
Chapter 9
Gröbner Bases and Buchberger’s Algorithm

We next examine the problem of finding the common roots of a finite set of poly-
nomials over a field K . To do this, we first introduce some necessary algebraic
structures. Gröbner bases play a key role in the computational aspect of this prob-
lem.

In Chapter 10 we will see how to computationally solve arbitrary systems of
polynomial equations using Gröbner bases.

9.1 Ideals and the Univariate Case

In the following we study a polynomial ring over an arbitrary field K . In Chapter 8
we defined (affine and projective) algebraic varieties for a given polynomial. We
now generalize this definition to a set of polynomials. Let S ⊆ K[x1, . . . , xn] be an
arbitrary set of polynomials. Then

V(S) := {
a ∈ Kn : f (a1, . . . , an) = 0 for all f ∈ S

} =
⋂

f ∈S

V(f )

is called the affine variety of S over the field K . Hence, an affine variety is an
intersection of affine hyperplanes. One can immediately observe that any common
root of the polynomials f1, . . . , ft ∈ K[x1, . . . , xn] is also a root of

∑t
i=1 hifi . This

holds for an arbitrary choice of h1, . . . , ht ∈ K[x1, . . . , xn], which motivates the
following definition.

Definition 9.1 A non-empty set I ⊆ K[x1, . . . , xn] is called an ideal if for all
f,g ∈ I and all h ∈ K[x1, . . . , xn] we have f + g ∈ I and hf ∈ I .
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138 9 Gröbner Bases and Buchberger’s Algorithm

For S ⊆ K[x1, . . . , xn] we denote by 〈S〉 the ideal generated by S, i.e., the small-
est ideal of K[x1, . . . , xn] that contains S. We have

〈S〉 =
{

t∑

i=1

hifi : f1, . . . , ft ∈ S, h1, . . . , ht ∈ K[x1, . . . , xn], t ∈N

}

.

The following exercise illustrates how varieties can be defined using ideals.

Exercise 9.2 Show that V(S) = V(〈S〉).

A generating system of an ideal I is also called a basis of I . Here we need to
stress that—unlike in the case of vector spaces—an ideal can have bases of different
cardinalities: For example, every subset of an ideal I which contains a basis of I

is also a basis of I . In Corollary 9.23, which is also known as the Hilbert Basis
Theorem, we will see that every ideal I ⊆ K[x1, . . . , xn] is finitely generated.

Not every basis of an ideal is of equal quality. Some bases allow for the obser-
vation of more characteristics of the ideal than others. We illustrate this with an
example.

Example 9.3 Let f = x2y + x + 1, g = x3y + x + 1 ∈ C[x, y]. In order to compute
the common roots of f and g, it is helpful to have a polynomial of I = 〈f,g〉 that
depends on only one unknown (e.g. on x). In this case we have

x2 − 1 = x · f − g ∈ I.

Therefore, for every common root (a, b)T of f,g we know that a ∈ {−1,1}. Sub-
stituting and solving the equations for y shows that the two points (−1,0)T and
(1,−2)T are the common roots of f and g. Figure 9.1 illustrates the real part of the
curves V(f ) and V(g). We have x · f − (x2 − 1) = g, hence I = 〈f,x2 − 1〉.

At this point, we briefly remark that the resultant Resy(f, g) = −x2(x2 − 1)

is also contained in I . We shall return to this connection in Chapter 10 (Proposi-
tion 10.4).

The previous example suggests the idea of solving a system of polynomial
equations via step by step elimination of variables followed by backwards substi-
tution. This corresponds to solving a linear system of equations in row echelon
form. This approach motivates the following term: For an ideal I = 〈f1, . . . , ft 〉 ⊆
K[x1, . . . , xn] and i ∈ {1, . . . , n − 1} let

I ∩ K[xi+1, . . . , xn]
denote the i-th elimination ideal.

Exercise 9.4 Show that the i-th elimination ideal of I is indeed an ideal in
K[xi+1, . . . , xn].
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Fig. 9.1 Varieties V(f )

and V(g)

We now lay the foundation for the study of elimination ideals in Chapter 10. To
do this we study the question of how, given an ideal I and a polynomial f , we can
determine if f is in I . This is the so-called ideal membership problem for which
Algorithm 9.3 on p. 148 provides a solution.

We first examine the special case of the ideal membership problem with
one unknown: For given polynomials f1, . . . , ft , f ∈ K[x] we ask whether f ∈
〈f1, . . . , ft 〉. A polynomial ring K[x] in one variable is a Euclidean ring since we
can define a division algorithm. Division (via the Euclidean Algorithm 9.1) allows
us to compute the greatest common divisor g of the polynomials f1, . . . , ft , with
〈g〉 = 〈f1, . . . , ft 〉. Furthermore, the Euclidean algorithm allows us to solve the ideal
membership problem, since it in particular enables us to determine if the remainder
of f divided by g is 0.

We assume that the reader knows the basic principles of the algorithm. However,
due to the significance of these two algorithms in our further work, we will illustrate
them.

For two polynomials f,g ∈ K[x] \ {0} there exist r, s ∈ K[x] such that

f = q · g + r where deg r < degg. (9.1)

When degf ≥ degg, we do the following: Assume that f = ∑n
i=0 aix

i and g =∑m
j=0 bjx

j where n ≥ m and an, bm �= 0. Via induction over the degree we can
assume that the polynomial h := f − an

bm
· xn−m · g of degree ≤ n − 1 has a decom-

position h = q ′ · g + r , such that deg r < degg. This implies

f = h + an

bm

· xn−m · g =
(

q ′ + an

bm

xn−m

)
g + r.

Using q := q ′ + an

bm
xn−m we get the desired statement. We denote the remainder r

as rem(f ;g) and write g | f if rem(f ;g) = 0.

Definition 9.5 Let K be a field. A polynomial g ∈ K[x] is called a greatest common
divisor (gcd) of f1, . . . , ft ∈ K[x] \ {0} if the following conditions are satisfied.
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Algorithm 9.1: The Euclidean algorithm
Input: f,g ∈ K[x] \ {0} with degf ≥ degg

Output: gcd(f, g)

1 r0 ← f ; r1 ← g; i ← 1
2 while ri �= 0 do
3 ri+1 ← rem(ri−1; ri)
4 i ← i + 1

5 return ri−1

(a) g | fi for all i ∈ {1, . . . , t};
(b) if h | f1, . . . , h | ft then h | g for all h ∈ K[x].

In every unique factorization domain there exists a greatest common divisor
which is unique up to multiplication by a unit (here a non-zero constant in K),
see Appendix A. For uniqueness we choose the gcd with leading coefficient 1.

Analogously we can define the least common multiple of f1, . . . , ft . Alterna-
tively we can read the following computational rule for two polynomials as a defi-
nition:

lcm(f1, f2) := f1f2

gcd(f1, f2)
.

This also shows that the computation of the least common multiple can be reduced
to the computation of the greatest common divisor.

A special property of the ring K[x], or of any Euclidean ring, is that the gcd can
be algorithmically computed.

The Euclidean Algorithm 9.1 terminates since the degrees of the polynomials ri
are strictly decreasing. We denote by qi the polynomial such that in Step 2 we have

ri−1 = qi · ri + ri+1. (9.2)

To prove that the algorithm is correct we show that r := ri−1, which is returned
in the last step, satisfies the two conditions from Definition 9.5. Using (9.2) we can
successively deduce that r divides the remainders ri−2, ri−3, . . . , r1 = g and r0 = f .
If h divides f as well as g, then h divides r2, r3, . . . , ri−1. This can also be deduced
from (9.2).

Every remainder computed throughout the Euclidean algorithm is contained
in the ideal 〈f,g〉 of the two input polynomials f,g ∈ K[x] and hence we have
gcd(f, g) ∈ 〈f,g〉. Therefore,

〈
gcd(f, g)

〉 = 〈f,g〉.

Example 9.6 Applying the Euclidean algorithm to the two polynomials f = x4 −x3

and g = x3 −x repeatedly yields (q1, r2) = (x −1, x2 −x) and (q2, r3) = (x +1,0),
so that x2 − x is the gcd of f and g.
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To determine a single generator of an ideal which is given by more than two
polynomials it is sufficient to verify the following rule:

Exercise 9.7 For t ≥ 3 we have gcd(f1, . . . , ft ) = gcd(f1,gcd(f2, . . . , ft )).

Given a sequence of generators f1, . . . , ft of an ideal I ⊆ K[x], the represen-
tation of I as a principal ideal I = 〈gcd(f1, . . . , ft )〉 is called a normal form of I .
This notion is justified by the following exercise.

Exercise 9.8 For univariate polynomials f1, . . . , ft , g1, . . . , gs ∈ K[x] \ {0} with
〈f1, . . . , ft 〉 equal to 〈g1, . . . , gs〉, show that up to a constant factor the polynomials
gcd(f1, . . . , ft ) and gcd(g1, . . . , gs) coincide.

In particular, the special case s = 1 implies that in any representation of an ideal
I ⊆ K[x] as a principal ideal I = 〈g1〉, the polynomial g1 is uniquely determined
up to a constant factor.

The Euclidean algorithm serves to compute a normal form for a given ideal I in
K[x]. If an ideal in K[x] is given in normal form, i.e., by a single generator, then the
Euclidean division solves the ideal membership problem. The goal of the following
sections is to generalize these two methods to polynomial rings with an arbitrary
number of unknowns.

9.2 Monomial Orders

The degree naturally defines a partial order on the polynomials in one unknown,
which were studied in the previous section. The remainder polynomial, which is the
result of the division of a polynomial f by g, is smaller than g with respect to this
partial order. To define a proper division in the multivariate case it is necessary to
first define a suitable order on the set of monomials.

A monomial x
α1
1 · · ·xαn

n in K[x1, . . . , xn] is denoted by xα , where α = (α1, . . . ,

αn) ∈N
n is a multi-index. In Definition 8.14 we defined the total degree of a mono-

mial as tdegxα := α1 + · · · + αn. The notation |α| is also used as an alternative to
tdegxα .

Definition 9.9 A monomial order on K[x1, . . . , xn] is a relation ≺ on N
n (or equiv-

alently a relation on the set of monomials xα for α ∈ N
n), which satisfies the fol-

lowing properties.

(a) The relation ≺ is a well-ordered relation on N
n, i.e., every non-empty subset of

N
n has a minimal element with respect to ≺.

(b) α ≺ β and γ ∈ N
n implies α + γ ≺ β + γ .

Every well-ordered relation is a total order. From condition (b) it follows that
the zero vector (respectively the empty monomial 1) is the unique smallest element
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with respect to every monomial order. The second condition requires a compatibility
with respect to multiplication: xα · xγ ≺ xβ · xγ (when expressed in the monomial
description).

Definition 9.10 (Lexicographic order) Let α,β ∈ N
n. We define xα ≺lex xβ if the

leftmost non-zero coefficient in the difference β − α ∈ Z
n is positive.

Example 9.11 We have (4,3,1) 
lex (3,7,10) and (4,3,1) ≺lex (4,7,10). Ex-
pressed as monomials in K[x, y, z], this translates to x4y3z1 
lex x3y7z10 and
x4y3z1 ≺lex x4y7z10 respectively.

The relation ≺lex is a monomial order. It suffices to check that the relation is a
well-ordered relation. If we assume that ≺lex is not a well-ordered relation, then we
can find a strictly decreasing series

α(1) 
lex α(2) 
lex α(3) 
lex · · · (9.3)

of elements in N
n. By the definition of the lexicographic order, the leftmost entries

α
(i)
1 define a non-increasing series in N. Since the set of natural numbers is well-

ordered, there exists an N1 such that (α(i))1 = (α(N1))1 for all i ≥ N1. Now by
considering only the series elements after the index N1, we can in the same way
deduce that there exist N2, . . . ,Nn such that (α(i))j = (α(Nj ))j for all i ≥ Nj and
j ∈ {2, . . . , n}. This contradicts the series (9.3) being strictly decreasing.

A monomial order yields a unique sorted description for arbitrary polynomi-
als. For the remaining part of this section we will fix a monomial order ≺ on
K[x1, . . . , xn]. For a non-zero polynomial f = ∑

α cαxα in K[x1, . . . , xn] let α∗ :=
max≺{α : cα �= 0}. The leading monomial of f is lm≺(f ) := xα∗

and the corre-
sponding coefficient lc≺(f ) := cα∗ is called the leading coefficient. Their product

lt≺(f ) := lc≺(f ) · lm≺(f ) = cα∗ · xα∗

is called the leading term of f . When the monomial order is contextually clear it is
often neglected in the notation.

Example 9.12 For f = 5x4y3z + 2x3y7z10 in K[x, y, z] we have that lt≺lex(f ) =
x4y3z, lc≺lex(f ) = 5 and lm≺lex(f ) = 5x4y3z with respect to the lexicographic or-
der.

We are now able to generalize the division algorithm to the multivariate case.
Here there is a major difference in comparison to the univariate case: It is useful
to describe the division of a polynomial f ∈ K[x1, . . . xn] by a set of polynomials
(f1, . . . , ft ) since ideals in K[x1, . . . , xn] are in general not generated by a single
polynomial.

We look at the leading monomial lm(f ) of f and check if division by any of
the leading monomials lm(f1), . . . , lm(ft ) results in a remainder of 0. For the first
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Algorithm 9.2: The multivariate division algorithm
Input: f,f1, . . . , ft ∈ K[x1, . . . , xn] with fi �= 0
Output: a1, . . . , at , r with f = ∑t

i=1 aifi + r

1 ai ← 0 for all i ∈ {1, . . . , t}
2 p ← f

3 while p �= 0 do
4 m ← lt(p)

5 i ← 1
6 while i ≤ t and m �= 0 do
7 if lt(fi) divides m then
8 ai ← ai + m

lt(fi )
; p ← p − m

lt(fi )
fi

9 m ← 0

10 i ← i + 1

11 r ← r + m ; p ← p − m

12 return (a1, . . . , at ; r)

polynomial fk which satisfies this condition, we subtract a suitable multiple of fk

from f ,

f − lt(f )

lt(fk)
fk,

and obtain a new polynomial which is strictly smaller than f with respect to the
monomial order. We replace f by the new polynomial and repeat the process. If the
leading monomial of f is not divisible by any of the leading terms lt(f1), . . . , lt(ft ),
we add the leading term to the remainder, subtract it from f and start again at the
beginning.

The remainder r which is produced by Algorithm 9.2 is called the remainder of
f after division by (f1, . . . , ft ) and we denote it by rem(f ;f1, . . . , ft ). In general
this remainder is not independent of the order of the polynomials by which we
divide.

Example 9.13 Let f = xy2 − y, f1 = xy − 1 and f2 = y2 + 1 be polynomials in
K[x, y]. With respect to the lexicographic order and the ordering (f1, f2) of the
polynomials, the division algorithm divides the leading term xy2 by xy resulting
in y. Since f − y · f1 = 0 the algorithm terminates and returns the decomposi-
tion

xy2 − y = y · (xy − 1) + 0 · (y2 + 1
) + 0.

If we reverse the ordering of the polynomials, i.e., we divide by (f2, f1), the term
xy2 is divided by the leading monomial y2, resulting in x. Since the polynomial
f − x · f2 = −y − x is not divisible any further by f1 or f2, the algorithm yields
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the decomposition

f = x · (y2 + 1
) + 0 · (xy − 1) + (−x − y).

Our remainders are: rem(f ;f1, f2) = 0 and rem(f ;f2, f1) = −x − y.

In general, the multivariate division algorithm results in a representation of the
following form.

Lemma 9.14 For given polynomials f,f1, . . . , ft ∈ K[x1, . . . , xn] the Division Al-
gorithm 9.2 returns polynomials a1, . . . , at and r = rem(f ;f1, . . . , ft ), for which
we have

f = a1f1 + · · · + atft + r,

where no term of r is divisible by any of the monomials lm(f1), . . . , lm(ft ). Fur-
thermore, we have for each i ∈ {1, . . . , t} with ai �= 0 that

lm(aifi) � lm(f ).

Proof It is clear by the construction of the algorithm that no term of the remainder
r is divisible by any of the leading monomials lm(f1), . . . , lm(ft ). The assignment
ai ← ai + lt(p)

lt(fi )
ensures that the product ai lt(fi) is a sum of terms of f . However,

the terms of f are dominated by their leading term. �

Exercise 9.15 Let ≺ be a monomial order on K[x1, . . . , xn]. Show that

α ≺tdeg β : ⇐⇒ tdegα < tdegβ or (tdegα = tdegβ and α ≺ β),

defines a monomial order.

The construction in Exercise 9.15 can, in certain cases, yield a monomial order
even if the original order does not satisfy all the axioms of a monomial order. The
next exercise exhibits this phenomenon for ≺grevlex, a monomial order that is often
a very efficient one in practical computations.

Exercise 9.16 Let α,β ∈ N
n. We define xα <revlex xβ if the rightmost non-zero

coefficient in the difference β − α ∈ Z
n is negative.

(a) Show that the reverse lexicographic order <revlex is not a monomial order.
(b) Show that the graded reverse lexicographic order defined by

α ≺grevlex β : ⇐⇒ tdegα < tdegβ or

(tdegα = tdegβ and α <revlex β),

is a monomial order.
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9.3 Gröbner Bases and the Hilbert Basis Theorem

In this section we introduce the key concept for solving the ideal membership prob-
lem. We start with an example that illustrates why the multivariate case is much
more complicated than the univariate case.

Example 9.17 Let f1 = xy + 1, f2 = yz + 1 be polynomials in K[x, y]. In the
univariate case it would be desirable to use Euclidean division to determine if the
polynomial f = z − x is contained in the ideal I = 〈f1, f2〉. In fact we do have

z − x = z · (xy + 1) − x(yz + 1) ∈ 〈f1, f2〉.
However, neither for the ordering (f1, f2) nor for the ordering (f2, f1) is the re-
mainder zero when applying Euclidean division with respect to lexicographic order.
Of course, adding z − x to the ideal basis would give that division of z − x by the
new basis would have 0 as the remainder.

It may seem naive to enlarge the original generating system of an ideal by proper
polynomials so that every polynomial of the ideal has a remainder of zero when
divided by the basis. However, this can be algorithmically achieved. What we need
for this is a criterion that determines if the generating system is large enough.

We denote the set of leading terms of an ideal I with respect to the monomial
order ≺ by lt≺(I ). The ideal 〈lt≺(I )〉 generated by the leading terms is called the
initial ideal of I with respect to ≺, and we write in≺(I ) := 〈lt≺(I )〉.

Definition 9.18 Let I be an ideal. A finite subset G = {g1, . . . , gt } ⊆ I is called
a Gröbner basis of I with respect to the monomial order ≺ if the leading terms
lt≺(g1), . . . , lt≺(gt ) generate the initial ideal of I , i.e.,

〈
lt≺(g1), . . . , lt≺(gt )

〉 = in≺(I ).

Our next important intermediate goal is to show that every ideal has a Gröbner
basis. We begin by proving this statement for the special case of monomial ideals.
Monomial ideals are those ideals which have a generating system consisting only of
monomials. Initial ideals are always monomial ideals.

Lemma 9.19 Let I = 〈xα : α ∈ A〉 where A ⊆ N
n is a monomial ideal. We have

xβ ∈ I if and only if xβ is a multiple of xα for an α ∈ A.

Proof If xβ is a multiple of xα for an α ∈ A, then by the definition of an ideal,
xβ ∈ I .

Conversely, if xβ ∈ I , then there exists a representation xβ = ∑t
i=1 hix

α(i)
with

hi ∈ K[x1, . . . , xn] and α(i) ∈ A for 1 ≤ i ≤ t . Every term of the polynomial on the
right hand side of the equation is a multiple of a term xα for some α ∈ A. Therefore,
the polynomial on the left hand side of the equation also has this property. �
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Fig. 9.2 A visualization of
the Gordan–Dickson lemma
for n = 2. Every lattice point
(α1, α2) represents a
monomial x

α1
1 x

α2
2

The following theorem shows that monomial ideals are finitely generated.

Theorem 9.20 (Gordan–Dickson Lemma) Every non-empty set M of monomials
in K[x1, . . . , xn] contains a finite subset E ⊆ M such that every monomial of M is
a multiple of a monomial in E.

Before beginning the proof, we illustrate the theorem for the case n = 2. Each
point (i, j) in Fig. 9.2 represents a monomial xiyj in K[x, y]. If a monomial xiyj

is contained in a monomial ideal I , then Lemma 9.19 states that every monomial
xkyl with k ≥ i and l ≥ j is contained in I as well. So the Gordan–Dickson lemma
implies that the points corresponding to monomials in I can be represented as a
finite union of transposed copies of the points in the positive orthant.

Proof The proof is by induction over the number of unknowns n. For n = 1 we
have M = {xα : α ∈ A} for a subset A ⊆ N. A has a smallest element β . Using
Lemma 9.19 we conclude I = 〈xβ〉.

So let n ≥ 2 and assume that the statement is true for n − 1 unknowns. Take an
arbitrary monomial

xα = x
α1
1 · · ·xαn

n

from M .
We first show that every monomial xβ ∈ M which is not a multiple of xα belongs

to at least one of the sets Mi,j , where: for i ∈ {1, . . . , n} and j ∈ {0, . . . , αi − 1},
Mi,j is the set of those monomials xγ ∈ M for which degxi

(xγ ) = j . Since xα

does not divide the monomial xβ , we have βi < αi for some i ∈ {1, . . . , n}. Hence,
xβ ∈ Mi,βi

.
Let M ′

i,j be the set of monomials in K[x1, . . . , xi−1, xi+1, . . . , xn] that can be
obtained from monomials of Mi,j by dropping the factor x

j
i . By the inductive hy-

pothesis there exist finite subsets E′
i,j ⊆ M ′

i,j such that every monomial in M ′
i,j is a

multiple of the monomial E′
i,j . We define

Ei,j := {
p · xj

i : p ∈ E′
i,j

}
.
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Now it is clear that every monomial in M is a multiple of a monomial in the finite
set

E := {
xα

} ∪
⋃

i,j

Ei,j ⊆ M. �

Remark 9.21 This lemma will play a key role in proving the termination of several
algorithms. The statement is actually purely combinatorial: Given a set A of subsets
of N

n such that every A ∈ A is of the form αA + N
n with αA ∈ N

n, the union⋃
A∈A A is a finite union, i.e., there exist A1, . . . ,Ak ∈A with

⋃
A∈A A = ⋃k

i=1 Ai .

Using the Gordan–Dickson lemma it is now possible to prove that every non-zero
ideal in K[x1, . . . , xn] has a Gröbner basis.

Theorem 9.22 Let ≺ be a monomial order on K[x1, . . . , xn]. Then:

(a) Every non-zero ideal I has a Gröbner basis.
(b) The elements of a Gröbner basis of I generate the ideal I .

Proof Let I �= {0} be an ideal.
(a): The initial ideal in≺(I ) is generated by the monomials lm≺(g), with g ∈

I \ {0}. By the Gordan–Dickson lemma 9.20 there exist finitely many g1, . . . , gt

with
〈
lt≺(g1), . . . , lt≺(gt )

〉 = lt≺(I ),

which ensures the existence of a Gröbner basis.
(b): The ideal J which is generated by the polynomials g1, . . . , gt of a Gröb-

ner basis is clearly contained in I . To show the reverse inclusion we assume that
I \ J �= ∅. Let f be a polynomial in I \ J with a leading term that is minimal with
respect to ≺. Since lm≺(g1), . . . , lm≺(gt ) generate the initial ideal in≺(I ), there
exist polynomials h1, . . . , ht with

lm≺(f ) = lm≺(g1) · h1 + · · · + lm≺(gt ) · ht .

The polynomial

g = f −
t∑

i=1

gihi

is contained in I but not in J (otherwise we would have f ∈ J ). We also have that
the leading monomial of f does not appear in g, which means that the correspond-
ing coefficient is zero. Hence lm≺(g) is smaller than lm≺(f ) with respect to the
monomial order ≺. This contradicts the minimality of f . We therefore have I = J ,
which proves our statement. �

As an immediate consequence of Theorem 9.22 we get the following finiteness
statement.
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Algorithm 9.3: A solution of the ideal membership problem
Input: f,g1, . . . , gt ∈ K[x1, . . . , xn], such that G := {g1, . . . , gt } is a Gröbner

basis of the ideal I = 〈G〉 with respect to the monomial order ≺
Output: Determine if f ∈ I

1 r ← rem≺(f ;g1, . . . , gt )

2 if r = 0 then
3 return “Yes”
4 else
5 return “No”

Corollary 9.23 (Hilbert Basis Theorem) Every ideal I ⊆ K[x1, . . . , xn] has a finite
generating system.

The important property of Gröbner bases is that they provide a solution to the
ideal membership problem, as carried out in Algorithm 9.3.

Correctness of Algorithm 9.3 If rem≺(f ;g1, . . . , gt ) = 0, then f is contained in I .
It remains to be shown that rem≺(f ;g1, . . . , gt ) �= 0 implies that f /∈ I . Assume that
rem≺(f ;g1, . . . , gt ) �= 0 and f ∈ I . Then the remainder r = rem≺(f ;g1, . . . , gt ) ∈
I and therefore lt≺(r) ∈ in≺(I ). Since G is a Gröbner basis, it follows that in≺(I ) =
〈lt≺(g1), . . . , lt≺(gt )〉. By Lemma 9.19, lt≺(r) is a multiple of a leading term lt≺(gi)

for an i ∈ {1, . . . , t}. But by Lemma 9.14, the divisibility of lt≺(r) by lt≺(gi) con-
tradicts the fact that r is a remainder of the division by g1, . . . , gt . �

For the remaining part of this section assume that G = {g1, . . . , gt } is a Gröbner
basis of the ideal I ⊆ K[x1, . . . , xn] with respect to the monomial order ≺.

Exercise 9.24 Show that Euclidean division is independent of the order of polyno-
mials in G:

rem≺(f ;g1, . . . , gt ) = rem≺(f ;gσ(1), . . . , gσ(t))

for all permutations σ .

We can therefore write rem≺(f ;G) instead of rem≺(f ;g, . . . , gt ). The follow-
ing holds for polynomials which need not form a Gröbner basis.

Exercise 9.25 Let f1, . . . , ft be an arbitrary finite family of polynomials in
K[x1, . . . , xn]. Show that for arbitrary f,g ∈ K[x1, . . . , xn] and c ∈ K :

(a) rem≺(f + g;f1, . . . , ft ) = rem≺(f ;f1, . . . , ft ) + rem≺(g;f1, . . . , ft );
(b) rem≺(cf ;f1, . . . , ft ) = c rem≺(f ;f1, . . . , ft ).
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This implies that a Gröbner basis defines a normal form for the equivalence
classes

f + I = rem(f ;G) + I.

Furthermore, the normal forms of the equivalence classes for I define a K-vector
space.

9.4 Buchberger’s Algorithm

The proof of the existence of Gröbner bases in Theorem 9.22 was not constructive.
The topic of this section is an algorithm for computing Gröbner bases that dates
back to the PhD thesis of Bruno Buchberger in 1965. His method is one of the most
important methods in modern computer algebra.

The following finiteness statement will later provide an argument for the termi-
nation of Buchberger’s algorithm.

Proposition 9.26 (Ascending Chain Condition) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a mono-
tonically ascending chain of ideals in K[x1, . . . , xn], then there exists an N ≥ 1 with
IN = IN+1 = IN+2 = · · · .

In other words: Every ascending chain of ideals terminates.

Proof Given an ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · we study the union I =⋃∞
i=1 Ii . Definition 9.1 gives that I is an ideal. Hilbert’s Basis Theorem 9.23 shows

that I has a finite set of generators f1, . . . , ft . Every polynomial fi is contained in an
ideal Iji

for a suitable ji ∈ N. For N = max{ji : 1 ≤ i ≤ t} we have f1, . . . , ft ∈ IN

and therefore, IN = IN+1 = · · · = I . �

A commutative ring is called Noetherian if the ascending chain condition holds.
In the proof above we saw that the ascending chain condition follows from the
fact that all ideals are finitely generated. The converse is also true: Hilbert’s basis
theorem and the ascending chain condition are equivalent.

As before we fix the monomial order ≺ for the following.

Definition 9.27 The S-polynomial of two non-zero polynomials f and g in
K[x1, . . . , xn] is defined as

spol≺(f, g) := lt≺(g)

m
f − lt≺(f )

m
g,

where m denotes the greatest common divisor of lm≺(f ) and lm≺(g).

Buchberger’s Gröbner basis algorithm uses the following characterization.
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Theorem 9.28 (Buchberger’s Criterion) A finite set G = {g1, . . . , gt } ⊆
K[x1, . . . , xn] is a Gröbner basis for 〈G〉 with respect to ≺ if and only if the re-
mainder rem≺(spol≺(gi, gj );G) vanishes for all i, j ∈ {1, . . . , t}.

Proof If G is a Gröbner basis, then we have spol(gi, gj ) ∈ I and the remainder after
Euclidean division by G is the zero polynomial.

For the reverse implication let rem(spol(gi, gj );G) = 0 for all i, j . A polynomial
f ∈ I has a representation

f =
t∑

i=1

higi (9.4)

with polynomials h1, . . . , ht ∈ K[x1, . . . , xn]. We have to show that the leading term
lt(f ) is a multiple of lt(gi) for some basis element gi ∈ G. The representation (9.4)
immediately gives that

lm(f ) � max
{
lm(higi) : 1 ≤ i ≤ t

} = xα

for an α ∈ N
n. Without loss of generality we can assume that lm(h1g1) = xα and

lc(gi) = 1 for all i ∈ {1, . . . , t}. We distinguish between two cases.
Case 1: lm(f ) = xα . Here the monomial xα is a multiple of lm(g1) and we have

nothing left to show.
Case 2: lm(f ) ≺ xα . In this case there exists at least one other polynomial higi

such that lt(higi) = xα , as otherwise it would be impossible to cancel the xα terms
through addition. Without loss of generality we can assume that lm(h2g2) = xα .
Using the notation lt(h1) = bβxβ and lt(h2) = cγ xγ we have

h1g1 = (
bβxβ + · · · )g1 = bβxβg1 + (

terms ≺ xα
)

and

h2g2 = (
cγ xγ + · · · )g2 = cγ xγ g2 + (

terms ≺ xα
)
.

By construction we have that xα is a multiple of the leading monomials of g1 and
g2 and hence also a multiple of xμ := lcm(lm(g1), lm(g2)). This yields

h1g1 + h2g2 = (bβ + cγ )xβg1 + cγ

(
xγ g2 − xβg1

) + (
terms ≺ xα

)

= (bβ + cγ )xβg1 − cγ xα−μ spol(g1, g2) + (
terms ≺ xα

)
.

Our assumption implied rem(spol(g1, g2);G) = 0 and thus Lemma 9.14 implies
that there exist polynomials u1, . . . , ut with

spol(g1, g2) =
t∑

i=1

uigi
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Algorithm 9.4: Buchberger’s algorithm
Input: finite set of polynomials F = {f1, . . . , ft } ⊆ K[x1, . . . , xn]
Output: Gröbner basis G for 〈F 〉 with respect to ≺ with F ⊆ G

1 G ← F

2 repeat
3 G′ ← G

4 foreach pair {p,q} ⊆ G′ with p �= q do
5 r ← rem≺(spol≺(f, g);G′)
6 if r �= 0 then
7 G ← G ∪ {r}
8 until G = G′
9 return (G)

and lm(uigi) � lm(spol(g1, g2)) ≺ xμ. In particular we have lm(xα−μuigi) ≺ xα

for 1 ≤ i ≤ t , which implies that there exist polynomials h′
1, . . . , h

′
t with

f =
t∑

i=1

h′
igi .

Compared to the original representation (9.4), the number of terms h′
igi whose lead-

ing monomial is xα either decreases, or we have

max≺
{
lm

(
h′

igi

) : 1 ≤ i ≤ t
} ≺ xα.

Therefore, after finitely many steps, the problem can be reduced to the first case.
This proves the statement. �

The basic idea behind the computation of a Gröbner basis of an ideal is to succes-
sively add S-polynomials to a given generating system. By Buchberger’s criterion
we know that we have a Gröbner basis if all of the remainders of the S-polynomials
vanish when divided by the generators. We summarize the method in Algorithm 9.4.

Theorem 9.29 Let f1, . . . , ft ∈ K[x1, . . . , xn] with 〈f1, . . . , ft 〉 �= {0}. Buch-
berger’s algorithm computes a Gröbner basis for the ideal I = 〈f1, . . . , ft 〉.

Proof Every polynomial that is added to G throughout the algorithm is contained
in the ideal I . Since no polynomial is ever removed from G, we retain the property
〈G〉 = I after each step. If the algorithm terminates, Buchberger’s Criterion 9.28
implies that G is a Gröbner basis.

It remains to be shown that the algorithm terminates after finitely many steps.
Throughout the algorithm, when r �= 0 we have that lt(r) /∈ 〈lt(g) : g ∈ G〉. Hence,
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adding r to the basis G makes the ideal 〈lt(g) : g ∈ G〉 strictly larger. If the al-
gorithm did not terminate, it would yield an infinitely ascending chain of ideals,
contradicting Proposition 9.26. �

9.5 Binomial Ideals

A polynomial of the form xα − xα′ ∈ K[x1, . . . , xn] with α,α′ ∈ N
n is called a

binomial, and an ideal that has a generating system consisting of binomials is called
a binomial ideal. The previously described theories are very simple in the case of
binomial ideals. This will be particularly useful in Section 10.6.

Two elementary observations illustrate the uniqueness of the situation. First,
we divide two binomials. For this we fix a monomial order ≺. If we assume for
α,α′, β,β ′ ∈N

n that xα 
 xα′
, xβ 
 xβ ′

and that xβ divides xα , then we get

xα − xα′ = xα−β · (xβ − xβ ′) − xα′ + xα−β+β ′
. (9.5)

In particular,

rem
(
xα − xα′ ;xβ − xβ ′) = xα−β+β ′ − xα′

(9.6)

is a binomial. From this we can deduce the following.

Lemma 9.30 Let b1, . . . , bt be a family of binomials. Then:

(a) for every monomial xα , rem(xα;b1, . . . , bt ) is again a monomial; and
(b) for every binomial xα − xα′

, rem(xα − xα′ ;b1, . . . , bt ) is again a binomial.

Proof For the special case t = 1 we explicitly showed the second statement in (9.5).
The general case t ≥ 2 follows since we can simply iterate the computation.

The first statement follows analogously. In (9.5) we can alternatively set
α′ = −∞ with the convention that x−∞ = 0. Then xα − xα′ = xα is a monomial
and rem(xα;xβ − xβ ′

) = xα−β+β ′
. Again, a simple iteration yields the result of the

division by several polynomials. �

The second observation is of similar simplicity.

Lemma 9.31 The S-polynomial of two binomials is a binomial.

Proof We assume α,α′, β,β ′ ∈ N
n with xα 
 xα′

and xβ 
 xβ ′
. Furthermore, let

xμ = gcd(xα, xβ). Then we have the equation

spol
(
xα − xα′

, xβ − xβ ′) = xβ−μ · (xα − xα′) − xα−μ · (xβ − xβ ′)

= xα+β ′−μ − xα′+β−μ. �

When we examine the individual steps of Algorithm 9.4, the most important
statement about binomial ideals follows directly from the above two lemmas.
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Theorem 9.32 Given a binomial generating system of a (necessarily binomial)
ideal, Buchberger’s algorithm computes a Gröbner basis consisting of binomials.

9.6 Proving a Simple Geometric Fact Using Gröbner Bases

We now demonstrate how Gröbner bases can be employed to prove incidence state-
ments and length relations in elementary geometry.

Theorem 9.33 The three medians of a (non-degenerate) triangle conv{a, b, c} ⊆ R
2

intersect in a single point which we will call s. Each of the medians is divided by s

in the relation 2 : 1.

In high school this theorem is proven directly, e.g. by setting up a system of
equations that is obtained by the equations of the involved lines.

Proof Note that we can simplify our task by observing that the statement is inde-
pendent of translation. That is, we can assume that the vertex a is the origin (0,0).
We can choose a second point, say b, as (1,0) since the statement is independent of
rotation and scaling. We denote the coordinates of the third point by c = (x, y).

We use the notation from Fig. 9.3. The three midpoints of the sides have coordi-
nates

p =
(

x + 1

2
,
y

2

)
, q =

(
x

2
,
y

2

)
, r =

(
1

2
,0

)
.

Let s := (u, v) be the intersection of aff(a,p) and aff(b, q). The fact that s lies on
aff(a,p) is (by comparing the slope of the lines aff(a, s) and aff(a,p)) equivalent
to

f1 := uy − v(x + 1) = 0.

Analogously, the relation s ∈ aff(b, q) is equivalent to

f2 := (u − 1)y − v(x − 2) = 0.

s lies on aff(c, r) if and only if

g1 := −2(u − x)y − (v − y)(1 − 2x) = −2uy − (v − y) + 2vx = 0.

The point s divides the medians in a 2 : 1 relation if and only if the following three
equations hold:

(u, v) = s − a = 2(p − s) = (x + 1 − 2u,y − 2v),

(u − 1, v) = s − b = 2(q − s) = (x − 2u,y − 2v),

(u − x, v − y) = s − c = 2(r − s) = (2u − 1,2v).
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Fig. 9.3 The medians of a
triangle meet in a common
point s, which is in fact the
center of mass

This reduces to

g2 := 3u − x − 1 = 0,

g3 := 3v − y = 0.

We have to respect the condition that our triangle conv{a, b, c} is not degenerate,
i.e., y �= 0. This can be expressed by an equation if we introduce another variable z:

f3 := yz − 1 = 0.

Now we want to show that

f1 = f2 = f3 = 0 =⇒ g1 = g2 = g3 = 0

or, in other words, that V(f1, f2, f3) ⊆ V(g1, g2, g3). Our proof is complete if we
can show the stronger statement

g1, g2, g3 ∈ 〈f1, f2, f3〉.

We compute a Gröbner basis of the ideal I := 〈f1, f2, f3〉 ⊆ R[u,v, x, y, z]
for, say, the graded reverse lexicographic order ≺grevlex. Using Buchberger’s Cri-
terion 9.28 we can verify that

G = {3v − y,3u − x − 1, yz − 1}

is a ≺grevlex-Gröbner basis of I . Dividing out three candidates g1, g2, g3 by G yields

rem(g1;G) = rem(g2;G) = rem(g3;G) = 0,

i.e., g1, g2, g3 ∈ I . �

Observe that we didn’t assume x, y, u and v to be real numbers. The proof is
therefore also valid over C.
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9.7 Exercises

Exercise 9.34 Show that, given two univariate polynomials f,g ∈ K[x] \ {0}, there
exist polynomials a, b ∈ K[x] such that

gcd(f, g) = af + bg.

To do so, analyze the Euclidean Algorithm 9.1 and modify it in such a way that the
polynomials a and b are computed.

The method described in Exercise 9.34 is called the extended Euclidean algo-
rithm.

Exercise 9.35 Let G = {g1, . . . , gt } be a Gröbner basis of an ideal I ⊆ K[x1, . . . ,

xn] with respect to the monomial order ≺ and let f,g be polynomials whose dif-
ference f − g lies in I . Show that g = rem≺(f ;G) if and only if no term of g is
divisible by one of the leading monomials of lt≺(g1), . . . , lt≺(gt ).

For a Gröbner basis G of an ideal I , we have that every superset G′ of G with
G′ ⊆ I is a Gröbner basis of I . This leads to the question if a given Gröbner basis
can have superfluous elements.

Definition 9.36 A Gröbner basis G of an ideal I is called reduced if for all g ∈ G:

(a) The leading coefficient is normalized: lc≺(g) = 1.
(b) No monomial of g lies in in≺(G \ {p}).

Exercise 9.37 Show that every non-zero ideal has a unique reduced Gröbner basis
for the monomial order ≺.

9.8 Remarks

The structure of our presentation is based on the beautiful and comprehensive intro-
duction to the theory of Gröbner bases by Cox, Little and O’Shea [28]. Another text
worth reading is the monograph of Adams and Loustaunau [1]. The example of the
geometric proof was taken from zur Gathen and Gerhard [97].

Gröbner bases were introduced in the 1960s by Hironaka [60, 61] (who called
them “standard bases”) and independently by Buchberger in his dissertation [17] in
1965. The term “Gröbner basis” was established by Buchberger in honor of his PhD
advisor Wolfgang Gröbner. The exact origin of the “S” in the term “S-polynomial”
is not clear. It is sometimes interpreted as “subtraction” or “syzygy”.

The statement of the Gordan–Dickson Lemma 9.20 was (re)discovered several
times. Its first explicit appearances are usually credited to the German mathemati-
cian Paul Gordan [50] and to the American mathematician Leonard Eugene Dick-
son [35].
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If the coefficients of two polynomials f and g are rational numbers, then the
computation of the greatest common divisor via the Euclidean algorithm is per-
formed in polynomial time. As stated in Appendix C, polynomial time performance
refers to the total length of the input coded as a series of bits. In contrast to this,
the ideal membership problem, as well as the problem of computing a Gröbner ba-
sis, are intrinsically difficult problems. Mayr and Meyer [76] showed that, with re-
spect to complexity theory, every problem that can be solved with an exponentially
large memory can be reduced to an ideal membership problem. Since an exponen-
tially large memory is sufficient, we have that the ideal membership problem is
EXPSPACE-complete. EXPSPACE-complete problems are significantly more diffi-
cult than NP-complete problems: All known algorithms for EXPSPACE-complete
problems have at least double-exponential worst-case run-time.

From a practical viewpoint, Buchberger’s algorithm can be more efficient in sev-
eral ways, e.g. by avoiding the computation of superfluous S-polynomials (besides
the aforementioned books, see also Using Algebraic Geometry by Cox, Little and
O’Shea [29] as well as the book by Becker and Weispfenning [11]).

Algorithmic concepts which occur in the solution of problems in the field of real
algebraic geometry include a variety of methods which are not mentioned in this
book. For an overview we refer to the monograph by Basu, Pollack and Roy [10].
Additionally, over the real numbers the question of how to deal with systems of poly-
nomial inequalities arises. This leads to semi-algebraic geometry. For this, Collins
developed an important approach called the cylindric algebraic decomposition [25]
(for quantifier elimination over real-closed fields). This method is implemented in
QEPCAD [65].
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