
Chapter 3
Polytopes and Polyhedra

Polytopes may be defined as the convex hull of finitely many points in n-dimen-
sional space R

n. They are fundamental objects in computational geometry. When
studying polytopes, it soon becomes apparent that the proof of seemingly obvi-
ous properties often requires further clarification of the basic underlying geometric
structures. An example of this is the major result that polytopes can also be repre-
sented as the intersection of finitely many affine half-spaces.

In this chapter the geometric foundations of polytopes and unbounded polyhedra
will be presented from a computational viewpoint.

3.1 Definitions and Fundamental Properties

Definition 3.1 A set P ⊆ R
n is a polytope if it can be expressed as the convex

hull of finitely many points. A k-dimensional polytope is called a k-polytope. The
convex hull of k + 1 affinely independent points is a k-simplex.

A 0-dimensional polytope is just a point, a 1-polytope is a line segment and
the 2-dimensional polytopes are precisely the convex polygons. We adopt the con-
vention that the empty set is a polytope of dimension −1. See Fig. 3.1 for some
examples.

From an analytical viewpoint, a polytope is a closed and bounded, and hence
compact, subset of Rn. Polytopes in lower dimensions illustrate neither the diversity
of polytopes nor the depth of higher dimensional polytope theory.

We now introduce the reader to some examples of polytopes which will be useful
in the following sections.

The standard cube Cn is the convex hull of the 2n points which have ±1-
coordinates. If we denote the standard basis vectors in R

n by e(1), . . . , e(n), then we
can express the cross-polytope as the convex hull of the 2n points ±e(1), . . . ,±e(n).
The 3-dimensional cross-polytope is the regular octahedron.

The cyclic polytopes form an important class of polytopes with extremal proper-
ties. These properties will be discussed in further detail in Section 3.5.
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20 3 Polytopes and Polyhedra

Fig. 3.1 Every 2-simplex is a triangle and every 3-simplex in R
3 is a (generally irregular) tetra-

hedron. The right hand picture shows a 3-polytope in R
3

Definition 3.2 The moment curve μn in R
n is defined as

μn : R→R
n, τ �→ (

τ, τ 2, . . . , τ n
)T

.

A polytope Z ⊆ R
n is called cyclic if Z is the convex hull of points of the moment

curve.

For n = 2 the moment curve is the standard parabola τ �→ (τ, τ 2)T . Any cyclic
2-polytope that is defined as the convex hull of m ≥ 3 points is a convex m-gon.
This is independent of the specific choice of the m points on the curve μ2.

It is easy to verify that the image of a polytope under an affine transformation is
again a polytope (of the same dimension).

Definition 3.3 An affine automorphism of a polytope P ⊆ R
n is an affine transfor-

mation of Rn that maps P onto itself.

The set of all affine automorphisms of a polytope is a group with respect to
composition. The size of this automorphism group is a measure of the regularity of
the polytope.

Exercise 3.4

(a) Show that for any two points p,q ∈ R
n with ±1-coordinates there exists an

affine transformation of Rn which leaves the standard cube fixed and maps p

to q .
(b) Compute the number of affine automorphisms of the standard cube. [Hint:

Make use of Theorem 2.7.]

3.1.1 The Faces of a Polytope

Based on the concept of supporting hyperplanes (as introduced in Section 2.3.2 or
in Appendix B) we define the faces of a polytope.
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Fig. 3.2 A cube in R
3 has 8

vertices, 12 edges (which are
also ridges in dimension 3)
and 6 facets

Definition 3.5 Let P ⊆ R
n be an n-polytope. The intersection P ∩ H of P with

a supporting hyperplane H is called a proper face of P . A face of dimension k is
called a k-face. A 0-face is called a vertex, a 1-face an edge, an (n − 2)-face a ridge
and an (n − 1)-face is called a facet. Additionally, there are two non-proper faces:
the empty set and P itself.

Definition 3.5 was stated for full-dimensional polytopes. The terms translate im-
mediately to arbitrary k-polytopes P ⊆ R

n for k < n if they are interpreted with
respect to the affine hull affP of P . An example illustrating the faces of a polytope
is given in Fig. 3.2.

Theorem 3.6 The number of faces of a polytope is finite. Faces of polytopes are
polytopes themselves.

Proof Let P = convU for a finite set U . For both claims it suffices to show that
every proper face of P is the convex hull of a subset of U . Let H be a supporting
hyperplane of P and let U ′ := U ∩H . The oriented homogeneous coordinates of H

are [a0 : · · · : an] and we assume without loss of generality that P ⊆ H+. We will
show that H ∩ P = convU ′. The inclusion “⊇” is clear.

For the reverse inclusion consider a point p = (p1, . . . , pn)
T ∈ P \ convU ′.

There exist u(1), . . . , u(k) ∈ U such that p = λ(1)u(1) + · · · + λ(k)u(k) with λ(j) ≥ 0
and

∑
λ(j) = 1. Here we can assume that u(1) ∈ U \ U ′ and λ(1) > 0. We have to

show that p 
∈ H . We have

a0 +
n∑

i=1

aipi = a0 +
n∑

i=1

ai

k∑

j=1

λ(j)u
(j)
i

= a0 +
k∑

j=1

λ(j)

n∑

i=1

aiu
(j)
i =

k∑

j=1

λ(j)

(

a0 +
n∑

i=1

aiu
(j)
i

)

,

where the last equation follows from
∑k

j=1 λ(j) = 1. But by our assumption we have

that a0 + ∑n
i=1 aiu

(1)
i > 0 and a0 + ∑n

i=1 aiu
(j)
i ≥ 0 for all j ∈ {2, . . . , n}. Since

λ(1) > 0, this implies a0 + ∑n
i=1 aipi > 0 or, in other words, p ∈ H+◦ . �
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Fig. 3.3 Separation of the
point v(1) from
conv(V \ {v(1)}) by H and a
parallel supporting
hyperplane K

3.1.2 First Consequences of the Separating Hyperplane Theorem

As the Separating Hyperplane Theorem 2.14 is an important key to the study of the
structure of polytopes, we shall begin by studying its implications.

Theorem 3.7 The boundary of a full-dimensional polytope P ⊆ R
n is the union of

all of its proper faces.

Proof Clearly the union of all proper faces of P is contained in the boundary of P .
The reverse inclusion is implied by Corollary 2.15, which states that every boundary
point intersects at least one supporting hyperplane. �

Theorem 3.8 Every polytope is the convex hull of its vertices.

Proof Let P = convU for a finite set U . After successively removing all points
of U that can be expressed as a convex combination of other points in U , we obtain
a subset V = {v(1), . . . , v(k)} that satisfies P = convV and which is minimal with
respect to containment.

We now show that every remaining point is a vertex of P . It suffices to show
this for v(1). Since V was chosen to be minimal, v(1) is not contained in the convex
hull of the other points. By Theorem 2.14 there exists an affine hyperplane H that
separates v(1) and conv{v(2), . . . , v(k)}. We set H = [a0 : · · · : an] and assume that
v(1) ∈ H−◦ . Using the notation μ := a0 + ∑n

i=1 aiv
(1)
i , the hyperplane K which is

parallel to H and contains v(1) has the oriented homogeneous coordinates [a0 − μ :
a1 : · · · : an]; see Fig. 3.3. The inequality μ < 0 implies {v(2), . . . , v(k)} ⊆ intK+
and since v(1) ∈ K we have that K is a supporting hyperplane to P . Now let p ∈
P ∩ K . Since p is a convex combination of the points v(j), i.e., p = ∑k

j=1 λ(j)v(j)

for appropriate λ(j) ≥ 0 with
∑k

j=1 λ(j) = 1, we have

a0 − μ +
n∑

i=1

aipi = a0 − μ +
n∑

i=1

ai

k∑

j=1

λ(j)v
(j)
i

=
k∑

j=1

λ(j)

(

a0 − μ +
n∑

i=1

aiv
(j)
i

)

= 0.
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Fig. 3.4 The point q is not
contained in the affine hull of
p with any face of dimension
≤ n − 2 (here n = 2)

Since λ(j) ≥ 0 and a0 − μ + ∑n
i=1 aiv

(j)
i > 0 for all j ≥ 2, we have λ(2) = · · · =

λ(k) = 0 and also λ(1) = 1. This means that p = v(1) and therefore that v(1) is a
vertex of P . �

An immediate consequence of the above theorem is that the containment-
minimal set V of points that generate P is uniquely determined.

3.1.3 The Outer Description of a Polytope

The representation of a polytope as the convex hull of a finite point set is called the
V-representation or inner description. The following two central theorems state that
every polytope can be equivalently described as the bounded intersection of finitely
many closed half-spaces (the H-representation or outer description). The prefixes
V- and H- derive from the terms “vertices” and “hyperplanes”.

Theorem 3.9 Let P ⊆ R
n be an n-polytope, {F1, . . . ,Fm} the set of its facets,

Hi the supporting hyperplane to P at Fi and H+
i the half-space containing P .

Then we have

P =
m⋂

i=1

H+
i .

Thus every polytope is the intersection of a finite set of closed half-spaces.

Proof The inclusion “⊆” is clear. For the inclusion “⊇” we show that every point
outside of P is not contained in the intersection

⋂m
i=1 H+

i . For the following we fix
a point p 
∈ P .

We study the set {G1, . . . ,Gk} of all faces of P of dimension ≤ n− 2. Let q be a
point in the interior of P which is not contained in the set

⋃k
i=1 aff(Gi ∪ {p}). Such

a point exists since the interior of an n-polytope has dimension n and can therefore
not be covered by a finite number of affine subspaces of dimension ≤ n − 1 (see
Fig. 3.4). The segment [p,q] intersects the boundary of P in a uniquely determined
point z which, by Theorem 3.7, is contained in a proper face of P . By the choice of q

it is guaranteed that z is not contained in a face of dimension j < n−1. This implies
that there exists an i ∈ {1, . . . ,m} with z ∈ Fi . So we have z ∈ Hi and q ∈ H+

i , but
p ∈ H−

i \ Hi , i.e., p 
∈ ⋂m
i=1 H+

i . �
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When, as in Theorem 3.9, the polytope P ⊆ R
n is full-dimensional, the affine

span of every facet F defines a hyperplane H . Assuming that H has the form H =
[a0 : · · · : an] and P ⊆ H+, every positive multiple of (a1, . . . , an)

T is called an
inner normal vector of F and every negative multiple of (a1, . . . , an)

T is called an
outer normal vector of F . If dimP < n, then for any facet F , there exist infinitely
many affine hyperplanes of Rn that contain F .

We can now refine Theorem 3.7, which states that the boundary of a polytope is
the union of its facets.

Theorem 3.10 If the intersection P of a finite number of closed affine half-spaces
in R

n is bounded, then P is a polytope.

Proof The proof is completed by induction over the dimension n of the space. The
statement is clear for dimension ≤ 1 . So let n ≥ 2 and

P =
m⋂

i=1

H+
i

be the bounded intersection of a finite number of affine half-spaces in R
n. Let Fj :=

Hj ∩ P , j ∈ {1, . . . ,m}. Then Fj is a bounded intersection of half-spaces in the
hyperplane Hj . Since Hj can be identified with an affine space of dimension n − 1,
we know by the inductive hypothesis that Fj is a polytope in Hj and therefore also
a polytope in R

n. Let Vj be the set of vertices of Fj and V = ⋃m
j=1 Vj .

It suffices to show that P = convV . The inclusion “⊇” is clear since V ⊆ P and
P is convex. For the reverse inclusion consider a point q ∈ P . If q is a boundary
point of P , then there exists a j ∈ {1, . . . ,m} with q ∈ Fj . The point q is therefore
a convex combination of Vj which in particular implies that q ∈ convV . If q is
contained in the interior of P , then q is contained in a segment, [r, s], formed by
the intersection of a line with P . Since r and s are on the boundary of P they are
contained in convV and thus q ∈ convV . �

Example 3.11 The hyperplanes that define facets of the standard cube Cn are pre-
cisely Hi = [1 : h(i)

1 : · · · : h(i)
n ] for i ∈ {1, . . . ,2n} with

h
(i)
k =

⎧
⎪⎨

⎪⎩

1 if i = k,

−1 if i = k + n,

0 otherwise

for k ∈ {1, . . . , n}.

Computing the H-representation when given the V-representation of a polytope
and vice versa is a major topic of computational geometry and will be discussed in
Chapter 5.
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Exercise 3.12 Show that the intersection of a polytope with an arbitrary affine sub-
space is a polytope.

Exercise 3.13 For a polytope P show that:

(a) The intersection of a set of faces of P is a face of P .
(b) Every ridge of P is the intersection of exactly two facets of P .
(c) If G is a face of P and F is a face of G, then F is a face of P .

3.2 The Face Lattice of a Polytope

Containment defines a partial order on the set F(P ) of all faces of a polytope P .
Theorem 3.6 tells us that this set is finite, i.e., (F(P ),⊆) is a finite partially ordered
set (or poset). As a purely combinatorial object this poset is an important interface
between the analytically focused general complexity theory and discrete geometry.

Exercise 3.14 Show that (F(P ),⊆) satisfies the following conditions:

(a) There exists a uniquely determined smallest and largest face of P .
(b) For two arbitrary faces F,G ∈ F(P ) there exists a uniquely determined small-

est face F ∨ G such that F ⊆ F ∨ G and G ⊆ F ∨ G.
(c) For two arbitrary faces F,G ∈ F(P ) there exists a uniquely determined largest

face F ∧ G such that F ⊇ F ∧ G and G ⊇ F ∧ G.

The properties described in Exercise 3.14 show that (F(P ),⊆) is a lattice, called
the face lattice of P .

Definition 3.15 A combinatorial isomorphism of two polytopes is a (poset-)iso-
morphism of the face lattices. If there exists such a combinatorial isomorphism,
we call the two polytopes combinatorially equivalent. The combinatorial type of a
polytope is the isomorphism type of its face lattice.

Exercise 3.16 Show that every affine transformation of a polytope P to a poly-
tope Q induces an isomorphism from F(P ) to F(Q).

Exercise 3.17 Give an example of two combinatorially equivalent polytopes such
that there does not exist an affine transformation that maps one to the other.

Theorem 3.18 Let F and G be faces of P such that F ⊆ G. Then

F(F,G) := {
F ′ ∈F(P ) : F ⊆ F ′ ⊆ G

}

with the partial order induced by containment, is isomorphic to the face lattice of a
polytope of dimension dimG − dimF − 1.
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Fig. 3.5 Two examples of
polytopes P ∩ H(ε) for
dimF ∈ {0,1}. (Notation as
in the proof of
Theorem 3.18.) The polytope
P is a bipyramid over a
pentagon

Proof Since Theorem 3.6 established that every face of a polytope is a poly-
tope itself, we can assume without loss of generality that G = P . Let P be full-
dimensional. We choose F as a proper face since otherwise there is nothing left to
show.

Let V be the vertex set of P and V (F) = F ∩ V the vertex set of the face F .
Choose a supporting hyperplane H to P with F = P ∩ H . We assume that H has
the oriented homogeneous coordinates [a0 : · · · : an] and that P ⊆ H+ holds. For
every sufficiently small ε > 0 we have that the hyperplane H(ε) = [a0 − ε : a1 :
· · · : an], which is parallel to H , separates the vertex set V (F) from its complement:
V (F) ⊆ intH(ε)− and V \ V (F) ⊆ intH(ε)+. See Fig. 3.5.

Let x be a point in the relative interior of F . The hyperplane H(ε) contains
an interior point, y say, of P . Now let A be an (n − dimF)-dimensional affine
subspace containing x and y but no point in affF other than x. That is, affF and
A are complementary affine subspaces meeting at x. Then A ∩ H(ε) is an affine
subspace of dimension n − dimF − 1 which is affinely generated by the set

P(F,A, ε) := P ∩ A ∩ H(ε),

which by Theorem 3.10 is a polytope. The map

α : F(F,P ) → F
(
P(F,A, ε)

) : F ′ �→ F ′ ∩ A ∩ H(ε)

respects containment and is bijective since α−1(F ′ ∩ A ∩ H(ε)) = aff((F ′ ∩ A ∩
H(ε)) ∪ F) ∩ P = aff(F ′) ∩ P = F ′. Since F(F,P ) does not depend on x, y,A or
ε we have that the combinatorial type of the polytope P(F,A, ε) is independent of
x, y,A and ε. �

Given a face F of P we call the polytope P(F,A, ε) a face figure of F . An
implication of Theorem 3.18 is the fact that F(F,G), for dimG − dimF = 2, is
always the face lattice of a segment, i.e., there exist exactly two faces E1 and E2
of dimension dimF + 1 which lie between F and G. This property is called the
diamond property of F(P ); see Fig. 3.6. For a bipyramid over a pentagon, Fig. 3.5
shows the (pentagonal) face figure of a vertex, also called a vertex figure; the shaded
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Fig. 3.6 The diamond
property of the face lattice.
The faces E1,E2,F,G

satisfy E1 ∨ E2 = G and
E1 ∧ E2 = F

heptagon corresponds to the face figure of an edge, which is a segment, as discussed
above.

Let P ⊆ R
n be an n-polytope and let fk(P ) be the number of k-dimensional faces

of P . Then f (P ) := (f0(P ), f1(P ), . . . , fn−1(P )) is called the f -vector of P . The
f -vector is clearly a combinatorial invariant since it only depends on the combina-
torial type of P . An interesting—and very complicated—task is to determine which
n-tuples of natural numbers can be f -vectors of n-polytopes.

Exercise 3.19 Compute the f -vector of the n-dimensional standard cube Cn and
describe its face lattice.

One may ask what “typical” polytopes look like. A more rigorous statement of
this naive question can be formulated in several ways using stochastic terms. As
an example, we will study the convex hulls of random points on the unit sphere in
Section 3.6. In many cases the term “typical” corresponds to “general position”.

Exercise 3.20 Let K ⊆ R
n be a full-dimensional convex set. Show that a finite set

X of uniformly distributed random points from K is almost certainly in general
position, i.e. the probability of n + 1 of these points being affinely independent is 1.
In particular this implies that every proper face of convX is a simplex.

The last property inspires the following definition.

Definition 3.21 A polytope P is called simplicial if all proper faces of P are sim-
plices. It is called simple if the face figure of every proper face of P is a simplex.

The cross polytopes conv{±e(1), . . . ,±e(n)} are simplicial, while the cubes Cn

are simple. The relationship between these two properties, simplicial and simple,
will be clarified in Section 3.3.

Exercise 3.22 Show that a polytope is both simplicial and simple if and only if it is
a simplex or a polygon.

Exercise 3.23 Let P be an n-polytope with vertex set V and edge set E. The graph
Γ (P ) is the abstract graph (V ,E) with natural incidence. Show:

(a) The graph Γ (P ) is connected.
(b) Every vertex is incident with at least n edges.
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(c) The n-polytope P is simple if and only if every vertex is incident with exactly
n edges.

3.3 Polarity and Duality

In the following section we introduce the concept of polarity. Given a polytope P

which contains the origin in its interior, we assign to P a polar polytope P ◦ such
that every k-face of P corresponds to an (n − k − 1)-face of P ◦. In particular, we
have that fn−i−1(P ) = fi(P

◦).

Example 3.24 For the standard cube C3 = [−1,1]3 in R
3 we have f0(C3) = 8,

f1(C3) = 12, f2(C3) = 6. For the three-dimensional cross-polytope (the octahe-
dron) Q = conv{±e(i) : 1 ≤ i ≤ 3} (where e(i) denotes the i-th standard basis vec-
tor), we have f0(Q) = 6, f1(Q) = 12, f2(Q) = 8 (see Fig. 3.7).

We will see in Example 3.30 that Q is the polar polytope of C3.

As in Section 2.3.1, let 〈·, ·〉 denote the Euclidean scalar product and let ‖ · ‖ with
‖x‖ := 〈x, x〉1/2 be the Euclidean norm.

Definition 3.25 For X ⊆R
n the polar set X◦ is defined as

X◦ = {
y ∈R

n : 〈x, y〉 ≤ 1 for all x ∈ X
}
.

Exercise 3.26 Show that X ⊆ Y implies Y ◦ ⊆ X◦ for X,Y ⊆R
n.

Proposition 3.27 Let X ⊆R
n. Then X◦ is closed and convex and 0 ∈ X◦.

Proof Clearly 0 ∈ X◦. Let x ∈R
n \ {0}, then

{x}◦ = {
y ∈ R

n : 〈x, y〉 ≤ 1
} = [1 : −x1 : · · · : −xn]+

is a closed affine half-space and {0}◦ = R
n. The intersection X◦ = ⋂

x∈X{x}◦ of
closed and convex sets is again closed and convex. �

Theorem 3.28 If P ⊆ R
n is an n-polytope with 0 ∈ intP , then P ◦ is also an n-

polytope with 0 ∈ intP . We have

P ◦ =
⋂

v∈V

{
y ∈R

n : 〈v, y〉 ≤ 1
} =

⋂

v∈V

[1 : −v1 : · · · : −vn]+, (3.1)

where V is the vertex set of P .

Proof Since P is bounded, we have that P is contained in an open ball B(0, ρ)

with center 0 and radius ρ. For all x ∈ R
n with ‖x‖ ≤ 1/ρ the Cauchy–Schwarz
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Fig. 3.7 The cube [−1,1]3

and octahedron
conv{e(i) : 1 ≤ i ≤ 3}

inequality gives

∣
∣〈x, y〉∣∣ ≤ ‖x‖‖y‖ ≤ 1

ρ
‖y‖ ≤ 1 for all y ∈ P,

and thus the ball B(0,1/ρ) is contained in P ◦. As a consequence, P ◦ is full-
dimensional. Since P contains a ball B(0, ρ′) we can analogously deduce that P ◦
is bounded.

Equation (3.1) remains to be proven. The inclusion “⊆” follows immediately
from Definition 3.25. For the reverse inclusion “⊇” consider a point y that is not
contained in P ◦. An arbitrary point x ∈ P can be expressed as a convex combination∑k

i=1 λ(i)v(i) of vertices of P . Clearly we have

〈x, y〉 =
k∑

i=1

λ(i)
〈
v(i), y

〉 ≤ max
{〈

v(i), y
〉 : 1 ≤ i ≤ k

}
,

where the last inequality follows from
∑k

i=1 λ(i) = 1. If 〈x, y〉 > 1 then there exists
a vertex v(i) such that 〈v(i), y〉 > 1, which proves the statement. �

Theorem 3.29 For an n-polytope P ⊆R
n with 0 ∈ intP we have:

(a) (P ◦)◦ = P .
(b) For every boundary point p of P the affine hyperplane

H = {
x ∈ R

n : 〈p,x〉 = 1
}

is a supporting hyperplane to P ◦.

Proof (a) The definition of polarity implies immediately that P ⊆ (P ◦)◦. For the
reverse direction let P = ⋂m

i=1 H+
i and let x be a point not contained in P . Then

there exists an i ∈ {1, . . . ,m} with x 
∈ H+
i . By the Separation Theorem 2.14 there

exists a v ∈ R
n with 〈v, x〉 > 1. Since 〈v, y〉 ≤ 1 for all y ∈ H+

i , we have v ∈ P ◦
and since 〈v, x〉 > 1 we have x 
∈ (P ◦)◦.

(b) For every p ∈ P \ {0}, H+ = [1 : −p1 : · · · : −pn]+ is a half-space which
contains the polytope P ◦. If p is a boundary point of P then, by Theorem 3.7, it
belongs to a face of P and there exists a vector x ∈ R

n such that the hyperplane
H ′ = {y ∈ R

n : 〈x, y〉 = 1} supports P and contains the point p. We now have



30 3 Polytopes and Polyhedra

x ∈ P ◦ and x ∈ H such that H intersects the polytope P ◦ and thus H is a supporting
hyperplane to P ◦. �

Example 3.30 The description of the hyperplanes that define the facets of the stan-
dard cube Cn in Example 3.11 shows that Cn is polar to the n-dimensional cross-
polytope.

Lemma 3.31 Let P ⊆ R
n be an n-polytope with 0 ∈ intP . For every proper face F

of P the face

F ∗ := {
x ∈ P ◦ : 〈x, y〉 = 1 for all y ∈ F

}
� F ◦

is a proper face of P ◦.

Proof For every p ∈ F , Theorem 3.29b implies that the hyperplane H = {x ∈ R
n :

〈p,x〉 = 1} is a supporting hyperplane of P ◦, and thus P ◦ ∩ H is a face of P ◦.
Since F is the convex hull of a finite number of points, we can express F ∗ as an
intersection of a finite number of such faces of P ◦. Hence F ∗ is a face of P ◦. By
construction the face F ∗ is contained in the set F ◦. �

Lemma 3.31 induces a map φ : F �→ F ∗ from the set of all proper faces of P to
the set of all proper faces of P ◦, with φ(P ) = ∅ and φ(∅) = P ◦.

Theorem 3.32 Let P ⊆ R
n be an n-polytope with 0 ∈ intP . The map φ is bijective

and for all k ∈ {0, . . . , n−1} it maps the k-faces of P to the (n−k −1)-faces of P ◦.
Furthermore φ is containment-reversing, i.e., F ⊆ G implies G∗ ⊆ F ∗.

Proof Exercise 3.26 implies that φ is containment-reversing.
Since the map φ can also be applied to the faces of P ◦, in order to prove bijectiv-

ity we know by Theorem 3.29a that it suffices to show that φ(φ(F )) = F for every
face F of P . For the non-proper faces this is satisfied by definition. For every proper
face F we have by definition that

φ
(
φ(F )

) = {
x ∈ R

n : 〈x, y〉 = 1 for all y ∈ φ(F )
}

with

φ(F ) = {
y ∈ P ◦ : 〈x, y〉 = 1 for all x ∈ F

}
,

and thus F ⊆ φ(φ(F )).
For the reverse inclusion, consider a point p ∈ P with p 
∈ F . If we denote

by H = [1 : −h1 : · · · : −hn] a supporting hyperplane to P that contains F , then
p ∈ H+◦ and hence 〈p,h〉 < 1. Notice the first coordinate of H equals 1 (up to scal-
ing by a positive real number) as the origin is an interior point of P . Since h ∈ φ(F )

it then follows that p 
∈ φ(φ(F )).
Our dimension statement remains to be proven. For non-proper faces it is clearly

satisfied. Every proper k-face F contains k + 1 affinely independent points such
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Fig. 3.8 A polytope
P = conv{p(1), . . . , p(4)} and
its polar polytope

that φ(F ) is contained in the intersection of k + 1 hyperplanes whose equations are
linearly independent. This implies dimφ(F ) ≤ n − k − 1, but since F ⊆ φ(φ(F )),
this must be an equality. �

A bijection that reverses the order relation of a lattice or poset is called an anti-
isomorphism.

Corollary 3.33 Let P ⊆ R
n be an n-polytope with 0 ∈ intP . The polytope P is

simplicial if and only if the polar polytope P ◦ is simple.

Example 3.34 Let P = conv{p(1), . . . , p(4)} ⊆ R
2 be the quadrangle depicted in

Fig. 3.8. Then the polar polytope P ◦ = ⋂4
i=1{x ∈ R

2 : 〈p(i), x〉 ≤ 1} is the dashed
quadrangle. The segment [0,p(i)] is perpendicular to the line

Hi := {
x ∈R

2 : 〈p(i), x
〉 = 1

} = aff
({

p(i)
}∗)

.

For i ∈ {1,2}, p(i) lies on the unit circle S
1 such that the line Hi is tangent to the

unit circle. The point p(3) lies outside of the unit circle such that H3 intersects the
interior of the unit circle. The fourth point p(4) lies in the interior of the unit circle
such that H4 lies completely outside of the unit circle. The distance from the origin
to the line Hi is always the reciprocal of the distance between 0 and p(i).

In this section we often assumed that the polytope P contained the origin as an
interior point. By restricting to affP , and via a suitable translation, we can without
any loss of generality always assume this to be the case, i.e., every polytope has an
affine image which satisfies this condition. This implies that for every polytope P

there exists a polytope P ′ whose face lattice F(P ′) is anti-isomorphic to F(P ).
Such a polytope is said to be dual to P .

3.4 Polyhedra

Polytopes are the elementary building blocks of computational geometry, but it is
often more natural to study a wider class of objects: polyhedra. This will be of
particular importance in Chapter 4, as well as other chapters, when we discuss linear
programming.
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Definition 3.35 A set P ⊆ R
n is called a polyhedron if it can be represented as the

intersection of a finite number of closed affine half-spaces.

Thus, a polytope is a bounded polyhedron. In general we cannot describe a poly-
hedron as the convex hull of a finite number of points. The most basic example
of this is a single half-space. Nevertheless, the differences between polytopes and
unbounded polyhedra are manageable.

To do this we distinguish between two kinds of unbounded polyhedra: A poly-
hedron P either contains an affine line or it does not. In the latter case we call
P pointed. First assume that P = H+

1 ∩ · · · ∩ H+
k is pointed. Then n ≤ k and

H1 ∩ · · · ∩ Hk is either empty or contains exactly one point. Without loss of gener-
ality we may assume that the first n hyperplanes intersect in a point, z. If H+

i has

homogeneous coordinates [h(i)
0 : · · · : h(i)

n ]+ this means that

z = [
h

(1)
0 : · · · : h(1)

n

] ∩ · · · ∩ [
h

(n)
0 : · · · : h(n)

n

]
.

The point z may or may not be contained in P . To get a clearer image of P we apply
an affine transformation to P which transforms each hyperplane Hi to the coordi-
nate hyperplane Ei = [0 : · · · : 0 : 1 : 0 : · · · : 0] = {x ∈ R

n : xi = 0} for 1 ≤ i ≤ n. In
this way, z will automatically be mapped to the origin. The affine transformation de-
scribed above can be represented most conveniently by the (n+ 1)× (n+ 1)-matrix

T =

⎛

⎜⎜⎜
⎝

1 0 · · · 0
h

(1)
0 h

(1)
1 . . . h

(1)
n

...
...

. . .
...

h
(n)
0 h

(n)
1 . . . h

(n)
n

⎞

⎟⎟⎟
⎠

,

which operates on the left, as usual. That T indeed has all the properties required
is a consequence of Exercise 2.17. By our choice of coordinates, E1, . . . ,En are
oriented so that E+

1 ∩ · · · ∩ E+
n is the positive orthant. Hence the transformed poly-

hedron [T ]P is contained in the positive orthant. Now consider a further projective
transformation, defined by the non-negative matrix

B =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

1 1 1 . . . 1 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The map [B] is not an affine transformation. It maps the ideal hyperplane [1 : 0 :
· · · : 0] to the projective hyperplane [1 : −1 : · · · : −1] so that the coordinate hyper-
planes stay fixed. Furthermore the image of the positive orthant under the map [B]
is the n-simplex

E+
1 ∩ · · · ∩ E+

n ∩ [1 : −1 : · · · : −1]+.



3.4 Polyhedra 33

In particular, the image [BT ]P is a bounded polyhedron, i.e., a polytope. We have
now proved the following theorem.

Theorem 3.36 Every pointed polyhedron is projectively equivalent to a polytope.

Pointed polyhedra can be imagined as polytopes with a specific proper face that
has been moved to the ideal hyperplane. For an example computation, see Sec-
tion 3.6.3 below.

Note that the image of a polyhedron under a projective transformation is not
necessarily a polyhedron. However, the following case, which is most relevant for
us, does not have this problem.

Exercise 3.37 Let P ⊆ R
n
≥0 be a polyhedron in the positive orthant and [A] the

projective transformation to a matrix A ∈ GLn+1 R with non-negative coefficients.
Show that the image [A]P is again a polyhedron.

We still need to consider the case where P is not pointed. In this case we choose
an affine subspace A of R

n which is contained in P and which is maximal with
respect to dimension. The linear subspace L of Rn which is parallel to A is called the
lineality space of P . Let p be an arbitrary point of P and A′ be the affine orthogonal
complement of A that contains p. The intersection P ∩ A′ is a polyhedron which
contains no affine line and is therefore pointed.

Definition 3.38 For X,Y ⊆ R
n, the Minkowski sum of X and Y is defined as

x + y = {x + y : x ∈ X, y ∈ Y }.
The Minkowski sum is called direct if x + y = v + w with x, v ∈ X and y,w ∈ Y

implies x = v and y = w.

Using this notation, the lineality space, as defined above, gives us a direct
Minkowski sum P = (P ∩ A′) + L, establishing the following lemma.

Lemma 3.39 Every polyhedron can be expressed as the direct Minkowski sum of a
pointed polyhedron and a linear subspace.

In this decomposition it is possible that the pointed polyhedron or the lineality
space is just a single point. In those cases the decomposition as a Minkowski sum is
trivial.

In summary, we can say that statements about polyhedra can be traced back to
statements about polytopes. As an example of this consider the generalization of
Theorem 3.8 which is discussed in Exercise 3.41. However, first consider two further
definitions.

Definition 3.40 Let A ⊆ R
n. A positive combination of A is a linear combination∑m

i=1 λ(i)a(i) with a(i) ∈ A and λ(i) ≥ 0 for all i. The set of all positive combinations
of A is called the positive hull of A, which we denote by posA.
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Fig. 3.9 The positive hull of
a finite point set

The positive hull of a set A is a convex cone in the sense that posA is convex and
that a + b and λa are contained in posA for a, b ∈ posA and λ ≥ 0 (see Fig. 3.9).
In a convex cone K we call a half-line x +R≥0y ⊆ ∂K with x ∈ K and y ∈ R

n \ {0}
a ray of K .

Exercise 3.41 Every polyhedron P ⊆R
n can be expressed as a Minkowski sum

P = convV + posR

for finite sets V and R.

Exercise 3.42 Show that the cone posR in Exercise 3.41 is uniquely determined. Is
the polytope convV also unique, in general?

The cone posR in the preceding exercises is called the recession cone of the
polyhedron P .

Exercise 3.43 The product

{
(p, q) ∈ R

n+n′ : p ∈ P, q ∈ Q
}

of two polyhedra P ⊆R
n and Q ⊆R

n′
is a polyhedron.

3.5 The Combinatorics of Polytopes

As mentioned in Chapter 1, computational problems often require the transforma-
tion from a V-representation to an H-representation and vice versa. Before we study
explicit algorithms for this task in Chapter 5, it is necessary to improve our under-
standing of the combinatorial structure of polytopes.

To be able to discuss the complexity of an algorithm it is necessary to first deter-
mine how large the output of an algorithm may be in relation to its input. For convex-
hull-algorithms, i.e., methods to compute the facets of a convex hull of a given point
set, we have to answer the question of how many facets an n-dimensional polytope
with m vertices may have. The reverse question, how many vertices an n-polytope
with m facets can have, is equivalent by polarization. As before, let fk(P ) denote
the number of k-dimensional faces of an n-polytope P for −1 ≤ k ≤ n. In particular
we have f−1(P ) = fn(P ) = 1.

The Upper-bound Theorem, a fundamental result in polytope theory, states that
the cyclic polytopes from Definition 3.2 are extremal in the following sense. Let
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Zn(m) denote a cyclic polytope in R
n formed by the convex hull of m points on

the moment curve. This notation purposefully neglects which m points define the
cyclic polytope. At the end of this section this simplification will be justified (in
Exercises 3.49–3.51) by the statement that two such cyclic polytopes are combina-
torially equivalent.

Theorem 3.44 (Upper-bound Theorem, McMullen 1970) An n-dimensional poly-
tope with m vertices has at most as many k-faces as a cyclic polytope Zn(m) for all
k ∈ {−1, . . . , n}.

In Exercises 3.49–3.51 we will compute the number of facets of cyclic polytopes.
This yields the following explicit upper bound.

Corollary 3.45 The number of facets of an n-dimensional polytope with m vertices
is bounded by

⎧
⎨

⎩

m
m− n

2

(m− n
2

m−n

)
if n is even,

2
(m− n+1

2
m−n

)
if n is odd.

When we switch to the dual picture we obtain the same upper bound for the
number of vertices of an n-polytope with m facets.

We will not fully prove Theorem 3.44 in this section. Instead we give a proof for
an upper bound which has the right order of magnitude for the number of facets.

Theorem 3.46 An n-polytope with m vertices has at most 2
(

m
�n/2�

)
facets and in

total not more than 2n+1
(

m
�n/2�

)
faces. For fixed n, both numbers have the same

order of magnitude O(m�n/2�).

We will prove this statement first for simplicial polytopes and then we deduce
the non-simplicial case as a corollary.

Lemma 3.47 For a simplicial n-polytope P we have:

(a) (n − k)fk(P ) ≤ (
n

k+1

)
fn−1(P ) for k ∈ {−1, . . . , n};

(b) nf0(P ) + (n − 1)f1(P ) + · · · + 2fn−2(P ) ≤ (2n − 2)fn−1(P );
(c) fn−1(P ) ≤ 2f�n/2�−1(P ).

Proof For the first statement we count the number of k-faces that are incident to a
given facet of P and vice versa. By our assumption every facet is an (n−1)-simplex
which contains exactly

(
n

k+1

)
k-faces. On the other hand we have that the face figure

of a k-face is an (n − k − 1)-polytope that has at least n − k facets. This implies
the first statement. The second statement follows from the first by summation over
k from 0 to n − 2.

For the third statement, we consider the dual polytope P ′ which is by Corol-
lary 3.33 simple. We have to show that f0(P

′) ≤ 2f�n/2�(P ′).
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Now we will limit the number of vertices of P ′ with respect to the number of
�n/2�-faces. After an affine transformation we can assume without loss of generality
that no two edges of P ′ have the same xn-coordinate. In the following we imagine
that the n-coordinate is “pointing upwards”.

Consider a vertex v and the n edges incident with v. Then there are at least
�n/2� edges that point downwards or at least �n/2� edges that point upwards. In
the first case we have that every �n/2�-tuple of upward pointing edges determines
a �n/2�-face for which v is the lowest vertex. In the second case we have that each
�n/2�-tuple of downward pointing edges determines a �n/2�-face for which v is the
highest vertex. Since the lowest and highest vertex for each face are unique, there
are at most twice as many vertices as there are �n/2�-faces. �

Lemma 3.48 For each n-polytope P there exists an n-dimensional simplicial poly-
tope Q with the same number of vertices as P such that fk(Q) ≥ fk(P ) for
1 ≤ k ≤ n.

Proof We can assume that P ⊆ R
n. Our goal is to obtain the polytope Q from P by

slightly moving all the vertices.
For the perturbation of one vertex v we employ the following operation. Pick an

affine hyperplane H which strictly separates v from all the other vertices of P . We
may orient H so that H−◦ contains v. Now choose a point v′ ∈ intP ∩ H−◦ which is
not contained in a hyperplane spanned by any n + 1 vertices of P . Replacing v by
v′ we obtain the polytope

P ′ = conv
({w : w vertex of P distinct from v} ∪ {

v′}),

which is contained in P . We want to show that P ′ has at least as many faces of each
dimension as P . To this end we will describe an injective map ι from the faces of P

to the faces of P ′.
Let F be a proper face of P and let A be an affine hyperplane supporting P with

A ∩ P = F . Notice that, as P contains P ′, the hyperplane A does not separate P ′.
If F does not contain the vertex v then we set ι(F ) = A∩P ′ = A∩P = F , and this
is a face of P ′.

It remains to consider the case when F contains v. If F is a simplex, then

ι(F ) = conv
({w : w vertex of F distinct from v} ∪ {

v′})

is a face of P ′. We may then assume that F is not a simplex. As v′ is not contained
in F in this case it follows that ι(F ) = A∩ P ′ is a face of P ′ of the same dimension
as F . This yields a dimension-preserving map ι from the face lattice of P to the face
lattice of P ′. It is easy to see that ι is injective.

To construct the polytope Q we pick a linear ordering v(1), . . . , v(m) of the ver-
tices of P . Inductively perturbing the vertices in this order gives a sequence of n-
dimensional polytopes P (1), . . . ,P (m) all of which have precisely m vertices. Set-
ting P (0) = P and Q = P (m) we have

fk(P ) ≤ fk

(
P (i)

) ≤ fk(Q)
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for 1 ≤ i ≤ m and 1 ≤ k ≤ n. Moreover, our procedure guarantees that the vertices
of Q are in general position and therefore Q is simplicial. �

Proof of Theorem 3.46 By Lemma 3.48 it suffices to consider simplicial poly-
topes P . Since the number of (�n/2� − 1)-faces clearly satisfies

f�n/2�−1(P ) ≤
(

m

�n/2�
)

,

Lemma 3.47c implies

fn−1(P ) ≤ 2

(
m

�n/2�
)

and using Lemma 3.47b we obtain

f0(P ) + f1(P ) + · · · + fn(P ) ≤ 2n+1
(

m

�n/2�
)

. �

To conclude this section we will study the cyclic polytopes introduced in Defini-
tion 3.2. As mentioned in Theorem 3.44, these polytopes maximize the f -vector of
all polytopes.

Exercise 3.49 Show that each set of n points on the moment curve in R
n are affinely

independent. This implies that cyclic polytopes are simplicial.

As a result of the following exercise (and Exercise 3.55) we know that two cyclic
polytopes of the same dimension and the same number of vertices are combinatori-
ally equivalent. This justifies the notation Zn(m).

Exercise 3.50 (Gale Evenness Condition) Let V be the vertex set of a cyclic
polytope in R

n with the induced order ≺ with respect to the moment curve, i.e.,
x(τ1) ≺ x(τ2) if and only if τ1 < τ2. Let U = {v(1), . . . , v(n)} ⊆ V be an n-tuple of
vertices of P , where v(1) ≺ v(2) ≺ · · · ≺ v(n). Show that convU is a facet of P if
and only if for every two vertices u,v ∈ V \ U we have that the number of vertices
v(i) ∈ U with u ≺ v(i) ≺ v is even.

Exercise 3.51 Show, using the evenness criterion from the previous exercise, that
the following holds for the number fn,m of facets of a cyclic polytope Zn(m):

fn,m =
⎧
⎨

⎩

m
m− n

2

(m− n
2

m−n

)
if n is even,

2
(m− n+1

2
m−n

)
if n is odd.

(3.2)

Exercise 3.52 Compute the group of combinatorial automorphisms of each cyclic
polytope.
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In the remainder of this section we will discuss the relationship between the
number of faces of varying dimensions of polytopes. These relations are essential
for a deeper understanding of the combinatorics of polytopes (such as the proof of
the exact statement of the Upper-bound Theorem).

The entries of the f -vector of a polytope are not independent of each other. This
is easy to see for simple n-polytopes. Here, every vertex is incident with exactly
n edges and conversely, every edge is incident with exactly two vertices. This im-
plies 2f1 = nf0. Since f1 is an even number, this implies that every simple polytope
of odd dimension has an even number of vertices. In the dual picture this means
that each simplicial polytope of odd dimension has an even number of facets. The-
orem 3.54 sharpens this statement. First we look at a famous result that holds for
arbitrary polytopes.

Theorem 3.53 (Euler’s formula) The f -vector of a non-empty polytope P of di-
mension n satisfies the following equation

n∑

k=−1

(−1)kfk(P ) = 0.

Euler’s formula implies that for two-dimensional polytopes the number of ver-
tices and edges in a polygon is the same.

For three-dimensional polytopes we obtain the classical formula for the Euler
characteristic:

f0(P ) − f1(P ) + f2(P ) = f−1(P ) + f3(P ) = 2. (3.3)

Proof We prove Euler’s formula by induction over the dimension n of the polytope.
For n = 1 each polytope has exactly two proper faces, i.e., its vertices, such that

1∑

k=−1

(−1)kfk(P ) = 1 − 2 + 1 = 0.

So let P be an n-polytope and let m = f0(P ) be the number of vertices of P . After a
suitable affine transformation we can assume without loss of generality that no two
vertices have the same xn-coordinates. Let v(1), . . . , v(m) be the vertex set of P , or-
dered increasingly by their xn-coordinate. Furthermore, let H1, . . . ,H2m−1 be hor-
izontal (i.e., orthogonal to the xn-axis) affine hyperplanes such that v(i) ∈ H2i−1,
1 ≤ i ≤ m, and such that v(i) is the only vertex that is located between H2i−2
and H2i . For a face F of P we define

χj (F ) =
{

1 if Hj ∩ relintF 
= ∅,

0 otherwise

for 1 ≤ j ≤ 2m − 1.
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Now we fix a face F and denote by v(l) the vertex with minimal xn-coordinate.
Similarly v(u) is the vertex with maximal xn-coordinate. The horizontal hyperplanes
that intersect the interior of F lie strictly between the hyperplanes H2l−1 and H2u−1.
If dimF ≥ 1 then we have l 
= u and the number of hyperplanes with even index that
intersect relintF exceeds the number of hyperplanes with odd index that intersect
relintF by one. That is,

2m−2∑

j=2

(−1)jχj (F ) = 1.

Summing this equation over the set Fk(P ) of k-faces of P yields

fk(P ) =
∑

F∈Fk(P )

2m−2∑

j=2

(−1)jχj (F ).

The alternating sum over all k ≥ 1 yields

n∑

k=1

(−1)kfk(P ) =
2m−2∑

j=2

(−1)j
n∑

k=1

(−1)k
∑

F∈Fk(P )

χj (F ). (3.4)

For 2 ≤ j ≤ 2m − 2, Pj := P ∩ Hj has dimension n − 1, so that by the induction
hypothesis we have

n−1∑

k=0

(−1)kfk(Pj ) = 1. (3.5)

We distinguish between two cases:

j even: Each (k − 1)-face of Pj is the intersection of a k-face of P with the hyper-
plane Hj such that

fk−1(Pj ) =
∑

F∈Fk(P )

χj (F ), for 1 ≤ k ≤ n.

Substituting this into (3.5) yields

n∑

k=1

(−1)k−1
∑

F∈Fk(P )

χj (F ) = 1. (3.6)

j odd: Each (k − 1)-face of Pj is the intersection of a k-face of P with Hj , with
the exception of the vertex v((j+1)/2) which is contained in Hj . We therefore have

f0(Pj ) = 1 +
∑

F∈F1(P )

χj (F ),
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fk−1(Pj ) =
∑

F∈Fk(P )

χj (F ), 2 ≤ k ≤ n.

In this case, substituting into (3.5) yields

n∑

k=1

(−1)k−1
∑

F∈Fk(P )

χj (F ) = 0. (3.7)

Multiplying (3.6) and (3.7) by (−1)j+1 and substituting into (3.4) yields

n∑

k=−1

(−1)kfk(P ) = −1 + m +
n∑

k=1

(−1)kfk(P )

= −1 + m + (m − 1) · (−1) + (m − 2) · 0 = 0. �

From this we can deduce, with a clever summation, a previously mentioned, far-
reaching generalization of the relation 2f1 = nf0 for simple polytopes. For the proof
we refer to Ziegler [99, §8.3].

Theorem 3.54 (Dehn–Sommerville equations) The f -vector of a simple n-
polytope P satisfies the linear equations

k∑

j=0

(−1)j
(

n − j

n − k

)
fj (P ) = fk(P ), for k ∈ {0, . . . , n}.

Through duality we obtain a corresponding statement for simplicial polytopes.

3.6 Inspection Using polymake

We want to study some concrete examples of polytopes, most of the characteristics
of which can be obtained using the results discussed above. Here, and in the follow-
ing, we use the software polymake, which is briefly introduced in Appendix D.1.
The shell-based interface uses a dialect of Perl.

3.6.1 Cyclic Polytopes

We study cyclic 4-polytopes Z4(7) with 7 vertices. The polymake function
cyclic generates cyclic polytopes which can then be further examined. Each line
starting with “polytope >” contains one command.
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polytope > $Z_4_7 = cyclic(4,7);

polytope > print $Z_4_7->VERTICES;
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
1 6 36 216 1296

polytope > print $Z_4_7->DIM;
4

polytope > print $Z_4_7->F_VECTOR;
7 21 28 14

polytope > print dense($Z_4_7->VERTICES_IN_FACETS);
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 0 1 1 1 1 0
0 1 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 1
1 0 1 1 0 0 1
1 0 0 1 1 0 1
0 0 0 1 1 1 1
1 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 1 0 0 0 1 1

VERTICES, DIM, F_VECTOR and VERTICES_IN_FACETS are examples of
properties of a polymake object. Each line of the property VERTICES contains
the oriented homogeneous coordinates of a vertex. The vertices are implicitly enu-
merated, starting with 0, but the order is not relevant here. The output of VER-
TICES_IN_FACETS refers to this enumeration: Every line of the output matrix
corresponds to a facet and every column to a vertex, where the order of the columns
corresponds to the order of the vertices in the VERTICES section. A 1 at position
(i, j) indicates that the i-th facet is incident with the j -th vertex. If the dense()
command is omitted in the polymake-command line, we get the entire list of ver-
tices for each facet.

In the dense output of VERTICES_IN_FACETS we can immediately verify
Gale’s evenness criterion from Exercise 3.50: In each line we have an even number
of 1s between two 0s. The matrix with coefficients in {0,1} coded in the property
VERTICES_IN_FACETS is called the incidence matrix with respect to the given
order of vertices and facets.
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Fig. 3.10 The convex hulls of 8, 100 and 1000 random points on S
2

The remaining two commands print the dimension and the f -vector of Z4(7). In
particular, we see that this polytope has seven vertices, 21 edges, 28 ridges and 14
facets.

The homogeneous coordinates of the facets can be obtained using the command

polytope > print $Z_4_7->FACETS;

in the same order as for the property VERTICES_IN_FACETS. The output (which
is suppressed here) looks similar to that in Section 5.4.

3.6.2 Random Polytopes

The function rand_sphere produces n-polytopes as convex hulls of random
points selected from a uniform distribution on the unit sphere S

n−1. By Exer-
cise 3.20 these points are almost certainly in general position so that the convex
hull is simplicial.

polytope > $R_3_8 = rand_sphere(3,8);
polytope > print $R_3_8->SIMPLICIAL;
1
polytope > print $R_3_8->F_VECTOR;
8 18 12

By the Dehn–Sommerville equations we know that the complete f -vector of a sim-
plicial 3-polytope is determined by the number of vertices. We have f2 = 2f0 − 4
and f1 = f0 + f2 − 2 = 3f0 − 6. Figure 3.10 depicts some random polytopes.

3.6.3 Projective Transformations

We now want to show how to use polymake to projectively transform an un-
bounded but pointed polyhedron into a polytope. This is an example of the proce-
dure described in Theorem 3.36. Let us begin by defining an unbounded polyhedron
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as the Minkowski sum of a polytope (which is the convex hull of eight points) and
one infinite ray.

polytope > $P=new Polytope(POINTS=>
[[0,0,0,1],
[1,0,0,0],[1,3,0,0],[1,0,3,0],[1,3,3,0],
[1,1,1,-1],[1,1,2,-1],[1,2,1,-1],[1,2,2,-1]]);

Again we use homogeneous coordinates, and the unique ray is represented by the
vector (0,0,0,1)T listed first. It is easy to verify that $P satisfies our conditions.
polytope > print $P->BOUNDED, " ", $P->POINTED;
0 1
The first step is to set up an affine transformation which sends our polyhedron into
the positive orthant. To this end we list which facet is incident with which vertex.

polytope > print rows_numbered($P->FACETS_THRU_VERTICES);
0:1 2 5 6
1:0 1 2 3
2:0 1 6 8
3:2 3 5 7
4:5 6 7 8
5:0 3 4
6:3 4 7
7:0 4 8
8:4 7 8

In our input above the POINTS defining $P were, in fact, a non-redundant descrip-
tion. Hence the row numbers correspond to our input. For instance:

polytope > print $P->VERTICES->[5];
1 1 1 -1

We see that the facets numbered 0, 3 and 4 are incident with the vertex numbered 5.
Our polyhedron is full-dimensional and hence those three facets must have linearly
independent facet normal vectors. Therefore we can use vertex number 5 as our
point z in the construction described in Section 3.4. In this way we form the matrix
T as follows.

polytope > $T=new Vector([1,0,0,0])/$P
->FACETS->minor([0,3,4],All);

polytope > print $T;
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1

Notice that the operator/concatenates matrices row-wise. Similarly, the matrix B

can be built from standard constructions using row and column concatenations, the
latter being expressed via |.
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polytope > $B=ones_vector(4)/(zero_vector(3)|unit_matrix(3));
polytope > print $B;
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

To transform our polytope we have to take into account that polymake uses row
vectors to represent the points, and thus transformations operate on the right. We
can use the matrices constructed above if we transpose.

polytope > $Q=transform($P,transpose($B*$T));
polytope > print $Q->BOUNDED;
1

The vertices of the transformed polytope $Q are as follows.

polytope > print rows_numbered($Q->VERTICES);
0:1 1/3 1/3 1/3
1:1 0 0 1/2
2:1 0 3/5 1/5
3:1 3/5 0 1/5
4:1 3/8 3/8 1/8
5:1 0 0 0
6:1 1/2 0 0
7:1 0 1/2 0
8:1 1/3 1/3 0

Observe that the vertex numbered 5, which is the image of the point z under the
transformation, is the origin. All the vertices are contained in the positive orthant.

3.7 Exercises

Exercise 3.55 Show that two polytopes are combinatorially equivalent if and only
if there exists an ordering of their vertices and facets such that their corresponding
incidence matrices are equal.

A polytope is called cubical if all of its proper faces are combinatorially equiv-
alent to cubes. For cubical polytopes there is a statement which is analogous to
Lemma 3.47. This is an observation of Gil Kalai.

Exercise 3.56 Show that the following inequality holds for the f -vector of a cubical
polytope

f1 + 2f2 + 22f3 + · · · + 2n−2fn−1 ≤
(

f0

2

)
.

Exercise 3.57 Show that, given an arbitrary full-dimensional polyhedron P ⊆ R
n

with outer description P = ⋂m
i=1 H+

i , there exists a family of indices i0, i1, . . . , in
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such that Q = H+
i0

∩ · · · ∩ H+
in

is projectively equivalent to an n-simplex. If we
additionally assume that P is a polytope, can we always choose the hyperplanes in
such a way that Q is also a polytope?

Exercise 3.58 Let π : Rn+1 → R
n be the linear projection to the first n coordinates.

Show that the image of a polytope under π is again a polytope.

Exercise 3.59 Let P be an n-polytope. Show that there exists for every k-face G of
P a family of facets F1, . . . ,Fn−k such that

G1 �G2 � · · ·� Gn−k = G

holds for Gi := F1 ∩ · · · ∩ Fi .

Exercise 3.60 The Minkowski-sum [p(1), q(1)] + · · · + [p(k), q(k)] of a finite num-
ber of line segments with p(i), q(i) ∈ R

n is a zonotope. Show that the zonotopes
generated by k segments are exactly the images of the standard cube [−1,1]k under
affine maps.

Exercise 3.61 Which among the polyhedra in the following list are projectively
equivalent?

(a) conv{(0,0,0)T } + pos{(1,0,0)T , (0,1,0)T , (0,0,1)T }
(b) conv{(0,0,0)T , (1,0,0)T , (0,1,0)T } + pos{(1,1,1)T }
(c) conv{(1,0,0)T , (0,1,0)T , (0,0,1)T , (a, b, c)T } for a, b, c arbitrary real num-

bers (i.e., this is an infinite set of polyhedra)
(d) conv{(1,0,0)T , (0,1,0)T , (0,0,1)T , (2,1,1)T , (1,2,1)T , (1,1,2)T }

3.8 Remarks

The content of this chapter forms part of the standard material for polytopes and
polyhedra, see the monographs of Boissonnat and Yvinec [15], Brøndsted [16],
Grünbaum [56] and Ziegler [99]. The Upper-bound Theorem was proved by Mc-
Mullen [78]. Further proofs can be found in the books of Mulmuley [80] and Ziegler
[99]. As a general reference we recommend the Handbook of Discrete and Compu-
tational Geometry [49].

The term polyhedron is not always used in the same way as we have defined it
in this book. In particular topologists often use this term to describe a simplicial or
polyhedral complex embedded in R

n; it may also describe a triangulated manifold.
The set of vertices and edges of a 3-dimensional polytope can be interpreted

as the set of vertices and edges of a planar graph on a sphere. Hence (3.3) is a
special case of Euler’s formula for planar graphs, see [2, Chapter 11]. In fact, Euler’s
formula generalizes to cell complexes. We will see a glimpse of this in Section 13.1
at the very end of this book.
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Concerning the graph Γ (P ) of an n-polytope P introduced in Exercise 3.23,
Warren M. Hirsch conjectured in 1957 that any two vertices of P can be connected
by a path in Γ (P ) of at most m − n edges, where m is the number of facets. This
famous conjecture, the Hirsch conjecture, was disproved by Santos in 2010 [90].
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