
Chapter 7
Delone Triangulations

We have already illustrated the utility of Voronoi diagrams with the application in
Section 6.5. In fact, the neighborhood relations of points to each other which are ex-
pressed in Voronoi diagrams are used in their dual form in many other applications.
This leads to the concept of Delone subdivisions (of the convex hull) of a point set.
We shall discuss an application of this in Chapter 11.

As part of our study of Delone triangulations, we will explore the relation of
convex hull algorithms to triangulation methods and to the computation of volumes.

7.1 Duality of Voronoi Diagrams

Let S ⊆ R
n be finite such that S affinely spans the space R

n. By Theorem 6.12
we know that a Voronoi diagram VD(S) is generated by the vertical projection
of the polyhedron P(S) = ⋂

s∈S T (s)+ ⊆ R
n+1 to the first n coordinates. Here,

T (s) denotes the tangent hyperplane of the standard paraboloid U at the point
sU := (s,‖s‖2)T , and T (s)+ denotes the upper half-space. By Theorem 6.14,
affS = R

n implies that P(S) has a vertex, i.e., it is pointed. Therefore, by Theo-
rem 3.36, P(S) is projectively equivalent to a polytope. In the following we describe
how to construct a polytope which is projectively equivalent to P(S).

To do this, we examine the projective transformation π of Pn+1
R

defined by the
(n + 2) × (n + 2)-matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . . . . 0 1
0 2 0 . . . 0 0
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

...

0 0 . . . 0 2 0
−1 0 . . . . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As we have previously done, we regard R
n+1 as a subset of Pn+1

R
via the embedding

ι introduced in Section 2.1.
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Fig. 7.1 An illustration of
the standard parabola and of
the map π inducing the
stereographic projection

Lemma 7.1 The projective transformation π maps the standard paraboloid
U ⊆ R

n+1 to the unit sphere S
n ⊆ R

n+1. The only point on S
n which is not con-

tained in the image of U under π is the north pole (1 : 0 : · · · : 0 : 1)T . The tangential
hyperplane [1 : 0 : · · · : 0 : 1] at the north pole is the image of the ideal hyperplane
under π .

Proof For a point s ∈ R
n we have

π
(
1 : s1 : · · · : sn : ‖s‖)T = (

1 + ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1
)T

,

and also 1 + ‖s‖2 > 0. The square of the norm of the (affine) image point is

∥
∥
(
1 + ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1

)T ∥
∥2

= 4s2
1 + · · · + 4s2

n + (‖s‖2 − 1)
2

(1 + ‖s‖2)
2

= 1.

This implies that π(s) lies on the unit sphere.
Since π induces a stereographic projection from R

n to S
n \ {(1 : 0 : · · · : 0 : 1)T },

we can show that (1 : 0 : · · · : 0 : 1)T is the only point on S
n that is not contained in

the image of π . To do this, it suffices to study the case n = 1. The affine point

π(sU ) =
(

2s

1 + s2
,
s2 − 1

1 + s2

)T

is the intersection point of the unit circle and the connecting line of (s,0)T with the
north pole (0,1)T ; see Fig. 7.1.

The last statement, i.e., that the ideal hyperplane [1 : 0 : · · · : 0] is mapped to the
tangential hyperplane at the north pole, can be proved with a simple calculation. �

Exercise 7.2 Show that the closure of the image π(P(S)) is a polytope. [Hint: Use
Lemma 6.11 to compute a ball that contains π(P(S)).]
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In the following we will denote the polytope π(P(S)) by PS . By construction,
PS ⊆ R

n+1 is full-dimensional and has the origin in its interior. Its polar polytope
QS := P ◦

S is also full-dimensional and has the origin in its interior. Since π is dif-
ferentiable, Lemma 7.1 implies that all facets of PS are tangent to S

n. This is true
for the images of the facets of P(S) under π , as well as for the image of the ideal
hyperplane [1 : 0 : · · · : 0]. This leads to the following V-representation of QS :

QS = conv
({(

1 + ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1
)T : s ∈ S

}

∪ {
(1 : 0 : · · · : 0 : 1)T

})
. (7.1)

Furthermore, the points in (7.1) are the vertices of QS . If we apply the map π−1

to QS we obtain, since π−1((1 : 0 : · · · : 0 : 1)T ) = (0 : · · · : 0 : 1)T , an unbounded
polyhedron

RS = conv{sU : s ∈ S} + pos
{
(0, . . . ,0,1)T

} ⊆R
n+1.

Definition 7.3 The Delone polytope of S,

P∗(S) := conv{sU : s ∈ S},

is the convex hull of the points of S lifted to the standard paraboloid.

By construction we have that P∗(S) is the convex hull of the vertices of the
unbounded polyhedron RS . In Section 5.3 we defined “upper” and “lower” halves
of convex polygons. We generalize this here for arbitrary polytopes.

Definition 7.4 Let h be an outer normal vector of a facet F of an (n + 1)-
polyhedron P ⊆R

n+1. With respect to the last coordinate direction, we call F an

upper
vertical
lower

⎫
⎬

⎭
facet of P if the scalar product

〈
h, e(n+1)

〉
is

⎧
⎨

⎩

> 0,

= 0,

< 0.

Definition 7.5 A polytopal subdivision of a finite point set S ⊆ R
n is a polytopal

subdivision of the convex hull convS whose vertex set consists of the points of S.

Theorem 7.6 Let P ⊆R
n+1 be a polytope with vertex set V and let

S = {
(v1, . . . , vn)

T : v ∈ V
} ⊆R

n

be the projection of V to the first n coordinates. Then the lower facets of P induce
a polytopal subdivision that covers the set convS. Furthermore, the image of every
face F which is contained in a lower facet is affinely isomorphic to F . The same
holds for the upper facets of P .
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Proof Since the lower (and upper) facets lie in the boundary complex of P (see Ex-
ample 6.6), the intersection condition is automatically satisfied. It remains to show
that the projections of the lower facets of P cover Q := convS.

Let h be the outer normal vector of a lower facet F of P . Without loss of gen-
erality, let 〈h,F 〉 = 0, i.e., affF = linF is a linear hyperplane. We choose a basis
(v(1), . . . , v(n)) of linF . Since h is perpendicular to lin{v(1), . . . , v(n)}, we know that
(v(1), . . . , v(n), h) is a basis of Rn+1. Additionally, since 〈h, e(n+1)〉 
= 0, the vectors
v(1) − v

(1)
n+1e

(n+1), . . . , v(n) − v
(n)
n+1e

(n+1),−e(n+1) also form a basis. Therefore, the
orthogonal projection of F is linearly (or in the general case, affinely) isomorphic
to F . The same argument works for upper facets.

Since Q is a polytope, it remains to show that each vertex v of Q lies on the
orthogonal projection of a lower and an upper facet. The preimage of v under the
orthogonal projection is either a vertex v′ or a vertical edge of P . We begin by
examining the first case. Since v′ is “visible” in the projection, there exists a vector
h in the normal cone of v′ such that 〈h, e(n+1)〉 = 0. And since v′ is the unique
preimage of v, we know that h is contained in the relative interior of the normal
cone of v′. Thus, there exist vectors h+, h− in the normal cone of v′ such that
〈h+, e(n+1)〉 > 0 and 〈h−, e(n+1)〉 < 0. Since 〈h+, e(n+1)〉 > 0, there exists at least
one upper facet that contains v′. Furthermore, 〈h−, e(n+1)〉 < 0 implies that there is
at least one lower facet that contains v′.

We still need to address the case where the preimage of v is a vertical edge
[v′,w′] of P . Assume, without loss of generality, that v′ lies above w′. Then there
exists a vector h+ in the normal cone of v′ such that 〈h+, e(n+1)〉 > 0, and there
exists a vector h− in the normal cone of w′ such that 〈h−, e(n+1)〉 < 0. Thus, v′ is
contained in at least one upper facet and w′ is contained in at least one lower facet
of P . �

The proof also shows that each polytope in R
n+1 has at least one lower and at

least one upper facet. This is not necessarily true for unbounded polyhedra.

7.2 The Delone Subdivision

We now examine the lower facets of the Delone polytope

P∗(S) := conv{sU : s ∈ S}
of the finite point set S.

Theorem 7.7 The lower facets of P∗(S) induce, by vertical projection, a polytopal
subdivision DS(S) of S whose face poset is anti-isomorphic to the face poset of the
Voronoi diagram VD(S).

Proof The vertex set of the polytope P∗(S) is the set {sU : s ∈ S}. Also, all facets of
the polyhedron P(S) are lower facets. Together with Theorem 7.6, this implies that
DS(S) is a polytopal subdivision of S.
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Fig. 7.2 A Voronoi Diagram and the corresponding Delone subdivision

Each Voronoi cell F ∈ VD(S) can be expressed as the intersection of Voronoi
regions. This means that there exists a set of points F(S) ⊆ S such that F =⋂

s∈F(S) VRS(s). The map

κ : VD(S) → DS(S), F =
⋂

s∈F(S)

VRS(s) → convF(S) (7.2)

is bijective, and thus by Theorem 3.32 reverses the inclusion relation between the
faces. Together, this shows that κ defines an anti-isomorphism of the face poset of
VD(S) onto the face poset of DS(S). �

Definition 7.8 The polytopal subdivision DS(S) of the set S in Theorem 7.7 is
called the Delone subdivision of S.

In particular, Theorem 7.7 states: For s, s′ ∈ S the segment [s, s′] is an edge of the
Delone subdivision DS(S) if and only if the Voronoi regions VRS(s) and VRS(s′)
have a common facet.

As in Chapter 6, we say that the points of S are in general position if no (n + 2)-
element subset of S lies on a common sphere.

Corollary 7.9 If the points of S are in general position, then DS(S) is a triangula-
tion.

Proof The statement follows from Exercise 6.16 and Corollary 3.33. �

The points in Fig. 7.2 are in general position and their Delone subdivision is a
triangulation. The following definition makes use of the notion of refinement: we
say that a polytopal subdivision S1 of S refines a polytopal subdivision S2 of S if
every polytope of S1 is contained in some polytope of S2.
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Definition 7.10 A Delone triangulation of S is a triangulation of S that refines the
Delone subdivision.

If S is in general position, then DS(S) is the unique Delone triangulation of S.
We now discuss an important property of the Delone subdivision that results from
its duality to the Voronoi diagram. As before, let S ⊆R

n be finite.

Theorem 7.11 Let T ⊆ S be an arbitrary subset. The polytope convT is a face of
the Delone subdivision DS(S) if and only if there exists an open n-dimensional ball
B such that B ∩ S = ∅ and ∂B ∩ S = T .

Proof First, let F := convT be a k-face of DS(S). By Theorem 7.7, F is dual to
an (n − k)-face F ∗ of the Voronoi diagram VD(S). Let x be a point in the relative
interior of F ∗. By Theorem 6.14 the largest open ball BS(x) around x that does not
contain a point from S satisfies the condition ∂BS(x) ∩ S = T .

Now let B be an open ball such that B ∩ S = ∅ and ∂B ∩ S = T . The center of B

lies in the intersection of the Voronoi regions that correspond to the points in T .
Again, Theorems 6.14 and 7.7 imply that convT is a face of DS(S). �

Exercise 7.12 Prove that the lower facets of P∗(S) are precisely the bounded faces
of RS . [Hint: The task of Exercise 6.4 was to show that a point s ∈ S lies on the
boundary of the convex hull convS if and only if its Voronoi region VRS(s) is
unbounded.]

Exercise 7.13 Let κ be the bijection from VD(S) to DS(S) defined in (7.2). Show
that every face F ∈ VD(S) is orthogonal to its image κ(F ) ∈ DS(S).

7.3 Computation of Volumes

We have already seen the versatility of convex hull algorithms when we applied
them to Voronoi diagrams (and via duality to Delone subdivisions). To give the
reader an idea of how central convex hull methods are to linear geometry, we will
take a brief detour to discuss the computation of volumes.

Corollary 7.9 stated that the Delone subdivision of a point set S in general posi-
tion is a triangulation. In this case, we can sum the volumes of the maximal simplices
in DS(S) to compute the volume of the convex hull convS; see Algorithm 7.1.

To complete the description of this method we review the computation of the
volume of a simplex. Let s(1), . . . , s(n+1) ∈ R

n be points in general position, i.e.,
Δ := conv{s(1), . . . , s(n+1)} is a simplex. Then,

volΔ = 1

n! · det

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
s
(1)
1 s

(2)
1 . . . s

(n+1)
1

...
...

. . .
...

s
(1)
n s

(2)
n . . . s

(n+1)
n

⎞

⎟
⎟
⎟
⎠

(7.3)



7.4 Optimality of Delone Triangulations 105

Algorithm 7.1: The volume of the convex hull of points in general position

Input: S ⊆R
n finite, in general position, affS =R

n

Output: volume of convS

1 compute the Delone triangulation D = DS(S)

2 v ← 0
3 for Δ maximal face in D do
4 v ← v + volΔ

5 return v

is the volume of Δ. There is a beautiful geometric proof for this. From linear algebra
we know that the determinant in (7.3) (without the factor 1/n!) is the volume of the
parallelepiped spanned by the vectors s(1), . . . , s(n+1) ∈ R

n. Every parallelepiped
can be transformed into a cuboid via a shear mapping. Shear mappings are affine
transformations which preserve volume. Hence, the above statement about the vol-
ume of Δ follows from Exercise 6.27, where we studied the triangulations of the
standard cube [0,1]n. Alternatively, we can compute the volume of the simplex in-
ductively with a calculation.

In general, of course, we cannot assume that the point set S is in general position.
This is where the following exercise comes in.

Exercise 7.14 Show that each polytope P admits a triangulation whose vertices are
precisely the vertices of P . [Hint: Use Corollary 7.9. If the vertices of P are not in
general position employ the perturbation procedure from Lemma 3.48.]

Whether or not S is in general position, replacing D in Algorithm 7.1 by any
triangulation of convS gives an algorithm for volume computation. If S is not in
general position, for instance, the triangulation obtained from Exercise 7.14 can be
used.

Note that this method of computing the volume via Delone triangulations is of
purely theoretical relevance. In the remarks at the end of this chapter we refer to
approaches which are more relevant to practical applications.

Remark 7.15 In some practical applications it is necessary to compute the volume
of non-convex geometric objects. Using the inclusion-exclusion formula, see Gallier
[45, §4.4], one can generalize (exact or approximative) methods for computing the
volume of convex polytopes to arbitrary finite unions of polytopes.

7.4 Optimality of Delone Triangulations

It is known that Delone triangulations (especially in the plane) satisfy several op-
timal properties within the set of all triangulations of a given set of points. For
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example, we have that in R
2 the minimal angle appearing in the triangles is max-

imized (as will be shown in Corollary 7.28). In higher dimensions the situation is
more complicated. We will show that the maximal radius of the circumsphere is
minimized.

Let T be an arbitrary triangulation of a given finite point set S ⊆ R
n such that

dim affS = n. For every point x ∈ convS there exists a (not necessarily unique)
n-simplex Δ ∈ T that contains x. Let

S(c, ρ) := {
y ∈R

n : ‖y − c‖ = ρ
}

be the unique sphere with center c and radius ρ which contains the vertices of Δ.
We call S(c, ρ) the sphere spanned by Δ. We define the number ψT (x,Δ) as

ψT (x,Δ) := ρ2 − ‖x − c‖2.

Clearly ψT can only be non-negative. Furthermore, ψT (x,Δ) = 0 if and only if x

lies on the sphere S(c, ρ), i.e., x is a vertex of T . For a Delone triangulation the
value of the function does not depend on the simplex Δ. The proof is left to the
reader in the following exercise.

Exercise 7.16 Let D be a Delone triangulation of S. Show that for any two sim-
plices Δ, Δ′ in D that contain x we have

ψD(x,Δ) = ψD
(
x,Δ′).

Therefore, we can unambiguously write ψD(x) instead of ψD(x,Δ) for a Delone
triangulation D.

Before we study the map ψ for various triangulations of S, we need a general
statement about the intersection of the standard paraboloid U from (6.3) with affine
hyperplanes.

Proposition 7.17 Let p ∈ R
n+1 with pn+1 <

∑n
i=1 p2

i . Then the intersection of the
standard paraboloid U with the affine hyperplane

H =
{

x ∈R
n+1 : xn+1 = 2

n∑

i=1

pixi − pn+1

}

(7.4)

is mapped by the vertical projection to the sphere

{

x ∈R
n :

n∑

i=1

(xi − pi)
2 =

n∑

i=1

p2
i − pn+1

}

⊆ R
n. (7.5)

Conversely, the map x → xU = (x,‖x‖2) lifts every sphere in R
n to the intersection

of an affine hyperplane with U .
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Fig. 7.3 The intersection of
the standard paraboloid in
R

n+1 with an affine
hyperplane projects to a
sphere in R

n

Figure 7.3 illustrates this projection.

Proof For every point x ∈ H ∩ U , equating the hyperplane and paraboloid expres-
sions, we obtain the following:

2p1x1 + · · · + 2pnxn − pn+1 = x2
1 + · · · + x2

n.

This implies

n∑

i=1

(xi − pi)
2 =

n∑

i=1

x2
i − 2

n∑

i=1

xipi +
n∑

i=1

p2
i =

n∑

i=1

p2
i − pn+1,

which is the sphere equation from the statement.
Conversely, every sphere S ⊆ R

n can be written in the form (7.5), so that the
image of S under the lifting x → xU is the intersection of U and the hyperplane
defined by (7.4). �

To improve one’s understanding of the statement, it may be useful to compare
Proposition 7.17 with Lemma 6.11.

Lemma 7.18 Let D be a Delone triangulation of S and let T be a different trian-
gulation of S. Then for all x ∈ convS

ψD(x) ≤ ψT (x,Δ)

where Δ is an n-simplex from T that contains x.

Proof Let S be the sphere spanned by Δ. We can write S in the form

S=
{

x ∈R
n :

n∑

i=1

(xi − ci)
2 =

n∑

i=1

c2
i − cn+1

}
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for a vector c ∈ R
n+1 where cn+1 <

∑n
i=1 c2

i . From this we obtain

ψT (x,Δ) =
n∑

i=1

c2
i − cn+1 −

n∑

i=1

(xi − ci)
2

= 2
n∑

i=1

cixi − cn+1 −
n∑

i=1

x2
i . (7.6)

The last expression is the directed vertical distance from xU = (x1, . . . , xn,‖x‖2)T ∈
U to the hyperplane H defined by xn+1 = 2

∑n
i=1 cixi −cn+1. Since ψT (x,Δ) ≥ 0,

the hyperplane H lies above xU , or xU is a vertex of the Delone polytope P∗(S). By
Proposition 7.17, and since S contains the n + 1 affinely independent points of S,

aff{xU : x ∈ Δ ∩ S} = H.

Thus, the distance (7.6) is minimized if and only if H is a lower supporting hyper-
plane of P∗(S). This is equivalent to Δ being a simplex of a Delone triangulation
of S. �

Besides the sphere containing the vertices of an n-simplex Δ, in the following
we will study the uniquely determined smallest enclosing sphere of Δ. The next
exercise illustrates when these two spheres coincide.

Exercise 7.19 The sphere S spanned by Δ is also the smallest enclosing sphere of
Δ if and only if the center of S is contained in Δ.

We will now show that for an n-simplex Δ, the function ψT (x,Δ) attains its
maximum when x is the center of the smallest enclosing sphere of Δ.

Lemma 7.20 Let Δ ∈ T be an n-simplex with smallest enclosing sphere S
′ =

S(c′, ρ′). Then,

max
x∈Δ

ψT (x,Δ) = ψT
(
c′,Δ

) = ρ′2.

Proof Let S = S(c, ρ) be the sphere spanned by Δ. If the center c of S is contained
in Δ, by Exercise 7.19 the two spheres S and S

′ coincide, and the statement is clear.
Otherwise, c′ is contained in the boundary of Δ. Therefore, there exists a unique
k-face F of Δ, for k ∈ {0, . . . , n − 1}, that contains c in its relative interior. The
k-dimensional sphere S

′′ spanned by F (in affF ) is the intersection of the smallest
enclosing sphere S

′ and affF . Here, S′ and S
′′ have the same center c′ (and the

same radius ρ′). The point c′ minimizes the distance to c, and thus maximizes the
function ψT on Δ. This is illustrated in Fig. 7.4. It follows that

ψT
(
c′,Δ

) = ρ2 − ‖c′ − c‖2 = ρ′2,

which proves our claim. �
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Fig. 7.4 A triangle which
spans the circle S and its
smallest enclosing circle S

′

Let Δ be a simplex of the triangulation T of the point set S. We define ρ(Δ) as
the circumradius, i.e., the radius of the smallest enclosing sphere of Δ. Then,

ρ(T ) := max
Δ∈T

ρ(Δ)

is the maximal circumradius of T .
As mentioned at the beginning of this section, we will show that the Delone

triangulations minimize the maximal circumradius in the set of all triangulations
of S.

Theorem 7.21 Let D be a Delone triangulation of S and let T be another triangu-
lation of S. Then, ρ(D) ≤ ρ(T ).

Proof Let xT be a point in convS that maximizes the function ψT and let xD be a
point that maximizes ψD . By Lemma 7.20, the point xT is the center of the smallest
enclosing sphere S(xT , ρ(T )) of an n-simplex Δ in T which contains xT . In the
same way let S(xD, ρ(D)) be the smallest enclosing sphere of an n-simplex in D
that contains xD . Using Lemma 7.18 we obtain

ρ(D)2 = ψD(xD) ≤ ψT
(
xD,Δ′) ≤ ψT (xT ,Δ) = ρ(T )2,

where Δ′ is an n-simplex from T that contains xD . �

Remark 7.22 It is possible for a non-Delone triangulation to have the same maximal
circumradius as a Delone triangulation.

7.5 Planar Delone Triangulations

We will again use the strategy of first studying the general case, and then examining
the planar case in greater detail. The main result of this section is an algorithm that
takes an arbitrary triangulation of a point set S ⊆ R

2 and modifies it step-by-step
into a Delone triangulation. This algorithm is not as fast as the beach line algorithm
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Fig. 7.5 A convex
quadrangle with its diagonals
and the four circles through
each set of three vertices

from Section 6.4, but it is nevertheless interesting for several other reason; see the
remarks at the end of this section.

First, we examine an arbitrary planar convex quadrangle with vertices a, b, c, d

(in cyclic order). This quadrangle has diagonals [a, c] and [b, d]. The four circles
through each set of three vertices either coincide, or are pairwise distinct. The latter
case occurs when the points are in general position; see Fig. 7.5.

The Delone subdivision of four points in general position is a triangulation. Ex-
actly one of the two diagonals is therefore a Delone edge. By Theorem 7.11, this can
be characterized by the existence of a circle through three points from {a, b, c, d}
that does not contain the fourth point in its interior. The two circles through three
points which have the Delone edge as a chord have this property. In Fig. 7.5 the
Delone edge is [a, c] and the two Delone circles are through a, b, c and a, c, d . The
other diagonal and the corresponding non-Delone circles are dashed.

The remaining results of this section rely on the following classical result of basic
geometry.

Proposition 7.23 (Euclid: The Elements, Book III, Proposition 21) Let
a, b, c, d ∈ R

2 be the vertices of a convex quadrangle in cyclic order. The two di-
agonals define eight angles α1, α2, β1, β2, γ1, γ2, δ1, δ2 as shown in Fig. 7.6. Let C

denote the circle through a, b, c. Then d lies

⎧
⎨

⎩

on the outside of
on
on the inside of

⎫
⎬

⎭
C if and only if

⎧
⎨

⎩

α2 > δ1 and γ1 > δ2
α2 = δ1 and γ1 = δ2
α2 < δ1 and γ1 < δ2

⎫
⎬

⎭
.

Exercise 7.24 In the configuration described in Proposition 7.23 show that the an-
gles α2, β1, β2 and γ2 are determined by α1, γ1, δ1 and δ2.

An important consequence is that the smallest of the six interior angles of the
non-Delone triangulation of a quadrangle is always smaller than the smallest of the
six interior angles of a Delone triangulation.
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Fig. 7.6 Four points on a
circle (left; as in
Proposition 7.23—congruent
angles are identically marked)
and a quadrangle with Delone
circle (right)

Corollary 7.25 Let a, b, c, d ∈ R
2 be the vertices of a convex quadrangle in cyclic

order which do not all lie on a common circle. Let [a, c] be the unique Delone edge
as in Fig. 7.5. Using the angle labels from Proposition 7.23 and Fig. 7.6, we have

min{α1 + α2, β1, β2, γ1 + γ2, δ1, δ2} < min{α1, α2, β1 + β2, γ1, γ2, δ1 + δ2}. (7.7)

Proof We will prove the statement by providing for each element from the sec-
ond set an element of the first set which is smaller: By Proposition 7.23, β2 < α1,
δ1 < α2, δ2 < γ1 and β1 < γ2. Since β2 and δ2 are positive, β1 < β1 + β2 and
δ1 < δ1 + δ2. �

After this examination of the elementary geometry of convex quadrangles, we
will now fix a finite point set S ⊆ R

2 that affinely spans the plane, which we will
use throughout the remainder of this section.

Let a, b, c, d be points of S such that {a, b, c} and {a, c, d} are (neighboring)
triangles of a triangulation T . If a, b, c, d are the vertices of a convex quadrangle
then,

Flip
(
T , [a, c]) := (

T \ {
conv{a, b, c}, conv{a, c, d}, [a, c]})

∪ {
conv{a, b, d}, conv{b, c, d}, [b, d]}

is also a triangulation of S. We say Flip(T , [a, c]) is generated by a flip of the edge
[a, c] of T . Edge flips are reversible since

Flip
(
Flip

(
T , [a, c]), [b, d]) = T .

A diagonal edge of a triangulation T is an edge in T which is a diagonal in a
convex quadrangle consisting of two neighboring triangles in T . We say that the
corresponding convex quadrangle is spanned by a diagonal edge. A diagonal edge
has the local Delone property if it is the Delone edge of the quadrangle that it spans.
(Such an edge is also said to be locally Delone.) The quadrangle which is spanned
by a locally Delone diagonal edge satisfies the angle relations from Corollary 7.25,
or its vertices lie on a circle (which would imply that the second diagonal is also a
Delone edge).
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Algorithm 7.2: The flip algorithm for the computation of a Delone triangula-
tion

Input: an arbitrary triangulation T of a finite point set S ⊆ R
2

Output: a triangulation D of S, such that every diagonal edge has the local
Delone property

1 while there exists a diagonal edge e ∈ T that is not locally Delone do
2 T ← Flip(T , e)

3 return T

The usefulness of edge flips for Delone triangulations can be seen in Algo-
rithm 7.2. We will see in Theorem 7.27 that the result is always a Delone trian-
gulation of S.

First, we have to show that Algorithm 7.2 terminates. To do this, we need some
sort of quality measure for triangulations of S that increases step-by-step throughout
the flip algorithm.

Every triangulation T of S has the same number of triangles, say k; this will
be shown in Exercise 7.29. Therefore, we can assign to T the vector W(T ) of all
3k interior angles of T in increasing order. The lexicographic order of these angle
vectors induces a partial order on the set of all triangulations of S. We write T > T ′
if the vector W(T ) is larger than W(T ′) with respect to the lexicographic order.
Since each flip of a diagonal edge which is not locally Delone strictly increases the
triangulation, and since there are only a finite number of triangulations of S, the
algorithm terminates.

Corollary 7.26 Let e be a diagonal edge of a triangulation T of S that is not locally
Delone. Then, Flip(T , e) > T .

Proof Under the assumptions of Corollary 7.25, [b, d] is a non-Delone edge of the
quadrangle conv{a, b, c, d}. The inequality (7.7) states that the non-Delone triangu-
lation 〈conv{a, b, d}, conv{b, c, d}〉 is smaller than the Delone triangulation

〈
conv{a, b, c}, conv{a, c, d}〉 = Flip

(〈
conv{a, b, d}, conv{b, c, d}〉, [b, d]).

This property holds analogously for the quadrangle spanned by e and is inherited
by T . All other angles remain constant. �

We are now able to prove the main theorem of this section which states that the
flip algorithm 7.2 computes a Delone triangulation.

Theorem 7.27 A triangulation D of S whose diagonal edges satisfy the local De-
lone property is a Delone triangulation of S.
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Fig. 7.7 An illustration of
the proof of Theorem 7.27

Proof Assume that the triangulation D is not a Delone triangulation. Then, by The-
orem 7.11, there exists a triangle Δ = conv{a, b, c} ∈ D whose open circumdisk B

contains at least one point d ∈ S. Without loss of generality, let [a, c] be the edge of
Δ that separates d from Δ. Choose one pair from the set of such pairs (Δ,d) that
maximizes the angle (a, d, c). We illustrate this in Fig. 7.7.

The containment [a, c] ⊆ conv{a, b, c, d} implies that [a, c] is a diagonal edge of
D that by assumption satisfies the local Delone property. Thus, there exists a point
d ′ ∈ S such that Δ′ := conv{a, c, d ′} ∈ D, which lies outside of B . The circumdisk
B ′ of Δ′ contains by construction the point d . Also, we have d 
∈ Δ′, since D is a
triangulation of S. Without loss of generality, let [a, d ′] be the edge that separates d

from Δ′.
Proposition 7.23 implies that the angle (a, d, d ′) is larger than the angle (a, d, c),

which contradicts our choice of the pair (Δ,d) as maximal. �

In other words, the previous theorem states that a Delone triangulation is a max-
imal element in the partial order induced by the angle vectors.

Corollary 7.28 Every Delone triangulation maximizes the smallest interior angle
in the set of all triangulations of S.

In several applications, e.g., finite difference methods for solving partial differen-
tial equations, it is desirable to have triangulations including as few narrow triangles
as possible. By Corollary 7.28, this, in the planar case, naturally leads to Delone tri-
angulations.

It is possible to show that the Flip Algorithm 7.2 has quadratic worst case run-
time. In this sense, it is inferior to the beach line algorithm from Section 6.4. How-
ever, the expected run-time (in an appropriate probability model) of the flip algo-
rithm is linear. From a more theoretical viewpoint, the correctness of the algorithm
implies that the configuration space of all triangulations of a given finite point set is
connected with respect to flip operations.

Another reason for the flip algorithm’s popularity is that it can easily be extended
to a dynamic algorithm to compute Delone triangulations. By this we mean the fol-
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Fig. 7.8 The Voronoi diagram and Delone subdivision of ten points in the plane (the points labeled
H and I lie outside of the visible region of R2)

lowing: Let S ⊆ R
2 and x ∈ R

2 \ S be such that S ∪ {x} is in general position.
Assume we previously computed a unique Delone triangulation D of S. Since we
assumed S ∪ {x} to be in general position, x lies in the interior of a triangle Δ ∈ D,
or on the outside of convS. In both cases it is easy to modify D so that we ob-
tain a triangulation of S ∪ {x}. Now, applying the flip algorithm yields a Delone
triangulation of S ∪ {x} after just a few steps.

In a similar way, we can compute a Delone triangulation of S \ {s} for s ∈ S.

7.6 Inspection Using polymake

polymake is able to construct Voronoi diagrams and Delone triangulations of ar-
bitrary dimension. We will only deal with the aspects concerning their visualization
in this section.

As a first example, we choose the set S to be ten points in the plane whose coor-
dinates represent the locations of the Berlin post offices from the introduction; see
Fig. 1.2. To do this, we generate an object $Postoffices of type VoronoiDi-
agram. The point set S is given in homogeneous coordinates as the defining prop-
erty SITES. Notice that we prepend the homogenizing ones as a single column
vector of length ten. The second property SITE_LABELS is optional but useful to
identify the points of S in the output.

polytope > $S
= new Matrix([[640,-406],[554,-252],[619,-81],[618,-698],

[628,-311],[136,-330],[961,-466],[148,-848],
[392,200],[1049,-308]]);
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Fig. 7.9 16 points in R
3, their Voronoi diagram (left) and corresponding Delone subdivision and

Voronoi vertices (right). Both pictures only show the region inside the cube [−4,4]3

polytope > $Postoffices
= new VoronoiDiagram(SITES=>ones_vector(10)|$S,

SITE_LABELS=>"A B C D E F G H I J");

The command

polytope > javaview($Postoffices->VISUAL_VORONOI);

initiates the visualization of the Voronoi diagram, and simultaneously the Delone
subdivision. Here, by choice, we view the output in JavaView, although other
output methods are available. The result can be seen in Fig. 7.8. Since we listed
specific labels for S in the section SITE_LABELS, these labels appear in the output.
polymake automatically chooses a finite region of R2 that contains the points of
S and all vertices of the Voronoi diagram.

Our second example is 3-dimensional. As a point set we take the eight vertices of
a random polytope $R_3_8 as in Section 3.6.2; see Fig. 3.10, and additionally the
eight vertices of the cube with coordinates ±3/2. Since the vertices of the random
polytope are (almost) on the unit sphere, they are contained in the convex hull of the
cube’s vertices. In total, we have |S| = 16.

polytope > $R_3_8 = rand_sphere(3,8);
polytope > $C = cube(3,3/2);
polytope > $VD = new VoronoiDiagram(SITES=>($R_3_8->VERTICES/$

C->VERTICES));
polytope > javaview($VD->VISUAL_VORONOI);

It is difficult, however, to depict the Voronoi diagram in printed form. The inter-
active features of JavaView are very useful here. Figure 7.9 shows two snapshots
which may give the reader an impression of the 3-dimensional image.
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7.7 Exercises

Exercise 7.29 Let S be an m-element point set in the plane R
2 such that h points

lie on the boundary of the convex hull convS. Show that every triangulation of S

has exactly 2m − 2 − h triangles and 3m − 3 − h edges.

Exercise 7.30 Show that a triangulation of a finite point set in the plane is a Delone
triangulation if and only if for every interior edge e, and for the two triangles which
have e as an edge, the sum of the angles which lie opposite e is less than π .

7.8 Remarks

Euclid of Alexandria (ca. 365–300 B.C.) established the axiomatic method in math-
ematics with his groundbreaking work “The Elements”. However, many of the the-
orems appearing in this work are much older. For example, our Proposition 7.23
is often accredited to Thales of Milet (ca. 624–546 B.C.), indeed it might even be
traced back to Babylonian mathematics. We recommend to the reader the interactive
version of the “Elements” [68].

Further information about Delone triangulations can be found in [15, 31]. These
triangulations were named after the Russian mathematician Boris Nikolajewitsch
Delone. Note that several other texts use the name “Delaunay”, which comes from
a French translation of the name. Delone subdivisions generalize to regular subdi-
visions of polytopes, a concept which is highly relevant to applications in algebraic
geometry, for example; see De Loera, Rambau and Santos [32, §2.2.3].

The perturbation procedure of Lemma 3.48 directly gives rise to a triangulation
of any polytope. For this there is no need of an additional Delone subdivision as in
Exercise 7.14. Triangulations of this kind are known as pushing triangulations; see
[32, §4.3.4].

Dyer and Frieze showed that computing the volume of a polytope given in outer
description is #P-hard [37]. In practical applications it is common to use approx-
imative methods which are based on so-called “random walks”; see Vempala [96]
for a good overview.
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