresponding version of Cor. 22.8 exists when E is defined by a
constraint of the form ϕ(x)∈ Φ ; then, it is a matter of using Theorem 11.38.

The calculus of variations. An important special case of the optimal control prob-
lem (OC) is the one in which the control u coincides with the derivative x ′; that is,
the case in which the governing dynamics are x ′ = u, so that the function f is given
by f (t, x,u) = u. If, in addition, we take U = R

n, then the optimal control problem
(OC) reduces to a version of the basic problem in the calculus of variations, which
we have studied in depth in Part III:

min
∫ b

a
Λ
(
t, x(t), x ′(t)

)
dt : x ∈ AC[a,b ], x(a) = x0 , x(b) ∈ E .
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We have supposed (so far) that the control set U is bounded, which is not the case
here. Let us ignore this hypothesis for the moment, and assume that the maxi-
mum principle (Theorem 22.2) applies. Then we see that, in this setting, it must
hold normally: with η = 1. For otherwise, the maximum condition asserts that
〈 p(t), u〉 � 〈 p(t), x∗′(t)〉 ∀u, whence p ≡ 0, and nontriviality is violated.

We then observe that with η = 1, the maximum condition is equivalent to the
Weierstrass condition (see Theorem 15.14). If Λ is differentiable in v, it also im-
plies p(t) = Λv(t, x∗(t), x∗′(t)) a.e., so that the adjoint and state equations together
yield (

p ′(t), p(t)
)
= ∇x,vΛ

(
t, x∗(t), x∗′(t)

)
.

The reader will recognize the Euler equation in du Bois-Raymond form (see §15.1).
As for the transversality condition, it already has the form that we introduced in
the calculus of variations (see Theorem 18.1). Finally, in the autonomous case, the
constancy of the Hamiltonian coincides with the Erdmann condition (see Prop. 14.4
or Theorem 18.13).

We may summarize this discussion by saying that, for the basic problem, the max-
imum principle encapsulates all the first-order necessary conditions obtained in the
calculus of variations. For more complicated problems, where x ′ and u differ, and
in which U is not the whole space, it can be shown that, in certain cases, the con-
clusions of the maximum principle coincide with those of the multiplier rules of the
type encountered in Chapter 17. In general, however, the maximum principle goes
beyond the classical multiplier rule; for example, the control set U may consist of
finitely many points.

Apart from its mathematical generality, however, an equally important aspect of the
maximum principle lies in its very formulation of the underlying problem, which
emphasizes the control aspect, the control system ( f ,U), and the possibility of in-
fluencing a system of differential equations for certain purposes.

22.9 Example. In theory, the use of the maximum principle to characterize optimal
processes is based on the following idea: we use the maximum condition to express
the optimal control value u∗(t) as a function of (x∗(t), p(t)). Then we substitute this
into the state and adjoint differential equations. There results a system of 2n differ-
ential equations. These are accompanied by a combination of prescribed endpoint
conditions and transversality conditions which, taken together, amount to 2n bound-
ary conditions. In principle, then, the function (x∗, p) is determined, and therefore
the optimal process as well.

We now illustrate the use of this (admittedly ideal) procedure in a simple case.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize J(x,u) =
∫ 3

0

(
x(t)+u(t)2/2

)
dt

subject to x ′(t) = u(t) ∈ [−1,1] a.e.

x(0) = 0.
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Note that, in this version of (OC), we have

n = m = 1, U = [−1,1], E = R.

Later results on existence will imply that a (global) minimizing process (x∗,u∗)
exists; let us proceed to apply the maximum principle in order to identify it.

Because the endpoint x(3) is free (E = R ), we know from Cor. 22.3 that the max-
imum principle holds in normal form (η = 1). Thus the appropriate Hamiltonian is
given by

H(x, p,u) = pu− x−u2/2 .

The maximum condition therefore concerns the maximization over the set [−1,1]
of the (strictly concave) function u �→ pu−u2/2. The necessary and sufficient con-
dition for this maximization is the stationarity condition

p−u∗ ∈ N[−1,1](u∗) ,

which characterizes the unique maximizing value u∗. When | p | � 1, this is satisfied
by taking u∗ = p ∈ [−1,1]. When p > 1, then p− u∗ is necessarily positive, so
that u∗ must be 1 (by the stationarity); similarly, p < −1 implies u∗ = −1. We
summarize:

u∗(t) =

⎧
⎪⎨

⎪⎩

−1 if p(t)<−1

p(t) if −1 � p(t) � +1

+1 if p(t)>+1.

The adjoint equation affirms that −p ′(t) = Hx = −1, and transversality provides
p(3) = 0. We deduce that p(t) = t − 3, t ∈ [0,3 ]. These facts yield the optimal
control u∗:

u∗(t) =

{
−1 if 0 � t < 2

t −3 if 2 � t � 3.

Of course, this determines the optimal state trajectory:

x∗(t) =

{
−t if 0 � t < 2

(t −3)2/2−5/2 if 2 � t � 3.

We remark that in the absence of the control constraint in the problem (that is, when
we take U = R), the solution is given by x∗′ = u∗ = t − 3 ∀ t (see Exer. 14.20), a
smoother function than the optimal state x∗ above. This illustrates the general rule
that optimal trajectories in control are less likely to be smooth than in the calculus
of variations. 
�

The deductive and inductive methods In seeking to solve rigorously the optimal
control problem (OC), as with any optimization problem, we can argue deductively:
we know with certainty (from existence theory) that a solution exists; we invoke
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necessary conditions whose applicability is rigorously justified; we find the best
(possibly the unique) candidate identified by the necessary conditions; we conclude
that it’s the solution. Any weak link in this chain of reasoning leads to an answer
that is, in essence, no more than a guess. In the absence of some link in the chain,
however, we can attempt, in various alternative ways, to prove that a given candidate
is indeed a solution: this is the inductive approach.

It follows that if the maximum principle is being used in a deductive context, we
must have a version of it that has been proved for the same class of controls that
is used in existence theory. This motivates the need to consider measurable con-
trols, and explains why a version of the maximum principle limited to continuous
or piecewise continuous controls (for example) is of little interest. Assuming the
regularity of the solution is just as logically fatal as assuming its existence.

It is true that in most of the worked-out examples that one meets, the optimal control
turns out to be piecewise continuous. In Example 22.9, u∗ is actually continuous. It
is important to realize, however, that the argument used to identify u∗ was not based
upon any such assumption being made prior to the analysis. Imagine for a moment
that we knew the validity of the maximum principle only for piecewise continuous
controls. It may appear that little is lost in restricting attention to this class. But in
fact, the effect is drastic, since we are no longer able to reason deductively. In the
example above, the only assertion one could make would be the following condi-
tional one: if there is an optimal control among the class of piecewise continuous
controls, then it is the one we have found.

We discuss existence theory (and regularity) later on in some detail, as well as var-
ious inductive methods. Throughout the rest of this chapter, however, the focus re-
mains on necessary conditions.

22.2 A problem affine in the control

In this section, we propose to study the following special case of the problem (OC),
in which n = m = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ T

0

{
x(t)+u(t)

}
dt

subject to x ′(t) = x(t)+1− x(t)u(t), t ∈ [0,T ] a.e.

u(t) ∈ U = [0,3 ] , t ∈ [0,T ] a.e.

x(0) = 0.

Note that the terms containing the control variable are linear in u. Optimal control
problems with this feature have solutions which exhibit certain characteristics, some
of which we shall discover in the analysis.
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A possible interpretation of the problem is that of limiting the growth of the state:
perhaps x measures the quantity of a weed whose presence is inevitable, but that
we wish to minimize. The effort cost of reducing x is measured by u, which we
also have interest in minimizing. The problem is how to balance these contradictory
goals. Note that the term xu in the dynamics reflects the fact that a given effort (rate)
u is more productive (or actually, destructive) when more weeds are present; that is,
when x is large.

We shall take the planning horizon T sufficiently long, to avoid merely short-term
considerations; to be specific, it turns out that T > 2 ln2 is relevant in this regard, as
we shall see. It follows readily from existence theory (see the remark on p. 483) that
an optimal process (x,u) exists; let us admit this for now. The reader will note that
x(t) > 0 for t > 0, in view of the differential equation governing the state (which
implies x ′ > 0 when x is near 0).

The maximum principle, in the form of Theorem 22.2, is applicable to our problem;
it holds in normal form (η = 1) since the endpoint of the state is free. We proceed
to show that it identifies a unique process, which, perforce, must be optimal (the
deductive method at work). We write the Hamiltonian (with η = 1) and record the
adjoint equation:

H(x, p,u) = p(x+1− xu)− (x+u), −p ′ = p− pu−1.

Let us define a function σ as follows: σ(t) = 1+ x(t)p(t). This is simply the coef-
ficient of −u in the Hamiltonian. Then the maximum condition implies that (almost
everywhere) we have

u(t) =

{
0 if σ(t)> 0

3 if σ(t)< 0.
(1)

The role of σ is that of a switching function. Note that σ is absolutely continuous,
and that u(t) is not immediately determined when σ(t) = 0. In problems in which
the control u enters linearly, as in this one, the properties of the switching function
usually play a central role in the analysis; the arguments employed below are typical
of the ones that arise.

Using the expressions for x ′ and p ′ given by the state and adjoint differential equa-
tions, we find

σ ′(t) = x(t)+ p(t) a.e. (2)

Thus σ is continuously differentiable. From the transversality condition, we have
p(T ) = 0, and we have imposed x(0) = 0, whence

σ(0) = σ(T ) = 1. (3)

The above implies that initially, and also near T , the switching function is positive
and the optimal control is zero. Could u be identically zero? (Or more precisely,
equal to 0 a.e.?) If so, solving the adjoint and state equations yields
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x(t) = e t −1, p(t) = 1− eT−t , σ(t) = eT{e−t −1+ e t−T }
.

But this expression for σ(t) is strictly negative at t = T/2, because T > 2 ln2 by
hypothesis. This is inconsistent with u = 0, in light of (1). (Thus, only in the short
term can it be optimal to do nothing; that is, when T is small.)

Note: This proves that there is a first point τ1 ∈ (0,T ) for which σ(τ1) = 0.

22.10 Proposition. Let x(t)< 1 for some t ∈ (0,T ). Then we have σ(t)> 0.

Proof. We argue by contradiction: suppose that σ(t) � 0. Then 1+ x(t)p(t) � 0
and

σ ′(t) = x(t)+ p(t) � (x(t)2 −1)/x(t)< 0.

It follows that σ < 0 on an open interval (t, t + ε). Since σ(T ) = 1, there is a first
τ > t at which σ(τ) = 0 holds. Clearly, we must have σ ′(τ) � 0.

In (t ,τ), then, we have σ < 0, whence u = 3 and x ′ =−2x+1. Since x(t)< 1 (by
assumption), we deduce from this differential equation that

x(s) � max (1/2 , x(t))< 1, s ∈ [ t ,τ ].

However, the conditions σ ′(τ) � 0 and σ(τ) = 0 together imply x(τ) � 1, which
yields the desired contradiction. 
�

Note: It follows that for the time τ1 defined previously, we have x(τ1) � 1.

22.11 Proposition. Let x(t) > 1 for some t ∈ (0,T ). Then for s ∈ (t ,T ] we have
σ(s)> 0, and consequently u(s) = 0 a.e.

Proof. Observe that when x > 1/2 and σ < 0, then (locally) u = 3 and x ′ < 0 a.e.
It follows that for some t̄ < t , we must have

x(t̄ )> 1 and σ(t̄ ) � 0 .

Now suppose that the conclusion of the proposition is false. We shall derive a con-
tradiction, considering first the case in which σ(t̄ )> 0.

Then there exists a first τ > t̄ for which σ(τ) = 0; we must have σ ′(τ) � 0. In
(t̄ ,τ) we have σ > 0, whence u = 0 and x is increasing. Thus we have x(τ) > 1.
Combined with σ(τ) = 0, this gives σ ′(τ)> 0, the required contradiction.

Consider finally the case σ(t̄ ) = 0. This equality, combined with x(t̄ ) > 1, implies
σ ′(t̄ ) > 0. But then, for a positive ε sufficiently small, we have x(t̄ + ε) > 1 and
σ(t̄ + ε) > 0. The argument of the first case above now applies (for t̄ replaced by
t̄ + ε), and yields the required contradiction. 
�

Note: The proposition implies that once x(t)> 1, this persists thereafter, with cor-
responding control value u = 0 a.e. We deduce from this that x(τ1) = 1, as follows.
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We already know that x(τ1) � 1, and if we had x(τ1) > 1 then we would have
u = 0 a.e. both before and after τ1 , a possibility that has been ruled out.

The same reasoning shows that there cannot be points τ1 + ε with ε > 0 arbitrarily
small such that x(τ1 + ε)> 1. We now examine the opposite possibility.

22.12 Proposition. There is no t > τ1 for which x(t)< 1.

Proof. Suppose to the contrary that there is such a value of t . Then there is a greatest
value τ < t for which x(τ) = 1. There must be a set S of positive measure contained
in the interval (τ , t) such that x(s) < 1 and x ′(s) < 0 for s ∈ S. But according to
Prop. 22.10, we have x ′ > 0 a.e. when x < 1: contradiction. 
�

It follows from the above that there cannot be points τ1 + ε with ε > 0 arbitrarily
small such that x(τ1 + ε)< 1.

Conclusion. As a consequence of the above, we deduce that there is a maximal
interval of the form [τ1 ,τ2 ] (with τ2 > τ1) on which x is identically 1; we must
have x ′ = 0 on that interval, which implies u = 2 a.e. there. On the interval [τ1 ,τ2 ],
the switching function σ must vanish; [τ1 ,τ2 ] is referred to as a singular interval.
We necessarily have τ2 < T , since σ(T ) = 1. Subsequently, we have x > 1 and
u = 0 a.e. on the interval (τ2 ,T ].

We now have a clear qualitative picture of the optimal process (see Fig. 22.1). The
optimal control turns out to be piecewise constant, with two switches.

Fig. 22.1
The turnpike solution

The privileged value x = 1 corresponds to what is called a turnpike, which reflects
long-term optimality. The optimal strategy consists of heading to the turnpike as
fast as possible (here, with u = 0) and then staying there, until the terminal time is
approached, at which point short-term considerations take over, and no further effort
is applied.
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There remains to calculate τ1 and τ2 ; this information is also implicit in the neces-
sary conditions. As for τ1, it is simply the first time at which x = 1, using u = 0.
We find, from the differential equation for the state, τ1 = ln2.

Let us now calculate τ2 . Note that in (τ1 ,τ2), we have p = −1 (as follows from
σ = 0 and x = 1). On [τ2 ,T ], however, we have

p ′ = 1− p , p(T ) = 0 =⇒ p(t) = 1− eT−t , t ∈ [τ1 ,τ2 ].

The point τ2 is then seen to be the value of t for which 1− eT−t = −1: we find
that τ2 = T − ln2. The reader will observe that when T is large, the optimal state
trajectory is at the turnpike value most of the time.

22.3 Problems with variable time

An important feature of certain optimal control problems is that the underlying in-
terval is itself a choice variable. We refer to a problem in which the interval [a,b ]
is not prescribed, but has some possibility of varying, as a variable-time problem.
A canonical example of this type is the minimal-time problem. It consists of finding
the process (x,u) on an interval [0,τ ] (where τ is not specified beforehand) which
attains x(τ) = 0, and where τ is the least time for which this is possible. (Thus we
are seeking the quickest trajectory to the origin.)

We consider now the following variable-time optimal control problem (VT), in
which the terminal time τ may be free to vary:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J(τ ,x,u) = �
(
τ , x(τ)

)
+

∫ τ

0
Λ
(

x(t), u(t)
)

dt

subject to τ � 0

x ′(t) = f
(

x(t), u(t)
)
, t ∈ [0,τ ] a.e.

u(t) ∈ U, t ∈ [0,τ ] a.e.

x(0) = x0 ,
(
τ , x(τ)

)
∈ S.

(VT)

We have underlined the dependence on the horizon τ (as it is sometimes called) by
writing J(τ ,x,u); the endpoint cost function � now depends on the horizon τ as well.
Observe that problem (VT) reduces to a fixed-time problem of the type considered
earlier if S is of the form {T }×E: then the horizon is explicitly prescribed. At the
other extreme (no restriction on terminal time) is the minimal-time problem, which
corresponds to taking S = R+×{0} , � ≡ 0, Λ ≡ 1. (It is equivalent to take � ≡ τ
and Λ ≡ 0.) We stress that f and Λ are autonomous here: independent of t. In
this case, there is no loss of generality in taking the initial point of the underlying
interval (formerly known as a) to be 0, as we have done.
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Basic hypotheses. In the theorem below, �, f and Λ are assumed to satisfy the
same classical regularity hypotheses 22.1 as before. We also continue to assume
that U is bounded. Thus, the cost integral is well defined for any process satisfying
the problem constraints.

Before stating necessary conditions for the problem (an appropriately modified ver-
sion of the maximum principle), we need to extend the concept of local minimum
to variable-time problems, which we now do. To measure the “closeness” of an arc
x1 defined on an interval [0,τ1] to that of an arc x2 defined on an interval [0,τ2 ],
we simply extend each of the arcs to [0,∞) by constancy; thus, for example, we
set x1(t) = x1(τ1) ∀ t � τ1. This convention induces a meaning for the expression
‖x1 − x2 ‖, which here refers to maxt � 0 |x1(t)− x2(t)|.

Let the process (x∗ ,u∗), defined on the interval [0,τ∗ ] (τ∗ > 0), satisfy the con-
straints of (VT). We say it is a local minimizer if, for some ε > 0, for all processes
(x,u) on an interval [0,τ ] satisfying the constraints of (VT) as well as

|τ− τ∗ | � ε and ‖x− x∗‖ � ε ,

we have J(τ∗, x∗, u∗) � J(τ , x, u).

In the following variable-time maximum principle, the Hamiltonian Hη and the
maximized Hamiltonian Mη are defined exactly as before:

Hη(x, p,u) = 〈 p, f (x,u)〉−ηΛ(x,u), Mη(x, p) = sup
u ∈U

Hη(x, p,u) .

22.13 Theorem. Let the process (x∗ ,u∗), defined on the interval [0,τ∗] (τ∗ > 0) be
a local minimizer for the problem (VT) under the hypotheses above. Then there ex-
ists an arc p : [0,τ∗ ]→R

n and a scalar η equal to 0 or 1 satisfying the nontriviality
condition (

η , p(t)
)
	= 0 ∀ t ∈ [0,τ∗ ] ,

the adjoint equation for almost every t ∈ [0,τ∗ ]:

−p ′(t) = Dx Hη(x∗(t), p(t), u∗(t)) ,

as well as the maximum condition: for almost every t ∈ [0,τ∗ ],

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
,

and such that, for some constant h, we have constancy of the Hamiltonian:

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
= h a.e.,

and the transversality condition
(

h ,−p(τ∗)
)
∈ η∇�

(
τ∗, x∗(τ∗)

)
+N L

S
(
τ∗, x∗(τ∗)

)
.
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Note that the constant value h of the Hamiltonian now figures in the transversal-
ity condition. When S is of the form {T }×E (as was the case earlier), then the
transversality condition yields no information on h, and reduces to precisely the
transversality condition of Theorem 22.2. At the other extreme, when S is of the
form R+×E and � does not depend on τ (as in the minimal-time problem), it yields
the precise value h = 0. Theorem 22.13 will turn out to be a special case of a more
general result (see Theorem 22.22).

22.14 Example. (Soft landing) The following minimal-time problem is an oblig-
atory feature of every introduction to optimal control; it is variously known as the
robot car, double integrator, or soft landing problem. It is the simplest interesting
case of the general minimal-time problem.

Adhering to tradition, then, we consider the dynamics

x ′′(t) = u(t) ∈ [−1,+1] ,

the goal being to find the control u that steers the initial state /velocity pair (x0 ,v0)
to rest at the origin (that is, x = x ′ = 0) in least time. To express the problem in
the standard formulation, which involves only first-order differential equations, we
must introduce another explicit state variable, the velocity y, so that the second-order
equation above takes the form of a first-order system:

[
x ′(t)
y ′(t)

]
=

[
0 1
0 0

][
x(t)
y(t)

]
+

[
0
1

]
u(t) , u(t) ∈ [−1,+1].

Thus we are dealing with a linear system, with n = 2 and m = 1. In the notational
context of problem (VT) (p. 449), we may take

�(τ ,x) = τ , Λ = 0 , S = R+×{(0,0)} .

We now apply Theorem 22.13. The Hamiltonian is H η(x,y, p,q,u) = py+qu, so
that the adjoint system is given by

p ′(t) = 0 , −q ′(t) = p(t).

It follows that p(t) is a constant p0 , and that q is an affine function. The constancy
of the Hamiltonian H yields p0 y(t)+ |q(t)| = h for some constant h. Transversality
implies h = η . It follows that if q is identically zero, then so is p. But then we would
have h = η = 0, which violates nontriviality. We conclude that q is not identically
zero, and thus (being affine) changes sign at most once in [0,τ ].

The maximum condition then implies that the optimal control u is bang-bang; that
is, u = ±1 (depending on the sign of q). More explicitly, the optimal control is
equal to 1 almost everywhere up to a certain point, then −1 a.e. thereafter, or else
the reverse. In other words, u is piecewise constant, with values in {−1,+1}, and
exhibits at most one change in sign.
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The trajectories (x,y) for the constant control value u = 1 lie on parabolas of the
form 2x = y2 + c, since we have 2x ′ − 2yy ′ = 0; the movement is upward since
y ′ = 1. Similarly, the trajectories for u = −1 correspond to (leftward opening)
parabolas 2x = −y2 + c, with downward motion (see Fig. 22.2).

Fig. 22.2 Sample trajectories for u ≡ +1 and for u ≡ −1, and an optimal trajectory starting from
the positive y-axis.

There is a unique strategy that combines two such displacements so as to reach the
origin. Beginning, for example, at a point on the positive y-axis (as indicated on
Fig. 22.2), we must follow a downward parabola (u =−1) until its intersection with
the unique upward parabola passing through (0,0); then we proceed to follow that
one to the origin (u =+1).

The overall conclusion may be usefully expressed in terms of the switching curve Σ

Σ =
{
(−y2/2 , y) : y � 0

} ⋃ {
(y2/2 , y) : y � 0

}
,

defined as the union of the two parabolic halves that are used to attain the origin.
Then the (supposedly) time-optimal strategy u∗ can be summarized in synthesized
or feedback terms as follows (see Fig. 22.3):

u∗ =

{
+1 if (x,y) lies to the left of Σ
−1 if (x,y) lies to the right of Σ .

It is further understood3 here that on the upper branch of Σ , one uses u = −1, and
on the lower branch, u =+1.

3 While it is clear enough how this summarizes optimal behavior, the exact meaning of this feed-
back law as a dynamical system is somewhat unclear. The subject of “discontinuous feedback”
addresses such issues.
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Fig. 22.3 The switching curve and the time-optimal feedback synthesis

We conclude that if time-optimal trajectories exist (for every initial condition), then
they are described as above. It so happens that an existence theorem to be seen later
does apply to this example (namely Theorem 23.13, but let’s take our word for it for
now). Given this, the deductive method assures us that we have, in fact, identified
the optimal trajectories.4

At this point, it is a matter of routine calculation to derive an explicit formula for
the corresponding optimal time as a function of the initial point (x,y). Letting this
optimal time be denoted T (x,y), we find:

T (x,y) =

⎧
⎨

⎩

−y +
√

2y2 −4x if (x,y) lies to the left of Σ

+y +
√

2y2 +4x if (x,y) lies to the right of Σ .

It is of interest (and not difficult) to show that this minimal-time function T is contin-
uous, and that T is smooth on the open set which is the complement of the switching
curve Σ . However, T is nondifferentiable, and indeed, fails to be locally Lipschitz,
at points on Σ . 
�

22.15 Exercise. (Very soft landing) Consider the system

x ′′′(t) = u(t) ∈ [−1,1] ,

and the problem of steering the state to rest at 0 in minimal time T , in the sense that
the position x, the velocity x ′, and the acceleration x ′′ must all equal 0 at T . Show
that an optimal control is bang-bang with at most two switches. 
�

4 We should mention that minimal-time problems with linear dynamics, of which the soft land-
ing problem is but one example, can be studied on a systematic basis using time reversal and a
technique called “backing out of the origin.” See Lee and Markus [30].
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22.4 Unbounded control sets

We return to the standard optimal control problem (OC) (p. 437), under the same
classical regularity hypotheses as before, but now without assuming that the con-
trol set U is bounded. There is a slight complication in this extended setting: when
u is unbounded, the integral term in the cost (that is, the integral of the function
t �→ Λ(t, x(t), u(t))) may not be well defined. We deal with this by assigning an
appropriate meaning to the word “admissible.”

An admissible process for (OC) is one that satisfies the constraints of the problem,
and for which the cost functional J(x,u) is well defined. (This second requirement
was automatically satisfied previously, when U was taken to be bounded.) This con-
vention, which interprets admissibility quite permissively, is always used from now
on. It allows us to discuss optimal control problems without imposing additional
structural hypotheses to guarantee that certain integrals exist, while being consis-
tent with such hypotheses if we wish to use them.

The meaning of local minimum is adapted to this new nomenclature in the natural
way: We say that the process (x∗ ,u∗) is a local minimizer for (OC) provided that
it is admissible, and that, for some ε > 0, for any other admissible process (x,u)
satisfying ‖x− x∗‖ � ε , we have J(x,u) � J(x∗ ,u∗).

When the control set U is unbounded, the maximum principle (Theorem 22.2) fails
unless a compensating assumption is made. We shall use one that is reminiscent of
the Tonelli-Morrey growth condition in the calculus of variations.

22.16 Hypothesis. There exist ε > 0, a constant c, and a summable function d such
that, for almost every t ∈ [a,b ], we have

|x− x∗(t)| � ε =⇒
∣
∣Dx( f ,Λ)

(
t, x, u∗(t)

)∣∣ � c
∣
∣( f ,Λ)

(
t, x, u∗(t)

)∣∣+d(t) .

(Recall that the norm |M | of a k× � matrix M is defined to be the Euclidean norm
of its entries viewed as an element of Rk �.)

Let us observe that this condition concerns only the control u∗, and is localized
around x∗. Many systems satisfy globally a structural hypothesis of the type

|Dx f (t, x,u)|+ |DxΛ(t, x,u)| � c{| f (t, x,u)|+ |Λ(t, x,u)|}+d(t) ,

or, at least, satisfy this whenever x is restricted to a bounded set and u lies in U .
Evidently, when this is the case, Hypothesis 22.16 cannot help but hold. Another
instance of note concerns bounded controls: under classical regularity, Hypothesis
22.16 automatically holds if u∗ happens to be bounded: take c = 0 and d(t) a suffi-
ciently large constant.5 Thus, the next result subsumes Theorem 22.2.

5 This is the compensating assumption used by Pontryagin and his collaborators.
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22.17 Theorem. Let (x∗ ,u∗) be a local minimizer for (OC), under the classical
regularity hypotheses, where U is not necessarily bounded. If Hypothesis 22.16
holds, then the conclusions of Theorem 22.2 are satisfied.

As with the other variants of the classical maximum principle, we shall derive this
theorem later from the extended maximum principle of §22.6. In the meantime, we
illustrate its use by obtaining as an immediate consequence the isoperimetric mul-
tiplier rule stated in Chapter 17. The proof illustrates the well-known (but useful)
technique of “absorbing an integral into the dynamics.”

22.18 Corollary. Theorem 17.9 holds.

Proof. We augment the state x by an additional coordinate y, and introduce the
augmented control system

[x ′(t), y ′(t)] = f+
(
t, x(t), y(t), u(t)

)
:=

[
u(t),ψ

(
t, x(t), u(t)

)]
, u(t) ∈ U := R

n.

Consider the corresponding augmented problem of type (OC), in which we set

Λ+(t, x,y,u) = Λ(t, x,u) ,
(

x(a), y(a)
)
= (A,0) ,

E =
{
(B,0)

}
, �+

(
x(b), y(b)

)
= 0 .

(The reader will observe that this is where the isoperimetric constraint is absorbed by
the augmented dynamics: it corresponds to y(a) = 0, y(b) = 0.) Now define

y∗(t) =
∫ t

a
ψ(s, x∗(s), x∗′(s))ds , u∗(t) = x∗′(t) .

It is a simple bookkeeping exercise to verify that the augmented process (x∗ , y∗ , u∗)
provides a local minimum for the augmented problem. Furthermore, Hypothesis
22.16 (in the context of this augmented problem) is equivalent to the structural
growth hypothesis of Theorem 17.9, so that Theorem 22.17 may be applied. It is
then a routine matter to show that its conclusions translate into the stated ones for
the original isoperimetric one. 
�

22.19 Example. (and Exercise) We examine now a type of problem in which un-
bounded control sets are a natural feature. The linear-quadratic regulator refers to
the following problem that arises in engineering applications:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ T

0

1
2 〈Qu(t), u(t)〉dt

subject to x ′(t) = Ax(t)+Bu(t), t ∈ [0,T ] a.e.

u(t) ∈ U := R
m, t ∈ [0,T ] a.e.

x(0) = x0 , x(T ) = xT .

(LQR)
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We assume that the m×m matrix Q is positive definite and symmetric. The n×n
matrix A and the n×m matrix B are also given, together with the horizon T > 0
and the prescribed endpoints x0, xT ∈ R

n. The usual interpretation of the problem
is one of seeking least-energy transfer of the state between prescribed values.

Under these hypotheses, standard existence results assure us that an optimal process
(x∗ ,u∗) exists (see Theorem 23.11). Since the constraints are linear and the cost is
strictly convex, the solution (x∗ ,u∗) of (LQR) is unique. (This will also result from
the analysis below.) But we do not know (yet) that u∗ is bounded. It is an advantage
of Theorem 22.17 that it does not require this assumption.

• Prove that Hypothesis 22.16 is satisfied.

In view of this, and because the classical regularity hypotheses hold, it follows that
Theorem 22.17 applies, so that the conclusions of the maximum principle are avail-
able to us. The Hamiltonian is given by

Hη(t,x, p,u,η) = 〈 p, Ax+Bu〉− η
2
〈Qu,u〉.

The adjoint equation of the maximum principle is −p ′(t) = A∗p(t), a differential
equation whose solution is of the form p(t)= e−A∗t p0 (matrix exponential) for some
p0 ∈ R

n. The maximum condition asserts that, for almost every t, the point u∗(t)
maximizes over u ∈ R

m the function

u �→ 〈B∗p(t), u〉− η
2
〈Qu,u〉.

If η = 0, then the function t �→ B∗p(t) = B∗e−A∗t p0 must be identically zero. This
possibility will now be excluded by a hypothesis bearing upon the controllability
matrix, which refers to the n×mn matrix C defined as follows:

C =
[

B AB . . . An−1B
]
.

• Prove that if B∗e−A∗t p0 is identically zero on [0,T ], then C∗p0 = 0.

Let us now postulate that C has maximal rank (as is customary). Then the discussion
above implies that the maximum principle cannot hold abnormally. For then we
would have p0 = 0, whence p ≡ 0, violating the nontriviality condition. Thus we
have η = 1.

• With η = 1, show that the maximum condition implies

u∗(t) = Q−1B∗p(t) = Q−1B∗e−A∗t p0 a.e.

This characterization evidently implies that u∗ is bounded (so this is a conclusion
rather than an assumption). Substituting in the state equation, we find

x ′(t) = Ax(t)+BQ−1B∗e−A∗t p0 .
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The variation of parameters formula then leads to

x(t) = e At x0 +
∫ t

0
e A(t−s)BQ−1B∗e−A∗s p0 ds .

• Prove that the following matrix is positive definite:

∫ T

0
e−AsBQ−1B∗e−A∗s ds .

Deduce from this that the equation x(T ) = xT determines p0 .

Thus, the optimal u∗ and x∗ are completely determined. 
�

22.5 A hybrid maximum principle

The uses of control theory being so diverse, there exist many variants of the standard
optimal control problem. The one we treat now is a representative of a certain class
of problems said to be hybrid because they involve several control systems.

We consider a two-stage control problem, in which two different standard (au-
tonomous) control systems

(
x, f (x,u),U

)
and

(
y, g(y,v),V

)

are linked over a specified planning period [0,T ], in the sense that the second system
takes over from the first at a certain switching time τ ; thus we have

x ′(t) = f
(

x(t), u(t)
)
, u(t) ∈ U , 0 � t < τ a.e.

y ′(t) = g
(

y(t),v(t)
)
, v(t) ∈ V , τ < t � T a.e.

An initial condition is imposed on the first state, and a terminal condition on the
second:

x(0) ∈ E1 , y(T ) ∈ E2 .

In addition, at the switching time τ , certain linking conditions must hold:
(
τ , x(τ), y(τ)

)
∈ S,

where S is a given set. Note that the switching time τ may vary; it is a choice
variable. It is not assumed that the dimensions of x and y, or of u and v, are the
same. Thus E1 and E2 , for example, are subsets of generally different Euclidean
spaces Rn1 and R

n2 .

The minimization involves both endpoint and running cost components of a familiar
type, and depends as well on the value of (τ , x(τ), y(τ)). To summarize, here is the
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hybrid optimal control problem (HC) in compact notation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J = �1
(

x(0)
)
+ �2

(
y(T )

)
+ �0

(
τ , x(τ), y(τ)

)

+

∫ τ

0
Λ1

(
x(t), u(t)

)
dt +

∫ T

τ
Λ2

(
y(t), v(t)

)
dt

subject to τ ∈ [0,T ]

x ′(t) = f
(

x(t), u(t)
)
, u(t) ∈ U, t ∈ [0,τ ] a.e.

y ′(t) = g
(

y(t),v(t)
)
, v(t) ∈ V, t ∈ [τ ,T ] a.e.

x(0) ∈ E1 ,
(
τ , x

(
τ), y(τ)

)
∈ S , y(T ) ∈ E2 .

(HC)

As in the case of the variable-time problem (VT) considered in §22.3, we need to
specify the sense in which a solution to this problem is local. Let (x1, u1), (y1,v1)
and (x2 , u2), (y2 ,v2) be two admissible hybrid processes, with switching times τ1
and τ2 respectively. As we did before, we consider that x1 is defined beyond τ1
(to the right) by constancy; similarly for x2 beyond τ2 . As for y1 and y2, they are
extended to the left by constancy.

Then it makes sense to write such terms as ‖x1 − x2‖, taken with respect to [0,T ].
Accordingly, a local minimizer for (HC) refers to an admissible hybrid process
(x∗, u∗), (y∗,v∗), with switching time τ∗, such that, for some ε > 0, for any ad-
missible hybrid process (x,u), (y,v), with switching time τ , that satisfies

‖x− x∗‖ < ε , ‖y− y∗‖ < ε , |τ− τ∗| < ε ,

we have J(x∗,y∗,τ∗) � J(τ ,x,y).

In a break with prior developments, we shall now forsake the classical regularity hy-
potheses. Instead, we suppose that all the functions involved (that is, f , g, Λ1,Λ2 ,
�0, �1, �2 ) are locally Lipschitz. (Of course, continuous differentiability would im-
ply this.) We also assume that the control sets U and V are bounded, and that the
sets E1, E2 , and S are closed.

We define the usual Hamiltonians for each of the individual processes involved:

H η
1 (x, p,u) = 〈 p, f (x,u)〉−ηΛ1(x,u), H η

2 (y,q,v) = 〈q, g(y,v)〉−ηΛ2(y,v),

and similarly for the maximized Hamiltonians Mη
1 and Mη

2 , obtained by maximizing
over U and V respectively.

22.20 Theorem. Let (x∗ ,u∗) and (y∗ ,v∗), with switching time τ∗ ∈ (0,T ), be a
local minimizer for the problem (HC). Then there exist arcs p on [0,τ∗ ] and q on
[τ∗,T ] and a scalar η equal to 0 or 1 satisfying the nontriviality condition

(
η , p(τ∗), q(τ∗)

)
	= 0 ,

the transversality conditions
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p(0) ∈ η∂L �1
(

x∗(0)
)
+N L

E1

(
x∗(0)

)
,

−q(T ) ∈ η∂L �2
(

y∗(T )
)
+N L

E2

(
y∗(T )

)
,

the adjoint inclusions

−p ′(t) ∈ ∂C H η
1

(
• , p(t), u∗(t)

)(
x∗(t)

)
, t ∈ [0,τ∗ ] a.e.

−q ′(t) ∈ ∂C H η
2

(
• , q(t),v∗(t)

)(
y∗(t)

)
, t ∈ [τ∗ ,T ] a.e.,

as well as the maximum conditions: for almost every t,

t ∈ [0,τ∗ ] =⇒ H η
1

(
x∗(t), p(t), u∗(t)

)
= Mη

1

(
x∗(t), p(t), u∗(t)

)

t ∈ [τ∗ ,T ] =⇒ H η
2

(
y∗(t), q(t),v∗(t)

)
= Mη

2

(
y∗(t), q(t),v∗(t)

)
.

In addition, there exist constants h1, h2 such that the constancy conditions hold :

H η
1

(
x∗(t), p(t), u∗(t)

)
= Mη

1

(
x∗(t), p(t)

)
= h1 , t ∈ [0,τ∗ ] a.e.

H η
2

(
y∗(t), q(t),v∗(t)

)
= Mη

2

(
y∗(t), q(t)

)
= h2 , t ∈ [τ∗ ,T ] a.e. ,

together with the switching condition:

(
h1 −h2 ,−p(τ∗), q(τ∗)

)
∈ η∂L �0

(
τ∗ , x∗(τ∗), y∗(τ∗)

)

+N L
S
(
τ∗ , x∗(τ∗), y∗(τ∗)

)
.

The statement of the theorem is a fearsome sight to behold. But the reader may dis-
cern that it merely speaks of two maximum principles, with a coherent link between
them provided by the switching condition. The theorem is also the first (but not
the last) to admit nonsmooth dependence on x. This is reflected by the generalized
gradient ∂C that appears in the adjoint inclusions.6 The first of these (for example)
refers to the generalized gradient of the function x �→ H η

1 (x, p(t), u∗(t)), evaluated
at x∗(t). Note that the inclusion reduces to the usual adjoint equation if the data
happen to be continuously differentiable in x.

The theorem will be proved in §22.6, with the help of an extended maximum prin-
ciple that we shall meet later on.

22.21 Exercise. Suppose that the second state continues the first, in the sense that
S =

{
(τ , x,y) : x = y

}
and �0 = 0. (Thus, the switching time merely changes the

dynamics.) Prove that, in Theorem 22.20, q continues p; that is, p(τ∗) = q(τ∗) , and
h1 = h2 . 
�

As a special case of Theorem 22.20, we obtain Theorem 22.13 for the variable-time
problem (VT) considered earlier (p. 449), and extended to nonsmooth data:

6 The nonsmooth maximum principle fails with ∂L in the adjoint inclusion (see Exer. 22.29).
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22.22 Theorem. Let (x∗ ,u∗) on the interval [0,τ∗ ] be a local minimizer for the
variable-time problem (VT), where f and � are locally Lipschitz , U is bounded,
and S is closed. Then there exists an arc p : [0,τ∗ ]→ R

n and a scalar η equal to 0
or 1 satisfying the nontriviality condition

(
η , p(t)

)
	= 0 ∀ t ∈ [0,τ∗ ] ,

the adjoint inclusion for almost every t ∈ [0,τ∗ ]:

−p ′(t) ∈ ∂C Hη( • , p(t),u∗(t)
)(

x∗(t)
)
,

as well as the maximum condition: for almost every t ∈ [0,τ∗ ],

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
,

and such that, for some constant h, we have constancy of the Hamiltonian:

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
= h a.e.,

and the transversality condition
(

h,−p(τ∗)
)
∈ η∂L �

(
τ∗ , x∗(τ∗)

)
+N L

S
(
τ∗ , x∗(τ∗)

)
.

Proof. Pick T > τ∗ . Then (VT) is equivalent to the special case of the hybrid prob-
lem (HC) in which the second stage is trivial and has no effect on the cost. To make
this precise, let us take

g = 0 , Λ2 = 0 , �2 = 0 , E2 = R
n, Λ1 = Λ , E1 = {x0}, �1 = 0 .

We also take �0 = � and S = S (so to speak), by simply ignoring the redundant y
variable. Then it is a routine matter to check that the conclusions of Theorem 22.20
reduce to the ones stated in the theorem (with h1 = h), since q and h2 are easily
seen to be zero. 
�

A variable-horizon hybrid problem. The hybrid optimal control problem (HC)
above can be generalized in several ways.7 For example, the number of different
stages (or control systems) can be greater than two, so that several switches are
involved; the data can depend on t; the starting time of one stage can differ from
the end time of the preceding one. In any case, control theory is constantly gen-
erating models with new features, so there is no hope of stating an ultimate, all-
encompassing version of the necessary conditions. At best, we can be prepared to
anticipate what they may assert, and be equipped to prove them.

Let us consider one such extension, where the only new element, relative to (HC),
is that the horizon T is a choice variable, rather than being prescribed. Thus the

7 See Clarke-Vinter [19] for details.
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endpoint constraint for the second stage, y(T ) ∈ E2 , is replaced by one of the form
(T, y(T )) ∈ E2 , and �2 becomes a function of (T, y(T )). The freedom now given to
T is reflected, as we would expect, in a modified transversality condition. We shall
omit the proof of the following, which is very close to that of Theorem 22.20.

22.23 Theorem. Let (x∗ ,u∗) and (y∗ ,v∗), with horizon T∗ > 0 and switching time
τ∗ ∈ (0,T∗), be locally optimal for the problem above. Then the conclusions of The-
orem 22.20 hold with T = T∗ , and with the second transversality condition replaced
by the following:

(
h2,−q(T∗)

)
∈ η∂L �2

(
T∗, y∗(T∗)

)
+N L

E2

(
T∗, y∗(T∗)

)
.

22.24 Example. (Robot arm) Let us consider the problem of controlling a robot
arm so that it transfers an object from one location to another, in minimal time. If
the mass of the object is not negligible, then different dynamics apply to the system
before and after the object is transfered. This gives rise to a hybrid optimal control
problem.

A simple model with one spatial variable x considers the case in which the arm
is initially at rest at the origin. It must be guided to x = L > 0, where the mass
changes (from m1 to m2), and then back to rest at the origin. The time τ at which
L is reached corresponds to the switch in the underlying dynamics. The governing
equation is m1x ′′ = u up to time τ , and m2 x ′′ = u afterwards.

Notation: The spatial state component x(t) is continuous throughout. It is natural,
therefore, to use the same symbol x for the spatial state before and after the switch
time (rather than using, say, x1 and y1). We shall introduce a new state variable v
to represent the velocity of x and, again, retain the notation v throughout for the
velocity. But one must bear in mind that (unlike x), v may have a discontinuity at τ .

The robot arm problem (RA) may then be summarized as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J = T =
∫ τ

0
1 dt +

∫ T

τ
1 dt

subject to τ � 0 , T � 0 , τ � T

(x ′,v ′)(t) =

{ (
v, u/m1

)
a.e. if t ∈ [0,τ )

(
v, u/m2

)
a.e. if t ∈ (τ ,T ]

u(t) ∈ [−1,+1] a.e.

x(τ−) = x(τ+) = L , v(τ+) = K v(τ−)
(

x(0), v(0), x(T ), v(T )
)
= (0,0,0,0).

(RA)

Note that both T and τ are choice variables in this problem, which is therefore a
variable-horizon two-stage hybrid optimal control problem of the type considered
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above, one in which the set E2 is given by R×{(0,0)}. The positive parameters
m1, m2 , L are given, as well as the positive parameter K. Existence theory can be
applied to prove that there is an optimal hybrid control.

Before commencing the analysis, let us explain the meaning of K and the condition
v(τ+) = K v(τ−) by identifying three special cases of interest:

• Drop-off (m1 > m2 ). The object is carried to x = L and dropped. Here, we take
K = 1.

• Hard pickup (m1 < m2 ). The object, which is initially at rest, is picked up at
x = L. Now we impose m1 x ′(τ−) = m2 x ′(τ+) (conservation of momentum).
In terms of v, this amounts to v(τ+) = K v(τ−), where K = m1/m2 < 1.

• Soft pickup (m1 < m2 ). In this case the speed of the object is matched to that of
the arm for the pickup. We have x ′(τ−) = x ′(τ+), so that K = 1.

The necessary conditions of Theorem 22.20 provide costate arcs that we shall denote
by (p,q), both after and before the switching time τ ; thus, as for the state component
v, the costate is considered to have a possible discontinuity at τ . The adjoint equation
and maximum condition yield

−p ′ = 0 , −q ′ = p , u =

{
1 if q > 0

−1 if q < 0.

The transversality condition of Theorem 22.23 implies that h2 = 0. Then the con-
stancy and switching conditions (together with the remaining transversality condi-
tion, which yields h1 = 0) lead to

p(t)v(t)−η =

{
−|q(t)|/m1 if t < τ

−|q(t)|/m2 if t > τ
, q(τ−) = K q(τ+) .

The nontriviality condition asserts
(
η , p(τ−), q(τ−), p(τ+), q(τ+)

)
	= 0 .

Claim 1. The arc q(t) is not identically zero on (0,τ).

For suppose that this is the case. Then, by the above, we have p = 0 on (0,τ),
whence η = 0. We also derive q(τ+) = 0. Then the nontriviality condition implies
p(τ+) 	= 0. It also follows that q(t) = p(τ+)(τ− t) for t ∈ (τ ,T ]. This contradicts
p(τ+)v(T ) =−|q(T )|/m2 (since v(T ) = 0).

By an analogous argument we obtain:

Claim 2. q(t) is not identically zero on (τ ,T ).
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It follows from these two claims that q consists of two affine parts, with isolated
zeros, and with q(τ−) and q(τ+) having the same sign (or both being zero). This
implies that u is piecewise constant, with values ±1 and at most two switches; thus,
v ′ is piecewise constant.

Since L > 0, there must be a subinterval I of (0,τ) in which we have v(t)> 0 and
v ′(t) > 0. Thus q(t) > 0 and u = 1 in I. In order to steer (x,v) to (0,0) from such
points, the control u will have to switch values twice at points beyond I : once to
u = −1 (in order to make v < 0, so that x can begin returning to 0), and then later
back to u = 1 (so that v can be made zero at T ). To allow these two switches to
happen, we must have

q(0) > 0 , q(τ−) < 0 , and q(τ+) < 0 , q(T ) > 0 .

Then necessarily p(τ−) > 0 and p(τ+) < 0. Invoking the equality

η = p(τ−)v(τ−)+ |q(τ−)|/m1 = p(τ+)v(τ+)+ |q(τ+)|/m2

= p(τ+)K v(τ−)+ |q(τ−)|/(Km2) ,

we arrive at

v(τ−)
{

K p(τ+)− p(τ−)
}
= |q(τ−)|(K m2 −m1)/(K m1m2) .

Note that the coefficient of v(τ−) is strictly negative.

We may draw some qualitative conclusions from the last relation. In the special case
termed Drop-off, we have m1 > m2 and K = 1. It follows that v(τ) > 0: the drop
occurs while the arm is on its outward journey, while its velocity is positive.

A Soft pickup (m1 < m2 , K = 1), on the other hand, is made on the return journey,
while the arm has negative velocity.

In the case of Hard pickup (m1 < m2 , K = m1/m2), we have v = 0 at τ : the arm has
zero velocity at pickup, so that impact does not occur even though it is permitted.
We remark that the analysis can be continued in all cases in order to obtain explicit
formulas for τ , T , and v(τ−) (see [19]). 
�

22.6 The extended maximum principle

In this section, we present and discuss a generalization of the classical maximum
principle that extends it in several ways. The theorem will be used later to derive
all the variants that we have encountered so far in this chapter. It bears upon the
following problem (EC):
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = f
(
t, x(t), u(t)

)
, t ∈ [a,b ] a.e.

u(t) ∈ U(t) , t ∈ [a,b ] a.e.
(

x(a), x(b)
)
∈ E .

(EC)

The underlying interval [a,b ] of the problem is fixed, and the basic hypotheses on
the problem data are the following:

• The functions f (t, x,u) and Λ(t, x,u) are LB measurable in (t,u) for each x ;

• The multifunction U(·) is LB measurable;

• The set E ⊂ R
n×R

n is closed, and � is locally Lipschitz.

The LB measurability of U(·) means that its graph, the set

gr U =
{
(t,u) ∈ [a,b ]×R

m : u ∈ U(t)
}
,

is LB measurable; that is, measurable with respect to the σ -algebra generated by
Lebesgue subsets of [a,b ] and Borel subsets of Rm. The reader will recall that we
discussed LB measurability at length in §6.3, where it was proved, for example, that
the hypothesis on f is satisfied if, for each x, the function (t,u) �→ f (t, x,u) happens
to be measurable in t and continuous in u.

A process (x,u) is termed admissible for (EC) if all the constraints are satisfied and
J(x,u) is well defined and finite; (x∗ ,u∗) is said to be a local minimizer provided
that, for some ε > 0, for every admissible process (x,u) satisfying ‖x− x∗‖ � ε ,
we have J(x,u) � J(x∗ ,u∗).

The main hypothesis of the theorem concerns local Lipschitz behavior of f and Λ
with respect to the state:

22.25 Hypothesis. There exists an LB measurable function k(t,u) : gr U →R such
that, for almost every t in [a,b ], we have

x, y ∈ B(x∗(t),ε) , u ∈ U(t) =⇒
| f (t, x,u)− f (t,y,u)|+ |Λ(t, x,u)−Λ(t,y,u)| � k(t,u)|x− y | ,

and such that t �→ k(t,u∗(t)) is summable.

As usual, we define the Hamiltonians Hη and Mη by

Hη(t, x, p,u) = 〈 p, f (t, x,u)〉−ηΛ(t, x,u),

Mη(t, x, p) = sup
u ∈U(t)

Hη(t, x, p,u).
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22.26 Theorem. (Clarke) Let (x∗ ,u∗) be a local minimizer for (EC), where Hy-
pothesis 22.25 holds. Then there exist an arc p : [a,b ]→ R

n together with a scalar
η equal to 0 or 1 satisfying the nontriviality condition

(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ] , (N)

the transversality condition
(

p(a),−p(b)
)
∈ η∂L �

(
x∗(a), x∗(b)

)
+N L

E
(

x∗(a), x∗(b)
)
, (T)

the adjoint inclusion for almost every t :

− p ′(t) ∈ ∂C Hη(t, • , p(t), u∗(t)
)
(x∗(t)

)
, (A)

as well as the maximum condition for almost every t :

Hη(t, x∗(t), p(t), u∗(t)
)
= Mη(t, x∗(t), p(t)

)
. (M)

If the problem is autonomous (that is, if f , U , and Λ do not depend on t ), then one
may add to these conclusions the constancy of the Hamiltonian: for some constant
h, we have

Hη(x∗(t), p(t), u∗(t)
)
= Mη(x∗(t), p(t)

)
= h a.e.

At this point, we expect the conclusions of this extended maximum principle to
have a familiar appearance to the reader. Let us dwell for a moment on the ways in
which the word “extended” is justified, relative to the classical maximum principle
(Theorem 22.2).

• The nature of the boundary cost, as well as the boundary condition, is more
general than before.

• u∗ is not assumed to be bounded.

• The control set U may not be bounded, and is allowed to depend on t.

• The behavior of f and Λ with respect to t and u is measurable, not necessarily
continuous. Only the values of these functions on the control set itself are used
in formulating the main hypothesis.

• The functions involved are not assumed to be differentiable; the limiting sub-
differential ∂L and the generalized gradient ∂C are called upon to express the
conclusions, which reduce to the earlier ones if the data happen to be smooth.

It turns out that all these features are of interest, for various reasons, some of which
we illustrate in this section, and others in the exercises. The proof of the extended
maximum principle will be given later, as an outgrowth of results on differential
inclusions, in §25.2.
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22.27 Exercise. Suppose that in the context of Theorem 22.26, we have

x∗(b) ∈ int {x1 ∈ R
n : ∃ x0 ∈ R

n such that (x0 , x1) ∈ E }.

Prove that the theorem necessarily holds with η = 1. 
�

22.28 Example. The following simple problem features a nondifferentiable cost
integrand:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = cx(1)+
∫ 1

0
|x(t)|dt

subject to x ′(t) = u(t), t ∈ [0,1] a.e.

u(t) ∈ [−1,+1], t ∈ [0,1] a.e.

x(0) = α .

It follows from existence theory (see Theorem 23.11) that there is an optimal process
(x,u) for the problem. It is clear that the hypotheses of Theorem 22.26 are satisfied.
In applying it, we may take η = 1 (by the exercise above), since the endpoint x(1)
is unrestricted.

Now let p be the costate provided by the theorem. Then we find, from the constancy
of the Hamiltonian:

H(x, p,u) = pu−|x | =⇒ max
u ∈U

H(x, p,u) = | p |− |x | =⇒ | p(t)|− |x(t)| = h,

for some constant h. From the adjoint inclusion and the maximum condition, we
deduce

x ′(t) = u(t) =

⎧
⎨

⎩

−1 if p(t)< 0

+1 if p(t)> 0
p ′(t) =

⎧
⎨

⎩

−1 if x(t)< 0

+1 if x(t)> 0.

The movement of the arc (x(t), p(t)) in the x -p phase plane is governed by these
dynamics, and it is restricted to a level set of the form | p |− |x | = h; see Fig. 22.4.
If x(t) vanishes on an interval [ t1, t2 ], then necessarily u(t) = 0 a.e. on the interval,
so that p(t) also vanishes on [ t1, t2 ] (since |u | = 1 when p 	= 0). It follows that the
level set contains the origin, whence h = 0. Otherwise, for h 	= 0, there can be no
pauses in the motion.

The transversality condition provides two boundary conditions: x(0) = α and
p(1) =−c. This information identifies the unique solution of the problem. 
�

22.29 Exercise. Show that when α < 0 and c < 0, then the solution x exhibits
an interval in which x(t) = 0 if and only if |α |+ |c | < 1. Find the optimal state
trajectory when we take α = c = −1/3. Observe that in this case, the necessary
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conditions of Theorem 22.26 would fail to hold if ∂C were replaced by ∂L in the
adjoint inclusion. 
�

Fig. 22.4 Some typical level curves

Constant control sets. When the control set U is constant, the hypothesis of LB
measurability in Theorem 22.26 forces U to be a Borel set. While this is not so very
restrictive, it can be dispensed with when f andΛ are continuous in u, as is the case,
notably, when the classical hypotheses hold.

We proceed to record this variant of the theorem, in a somewhat more general case
that postulates the following structure:

22.30 Hypothesis. There exists a finite or countable family {(t i , t i+1)} of disjoint
open intervals with

cl
⋃

i�1
(t i , t i+1) = [a,b ]

such that on each interval (t i , t i+1), the control set U(t) is a constant set Ui (with
no measurability restriction). Furthermore, for almost every t ∈ (t i , t i+1), for every
x ∈ B(x∗(t),ε), the functions u �→ f (t, x,u) and u �→ Λ(t, x,u) are continuous on
the set Ui .

22.31 Corollary. Let the data satisfy all the hypotheses of Theorem 22.26, except
that the LB measurability of U(·) is replaced by the hypothesis above. Then the
conclusions of the theorem continue to hold.

We remark that when the family {(t i , t i+1)} contains a single element (so that there
is no actual partition of the underlying interval [a,b ]) and when the data are au-
tonomous, the conclusions once again include the constancy of the Hamiltonian.
The proof of the corollary is postponed to a convenient moment in §25.2.

Two derivations. We proceed now to kill four birds with two stones. We shall
use the extended maximum principle to derive Theorem 22.17, which (as we have
pointed out) subsumes the classical maximum principle (Theorem 22.2); then, we
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shall derive Theorem 22.20 for hybrid systems, which includes the variable-time
problem as a special case (Theorem 22.22). There will remain, of course, to prove
the extended maximum principle, as well as its corollary above. This will be done
in Chapter 25.

Derivation of Theorem 22.17. For each u ∈ U , the quantity

k(t,u) = max
{
|Dx

(
f ,Λ

)
(t, x,u)| : x ∈ B(x∗(t), ε)

}

provides a Lipschitz constant for the function x �→ ( f ,Λ)(t, x,u) on B(x∗(t), ε), as
required by Hypothesis 22.25. It follows that k is LB measurable, since the supre-
mum defining k is equivalent to a countable one, by the usual argument involving a
dense set. In order to justify applying Cor. 22.31 (with no actual partition of the un-
derlying interval), which gives directly the desired conclusions, we need only verify
that t �→ k(t,u∗(t)) is summable.

Fix t for which Hypothesis 22.16 holds, and any unit vector v, and define

g(r) =
∣
∣( f ,Λ)

(
t, x∗(t)+ r v, u∗(t)

)∣∣ , 0 � r � ε .

Then g is Lipschitz and satisfies

|g ′(r)| � cg(r)+d(t), r ∈ [0,ε ] a.e.,

as a consequence of Hypothesis 22.16. It follows from Gronwall’s lemma that

g(r) � α
∣
∣( f ,Λ

)(
t, x∗(t), u∗(t)

)∣∣+β , 0 � r � ε

for certain constants α and β independent of t and v. This implies in turn
∣
∣( f ,Λ

)(
t, x, u∗(t)

)∣∣ � α
∣
∣( f ,Λ

)(
t, x∗(t), u∗(t)

)∣∣+β ∀x ∈ B(x∗(t), ε).

Substituting into Hypothesis 22.16, we discover
∣
∣Dx

(
f ,Λ

)(
t, x, u∗(t)

)∣∣ � cα
∣
∣( f ,Λ

)(
t, x∗(t), u∗(t)

)∣∣+ cβ +d(t)

for all x ∈ B(x∗(t), ε). Since the function of t on the right side is summable, we de-
duce that t �→ k(t,u∗(t)) is summable, as required. This completes the proof.

Derivation of the hybrid maximum principle. We now use the extended max-
imum principle in order to derive Theorem 22.20; the proof will demonstrate the
utility of admitting discontinuous dependence with respect to t.

The plan of this fairly involved (but in no way profound) proof is based on defining
a new, augmented, non hybrid problem for which the control (u∗,v∗) is optimal.
Then the extended maximum principle is invoked for this problem, and the resulting
necessary conditions are reinterpreted in original terms in order to obtain the stated
conclusions.
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The augmented problem has four states (x, y,α,β ) and three controls (u,v,w),
where the new state components α ,β and the new control w are all real-valued.
The data of the problem, whose underlying interval is [0,T ], are given by:

f+
(
t,x,y,α,β ,u,v,w

)
=

{ (
w f (x,u),0,w,w

)
if t ∈ [0,τ∗)

(
0 ,wg(y,v), 0,w

)
if t ∈ (τ∗ ,T ]

U+ = U×V×[1−δ ,1+δ ]

�
(

x0 ,y0 ,α0 ,β0 , x1, y1,α1,β1
)
= �1(x0)+ �2(y1)+ �0

(
α1 , x1, y0

)

Λ
(
t, x,y ,α,β ,u,v,w

)
=

{
wΛ1(x,u) if t ∈ [0,τ∗)
wΛ2(y,v) if t ∈ (τ∗ ,T ] .

Here, δ is any sufficiently small number in (0,1/2) to be prescribed later. The corre-
sponding augmented cost is denoted by J+. We shall write the endpoint constraints
in the following order for convenience:

(
x(0), y(T ),α(0), β (0), β (T ),α(T ), x(T ), y(0)

)
∈ E

:= E1×E2×{0}×{0}×{T }×S .

We may consider that u∗ and v∗ are defined on [0,T ] (any extension with values in U
and V respectively will do), and we extend x∗ to [0,T ] by the constant value x∗(τ∗);
similarly, we set y∗(t) equal to y∗(τ∗) for t ∈ [0,τ∗ ]. We further define

w∗(t) = 1, β∗(t) = t , t ∈ [0,T ] , α∗(t) =

{
t if t ∈ [0,τ∗)

τ∗ if t ∈ (τ∗ ,T ] .

Note then that the control (u∗ ,v∗ ,w∗) and corresponding state (x∗ ,y∗ ,α∗ ,β∗) on
[0,T ] are admissible for the augmented problem.

Claim. The control (u∗ ,v∗ ,w∗) and state (x∗ ,y∗ ,α∗ ,β∗) provide a local minimum
for the augmented problem, if δ is sufficiently small.

We proceed to prove this by contradiction. Note that the cost J(∗) of the original
process equals the cost J+(∗) of the augmented version.

Suppose that (x,y,α ,β ) and (u,v,w) constitute an admissible process that is better
(that is, assigns a lower value to J+) for the augmented problem, where

‖x− x∗‖< ε/2 , ‖y− y∗‖< ε/2 , ‖α−α∗‖< ε/2 .

We shall rescale time by means of the bi-Lipschitz (Lipschitz with Lipschitz inverse)
transformation r from [0,T ] to [0,T ] given by

r(t) =
∫ t

0
w(s)ds .
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(Note that r(T ) = T as a result of the constraint β (T ) = T .) Set τ̃ = α(τ∗). When
restricted, r(·) is a bi-Lipschitz transformation from [0,τ∗ ] to [0,τ̃ ]. We proceed to
define an arc x̃ and a measurable function ũ on [0,τ̃ ] by

x̃(r) = x
(
t(r)

)
, ũ(r) = u

(
t(r)

)
,

where t(r) refers to the inverse function of r(t). Then, for almost every r ∈ [0, τ̃ ],
we have

(d/dr) x̃(r) = x ′(t(r)
)
/w

(
t(r)

)
= f

(
x(t(r)), u(t(r))

)
= f

(
x̃(r), ũ(r)

)
,

so that the dynamics of the original problem are satisfied on [0, τ̃ ].

Similarly, we define, for r ∈ [ τ̃ ,T ]:

ỹ(r) = y
(
t(r)

)
, ṽ(r) = v

(
t(r)

)
.

Then (x̃, ỹ) and (ũ, ṽ) define a hybrid process, with switching time τ̃ , which is
admissible for the original problem. We find (with the help of the change of vari-
ables formula for integrals) that its cost J is that of J+ for the augmented process
(x,y,α,β ), (u,v,w), a cost which is less than J(∗) by assumption. This contradicts
the optimality of (x∗,y∗,u∗,v∗), provided of course that (x̃, ỹ) and τ̃ are sufficiently
close to (x∗ ,y∗) and τ∗ respectively. Let us see how to arrange this.

For any r ∈ [0, τ̃ ], we have

| x̃(r)− x∗(r)| = |x(t(r))− x∗(r)| � |x(t(r))− x∗(t(r))|+ |x∗(t(r))− x∗(r)|.

The first term on the right is bounded above by ε/2 by assumption, and so is the
second, provided that δ has been chosen small enough, in a way that depends only
on x∗ . (This is an evident consequence of the uniform continuity of x∗ .) Similar
assertions hold for ỹ and τ̃ . The claim is proved.

It is easy to see that Cor. 22.31 applies to the augmented problem (with no actual
partition of the underlying interval). We deduce from this result the existence of a
costate arc, which we choose to write as (p,q, p3, p4), together with a scalar η equal
to 0 or 1, for which

(η , p(t), q(t), p3(t), p4(t)) 	= 0 ∀ t ∈ [0,T ],

and satisfying the remaining conclusions.

The augmented Hamiltonian Hη
+(t, x,y,α ,β , p,q, p3, p4,u,v,w) is given by

Hη
+ =

{
w〈 p, f (x,u)〉+w(p3 + p4)−ηwΛ1(x,u) if t < τ∗
w〈q, g(y,v)〉 +w p4 −ηwΛ2(y,v) if t > τ∗ .
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It follows from the augmented adjoint equation that p3, p4 are constant, and that p
and q satisfy the desired adjoint equations.

The maximum conditions follow as well, by fixing w = 1 in the augmented max-
imum condition. Furthermore, by setting u = u∗ , v = v∗ and letting w vary, we
derive from the augmented maximum condition that, almost everywhere on [0,τ∗ ],
the maximum over w ∈ [1−δ ,1+δ ] of the function

w �→ w
{
〈 p(t), f (x∗(t), u∗(t))〉−ηΛ1(x∗(t), u∗(t))+ p3 + p4

}

occurs at w = 1. Necessarily, then, we have

Hη
1

(
x∗(t), p(t), u∗(t)

)
= h1 := −(p3 + p4), t ∈ [0,τ∗ ] a.e.,

whence the first constancy condition. The second one follows similarly, with h2
revealed to be −p4 .

Consider now the nontriviality condition of the augmented problem, which, substi-
tuting for p3 , p4 from above, may now be seen as asserting that

(
η , p(t), q(t), h2 −h1 ,−h2

)
	= 0 ∀ t ∈ [0,T ] .

We observe that (as a result of the augmented adjoint equation) p is constant on
[τ∗ ,T ] and q is constant on [0,τ∗ ]. Now suppose that η = 0. Then it is a conse-
quence of Gronwall’s lemma (and the adjoint inclusion) that p is either never zero or
else identically zero, and similarly for q. When both p and q are zero, the constancy
of the Hamiltonians implies that h1 and h2 are zero. It follows from these facts that
the nontriviality assertion above is equivalent to that of Theorem 22.20.

The remaining conclusions to be verified, namely the transversality conditions and
the switching condition, are direct consequences of the transversality condition for
the augmented problem. The proof is complete.



Chapter 23

Existence and regularity

Up to now, our study of optimal control has focused on the issue of necessary con-
ditions: the maximum principle and its variants. We turn now to the attendant issues
of existence and regularity. Before doing so, however, we digress somewhat in order
to discuss an entirely new consideration, one that is associated with the agreeable
term relaxation.

23.1 Relaxed trajectories

23.1 Example. Consider the following special case of the standard optimal control
problem (OC) (p. 437), in which the dimension of the state (x,y, z) is 3, the control
u is one-dimensional, and the underlying interval is [0,1]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J(x, y, z , u) = x(1)

subject to x ′(t) = cos u(t),

y ′(t) = sin u(t),

z ′(t) = y(t)2,

u(t) ∈ U = [−π/2 , π/2 ] ,

x(0) = y(0) = z(0) = z(1) = 0 .

The solution of the problem is evident, if one reasons as follows. Since z ′ = y2 � 0,
then, in view of the boundary conditions on z, the only admissible state trajectory
(x,y, z) has z ≡ 0, whence y ≡ 0, which implies u(t) = 0 a.e., so that x ′ = 1 a.e.,
which leads to an optimal cost value J = 1.

Let us imagine now the possibility of violating the endpoint constraint, to any arbi-
trarily small positive tolerance ε , by allowing z(1) � ε . Then y may be taken to be
a sawtooth function having zero endpoints that satisfies |y(t)| � ε on [0,1] as well
as y ′ = ±1 a.e. This implies u(t) = ± π/2 a.e., which yields in turn x ′ = 0 a.e.,
whence x ≡ 0. The corresponding cost is now J = 0.
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The reader is to understand, therefore, that an arbitrarily small violation of the end-
point constraint (which one would probably tolerate in practice) leads to a signifi-
cant, disproportionate decrease in the minimum of the problem. In other terms, if we
define the value function V (β ) as the minimum in the problem when the endpoint
constraint is given by z(1) = β (other things being equal), the function V fails to be
lower semicontinuous at 0: we have V (0) = 1, yet V (ε) � 0 for every ε > 0. 
�

Just as an unstable equilibrium in mechanics is considered somewhat meaningless,
one may consider that the problem above is not well posed, since its solution lacks
stability, in a certain sense. It is the goal of relaxation to reformulate the problem so
as to avoid this phenomenon. Relaxation is closely related to the existence question,
but it is a new consideration. Note that nonexistence of a solution was not the issue
in the example above.

The pathology illustrated by Example 23.1 can be ascribed to a specific defect of the
system: the set of state trajectories fails to be closed. This property is an essential one
in existence theory, for evident reasons: in applying the direct method, one produces
solutions by taking limits.

It turns out that the main property that a system ( f ,U) must possess to render the set
of its trajectories closed is that the set f (x,U) of available velocities be convex for
each x. (This fact is foreshadowed by Exer. 8.45, which reveals the connection be-
tween weak closure and convexity.) Here is a basic sequential compactness theorem
for system trajectories:

23.2 Theorem. Let ( f ,U) be a control system on the interval [a,b ] for which :

(a) f (t, x,u) is continuous in (x,u) and measurable in t ;

(b) U(·) is measurable and compact valued ;

(c) f has linear growth : there is a summable function M such that

(t, x) ∈ [a,b ]×R
n, u ∈ U(t) =⇒ | f (t, x,u)| � M(t)(1+ |x |);

(d) The set f (t, x,U(t)) is convex for each (t, x).

Let (xi , ui) be a sequence of processes for the control system ( f ,U) such that the
set {xi(a) : i � 1} is bounded. Then there exists a subsequence of xi converging
uniformly to a state trajectory x∗ of the system.

The conclusion means that the limit x∗ is an arc which admits a control function u∗
satisfying

x∗′(t) = f
(
t, x∗(t), u∗(t)

)
, t ∈ [a,b ] a.e.

Note, however, the total lack of any assertion that ui converges in any particular
sense to u∗ .
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Proof. Define a multifunction by Γ (t, x) = f (t, x,U(t)), which is a mapping from
[a,b ]×R

n to the subsets of Rn. Then the xi satisfy the differential inclusion

x ′
i(t) ∈ Γ

(
t, xi(t)

)
a.e.

We prepare an appeal to the weak closure theorem 6.39. The linear growth hypoth-
esis of the theorem leads to a subsequence of the xi (we do not relabel) converging
uniformly to an arc x∗ , and such that x ′

i converges weakly in L1(a,b) to x∗′ (we have
seen this in Exer. 6.42).

The hypotheses imply that Γ is convex-valued, and that, for each t, the graph of
Γ (t, ·) is closed (exercise). Let S be a compact subset of [a,b ]×R

n containing the
graphs of all the functions xi . Then, for a certain constant K, for all (t, x) ∈ S, the
set Γ (t, x) is bounded by KM(t), by the linear growth condition. This observation
supplies hypothesis (c) of Theorem 6.39; there remains (b) to verify. This requires
that the support function map

t �→ HΓ (t,y(t))(p)

be measurable for every p ∈ R
n and measurable function y(t). But since f is con-

tinuous in u, this function coincides with

t �→ sup
i � 1

〈 p, f (t, y(t),γ i(t))〉,

where {γ i} is a countable family of measurable functions generating U as in Theo-
rem 6.22. This confirms the required measurability: the map t �→ f (t, y(t),γ i(t)) is
measurable for each i (see Props. 6.35 and 6.34), and the upper envelope of count-
ably many measurable functions is measurable.

By Theorem 6.39, the limit arc x∗ satisfies the differential inclusion x ′ ∈ Γ (t, x) a.e.
The final step in the proof is to show that x∗ is indeed the state component of a
process (x∗ ,u∗). To this end, let

W (t) =
{

u ∈ U(t) : |x∗′(t)− f (t, x∗(t), u)| = 0}.

Then W is nonempty for almost every t ∈ [a,b ], and is a measurable multifunction
by Prop. 6.25. Since the hypotheses imply that W is closed-valued, it follows from
Cor. 6.23 that W admits a measurable selection u(·) on [a,b ], which confirms that
x∗ is a state trajectory. 
�

Filippov’s lemma. The proof of Theorem 23.2 actually establishes that (under the
hypotheses in force) the standard control system

x ′(t) = f
(
t, x(t), u(t)

)
, u(t) ∈ U(t) , t ∈ [a,b ] a.e. (∗)

is equivalent to the differential inclusion
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x ′(t) ∈ f
(
t, x(t),U(t)

)
, t ∈ [a,b ] a.e. (∗∗)

The term “equivalent” here means that the trajectories x of the two systems coincide.
Now, it is clear that a state trajectory x of the control system (∗) is an arc that satisfies
(∗∗); that is, a trajectory of the differential inclusion. It is the opposite implication
that is nontrivial, and that can only be affirmed under certain hypotheses.

Given an arc x that satisfies (∗∗), the axiom of choice tells us that there is a function
u(t) satisfying u(t) ∈ U(t) for every t, and such that (∗) holds; the issue is whether
there is a measurable function u doing this. In many cases, the measurable selec-
tion theory of §6.2 is adequate to the task of verifying this, as it was in the proof
of Theorem 23.2. The equivalence of (∗) and (∗∗) in that setting is known as Filip-
pov’s lemma, a term that is now used more generally for any result affirming this
equivalence, even under weaker hypotheses.

When f is less regular than in Theorem 23.2, and when U is not necessarily closed-
valued, more sophisticated measurable selection results are required to obtain cor-
responding extensions of Filippov’s lemma. The concept of LB measurability plays
a role in this endeavor.

Recall that a multifunction Γ from R
m to R

n is said to be LB measurable if its
graph, the set

gr Γ =
{
(x,u) ∈ R

m×R
n : u ∈ Γ (x)

}
,

belongs to the σ -algebra L×B (see Def. 6.33). When the values of Γ are closed
sets, it can be shown that the LB measurability of Γ is equivalent to measurability
as defined in §6.2. We admit this without proof, as well the following selection
theorem that extends Cor. 6.23.1 (Recall that the domain of Γ , denoted by dom Γ ,
is the set of points x for which Γ (x) 	= /0.)

23.3 Theorem. (Aumann’s selection theorem) If Γ is LB measurable, then there
exists a measurable selection for Γ ; that is, a Lebesgue measurable function γ map-
ping dom Γ to R

n such that γ (x) ∈ Γ (x) for almost every x ∈ dom Γ .

This selection theorem leads to the following more refined version of Filippov’s
lemma.

23.4 Corollary. Let the control system ( f ,U) be such that f (t, x,u) is continuous
in x for each (t,u) and LB measurable in (t,u) for each x, and such that U(·) is LB
measurable. Then (∗) and (∗∗) have the same trajectories.

Proof. Let x be an arc satisfying (∗∗). Then the issue is to produce a measurable
selection of the multifunction

Γ (t) =
{

u ∈ U(t) : x ′(t) = f (t, x(t), u)
}
.

1 This advanced selection theorem is an outgrowth of the theory of Souslin sets; see [25].
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The hypotheses imply that Γ is nonempty on [a,b ] a.e. Because the function
(t,u) �→ f (t, x(t),u) is LB measurable (by Prop. 6.36), we find that the set

gr Γ =
{
(t,u) ∈ gr U : x ′(t)− f (t, x(t), u) = 0

}

lies in L×B, as the intersection of two sets in L×B; thus, the required selection
exists by Theorem 23.3. 
�

Relaxed trajectories. It is considered a positive feature if the system ( f ,U) hap-
pens to satisfy the hypotheses of Theorem 23.2, for then the state trajectories are
sequentially compact, in the indicated sense. Besides being a principal factor in ob-
taining the existence of solutions in optimal control, this sequential compactness
property precludes the ill-posedness pathology that we encountered in Example
23.1: in its presence, the function V discussed there is lower semicontinuous (as
the reader may care to verify).

If ( f ,U) fails to have the indicated properties, it is likely to be the convexity of the
velocity sets that goes wrong. Accordingly, it is natural to convexify those sets, an
idea that leads to the following:

23.5 Definition. A relaxed trajectory of the system ( f ,U) on an interval [a,b ]
refers to an arc y which satisfies the differential inclusion

y ′(t) ∈ co f
(
t, y(t),U(t)

)
, t ∈ [a,b ] a.e.

Note that the set of relaxed trajectories includes the set of usual ones, which are
called original trajectories for the purposes of contrast.2

23.6 Exercise. For n = 1, let f (x,U ) = {−1,+1} ∀x , and let y be a relaxed tra-
jectory. Show that, for any ε > 0, there exists an original trajectory x of the system
( f ,U) such that

x(a) = y(a) , |x(t)− y(t)| � ε ∀ t ∈ [a,b ] . 
�

We introduced relaxed trajectories in the hope of achieving sequential compactness.
Under the right assumptions, this has succeeded:

23.7 Exercise. Let the system ( f ,U) satisfy properties (a), (b), and (c) of Theorem
23.2. Prove that the relaxed trajectories are sequentially compact in the following
sense: if yi is a sequence of relaxed trajectories for which the set {yi(a) : i � 1}
is bounded, then there exists a subsequence of yi converging uniformly to a relaxed
trajectory y of the system. 
�

2 We are sidestepping the question of finding an explicit control system generating the relaxed
trajectories. This is most often accomplished by introducing controls whose values are probability
measures on the control set.
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Under the hypotheses of the exercise above, the relaxed problem will not suffer
from the pathology exhibited in Example 23.1. Furthermore, the extension to re-
laxed trajectories turns out to be a faithful one in general, in the sense that, when f
is Lipschitz with respect to x, then the relaxed trajectories constitute precisely the
closure of the set of original trajectories (see Exer. 26.18).

There are those who have concluded from these facts that only relaxed problems
of optimal control should ever be considered. Of course, if the original system is
already relaxed, in the sense that original and relaxed trajectories coincide, there is
no cause for disagreement on the matter. A widely-studied class of control systems
whose properties are relevant in this regard is the following.

23.8 Definition. The control system ( f ,U) is said to be finitely generated if f has
the form

f (t, x,u) = g0(t , x)+G(t , x)u = g0(t , x) + ∑m
j=1 g j(t , x)u j,

where G is a function whose values are n×m matrices 3 (whose columns are the
vectors g1, g2 , . . . , gm ), and u = (u1, u2, . . . , um) ∈ R

m.

Thus, a finitely generated system corresponds to (certain) linear combinations of a
finite family of vector fields {gi : 1 � i � m}, added to the drift term g0 . When f
has this form, we also say that f is affine in the control variable.

23.9 Exercise. We consider a system ( f ,U) which is finitely generated, and where
each of the vector fields g j ( j = 0,1, . . . ,m) is measurable in t, continuous in x, and
has linear growth, as follows: there is a summable function M such that

(t, x) ∈ [a,b ]×R
n =⇒ |g j(t,x)| � M(t)(1+ |x |).

Suppose in addition that the control set U is a compact convex set not depending
on t. Prove that under these assumptions, the system is relaxed (original and relaxed
trajectories coincide), and that it satisfies the hypotheses of Theorem 23.2. 
�

23.2 Three existence theorems

Let us contemplate what factors should play a role in deriving general existence the-
orems in optimal control. To begin with, and roughly speaking, such results require
that velocity sets be convex, for reasons which should now be apparent following
our discussion of relaxation. As for the running cost Λ , its convexity relative to the

3 We continue to adhere to the convention that points in Euclidean space, in their dealings with
matrices, take the form of columns.
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control variable is the functional counterpart of that property. It is natural as well to
impose linear growth on the dynamics (to prevent finite-time blowup, see p. 260). In
addition, a growth condition on controls will be required. This is most easily sup-
plied by taking the control set U to be compact; otherwise, when the controls are
unbounded, coercivity (in u) of the running cost can be postulated (this hearkens
back to Tonelli’s theorem). The final ingredient is the lower semicontinuity of the
boundary cost � and the closedness of the target set.

There is no mystery as to why these factors play a role in existence theory: they are
the ones required to apply the direct method, studied in detail in Part III. The reader
will recall our philosophy: mastering the underlying method is preferable to de-
pending entirely on pre-formulated existence theorems. Nonetheless, these can save
time, so we give three representative ones that apply to different scenarios.

Existence for the Mayer problem. The first of our three existence theorems con-
cerns the Mayer form of the optimal control problem: it is characterized by a cost
that depends only upon the endpoint values of the state. Specifically, we consider
the following problem on a fixed underlying interval [a,b ]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)

subject to x ′(t) = f
(
t, x(t),u(t)

)
a.e.

u(t) ∈ U(t) a.e.
(
t, x(t)

)
∈ Q ∀ t ∈ [a,b ] ,

(
x(a), x(b)

)
∈ E .

(OC1)

Note that we have included a unilateral state constraint (t, x(t)) ∈ Q in the for-
mulation, where Q is a given subset of [a,b ]×R

n. Such constraints often serve to
localize the problem and the hypotheses.

23.10 Theorem. Let the data of (OC1) satisfy the following hypotheses:

(a) f (t, x,u) is continuous in (x,u) and measurable in t ;

(b) U(·) is measurable and compact-valued ;

(c) f has linear growth on Q : there is a summable function M such that

(t, x) ∈ Q, u ∈ U(t) =⇒ | f (t, x,u)| � M(t)(1+ |x |) ;

(d) For each (t, x) ∈ Q , the set f (t, x,U(t)) is convex ;

(e) The sets Q and E are closed, and � : Rn×R
n → R is lower semicontinuous ;

(f) The following set is bounded:

{α ∈ R
n : (α ,β ) ∈ E for some β ∈ R

n }.

Then, if there is at least one admissible process for the problem, it admits a solution.
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Proof. Fellow aficionados of the direct method (such as the reader) will recognize
the familiar lines of the proof. We observe first that there exists a minimizing se-
quence by assumption.

According to Theorem 23.2 (adapted in the evident way to the presence of the set
Q), we have sequential compactness: any minimizing sequence (xi ,ui) necessarily
admits a subsequence (we do not relabel) such that the arcs xi converge uniformly
to a state trajectory x∗ of the control system. Since E and Q are closed, it follows
that x∗ is admissible for (OC1). The lower semicontinuity of � yields

�
(

x∗(a), x∗(b)
)
� lim

i→∞
�
(

xi(a), xi(b)
)
= inf (OC1).

Letting u∗ be a control function for x∗ (Filippov’s lemma!), it follows that (x∗ ,u∗)
is an optimal process. 
�

Existence with a running cost. When a running cost Λ(t, x,u) which depends on
u is present (in contrast to the Mayer problem above), the existence issue is more
complex, for reasons we proceed to explain.

In the presence of the running cost, the use of the direct method must involve hy-
potheses which have the effect of imposing weak sequential compactness of the
controls along a minimizing sequence (not just compactness of the state trajecto-
ries), as well as lower semicontinuity of the integral functional with respect to this
convergence.

We have seen how to do this in prior work on integral functionals in the calculus
of variations. The coercivity of Λ would lead to the weak compactness, but now
we can also exploit the (possible) compactness of the control set. This explains the
alternative hypotheses in the next theorem.

A final point concerns the structure of f . In contrast to the Mayer case, the argument
now involves a weak limit of a sequence of controls, for the reasons given above. In
Theorem 23.10, the limiting control is generated after the convergence of the state
trajectories, by Filippov’s lemma. This approach is unavailable now, and in order
for the weak limit to preserve the dynamics, these must be affine with respect to u.
This explains why, below, we have made the underlying system a finitely generated
one (see Def. 23.8).

We consider the following optimal control problem defined on a fixed underlying
interval [a,b ].

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = g0
(
t, x(t)

)
+ ∑m

j=1 g j
(
t, x(t)

)
u j(t) a.e.

u(t) ∈ U(t) a.e.
(
t, x(t)

)
∈ Q ∀ t ∈ [a,b ] ,

(
x(a), x(b)

)
∈ E .

(OC2)
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The existence theorem has a rather long statement that goes as follows:

23.11 Theorem. Let the data of (OC2) satisfy the following hypotheses:

(a) Each g j ( j = 0,1, . . . ,m) is measurable in t, continuous in x, and has linear
growth : there exists a constant M such that

(t, x) ∈ Q =⇒ |g j(t,x)| � M(1+ |x |) ;

(b) For almost every t, the set U(t) is closed and convex ;

(c) The sets E and Q are closed, and � : Rn×R
n → R is lower semicontinuous ;

(d) The running cost Λ(t, x,u) is LB measurable in t and (x,u), and lower semicon-
tinuous in (x,u); Λ(t, x, ·) is convex for each (t, x) ∈ Q ; there is a constant λ0
such that

(t, x) ∈ Q , u ∈ U(t) =⇒ Λ(t, x,u) � λ0 .

(e) The projection
{
α ∈ R

n : (α,β ) ∈ E for some β ∈ R
n
}

of E is bounded ;

(f) One of the following holds for some r > 1:

(i) There exists k ∈ Lr (a,b) such that, for almost every t,

u ∈ U(t) =⇒ |u | � k(t), or

(ii) There exist α > 0 and β such that

(t, x) ∈ Q , u ∈ U(t) =⇒ Λ(t, x,u) � α |u |r +β .

Then, if there is at least one admissible process (x,u) for which J(x,u) is finite, the
problem admits a solution.

Proof. Let (xi ,ui) be a minimizing sequence. The following analysis will seem
rather familiar, from the use of the direct method in the calculus of variations. It
is easy to see that either alternative in hypothesis (f) implies that the sequence ui
is bounded in Lr (a,b). Since this space is reflexive (Theorem 6.4), we can invoke
weak sequential compactness (Theorem 5.50) and assume (for a subsequence, with-
out relabeling) that ui converges weakly in Lr (a,b) to a limit u∗ . It follows from
Hölder’s inequality that the sequence ui is also bounded in L1(a,b).

Using (a), we obtain an estimate of the following type for the sequence xi :

|x ′
i (t)| � M

(
1+ |xi(t)|

)(
1+K |ui(t)|

)
a.e.

With the help of Gronwall’s lemma (Theorem 6.41), because ui is bounded in
L1(a,b), and in light of (e), we deduce from this estimate that the sequence xi is
uniformly bounded on [a,b ]. Returning to the estimate, it now follows that x ′

i is
bounded in Lr (a,b).
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This allows us to invoke weak sequential compactness in Lr (a,b) once more, now
for the sequence x ′

i . Thus we may suppose that x ′
i converges weakly to a limit v∗ in

Lr (a,b). We also derive the equicontinuity of the sequence xi , by Hölder’s inequal-
ity. Calling upon Ascoli’s theorem (and continuing to take subsequences), there is
a continuous function x∗ which is the uniform limit of the xi . It follows from the
identity

xi(t) = xi(a)+
∫ t

a
x ′

i (s)ds

(by taking limits) that x∗ is an arc and that x∗′(t) = v∗(t) a.e.

We may summarize our conclusions to this point as follows:

ui converges weakly in Lr (a,b) to u∗ , xi converges uniformly to an arc x∗ , and x ′
i

converges weakly to x ′
∗ in Lr (a,b).

For the next step, let us note that the problem is unchanged if Λ is replaced by
max (Λ ,λ0), in view of hypothesis (d); this preserves convexity and lower semi-
continuity. Then we may invoke the integral semicontinuity theorem 6.38 (and the
lower semicontinuity of � ) to deduce that

J(x∗ ,u∗) � liminf
i→∞

J(xi ,ui) = inf (OC 2).

It follows that (x∗ ,u∗) solves (OC 2), provided of course that (x∗ ,u∗) is an admissi-
ble process for the problem. We proceed now to prove this.

The state and boundary constraints are preserved in the limit, since E and Q are
closed (hypothesis (c)). The set

W =
{

w ∈ Lr (a,b) : w(t) ∈ U(t) a.e.
}

is strongly closed in Lr (a,b), since strongly convergent sequences admit a subse-
quence converging almost everywhere, and since U(·) is closed-valued by hypothe-
sis (b). W is also convex (again by (b)), and therefore W is weakly closed (Theorem
3.6). It follows that u∗ (as the weak limit of the sequence ui ) belongs to W , and is
therefore a control function.

There remains only to verify that x∗ is the state trajectory corresponding to u∗. To do
this, it suffices to show that, for any measurable subset A of [a,b ], we have

∫

A

{
x∗′(t)−g0

(
t, x∗(t)

)
− ∑m

j=1 g j
(
t, x∗(t)

)
u j
∗

}
dt = 0 .

This equality holds when x∗ and u∗ are replaced by xi and ui respectively. To obtain
the desired conclusion, it suffices to justify passing to the limit as i → ∞. By weak
convergence, and by the dominated convergence theorem, we have

∫

A
x ′

i (t)dt →
∫

A
x∗′(t)dt and

∫

A
g0

(
t, xi(t)

)
dt →

∫

A
g0

(
t, x∗(t)

)
dt .
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We also know that for each j ∈ {1, 2, . . . , m}, the following holds:
∫

A
g j
(
t, x∗(t)

)
u j

i (t)dt →
∫

A
g j
(
t, x∗(t)

)
u j
∗(t)dt as i → ∞ ,

since g j(t, x∗(t)) ∈ L∞(a,b) by hypothesis (a). To complete the proof, it suffices to
show that ∫

A

{
g j
(
t, xi(t)

)
−g j

(
t, x∗(t)

)}
u j

i (t)dt → 0 .

By Hölder’s inequality, the integral on the left is bounded in absolute value by

{ ∫ b

a

∣
∣g j

(
t, xi(t)

)
−g j

(
t, x∗(t)

)∣∣r∗ dt
}1/r∗ ∥∥u j

i

∥
∥

Lr (a,b) .

The first factor in this product tends to 0, by dominated convergence, and the second
is bounded independently of i since the sequence ui is bounded in Lr (a,b). The
result follows. 
�

Remark. In practice, the state constraint involving the set Q is often added to the
problem in order to be able to invoke existence theory, but subsequently, one would
prefer to discard it if possible, in order to facilitate the writing of necessary con-
ditions. As an example of this procedure, consider the problem of §22.2. The state
constraint x(t) � 0 is automatically satisfied because of the nature of the problem
(as is easily seen), so that one may add to it the constraint

(t, x(t)) ∈ Q := [0,T ]×R+

without actually changing anything. However, this modification allows us to verify
the existence of λ0 as required by hypothesis (d) of Theorem 23.11. It is clear that
the other hypotheses are present, so we are able to assert that a solution exists.
Subsequently, in order to be able to apply the maximum principle, we may once
again safely ignore the constraint x(t) � 0, since it is automatically satisfied (as we
have said).

23.12 Exercise. For a positive constant ρ , we consider the problem

min
∫ 1

0
x ′(t)3 dt , x ∈ Lip[0 ,1] , |x ′(t)−1| � ρ , x(0) = 0, x(1) = 1.

This is the problem studied in Example 15.15, with an extra constraint on the veloc-
ity. It can be viewed as an optimal control problem in the evident way, by identifying
the control u with x ′, and by taking the control set U to be the interval [1−ρ ,1+ρ ].

(a) Prove that if ρ � 1, then a solution x∗ exists.

(b) Use the maximum principle to show that x∗(t) = t .

(c) Prove that for ρ > 3, the arc x∗ is not a solution of the problem. 
�
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Existence with variable time. Our third and last existence theorem for optimal
control treats a variable-time problem with finitely generated dynamics. We consider
the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J(τ , x,u) =
∫ τ

0
Λ
(

x(t), u(t)
)

dt

subject to τ � 0

x ′(t) = f
(

x(t), u(t)
)

= g0
(

x(t)
)
+ ∑m

j=1 g j
(

x(t)
)

u j(t) a.e.

u(t) ∈ U a.e.

x(t) ∈ S ∀ t ∈ [0 ,τ ] .
x(0) = x0 , x(τ) ∈ E .

(OC3)

The corresponding existence result is the following:

23.13 Theorem. Let the data of (OC3) satisfy the following hypotheses:

(a) Each g j ( j = 0, 1, . . . , m) is continuous and has linear growth : there is a constant
M such that

x ∈ S =⇒ |g j(x)| � M(1+ |x |) ;

(b) U is compact and convex ;

(c) E and S are closed subsets of R
n, with S ⊃ E ;

(d) Λ(x,u) is lower semicontinuous in (x,u), convex in u, and bounded below by a
constant λ0 > 0 as follows: x ∈ S, u ∈ U =⇒ Λ(x,u) � λ0 ;

(e) For every x ∈ E , we have TE(x) ∩ f (x,U) 	= /0.

Then, if there is at least one admissible process which joins x0 to E in finite time
and for which the cost is finite, the problem admits a solution.

We recognize the last hypothesis, which involves the tangent cone to E, as saying
that the system (E, f (x,U )) is weakly invariant, by Theorem 12.7. This has a nat-
ural interpretation: once we attain the target, we want to be able to stay there. Note
that in the minimal-time problem we have Λ ≡ 1, which satisfies the hypotheses
imposed on the running cost.

Proof. Let (x̄ , ū ) be an admissible process which joins x0 to E in finite time τ̄ ,
and for which J(τ̄ , x̄ , ū) is finite. The minimization in (OC 3) may be restricted to
admissible processes (x,u) defined on an interval [0,τ ] for which

J(τ̄ , x̄ , ū) � J(τ , x,u) =

∫ τ

0
Λ
(

x(t), u(t)
)

dt � λ0 τ .

In particular, we may limit to τ � J(τ̄ , x̄ , ū)/λ0 =: T . Note that T � τ̄ .
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We define a new running cost by

Λ+(x,u) =

{
Λ(x,u) if x /∈ E

0 otherwise.

We verify without difficulty that Λ+ is lower semicontinuous (and therefore Borel
measurable), and convex in u.

We now consider the fixed-time problem (P) of minimizing

J+(x,u) =
∫ T

0
Λ+

(
x(t), u(t)

)
dt

subject to the given dynamics, and with the state and boundary constraints

x(t) ∈ S ∀ t ∈ [0,T ] , x(0) = x0 , x(T ) ∈ E .

We may extend x̄ to [ τ̄ ,T ] in such a way that it remains in E (and hence in S), by
the weak invariance cited above. (Because of linear growth, Theorem 12.3 applies:
the extension can be defined on [ τ̄ ,∞).) This produces a process admissible for (P)
and having finite cost. A direct application of Theorem 23.11 shows that (P) admits
a solution (x∗ ,u∗).

Let τ∗ � T be the first time such that x∗(τ∗) ∈ E. Then x∗(t) ∈ E ∀ t ∈ [τ∗ ,T ], or
else we could redefine x∗ to remain in E on that interval, and, in so doing, obtain a
strictly lower value of J+, a contradiction.

We claim that the process (x∗ ,u∗), truncated to [0,τ∗ ], solves (OC 3). If this fails to
be the case, there exists a process (x,u) on some interval [0,τ ] such that

J(τ , x,u) < J(τ∗ , x∗ ,u∗) = J+(x∗ ,u∗) � J+(x̄ , ū),

by the optimality of (x∗ ,u∗). As before, this implies τ < T . Now extend x to [τ ,T ]
so that it remains in E ; then we obtain a process (x,u), admissible for (P), which
satisfies J+(x,u) = J(τ ,x,u) < J+(x∗ ,u∗): a contradiction. 
�

23.14 Exercise. We now ask the reader to return to certain examples discussed ear-
lier, in order to verify that some claims made at the time, in regard to the existence
of solutions, were justified.

(a) Consider the problem of Example 22.9. Show that the constraint |x(t)| � 4 may
be adjoined to it, without really changing anything. Then observe that, with this
modification, Theorem 23.11 becomes applicable. Deduce that a solution exists.

(b) Show that the soft landing problem (Example 22.14) admits a solution.

(c) Show that the problem (LQR) of Example 22.19 admits a solution.

(d) Show that the problem of Example 22.28 admits a solution. 
�
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23.3 Regularity of optimal controls

It is possible for optimal controls to be very discontinuous, even when the data of
the problem are very smooth.

23.15 Example. Let u∗ : [0 ,1] → R
n be any measurable function with values in

the unit ball in R
n, and define x∗ : [0 ,1]→ R

n by

x∗(t) =
∫ t

0
u∗(s)ds .

Then x∗ is Lipschitz continuous, so that its graph G is a closed subset of [0 ,1]×R
n.

By a well-known result in topology (not hard to prove) there exists a nonnegative
C∞ function Λ : Rn+1 → R such that the set {(t , x) : Λ(t , x) = 0} is precisely the
set G. Consider now the following optimal control problem, which has C∞ data, a
free endpoint, and a running cost independent of the control:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ 1

0
Λ
(
t, x(t)

)
dt

subject to x ′(t) = u(t), t ∈ [0 ,1] a.e.

u(t) ∈ U = B(0,1), t ∈ [0 ,1] a.e.

x(0) = 0.

It is clear that the unique optimal process (the only one giving zero cost) is (x∗ , u∗).
The optimal control u∗ is as discontinuous as we like (but measurable); in particular,
it can fail to be piecewise continuous. 
�

We have seen how convexity of the running cost Λ(t, x,u) with respect to u plays a
crucial role in existence theory. For purposes of deducing the regularity of optimal
controls, a certain strengthening of that property is useful. We say that the running
cost Λ is strongly convex in u if, for every bounded subset C of [a,b ]×R

n×R
m,

there exists c > 0 such that

(t, x,u), (t, x,v) ∈ C =⇒ 〈Λu(t, x,v)−Λu(t, x,u),v−u〉 � c |v−u |2 .

The reader will notice that we suppose, in writing this, that Λ is differentiable with
respect to u. We may think of strong convexity as a calibrated form of strict convex-
ity, as the following exercise shows.

23.16 Exercise.

(a) Prove that ifΛ is strongly convex in u, then the mapping u �→ Λ(t, x,u) is strictly
convex on R

m for each (t , x).

(b) Suppose that Λ is twice continuously differentiable with respect to u, and that
the Hessian matrix D2

u Λ is uniformly positive definite on bounded sets, in the
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following sense: for every bounded subset C of [a,b ]×R
n×R

m, there exists
c > 0 such that

〈D2
u Λ(t, x,u)w,w〉 � c|w |2 ∀w ∈ R

m, ∀(t, x,u) ∈ C.

Prove that Λ is strongly convex.

(c) Let Λ be of the form Λ(t, x,u) = Λ0(t,x)+ 〈M u,u〉, where the m×m matrix M
is positive definite. Prove that Λ is strongly convex. 
�

We consider now the following optimal control problem, defined on a fixed under-
lying interval [a,b ], in which the system is finitely generated:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = g0
(
t, x(t)

)
+ ∑m

j=1 g j
(
t, x(t)

)
u j(t) a.e.

u(t) ∈ U a.e.
(

x(a), x(b)
)
∈ E.

(OC4)

The affine structure of the dynamics lends itself to proving the regularity of optimal
controls when the running cost is strictly convex in the control variable, by exploit-
ing the conclusions of the maximum principle. (Sometimes, in non affine settings,
this can be done on an ad hoc basis.) The following result is foreshadowed (of
course) in the calculus of variations (see Theorem 15.5).

23.17 Theorem. Let (x∗ ,u∗) be an admissible process for (OC4) which satisfies
the necessary conditions of the extended maximum principle (Theorem 22.26 ) in
the normal case (η = 1). Suppose that the following hypotheses hold :

(a) The functions �, Λ , and g j ( j = 0, . . . , m) are locally Lipschitz ;

(b) U is a compact convex subset of R
m ;

(c) For each (t,x), the map u �→ Λ(t, x,u) is strictly convex.

Then u∗ is continuous. If, in addition, the following holds:

(d) Λ is differentiable with respect to u, Λu is locally Lipschitz, and Λ is strongly
convex in u,

then u∗ is Lipschitz continuous.

As usual in dealing with measurable functions, the statement “u∗ is continuous”
means that there is a continuous function that agrees with u∗ a.e.; we also say that
u∗ admits a continuous representative.

Proof. The hypotheses imply that u∗ is essentially bounded and (since x∗′ is
bounded) that x∗ is Lipschitz. Let p be the costate of Theorem 22.26. It follows
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that for a certain constant K, for almost every t, the function

x �→ H
(
t, x, p(t), u∗(t)

)
= 〈 p(t), f (t, x, u∗(t))〉−Λ(t, x, u∗(t))

is Lipschitz of rank K near x∗(t). (Here, f denotes the dynamics function of the
finitely generated system.) Then the generalized gradient

∂C H
(
t, • , p(t), u∗(t)

)
(x∗(t)

)

is a subset of B(0,K) (Prop. 10.5), so it follows from the adjoint inclusion (A) that
the costate p has bounded derivative, and hence is Lipschitz.

As usual, we denote by G the n×m matrix whose columns are the elements g j
( j = 1, 2 . . . ,m). The stationarity condition (Fermat’s rule) corresponding to the
maximum condition (M) asserts that (see Prop. 4.12) the costate p satisfies, for
almost every t:

G∗(t, x∗(t)
)

p(t) ∈ ∂u Λ
(
t, x∗(t), u∗(t)

)
+NU

(
u∗(t)

)
.

From this point, it is an easy matter to adapt the proof of Theorem 15.5 to show
that there is a continuous function which agrees with u∗ almost everywhere. The
argument is essentially the same as before, and is based on the fact that if, for a
given τ , two different points u1, u2 satisfy

G∗(τ , x∗(τ)
)

p(τ) ∈ ∂u Λ
(
τ , x∗(τ), ui

)
+NU

(
ui
)
,

then u1 = u2 . This in turn follows from the fact that each ui minimizes over the
convex set U the strictly convex function

u �→ Λ
(
τ , x∗(τ), u

)
−〈 p(τ),G(τ , x∗(τ))u〉 .

Having dealt with the strictly convex case, we now turn to the proof of Lipschitz con-
tinuity, under hypothesis (d). We begin by defining two useful parameters. The first,
denoted by L, is a common Lipschitz constant on [a,b ] for all the functions

r �→ G∗(r, x∗(r)
)

p(r) , r �→ Λu
(
r, x∗(r), u

)
(u ∈ U) .

The existence of L follows from the fact that x∗ and p are Lipschitz, while G and Λu
are Lipschitz on bounded sets (by assumption).

The second parameter c > 0 is taken to be a strong convexity constant for Λ relative
to a bounded set C large enough to contain gr(x∗)×U .

Now let us fix any two values of s and t ∈ [a,b ] for which the maximum condition
(M) holds. Then, for certain vectors ns , nt in R

m, we have (by stationarity)

G∗(s, x∗(s)
)

p(s)−Λu
(
s, x∗(s), u∗(s)

)
= ns ∈ NU

(
u∗(s)

)
, (1)

G∗(t, x∗(t)
)

p(t)−Λu
(
t, x∗(t), u∗(t)

)
= nt ∈ NU

(
u∗(t)

)
. (2)
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From the definition of a normal to a convex set, it follows that

〈nt −ns , u∗(s)−u∗(t)〉 � 0 . (3)

Invoking strong convexity, we calculate as follows:

c|u∗(s)−u∗(t)|2 � 〈Λu
(
s, x∗(s), u∗(s)

)
−Λu

(
s, x∗(s), u∗(t)

)
, u∗(s)−u∗(t)〉

= 〈Λu
(
s, x∗(s), u∗(s)

)
−Λu

(
t, x∗(t), u∗(t)

)
, u∗(s)−u∗(t)〉

+ 〈Λu
(
t, x∗(t), u∗(t)

)
−Λu

(
s, x∗(s), u∗(t)

)
, u∗(s)−u∗(t)〉

= 〈G∗(s, x∗(s)
)

p(s)−ns −G∗(t, x∗(t)
)

p(t)+nt , u∗(s)−u∗(t)〉
+ 〈Λu

(
t, x∗(t), u∗(t)

)
−Λu

(
s, x∗(s), u∗(t)

)
, u∗(s)−u∗(t)〉 (by (1) (2))

� 2 L |s− t | |u∗(s)−u∗(t)| ,

by (3), and by the Lipschitz condition. It follows that

|u∗(s)−u∗(t)| � (2L/c)|s− t |.

Since s and t are any two points in a subset of [a,b ] of full measure, it follows that
u∗ has a representative that is Lipschitz of rank 2L/c. 
�

23.18 Exercise. Show that Theorem 23.17 applies to exactly one of the following:
Example 22.9, the problem of §22.2, Example 22.28. 
�



Chapter 24

Inductive methods

In seeking to solve an optimal control problem, it may happen that we suspect that
we have identified the solution, but the deductive reasoning that would allow us
to assert its optimality is unavailable. This might be the case because no existence
theorem applies, or because the applicability of the necessary conditions is uncer-
tain. In such a situation, we may seek to use an inductive method to confirm the
optimality of the suspect. We describe three such methods in this chapter. The first
of these is based on a strengthening of the conditions that appear in the maximum
principle.

24.1 Sufficiency by the maximum principle

Let us consider the general optimal control problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = f
(
t, x(t), u(t)

)
, t ∈ [a,b ] a.e.

u(t) ∈ U(t) , t ∈ [a,b ] a.e.
(

x(a), x(b)
)
∈ E .

(EC)

Suppose that, in seeking to solve (EC), we have identified an admissible process
(x∗ ,u∗) that (for a certain costate p) satisfies all the necessary conditions provided
by the extended maximum principle (see Theorem 22.26). It does not follow that
(x∗ ,u∗) is a local minimizer in any sense, cela va sans dire: the necessary conditions
are not sufficient. However, we now proceed to identify a special context in which a
certain set of conditions of maximum principle type do turn out to be sufficient for
optimality.
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We assume that the data satisfy the basic hypotheses of §22.6 (see p. 464), as well
as the local Lipschitz hypothesis 22.25. Recall that in the normal case (η = 1) of the
maximum principle, the maximized Hamiltonian is given by

M(t, x, p) = sup
u ∈U(t)

H(t, x, p,u) = sup
u ∈U(t)

〈 p, f (t, x,u)〉−Λ(t, x,u).

24.1 Theorem. Let (x∗ ,u∗) be an admissible process for problem (EC), where E
and � are convex. Suppose that there exists a costate arc p that satisfies (with η = 1)
the transversality condition (T) and the maximum condition (M) (almost every-
where) of Theorem 22.26, as well as, for some δ > 0, the following:

M
(
t, x∗(t)+ y, p(t)

)
−M

(
t, x∗(t), p(t)

)
� 〈−p ′(t), y〉

∀ y ∈ B(0,δ ), t ∈ [a,b ] a.e. (A∗)

Then (x∗ ,u∗) is a minimizer for (EC) relative to ‖x− x∗‖ � δ .

Proof. Let (x,u) be any admissible process for (EC), with ‖x− x∗‖ � δ . Then,
almost everywhere, the expression

〈 p(t), f (t, x(t), u(t))〉−Λ(t, x(t), u(t))

is bounded above by M(t, x(t), u(t)) (by definition); in turn, (A∗) and (M) together
imply that this term is bounded above by

〈 p(t), f (t, x∗(t), u∗(t))〉−Λ(t, x∗(t), u∗(t))−〈 p ′(t), x(t)− x∗(t)〉.

Let us substitute f (t, x(t), u(t)) = x ′(t) (and similarly for (x∗ ,u∗)) and integrate
over [a,b ]. After rearranging, we discover

∫ b

a
Λ
(
t, x(t), u(t)

)
dt �

∫ b

a
Λ
(
t, x∗(t), u∗(t)

)
dt + 〈 p(t), x(t)− x∗(t)〉

∣
∣
∣
∣

b

a
. (1)

Because E and � are convex, the transversality condition (T) is equivalent to
(

p(a),−p(b)
)
∈ ∂ �

(
x∗(a), x∗(b)

)
+NE

(
x∗(a), x∗(b)

)
,

as follows from Prop. 11.12 and Theorem 11.36. In turn, this implies that the ele-
ment (p(a),−p(b)) lies in the subdifferential of the convex function g = �+ IE , by
Theorem 4.10 and Exer. 4.5. Then the subgradient inequality for g yields

�
(
x(a), x(b)

)
− �

(
x∗(a), x∗(b)

)

� 〈(p(a),−p(b)),
(
x(a)− x∗(a), x(b)− x∗(b))〉. (2)

Combining the inequalities (1) and (2) reveals J(x,u) � J(x∗ ,u∗), which proves the
theorem. 
�
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24.2 Corollary. Suppose that for almost every t, the function

x �→ H
(
t, x, p(t), u∗(t)

)

is concave on B(x∗(t),δ ). Then the conclusion of Theorem 24.1 holds if the hy-
pothesis (A∗) is replaced by the adjoint inclusion (A) of Theorem 22.26.

Proof. It suffices to verify that condition (A∗) holds. When H has the stated con-
cavity property, the function

ϕ(x) = (−H)
(
t, x, p(t), u∗(t)

)
+ IB(x∗(t),δ )(x)

(for fixed t) is convex. In this case we may write (for almost every t), with the help
of Theorem 10.8 and Prop. 10.11:

∂ϕ
(

x∗(t)
)
= ∂Cϕ

(
x∗(t)

)
= −∂C(−ϕ)

(
x∗(t)

)
� p ′(t) ,

by (A). It now follows that (A∗) holds: it is simply the subgradient inequality at
x∗(t) corresponding to p ′(t) and the convex function ϕ (bearing in mind (M)). 
�

Remark. Note that no convexity of Λ is postulated in Theorem 24.1. It is clear,
however, from the definition of H, that the concavity property cited in the corollary
will hold if the dynamics of the problem are affine in the state variable and Λ is
convex in x (exercise). In such cases, then, the maximum principle is rather close to
being a sufficient, as well as a necessary, condition.

24.3 Example. We return to Example 18.16 in order to illustrate the use of Theorem
24.1. Recall that the problem consists of minimizing

∫ T

0

{
|x(t)|+g

(
|x ′(t)|

)}
dt

subject to the endpoint constraint x(T ) = β , with x(0) free, where g is given by

g(r) =

{
1+ r2/2 if r 	= 0
0 if r = 0.

In the case 0 < T �
√

2, which is the only one we revisit, we had conjectured that
the solution was x∗(t)≡ β . We prove this now.

We recognize that the problem is a special case of (EC), with data

[a,b ] = [0,T ], E = R×{β}, �= 0, f (t, x,u) = u , U(t) = R, Λ = |x |+g(|u |).

Thus, E and � are convex. We have H = pu−|x |−g(|u |), which is concave with
respect to x. In order to apply Cor. 24.2, then, we need only exhibit a costate p
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satisfying (T), (A), and (M) of Theorem 22.26 (with η = 1). In fact, this would
confirm that x∗ is a global minimum, since any δ > 0 will serve here.

If β > 0 (for example), then (T), and (A) yield p(0) = 0 and p ′(t) = 1, whence
p(t) = t. Then (M) is seen to require that, for every t ∈ [0,T ], we have

g(|u |) � t u ∀u ⇐⇒ u2 −2 t u+2 � 0 ∀u ⇐⇒ t �
√

2 ,

which is true since T �
√

2. 
�

24.4 Exercise. We consider the following problem of L1 approximation. The goal
is to identify the function x : [0,3 ] → R which is nondecreasing and Lipschitz of
rank 2, that satisfies x(0) = 0, and which best approximates (in the L1 sense) the
function θ given by

θ(t) =

{
t if 0 � t � 1 or 2 � t � 3

0 otherwise.

This leads to the following problem of optimal control:
⎧
⎪⎨

⎪⎩

Minimize J(x,u) =
∫ 3

0
|x(t)−θ(t)|dt

subject to x(0) = 0 and x ′(t) = u(t) ∈ [0,2 ] , t ∈ [0,3 ] a.e.

Find an optimal process for the problem. 
�

24.2 Verification functions in control

Consider the familiar optimal control problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = f
(
t, x(t), u(t)

)
, t ∈ [a,b ] a.e.

u(t) ∈ U, t ∈ [a,b ] a.e.

x(a) = x0 , x(b) ∈ E.

(OC)

Suppose that we wish to confirm the optimality of a certain admissible process
(x∗ ,u∗). The verification function method that we studied in detail in the calculus
of variations carries over to the more general setting of (OC), with minor changes. It
might be best, if we may so suggest, for the reader to review the discussion in §19.1
(p. 367) at this point; to a great extent, we content ourselves here with indicating the
required modifications.
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In the context of (OC), and in its ideal version, the method consists of exhibiting a
smooth function ϕ that satisfies the Hamilton-Jacobi inequality

Λ(t, x,u)+ϕ t(t, x)+ 〈ϕ x(t, x), f (t, x,u)〉 � 0, (t, x,u) ∈ [a,b ]×R
n×U (1)

as well as the boundary condition

ϕ(b,y) = �(y), y ∈ E . (2)

The reader will note the presence of the dynamics function f in (1).

Now let (x,u) be any admissible process. We proceed to express the inequality (1)
along (x,u); that is, with (t, x,u) = (t, x(t),u(t)), and also with f (t, x(t),u(t)) re-
placed by x ′(t) a.e. Then we integrate both sides over [a,b ] to obtain

∫ b

a
Λ
(
t, x(t), u(t)

)
dt �

∫ b

a
− d

dt
ϕ(t, x(t))dt

= ϕ(a, x(a))−ϕ(b, x(b)) = ϕ(a, x0)− �(x(b)) ,

whence J(x,u) � ϕ(a, x0). Thus, we have found a lower bound on the cost of any
admissible process. If the inequality (1) holds with equality along our suspect pro-
cess (x∗ ,u∗), then the lower bound is attained, which verifies that (x∗ ,u∗) minimizes
the cost.

As before, there is a natural candidate for such a function ϕ , in this case the value
function defined by

ϕ(τ ,α) = min �
(

x(b)
)
+

∫ b

τ
Λ
(
t, x(t), u(t)

)
dt : x(τ) = α , x(b) ∈ E . (3)

All the difficulties of the verification function method that we had encountered be-
fore in §19.1 (as well as all its advantages) persist in this new setting. In particular,
there is a need to consider nonsmooth functions ϕ . The value function (3) is highly
unlikely to be smooth; its behavior at the endpoints of the interval [a,b ] is also
problematic (again). For these reasons, we introduce a generalized type of solution
of the Hamilton-Jacobi inequality for locally Lipschitz verification functions, which
turn out, once more, to be highly useful.

The context is that of a locally Lipschitz function ϕ : Ω → R, where Ω is an open
subset of [a,b ]×R

n. We suppose that ϕ satisfies the Hamilton-Jacobi inequality in
the almost-everywhere sense:

Λ(t, x,u)+ϕ t(t, x)+ 〈ϕ x(t, x), f (t, x,u)〉 � 0 ∀u ∈ U, (t, x) ∈ Ω a.e. (4)

The use of such functions is predicated on the following fundamental fact, which
allows us to integrate a Hamilton-Jacobi inequality that holds only in this sense, in
order to derive a lower bound on the cost.
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24.5 Proposition. We assume that the dynamics function f (t, x,u) is continuous in
(t, x), and that the running cost Λ(t, x,u) is bounded below on bounded sets, LB
measurable in (t,u) for each x, and continuous in (t, x) for each u. Let (x,u) be
a process for the system ( f ,U), with x Lipschitz and u essentially bounded, and
satisfying (t, x(t)) ∈ Ω ∀ t ∈ (a,b). Then we have

∫ b

a
Λ(t, x(t), u(t))dt � limsup

ε ↓ 0

{
ϕ
(

a+ε , x(a+ε)
)
−ϕ

(
b−ε , x(b−ε)

)}
. (5)

Proof. We first establish an inequality involving the generalized gradient.

Lemma. For any (t, x) ∈ Ω and u ∈ U , we have

〈(ζ ,ψ),(1, f (t, x,u))〉 � Λ(t, x,u) ∀(ζ ,ψ) ∈ ∂C(−ϕ)(t,x) .

Proof. To see this, recall that (4) holds for the gradient of ϕ at almost all points inΩ
where −ϕ is differentiable, and provides precisely the desired inequality in the case
(ζ ,ψ) =−∇ϕ . But any (ζ ,ψ) ∈ ∂C(−ϕ)(t,x) is generated by limiting gradients of
−ϕ , as described by the gradient formula, Theorem 10.27, a characterization which
allows us to ignore any points at which (4) might fail. Since the functions Λ and f
are continuous with respect to (t,x), the inequality of the lemma results. 
�

It follows from the lemma and from the definition of the generalized directional
derivative (see Def. 10.3) that we have

(−ϕ)◦
(
t,x ;1, f (t, x,u)

)
=

max
{
ζ + 〈ψ , f (t, x,u)〉 : (ζ ,ψ) ∈ −∂Cϕ(t,x)

}
� Λ(t, x,u). (6)

Now let (x,u) be a process for the system ( f ,U) as described in the statement of the
proposition. When the (locally Lipschitz) function t �→ ϕ(t, x(t)) is differentiable,
when x ′(t) exists, and when we have x ′(t) = f (t, x(t), u(t)) as well as u(t) ∈ U
(thus, for almost every t ∈ (a,b)), we claim that

d
dt

(−ϕ)
(
t, x(t)

)
� (−ϕ)◦

(
t, x(t) ;1, f (t, x(t), u(t))

)
.

It is a simple matter to prove this by examining the difference quotient whose limit
is the left side (exercise). Then, integrating the inequality from a+ ε to b− ε , and
invoking (6), we derive

∫ b−ε

a+ε

d
dt

(−ϕ)
(
t, x(t)

)
dt �

∫ b−ε

a+ε
Λ
(
t, x(t), u(t)

)
dt .

Note that the integral of the running cost is well defined, since (by hypothesis) the
function t �→ Λ(t, x(t), u(t)) is bounded below, and since it is measurable by Prop.
6.36. Taking the limit as ε ↓ 0 leads to the inequality (5). 
�



24.2 Verification functions in control 497

Remark. Prop. 24.5 extends Prop. 19.2 to the control setting, but with a change of
sign, adopted here because, in optimal control, it often seems more natural to vary
the initial point rather than the final one. Time reversal allows us to derive one type
of result from the other.

In Lipschitz terms, the method of verification functions applies much as it did in the
ideal case: the Hamilton-Jacobi inequality holds in a weaker (almost everywhere)
sense, but Prop. 24.5 leads to a lower bound on the cost, one which (we hope) is
attained by the process (x∗ ,u∗) that we suspect of being optimal. As we have seen,
verification functions can be applied to numerous variants of the basic problem, no-
tably those which feature a unilateral state constraint. In the following, we illustrate
the method in the setting of an infinite horizon problem.

24.6 Example. Consider the following optimal control problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ ∞

0
e−2 tu(t)(1− x(t))dt

subject to x ′(t) = x(t)(4− x(t))− x(t)u(t) , t � 0 a.e.

u(t) ∈ [0,4 ] , t � 0 a.e.

x(0) = x0 .

We suppose that the prescribed initial value x0 lies in (0,4).

Notice that the deductive method cannot be used at our current level of theory, since
we have proved in this text neither necessary conditions, nor existence theorems, that
apply on the interval [0,∞). There is no law against formulating a guess, however,
as to what the solution might be.

The Hamiltonian is given here (in the normal case) by

H(t,x, p,u) = p
{

x(4− x)−ux
}
− e−2 tu(1− x),

which is affine in the control. Let us take the coefficient of u as a switching function:

σ = e−2 t(x−1)− px .

Assuming without cause that a solution (x,u) exists, and applying the maximum
principle without justification, we are led to a costate p for which

−p ′ = p(4−2x−u)+ue−2 t , u(t) =

{
0 if σ < 0

4 if σ > 0.

We ask the reader to be an accomplice in this dubious analysis, by showing that
intervals on which σ vanishes correspond to a special value of x :

Exercise. Suppose that σ ≡ 0 on an interval [c,d ]. Prove that we have x ≡ 2 and
u(t) = 2 a.e. on [c,d ].
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It appears that the control values 0, 2, and 4 are destined to play a role in the solution.
Based on these clues, and in view of our experience, we are led to formulate an
educated conjecture of the turnpike kind: the optimal state arc x is the one which
attains the value x = 2 as rapidly as possible (by taking u = 0 if x0 < 2, or else
u = 4 if x0 > 2), and then remains at that value thereafter (with u = 2).

We now seek to verify this conjecture, by looking at the value function (3) (with
b = +∞, and calculated provisionally by means of the conjecture) to see if it has the
properties of a verification function. For this purpose, let us make V more explicit.

For τ ∈ R+ and α ∈ (0,2 ], we denote by r(τ ,α) the time t at which the solution x
of the initial value problem

x ′ = x(4− x) , x(τ) = α

satisfies x(t) = 2. (Note that the solution x converges to the equilibrium value 4, so
r is well defined.) Similarly, for τ ∈ R+ and α ∈ [2 ,4), we denote by s(τ ,α) the
time t at which the solution x of the initial value problem

x ′ = x(4− x)−4x = −x2, x(τ) = α

satisfies x(t) = 2. Then the conjectured optimal cost from an initial condition
(τ ,α) ∈ R+×(0,2) is given by

V−(τ ,α) =
∫ r(τ ,α)

τ
0 dt +

∫ ∞

r(τ ,α)
e−2 t 2(1−2)dt = −e−2r(τ ,α),

whereas the cost from an initial condition (τ ,α) ∈ R+×(2,4) is given by

V+(τ ,α) =
∫ s(τ ,α)

τ
4e−2 t(1− x(t)

)
dt − e−2s(τ ,α),

where, in the integral, x refers to the solution of x ′ =−x2, x(τ) = α .

The next step is to establish the Hamilton-Jacobi inequality.

Claim 1. For all (τ ,α) ∈ Ω− := (0,∞)×(0,2), we have, for all u ∈ [0,4 ],

e−2τu(1−α)+V
−
τ (τ ,α)+V

−
α (τ ,α)

{
α (4−α)−uα

}
� 0 .

Note that the function r(τ ,α) is differentiable in Ω−, by classical results, so the
partial derivatives of V− exist. The inequality of the claim may be written

2e−2r{rτ + rα α (4−α)}+u
{

e−2τ(1−α)−2α e−2rrα
}
� 0 . (7)

It is clear from the definition of r that r(τ ,α) = r(0,α)+ τ , so we have rτ = 1.
Along the solution x of x ′ = x(4− x), x(τ) = α , we have r(t, x(t)) = r(τ ,α). Dif-
ferentiating, we find
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rτ
(
t, x(t)

)
+ rα

(
t, x(t)

)
x(t)

(
4− x(t)

)
= 0 .

Substituting t = τ yields rα(τ ,α) = −
{
α (4−α)

}−1. It follows that the first ex-
pression in (7) vanishes, so that (7) is equivalent to

e−2τ(1−α)−2α e−2rrα = e−2τ{1−α+2/(4−α)
}
� 0 ,

an inequality which is easily seen to hold. This proves Claim 1.

Claim 2. For all (τ ,α) ∈ Ω+ := (0,∞)×(2,4), we have, for all u ∈ [0,4 ],

e−2τu(1−α)+V+
τ (τ ,α)+V+

α (τ ,α)
{
α (4−α)−uα

}
� 0 .

It follows, much as in the previous case, using now the identities

sα(τ ,α) = 1/α 2 , s(τ ,α) = s(0,α)+ τ ,

that the claim reduces to proving the inequality
[
1+(2/α)e−2s(0,α)−α

]
u � 4(1−α)+8e−2s(0,α)/α .

The coefficient of u on the left is negative, so we may set u = 4 in proving the last
inequality. But in that case it reduces to an identity; whence Claim 2.

We now define, for (τ ,α) ∈ Ω := (0,∞)×(0,4), the function

V (τ ,α) =

⎧
⎪⎨

⎪⎩

V−(τ ,α) if (τ ,α) ∈ Ω−

−e−2τ if α = 2

V +(τ ,α) if (τ ,α) ∈ Ω+.

Then V is locally Lipschitz (see Exer. 13.18) and satisfies the Hamilton-Jacobi in-
equality (4) in the almost-everywhere sense in Ω . Since any admissible process
(x,u) with x(0) ∈ (0,4) is such that (t, x(t)) ∈ Ω ∀ t > 0, we deduce with the help
of Prop. 24.5 that for any T > 0 we have

∫ T

0
e−2 tu(t)

(
1− x(t)

)
dt � limsup

ε ↓ 0

{
V
(
ε , x(ε)

)
−V

(
T − ε , x(T − ε)

)}
.

It is not difficult to verify that we have, uniformly for α ∈ (0,4),

V (τ ,α) → V (0,α) as τ ↓ 0 , V (τ ,α) → 0 as τ ↑ +∞ .

This allows us to deduce, by letting T → ∞ in the preceding inequality,
∫ ∞

0
e−2 tu(t)

(
1− x(t)

)
dt � V (0, x0) .
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(The integral is well defined, since u and x are bounded.) Since this holds for any
admissible process (x,u), and since our conjecture yields the cost V (0, x0) by con-
struction, we have verified the validity of our guess. 
�

24.3 Use of the Hamilton-Jacobi equation

We shall illustrate in this section how a uniqueness theorem for generalized solutions
of the Hamilton-Jacobi equation leads to an inductive method to confirm conjectured
optimality. We consider an autonomous, finitely generated control system

f (x,u) = g0(x)+G(x)u = g0(x) + ∑m
j=1 g j(x)u j, u(t) ∈ U,

where U ⊂ R
m is compact and convex, and where the functions g j have linear

growth. The lower Hamiltonian h of the system is the function

h(x, p) = 〈 p, g0(x)〉+min
{
〈 p,G(x)u〉 : u ∈ U

}
.

The minimal-time function T : Rn → R∞ is defined as follows: T (α) is the infimum
of all τ � 0 such that, for some trajectory x of the system, we have

x(0) = α , x(τ) = 0.

The reader will recall that a real-valued function ϕ is said to be positive definite
when ϕ(0) = 0 and ϕ(x)> 0 for x 	= 0.

24.7 Theorem. Let ϕ be a continuous, positive definite function that satisfies

x 	= 0 , ζ ∈ ∂Pϕ(x) =⇒ h(x, ζ ) =−1 .

Then ϕ is the minimal-time function.

Proof. We consider the augmented state x+ = (x0, x) ∈ R×R
n in which the new

coordinate x0 is a surrogate for time t. We define a multifunction F+ and a function
ϕ+ as follows:

F+(x0, x) =
{(

1, g0(x)+G(x)u
)

: u ∈ U
}
, ϕ+

(
x0, x

)
= x0 +ϕ(x) .

Then the lower Hamiltonian of F+ is the function h+(x+, p+) = p0 + h(x, p), and
the hypothesis implies

hF+
(

x+ , ∂Pϕ+(x+)
)
= 0 ∀x+ ∈ Ω := {(x0, x) : x0 ∈ R , x ∈ R

n\{0}}.

It follows that the system (ϕ+ ,F+) is both strongly increasing and weakly decreas-
ing relative to Ω (see Theorems 12.11 and 12.17, and Exer. 13.30).
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Fix α ∈ R
n\{0}, and consider any state trajectory x for the original system, with

x(0) = α , that attains zero in finite time. Let τ > 0 be the first time for which x(τ)
equals 0. Note that (t, x(t)) is a trajectory for F+ on [0,τ) that lies in Ω . Strong
increase implies

τ+ϕ
(

x(τ)
)
� 0+ϕ

(
x(0)

)
=⇒ τ � ϕ(α) .

It follows that T (α) � ϕ(α). We need only establish the opposite inequality.

By weak decrease (see Theorem 12.11), there is a trajectory (t, x(t)) for F+ begin-
ning at (0,α), maximally defined for Ω , with the property that

t +ϕ
(

x(t)
)
� ϕ(α), t ∈ [0, t̄ ],

where t̄ is the exit time from Ω . Since ϕ � 0, it follows that, for some positive τ no
greater than ϕ(α), we have ϕ(x(τ))= 0; that is, x(τ) = 0 (by positive definiteness).
Filippov’s lemma assures us that x is a trajectory of the original control system.
Thus, T (α) � τ � ϕ(α). 
�

Remark. Observe that no a priori assumption is made in Theorem 24.7 about the
controllability of the system to 0; it is the existence of ϕ that forces T to be finite-
valued, or, equivalently, guarantees that every point in R

n can be steered to 0 in finite
time. Note also the need to exclude x = 0 in the proximal Hamilton-Jacobi equation:
since ϕ attains a minimum at the origin, we have 0∈ ∂Pϕ(0), but h(0,0) = 0 	=−1.
Thus the Hamilton-Jacobi equation necessarily fails at 0.

A converse to Theorem 24.7 can be proved:

24.8 Exercise. Suppose that the minimal-time function T is finite and continuous
(for a system ( f ,U) as above). Show that it is positive definite and satisfies

x 	= 0 , ζ ∈ ∂PT (x) =⇒ h(x,ζ ) =−1. 
�

What bearing does a result such as Theorem 24.7 have on sufficient conditions for
optimality? The answer lies in the following observation. If we formulate a conjec-
ture regarding the minimal-time path from any initial value α , and if we calculate
the resulting time T (α) based on the conjecture, then the conjecture is correct if and
only if the function we calculated coincides with the minimal-time function. And
this can be checked by verifying the properties that are known to characterize that
function. We illustrate the procedure now.

24.9 Example. Consider again the soft landing problem (Example 22.14). As we
saw, the function claimed to be the minimal-time function is given in terms of the
switching curve Σ as follows:



502 24 Inductive methods

ϕ(x,y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−y +
√

2y2 −4x if (x,y) is left of S: 2x �−y2 and y � 0 , or
2x � y2 and y � 0

+y +
√

2y2 +4x if (x,y) is right of S: 2x � −y2 and y � 0 , or
2x � y2 and y � 0.

It was calculated on the basis of information derived from the maximum principle.
We may verify the optimality of the proposed strategy by showing that ϕ is in fact
the minimal-time function. We do this by showing that it has the properties given in
Theorem 24.7.

It follows easily that ϕ is continuous and positive definite; it is the proximal
Hamilton-Jacobi equation that needs to be verified. Note that

h(x,y, p,q) = py−|q |.

If (x,y) does not lie on the switching curve Σ , then ϕ is smooth and ∂Pϕ(x,y) is the
singleton gradient, easily calculated. We check without difficulty that

h
(

x, y,ϕ x(x,y),ϕ y(x,y)
)
= ϕ x(x,y)y−|ϕ y(x,y)| = −1.

Consider now a point (y2/2 , y), with y < 0; this is a point on the lower branch of
Σ . Let (p,q) belong to ∂Pϕ(x,y). Then, for some σ � 0, the proximal inequality
asserts that locally, relative to all points (X ,Y ) to the right of Σ (that is, satisfying
2Y 2 −4X � 0) , the function

(X ,Y ) �→ Y +
√

2Y 2 +4X − pX −qY +σ
{∣∣X − x

∣
∣2
+
∣
∣Y − y

∣
∣2}

attains a minimum at (x,y). The multiplier rule (Theorem 9.1) yields the existence
of γ � 0 such that

p = −2γ−1/y , q = 2γ y � 0 ,

whence
h(x,y, p,q) = py−|q | = py+q = −1 ,

as required. A similar argument applies to the upper branch of Σ . It follows then,
from Theorem 24.7, that ϕ is the minimal-time function, and thus that the strategy
generating it is optimal. 
�

The approach we have described in this section can be used in any context for which
we happen to have the appropriate characterization of the value function.



Chapter 25

Differential inclusions

Proof of the Multiplier Rule is both formidable and tedious, and
we shall sketch only a part of it here. After completing this
chapter, a reader will have acquired a feeling for what the rule
says and does and it will then be easier to endure the details of a
complete proof. Those who have a serious interest in variational
theory must, sooner or later, study some of the proofs.
G. M. Ewing (Calculus of Variations with Applications)

We develop in this chapter certain necessary conditions for the optimal control of
systems that are described by a differential inclusion. The discussion takes place in
the context of the following deceptively simple-looking problem:

⎧
⎪⎪⎨

⎪⎪⎩

Minimize J(x) = �
(

x(a), x(b)
)

subject to x ′(t) ∈ Ft
(

x(t)
)
, t ∈ [a,b ] a.e.

(
x(a), x(b)

)
∈ E .

(DI)

Here, F is a multifunction mapping [a,b ]×R
n to the subsets of Rn. The reader will

notice that the t-dependence of F is indicated by a subscript (as it will be for other
data subsequently). An arc x : [a,b ]→ R

n is said to be admissible for the problem
if it satisfies the differential inclusion and the boundary condition of (DI).

We have met differential inclusions before, and have found them useful in study-
ing such topics as invariance, monotonicity, and relaxation. Nonetheless, we feel
obliged to admit that the differential inclusion problem (DI) is less natural than the
standard control formulation (for one thing, the control variable has disappeared),
and is rarely used in the modeling of applications. We must beg to be trusted in a
matter such as this, however: (DI) provides an ideal mathematical environment in
which to prove various types of necessary conditions.

All the different versions of the maximum principle presented so far have followed
from the extended maximum principle; this, in turn, will be a consequence of the
first theorem proved below. In later sections, we shall derive advanced multiplier
rules in optimal control.

Uniquely, this chapter contains no exercises. The author feels that the reader will be
sufficiently exercised in working through the proofs, which are the most technical
ones in the book.

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
Graduate Texts in Mathematics 264, DOI 10.1007/978-1-4471-4820-3 25,
© Springer-Verlag London 2013
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25.1 A theorem for Lipschitz multifunctions

An arc x∗ which is admissible for the problem (DI) is said to be a local minimizer
if, for some ε > 0, we have J(x∗) � J(x) whenever x is an admissible arc satisfying
‖x− x∗‖ � ε . (As usual, the supremum or L∞ norm is meant here.)

Notation: For each t ∈ [a,b ], Gt denotes the graph of the multifunction Ft(·):

Gt =
{
(x,v) ∈ R

n×R
n : v ∈ Ft

(
x
)}

.

We posit the following hypotheses relative to a given local minimizer x∗ of (DI):

[H1] The function � is locally Lipschitz; the set E is closed; the multifunction
t �→ Gt is measurable; for some δ > 0, the following set is closed for almost
every t : {

(x,v) ∈ Gt : |x− x∗(t)| � δ
}
.

[H2] There exists a summable function k such that, for almost every t,

x, y ∈ B(x∗(t),δ ) =⇒ Ft(y) ⊂ Ft(x)+B(0, kt |x− y |).

The reader will observe that the first hypothesis forces the values of Ft to be closed
sets, near x∗(t) at least. The second one asserts that Ft satisfies a Lipschitz condition
in the sense of multifunctions (see Def. 12.14).

25.1 Theorem. Let x∗ be a local minimizer for the problem (DI), under hypotheses
[H1][H2] above. Then there exist an arc p and a scalar η equal to 0 or 1 satisfying
the nontriviality condition

(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ] , (25.1 a)

the transversality condition
(

p(a),−p(b)
)
∈ η∂L �

(
x∗(a), x∗(b)

)
+N L

E
(

x∗(a), x∗(b)
)
, (25.1 b)

the Euler inclusion for almost every t :

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt

(
x∗(t), x∗′(t)

)}
a.e. (25.1 c)

as well as the maximum condition for almost every t :

〈 p(t),v〉 � 〈 p(t), x∗′(t)〉 ∀v ∈ Ft
(

x∗(t)
)
. (25.1 d)

We remark that the Euler inclusion may be recognized as having the same form as
that of Theorem 18.13, if one recalls that ∂L IGt = N L

Gt
, where IGt is the indicator

function of Gt .



25.1 A theorem for Lipschitz multifunctions 505

The following technical result on Lipschitz multifunctions will be needed in the
proof of Theorem 25.1, and later on as well.

25.2 Proposition. Let Γ be a multifunction from R
n to R

m with closed graph G,
and let dG denote the Euclidean distance function of G. Suppose that Γ satisfies the
local Lipschitz condition

Γ (y) ⊂ Γ (z)+B
(
0, k|y− z |

)
∀y, z ∈ B(x0 ,r) , (1)

where x0 ∈ R
n, r > 0. Let v0 ∈ Γ (x0). Then

(α ,β ) ∈ N L
G
(

x0 ,v0
)
=⇒ |α | � k|β | . (2)

If the Lipschitz condition in (1) holds globally (that is, for all y, z ∈ R
n), then for

any point (x,v) ∈ R
n×R

m, we have

(α ,β ) ∈ ∂L dG(x,v) =⇒ |α | � k|β | , (3)

and
dG(x,v)> 0 , (α , β ) ∈ ∂L dG(x,v) =⇒ |β | � (1+ k2)−1/2. (4)

Proof. As regards (2), it suffices to consider (α ,β ) ∈ NP
G(x0 ,v0), since N P

G gen-
erates N L

G via limits. In turn, it suffices to consider points (α ,β ) belonging to
∂P dG(x0 ,v0), since N P

G (x0 ,v0) is the cone generated by this set (Prop. 11.28). In
that case, the proximal subgradient inequality asserts that for some σ � 0, for all
(x,v) sufficiently near (x0 ,v0), we have

dG(x,v)+σ |(x− x0 , v− v0)|2 � 〈(α ,β ), (x− x0 ,v− v0)〉 .

For any x near x0 , there exists v∈ Γ (x) such that |v−v0 | � k|x−x0 |, by hypothesis
(1). For all x sufficiently close to x0 , this choice of (x,v) may be substituted in the
proximal inequality above. Since dG(x,v) = 0, doing so leads to

〈α , x− x0〉 � 〈β , v0 − v〉+σ
(
|x− x0 |2 + |v− v0 |2) �

|β |k|x− x0 |+σ
(
1+ k2)|x− x0 |2

for all x in a neighborhood of x0 . This yields |α | � k|β |, and confirms (2).

We turn now to (3) and (4), for which only the case dG(x,v)> 0 need be considered.
Then (α ,β ) is of the form

(α ,β ) = (x− x̄,v− v̄)/|(x− x̄,v− v̄)| ,

where (x̄, v̄) is a closest point in G to (x,v) (see Exer. 13.19). By Prop. 11.34 we
have (α ,β ) ∈ N L

G(x̄, v̄), whence (by (2)) we deduce |α | � k|β |, yielding (3). But
we also have, as a consequence of the characterization above, |α |2 + |β |2 = 1.
Combined with |α | � k|β |, this implies the lower bound on |β | stated in (4). 
�
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The proposition implies that the set whose convex hull is taken in the Euler inclusion
(25.1 c) is compact, which is why we do not require the closed convex hull later: the
convex hull is already closed (by Exer. 2.8).

The following sequential closure result will be used in the proof, and again later.

25.3 Proposition. Let t �→ Gt be a measurable closed-valued multifunction from
[a,b ] to R

n×R
n that satisfies the bounded slope condition1 (for almost every t )

(x,v) ∈ Gt , (α ,β ) ∈ N L
Gt

(
x,v

)
=⇒ |α | � k(t)|β | ,

where k is summable. Let xi , vi , pi , and qi be measurable functions such that

qi → q weakly in L1(a,b), pi(t)→ p(t) a.e., xi(t)→ x(t) a.e., vi(t)→ v(t) a.e.

and satisfying, for some constant M, for each i :

| pi(t)| � M a.e., |qi(t)|� k(t) a.e.

Suppose that for each i we have (xi(t),vi(t)) ∈ Gt a.e. and

qi(t) ∈ co
{
ω :

(
ω , pi(t)

)
∈ N L

Gt

(
xi(t),vi(t)

)
+ ε i B

}
, t ∈ Ω i a.e. , (5)

where ε i ↓ 0, and where Ω i is a sequence of measurable subsets of [a,b ] such that
meas(Ω i)→ b−a. Then we have in the limit

q(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt

(
x(t),v(t)

)}
a.e.

Proof. Fix i sufficiently large so that ε i < 1. For almost every t, any point (ω , pi(t))
as described in (5) satisfies

(
ω−u , pi(t)−w

)
∈ N L

Gt

(
xi(t),vi(t)

)

for some point (u ,w) ∈ ε i B. The bounded slope condition implies

|ω−u | � k(t)| pi(t)−w |,

whence ∣
∣(ω−u , pi(t)−w)

∣
∣ � (k(t)+1)(M+1) =: R(t).

Then, by Prop. 11.34, we have
(
ω−u , pi(t)−w

)
∈

∣
∣(ω−u , pi(t)−w

)∣∣∂L dGt

(
xi(t),vi(t)

)

⊂ [0 ,R(t)]∂L dGt

(
xi(t),vi(t)

)
.

This implies in turn

1 This is not to be confused with the very different “bounded slope condition” of Def. 20.17.
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(
ω , pi(t)

)
∈ [0 ,1]R(t)∂L dGt

(
xi(t),vi(t)

)
+ ε i B .

Thus, we have for all i sufficiently large,

qi(t) ∈ co
{
ω :

(
ω , pi(t)

)
∈ [0 ,1]R(t)∂L dGt

(
xi(t),vi(t)

)
+ ε i B

}
, t ∈ Ω i a.e.

We now seek to invoke Prop. 18.6, with f (t,x,v) = R(t)dGt (u,v). The required
measurability hypothesis follows from Exer. 6.30, and the Lipschitz hypothesis
holds because a distance function is globally Lipschitz of rank 1. We deduce that
in the limit, we have almost everywhere

q(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ [0 ,1]R(t)∂L dGt

(
x(t),v(t)

)}

⊂ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt

(
x(t),v(t)

)}
.

The last inclusion follows from Prop. 11.34, since (x(t),v(t)) ∈ Gt a.e., as a result
of the fact that Gt is closed-valued. 
�

A reduction. It turns out that it suffices to prove Theorem 25.1 for the case in
which the δ of hypotheses [H1] and [H2] (originally taken to be finite) is +∞. We
see this by considering the multifunction

F̃t(x) = Ft(π t(x)),

where π t(x) denotes the projection of x onto the set B(x∗(t),δ ). The mapping
(t,x) �→ π t(x) is measurable in t and globally Lipschitz of rank 1 in x (see p. 353).
Note that Ft and F̃t agree on B(x∗(t),δ ), so x∗ continues to be a local minimizer
for the version of (DI) in which F is replaced by F̃ . But this modified multifunction
satisfies [H1] and [H2] with δ = +∞. Furthermore, the conclusions of the theorem
for F̃ coincide with those for F , since the graphs of Ft and F̃t agree locally near
(x∗(t), x∗′(t)). For these reasons, we may (and do) make the useful assumption from
now on that [H1] and [H2] hold with δ = +∞.

Proof of Theorem 25.1. We proceed to prove the theorem in the presence of two
additional, temporary, hypotheses. The removal of these temporary hypotheses will
be the final step in the proof.

[TH1] k is a constant function.

[TH2] �(x1 , x2) is of the form �(x2), and E is of the form C0×C1 .

Let ε i be a positive sequence decreasing to 0. For fixed i, let us consider the problem
Pi of minimizing

Ji(x) = �i
(

x(b)
)
+(1/ε i)

∫ b

a
dGt

(
x(t), x ′(t)

)
dt

over the set S of arcs x satisfying
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x(a) ∈C0 , x(b) ∈C1 , ‖x− x∗‖ � ε ,

where �i is defined by

�i(x) =
[
�(x)− �

(
x∗(b)

)
+ ε 2

i
]
+
.

(Notation: [a ]+ = max{0, a}.) Note that [TH2] is used in defining the problem Pi ,
and that the measurability of Gt implies that the integral is well defined.

Because C0 and C1 are closed (since E is closed by hypothesis), the set S is a com-
plete metric space when equipped with the metric

d(x,y) =
∣
∣x(a)− y(a)

∣
∣+‖x ′ − y ′ ‖1 =

∣
∣x(a)− y(a)

∣
∣+

∫ b

a
|x ′(t)− y ′(t)|dt .

It is clear that the infimum in the problem Pi is necessarily nonnegative, and that x∗
assigns the value ε 2

i to the cost Ji (which is lower semicontinuous). Thus x∗ yields
the infimum within ε 2

i .

By Theorem 5.19, there exists an arc xi ∈ S satisfying
∣
∣xi(a)− x∗(a)

∣
∣+‖x ′

i − x∗′ ‖1 � ε i

and such that xi minimizes over S the perturbed cost

�i(x(b))+ ε i
∣
∣x(a)− xi(a)

∣
∣+(1/ε i)

∫ b

a
dGt

(
x(t), x ′(t)

)
dt + ε i

∫ b

a

∣
∣x ′(t)− x ′

i(t)
∣
∣dt .

We have ‖xi − x∗‖+‖x ′
i − x∗′ ‖1 < ε for i sufficiently large, and it follows that xi is

a local minimum in the sense of Theorem 18.1 for the perturbed problem above; it
is clear that the theorem applies (with Vt ≡ R

n). We deduce the existence of an arc
pi such that

−pi(b) ∈ ∂L �i
(

xi(b)
)
+N L

C1

(
xi(b)

)
, pi(a) ∈ N L

C0
(xi(a))+ ε i B (6)

p ′
i (t) ∈ co

{
ω :

(
ω , pi(t)

)
∈ (1/ε i)∂L dGt

(
xi(t), x ′

i(t)
)
+{0}×ε i B

}
a.e. (7)

〈 pi(t),v〉− (1/ε i)dGt

(
xi(t),v

)
− ε i

∣
∣v− x ′

i(t)
∣
∣

� 〈 pi(t), x ′
i(t)〉− (1/ε i)dGt

(
xi(t), x ′

i(t)
)
∀v a.e. (8)

Invoking Prop. 25.2 together with [H2] (which holds with δ = +∞, let us recall)
and the Euler inclusion (7) reveals

∣
∣ p ′

i (t)
∣
∣ � k

(
| pi(t)|+ ε i

)
a.e. (9)

Note also that (8) implies, for almost every t :

〈 pi(t),v〉− ε i
∣
∣v− x ′

i(t)
∣
∣ � 〈 pi(t), x ′

i(t)〉 ∀v ∈ Ft
(

xi(t)
)
. (10)



25.1 A theorem for Lipschitz multifunctions 509

Convergence. By taking subsequences as necessary (without relabeling), we may
arrange that either

∫ b

a
dGt (xi , x ′

i )dt > 0 ∀ i,

or else that the integral is zero for every i. We also arrange to have x ′
i converge

almost everywhere to x∗′ .

Case 1:
∫ b

a
dGt

(
xi , x ′

i
)

dt > 0 ∀ i.

In this case, there is for each i a set Si of positive measure on which dGt (xi , x ′
i )> 0.

By Prop. 25.2, and in light of (7), we deduce

1/ε i√
1+ k2

− ε i � | pi(t)| � 1/ε i + ε i , t ∈ Si a.e. (11)

We proceed to rewrite (6) (7) (8) with pi replaced by ε i pi (that is, we multiply across
by ε i , without relabeling):

−pi(b) ∈ ε i ∂L �i
(

xi(b)
)
+N L

C1

(
xi(b)

)
, pi(a) ∈ N L

C0
(xi(a))+ ε 2

i B (12)

p ′
i (t) ∈ co

{
ω :

(
ω , pi(t)

)
∈ ∂L dGt

(
xi(t), x ′

i(t)
)
+{0}×ε 2

i B
}

a.e. (13)

〈 pi(t),v〉−dGt

(
xi(t),v

)
− ε 2

i
∣
∣v− x ′

i(t)
∣
∣

� 〈 pi(t), x ′
i(t)〉−dGt

(
xi(t), x ′

i(t)
)
∀v a.e. (14)

The inequalities (9) and (11) transform as follows:
∣
∣ p ′

i (t)
∣
∣ � k

(
| pi(t)|+ ε 2

i
)

a.e. (15)
1√

1+ k2
− ε 2

i � | pi(t)| � 1+ ε 2
i , t ∈ Si a.e. (16)

These two facts allow us to deduce that (for a subsequence), pi converges uniformly
to an arc p and that p ′

i converges weakly in L1 to p ′, essentially as in Exer. 6.42.
Note that p is nonzero; in fact, we have ‖ p‖ � (1+ k2)−1/2 as a consequence of
the first bound in (16).

The passage to the limit in (13) is justified by invoking Prop. 18.6, where we take
f (t,x,v) = dGt (x,v). Note that Gt is closed for almost every t as a consequence of
[H1], and that the mapping t �→ dGt (x,v) is measurable by Exer. 6.30. It follows that
the arc p satisfies

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ ∂L dGt

(
x∗(t), x∗′(t)

)}
a.e. (17)

This implies (25.1 c), since, when (x,v)∈ Gt , the cone N L
Gt
(x,v) is the one generated

by ∂L dGt (x,v); see Prop. 11.34.
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A further consequence of the analysis is that p satisfies | p ′(t)| � k| p(t)| a.e., as a
result of (15). This implies that p is nonvanishing, or else p would be identically
zero by Gronwall’s lemma, contradicting ‖ p‖ � (1+ k2)−1/2. This yields (25.1 a).
Finally, it is clear that (12) leads to (25.1 b), with η = 0 (since NL has closed graph),
and that in the limit, (14) gives rise to (25.1 d). All the conclusions of the theorem
are verified.

Case 2:
∫ b

a
dGt

(
xi , x ′

i
)

dt = 0 ∀ i.

It follows in this case that xi is a trajectory for F . Then �i(xi(b))> 0 ∀ i, for other-
wise the optimality of x∗ is contradicted. Consequently, we have

�i(x) = �(x)− �
(

x∗(b)
)
+ ε 2

i

for x in a neighborhood of xi(b), so that

∂L �i(xi(b)) = ∂L �(xi(b)) . (18)

Observe that in this Case 2, (7) implies (by Prop. 11.34)

p ′
i (t) ∈ co

{
ω :

(
ω , pi(t)

)
∈ N L

Gt

(
xi(t), x ′

i(t)
)
+{0}×ε i B

}
a.e. (19)

We may identify two subcases (by taking further subsequences):

‖ pi ‖ is bounded; ‖ pi ‖ → ∞.

In the first subcase, Gronwall’s lemma together with (9) allows us to deduce again
that (for a subsequence), pi converges uniformly to an arc p and p ′

i converges
weakly in L1 to p ′. We invoke Prop. 25.3 to pass to the limit in (19), and we deduce
that the arc p satisfies (25.1 c). In view of (18), it is clear that (6) leads to (25.1 b),
with η = 1; consequently, (25.1 a) holds. There remains (25.1 d) to confirm.

Fix any t for which x ′
i(t) → x∗′(t) as well as x ′

i(t) ∈ Ft(xi(t)) ∀ i, for which [H2]
holds, and for which (10) holds for all i (these conditions hold on a set of full mea-
sure). Now choose any v ∈ Ft(x∗(t)). For each i, by the Lipschitz property of Ft ,
there exists vi ∈ Ft(xi(t)) such that

|vi − x ′
i(t)| � k|xi(t)− x∗(t)| .

Then the inequality (10) holds for this value vi . Passing to the limit, we deduce that
〈 p(t),v〉 � 〈 p(t), x∗′(t)〉, as required.

In the second subcase, when ‖ pi ‖ → ∞, we divide by ‖ pi ‖ in (6) (10) (19); that
is, we replace pi throughout by pi/‖ pi ‖. Then the same convergence argument as
above applies, giving rise to a nonvanishing limiting arc p with ‖ p‖= 1 satisfying
the required necessary conditions (but now with η = 0). It follows as it did at the
end of Case 1 that p is nonvanishing.
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Removal of the temporary hypotheses. We have proved Theorem 25.1 under the
temporary hypotheses [TH1] [TH2]. Suppose now that the problem satisfies [TH1]
but not [TH2].

We introduce a reformulation device in which the extended state variable is (x,y).
The role of y will be as stand-in for x(a). The new multifunction F+ and cost func-
tion �+ are given by

F+
t (x,y) =

{
(v,0) : v ∈ Ft(x)

}
, �+(x,y) = �(y, x) ,

and the boundary constraints are specified by

C+
0 =

{
(x,y) : x = y

}
, C+

1 =
{
(x,y) : (y, x) ∈ E

}
.

It is an easy matter to check that the extended arc (x∗ , x∗(a)) is a local minimizer
for the corresponding problem. The hypotheses [H1] [H2] are present, together with
both [TH1] and [TH2]. One may therefore apply the theorem to the extended prob-
lem; routine analysis of the resulting necessary conditions leads to the desired con-
clusions.

We now remove the sole remaining temporary hypothesis [TH1], by showing that it
suffices to prove the theorem in the case in which the function k, which may always
be assumed to be strictly positive, is identically 1. Without loss of generality, to ease
the notation, we suppose that x∗ ≡ 0. (The reduction to this case replaces Ft(x) by
Ft(x∗(t)+ x)− x∗′(t), with the evident translations applied to � and E.)

We shall use the change of time scale induced by s = τ(t), where

τ(t) :=
∫ t

a
k(σ)dσ ,

and we define the data of a rescaled version of the problem by setting

F̃s(y) =
1
kt

Ft(y) , where t = τ−1(s) .

The transformed problem is to be considered relative to arcs y on [0,T ], where
T := τ(b); � and E are unchanged.

Lemma. The arc y∗ ≡ 0 solves the transformed problem relative to ‖y‖� ε .

Proof. Assume to the contrary that there is an arc y which satisfies

‖y‖ � ε , y ′(s) ∈ F̃s
(
y(s)

)
a.e.,

together with the boundary conditions, and for which �(y(0),y(T )) < �(0,0).
Define2 an arc x on [a,b ] via x(t) = y(τ(t)). It then follows that x satisfies

2 This defines an arc because y(·) is absolutely continuous (by assumption) and τ(·) is both abso-
lutely continuous and strictly increasing.
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‖x‖ � ε , x ′(t) ∈ Ft
(

x(t)
)

a.e.,

and that x satisfies the boundary conditions. But we have

�
(

x(a), x(b)
)
= �

(
y(0), y(T )

)
< �(0,0) ,

which contradicts the optimality of x∗ ≡ 0. 
�

It is clear that the transformed problem satisfies [H2] with k ≡ 1; thus, [TH1] holds.
We may therefore apply the case of the theorem already proved; we deduce the exis-
tence of an arc p̃ on the interval [0,T ] and η equal to 0 or 1 satisfying nontriviality,
as well as the conditions (25.1 b) (25.1 c) (25.1 d) for F̃ .

We conclude by showing that the arc p(t) = p̃(τ(t)) on [a,b ] satisfies these same
conditions for F; only (25.1 c) fails to be immediately apparent.

It follows directly from the definition of proximal normal that

(α ,β ) ∈ N P
G̃s
(y ,w) ⇐⇒

(
α ,β/kt

)
∈ N P

Gt (y ,ktw) ,

where s = τ(t). The equivalence also holds with N L
G̃s

and N L
Gt

, by taking limits.
Then, for almost every t :

p ′(t) = p̃ ′(τ(t)
)
τ ′(t) = p̃ ′(τ(t)

)
kt

∈ co
{
ω kt :

(
ω , p̃(τ(t))

)
∈ N L

G̃τ(t)
(0,0)

}
(by (25.1 c) for p̃ )

= co
{
ω kt :

(
ω , p(t)

)
∈ N L

G̃τ(t)
(0,0)

}

= co
{
ω kt :

(
ω , p(t)/kt

)
∈ N L

Gt (0,0)
}

(by the equivalence noted above)

= co
{
ω :

(
ω , p(t)

)
∈ N L

Gt (0,0)
}
,

since N L
Gt
(0,0) is a cone. The proof of Theorem 25.1 is complete.

A corollary with running cost. For later use, we record a simple extension of The-
orem 25.1 in which the cost in problem (DI) of p. 503 is modified as follows:

J(x) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x ′(t)

)
dt .

We assume that Λ is measurable in t and globally Lipschitz in v (uniformly in t).
The rest is unchanged.

25.4 Corollary. There exist p and η as in the theorem, but satisfying the modified
Euler inclusion

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt

(
x∗(t), x∗′(t)

)
+{0}×η ∂LΛ

(
t, x∗′(t)

)}
a.e. (20)

as well as the modified maximum condition, for almost every t :
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〈 p(t),v〉−ηΛ
(
t,v

)
� 〈 p(t), x∗′(t)〉−ηΛ

(
t, x∗′(t)

)
∀v ∈ Ft

(
x∗(t)

)
. (21)

Proof. We absorb the running cost into an augmented problem, as follows. The
state x gains a coordinate y, and becomes (x,y). The augmented multifunction, cost,
and endpoint constraint set are given by

F+(t,x,y) =
{(

v,Λ(t,v)
)

: v ∈ Ft(x)
}
, �+(x0 , y0 , x1, y1) = �(x0 , y0)+ y1 ,

E+ =
{
(x0 , y0 , x1, y1) :

(
x0 , x1

)
∈ E, y0 = 0

}
.

It is easy to see that the augmented arc (x∗,y∗) is a local minimizer for the corre-
sponding problem (DI), where

y∗(t) =
∫ t

a
Λ
(
s, x∗′(s)

)
ds ,

and that the hypotheses of Theorem 25.1 are satisfied.

Upon applying the necessary conditions, there results η and an augmented costate
arc (p,q). It follows that q is constant (from the Euler inclusion) and that q = −η
(from the transversality). Then the required nontriviality and transversality condi-
tions are seen to hold, and the maximum condition of the augmented problem is
precisely (21); only the Euler inclusion remains to be established.

Consider a point (
ω , p,−η

)
∈ N L

G+

(
x∗ ,v∗ ,Λ(v∗)

)
,

where
G+ =

{
(x,v,w) : v ∈ F(x) , w−Λ(v) = 0

}
.

It is points such as these which figure in the augmented Euler inclusion (we have
suppressed t , written v∗ for x∗′(t), and dropped the y variable, since F+ does not
depend on y). Note that G+ may be expressed as the set of (x,v,w) satisfying
ϕ(x,v,w) ∈ Φ , where

ϕ(x,v,w) =
(

x,v,w−Λ(v)
)
, Φ = G×{0}.

By Theorem 11.38, there exist (α ,β ) ∈ N L
G(x∗ ,v∗) and λ ∈ R such that

(
ω , p,−η

)
∈ ∂L

{
〈(α ,β ),(x,v)〉+λ

(
w−Λ(v)

)}(
x∗ ,v∗ ,Λ(v∗)

)
.

It follows from this that λ =−η and

(ω , p) ∈ N L
G(x∗ ,v∗)+{0}×η∂LΛ(v∗).

The Euler inclusion (20) results. 
�
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25.2 Proof of the extended maximum principle

In this section we derive the extended maximum principle (Theorem 22.26) from
Theorem 25.1. The case Λ ≡ 0 is treated first.

A. We define Z to be the set of all pairs (η , p) where p is an arc on [a,b ], η � 0,
‖ p‖+η = 1, and where (η , p) satisfies the transversality condition (T) and the
adjoint inclusion (A) of Theorem 22.26. Since Λ is zero, we have H = H 1 = H 0,
and (A) has the form

− p ′(t) ∈ ∂C 〈 p(t), f (t, • , u∗(t))〉
(

x∗(t)
)
, t ∈ [a,b ] a.e. (1)

Z is given the metric topology induced by the norm ‖(η , p)‖ = |η |+‖ p‖.

Lemma 1. Z is compact.

Proof. For any p ∈ R
n, for almost every t, the function x �→ Hη(t, x, p, u∗(t)) is

Lipschitz near x∗(t) of rank k∗(t)| p |, where k∗(t) = k(t, u∗(t)). It follows that any
element ζ lying in the generalized gradient of this function at x∗(t) is bounded:
|ζ | � k∗(t)| p | (see Prop. 10.5). We deduce from this observation that any element
(η , p) ∈ Z satisfies, as a consequence of (1), the estimate

| p ′(t)| � k∗(t)| p(t)| a.e.

We use this to show that Z is sequentially compact. Let (ηi , pi) be any sequence in
Z . It follows from Gronwall’s lemma and the estimate just derived (see Exer. 6.42)
that (ηi , pi) admits a subsequence (we do not relabel) such that ηi → η ∈ R+, and
such that pi converges uniformly to an arc p, with p ′

i converging weakly in L1(a,b)
to p ′. Clearly, (η , p) satisfies η + ‖ p‖ = 1 as well as (T). To conclude, we need
only check that (1) holds, for then (η , p) belongs to Z .

We prepare an appeal to the weak closure theorem 6.39. For each i, we have

− p ′
i(t) ∈ Γ

(
t, pi(t)

)
, t ∈ [a,b ] a.e., (2)

where we define
Γ (t, p) = ∂C H

(
t, • , p, u∗(t)

)
(x∗(t)

)
.

Then Γ (t, ·) is convex-valued, and its graph is closed by a known property of the
generalized gradient (see Prop. 10.10). We also have Γ (t, p) ⊂ k∗(t)B whenever
| p | � 1, as shown above. For any measurable function q(t), the function

(t,x) �→ H
(
t, x, q(t), u∗(t)

)
= 〈q(t), f (t, x, u∗(t))〉

is measurable in t (since f is LB measurable in t and u) and locally Lipschitz in x
near x∗(t). It follows that the multifunction t �→ Γ (t, q(t)) is measurable (see Exer.
13.24). In view of Prop. 6.29, this fact furnishes the final ingredient allowing us to
invoke Theorem 6.39 and pass to the limit in (2). This yields (1). 
�
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Now let C = {ui(·)}i be any finite collection of measurable functions ui having the
following properties:

(a) u∗ ∈ C .

(b) For each i, we have ui(t) ∈U(t) a.e.

(c) For some δC ∈ (0,1], we have, for each i, for almost every t ∈ [a,b ]:

ui(t) 	= u∗(t) =⇒
∣
∣ f

(
t, x∗(t),ui(t)

)
− f

(
t, x∗(t),u∗(t)

)∣∣ � δC ,

k
(
t,ui(t)

)
� [1+ k(t,u∗(t))]/δC .

We denote by C the set of all such collections C. Note that C 	= /0, since C contains
the element {u∗(·)}.

Lemma 2. Let C ∈ C . Then there exists an element (η , p) ∈ Z such that, for every
ui ∈C, we have

〈 p(t), f
(
t, x∗(t), ui(t)

)
〉 � 〈 p(t), f

(
t, x∗(t), u∗(t)

)
〉 , t ∈ [a,b ] a.e.

Proof. The idea is to call upon Theorem 25.1 for a “reduced” optimal control prob-
lem defined in terms of the multifunction

Ft(x) =
{

f
(
t, x, ui(t)

)
: ui(·) ∈ C

}
,

with � and E unchanged. Hypothesis [H1] of Theorem 25.1 is satisfied in this con-
text, as can be seen from the characterization

Gt =
{
(x,v) : ϕ(t,x,v) = 0

}
, where ϕ(t,x,v) = min

i

∣
∣v− f

(
t, x, ui(t)

)∣∣ ,

which shows that Prop. 6.25 applies (because ϕ is measurable in t and continuous in
(x,v)). The Lipschitz condition in [H2] holds with kt = [1+ k(t, u∗(t)) ]/δC .

Let x be any trajectory for F which is admissible for the reduced problem, and
satisfies ‖x− x∗‖ � ε . Then the multifunction

Γ (t) =
{

u ∈ {ui(t)} : ui(·) ∈ C , x ′(t)− f
(
t, x(t), ui(t)

)
= 0

}
,

being closed-valued and measurable, admits a measurable selection, from which it
follows that x is an admissible state trajectory for the system ( f ,U). Thus we have
�(x(a), x(b)) � �(x∗(a), x∗(b)), by the optimality of the process (x∗ ,u∗). Further-
more, since u∗ ∈ C , the arc x∗ is among the admissible trajectories for the reduced
problem. We conclude that x∗ provides a local minimum for the reduced problem,
in the sense of Theorem 25.1.

We may therefore invoke Theorem 25.1 to deduce the existence of (η , p) satisfying
η + ‖ p‖ = 1 (this alternate form of nontriviality is explained in Prop. 22.5), the
transversality condition (25.1 b), the maximum condition (25.1 d), and the Euler
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inclusion (25.1 c) of that theorem. It is clear that the maximum condition yields the
maximization property stated in the lemma. To conclude that (η , p) ∈ Z , we need
only verify that the Euler inclusion for F implies the adjoint inclusion (1).

Let us consider any t and ω for which we have
(
ω , p(t)

)
∈ N L

Gt

(
x∗(t), x∗′(t)

)
.

Observe that any point (x,v) ∈ Gt sufficiently close to (x∗(t), x∗′(t)) is necessarily
of the form (

x, f
(
t, x, u∗(t))

)
,

because of property (c) in the way C is defined. It follows that we have
(
ω , p(t)

)
∈ N L

S
(

x∗(t), x∗′(t)
)
, (3)

where S is defined by

S =
{
(x,v) : v− f

(
t, x, u∗(t)

)
= 0

}
.

We now prepare to apply Theorem 11.38. To this end, let ϕ(x,v) = v− f (t, x, u∗(t)).
If, for some λ , we have

(0,0) ∈ ∂L〈λ ,ϕ 〉
(

x∗(t), x∗′(t)
)
,

then we find λ = 0. This is the constraint qualification that allows us to invoke The-
orem 11.38. We deduce that, as a consequence of (3), we have, for some λ :

p(t) = λ , ω ∈ ∂L〈−λ , g〉
(

x∗(t)
)
,

where g is defined by g(x) = f (t, x, u∗(t)). It follows that

ω ∈ ∂L〈−p(t), g〉
(

x∗(t)
)
⊂ ∂C〈−p(t), g〉

(
x∗(t)

)
= −∂C〈 p(t), g〉

(
x∗(t)

)
.

Since, almost everywhere, p ′(t) is in the convex hull of such points ω (according to
the Euler inclusion), and since ∂C g is convex-valued, we arrive at

−p ′(t) ∈ ∂C〈 p(t), g〉
(

x∗(t)
)
,

which is precisely (1). Lemma 2 is proved. 
�

For any C ∈ C , we denote by M(C) the set of (η , p) ∈ Z satisfying the conclusions
of Lemma 2. Then M(C) is a nonempty closed subset of Z. Observe that

M(C1 ∪ C2) = M(C1)∩ M(C2) .

Since C is evidently closed under finite unions, it follows from Lemma 2 that the
family {M(C)}C∈C has the finite intersection property. From the compactness of Z
(Lemma 1), we infer the existence of an element (η , p) belonging to the intersection
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of the entire family. We proceed to show that this element satisfies the maximum
condition (M) of Theorem 22.26 almost everywhere.

We reason ad absurdum. If this is not the case, then there exists a subset S of [a,b ]
of positive measure in which (M) fails. For any positive integer j , we set

Uj(t) =
{

u ∈ U(t) such that 〈 p(t), f
(
t, x∗(t), u

)
− f

(
t, x∗(t),u∗(t)

)
〉 > 1/ j ,

∣
∣ f

(
t, x∗(t),u

)
− f

(
t, x∗(t), u∗(t)

)∣∣ > 1/ j , k(t,u) < j
(
1+ k(t, u∗(t))

)}
, (4)

and we define S j to be the set of t ∈ [a,b ] such that Uj(t) 	= /0. Then S = ∪ j�1S j ,
so that, for some positive integer j, the set S j has positive measure. It follows from
the basic hypotheses, together with Prop. 6.36, that the graph of Uj is LB measur-
able. Thus, Aumann’s selection theorem 23.3 yields the existence of a measurable
function u j having values in Uj(t) for almost every t ∈ S j ; we define u j(t) = u∗(t)
for t /∈ S j .

Then the collection C given by {u∗ , u j} belongs to C (with δC = 1/ j). However,
(η , p) /∈ M(C), since (M) fails on a set of positive measure. This is the required
contradiction.

To obtain the (η , p) of the theorem, we need only normalize to obtain η = 0 or 1,
essentially as explained in Prop. 22.5.

B. We now derive the constancy of the Hamiltonian asserted by Theorem 22.26 in
the autonomous case, still with Λ = 0.

We introduce a new control component w with values in [1−δ ,1+δ ], a new state
coordinate y, and the following augmented problem data:

f+(x, y,u,w) =
(
w f (x,u),w

)
, �+(x0 , y0 , x1 , y1) = �(x0 , x1) ,

E+ =
{
(x0 , y0 , x1 , y1) : (x0 , x1) ∈ E , y0 = a, y1 = b

}
, U+ = U×[1−δ ,1+δ ].

We also define w∗ ≡ 1 and y∗(t) = t. The positive number δ ∈ (0,1/2) will be spec-
ified below. The reader will understand that the augmented process (x∗ , y∗ , u∗ ,w∗)
is admissible for the augmented problem, and corresponds, in a certain sense, to
the original process (x∗ ,u∗). We claim that it constitutes a local minimizer for the
augmented process.

To see this, suppose to the contrary that some augmented process (x, y, u,w) with
‖x− x∗‖ � ε/2 is better; this translates as �(x(a), x(b)) < �(x∗(a), x∗(b)). As in
the proof of Theorem 22.20 (see page 469), we induce a change of time scale via
the bi-Lipschitz transformation

τ(t) := a+
∫ t

a
w(σ)dσ .

Notice that τ increases from a to b as t does the same, since y(b)−y(a) = b−a. We
proceed to define
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x+(τ) = x
(
t(τ)

)
, u+(τ) = u

(
t(τ)

)
, τ ∈ [a,b ].

Then
∣
∣x+(τ)− x∗(τ)

∣
∣ �

∣
∣x
(
t(τ)

)
− x∗

(
t(τ)

)∣∣+
∣
∣x∗

(
t(τ)

)
− x∗(τ)

∣
∣.

If δ is chosen sufficiently small, the second term is guaranteed to be less than ε/2
for all τ ∈ [a,b ]; this results from the uniform continuity of the function x∗ on
[a,b ]. So then we have ‖x+− x∗‖< ε . Furthermore, we calculate

x ′
+(τ) = x ′(t(τ)

)
/w

(
t(τ)

)
= f

(
x(t(τ)), u(t(τ))

)
= f

(
x+(τ), u+(τ)

)
,

which shows that (x+ , u+) is an admissible process for the original problem (the
boundary conditions are clearly satisfied). We also have

�
(

x+(a), x+(b)
)
= �

(
x(a), x(b)

)
< �

(
x∗(a), x∗(b)

)
,

which contradicts the optimality of (x∗ ,u∗). We conclude that the augmented pro-
cess (x∗ , y∗,u∗ ,w∗) is a local minimum for the augmented problem.

The hypotheses allow us to invoke the necessary conditions of Theorem 22.26 that
were proved above: that is, we obtain (N), (T), (A), and (M) for the augmented
problem. The augmented Hamiltonian is given by

H η
+(x, y, p,q,u,w) = w〈 f (x,u), p〉+qw ,

where we have denoted the extra costate coordinate by q. As regards the parts of the
conclusion that pertain to p and u∗, it is easy to see that we recover (T), (A), and (M)
for the original data. The (augmented) adjoint equation also provides q ′(t) = 0 a.e.,
so that q is constant. The maximum condition with respect to w affirms that, almost
everywhere, the function

w �→ w
{
〈 p(t), f (x∗(t), u∗(t))〉+q

}

attains a maximum over [1− δ ,1+ δ ] at w = 1. Thus, the coefficient of w equals
0 a.e. This yields precisely the constancy of the Hamiltonian (with h = −q).

There remains the nontriviality to verify. In augmented terms, we have the non-
triviality condition (η , p(t), q) 	= 0 ∀ t , but what we require is (η , p(t)) 	= 0 ∀ t .
Suppose to the contrary that (η , p(τ)) = 0 for some τ ; then η = 0 and q is a
nonzero constant. Because the adjoint inclusion yields | p ′(t)| � k(t, u∗(t))| p(t)|,
Gronwall’s lemma implies that p is identically zero. But then the equation

〈 p(t), f
(
x∗(t), u∗(t)

)
〉+q = 0 a.e.,

which was obtained above, cannot hold: a contradiction.

C. We now treat the caseΛ 	= 0, by “absorbing” the running cost into the dynamics.
We augment the state x by an additional coordinate y, and we define
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f+(t, x,y,u) =
[

f (t, x,u),Λ(t, x,u)
]
, �+(x0 , y0 , x1, y1) = �(x0 , x1)+ y1 ,

E+ =
{
(x0 , y0 , x1, y1) : (x0 , x1) ∈ E , y0 = 0

}
,

x∗+(t) =
[

x∗(t),
∫ t

a
Λ
(
s, x∗(s), u∗(s)

)
ds

]

It is a notational exercise to check that, for the system ( f+ ,U), the (augmented)
process (x∗+ , u∗) provides a local minimum for the cost

�+
(

x(a), y(a), x(b), y(b)
)

subject to (x(a), y(a), x(b), y(b)) ∈ E+ . Since this problem has zero running cost,
and since (as is easily seen) the data satisfy the hypotheses, we may apply the case
of Theorem 22.26 proved above. The Hamiltonian of the problem is

H η
+(t, x, y, p,q,u) = H−q(t, x, p,u) ,

where the additional costate coordinate has been labeled q. The (augmented) adjoint
equation yields q ′(t) = 0 a.e., since H η

+ does not depend on y; thus, q is constant.
The augmented transversality condition, as it pertains to q, is −q(b) = η , so q is
the constant −η . Then the costate p is seen to satisfy (T), (A), and (M).

Let us now verify nontriviality. If (η , p(t)) = 0 at some t , then η = 0 = q, and
so (η , p(t), q(t)) = 0. This contradicts the (augmented) nontriviality condition.
There remains the constancy of the Hamiltonian to prove, when the problem is au-
tonomous. But in that case, the augmented Hamiltonian is autonomous too, and its
constancy corresponds to the desired conclusion. 
�

Proof of Corollary 22.31.

Proof. The proof of Theorem 22.26 used the LB measurability of U(·) in just one
step, in order to prove the existence of a measurable selection, on a suitable subset of
S, of the multifunction defined by (4). (In this context, S is a set of positive measure
on which (M) fails.) We now give an alternate argument that exploits the structural
hypothesis 22.30 instead of LB measurability.

To ease the exposition, we give the proof only in the case of a partition of [a,b ]
into two intervals, [a,c ] and [c,a ]. (The argument extends easily to any finite or
countable partition.) Then either S ∩ (a,c) or S ∩ (c,b) has positive measure; let us
consider the first case.

Let {vi } be a countable dense subset of U1 , where U(t) = U1 for t ∈ [a,c). For
positive integers i and j , define

Si, j =
{

t ∈ (a,c) such that 〈 p(t), f
(
t, x∗(t),vi

)
− f

(
t, x∗(t),u∗(t)

)
〉 > 1/ j ,

∣
∣ f

(
t, x∗(t),vi

)
− f

(
t, x∗(t),u∗(t)

)∣∣ > 1/ j , k(t,vi) < j
(
1+ k(t,u∗(t))

)}
.
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One may verify that this defines a measurable set. Then, because of the continuity
of f in u, we have S ∩ (a,c) = ∪ i, j�1Si, j , so that some Si, j has positive measure.
We then define a control u j that equals vi on Si, j , and u∗ elsewhere. From this point,
the proof concludes as before. 
�

Remark. The proof of Cor. 22.31 does not call upon the Aumann selection theorem
23.3. The use of the latter in proving Theorem 22.26 may also be avoided another
way, by positing that U(·) is measurable and closed-valued (which is a stronger
hypothesis than LB measurability).

25.3 Stratified necessary conditions

In considering a control system given in the form of a differential inclusion

x ′(t) ∈ Ft
(

x(t)
)
,

certain situations arise in which the Lipschitz assumption [H2] of Theorem 25.1
is inappropriate. An example is provided by an optimal control problem based on
a standard control system ( f ,U), but which features additional mixed constraints
involving both the state and the control, such as a condition of the type

g
(
t, x(t), u(t)

)
� 0 .

The question of finding an equivalent differential inclusion is not affected by this
extra constraint: we simply define

Ft(x) =
{

f (t, x,u) : u ∈ U, g(t, x,u) � 0
}
.

In contrast to when the new constraint was absent, however, it is now unrealistic to
expect F to be Lipschitz in x under any reasonable set of assumptions.

Instead, a certain localized pseudo-Lipschitz property can be expected to hold, if the
mixed constraint is non degenerate. For dealing with such a situation, we introduce
below a localization device called a radius, and a constraint qualification called the
bounded slope condition.3 The resulting theorem on differential inclusions, the final
stage in the edifice of necessary conditions that we have been building, will be the
key to deriving the multiplier rule in optimal control, as well as in the calculus of
variations.

The problem we discuss in this section is identical in appearance to the one treated
earlier by Theorem 25.1 (it is the hypotheses that are different):

3 The reader has seen the phrase “bounded slope condition” used before once or twice, but we
believe the context will preclude any confusion.
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⎧
⎪⎪⎨

⎪⎪⎩

Minimize J(x) = �
(

x(a), x(b)
)

subject to x ′(t) ∈ Ft
(

x(t)
)
, t ∈ [a,b ] a.e.

(
x(a), x(b)

)
∈ E .

(DI)

We are also given an arc x∗ that is admissible for (DI).

Now let R be a multifunction from [a,b ] to R
n such that x∗′(t) ∈ R(t) a.e. We say

that x∗ is a local minimizer of radius R for the problem provided that, for some
ε > 0, for all admissible arcs x satisfying ‖x− x∗‖ � ε as well as

x ′(t) ∈ Ft
(

x(t)
)
∩ Rt a.e. ,

we have J(x∗) � J(x). The multifunction R will be called a radius (around x∗). This
terminology is inspired by the important special case in which Rt is a ball centered at
x∗′(t) for each t, but this is not assumed here. In a sense, the introduction of the radius
allows us to consider a type of weak (rather than strong) local minimum.

As before (§25.1), the notation Gt below refers to the graph of the multifunction
Ft(·). The following hypotheses will be involved.

[H3] The function � is locally Lipschitz; the set E is closed; the multifunction
t �→ Gt is measurable; the following set is closed for almost every t :

{
(x,v) ∈ Gt : |x− x∗(t)| � ε

}
.

[H4] (bounded slope condition) There exists a summable function k such that,
for almost every t, the following implication holds:

|x− x∗(t)| � ε , v ∈ Ft(x)∩ Rt , (α ,β ) ∈ N P
Gt

(
x,v

)
=⇒ |α | � kt |β | .

[H5] The multifunction t �→ Rt is measurable; for some δ > 0, for almost every
t, the set Rt is open and convex and satisfies

Rt ⊃ B
(
x∗′(t),δ kt

)
.

The reader will observe that [H3] essentially restates [H1] of Theorem 25.1; it is
included here for completeness.

The theorem below is referred to as stratified because the hypotheses (including
the optimality) are assumed to hold relative to a different set Rt for each t, and the
conclusions are asserted to precisely that extent (that is, on Rt).

25.5 Theorem. Let x∗ be a local minimizer of radius R for the problem (DI), under
hypotheses [H3][H4][H5] above. Then there exist an arc p and a scalar η equal to
0 or 1 satisfying the nontriviality condition

(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ] , (25.5 a)
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the transversality condition
(

p(a),−p(b)
)
∈ η∂L �

(
x∗(a), x∗(b)

)
+N L

E
(

x∗(a), x∗(b)
)
, (25.5 b)

the Euler inclusion for almost every t:

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt

(
x∗(t), x∗′(t)

)}
a.e. (25.5 c)

as well as the maximum condition of radius R for almost every t:

〈 p(t),v〉 � 〈 p(t), x∗′(t)〉 ∀v ∈ Ft
(

x∗(t)
)
∩ Rt . (25.5 d)

Remarks.

(a) It can be shown that when Rt is identically R
n, the theorem above is equivalent to

Theorem 25.1 (which is actually used in proving Theorem 25.5). One cannot ob-
tain Theorem 25.5 by simply replacing Ft by Ft ∩Rt and then applying Theorem
25.1, however; the intersection will lack the required Lipschitz property.

(b) The bounded slope condition [H4] may be replaced in the theorem statement by
the following explicit pseudo-Lipschitz hypothesis:

x,y ∈ B(x∗(t),ε) =⇒ Ft(x)∩ Rt ⊂ Ft(y)+ B(0, kt |x− y |) .

We shall establish below in the course of events that the bounded slope condition
implies (essentially) this property, which is what is used subsequently in the proof
of the theorem.

(c) The theorem fails in the absence of the δ of hypothesis [H5]: surprisingly per-
haps, the radius (and hence the extent of the optimality) must be big enough with
respect to the function k that calibrates the pseudo-Lipschitz behavior of F .4

A reduction. We may (and do) assume without loss of generality that the solution
x∗ is identically zero. Indeed, one can redefine the data of the problem by translation
to attain that situation: Ft(x) is replaced by Ft(x∗(t)+ x)− x∗′(t), Rt by Rt − x∗′(t),
etc. It is easy to see that both the hypotheses and the conclusions of the theorem are
robust relative to this normalization.

Temporary hypotheses. Extra hypotheses strengthening [H4] and [H5] will now
be made; their removal will be the final step in the proof.

[TH1] The function k is a positive constant.

[TH2] For some M > δ k > 0, for almost every t, we have

B(0,δ k) ⊂ Rt ⊂ B(0,M) .

4 An appropriate counter-example is given in [16].
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We see from [H5] and [TH2] that Rt is a bounded convex body containing the ball
B(0,δ k); we denote by gt its gauge function (see Theorem 2.36):

gt( f ) = inf {λ > 0 : f/λ ∈ Rt } .

Then Rt = { f : gt( f ) < 1}, and gt( f ) � | f |/(δ k). It follows from subadditivity
that gt has global Lipschitz constant 1/(δ k), and it is not difficult to see that the
mapping t �→ gt( f ) is measurable5 for each f .

A Lipschitz lifting. We fix r > 0 sufficiently small so that

δ r < min (ε , δ ) , r < (1− r)2, r(2− r)< 1/4 , r < 1/4 (1)

and we fix any t for which [H3] [H4] [H5] [TH2] hold. The following type of prop-
erty has been called pseudo-Lipschitz.

25.6 Proposition. Let x1 , x2 belong to B(0,δ r/3), and let f1 ∈ Ft(x1) satisfy
gt( f1) � 1− r. Then there exists f2 ∈ Ft(x2) satisfying | f2 − f1 | � k|x2 − x1 |.

Proof. Let C = {(x,v) ∈ Gt : |x | � ε , gt(v) � 1− r/5
}

. Then [H3] implies that
C is compact. We shall now apply the mean value inequality (Theorem 11.2) with
the data

f (y,w) = IC(y,w)+ |w− f1 | , x = (x1, f1) , Y = {x2}×B
(

f1, k|x2 − x1|
)
,

and for any real number r̄ satisfying

r̄ < min
{
|v− f1 | : (x2 ,v) ∈ C

}

� min
{
|v− f1 | : (x2 ,v) ∈ C , |v− f1 | � k|x2 − x1|

}

= min
Y

f − f (x) .

We do not assert this last quantity to be finite at this point, since we cannot exclude
yet the possibility that f equals ∞ on Y . We deduce from Theorem 11.2, for any
ρ > 0, the existence of (z ,u) ∈ dom f and (ζ ,ψ) ∈ ∂P f (z ,u) such that

(z ,u) ∈ [x,Y ]+ρ B = co
[
{(x1 , f1)} ∪ {x2}×B

(
f1, k|x2 − x1|

)]
+ρ B (2)

r̄ � 〈(ζ ,ψ),(x2 − x1 ,w− f1)〉 ∀w ∈ B
(

f1 , k|x2 − x1|
)
. (3)

Note that (z ,u)∈ C necessarily; by the proximal sum rule (Theorem 11.16), we may
write

(ζ ,ψ) = (α ,β )+(0,θ) (4)

for some (α ,β ) ∈ N L
C (z ,u) and vector θ ∈ B(0,1).

5 One may show this, for example, by proving that the multifunction Γ (t) = clRt is measurable,
and then using a representation for Γ of the type furnished by Theorem 6.22.
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We see from (2) that the distance from z to the segment [x1 , x2 ] is no greater than ρ ,
which, for ρ chosen sufficiently small, implies |z |< ε , in light of the first inequality
in (1) (and since x1, x2 ∈ B(0,δ r/3)). Also, we have |u− f1| � k|x2 −x1|+ρ (by
(2) again) and |x2 − x1| � 2δ r/3 < ε , so that

|u− f1| � 2kδ r/3+ρ .

We derive, for ρ sufficiently small,

gt(u) � gt( f1)+(δ k)−1|u− f1| � 1− r+2r/3+ρ/(δ k) � 1− r/4 .

It follows therefore that C and Gt coincide near (z ,u), whence (α ,β ) ∈ N L
Gt
(z ,u)

and |α | � k|β |, by [H4]. (We use here the fact that the bounded slope condition
continues to hold when N P

Gt
(x,v) is replaced by N L

Gt
(x,v); this results from an evi-

dent limiting argument.)

Choosing in (3) the available w that minimizes the right-hand side, and substituting
(4), we discover

r̄ �
{
|α |− k |β +θ |

}
|x2 − x1|

�
{
|α |− k |β |

}
|x2 − x1|+ k |θ | |x2 − x1|

� k |x2 − x1| .

This implies that r̄ is bounded above; more to the point, since r̄ was chosen to be
any number less than min{|v− f1| : (x2 ,v) ∈ C}, we deduce

min
{
|v− f1| : (x2 ,v) ∈ C

}
� k|x2 − x1| .

This implies the existence of f2 with (x2 , f2) ∈ C such that | f2 − f1| � k|x2 −x1|.
As shown above (in connection with u), this inequality implies gt( f2) � 1− r/4.
Thus C and Gt coincide in a neighborhood of (x2 , f2), and we have f2 ∈ Ft(x2) as
desired. 
�

The following lifting of F will play a central role:

F r
t (x) =

{
(λ f ,λ ) : λ ∈ [0 ,1] , f ∈ Ft(x) , gt( f ) � (1−λ r)(1− r)

}
. (5)

Note that the values of f involved here all lie in Rt , and hence are bounded in norm
by M, in view of [TH2]. We set

kr := k+
M+1

δ r (1− r)
.

25.7 Proposition. F r
t is Lipschitz in the following sense:

y1, y2 ∈ B(0,δ r/3) =⇒ F r
t (y1) ⊂ F r

t (y2)+B
(
0, kr|y2 − y1|

)
.
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Proof. Let (λ1 f1,λ1) ∈ F r
t (y1) be given, and set ρ = |y2 − y1|. We must exhibit

(λ f ,λ ) ∈ F r
t (y2) satisfying

∣
∣(λ f ,λ )− (λ1 f1,λ1)

∣
∣ � krρ . (6)

Case 1. λ1 � ρ/[δ r (1− r) ].

We apply Prop. 25.6 with x1 = 0, f1 = 0 to see that some f ∈ Ft(y2) satisfies

| f | � k |y2 |< kδ r ,

whence f/r ∈ Rt (by [TH2]) and gt( f ) � r � (1− r) (by the second inequality in
(1)), so that the point (0 f ,0) lies in F r

t (y2) by definition. We proceed to verify (6)
for this choice:

∣
∣(λ1 f1,λ1)

∣
∣ � λ1

(
1+ | f1 |

)
� ρ(1+M)/[δ r (1− r)] � krρ .

Case 2. λ1 > ρ/[δ r (1− r) ].

Now we set λ = λ1 −ρ/[δ r(1− r)], and we invoke Prop. 25.6 to deduce the exis-
tence of f ∈ Ft(y2) satisfying | f − f1|� k |y2 − y1|. Then

gt( f ) � gt( f1)+(δk)−1| f − f1|
� (1−λ1r)(1− r)+(δk)−1kρ
= (1−λ r)(1− r).

Thus (λ f ,λ ) ∈ F r
t (y2) by definition. We conclude by checking (6):

∣
∣(λ f ,λ )− (λ1 f1,λ1)

∣
∣ � λ1 −λ + |λ f −λ1 f |+ |λ1 f −λ1 f1|
� (λ1 −λ )(1+ | f |)+ |λ1 | | f − f1|
� (λ1 −λ )(1+ | f |)+ kρ
�

{
ρ/[δ r (1− r)]

}
{1+M}+ kρ = krρ . 
�

An auxiliary problem. For a positive sequence ε i decreasing to 0, we define

�i
(

x(a), x(b)
)
=

[
�
(

x(a), x(b)
)
− �(0,0)+ ε 2

i
]
+

Λ t(v,λ ) = [gt(v)−λ (1−λ r)(1− r)+λ r ]+
Ẽ =

{
(x, y, z ,w) ∈ R

n×R×R
n×R : (x, z) ∈ E , y = a

}
.

We let A be the set of arcs (x,y) satisfying (x ′,y ′) ∈ F r
t (x,y) a.e., as well as

(
x(a), y(a), x(b), y(b)

)
∈ Ẽ , |x(t)| � δ r/3 ∀ t. (7)
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Here we have written F r
t (x,y) for F r

t (x), though there is no y-dependence; note
that δ r < ε in light of (1). We now consider the problem of minimizing over A the
cost

Ji(x,y) = �i
(

x(a), x(b)
)
+b− y(b)+

∫ b

a
Λ t

(
x ′(t), y ′(t)

)
dt .

Note that for any (x,y) that is admissible for this problem, we have y(b) � b. Thus,
the infimum in the above problem is nonnegative (since �i � 0, Λ t � 0).

If any such (x,y) has y(b) = b, then y ′ = 1 a.e., and it follows that x is a trajectory
for F in the class relative to which x∗ is optimal. Thus �i

(
x(a), x(b)

)
> 0 (or else the

optimality of x∗ would be contradicted). We summarize as follows: for any (x,y) in
A, letting (x ′,y ′) = (λ f ,λ ), we have either λ < 1 on a set of positive measure, or
else �i(x(a), x(b))> 0.

Note that the arc (0, t) lies in A and yields Ji = ε 2
i (since Λ t(0,1) = 0 by the second

inequality in (1)). Thus (0, t) is ε 2
i -optimal for the problem (whose infimum may

not be attained). We define a complete metric d on the set A as follows:

d
(
(x1,y1), (x2,y2)

)
=

∣
∣x1(a)− x2(a)

∣
∣+

∫ b

a

∣
∣x ′

1(t)− x ′
2(t)

∣
∣dt +

∫ b

a

∣
∣y ′

1(t)− y ′
2(t)

∣
∣dt.

By Theorem 5.19 there exists (xi , yi) ∈ A satisfying

∣
∣xi(a)

∣
∣+

∫ b

a

∣
∣x ′

i(t)
∣
∣dt +

∫ b

a

∣
∣y ′

i(t)−1
∣
∣dt � ε i (8)

and such that the minimum over A of the functional

Ji(x,y)+ ε i
∣
∣x(a)− xi(a)

∣
∣+ ε i

∫ b

a

∣
∣x ′(t)− x ′

i(t)
∣
∣dt + ε i

∫ b

a

∣
∣y ′(t)− y ′

i(t)
∣
∣dt

is attained at (xi, yi). We denote y ′
i by λ i . It is a straightforward exercise in measur-

able selection theory (using Cor. 6.23) to show that we may write x ′
i(t) in the form

λ i(t) fi(t) for some measurable function fi satisfying

fi(t) ∈ Ft(xi(t)) a.e., gt
(

fi(t)
)
�

(
1− rλ i(t)

)
(1− r) a.e.

It follows from the above that we have

‖xi‖→ 0 and, in L1(a,b): x ′
i → 0, λ i → 1, fi → 0.

By taking subsequences, the last three convergences may be assumed to hold in the
pointwise (almost everywhere) sense as well. Let us define

Gr
t =

{
(x, λ f , λ ) : (λ f ,λ ) ∈ F r

t (x)
}

=
{
(x, λ f , λ ) : λ ∈ [0,1], f ∈ Ft(x), gt( f ) � (1−λ r)(1− r)

}
,
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a set whose intersection with B(0,ε)×R
n is closed a.e., as a result of [H3]. It

also follows (with the help of Prop. 6.25) that the multifunction t �→ Gr
t is mea-

surable.

25.8 Proposition. For all i sufficiently large, there exist an arc pi , a nonnegative
constant qi and a measurable function (di ,ei) such that ‖ pi ‖+ qi = 1 and the fol-
lowing hold :

(
pi(a),−pi(b)

)
∈ ∂L qi �i

(
xi(a), xi(b)

)
+N L

E
(

xi(a), xi(b)
)
+ ε i qi B×{0}, (9)

p ′
i ∈ co

{
ω : (ω , pi −di , qi − ei) ∈ N L

Gr
t

(
xi , x ′

i , y ′
i
)}

a.e., (10)

where (
di(t), ei(t)

)
∈ ∂L qiΛ t

(
x ′

i(t), y ′
i(t)

)
+ ε i qi B×ε i qi B a.e.

Further, the following maximum condition holds at almost every t:

(λ f ,λ ) ∈ F r
t (xi) =⇒

〈 pi , λ f 〉+qiλ −qiΛ t(λ f ,λ )− ε i qi
∣
∣λ f −λ i fi

∣
∣− ε i qi |λ −λ i |

� 〈 pi , λ i fi 〉+qiλ i −qiΛ t(λ i fi , λ i). (11)

Proof. For i sufficiently large, (xi, yi) solves a problem (locally) to which Cor.
25.4 applies: hypothesis [H2] follows from Prop. 25.7. We deduce the existence
of an arc (pi , qi) satisfying the necessary conditions given there, for some ηi in
{0,1}. It follows that qi ≡ ηi , and we get precisely the conditions (9) (10) (11). We
then redefine the multipliers pi and qi by normalizing (dividing by ‖ p‖+ qi 	= 0);
this leaves the preceding conditions unchanged, but provides the nontriviality in
the alternate form ‖ p‖+ qi = 1 (which turns out to be more convenient for later
convergence steps). 
�

Let Ω i denote the subset of points t in [a,b ] for which we have

gt
(

x ′
i(t)

)
−λ i(t)

(
1−λ i(t)r

)
(1− r)+ r < 0.

Note that the left side converges almost everywhere to r− (1− r)2 < 0 (by (1)); it
follows that measΩ i → b−a. The following refines the information we have about
the multipliers identified above.

25.9 Proposition. For all i sufficiently large, the arc pi satisfies
∣
∣ p ′

i (t)
∣
∣ � kr{ | pi |+(kδ )−1 +3

}
, t ∈ [a,b ] a.e. (12)

In addition, there exists γ i ∈ [0,1] such that pi satisfies
(

pi(a),−pi(b)
)
∈ ∂L γ i qi �

(
xi(a), xi(b)

)
+N L

E
(

xi(a), xi(b)
)
+ ε i qi B×{0}, (13)

where γ i = 1 if �i(xi(a), xi(b)) > 0. We also have, for almost every t ∈Ω i ,
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p ′
i ∈ co

{
ω : (ω , pi ,qi) ∈ N L

Gr
t

(
xi , x ′

i , y ′
i
)
+{0}×ε i qi B×ε i qi B

}
, (14)

and, for almost every t ∈ [a,b ],

f ∈ Ft
(

xi(t)
)
, gt( f ) � (1− r)2 − r =⇒

〈 pi , f 〉 � 〈 pi ,λ i fi 〉+ ε i | f −λ i fi |+ ε i |1−λ i |. (15)

Proof. It is a simple exercise to show that |DvΛ t | and |DλΛ t | are bounded by
(kδ )−1 and 1 respectively whenever these derivatives exist (the second estimate uses
(1)). It follows that |di | � (kδ )−1 + ε i and |ei | � 1+ ε i. The Lipschitz property
of F r

t provided by Prop. 25.7 implies by Prop. 25.2 that any ω as described in (10)
satisfies

|ω | � kr{ | pi −di |+ |qi − ei |
}

� kr{ | pi |+[(kδ )−1 +1]+2ε i +1
}
� kr{ | pi |+(kδ )−1 +3

}

for i large enough to imply ε i < 1. We obtain (12).

The proximal chain rule (Theorem 11.41) provides the estimate

∂L �i
(

xi(a), xi(b)
)
⊂ γ i ∂L �

(
xi(a), xi(b)

)
, γ i ∈ [0,1],

so (13) follows from (9). If �i(xi(a), xi(b)) > 0, then �i and � differ by a constant
locally around the point (xi(a), xi(b)), whence

∂L �i
(

xi(a), xi(b)
)
= ∂L �

(
xi(a), xi(b)

)
,

so that (13) holds with γ i = 1.

When t ∈Ω i , the relation (14) is a consequence of (10), since then Λ t is identically
zero near (x ′

i(t), y ′
i(t)) (as follows from its definition), so that

∂L qiΛ t
(

x ′
i(t), y ′

i(t)
)
= {(0,0)}.

Finally, let us derive (15). When f is as stated, then the point ( f ,1) belongs to
F r

t (xi(t)), and we have Λ t( f ,1) = 0. Invoking (11), we obtain

〈pi , f 〉 � 〈pi ,λ i fi 〉+qi(λ i −1)+ ε i qi | f −λ i fi |+ ε i qi |1−λ i |−qiΛ t(λ i fi ,λ i),

which yields (15), since qi ∈ [0,1] and Λ t � 0. 
�

Convergence. In light of the above, we may take subsequences as necessary (with-
out relabeling) in order to arrange

qi → q , γ i → γ , pi → p (uniformly), p ′
i → p ′ (weakly in L1(a,b)).
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(This now-familiar argument uses (12) in conjunction with Gronwall’s lemma, see
Exer. 6.42.) Let Si be the subset of [a,b ] for which λ i(t) < 1. As remarked pre-
viously, when Si has measure 0, it follows that �i(xi(a), xi(b)) is strictly positive.
By taking further subsequences, we can therefore arrange for one of the three cases
treated below to arise:

Case 1 : qi � 1/2 ∀ i

Case 2 : �i(xi(a), xi(b)) > 0 ∀ i

Case 3 : qi > 1/2 , meas Si > 0 ∀ i

We now pass to the limit in (13) (14) (15) in order to obtain an arc p and nonnegative
numbers q, γ such that ‖ p‖+q = 1 and

(
p(a),−p(b)

)
∈ ∂L γ q �(0,0)+N L

E (0,0) (16)

p ′(t) ∈ co
{
ω :

(
ω , p(t), q

)
∈ N L

Gr
t
(0,0,1)

}
, t ∈ [a,b ] a.e. (17)

f ∈ Ft(0), gt( f ) � (1− r)2 −2r =⇒ 〈 p, f 〉 � 0. (18)

Relation (16) results from the closed graph property of the limiting constructs. Since
F r

t is Lipschitz (by Prop. 25.7), Prop. 25.2 implies that Gr
t satisfies the bounded

slope condition; we have seen that t �→ Gr
t is closed-valued and measurable. Then

(17) follows from (14), with the help of Prop. 25.3.

To see how (18) follows, consider any f as described there, where t is such that all
hypotheses and pointwise convergences hold, as well as (15) for every i. By Prop.
25.6, for all large i, there exists f ′

i ∈ Ft(xi(t)) such that | f ′
i − f | � k|xi(t) | < rδk .

Then

gt( f ′
i ) � gt( f )+ | f ′

i − f |/(δk)< (1− r)2 −2r+ r = (1− r)2 − r.

We may therefore apply (15) to discover

〈 pi , f ′
i 〉 � 〈 pi , λ i fi 〉+ ε i| f ′

i −λ i fi |+ ε i|1−λ i |.

Passing to the limit (recall that fi → 0 a.e.) gives 〈 p, f 〉� 0, whence (18).

The conclusions (16) (17) (18) resemble closely the ones we seek to obtain in the
theorem (although the maximum condition is not yet asserted to the required extent).
But we need to address the issue of nontriviality by ruling out the possibility that γ q
and p are both zero. This is done differently in accord with which of the three cases
is considered.

In Case 1, the inequality qi � 1/2 implies ‖ pi ‖ � 1/2, since ‖ pi ‖+qi = 1, so the
arc p above is nonzero.

In Case 2, we have (by Prop. 25.9) γ i = 1. Thus γ q+‖ p‖ = q+‖ p‖= 1.
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Case 3, in which qi > 1/2 and meas Si > 0 ∀ i, is treated in two further subcases.
We shall prove that for all i sufficiently large,

‖ pi ‖ � min
{

1/(5M), r/(12M)
}
. (19)

For each i, there is a point t in Si for which (11) holds (since Si has positive measure).
We fix such a t (suppressing it in the notation). Then one of the two alternatives
below is valid:

Case 3(a) : gt( fi) < (1−λ i r)(1− r)

In this case, for all λ > λ i sufficiently near λ i , the point (λ fi ,λ ) lies in F r
t (xi), so

that we may invoke (11) for such values of λ . It follows from the presence of a max-
imum that the derivative Δ from the right with respect to the variable λ (evaluated
at λ = λ i) of the left side in the inequality appearing in (11), must be nonpositive.
To calculate this derivative as regards the term involving Λ t , observe that

Λ t(λ fi ,λ ) = λ
{

gt( fi)− (1−λ r)(1− r)+ r
}
+
,

since gt is positively homogeneous. If the quantity Q(λ ) in the braces above is
strictly negative at λ = λ i , the derivative there is zero; otherwise (by the product
rule), the derivative at λ = λ i equals Q(λ i)+λ i r (1− r) � r+λ i r (1− r). In either
case we obtain, from the inequality Δ � 0:

〈 pi , fi 〉 � −qi + r+λ i r (1− r)+ ε i(1+M)

� −qi + r (2− r)+ ε i(1+M)

<−1/2+ r (2− r)+ ε i(1+M) < −1/4+ ε i(1+M),

since r (2− r)< 1/4 by (1). Because we have | fi | � M, we conclude that, provided
ε i satisfies ε i(1+M) � 1/20, then | pi | � 1/(5M), which confirms (19).

Case 3(b) : gt( fi) = (1−λ i r)(1− r)

For i sufficiently large, we have |xi(t)| < δ r/3. It follows from Prop. 25.6 (taking
f1 = x1 = 0) that there exists f ∈ Ft(xi) ∩ B(0, k |xi |). Then

gt( f ) � gt(0)+(δk)−1| f | � (δk)−1k |xi |
< (δk)−1kδ r = r < (1− r)2 (by (1)),

so that the point ( f ,1) belongs to F r
t (xi). We also find Λ t( f ,1) = 0, since

gt(v)−λ (1− r)(1− r)+ r � r+(1− r)2 = −1+4r− r2 < 0,

because r < 1/4 by (1). We have in addition Λ t(λ i fi ,λ i) = λ i r , as a result of the
equality characterizing Case 3(b). Substitution in (11) for this choice of f and λ
now leads to
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〈 pi , λ i fi − f 〉 � qi(1−λ i)+qiΛ t(λ i fi , λ i)− ε i(1+2M)

= qi (1−λ i)+qi rλ i − ε i(1+2M)

� qi r− ε i(1+2M) > r/2− ε i(1+2M) (since qi > 1/2).

When combined with the estimate |λ i fi − f | � 2M , this implies that, provided ε i
satisfies ε i(1+2M) � r/3, we must have | pi | � r/(12M), confirming (19).

Let us note the following fact regarding the arc p we have produced:

25.10 Proposition. The arc p satisfies

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt (0,0)
}
, t ∈ [a,b ] a.e. (20)

Proof. This will be seen to be a consequence of (17). Because the limiting cone is
generated from the proximal one by limits, it suffices to prove

(ω , p, q) ∈ NP
Gr

t

(
x, λ f , λ

)
, gt( f ) < (1− r)2/2 =⇒ (ω , λ p) ∈ NP

Gt (x, f ).

Given data as described on the left of this putative implication, the definition of
proximal normal (Def. 11.25) yields the existence of some σ � 0 such that:

〈(ω , p,q), (x ′ − x, λ ′ f ′ −λ f , λ ′ −λ )〉 �
σ
{
|x ′ − x |2 + |λ ′ f ′ −λ f |2 + |λ ′ −λ |2} ∀(x ′, λ ′ f ′, λ ′) ∈ Gr

t .

Let f ′ ∈ Ft(x ′). If, in addition to this inclusion, f ′ is sufficiently close to f , then we
have gt( f ′)< (1− r)2, so that the point (λ f ′, λ ) belongs to F r

t (x
′). The preceding

inequality for this choice yields

〈(ω , λ p), (x ′ − x, f ′ − f )〉 � σ
{
|x ′ − x |2 + | f ′ − f |2},

which holds therefore for all points (x ′, f ′) ∈ Gt which are sufficiently close to
(x, f ). Thus (ω ,λ p) ∈ NP

Gt
(x, f ) (since proximal normals can be characterized ei-

ther locally or globally), and the result follows. 
�

If in (16) we set η = γ q, and if we normalize by dividing across by η + ‖ p‖, we
arrive at the following, which summarizes our progress to this point:

25.11 Proposition. There exist an arc p and η � 0 with η +‖ p‖ = 1 that satisfy
the transversality condition

(
p(a),−p(b)

)
∈ ∂Lη �(0,0)+N L

E (0,0) , (21)

the Euler inclusion

p ′(t) ∈ co
{
ω :

(
ω , p(t)

)
∈ N L

Gt (0,0)
}

a.e. (22)

and the following maximum condition for almost every t:
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f ∈ Ft(0) , gt( f ) � (1− r)2 −2r =⇒ 〈 p, f 〉 � 0. (23)

These conclusions are very close to those asserted by the theorem; their only defect
is that the upper bound on gt( f ) in (23) does not allow all points f ∈ Ft(0)∩ Rt to
be involved in the assertion of the maximum condition.

Letting r shrink to zero. For each ri of a sequence decreasing to 0, we obtain an
arc pi and a scalar ηi satisfying the properties given in Prop. 25.11; these imply the
differential inequality | p ′

i | � k| pi | a.e. We may deploy familiar arguments involv-
ing Gronwall’s lemma, together with Prop. 25.3, to extract a subsequence of pi and
ηi converging to limits that continue to satisfy (25.5 c) and (25.5 b).

We now prove that (25.5 d) holds as well. Let t be such that the hypotheses hold at t,
as well as (23) for each pi . Let f ∈ F(t,0)∩ Rt ; then gt( f )< 1. We wish to prove
that 〈 p(t), f 〉 � 0. But for all i sufficiently large, we have gt( f )< (1− ri)

2 −2ri ,
as well as 〈 pi(t), f 〉 � 0 (by (23)). The required conclusion is obtained by passing
to the limit.

Removing the temporary hypotheses. We next remove the temporary hypothesis
[TH2], while still assuming [TH1] (and that x∗ ≡ 0). To do so, we consider the
original problem in which Rt is replaced by Rt ∩ B◦(0,M), for any M > δ k. Then
all the hypotheses [H3] to [H5] as well as [TH1] are still valid, and [TH2] holds as
well. We may therefore apply to this problem the case of the theorem that has been
proved. In so doing we obtain all the assertions of Theorem 25.5, except that we
have Rt ∩ B◦(0,M) instead of Rt in the maximum condition, and the nontriviality is
expressed in the form η+‖ p‖= 1. We proceed to let M go to +∞ along a sequence
Mi . By the usual sequential compactness and closure arguments (using notably Prop.
25.3), we extract a subsequence of the corresponding pi and ηi converging to limits
p and η which satisfy all the necessary conditions of Theorem 25.5.

There remains to remove temporary hypothesis [TH1]; we do so by time-rescaling,
exactly as in the final step of the proof of Theorem 25.1. We omit the details.

The global case. We shall say that a sequence of multifunctions Ri
t of the type

considered in Theorem 25.5 diverges to R
n (relative to x∗), and we write Ri

t → R
n,

provided that for every M > 0 there exists iM such that

i � iM =⇒ Ri
t ⊃ B(x∗′(t),M) a.e.

25.12 Corollary. Let Ri
t be a sequence satisfying Ri

t → R
n relative to x∗ , where

x∗ satisfies the hypotheses of Theorem 25.5 for each radius Ri
t , with corresponding

data ε i, k i, δ i that may depend on i. Then all the conclusions of Theorem 25.5 hold
for an arc p satisfying the following global maximum condition: for almost every t
we have

〈 p(t),v〉 � 〈 p(t), x∗′(t)〉 ∀v ∈ Ft
(

x∗(t)
)
.
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Proof. The same sequential compactness and limiting arguments used repeatedly
above are used to derive this corollary. For each i, the theorem (applied to x∗) yields
ηi and pi satisfying the transversality condition and the Euler inclusion, together
with the maximum condition relative to the radius Ri

t . Normalization is applied to
arrange ηi +‖ pi ‖= 1.

Then the arcs pi satisfy the differential inequality | p ′
i | � k1| pi |, where k1 is the

summable function corresponding via hypothesis [H4] to the first radius R1
t . This

allows the usual sequential compactness argument to be made (with the help of
Prop. 25.3), leading to η and p that satisfy the transversality condition, the Euler
inclusion, and η+‖ p‖= 1. For almost every t, we have, for all i,

max
{
〈 pi(t),v〉 : v ∈ Ft

(
x∗(t)

)
∩ Ri

t
}
� 〈 pi(t), x∗′(t)〉.

Since pi converges uniformly to p, and since Ri
t → R

n, a routine argument derives
the global maximum condition. 
�

25.13 Example. We proceed to illustrate the utility of the radius introduced in The-
orem 25.5 by deriving the necessary conditions for the general problem of Bolza, as
given in Theorem 18.13.

We first augment the state x by an additional coordinate y, in order to absorb the
integral cost into the dynamics. This is done by defining

Ft(x,y) =
{
[v,Λ(t, x,v)+ρ ] : v ∈ R

n, ρ � 0
}

�+(x0 , y0 , x1 , y1) = �(x0 , x1)+ y1, E =
{
(x0 , y0 , x1, y1) : (x0 , x1) ∈ S , y0 = 0

}

y∗(t) =
∫ t

a
Λ
(
s, x∗(s), x∗′(s)

)
ds .

It is a notational exercise to see that the augmented arc (x∗ , y∗) provides a local
minimum for the corresponding version of the problem (DI) considered in Theorem
25.5; that is, a minimum relative to trajectories (x,y) for which ‖x− x∗‖< ε .

We denote Λ(t, x∗(t), x∗′(t)) by Λ∗(t) and x∗′(t) by v∗(t). For M > 0, we set

ρM(t) = M
{

1+ |(v∗(t),Λ∗(t))|+d(t)
}
,

and we define the radius RM(t) to be the open ball of radius ρM(t) around the point
(v∗(t),Λ∗(t)). We proceed to verify the hypotheses [H3][H4][H5] for these data.
The point of using a radius here is that the bounded slope condition holds for each
radius RM , but not globally (that is, for the radius R(t) = R

n×R); it is a situation in
which Cor. 25.12 will serve.

That [H3] holds is easy to see: the requisite measurability of the multifunction

t �→
{(

x,v,Λ(t, x,v)+ρ
)

: ρ � 0
}
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follows from the fact that it is closed-valued (as follows from the lower semiconti-
nuity ofΛ with respect to (x,v)), and that its graph is LB measurable (because of the
LB measurability of Λ ). Consider [H4], the bounded slope condition. We suppress
the t variable for ease of notation. Let

(α+ , β+) ∈ N P
G
(

x,y,v,w
)
, where |x− x∗ | < ε , (v,w) ∈ F(x,y)∩ RM(t) .

Since F does not depend on y, and since G is essentially the epigraph of Λ(·, ·), it
follows that α+ is of the form (α ,0) and that β+ is of the form (β ,−λ ) for some
λ � 0. Suppose first λ > 0. Then w =Λ(x,v) (see Exer. 11.30), and we have

(
α/λ , β/λ

)
∈ ∂PΛ(x,v).

Invoking the Tonelli-Morrey condition 18.11, where S is any bounded set containing
an ε -neighborhood of {x∗(t) : t ∈ [a,b ]}, we deduce from this

|α |/(λ + |β |) � c
(
|v |+ |Λ(x,v)|

)
+d ,

which leads to

|α+| = |α | � 4
{

c
∣
∣(v,Λ(x,v))

∣
∣+d

}
|(β ,λ )|

� 4
{

c
(
|(v∗ ,Λ∗)|+ρM

)
+d

}
|β+| � c̄(1+M)

(
1+ |(v∗ ,Λ∗)|+d

)
|β+| ,

for a constant c̄ not depending on M or t. This confirms the bounded slope condition
of radius RM , with the summable function

kM = c̄(1+M)
{

1+
∣
∣(v∗(t),Λ∗(t)

)∣∣+d(t)
}
.

If λ = 0, then a straightforward approximation argument based upon Theorem
11.31 and the analysis above of the case λ > 0 gives rise to the same inequality.
Since ρM/kM = M/[ c̄(1+M)], we see that [H5] is satisfied as well.

Because the radius multifunctions RM diverge to R
n+1 in the sense of Cor. 25.12, we

deduce the existence of η and an augmented costate (denoted by (p,q)) satisfying
the conclusions of Theorem 25.5 for the augmented problem. The Euler inclusion
implies that q is constant, and then the transversality condition yields q = −η . If
η = 0, the maximum condition asserts that, for almost every t,

〈 p(t),v〉 � 〈 p(t), x∗′(t)〉 ∀v ∈ R
n.

But then p = 0 and nontriviality is violated. Thus, η = 1. It now follows that p
satisfies the conclusions of Theorem 18.13.

There remains the autonomous case to consider, with its extra conclusion. The now
familiar time-rescaling device will be used. We modify the augmented problem
above by taking

F+(x, y, z) =
{
[wv,wΛ(x,v)+ρ ,w ] : v ∈ R

n, ρ � 0 , w ∈ [1−δ ,1+δ ]
}
,
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where δ > 0 is sufficiently small in a sense specified below. The additional state
coordinate z is subject to prescribed boundary conditions z(a) = a, z(b) = b, and
we set z∗(t) = t. Then any trajectory (x, y, z) of F+ induces a trajectory ( x̃, ỹ) of F ,
where we define

( x̃, ỹ)(τ) = (x, y)
(
t(τ)

)
, with τ(t) = a+

∫ t

a
w(s)ds .

If δ is suitably small, then x̃∗ is uniformly within ε of x∗ , and it follows that
(x∗ , y∗ , z∗) is a local minimum for the new problem.

The arguments given above in the non autonomous case adapt without difficulty to
show the applicability of Cor. 25.12 to the problem. Then the necessary conditions
are obtained, for a costate that we denote by (p,q,r). As before, we find q = −1;
we see that r is constant. There follow the same conclusions as previously, but the
presence of the additional control variable w gives rise to an extra conclusion: almost
everywhere, the maximum over [1−δ ,1+δ ] of the expression

w
{
〈 p(t),v∗(t)〉−Λ∗(t)+ r

}

occurs at the interior point w∗ = 1. Thus, the quantity in braces vanishes, which
implies the Erdmann condition (with h =−r). 
�

25.4 The multiplier rule and mixed constraints

We consider in this section an optimal control problem with standard cost and dy-
namics, but in which the state x and control u are subject to additional joint, or mixed
constraints of the type ϕ(t, x(t), u(t)) ∈ Φ ⊂ R

k. The presence of such constraints
has long been known to constitute a challenge as regards the derivation of appropri-
ate necessary conditions of maximum principle type. Specifically, then, the problem
is the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(a), x(b)
)
+

∫ b

a
Λ
(
t, x(t), u(t)

)
dt

subject to x ′(t) = f
(
t, x(t), u(t)

)
, u(t) ∈U, t ∈ [a,b ] a.e.

ϕ
(
t, x(t), u(t)

)
∈ Φ , t ∈ [a,b ] a.e.

(
x(a), x(b)

)
∈ E .

(MC)

The functions �, f , Λ , and ϕ satisfy the classical regularity hypotheses 22.1. The
sets U , E, and Φ are closed.6

6 A more general approach to the results of this section is given in Clarke and de Pinho [17].
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Let (x∗ ,u∗) be a local minimizer for (MC), where we assume that u∗ is bounded.
The crucial hypothesis made on the nature of the mixed constraints is the following:
for every t ∈ [a,b ], we have

u ∈ U, ϕ
(
t, x∗(t), u

)
∈ Φ , λ ∈ N L

Φ
(
ϕ(t, x∗(t), u)

)

0 ∈ Du〈λ ,ϕ 〉
(
t, x∗(t), u

)
+N L

U (u) =⇒ λ = 0 . (1)

We remark that this is a natural constraint qualification (or nondegeneracy condi-
tion) of the type encountered in Theorem 11.38. When Φ = {0} and U =R

m, (1) is
equivalent to requiring that Duϕ(t, x∗(t), u) have rank k at points u ∈ U for which
ϕ(t, x∗(t), u) = 0. When Φ = R

k
− , it is equivalent to the corresponding positive

linear independence condition.

It is convenient to define an augmented Hamiltonian

Hη
ϕ (t, x, p,u,λ ) = Hη(t, x, p,u)−〈λ ,ϕ 〉(t, x,u)

= 〈 p, f (t, x,u)〉−ηΛ(t, x,u)−〈λ ,ϕ 〉(t, x,u) .

25.14 Theorem. Under the hypotheses above, there exists an arc p : [a,b ]→ R
n, a

scalar η equal to 0 or 1, and a bounded measurable function λ : [a,b ]→ R
k with

λ (t) ∈ N C
Φ
(
ϕ(t, x∗(t), u∗(t))

)
a.e. (2)

satisfying the nontriviality condition
(
η , p(t)

)
	= 0 ∀ t ∈ [a,b ] , (3)

the transversality condition
(

p(a),−p(b)
)
∈ η∇�

(
x∗(a), x∗(b)

)
+N L

E
(

x∗(a), x∗(b)
)
, (4)

the adjoint equation for almost every t:

− p ′(t) = Dx Hη
ϕ
(
t, x∗(t), p(t), u∗(t), λ (t)

)
(5)

as well as, for almost every t, the maximum condition

u ∈ U, ϕ
(
t, x∗(t), u

)
∈ Φ =⇒

Hη(t, x∗(t), p(t), u
)
� Hη(t, x∗(t), p(t), u∗(t)

)
(6)

and the stationarity condition

0 ∈ Du Hη
ϕ
(
t, x∗(t), p(t), u∗(t), λ (t)

)
−NC

U
(
u∗(t)

)
. (7)

Remark. It is not hard to see that stationarity (7) is a natural necessary condition
corresponding to the constrained maximization in (6), but an extra assertion is being
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made: the same normal vector λ in NC
Φ occurs here as in the adjoint equation. Note

that when Φ = R
m, then λ ≡ 0, and we recover precisely the conclusions of the

usual maximum principle.

Proof. The proof is based on appealing to Theorem 25.5 or, more precisely, Cor.
25.12. Fix any r > 0. We show first that condition (1) holds locally around x∗ , if u
is constrained to the ball B(u∗(t),r).

Lemma 1. There exists ε1 > 0 and M such that

t ∈ [a,b ] , |x− x∗(t)| � ε1, u ∈U, |u−u∗(t)| � r , ϕ
(
t, x,u

)
∈ Φ ,

λ ∈ N L
Φ
(
ϕ(t, x,u)

)
, ψ ∈ Du〈λ ,ϕ 〉

(
t, x,u

)
+N L

U (u) =⇒ |λ | � K |ψ | .

Proof. We argue by contradiction. If the lemma is false, there exist sequences

ti ∈ [a,b ] , ε i ↓ 0 , xi ∈ B
(

x∗(ti), ε i
)
, ui ∈ U ∩ B

(
u∗(ti),r

)
, λ i ∈ N L

Φ
(
ϕ(ti, xi ,ui)

)

such that, for certain ψi , we have

ψi ∈ Du〈λ i ,ϕ 〉
(
ti , xi ,ui

)
+N L

U (ui) , |λ i | > ni |ψi | , ni → ∞ .

We may normalize to have |λ i | = 1, and then take subsequences to suppose
that

λ i → λ0 , ti → t0 , ui → u0 ∈ U.

It follows that ψi → 0, xi → x∗(t0) and ϕ(t0 , x∗(t0), u0) ∈ Φ . In the limit, we
discover

0 ∈ Du〈λ0 ,ϕ 〉
(
t0 , x∗(t0), u0

)
+N L

U (u0) ,

which contradicts (1) (since λ0 is a unit vector) and proves the lemma. 
�

By the usual device of absorbing the running cost into the dynamics (see for example
page 518), there is no loss of generality in takingΛ ≡ 0, as we do henceforth.

We now proceed to augment the state x with another component y ∈ R
m; thus, the

new state is (x,y). In these terms, we define the ingredients of an augmented prob-
lem of the form (DI) (see p. 521):

Ft(x,y) =
{
(v,u) : v− f (t, x,u) = 0 , u ∈ U, ϕ(t, x,u) ∈ Φ

}

�+(x0 , y0 , x1, y1) = �(x0 , x1) , E+ =
{
(x0 , y0 , x1, y1) : (x0 , x1) ∈ E , y0 = 0

}
.

It is a notational exercise to check that (x∗ ,y∗) is a local minimizer for the resulting
version of (DI), where (note that u∗ is bounded, and therefore integrable)

y∗(t) :=
∫ t

a
u∗(s)ds.



538 25 Differential inclusions

We wish to apply Theorem 25.5, with radius Rt = R
n×B◦(u∗(t),r). To this end,

let us verify that the hypotheses of Theorem 25.5 are satisfied. Since [H3] is easily
seen to hold, it suffices to prove that the bounded slope condition [H4] holds for
some ε > 0, and with a constant k (for then [H5] certainly holds for δ sufficiently
small).

We argue by contradiction. If this fails, there exist sequences

ti ∈ [a,b ] , ε i ↓ 0 , xi ∈ B
(

x∗(ti), ε i
)
, yi ∈ B

(
y∗(ti), ε i

)
, ui ∈ U ∩ B

(
u∗(ti),r

)

and points (
α i , ci , β i , ζ i

)
∈ N P

G(ti)

(
xi , yi , f (ti , xi , ui), ui

)
(8)

such that
1 = |(α i , ci)| = |α i | > ni |(β i ,ζ i)

∣
∣ , ni → ∞ . (9)

In writing this, we have normalized in order to have |(α i , ci)| = 1, and then used
the fact that ci = 0, since F does not depend on y. We have also written G(t) for the
graph of Ft . We may omit y, and regard G(ti) as being the set

{
(x,v,u) :

(
v− f (ti , x,u), u,ϕ(ti, x,u)

)
∈ {0}×U×Φ

}
.

Lemma 2. For i sufficiently large, there exist (γ i ,τ i ,λ i) with λ i ∈ N L
Φ(ϕ(ti , xi ,ui))

and τ i ∈ N L
U (ui) such that

[
α i ,β i , ζ i

]
= Dx,v,u

{
〈γ i ,v− f (x,u)〉+ 〈τ i , u〉+ 〈λ i ,ϕ 〉

}(
xi , f (ti , xi ,ui), u

)

=
[

Dx
(
〈λ i ,ϕ 〉−〈γ i , f 〉

)
(xi ,ui), γ i , Du

(
〈λ i ,ϕ 〉−〈γ i , f 〉

)
(xi ,ui)+ τ i

]
.

Proof. It is a matter of showing that Theorem 11.38 applies. Let i be large enough
to ensure that x := xi satisfies |x− x∗(ti)| < ε1 , where ε1 is provided by Lemma 1.
Suppose that, for some λ ∈ N L

Φ(x,u) and τ ∈ N L
U (u), we have

[0,0,0 ] = Dx,v,u
{
〈γ ,v− f (x,u)〉+ 〈τ , u〉+ 〈λ ,ϕ 〉

}
(x,v, u) .

Then we find γ = 0, so that 0 = Du〈λ ,ϕ 〉(x,u)+ τ , whence λ = 0 by Lemma 1.
This confirms the applicability of Theorem 11.38, which yields the stated character-
ization of [α i ,β i ,ζ i ] and proves Lemma 2. 
�

We now return to the situation described by (8) and (9). Observe that β i → 0 and
ζ i → 0. Define a compact set A by

A =
{
(t, x,u) : t ∈ [a,b ] , |x− x∗(t)| � ε , u ∈ U, |u−u∗(t)| � r

}
.

Letting K be a Lipschitz constant for f and ϕ on A, we see, with the aid of Lemma
2, that β i = γ i , and we calculate

1 = |α i | � K |λ i |+K |γ i | = K
(
|λ i |+ |β i |

)
.
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It follows that, for some ρ > 0, we have |λ i | � ρ for all large i. We may suppose
that

ti → t , ui → u and λ i/|λ i | → λ 	= 0 .

Then xi → x∗(t) and λ ∈ N L
Φ(ϕ(t, x∗(t),u)). Dividing the expression for ζ i by |λ i |

and passing to the limit, we obtain

0 ∈ Du〈λ ,ϕ 〉
(
t, x∗(t), u

)
+N L

U (u) ,

contradicting (1), and confirming the bounded slope condition [H4].

Thus, the hypotheses of Theorem 25.5 hold, for the augmented problem defined in
terms of Ft , �+ , and E+ , for any radius of the form

Rt = R
n×B(u∗(t),r).

We may therefore invoke Cor. 25.12, which yields a scalar η and an arc that we
denote by (p,q). From the Euler inclusion and transversality condition, we find that
q is identically zero. It follows that (η , p(t)) 	= 0 ∀ t (the required nontriviality), and
that the maximum condition (6) and the transversality condition (4) hold. The Euler
inclusion affirms that (for almost every t, which we suppress)

p ′ ∈ co
{
ω : (ω , p,0) ∈ N L

S
(

x∗ , x∗′ , u∗
)}

,

where
S :=

{
(x,v,u) : v− f (x,u) = 0 , u ∈ U, ϕ(x,u) ∈ Φ

}
.

For any such ω as described above, we may invoke Theorem 11.38 once again in
order to deduce the existence of

(γ ,τ ,λ ) with λ ∈ N L
Φ(ϕ(x∗ ,u∗)) , τ ∈ N L

U (u∗)

for which the following holds:

(ω , p,0) = Dx,v,u
{
〈γ , v− f (x,u)〉+ 〈τ , u〉+ 〈λ ,ϕ 〉

}
,

where the derivative is evaluated at (x∗ , x∗′ , u∗). It follows that γ = p, whence

ω = −Dx
{
〈 p, f 〉−〈λ ,ϕ 〉

}
(x∗ , p, u∗) = −DxHϕ

(
x∗ , p, u∗ , λ

)

0 ∈ Du
{
〈 p, f 〉−〈λ ,ϕ 〉

}
(x∗ , u∗)−N L

U (u∗) = Du Hϕ
(

x∗ , p, u∗ , λ )−N L
U (u∗).

Since |Du〈 p, f 〉(x∗ , u∗)| � K‖ p‖, the last equation, in light of Lemma 1, yields
|λ | � MK‖ p‖. Since p ′ is a convex combination of points ω as above, and since
co N L = NC (Theorem 11.36), we deduce the adjoint equation (5), for some new λ
satisfying (2) and (7), and which continues to be bounded by MK‖ p‖.

That λ can be chosen to be a measurable function is an exercise in measurable
selections. This completes the proof of Theorem 25.14. 
�
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Proof of two multiplier rules. We proceed below to derive from Theorem 25.14
two multiplier rules encountered in Chapter 17.

25.15 Corollary. Theorem 17.4 holds.

Proof. This is an immediate consequence of Theorem 25.14. We simply specialize
to the case of the trivial dynamics x ′ = f (t, x,u) = u, with the control set U = R

n,
and we take E = {(A,B)} and � ≡ 0. 
�

There remains one more theorem from Chapter 17 to prove, namely the classical
multiplier rule for the problem of Lagrange in the calculus of variations.

25.16 Corollary. Theorem 17.1 holds.

Proof. We define

Ft(x, y) =
{(

v,Λ(t, x,v)
)

: ϕ(t, x,v) = 0
}
, y∗(t) =

∫ t

a
Λ
(
s, x∗(s), x∗′(s)

)
ds

�
(

x0 , y0 , x1, y1
)
= y1 , E =

{(
x0 , y0 , x1, y1

)
: x0 = A , y0 = 0 , x1 = B

}
.

It follows from the fact that x∗ is a weak local minimizer for the original problem
that the arc (x∗ , y∗) provides a local minimizer of radius R for the problem (DI) cor-
responding to these data, for a certain radius multifunction having the form

Rt = B◦(x∗′(t), ρ)×R , (10)

for some ρ > 0. The next result verifies that F satisfies the bounded slope condition
near (x∗ , y∗). We denote by G(t) the graph of Ft(·, ·).

Lemma. There exists δ > 0 and k � 0 such that

t ∈ [a,b ] , |x− x∗(t)| � δ , ϕ(t, x,v) = 0 , v ∈ B(x∗′(τ+), δ )∪ B(x∗′(τ−), δ ) ,

(α ,θ , β ,γ ) ∈ N P
G(t)(x, y,v,w) =⇒ θ = 0 , |α | � k|(β ,γ )| .

Proof. That θ = 0 is a consequence of the fact that F does not depend on y. Suppose
now that the lemma is false. Then (suppressing the y variable) there exists a sequence
ti → τ ∈ [a,b ] and sequences

(
α i , β i ,γ i

)
∈ N P

G(ti)(xi ,vi ,wi) , |α i | > ni |(β i ,γ i)|

where ni → ∞ and

(xi ,vi ,wi) →
(

x∗(τ), x∗′(τ), y ′
∗(τ)

)
.

(One interprets this with the appropriate one-sided derivative if x∗ has a corner at
τ .) By scaling, we may take |α i | = 1, so that (β i ,γ i) → 0. The set G(ti) may be
expressed as a level set:



25.4 The multiplier rule and mixed constraints 541

G(ti) =
{
(x,v,w) : ϕ(ti , x,v) = 0 , w−Λ(ti , x,v) = 0

}
.

According to Theorem 11.38, and because Dvϕ(xi ,vi ,wi) has rank k for i suffi-
ciently large, there exist λ i and ri such that

α i = Dx
{
〈λ i ,ϕ 〉− riΛ

}
(ti , xi ,vi), (β i ,γ i) =

(
Dv

{
〈λ i ,ϕ 〉− riΛ

}
(ti , xi ,vi),ri

)
.

Thus ri = γ i → 0. Since |α i | = 1, there exists ε > 0 such that |λ i | � ε for all i
sufficiently large. Then λ i/|λ i | converges to a unit vector λ̄ for a subsequence, and
from (β i ,γ i)/λ i → 0 we deduce Dv〈 λ̄ ,ϕ 〉(τ , x∗(τ), x∗′(τ)) = 0. This contradicts
the rank hypothesis, and proves the lemma.

We are now authorized to apply Theorem 25.5, with a radius of the type given by
(10). The same arguments used in the proof of Theorem 25.14 may be used to inter-
pret the resulting Euler inclusion, in order to obtain (5), which, in the current setting,
gives the required conclusion. 
�

Remark. The proof shows that (in view of (7)) we can go beyond classical results,
in also asserting the stationarity condition

0 = Du Hη
ϕ
(
t, x∗(t), p(t), u∗(t), λ (t)

)

along with the Euler equation. In fact, we obtain somewhat more, a local Weierstrass
condition: for some δ > 0, for every t, we have

|v− x∗′(t)|< δ , ϕ
(
t, x∗(t),v

)
= 0 =⇒

ηΛ
(
t, x∗(t),v

)
−ηΛ

(
t, x∗(t), x∗′(t)

)
� 〈 p(t),v− x∗′(t)〉 ,

with x∗′(t) interpreted as either one-sided derivative if x∗ has a corner at t.

Sufficiency of the multiplier rule. We proceed to formalize below a type of result
that is now familiar to the reader: the necessary conditions provided by Theorem
25.14 for the problem (MC) (p. 535), in their normal form, are also sufficient when
the underlying context is linear/convex.

We continue to assume that the functions �, f ,Λ , and ϕ satisfy the classical regular-
ity hypotheses 22.1, and that the sets U , E, and Φ are closed. In addition, however,
we now assume that:

(a) �, E , U , and Φ are convex;

(b) Λ is convex in (x,u) ;

(c) f is of the form Ax+Bu for certain matrices A and B ;

(d) ϕ is of the form C x+Du for certain matrices C and D.

The proof of the following is the subject of Exer. 26.16.
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25.17 Theorem. Let the data of the problem (MC) satisfy the hypotheses above,
and let (x∗ ,u∗) be an admissible process. Suppose that there exists an arc p and a
bounded measurable function λ with

λ (t) ∈ N C
Φ
(
ϕ(t, x∗(t), u∗(t))

)
a.e.

that satisfy the transversality condition, adjoint equation, and stationarity condition
of Theorem 25.14, with η = 1. Then the process (x∗ ,u∗) is optimal for (MC).

25.18 Example. We now illustrate the use of Theorem 25.17 in a simple case, that
in which the problem considered in Example 22.9 is augmented by a mixed inequal-
ity constraint x−u � 1/2. Thus the problem is the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ 3

0

(
x(t)+u(t)2/2

)
dt

subject to x ′(t) = u(t) ∈ [−1,1] a.e.

x(t)−u(t)−1/2 � 0 a.e.

x(0) = 0 .

It is an exercise in the direct method to prove that a solution (x∗ ,u∗) exists. In the
absence of the mixed constraint, the solution had been found to be

u∗(t) =

{
−1 if 0 � t < 2

t −3 if 2 � t � 3
x∗(t) =

{
−t if 0 � t < 2

(t −3)2/2−5/2 if 2 � t � 3.

If this process happens to satisfy the mixed constraint x−u � 1/2, then of course it
remains optimal for the new problem. However, we see that the constraint is violated
on the interval [0,1/2), where we have x−u > 1/2.

In an effort to track the original solution as closely as possible, we set x−u = 1/2
initially. This gives rise to

x(t) = (1− e t)/2 , u(t) = −e t/2 .

This is feasible (that is, u(t) lies in [−1,1] ) only until t = ln 2 , at which point we
may switch to the control values that had been used before.

We arrive, then, at the following educated guess concerning the optimal control for
the problem above:

u∗(t) =

⎧
⎪⎨

⎪⎩

−e t/2 if 0 � t < ln 2

−1 if ln 2 � t < 2

t −3 if 2 � t � 3.

This control corresponds to the following state trajectory x∗ :
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x∗(t) =

⎧
⎪⎨

⎪⎩

(1− e t)/2 if 0 � t < ln 2

ln 2− t −1/2 if ln 2 � t < 2

(t −3)2/2−3+ ln 2 if 2 � t � 3.

We proceed to show that the hypotheses of Theorem 25.17 are satisfied by the pro-
cess above, with η = 1, for a suitable costate p and multiplier λ . The mixed con-
straint corresponds to the data

ϕ(t, x,u) = x−u−1/2 , Φ = (−∞,0 ] .

It is clear that the linear/convex structure postulated by Theorem 25.17 is present.
We see that (for the process given above) the mixed constraint is saturated on the
interval [0, ln 2 ], and slack otherwise, so that (2) of Theorem 25.14 requires that the
multiplier λ satisfy

λ (t) � 0 , t ∈ (0, ln 2) a.e. , λ (t) = 0 , t ∈ (ln 2 ,3) a.e.

The Hamiltonian Hϕ of the problem is the function

pu− x−u2/2 −λ (x−u−1/2).

It follows from the adjoint equation that p ′ = 1 on (ln 2 ,3). Transversality (see (4))
yields p(3) = 0, so that p(t) = t −3 on [ ln 2 ,3 ].

It is an easy matter to verify the stationarity condition (7)

0 ∈ Du Hϕ
(
t, x∗(t), p(t),u∗(t), 0

)
−NC

U
(
u∗(t)

)

on the interval (ln 2 ,3). In the interval (0, ln 2), we have u∗(t) ∈ intU , so that the
stationarity condition (7) reduces to p(t)−u∗(t)+λ (t) = 0. This relation, combined
with the adjoint equation −p ′ = −1−λ (see (5)), provides a differential equation
for p whose solution is given by

p(t) = e−t(2 ln 2−7
)
+1− e t/4 , t ∈ (0, ln 2) .

(We have imposed p(ln 2) = ln 2− 3 in solving the equation, in order to preserve
the continuity of p.) Then we find

λ (t) = e−t(7−2ln 2
)
− e t/4−1, t ∈ (0, ln 2) .

We check without difficulty that λ is nonnegative on (0, ln 2), as required.

To sum up: we have exhibited a costate p and a multiplier λ that satisfy (for η = 1)
the requirements of Theorem 25.17. It follows that the proposed process is optimal.


�



Chapter 26

Additional exercises for Part IV

26.1 Exercise. Optimal control problems which arise in economics or finance often
feature a discount rate δ . This parameter is used to express the present value of fu-
ture revenues or expenses. We introduce this consideration in the problem described
on p. 445, by modifying the cost functional (but nothing else) as follows:

J(x,u) =
∫ T

0
e−δ t(x(t)+u(t)

)
dt .

For small δ > 0, it can be shown that the optimal process has the same general
turnpike nature as before, but with a different turnpike value (depending on δ ) for
the state. Determine that value. 
�

26.2 Exercise. Suppose that in the problem described on p. 445, the cost functional
(and nothing else) is modified as follows:

J(x,u) = x(T )+
∫ T

0
u(t)dt .

(a) Prove that the problem admits a solution.

(b) Prove that if T > ln 2, the unique optimal control is piecewise continuous; more
precisely, that it equals 0 up to a certain time τ ∈ (0,T ), and then equals 3 there-
after. (Thus, the solution is of bang-bang rather than turnpike type.)

(c) Determine the switching time τ . 
�

26.3 Exercise. Consider the soft landing problem, Example 22.14, but suppose now
that the mass of the lander decreases with time, due to fuel consumption. Specifi-
cally, we postulate the dynamics

m(t)x ′′(t) = u(t) ∈ [−1,+1] ,

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
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© Springer-Verlag London 2013

545

http://dx.doi.org/10.1007/978-1-4471-4820-3_26


546 26 Additional exercises for Part IV

where m is a positive-valued locally Lipschitz function. As before, the goal is to
find a control that achieves x(τ) = x ′(τ) = 0 in minimal time τ . Assuming that an
optimal control exists, prove that, as in the original case m ≡ 1, it is bang-bang with
at most one switch. 
�

26.4 Exercise. We consider the soft landing problem (Example 22.14) in which the
cost is modified as follows:

J(x,u) =

∫ τ

0

(
|u(t)|+ k

)
dt .

The term |u | is a natural one to reflect fuel expenditure, and the parameter k > 0
allows us to modulate in varying proportions the importance assigned to travel time
and fuel cost.

(a) Prove that a solution of the problem exists.

(b) Show that the optimal control is piecewise constant with at most two switches,
and takes the values 1, 0,−1, either in that order, or else the opposite. 
�

26.5 Exercise. A ship moves in the (x,y)-plane with maximal speed V > 0, and
navigates subject to a current whose velocity vector

c(x,y) =
(

cx(x,y), cy(x,y)
)

depends on position. The goal is to steer from a prescribed initial condition to a given
target set E in minimal time. We obtain the following formulation of the problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = τ =
∫ τ

0
1 dt

subject to τ � 0
(
x ′, y ′) = (v,w)+ c(x,y), t ∈ [0,τ ] a.e.

|(v,w)| � V , t ∈ [0,τ ] a.e.
(

x(0), y(0)
)
= (x0 , y0) ,

(
x(τ), y(τ)

)
∈ E.

Assumptions: The function c is locally Lipschitz and has linear growth ; the target
set E is closed, does not contain the initial point, but can be reached in finite time ;
the boat is able to remain in the target after arrival:

|c(x,y)|< V for (x, y) ∈ E .

(a) Prove that the problem admits an optimal control (v∗ ,w∗) on an interval [0,τ∗ ].

(b) Invoke necessary conditions to deduce that |(v∗(t),w∗(t))| = V a.e., and that
(v∗ ,w∗) is continuous (has a continuous representative).

(c) If c = 0 on ∂E , show that the terminal velocity of the optimal trajectory is an
inward normal vector to the set E .
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We denote by u∗ the optimal steering angle defined by

(v∗(t),w∗(t)) = (V cos u∗(t),V sin u∗(t)).

Then u∗ may be taken to be continuous, in view of the above.

(d) Suppose now that c(x,y) = (c0(y), 0); thus, the current depends only upon y and
has horizontal effect. If the function c0(·) is affine, and if we exclude the cases
in which u∗ is either identically π/2 or identically −π/2, show that for certain
constants α 	= 0 and β , we have

u∗(t) = arctan(α t +β ) ∀ t ∈ [0,τ∗ ] .

Thus u∗ is either constant or strictly monotone. Based on these facts, optimal
trajectories can be calculated; a typical one (for E = {0} and c0(y) = −y ) is
shown in the figure below.

Fig. 26.1
Steering to the origin

(e) We now take c(x,y) = ( |y |,0). Show that, in contrast to the previous case, it is
now possible for an optimal trajectory to move along the x-axis. 
�

26.6 Exercise. Let θ : [0 ,1] → R be given by θ(t) = 2 t − 1. We seek the arc x
mapping [0 ,1] to R that is Lipschitz of rank 1, has prescribed endpoints, and which
maximizes the (unsigned) area enclosed between the graph of x and that of θ . The
L1 approximation problem may be summarized as follows:

max
∫ 1

0
|x(t)−θ(t)|dt : |x ′(t)| � 1, x(0) = x0 , x(1) = x1 .

Prove that a solution of this problem exists. Identify the (unique) solution in the case
x0 = x1 = 0. 
�
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26.7 Exercise. The following control system, in which n = 3 and m = 2, is known
as the nonholonomic integrator:

x1
′ = u1

x2
′ = u2 (u1, u2) ∈ U := B(0,1) ⊂ R

2

x3
′ = x1u2 − x2 u1 .

It is the simplest representative of a class of systems arising in mechanics which
have certain interesting properties.

(a) Let Π denote the (x1, x2) plane; that is, the surface x3 = 0. Show that any initial
value (α ,β ,γ ) of the state for which (α ,β ) 	= 0 can be steered to Π in finite
time by a control û having the feedback form û(x1 , x 2 , x3) = κ (x2 ,−x1), for
an appropriate value of the constant κ .

(b) Show that any point in Π can be steered to the origin in finite time, in such a way
that the state remains in Π , by a constant control.

(c) Prove that the minimal-time problem for this system admits a solution.

(d) Prove that any time-optimal control is C∞.

Remark. It can be shown that, despite these facts, there is no continuous feedback
(u1,u2) = û(x1, x 2 , x3) ∈ U which has the property that, from any initial condi-
tion, the state trajectories generated by û go to 0, even if we completely renounce
time optimality. This is one reason why the system is often discussed in control en-
gineering, in connection with feedback stabilization. 
�

26.8 Exercise. In the classical theory of economic production, there exist cases in
which two inputs (for example, labor and capital) require fixed proportions in their
use (one worker, one shovel). A simple model of this type is the case in which we
dispose of two inputs u and v, which may be used to produce more capital x and
more output y as follows:

x ′(t) = u(t) , y ′(t) = min(x(t),v(t)).

Thus, x and v must be used in equal proportions in producing the output. We shall
interpret u and v as control variables whose values lie in the set

U =
{
(u,v) : u � 0 , v � 0 , u+ v � 1

}
.

The initial values at time zero of the states x and y are taken to be zero, and the goal
is to maximize total output

y(T ) =
∫ T

0
min

(
x(t),v(t)

)
dt ,

where T is a prescribed horizon in (0 ,1). Solve this optimal control problem. 
�
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26.9 Exercise. We consider the following optimal control problem on a given in-
terval [0,T ], a variant of the linear-quadratic regulator of Example 22.19:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) =
∫ T

0
Λ
(
u(t)

)
dt

subject to x ′(t) = Ax(t)+Bu(t) , t ∈ [0,T ] a.e.

u(t) ∈ U := R
m

x(0) = x0 , x(T ) = xT

where Λ(u) = max{0 , |u |2 −1}. (Thus, control values u ∈ B(0,1) are “free”.) As
before, we suppose that the controllability matrix C is of maximal rank.

(a) Prove that there is an optimal process (x∗ ,u∗).

Our goal is to characterize optimal processes. We observe that any control with
values in the unit ball whose corresponding state trajectory joins x0 to xT in time T
provides zero cost; it is evident that any such control is optimal.

(b) Show that by taking |xT − x0| sufficiently large, we can be sure that no control
with values exclusively in the unit ball can be admissible. We assume from now
on that we are in this case.

(c) Show that the maximum principle applies, and that its necessary conditions must
hold in normal form. Go on to show that the costate p is such that the zeros of
the function t �→ B∗p(t) (if any) are isolated.

(d) Prove that for almost every t we have

u∗(t) =

{
B∗p(t)/|B∗p(t)| if 0 < |B∗p(t)| � 2

B∗p(t)/2 if |B∗p(t)| > 2 .

(e) Deduce that u∗ is continuous. 
�

26.10 Exercise. The Gordon-Schaefer logistic model in the theory of renewable
resources postulates dynamics of the form

x ′(t) = x(t)
(

x̄− x(t)
)
−u(t)x(t)

where the state x measures the biomass of a given species and the control u corre-
sponds to exploitation effort (for example, fishing). The net profit corresponding to
an effort profile u(t) is given by

∫ T

0
e−δ t{π x(t)− c

}
u(t)dt ,

where δ is the discount rate used to calculate the value of the revenue stream at time
t = 0, π is the unit price of the resource, and c is the unit effort cost. The effort u
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is restricted to the interval [0,E ]. The carrying capacity x̄ and the horizon T , along
with δ , π , c, and E , are all given positive constants. The initial condition x0 ∈ (0, x̄)
is prescribed. The resulting optimal control problem may be summarized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Maximize J(x,u) =
∫ T

0
e−δ t{π x(t)− c

}
u(t)dt

subject to x ′(t) = x(t)
(

x̄− x(t)
)
−u(t)x(t)

u(t) ∈ U := [0,E ] , t ∈ [0,T ] a.e.

x(0) = x0 .

Prove that a solution exists. Deduce from the maximum principle that the solution
is of turnpike type. (Note: in order for the turnpike to manifest itself, the planning
horizon T must be sufficiently large, as well as the available effort E.) 
�

Optimal pricing. In introducing a product in the marketplace, one faces a decision
regarding the initial price to charge.1 Should one start low, so as to stimulate sales
and create a fad effect, hoping to raise prices later? Or should one sell high to those
willing to pay a lot, and then gradually lower the price so that each consumer pays
the most that he /she is willing or able to? Can it be ever be optimal to have a price
profile that exhibits a jump discontinuity, or is this inevitably a sign of non opti-
mality? The basic model discussed here has done much to clarify questions such as
these, and illustrates the role of necessary conditions in the qualitative analysis of
solutions, even when these are not explicitly calculated.

We denote by x the (cumulative) quantity sold to the present time of a certain com-
modity, and u its price. The dynamics and initial value

x ′(t) = Q
(

x(t), u(t)), x(0) = x0 ,

describe the evolution of x, where Q is the demand function, which of course de-
pends upon price, which plays the role of control variable. The function C(x,q),
which measures the production cost, is also given; it depends on past production x
as well as the quantity (currently) produced q. Both C and Q are taken to be twice
continuously differentiable, with Qu < 0 and Q > 0. (These conditions have an
evident interpretation.) The problem is to choose the price profile u(t) so as to max-
imize the present value of the profit stream over a given interval [0,T ]:

∫ T

0
e−δ t{u(t)Q

(
x(t), u(t)

)
−C

(
x(t),Q(x(t), u(t))

)}
dt ,

where u assumes values in (0,∞). The discount rate δ > 0 is given.

1 This exercise, and the next few, are based upon the results in the article Optimal pricing policy in
the presence of experience effects, F. Clarke, M. Darrough, and J. Heineke, Journal of Business 55
(1982) 517-530.
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26.11 Exercise. (Optimal pricing 1) Our first goal is to prove

Theorem. Let u be an optimal price profile. Then, along the optimal process, we
have

u + Q/Qu = Cq(x,Q) +
∫ T

t

(
Cx(x,Q)+QQx/Qu

)
e−δ (τ−t) dτ .

(a) Why does the maximum principle apply in normal form? Show that the Hamil-
tonian H for the problem is given by

H(x, p,u) =
(

p+ue−δ t)Q(x,u)− e−δ tC
(

x,Q(x,u)
)
.

(b) Prove that the adjoint variable p satisfies

p = e−δ t{Cq(x,Q)−u−Q/Qu
}
, t ∈ [0,T ] a.e.

(c) Prove that along the optimal process we have

Cqq(x,Q)Q 2
u +QQuu/Qu −2Qu � 0.

(d) We define a function of (x,u) by

ϕ(x,u) = Cq
(

x,Q(x,u)
)
−u−Q(x,u)/Qu(x,u).

and we set ϕ(t) := ϕ(x(t), u(t)). Prove that along the optimal process, we have
ϕ(t) = eδ t p(t) and

ϕ ′(t) = δϕ+QQx/Qu +Cx(x,Q), ϕ(T ) = 0. (1)

(e) Deduce the theorem from these facts. Show also (for future reference) that we
have:

ϕu � 0 along the optimal process. (2)

The theorem can be interpreted in economic terms as affirming that the optimal price
profile is such that long-run marginal cost and marginal revenue coincide. 
�

26.12 Exercise. (Optimal Pricing 2) The question of whether optimal price profiles
in the problem of Exer. 26.11 are necessarily continuous is an important one. The
following gives a sufficient condition for this.

Proposition. Suppose that Q and C satisfy globally the inequality

Cqq(x,Q)Q2
u +QQuu/Qu −2Qu > 0.

Then the optimal price path u is continuous and differentiable.
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(a) Prove the proposition.

(b) Show that the hypothesis of the proposition is satisfied in the following circum-
stances: C is convex in q, and

Q(x,u) = f (x)g(u) , with f > 0 , g concave, g � 0 , g ′ < 0 .

(c) Show that when the optimal price profile u is differentiable, we have

u ′ϕu = δϕ+QQx/Qu +Cx(x,Q)−uϕx (3)

along the optimal process. 
�

26.13 Exercise. (Optimal Pricing 3) We now show in several natural cases how the
theorem can be used to deduce the monotonicity properties of the optimal price
profile. The first two of these cases concern what is called learning by doing, in
which production costs decrease over time, because of the benefit of experience.

However, the exact nature of how the reduction takes place (by scaling or by trans-
lation) has a dramatic effect on the price path: in one case it decreases, in the other
it increases.

We assume that an optimal price profile u exists, with u differentiable. (Results to
come will identify criteria that imply this.)

(a) Learning by doing: scaling in C. We take C to be of the form

C(x,q) = c0 +m(x)h(q)

where the functions m and h satisfy

m(x)> 0, m ′(x) < 0, h is convex, h(0) = 0, h(q) > 0 (q > 0), h ′(q)> 0 .

Thus the production cost curve is scaled downward as x increases. We also as-
sume that demand is unaffected by experience: Qx = 0. Prove with the help of
(2) and (3) that in this scenario, an optimal price profile u is strictly decreasing.

(b) Learning by doing: translation in C. We now assume that C has the form

C(x,q) = c0 + s(x)+ r(q),

where we have r ′ > 0, s ′ < 0, and s is convex on (0,∞). Thus, experience now
translates the cost curve downwards. We continue to assume Qx = 0. Prove that
in this scenario, an optimal price profile u is strictly increasing.

(c) Demand experience. Let C(x,q) = c0 q and let the demand function be of the
form Q(x,u) = σ(x)ρ(u), where σ and ρ are positive and bounded away from
0, with ρ ′ < 0. We further assume that for a certain x̄ > x0 , we have
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σ ′(x) = 0 for 0 < x < x̄ , σ ′(x) < 0 for x > x̄ .

(Thus, x̄ is a threshold beyond which consumer satiation sets in.) Note that for T
sufficiently large, the state x breaches this threshold. Prove then that the optimal
price path exhibits at least one period of increase, and at least one period of
decrease. 
�

26.14 Exercise. (Optimal Pricing 4) With reference to the optimal pricing problem
of Exer. 26.11, we shall construct an explicit example in which the optimal price
path is discontinuous (a conclusion that economists find surprising). We take

x0 = 0 , T = 1 , Q(x,u) = e−u/100.

Note that x and Q lie in [0 ,1] at all times. Let α < β < γ be three positive numbers,
and let f be any continuously differentiable function satisfying

(1) f (q) � 0 for q ∈ [0 ,1]; f (q) = 0 if and only if q = β or q = γ .

(2) | f ′(q)| � 1 for q ∈ [0 ,1/3 ].

(3) f ′(q) � 1 for q ∈ [1/3, 3/4 ].

(4) f ′(q) > 104 for q ∈ [3/4,1 ].

We introduce the cost function C(x,q) = −100 q lnq+ f (q)+g(x,q), where

g(x,q) =
[

max
{
(x−α)(q−β )2, (α− x)(q− γ )2}]2

.

(a) Show that g is continuously differentiable, as is q lnq for q > 0.

(b) Prove that, under conditions (1) to (4), we have Cq > 0. (Thus, on the face of it,
C is not unreasonable as a cost function.)

(c) Show that the optimal pricing problem becomes that of minimizing

∫ 1

0
e−δ th

(
x(t), x ′(t)

)
dt , where h := f +g.

(d) Observe that h is nonnegative by construction, and can only equal zero in two
ways: q = γ and x � α , or q = β and x � α . Deduce that the unique optimal
policy is given by

x ′ = e−u/100 =

{
γ until x = α

β thereafter.

Thus the optimal price profile is piecewise constant, with an upward jump at time
t = α/γ . 
�
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26.15 Exercise. (Optimal Pricing 5) One may have a guilty conscience about sim-
ply assuming the existence of an optimal price profile in Exer. 26.11. (In fact, we
hope the reader has learned to feel uneasy when this question is simply ignored.)
The fact that the control set U = (0 ,∞) is open makes a priori existence hard to
prove in general.

With the help of the necessary conditions provided by the extended maximum prin-
ciple 22.26, we shall establish an existence theorem that applies when the demand
function has the form Q(x,u) = α e−β u, where α,β are positive constants and
α < 1. In this setting, the goal is to prove:

Theorem. Suppose that for some constant m � 0, the cost function C satisfies

Cqq � −1/(αβ ) , Cx � −m , Cq � meδ T/δ −1/β .

Then there is an optimal path profile u having values in (0 ,∞), and u is continuous
and differentiable.

(a) Prove that the problem may be recast as that of minimizing

∫ T

0
e−δ t{C

(
x(t), x ′(t)

)
+ x ′(t) ln

(
x ′(t)/α

)
/β

}
dt

subject to the initial condition on x, and the constraint 0 < x ′(t) < α .

(b) Prove that the Lagrangian Λ(t, x,v) of this problem is convex in v.

(c) Prove by the direct method that the problem above admits a solution if the in-
equality restricting x ′ is extended to x ′(t) ∈ [0,α ].

If the solution x of the extended problem is such that 0 < x ′(t) < α a.e., then it is
clear that x is also a solution of the original problem. We proceed to establish this.

(d) Show that the necessary conditions of Theorem 22.26 apply to the extended prob-
lem, and imply the existence of an arc p with p(T ) = 0 such that, for almost every
t in [0,T ]:

p ′(t) = e−δ tCx , min
0� v�α

{
Λ
(
t, x(t),v

)
− p(t)v

}
is attained at v = x ′(t).

(e) Deduce from this that x ′(t)> 0 a.e.

(f) Use the hypotheses on C to show that p(t)< m/δ for every t ∈ [0,T ].

(g) Now suppose that x ′(t) = α on a set of positive measure. Deduce from (d) above
that, for some τ ∈ (0,T ), we have p(t) � m/δ , which contradicts (f). It follows
that x solves the original problem.

(h) Finally, prove that the optimal path profile u is continuous and differentiable. 
�
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26.16 Exercise. The goal is to prove Theorem 25.17. Let (x,u) be any admissible
process for the problem (MC).

(a) Show that J(x,u)− J(x∗ ,u∗) is bounded below by

∇�
(

x∗(a), x∗(b)
)
•
(

x(a)− x∗(a), x(b)− x∗(b)
)

+
∫ b

a
Λ x,u

(
t, x∗ ,u∗

)
• (x− x∗ ,u−u∗)dt ,

and go on to show that the first term above is bounded below by
(

p(a),−p(b)
)
•
(

x(a)− x∗(a), x(b)− x∗(b)
)
.

(b) Substitute forΛ x andΛu from the adjoint equation and the stationarity condition,
in order to bound from below the integral term in the expression above.

(c) Derive from these lower bounds that J(x,u)− J(x∗ ,u∗) is nonnegative, which
yields the theorem. 
�

26.17 Exercise. Let U(·) be a multifunction from [a,b ] to the subsets of Rm, and
define C to be the set of all measurable functions u mapping [a,b ] to R

m such that
u(t) ∈ U(t) a.e. It can be proved2 that C is a complete metric space when equipped
with the following metric d :

d(u,v) = meas
{

t ∈ [a,b ] : u(t) 	= v(t)
}
.

Let the dynamics function f and running cost Λ be LB measurable in t and (x,u),
and have linear growth: for a summable function M, for almost every t , we have

| f (t, x,u)|+ |Λ(t, x,u)| � M(t)
(

1+ |x |
)
∀ t ∈ [a,b ] , x ∈ R

n, u ∈ U(t) .

We also assume that f is Lipschitz in x , as follows:

t ∈ [a,b ] , u ∈ U(t) =⇒ | f (t, x1 ,u)− f (t, x2 ,u)| � k|x1 − x2 | ∀x1 , x2 ∈ R
n.

Let � : Rn → R be lower semicontinuous, and fix x0 ∈ R
n. Then every control

u ∈ C generates a unique state trajectory xu of the control system ( f ,U) on [a,b ]
with initial condition x(a) = x0 . (Why?) Prove that the cost functional

J(u) = �
(

xu(b)
)
+

∫ b

a
Λ
(
t, xu(t), u(t)

)
dt

is well defined and lower semicontinuous on the metric space C . 
�

2 See Clarke [13, p. 202].
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26.18 Exercise. The purpose of this exercise is to give a precise meaning to the
statement that the set of relaxed trajectories (see §23.1) is the closure of the set of
original trajectories. We prove the following approximation result:

Theorem. Let ( f ,U) be a control system on the interval [a,b ] such that f (t, x,u)
is continuous in (x,u) and measurable in t, and U(·) is measurable and compact
valued. Let y be a relaxed trajectory of the system ( f ,U) on the interval [a,b ]. Sup-
pose that, for some δ > 0 and constant k, for almost every t, we have the following
Lipschitz condition:

|xi − y(t)| � δ (i = 1,2), u ∈ U(t) =⇒ | f (t, x1 ,u)− f (t, x2 ,u)| � k|x1 − x2 |.

Then, for any ε > 0, there exists an original trajectory x of the system such that

x(a) = y(a) , |x(t)− y(t)| � ε ∀ t ∈ [a,b ] .

We remark that the Lipschitz property is an essential hypothesis for the result. The
usual proofs, which are somewhat involved, invoke the Lyapunov convexity theo-
rem or one of its variants. We give here a guided proof based upon the extended
maximum principle.

A. We begin with a useful extension device which allows us to prove the theorem
under hypotheses of a global, rather than local, nature. Let π t : Rn → R

n be the
projection onto the set B(y(t),δ ), and, for any x, set f (t, x, u) = f (t, π t x, u). As
concerns the x variable, this uses only the values of f on the set B(y(t), δ ), and
leaves f unchanged there. Show that the new function f defined in this way satisfies
the following global linear growth and Lipschitz conditions: for some summable
function M, for almost every t ∈ [a,b ],

x ∈ R
n, u ∈ U(t) =⇒ | f (t, x,u)| � M(t)(1+ |x |),

x1, x2 ∈ R
n, u ∈ U(t) =⇒ | f (t, x1 ,u)− f (t, x2 ,u)| � k|x1 − x2 |.

Show that the validity of the theorem for the redefined system implies its validity
for the original one. We therefore assume that the global conditions above hold.

B. Show that it suffices to prove the following variant of the theorem (in which the
hypotheses are unchanged): for any ε > 0, there exists an original trajectory x of
the system ( f ,U ) such that

x(a) = y(a),
∫ b

a
|x(t)− y(t)|dt � ε .

C. Show that, in order to prove the variant, it suffices to establish the existence of a
number ρ > 0 with the following property: let [a1,b1] be any subinterval of [a,b ]
having b1 − a1 � ρ ; then, given any ε > 0 and α ∈ R

n sufficiently small, there
exists a trajectory x for ( f ,U) on [a1,b1] that satisfies
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x(a1) = y(a1)+α ,

∫ b1

a1

|x(t)− y(t)|dt � ε .

The remaining steps will prove the existence of such a ρ .

D. For a fixed subinterval [a1,b1] and α ∈ R
n, consider the optimal control problem:

inf
∫ b1

a1

|x(t)− y(t)|dt , x(a1) = y(a1)+α ,

where the infimum is taken over all the trajectories x of ( f ,U) on [a1,b1]. The
hypotheses do not imply that the infimum is attained. Show, however, with the help
of Exer. 26.17, that for any ε > 0, there is a process (xε ,uε) that minimizes over
all processes (x,u) for ( f ,U) on [a1,b1] the cost

∫ b1

a1

{
|x(t)− y(t)|+ ε θ(u(t)−uε(t))

}
dt ,

where θ is the function on R
m which equals 0 at 0 and 1 everywhere else.

E. Apply the extended maximum principle to deduce the existence of an arc p on
[a1,b1] satisfying p(b1) = 0 and, for almost every t :

| p ′(t)| � k| p(t)|+1,

〈 p ′(t), y(t)− xε(t)〉 � k| p(t)| |y(t)− xε(t)|− |xε(t)− y(t)| ,

〈 p(t), f (t, xε(t),u)〉 � 〈 p(t), x ′
ε(t)〉+ ε ∀u ∈ U(t).

F. Deduce first that

〈 p(t), y ′(t)〉 � 〈 p(t), x ′
ε(t)〉+ k| p(t)| |y(t)− xε(t)|+ ε a.e. ,

and then prove

d
dt

〈 p(t), y(t)− xε(t)〉 � 2 k| p(t)| |y(t)− xε(t)|+ ε−|xε(t)− y(t)| a.e.

Suppose now that ρ > 0 is chosen small enough so that

b1 −a1 � ρ , p(b1) = 0, | p ′(t)| � k| p(t)|+1 a.e.
=⇒ 2 k| p(t)| � 1/2 ∀ t ∈ [a1,b1] .

Proceed to discover

(1/2)
∫ b1

a1

|xε(t)− y(t)|dt � ερ+ |α |/(4k) ,

and conclude. 
�
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Control Lyapunov functions. The next set of four exercises deals with an au-
tonomous control system ( f ,U) satisfying linear growth: for certain constants c and
d , we have

| f (x,u)| � c|x |+d ∀x ∈ R
n, ∀u ∈ U.

We suppose in addition that f is locally Lipschitz , U is compact, and the velocity
set f (x,U) is convex for each x. We say that the system is null controllable if, for
all α ∈ R

n, there exists a state trajectory x defined on a finite interval [0,T ] such
that x(0) = α and x(T ) = 0. We define a control Lyapunov function to be a lower
semicontinuous function ϕ : Rn → R+ satisfying the following properties:

Positive definiteness : ϕ(0) = 0 and ϕ(x) > 0 ∀x 	= 0.

Infinitesimal decrease : For some ω > 0, we have

min
u∈U

dϕ
(

x ; f (x,u)
)
< −ω ∀x 	= 0 .

Here, as usual, dϕ refers to the Dini derivate (see Def. 11.18); we are limiting at-
tention to a constant decrease rate ω (independent of x) for simplicity. When ϕ is
smooth, infinitesimal decrease may be written in the equivalent form

min
u∈U

〈∇ϕ(x), f (x,u)〉 < −ω ∀x 	= 0 .

We have seen earlier the role of Lyapunov functions in guaranteeing the stability of
an uncontrolled differential equation (see Prop. 12.18). In the setting of a control
system, it is controllability that we seek to confirm.

26.19 Exercise. (Lyapunov 1) Under the hypotheses above, the goal is to prove:

Theorem. If the system admits a control Lyapunov function in the above sense, then
it is null controllable.

Let α 	= 0. We wish to establish the existence of a trajectory x on an interval [0,T ]
such that x(0) = α and x(T ) = 0. Prove the existence of a trajectory x on an interval
[0,∞) such that

ϕ
(
x(t)

)
+ω t � ϕ(α)

as long as t > 0 is such that x(s) 	= 0 for 0 � s � t . Deduce the theorem from this,
as well as an estimate on the minimal time T (α) needed to reach 0. 
�

26.20 Exercise. (Lyapunov 2) Prove that (under the same hypotheses as above) if
the system is null controllable, then the minimal-time function T (·) is a control
Lyapunov function.3 (Here, of course, T (α) is the least time taken by a trajectory to
join α to 0.) 
�

3 This gives meaning to the statement: the control system is null controllable if and only if there
exists a control Lyapunov function. Note, however, that nonsmooth Lyapunov functions are used to
formulate this principle; it is false otherwise.
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For purposes of stabilization and feedback, topics that we do not address here, it is
desirable to have a control Lyapunov function ϕ that is continuous.

26.21 Exercise. (Lyapunov 3) Suppose that the system admits a continuous control
Lyapunov function. Prove that the minimal-time function T (·) is continuous at 0,
and that 0 ∈ f (0,U). 
�

26.22 Exercise. (Lyapunov 4) Assume that 0 ∈ f (0,U). Prove:

Theorem. The following are equivalent:

(a) There exists a continuous control Lyapunov function ϕ ;

(b) The minimal-time function T (·) is continuous at 0 ;

(c) The minimal-time function T (·) is continuous. 
�

Controllability and normality. Let the system ( f ,U) satisfy the classical smooth-
ness hypotheses. A process (x∗ ,u∗) of the system on the interval [a,b ] is called
normal if the only costate p satisfying the adjoint equation and the maximum con-
dition of Theorem 22.2 abnormally (that is, with η = 0) is the zero arc. Note that
this property is unrelated to any kind of optimality.

The remaining exercises in this chapter share the following:

Standing hypotheses: ( f ,U) is a finitely generated autonomous system (see Def.
23.8), where the vector fields g0 and g j are continuously differentiable and have
linear growth, and where U is compact and convex.

26.23 Exercise. (Controllability 1) The goal is to prove that the system is locally
controllable around a normal process, in the following sense:

Theorem. Let (x∗ ,u∗) be a normal process on the interval [a,b ]. Then there exist
constants K and δ > 0 with the following property: for every α ,β ∈ B(0,δ ), there
exists a process (x,u) of the system satisfying

x(a) = x∗(a)+α , x(b) = x∗(b)+β (4)
as well as

∫ b

a

{
|x(t)− x∗(t)|+ |u(t)−u∗(t)|

}
dt � K |(α ,β )|.

(a) We define the value function

V (α ,β ) = min
∫ b

a

{
|x(t)− x∗(t)|+ |u(t)−u∗(t)|

}
dt ,

where the minimum is taken over the processes (x,u) of the system satisfying
(4). The strategy of the proof is to show that V is Lipschitz near (0,0). Show that
this property gives the required conclusion.
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(b) Prove that the minimum defining V (α ,β ) is attained when V (α ,β )< ∞; that is,
when there exists at least one admissible process corresponding to (α ,β ).

(c) Prove that V is lower semicontinuous.

(d) Let (ζ ,ψ)∈ ∂P V (α ,β ), and let (x,u) be a process attaining the minimum in the
definition of V (α ,β ). Show that there exists an arc p and η ∈ {0,1} such that

p(a) = −ζ , p(b) = ψ , −p ′(t) ∈ Dx f ∗
(

x(t),u(t)
)
+η B a.e. ,

max
w∈U

〈 p(t), f (x(t),w)〉−η |w−u∗(t)| at w = u(t) a.e.

(e) Suppose that there is a sequence (ζ i ,ψ i) ∈ ∂P V (α i ,β i) which is unbounded,
where (α i ,β i) → (0,0) and V (α i ,β i) → V (0,0) = 0. Prove that this leads to
the conclusion that the process (x∗ ,u∗) is not normal (a contradiction).

(f) Deduce that V Lipschitz near (0,0). 
�

We suppose in the next four exercises that (in addition to the standing hypotheses)
we have 0 ∈ U and f (0,0) = 0. Then the zero control corresponds to the state
trajectory x ≡ 0; thus, (0,0) is a process of the system on [0,T ], for any T > 0.
We say that the origin is normal if there exist horizons T arbitrarily small such that
the process (0,0) is normal on [0,T ]. As we now see, this property implies null
controllability.

26.24 Exercise. (Controllability 2) Prove that if the origin is normal, then the
minimal-time function is continuous. 
�

26.25 Exercise. (Controllability 3) Prove that if 0 ∈ int f (0,U), then the origin is
normal. 
�

26.26 Exercise. (Controllability 4) Let G and g0 be given as in Def. 23.8, and set
A = Dg0(0), B = DG(0). Suppose that

ε > 0 , q ∈ R
n, B∗e−A∗ tq ∈ NU (0) ∀ t ∈ [0,ε ] =⇒ q = 0.

Show that the origin is normal. 
�

26.27 Exercise. (Controllability 5) Let A and B be as in the preceding exercise,
and let C be the controllability matrix defined as in Example 22.19. Show that if
0 ∈ int U and C has maximal rank, then the origin is normal. We remark that an
important special case of this occurs in classical linear systems theory, in which

f (x,u) = Ax+Bu , 0 ∈ int U , C has maximal rank. 
�
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Sensitivity. The next two exercises study the sensitivity of control systems with
respect to the initial condition. The standing hypotheses remain in force: ( f ,U)
is an autonomous finitely generated system, where the vector fields g0 and g j are
continuously differentiable and have linear growth, and where U is compact and
convex.

26.28 Exercise. (Sensitivity 1) Let S be a compact subset of Rn and let T0 > 0.
The goal is to prove the following.

Theorem. There exists K such that, for any T ∈ (0,T0 ], for any trajectory x of
the system on the interval [0,T ] having x(0) ∈ S, for any α ∈ B(0,1), there is a
trajectory y on [0,T ] satisfying y(0) = x(0)+α and

|x(T )− y(T )| � K |α |.

(a) Let Σ be any bounded subset of Rn×[0,∞). Prove that there exists M(Σ) such
that, for any trajectory x on an interval [0,T ] with (x(0),T ) ∈ Σ , we have
|x(t)| � M. (Use Gronwall’s lemma.)

(b) Fix x and T as in the statement of the theorem. Consider on B(0,1) the function

V (α) = min |x(T )− y(T )| ,

where the minimum is taken over all trajectories y satisfying y(0) = x(0)+α .
Show that V is finite and lower semicontinuous, and that the minimum defining
V (α) is attained when V (α)< ∞.

(c) Let ζ ∈ ∂P V (α), and let yα solve the problem defining V (α). Interpret the prox-
imal subgradient inequality to discover that yα solves a certain optimal control
problem in which the cost contains a term of the form 〈−ζ , y(0)〉, and in which
y(0) is unconstrained.

(d) Apply the extended maximum principle to the problem in question, and obtain
an a priori bound on ζ from the necessary conditions.

(e) Deduce from this that V is Lipschitz on B(0,1), and conclude. 
�

26.29 Exercise. (Sensitivity 2) The reader is familiar with the interpretation of the
multiplier that appears in the multiplier rule as a measure of sensitivity. In this ex-
ercise, we see how the costate p of the maximum principle may be viewed in this
light. Consider the following optimal control problem on [0 ,1]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize J(x,u) = �
(

x(1)
)
+

∫ 1

0
Λ
(

u(t)
)

dt

subject to x ′(t) = f
(
x(t),u(t)

)
a.e.

u(t) ∈ U a.e.

x(0) = x0 +α .

( Pα )
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Here, the point x0 and the continuously differentiable functions � : Rn → R and
Λ : Rm → R are given; we further assume that Λ is convex. The role of α ∈ R

n is
that of a parameter. Our interest centers around the function

V (α) = min ( Pα )

for α near 0; this measures the effect of perturbing the initial condition. We denote
by Σ(α) the set of optimal processes (x,u) for the problem ( Pα ).

(a) Prove that Σ(α) is nonempty for each α , and that, for any (x,u) ∈ Σ(α), there
exists a unique costate p satisfying p(1) =−∇�(x(1)) and

−p ′(t) = Dx H
(

x(t), p(t), u(t)
)

a.e. , H
(

x(t), p(t),u(t)
)
= M

(
x(t), p(t)

)
a.e.

We denote by px,u the costate p that corresponds as above to the process (x,u). Here
is the result we are aiming for:

Theorem. The function V is locally Lipschitz , and we have
{
− px,u(0) : (x,u) ∈ Σ(0)

}
⊃ ∂LV (0) 	= /0 .

The first two steps in the proof outlined below follow in essentially the same way as
in Exer. 26.28.

(b) Let (x,u) ∈ Σ(α), and let ζ ∈ ∂PV (α). Prove that px,u(0) =−ζ .

(c) Prove that V is locally Lipschitz.

(d) Prove the theorem.

(e) Show that if ( P0 ) admits a unique solution (x,u), then V is differentiable at 0;
find ∇V (0).

(f) Identify additional hypotheses on the data that guarantee the preceding case. 
�

26.30 Exercise. (Hamilton-Jacobi-Bellman equation) The goal of this exercise is
to characterize the (unique generalized) solution of a form of the Hamilton-Jacobi
equation that arises in optimal control theory. This is in the same line of thought,
then, as the results in § 19.3 (p. 379) and § 24.3 (p. 500). Let the system ( f ,U)
satisfy the current standing hypotheses, and let � : Rn → R be continuous.

Our interest centers upon the solutions ϕ of the following partial differential equa-
tion with boundary condition:

ϕ t(t, x)+h
(

x,ϕx(t, x)
)
= 0 ∀(t, x) ∈ Ω , ϕ(T, x) = �(x) ∀x ∈ R

n, (5)

where Ω = (−∞, T )×R
n, where h is the lower Hamiltonian of the system:

h(x, p) = min
u∈U

〈 p, f (x,u)〉,
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and where � is a continuous function. Since there fails to be a classical (smooth)
solution ϕ of (5) in general, we require an extension of the solution concept which
allows nonsmooth functions ϕ .

Accordingly, we say that a continuous function ϕ : (−∞, T ]×R
n → R is a proximal

solution of (5) if it satisfies ϕ(T, x) = �(x) ∀x ∈ R
n as well as

θ +h(x,ζ ) = 0 ∀(θ ,ζ ) ∈ ∂Pϕ(t, x) , ∀(t, x) ∈ Ω . (6)

The goal is to prove the following:

Theorem. There exists a unique proximal solution of (5), namely the function

V (τ ,α) = min �(x(T )) ,

where the minimum is taken with respect to all state trajectories x on [τ ,T ] that
satisfy x(τ) = α .

(a) Prove that V is continuous. (Exer. 26.28 may be of some help.)

(b) Prove that V satisfies (6). [Hint: system monotonicity.]

(c) Show that V is the only proximal solution of (5). 
�



Notes, solutions, and hints

The trouble with a book is that you never know what’s in it until
it’s too late.
Jeanette Winterson (Why Be Happy When You Could Be
Normal?)

Concentration of energy, that was what he found in their books;
a willingness to save someone else the time they had themselves
expended.
Hugh Kenner (The Mechanic Muse)

This morning I took out a comma, and this afternoon I put it
back in again.
Oscar Wilde

Part I. Functional analysis.

In the preface, the author mentioned his gratitude towards the teachers who contributed to his
mathematical education. In these endnotes, we wish to acknowledge the beneficial influence of
certain notable books. As regards functional analysis, we cite the celebrated texts of Royden [36]
and Rudin [37, 38], which have been constant companions. Among our other nominees for books
to bring to a desert island, there would certainly be those of Dunford and Schwartz [21] and of
Edwards [22], which have quasi-biblical status in the field.

We also make a few suggestions for parallel or further reading. For convex analysis, we recommend
Rockafellar [34] and Hiriart-Urruty and Lemaréchal [29]. Variational principles, and their links to
norm smoothness and other properties of normed spaces, are studied in Deville, Godefroy and
Zizler [20]; see also Phelps [32]. The elegant book of Brézis [8] develops functional analysis with
an eye to applications in partial differential equations; see also Aubin [2] and Aubin and Ekeland
[3], which stress instead equilibria and optimization.

We now list some partial solutions and hints for selected exercises in Part I.

1.35 Consider taking L = Rx0 and λ (t x0) = t‖x0‖2 in the context of Cor. 1.33.

1.42 (b): By Exer. 1.38, the normal cone is R−×{0}×R+.

2.8 By Carathéodory’s theorem, co(A) is the image of the compact set
{
(t0, t1, . . . , tn , x0 , x1, . . . , xn) : t i � 0 , ∑ t i = 1, xi ∈ A

}

under the continuous function f (t0, t1, . . . , tn , x0 , x1, . . . , xn) = ∑ i t i x i .

2.14 Without supposing that the infimum is finite, let us suppose that it fails to be attained. Let xn
be a sequence such that f (xn) decreases strictly to the infimum. Then {x : f (x)> f (xn)} is an open
covering of E, so it admits a finite subcover. It follows that infE f is the last value f (xn) among the
elements of the subcover, a contradiction.

2.28 The second fails to be convex. The determinant of ∇ 2 f , which is the product of its eigenval-
ues, is −e2xy(1+2xy). When this is negative, ∇ 2 f has a negative eigenvalue.
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2.32 Each x ∈ C admits r(x) > 0 and K(x) such that f is Lipschitz of rank K(x) on B(x,2r(x)).
Let {B(xi ,r(xi)} be a finite collection covering C, and consider

K > max
[

max
i

K(xi), 2M/(min
i

r(xi))
]
,

where | f | � M on C.

2.41 For (c) implies (a): observe that (1,0,0, . . . ,0) does not lie in the set
{
( f0, f1, . . . , fn)(x) : x ∈ E

}
.

This is a subspace of Rn+1; thus, a closed convex set. Separate.

2.44 Show that for any p ∈ R
n, we have HD(p) � 〈 p,m〉, where

m =
1

b−a

∫ b

a
f (t)dt .

2.45 If C+S ⊂ D+S, then HC+HS = HC+S � HD+S = HD+HS . We may subtract HS (because
HS is finite-valued) to deduce HC � HD , whence C ⊂ D by Prop. 2.42.

2.49 For the last part, recall that any ζ ∈ NC(0) can be identified with an element of � 2.

3.8 The map x �→ ‖x‖ is convex and strongly lsc (since continuous); then it is weakly lsc by Cor.
3.7; the result follows.

3.10 The point x, as the weak limit of the sequence xi , lies in the weak closure of C. Then, by
Theorem 3.6, it lies in the strong closure.

3.22 One may use Cor. 3.15, calling upon Theorem 3.21 to obtain sequential compactness.

4.9
ϕ
(∫

Ω
g(x)dx

)
� 1

measΩ

∫

Ω
ϕ
(
g(x)

)
dx ∀g ∈ L1(Ω) .

4.11 This follows from applying Theorem 4.10 to IC and ID (see Exer. 4.5). The intersection
formula can be asserted under weaker hypotheses; see Exer. 8.23.

4.17
(a) Suppose that the strict subgradient condition holds. Let x 	= y be given, fix t ∈ (0,1), and set
z = (1− t)x+ t y. Let ζ ∈ ∂ f (z) (which we know to be nonempty). Then f (x)− f (z)> 〈ζ , x− z〉
and f (y)− f (z)> 〈ζ , y−z〉. Dividing these inequalities by t and 1− t respectively and adding, we
arrive at f (z)< (1− t) f (x)+ t f (y), which verifies the strict convexity.

Conversely, let f be strictly convex, and let x 	= y, ζ ∈ ∂ f (x) be given. Set z equal to (x+ y)/2.
Then f (z)< ( f (x)+ f (y))/2, which leads to

f (y)− f (x) > 2
(

f (z)− f (x)
)
� 2〈ζ , z− x〉 = 〈ζ , y− x〉.

(b) That ∂ f is injective when f is strictly convex follows easily by contradiction, using (a). If f is
not strictly convex, then by (a) we have ζ ∈ ∂ f (x) and x 	= y such that f (y)− f (z) = 〈ζ ,y− z〉.
Then x minimizes f (u)−ζ • u. But this function has the same value at y as at x, whence ζ ∈ ∂ f (y),
which shows that ∂ f is not injective.

4.24 Hint for (b): the function x �→ 〈ζ , x〉−HΣ (x) is positively homogeneous; Cor. 3.13 will also
play a role.

4.38 We may assume that domg is nonempty. Then the assertion is a direct consequence of Theo-
rem 4.36, with U = kB∗ (weak∗ topology) and V = domg.
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5.4 Here is a sketch of the completeness proof for �1. Let x j be Cauchy in �1; then there exists
M such that ‖x j ‖1 � M ∀ j . Show that there is a sequence x = (x1, x2 , . . .) such that, for each
i, lim j x j

i = xi . Prove that ‖x‖1 � M. There remains to show that ‖x j − x‖1 → 0. Let ε > 0.
Choose k so that ‖x j − xk ‖1 < ε ∀ j � k, and m so that ∑ i�m |xk

i − xi | < ε . It follows that, for
all j sufficiently large, we have ‖x j − x‖1 < 3ε .

5.9 The exercise amounts to proving what is referred to as the du Bois-Raymond lemma; the gist
of the argument appears in the proof of Theorem 15.2.

5.10 Exer. 5.8 is helpful here.

5.13 Let A be a weakly compact set. Each point x of A induces an operator in LC(X ∗,R) by the
formula x(ζ ) = 〈ζ , x〉, one whose norm is ‖x‖X . Because A is weakly compact, the family of
these operators is simply bounded on X ∗, which is a Banach space. By the uniform boundedness
principle, the set {‖x‖X : x ∈ A} is bounded.

5.16 For each positive integer i, define a map ζ i on �∞c by 〈ζ i , x〉 = i xi .

5.17 For (a): by Cor. 2.35, the function g(t) = f (x0 + t z) is continuous at 0.

5.27 Consider the identity map (X ,‖ · ‖2) �→ (X ,‖ · ‖1).

5.40 According to Theorem 3.1(e), it suffices to prove that the map x �→ 〈Jx,ζ 〉 is weakly con-
tinuous for given ζ ∈ X ∗. This holds because it is linear and strongly continuous.

5.49 It follows from Cor. 1.34 that the weak topology of L is the trace on L of the weak topology
of X . Now L is weakly closed in X (being closed and convex), as is its unit ball. Thus, the unit ball
in L is weakly compact, since the unit ball in X is weakly compact. Then Theorem 5.47 implies
that L is reflexive.

5.52 This exercise is taken from Rudin [37].

5.53 It is a matter of appealing to Theorem 5.51, of course. The lower semicontinuity (and con-
vexity) of f can be gleaned from the observation

f (x) = sup
n
∑n

i=1 fi(xi) .

See Exer. 9.6 for further analysis of the problem.

6.6 One applies Theorem 5.51.

6.7 There exists v∗ ∈ Lr(a,b) and a subsequence such that xi j
′ → v∗ weakly in Lr(a,b), by weak

compactness. We may also suppose that xi j (a) → x0 . Set

x∗(t) = x0 +
∫ t

0
v∗(s)ds .

Then x∗ ∈ ACr[a,b ] and xi j (t)→ x∗(t) for each t (why?). Using Hölder’s inequality, prove that
the functions xi j are equicontinuous, so that, by Ascoli’s theorem, xi j → x∗ uniformly for a further
subsequence.

6.9 It consists of mappings of the type

x �→ α • x(0)+
∫ 1

0
β (t) • x ′(t)dt ,

where α ∈ R
n and β ∈ Lq(0 ,1).
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6.16 The unit ball in L∞(Ω) is weak∗ sequentially compact, by Theorem 3.21 and the separability
of L1(Ω).

6.18 It suffices to show that Φ is a closed convex (and hence weakly closed) subset of the set K
defined in Prop. 6.17.

6.19 Prove that ∫ 1

0
vi(t)g(t)dt → 0

for any smooth function g, using integration by parts. Deduce the same fact for g∈ L∞(0,1).

6.24 Let ΔΓ and ΔG be the effective domains of Γ and G. The effective domain of F := Γ +G is
ΔF = ΔΓ ∩ ΔG . Let {γ i } and {g j} represent Γ and G as in Theorem 6.22. Then, for any compact
subset V of Rn, we have

{
x : F−1(V ) 	= /0

}
=

⋃

i�1

⋂

j�1

⋃

k, l�1

{
x : |γ k(x)| � i , γ k(x)+g�(x) ∈ V + j−1B

}
.

6.30 Let the functions γ i generate G as in Theorem 6.22, and let Δ = domG. We have
{

x ∈ Δ : dG(x)
(
u(x)

)
< r

}
=

⋃

j�1

{
x :

∣
∣γ j(x)−u(x)

∣
∣< r

}

{
x ∈ Δ : dG(x)

(
u(x)

)
> r

}
=

⋃

i�1

⋂

j�1

{
x :

∣
∣γ j(x)−u(x)

∣
∣> r+ i−1 }.

6.40 For the nonconvex case, consider Exer. 6.19.

6.42 We may suppose γ nonnegative. Use Gronwall’s lemma to show that the sequence pi is
bounded in C[a,b ]. Then | p ′

i (t)| � k(t) a.e., for a summable function k. It follows that the family
pi is equicontinuous. By Ascoli’s theorem, a subsequence converges uniformly to a continuous
function p. The criterion of Prop. 6.17 allows one to assume that p ′

i converges weakly in L1(a,b)
to a limit v. Passing to the limit in

pi(t) = pi(a)+
∫ t

a
p ′

i (s)ds ,

we find that p ∈ AC[a,b ], where p ′
i converges weakly in L1(a,b) to p ′.

7.33 Use the lemma in the proof of Prop. 7.31.

7.40 This is an immediate consequence of Theorem 7.34 and Prop. 7.39.

8.3 Without loss of generality, assume 0 ∈ A. Then, because A is open, it follows that

cx > 0 ∀x ∈ ∂A , 〈ζx , u〉 < cx ∀u ∈ A .

We deduce
A ⊂

⋂

x∈∂A

{
u : 〈ζx , u〉< cx

}
.

We now prove the opposite inclusion, which reveals that A is the intersection of convex sets, and is
therefore convex itself. Let y /∈ A. Then there exists a first t in (0 ,1] such that x := t y lies in ∂A.
We have

〈ζx , t y〉 = cx > 0 =⇒ 〈ζx , y〉 � cx ,

and it follows that y /∈ {u : 〈ζx , u〉 < cx
}

. This argument adapts easily to the case in which A is
closed and 0 ∈ int A, using closed halfspaces rather than open ones, and observing that the t above
satisfies t < 1.

8.4 Use Baire’s theorem.

8.5 Hint: consider the truncations of αn , and uniform boundedness.
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8.6 For the “if” part: when the stated condition holds, then, for every ε > 0, the function

u �→ −〈ζ ,u〉+ ε |u− x |

has a local minimum over S at u = x, whence ζ ∈ εB+NS(x) by Prop. 4.12.

8.9
(a) The map (x,u) �→ x+u is weak∗ continuous, and Σ×Δ is weak∗ compact.

(b) Observe that the set consists of all convex combinations ∑n
1 t iσ i , where σ i ∈ Σ i .

8.11 If (c) holds, then the complement of N(ζ ) contains a ball x+ rB. If ζ (rB) is bounded, (a)
holds. Otherwise, ζ (rB) = R. Then x+rB intersects N(ζ ): contradiction. The result is from Rudin
[38, Theorem 1.18].

8.16 Consider Example 3.11.

8.17 We may assume f (0) = 0. Pick r > 0 so that f (x) � 1 on the set ‖x‖ = r. Then, for any u
with ‖u‖ � r , we have

1 � f
(

r
‖u‖ u

)
�

(
1− r

‖u‖

)
f (0)+

r
‖u‖ f (u) =

r
‖u‖ f (u) .

8.19 Let v be a unit vector. We have f ′(x ;v) = inf t>0 [ f (x+ tv)− f (x)]/t . Taking t = |x |+ 1
and applying the bounds on f leads to f ′(x ;v) � c+d |x |, for certain constants c and d .

8.20 One can argue via support functions, by showing that

f ′(x ;v) � max{g ′
i (x) • v : i ∈ I(x)}.

8.21 Take f to be the indicator function of the set C of Exer. 2.49.

8.22 Show that f is convex (Exer. 8.7); use Prop. 4.12. (This exercise is purloined from [7].)

8.24 For (b): For fixed u sufficiently close to x (u 	= x), the function g(t) = f (x+ t(u− x)) is
differentiable for t in a neighborhood of [0,1]. We may apply the (one dimensional) mean value
theorem to g in order to write f (u)− f (x) = 〈 f ′

G(w), u− x〉 for some w ∈ (x,u). Then

‖ f (u)− f (x)−〈 f ′
G(x), u− x〉‖Y = ‖〈 f ′

G(w)− f ′
G(x), u− x〉‖Y

� ‖ f ′
G(w)− f ′

G(x)‖∗ ‖u− x‖ ,

which implies that f is differentiable at x.

8.25 Let f (x) = ‖x‖. If x 	= 0 and ζ ∈ ∂ f (x), then 〈ζ , x〉 = ‖x‖ and ‖ζ ‖∗ = 1 (see Exer. 4.2).
The strict convexity of B∗ implies that there cannot be more than one such ζ .

8.27 Concerning the second part: when X = R, the result is easy to prove. Build on this case to
show that f is convex when restricted to any line.

8.28
(a) Hint: T BX contains a neighborhood of 0.

(c) Use Theorem 5.19. (T (X) may not be closed, so separation does not apply.)

(d) Recall that the function g(y) = ‖y‖Y is convex, and that if ζ ∈ ∂g(y), where y 	= 0, then
‖ζ ‖∗ = 1 (see Exer. 4.2).

8.30 Invoke Cor. 4.23.
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8.31
a) Show that f ∗ is finite-valued, and (with the help of Exer. 4.17) that ∂ f ∗(x) is a singleton for
every x. Then appeal to Prop. 4.16.

b) If g∗ fails to be strictly convex, then (by Exer. 4.17) there exist distinct points x and y and
ζ ∈ ∂g∗(x)∩∂g∗(y). Then x, y ∈ ∂g(ζ ), a contradiction.

8.32 Apply Theorem 5.19 to f .

8.33 One may first reduce to the case in which ‖T ‖ < 1, and then argue as in Rudin [38, Theorem
10.7].

8.34 The conclusions can be obtained from Theorem 5.32, with F(x,r) = (T x+ r g(x),r). There
is a minor technical point to deal with, due to the fact that the distance appearing in the conclusion
of the theorem may not be attained.

8.35 One approach involves considering

ϕ(x,q) = min
|v |�1

f ′(x ;v)−q • v ,

showing that q ∈ ∂ f (x) if and only if ϕ(x,q) = 0, and using Prop. 6.25.

8.36 Γ (x) consists of the points q satisfying f ∗(x) = x • q− f (q), and is nonempty.

8.38 Hint: there is a point y /∈ S at which ∂P dS(y) 	= /0.

8.39
(c) We have ϕ(x) = supu∈S s • x−|s |2/2, implying convexity.

(f) If y ∈ ∂g(x), then

x ∈ ∂ϕ(y) = {ϕ ′
G(y)} = {y− (y− sy)} = {sy}

(a point in S), by the derivative calculation in part (b), and since ∂ϕ(y) reduces to the singleton
{ϕ ′

G(y)} by Cor. 4.4.

(g) Invoke Prop. 5.21 to obtain A ⊃ domg.

8.40 This can be proved with the help of Theorem 5.19; see [13, Theorem 7.6.2].

8.42 For the last part: we have that c ∗∗
0 is isometric to �∞. The sequence (1,1, . . .) ∈ �∞ corre-

sponds to an element of c ∗∗
0 that does not lie in Jc0 .

8.43
(a) The countable base can be assumed to consist of canonical open sets for the weak topology;
the collection of the associated ζn is a countable set. Arguing as in part (c) of Theorem 3.1, we see
with the help of Exer. 2.41 that any ζ is a finite linear combination of these.

(b) This follows from Exer. 8.4, since X ∗ is a Banach space.

8.45 The main difficulty is related to Exer. 6.40.

8.47 Argue as in the proof of Theorem 5.47 to show that the topologies σ(X ∗,X) and σ(X ∗,X∗∗)
coincide.

8.48 For (a): First, invoke strict separation to find θ ∈ X ∗∗ such that 〈θ ,ζ 〉 < 0 � 〈θ ,σ 〉. Adjust
θ in order to have both inequalities strict. Then call upon Goldstine’s lemma to conclude. Part (c) is
a special case of a classical theorem of Krein-S̆mulian; no simple proof is known to us. See Rudin
[38, Exer. 4.21] for a proof outline and references.

8.49 For the last assertion, invoke Exer. 7.36.
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8.50 There are no points of differentiability.

8.51 In either case, one invokes the minimax theorem 4.36. When Σ is bounded, the required
compactness hypothesis is provided in part with the help of Exer. 8.47.

8.53 One could consider e−‖x‖ on L1(0 ,1).

8.57 K is compact in either case, with respect to the appropriate weak topology. When σ(Y ∗,Y )
is involved, separation calls upon Prop. 3.12. Note that the closure operation in co E is to be
interpreted for the relevant topology.

Part II. Optimization and nonsmooth analysis.

The subject of optimization boasts an enormous literature. For an introduction to the topic, the
reader could do worse than the book of Boyd and Vandenberghe [7]. The calculus of generalized
gradients, along with the use of proximal normals, was introduced in the author’s thesis [11]. His
subsequent book on nonsmooth analysis [13] was the first in the field, and has been widely cited.
More recent sources include the monographs of Clarke, Ledyaev, Stern and Wolenski [18], and
that of Rockafellar and Wets [35], which contain a variety of applications of the subject, as well as
detailed references.

9.2 Both x2 and x4 fail to admit multipliers, while x3 is not admissible; there appears to be no
reason to veto x1 .

9.7 If the functions involved are differentiable, and if x∗ ∈ int S, then we obtain the classical
stationarity conclusion.

9.11 One must show, using (γ ,λ )∈−∂V (0,0), that γ � 0, and that the complementary slackness
and minimization conditions hold (for the solution x∗ ).

10.26
(a) If F(x)< 0, the optimality of x∗ is contradicted.

(b) Apply Danskin’s theorem, and show that the set {ϕ ′
x(x∗ , y, z) : y ∈ Y ∗, z ∈ {0 ,1}} is closed;

then invoke Carathéodory’s theorem.

(d) Observe that in either case, the necessary conditions amount to asserting that 0 belongs to the
set co{ f ′(x∗), e ′

i (x∗) (i ∈ I(x∗)}, where I(x∗) is the set of indices corresponding to the active
constraints.

10.29 For convexity, one may show that ∂C f is not monotone (Exer. 8.27); for example:

〈∇ f (1,0)− (2 ,1),(1,0)− (0,0)〉 < 0.

For the regularity: f ′(0,0;1,1) = 2, but f ◦(0,0;1,1)� (1,1) • (2 ,1) = 3.

10.30 Use the gradient formula to show that ∂C g(x)= {0} at every point x inΩ , and then conclude
that g is constant with the help of Theorem 10.17.

10.43 Reduce to the case 0 ∈ int S, and consider the gauge of S.

10.48 To derive the multiplier rule for (Q), introduce an extra variable y, together with the con-
straints ϕ(x)− y = 0 and (x,y) ∈ S×Φ ; invoke Theorem 10.47.
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11.17 Write 〈λ i ,F 〉 = 〈λ ,F 〉+ 〈λ i −λ ,F 〉 and invoke Theorem 11.16, along with Prop. 11.12
and the estimate of Prop. 10.5.

11.21 Take X = R
2, f (u) = |u |, x = 0, W = {u : |u |= 1}, ρ = 1/2.

13.1 The Courant-Fisher formulas extend the result by characterizing all the eigenvalues of M ;
there are n of these, if each eigenvalue is counted according to its multiplicity. Would the reader
care to guess what optimization problem characterizes the second eigenvalue λ2 , when λ2 is
strictly greater than λ1? (That is, when λ1 is of multiplicity one.) [ Hint: an eigenvector for λ2
is necessarily orthogonal to one for λ1. ]

13.3 Use Exer. 9.7.

13.4 It follows that Λ is continuous in (t,v), and that the cost integral is well defined, as well as
convex in v(·). The necessity of the stated condition can be derived from Theorem 9.8 (together
with Theorem 6.32). The necessity results from a direct argument.

13.7 For (c), use Prop. 4.6 and Theorem 2.34.

13.8 Invoke Exer. 13.7 with f (x) = IS(x) and g(x) = ‖x− y‖.

13.9 The dual problem consists of maximizing over (0 ,∞)×R
n the function

(γ ,λ ) �→ −E0 γ −∑
k
λk ck −

∫ π

−π

[ ∣∣∑
k
λk cos(kt)

∣∣−1
]2
+

dt /(4γ ) .

13.10 Use the gradient formula to calculate ∂C f (0).

13.11
For S1: T = S1 , N = {0}, N L = S1 , NC = R

2, T C = {0}.

For S2 (convex): T = T C = S2 , N = N L = NC = {y �−|x |/2}.

For S3: T = S3 , N = {0} , N L = {y = |x |/2}, NC = {y � |x |/2}, T C =−S2 .

For S4: T = R
2, N = {0} , N L = NC = R×{0}, T C = {0}×R.

13.16 Prove the implication first in the case (θ ,ζ ) ∈ ∂P f (u,v), by examining the proximal sub-
gradient inequality. Then consider (θ ,ζ ) ∈ ∂L f (u,v).

13.17 For the last part: we have g(u) � g(x)+K |u− x | for u near x, which implies that g = f
locally near x.

13.18 Hint: use Cor. 11.7.

13.19 This follows from Prop. 7.39.

13.22 For (b): Use Theorem 11.38.

13.23 Suggestion: use Theorem 10.19 to estimate ∂ f (1) = ∂C f (1), with F(α) = (α ,v∗/α) and
g(α ,w) = Λ(w)α ; Exer. 10.21 may be useful too.

13.24 For (b): It follows from the definition of ∂L f that the set in question is given by
⋂

j�1

⋃

i�1

{
t : 0 ∈ θ i

(
t,u(t)+ j−1B,V + j−1B

)}
.

For each i, j , the last set above is the domain of the multifunction

t �→
{
(x,ζ ) ∈

(
u(t)+ j−1B

)
×
(
V + j−1B

)
: θ i(t, x,ζ ) = 0

}
,

which is measurable by Prop. 6.25. The measurability of the multifunction t �→ ∂C f (t,u(t)) fol-
lows from Cor. 6.28.
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13.30 Time reversal is involved in the proof; details are given in [18, Prop. 6.5].

13.33 For the first part, we argue by contradiction. If the assertion fails, there exist sequences
xi ,α i , and ε i > 0 converging to x∗ ,F(x∗), and 0, with F(xi) 	= α i , such that, for some ζ i belonging
to ∂P|F(xi)−α i |, we have |ζ i | < ε i . By Exers. 7.33 and 13.32, we have ζ i ∈ v∗i ∂F(xi) for a
certain unit vector vi . Taking subsequences, we derive 0 ∈ v∗∂F(x∗) for some unit vector v ; this
contradicts the nonsingularity.

13.34 A detailed proof is given in [13, p. 253].

Part III. Calculus of variations.

This is an old subject, and volumes have been written about it. The reader will have no difficulty
in finding parallel material. For our part, we have liked and benefited from the little books of Bliss
[5] and of Gelfand and Fomin [26], the big book of Morrey [31], and the ineffable book of L. C.
Young [41]. We also take pleasure in citing the works of Cesari [9], Ewing [23], Goldstine [27],
and Troutman [39].

The necessary conditions of Chapter 18, with those of Chapter 25, are the end product of a thirty-
year quest by the author (and certain colleagues). The results in final form were first described in
the monograph [16], which contains a detailed discussion of related work.

14.3
(a) We expect the shortest curve joining two points to be a line segment.

(c) We find x(t) = (et − e−t)/(e− e−1).

14.15 Consider the Legendre condition.

14.16 Let T < τ , the nearest conjugate point to 0; apply Theorem 14.12.

14.17 The Jacobi equation is u ′′+u = 0, for which u(t) = sin t is a suitable function for locating
conjugate points; we find τ = π . As observed previously, local and global minima coincide for this
problem. For T < π , the proposition therefore follows from Theorem 14.12; the case T = π is
obtained by approximation.

14.20 For the modified problem: x∗(t) = t 2/2−4 t .

14.23 Apply Theorem 14.21, and show that the abnormal case η = 0 can be excluded. Then the
solution satisfies x ′′ = λ x. It follows that λ < 0, which leads to x(t) = ± sin kt , with k a positive
integer. This gives J(x) = k2π/2, whence k = 1 and x∗(t) = ± sin t .

14.24 The possibilities are x(t) = ±(sin kt)/k, for a positive integer k. The corresponding cost
is π [2k2 ]−1. This admits no minimum relative to k, so no solution exists. There is, however, a
sequence xi of admissible sawtooth functions converging uniformly to 0, whose associated costs
J(xi) converge to 0. This is clearly the (unattained) infimum.

15.6
(a) If u ′(τ) = 0, then, since u(τ) = 0, we have u ≡ 0 by the uniqueness theorem for linear differ-
ential equations; absurd. Use integration by parts together with the Jacobi equation to obtain the
stated equality.

(b) By Theorem 15.5, u (extended) is continuously differentiable on (a,b); yet u has a corner at τ :
contradiction.
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15.13
(a) The Euler equation forΛ+ (see part (b)), together with the boundary conditions and the isoperi-
metric constraint, identify the candidate x∗(t) = t +2(1/π−1)sin t .

(b) It follows from Theorem 15.9 that for any x ∈ Lip[0,π ] satisfying the boundary conditions, we
have ∫ π

0
x ′ 2(t)dt + λ

∫ π

0
(sin t)x(t) dt �

∫ π

0
x∗′ 2(t)dt + λ

∫ π

0
(sin t)x∗(t) dt .

If x satisfies in addition
∫ π

0
(sin t)x(t) dt = 1 =

∫ π

0
(sin t)x∗(t) dt ,

then we deduce
∫ π

0
x ′ 2(t)dt �

∫ π

0
x∗′ 2(t)dt . Thus, x∗ solves (Q).

16.3 Hints for the five parts: coercivity, weak compactness and Ascoli, dominated convergence,
Fatou, weak lower semicontinuity.

16.10 Show that J(x) is well defined for any arc x, and note that a minimizing sequence xi exists.
Use Hölder’s inequality to show that the sequence x ′

i is bounded in Lr[a,b ]. Define an appropriate
(bounded) set Q for purposes of invoking the integral semicontinuity theorem 6.38.

16.22
(a) Use the inequality ey � 1+ y in analyzing a minimizing sequence.

(b) Show that the Lagrangian is strictly convex.

(d) Invoke Theorem 16.18.

17.11 Show first that Theorem 17.9 applies, and that the necessary conditions hold normally.

17.12
(a) In applying the direct method, note that the isoperimetric constraint provides a lower bound on
the second term in I(x).

(b) Show that Theorem 17.9 can be called upon.

(c) Integrating by parts leads to λ = I(u).

18.5 Derive p(t) ∈ ∂vΛ(t, x∗(t), x∗′(t)) a.e. (see Exer. 13.16). Then show that the proof of Theo-
rem 15.5 can be adapted.

18.10
(a) A solution x∗ ∈ AC[0,T ] exists by Tonelli’s theorem. It is unique by strict convexity, and x∗ is
Lipschitz by Theorem 16.18. Exer. 18.5 shows that x∗ ∈ C1[0 ,T ].

(b) Apply Theorem 18.8, with the costate

p(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−t +
√

2 if 0 � t �
√

2

0 if
√

2 < t < T −
√

2

t − (T −
√

2) if T −
√

2 � t � T.

(e) Show first that the only possible turnpike value is x∗ = 0. But then (by Cor. 16.19) we would
have |x∗(t)|+ |x ′(t)|2/2 = 0 ∀ t , whence x∗ ≡ 0 and A = 0 = B necessarily. Conclude by showing
that when A = 0 = B, the zero arc fails to be a minimizer.

19.5 Show that, for any arc x, we have (d/dt)u(t,x(t))� Λ(x(t), x ′(t)), and integrate.
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19.8 For (b): consider Cor. 11.46. For (d): observe that in a neighborhood of (1,0), we have
u(t, x) = |x |.

19.9 If (θ ,ζ ) belongs to ∂P min(u,v)(t,x) at a point (t,x) where u= v, then (θ ,ζ )∈ ∂P u(t,x).

19.13 We solve the problem

min |x(0)|2 +
∫ τ

0
|x ′(t)|2/4 dt , x(τ) = β ,

and this leads to the function u∗(t, x) = |x |2/(1+4 t).

19.14 The minimization problem yielding u(t, x) is given by

minimize |y(0)|+
∫ t

0

{
|y ′(s)|2/4 +1}ds , y(t) = x .

The problem may be solved deductively (by Theorem 18.1) or inductively (Theorem 18.8) to
yield

u∗(t, x) =

{
|x |2/(4 t)+ t if |x | < 2 t
|x | if |x | � 2 t .

19.15 We know that u∗(τ ,β ) is the minimum of the cost function

J(x) = �
(
x(0)

)
+

∫ τ

0
Λ
(
x ′(t)

)
dt

over the arcs x satisfying x(τ) = β . Solutions of this problem are Lipschitz (Theorem 16.18).
Because Λ is strictly convex (see Exer. 8.31), it follows from the necessary conditions of Theorem
18.1 that the solutions are affine. The cost corresponding to an admissible affine function is given
by �(α)+ τΛ((β −α)/τ), where α = x(0), whence the stated formula.

19.21 Hint: See the last step in the proof of Theorem 16.18.

20.9
(a) Use Green’s theorem 20.7.

(b) Call upon Theorems 20.6 and 20.8.

(c) If u1 and u2 are both weak solutions of (D), then both minimize the Dirichlet functional. Be-
cause that functional is strictly convex in Du, this implies that Du1 and Du2 agree almost every-
where. But then u1 = u2 by Exer. 10.30.

20.16 Invoke the comparison principle with the constant function M = max{u∗(x) : x∈ Γ }.

21.1
(a) x∗(t) =−t/2+1/2.

(b) Λ(t, x,v) is convex in (x,v), so that x∗ is a global minimizer relative to Lip[1,3 ], as well as
C2[1,3 ].

(c)Λvv < 0 for t < 0, which precludes a local minimum by Legendre’s necessary condition.

21.2
(e) This follows from the Weierstrass condition. Alternatively, observe that there exist admissible
Lipschitz arcs x whose derivative is 0 or −1 a.e., so that J(x) is 0. Approximation (see Exer. 21.13)
implies the existence of a smooth admissible y such that J(y)< J(x∗).

21.3
(a) x∗(t) =−t 2 −2+ ce t +de−t , where c+d = 2 , ce+d/e = 4.
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(c) x∗(t) has the same form, but now c + d = 2 , ce − d/e = 2 (by the transversality condi-
tion).

21.4 For the last part, a simple verification function can easily be found by inspection.

21.5 For (a), prove that there exist unique numbers c < 0 and λ > 0 so that the circle

(t −1/2)2 +(x− c)2 = λ 2

defines an admissible function x∗ ; it satisfies λ x ′/
√

1+ x ′ 2 = −t+1/2. We obtain (c) by simply
specializing the conclusion of (b) to those x satisfying the isoperimetric constraint.

21.6 The problem is taken from [26]. If a smooth solution is simply assumed to exist, it is natural
to apply the multiplier rule of Theorem 14.21 in C2[0, b] to the problem

min
∫ b

0
x(t)

√
1+ x ′(t)2 dt :

∫ b

0
x(t)dt = S , x(0) = A, x(b) = 0.

The Erdmann condition for x
√

1+ v2 +λ x yields 1+λ
√

1+ x ′(t)2 = 0, whence x ′ is constant.
Thus, the solution corresponds to the line t/c+ x/A = 1, where cA = 2S.

However, one’s conscience tends to require a proof that this is truly optimal in some sense. If the
problem is restricted to curves which can be expressed as t(x), then the problem becomes

min
∫ A

0
x
√

1+ t ′(x)2 dx :
∫ A

0
t(x)dx = S , t(0) = b, t(A) = 0 (b free).

This reformulation has the advantage of being convex. The necessary conditions lead again to the
affine candidate, but now its optimality follows rigorously (even in the presence of the implicit con-
straint t(x) � 0, but with the restricted class), by an argument similar to that of Exer. 21.5.

The best approach uses verification functions. Conjecturing that the solution is affine, we calculate
the (expected) optimal cost

V (S,A) =
√

4S2 +A4/2 .

The function V (s, x) =
√

4s2 + x4 /2 satisfies, for x � 0, the inequality

Vs x−Vx v � x
√

1+ v2 ,

as one can see by calculating the derivatives and squaring both sides. Now let x be admissible.
Then we may write

Vs

(∫ b

t
x(τ)dτ , x(t)

)
x(t)−Vx

(∫ b

t
x(τ)dτ , x(t)

)
x ′(t) � x(t)

√
1+ x ′(t)2

and integrate to get

J(x) � V
(∫ b

0
x(τ)dτ , x(0)

)
−V (0,0) = V (S,A) ,

proving that the affine arc is indeed optimal.

21.7 (b) exp(x+ v) (c) xev

21.8 The corresponding Lagrangian is v2/2+(cos3 x)/3−2cos x. Reason as in Example 16.21.

21.9 For (b): If there were a conjugate point in (a,b), then x∗ would not be a minimizer; but it is,
by convexity.

21.10 The arc x∗(t) = t is an admissible extremal; the Lagrangian is convex.
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21.11 In this reformulation, the Lagrangian is convex.

21.12 The Euler equation identifies the extremal x∗(t) = ln(1+ t)/ ln 2. The convexity of Λ im-
plies that x∗ is the global minimizer (Theorem 18.8). There cannot be any local minimizers or
maximizers.

21.13 For (c), write

ϕ(b) = h(a)+
∫ b

a

{
(p− f )+( f −h ′)+h ′}dt ,

and consider in light of this how to choose c so that g agrees with h at a and b.

(f) Apply (e) to the Lagrangian

Λ̃(t, y,w) = Λ(t, x∗(t)+ y, x∗′(t)+w).

21.14 Build upon Exer. 14.17, and use Exer. 21.13.

21.15 To reason deductively, prove first that a solution x∗ exists, by the direct method. Then
Cor. 16.19 implies that x∗ is Lipschitz, and that x2

∗ + x∗′ 2 = c2 for some constant c > 0. The state
constraint must be active at some point, whence c � 1. Show that x∗(t)> 0 for all t > 0 sufficiently
near 0. Until x∗ = 1, the Euler equation holds, and implies that x∗(t) = c sin t . After x∗ reaches
the value 1, it remains there (this is evidently optimal), whence c = 1. This identifies the unique
solution x∗ .

21.16
(a) The Jacobi equation has the solution u = (7t +1)2/3, so that Cor. 14.13 applies.

(b) Prove first that a solution x in AC[0,1] exists. By Cor. 16.19 we have
(

1+ x(t)
)

x ′(t)2 = c a.e.

Show that c> 0, and that there must be ε > 0 arbitrarily small such that x(ε)> 0 and x ′ > 0 on a set
of positive measure near ε . Using the fact that the Euler equation holds on intervals where x(t)> 0,
deduce that x ′ is continuous. Show that x(t)> 0 for t > 0, and go on to prove that x = x∗ .

21.17 For (a), let

Λ(t, x,v) = x4/4+b x3/3+ c x2/2+d sin(t) x+ v2/2 ,

and deduce the existence of a minimum x∗ ∈ Lip[0,1] (use Cor. 16.16). Then x∗ belongs to
C∞[0,1] by Theorems 15.5 and 15.7, and the Euler equation may be written in differentiated
form.

(b) When b2 � 3c, Λ is convex in (x,v) (as well as strictly convex in v). It follows that the
minimum x∗ is unique. But a solution of (1) is a global minimizer for (P), by convexity.

(c) Hint: If the zero function has a conjugate point in (0,T ), it cannot be the solution of (P).

21.18 For (a) and (c), the weak closure theorem 6.39 is useful in combination with the direct
method.

21.23 For (b): t 4 −2 t 3 + t 2 + t .

21.24 Prove that there is a solution x∗ of the problem

minimize
∫ 1

0

{
| x ′(t)|2/2+ f (x(t))

}
dt : x ∈ AC[0,1] , x(0) = A , x(1) = B .
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Then x∗ is Lipschitz by Theorem 16.18, and C1 by Theorem 15.5. The Euler inclusion of Theorem
18.1 implies that x∗′ ∈ AC[0,1] and that x∗ satisfies the required differential inclusion.

21.25 One may calculate the value function ϕ(t, x) = x2 cot t .

21.26 See [39, pp. 34, 190, 320] for the full statement of the problem, and a different approach to
solving it.

21.30 Details and references, as well as for Exer. 21.31, are given in Clarke [13].

21.31
(a) Hint: Fix r ∈ (2 ,R∗); write Young’s inequality: |q ′ • y | � |q ′ |r/r+ |y |r∗/r∗ .

(b) Use Theorem 16.18.

(c) Call upon Theorem 18.1.

(f) Show that if T is not the minimal period, then (y(t/k), q(t/k)) (for some integer k > 1) is
strictly better than (y, q) for the problem (P), a contradiction.

21.32
(a) Taking c = 0, d ≡ 1, the inequality in Hypothesis 18.11 follows from the fact that any (ζ ,ψ)
in ∂PΛ(x,v) satisfies ψ+ζ = 1 (see Exer. 7.27).

(b) If x∗ is a strong local minimizer, then there is an arc p satisfying the conclusions of Theorem
18.13. The Euler inclusion for x∗ gives p ′+ p = 1, and transversality provides p(1) = 0; it follows
that p(t) = 1− e1−t . The Weierstrass condition reads

√
|v | + v � 〈 p(t),v〉 ∀v ∈ R ,

which forces p(t) = 1: contradiction.

(c) It suffices to consider arcs x for which x(t) � 0 and x ′(t) � 0. For any such admissible arc x
with |x ′(t)|� e−2 we have |x(t)|� e2(t−1), whence

|x(t)− x ′(t)|� e2(t−1).

We calculate (the reader will discern a verification function at work)
√

|x(t)− x ′(t)| + x ′(t) � |x(t)− x ′(t)|e1−t + x ′(t)

� (x(t)− x ′(t))e1−t + x ′(t) =
d
dt

{
x(t)(1− e(1−t)}.

The result follows upon integrating. Note that the classical methods to prove the presence of a
weak local minimizer do not apply here.

21.33
(a) The facts stated in Exer. 4.27 are relevant here.

(e) With h =−1, it follows that x∗ ≡ 0, whence u(τ ,0) = 2τ : contradiction.

21.34 Consider the following closed subspace X of L p(Ω)n+1 :

X =
{(

u ,Du
)

: u ∈ W 1, p
0 (Ω)

}
.

Show that ζ corresponds to an element of the dual of X . For the second part, consider pairs of the
form ( f0 +div p, f + p).

21.35 Because weakly convergent subsequences are bounded, there is a subsequence such that
ui j and Dui j converge weakly in L p; the convergence must be to u∗ and Du∗ respectively; apply
Theorem 6.39.
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21.36 If such an operator T exists, then there is a number K such that, for every u∈ C(Ω):

‖u
∂Ω

‖L p(∂Ω) � K ‖u‖L p(Ω) .

For any u for which the left side is positive, we can modify u (in Ω only, not on the boundary) so
that the right side is arbitrarily small: contradiction.

21.37 For (b): The weak Euler equation is
∫

Ω

{
〈Du,Dψ 〉+(u−θ)ψ

}
dx dy = 0 ∀ψ ∈ C2(Ω).

The classical divergence theorem implies
∫

Ω

{
〈Du,Dψ 〉+ψ divDu

}
dx dy =

∮

Γ
ψ Du • ν dγ .

Together, these lead to the conclusion.

21.38 Existence and uniqueness follows from Cor. 20.24. For the lower bound on u, recall that u
is a minimizer for the Lagrangian |Du |2; use the comparison principle (Theorem 20.15) (with u
and a certain constant function).

21.40 For (a): Use Cor. 4.7 and Prop. 4.14.

Part IV. Optimal control.

The books that have influenced us the most on this topic are those of Pontryagin et al. [33], Young
[41], Lee and Markus [30], and Hestenes [28]. Among other favorites of ours are Vinter [40],
Fleming and Rishel [24], and Bardi and Capuzzo-Dolcetta [4]. Our own earlier book [13] has even
taught us a thing or two, given the passage of time.

The extended maximum principle first appeared in the author’s thesis [11], which also initiated the
study of necessary conditions for differential inclusions. The monograph [16] contains a detailed
discussion of the body of related work.

22.7 The new component q of the costate satisfies −q ′ = H η
t , q(b) = 0. Combine this with the

constancy of the augmented Hamiltonian q+H η .

22.27 The proof of Cor. 22.3 can be adapted.

22.29 The optimal control in the special case referred to is given by

u(t) = 1 for t ∈ (0,1/3)∪ (2/3,1), and 0 elsewhere.

23.6 For a uniform partition π of the underlying interval, as in the proof of Theorem 12.3, define
a piecewise affine (original) trajectory x by taking x ′ = 1 on [ ti , ti+1) if x(ti) � y(ti), and x ′ = −1
if x(ti) > y(ti). Then take the mesh size of the partition sufficiently small.

23.7 One may adapt the proof of Theorem 23.2.

23.12
(a) To apply the existence theorem 23.11, one may consider (without changing the problem) that
the running cost integrand is given by the convex function
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Λ(u) =

{
0 if u � 0
u3 if u � 0.

(b) The abnormal case (η = 0) is easily excluded. The costate p is constant, and the function u �→ u3

is strictly convex on the interval [0,2 ]. Thus the maximum of u �→ pu−u3 over the control set is
attained at a unique point u∗ .

23.16 For (b), show that the function

f (λ ) = Λ
(
t, x,(1−λ )u+λv

)
− (c/2)|(1−λ )u+λv |2

is convex by calculating f ′′, then write f ′(1) � f ′(0).

24.4 With the help of the extended maximum principle, one identifies the following candidate
(x,u) and corresponding costate p:

(
x(t), u(t)

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t ,1) if 0 � t < 1/2
(1/2 ,0) if 1/2 � t < 3/2
(2 t −5/2 , 2) if 3/2 � t < 5/2
(t ,1) if 5/2 � t � 3

p ′(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if 0 � t < 1/2
−1 if 1/2 � t < 1
+1 if 1 � t < 2
−1 if 2 � t < 5/2

0 if 5/2 � t � 3

with p(t) = 0 precisely when t ∈ [0 ,1/2 ] ∪ {3/2} ∪ [5/2 ,3 ]. We may apply Theorem 24.1 to
deduce that the process is optimal.

24.8 Show that the system (x0 +T (x),F+) is both weakly decreasing and strongly increasing on
Ω , by the definition of T ; this uses the fact that minimal-time trajectories exist.

26.1 The turnpike value is (δ +
√

δ 2 +4 )/2. Note that this increases with δ : it’s weedier in
inflationary times.

26.2
(b) Show that σ must attain 0 at a first point τ ∈ (0,T ); note that σ ′ = p, and deduce σ ′(τ)< 0;
show that σ becomes and remains negative after τ .

(c) Observe that in [0,τ ] we have x(t) = et − 1, and that in [τ ,T ], the costate p(t) is given by
−e2(t−T ). Then τ is the value of t for which the product of these expressions equals −1.

26.3 Theorem 22.22 does not apply directly, since the dynamics are not autonomous. The time
dependence (since it is Lipschitz) can be absorbed into extended dynamics, as follows:

x ′ = y , y ′ = u/m(z) , z ′ = 1.

Note that time t is identified with the extra state component z. With this reformulation, Theorem
22.22 is applicable.

26.4 If the optimal control u∗ is neither identically 1 nor identically −1, then the necessary con-
ditions provided by Theorem 22.13 hold normally, and lead to the conclusion.

26.5
(a) One may apply Theorem 23.13.

(b) Show that the maximum principle as given by Theorem 22.22 applies, and must hold in normal
form.

(e) Note that this is consistent with the necessary conditions of Theorem 22.22.

26.6 The existence of a solution follows from Theorem 23.11. Expressed in terms of the function
y(t) = x(t)−2 t +1, the problem becomes



Notes, solutions, and hints 581

min −
∫ 1

0
|y(t)|dt : y ′(t) ∈ [−3,−1] , y(0) = 1, y(1) = −1.

Apply the extended maximum principle (Theorem 22.26); constancy of the Hamiltonian gives
|y |+max{−3 p,−p} = h. Analysis of the (y, p) phase plane reveals the solution y, and hence the
optimal x, which is given by

x ′(t) =

{
1 if t ∈ (0,1/4) ∪ (3/4,1)

−1 if t ∈ (1/4,3/4) .

26.7 For (d): Show that the variable-time maximum principle holds in normal form. Deduce from
it that the costate is C∞, as is the time-optimal control.

26.8 Existence theory implies that an optimal process (x∗,u∗,v∗) exists, so the deductive method
can be used. Note that the running cost is nondifferentiable. The extended maximum principle
can be applied in normal mode. It follows from the adjoint inclusion that p is nonincreasing,
with values in [0,1) and p(0) = 0. The maximum condition implies that (u∗,v∗) = (1− x∗ , x∗)
whenever p > 0. The possibility that p ≡ 0 on an interval [T − ε ,T ] can be ruled out, by using
the fact that

M(x∗ , p) = h = p(1− x∗)+ x∗ = x∗(T ) ∀ t ∈ [0,T ].

Thus x∗′ = 1− x∗ , and the optimal state trajectory is x∗(t) = 1− e−t . The nature of the solution is
different for longer horizons T ; see [13, §3.3] for the full analysis of a more complex problem of
this type.

26.9 The function B∗p(t) is analytic and not identically zero, and therefore its zeros are iso-
lated.

26.10 As regards existence, Theorem 23.11 cannot be invoked directly, since the dynamics func-
tion f does not have linear growth (on the face of it). However, all relevant state trajectories are
implicitly constrained to [0, x̄ ], so f can be redefined. . . or the direct method could be used, of
course. The existence of the turnpike can be deduced from arguments similar to those in § 22.2.
See [10] for a considerably harder problem in this vein.

26.12 For (a), use the implicit function theorem.

26.13
(a) From (1) we get ϕ ′(t) < δ ϕ ; with ϕ(T ) = 0, deduce ϕ(t) > 0 on [0,T ]. Now use (3) to see
that u ′ϕu > 0; conclude with the help of (2).

(b) Use (3) to derive
u ′ϕu = s ′(x(t))−δ

∫ T

t
s ′(x(τ))e−δ (τ−t) dτ .

Bearing in mind that s ′ is nondecreasing, show that the right side is negative.

(c) Prove that ϕ(t)< 0 for t < T , then examine u ′ϕu . Show that u ′ > 0 initially, and that u ′ < 0
near T .

26.19 For y ∈ R, let F+ be the multifunction defined as follows:

F+(x, y) = {( f (x,u),ω) : u ∈ U},

and let ϕ+(x, y) = ϕ(x)+ y. With the help of Subbotin’s theorem, show that the couple (F+ ,ϕ+)
is weakly decreasing, and exploit this fact.

26.21 For the first assertion, use Exer. 26.19. For the second: if not, show that there exists p 	= 0
and δ > 0 such that

〈 p, f (x,u)〉 < 0 ∀x ∈ B(0,δ ) , u ∈ U .
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Use this to contradict the preceding conclusion.

26.22 We have seen that (a) implies (b), and that (c) implies (a). It suffices to prove that (b) implies
(c). It follows from the compactness of trajectories that T (·) is lower semicontinuous, so it suffices
to show that T (·) is upper semicontinuous. Fix any α0 ∈ R

n\{0}. Given ε > 0, in view of (b),
there exists Δ > 0 such that

T (y) � ε ∀y ∈ B(0,Δ).
Now let (x,u) be a minimal-time process from α0 to 0. By classical results concerning continuity
with respect to the initial condition (see [28]), there exists δ > 0 such that

α ∈ B(α0 ,δ ) =⇒ xα
(
T (α0)

)
∈ B(0,Δ) ,

where xα is the state trajectory on the interval [0,T (α0)] corresponding to the same control u, but
with initial condition xα (0) = α . It follows that

α ∈ B(α0 ,δ ) =⇒ T (α) � T (α0)+ ε ,

which verifies the upper semicontinuity of T (·).

26.23
(d) Write the proximal subgradient inequality, and apply the extended maximum principle.

(e) Normalize pi by dividing by |(ζ i ,ψi)|, and take appropriate subsequences.

(f) See Exer 13.17.

26.24 In view of Exer. 26.22, it suffices to prove that the minimal-time function T (·) is continuous
at 0. Given ε > 0, take 0 < T < ε such that the process (0,0) is normal on [0,T ]. Then apply
Exer. 26.23 to conclude.

26.29
(a) This follows from applying existence theory and the maximum principle; it is clear in the current
context that the adjoint equation and transversality condition characterize a unique costate.

(d) If ζ ∈ ∂LV (0), then ζ = lim i ζ i , where ζ i ∈ ∂PV (α i) and α i → 0. Let (xi ,ui) belong to
Σ(α i), and let pi be a corresponding costate for (xi ,ui). Use sequential compactness arguments in
order to show that pi converges to a costate corresponding to some process (x,u) ∈ Σ(0).

(e) Since V is Lipschitz near 0 and ∂LV (0) is a singleton, it follows that V is differentiable at 0 (see
Exer. 11.15), with ∇V (0) =−px,u(0).

(f) If � is convex and Λ is strictly convex, and if the system is linear, it follows that the set Σ(0) is
a singleton.

26.30
(b) We consider (t,x) as an augmented state whose first component satisfies the dynamics t ′ = 1.
Observe that the couple (V,F), where F(t, x) = {1}× f (x,U), is both weakly decreasing and
strongly increasing on Ω ; this gives (6), by the results of Chapter 12.

(c) If ϕ is another proximal solution, we may consider weak decrease and strong increase in order
to show that ϕ both majorizes and minorizes V (vocabulary under construction). Details are given
in [18, Chap. 4].
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epi f , 31
R∞, 31
int A, 4
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σ -algebra, 122
σ(Y ∗, Y ), 54
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c, 6
c0, 6
dA, 14
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f ◦(x ;v), 194
hF , 256
u • x, 16

absolutely continuous function, 8
action, 292
adjoint

arc, 439
equation, 438
operator, 22
variable, 310

admissible set, 173
affine function, 59
approximation

of Lipschitz arcs, 418
arc, 255, 320
Aumann’s selection theorem, 476
autonomous, 290, 330
axiom of choice, 12

balls
closed and open, 4

Banach space, 75
bang-bang control, 451
basic problem, 177, 288, 391
basis

algebraic, 5
Hilbert, 137

biconjugate, 67
bidual, 96
bipolar, 72
Bishop, 83
Bolza functional, 347
Borwein, 142, 167
Bouligand tangent cone, 21
bounded slope condition, 402, 506, 520,

521

lower, 432

canonical injection, 96
Caristi, 163
catenary, 291, 302, 305
Cauchy-Schwarz inequality, 134
chain, 304, 336
chain rule, 19, 149, 203

proximal, 251
closest points, density of, 154
coercivity, 102, 321, 324, 329, 410,

479
comparison principle, 401
complementary slackness condition, 178,

183
complete space, 75
cone, 20

polar, 72
conjugate

exponent, 6
Fenchel, 67, 425
function, 67
point, 298

conservation of information, 303
constraint qualification, 219, 249, 250, 339,

442, 516, 536
control Lyapunov functions, 558
control set, 436
controllability, 559
convex

body, 40
combination, 27
envelope, 29

closed, 29
hull (of a function), 70

convexity
strict, 162
strong, 486

cost function, 173
costate, 310, 318, 336, 439

of bounded variation, 343

decrease
direction, 43
principle, 86, 279

deductive method, 173, 319
fallacy, 320, 445

density theorem, 144
derivative, 19

directional, 20
Fréchet, 19
Gâteaux, 61

Deville, 142
Dido’s problem, 416
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differential inclusion, 128, 255, 475,
503
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derivate, 236
subdifferential, 251

direct method, 101, 321, 325, 479
Dirichlet principle, 393
discount rate, 545
distance function, 14, 164
dot product, 16
du Bois-Raymond lemma, 183
dual

action, 426, 428
of � p, 15
of Rn, 16
of L1, 109
of L p, 108
of a product, 16
of a Sobolev space, 430
of a subspace, 17
space, 15

dynamics function, 436

effective domain, 31
of a multifunction, 114

eigenvalue, 273
Sturm-Liouville, 346

Ekeland, 83
entropy, 186
epigraph, 31
Erdmann condition, 290, 310, 332,

443
Euler equation, 289, 336, 339, 342, 344, 392,

443
integral, 308
second-order, 338
weak, 396, 410

Euler inclusion, 348, 363, 396, 504
Euler polygonal arc, 258
exact penalization, 177, 211
exit time, 264
extended maximum principle, 463
extended reals, 30
extremal, 290
extreme point, 168

feedback, 272
synthesis, 452

Fenchel
conjugate, 67, 425
inequality of, 67

Fermat’s principle, 349
Fermat’s rule, 19, 21, 64, 147, 289
Filippov’s lemma, 475

finitely generated system, 478
fixed point, 163, 165
Fourier coefficients, 137
Fréchet derivative, 19, 61
function

absolutely continuous, 8
bump, 141
Carathéodory, 123
concave, 32
convex, 32

continuity, 38, 82
criteria, 35
differentiability, 151

differentiable, 19
continuously, 20

distance, 153
extended-valued, 30
gauge, 40
indicator, 31
inverse, 95, 163, 283
Lipschitz, 37
lower semicontinuous (lsc), 31
proper, 31
squared norm, 141
support, 31, 43
upper semicontinuous, 32
weakly lsc, 52

Gâteaux derivative, 61, 160
Galileo, 162
generalized

coordinates, 292
directional derivative, 194
gradient, 194, 196
Jacobian, 282

geodesics, 314
Godefroy, 142
Goldstine’s lemma, 100
gradient formula, 208
Gram-Schmidt, 137
graph, 89, 118, 256, 464, 504
Graves, 91
Gronwall’s lemma, 130
Gross, 376

Hölder’s inequality, 6, 8
Haar, 402
halfspace, 41
Hamilton-Jacobi equation, 379

almost everywhere solution, 381
classical solution, 379
existence, 382
for minimal time, 500
in optimal control, 562
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proximal solution, 381
viscosity solution, 383

Hamilton-Jacobi inequality, 265, 267,
372

Hamilton-Jacobi-Bellman equation,
562

Hamiltonian, 311, 372, 379, 424
constancy of, 438
in optimal control, 437
lower, 256
maximized, 438
upper, 267

Hartman, 402
helix, 316
Hessian matrix, 36
Hilbert, 402
Hilbert space, 133
Hilbert-Haar theorem, 398, 403
Hopf-Lax formula, 383
hyperplane, 41

indicator function, 31
conjugate of, 70

induced topology, 48
inductive method, 173, 320, 367, 445
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infinite horizon problem, 497
inner product, 133
interval (open, closed, half-open), 4
invariance, 255
isometry, 12
isomorphism, Hilbert space, 139

Jacobi equation, 299
Jacobian, 23, 95

generalized, 282
Jensen’s inequality, 63

kinetic energy, 292
Ky Fan, 73

LB measurability, 122
of a multifunction, 464

Lagrange multipliers, 175
Lagrangian, 288, 391
Laplacian, 397
Lavrentiev phenomenon, 327, 412
Lebesgue spaces, 7, 78, 105
Ledyaev, 228
Legendre

necessary condition, 293
strengthened, 295, 299

transform, 311, 424
Legendre’s false proof, 294

limiting
normal, 244
subdifferential, 232

linear
functional, 10

discontinuous, 12
growth, 256, 260, 474
independence, positive, 43, 180
programming, 188

linear growth, 479
linear-quadratic

optimization, 273
regulator, 455, 549

Lipschitz
multifunction, 267, 504
property, 37

Littlewood’s principles, 82
local minimum

strong, 318
weak, 290

logarithmic Sobolev inequality, 376
logistic model, 549
lsc (lower semicontinuous), 31
Lyapunov functions, 271

control, 558
Lyusternik, 91

manifold, 23, 95, 220
with boundary, 24, 219

mathematical programming, 178
maximally defined trajectory, 264
maximized Hamiltonian, 438
maximum principle

extended, 463
hybrid, 457
of pde’s, 401
Pontryagin, 438
variable time, 450

Mayer problem, 479
mean value inequality, 228
measurable

multifunction, 114, 464
selection, 116, 476

metric regularity, 90
Milman, 106
minimal surfaces, 394
minimal-time function, 453, 500
minimal-time problem, 449
minimization principle

linear, 154
of Borwein-Preiss, 167
of Ekeland, 83
of Stegall, 154
smooth, 142, 167



Index 589

Minkowski gauge, 40
Moreau, 69
Moreau-Yosida approximation, 152
Motzkin, 164
multifunction, 60, 114

Lipschitz, 267, 504
measurable, 114, 464
monotone, 161
pseudo-Lipschitz, 522

multiplier rule, 175, 178, 182, 221, 225, 246,
304, 336, 339, 535, 540

Nagumo growth, 329, 330, 364
Nirenberg, 402
nonholonomic integrator, 548
nontriviality condition, 178, 182, 438,

504
norm, 3

differentiable, 141
dual, 15
equivalent, 5
Euclidean, 6, 13
of a matrix, 344, 454
operator, 11
product, 5

normal cone, 20
generalized, 212
nontrivial, 45
of a product, 21
of an intersection, 22, 249
proximal, 240
to a convex set, 30
to a manifold, 93
trivial, 25

open mapping, 88, 93
operator, 10
optimal pricing, 550
orthogonal

subspace, 136
vectors, 136

orthonormal sets, 136

parallelogram identity, 134
Pareto optimal, 215
partial order, 83
pendulum, 292, 349
periodic trajectories, 345, 425, 427
phase coordinates, 311
Phelps, 83
Poincaré’s inequality, 431
polarity, 21, 71
Pontryagin maximum principle, 438
positive

definiteness, 3, 271, 500
homogeneity, 3, 33, 195
linear independence, 43, 249, 536
orthant, 181

positivity condition, 178, 183
potential energy, 274, 288, 292, 304, 336,

393
Preiss, 142, 167
principle

d’Alembert’s, 288
of least action, 292, 301
of optimality, 369

problem
of Lagrange, 335
allocation, 190
basic

in the calculus of variations, 287, 288,
308, 320, 391

boundary-value, 239, 333, 337, 346, 383,
413, 417, 421

Dirichlet, 431
isoperimetric, 304, 317, 344
minimal surface, 288
of Bolza, 347, 360, 363
of Neumann, 430
of Plateau, 394
of Zenodoros, 422
Sturm-Liouville, 346

process, 436
projection, 135
proximal

aiming, 263
density, 149
normal, 240
subdifferential, 145
subgradient, 145, 227
sum rule, 234
supergradient, 151

proximal solution, 239, 381, 563
pseudo-Lipschitz property, 520, 522

radius multifunction, 520
Rado, 402
rank condition, 95, 249, 336, 339, 341,

536
Rayleigh quotient, 346
reflexive space, 97
reflexivity

and uniform convexity, 106
of Hilbert space, 134
of Lebesgue spaces, 106

regular set, 215
regularity, 351, 364

autonomous, 330
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higher, 313
relaxed trajectories, 473
robot arm problem, 461
running cost, 436

saturated constraint, 179
sawtooth function, 113, 294, 320, 323,

473
sensitivity in control, 561
separability, 56

of L p, 111
separation, 41

in finite dimensions, 44
induced topology, 50

sequence spaces, 6
set

bounded, 4
closure, 4
compact, 13
convex, 24, 27
interior, 4
nonsmooth, 24
uniformly strictly convex, 404

sets
functionally defined, 249

shadow price, 182
Slater condition, 185
Snell’s law, 349
Sobolev space, 78, 407
soft landing problem, 451
stability

of equations, 91
of inequalities, 95

Stampacchia, 166, 402
state constraint, 324, 332, 340
stationarity condition, 178, 222, 278, 536,

542
Steiner point, 161
strong topology, 51
strongly

convex function, 486
decreasing system, 270
increasing system, 282
invariant set, 267

subadditive, 195
subdifferential

in R
n, 65

inversion, 71
limiting, 232
of a composition, 64
of a sum, 63
of convex analysis, 59
of Dini, 251
proximal, 145

viscosity, 251
subgradient, 59

proximal, 145, 227
sublevel sets, 217
supergradient, 151
support function, 54, 196

and boundedness, 81
characterization, 70
conjugate, 70

support of a function, 141
switching

curve, 452
function, 446

system of inequalities, 95

tangent cone, 20
generalized, 212
of a product, 21
of an intersection, 22, 249
to a convex set, 30
to a manifold, 93

target set, 436
theorem

Alaoglu’s, 55
Banach-Steinhaus, 80
Bessel’s, 137
Borwein-Preiss, 167
Carathéodory’s, 29
Caristi, 163
closed graph, 89
Ekeland’s, 83
Graves-Lyusternik, 91
Green’s, 396
Hahn-Banach extension, 17
inverse function, 95

Lipschitz, 283
Krein-Milman, 168
Kuhn-Tucker, 182
Lax-Milgram, 140, 413
Lusin’s, 112
Mazur’s, 53
mean value, 19, 66, 201, 228
minimax, 73
Miranda, 406
Moreau, 69
Motzkin’s, 164
open mapping, 88
Parseval, 139
proximal density, 149
Rademacher’s, 208
regularity, 312
Rellich-Kondrachov, 431
Riesz, 108
Rockafellar’s, 242
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separation, 41
finite dimensions, 45
induced topology, 50

Stampacchia, 166
Stegall, 154
Subbotin’s, 236
Tonelli’s, 321

Tonelli-Morrey conditions, 327, 410
generalized, 363
weakened, 345

topology
induced, 48
metrizable, 57, 58
strong, 51
weak, 51
weak∗, 53

Toricelli, 162
trace, 408
trajectory, 255, 436
transversality condition, 302, 310, 317, 339,

342, 348, 363, 438, 504
explicit, 442

triangle inequality, 3
turnpike, 362, 448, 498, 545, 550

uniform
boundedness principle, 80
convexity, 105

unilateral constraint, 178

variable-time problem, 449
variation, 289
variational inequality, 167

verification functions, 367, 368
in control, 494

viability, 261
vibrating string, 392
Vinter, 330, 460
viscosity

solutions, 383
subdifferential, 251

von Neumann, 73, 158, 402

weak
compactness, 96, 99

in L1, 112
decrease (of a function), 264, 281
derivative, 78
invariance (of a set), 256, 261, 281
sequential compactness, 101
solution, 397
topology, 48, 51

weak∗

compactness, 55
topology, 53

Weierstrass condition, 318, 339, 342, 344, 348,
363, 443

Weyl’s lemma, 407
Wirtinger’s inequality, 298, 302, 419,

431

Young’s inequality, 68

Zizler, 142
Zorn’s lemma, 5, 12, 17, 83, 168

statement, 17
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