
Chapter 1
Introduction and Overview

This book studies geometry methodically from an analytical, i.e., coordinate-based,
viewpoint. In many settings this approach simplifies the computer representation of
geometric data. We shall not confine ourselves to linear problems. This is not only
appealing from a theoretical viewpoint, it is also practically motivated by advances
in computer algebra and the availability of fast computer hardware.

In Chapter 2 we will lay some mathematical foundations. First, we will introduce
the language of projective geometry, which is very well suited for many geometric
applications. Since this is not usually covered in standard introductory courses in
mathematics, we briefly discuss the central concepts of projective spaces and pro-
jective transformations. We will also introduce the notion of convexity in this chap-
ter.

Our analytical approach motivates the structure of this book. It is centered around
questions about algorithms which solve systems of equations and their increasingly
complex variations with regard to the required mathematical tools.

1.1 Linear Computational Geometry

Most algorithms described in this book are based on Gaussian elimination, a core
topic in any linear algebra course. In geometric language Gaussian elimination is a
procedure which takes a set of affine hyperplanes, H1, . . . ,Hk , in the vector space
Kn as input, where K is an arbitrary field. If

A = H1 ∩ · · · ∩ Hk (1.1)

the output can be an (affine) basis for A, or simply its dimension.
Our foray through computational geometry begins with the real numbers and the

transition from equalities to inequalities. Consider for every hyperplane

Hi =
{

x ∈ R
n :

n∑
j=1

aij xj = bi

}
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Fig. 1.1 An example of a
bounded polyhedron in R

3.
This particular polyhedron is
a polytope which is dual to a
zonotope. The belt-like strip
in the middle has several very
thin facets

the closed half-space

H+
i =

{
x ∈R

n :
n∑

j=1

aij xj ≥ bi

}
.

The intersection P = ⋂k
i=1 H+

i defines a (convex) polyhedron (see Fig. 1.1 for an
example in R

3).
Polyhedra are fundamental to computational geometry and linear optimization.

In higher dimensions, the combinatorial variety of polyhedra is considerably larger
than that suggested by lower dimensional images, such as Fig. 1.1. One of the fun-
damental questions when determining the complexity of many algorithms is, what is
the maximum number of vertices that a polyhedron defined by k linear inequalities
can have? This question was first answered in 1970 by the Upper-bound Theorem.
The proof (in a somewhat weaker formulation, see Theorem 3.46) and the explana-
tion of the underlying geometric structure is the first goal of this book. This result is
particularly important for computational geometry because we can use it to obtain
complexity estimates for several algorithms.

In Chapter 3 we systematically study the properties of polytopes (face lattice, po-
larity, combinatorics of polytopes) up to Euler’s formula and the Dehn–Sommerville
equations. At the end of the chapter we illustrate some of the concepts with the ge-
ometric software polymake. We will also use this and other software as an aid to
understanding the algorithms presented in later chapters.

The core of many mathematical applications is linear optimization, which ad-
dresses the problem of computing the minimum or maximum of a linear objective
function on a polyhedron P (given by linear inequalities). For computational so-
lutions it is important to note that the polyhedron can be empty, or the objective
function can be unbounded on P . In Chapter 4 we give a brief introduction to the
relevant aspects of linear optimization. In particular, we discuss the theoretically
and practically important simplex algorithm. Our main focus (as throughout this
text) will be from the geometric perspective.

An interesting computational problem of polytope theory is determining the en-
tire set of vertices and rays of a polyhedron defined by a given set of inequalities.
Using the duality theory described in Section 3.3, this is equivalent to determining
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Fig. 1.2 The solution to the post office problem for ten branches of the Deutsche Post AG in Berlin
(two of which are not in the visible part of the openstretmap.org map). OpenStreetMap is open
data, licensed under the Open Data Commons Open Database License (ODbL). © OpenStreetMap
contributors

a minimal system of inequalities which define the convex hull of a point set. We
devote Chapter 5 to the convex hull problem. For applications it is important to note
that actually computing solutions to this problem becomes difficult in higher dimen-
sions (simply because of the large output predicted by the Upper-bound Theorem).
A general approach for efficient algorithms is the divide-and-conquer principle. We
illustrate this by applying it to the computation of convex hulls in the plane.

Next, we examine Voronoi diagrams and the corresponding dual Delone sub-
divisions. Given an arbitrary point set S = {s(1), . . . , s(m)} in the n-dimensional
space R

n, the Voronoi region corresponding to a point s(i) comprises those points
of Rn which are no further from s(i) (with respect to Euclidean distance) than from
any other point of S.

In Chapter 6 we first show how convex hull algorithms can be used to compute
Voronoi diagrams in arbitrary dimensions. Afterwards, we concentrate again on the
planar case and present the beach line algorithm. Knowledge of abstract data types
is an advantage for this, so the most important principles will be explained. For
a more in depth discussion of common data structures the reader can refer to the
recommended literature.

Voronoi diagrams can be used to solve the so-called post office problem; a clas-
sical application of computational geometry. Given a finite set of points S ⊆ R

2,
we efficiently compute for each point p ∈ R

2 the point s ∈ S which minimizes the
Euclidean distance ‖p − s‖. The points of S can be interpreted as post offices and
the points p as customers. See Fig. 1.2. Of course, one can naively examine every
point combination (which is efficient if there is only one customer). However, one
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Fig. 1.3 Eight
(Apollonius-)circles which
touch the three given circles

should interpret the problem as if the postal service wants to create an information
system which quickly provides answers for a large group of customers, assuming
that the positions of the post offices do not change.

In many applications, the Voronoi diagrams appear in the dual form. Therefore,
in Chapter 7 we examine Delone subdivisions and triangulations. A Delone triangu-
lation of the convex hull of a given point set S defined in this manner is in several
respects optimal in comparison to all other triangulations of S. We show that in ar-
bitrary dimensions the maximal radius of the circumsphere is minimized. Again, we
will examine the planar case in greater detail.

1.2 Non-linear Computational Geometry

The second part of this book is dedicated to non-linear problems. In Chapter 8 we
advance from systems of linear equations and inequalities to systems of polynomial
equations, and thus into basic algebraic geometry. After this it would be natural to
discuss systems of polynomial inequalities, i.e., semi-algebraic geometry, but this
would be beyond the scope of this book. At relevant points, we content ourselves
with some remarks on polynomial inequalities.

As a good example of a non-linear problem, consider Apollonius’ problem (Apol-
lonius of Perga ca. 260–190 BC): Given three circles C1, C2 and C3 in the plane,
compute another circle that touches each of the previous ones (see Fig. 1.3). If the
circles C1, C2 and C3 are in general position there exist eight (possibly complex)
solutions. As a possible application, the circles could be interpreted as distance re-
quirements for a set of given points. We will come back to this in later chapters.
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In the second part of this book the algorithmic focus is on Gröbner bases (Chap-
ter 9). These allow us to solve arbitrary systems of polynomial equations exactly
(Chapter 10).

In Chapter 8 we give an introduction to resultants, planar affine and projective
algebraic curves and to Bézout’s Theorem. We conclude this chapter by illustrating
some of these results using Maple.

A fundamental algorithmic problem, which is covered in Chapter 9 and will later
be the basis of the method we use to solve systems of polynomial equations, is the
Ideal membership problem. Given polynomials f and g1, . . . , gr in the polynomial
ring K[x1, . . . , xn] over the field K , is f in the ideal generated by g1, . . . , gr or not?
In general this question cannot be directly answered. This motivates the study of
ideal bases with special properties, called Gröbner bases, for which the algorithmic
decision problem becomes very simple. Therefore, given a polynomial ideal, the
main task is to compute a Gröbner basis for this ideal. We will also develop the
relevant theoretical background in computational algebra.

In Chapter 10 we discuss how Gröbner bases are used in the computational solu-
tion of systems of polynomial equations. To do this, we first give a brief introduction
to the computer algebra system Singular. From a theoretical viewpoint, Hilbert’s
Nullstellensatz plays a fundamental role; it establishes a connection between geom-
etry (in the sense of polynomial roots) and algebra (in the sense of polynomial
ideals). Solutions to systems of polynomial equations may then be obtained from
roots of univariate polynomials using elimination ideals. To conclude this chapter
we present the most simple case of the Conti–Traverso algorithm, which illustrates
how to use Gröbner basis techniques in the study of integer linear programs.

1.3 Applications

In the third part of this book we discuss some selected applications of the theoretical
results presented earlier.

In Chapter 11 we approach the problem of reconstructing a curve from a given
set of points lying on it. We use the concepts of the medial axis and the “local fea-
ture size” to evaluate the relationship between the (unknown) curve and the (given)
points. The theoretical background from the first part of this book is sufficient for
this application.

In Chapter 12 we treat lines in 3- and n-dimensional space. Lines in 3-
dimensional space often occur in computational geometry and computer graphics,
e.g., in visible surface determination. Although (affine) lines in R

3 are polyhedral
objects, questions regarding intersections of lines are intrinsically non-linear. We
study these geometric problems by looking at the algebraic characteristics of the
Plücker coordinates (also known as Grassmann coordinates) of a line. We close this
chapter with an example that illustrates the role played by 3-dimensional lines in
computer graphics.

Finally, in Chapter 13 we give small insights into applications concerning Global
Positioning Systems (GPS) and robotics. The functionality of GPS relies on several
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satellites continuously orbiting the earth so that at least four of them are always
accessible from (almost) any position on the Earth’s surface. Determining positions
using GPS is closely related to a 3-dimensional version of the Apollonius problem,
as we will see in Chapter 13. Furthermore, we discuss, sometimes via computer,
some fundamental problems of kinematics.

Appendix

In three out of four parts of the appendix we provide foundations for algebraic struc-
tures, convex analysis as well as algorithms and complexity. These sections also
standardize our notation. The fourth part of the appendix introduces software pack-
ages that are used throughout the book: polymake, Maple and Singular. We
also mention CGAL and Sage.

The Structure of This Text This book consists of more material than a standard
one semester course can cover. Hence, this text may be used in several different
ways as a basis for a series of lectures. The following compilations are meant as a
suggestion:

• “Linear Computational Geometry”: Chapters 2 to 7, Chapters 11 and 12. Please
note that Chapter 12 uses elimination techniques from Part II of this book. How-
ever, the use of Maple or Singular allows us to treat examples without having
a detailed knowledge of the theoretical concepts.

• “Non-linear Computational Geometry”: This is complementary to the selection
above, hence consisting of Chapters 8 to 10 of the second part of this book and
Chapter 13 from the applications part. The amount of material is suitable for a
compact course as a follow-up to the course “Linear Computational Geometry”.

• “Cross-section of Polyhedral and Algebraic Methods”: Chapters 2, 3, 5 or 6, 8
until 10, 12, 13. Sections 9.5 and 10.6 may be left out in this.

Every chapter ends with a small section “Remarks” which references further sug-
gested reading and historical remarks. All figures in this book were produced using
the mentioned software and using METAPOST [62].
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