
Chapter 6
Voronoi Diagrams

Let S be a finite point set in R
n. Since S is compact, for every point x ∈ R

n there
exists a closest point in S (which is not necessarily unique) with respect to the
Euclidean norm ‖ · ‖. The set of all points in R

n that have a fixed point s ∈ S as
their nearest “neighbor” is a polyhedron. This mapping induces a decomposition
of Rn into polyhedral “regions”, the Voronoi diagram of S. Numerous applications
of computational geometry begin with the computation of a Voronoi diagram.

We will first study the geometry of single Voronoi regions. To be able to dis-
cuss the arrangement of all Voronoi regions, we will introduce the general concept
of a polyhedral complex. The main result of this chapter is the relationship be-
tween Voronoi diagrams and the convex hull problem from the previous chapter.
We conclude the chapter by discussing an algorithm for the computation of Voronoi
diagrams in the plane and its application to the post-office problem from the intro-
duction.

6.1 Voronoi Regions

In this chapter, S ⊆ R
n always denotes a finite point set in R

n and ‖ · ‖ is the Eu-
clidean norm. The Euclidean distance between two points x, y ∈R

n is denoted by

dist(x, y) := ‖x − y‖ = √〈x − y, x − y〉.
For each point s ∈ S we define the Voronoi region

VRS(s) := {
x ∈ R

n : dist(x, s) ≤ dist(x, q) for all q ∈ S
}

as the set of points in R
n for which s is the nearest point from S. In this case, s is

called a nearest neighbor (with respect to S).

Example 6.1 We study the case where S = {s, t} ⊆ R
n consists of exactly two dis-

tinct points. The set

h(s, t) := {
x ∈ R

n : dist(x, s) = dist(x, t)
} = VR{s,t}(s) ∩ VR{s,t}(t)

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_6,
© Springer-Verlag London 2013

81

http://dx.doi.org/10.1007/978-1-4471-4817-3_6

82 6 Voronoi Diagrams

consisting of those points which have both s and t as a nearest neighbor is an affine
hyperplane: We have

〈x − s, x − s〉 − 〈x − t, x − t〉 =
n∑

i=1

(xi − si)
2 −

n∑

i=1

(xi − ti)
2

=
n∑

i=1

2(ti − si)xi +
n∑

i=1

(
s2
i − t2

i

)
,

which implies that x is contained in h(s, t) if and only if

(
n∑

i=1

(
s2
i − t2

i

)
,2(t1 − s1), . . . ,2(tn − sn)

)

(1, x1, . . . , xn)
T = 0. (6.1)

In other words, the set h(s, t) = VR{s,t}(s)∩ VR{s,t}(t) is precisely the affine hyper-
plane in R

n which has the homogeneous coordinates

[
n∑

i=1

(
s2
i − t2

i

) : 2(t1 − s1) : · · · : 2(tn − sn)

]

. (6.2)

The Voronoi regions of s and t are the affine half-spaces which are defined by this
hyperplane. We always define the orientation of h(s, t) as in (6.2). Thus, we have
VR{s,t}(s) = h(s, t)− and VR{s,t}(t) = h(s, t)+. The vectors s − t and t − s are
normal to the hyperplane h(s, t) which (weakly) separates the two Voronoi regions.

The above observations about Voronoi regions of a two-element point set lead to
the following statement.

Proposition 6.2 Let S ⊆ R
n be finite. For s ∈ S we have

VRS(s) =
⋂

t∈S\{s}
VR{s,t}(s) =

⋂

t∈S\{s}
h(s, t)−.

In particular, each Voronoi region is a (not necessarily bounded) polyhedron with
at most |S| − 1 facets.

Exercise 6.3 Give conditions which imply that all Voronoi regions are pointed poly-
hedra.

Exercise 6.4 Show that a point s ∈ S lies on the boundary of the convex hull convS

if and only if its Voronoi region VRS(s) is unbounded.

6.2 Polyhedral Complexes 83

6.2 Polyhedral Complexes

We know from the previous section that the Voronoi regions of a finite point set in
R

n are polyhedra. By construction, it is clear that these polyhedra cover the whole
space Rn. However, this alone does not reveal all of the important structural proper-
ties of Voronoi regions.

Definition 6.5 A polyhedral complex C is a finite set of polyhedra in R
n which

satisfies the following conditions.

(a) ∅ ∈ C;
(b) If P ∈ C, then all faces of P are also contained in C;
(c) The intersection P ∩ Q of two polyhedra P,Q ∈ C is a (possibly empty) face

of P and of Q.

The third condition is sometimes called the intersection condition. The elements
of C are called faces and the dimension of C is the highest dimension of a face of C.
A polyhedral complex whose faces are polytopes is called a polytopal complex.
A simplicial complex is a polytopal complex whose faces are simplices.

For a polyhedral complex C in R
n let

|C| :=
⋃

F∈C
F ⊆ R

n

be the set covered by C. A polyhedral (respectively polytopal or simplicial) decom-
position of a set M ⊆ R

n is a polyhedral (respectively polytopal or simplicial) com-
plex C such that |C| = M . A simplicial decomposition is also called a triangulation.

Example 6.6 Let P ⊆ R
n be an n-polyhedron. Then the face lattice F(P) is an

n-dimensional polyhedral complex. The set of all proper faces defines an (n − 1)-
dimensional polyhedral complex that covers the boundary ∂P . This second complex
is called the boundary complex of P .

The faces of a polyhedral complex C are partially ordered by inclusion; this is
the face poset of C. This notion agrees with the face lattice of a polytope if we view
that polytope as a trivial polytopal complex as in the previous example.

Let V(S) be the set of all Voronoi regions of a finite set S ⊆ R
n.

Theorem 6.7 The set V(S) satisfies the intersection condition.

Proof Let s, t ∈ S be two distinct points. We can assume that the intersection

F := VRS(s) ∩ VRS(t)

is non-empty. Proposition 6.2 states that VRS(s) ⊆ h(s, t)− and that VRS(t) ⊆
h(s, t)+. This implies that F ⊆ h(s, t)− ∩ h(s, t)+ = h(s, t). Since we assumed

84 6 Voronoi Diagrams

Fig. 6.1 The Voronoi
diagram of a point set in the
plane

F
= ∅, we know that h(s, t) is a supporting hyperplane of VRS(s) and also of
VRS(t). Thus, F = VRS(s) ∩ VRS(t) = VRS(s) ∩ VRS(t) ∩ h(s, t) is a non-empty
face of both Voronoi regions. �

Every non-empty finite set C of polyhedra in R
n that satisfies the intersection

condition generates a polyhedral complex

[C] := {F : F is the face of a polyhedron in C}.
The previous theorem motivates the following definition.

Definition 6.8 The polyhedral complex

VD(S) := [{VRS(s) : s ∈ S}]

is called the Voronoi diagram of a finite set S ⊆ R
n.

The faces of a Voronoi diagram are called Voronoi cells. The Voronoi regions
are the maximal Voronoi cells (with respect to inclusion or dimension). Figure 6.1
depicts an example of a Voronoi diagram of a point set in the plane.

Remark 6.9 The definition of f -vectors can be extended to arbitrary polyhedral
complexes.

6.3 Voronoi Diagrams and Convex Hulls

As we will see in the following chapters, Voronoi diagrams play a key role in several
applications. Many interesting algorithms, e.g., the curve reconstruction algorithm

6.3 Voronoi Diagrams and Convex Hulls 85

NN-Crust from Chapter 11 below, have the computation of a Voronoi diagram as
their very first step. This motivates the questions of how a Voronoi diagram should
be computed and what a suitable data structure would be for Voronoi diagrams.

A first observation is that convex hull algorithms are useful for the computation
of Voronoi diagrams: Every region is given as a polyhedron in the H-description.
For m given points in R

n we obtain, by computing m dual convex hulls in R
n,

a V-description of all Voronoi regions. Regardless of the efficiency of this method,
the main disadvantage of it is that it does not directly provide a description of the
relative position of the different Voronoi regions to one another. The main result
of this chapter is the statement that a Voronoi diagram in R

n is a projection of
an unbounded polyhedron in R

n+1. Specifically, this reduces the construction of a
Voronoi diagram to a single convex hull problem in R

n+1.
To clarify the notation, we will embed R

n in R
n+1 by adding the coordinate xn+1.

In particular, we will sometimes denote a point in R
n+1 by (x, xn+1) for x ∈ R

n and
xn+1 ∈ R.

Let

U := {
x ∈ R

n+1 : xn+1 = x2
1 + x2

2 + · · · + x2
n

}
(6.3)

be the standard paraboloid in R
n+1. For a point p ∈R

n let T (p) denote the tangent
hyperplane to the paraboloid U at pU := (p,‖p‖2).

Lemma 6.10 For every point p ∈ R
n we have

T (p) = [−‖p‖2 : 2p1 : · · · : 2pn : −1
]
.

Proof We know from calculus that the tangent hyperplane to the graph of a differ-
entiable function u : Rn → R at a point (p,u(p)) can be described by the linear
equation

xn+1 = u(p) + 〈
u′(p), x − p

〉

(see, e.g., [73]). In our case, we have u(p) = p2
1 + p2

2 + · · · + p2
n = ‖p‖2, and thus

the gradient satisfies u′(p) = (2p1, . . . ,2pn) = 2p. Substituting yields

xn+1 = ‖p‖2 + 〈2p,x − p〉 = −‖p‖2 + 2〈p,x〉,
and thus we obtain the desired representation of the tangent hyperplane in homoge-
neous coordinates. �

In the following, we imagine that the xn+1-direction of the coordinate system
points vertically upwards.

Lemma 6.11 Let p,x ∈ R
n and xU = (x,‖x‖2) be the point lying above x on U .

Then xU lies above T (p), i.e., in the affine half-space T (p)+ with respect to the
homogeneous coordinates from Lemma 6.10. The vertical distance from xU to T (p)

is ‖x − p‖2.

86 6 Voronoi Diagrams

Fig. 6.2 The distance
computation for n = 1. Due to
the rotation invariance of U ,
the 2-dimensional figure
suggests the proper intuition
for higher dimensions. Here,
we have δ = ‖x − p‖

Proof The xn+1-coordinate of xU is
∑n

i=1 x2
i , and by Lemma 6.10 the xn+1-

coordinate of the point on the hyperplane T (p) above x is

2p1x1 + · · · + 2pnxn − p2
1 − · · · − p2

n.

The distance from xU to T (p) is (x1 − p1)
2 + · · · + (xn − pn)

2 = ‖x − p‖2. Fig-
ure 6.2 illustrates this computation. �

Let S be an m-element subset of Rn. For a point s ∈ S we have that T (s)+ is the
affine half-space above the tangent hyperplane at U .

Due to the monotonicity of the function δ → δ2 on the positive half-line, we can
interpret Proposition 6.2 using Lemma 6.11 in the following way: A point x ∈R

n is
contained in the Voronoi region VRS(s) if and only if for all T (t), where t ∈ S, the
hyperplane T (s) is the one that has the smallest vertical distance from the point xU .
This implies the following statement; see Fig. 6.3.

Theorem 6.12 The Voronoi diagram of S is the orthogonal projection of the bound-
ary complex of the polyhedron P(S) := ⋂

s∈S T (s)+ to the hyperplane xn+1 = 0.

Corollary 6.13 The total number of cells of a Voronoi diagram of an m-element
point set in R

n is of order O(m�n/2�).

Proof The total number of cells of a Voronoi diagram can be bounded by the max-
imal number of faces of an H-polyhedron with m facets in R

n+1. The dual version
of the asymptotic Upper-bound Theorem, Theorem 3.46, therefore implies that the
total number of faces is of order O(m�n/2�), since �(n + 1)/2� = �n/2�. �

Theorem 6.12 specifically states that the space is partitioned by the relative inte-
rior of the cells of VD(S). For an arbitrary point x ∈ R

n let

BS(x) := {
y ∈R

n : dist(x, y) < dist(x, s) for all s ∈ S
}

(6.4)

be the largest open ball with center x which does not contain a point of S. Further-
more, let

S(x) := ∂BS(x) ∩ S.

6.3 Voronoi Diagrams and Convex Hulls 87

Fig. 6.3 A Voronoi diagram
obtained by an orthogonal
projection

Theorem 6.14 The uniquely determined relatively open cell of VD(S) that contains
a given point x ∈ R

n has dimension n − dim affS(x).

Proof The point x is contained in a relatively open k-cell C of VD(S) if and only
if there exists a series of facets F1, . . . ,Fn−k+1 of the polyhedron

⋂
s∈S T (s)+ for

which:

G1 � G2 � · · ·�Gn−k+1 =: G, (6.5)

where Gi := F1 ∩ · · · ∩ Fi and C is the orthogonal projection of G to R
n; see

Exercise 3.59. The decreasing chain condition in (6.5) is satisfied for the facets
F1, . . . ,Fn−k+1 if and only if G = F1 ∩ · · · ∩ Fn−k+1 is non-empty and the normals
of the facets are linearly independent.

By Lemma 6.10 we have that (2s1, . . . ,2sn,−1)T is a normal vector to the facet
T (s) for s ∈ S. Therefore, the normal vectors to the facets corresponding to a subset
S′ ⊆ S are linearly independent if and only if the points of S′ are affinely indepen-
dent. Altogether, this proves the statement. �

In the next section we will focus on the planar case n = 2. Therefore, we are
interested in the following special cases of Theorem 6.14.

Corollary 6.15 Let S ⊆R
2 be finite.

(a) A point x ∈ R
2 is a vertex of the Voronoi diagram VD(S) if and only if S(x)

contains at least three points.
(b) A point x ∈ R

2 lies in the relative interior of an edge of VD(S) if and only if
S(x) consists of exactly two points.

For a vertex x of the Voronoi diagram VD(S) we call the ball BS(x) from (6.4)
the Voronoi disk around x. The boundary ∂BS(x) is called the Voronoi circle.

88 6 Voronoi Diagrams

Exercise 6.16 Show that if every (n + 2)-element subset of S ⊆R
n does not lie on

a common (n − 1)-sphere, then the lifted polyhedron is simple and therefore every
Voronoi region is simple.

If this condition is satisfied, we say that the points in S are in general position.
Note that we defined “general position” slightly differently in Chapter 3 and in Sec-
tion 5.3; the term is always dependent on the context.

6.4 The Beach Line Algorithm

As in the computation of convex hulls in Section 5.3, there exist special algorithms
for the computation of Voronoi diagrams in the planar case. We introduce here an al-
gorithm due to Fortune [42]. First, we discuss the geometric idea, and then approach
the question of determining its complexity. In this particular case, the complexity de-
pends significantly on the data structures employed. With respect to this property,
this algorithm is an exception within this text.

Fortune’s beach line algorithm is a so-called sweep line method. The idea is to
construct the Voronoi diagram of a finite point set S ⊆ R

2 step-by-step. Here, we
can imagine the vertical axis as a time-scale that is traversed from top to bottom. In
this interpretation, at a certain time τ only a part of the Voronoi diagram has been
revealed by the algorithm. For a point s from the input set S we then have that s is
known at time τ if s2 ≥ τ . The horizontal line Hτ = [−τ : 0 : 1] is the sweep line
for time τ and the affine half-space [−τ : 0 : 1]+ contains the previously detected
points from S. The next natural question is which part of the Voronoi diagram is
actually known at time τ .

The set of points in R
2 that have the same distance from a point p and a

(non-incident) line G is a parabola, which we denote here by Par(p,G) (see Ex-
ercise 6.18 below). For every point s ∈ S with s2 > τ which is known at time τ , all
points which are closer to s than to any possible unknown point of S lie above the
parabola Par(s,Ht). The term “above” makes sense here since the symmetry axis of
Par(s,Hτ) is parallel to the vertical axis. The time τ is called generic if Hτ ∩S = ∅.
If we denote the points on or above the parabola by Par(s,Hτ)

+, then, according to
our notation for affine half-spaces, we get the following lemma.

Lemma 6.17 The part of the Voronoi diagram which is known at time τ is contained
in the set

⋃

s∈S

Par(s,Hτ)
+

for each generic time τ ∈ R.

If τ is generic, the set
⋃

s∈S Par(s,Hτ)
+ is homeomorphic to an affine half-

space. Its boundary Bτ is a union of parabolic arcs that resembles the appearance
of waves approaching a beach; see Fig. 6.4. This is the reason why the boundary

6.4 The Beach Line Algorithm 89

curve is called the “beach line”, and this term gives the algorithm its name. Note
that each vertical line intersects the beach line Bτ in exactly one point; this property
is inherited from the individual parabolas.

Exercise 6.18 Determine a parametrization of the parabola Par(s,Hτ) for a given
s and τ ∈R. That is, search for a, b, c ∈R such that

Par(s,Hτ) =
{(

x

ax2 + bx + c

)
: x ∈R

}
,

subject to the condition that s2 > τ .

A point s ∈ S with the property that Par(s,Hτ) is part of the beach line is said to
be active at time τ .

Now we briefly discuss what happens at a non-generic time τ . For sufficiently
small ε > 0 we have that τ − ε is a generic time. The smaller ε is, the steeper
the parabola Par(s,Hτ−ε) will be. This is rigorously formulated in the following
exercise.

Exercise 6.19 Let s = (s1, s2)
T ∈ S be a point with τ = s2. Show that

lim
ε→0+ Par(s,Hτ−ε) =

{(
s1
σ

)
∈ R

2 : σ ≥ s2

}
.

Here, we mean convergence with respect to the Hausdorff metric. How is it possible
to use this to define the beach line for non-generic times? [Hint: Look at Snapshot 2
in Fig. 6.4.]

Lemma 6.20 If τ is generic, then each parabolic arc in Par(s,Hτ) ∩ Bτ , for s ∈ S,
is contained in the corresponding Voronoi region VRS(s).

The set Par(s,Hτ) ∩ Bτ may consist of several parabolic arcs, e.g., snapshot 2
in Fig. 6.4. Here the parabolic arc for b is divided as soon as the point d becomes
known, i.e., at time d2.

Proof For x ∈ Par(s,Hτ) ∩ Bτ let δ := dist(x, s) = dist(x,Hτ) and assume x
∈
VRS(s). By Corollary 6.15 the open disk B around x with radius δ contains a
point r ∈ S. Since B ⊆ H+

τ , we have that r is known at time τ . But x is above the
parabola Par(r,Hτ), which contradicts x being contained in the beach line Bτ . �

The next question is to determine how the beach line changes as the time τ

changes (in the direction of smaller values). Here, of course, the relevant times
are those when a certain point s = (s1, s2)

T ∈ S is first detected; see Snapshot 2 in
Fig. 6.4. This time s2 will be called a point event. It is a consequence of Lemma 6.20,
and of the convexity of the Voronoi regions, that new parabolic arcs can only arise
at point events; the beach line cannot be pierced from behind by a parabola. For a

90 6 Voronoi Diagrams

generic τ we have that, by construction, the beach line has only finitely many points
where it is not differentiable, since it is the union of finitely many parabolic arcs;
these points are called breakpoints.

Lemma 6.21 If τ is generic then every breakpoint of Bτ lies on an edge of the
Voronoi diagram.

Proof Let x be a breakpoint of the beach line Bτ at time τ . Then there exist two
active points r, s ∈ S with x ∈ Par(r,Hτ) ∩ Par(s,Hτ) and the statement follows
from Lemma 6.20. �

We assume that the vertical line [−s1 : 1 : 0] through s intersects the beach line
Bs2 at a point x which is contained in a unique parabolic arc Par(r,Hs2); here r ∈ S

is an active point. By construction we have that x ∈ VRS(r)∩VRS(s) and VRS(r)∩
VRS(s) is an edge of the Voronoi diagram; this edge is detected (partly) for the first
time at time s2. For a sufficiently small ε > 0, a part of the parabola Par(s,Hs2−ε)

lies on the beach line, say with the breakpoints x and y. Then, the segment [x, y] is
the intersection of the Voronoi edge VRS(r) ∩ VRS(s) and the set above the beach
line. Thus, new edges are discovered at point events.

By Corollary 6.15, every vertex v of VR(S) lies on a circle through at least three
points of S. The point in time at which a circle through at least three points from S

is detected is called a circle event. In other words, we have a circle event at time τ if
the sweep line Hτ is the lower tangent to a circle through at least three points of S.
By Corollary 6.15 only those circle events create vertices whose circular disks have
no points of S in their interior.

Now we can examine how a parabolic arc γ vanishes from the beach line. Let γ ′
and γ ′′ be, respectively, the left and the right neighbor of γ in the beach line. Let
s, s′, s′′ ∈ S be the points corresponding to these three parabolic arcs. We assume
now that the parabolic arc γ vanishes at time τ . At the slightly later generic point
in time τ − ε, γ ′ and γ ′′ are neighbors in the beach line. Hence, by Lemma 6.21,
we know that the Voronoi regions VRS(s′) and VRS(s′′) are neighbors in VD(S).
At time τ , γ contracts to a point v. By construction, we have that δ := dist(v, s) =
dist(v, s′) = dist(v, s′′) and that v is a Voronoi vertex. Also, the distance between v

and the sweep line is δ at time τ . This means that τ is a circle event for the triple of
points (s, s′, s′′). This is illustrated in Snapshots 4 and 7 in Fig. 6.4.

Exercise 6.22 Show that there are at most 2|S|−2 breakpoints in the beach line Bτ

for a generic time τ .

Data Structures The way in which geometric data is stored is crucial for the run-
time analysis of the beach line algorithm. Here we only outline the most important
ideas and refer the reader to the original work of Fortune [42], and to the books [31]
and [71], for more details of the implementation.

First, we have to decide in which way we want to store the output, i.e., the
Voronoi diagram of a point set in the plane. One special feature of the planar case is

6.4 The Beach Line Algorithm 91

Fig. 6.4 Eight snapshots of the beach line algorithm

92 6 Voronoi Diagrams

that we can restrict ourselves to the Voronoi edges. Every Voronoi region is a (not
necessarily bounded) polygon whose edges can be cyclically ordered. Every edge
is contained in exactly two regions. Therefore, if we store each edge twice with its
vertices and orientation, then the regions are implicitly given by the sequence of
their edges. Thus, each oriented edge stands for an incident pair of a Voronoi edge
and a Voronoi region, and the Voronoi vertices are implicitly given as the endpoints
of the edges.

Depending on the specific construction of the data structure, it can be problematic
that some Voronoi regions are unbounded, and thus the cyclic sequence of edges
does not form a complete circle. However, this can be easily addressed by using the
ideal points of lines on which the unbounded edges lie as artificial Voronoi vertices.
These ideal points can then be connected by artificial Voronoi edges on the ideal
line so that every Voronoi region can be represented as a closed circle of (original
or artificial) Voronoi edges.

In practical applications, it is common to use points on a sufficiently large bound-
ing box, rather than artificial Voronoi vertices on the ideal line. This bounding box
should be large enough to contain all points of S and all vertices of VD(S).

The data structure itself is then a doubly linked list of oriented edges, which are
also called half-edges, such that each edge is stored with its two endpoints and with a
reference to the next half-edge in the cyclic order. Furthermore, we store a reference
to the parallel half-edge, i.e., the same edge with the opposite orientation. This data
structure is also known as the half-edge data structure. We refer to [27, §10.2] for
the implementation of doubly linked lists.

Note also that the half-edge data structure is useful for storing arbitrary planar
graphs and arbitrary cell decompositions of oriented surfaces.

Before we study the beach line algorithm in detail, we have to determine a suit-
able way in which to code the beach line itself. Here, it is not necessary to trace the
exact trajectory of each parabolic arc. We need only store the combinatorial infor-
mation, i.e., the number of parabolic arcs in the beach line, the points of S to which
they correspond, and the order in which they occur.

Example 6.23 The beach line from Fig. 6.5 can be coded, for example, by the or-
dered sequence of points (s(1), s(2), s(3), s(4), s(5)) and the breakpoints correspond
to neighboring pairs of points.

Some points can occur multiple times. For example, we see that the beach line in
Snapshot 2 of Fig. 6.4, which appears shortly after a point event, can be written as
(a, c, a, b, d, b).

However, coding the beach line as an ordered list is not beneficial for the run-
time complexity. It is better to use a binary search tree. The leaves of this search tree
contain points from S that each correspond to one parabolic arc on the beach line. An
interior vertex stands for a breakpoint (r, s) if r is the biggest leaf in the left subtree,
and s the smallest in the right subtree; see Fig. 6.5. In particular, we have that here,
in contrast to the list description, the breakpoints are explicitly represented.

6.4 The Beach Line Algorithm 93

Fig. 6.5 A beach line consisting of five parabolic arcs and a representation as a search tree

For further details on the implementation of the search tree representation of the
beach line, we refer to the book [31]. General binary search trees are described
in [27, §12].

The search tree structure of the beach line is not sufficient to guarantee a good
run-time of the algorithm. We also need the height of the search tree to be of size
O(logm), where m = |S|, at every step of the algorithm. A search tree with this
property is said to be balanced. Note that the coding length of the beach line, i.e.,
the number of parabolic arcs and breakpoints, is linear in m; see Exercise 6.22.
Hence, it is possible to add or delete parabolic arcs in O(logm) time.

Various concepts are associated with the balance of search trees, for example, the
so-called “red black trees” [27, §13].

Lastly, we need to establish a data structure for the point and circle events. An
important aspect here is the (time-wise) order, which would suggest a list, or a search
tree as a suitable representation. However, here it is crucial to immediately see the
next event at every step, without having to perform a search. Therefore, a search
tree is not suitable. It is also important to be able to quickly add new events at the
right position in the sorted order. Thus, a list is also not suitable. The solution is a
heap, which allows us to immediately see the next event (i.e., in constant time), and
to delete this event after processing it in logarithmic time. Furthermore, we need to
be able to guarantee that arbitrary new events can be added in O(logm) time. An
example of a suitable data structure is a binomial heap [27, §19].

6.4.1 The Algorithm

Using the data structures described above, we can now detail the actual algorithm.
Let B be a balanced search tree that represents the beach line. The queue Q stores
unprocessed events, which are listed in order of their appearance. Every event in
the queue Q is represented by point coordinates. The sweep line is only implicitly
represented by the next event at a given time.

94 6 Voronoi Diagrams

Algorithm 6.1: The beach line algorithm

Input: Finite point set S ⊆ R
2

Output: VD(S) in half-edge model
1 B ← ∅
2 Initialize Q with all point events from S.
3 while Q
= ∅ do
4 e ← next event in Q; remove e from Q

5 if e point event for s ∈ S then
6 Handle-Point-Event(s,Q,B)
7 else
8 Handle-Circle-Event(e,Q,B)

The order defined by the queue, and thus the heap structure, corresponds pre-
cisely to the ordering of the events by their y-coordinate. Since the sweep line is
moving from top to bottom, points with a large y-coordinate represent early events.
Here, a point event corresponding to s ∈ S is coded by the point s itself. A circle
event is represented by the lowest point of the circle; when the sweep line reaches
the lowest point of the circle, the whole circular disk is visible.

For a correct implementation it is crucial that the events in Q are not stored in
an isolated way. It is necessary to be able to distinguish between point and circle
events. Moreover, it is also useful that a point that represents a circle event also
refers to the points of S that define the circle. There are a few additional references
of this kind between the data structures B and Q, but we restrict ourselves to the pre-
sentation of the crucial ideas. We mainly ignore the processing of the actual Voronoi
diagram in the half-edge model in our pseudo-code. This has the consequence that
Algorithm 6.1 lists VD(S) as output, but we never state a return value in the code.

For our analysis, we first assume that the points in S are in general position, i.e.,
at most three on one circle at a time. The case where this condition is not satisfied
is discussed at the end of this section.

Before we discuss the two subroutines to process point and circle events on p. 95,
we will estimate the complexity of the steps of the main program. Initializing the
heap Q has time complexity O(m logm) (this can be reduced to O(m) when a
suitable implementation is used), since there are exactly m point events. Estimating
the number of possible circle events is more difficult, since there may be circle
events that do not lead to Voronoi vertices. An analysis of Steps 10 to 12 of the
subroutine Handle-Point-Event shows that every Voronoi edge can trigger at
most two (potential) circle events. Therefore, by Corollary 6.13, there are at most
O(m) events in total; Steps 3 to 8 in Algorithm 6.1 are hence performed at most
O(m) times. If Q is realized as a binomial heap, it takes O(logm) time to delete
an event from Q. We will show below that each point and each circle event only
requires logarithmic time. This implies that the total time complexity of the beach
line algorithm is O(m logm).

6.4 The Beach Line Algorithm 95

Every parabolic arc γ is implicitly coded in the search tree B as a triple
[(r, s), s, (s, t)], where r, s, t ∈ S are as in Fig. 6.5. The pairs of points (r, s) and
(s, t) represent the breakpoints that bound the parabolic arc. In particular, we have
that the parabolic arc on the left side of γ corresponds to r and the one on the right
corresponds to t .

When checking the correctness of this subroutine, note that each circle event is
matched to the lowest point of the corresponding Voronoi circle. Therefore, the point
events that correspond to points on a Voronoi circle, i.e., that trigger a circle event,
are always correctly processed at a time prior to the circle event. This is also true for
the special case where the third point of S on a Voronoi circle is simultaneously the
lowest point, i.e., when a circle event and the corresponding point event occur at the
same time. In this case, the following occurs: the parabolic arc corresponding to the
lowest point is generated and immediately afterwards deleted by the simultaneously
occurring circle event. In particular, Algorithm 6.1 always begins with at least three
point events before the first circle event can occur.

Simultaneously occurring point events can be processed in arbitrary order. The
same is true for simultaneously occurring circle events, since we assumed the points
to be in general position. Thus, two circle events may occur at the same time, but
at different places. Simultaneous point and circle events that are unrelated do not
pose a problem. The only critical case, i.e., when a circle event is triggered by a
simultaneous point event, was discussed above.

Step 3 in Handle-Circle-Event can be seen as the reverse of Step 8 in
Handle-Point-Event. There, only those parabolic arcs are deleted which were
previously generated by a point event. Step 11 of Handle-Point-Event can
also trigger redundant circle events, but these are detected and deleted in Step 4 of
Handle-Circle-Event.

1 Procedure: Handle-Point-Event(s,Q,B)

2 if B = ∅ then
3 Add s to B.
4 else
5 Let γ = ((p, q), q, (q, r)) be the parabolic arc in B above s.
6 if γ refers to a circle event in Q then
7 delete this event

8 Replace γ in B by the three parabolic arcs
[
(p, q), q, (q, s)

]
,

[
(q, s), s, (s, q)

]
,

[
(s, q), q, (q, r)

]
.

9 Generate a pair of new half-edges for the Voronoi edge VR(q) ∩ VR(s).
10 Compute the intersection point v = (v1, v2)

T of the Voronoi edge
corresponding to the parabolic arc γ := ((q, s), s, (s, q)) and the Voronoi
edge corresponding to the parabolic arc on the left.

11 Add (v1, v2 − dist(v, s)) as a potential circle event e to Q.
12 The parabolic arc γ contains a reference to e and vice-versa.
13 Proceed analogously to Steps 10 to 12 with the parabolic arc on the right

side of γ .

96 6 Voronoi Diagrams

1 Procedure: Handle-Circle-Event(e,Q,B)

2 Let γ be a parabolic arc that vanishes at the circle event e.
3 Remove γ from B and update the neighboring inner vertices.
4 Remove all circle events from Q which are referred to by γ or by one of its

two neighbors.
5 Generate the center z of the circle corresponding to e as a new Voronoi vertex.
6 Generate a pair of new half-edges for the new breakpoint that emerges due to

the removal of γ .
7 Store z as an endpoint of the two involved edges.
8 Link the edges to one another with respect to the half-edge model.

Example 6.24 We want to show how the point event illustrated in Snapshot 2 in
Fig. 6.4 affects the event queue Q. Before the point event corresponding to the
point d is processed, the queue contains three point events and one circle event:

Q = (
d, (a, b, c), e, f

)
.

The point event d triggers two new circle events. After this, at the generic time
τ = d2 − ε, we have:

Q = (
(a, b, d), (a, c, d), e, f

)
.

Later, the two circle events (a, b, d) and (a, c, d) will generate Voronoi vertices.
The circle event (a, b, c) vanishes at time d2 (Handle-Point-Event, Step 7),
since we then know that d is contained in the circumcircle of a, b and c.

It remains to be discussed what occurs when the points in S are not in general
position. It is perhaps surprising that our algorithm works here with only a few mod-
ifications. Actually, we have that the beach line algorithm produces a valid Voronoi
diagram that may contain some edges of length 0. It is simple to detect and delete
these edges in linear time after the algorithm has terminated.

6.5 Determining the Nearest Neighbor

We now discuss the problem of finding the nearest neighbor, or the nearest post
office respectively, which we mentioned in the introduction. Given a finite point set
S ⊆ R

2 and a point p ∈ R
2, we want to determine the point s ∈ S which minimizes

dist(p, s). This problem has, of course, a very simple solution, i.e., we can compare
each distance from p to every point of S. If S consists of m points, this method
needs O(m) steps.

But, when the configuration of the point set S is always the same and only the
point p changes with each call, a different approach may be better. If we expect

6.6 Exercises 97

Fig. 6.6 Vertical layers in the
Voronoi diagram for
answering the nearest
neighbor problem

many calls, it pays off to invest more time in the beginning to be able to process
each later call more quickly. In the following, let m be the cardinality of S.

Our goal is to describe a data structure that enables the answer of each call in
logarithmic time. To do this, we compute the Voronoi diagram of S using Fortune’s
beach line algorithm in O(m logm) steps.

Then, we draw a vertical line through each Voronoi vertex as depicted in Fig. 6.6.
These additional lines divide the Voronoi diagram into triangles and trapezoids, and
into unbounded polyhedra in the outer regions. These vertical layers are ordered
from left to right. If these are stored in a balanced search tree, we can detect the
layer of each point p ∈R

2 via its first coordinate p1 in O(logm) time.
By construction we can guarantee that no vertical layer contains a vertex in its

interior, so that all Voronoi edges are vertically ordered within each layer. If we
also store the edges in each layer in a balanced search tree, we can detect the pair
of edges that lies directly above and below p in O(logm) steps using the second
coordinate p2.

Theorem 6.25 For an m-element point set S ⊆ R
2 it is possible to generate a data

structure in O(m2 logm) time such that the solution to the nearest neighbor problem
in S can be found in O(logm) time.

Proof It is possible to compute the Voronoi diagram VD(S) in O(m logm) time.
Since there exist linearly many Voronoi vertices, there exist linearly many vertical
layers. In each layer there are at most linearly many edges. In total, we have to
initialize O(m) balanced search trees each with O(m) vertices. �

6.6 Exercises

Exercise 6.26 Let S be the vertex set of the n-dimensional cross-polytope. Deter-
mine the f -vector of the Voronoi diagram VD(S).

98 6 Voronoi Diagrams

Exercise 6.27 Let e(1), . . . , e(n) denote the standard basis vectors of Rn. The ver-
tices of the standard cube [0,1]n are precisely the sums of pairwise distinct standard
basis vectors. Show that the n! simplices

Δ(σ) := conv
{
0, e(σ (1)), e(σ (1)) + e(σ(2)), . . . , e(σ (1)) + e(σ(2)) + · · · + e(σ(n))

}

generate a triangulation of [0,1]n, where σ runs through all elements of the sym-
metric group Sym{1, . . . , n}. Show that every simplex Δ(σ) has the same volume
(i.e., 1/n!).

Exercise 6.28 Let m ∈ N be arbitrary. Describe an m-element point set in R
2 (in

general position) for which the beach line algorithm first treats all point events and
then all circle events.

6.7 Remarks

Voronoi diagrams have appeared independently over the last few centuries in differ-
ent scientific disciplines. Their methodical usage in mathematics can be traced back
to Dirichlet (1850) and Voronoi (1908), who used the diagrams to study quadratic
forms. The presentation of a Voronoi diagram can be found as early as in Descartes’
(1644) work on visualizing the mass distribution in our solar system.

Detailed discussions of this topic can be found in the books of Edelsbrunner [38],
Boissonat and Yvinec [15] and de Berg et al. [31].

polymake computations with Voronoi diagrams will be explained in Sec-
tion 7.6 below. CGAL offers a variety of methods to compute Voronoi diagrams
and their generalizations, including the beach line algorithm.

	Chapter 6: Voronoi Diagrams
	6.1 Voronoi Regions
	6.2 Polyhedral Complexes
	6.3 Voronoi Diagrams and Convex Hulls
	6.4 The Beach Line Algorithm
	Data Structures
	6.4.1 The Algorithm

	6.5 Determining the Nearest Neighbor
	6.6 Exercises
	6.7 Remarks

