
Chapter 5
Computation of Convex Hulls

When referring to “computation of convex hulls” we understand this as the task
of computing the H-representation of the convex hull of a given finite point set
V ⊆ R

n. Depending on the desired application, one might also need to compute all
faces, a description of the face lattice or other geometric information.

5.1 Preliminary Considerations

We begin with two simple results. First, Algorithm 5.1 immediately gives a trivial
convex hull algorithm, which is, unfortunately, inefficient.

Theorem 3.9, together with the fact that the computed half-spaces define facets,
shows that the algorithm is correct. The assumption that the affine hull is full-
dimensional is not necessary. Without it, the algorithm can simply be applied to
the affine hull of the input.

Algorithm 5.1: A trivial convex hull algorithm

Input: Finite point set V ⊆R
n with dim affV = n.

Output: Finite set of half-spaces {H+
1 , . . . ,H+

m } such that
⋂m

i=1 H+
i = convV .

1 H ← ∅
2 foreach n-element subset W ⊆ V with dim affW = n − 1 do
3 H ← affW
4 if V ⊆ H+ then
5 H ← H ∪ {H+}
6 else
7 if V ⊆ H− then
8 H ←H ∪ {H−}

9 return H

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_5,
© Springer-Verlag London 2013

65

http://dx.doi.org/10.1007/978-1-4471-4817-3_5

66 5 Computation of Convex Hulls

Secondly, the dual problem, i.e., computing a V-representation of a polytope
from its H-representation is, by polarity, algorithmically equivalent to the convex
hull problem:

Theorem 5.1 The problem of computing the V-representation of a polytope from
its H-representation can be reduced to the convex hull problem and vice versa.

Proof Let P = ⋂m
i=1 H+

i be given in the H-representation. Via the linear programs
from Example 4.3 and Exercise 4.4 we can compute the affine hull A = affP and
a point from the relative interior x in P = P ∩ A. We can thus assume that P is
full-dimensional. We can also assume that the origin is an interior point, since we
can otherwise apply our computations to A and translate by −x.

Since 0 ∈ intP , there exist h
(i)
k such that H+

i = [1 : h
(i)
1 : · · · : h

(i)
n]+. We

now examine the polar polytope which has, according to Theorem 3.28, the V-
representation P ◦ = conv{h(1), . . . , h(m)}. Using a convex hull algorithm we can
obtain an H-representation P ◦ = ⋂k

j=1[1 : v
(j)

1 : · · · : v
(j)
n]+. Looking at the polar

polytope of P ◦ and using Theorem 3.29 we get

P = P ◦◦ = conv
{
v(1), . . . , v(k)

}
.

The reverse direction is similar. In fact, it is easier since it is not necessary to use
the linear programming techniques used above. �

In the dual representation of the convex hull problem it becomes clear that the
problem can be viewed as a far-reaching generalization of the linear optimization
problem: While linear optimization aims at computing one specific vertex of an H-
polytope (defined by a linear objective function), the dual convex hull algorithm
computes all vertices of P .

Note that the existence of cyclic polytopes of dimension n with m vertices and
Θ(m	n/2
) facets implies that there cannot exist a convex hull algorithm which is
polynomial in m and n, since every such algorithm has to write the (in this case)
exponentially many facets as output. Theorem 5.1 and the existence of the dual
polytopes to cyclic polytopes imply that the dual convex hull problem has exponen-
tial run-time in the worst case. Now the natural question is if the naive algorithm
from the beginning of this chapter can be optimized at all. There are two answers to
this: First, by carefully analyzing the geometry we can exclude many hyperplanes
which Algorithm 5.1 considers to be candidates for facets. We demonstrate how to
do this in the next section. Secondly, the problem has a different quality when we
assume the dimension n to be fixed: In Section 5.3 we will study the case n = 2. We
provide further remarks and suggested literature at the end of this chapter.

5.2 The Double Description Method

To emphasize the relationship between the linear programming methods from the
previous chapter and the convex hull problem, we study the convex hull problem in

5.2 The Double Description Method 67

its dual form. A basic approach is to order the affine hyperplanes which were given
as input. Our goal is to take V-representations of polytopes which are intersections
of k hyperplanes to obtain V-representations of polytopes which are intersections of
k + 1 hyperplanes. Such methods are called iterative. While reading this section, it
is useful to think about how the specific steps can be translated into primal form.

Let P be an H-polytope whose V-representation P = convV is already known.
We now study how the V-representation must be altered when another half-space
H+ is added. Define P ′ = P ∩ H+. The hyperplane H partitions the point set V

into three parts: Points on the hyperplane and points on either of its two sides.

Lemma 5.2 Let V0,V+,V− be the partition of the point set V defined by

V0 = V ∩ H, V+ = V ∩ H+ \ H, V− = V ∩ H− \ H.

Then we have

P ′ = conv
(
(V0 ∪ V+) ∪ {[v,w] ∩ H : v ∈ V+, w ∈ V−

})
.

Proof It is obvious that the points in V0 ∪ V+ are contained in P ′. Furthermore, if
v ∈ V+ and w ∈ V−, then the segment [v,w] intersects the hyperplane H in one
point which proves that P ′ ⊇ convV ′.

For the reverse inclusion it is sufficient to examine the case where V is the ver-
tex set of P . To find the vertices of P ′ we have to determine which cases have a
supporting hyperplane of P ′ that intersects the polytope in exactly one point v. This
happens when either v is a vertex of P (and contained in H+) or v is the intersection
of an edge of P with H . The edges of P are segments between vertices of P . The
segment [v,w] intersects the hyperplane H only in the two cases we mentioned,
which proves the statement. �

Using Lemma 5.2 we can immediately provide a method to iteratively transform
an outer description of a polytope P ⊆R

n into an inner description. Without loss of
generality we again assume dimP = n.

The name of the method comes from the following concept.

Definition 5.3 Let V = {v(1), . . . , v(m)} be a point set in R
n and H = {H+

1 , . . . ,H+
k }

a set of affine half spaces in R
n. The pair (V ,H) is called a double description of a

polytope P if we have

P = convV = H+
1 ∩ · · · ∩ H+

k .

Exercise 5.4 How should the term ‘double description’ be extended to arbitrary
polyhedra?

Let P = H+
1 ∩· · ·∩H+

m , and write Pk := H+
1 ∩· · ·∩H+

k . Up to a projective trans-
formation (and renumeration) we can assume that Pn+1 is an n-simplex (see Exer-
cise 3.57). The n + 1 vertices of Pn+1 are precisely the intersections of each set of

68 5 Computation of Convex Hulls

Algorithm 5.2: A basic algorithm to compute the double description

Input: A set of affine half-spaces H = {H+
1 , . . . ,H+

m } in R
n, such that

P = H+
1 ∩ · · · ∩ H+

m is bounded and full-dimensional and
Pn+1 = H+

1 ∩ · · · ∩ H+
n+1 is an n-simplex.

Output: Point set V with convV = P

1 Vn+1 ← set of vertices of Pn+1
2 for k ← n + 2, . . . ,m do
3 Construct Vk with convVk = Pk = Pk−1 ∩ H+

k as in Lemma 5.2.

4 return Vm

n hyperplanes from H1, . . . ,Hn+1. We can now inductively assume that we have al-
ready computed a V-representation of Pk = conv{v(1), . . . , v(k)}. Using Lemma 5.2
we obtain Algorithm 5.2.

This basic version of the algorithm is already more efficient than the trivial
method described at the beginning of this chapter. However, we can still improve it
with some simple steps. Note that we have |Vk| ≤ |Vk−1|2, i.e., the number of points
might be squared in each step. The improvement that we introduce below does not
completely avoid this “explosion” but it does have a positive effect by avoiding re-
dundant computations, particularly when dealing with actual applications.

The point sets Vk which are iteratively generated in Algorithm 5.2 are in general
too large, since they can contain points which are not vertices. Only the vertices
are necessary for a V-representation of a polytope. A possible improvement on this
method would be to set up a linear program which at each step reduces the point set
Vk to the set of vertices of Pk . This technique was previously used in Exercise 4.28.

However, we would like to avoid solving additional linear programs. The above
mentioned refinement relies on the observation that vertices of Pk which are not
vertices of Pk−1 are generated by intersections of edges of Pk−1 with the new hy-
perplane Hk . This fact was used in the proof of Lemma 5.2. Once we know which
pairs of vertices in Vk−1 generate edges of Pk−1, we will only have to test those
particular vertices.

For W ⊆ V let

H(W) = {
H : H = ∂H+ for an H+ ∈H and W ⊆ H

}

be the set of supporting hyperplanes from H that contain all points of W . We abbre-
viate this as H(v,w) := H({v,w}).

Lemma 5.5 Let (V ,H) be a double description of an n-polytope P ⊆ R
n. Given

two distinct points v,w ∈ V , the set aff{v,w} ∩ P is an edge of P if and only if
the affine subspace G := ⋂

H(v,w) is one-dimensional. In this case aff{v,w} = G

holds. Furthermore, if v and w are vertices then conv{v,w} = P ∩ G.

5.2 The Double Description Method 69

Proof Observe that aff{v,w} ⊆ G = ⋂
H(v,w). This is obvious for non-empty

H(v,w). Otherwise we fix here the convention
⋂∅ =R

n.
First, let e = aff{v,w} ∩ P be an edge of P . The affine hull of each face F of P

is the intersection of those hyperplanes which define the facets of P that contain F .
Since (V ,H) is a double description of P , the set H contains all affine hyperplanes
that define facets of P . In addition, every affine hyperplane that contains v and w

also contains the edge e. This implies that aff{v,w} is the intersection G of all
supporting hyperplanes (from H) that contain v and w.

For the reverse direction, let dimG = 1, i.e., aff{v,w} = G. In Theorem 3.6
we showed that the faces of faces of P are faces of P themselves. This implies
that every intersection of supporting hyperplanes with P defines a face of P . In
particular this holds for G ∩ P and the assumption about the dimension implies
dim(G ∩ P) ≤ 1. Since the points v and w of G were chosen to be distinct points
of P we have that G ∩ P = e is an edge. �

To fully realize the advantages resulting from this lemma, we have to study how
to make the double description (V ,H) accessible as a data structure. We also want to
extend the convex hull problem in such a way that we can handle H-descriptions of
unbounded (fully-dimensional) pointed polyhedra. Handling non-pointed polyhedra
is the task of Exercise 5.13. We showed in Chapter 3 that a polyhedron is pointed if
and only if it is projectively equivalent to a polytope. As usual we use homogeneous
coordinates. Geometrically, the transformation to homogeneous coordinates can be
interpreted as follows. Instead of working with pointed polyhedra P ⊆R

n, we work
with the polyhedral cones which are generated by P :

Q = {
(λ,λx) : x ∈ P, λ ≥ 0

} ⊆R
n+1.

The vertices and rays of P , which we originally wanted to compute, correspond
to the uniquely defined minimal generating system of Q as a positive hull: Let
V,R ⊆R

n be given with

P = convV + posR

as in Exercise 3.41. Then we have

Q = pos
({

(1, v) : v ∈ V
} ∪ {

(0, r) : r ∈ R
})

.

In the following let

W = {
w(1), . . . ,w(m)

} := {
(1, v) : v ∈ V

} ∪ {
(0, r) : r ∈ R

} ⊆R
n+1

be a positive generating system of the cone Q. To be able to distinguish P from
its homogenization Q, we will refer to the elements of W as vectors. Through the
homogenization, affine half-spaces in R

n become linear half-spaces in R
n+1, i.e.,

affine half-spaces which contain the origin in R
n+1. E.g., a simplex in R

n gener-
ates a simplicial cone in R

n+1. The polytope edges, which played the key role in
Lemma 5.5, correspond precisely to the two-dimensional faces of the homogeniza-
tion.

70 5 Computation of Convex Hulls

The following is a useful way to represent the data: The coordinates of vectors
from W = {w(1), . . . ,w(m)} are saved as columns of an (n+1)×m-matrix which we
will also call W . The linear half-spaces H = {H+

1 , . . . ,H+
k } are represented by their

coordinate vectors h(1), . . . , h(k) ∈ (Rn+1)∗ where we assume H+
i = {x : h(i)x ≥ 0}.

By analogy to the vectors, we use H as the symbol for the k × (n + 1)-matrix
consisting of the row vectors h(1), . . . , h(k). We use the following homogeneous
version of the incidence matrix of Section 3.6 and Exercise 3.55.

Definition 5.6 Let (W,H) be the double description of a pointed cone Q ⊆ R
n+1

with W ∈ R
(n+1)×m and H ∈ R

k×(n+1). The matrix I (W,H) ∈ {0,1}k×m with
I (W,H) = (Iij) defined by

Iij =
{

1 if w(j) ∈ Hi = ∂H+
i , i.e., h(i)w(j) = 0,

0 otherwise

is called the incidence matrix of (W,H).

The rows of the incidence matrix I := I (W,H) of the cone Q can be inter-
preted as the characteristic functions of the set of vectors from W which lie on
the corresponding hyperplane. Analogously, the columns of I correspond to sets
of supporting hyperplanes which contain a fixed vector from W . In this way we
can determine the set H(w(r),w(s)) from Lemma 5.5 as the intersection of two sets
which are given by characteristic functions; many programming languages allow for
the efficient implementation of this as a bit-wise “and”. This allows us to identify
the set H(w(r),w(s)) with the submatrix consisting of those rows of the matrix H
which have a 1 in their r-th and s-th column. The dimension of the intersection of
all supporting hyperplanes which contain w(r) and w(s) is therefore n+ 1 minus the
rank of the submatrix H(w(r),w(s)).

The natural formulation of the crucial Lemma 5.5 shows that it is most convenient
to study the double description method in the homogeneous setting. Putting the
pieces together, as shown in Algorithm 5.3, we can compute a minimal positive
generating system of a polyhedral cone in R

n+1 defined by linear inequalities. This
is slightly more general than computing convex hulls.

We conclude this section with a detailed description of an example of the func-
tionality of the loop in Steps 8 to 11 of Algorithm 5.3.

Example 5.7 Let n = 3 and

H =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 −1 0
1 −1 2 0
1 2 −1 0
1 0 0 1
2 −1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
5×4.

One can easily verify that the cone Q = {x ∈R
4 : Hx ≥ 0} is full-dimensional, since

the ray R≥0(1,0,0,0)T passes through the interior. Furthermore, we have that Q4 =

5.2 The Double Description Method 71

Algorithm 5.3: An algorithm for the double description in homogeneous form

Input: Matrix H ∈R
k×(n+1) with row vectors h(1), . . . , h(k) such that

Q = {x ∈R
n+1 :Hx ≥ 0} is a full-dimensional pointed cone and

Qn+1 := {x ∈ R
n+1 : h(1)x ≥ 0, . . . , h(n+1)x ≥ 0} is a simplicial cone.

Output: Set W of vectors with posW = Q

1 Let Wn+1 ∈R
(n+1)×(n+1) be a matrix whose columns positively generate

Qn+1.
2 for i ← n + 2, . . . , k do
3 Create W+

i−1 from those columns of Wi−1 that lie on the positive side of
h(i) and create W−

i−1 from the columns on the negative side.
4 if W−

i−1 = ∅ then
5 Wi ← Wi−1
6 else
7 X ← ∅
8 foreach Pair (w,w′) of columns of W+

i−1 and W−
i−1 do

9 if rankHi−1(w,w′) = n − 1 then
10 Choose x as generator of the kernel of the matrix H′

i−1(w,w′)
that consists of the rows of Hi−1(w,w′) and h(i).

11 X ← X ∪ {x}
12 Let Wi be the matrix consisting of the columns of Wi−1 without the

columns of W−
i−1 and enhanced by the column vectors from X.

13 return Wk

{x ∈R
4 : h(1)x ≥ 0, . . . , h(4)x ≥ 0} is a simplicial cone whose rays correspond to the

columns of the following matrix

W4 =

⎛

⎜
⎜
⎝

1 1 1 0
1 0 −1 0
0 1 −1 0

−1 −1 −1 1

⎞

⎟
⎟
⎠ ∈ R

4×4.

Now the fifth and last row of the matrix H defines the subsets W+
4 (consisting of

the first three columns of W4) and W−
4 (last column of W4). The incidence matrix

of the double description is then the following:

I (W4,H4) =

⎛

⎜
⎜
⎝

1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

⎞

⎟
⎟
⎠ .

72 5 Computation of Convex Hulls

As an example we study the pair of rays (w(1),w(4)) ∈ W+
4 ×W−

4 . By the definition
of the incidence matrix, the first two vectors h(1), h(2) satisfy h(j)w(1) = 0 and
h(j)w(4) = 0 (for j = 1,2). This gives

H4
(
w(1),w(4)

) =
(

1 −1 −1 0
1 −1 2 0

)

and

H′
4

(
w(1),w(4)

) =
⎛

⎝
1 −1 −1 0
1 −1 2 0
2 −1 −1 −1

⎞

⎠ .

The matrix H4(w
(1),w(4)) clearly has rank 2, which implies that pos{w(1),w(4)} is

a face of the cone Q4 of dimension 4−2 = 2 = n−1. The vector (1,1,0,1)T spans
the kernel of H′

4(w
(1),w(4)). Analogous computations for the pairs (w(2),w(4)) and

(w(3),w(4)) yield two more columns. Putting this together we arrive at

W = W5 =

⎛

⎜
⎜
⎝

1 1 1 1 1 1
1 0 −1 1 0 −1
0 1 −1 0 1 −1

−1 −1 −1 1 1 4

⎞

⎟
⎟
⎠ .

If we now dehomogenize, i.e., we intersect Q = posW = {(x0, x1, x2, x3)
T ∈ R

4 :
Hx ≥ 0} with the affine hyperplane in R

4 defined by x0 = 1, we obtain a simple
3-polytope with five facets which is combinatorially equivalent to a prism over a
triangle. The rows of H and the columns of W describe homogeneous coordinates
of facets and vertices of P respectively. The incidence matrix defined by the ver-
tices and facets of P coincides with the incidence matrix of the double description
(W,H) of the cone Q:

I (W,H) =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
1 1 1 0 0 0
0 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

5.3 Convex Hulls in the Plane

Two dimensional polytopes coincide with convex polygons. The edges of a convex
polygon form the facets and the vertices can be ordered cyclically (clockwise or
counter-clockwise). Let a finite set of points in the plane be given as columns of a
matrix M ∈R

2×m. Then the planar convex hull problem is the computation of a list
of column indices that defines such a cyclic ordering of the vertices. Depending on
the context, it may be necessary to choose one of the two orientations or to fix a
specific point as the starting vertex.

5.3 Convex Hulls in the Plane 73

Algorithm 5.4: The Divide-and-Conquer method for computing convex
hulls in the plane

Input: Finite point set V = {v(1), . . . , v(m)} ⊆R
2

Output: Vertices of convV in cyclic order
1 if m ≤ 2 then
2 return V

3 else
4 Sort V by the first coordinate.
5 Divide V in two disjoint sets L and R, where L contains the left 	m/2

and R the right �m/2� points of V .
6 Recursively compute convL and convR.
7 Compute conv(L ∪ R) from convL and convR.

Note that degenerate cases of lower dimensional polytopes in R
2 can be coded

by such a list as well, which then contains only one index (if the dimension is 0), or
two indices (if the dimension is 1). To keep the language simple, we shall call these
degenerate polytopes polygons.

We now introduce an algorithm of Preparata and Hong [84], which relies on
the commonly used “divide-and-conquer” principle of computer science. The basic
idea is to divide the original problem into many sub-problems, solve these smaller
problems recursively and combine the sub-solutions, thus forming a solution to the
original problem. A classic example of this principle is the MergeSort sorting
algorithm described in Appendix C.1.

To simplify the presentation of Preparata and Hong’s algorithm we make an extra
assumption. In the exercises at the end of this chapter we will see how to extend
the algorithm to the general case. In contrast to the convention used elsewhere in
this book, we say that a point set V ⊆ R

2 is in general position if no three points
are colinear and every vertical [a : −1 : 0], for a ∈ R, contains at most one point
in V .

In Algorithm 5.4, the actual computational problem is of course hidden in the last
step, where we have to compute the common convex hull of two polygons which
are given as a cyclic list of vertices. Our assumption that no two points lie on the
same vertical simplifies the situation since this implies that convL and convR are
disjoint and that there exists a dividing vertical line. The central observation here is
that in this situation those vertices of conv(L ∪ R) which are vertices of L (or R)
are ordered successively by the cyclic ordering.

One consequence of L and R being vertically separated is that there exist four
common supporting lines to L and R; see Fig. 5.1. As with smooth convex sets,
we call these common supporting lines double tangents. Exactly two of these four
double tangents define facets of the common convex hull of L and R. Since L and
R are vertically separated we can talk about the upper and lower double tangent.
Computing the common convex hull of L and R is therefore equivalent to computing
the upper and lower double tangent of two vertically separated polygons. In addition,

74 5 Computation of Convex Hulls

Fig. 5.1 The four double
tangents to two disjoint
polygons

the problem of computing the upper double tangent and the problem of computing
the lower double tangent are equivalent since we can obtain the upper double tangent
of L and R by computing the lower double tangent of (−R,−L). Now we obtain
an algorithm to compute the convex hull in the plane by combining the following
algorithm with the divide-and-conquer method.

It remains to be checked if the Lower-Double-Tangent algorithm is correct. This
is not obvious since it has to be shown that the outer loop terminates. To do this we
need a further definition and a preliminary lemma.

Each pair of vertices v and w of a polygon defines two polygonal arcs, one in
which v appears before w and one where v appears after w with respect to the
counter-clockwise cyclic order of the polygon’s vertices. For a polygon in general
position, the left-most vertex and the right-most vertex define the upper and the
lower half.

Lemma 5.8 The lower double tangent to two vertically separated polygons L and
R intersects both L and R in the lower half.

Proof The lower half comprises precisely those facets whose outer normal points
down. The outer normal of a supporting line to L (or R) which points down lies in
the cone of normals of the facets of the lower half. �

Since the algorithm progresses cyclically in a fixed direction on both polygons,
its termination is a consequence of the following statement. In some sense the inte-
riors of L and R “block” the algorithm after finitely many steps.

Lemma 5.9 There is no step of the algorithm where the segment [v(i),w(k)] could
intersect the interior of L or of R.

Proof In the beginning this condition is satisfied by construction. To show that the
condition is satisfied in subsequent steps we use induction. Assume that [v(i),w(k)]
does not intersect the interior of L and R. Using symmetry arguments we can also
assume that i will be decreased in the next step. That is, we assume that [v(i),w(k)]
is not a lower supporting line to L. Then v(i−1) lies below the line aff{v(i),w(k)}
and [v(i−1),w(k)] does not intersect the interior of L. �

5.3 Convex Hulls in the Plane 75

Algorithm 5.5: Lower-Double-Tangent(L,R)

Input: Two finite polygons L = (v(0), . . . , v(l−1)) and R = (w(0), . . . ,w(r−1)),
given as a list of their vertices in cyclic order counterclockwise, such
that there exists a separating vertical line where L lies on the left and R

on the right side
Output: Lower double tangent T

1 v(i) ← right-most vertex of L

2 w(k) ← left-most vertex of R

3 while T ← aff{v(i),w(k)} is not lower double tangent do
4 while T is not a lower supporting line to L do
5 i ← i − 1 mod l

6 while T is not a lower supporting line to R do
7 k ← k + 1 mod r

8 return T

We would like to determine the complexity of the divide-and-conquer algorithm
in its worst case. This will be done in a way that is typical for algorithms of this
type. When regarding the input size, we neglect the point coordinates for which, for
all geometric primitives, the same unit costs occur. The complexity of the algorithm
Lower-Double-Tangent (Algorithm 5.5) is clearly O(l + r). If we denote the
complexity of Divide-and-Conquer by C(m) we have the recursion C(2m) =
2C(m)+O(m). First, we assume that the number of input points m = 2b is a power
of 2. Every division step will then divide the point set into two sets of exactly the
same size. Then we obtain

C(m) = C
(
2b

)

= 2C
(
2b−1) + O

(
2b

)

= 2
(
C

(
2b−2) + O

(
2b−1)) + O

(
2b

) = 2C
(
2b−2) + 2O

(
2b

)

= 2C
(
2b−3) + 3O

(
2b

) = · · · = bO
(
2b

) = O(m logm).

If m is not a power of 2, then the smallest power of 2 that is larger than m is at most
twice as large as m. The complexity analysis above changes only by a multiplica-
tive constant which is suppressed in the O-notation. We summarize this with the
following theorem.

Theorem 5.10 The algorithm Divide-and-Conquer computes the convex hull
of m points in R

2 with complexity O(m logm).

76 5 Computation of Convex Hulls

5.4 Inspection Using polymake

polymake offers several convex hull algorithms, some of them via interfaces to
other software, others as part of the polymake system. The double description
algorithm is the standard algorithm. Internally, polymake calls cddlib [43].

We will start with the V-description of a polytope. In contrast to the previous
chapter where we entered the coordinates manually, we now use polymake’s stan-
dard constructions. The function cube with the single argument “3” generates the
standard cube [−1,1]3.

polytope > $C3=cube(3);

The following function edge_middle takes the cube $C3 as input, computes its
edge mid-points and defines a new polytope as the convex hull of these. The task of
Exercise 5.16 is to show that the edge mid-points are always the vertices of the new
polytope.

$P=edge_middle($C3);

The new object $P comes with a range of properties which are already known.

polytope > print join " ", $P->list_properties();
VERTICES BOUNDED FEASIBLE

Each of them can be printed or used for further computations.

polytope > print $P->VERTICES;
1 0 -1 -1
1 -1 0 -1
1 1 0 -1
1 0 1 -1
1 -1 -1 0
1 1 -1 0
1 0 -1 1
1 -1 1 0
1 -1 0 1
1 1 1 0
1 1 0 1
1 0 1 1

polytope > print $P->BOUNDED, " ", $P->FEASIBLE;
1 1

The property VERTICES lists the vertices of the polytope in homogeneous coor-
dinates. The boolean properties BOUNDED and FEASIBLE indicate that $P is a
bounded polyhedron, i.e., a polytope, which is not empty. Performing a convex hull
computation is now as easy as printing the FACETS.

polytope > print $P->FACETS;
1 0 0 -1
2 -1 1 -1
1 0 1 0

5.5 Exercises 77

2 1 -1 1
1 1 0 0
2 1 1 1
2 1 1 -1
2 1 -1 -1
2 -1 1 1
1 0 0 1
2 -1 -1 1
2 -1 -1 -1
1 0 -1 0
1 -1 0 0

The polytope in $P is actually a cuboctahedron which is one of the Archimedean
solids; see Fig. 5.2.

5.5 Exercises

Exercise 5.11 Let

P = conv
{
v(1), . . . , v(m)

} = H+
1 ∩ · · · ∩ H+

l ⊆R
n

be an n-polytope in double description with pairwise distinct half-spaces H+
1 ,

. . . ,H+
l , and let Vi := {v(j) ∈ Hi : 1 ≤ j ≤ m} be the set of given points which

lie on the hyperplane Hi . Show that H+
i is redundant if and only if there exists an

index k ∈ {1, . . . , l} such that Vi � Vk .

Exercise 5.12 Let (V ,H) be a double description of an (n + 1)-polytope P and
let π : Rn+1 → R

n be the linear projection to the first n coordinates. Exercise 3.58
shows that the image π(P) is also a polytope. Compute a double description of
π(P).

Throughout the double description algorithm, the step-wise intersections with
hyperplanes become iterated projections to coordinate subspaces in the polar form.
In its dual form, this method corresponds to Fourier–Motzkin-Elimination. Exer-
cise 5.12 illustrates one elimination step.

Exercise 5.13 How can we alter Algorithm 5.2 so that it also works for non-pointed
polyhedra?

Exercise 5.14 How can we alter the divide-and-conquer algorithm from Section 5.3
to compute the area of a polygon that is defined by its vertices?

Exercise 5.15 How can we alter the divide-and-conquer algorithm so that it com-
putes the convex hull of a point set that is not in general position?

78 5 Computation of Convex Hulls

Fig. 5.2 The cuboctahedron

Exercise 5.16 Let P be an arbitrary polytope with vertex set {v(1), . . . , v(m)} ⊆ R
n

and edge set
{[

v(i), v(j)
] : (i, j) ∈ I

}

for an appropriate set I ⊆ {1, . . . ,m} × {1, . . . ,m}. Show that the set of edge mid-
points

W :=
{

1

2

(
v(i) + v(j)

) : (i, j) ∈ I

}

is the vertex set of the polytope convW .

Figure 5.2 shows an example of the construction in Exercise 5.16 where P is the
standard 3-cube.

5.6 Remarks

The double description algorithm which has briefly been introduced here is used in
practical applications and is particularly useful for relatively high-dimensional non-
simple polytopes. A detailed description can be found in Fukuda and Prodon [44].

The m vertices of an n-polytope defined by � (facet defining) affine half-spaces
can be computed in O(�mn) time using the “reverse search” method of Avis and
Fukuda [8]; reverse search works for non-simple polytopes as well, but in that set-
ting is often inferior to the double description method; see Avis, Bremner and Sei-
del [7].

A further class of convex hull algorithms computes from the given point set, in
addition to the facets of the convex hull, a triangulation. An example of this class is
“beneath-and-beyond”; see Edelsbrunner [38, §8.4] and Joswig [67].

The divide-and-conquer principle can be extended and sometimes yields asymp-
totically optimal algorithms for lower dimensions. In dimension 2 and 3 one can
obtain O(m log�)-algorithms; see Clarkson and Shor [23] and Chan [19]. Chan,
Snoeyink and Yap [20] describe an O((m + �) log2 �)-algorithm to compute the �

facets of a 4-polytope defined by m points.
The Upper-bound Theorem limits the number of facets of an n-polytope with

m vertices to
(

m
	n/2

)
. When we fix the dimension n as a constant, then

(
m

	n/2

) ∈

5.6 Remarks 79

O(m	n/2
) has a polynomial bound. Chazelle [21] was able to provide an algorithm
which, for constant dimension, is in the worst case asymptotically optimal and has
a run time of order O(m logm + m	n/2
).

An interesting quality measurement for convex hull algorithms of arbitrary di-
mension can be obtained when we measure the run time with respect to the combi-
nation of input and output size. This is known as the combined run-time of a convex
hull algorithm. It is unknown if there exists an algorithm that has a polynomially
bounded combined run-time which computes the convex hull. Khachiyan et al. [69]
recently showed that it is #P-hard (in combined run-time) to enumerate all vertices
of an unbounded polyhedron which is given by inequalities. But this result does not
imply that it is #P-hard (in combined run-time) to enumerate all vertices and addi-
tionally all rays. Therefore the complexity of enumerating all vertices of a polytope
is still unknown.

	Chapter 5: Computation of Convex Hulls
	5.1 Preliminary Considerations
	5.2 The Double Description Method
	5.3 Convex Hulls in the Plane
	5.4 Inspection Using polymake
	5.5 Exercises
	5.6 Remarks

