

Universitext

Universitext

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Vincenzo Capasso
Università degli Studi di Milano, Milan, Italy

Carles Casacuberta
Universitat de Barcelona, Barcelona, Spain

Angus MacIntyre
Queen Mary, University of London, London, UK

Kenneth Ribet
University of California, Berkeley, Berkeley, CA, USA

Claude Sabbah
CNRS, École Polytechnique, Palaiseau, France

Endre Süli
University of Oxford, Oxford, UK

Wojbor A. Woyczynski
Case Western Reserve University, Cleveland, OH, USA

Universitext is a series of textbooks that presents material from a wide variety
of mathematical disciplines at master’s level and beyond. The books, often well
class-tested by their author, may have an informal, personal, even experimental
approach to their subject matter. Some of the most successful and established
books in the series have evolved through several editions, always following the
evolution of teaching curricula, into very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks
written for new, cutting-edge courses may make their way into Universitext.

For further volumes:
www.springer.com/series/223

http://www.springer.com/series/223

Michael Joswig � Thorsten Theobald

Polyhedral and
Algebraic Methods
in Computational
Geometry

Michael Joswig
Fachbereich Mathematik
Technische Universität Darmstadt
Darmstadt, Germany

Thorsten Theobald
Institut für Mathematik, FB 12
Johann Wolfgang Goethe-Universität
Frankfurt am Main, Germany

Originally published in the German language by
Vieweg+Teubner, 65189 Wiesbaden, Germany, as
“Joswig, M.; Theobald, T.; Algorithmische Geometrie”
© Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden, 2008

ISSN 0172-5939 ISSN 2191-6675 (electronic)
Universitext
ISBN 978-1-4471-4816-6 ISBN 978-1-4471-4817-3 (eBook)
DOI 10.1007/978-1-4471-4817-3
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012955474

Mathematics Subject Classification: 51-01, 13P10, 52-01, 68U05

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Geometry is one of the oldest systemized subdisciplines of mathematics. Due to the
growing capabilities of computers, algorithmic approaches assume an increasingly
significant role within geometry. Against this background, we understand computa-
tional geometry in a very broad sense as that part of geometry which is (in principle)
algorithmically accessible.

The purpose of this book is to provide a functional access to computational as-
pects of geometry, based on a broad mathematical foundation. Let us point out that
the current text is intended to be introductory. Thus restrictions are inevitable, and
the choice of topics is naturally biased by the preferences of the authors.

The first part of the book deals with concepts and techniques which refer to poly-
hedral (i.e., linearly confined) structures. Its mathematical roots lie in discrete and
convex geometry. Our treatment includes algorithms for computing convex hulls as
well as the construction of Voronoi diagrams and Delone triangulations. The second
part is an introduction to some primary concepts in non-linear computational geom-
etry and develops the relevant techniques from computational algebraic geometry.
Here, we focus on Gröbner bases and on solving systems of polynomial equations.
The third part of the book is devoted to some selected applications in computer
graphics, curve reconstruction and robotics.

A prior concern of the book is to establish interconnections between computa-
tional-geometric phenomena and other subdisciplines of mathematics (such as alge-
braic geometry, optimization and numerical mathematics). To achieve this goal we
concentrate on some essential ideas and methods. Moreover, the book offers some
insights into the possibilities of current computer software (such as polymake,
Maple, or Singular) in this context.

Audience and Required Background

The book is directed towards advanced undergraduates and beginning graduates in
mathematics and computer science, as well as towards engineering students who are

v

vi Preface

interested in applications of computational geometry (such as in robotics). The book
only assumes common concepts from undergraduate courses in linear algebra and
calculus. Additional knowledge in discrete mathematics, optimization, algorithms
and algebra is useful, however, the material needed from these areas is developed in
the text or—in some cases—collected in appendices.

Aim of the Book

It is not intended to cover all the aspects comprehensively. Instead—starting from
computational questions in several current topics in geometry—various entry points
to more specialized literature and research directions shall be offered.

In contrast to books on computational geometry which originate from computer
science, the aspect of abstract data types (which is often important for efficient im-
plementations) is covered only marginally.

History and Acknowledgments

The present book is a revised and updated translation of the German textbook Algo-
rithmische Geometrie: Polyedrische und algebraische Methoden, Vieweg, 2008.

The original version resulted from the authors’ courses at Technische Universi-
tät Berlin, Technische Universität Darmstadt, and Goethe-Universität Frankfurt am
Main. The participants of these courses have provided many stimulating discussions
and suggestions.

Some of the pictures are courtesy of Sven Herrmann (Fig. 13.3) and Nikolaus
Witte (Fig. 1.1).

The translation has been prepared by Theresa Szczepanski and the authors.
The German version benefited from comments and criticism by René Branden-

berg, Peter Gritzmann, Martin Henk, Sven Herrmann, Katja Kulas, Alexander Mar-
tin, Werner Nickel, Marc Pfetsch, Cordian Riener, Thilo Rörig, Moritz Schmitt,
Achill Schürmann, Dieter Schuster, Reinhard Steffens, Natascha Theobald, Tanja
Treffinger, Axel Werner, Claudia Wessling, Nikolaus Witte, Ronald Wotzlaw, and
Günter M. Ziegler. Further comments by Benjamin Assarf, Roberto Henschel, Ka-
trin Herr, Sadik Iliman, Kai Kellner, Werner Seiler, Christian Trabandt and Timo de
Wolff were very helpful when preparing this version.

We are very grateful to everybody for their contributions.

Michael Joswig
Thorsten Theobald

Darmstadt, Germany
Frankfurt am Main, Germany

Contents

1 Introduction and Overview . 1
1.1 Linear Computational Geometry 1
1.2 Non-linear Computational Geometry 4
1.3 Applications . 5
Appendix . 6

Part I Linear Computational Geometry

2 Geometric Fundamentals . 9
2.1 Projective Spaces . 9
2.2 Projective Transformations . 12
2.3 Convexity . 13
2.4 Exercises . 16
2.5 Remarks . 17

3 Polytopes and Polyhedra . 19
3.1 Definitions and Fundamental Properties 19
3.2 The Face Lattice of a Polytope 25
3.3 Polarity and Duality . 28
3.4 Polyhedra . 31
3.5 The Combinatorics of Polytopes 34
3.6 Inspection Using polymake . 40
3.7 Exercises . 44
3.8 Remarks . 45

4 Linear Programming . 47
4.1 The Task . 47
4.2 Duality . 49
4.3 The Simplex Algorithm . 53
4.4 Determining a Start Vertex . 60
4.5 Inspection Using polymake . 61
4.6 Exercises . 63
4.7 Remarks . 64

vii

viii Contents

5 Computation of Convex Hulls . 65
5.1 Preliminary Considerations . 65
5.2 The Double Description Method 66
5.3 Convex Hulls in the Plane . 72
5.4 Inspection Using polymake . 76
5.5 Exercises . 77
5.6 Remarks . 78

6 Voronoi Diagrams . 81
6.1 Voronoi Regions . 81
6.2 Polyhedral Complexes . 83
6.3 Voronoi Diagrams and Convex Hulls 84
6.4 The Beach Line Algorithm . 88
6.5 Determining the Nearest Neighbor 96
6.6 Exercises . 97
6.7 Remarks . 98

7 Delone Triangulations . 99
7.1 Duality of Voronoi Diagrams . 99
7.2 The Delone Subdivision . 102
7.3 Computation of Volumes . 104
7.4 Optimality of Delone Triangulations 105
7.5 Planar Delone Triangulations . 109
7.6 Inspection Using polymake . 114
7.7 Exercises . 116
7.8 Remarks . 116

Part II Non-linear Computational Geometry

8 Algebraic and Geometric Foundations 119
8.1 Motivation . 119
8.2 Univariate Polynomials . 122
8.3 Resultants . 123
8.4 Plane Affine Algebraic Curves 125
8.5 Projective Curves . 127
8.6 Bézout’s Theorem . 129
8.7 Algebraic Curves Using Maple 133
8.8 Exercises . 135
8.9 Remarks . 136

9 Gröbner Bases and Buchberger’s Algorithm 137
9.1 Ideals and the Univariate Case . 137
9.2 Monomial Orders . 141
9.3 Gröbner Bases and the Hilbert Basis Theorem 145
9.4 Buchberger’s Algorithm . 149
9.5 Binomial Ideals . 152
9.6 Proving a Simple Geometric Fact Using Gröbner Bases 153

Contents ix

9.7 Exercises . 155
9.8 Remarks . 155

10 Solving Systems of Polynomial Equations Using Gröbner Bases . . . 157
10.1 Gröbner Bases Using Maple and Singular 157
10.2 Elimination of Unknowns . 158
10.3 Continuation of Partial Solutions 162
10.4 The Nullstellensatz . 164
10.5 Solving Systems of Polynomial Equations 167
10.6 Gröbner Bases and Integer Linear Programs 171
10.7 Exercises . 177
10.8 Remarks . 177

Part III Applications

11 Reconstruction of Curves . 181
11.1 Preliminary Considerations . 181
11.2 Medial Axis and Local Feature Size 182
11.3 Samples and Polygonal Reconstruction 185
11.4 The Algorithm NN-Crust . 187
11.5 Curve Reconstruction with polymake 190
11.6 Exercises . 190
11.7 Remarks . 192

12 Plücker Coordinates and Lines in Space 193
12.1 Plücker Coordinates . 193
12.2 Exterior Multiplication and Exterior Algebra 194
12.3 Duality . 199
12.4 Computations with Plücker Coordinates 203
12.5 Lines in R

3 . 204
12.6 Exercises . 206
12.7 Remarks . 206

13 Applications of Non-linear Computational Geometry 209
13.1 Voronoi Diagrams for Line Segments in the Plane 209
13.2 Kinematic Problems and Motion Planning 212
13.3 The Global Positioning System GPS 219
13.4 Exercises . 221
13.5 Remarks . 222

Appendix A Algebraic Structures . 223
A.1 Groups, Rings, Fields . 223
A.2 Polynomial Rings . 224

Appendix B Separation Theorems . 227

Appendix C Algorithms and Complexity 231
C.1 Complexity of Algorithms . 231
C.2 The Complexity Classes P and NP 233

x Contents

Appendix D Software . 237
D.1 polymake . 237
D.2 Maple . 237
D.3 Singular . 238
D.4 CGAL . 238
D.5 Sage . 238

Appendix E Notation . 241

References . 243

Index . 247

Chapter 1
Introduction and Overview

This book studies geometry methodically from an analytical, i.e., coordinate-based,
viewpoint. In many settings this approach simplifies the computer representation of
geometric data. We shall not confine ourselves to linear problems. This is not only
appealing from a theoretical viewpoint, it is also practically motivated by advances
in computer algebra and the availability of fast computer hardware.

In Chapter 2 we will lay some mathematical foundations. First, we will introduce
the language of projective geometry, which is very well suited for many geometric
applications. Since this is not usually covered in standard introductory courses in
mathematics, we briefly discuss the central concepts of projective spaces and pro-
jective transformations. We will also introduce the notion of convexity in this chap-
ter.

Our analytical approach motivates the structure of this book. It is centered around
questions about algorithms which solve systems of equations and their increasingly
complex variations with regard to the required mathematical tools.

1.1 Linear Computational Geometry

Most algorithms described in this book are based on Gaussian elimination, a core
topic in any linear algebra course. In geometric language Gaussian elimination is a
procedure which takes a set of affine hyperplanes, H1, . . . ,Hk , in the vector space
Kn as input, where K is an arbitrary field. If

A=H1 ∩ · · · ∩Hk (1.1)

the output can be an (affine) basis for A, or simply its dimension.
Our foray through computational geometry begins with the real numbers and the

transition from equalities to inequalities. Consider for every hyperplane

Hi =
{

x ∈Rn :
n∑

j=1

aij xj = bi

}

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_1,
© Springer-Verlag London 2013

1

http://dx.doi.org/10.1007/978-1-4471-4817-3_1

2 1 Introduction and Overview

Fig. 1.1 An example of a
bounded polyhedron in R

3.
This particular polyhedron is
a polytope which is dual to a
zonotope. The belt-like strip
in the middle has several very
thin facets

the closed half-space

H+i =
{

x ∈Rn :
n∑

j=1

aij xj ≥ bi

}
.

The intersection P =⋂k
i=1 H+i defines a (convex) polyhedron (see Fig. 1.1 for an

example in R
3).

Polyhedra are fundamental to computational geometry and linear optimization.
In higher dimensions, the combinatorial variety of polyhedra is considerably larger
than that suggested by lower dimensional images, such as Fig. 1.1. One of the fun-
damental questions when determining the complexity of many algorithms is, what is
the maximum number of vertices that a polyhedron defined by k linear inequalities
can have? This question was first answered in 1970 by the Upper-bound Theorem.
The proof (in a somewhat weaker formulation, see Theorem 3.46) and the explana-
tion of the underlying geometric structure is the first goal of this book. This result is
particularly important for computational geometry because we can use it to obtain
complexity estimates for several algorithms.

In Chapter 3 we systematically study the properties of polytopes (face lattice, po-
larity, combinatorics of polytopes) up to Euler’s formula and the Dehn–Sommerville
equations. At the end of the chapter we illustrate some of the concepts with the ge-
ometric software polymake. We will also use this and other software as an aid to
understanding the algorithms presented in later chapters.

The core of many mathematical applications is linear optimization, which ad-
dresses the problem of computing the minimum or maximum of a linear objective
function on a polyhedron P (given by linear inequalities). For computational so-
lutions it is important to note that the polyhedron can be empty, or the objective
function can be unbounded on P . In Chapter 4 we give a brief introduction to the
relevant aspects of linear optimization. In particular, we discuss the theoretically
and practically important simplex algorithm. Our main focus (as throughout this
text) will be from the geometric perspective.

An interesting computational problem of polytope theory is determining the en-
tire set of vertices and rays of a polyhedron defined by a given set of inequalities.
Using the duality theory described in Section 3.3, this is equivalent to determining

1.1 Linear Computational Geometry 3

Fig. 1.2 The solution to the post office problem for ten branches of the Deutsche Post AG in Berlin
(two of which are not in the visible part of the openstretmap.org map). OpenStreetMap is open
data, licensed under the Open Data Commons Open Database License (ODbL). © OpenStreetMap
contributors

a minimal system of inequalities which define the convex hull of a point set. We
devote Chapter 5 to the convex hull problem. For applications it is important to note
that actually computing solutions to this problem becomes difficult in higher dimen-
sions (simply because of the large output predicted by the Upper-bound Theorem).
A general approach for efficient algorithms is the divide-and-conquer principle. We
illustrate this by applying it to the computation of convex hulls in the plane.

Next, we examine Voronoi diagrams and the corresponding dual Delone sub-
divisions. Given an arbitrary point set S = {s(1), . . . , s(m)} in the n-dimensional
space R

n, the Voronoi region corresponding to a point s(i) comprises those points
of Rn which are no further from s(i) (with respect to Euclidean distance) than from
any other point of S.

In Chapter 6 we first show how convex hull algorithms can be used to compute
Voronoi diagrams in arbitrary dimensions. Afterwards, we concentrate again on the
planar case and present the beach line algorithm. Knowledge of abstract data types
is an advantage for this, so the most important principles will be explained. For
a more in depth discussion of common data structures the reader can refer to the
recommended literature.

Voronoi diagrams can be used to solve the so-called post office problem; a clas-
sical application of computational geometry. Given a finite set of points S ⊆ R

2,
we efficiently compute for each point p ∈ R2 the point s ∈ S which minimizes the
Euclidean distance ‖p − s‖. The points of S can be interpreted as post offices and
the points p as customers. See Fig. 1.2. Of course, one can naively examine every
point combination (which is efficient if there is only one customer). However, one

4 1 Introduction and Overview

Fig. 1.3 Eight
(Apollonius-)circles which
touch the three given circles

should interpret the problem as if the postal service wants to create an information
system which quickly provides answers for a large group of customers, assuming
that the positions of the post offices do not change.

In many applications, the Voronoi diagrams appear in the dual form. Therefore,
in Chapter 7 we examine Delone subdivisions and triangulations. A Delone triangu-
lation of the convex hull of a given point set S defined in this manner is in several
respects optimal in comparison to all other triangulations of S. We show that in ar-
bitrary dimensions the maximal radius of the circumsphere is minimized. Again, we
will examine the planar case in greater detail.

1.2 Non-linear Computational Geometry

The second part of this book is dedicated to non-linear problems. In Chapter 8 we
advance from systems of linear equations and inequalities to systems of polynomial
equations, and thus into basic algebraic geometry. After this it would be natural to
discuss systems of polynomial inequalities, i.e., semi-algebraic geometry, but this
would be beyond the scope of this book. At relevant points, we content ourselves
with some remarks on polynomial inequalities.

As a good example of a non-linear problem, consider Apollonius’ problem (Apol-
lonius of Perga ca. 260–190 BC): Given three circles C1, C2 and C3 in the plane,
compute another circle that touches each of the previous ones (see Fig. 1.3). If the
circles C1, C2 and C3 are in general position there exist eight (possibly complex)
solutions. As a possible application, the circles could be interpreted as distance re-
quirements for a set of given points. We will come back to this in later chapters.

1.3 Applications 5

In the second part of this book the algorithmic focus is on Gröbner bases (Chap-
ter 9). These allow us to solve arbitrary systems of polynomial equations exactly
(Chapter 10).

In Chapter 8 we give an introduction to resultants, planar affine and projective
algebraic curves and to Bézout’s Theorem. We conclude this chapter by illustrating
some of these results using Maple.

A fundamental algorithmic problem, which is covered in Chapter 9 and will later
be the basis of the method we use to solve systems of polynomial equations, is the
Ideal membership problem. Given polynomials f and g1, . . . , gr in the polynomial
ring K[x1, . . . , xn] over the field K , is f in the ideal generated by g1, . . . , gr or not?
In general this question cannot be directly answered. This motivates the study of
ideal bases with special properties, called Gröbner bases, for which the algorithmic
decision problem becomes very simple. Therefore, given a polynomial ideal, the
main task is to compute a Gröbner basis for this ideal. We will also develop the
relevant theoretical background in computational algebra.

In Chapter 10 we discuss how Gröbner bases are used in the computational solu-
tion of systems of polynomial equations. To do this, we first give a brief introduction
to the computer algebra system Singular. From a theoretical viewpoint, Hilbert’s
Nullstellensatz plays a fundamental role; it establishes a connection between geom-
etry (in the sense of polynomial roots) and algebra (in the sense of polynomial
ideals). Solutions to systems of polynomial equations may then be obtained from
roots of univariate polynomials using elimination ideals. To conclude this chapter
we present the most simple case of the Conti–Traverso algorithm, which illustrates
how to use Gröbner basis techniques in the study of integer linear programs.

1.3 Applications

In the third part of this book we discuss some selected applications of the theoretical
results presented earlier.

In Chapter 11 we approach the problem of reconstructing a curve from a given
set of points lying on it. We use the concepts of the medial axis and the “local fea-
ture size” to evaluate the relationship between the (unknown) curve and the (given)
points. The theoretical background from the first part of this book is sufficient for
this application.

In Chapter 12 we treat lines in 3- and n-dimensional space. Lines in 3-
dimensional space often occur in computational geometry and computer graphics,
e.g., in visible surface determination. Although (affine) lines in R

3 are polyhedral
objects, questions regarding intersections of lines are intrinsically non-linear. We
study these geometric problems by looking at the algebraic characteristics of the
Plücker coordinates (also known as Grassmann coordinates) of a line. We close this
chapter with an example that illustrates the role played by 3-dimensional lines in
computer graphics.

Finally, in Chapter 13 we give small insights into applications concerning Global
Positioning Systems (GPS) and robotics. The functionality of GPS relies on several

6 1 Introduction and Overview

satellites continuously orbiting the earth so that at least four of them are always
accessible from (almost) any position on the Earth’s surface. Determining positions
using GPS is closely related to a 3-dimensional version of the Apollonius problem,
as we will see in Chapter 13. Furthermore, we discuss, sometimes via computer,
some fundamental problems of kinematics.

Appendix

In three out of four parts of the appendix we provide foundations for algebraic struc-
tures, convex analysis as well as algorithms and complexity. These sections also
standardize our notation. The fourth part of the appendix introduces software pack-
ages that are used throughout the book: polymake, Maple and Singular. We
also mention CGAL and Sage.

The Structure of This Text This book consists of more material than a standard
one semester course can cover. Hence, this text may be used in several different
ways as a basis for a series of lectures. The following compilations are meant as a
suggestion:

• “Linear Computational Geometry”: Chapters 2 to 7, Chapters 11 and 12. Please
note that Chapter 12 uses elimination techniques from Part II of this book. How-
ever, the use of Maple or Singular allows us to treat examples without having
a detailed knowledge of the theoretical concepts.
• “Non-linear Computational Geometry”: This is complementary to the selection

above, hence consisting of Chapters 8 to 10 of the second part of this book and
Chapter 13 from the applications part. The amount of material is suitable for a
compact course as a follow-up to the course “Linear Computational Geometry”.
• “Cross-section of Polyhedral and Algebraic Methods”: Chapters 2, 3, 5 or 6, 8

until 10, 12, 13. Sections 9.5 and 10.6 may be left out in this.

Every chapter ends with a small section “Remarks” which references further sug-
gested reading and historical remarks. All figures in this book were produced using
the mentioned software and using METAPOST [62].

Part I
Linear Computational Geometry

Chapter 2
Geometric Fundamentals

In this chapter we lay the geometric foundations that will serve as a basis for the
topics that we shall meet later. The statements of projective geometry, in contrast to
those of affine geometry, often allow a particularly simple formulation. The projec-
tive equivalence of polytopes and pointed polyhedra (Theorem 3.36) and Bézout’s
Theorem (Theorem 8.27) on the number of intersections of two algebraic curves in
the plane are good examples of this. We will also introduce the notion of convexity,
which is an irreplaceable concept in linear computational geometry.

2.1 Projective Spaces

The basic motivation behind the introduction of projective spaces comes from the
examination of two distinct lines in an arbitrary affine plane, for example the Eu-
clidean plane R2. The lines either intersect or are parallel to one another. The funda-
mental idea of projective geometry is to extend the affine plane so that parallel lines
have an intersection point at “infinity”.

For the remainder of this text, let K be an arbitrary field and for any subset A of
a vector space V , let linA denote the linear hull of A. The cases K =R and K =C

are of primary interest in this book.

Definition 2.1

(i) Let V be a finite dimensional vector space over K . The projective space P(V)

induced by V is the set of one-dimensional subspaces of V . The dimension of
P(V) is defined as dimP(V)= dimV − 1. The function which maps a vector
v ∈ V \ {0} to the one-dimensional linear subspace linv is called the canonical
projection.

(ii) For any natural number n, the set P(Kn+1) is called the n-dimensional projec-
tive space over K . We denote it by P

n
K and remove the lower index K if the

coordinate field is clear from the context.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_2,
© Springer-Verlag London 2013

9

http://dx.doi.org/10.1007/978-1-4471-4817-3_2

10 2 Geometric Fundamentals

Fig. 2.1 Embedding the Euclidean plane R
2 into the real projective plane P

2
R

A one-dimensional linear subspace U of V is generated by an arbitrary non-zero
vector u ∈U . Thus, we can identify the projective space with the set of equivalence
classes of the equivalence relation ∼ on V \ {0}, where x ∼ y if and only if there
exists a λ ∈K \ {0} such that x = λy.

Definition 2.2 Let (x0, . . . , xn)
T ∈ Kn+1 \ {0} be a vector. Then x := lin{(x0,

. . . , xn)
T } ∈ P

n. We call any element of x \ {0} homogeneous coordinates of x

and write x = (x0 : · · · : xn)
T , with (x0 : · · · : xn)

T = (y0 : · · · : yn)
T if and only

if (x0, . . . , xn)
T ∼ (y0, . . . , yn)

T , i.e., if there exists a λ ∈K \ {0} such that xi = λyi

for 0≤ i ≤ n.

We can embed the affine space Kn in the projective space P
n
K via the injection:

ι :Kn→ P
n
K, (x1, . . . , xn)

T
→ (1 : x1 : · · · : xn)
T . (2.1)

Figure 2.1 illustrates the embedding of the Euclidean plane into the real projective
plane.

The set of ideal points of Pn
K is

P
n \ ι

(
Kn
)= {(x0 : x1 : · · · : xn)

T ∈ Pn : x0 = 0
}
.

Definition 2.3 Every subspace U of a vector space V defines a projective subspace
P(U)= {lin(u) : u ∈U \ {0}}.

Therefore, the set of (non-empty) projective subspaces of a projective space
P(V) is in one-to-one correspondence with the (non-zero) linear subspaces of V .
The set of ideal points of Pn

K forms a subspace of dimension n−1. Also, lin∅ = {0}
and P({0})= ∅.

Projective subspaces of dimension 0, 1 and 2 are called points, lines and planes,
as usual. Projective subspaces of dimension n− 1 (i.e., codimension 1) are called

2.1 Projective Spaces 11

hyperplanes. The embedding ι(U) of a k-dimensional subspace U of Kn produces
a k-dimensional projective subspace called the projective closure of U .

Example 2.4 Consider the projective plane P
2
K . The projective lines of this space

correspond to the two-dimensional subspaces of K3. Since the intersection of any
two distinct two-dimensional subspaces of K3 is always one-dimensional, any two
distinct lines of the projective plane have a uniquely determined intersection point.

Conversely, given any two distinct projective points there exists one unique pro-
jective line incident with both. This follows directly from the fact that the linear hull
of two distinct one-dimensional subspaces of a vector space is two-dimensional.

The extension of the affine space Kn to the projective space P
n
K simplifies many

proofs by eliminating case distinctions. In the particularly interesting cases K = R

and K = C, the field K has a locally compact (and connected) topology, inducing
the product topology on Kn. This topology has a natural extension to the point sets
P

n
R

and P
n
C

as a compactification. See Exercise 2.19.
Every hyperplane H in P

n
K can be expressed as the kernel of a non-trivial linear

form, that is, a K-linear map

φ :Kn+1→K, x = (x0 : · · · : xn)
T
→ u0x0 + · · · + unxn (2.2)

where the coefficients u0, . . . , un ∈K are not all zero. The set of all K-linear forms
on Kn+1 yields the dual space (Kn+1)∗. Pointwise addition and scalar multiplica-
tion turns the dual space into a vector space over K . The map φ defined in (2.2) is
identified with the row vector u= (u0, . . . , un). Clearly, every hyperplane uniquely
defines the vector u = 0 up to a non-zero scalar and vice versa. In other words:
hyperplanes can also be expressed in terms of homogeneous coordinates, and we
simply write H = kerφ = [u0 : · · · : un].

The following proposition shows how hyperplanes can be expressed with the
help of the inner product

〈·, ·〉 : Kn+1 ×Kn+1→K, 〈x, y〉 := x0y0 + x1y1 + · · · + xnyn (2.3)

on Kn+1. For x ∈Kn+1 and u ∈ (Kn+1)∗, we write

u(x)= u · x = 〈x,uT
〉

where “·” denotes standard matrix multiplication.

Proposition 2.5 The projective point x = (x0 : · · · : xn)
T lies in the projective hy-

perplane u= [u0 : · · · : un] if and only if 〈x,uT 〉 = 0.

Proof Notice that the condition 〈x,uT 〉 = 0 makes sense in homogeneous coordi-
nates since it is homogeneous itself. The claim follows from the equation〈

(λx0, . . . , λxn)
T , (μu0, . . . ,μun)

T
〉= λμ(x0u0 + · · · + xnun)= λμ

〈
x,uT

〉
for every λ,μ ∈K . �

12 2 Geometric Fundamentals

At the end of the book, in Theorem 12.24, we will prove a far-reaching general-
ization of Proposition 2.5.

Example 2.6 As in Example 2.4, consider the affine plane K2 and its projective clo-
sure, the projective plane P2

K . We can use the homogeneous coordinates to represent
a projective line of P2

K . For a, b, c ∈K with (b, c) = (0,0) let

�=
{(

x

y

)
∈K2 : a + bx + cy = 0

}

be an arbitrary affine line. Then the projective line [a : b : c] is the projective closure
of �. It contains exactly one extra projective point that is not the image of an affine
point of the embedding ι. This point is the ideal point of � and has the homogeneous
coordinates (0 : c : −b).

The homogeneous coordinates of every line of K2 parallel to � differ only in a,
their first coordinate (in the projective closure). Therefore, they share the same point
at infinity. All ideal points lie on the unique projective line [1 : 0 : 0], which is not
the projective closure of any affine line. This line is called the ideal line.

Ideal points in the real projective plane P
2
R

are often called points at infinity in
the literature. The idea of two parallel lines “intersecting at infinity” means that the
projective closures of two parallel lines in R

2 intersect at the same ideal point of P2
R

.

2.2 Projective Transformations

A linear transformation is a vector space automorphism, i.e., a bijective linear map
from a vector space to itself. Since projective spaces are defined in terms of vector
space quotients, linear transformations induce maps between the associated projec-
tive spaces.

More precisely, let V be a finite dimensional K-vector space and f : V → V a
K-linear transformation. For v ∈ V \ {0} and λ ∈ K we have f (λv) = λf (v) and
therefore f (lin(v))= lin(f (v)). As f is bijective, non-zero vectors are mapped to
non-zero vectors. Hence f induces a projective transformation:

P(f) : P(V)→ P(V), lin(v)
→ lin
(
f (v)

)
.

For V = Kn+1, the map f is usually described by a matrix A ∈ GLn+1 K . We
will therefore use the notation [A] := P(f) for projective transformations. Let
P(V) be an n-dimensional projective space. A flag of length k is a sequence of
projective subspaces (U1, . . . ,Uk) with U1 � U2 � · · · � Uk . The maximal length
of a flag is n+ 2. Every maximal flag begins with the empty set and ends with the
entire space P(V).

Theorem 2.7 Let P(V) be a finite dimensional projective space with two maximal
flags (U0, . . . ,Un+1) and (W0, . . . ,Wn+1). Then there exists a projective transfor-
mation π : P(V)→ P(V) with π(Ui)=Wi .

2.3 Convexity 13

Proof Since the subspace Ui is strictly larger than Ui−1, we can pick vectors u(i) ∈
Ui \ Ui−1 for i ∈ {1, . . . , n + 1}. By construction u(i) is linearly independent of
u(1), . . . , u(i−1), and therefore (u(1), . . . , u(n+1)) is a basis of V . Similarly we obtain
a second basis (w(1), . . . ,w(n+1)) from the second maximal flag (W0, . . . ,Wn+1).

From linear algebra we know that there exists a unique invertible linear map
f : V → V that maps u(i) to w(i) for all i ∈ {1, . . . , n+ 1}. Therefore π := P(f) is
a projective transformation with the properties stated in the theorem. �

An equivalent formulation of the above statement is: The group of invertible
linear maps GL(V) operates transitively on the maximal flags of P(V).

For a not necessarily maximal flag F = (V1, . . . , Vk) we call the strictly mono-
tone sequence of natural numbers (dimK V1, . . . ,dimK Vk) the type of F .

Corollary 2.8 Let (U1, . . . ,Uk) and (W1, . . . ,Wk) be two flags of P(V) with
the same types. Then there exists a projective transformation π on P(V) with
π(Ui)=Wi .

Proof Both (U1, . . . ,Uk) and (W1, . . . ,Wk) can be extended to maximal flags. Thus
the statement follows from Theorem 2.7. �

One may think that the uniqueness of the linear transformation f in the proof
of Theorem 2.7 implies the uniqueness of π = P(f). Showing that this is generally
not true is the goal of the exercise below. First we clarify some terminology: A point
set M ⊆ P

n is called collinear if there exists a projective line that contains all points
of M . A quadruple (a(1), a(2), a(3), a(4)) of points of P2 is called a quadrangle if no
subset of three points is collinear.

Exercise 2.9 For any two quadrangles (a(1), a(2), a(3), a(4)) and (b(1), b(2),

b(3), b(4)) there exists a projective transformation π of P2 with π(a(i)) = b(i) for
1≤ i ≤ 4.

An affine transformation is a projective transformation that maps ideal points to
ideal points.

Exercise 2.10 For every affine transformation π of Pn
K there exists a linear trans-

formation A ∈ GLn(K) and a vector v ∈Kn such that π(ι(x))= ι(Ax + v) for all
x ∈Kn.

2.3 Convexity

We begin by summarizing some notation from linear algebra to clarify the terminol-
ogy and concepts that we will use. As before, let K denote a field.

14 2 Geometric Fundamentals

Fig. 2.2 Affinely independent points (left) and affinely dependent points (middle and right) in the
Euclidean plane R

2

Definition 2.11 Let A ⊆ Kn. An affine combination of points in A is a linear
combination

∑m
i=1 λ(i)a(i) with m ≥ 1, λ(1), . . . , λ(m) ∈ K , a(1), . . . , a(m) ∈ A and∑m

i=1 λ(i) = 1. The set of all affine combinations of A is called the affine hull of A

or simply affA. We call the points a(1), . . . , a(m) ∈Kn affinely independent if they
generate an affine subspace of dimension m− 1.

For example, the three points in the picture on the left hand side of Fig. 2.2 are
affinely independent and each set of four or more points in the real plane (as in
the middle and on the right hand side of Fig. 2.2) are affinely dependent. We set
aff∅ = ∅ and dim∅ =−1.

The language of projective geometry allows us to describe linear algebra over
an arbitrary field in geometric terms. In the case of an ordered field like the real
numbers (and unlike C) we can further exploit the geometry to obtain results. For
the remaining part of this chapter, let K be the field R of real numbers.

Definition 2.12 Let A⊆ R
n. A convex combination of A is an affine combination∑m

i=1 λ(i)a(i) which additionally satisfies λ(1), . . . , λ(m) ≥ 0. The set convA of all
convex combinations of A is called the convex hull of A. A set C ⊆ R

n is called
convex if it contains all convex combinations that can be obtained from it. The di-
mension of a convex set is the dimension of its affine hull.

The empty set is convex by definition. The simplest non-trivial example of a
convex set is the closed interval [a, b] ⊆R. It is one-dimensional and is the convex
hull of its end points. Analogously, for a, b ∈Rn we define:

[a, b] := {λa + (1− λ)b : 0≤ λ≤ 1
}= conv{a, b}.

See Fig. 2.3 for some examples.

Exercise 2.13 A set C ⊆R
n is convex if and only if for every two points x, y ∈ C,

the segment [x, y] is contained in C.

2.3.1 Orientation of Affine Hyperplanes

For real numbers a0, a1, . . . , an with (a1, . . . , an) = 0 consider the affine hyper-
plane H = {x ∈ Rn : a0 + a1x1 + · · · + anxn = 0}. Then [a0 : a1 : · · · : an] are the

2.3 Convexity 15

Fig. 2.3 Convex hulls of the points from Fig. 2.2

homogeneous coordinates of its projective closure. The complement Rn \H has two
connected components,

H+◦ :=
{
x ∈Rn : a0 + a1x1 + · · · + anxn > 0

}
and (2.4)

H−◦ :=
{
x ∈Rn : a0 + a1x1 + · · · + anxn < 0

}
. (2.5)

These components are called the open affine half-spaces defined by H , with H+◦
and H−◦ attributed as positive and negative, respectively. The (closed) positive half-
space

H+ := {x ∈Rn : a0 + a1x1 + · · · + anxn ≥ 0
}

satisfies H+ = H ∪ H+◦ = R
n \ H−◦ . The opposite half-space H− is analogously

defined. The vector (λa0, λa1, . . . , λan) defines the same affine hyperplane H for
any λ = 0, however the roles of H+ and H− are reversed when λ is negative. We
will let

[a0 : a1 : · · · : an]+ :=
{
x ∈Rn : a0 + a1x1 + · · · + anxn ≥ 0

}
and analogously define [a0 : a1 : · · · : an]−. When we wish to distinguish which of
the two half-spaces defined by H is positive or negative, we will call [a0 : a1 : · · · :
an] the oriented homogeneous coordinates of H .

We often consider a given affine hyperplane H in R
n and use the notation H+

and H− without having first fixed a coordinate representation of H . This is simply a
notational device which enables us to differentiate between the two half-spaces; the
coordinates for H can always be chosen so that the notation is in accordance with
the above definition.

The inner product introduced in (2.3) is the Euclidean scalar product on R
n. As

in Proposition 2.5 the sign of the scalar product〈
(1, x1, . . . , xn)

T , (a0, a1, . . . , an)
T
〉

denotes the half-space for [a0 : a1 : · · · : an] in which the point (1, x1, . . . , xn)
T lies.

2.3.2 Separation Theorems

For M ⊆R
n, we let intM denote the interior of M . That is, the set of points p ∈M

for which there exists an ε-ball centered at p, completely contained in M . A set

16 2 Geometric Fundamentals

is called open when intM =M and is closed if it is the complement of an open
set. The closure M of M is the smallest closed set in R

n containing M . The set
∂M :=M \ intM is the boundary of M . All of these terms are defined with respect
to the ambient space R

n.
Some concepts from analysis are essential for the structure theory of convex sets.

The following statements rely on two core results which are proved in Appendix B.
Here, an affine hyperplane H is called a supporting hyperplane for a convex set
C ⊆ R

n if H ∩ C = ∅ and C is entirely contained in one of the closed affine half-
spaces determined by H .

Theorem 2.14 Let C be a closed and convex subset of Rn and p ∈ R
n \ C an

exterior point. Then there exists an affine hyperplane H with C ⊆H+ and p ∈H−,
that meets neither C nor p.

The next statement is a direct consequence of Theorem 2.14.

Corollary 2.15 Let C be a closed and convex subset of Rn. Then every point of the
boundary ∂C is contained in a supporting hyperplane.

A convex set C ⊆R
n is called full-dimensional if dimC = n. When C is not full

dimensional, it is often useful to use these topological concepts with respect to the
affine hull. The relative interior relintC of a convex set C consists of the interior
points of C interpreted as a subset of affC. Analogously, the relative boundary of
C is the boundary of C as a subset of affC.

2.4 Exercises

Exercise 2.16 Let P(V) be a projective space. For every set S ⊆ V the set

T = {lin{x} : x ∈ S \ {0}}
is a subset of P(V) and for the subspace linS generated by S, P(linS) is a projective
subspace which we denote by 〈T 〉. Prove the dimension formula

dimU + dimW = dim
(〈U ∪W 〉)+ dim(U ∩W)

for two arbitrary projective subspaces U and W of P(V).

Exercise 2.17 Let K be any field, and let A= (aij) ∈GLn+1 K . Show:

(a) If H is a projective hyperplane with homogeneous coordinates (h0 : h1 : · · · :
hn) then the image [A]H under the projective transformation [A] is the kernel
of the linear form with coefficients (h0, h1, . . . , hn)A

−1.
(b) The projective transformation [A] acting on P

n
K is affine if and only if a12 =

a13 = · · · = a1,n+1 = 0.

2.5 Remarks 17

Exercise 2.18

(a) Every projective transformation on the real projective line P
1
R

(apart from the
identity) has at most two fixed points.

(b) Every projective transformation on the complex projective line P
1
C

(apart from
the identity) has at least one and at most two fixed points. (Explain why it is
natural to talk about a double fixed point in the first case.)

A projective space over a topological field has a natural topology that will be
discussed in the following exercise.

Exercise 2.19 Let K ∈ {R,C}. Show:

(a) The point set of a projective space Pn
K
=K

n+1/∼ is compact with respect to the
quotient topology.

(b) Every projective subspace of Pn
K

, interpreted as a subset of the points of Pn
K

, is
compact.

Exercise 2.20 Let K be a finite field with q elements.

(a) Show that the projective plane P
2
K has exactly N := q2 + q + 1 points and

equally many lines.
(b) Denote by p(1), . . . , p(N) the points and by �1, . . . , �N the lines of P2

K . Further-
more, let A ∈RN×N be the incidence matrix defined by

aij =
{

1 if p(i) lies on �j ,

0 otherwise.

Compute the absolute value of the determinant of A. [Hint: Study the matrix
A ·AT .]

Exercise 2.21 (Carathéodory’s Theorem) If A⊆R
n and x ∈ convA, then x can be

written as a convex combination of at most n+1 points in A. [Hint: Since m≥ n+2
points are affinely dependent, every convex combination of m points in A can be
written as a convex combination of m− 1 points.]

2.5 Remarks

For further material on projective geometry, refer to the books of Beutelspacher and
Rosenbaum [13] and Richter-Gebert [88]. More detailed descriptions of convexity
can be found in Grünbaum [56, §2], Webster [98] or Gruber [55]. For basic topo-
logical concepts, see the books of Crossley [30] and Hatcher [58]. Although our
projective transformations are by definition always linearly induced, in other texts it
is common to extend this notion to include collineations induced by field automor-
phisms.

Chapter 3
Polytopes and Polyhedra

Polytopes may be defined as the convex hull of finitely many points in n-dimen-
sional space R

n. They are fundamental objects in computational geometry. When
studying polytopes, it soon becomes apparent that the proof of seemingly obvi-
ous properties often requires further clarification of the basic underlying geometric
structures. An example of this is the major result that polytopes can also be repre-
sented as the intersection of finitely many affine half-spaces.

In this chapter the geometric foundations of polytopes and unbounded polyhedra
will be presented from a computational viewpoint.

3.1 Definitions and Fundamental Properties

Definition 3.1 A set P ⊆ R
n is a polytope if it can be expressed as the convex

hull of finitely many points. A k-dimensional polytope is called a k-polytope. The
convex hull of k + 1 affinely independent points is a k-simplex.

A 0-dimensional polytope is just a point, a 1-polytope is a line segment and
the 2-dimensional polytopes are precisely the convex polygons. We adopt the con-
vention that the empty set is a polytope of dimension −1. See Fig. 3.1 for some
examples.

From an analytical viewpoint, a polytope is a closed and bounded, and hence
compact, subset of Rn. Polytopes in lower dimensions illustrate neither the diversity
of polytopes nor the depth of higher dimensional polytope theory.

We now introduce the reader to some examples of polytopes which will be useful
in the following sections.

The standard cube Cn is the convex hull of the 2n points which have ±1-
coordinates. If we denote the standard basis vectors in R

n by e(1), . . . , e(n), then we
can express the cross-polytope as the convex hull of the 2n points ±e(1), . . . ,±e(n).
The 3-dimensional cross-polytope is the regular octahedron.

The cyclic polytopes form an important class of polytopes with extremal proper-
ties. These properties will be discussed in further detail in Section 3.5.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_3,
© Springer-Verlag London 2013

19

http://dx.doi.org/10.1007/978-1-4471-4817-3_3

20 3 Polytopes and Polyhedra

Fig. 3.1 Every 2-simplex is a triangle and every 3-simplex in R
3 is a (generally irregular) tetra-

hedron. The right hand picture shows a 3-polytope in R
3

Definition 3.2 The moment curve μn in R
n is defined as

μn :R→R
n, τ
→ (

τ, τ 2, . . . , τ n
)T

.

A polytope Z ⊆ R
n is called cyclic if Z is the convex hull of points of the moment

curve.

For n= 2 the moment curve is the standard parabola τ
→ (τ, τ 2)T . Any cyclic
2-polytope that is defined as the convex hull of m ≥ 3 points is a convex m-gon.
This is independent of the specific choice of the m points on the curve μ2.

It is easy to verify that the image of a polytope under an affine transformation is
again a polytope (of the same dimension).

Definition 3.3 An affine automorphism of a polytope P ⊆R
n is an affine transfor-

mation of Rn that maps P onto itself.

The set of all affine automorphisms of a polytope is a group with respect to
composition. The size of this automorphism group is a measure of the regularity of
the polytope.

Exercise 3.4

(a) Show that for any two points p,q ∈ R
n with ±1-coordinates there exists an

affine transformation of Rn which leaves the standard cube fixed and maps p

to q .
(b) Compute the number of affine automorphisms of the standard cube. [Hint:

Make use of Theorem 2.7.]

3.1.1 The Faces of a Polytope

Based on the concept of supporting hyperplanes (as introduced in Section 2.3.2 or
in Appendix B) we define the faces of a polytope.

3.1 Definitions and Fundamental Properties 21

Fig. 3.2 A cube in R
3 has 8

vertices, 12 edges (which are
also ridges in dimension 3)
and 6 facets

Definition 3.5 Let P ⊆ R
n be an n-polytope. The intersection P ∩ H of P with

a supporting hyperplane H is called a proper face of P . A face of dimension k is
called a k-face. A 0-face is called a vertex, a 1-face an edge, an (n− 2)-face a ridge
and an (n− 1)-face is called a facet. Additionally, there are two non-proper faces:
the empty set and P itself.

Definition 3.5 was stated for full-dimensional polytopes. The terms translate im-
mediately to arbitrary k-polytopes P ⊆ R

n for k < n if they are interpreted with
respect to the affine hull affP of P . An example illustrating the faces of a polytope
is given in Fig. 3.2.

Theorem 3.6 The number of faces of a polytope is finite. Faces of polytopes are
polytopes themselves.

Proof Let P = convU for a finite set U . For both claims it suffices to show that
every proper face of P is the convex hull of a subset of U . Let H be a supporting
hyperplane of P and let U ′ :=U ∩H . The oriented homogeneous coordinates of H

are [a0 : · · · : an] and we assume without loss of generality that P ⊆ H+. We will
show that H ∩ P = convU ′. The inclusion “⊇” is clear.

For the reverse inclusion consider a point p = (p1, . . . , pn)
T ∈ P \ convU ′.

There exist u(1), . . . , u(k) ∈ U such that p = λ(1)u(1) + · · · + λ(k)u(k) with λ(j) ≥ 0
and

∑
λ(j) = 1. Here we can assume that u(1) ∈ U \ U ′ and λ(1) > 0. We have to

show that p ∈H . We have

a0 +
n∑

i=1

aipi = a0 +
n∑

i=1

ai

k∑
j=1

λ(j)u
(j)
i

= a0 +
k∑

j=1

λ(j)

n∑
i=1

aiu
(j)
i =

k∑
j=1

λ(j)

(
a0 +

n∑
i=1

aiu
(j)
i

)
,

where the last equation follows from
∑k

j=1 λ(j) = 1. But by our assumption we have

that a0 +∑n
i=1 aiu

(1)
i > 0 and a0 +∑n

i=1 aiu
(j)
i ≥ 0 for all j ∈ {2, . . . , n}. Since

λ(1) > 0, this implies a0 +∑n
i=1 aipi > 0 or, in other words, p ∈H+◦ . �

22 3 Polytopes and Polyhedra

Fig. 3.3 Separation of the
point v(1) from
conv(V \ {v(1)}) by H and a
parallel supporting
hyperplane K

3.1.2 First Consequences of the Separating Hyperplane Theorem

As the Separating Hyperplane Theorem 2.14 is an important key to the study of the
structure of polytopes, we shall begin by studying its implications.

Theorem 3.7 The boundary of a full-dimensional polytope P ⊆ R
n is the union of

all of its proper faces.

Proof Clearly the union of all proper faces of P is contained in the boundary of P .
The reverse inclusion is implied by Corollary 2.15, which states that every boundary
point intersects at least one supporting hyperplane. �

Theorem 3.8 Every polytope is the convex hull of its vertices.

Proof Let P = convU for a finite set U . After successively removing all points
of U that can be expressed as a convex combination of other points in U , we obtain
a subset V = {v(1), . . . , v(k)} that satisfies P = convV and which is minimal with
respect to containment.

We now show that every remaining point is a vertex of P . It suffices to show
this for v(1). Since V was chosen to be minimal, v(1) is not contained in the convex
hull of the other points. By Theorem 2.14 there exists an affine hyperplane H that
separates v(1) and conv{v(2), . . . , v(k)}. We set H = [a0 : · · · : an] and assume that
v(1) ∈ H−◦ . Using the notation μ := a0 +∑n

i=1 aiv
(1)
i , the hyperplane K which is

parallel to H and contains v(1) has the oriented homogeneous coordinates [a0−μ :
a1 : · · · : an]; see Fig. 3.3. The inequality μ < 0 implies {v(2), . . . , v(k)} ⊆ intK+
and since v(1) ∈ K we have that K is a supporting hyperplane to P . Now let p ∈
P ∩K . Since p is a convex combination of the points v(j), i.e., p =∑k

j=1 λ(j)v(j)

for appropriate λ(j) ≥ 0 with
∑k

j=1 λ(j) = 1, we have

a0 −μ+
n∑

i=1

aipi = a0 −μ+
n∑

i=1

ai

k∑
j=1

λ(j)v
(j)
i

=
k∑

j=1

λ(j)

(
a0 −μ+

n∑
i=1

aiv
(j)
i

)
= 0.

3.1 Definitions and Fundamental Properties 23

Fig. 3.4 The point q is not
contained in the affine hull of
p with any face of dimension
≤ n− 2 (here n= 2)

Since λ(j) ≥ 0 and a0 − μ+∑n
i=1 aiv

(j)
i > 0 for all j ≥ 2, we have λ(2) = · · · =

λ(k) = 0 and also λ(1) = 1. This means that p = v(1) and therefore that v(1) is a
vertex of P . �

An immediate consequence of the above theorem is that the containment-
minimal set V of points that generate P is uniquely determined.

3.1.3 The Outer Description of a Polytope

The representation of a polytope as the convex hull of a finite point set is called the
V-representation or inner description. The following two central theorems state that
every polytope can be equivalently described as the bounded intersection of finitely
many closed half-spaces (the H-representation or outer description). The prefixes
V- and H- derive from the terms “vertices” and “hyperplanes”.

Theorem 3.9 Let P ⊆ R
n be an n-polytope, {F1, . . . ,Fm} the set of its facets,

Hi the supporting hyperplane to P at Fi and H+i the half-space containing P .
Then we have

P =
m⋂

i=1

H+i .

Thus every polytope is the intersection of a finite set of closed half-spaces.

Proof The inclusion “⊆” is clear. For the inclusion “⊇” we show that every point
outside of P is not contained in the intersection

⋂m
i=1 H+i . For the following we fix

a point p ∈ P .
We study the set {G1, . . . ,Gk} of all faces of P of dimension ≤ n− 2. Let q be a

point in the interior of P which is not contained in the set
⋃k

i=1 aff(Gi ∪ {p}). Such
a point exists since the interior of an n-polytope has dimension n and can therefore
not be covered by a finite number of affine subspaces of dimension ≤ n − 1 (see
Fig. 3.4). The segment [p,q] intersects the boundary of P in a uniquely determined
point z which, by Theorem 3.7, is contained in a proper face of P . By the choice of q

it is guaranteed that z is not contained in a face of dimension j < n−1. This implies
that there exists an i ∈ {1, . . . ,m} with z ∈ Fi . So we have z ∈Hi and q ∈H+i , but
p ∈H−i \Hi , i.e., p ∈⋂m

i=1 H+i . �

24 3 Polytopes and Polyhedra

When, as in Theorem 3.9, the polytope P ⊆ R
n is full-dimensional, the affine

span of every facet F defines a hyperplane H . Assuming that H has the form H =
[a0 : · · · : an] and P ⊆ H+, every positive multiple of (a1, . . . , an)

T is called an
inner normal vector of F and every negative multiple of (a1, . . . , an)

T is called an
outer normal vector of F . If dimP < n, then for any facet F , there exist infinitely
many affine hyperplanes of Rn that contain F .

We can now refine Theorem 3.7, which states that the boundary of a polytope is
the union of its facets.

Theorem 3.10 If the intersection P of a finite number of closed affine half-spaces
in R

n is bounded, then P is a polytope.

Proof The proof is completed by induction over the dimension n of the space. The
statement is clear for dimension ≤ 1 . So let n≥ 2 and

P =
m⋂

i=1

H+i

be the bounded intersection of a finite number of affine half-spaces in R
n. Let Fj :=

Hj ∩ P , j ∈ {1, . . . ,m}. Then Fj is a bounded intersection of half-spaces in the
hyperplane Hj . Since Hj can be identified with an affine space of dimension n− 1,
we know by the inductive hypothesis that Fj is a polytope in Hj and therefore also
a polytope in R

n. Let Vj be the set of vertices of Fj and V =⋃m
j=1 Vj .

It suffices to show that P = convV . The inclusion “⊇” is clear since V ⊆ P and
P is convex. For the reverse inclusion consider a point q ∈ P . If q is a boundary
point of P , then there exists a j ∈ {1, . . . ,m} with q ∈ Fj . The point q is therefore
a convex combination of Vj which in particular implies that q ∈ convV . If q is
contained in the interior of P , then q is contained in a segment, [r, s], formed by
the intersection of a line with P . Since r and s are on the boundary of P they are
contained in convV and thus q ∈ convV . �

Example 3.11 The hyperplanes that define facets of the standard cube Cn are pre-
cisely Hi = [1 : h(i)

1 : · · · : h(i)
n] for i ∈ {1, . . . ,2n} with

h
(i)
k =

⎧⎪⎨
⎪⎩

1 if i = k,

−1 if i = k+ n,

0 otherwise

for k ∈ {1, . . . , n}.

Computing the H-representation when given the V-representation of a polytope
and vice versa is a major topic of computational geometry and will be discussed in
Chapter 5.

3.2 The Face Lattice of a Polytope 25

Exercise 3.12 Show that the intersection of a polytope with an arbitrary affine sub-
space is a polytope.

Exercise 3.13 For a polytope P show that:

(a) The intersection of a set of faces of P is a face of P .
(b) Every ridge of P is the intersection of exactly two facets of P .
(c) If G is a face of P and F is a face of G, then F is a face of P .

3.2 The Face Lattice of a Polytope

Containment defines a partial order on the set F(P) of all faces of a polytope P .
Theorem 3.6 tells us that this set is finite, i.e., (F(P),⊆) is a finite partially ordered
set (or poset). As a purely combinatorial object this poset is an important interface
between the analytically focused general complexity theory and discrete geometry.

Exercise 3.14 Show that (F(P),⊆) satisfies the following conditions:

(a) There exists a uniquely determined smallest and largest face of P .
(b) For two arbitrary faces F,G ∈ F(P) there exists a uniquely determined small-

est face F ∨G such that F ⊆ F ∨G and G⊆ F ∨G.
(c) For two arbitrary faces F,G ∈F(P) there exists a uniquely determined largest

face F ∧G such that F ⊇ F ∧G and G⊇ F ∧G.

The properties described in Exercise 3.14 show that (F(P),⊆) is a lattice, called
the face lattice of P .

Definition 3.15 A combinatorial isomorphism of two polytopes is a (poset-)iso-
morphism of the face lattices. If there exists such a combinatorial isomorphism,
we call the two polytopes combinatorially equivalent. The combinatorial type of a
polytope is the isomorphism type of its face lattice.

Exercise 3.16 Show that every affine transformation of a polytope P to a poly-
tope Q induces an isomorphism from F(P) to F(Q).

Exercise 3.17 Give an example of two combinatorially equivalent polytopes such
that there does not exist an affine transformation that maps one to the other.

Theorem 3.18 Let F and G be faces of P such that F ⊆G. Then

F(F,G) := {F ′ ∈F(P) : F ⊆ F ′ ⊆G
}

with the partial order induced by containment, is isomorphic to the face lattice of a
polytope of dimension dimG− dimF − 1.

26 3 Polytopes and Polyhedra

Fig. 3.5 Two examples of
polytopes P ∩H(ε) for
dimF ∈ {0,1}. (Notation as
in the proof of
Theorem 3.18.) The polytope
P is a bipyramid over a
pentagon

Proof Since Theorem 3.6 established that every face of a polytope is a poly-
tope itself, we can assume without loss of generality that G = P . Let P be full-
dimensional. We choose F as a proper face since otherwise there is nothing left to
show.

Let V be the vertex set of P and V (F) = F ∩ V the vertex set of the face F .
Choose a supporting hyperplane H to P with F = P ∩H . We assume that H has
the oriented homogeneous coordinates [a0 : · · · : an] and that P ⊆ H+ holds. For
every sufficiently small ε > 0 we have that the hyperplane H(ε) = [a0 − ε : a1 :
· · · : an], which is parallel to H , separates the vertex set V (F) from its complement:
V (F)⊆ intH(ε)− and V \ V (F)⊆ intH(ε)+. See Fig. 3.5.

Let x be a point in the relative interior of F . The hyperplane H(ε) contains
an interior point, y say, of P . Now let A be an (n − dimF)-dimensional affine
subspace containing x and y but no point in affF other than x. That is, affF and
A are complementary affine subspaces meeting at x. Then A ∩ H(ε) is an affine
subspace of dimension n− dimF − 1 which is affinely generated by the set

P(F,A, ε) := P ∩A∩H(ε),

which by Theorem 3.10 is a polytope. The map

α :F(F,P)→F
(
P(F,A, ε)

) : F ′
→ F ′ ∩A∩H(ε)

respects containment and is bijective since α−1(F ′ ∩ A ∩ H(ε)) = aff((F ′ ∩ A ∩
H(ε))∪F)∩P = aff(F ′)∩P = F ′. Since F(F,P) does not depend on x, y,A or
ε we have that the combinatorial type of the polytope P(F,A, ε) is independent of
x, y,A and ε. �

Given a face F of P we call the polytope P(F,A, ε) a face figure of F . An
implication of Theorem 3.18 is the fact that F(F,G), for dimG − dimF = 2, is
always the face lattice of a segment, i.e., there exist exactly two faces E1 and E2
of dimension dimF + 1 which lie between F and G. This property is called the
diamond property of F(P); see Fig. 3.6. For a bipyramid over a pentagon, Fig. 3.5
shows the (pentagonal) face figure of a vertex, also called a vertex figure; the shaded

3.2 The Face Lattice of a Polytope 27

Fig. 3.6 The diamond
property of the face lattice.
The faces E1,E2,F,G

satisfy E1 ∨E2 =G and
E1 ∧E2 = F

heptagon corresponds to the face figure of an edge, which is a segment, as discussed
above.

Let P ⊆R
n be an n-polytope and let fk(P) be the number of k-dimensional faces

of P . Then f (P) := (f0(P), f1(P), . . . , fn−1(P)) is called the f -vector of P . The
f -vector is clearly a combinatorial invariant since it only depends on the combina-
torial type of P . An interesting—and very complicated—task is to determine which
n-tuples of natural numbers can be f -vectors of n-polytopes.

Exercise 3.19 Compute the f -vector of the n-dimensional standard cube Cn and
describe its face lattice.

One may ask what “typical” polytopes look like. A more rigorous statement of
this naive question can be formulated in several ways using stochastic terms. As
an example, we will study the convex hulls of random points on the unit sphere in
Section 3.6. In many cases the term “typical” corresponds to “general position”.

Exercise 3.20 Let K ⊆ R
n be a full-dimensional convex set. Show that a finite set

X of uniformly distributed random points from K is almost certainly in general
position, i.e. the probability of n+ 1 of these points being affinely independent is 1.
In particular this implies that every proper face of convX is a simplex.

The last property inspires the following definition.

Definition 3.21 A polytope P is called simplicial if all proper faces of P are sim-
plices. It is called simple if the face figure of every proper face of P is a simplex.

The cross polytopes conv{±e(1), . . . ,±e(n)} are simplicial, while the cubes Cn

are simple. The relationship between these two properties, simplicial and simple,
will be clarified in Section 3.3.

Exercise 3.22 Show that a polytope is both simplicial and simple if and only if it is
a simplex or a polygon.

Exercise 3.23 Let P be an n-polytope with vertex set V and edge set E. The graph
Γ (P) is the abstract graph (V ,E) with natural incidence. Show:

(a) The graph Γ (P) is connected.
(b) Every vertex is incident with at least n edges.

28 3 Polytopes and Polyhedra

(c) The n-polytope P is simple if and only if every vertex is incident with exactly
n edges.

3.3 Polarity and Duality

In the following section we introduce the concept of polarity. Given a polytope P

which contains the origin in its interior, we assign to P a polar polytope P ◦ such
that every k-face of P corresponds to an (n− k − 1)-face of P ◦. In particular, we
have that fn−i−1(P)= fi(P

◦).

Example 3.24 For the standard cube C3 = [−1,1]3 in R
3 we have f0(C3) = 8,

f1(C3) = 12, f2(C3) = 6. For the three-dimensional cross-polytope (the octahe-
dron) Q= conv{±e(i) : 1 ≤ i ≤ 3} (where e(i) denotes the i-th standard basis vec-
tor), we have f0(Q)= 6, f1(Q)= 12, f2(Q)= 8 (see Fig. 3.7).

We will see in Example 3.30 that Q is the polar polytope of C3.

As in Section 2.3.1, let 〈·, ·〉 denote the Euclidean scalar product and let ‖ · ‖ with
‖x‖ := 〈x, x〉1/2 be the Euclidean norm.

Definition 3.25 For X ⊆R
n the polar set X◦ is defined as

X◦ = {y ∈Rn : 〈x, y〉 ≤ 1 for all x ∈X
}
.

Exercise 3.26 Show that X ⊆ Y implies Y ◦ ⊆X◦ for X,Y ⊆R
n.

Proposition 3.27 Let X ⊆R
n. Then X◦ is closed and convex and 0 ∈X◦.

Proof Clearly 0 ∈X◦. Let x ∈Rn \ {0}, then

{x}◦ = {y ∈Rn : 〈x, y〉 ≤ 1
}= [1 : −x1 : · · · : −xn]+

is a closed affine half-space and {0}◦ = R
n. The intersection X◦ =⋂x∈X{x}◦ of

closed and convex sets is again closed and convex. �

Theorem 3.28 If P ⊆ R
n is an n-polytope with 0 ∈ intP , then P ◦ is also an n-

polytope with 0 ∈ intP . We have

P ◦ =
⋂
v∈V

{
y ∈Rn : 〈v, y〉 ≤ 1

}=⋂
v∈V
[1 : −v1 : · · · : −vn]+, (3.1)

where V is the vertex set of P .

Proof Since P is bounded, we have that P is contained in an open ball B(0, ρ)

with center 0 and radius ρ. For all x ∈ R
n with ‖x‖ ≤ 1/ρ the Cauchy–Schwarz

3.3 Polarity and Duality 29

Fig. 3.7 The cube [−1,1]3
and octahedron
conv{e(i) : 1≤ i ≤ 3}

inequality gives

∣∣〈x, y〉∣∣≤ ‖x‖‖y‖ ≤ 1

ρ
‖y‖ ≤ 1 for all y ∈ P,

and thus the ball B(0,1/ρ) is contained in P ◦. As a consequence, P ◦ is full-
dimensional. Since P contains a ball B(0, ρ′) we can analogously deduce that P ◦
is bounded.

Equation (3.1) remains to be proven. The inclusion “⊆” follows immediately
from Definition 3.25. For the reverse inclusion “⊇” consider a point y that is not
contained in P ◦. An arbitrary point x ∈ P can be expressed as a convex combination∑k

i=1 λ(i)v(i) of vertices of P . Clearly we have

〈x, y〉 =
k∑

i=1

λ(i)
〈
v(i), y

〉≤max
{〈

v(i), y
〉 : 1≤ i ≤ k

}
,

where the last inequality follows from
∑k

i=1 λ(i) = 1. If 〈x, y〉> 1 then there exists
a vertex v(i) such that 〈v(i), y〉> 1, which proves the statement. �

Theorem 3.29 For an n-polytope P ⊆R
n with 0 ∈ intP we have:

(a) (P ◦)◦ = P .
(b) For every boundary point p of P the affine hyperplane

H = {x ∈Rn : 〈p,x〉 = 1
}

is a supporting hyperplane to P ◦.

Proof (a) The definition of polarity implies immediately that P ⊆ (P ◦)◦. For the
reverse direction let P =⋂m

i=1 H+i and let x be a point not contained in P . Then
there exists an i ∈ {1, . . . ,m} with x ∈H+i . By the Separation Theorem 2.14 there
exists a v ∈ Rn with 〈v, x〉 > 1. Since 〈v, y〉 ≤ 1 for all y ∈ H+i , we have v ∈ P ◦
and since 〈v, x〉> 1 we have x ∈ (P ◦)◦.

(b) For every p ∈ P \ {0}, H+ = [1 : −p1 : · · · : −pn]+ is a half-space which
contains the polytope P ◦. If p is a boundary point of P then, by Theorem 3.7, it
belongs to a face of P and there exists a vector x ∈ R

n such that the hyperplane
H ′ = {y ∈ R

n : 〈x, y〉 = 1} supports P and contains the point p. We now have

30 3 Polytopes and Polyhedra

x ∈ P ◦ and x ∈H such that H intersects the polytope P ◦ and thus H is a supporting
hyperplane to P ◦. �

Example 3.30 The description of the hyperplanes that define the facets of the stan-
dard cube Cn in Example 3.11 shows that Cn is polar to the n-dimensional cross-
polytope.

Lemma 3.31 Let P ⊆R
n be an n-polytope with 0 ∈ intP . For every proper face F

of P the face

F ∗ := {x ∈ P ◦ : 〈x, y〉 = 1 for all y ∈ F
}
� F ◦

is a proper face of P ◦.

Proof For every p ∈ F , Theorem 3.29b implies that the hyperplane H = {x ∈ Rn :
〈p,x〉 = 1} is a supporting hyperplane of P ◦, and thus P ◦ ∩ H is a face of P ◦.
Since F is the convex hull of a finite number of points, we can express F ∗ as an
intersection of a finite number of such faces of P ◦. Hence F ∗ is a face of P ◦. By
construction the face F ∗ is contained in the set F ◦. �

Lemma 3.31 induces a map φ : F
→ F ∗ from the set of all proper faces of P to
the set of all proper faces of P ◦, with φ(P)= ∅ and φ(∅)= P ◦.

Theorem 3.32 Let P ⊆R
n be an n-polytope with 0 ∈ intP . The map φ is bijective

and for all k ∈ {0, . . . , n−1} it maps the k-faces of P to the (n−k−1)-faces of P ◦.
Furthermore φ is containment-reversing, i.e., F ⊆G implies G∗ ⊆ F ∗.

Proof Exercise 3.26 implies that φ is containment-reversing.
Since the map φ can also be applied to the faces of P ◦, in order to prove bijectiv-

ity we know by Theorem 3.29a that it suffices to show that φ(φ(F))= F for every
face F of P . For the non-proper faces this is satisfied by definition. For every proper
face F we have by definition that

φ
(
φ(F)

)= {x ∈Rn : 〈x, y〉 = 1 for all y ∈ φ(F)
}

with

φ(F)= {y ∈ P ◦ : 〈x, y〉 = 1 for all x ∈ F
}
,

and thus F ⊆ φ(φ(F)).
For the reverse inclusion, consider a point p ∈ P with p ∈ F . If we denote

by H = [1 : −h1 : · · · : −hn] a supporting hyperplane to P that contains F , then
p ∈H+◦ and hence 〈p,h〉< 1. Notice the first coordinate of H equals 1 (up to scal-
ing by a positive real number) as the origin is an interior point of P . Since h ∈ φ(F)

it then follows that p ∈ φ(φ(F)).
Our dimension statement remains to be proven. For non-proper faces it is clearly

satisfied. Every proper k-face F contains k + 1 affinely independent points such

3.4 Polyhedra 31

Fig. 3.8 A polytope
P = conv{p(1), . . . , p(4)} and
its polar polytope

that φ(F) is contained in the intersection of k+ 1 hyperplanes whose equations are
linearly independent. This implies dimφ(F)≤ n− k − 1, but since F ⊆ φ(φ(F)),
this must be an equality. �

A bijection that reverses the order relation of a lattice or poset is called an anti-
isomorphism.

Corollary 3.33 Let P ⊆ R
n be an n-polytope with 0 ∈ intP . The polytope P is

simplicial if and only if the polar polytope P ◦ is simple.

Example 3.34 Let P = conv{p(1), . . . , p(4)} ⊆ R
2 be the quadrangle depicted in

Fig. 3.8. Then the polar polytope P ◦ =⋂4
i=1{x ∈ R2 : 〈p(i), x〉 ≤ 1} is the dashed

quadrangle. The segment [0,p(i)] is perpendicular to the line

Hi :=
{
x ∈R2 : 〈p(i), x

〉= 1
}= aff

({
p(i)
}∗)

.

For i ∈ {1,2}, p(i) lies on the unit circle S
1 such that the line Hi is tangent to the

unit circle. The point p(3) lies outside of the unit circle such that H3 intersects the
interior of the unit circle. The fourth point p(4) lies in the interior of the unit circle
such that H4 lies completely outside of the unit circle. The distance from the origin
to the line Hi is always the reciprocal of the distance between 0 and p(i).

In this section we often assumed that the polytope P contained the origin as an
interior point. By restricting to affP , and via a suitable translation, we can without
any loss of generality always assume this to be the case, i.e., every polytope has an
affine image which satisfies this condition. This implies that for every polytope P

there exists a polytope P ′ whose face lattice F(P ′) is anti-isomorphic to F(P).
Such a polytope is said to be dual to P .

3.4 Polyhedra

Polytopes are the elementary building blocks of computational geometry, but it is
often more natural to study a wider class of objects: polyhedra. This will be of
particular importance in Chapter 4, as well as other chapters, when we discuss linear
programming.

32 3 Polytopes and Polyhedra

Definition 3.35 A set P ⊆R
n is called a polyhedron if it can be represented as the

intersection of a finite number of closed affine half-spaces.

Thus, a polytope is a bounded polyhedron. In general we cannot describe a poly-
hedron as the convex hull of a finite number of points. The most basic example
of this is a single half-space. Nevertheless, the differences between polytopes and
unbounded polyhedra are manageable.

To do this we distinguish between two kinds of unbounded polyhedra: A poly-
hedron P either contains an affine line or it does not. In the latter case we call
P pointed. First assume that P = H+1 ∩ · · · ∩ H+k is pointed. Then n ≤ k and
H1 ∩ · · · ∩Hk is either empty or contains exactly one point. Without loss of gener-
ality we may assume that the first n hyperplanes intersect in a point, z. If H+i has

homogeneous coordinates [h(i)
0 : · · · : h(i)

n]+ this means that

z= [h(1)
0 : · · · : h(1)

n

]∩ · · · ∩ [h(n)
0 : · · · : h(n)

n

]
.

The point z may or may not be contained in P . To get a clearer image of P we apply
an affine transformation to P which transforms each hyperplane Hi to the coordi-
nate hyperplane Ei = [0 : · · · : 0 : 1 : 0 : · · · : 0] = {x ∈Rn : xi = 0} for 1≤ i ≤ n. In
this way, z will automatically be mapped to the origin. The affine transformation de-
scribed above can be represented most conveniently by the (n+ 1)× (n+ 1)-matrix

T =

⎛
⎜⎜⎜⎝

1 0 · · · 0
h

(1)
0 h

(1)
1 . . . h

(1)
n

...
...

. . .
...

h
(n)
0 h

(n)
1 . . . h

(n)
n

⎞
⎟⎟⎟⎠ ,

which operates on the left, as usual. That T indeed has all the properties required
is a consequence of Exercise 2.17. By our choice of coordinates, E1, . . . ,En are
oriented so that E+1 ∩ · · · ∩E+n is the positive orthant. Hence the transformed poly-
hedron [T]P is contained in the positive orthant. Now consider a further projective
transformation, defined by the non-negative matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The map [B] is not an affine transformation. It maps the ideal hyperplane [1 : 0 :
· · · : 0] to the projective hyperplane [1 : −1 : · · · : −1] so that the coordinate hyper-
planes stay fixed. Furthermore the image of the positive orthant under the map [B]
is the n-simplex

E+1 ∩ · · · ∩E+n ∩ [1 : −1 : · · · : −1]+.

3.4 Polyhedra 33

In particular, the image [BT]P is a bounded polyhedron, i.e., a polytope. We have
now proved the following theorem.

Theorem 3.36 Every pointed polyhedron is projectively equivalent to a polytope.

Pointed polyhedra can be imagined as polytopes with a specific proper face that
has been moved to the ideal hyperplane. For an example computation, see Sec-
tion 3.6.3 below.

Note that the image of a polyhedron under a projective transformation is not
necessarily a polyhedron. However, the following case, which is most relevant for
us, does not have this problem.

Exercise 3.37 Let P ⊆ R
n
≥0 be a polyhedron in the positive orthant and [A] the

projective transformation to a matrix A ∈ GLn+1 R with non-negative coefficients.
Show that the image [A]P is again a polyhedron.

We still need to consider the case where P is not pointed. In this case we choose
an affine subspace A of R

n which is contained in P and which is maximal with
respect to dimension. The linear subspace L of Rn which is parallel to A is called the
lineality space of P . Let p be an arbitrary point of P and A′ be the affine orthogonal
complement of A that contains p. The intersection P ∩ A′ is a polyhedron which
contains no affine line and is therefore pointed.

Definition 3.38 For X,Y ⊆R
n, the Minkowski sum of X and Y is defined as

x + y = {x + y : x ∈X, y ∈ Y }.
The Minkowski sum is called direct if x + y = v +w with x, v ∈ X and y,w ∈ Y

implies x = v and y =w.

Using this notation, the lineality space, as defined above, gives us a direct
Minkowski sum P = (P ∩A′)+L, establishing the following lemma.

Lemma 3.39 Every polyhedron can be expressed as the direct Minkowski sum of a
pointed polyhedron and a linear subspace.

In this decomposition it is possible that the pointed polyhedron or the lineality
space is just a single point. In those cases the decomposition as a Minkowski sum is
trivial.

In summary, we can say that statements about polyhedra can be traced back to
statements about polytopes. As an example of this consider the generalization of
Theorem 3.8 which is discussed in Exercise 3.41. However, first consider two further
definitions.

Definition 3.40 Let A ⊆ R
n. A positive combination of A is a linear combination∑m

i=1 λ(i)a(i) with a(i) ∈A and λ(i) ≥ 0 for all i. The set of all positive combinations
of A is called the positive hull of A, which we denote by posA.

34 3 Polytopes and Polyhedra

Fig. 3.9 The positive hull of
a finite point set

The positive hull of a set A is a convex cone in the sense that posA is convex and
that a + b and λa are contained in posA for a, b ∈ posA and λ ≥ 0 (see Fig. 3.9).
In a convex cone K we call a half-line x+R≥0y ⊆ ∂K with x ∈K and y ∈Rn \ {0}
a ray of K .

Exercise 3.41 Every polyhedron P ⊆R
n can be expressed as a Minkowski sum

P = convV + posR

for finite sets V and R.

Exercise 3.42 Show that the cone posR in Exercise 3.41 is uniquely determined. Is
the polytope convV also unique, in general?

The cone posR in the preceding exercises is called the recession cone of the
polyhedron P .

Exercise 3.43 The product{
(p, q) ∈Rn+n′ : p ∈ P, q ∈Q

}
of two polyhedra P ⊆R

n and Q⊆R
n′ is a polyhedron.

3.5 The Combinatorics of Polytopes

As mentioned in Chapter 1, computational problems often require the transforma-
tion from a V-representation to an H-representation and vice versa. Before we study
explicit algorithms for this task in Chapter 5, it is necessary to improve our under-
standing of the combinatorial structure of polytopes.

To be able to discuss the complexity of an algorithm it is necessary to first deter-
mine how large the output of an algorithm may be in relation to its input. For convex-
hull-algorithms, i.e., methods to compute the facets of a convex hull of a given point
set, we have to answer the question of how many facets an n-dimensional polytope
with m vertices may have. The reverse question, how many vertices an n-polytope
with m facets can have, is equivalent by polarization. As before, let fk(P) denote
the number of k-dimensional faces of an n-polytope P for−1≤ k ≤ n. In particular
we have f−1(P)= fn(P)= 1.

The Upper-bound Theorem, a fundamental result in polytope theory, states that
the cyclic polytopes from Definition 3.2 are extremal in the following sense. Let

3.5 The Combinatorics of Polytopes 35

Zn(m) denote a cyclic polytope in R
n formed by the convex hull of m points on

the moment curve. This notation purposefully neglects which m points define the
cyclic polytope. At the end of this section this simplification will be justified (in
Exercises 3.49–3.51) by the statement that two such cyclic polytopes are combina-
torially equivalent.

Theorem 3.44 (Upper-bound Theorem, McMullen 1970) An n-dimensional poly-
tope with m vertices has at most as many k-faces as a cyclic polytope Zn(m) for all
k ∈ {−1, . . . , n}.

In Exercises 3.49–3.51 we will compute the number of facets of cyclic polytopes.
This yields the following explicit upper bound.

Corollary 3.45 The number of facets of an n-dimensional polytope with m vertices
is bounded by ⎧⎨

⎩
m

m− n
2

(m− n
2

m−n

)
if n is even,

2
(m− n+1

2
m−n

)
if n is odd.

When we switch to the dual picture we obtain the same upper bound for the
number of vertices of an n-polytope with m facets.

We will not fully prove Theorem 3.44 in this section. Instead we give a proof for
an upper bound which has the right order of magnitude for the number of facets.

Theorem 3.46 An n-polytope with m vertices has at most 2
(

m
�n/2�

)
facets and in

total not more than 2n+1
(

m
�n/2�

)
faces. For fixed n, both numbers have the same

order of magnitude O(m�n/2�).

We will prove this statement first for simplicial polytopes and then we deduce
the non-simplicial case as a corollary.

Lemma 3.47 For a simplicial n-polytope P we have:

(a) (n− k)fk(P)≤ (n
k+1

)
fn−1(P) for k ∈ {−1, . . . , n};

(b) nf0(P)+ (n− 1)f1(P)+ · · · + 2fn−2(P)≤ (2n − 2)fn−1(P);
(c) fn−1(P)≤ 2f�n/2�−1(P).

Proof For the first statement we count the number of k-faces that are incident to a
given facet of P and vice versa. By our assumption every facet is an (n−1)-simplex
which contains exactly

(
n

k+1

)
k-faces. On the other hand we have that the face figure

of a k-face is an (n − k − 1)-polytope that has at least n − k facets. This implies
the first statement. The second statement follows from the first by summation over
k from 0 to n− 2.

For the third statement, we consider the dual polytope P ′ which is by Corol-
lary 3.33 simple. We have to show that f0(P

′)≤ 2f�n/2�(P ′).

36 3 Polytopes and Polyhedra

Now we will limit the number of vertices of P ′ with respect to the number of
�n/2�-faces. After an affine transformation we can assume without loss of generality
that no two edges of P ′ have the same xn-coordinate. In the following we imagine
that the n-coordinate is “pointing upwards”.

Consider a vertex v and the n edges incident with v. Then there are at least
�n/2� edges that point downwards or at least �n/2� edges that point upwards. In
the first case we have that every �n/2�-tuple of upward pointing edges determines
a �n/2�-face for which v is the lowest vertex. In the second case we have that each
�n/2�-tuple of downward pointing edges determines a �n/2�-face for which v is the
highest vertex. Since the lowest and highest vertex for each face are unique, there
are at most twice as many vertices as there are �n/2�-faces. �

Lemma 3.48 For each n-polytope P there exists an n-dimensional simplicial poly-
tope Q with the same number of vertices as P such that fk(Q) ≥ fk(P) for
1≤ k ≤ n.

Proof We can assume that P ⊆R
n. Our goal is to obtain the polytope Q from P by

slightly moving all the vertices.
For the perturbation of one vertex v we employ the following operation. Pick an

affine hyperplane H which strictly separates v from all the other vertices of P . We
may orient H so that H−◦ contains v. Now choose a point v′ ∈ intP ∩H−◦ which is
not contained in a hyperplane spanned by any n+ 1 vertices of P . Replacing v by
v′ we obtain the polytope

P ′ = conv
({w :w vertex of P distinct from v} ∪ {v′}),

which is contained in P . We want to show that P ′ has at least as many faces of each
dimension as P . To this end we will describe an injective map ι from the faces of P

to the faces of P ′.
Let F be a proper face of P and let A be an affine hyperplane supporting P with

A ∩ P = F . Notice that, as P contains P ′, the hyperplane A does not separate P ′.
If F does not contain the vertex v then we set ι(F)=A∩P ′ =A∩P = F , and this
is a face of P ′.

It remains to consider the case when F contains v. If F is a simplex, then

ι(F)= conv
({w :w vertex of F distinct from v} ∪ {v′})

is a face of P ′. We may then assume that F is not a simplex. As v′ is not contained
in F in this case it follows that ι(F)=A∩P ′ is a face of P ′ of the same dimension
as F . This yields a dimension-preserving map ι from the face lattice of P to the face
lattice of P ′. It is easy to see that ι is injective.

To construct the polytope Q we pick a linear ordering v(1), . . . , v(m) of the ver-
tices of P . Inductively perturbing the vertices in this order gives a sequence of n-
dimensional polytopes P (1), . . . ,P (m) all of which have precisely m vertices. Set-
ting P (0) = P and Q= P (m) we have

fk(P)≤ fk

(
P (i)

)≤ fk(Q)

3.5 The Combinatorics of Polytopes 37

for 1 ≤ i ≤m and 1≤ k ≤ n. Moreover, our procedure guarantees that the vertices
of Q are in general position and therefore Q is simplicial. �

Proof of Theorem 3.46 By Lemma 3.48 it suffices to consider simplicial poly-
topes P . Since the number of (�n/2� − 1)-faces clearly satisfies

f�n/2�−1(P)≤
(

m

�n/2�
)

,

Lemma 3.47c implies

fn−1(P)≤ 2

(
m

�n/2�
)

and using Lemma 3.47b we obtain

f0(P)+ f1(P)+ · · · + fn(P)≤ 2n+1
(

m

�n/2�
)

. �

To conclude this section we will study the cyclic polytopes introduced in Defini-
tion 3.2. As mentioned in Theorem 3.44, these polytopes maximize the f -vector of
all polytopes.

Exercise 3.49 Show that each set of n points on the moment curve in R
n are affinely

independent. This implies that cyclic polytopes are simplicial.

As a result of the following exercise (and Exercise 3.55) we know that two cyclic
polytopes of the same dimension and the same number of vertices are combinatori-
ally equivalent. This justifies the notation Zn(m).

Exercise 3.50 (Gale Evenness Condition) Let V be the vertex set of a cyclic
polytope in R

n with the induced order ≺ with respect to the moment curve, i.e.,
x(τ1)≺ x(τ2) if and only if τ1 < τ2. Let U = {v(1), . . . , v(n)} ⊆ V be an n-tuple of
vertices of P , where v(1) ≺ v(2) ≺ · · · ≺ v(n). Show that convU is a facet of P if
and only if for every two vertices u,v ∈ V \U we have that the number of vertices
v(i) ∈U with u≺ v(i) ≺ v is even.

Exercise 3.51 Show, using the evenness criterion from the previous exercise, that
the following holds for the number fn,m of facets of a cyclic polytope Zn(m):

fn,m =
⎧⎨
⎩

m
m− n

2

(m− n
2

m−n

)
if n is even,

2
(m− n+1

2
m−n

)
if n is odd.

(3.2)

Exercise 3.52 Compute the group of combinatorial automorphisms of each cyclic
polytope.

38 3 Polytopes and Polyhedra

In the remainder of this section we will discuss the relationship between the
number of faces of varying dimensions of polytopes. These relations are essential
for a deeper understanding of the combinatorics of polytopes (such as the proof of
the exact statement of the Upper-bound Theorem).

The entries of the f -vector of a polytope are not independent of each other. This
is easy to see for simple n-polytopes. Here, every vertex is incident with exactly
n edges and conversely, every edge is incident with exactly two vertices. This im-
plies 2f1 = nf0. Since f1 is an even number, this implies that every simple polytope
of odd dimension has an even number of vertices. In the dual picture this means
that each simplicial polytope of odd dimension has an even number of facets. The-
orem 3.54 sharpens this statement. First we look at a famous result that holds for
arbitrary polytopes.

Theorem 3.53 (Euler’s formula) The f -vector of a non-empty polytope P of di-
mension n satisfies the following equation

n∑
k=−1

(−1)kfk(P)= 0.

Euler’s formula implies that for two-dimensional polytopes the number of ver-
tices and edges in a polygon is the same.

For three-dimensional polytopes we obtain the classical formula for the Euler
characteristic:

f0(P)− f1(P)+ f2(P)= f−1(P)+ f3(P)= 2. (3.3)

Proof We prove Euler’s formula by induction over the dimension n of the polytope.
For n= 1 each polytope has exactly two proper faces, i.e., its vertices, such that

1∑
k=−1

(−1)kfk(P)= 1− 2+ 1= 0.

So let P be an n-polytope and let m= f0(P) be the number of vertices of P . After a
suitable affine transformation we can assume without loss of generality that no two
vertices have the same xn-coordinates. Let v(1), . . . , v(m) be the vertex set of P , or-
dered increasingly by their xn-coordinate. Furthermore, let H1, . . . ,H2m−1 be hor-
izontal (i.e., orthogonal to the xn-axis) affine hyperplanes such that v(i) ∈ H2i−1,
1 ≤ i ≤ m, and such that v(i) is the only vertex that is located between H2i−2
and H2i . For a face F of P we define

χj (F)=
{

1 if Hj ∩ relintF = ∅,
0 otherwise

for 1≤ j ≤ 2m− 1.

3.5 The Combinatorics of Polytopes 39

Now we fix a face F and denote by v(l) the vertex with minimal xn-coordinate.
Similarly v(u) is the vertex with maximal xn-coordinate. The horizontal hyperplanes
that intersect the interior of F lie strictly between the hyperplanes H2l−1 and H2u−1.
If dimF ≥ 1 then we have l = u and the number of hyperplanes with even index that
intersect relintF exceeds the number of hyperplanes with odd index that intersect
relintF by one. That is,

2m−2∑
j=2

(−1)jχj (F)= 1.

Summing this equation over the set Fk(P) of k-faces of P yields

fk(P)=
∑

F∈Fk(P)

2m−2∑
j=2

(−1)jχj (F).

The alternating sum over all k ≥ 1 yields

n∑
k=1

(−1)kfk(P)=
2m−2∑
j=2

(−1)j
n∑

k=1

(−1)k
∑

F∈Fk(P)

χj (F). (3.4)

For 2 ≤ j ≤ 2m− 2, Pj := P ∩Hj has dimension n− 1, so that by the induction
hypothesis we have

n−1∑
k=0

(−1)kfk(Pj)= 1. (3.5)

We distinguish between two cases:

j even: Each (k− 1)-face of Pj is the intersection of a k-face of P with the hyper-
plane Hj such that

fk−1(Pj)=
∑

F∈Fk(P)

χj (F), for 1≤ k ≤ n.

Substituting this into (3.5) yields

n∑
k=1

(−1)k−1
∑

F∈Fk(P)

χj (F)= 1. (3.6)

j odd: Each (k − 1)-face of Pj is the intersection of a k-face of P with Hj , with
the exception of the vertex v((j+1)/2) which is contained in Hj . We therefore have

f0(Pj)= 1+
∑

F∈F1(P)

χj (F),

40 3 Polytopes and Polyhedra

fk−1(Pj)=
∑

F∈Fk(P)

χj (F), 2≤ k ≤ n.

In this case, substituting into (3.5) yields

n∑
k=1

(−1)k−1
∑

F∈Fk(P)

χj (F)= 0. (3.7)

Multiplying (3.6) and (3.7) by (−1)j+1 and substituting into (3.4) yields

n∑
k=−1

(−1)kfk(P)=−1+m+
n∑

k=1

(−1)kfk(P)

=−1+m+ (m− 1) · (−1)+ (m− 2) · 0= 0. �

From this we can deduce, with a clever summation, a previously mentioned, far-
reaching generalization of the relation 2f1 = nf0 for simple polytopes. For the proof
we refer to Ziegler [99, §8.3].

Theorem 3.54 (Dehn–Sommerville equations) The f -vector of a simple n-
polytope P satisfies the linear equations

k∑
j=0

(−1)j
(

n− j

n− k

)
fj (P)= fk(P), for k ∈ {0, . . . , n}.

Through duality we obtain a corresponding statement for simplicial polytopes.

3.6 Inspection Using polymake

We want to study some concrete examples of polytopes, most of the characteristics
of which can be obtained using the results discussed above. Here, and in the follow-
ing, we use the software polymake, which is briefly introduced in Appendix D.1.
The shell-based interface uses a dialect of Perl.

3.6.1 Cyclic Polytopes

We study cyclic 4-polytopes Z4(7) with 7 vertices. The polymake function
cyclic generates cyclic polytopes which can then be further examined. Each line
starting with “polytope >” contains one command.

3.6 Inspection Using polymake 41

polytope > $Z_4_7 = cyclic(4,7);

polytope > print $Z_4_7->VERTICES;
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
1 6 36 216 1296

polytope > print $Z_4_7->DIM;
4

polytope > print $Z_4_7->F_VECTOR;
7 21 28 14

polytope > print dense($Z_4_7->VERTICES_IN_FACETS);
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 0 1 1 1 1 0
0 1 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 1
1 0 1 1 0 0 1
1 0 0 1 1 0 1
0 0 0 1 1 1 1
1 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 1 0 0 0 1 1

VERTICES, DIM, F_VECTOR and VERTICES_IN_FACETS are examples of
properties of a polymake object. Each line of the property VERTICES contains
the oriented homogeneous coordinates of a vertex. The vertices are implicitly enu-
merated, starting with 0, but the order is not relevant here. The output of VER-
TICES_IN_FACETS refers to this enumeration: Every line of the output matrix
corresponds to a facet and every column to a vertex, where the order of the columns
corresponds to the order of the vertices in the VERTICES section. A 1 at position
(i, j) indicates that the i-th facet is incident with the j -th vertex. If the dense()
command is omitted in the polymake-command line, we get the entire list of ver-
tices for each facet.

In the dense output of VERTICES_IN_FACETS we can immediately verify
Gale’s evenness criterion from Exercise 3.50: In each line we have an even number
of 1s between two 0s. The matrix with coefficients in {0,1} coded in the property
VERTICES_IN_FACETS is called the incidence matrix with respect to the given
order of vertices and facets.

42 3 Polytopes and Polyhedra

Fig. 3.10 The convex hulls of 8, 100 and 1000 random points on S
2

The remaining two commands print the dimension and the f -vector of Z4(7). In
particular, we see that this polytope has seven vertices, 21 edges, 28 ridges and 14
facets.

The homogeneous coordinates of the facets can be obtained using the command

polytope > print $Z_4_7->FACETS;

in the same order as for the property VERTICES_IN_FACETS. The output (which
is suppressed here) looks similar to that in Section 5.4.

3.6.2 Random Polytopes

The function rand_sphere produces n-polytopes as convex hulls of random
points selected from a uniform distribution on the unit sphere S

n−1. By Exer-
cise 3.20 these points are almost certainly in general position so that the convex
hull is simplicial.

polytope > $R_3_8 = rand_sphere(3,8);
polytope > print $R_3_8->SIMPLICIAL;
1
polytope > print $R_3_8->F_VECTOR;
8 18 12

By the Dehn–Sommerville equations we know that the complete f -vector of a sim-
plicial 3-polytope is determined by the number of vertices. We have f2 = 2f0 − 4
and f1 = f0 + f2 − 2= 3f0 − 6. Figure 3.10 depicts some random polytopes.

3.6.3 Projective Transformations

We now want to show how to use polymake to projectively transform an un-
bounded but pointed polyhedron into a polytope. This is an example of the proce-
dure described in Theorem 3.36. Let us begin by defining an unbounded polyhedron

3.6 Inspection Using polymake 43

as the Minkowski sum of a polytope (which is the convex hull of eight points) and
one infinite ray.

polytope > $P=new Polytope(POINTS=>
[[0,0,0,1],
[1,0,0,0],[1,3,0,0],[1,0,3,0],[1,3,3,0],
[1,1,1,-1],[1,1,2,-1],[1,2,1,-1],[1,2,2,-1]]);

Again we use homogeneous coordinates, and the unique ray is represented by the
vector (0,0,0,1)T listed first. It is easy to verify that $P satisfies our conditions.
polytope > print $P->BOUNDED, " ", $P->POINTED;
0 1
The first step is to set up an affine transformation which sends our polyhedron into
the positive orthant. To this end we list which facet is incident with which vertex.

polytope > print rows_numbered($P->FACETS_THRU_VERTICES);
0:1 2 5 6
1:0 1 2 3
2:0 1 6 8
3:2 3 5 7
4:5 6 7 8
5:0 3 4
6:3 4 7
7:0 4 8
8:4 7 8

In our input above the POINTS defining $P were, in fact, a non-redundant descrip-
tion. Hence the row numbers correspond to our input. For instance:

polytope > print $P->VERTICES->[5];
1 1 1 -1

We see that the facets numbered 0, 3 and 4 are incident with the vertex numbered 5.
Our polyhedron is full-dimensional and hence those three facets must have linearly
independent facet normal vectors. Therefore we can use vertex number 5 as our
point z in the construction described in Section 3.4. In this way we form the matrix
T as follows.

polytope > $T=new Vector([1,0,0,0])/$P
->FACETS->minor([0,3,4],All);

polytope > print $T;
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1

Notice that the operator/concatenates matrices row-wise. Similarly, the matrix B

can be built from standard constructions using row and column concatenations, the
latter being expressed via |.

44 3 Polytopes and Polyhedra

polytope > $B=ones_vector(4)/(zero_vector(3)|unit_matrix(3));
polytope > print $B;
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

To transform our polytope we have to take into account that polymake uses row
vectors to represent the points, and thus transformations operate on the right. We
can use the matrices constructed above if we transpose.

polytope > $Q=transform($P,transpose($B*$T));
polytope > print $Q->BOUNDED;
1

The vertices of the transformed polytope $Q are as follows.

polytope > print rows_numbered($Q->VERTICES);
0:1 1/3 1/3 1/3
1:1 0 0 1/2
2:1 0 3/5 1/5
3:1 3/5 0 1/5
4:1 3/8 3/8 1/8
5:1 0 0 0
6:1 1/2 0 0
7:1 0 1/2 0
8:1 1/3 1/3 0

Observe that the vertex numbered 5, which is the image of the point z under the
transformation, is the origin. All the vertices are contained in the positive orthant.

3.7 Exercises

Exercise 3.55 Show that two polytopes are combinatorially equivalent if and only
if there exists an ordering of their vertices and facets such that their corresponding
incidence matrices are equal.

A polytope is called cubical if all of its proper faces are combinatorially equiv-
alent to cubes. For cubical polytopes there is a statement which is analogous to
Lemma 3.47. This is an observation of Gil Kalai.

Exercise 3.56 Show that the following inequality holds for the f -vector of a cubical
polytope

f1 + 2f2 + 22f3 + · · · + 2n−2fn−1 ≤
(

f0

2

)
.

Exercise 3.57 Show that, given an arbitrary full-dimensional polyhedron P ⊆ R
n

with outer description P =⋂m
i=1 H+i , there exists a family of indices i0, i1, . . . , in

3.8 Remarks 45

such that Q = H+i0 ∩ · · · ∩ H+in is projectively equivalent to an n-simplex. If we
additionally assume that P is a polytope, can we always choose the hyperplanes in
such a way that Q is also a polytope?

Exercise 3.58 Let π :Rn+1→R
n be the linear projection to the first n coordinates.

Show that the image of a polytope under π is again a polytope.

Exercise 3.59 Let P be an n-polytope. Show that there exists for every k-face G of
P a family of facets F1, . . . ,Fn−k such that

G1 �G2 � · · ·� Gn−k =G

holds for Gi := F1 ∩ · · · ∩ Fi .

Exercise 3.60 The Minkowski-sum [p(1), q(1)] + · · · + [p(k), q(k)] of a finite num-
ber of line segments with p(i), q(i) ∈ R

n is a zonotope. Show that the zonotopes
generated by k segments are exactly the images of the standard cube [−1,1]k under
affine maps.

Exercise 3.61 Which among the polyhedra in the following list are projectively
equivalent?

(a) conv{(0,0,0)T } + pos{(1,0,0)T , (0,1,0)T , (0,0,1)T }
(b) conv{(0,0,0)T , (1,0,0)T , (0,1,0)T } + pos{(1,1,1)T }
(c) conv{(1,0,0)T , (0,1,0)T , (0,0,1)T , (a, b, c)T } for a, b, c arbitrary real num-

bers (i.e., this is an infinite set of polyhedra)
(d) conv{(1,0,0)T , (0,1,0)T , (0,0,1)T , (2,1,1)T , (1,2,1)T , (1,1,2)T }

3.8 Remarks

The content of this chapter forms part of the standard material for polytopes and
polyhedra, see the monographs of Boissonnat and Yvinec [15], Brøndsted [16],
Grünbaum [56] and Ziegler [99]. The Upper-bound Theorem was proved by Mc-
Mullen [78]. Further proofs can be found in the books of Mulmuley [80] and Ziegler
[99]. As a general reference we recommend the Handbook of Discrete and Compu-
tational Geometry [49].

The term polyhedron is not always used in the same way as we have defined it
in this book. In particular topologists often use this term to describe a simplicial or
polyhedral complex embedded in R

n; it may also describe a triangulated manifold.
The set of vertices and edges of a 3-dimensional polytope can be interpreted

as the set of vertices and edges of a planar graph on a sphere. Hence (3.3) is a
special case of Euler’s formula for planar graphs, see [2, Chapter 11]. In fact, Euler’s
formula generalizes to cell complexes. We will see a glimpse of this in Section 13.1
at the very end of this book.

46 3 Polytopes and Polyhedra

Concerning the graph Γ (P) of an n-polytope P introduced in Exercise 3.23,
Warren M. Hirsch conjectured in 1957 that any two vertices of P can be connected
by a path in Γ (P) of at most m− n edges, where m is the number of facets. This
famous conjecture, the Hirsch conjecture, was disproved by Santos in 2010 [90].

Chapter 4
Linear Programming

Many algorithms in computational geometry are based on methods from linear pro-
gramming. The task of linear programming is to maximize or minimize a linear
objective function on a polyhedron P which is given by inequalities. If P is non-
empty and bounded, we will see that the optimal value is always attained at a vertex
of P .

As in most textbooks on linear programming, the algorithms we present operate
on matrices and their rows and columns. These matrices correspond directly to data
structures which can be used to implement the algorithms. To strengthen our under-
standing of the geometric setting, we will reformulate our methods in the language
of polytope theory.

4.1 The Task

In the following, for two vectors x, y ∈ Rn, let x ≤ y denote the component-wise
inequality relation. Furthermore, let (Rn)∗ denote the dual space to R

n, i.e., the
vector space of all linear mappings Rn→R. We study linear programs, abbreviated
LP, of the form

max{cx :Ax ≤ b} (4.1)

for a given m× n-matrix A and vectors b ∈Rm and c ∈ (Rn)∗. Here, the right hand
side b of the constraints is a column vector and the objective function c can be
identified with a row vector.

The polyhedron

P(A,b) := {x ∈Rn :Ax ≤ b
}

is closed since it is the intersection of closed half-spaces. The maximum is therefore
attained if P(A,b) is non-empty and the set {cx :Ax ≤ b} is bounded above.

A feasible solution of the linear program (4.1) is a point x ∈ P(A,b). A feasible
solution at which the objective function c attains the maximum is called an optimal
solution. An optimal solution is in general not unique.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_4,
© Springer-Verlag London 2013

47

http://dx.doi.org/10.1007/978-1-4471-4817-3_4

48 4 Linear Programming

Fig. 4.1 A linear program in dimension 2

We formulate the linear programming problem stated at the beginning of this
chapter as follows.

Input: A matrix A ∈Rm×n and vectors b ∈Rm, c ∈ (Rn)∗.
Output: Either a vector x ∈ Rn, such that Ax ≤ b and cx is maximized, or a

statement declaring if P(A,b) is empty or c is not bounded above on
P(A,b).

In the following we always assume that c = 0. Otherwise, the linear programming
problem reduces to a pure feasibility problem, i.e., finding an arbitrary feasible
point. We will return to the linear feasibility problem at the end of this chapter.

Exercise 4.1 Show that the set of all optimal solutions of max{cx : Ax ≤ b} is
a face of P(A,b). Which conditions guarantee that the optimal solutions form a
proper face?

Example 4.2 Maximizing the linear objective function (1,1)x for x ∈R2 such that
x1 + 5x2 ≤ 20, −2x1 + x2 ≤−10, x ≥ 0 can be written in normal form (4.1) as

max(1,1)x⎛
⎜⎜⎝

1 5
−2 1
−1 0
0 −1

⎞
⎟⎟⎠x ≤

⎛
⎜⎜⎝

20
−10

0
0

⎞
⎟⎟⎠ .

Figure 4.1 depicts the feasible region of this linear program. The maximal value of
the objective function is 100/11 and is attained at the point (70/11,30/11). The
objective function c is constant on each line satisfying the equation (1,1)x = α for
α ∈ R. Here, the optimal solution is unique. It is the intersection of P with the line
from the set of lines (1,1)x = α which has maximal α and still intersects P .

4.2 Duality 49

Before we study the solution of linear programs in general, we look at a particular
application that will be very useful to us later.

Example 4.3 Let

H+i =
[
h

(i)
0 : · · · : h(i)

n

]+ for 1≤ i ≤m

be affine half-spaces in R
n. We search for an interior point of the polyhedron P =⋂m

i=1 H+i , or alternatively verification that dimP < n, in which case the interior is
empty. To do this, we study the linear program

h
(1)
0 + h

(1)
1 x1 + · · · + h(1)

n xn ≥ ε,

...

h
(m)
0 + h

(m)
1 x1 + · · · + h(m)

n xn ≥ ε.

(4.2)

Clearly, we have that x = (x1, . . . , xn)
T is an interior point of P if and only if there

exists an ε > 0 such that (4.2) holds. Therefore, the question of the existence of
an interior point of the polyhedron P can be answered by maximizing ε under the
linear conditions (4.2). If the maximal ε is positive, we know that the corresponding
point x is an interior point and that dimP = n. If ε = 0 we have that P = ∅ and
dimP < n. If ε < 0 then P = ∅.

The unbounded case is also possible, i.e., there may exist an arbitrarily large
ε > 0 that satisfies the conditions. This can easily be avoided by introducing the
artificial constraint ε ≤ 1.

Exercise 4.4 Let P =⋂m
i=1 H+i be given in H-representation.

(a) Construct a linear program which enables you to describe an affine hyperplane
that contains P , or which enables you to determine that such a hyperplane does
not exist.

(b) Describe a method to compute the dimension of P .

Exercise 4.5 Let P =⋂m
i=1 H+i be given in H-representation. Describe a method

to compute the lineality space of P .

4.2 Duality

Using duality theory it is possible to characterize when a given point is an optimal
point of a linear program. To do this, we will first examine the geometry in greater
detail.

The feasible region of the linear program max{cx : Ax ≤ b} is the polyhedron
P := P(A,b)⊆R

n. By Exercise 4.1 we know that any optimal solution must be on
the boundary of P . Given an arbitrary point v on the boundary of the polytope P ,

50 4 Linear Programming

let (A′(v) | b′(v)) be the submatrix of (A | b) consisting of those rows which corre-
spond to inequalities that are satisfied by v as equalities; these are called active in v.
Since v lies on the boundary, there is at least one active inequality in v. Note that
∂P (A,b)= P(A,b) holds if dimP(A,b) < n.

The inactive inequalities are summarized in the matrix (A′′(v) | b′′(v)). Up to
reordering of rows we may assume that

(A | b)=
(

A′(v) | b′(v)

A′′(v) | b′′(v)

)

and

A′(v)v = b′(v), (4.3)

A′′(v)v < b′′(v), (4.4)

for all v ∈ ∂P . We will see in the following that for each optimal solution v of the
LP max{cx :Ax ≤ b} the point v is also an optimal solution of the LP

max
{
cx :A′(v)x ≤ b′(v)

}
.

The cone

N(v) := pos
{
a1(v), . . . , ak(v)

}⊆ (Rn
)∗

generated by the rows a1(v), . . . , ak(v) of the matrix A′(v) is called the outer nor-
mal cone in v.

Exercise 4.6 Show that for v ∈ ∂P the following statements are equivalent:

(a) The point v is a vertex of P .
(b) The matrix A′(v) of active conditions has full rank n.

If P is full-dimensional and v is a vertex of P , then the cone N(v) is pointed.

Example 4.7 The left hand picture in Fig. 4.2 shows the cone N(v) of outer normals
in a vertex v = 0 in a triangle given as the intersection of three half-spaces. The
boundary rays of the cone are perpendicular to the two lines incident with v. If v is
a non-zero point, we obtain the cone of outer normals as a translation of the depicted
cone.

The right hand picture shows the intersection of four half-spaces such that the
vertex v satisfies three of the four inequalities as an equality. The cone N(v) is the
same as before.

Lemma 4.8 Let v be a boundary point of the polyhedron P = {x ∈ Rn : Ax ≤ b}.
Then

N(v)= {u ∈ (Rn
)∗ : ux ≤ 0 for all x ∈ P

(
A′(v),0

)}
.

4.2 Duality 51

Fig. 4.2 The cone N(v) of outer normals where the origin of the dual space (R2)∗ has been moved
to the point v of the original space R

2

Proof We denote the rows of A′(v) by a1, . . . , ak .
“⊆”: Let u ∈ N(v). Then there exist λ1, . . . , λk ≥ 0 with u =∑k

i=1 λiai . We
therefore have for every point x ∈ P(A′(v),0)= {x ∈Rn :A′(v)x ≤ 0}

ux =
k∑

i=1

λiaix ≤ 0.

“⊇”: Let u ∈N(v). By the separation theorem there exists a vector w ∈Rn with
uw > 0, but zw ≤ 0 for all z ∈ N(v). In particular, we infer that aiw ≤ 0 for all
1 ≤ i ≤ k, and thus A′(v)w ≤ 0. This implies w ∈ P(A′(v),0). Since uw > 0, we
have

u ∈ {y ∈ (Rn
)∗ : yx ≤ 0 for all x ∈ P

(
A′(v),0

)}
. �

Corollary 4.9 Let P = {x ∈ R
n : Ax ≤ b}, c ∈ (Rn)∗ \ {0} and v be a boundary

point of P . The point v is an optimal solution of the LP max{cx : x ∈ P } if and only
if c is contained in the cone N(v) of outer normals in v.

Proof The point v ∈ ∂P is optimal for the LP max{cx : x ∈ P } if and only if all
x ∈ P satisfy cx ≤ cv, i.e., c(x − v) ≤ 0. Thus, the previous lemma implies the
statement. �

In other words, a point v ∈ P is an optimal solution of the LP max{cx : Ax ≤ b}
if and only if the system of inequalities in the variables y = (y1, . . . , ym)

yA= c,

y ≥ 0
(4.5)

has a solution in (Rm)∗ for which only those components of y corresponding to
active conditions for v are non-zero. If we assume that v is a vertex of the poly-
hedron P , then by Exercise 4.6 the submatrix A′(v) is invertible. Furthermore,

52 4 Linear Programming

A′(v)v = b′(v). If y = (y′, y′′) denotes the decomposition of y with respect to the
decomposition of A into active and inactive conditions, then we obtain the solution
to (4.5) via

y′ = cA′(v)−1,

y′′ = 0.
(4.6)

Definition 4.10 Given the linear program max{cx :Ax ≤ b}, then

min yb

yA= c,

y ≥ 0
(4.7)

is the dual program. The original problem max{cx : Ax ≤ b} is also referred to as
the primal program. A feasible solution to the primal LP is said to be primal feasible
and the term dual feasible is analogously defined.

Theorem 4.11 (Weak Duality Theorem) If x is a primal feasible solution and y is
a dual feasible solution, then cx ≤ yb.

Proof For primal and dual feasible solutions x and y we have

cx = (yA)x = y(Ax)≤ yb. �

A pair (x, y) of feasible solutions of the dual LPs

max{cx :Ax ≤ b} and min{yb : yA= c, y ≥ 0} (4.8)

is called a primal-dual pair if the complementary slackness condition

y(b−Ax)= 0

is satisfied.

Exercise 4.12 Let (x, y) be a primal-dual pair. Show that x is an optimal point of
the primal LP and y is an optimal point of the dual LP.

Theorem 4.13 (Strong Duality Theorem) For a pair of dual linear programming
problems

max{cx :Ax ≤ b} and min{yb : yA= c, y ≥ 0}
exactly one of the following conditions holds:

(a) Both problems are feasible and the optimal values are the same.
(b) One of the problems is infeasible and the other one is unbounded.
(c) Both problems are infeasible.

4.3 The Simplex Algorithm 53

Proof We assume that the primal problem is feasible and bounded. Let v ∈ Rn be
an optimal point of the primal problem. Then by Corollary 4.9 there exists a vector
y = (y1, . . . , ym) such that

yA= c,

y ≥ 0,

and only components corresponding to the active conditions of v can be non-zero.
Thus, we have

cv = (yA)v = y(Av)= yb.

Now the weak duality theorem implies that the dual problem is bounded and that
the optimal values are equal.

The cases in which one of the problems is infeasible or unbounded are left as an
exercise for the reader. �

4.3 The Simplex Algorithm

The most famous algorithm for linear programming is the simplex algorithm
(Dantzig, 1947). Let the linear program be given as before in the form max{cx :
x ∈ P } with P = P(A,b) = {x ∈ Rn : Ax ≤ b}. We first assume that the polyhe-
dron is full-dimensional and pointed, and that one vertex of P (the “start vertex”) is
already known. In particular, P is non-empty. We will later show that these assump-
tions are justified.

The simplex algorithm relies on a simple geometric idea. First, we check if the
current vertex v of P is an optimal point. For this, the duality theory from the previ-
ous section will be very useful. If v is not an optimal point, we will compute those
edges starting at v with respect to which the objective function increases. In this
way, we either find a “better” vertex of P or an unbounded edge (see Fig. 4.3). This
method ends after finitely many steps, since P has only finitely many vertices.

Let v be a vertex of P . The equivalent conditions from Exercise 4.6 imply that
rankA′(v)= n.

Definition 4.14 A linearly independent subset of rows of A′(v) which spans the
row-space of A′(v) is called a basis for v with respect to A.

If P is a simple polytope and the rows of the matrix A consist of the unique
(up to scaling) outer facet normals of P , then the basis is uniquely determined for
every vertex v. Every basis of v defines a pointed cone with apex v that contains
the polyhedron P . This cone is projectively equivalent to a simplex, which can be
viewed as a local approximation of the polyhedron P in v. This is the reason why
the method is called the simplex algorithm.

54 4 Linear Programming

Fig. 4.3 A possible path of
the simplex algorithm in R

3.
The arrows on the edges
indicate the direction induced
by the objective function

Example 4.15 Let P be the polytope

P = {x ∈R3 : 0≤ xi ≤ 1 for 1≤ i ≤ 3, x1 + 2x2 + x3 ≤ 3
}

contained in the unit cube [0,1]3. The inequalities can be expressed in matrix form
as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.9)

(see Fig. 4.4). We write (4.9) as Ax ≤ b for short. The vertices v = (0,0,0)T and
w = (1,1,0)T satisfy

A′(v)=
⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ and A′(w)=

⎛
⎜⎜⎝

0 0 −1
1 0 0
0 1 0
1 2 1

⎞
⎟⎟⎠ .

The rows of A′(v) define the unique basis of v with respect to A and each set of
three rows of A′(w) is a basis of w.

We will now describe the main step of the simplex algorithm. In the following,
let v ∈Rn be a vertex of P and I be the set of row indices of a basis of v. We denote
by AI the submatrix of A induced by I and use the corresponding notation for the
vector b. In particular, in this notation we have b{i} = bi . By our assumption we have

4.3 The Simplex Algorithm 55

Fig. 4.4 The polytope P

contained in the cube [0,1]3

that AI is regular and that AIv = bI . Let ai denote the i-th row of the matrix A, i.e.,
ai = A{i}. Every edge of the approximating cone KI = {x ∈ Rn : AIx ≤ bI } is the
intersection of exactly n−1 facets of KI , i.e., every row i ∈ I defines a non-pointed
cone KI\{i} whose one dimensional lineality space contains an edge of KI .

Lemma 4.16 The set L = {x ∈ R
n : AI\{i}x = bI\{i}} is an affine line in R

n that
contains v. Furthermore, the column of−(AI)

−1 with index i is a directional vector
of L.

Proof The regularity of AI implies that L is a line and, clearly, the point v lies on L.
Let s be the column of −(AI)

−1 with index i. Then we have

AI\{i}s = 0 and ais =−1. (4.10)

Thus, s is a non-zero vector such that v+ s ∈ L. �

Now let s be the column of−(AI)
−1 with index i. Starting from the vertex v, we

could search for better solutions in the direction of s. The usefulness of this method
depends on whether the objective function increases in the direction of s, i.e., if
cs > 0. This can be determined via the dual program.

Lemma 4.17 Let y ∈ (Rm)∗ with yA= c and yj = 0 for all j ∈ I . Then cs > 0 if
and only if yi < 0.

Proof Let y denote such a dual feasible solution. Then the definition of the dual
program and (4.10) yield that

cs = yAs = yIAI sI =−yi. �

Now the idea is to walk from the vertex v in the direction of s on a suitable edge
of KI as long as we do not violate the feasibility conditions. When doing this two
cases can occur.

56 4 Linear Programming

Lemma 4.18

(a) If As ≤ 0 then v+ λs is feasible for all λ≥ 0.
(b) Otherwise, for

λs :=min
j

{
bj − ajv

aj s
: aj s > 0

}
(4.11)

the point v + λss is feasible and λs is maximal with this property.

Proof To show this we first examine an arbitrary row index j and the corresponding
condition ajv ≤ bj .

Claim We have

max
{
λ≥ 0 : v + λs ∈ {x ∈Rn : ajx ≤ bj }

}=
⎧⎨
⎩

bj−aj v

aj s
if aj s > 0,

∞ if aj s ≤ 0.

Since v is a feasible point, ajv ≤ bj . If aj s ≤ 0, then for all λ ≥ 0 the inequality
aj (v + λs) ≤ ajv ≤ bj holds. However, aj (v + λs) ≤ bj holds if and only if λ ≤
(bj − ajv)/(aj s).

To determine when v + λs violates the feasibility conditions of P , we test all
inequalities simultaneously and in this way obtain the statement of the lemma. �

Since the λs that was chosen in the case As ≤ 0 in Lemma 4.18 was maximal, we
infer that for λs > 0 one inequality that previously was not active becomes active at
the point v + λss.

Lemma 4.19 Let j be a row index of the matrix A with λs = (bj − ajv)/(aj s).
Then v′ := v + λss is a vertex of P and (I \ {i}) ∪ {j} is the index set of a basis
for v′.

Proof Let I ′ = (I \ {i}) ∪ {j}. We have to show that AI ′ is regular and that
AI ′v′ = bI ′ .

Since AI\{i}s = 0 and aj s > 0, aj does not lie in the row-space of the (n−1)-row
matrix AI\{i}. Thus AI ′ is regular.

From AI\{i}s = 0 and λs = (bj − ajv)/(aj s) follows

AI\{i}(v + λss)=AI\{i}v = bI\{i}

and

aj (v + λss)= ajv+ aj s
bj − ajv

aj s
= bj .

Hence we have AI ′v′ = bI ′ . �

4.3 The Simplex Algorithm 57

Example 4.20 We again examine the polytope from Example 4.15 and the objective
function vector (0,0,1). The set I = {3,4,7} is the index set of a basis of the vertex
(1,1,0)T . For i = 3 we have for the line L from Lemma 4.16 that

L= {x ∈R3 : x1 = 1, x1 + 2x2 + x3 = 3
}
.

This implies

−(AI)
−1 =−(A{3,4,7})−1 =

⎛
⎝ 0 −1 0
− 1

2
1
2 − 1

2
1 0 0

⎞
⎠ ,

so that the column corresponding to i = 3 is s = (0,−1/2,1)T . Furthermore, the
equation λs = 1 holds, and the minimum in (4.11) is attained for the index j = 6.
The index set of the new basis is therefore I ′ = {4,6,7}, and the new vertex is
v′ = (1,1/2,1)T .

The λs that we defined in (4.11) could be zero. Only in the case λs > 0 will
we find a vertex for which, when we start at v and travel in the direction of s, the
objective function is improved. A vertex can have several bases, which can lead to
λs = 0.

Example 4.21 Consider the previously discussed example. When we start from the
basis of the vertex (1,1,0)T with index set {3,4,5} and choose i = 3, we obtain
s = (0,0,1)T . The objective function c increases in direction s, since cs = (0,0,1) ·
(0,0,1)T = 1. Due to the inequality x1 + 2x2 + x3 ≤ 1 that corresponds to the last
row of A, we have that λs = 0, which implies v′ = v. Hence, we did not make a real
gain. There has only been a so-called change of basis.

Algorithm 4.1 is a precursor of the simplex algorithm. If it terminates, it finds
either an optimal vertex, or shows that the LP is unbounded.

The existence of a basis in Step 1 follows, according to Exercise 4.6, from the
fact that in a vertex at least n (linear independent) inequalities have to be satisfied
as equalities. First, all active inequalities are determined. Then we can compute a
basis of the dual space (Rn)∗ using Gaussian elimination. Determining the vector y

in Step 2 can be performed using (4.6).

Theorem 4.22 If Algorithm 4.1 terminates, we have the following: If it yields v and
y in Step 4, then these vectors are optimal solutions to the dual LPs, and we have
cv = yb. If the algorithm yields s in Step 8, then cs > 0, and the LP is unbounded.

The case of an infeasible problem does not occur in this theorem since we as-
sumed that we are given a start vertex.

Proof In Step 2 of the algorithm we determine a feasible solution of the dual feasi-
bility space via (4.6). After that, we choose in Step 6 a search direction s according

58 4 Linear Programming

Algorithm 4.1: A precursor of the simplex algorithm

Input: A matrix A ∈Rm×n and vectors b ∈Rm, c ∈ (Rn)∗; a vertex v of
P = {x ∈Rn :Ax ≤ b}.

Output: An optimal vertex v of P (and dual vector y), or a vector s ∈Rn with
As ≤ 0 and cs > 0 (i.e., the LP is unbounded).

1 I← index set of a basis for v

2 Determine a y ∈ (Rm)∗ with yA= c and yi = 0 for all i ∈ I .
3 if y ≥ 0 then
4 return (v, y)

5 i← an index with yi < 0
6 s← column of −(AI)

−1 with index i, such that AI\{i}s = 0 and ais =−1
7 if As ≤ 0 then
8 return s

9 λs←min
j
{ bj−aj v

aj s
: aj s > 0} ; j← a row index that attains this minimum

10 I← (I \ {i})∪ {j}; v← v+ λss

11 goto Step 2

to Lemma 4.16. By Lemma 4.17 we have cs > 0, so the value of the objective
function is improved in this direction. We compute the maximal step-size λs using
Lemma 4.18 in Step 9 and after that we obtain, by Lemma 4.19, the new basis in
Step 10.

If the algorithm yields v and y in Step 4, then v and y form a primal-dual pair:
We have cv = (yA)v = y(Av)= yb, since the components of y that lie outside the
index set I are zero. The weak duality theorem implies that v and y are optimal.

If the algorithm terminates in Step 8, then the LP is unbounded, since in this case
we have cs > 0 and thus v + λs ∈ P for all λ≥ 0. �

If we choose at each step an arbitrary i with yi < 0 and an arbitrary j , then
it may happen that, in the case of vertices with a non-unique basis, the algorithm
becomes trapped in a cyclic repetition, and therefore does not terminate. With a
suitable choice of the indices i and j , we can be certain that a non-optimal vertex is
left after finitely many steps. The most famous rule of this kind (the “pivot rule”) is
the rule of Bland. In this rule we choose, in the case of multiple choices, the indices
i and j in Steps 5 and 9 to be minimal. Algorithm 4.2 describes the simplex method
with Bland’s pivot rule.

Theorem 4.23 The simplex algorithm terminates after at most
(
m
n

)
iterations and

the conclusions of Theorem 4.22 hold.

The proof uses only elementary facts but is somewhat tricky.

4.3 The Simplex Algorithm 59

Algorithm 4.2: Modifications for the precursor of the simplex Algorithm 4.1
using Bland’s pivot rule

5 i← minimal index such that yi < 0

9 λs←min
j

{ bj−aj v

aj s
: aj s > 0

}
; j← smallest row index that attains the

maximum

Proof Let I (k) and v(k) be the index set and the vertex v in the k-th iteration of the
simplex algorithm respectively. We denote the corresponding instances of the other
variables analogously.

If the algorithm does not terminate after
(
m
n

)
iterations, then there exists k < l

with I (k) = I (l) and therefore v(k) = v(l). Since the method always searches in an
increasing direction with respect to the objective function, cv does not decrease in
any iteration, and for a positive step-size λs in Step 9 it actually increases. Thus,
in the iterations k, k + 1, . . . , l − 1, we have that λs(k) = · · · = λs(l−1) = 0, which
implies v(k) = v(k+1) = · · · = v(l). Let h be the maximal index which is taken out
of a basis I in one of the iterations k, . . . , l − 1, and assume that this happens in
iteration p. Since I (k) = I (l), we know that the index h must have been added to I

in an iteration q ∈ {k, . . . , l − 1}. Hence, we obtain in particular that ahs
(q) > 0.

Since c = y(p)A, we have y(p)As(q) = cs(q) > 0. Hence, there exists an r ∈
{1, . . . ,m} such that y

(p)
r ars

(q) > 0, and thus in particular y
(p)
r = 0. By Step 2 of

the algorithm this implies r ∈ I (p), because all components of y(p) outside of I (p)

vanish.
Now consider the cases r > h and r ≤ h. In the case r > h, the index r will never

be taken out of the basis, and thus, in iteration q , we have ars
(q) = 0 due to Step 6

of the algorithm. This contradicts our definition of r .
In the case r ≤ h, Bland’s rule implies that in Step 5 of iteration p, we have

y
(p)
r < 0 if and only if r coincides with h. Furthermore, Bland’s rule implies that

in Step 9 of iteration q , we have ars
(q) > 0 if and only if r coincides with h. Both

in the case r = h and in the case r < h we therefore have y
(p)
r ars

(q) ≤ 0, which
contradicts y

(p)
r ars

(q) > 0.
We showed that no basis is attained multiple times and that

(
m
n

)
is an upper bound

for the number of possible bases. �

The identification of bases with the sets of row indices of the matrix A induces
an order on the bases that are visited. The bases which are visited during a run of
the simplex algorithm with Bland’s pivot rule are strictly increasing with respect to
this order.

There exist examples with n variables and 2n linear conditions (the “Klee–Minty
cube”) for which the simplex algorithm (with Bland’s pivot rule) needs exponen-
tially many iterations in n. This shows that the run-time of the simplex algorithm
with Bland’s pivot rule is not polynomially bounded in the dimension. There are

60 4 Linear Programming

many pivot rules which describe how to choose i and j ; however, whether there
exists a pivot rule that leads to a polynomial time algorithm is a very important open
problem.

4.4 Determining a Start Vertex

Thus far we have always assumed that our linear program is feasible and that we
already know a feasible vertex. We want to clarify the general case in the following.

We examine the linear program with non-negativity conditions:

max{cx :Ax ≤ b, x ≥ 0}. (4.12)

This is not a significant restriction, since every linear program of the form max{cx :
Ax ≤ b}, as in (4.1), can be transformed to the form (4.12) in the following way.
Every vector x ∈ Rn has a (in general not unique) representation of the form x =
x+−x− with x+, x− ∈Rn

≥0. We replace x by x+−x− and write the LP in the form

max (c,−c)

(
x+
x−
)

(A,−A)

(
x+
x−
)
≤ b,

x+, x− ≥ 0.

(4.13)

This linear program in 2n variables is feasible if and only if the original program
is feasible. In the feasible case, either both programs have the same optimal value
or they are both unbounded. Note, however, that (4.13) has an unbounded feasible
region whenever the feasible region of the original LP is non-empty.

We can therefore assume in the following that we are given an LP in the
form (4.12), where A is an m × n-matrix, b ∈ R

m and c ∈ (Rn)∗. With the nota-
tion I = {i ∈ {1, . . . ,m} : bi ≥ 0} and J = {j ∈ {1, . . . ,m} : bj < 0} we study the
auxiliary problem

min (1AJ)x + 1y

AIx ≤ bI ,

AJ x + y ≥ bJ ,

x, y ≥ 0,

(4.14)

where 1 denotes the all-ones vector. Setting k := |J |, the linear program (4.14) has
n+ k variables. Let P ′ ⊆R

n+k be the feasible region of (4.14).

Proposition 4.24 The origin is a vertex of P ′. The minimal value μ of the auxiliary
problem is finite and we have μ ≥ 1bJ . If μ > 1bJ , then (4.12) is infeasible. If
μ= 1bJ , then for each optimal vertex

(x∗
y∗
)

of the auxiliary problem the point x∗ is
a vertex of the feasible region of (4.12).

4.5 Inspection Using polymake 61

Proof The origin is contained in P ′ by definition. Since the non-negativity condi-
tions xi ≥ 0 and yi ≥ 0 are active in 0, we know that the origin is a vertex of P ′.

The objective function of the auxiliary problem is bounded below by 1bJ , i.e.,
μ ≥ 1bJ . Thus, for every feasible solution x of (4.12) the choice y := bJ − AJ x

yields an optimal solution
(x

y

)
of (4.14). This shows that the LP (4.12) is infeasible

for μ > 1bJ .
Now let μ = 1bJ and

(x∗
y∗
)

be an optimal vertex of (4.14). Since the objective
function minimizes the sum of the entries of the vector AJ x + y, we note AJ x∗ +
y∗ = bJ , and x∗ is therefore feasible for (4.12). By Exercise 4.6, we can pick a set
S of n+ k independent inequalities which are active in x∗.

Denote by SI the set of inequalities among AIx ≤ bI or among x ≥ 0 that are
contained in S. Denote by SJ the set of inequalities among AJ x ≤ bJ such that
the corresponding inequalities of AJ x + y ≤ bJ and of y ≥ 0 are both contained
in S. Note that any inequality from SI and any inequality from SJ provides an
active inequality in x∗ for the original problem (4.12). By the independence of the
inequalities in SI and SJ it therefore suffices to show |SI ∪ SJ | ≥ n. In order to see
this, observe that the definition of SJ implies |SI ∪ SJ | ≥ |S| − |SJ | ≥ |S| − k = n.
Thus we have found n independent active inequalities in x∗, which shows that x∗ is
a vertex of (4.12). �

The most important consequence of this proposition is that the simplex algorithm
can be used for the auxiliary problem, with start vertex 0, to decide if the original
problem is feasible. If it is feasible, this method yields a start vertex for the simplex
algorithm for the original LP (4.12).

Exercise 4.25 Apply the method for computing a start vertex to the linear program
from Example 4.2.

4.5 Inspection Using polymake

polymake can also be used to solve linear programs (via interfaces to the libraries
cddlib [43] and lrslib [6]). As an example we study here the auxiliary problem
for a 2-dimensional LP in the form (4.12).

Let

A=
(

1 1
−2 −1

)
, b=

(
2
−1

)
and c= (1,0).

We want to solve the LP

max{cx :Ax ≤ b, x ≥ 0}. (4.15)

The auxiliary problem (4.14) has the unknowns x1, x2 and y, since the vector b has
exactly one active component. Since an inequality of the form u0 +∑n

i=1 uixi ≥ 0

62 4 Linear Programming

is represented in polymake as the homogeneous vector (u0, . . . , un), we use the
following input:

polytope > $aux_constraints
= new Matrix([[2,-1,-1,0],[1,-2,-1,1],

[0,1,0,0],[0,0,1,0],[0,0,0,1]]);

Here, the first two inequalities in the matrix $aux_constraints correspond to
the first two rows of A. The last three inequalities are the non-negativity conditions
for x1, x2, y. The linear objective function is encoded into an object of type Lin-
earProgram which is then attached to the polyhedron defined by the constraint
matrix.

polytope > $aux_obj
= new LinearProgram(LINEAR_OBJECTIVE=>[0,-2,-1,1]);

polytope > $aux = new Polytope(INEQUALITIES=>$aux_constraints,
LP=>$aux_obj);

Everything that we want to know about this linear program is now a property of
the $aux object. Notice that, despite the name, objects of type Polytope may, in
fact, be unbounded polyhedra.

polytope > print $aux->LP->MINIMAL_VALUE;
-1
polytope > print $aux->LP->MINIMAL_VERTEX;
1 0 2 1

The minimal value is−1= 1bJ , which implies that the point
(0

2

)
is a feasible vertex

of the original problem, which turns out to be not optimal. Actually,
(2

0

)
is the

unique optimal solution of (4.15). If you are only interested in the solution of the
LP (4.15), you do not need to explicitly construct the auxiliary problem.

polytope > $A = new Matrix([[1,1],[-2,-1]]);
polytope > $b = new Vector([2,-1]);
polytope > $c = new Vector([0,1,0]);
polytope > $non_negative = new Matrix([[0,1,0],[0,0,1]]);
polytope > $my_LP

= new Polytope(INEQUALITIES=>($b|-$A)/$non_negative,
LP=>new LinearProgram(LINEAR_OBJECTIVE=>$c));

polytope > print $my_LP->LP->MAXIMAL_VALUE;
2
polytope > print $my_LP->LP->MAXIMAL_VERTEX;
1 2 0

To further analyze the geometry we can also check all of the vertices and list those
which are maximal with respect to the given objective function.

polytope > print rows_numbered($my_LP->VERTICES);
0:1 0 1
1:1 1/2 0
2:1 0 2
3:1 2 0

4.6 Exercises 63

polytope > print $my_LP->LP->MAXIMAL_FACE;
{3}

Here, the vertex with number 3 is the only optimal solution; to see to which point
this actually refers, above we listed the vertices in numerical order.

4.6 Exercises

Exercise 4.26 (Farkas’ lemma) Let A be an m×n-matrix and b ∈Rm. Then either
the system of inequalities

Ax = b, x ≥ 0
(
x ∈Rn

)
or the system of inequalities

AT z≥ 0, bT z < 0
(
z ∈Rm

)
has a solution.

[Hint: If the first system has no solution, then the set {y ∈ Rm : Ax = y for an
x ≥ 0} can be strictly separated from the vector b.]

Exercise 4.27 Construct different dual pairs of linear programming problems

max{cx :Ax ≤ b} and min{yb : yA= c, y ≥ 0}
with the following additional characteristics:

(a) the primal problem is unbounded and the dual problem is feasible;
(b) the primal problem is infeasible and the dual is unbounded;
(c) both problems are infeasible.

Exercise 4.28 Two V-polytopes in R
n,

P = conv
{
p(1), . . . , p(m)

}
and Q= conv

{
q(1), . . . , q(r)

}
,

are given. Formulate a linear program to determine if there is a separating hyper-
plane for P and Q. If it exists describe such a hyperplane.

An important special case of the previous exercise is the case when P =
conv{p(1), . . . , p(m)} is arbitrary and Q = {x} is just a point. A separating hy-
perplane exists in this case if and only if x is a vertex of conv(P ∪ {x}). In this
way we obtain an LP-based method to determine the vertices of a polytope in the
V-representation.

64 4 Linear Programming

4.7 Remarks

As mentioned above, it is unknown if there exists a suitable pivot rule that makes
the simplex algorithm a polynomial time algorithm. However, there exist numeri-
cally efficient variants of the basic algorithm introduced here that are well suited
for solving linear programs in real world applications. Most implementations work
with the representation max{cx : Ax = b, x ≥ 0}, instead of the normal form (4.1)
that we chose here.

There exist polynomial-time algorithms for solving linear programs: the ellipsoid
method (Khachiyan, 1979), which is not suitable for practical applications, as well
as interior point methods (Karmarkar, 1984). Currently, the interior point method
seems to be the simplex algorithm’s strongest competitor. Current research activity
in this area, as well as improving programming techniques, do not allow us to make
a final judgment on which algorithm for linear programming is the best from the
perspective of real world applications.

In contrast to this, the problem of determining an optimal integer point in a poly-
tope is NP-hard. In Section 10.6 we will introduce an algorithmic method that solves
certain integer linear programs.

Our presentation of linear programming is based on the books by Gritzmann [53]
and Korte and Vygen [72]. Further material can be found in the standard texts by
Chvátal [22], Schrijver [91] and Grötschel, Lovász and Schrijver [54].

Chapter 5
Computation of Convex Hulls

When referring to “computation of convex hulls” we understand this as the task
of computing the H-representation of the convex hull of a given finite point set
V ⊆R

n. Depending on the desired application, one might also need to compute all
faces, a description of the face lattice or other geometric information.

5.1 Preliminary Considerations

We begin with two simple results. First, Algorithm 5.1 immediately gives a trivial
convex hull algorithm, which is, unfortunately, inefficient.

Theorem 3.9, together with the fact that the computed half-spaces define facets,
shows that the algorithm is correct. The assumption that the affine hull is full-
dimensional is not necessary. Without it, the algorithm can simply be applied to
the affine hull of the input.

Algorithm 5.1: A trivial convex hull algorithm

Input: Finite point set V ⊆R
n with dim affV = n.

Output: Finite set of half-spaces {H+1 , . . . ,H+m } such that⋂m
i=1 H+i = convV .

1 H←∅
2 foreach n-element subset W ⊆ V with dim affW = n− 1 do
3 H ← affW
4 if V ⊆H+ then
5 H←H ∪ {H+}
6 else
7 if V ⊆H− then
8 H←H ∪ {H−}

9 return H

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_5,
© Springer-Verlag London 2013

65

http://dx.doi.org/10.1007/978-1-4471-4817-3_5

66 5 Computation of Convex Hulls

Secondly, the dual problem, i.e., computing a V-representation of a polytope
from its H-representation is, by polarity, algorithmically equivalent to the convex
hull problem:

Theorem 5.1 The problem of computing the V-representation of a polytope from
its H-representation can be reduced to the convex hull problem and vice versa.

Proof Let P =⋂m
i=1 H+i be given in the H-representation. Via the linear programs

from Example 4.3 and Exercise 4.4 we can compute the affine hull A = affP and
a point from the relative interior x in P = P ∩ A. We can thus assume that P is
full-dimensional. We can also assume that the origin is an interior point, since we
can otherwise apply our computations to A and translate by −x.

Since 0 ∈ intP , there exist h
(i)
k such that H+i = [1 : h(i)

1 : · · · : h(i)
n]+. We

now examine the polar polytope which has, according to Theorem 3.28, the V-
representation P ◦ = conv{h(1), . . . , h(m)}. Using a convex hull algorithm we can
obtain an H-representation P ◦ =⋂k

j=1[1 : v(j)

1 : · · · : v(j)
n]+. Looking at the polar

polytope of P ◦ and using Theorem 3.29 we get

P = P ◦◦ = conv
{
v(1), . . . , v(k)

}
.

The reverse direction is similar. In fact, it is easier since it is not necessary to use
the linear programming techniques used above. �

In the dual representation of the convex hull problem it becomes clear that the
problem can be viewed as a far-reaching generalization of the linear optimization
problem: While linear optimization aims at computing one specific vertex of an H-
polytope (defined by a linear objective function), the dual convex hull algorithm
computes all vertices of P .

Note that the existence of cyclic polytopes of dimension n with m vertices and
Θ(m�n/2�) facets implies that there cannot exist a convex hull algorithm which is
polynomial in m and n, since every such algorithm has to write the (in this case)
exponentially many facets as output. Theorem 5.1 and the existence of the dual
polytopes to cyclic polytopes imply that the dual convex hull problem has exponen-
tial run-time in the worst case. Now the natural question is if the naive algorithm
from the beginning of this chapter can be optimized at all. There are two answers to
this: First, by carefully analyzing the geometry we can exclude many hyperplanes
which Algorithm 5.1 considers to be candidates for facets. We demonstrate how to
do this in the next section. Secondly, the problem has a different quality when we
assume the dimension n to be fixed: In Section 5.3 we will study the case n= 2. We
provide further remarks and suggested literature at the end of this chapter.

5.2 The Double Description Method

To emphasize the relationship between the linear programming methods from the
previous chapter and the convex hull problem, we study the convex hull problem in

5.2 The Double Description Method 67

its dual form. A basic approach is to order the affine hyperplanes which were given
as input. Our goal is to take V-representations of polytopes which are intersections
of k hyperplanes to obtain V-representations of polytopes which are intersections of
k + 1 hyperplanes. Such methods are called iterative. While reading this section, it
is useful to think about how the specific steps can be translated into primal form.

Let P be an H-polytope whose V-representation P = convV is already known.
We now study how the V-representation must be altered when another half-space
H+ is added. Define P ′ = P ∩H+. The hyperplane H partitions the point set V

into three parts: Points on the hyperplane and points on either of its two sides.

Lemma 5.2 Let V0,V+,V− be the partition of the point set V defined by

V0 = V ∩H, V+ = V ∩H+ \H, V− = V ∩H− \H.

Then we have

P ′ = conv
(
(V0 ∪ V+)∪ {[v,w] ∩H : v ∈ V+, w ∈ V−

})
.

Proof It is obvious that the points in V0 ∪ V+ are contained in P ′. Furthermore, if
v ∈ V+ and w ∈ V−, then the segment [v,w] intersects the hyperplane H in one
point which proves that P ′ ⊇ convV ′.

For the reverse inclusion it is sufficient to examine the case where V is the ver-
tex set of P . To find the vertices of P ′ we have to determine which cases have a
supporting hyperplane of P ′ that intersects the polytope in exactly one point v. This
happens when either v is a vertex of P (and contained in H+) or v is the intersection
of an edge of P with H . The edges of P are segments between vertices of P . The
segment [v,w] intersects the hyperplane H only in the two cases we mentioned,
which proves the statement. �

Using Lemma 5.2 we can immediately provide a method to iteratively transform
an outer description of a polytope P ⊆R

n into an inner description. Without loss of
generality we again assume dimP = n.

The name of the method comes from the following concept.

Definition 5.3 Let V = {v(1), . . . , v(m)} be a point set in R
n and H= {H+1 , . . . ,H+k }

a set of affine half spaces in R
n. The pair (V ,H) is called a double description of a

polytope P if we have

P = convV =H+1 ∩ · · · ∩H+k .

Exercise 5.4 How should the term ‘double description’ be extended to arbitrary
polyhedra?

Let P =H+1 ∩· · ·∩H+m , and write Pk :=H+1 ∩· · ·∩H+k . Up to a projective trans-
formation (and renumeration) we can assume that Pn+1 is an n-simplex (see Exer-
cise 3.57). The n+ 1 vertices of Pn+1 are precisely the intersections of each set of

68 5 Computation of Convex Hulls

Algorithm 5.2: A basic algorithm to compute the double description

Input: A set of affine half-spaces H= {H+1 , . . . ,H+m } in R
n, such that

P =H+1 ∩ · · · ∩H+m is bounded and full-dimensional and
Pn+1 =H+1 ∩ · · · ∩H+n+1 is an n-simplex.

Output: Point set V with convV = P

1 Vn+1← set of vertices of Pn+1
2 for k← n+ 2, . . . ,m do
3 Construct Vk with convVk = Pk = Pk−1 ∩H+k as in Lemma 5.2.

4 return Vm

n hyperplanes from H1, . . . ,Hn+1. We can now inductively assume that we have al-
ready computed a V-representation of Pk = conv{v(1), . . . , v(k)}. Using Lemma 5.2
we obtain Algorithm 5.2.

This basic version of the algorithm is already more efficient than the trivial
method described at the beginning of this chapter. However, we can still improve it
with some simple steps. Note that we have |Vk| ≤ |Vk−1|2, i.e., the number of points
might be squared in each step. The improvement that we introduce below does not
completely avoid this “explosion” but it does have a positive effect by avoiding re-
dundant computations, particularly when dealing with actual applications.

The point sets Vk which are iteratively generated in Algorithm 5.2 are in general
too large, since they can contain points which are not vertices. Only the vertices
are necessary for a V-representation of a polytope. A possible improvement on this
method would be to set up a linear program which at each step reduces the point set
Vk to the set of vertices of Pk . This technique was previously used in Exercise 4.28.

However, we would like to avoid solving additional linear programs. The above
mentioned refinement relies on the observation that vertices of Pk which are not
vertices of Pk−1 are generated by intersections of edges of Pk−1 with the new hy-
perplane Hk . This fact was used in the proof of Lemma 5.2. Once we know which
pairs of vertices in Vk−1 generate edges of Pk−1, we will only have to test those
particular vertices.

For W ⊆ V let

H(W)= {H :H = ∂H+ for an H+ ∈H and W ⊆H
}

be the set of supporting hyperplanes from H that contain all points of W . We abbre-
viate this as H(v,w) :=H({v,w}).

Lemma 5.5 Let (V ,H) be a double description of an n-polytope P ⊆ R
n. Given

two distinct points v,w ∈ V , the set aff{v,w} ∩ P is an edge of P if and only if
the affine subspace G :=⋂H(v,w) is one-dimensional. In this case aff{v,w} =G

holds. Furthermore, if v and w are vertices then conv{v,w} = P ∩G.

5.2 The Double Description Method 69

Proof Observe that aff{v,w} ⊆ G = ⋂H(v,w). This is obvious for non-empty
H(v,w). Otherwise we fix here the convention

⋂∅ =R
n.

First, let e= aff{v,w} ∩ P be an edge of P . The affine hull of each face F of P

is the intersection of those hyperplanes which define the facets of P that contain F .
Since (V ,H) is a double description of P , the set H contains all affine hyperplanes
that define facets of P . In addition, every affine hyperplane that contains v and w

also contains the edge e. This implies that aff{v,w} is the intersection G of all
supporting hyperplanes (from H) that contain v and w.

For the reverse direction, let dimG = 1, i.e., aff{v,w} = G. In Theorem 3.6
we showed that the faces of faces of P are faces of P themselves. This implies
that every intersection of supporting hyperplanes with P defines a face of P . In
particular this holds for G ∩ P and the assumption about the dimension implies
dim(G ∩ P) ≤ 1. Since the points v and w of G were chosen to be distinct points
of P we have that G∩ P = e is an edge. �

To fully realize the advantages resulting from this lemma, we have to study how
to make the double description (V ,H) accessible as a data structure. We also want to
extend the convex hull problem in such a way that we can handle H-descriptions of
unbounded (fully-dimensional) pointed polyhedra. Handling non-pointed polyhedra
is the task of Exercise 5.13. We showed in Chapter 3 that a polyhedron is pointed if
and only if it is projectively equivalent to a polytope. As usual we use homogeneous
coordinates. Geometrically, the transformation to homogeneous coordinates can be
interpreted as follows. Instead of working with pointed polyhedra P ⊆R

n, we work
with the polyhedral cones which are generated by P :

Q= {(λ,λx) : x ∈ P, λ≥ 0
}⊆R

n+1.

The vertices and rays of P , which we originally wanted to compute, correspond
to the uniquely defined minimal generating system of Q as a positive hull: Let
V,R ⊆R

n be given with

P = convV + posR

as in Exercise 3.41. Then we have

Q= pos
({

(1, v) : v ∈ V
}∪ {(0, r) : r ∈R

})
.

In the following let

W = {w(1), . . . ,w(m)
} := {(1, v) : v ∈ V

}∪ {(0, r) : r ∈R
}⊆R

n+1

be a positive generating system of the cone Q. To be able to distinguish P from
its homogenization Q, we will refer to the elements of W as vectors. Through the
homogenization, affine half-spaces in R

n become linear half-spaces in R
n+1, i.e.,

affine half-spaces which contain the origin in R
n+1. E.g., a simplex in R

n gener-
ates a simplicial cone in R

n+1. The polytope edges, which played the key role in
Lemma 5.5, correspond precisely to the two-dimensional faces of the homogeniza-
tion.

70 5 Computation of Convex Hulls

The following is a useful way to represent the data: The coordinates of vectors
from W = {w(1), . . . ,w(m)} are saved as columns of an (n+1)×m-matrix which we
will also call W . The linear half-spaces H= {H+1 , . . . ,H+k } are represented by their
coordinate vectors h(1), . . . , h(k) ∈ (Rn+1)∗ where we assume H+i = {x : h(i)x ≥ 0}.
By analogy to the vectors, we use H as the symbol for the k × (n + 1)-matrix
consisting of the row vectors h(1), . . . , h(k). We use the following homogeneous
version of the incidence matrix of Section 3.6 and Exercise 3.55.

Definition 5.6 Let (W,H) be the double description of a pointed cone Q⊆ R
n+1

with W ∈ R
(n+1)×m and H ∈ R

k×(n+1). The matrix I (W,H) ∈ {0,1}k×m with
I (W,H)= (Iij) defined by

Iij =
{

1 if w(j) ∈Hi = ∂H+i , i.e., h(i)w(j) = 0,

0 otherwise

is called the incidence matrix of (W,H).

The rows of the incidence matrix I := I (W,H) of the cone Q can be inter-
preted as the characteristic functions of the set of vectors from W which lie on
the corresponding hyperplane. Analogously, the columns of I correspond to sets
of supporting hyperplanes which contain a fixed vector from W . In this way we
can determine the set H(w(r),w(s)) from Lemma 5.5 as the intersection of two sets
which are given by characteristic functions; many programming languages allow for
the efficient implementation of this as a bit-wise “and”. This allows us to identify
the set H(w(r),w(s)) with the submatrix consisting of those rows of the matrix H
which have a 1 in their r-th and s-th column. The dimension of the intersection of
all supporting hyperplanes which contain w(r) and w(s) is therefore n+ 1 minus the
rank of the submatrix H(w(r),w(s)).

The natural formulation of the crucial Lemma 5.5 shows that it is most convenient
to study the double description method in the homogeneous setting. Putting the
pieces together, as shown in Algorithm 5.3, we can compute a minimal positive
generating system of a polyhedral cone in R

n+1 defined by linear inequalities. This
is slightly more general than computing convex hulls.

We conclude this section with a detailed description of an example of the func-
tionality of the loop in Steps 8 to 11 of Algorithm 5.3.

Example 5.7 Let n= 3 and

H=

⎛
⎜⎜⎜⎜⎝

1 −1 −1 0
1 −1 2 0
1 2 −1 0
1 0 0 1
2 −1 −1 −1

⎞
⎟⎟⎟⎟⎠ ∈R5×4.

One can easily verify that the cone Q= {x ∈R4 :Hx ≥ 0} is full-dimensional, since
the ray R≥0(1,0,0,0)T passes through the interior. Furthermore, we have that Q4 =

5.2 The Double Description Method 71

Algorithm 5.3: An algorithm for the double description in homogeneous form

Input: Matrix H ∈Rk×(n+1) with row vectors h(1), . . . , h(k) such that
Q= {x ∈Rn+1 :Hx ≥ 0} is a full-dimensional pointed cone and
Qn+1 := {x ∈Rn+1 : h(1)x ≥ 0, . . . , h(n+1)x ≥ 0} is a simplicial cone.

Output: Set W of vectors with posW =Q

1 Let Wn+1 ∈R(n+1)×(n+1) be a matrix whose columns positively generate
Qn+1.

2 for i← n+ 2, . . . , k do
3 Create W+i−1 from those columns of Wi−1 that lie on the positive side of

h(i) and create W−i−1 from the columns on the negative side.
4 if W−i−1 = ∅ then
5 Wi←Wi−1
6 else
7 X←∅
8 foreach Pair (w,w′) of columns of W+i−1 and W−i−1 do
9 if rankHi−1(w,w′)= n− 1 then

10 Choose x as generator of the kernel of the matrix H′i−1(w,w′)
that consists of the rows of Hi−1(w,w′) and h(i).

11 X←X ∪ {x}
12 Let Wi be the matrix consisting of the columns of Wi−1 without the

columns of W−i−1 and enhanced by the column vectors from X.

13 return Wk

{x ∈R4 : h(1)x ≥ 0, . . . , h(4)x ≥ 0} is a simplicial cone whose rays correspond to the
columns of the following matrix

W4 =

⎛
⎜⎜⎝

1 1 1 0
1 0 −1 0
0 1 −1 0
−1 −1 −1 1

⎞
⎟⎟⎠ ∈R4×4.

Now the fifth and last row of the matrix H defines the subsets W+4 (consisting of
the first three columns of W4) and W−4 (last column of W4). The incidence matrix
of the double description is then the following:

I (W4,H4)=

⎛
⎜⎜⎝

1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

⎞
⎟⎟⎠ .

72 5 Computation of Convex Hulls

As an example we study the pair of rays (w(1),w(4)) ∈W+4 ×W−4 . By the definition
of the incidence matrix, the first two vectors h(1), h(2) satisfy h(j)w(1) = 0 and
h(j)w(4) = 0 (for j = 1,2). This gives

H4
(
w(1),w(4)

)= (1 −1 −1 0
1 −1 2 0

)

and

H′4
(
w(1),w(4)

)=
⎛
⎝1 −1 −1 0

1 −1 2 0
2 −1 −1 −1

⎞
⎠ .

The matrix H4(w
(1),w(4)) clearly has rank 2, which implies that pos{w(1),w(4)} is

a face of the cone Q4 of dimension 4−2= 2= n−1. The vector (1,1,0,1)T spans
the kernel of H′4(w(1),w(4)). Analogous computations for the pairs (w(2),w(4)) and
(w(3),w(4)) yield two more columns. Putting this together we arrive at

W =W5 =

⎛
⎜⎜⎝

1 1 1 1 1 1
1 0 −1 1 0 −1
0 1 −1 0 1 −1
−1 −1 −1 1 1 4

⎞
⎟⎟⎠ .

If we now dehomogenize, i.e., we intersect Q = posW = {(x0, x1, x2, x3)
T ∈ R4 :

Hx ≥ 0} with the affine hyperplane in R
4 defined by x0 = 1, we obtain a simple

3-polytope with five facets which is combinatorially equivalent to a prism over a
triangle. The rows of H and the columns of W describe homogeneous coordinates
of facets and vertices of P respectively. The incidence matrix defined by the ver-
tices and facets of P coincides with the incidence matrix of the double description
(W,H) of the cone Q:

I (W,H)=

⎛
⎜⎜⎜⎜⎝

1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
1 1 1 0 0 0
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎠ .

5.3 Convex Hulls in the Plane

Two dimensional polytopes coincide with convex polygons. The edges of a convex
polygon form the facets and the vertices can be ordered cyclically (clockwise or
counter-clockwise). Let a finite set of points in the plane be given as columns of a
matrix M ∈R2×m. Then the planar convex hull problem is the computation of a list
of column indices that defines such a cyclic ordering of the vertices. Depending on
the context, it may be necessary to choose one of the two orientations or to fix a
specific point as the starting vertex.

5.3 Convex Hulls in the Plane 73

Algorithm 5.4: The Divide-and-Conquer method for computing convex
hulls in the plane

Input: Finite point set V = {v(1), . . . , v(m)} ⊆R
2

Output: Vertices of convV in cyclic order
1 if m≤ 2 then
2 return V

3 else
4 Sort V by the first coordinate.
5 Divide V in two disjoint sets L and R, where L contains the left �m/2�

and R the right �m/2� points of V .
6 Recursively compute convL and convR.
7 Compute conv(L∪R) from convL and convR.

Note that degenerate cases of lower dimensional polytopes in R
2 can be coded

by such a list as well, which then contains only one index (if the dimension is 0), or
two indices (if the dimension is 1). To keep the language simple, we shall call these
degenerate polytopes polygons.

We now introduce an algorithm of Preparata and Hong [84], which relies on
the commonly used “divide-and-conquer” principle of computer science. The basic
idea is to divide the original problem into many sub-problems, solve these smaller
problems recursively and combine the sub-solutions, thus forming a solution to the
original problem. A classic example of this principle is the MergeSort sorting
algorithm described in Appendix C.1.

To simplify the presentation of Preparata and Hong’s algorithm we make an extra
assumption. In the exercises at the end of this chapter we will see how to extend
the algorithm to the general case. In contrast to the convention used elsewhere in
this book, we say that a point set V ⊆ R

2 is in general position if no three points
are colinear and every vertical [a : −1 : 0], for a ∈ R, contains at most one point
in V .

In Algorithm 5.4, the actual computational problem is of course hidden in the last
step, where we have to compute the common convex hull of two polygons which
are given as a cyclic list of vertices. Our assumption that no two points lie on the
same vertical simplifies the situation since this implies that convL and convR are
disjoint and that there exists a dividing vertical line. The central observation here is
that in this situation those vertices of conv(L ∪ R) which are vertices of L (or R)
are ordered successively by the cyclic ordering.

One consequence of L and R being vertically separated is that there exist four
common supporting lines to L and R; see Fig. 5.1. As with smooth convex sets,
we call these common supporting lines double tangents. Exactly two of these four
double tangents define facets of the common convex hull of L and R. Since L and
R are vertically separated we can talk about the upper and lower double tangent.
Computing the common convex hull of L and R is therefore equivalent to computing
the upper and lower double tangent of two vertically separated polygons. In addition,

74 5 Computation of Convex Hulls

Fig. 5.1 The four double
tangents to two disjoint
polygons

the problem of computing the upper double tangent and the problem of computing
the lower double tangent are equivalent since we can obtain the upper double tangent
of L and R by computing the lower double tangent of (−R,−L). Now we obtain
an algorithm to compute the convex hull in the plane by combining the following
algorithm with the divide-and-conquer method.

It remains to be checked if the Lower-Double-Tangent algorithm is correct. This
is not obvious since it has to be shown that the outer loop terminates. To do this we
need a further definition and a preliminary lemma.

Each pair of vertices v and w of a polygon defines two polygonal arcs, one in
which v appears before w and one where v appears after w with respect to the
counter-clockwise cyclic order of the polygon’s vertices. For a polygon in general
position, the left-most vertex and the right-most vertex define the upper and the
lower half.

Lemma 5.8 The lower double tangent to two vertically separated polygons L and
R intersects both L and R in the lower half.

Proof The lower half comprises precisely those facets whose outer normal points
down. The outer normal of a supporting line to L (or R) which points down lies in
the cone of normals of the facets of the lower half. �

Since the algorithm progresses cyclically in a fixed direction on both polygons,
its termination is a consequence of the following statement. In some sense the inte-
riors of L and R “block” the algorithm after finitely many steps.

Lemma 5.9 There is no step of the algorithm where the segment [v(i),w(k)] could
intersect the interior of L or of R.

Proof In the beginning this condition is satisfied by construction. To show that the
condition is satisfied in subsequent steps we use induction. Assume that [v(i),w(k)]
does not intersect the interior of L and R. Using symmetry arguments we can also
assume that i will be decreased in the next step. That is, we assume that [v(i),w(k)]
is not a lower supporting line to L. Then v(i−1) lies below the line aff{v(i),w(k)}
and [v(i−1),w(k)] does not intersect the interior of L. �

5.3 Convex Hulls in the Plane 75

Algorithm 5.5: Lower-Double-Tangent(L,R)

Input: Two finite polygons L= (v(0), . . . , v(l−1)) and R = (w(0), . . . ,w(r−1)),
given as a list of their vertices in cyclic order counterclockwise, such
that there exists a separating vertical line where L lies on the left and R

on the right side
Output: Lower double tangent T

1 v(i)← right-most vertex of L

2 w(k)← left-most vertex of R

3 while T ← aff{v(i),w(k)} is not lower double tangent do
4 while T is not a lower supporting line to L do
5 i← i − 1 mod l

6 while T is not a lower supporting line to R do
7 k← k + 1 mod r

8 return T

We would like to determine the complexity of the divide-and-conquer algorithm
in its worst case. This will be done in a way that is typical for algorithms of this
type. When regarding the input size, we neglect the point coordinates for which, for
all geometric primitives, the same unit costs occur. The complexity of the algorithm
Lower-Double-Tangent (Algorithm 5.5) is clearly O(l + r). If we denote the
complexity of Divide-and-Conquer by C(m) we have the recursion C(2m)=
2C(m)+O(m). First, we assume that the number of input points m= 2b is a power
of 2. Every division step will then divide the point set into two sets of exactly the
same size. Then we obtain

C(m)= C
(
2b
)

= 2C
(
2b−1)+O

(
2b
)

= 2
(
C
(
2b−2)+O

(
2b−1))+O

(
2b
)= 2C

(
2b−2)+ 2O

(
2b
)

= 2C
(
2b−3)+ 3O

(
2b
)= · · · = bO

(
2b
)=O(m logm).

If m is not a power of 2, then the smallest power of 2 that is larger than m is at most
twice as large as m. The complexity analysis above changes only by a multiplica-
tive constant which is suppressed in the O-notation. We summarize this with the
following theorem.

Theorem 5.10 The algorithm Divide-and-Conquer computes the convex hull
of m points in R

2 with complexity O(m logm).

76 5 Computation of Convex Hulls

5.4 Inspection Using polymake

polymake offers several convex hull algorithms, some of them via interfaces to
other software, others as part of the polymake system. The double description
algorithm is the standard algorithm. Internally, polymake calls cddlib [43].

We will start with the V-description of a polytope. In contrast to the previous
chapter where we entered the coordinates manually, we now use polymake’s stan-
dard constructions. The function cube with the single argument “3” generates the
standard cube [−1,1]3.

polytope > $C3=cube(3);

The following function edge_middle takes the cube $C3 as input, computes its
edge mid-points and defines a new polytope as the convex hull of these. The task of
Exercise 5.16 is to show that the edge mid-points are always the vertices of the new
polytope.

$P=edge_middle($C3);

The new object $P comes with a range of properties which are already known.

polytope > print join " ", $P->list_properties();
VERTICES BOUNDED FEASIBLE

Each of them can be printed or used for further computations.

polytope > print $P->VERTICES;
1 0 -1 -1
1 -1 0 -1
1 1 0 -1
1 0 1 -1
1 -1 -1 0
1 1 -1 0
1 0 -1 1
1 -1 1 0
1 -1 0 1
1 1 1 0
1 1 0 1
1 0 1 1

polytope > print $P->BOUNDED, " ", $P->FEASIBLE;
1 1

The property VERTICES lists the vertices of the polytope in homogeneous coor-
dinates. The boolean properties BOUNDED and FEASIBLE indicate that $P is a
bounded polyhedron, i.e., a polytope, which is not empty. Performing a convex hull
computation is now as easy as printing the FACETS.

polytope > print $P->FACETS;
1 0 0 -1
2 -1 1 -1
1 0 1 0

5.5 Exercises 77

2 1 -1 1
1 1 0 0
2 1 1 1
2 1 1 -1
2 1 -1 -1
2 -1 1 1
1 0 0 1
2 -1 -1 1
2 -1 -1 -1
1 0 -1 0
1 -1 0 0

The polytope in $P is actually a cuboctahedron which is one of the Archimedean
solids; see Fig. 5.2.

5.5 Exercises

Exercise 5.11 Let

P = conv
{
v(1), . . . , v(m)

}=H+1 ∩ · · · ∩H+l ⊆R
n

be an n-polytope in double description with pairwise distinct half-spaces H+1 ,

. . . ,H+l , and let Vi := {v(j) ∈ Hi : 1 ≤ j ≤ m} be the set of given points which
lie on the hyperplane Hi . Show that H+i is redundant if and only if there exists an
index k ∈ {1, . . . , l} such that Vi � Vk .

Exercise 5.12 Let (V ,H) be a double description of an (n + 1)-polytope P and
let π : Rn+1→ R

n be the linear projection to the first n coordinates. Exercise 3.58
shows that the image π(P) is also a polytope. Compute a double description of
π(P).

Throughout the double description algorithm, the step-wise intersections with
hyperplanes become iterated projections to coordinate subspaces in the polar form.
In its dual form, this method corresponds to Fourier–Motzkin-Elimination. Exer-
cise 5.12 illustrates one elimination step.

Exercise 5.13 How can we alter Algorithm 5.2 so that it also works for non-pointed
polyhedra?

Exercise 5.14 How can we alter the divide-and-conquer algorithm from Section 5.3
to compute the area of a polygon that is defined by its vertices?

Exercise 5.15 How can we alter the divide-and-conquer algorithm so that it com-
putes the convex hull of a point set that is not in general position?

78 5 Computation of Convex Hulls

Fig. 5.2 The cuboctahedron

Exercise 5.16 Let P be an arbitrary polytope with vertex set {v(1), . . . , v(m)} ⊆R
n

and edge set {[
v(i), v(j)

] : (i, j) ∈ I
}

for an appropriate set I ⊆ {1, . . . ,m} × {1, . . . ,m}. Show that the set of edge mid-
points

W :=
{

1

2

(
v(i) + v(j)

) : (i, j) ∈ I

}
is the vertex set of the polytope convW .

Figure 5.2 shows an example of the construction in Exercise 5.16 where P is the
standard 3-cube.

5.6 Remarks

The double description algorithm which has briefly been introduced here is used in
practical applications and is particularly useful for relatively high-dimensional non-
simple polytopes. A detailed description can be found in Fukuda and Prodon [44].

The m vertices of an n-polytope defined by � (facet defining) affine half-spaces
can be computed in O(�mn) time using the “reverse search” method of Avis and
Fukuda [8]; reverse search works for non-simple polytopes as well, but in that set-
ting is often inferior to the double description method; see Avis, Bremner and Sei-
del [7].

A further class of convex hull algorithms computes from the given point set, in
addition to the facets of the convex hull, a triangulation. An example of this class is
“beneath-and-beyond”; see Edelsbrunner [38, §8.4] and Joswig [67].

The divide-and-conquer principle can be extended and sometimes yields asymp-
totically optimal algorithms for lower dimensions. In dimension 2 and 3 one can
obtain O(m log�)-algorithms; see Clarkson and Shor [23] and Chan [19]. Chan,
Snoeyink and Yap [20] describe an O((m+ �) log2 �)-algorithm to compute the �

facets of a 4-polytope defined by m points.
The Upper-bound Theorem limits the number of facets of an n-polytope with

m vertices to
(

m
�n/2�

)
. When we fix the dimension n as a constant, then

(
m
�n/2�

) ∈

5.6 Remarks 79

O(m�n/2�) has a polynomial bound. Chazelle [21] was able to provide an algorithm
which, for constant dimension, is in the worst case asymptotically optimal and has
a run time of order O(m logm+m�n/2�).

An interesting quality measurement for convex hull algorithms of arbitrary di-
mension can be obtained when we measure the run time with respect to the combi-
nation of input and output size. This is known as the combined run-time of a convex
hull algorithm. It is unknown if there exists an algorithm that has a polynomially
bounded combined run-time which computes the convex hull. Khachiyan et al. [69]
recently showed that it is #P-hard (in combined run-time) to enumerate all vertices
of an unbounded polyhedron which is given by inequalities. But this result does not
imply that it is #P-hard (in combined run-time) to enumerate all vertices and addi-
tionally all rays. Therefore the complexity of enumerating all vertices of a polytope
is still unknown.

Chapter 6
Voronoi Diagrams

Let S be a finite point set in R
n. Since S is compact, for every point x ∈ Rn there

exists a closest point in S (which is not necessarily unique) with respect to the
Euclidean norm ‖ · ‖. The set of all points in R

n that have a fixed point s ∈ S as
their nearest “neighbor” is a polyhedron. This mapping induces a decomposition
of Rn into polyhedral “regions”, the Voronoi diagram of S. Numerous applications
of computational geometry begin with the computation of a Voronoi diagram.

We will first study the geometry of single Voronoi regions. To be able to dis-
cuss the arrangement of all Voronoi regions, we will introduce the general concept
of a polyhedral complex. The main result of this chapter is the relationship be-
tween Voronoi diagrams and the convex hull problem from the previous chapter.
We conclude the chapter by discussing an algorithm for the computation of Voronoi
diagrams in the plane and its application to the post-office problem from the intro-
duction.

6.1 Voronoi Regions

In this chapter, S ⊆ R
n always denotes a finite point set in R

n and ‖ · ‖ is the Eu-
clidean norm. The Euclidean distance between two points x, y ∈Rn is denoted by

dist(x, y) := ‖x − y‖ =√〈x − y, x − y〉.
For each point s ∈ S we define the Voronoi region

VRS(s) := {x ∈Rn : dist(x, s)≤ dist(x, q) for all q ∈ S
}

as the set of points in R
n for which s is the nearest point from S. In this case, s is

called a nearest neighbor (with respect to S).

Example 6.1 We study the case where S = {s, t} ⊆ R
n consists of exactly two dis-

tinct points. The set

h(s, t) := {x ∈Rn : dist(x, s)= dist(x, t)
}=VR{s,t}(s)∩VR{s,t}(t)

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_6,
© Springer-Verlag London 2013

81

http://dx.doi.org/10.1007/978-1-4471-4817-3_6

82 6 Voronoi Diagrams

consisting of those points which have both s and t as a nearest neighbor is an affine
hyperplane: We have

〈x − s, x − s〉 − 〈x − t, x − t〉 =
n∑

i=1

(xi − si)
2 −

n∑
i=1

(xi − ti)
2

=
n∑

i=1

2(ti − si)xi +
n∑

i=1

(
s2
i − t2

i

)
,

which implies that x is contained in h(s, t) if and only if

(
n∑

i=1

(
s2
i − t2

i

)
,2(t1 − s1), . . . ,2(tn − sn)

)
(1, x1, . . . , xn)

T = 0. (6.1)

In other words, the set h(s, t)=VR{s,t}(s)∩VR{s,t}(t) is precisely the affine hyper-
plane in R

n which has the homogeneous coordinates

[
n∑

i=1

(
s2
i − t2

i

) : 2(t1 − s1) : · · · : 2(tn − sn)

]
. (6.2)

The Voronoi regions of s and t are the affine half-spaces which are defined by this
hyperplane. We always define the orientation of h(s, t) as in (6.2). Thus, we have
VR{s,t}(s) = h(s, t)− and VR{s,t}(t) = h(s, t)+. The vectors s − t and t − s are
normal to the hyperplane h(s, t) which (weakly) separates the two Voronoi regions.

The above observations about Voronoi regions of a two-element point set lead to
the following statement.

Proposition 6.2 Let S ⊆R
n be finite. For s ∈ S we have

VRS(s)=
⋂

t∈S\{s}
VR{s,t}(s)=

⋂
t∈S\{s}

h(s, t)−.

In particular, each Voronoi region is a (not necessarily bounded) polyhedron with
at most |S| − 1 facets.

Exercise 6.3 Give conditions which imply that all Voronoi regions are pointed poly-
hedra.

Exercise 6.4 Show that a point s ∈ S lies on the boundary of the convex hull convS

if and only if its Voronoi region VRS(s) is unbounded.

6.2 Polyhedral Complexes 83

6.2 Polyhedral Complexes

We know from the previous section that the Voronoi regions of a finite point set in
R

n are polyhedra. By construction, it is clear that these polyhedra cover the whole
space Rn. However, this alone does not reveal all of the important structural proper-
ties of Voronoi regions.

Definition 6.5 A polyhedral complex C is a finite set of polyhedra in R
n which

satisfies the following conditions.

(a) ∅ ∈ C;
(b) If P ∈ C, then all faces of P are also contained in C;
(c) The intersection P ∩Q of two polyhedra P,Q ∈ C is a (possibly empty) face

of P and of Q.

The third condition is sometimes called the intersection condition. The elements
of C are called faces and the dimension of C is the highest dimension of a face of C.
A polyhedral complex whose faces are polytopes is called a polytopal complex.
A simplicial complex is a polytopal complex whose faces are simplices.

For a polyhedral complex C in R
n let

|C| :=
⋃
F∈C

F ⊆R
n

be the set covered by C. A polyhedral (respectively polytopal or simplicial) decom-
position of a set M ⊆R

n is a polyhedral (respectively polytopal or simplicial) com-
plex C such that |C| =M . A simplicial decomposition is also called a triangulation.

Example 6.6 Let P ⊆ R
n be an n-polyhedron. Then the face lattice F(P) is an

n-dimensional polyhedral complex. The set of all proper faces defines an (n− 1)-
dimensional polyhedral complex that covers the boundary ∂P . This second complex
is called the boundary complex of P .

The faces of a polyhedral complex C are partially ordered by inclusion; this is
the face poset of C. This notion agrees with the face lattice of a polytope if we view
that polytope as a trivial polytopal complex as in the previous example.

Let V(S) be the set of all Voronoi regions of a finite set S ⊆R
n.

Theorem 6.7 The set V(S) satisfies the intersection condition.

Proof Let s, t ∈ S be two distinct points. We can assume that the intersection

F :=VRS(s)∩VRS(t)

is non-empty. Proposition 6.2 states that VRS(s) ⊆ h(s, t)− and that VRS(t) ⊆
h(s, t)+. This implies that F ⊆ h(s, t)− ∩ h(s, t)+ = h(s, t). Since we assumed

84 6 Voronoi Diagrams

Fig. 6.1 The Voronoi
diagram of a point set in the
plane

F = ∅, we know that h(s, t) is a supporting hyperplane of VRS(s) and also of
VRS(t). Thus, F =VRS(s)∩VRS(t)=VRS(s)∩VRS(t)∩ h(s, t) is a non-empty
face of both Voronoi regions. �

Every non-empty finite set C of polyhedra in R
n that satisfies the intersection

condition generates a polyhedral complex

[C] := {F : F is the face of a polyhedron in C}.
The previous theorem motivates the following definition.

Definition 6.8 The polyhedral complex

VD(S) := [{VRS(s) : s ∈ S}]
is called the Voronoi diagram of a finite set S ⊆R

n.

The faces of a Voronoi diagram are called Voronoi cells. The Voronoi regions
are the maximal Voronoi cells (with respect to inclusion or dimension). Figure 6.1
depicts an example of a Voronoi diagram of a point set in the plane.

Remark 6.9 The definition of f -vectors can be extended to arbitrary polyhedral
complexes.

6.3 Voronoi Diagrams and Convex Hulls

As we will see in the following chapters, Voronoi diagrams play a key role in several
applications. Many interesting algorithms, e.g., the curve reconstruction algorithm

6.3 Voronoi Diagrams and Convex Hulls 85

NN-Crust from Chapter 11 below, have the computation of a Voronoi diagram as
their very first step. This motivates the questions of how a Voronoi diagram should
be computed and what a suitable data structure would be for Voronoi diagrams.

A first observation is that convex hull algorithms are useful for the computation
of Voronoi diagrams: Every region is given as a polyhedron in the H-description.
For m given points in R

n we obtain, by computing m dual convex hulls in R
n,

a V-description of all Voronoi regions. Regardless of the efficiency of this method,
the main disadvantage of it is that it does not directly provide a description of the
relative position of the different Voronoi regions to one another. The main result
of this chapter is the statement that a Voronoi diagram in R

n is a projection of
an unbounded polyhedron in R

n+1. Specifically, this reduces the construction of a
Voronoi diagram to a single convex hull problem in R

n+1.
To clarify the notation, we will embed R

n in R
n+1 by adding the coordinate xn+1.

In particular, we will sometimes denote a point in R
n+1 by (x, xn+1) for x ∈Rn and

xn+1 ∈R.
Let

U := {x ∈Rn+1 : xn+1 = x2
1 + x2

2 + · · · + x2
n

}
(6.3)

be the standard paraboloid in R
n+1. For a point p ∈Rn let T (p) denote the tangent

hyperplane to the paraboloid U at pU := (p,‖p‖2).

Lemma 6.10 For every point p ∈Rn we have

T (p)= [−‖p‖2 : 2p1 : · · · : 2pn : −1
]
.

Proof We know from calculus that the tangent hyperplane to the graph of a differ-
entiable function u : Rn→ R at a point (p,u(p)) can be described by the linear
equation

xn+1 = u(p)+ 〈u′(p), x − p
〉

(see, e.g., [73]). In our case, we have u(p)= p2
1 + p2

2 + · · · + p2
n = ‖p‖2, and thus

the gradient satisfies u′(p)= (2p1, . . . ,2pn)= 2p. Substituting yields

xn+1 = ‖p‖2 + 〈2p,x − p〉 = −‖p‖2 + 2〈p,x〉,
and thus we obtain the desired representation of the tangent hyperplane in homoge-
neous coordinates. �

In the following, we imagine that the xn+1-direction of the coordinate system
points vertically upwards.

Lemma 6.11 Let p,x ∈ Rn and xU = (x,‖x‖2) be the point lying above x on U .
Then xU lies above T (p), i.e., in the affine half-space T (p)+ with respect to the
homogeneous coordinates from Lemma 6.10. The vertical distance from xU to T (p)

is ‖x − p‖2.

86 6 Voronoi Diagrams

Fig. 6.2 The distance
computation for n= 1. Due to
the rotation invariance of U ,
the 2-dimensional figure
suggests the proper intuition
for higher dimensions. Here,
we have δ = ‖x − p‖

Proof The xn+1-coordinate of xU is
∑n

i=1 x2
i , and by Lemma 6.10 the xn+1-

coordinate of the point on the hyperplane T (p) above x is

2p1x1 + · · · + 2pnxn − p2
1 − · · · − p2

n.

The distance from xU to T (p) is (x1 − p1)
2 + · · · + (xn − pn)

2 = ‖x − p‖2. Fig-
ure 6.2 illustrates this computation. �

Let S be an m-element subset of Rn. For a point s ∈ S we have that T (s)+ is the
affine half-space above the tangent hyperplane at U .

Due to the monotonicity of the function δ
→ δ2 on the positive half-line, we can
interpret Proposition 6.2 using Lemma 6.11 in the following way: A point x ∈Rn is
contained in the Voronoi region VRS(s) if and only if for all T (t), where t ∈ S, the
hyperplane T (s) is the one that has the smallest vertical distance from the point xU .
This implies the following statement; see Fig. 6.3.

Theorem 6.12 The Voronoi diagram of S is the orthogonal projection of the bound-
ary complex of the polyhedron P(S) :=⋂s∈S T (s)+ to the hyperplane xn+1 = 0.

Corollary 6.13 The total number of cells of a Voronoi diagram of an m-element
point set in R

n is of order O(m�n/2�).

Proof The total number of cells of a Voronoi diagram can be bounded by the max-
imal number of faces of an H-polyhedron with m facets in R

n+1. The dual version
of the asymptotic Upper-bound Theorem, Theorem 3.46, therefore implies that the
total number of faces is of order O(m�n/2�), since �(n+ 1)/2� = �n/2�. �

Theorem 6.12 specifically states that the space is partitioned by the relative inte-
rior of the cells of VD(S). For an arbitrary point x ∈Rn let

BS(x) := {y ∈Rn : dist(x, y) < dist(x, s) for all s ∈ S
}

(6.4)

be the largest open ball with center x which does not contain a point of S. Further-
more, let

S(x) := ∂BS(x)∩ S.

6.3 Voronoi Diagrams and Convex Hulls 87

Fig. 6.3 A Voronoi diagram
obtained by an orthogonal
projection

Theorem 6.14 The uniquely determined relatively open cell of VD(S) that contains
a given point x ∈Rn has dimension n− dim affS(x).

Proof The point x is contained in a relatively open k-cell C of VD(S) if and only
if there exists a series of facets F1, . . . ,Fn−k+1 of the polyhedron

⋂
s∈S T (s)+ for

which:

G1 � G2 � · · ·�Gn−k+1 =:G, (6.5)

where Gi := F1 ∩ · · · ∩ Fi and C is the orthogonal projection of G to R
n; see

Exercise 3.59. The decreasing chain condition in (6.5) is satisfied for the facets
F1, . . . ,Fn−k+1 if and only if G= F1 ∩ · · · ∩Fn−k+1 is non-empty and the normals
of the facets are linearly independent.

By Lemma 6.10 we have that (2s1, . . . ,2sn,−1)T is a normal vector to the facet
T (s) for s ∈ S. Therefore, the normal vectors to the facets corresponding to a subset
S′ ⊆ S are linearly independent if and only if the points of S′ are affinely indepen-
dent. Altogether, this proves the statement. �

In the next section we will focus on the planar case n = 2. Therefore, we are
interested in the following special cases of Theorem 6.14.

Corollary 6.15 Let S ⊆R
2 be finite.

(a) A point x ∈ R2 is a vertex of the Voronoi diagram VD(S) if and only if S(x)

contains at least three points.
(b) A point x ∈ R2 lies in the relative interior of an edge of VD(S) if and only if

S(x) consists of exactly two points.

For a vertex x of the Voronoi diagram VD(S) we call the ball BS(x) from (6.4)
the Voronoi disk around x. The boundary ∂BS(x) is called the Voronoi circle.

88 6 Voronoi Diagrams

Exercise 6.16 Show that if every (n+ 2)-element subset of S ⊆R
n does not lie on

a common (n− 1)-sphere, then the lifted polyhedron is simple and therefore every
Voronoi region is simple.

If this condition is satisfied, we say that the points in S are in general position.
Note that we defined “general position” slightly differently in Chapter 3 and in Sec-
tion 5.3; the term is always dependent on the context.

6.4 The Beach Line Algorithm

As in the computation of convex hulls in Section 5.3, there exist special algorithms
for the computation of Voronoi diagrams in the planar case. We introduce here an al-
gorithm due to Fortune [42]. First, we discuss the geometric idea, and then approach
the question of determining its complexity. In this particular case, the complexity de-
pends significantly on the data structures employed. With respect to this property,
this algorithm is an exception within this text.

Fortune’s beach line algorithm is a so-called sweep line method. The idea is to
construct the Voronoi diagram of a finite point set S ⊆ R

2 step-by-step. Here, we
can imagine the vertical axis as a time-scale that is traversed from top to bottom. In
this interpretation, at a certain time τ only a part of the Voronoi diagram has been
revealed by the algorithm. For a point s from the input set S we then have that s is
known at time τ if s2 ≥ τ . The horizontal line Hτ = [−τ : 0 : 1] is the sweep line
for time τ and the affine half-space [−τ : 0 : 1]+ contains the previously detected
points from S. The next natural question is which part of the Voronoi diagram is
actually known at time τ .

The set of points in R
2 that have the same distance from a point p and a

(non-incident) line G is a parabola, which we denote here by Par(p,G) (see Ex-
ercise 6.18 below). For every point s ∈ S with s2 > τ which is known at time τ , all
points which are closer to s than to any possible unknown point of S lie above the
parabola Par(s,Ht). The term “above” makes sense here since the symmetry axis of
Par(s,Hτ) is parallel to the vertical axis. The time τ is called generic if Hτ ∩S = ∅.
If we denote the points on or above the parabola by Par(s,Hτ)

+, then, according to
our notation for affine half-spaces, we get the following lemma.

Lemma 6.17 The part of the Voronoi diagram which is known at time τ is contained
in the set ⋃

s∈S
Par(s,Hτ)

+

for each generic time τ ∈R.

If τ is generic, the set
⋃

s∈S Par(s,Hτ)
+ is homeomorphic to an affine half-

space. Its boundary Bτ is a union of parabolic arcs that resembles the appearance
of waves approaching a beach; see Fig. 6.4. This is the reason why the boundary

6.4 The Beach Line Algorithm 89

curve is called the “beach line”, and this term gives the algorithm its name. Note
that each vertical line intersects the beach line Bτ in exactly one point; this property
is inherited from the individual parabolas.

Exercise 6.18 Determine a parametrization of the parabola Par(s,Hτ) for a given
s and τ ∈R. That is, search for a, b, c ∈R such that

Par(s,Hτ)=
{(

x

ax2 + bx + c

)
: x ∈R

}
,

subject to the condition that s2 > τ .

A point s ∈ S with the property that Par(s,Hτ) is part of the beach line is said to
be active at time τ .

Now we briefly discuss what happens at a non-generic time τ . For sufficiently
small ε > 0 we have that τ − ε is a generic time. The smaller ε is, the steeper
the parabola Par(s,Hτ−ε) will be. This is rigorously formulated in the following
exercise.

Exercise 6.19 Let s = (s1, s2)
T ∈ S be a point with τ = s2. Show that

lim
ε→0+

Par(s,Hτ−ε)=
{(

s1
σ

)
∈R2 : σ ≥ s2

}
.

Here, we mean convergence with respect to the Hausdorff metric. How is it possible
to use this to define the beach line for non-generic times? [Hint: Look at Snapshot 2
in Fig. 6.4.]

Lemma 6.20 If τ is generic, then each parabolic arc in Par(s,Hτ)∩Bτ , for s ∈ S,
is contained in the corresponding Voronoi region VRS(s).

The set Par(s,Hτ) ∩ Bτ may consist of several parabolic arcs, e.g., snapshot 2
in Fig. 6.4. Here the parabolic arc for b is divided as soon as the point d becomes
known, i.e., at time d2.

Proof For x ∈ Par(s,Hτ) ∩ Bτ let δ := dist(x, s) = dist(x,Hτ) and assume x ∈
VRS(s). By Corollary 6.15 the open disk B around x with radius δ contains a
point r ∈ S. Since B ⊆H+τ , we have that r is known at time τ . But x is above the
parabola Par(r,Hτ), which contradicts x being contained in the beach line Bτ . �

The next question is to determine how the beach line changes as the time τ

changes (in the direction of smaller values). Here, of course, the relevant times
are those when a certain point s = (s1, s2)

T ∈ S is first detected; see Snapshot 2 in
Fig. 6.4. This time s2 will be called a point event. It is a consequence of Lemma 6.20,
and of the convexity of the Voronoi regions, that new parabolic arcs can only arise
at point events; the beach line cannot be pierced from behind by a parabola. For a

90 6 Voronoi Diagrams

generic τ we have that, by construction, the beach line has only finitely many points
where it is not differentiable, since it is the union of finitely many parabolic arcs;
these points are called breakpoints.

Lemma 6.21 If τ is generic then every breakpoint of Bτ lies on an edge of the
Voronoi diagram.

Proof Let x be a breakpoint of the beach line Bτ at time τ . Then there exist two
active points r, s ∈ S with x ∈ Par(r,Hτ) ∩ Par(s,Hτ) and the statement follows
from Lemma 6.20. �

We assume that the vertical line [−s1 : 1 : 0] through s intersects the beach line
Bs2 at a point x which is contained in a unique parabolic arc Par(r,Hs2); here r ∈ S

is an active point. By construction we have that x ∈VRS(r)∩VRS(s) and VRS(r)∩
VRS(s) is an edge of the Voronoi diagram; this edge is detected (partly) for the first
time at time s2. For a sufficiently small ε > 0, a part of the parabola Par(s,Hs2−ε)

lies on the beach line, say with the breakpoints x and y. Then, the segment [x, y] is
the intersection of the Voronoi edge VRS(r) ∩VRS(s) and the set above the beach
line. Thus, new edges are discovered at point events.

By Corollary 6.15, every vertex v of VR(S) lies on a circle through at least three
points of S. The point in time at which a circle through at least three points from S

is detected is called a circle event. In other words, we have a circle event at time τ if
the sweep line Hτ is the lower tangent to a circle through at least three points of S.
By Corollary 6.15 only those circle events create vertices whose circular disks have
no points of S in their interior.

Now we can examine how a parabolic arc γ vanishes from the beach line. Let γ ′
and γ ′′ be, respectively, the left and the right neighbor of γ in the beach line. Let
s, s′, s′′ ∈ S be the points corresponding to these three parabolic arcs. We assume
now that the parabolic arc γ vanishes at time τ . At the slightly later generic point
in time τ − ε, γ ′ and γ ′′ are neighbors in the beach line. Hence, by Lemma 6.21,
we know that the Voronoi regions VRS(s′) and VRS(s′′) are neighbors in VD(S).
At time τ , γ contracts to a point v. By construction, we have that δ := dist(v, s)=
dist(v, s′)= dist(v, s′′) and that v is a Voronoi vertex. Also, the distance between v

and the sweep line is δ at time τ . This means that τ is a circle event for the triple of
points (s, s′, s′′). This is illustrated in Snapshots 4 and 7 in Fig. 6.4.

Exercise 6.22 Show that there are at most 2|S|−2 breakpoints in the beach line Bτ

for a generic time τ .

Data Structures The way in which geometric data is stored is crucial for the run-
time analysis of the beach line algorithm. Here we only outline the most important
ideas and refer the reader to the original work of Fortune [42], and to the books [31]
and [71], for more details of the implementation.

First, we have to decide in which way we want to store the output, i.e., the
Voronoi diagram of a point set in the plane. One special feature of the planar case is

6.4 The Beach Line Algorithm 91

Fig. 6.4 Eight snapshots of the beach line algorithm

92 6 Voronoi Diagrams

that we can restrict ourselves to the Voronoi edges. Every Voronoi region is a (not
necessarily bounded) polygon whose edges can be cyclically ordered. Every edge
is contained in exactly two regions. Therefore, if we store each edge twice with its
vertices and orientation, then the regions are implicitly given by the sequence of
their edges. Thus, each oriented edge stands for an incident pair of a Voronoi edge
and a Voronoi region, and the Voronoi vertices are implicitly given as the endpoints
of the edges.

Depending on the specific construction of the data structure, it can be problematic
that some Voronoi regions are unbounded, and thus the cyclic sequence of edges
does not form a complete circle. However, this can be easily addressed by using the
ideal points of lines on which the unbounded edges lie as artificial Voronoi vertices.
These ideal points can then be connected by artificial Voronoi edges on the ideal
line so that every Voronoi region can be represented as a closed circle of (original
or artificial) Voronoi edges.

In practical applications, it is common to use points on a sufficiently large bound-
ing box, rather than artificial Voronoi vertices on the ideal line. This bounding box
should be large enough to contain all points of S and all vertices of VD(S).

The data structure itself is then a doubly linked list of oriented edges, which are
also called half-edges, such that each edge is stored with its two endpoints and with a
reference to the next half-edge in the cyclic order. Furthermore, we store a reference
to the parallel half-edge, i.e., the same edge with the opposite orientation. This data
structure is also known as the half-edge data structure. We refer to [27, §10.2] for
the implementation of doubly linked lists.

Note also that the half-edge data structure is useful for storing arbitrary planar
graphs and arbitrary cell decompositions of oriented surfaces.

Before we study the beach line algorithm in detail, we have to determine a suit-
able way in which to code the beach line itself. Here, it is not necessary to trace the
exact trajectory of each parabolic arc. We need only store the combinatorial infor-
mation, i.e., the number of parabolic arcs in the beach line, the points of S to which
they correspond, and the order in which they occur.

Example 6.23 The beach line from Fig. 6.5 can be coded, for example, by the or-
dered sequence of points (s(1), s(2), s(3), s(4), s(5)) and the breakpoints correspond
to neighboring pairs of points.

Some points can occur multiple times. For example, we see that the beach line in
Snapshot 2 of Fig. 6.4, which appears shortly after a point event, can be written as
(a, c, a, b, d, b).

However, coding the beach line as an ordered list is not beneficial for the run-
time complexity. It is better to use a binary search tree. The leaves of this search tree
contain points from S that each correspond to one parabolic arc on the beach line. An
interior vertex stands for a breakpoint (r, s) if r is the biggest leaf in the left subtree,
and s the smallest in the right subtree; see Fig. 6.5. In particular, we have that here,
in contrast to the list description, the breakpoints are explicitly represented.

6.4 The Beach Line Algorithm 93

Fig. 6.5 A beach line consisting of five parabolic arcs and a representation as a search tree

For further details on the implementation of the search tree representation of the
beach line, we refer to the book [31]. General binary search trees are described
in [27, §12].

The search tree structure of the beach line is not sufficient to guarantee a good
run-time of the algorithm. We also need the height of the search tree to be of size
O(logm), where m = |S|, at every step of the algorithm. A search tree with this
property is said to be balanced. Note that the coding length of the beach line, i.e.,
the number of parabolic arcs and breakpoints, is linear in m; see Exercise 6.22.
Hence, it is possible to add or delete parabolic arcs in O(logm) time.

Various concepts are associated with the balance of search trees, for example, the
so-called “red black trees” [27, §13].

Lastly, we need to establish a data structure for the point and circle events. An
important aspect here is the (time-wise) order, which would suggest a list, or a search
tree as a suitable representation. However, here it is crucial to immediately see the
next event at every step, without having to perform a search. Therefore, a search
tree is not suitable. It is also important to be able to quickly add new events at the
right position in the sorted order. Thus, a list is also not suitable. The solution is a
heap, which allows us to immediately see the next event (i.e., in constant time), and
to delete this event after processing it in logarithmic time. Furthermore, we need to
be able to guarantee that arbitrary new events can be added in O(logm) time. An
example of a suitable data structure is a binomial heap [27, §19].

6.4.1 The Algorithm

Using the data structures described above, we can now detail the actual algorithm.
Let B be a balanced search tree that represents the beach line. The queue Q stores
unprocessed events, which are listed in order of their appearance. Every event in
the queue Q is represented by point coordinates. The sweep line is only implicitly
represented by the next event at a given time.

94 6 Voronoi Diagrams

Algorithm 6.1: The beach line algorithm

Input: Finite point set S ⊆R
2

Output: VD(S) in half-edge model
1 B←∅
2 Initialize Q with all point events from S.
3 while Q = ∅ do
4 e← next event in Q; remove e from Q

5 if e point event for s ∈ S then
6 Handle-Point-Event(s,Q,B)
7 else
8 Handle-Circle-Event(e,Q,B)

The order defined by the queue, and thus the heap structure, corresponds pre-
cisely to the ordering of the events by their y-coordinate. Since the sweep line is
moving from top to bottom, points with a large y-coordinate represent early events.
Here, a point event corresponding to s ∈ S is coded by the point s itself. A circle
event is represented by the lowest point of the circle; when the sweep line reaches
the lowest point of the circle, the whole circular disk is visible.

For a correct implementation it is crucial that the events in Q are not stored in
an isolated way. It is necessary to be able to distinguish between point and circle
events. Moreover, it is also useful that a point that represents a circle event also
refers to the points of S that define the circle. There are a few additional references
of this kind between the data structures B and Q, but we restrict ourselves to the pre-
sentation of the crucial ideas. We mainly ignore the processing of the actual Voronoi
diagram in the half-edge model in our pseudo-code. This has the consequence that
Algorithm 6.1 lists VD(S) as output, but we never state a return value in the code.

For our analysis, we first assume that the points in S are in general position, i.e.,
at most three on one circle at a time. The case where this condition is not satisfied
is discussed at the end of this section.

Before we discuss the two subroutines to process point and circle events on p. 95,
we will estimate the complexity of the steps of the main program. Initializing the
heap Q has time complexity O(m logm) (this can be reduced to O(m) when a
suitable implementation is used), since there are exactly m point events. Estimating
the number of possible circle events is more difficult, since there may be circle
events that do not lead to Voronoi vertices. An analysis of Steps 10 to 12 of the
subroutine Handle-Point-Event shows that every Voronoi edge can trigger at
most two (potential) circle events. Therefore, by Corollary 6.13, there are at most
O(m) events in total; Steps 3 to 8 in Algorithm 6.1 are hence performed at most
O(m) times. If Q is realized as a binomial heap, it takes O(logm) time to delete
an event from Q. We will show below that each point and each circle event only
requires logarithmic time. This implies that the total time complexity of the beach
line algorithm is O(m logm).

6.4 The Beach Line Algorithm 95

Every parabolic arc γ is implicitly coded in the search tree B as a triple
[(r, s), s, (s, t)], where r, s, t ∈ S are as in Fig. 6.5. The pairs of points (r, s) and
(s, t) represent the breakpoints that bound the parabolic arc. In particular, we have
that the parabolic arc on the left side of γ corresponds to r and the one on the right
corresponds to t .

When checking the correctness of this subroutine, note that each circle event is
matched to the lowest point of the corresponding Voronoi circle. Therefore, the point
events that correspond to points on a Voronoi circle, i.e., that trigger a circle event,
are always correctly processed at a time prior to the circle event. This is also true for
the special case where the third point of S on a Voronoi circle is simultaneously the
lowest point, i.e., when a circle event and the corresponding point event occur at the
same time. In this case, the following occurs: the parabolic arc corresponding to the
lowest point is generated and immediately afterwards deleted by the simultaneously
occurring circle event. In particular, Algorithm 6.1 always begins with at least three
point events before the first circle event can occur.

Simultaneously occurring point events can be processed in arbitrary order. The
same is true for simultaneously occurring circle events, since we assumed the points
to be in general position. Thus, two circle events may occur at the same time, but
at different places. Simultaneous point and circle events that are unrelated do not
pose a problem. The only critical case, i.e., when a circle event is triggered by a
simultaneous point event, was discussed above.

Step 3 in Handle-Circle-Event can be seen as the reverse of Step 8 in
Handle-Point-Event. There, only those parabolic arcs are deleted which were
previously generated by a point event. Step 11 of Handle-Point-Event can
also trigger redundant circle events, but these are detected and deleted in Step 4 of
Handle-Circle-Event.

1 Procedure: Handle-Point-Event(s,Q,B)

2 if B = ∅ then
3 Add s to B.
4 else
5 Let γ = ((p, q), q, (q, r)) be the parabolic arc in B above s.
6 if γ refers to a circle event in Q then
7 delete this event

8 Replace γ in B by the three parabolic arcs[
(p, q), q, (q, s)

]
,
[
(q, s), s, (s, q)

]
,
[
(s, q), q, (q, r)

]
.

9 Generate a pair of new half-edges for the Voronoi edge VR(q)∩VR(s).
10 Compute the intersection point v = (v1, v2)

T of the Voronoi edge
corresponding to the parabolic arc γ := ((q, s), s, (s, q)) and the Voronoi
edge corresponding to the parabolic arc on the left.

11 Add (v1, v2 − dist(v, s)) as a potential circle event e to Q.
12 The parabolic arc γ contains a reference to e and vice-versa.
13 Proceed analogously to Steps 10 to 12 with the parabolic arc on the right

side of γ .

96 6 Voronoi Diagrams

1 Procedure: Handle-Circle-Event(e,Q,B)

2 Let γ be a parabolic arc that vanishes at the circle event e.
3 Remove γ from B and update the neighboring inner vertices.
4 Remove all circle events from Q which are referred to by γ or by one of its

two neighbors.
5 Generate the center z of the circle corresponding to e as a new Voronoi vertex.
6 Generate a pair of new half-edges for the new breakpoint that emerges due to

the removal of γ .
7 Store z as an endpoint of the two involved edges.
8 Link the edges to one another with respect to the half-edge model.

Example 6.24 We want to show how the point event illustrated in Snapshot 2 in
Fig. 6.4 affects the event queue Q. Before the point event corresponding to the
point d is processed, the queue contains three point events and one circle event:

Q= (d, (a, b, c), e, f
)
.

The point event d triggers two new circle events. After this, at the generic time
τ = d2 − ε, we have:

Q= ((a, b, d), (a, c, d), e, f
)
.

Later, the two circle events (a, b, d) and (a, c, d) will generate Voronoi vertices.
The circle event (a, b, c) vanishes at time d2 (Handle-Point-Event, Step 7),
since we then know that d is contained in the circumcircle of a, b and c.

It remains to be discussed what occurs when the points in S are not in general
position. It is perhaps surprising that our algorithm works here with only a few mod-
ifications. Actually, we have that the beach line algorithm produces a valid Voronoi
diagram that may contain some edges of length 0. It is simple to detect and delete
these edges in linear time after the algorithm has terminated.

6.5 Determining the Nearest Neighbor

We now discuss the problem of finding the nearest neighbor, or the nearest post
office respectively, which we mentioned in the introduction. Given a finite point set
S ⊆R

2 and a point p ∈R2, we want to determine the point s ∈ S which minimizes
dist(p, s). This problem has, of course, a very simple solution, i.e., we can compare
each distance from p to every point of S. If S consists of m points, this method
needs O(m) steps.

But, when the configuration of the point set S is always the same and only the
point p changes with each call, a different approach may be better. If we expect

6.6 Exercises 97

Fig. 6.6 Vertical layers in the
Voronoi diagram for
answering the nearest
neighbor problem

many calls, it pays off to invest more time in the beginning to be able to process
each later call more quickly. In the following, let m be the cardinality of S.

Our goal is to describe a data structure that enables the answer of each call in
logarithmic time. To do this, we compute the Voronoi diagram of S using Fortune’s
beach line algorithm in O(m logm) steps.

Then, we draw a vertical line through each Voronoi vertex as depicted in Fig. 6.6.
These additional lines divide the Voronoi diagram into triangles and trapezoids, and
into unbounded polyhedra in the outer regions. These vertical layers are ordered
from left to right. If these are stored in a balanced search tree, we can detect the
layer of each point p ∈R2 via its first coordinate p1 in O(logm) time.

By construction we can guarantee that no vertical layer contains a vertex in its
interior, so that all Voronoi edges are vertically ordered within each layer. If we
also store the edges in each layer in a balanced search tree, we can detect the pair
of edges that lies directly above and below p in O(logm) steps using the second
coordinate p2.

Theorem 6.25 For an m-element point set S ⊆R
2 it is possible to generate a data

structure in O(m2 logm) time such that the solution to the nearest neighbor problem
in S can be found in O(logm) time.

Proof It is possible to compute the Voronoi diagram VD(S) in O(m logm) time.
Since there exist linearly many Voronoi vertices, there exist linearly many vertical
layers. In each layer there are at most linearly many edges. In total, we have to
initialize O(m) balanced search trees each with O(m) vertices. �

6.6 Exercises

Exercise 6.26 Let S be the vertex set of the n-dimensional cross-polytope. Deter-
mine the f -vector of the Voronoi diagram VD(S).

98 6 Voronoi Diagrams

Exercise 6.27 Let e(1), . . . , e(n) denote the standard basis vectors of Rn. The ver-
tices of the standard cube [0,1]n are precisely the sums of pairwise distinct standard
basis vectors. Show that the n! simplices

Δ(σ) := conv
{
0, e(σ (1)), e(σ (1)) + e(σ(2)), . . . , e(σ (1)) + e(σ(2)) + · · · + e(σ(n))

}
generate a triangulation of [0,1]n, where σ runs through all elements of the sym-
metric group Sym{1, . . . , n}. Show that every simplex Δ(σ) has the same volume
(i.e., 1/n!).

Exercise 6.28 Let m ∈ N be arbitrary. Describe an m-element point set in R
2 (in

general position) for which the beach line algorithm first treats all point events and
then all circle events.

6.7 Remarks

Voronoi diagrams have appeared independently over the last few centuries in differ-
ent scientific disciplines. Their methodical usage in mathematics can be traced back
to Dirichlet (1850) and Voronoi (1908), who used the diagrams to study quadratic
forms. The presentation of a Voronoi diagram can be found as early as in Descartes’
(1644) work on visualizing the mass distribution in our solar system.

Detailed discussions of this topic can be found in the books of Edelsbrunner [38],
Boissonat and Yvinec [15] and de Berg et al. [31].
polymake computations with Voronoi diagrams will be explained in Sec-

tion 7.6 below. CGAL offers a variety of methods to compute Voronoi diagrams
and their generalizations, including the beach line algorithm.

Chapter 7
Delone Triangulations

We have already illustrated the utility of Voronoi diagrams with the application in
Section 6.5. In fact, the neighborhood relations of points to each other which are ex-
pressed in Voronoi diagrams are used in their dual form in many other applications.
This leads to the concept of Delone subdivisions (of the convex hull) of a point set.
We shall discuss an application of this in Chapter 11.

As part of our study of Delone triangulations, we will explore the relation of
convex hull algorithms to triangulation methods and to the computation of volumes.

7.1 Duality of Voronoi Diagrams

Let S ⊆ R
n be finite such that S affinely spans the space R

n. By Theorem 6.12
we know that a Voronoi diagram VD(S) is generated by the vertical projection
of the polyhedron P(S) = ⋂s∈S T (s)+ ⊆ R

n+1 to the first n coordinates. Here,
T (s) denotes the tangent hyperplane of the standard paraboloid U at the point
sU := (s,‖s‖2)T , and T (s)+ denotes the upper half-space. By Theorem 6.14,
affS = R

n implies that P(S) has a vertex, i.e., it is pointed. Therefore, by Theo-
rem 3.36, P(S) is projectively equivalent to a polytope. In the following we describe
how to construct a polytope which is projectively equivalent to P(S).

To do this, we examine the projective transformation π of Pn+1
R

defined by the
(n+ 2)× (n+ 2)-matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 2 0 . . . 0 0
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

...

0 0 . . . 0 2 0
−1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As we have previously done, we regard R
n+1 as a subset of Pn+1

R
via the embedding

ι introduced in Section 2.1.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_7,
© Springer-Verlag London 2013

99

http://dx.doi.org/10.1007/978-1-4471-4817-3_7

100 7 Delone Triangulations

Fig. 7.1 An illustration of
the standard parabola and of
the map π inducing the
stereographic projection

Lemma 7.1 The projective transformation π maps the standard paraboloid
U ⊆ R

n+1 to the unit sphere S
n ⊆ R

n+1. The only point on S
n which is not con-

tained in the image of U under π is the north pole (1 : 0 : · · · : 0 : 1)T . The tangential
hyperplane [1 : 0 : · · · : 0 : 1] at the north pole is the image of the ideal hyperplane
under π .

Proof For a point s ∈Rn we have

π
(
1 : s1 : · · · : sn : ‖s‖

)T = (1+ ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1
)T

,

and also 1+ ‖s‖2 > 0. The square of the norm of the (affine) image point is∥∥(1+ ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1
)T ∥∥2

= 4s2
1 + · · · + 4s2

n + (‖s‖2 − 1)
2

(1+ ‖s‖2)
2

= 1.

This implies that π(s) lies on the unit sphere.
Since π induces a stereographic projection from R

n to S
n \ {(1 : 0 : · · · : 0 : 1)T },

we can show that (1 : 0 : · · · : 0 : 1)T is the only point on S
n that is not contained in

the image of π . To do this, it suffices to study the case n= 1. The affine point

π(sU)=
(

2s

1+ s2
,
s2 − 1

1+ s2

)T

is the intersection point of the unit circle and the connecting line of (s,0)T with the
north pole (0,1)T ; see Fig. 7.1.

The last statement, i.e., that the ideal hyperplane [1 : 0 : · · · : 0] is mapped to the
tangential hyperplane at the north pole, can be proved with a simple calculation. �

Exercise 7.2 Show that the closure of the image π(P(S)) is a polytope. [Hint: Use
Lemma 6.11 to compute a ball that contains π(P(S)).]

7.1 Duality of Voronoi Diagrams 101

In the following we will denote the polytope π(P(S)) by PS . By construction,
PS ⊆ R

n+1 is full-dimensional and has the origin in its interior. Its polar polytope
QS := P ◦S is also full-dimensional and has the origin in its interior. Since π is dif-
ferentiable, Lemma 7.1 implies that all facets of PS are tangent to S

n. This is true
for the images of the facets of P(S) under π , as well as for the image of the ideal
hyperplane [1 : 0 : · · · : 0]. This leads to the following V-representation of QS :

QS = conv
({(

1+ ‖s‖2 : 2s1 : · · · : 2sn : ‖s‖2 − 1
)T : s ∈ S

}
∪ {(1 : 0 : · · · : 0 : 1)T

})
. (7.1)

Furthermore, the points in (7.1) are the vertices of QS . If we apply the map π−1

to QS we obtain, since π−1((1 : 0 : · · · : 0 : 1)T) = (0 : · · · : 0 : 1)T , an unbounded
polyhedron

RS = conv{sU : s ∈ S} + pos
{
(0, . . . ,0,1)T

}⊆R
n+1.

Definition 7.3 The Delone polytope of S,

P∗(S) := conv{sU : s ∈ S},

is the convex hull of the points of S lifted to the standard paraboloid.

By construction we have that P∗(S) is the convex hull of the vertices of the
unbounded polyhedron RS . In Section 5.3 we defined “upper” and “lower” halves
of convex polygons. We generalize this here for arbitrary polytopes.

Definition 7.4 Let h be an outer normal vector of a facet F of an (n + 1)-
polyhedron P ⊆R

n+1. With respect to the last coordinate direction, we call F an

upper
vertical
lower

⎫⎬
⎭ facet of P if the scalar product

〈
h, e(n+1)

〉
is

⎧⎨
⎩

> 0,

= 0,

< 0.

Definition 7.5 A polytopal subdivision of a finite point set S ⊆ R
n is a polytopal

subdivision of the convex hull convS whose vertex set consists of the points of S.

Theorem 7.6 Let P ⊆R
n+1 be a polytope with vertex set V and let

S = {(v1, . . . , vn)
T : v ∈ V

}⊆R
n

be the projection of V to the first n coordinates. Then the lower facets of P induce
a polytopal subdivision that covers the set convS. Furthermore, the image of every
face F which is contained in a lower facet is affinely isomorphic to F . The same
holds for the upper facets of P .

102 7 Delone Triangulations

Proof Since the lower (and upper) facets lie in the boundary complex of P (see Ex-
ample 6.6), the intersection condition is automatically satisfied. It remains to show
that the projections of the lower facets of P cover Q := convS.

Let h be the outer normal vector of a lower facet F of P . Without loss of gen-
erality, let 〈h,F 〉 = 0, i.e., affF = linF is a linear hyperplane. We choose a basis
(v(1), . . . , v(n)) of linF . Since h is perpendicular to lin{v(1), . . . , v(n)}, we know that
(v(1), . . . , v(n), h) is a basis of Rn+1. Additionally, since 〈h, e(n+1)〉 = 0, the vectors
v(1) − v

(1)
n+1e

(n+1), . . . , v(n) − v
(n)
n+1e

(n+1),−e(n+1) also form a basis. Therefore, the
orthogonal projection of F is linearly (or in the general case, affinely) isomorphic
to F . The same argument works for upper facets.

Since Q is a polytope, it remains to show that each vertex v of Q lies on the
orthogonal projection of a lower and an upper facet. The preimage of v under the
orthogonal projection is either a vertex v′ or a vertical edge of P . We begin by
examining the first case. Since v′ is “visible” in the projection, there exists a vector
h in the normal cone of v′ such that 〈h, e(n+1)〉 = 0. And since v′ is the unique
preimage of v, we know that h is contained in the relative interior of the normal
cone of v′. Thus, there exist vectors h+, h− in the normal cone of v′ such that
〈h+, e(n+1)〉 > 0 and 〈h−, e(n+1)〉 < 0. Since 〈h+, e(n+1)〉 > 0, there exists at least
one upper facet that contains v′. Furthermore, 〈h−, e(n+1)〉< 0 implies that there is
at least one lower facet that contains v′.

We still need to address the case where the preimage of v is a vertical edge
[v′,w′] of P . Assume, without loss of generality, that v′ lies above w′. Then there
exists a vector h+ in the normal cone of v′ such that 〈h+, e(n+1)〉 > 0, and there
exists a vector h− in the normal cone of w′ such that 〈h−, e(n+1)〉< 0. Thus, v′ is
contained in at least one upper facet and w′ is contained in at least one lower facet
of P . �

The proof also shows that each polytope in R
n+1 has at least one lower and at

least one upper facet. This is not necessarily true for unbounded polyhedra.

7.2 The Delone Subdivision

We now examine the lower facets of the Delone polytope

P∗(S) := conv{sU : s ∈ S}
of the finite point set S.

Theorem 7.7 The lower facets of P∗(S) induce, by vertical projection, a polytopal
subdivision DS(S) of S whose face poset is anti-isomorphic to the face poset of the
Voronoi diagram VD(S).

Proof The vertex set of the polytope P∗(S) is the set {sU : s ∈ S}. Also, all facets of
the polyhedron P(S) are lower facets. Together with Theorem 7.6, this implies that
DS(S) is a polytopal subdivision of S.

7.2 The Delone Subdivision 103

Fig. 7.2 A Voronoi Diagram and the corresponding Delone subdivision

Each Voronoi cell F ∈ VD(S) can be expressed as the intersection of Voronoi
regions. This means that there exists a set of points F(S) ⊆ S such that F =⋂

s∈F(S) VRS(s). The map

κ : VD(S)→DS(S), F =
⋂

s∈F(S)

VRS(s)
→ convF(S) (7.2)

is bijective, and thus by Theorem 3.32 reverses the inclusion relation between the
faces. Together, this shows that κ defines an anti-isomorphism of the face poset of
VD(S) onto the face poset of DS(S). �

Definition 7.8 The polytopal subdivision DS(S) of the set S in Theorem 7.7 is
called the Delone subdivision of S.

In particular, Theorem 7.7 states: For s, s′ ∈ S the segment [s, s′] is an edge of the
Delone subdivision DS(S) if and only if the Voronoi regions VRS(s) and VRS(s′)
have a common facet.

As in Chapter 6, we say that the points of S are in general position if no (n+ 2)-
element subset of S lies on a common sphere.

Corollary 7.9 If the points of S are in general position, then DS(S) is a triangula-
tion.

Proof The statement follows from Exercise 6.16 and Corollary 3.33. �

The points in Fig. 7.2 are in general position and their Delone subdivision is a
triangulation. The following definition makes use of the notion of refinement: we
say that a polytopal subdivision S1 of S refines a polytopal subdivision S2 of S if
every polytope of S1 is contained in some polytope of S2.

104 7 Delone Triangulations

Definition 7.10 A Delone triangulation of S is a triangulation of S that refines the
Delone subdivision.

If S is in general position, then DS(S) is the unique Delone triangulation of S.
We now discuss an important property of the Delone subdivision that results from
its duality to the Voronoi diagram. As before, let S ⊆R

n be finite.

Theorem 7.11 Let T ⊆ S be an arbitrary subset. The polytope convT is a face of
the Delone subdivision DS(S) if and only if there exists an open n-dimensional ball
B such that B ∩ S = ∅ and ∂B ∩ S = T .

Proof First, let F := convT be a k-face of DS(S). By Theorem 7.7, F is dual to
an (n− k)-face F ∗ of the Voronoi diagram VD(S). Let x be a point in the relative
interior of F ∗. By Theorem 6.14 the largest open ball BS(x) around x that does not
contain a point from S satisfies the condition ∂BS(x)∩ S = T .

Now let B be an open ball such that B ∩ S = ∅ and ∂B ∩ S = T . The center of B

lies in the intersection of the Voronoi regions that correspond to the points in T .
Again, Theorems 6.14 and 7.7 imply that convT is a face of DS(S). �

Exercise 7.12 Prove that the lower facets of P∗(S) are precisely the bounded faces
of RS . [Hint: The task of Exercise 6.4 was to show that a point s ∈ S lies on the
boundary of the convex hull convS if and only if its Voronoi region VRS(s) is
unbounded.]

Exercise 7.13 Let κ be the bijection from VD(S) to DS(S) defined in (7.2). Show
that every face F ∈VD(S) is orthogonal to its image κ(F) ∈DS(S).

7.3 Computation of Volumes

We have already seen the versatility of convex hull algorithms when we applied
them to Voronoi diagrams (and via duality to Delone subdivisions). To give the
reader an idea of how central convex hull methods are to linear geometry, we will
take a brief detour to discuss the computation of volumes.

Corollary 7.9 stated that the Delone subdivision of a point set S in general posi-
tion is a triangulation. In this case, we can sum the volumes of the maximal simplices
in DS(S) to compute the volume of the convex hull convS; see Algorithm 7.1.

To complete the description of this method we review the computation of the
volume of a simplex. Let s(1), . . . , s(n+1) ∈ R

n be points in general position, i.e.,
Δ := conv{s(1), . . . , s(n+1)} is a simplex. Then,

volΔ= 1

n! · det

⎛
⎜⎜⎜⎝

1 1 . . . 1
s
(1)
1 s

(2)
1 . . . s

(n+1)
1

...
...

. . .
...

s
(1)
n s

(2)
n . . . s

(n+1)
n

⎞
⎟⎟⎟⎠ (7.3)

7.4 Optimality of Delone Triangulations 105

Algorithm 7.1: The volume of the convex hull of points in general position

Input: S ⊆R
n finite, in general position, affS =R

n

Output: volume of convS

1 compute the Delone triangulation D =DS(S)

2 v← 0
3 for Δ maximal face in D do
4 v← v + volΔ

5 return v

is the volume of Δ. There is a beautiful geometric proof for this. From linear algebra
we know that the determinant in (7.3) (without the factor 1/n!) is the volume of the
parallelepiped spanned by the vectors s(1), . . . , s(n+1) ∈ R

n. Every parallelepiped
can be transformed into a cuboid via a shear mapping. Shear mappings are affine
transformations which preserve volume. Hence, the above statement about the vol-
ume of Δ follows from Exercise 6.27, where we studied the triangulations of the
standard cube [0,1]n. Alternatively, we can compute the volume of the simplex in-
ductively with a calculation.

In general, of course, we cannot assume that the point set S is in general position.
This is where the following exercise comes in.

Exercise 7.14 Show that each polytope P admits a triangulation whose vertices are
precisely the vertices of P . [Hint: Use Corollary 7.9. If the vertices of P are not in
general position employ the perturbation procedure from Lemma 3.48.]

Whether or not S is in general position, replacing D in Algorithm 7.1 by any
triangulation of convS gives an algorithm for volume computation. If S is not in
general position, for instance, the triangulation obtained from Exercise 7.14 can be
used.

Note that this method of computing the volume via Delone triangulations is of
purely theoretical relevance. In the remarks at the end of this chapter we refer to
approaches which are more relevant to practical applications.

Remark 7.15 In some practical applications it is necessary to compute the volume
of non-convex geometric objects. Using the inclusion-exclusion formula, see Gallier
[45, §4.4], one can generalize (exact or approximative) methods for computing the
volume of convex polytopes to arbitrary finite unions of polytopes.

7.4 Optimality of Delone Triangulations

It is known that Delone triangulations (especially in the plane) satisfy several op-
timal properties within the set of all triangulations of a given set of points. For

106 7 Delone Triangulations

example, we have that in R
2 the minimal angle appearing in the triangles is max-

imized (as will be shown in Corollary 7.28). In higher dimensions the situation is
more complicated. We will show that the maximal radius of the circumsphere is
minimized.

Let T be an arbitrary triangulation of a given finite point set S ⊆ R
n such that

dim affS = n. For every point x ∈ convS there exists a (not necessarily unique)
n-simplex Δ ∈ T that contains x. Let

S(c, ρ) := {y ∈Rn : ‖y − c‖ = ρ
}

be the unique sphere with center c and radius ρ which contains the vertices of Δ.
We call S(c, ρ) the sphere spanned by Δ. We define the number ψT (x,Δ) as

ψT (x,Δ) := ρ2 − ‖x − c‖2.

Clearly ψT can only be non-negative. Furthermore, ψT (x,Δ)= 0 if and only if x

lies on the sphere S(c, ρ), i.e., x is a vertex of T . For a Delone triangulation the
value of the function does not depend on the simplex Δ. The proof is left to the
reader in the following exercise.

Exercise 7.16 Let D be a Delone triangulation of S. Show that for any two sim-
plices Δ, Δ′ in D that contain x we have

ψD(x,Δ)=ψD
(
x,Δ′

)
.

Therefore, we can unambiguously write ψD(x) instead of ψD(x,Δ) for a Delone
triangulation D.

Before we study the map ψ for various triangulations of S, we need a general
statement about the intersection of the standard paraboloid U from (6.3) with affine
hyperplanes.

Proposition 7.17 Let p ∈Rn+1 with pn+1 <
∑n

i=1 p2
i . Then the intersection of the

standard paraboloid U with the affine hyperplane

H =
{

x ∈Rn+1 : xn+1 = 2
n∑

i=1

pixi − pn+1

}
(7.4)

is mapped by the vertical projection to the sphere{
x ∈Rn :

n∑
i=1

(xi − pi)
2 =

n∑
i=1

p2
i − pn+1

}
⊆R

n. (7.5)

Conversely, the map x
→ xU = (x,‖x‖2) lifts every sphere in R
n to the intersection

of an affine hyperplane with U .

7.4 Optimality of Delone Triangulations 107

Fig. 7.3 The intersection of
the standard paraboloid in
R

n+1 with an affine
hyperplane projects to a
sphere in R

n

Figure 7.3 illustrates this projection.

Proof For every point x ∈H ∩U , equating the hyperplane and paraboloid expres-
sions, we obtain the following:

2p1x1 + · · · + 2pnxn − pn+1 = x2
1 + · · · + x2

n.

This implies

n∑
i=1

(xi − pi)
2 =

n∑
i=1

x2
i − 2

n∑
i=1

xipi +
n∑

i=1

p2
i =

n∑
i=1

p2
i − pn+1,

which is the sphere equation from the statement.
Conversely, every sphere S ⊆ R

n can be written in the form (7.5), so that the
image of S under the lifting x
→ xU is the intersection of U and the hyperplane
defined by (7.4). �

To improve one’s understanding of the statement, it may be useful to compare
Proposition 7.17 with Lemma 6.11.

Lemma 7.18 Let D be a Delone triangulation of S and let T be a different trian-
gulation of S. Then for all x ∈ convS

ψD(x)≤ψT (x,Δ)

where Δ is an n-simplex from T that contains x.

Proof Let S be the sphere spanned by Δ. We can write S in the form

S=
{

x ∈Rn :
n∑

i=1

(xi − ci)
2 =

n∑
i=1

c2
i − cn+1

}

108 7 Delone Triangulations

for a vector c ∈Rn+1 where cn+1 <
∑n

i=1 c2
i . From this we obtain

ψT (x,Δ)=
n∑

i=1

c2
i − cn+1 −

n∑
i=1

(xi − ci)
2

= 2
n∑

i=1

cixi − cn+1 −
n∑

i=1

x2
i . (7.6)

The last expression is the directed vertical distance from xU = (x1, . . . , xn,‖x‖2)T ∈
U to the hyperplane H defined by xn+1 = 2

∑n
i=1 cixi−cn+1. Since ψT (x,Δ)≥ 0,

the hyperplane H lies above xU , or xU is a vertex of the Delone polytope P∗(S). By
Proposition 7.17, and since S contains the n+ 1 affinely independent points of S,

aff{xU : x ∈Δ∩ S} =H.

Thus, the distance (7.6) is minimized if and only if H is a lower supporting hyper-
plane of P∗(S). This is equivalent to Δ being a simplex of a Delone triangulation
of S. �

Besides the sphere containing the vertices of an n-simplex Δ, in the following
we will study the uniquely determined smallest enclosing sphere of Δ. The next
exercise illustrates when these two spheres coincide.

Exercise 7.19 The sphere S spanned by Δ is also the smallest enclosing sphere of
Δ if and only if the center of S is contained in Δ.

We will now show that for an n-simplex Δ, the function ψT (x,Δ) attains its
maximum when x is the center of the smallest enclosing sphere of Δ.

Lemma 7.20 Let Δ ∈ T be an n-simplex with smallest enclosing sphere S
′ =

S(c′, ρ′). Then,

max
x∈Δ ψT (x,Δ)=ψT

(
c′,Δ

)= ρ′2.

Proof Let S= S(c, ρ) be the sphere spanned by Δ. If the center c of S is contained
in Δ, by Exercise 7.19 the two spheres S and S

′ coincide, and the statement is clear.
Otherwise, c′ is contained in the boundary of Δ. Therefore, there exists a unique
k-face F of Δ, for k ∈ {0, . . . , n − 1}, that contains c in its relative interior. The
k-dimensional sphere S

′′ spanned by F (in affF) is the intersection of the smallest
enclosing sphere S

′ and affF . Here, S′ and S
′′ have the same center c′ (and the

same radius ρ′). The point c′ minimizes the distance to c, and thus maximizes the
function ψT on Δ. This is illustrated in Fig. 7.4. It follows that

ψT
(
c′,Δ

)= ρ2 − ‖c′ − c‖2 = ρ′2,

which proves our claim. �

7.5 Planar Delone Triangulations 109

Fig. 7.4 A triangle which
spans the circle S and its
smallest enclosing circle S

′

Let Δ be a simplex of the triangulation T of the point set S. We define ρ(Δ) as
the circumradius, i.e., the radius of the smallest enclosing sphere of Δ. Then,

ρ(T) :=max
Δ∈T

ρ(Δ)

is the maximal circumradius of T .
As mentioned at the beginning of this section, we will show that the Delone

triangulations minimize the maximal circumradius in the set of all triangulations
of S.

Theorem 7.21 Let D be a Delone triangulation of S and let T be another triangu-
lation of S. Then, ρ(D)≤ ρ(T).

Proof Let xT be a point in convS that maximizes the function ψT and let xD be a
point that maximizes ψD . By Lemma 7.20, the point xT is the center of the smallest
enclosing sphere S(xT , ρ(T)) of an n-simplex Δ in T which contains xT . In the
same way let S(xD, ρ(D)) be the smallest enclosing sphere of an n-simplex in D
that contains xD . Using Lemma 7.18 we obtain

ρ(D)2 =ψD(xD)≤ψT
(
xD,Δ′

)≤ψT (xT ,Δ)= ρ(T)2,

where Δ′ is an n-simplex from T that contains xD . �

Remark 7.22 It is possible for a non-Delone triangulation to have the same maximal
circumradius as a Delone triangulation.

7.5 Planar Delone Triangulations

We will again use the strategy of first studying the general case, and then examining
the planar case in greater detail. The main result of this section is an algorithm that
takes an arbitrary triangulation of a point set S ⊆ R

2 and modifies it step-by-step
into a Delone triangulation. This algorithm is not as fast as the beach line algorithm

110 7 Delone Triangulations

Fig. 7.5 A convex
quadrangle with its diagonals
and the four circles through
each set of three vertices

from Section 6.4, but it is nevertheless interesting for several other reason; see the
remarks at the end of this section.

First, we examine an arbitrary planar convex quadrangle with vertices a, b, c, d

(in cyclic order). This quadrangle has diagonals [a, c] and [b, d]. The four circles
through each set of three vertices either coincide, or are pairwise distinct. The latter
case occurs when the points are in general position; see Fig. 7.5.

The Delone subdivision of four points in general position is a triangulation. Ex-
actly one of the two diagonals is therefore a Delone edge. By Theorem 7.11, this can
be characterized by the existence of a circle through three points from {a, b, c, d}
that does not contain the fourth point in its interior. The two circles through three
points which have the Delone edge as a chord have this property. In Fig. 7.5 the
Delone edge is [a, c] and the two Delone circles are through a, b, c and a, c, d . The
other diagonal and the corresponding non-Delone circles are dashed.

The remaining results of this section rely on the following classical result of basic
geometry.

Proposition 7.23 (Euclid: The Elements, Book III, Proposition 21) Let
a, b, c, d ∈ R2 be the vertices of a convex quadrangle in cyclic order. The two di-
agonals define eight angles α1, α2, β1, β2, γ1, γ2, δ1, δ2 as shown in Fig. 7.6. Let C

denote the circle through a, b, c. Then d lies⎧⎨
⎩

on the outside of
on
on the inside of

⎫⎬
⎭ C if and only if

⎧⎨
⎩

α2 > δ1 and γ1 > δ2
α2 = δ1 and γ1 = δ2
α2 < δ1 and γ1 < δ2

⎫⎬
⎭ .

Exercise 7.24 In the configuration described in Proposition 7.23 show that the an-
gles α2, β1, β2 and γ2 are determined by α1, γ1, δ1 and δ2.

An important consequence is that the smallest of the six interior angles of the
non-Delone triangulation of a quadrangle is always smaller than the smallest of the
six interior angles of a Delone triangulation.

7.5 Planar Delone Triangulations 111

Fig. 7.6 Four points on a
circle (left; as in
Proposition 7.23—congruent
angles are identically marked)
and a quadrangle with Delone
circle (right)

Corollary 7.25 Let a, b, c, d ∈ R2 be the vertices of a convex quadrangle in cyclic
order which do not all lie on a common circle. Let [a, c] be the unique Delone edge
as in Fig. 7.5. Using the angle labels from Proposition 7.23 and Fig. 7.6, we have

min{α1+α2, β1, β2, γ1+ γ2, δ1, δ2}< min{α1, α2, β1+β2, γ1, γ2, δ1+ δ2}. (7.7)

Proof We will prove the statement by providing for each element from the sec-
ond set an element of the first set which is smaller: By Proposition 7.23, β2 < α1,
δ1 < α2, δ2 < γ1 and β1 < γ2. Since β2 and δ2 are positive, β1 < β1 + β2 and
δ1 < δ1 + δ2. �

After this examination of the elementary geometry of convex quadrangles, we
will now fix a finite point set S ⊆ R

2 that affinely spans the plane, which we will
use throughout the remainder of this section.

Let a, b, c, d be points of S such that {a, b, c} and {a, c, d} are (neighboring)
triangles of a triangulation T . If a, b, c, d are the vertices of a convex quadrangle
then,

Flip
(
T , [a, c]) := (T \ {conv{a, b, c}, conv{a, c, d}, [a, c]})

∪ {conv{a, b, d}, conv{b, c, d}, [b, d]}
is also a triangulation of S. We say Flip(T , [a, c]) is generated by a flip of the edge
[a, c] of T . Edge flips are reversible since

Flip
(
Flip

(
T , [a, c]), [b, d])= T .

A diagonal edge of a triangulation T is an edge in T which is a diagonal in a
convex quadrangle consisting of two neighboring triangles in T . We say that the
corresponding convex quadrangle is spanned by a diagonal edge. A diagonal edge
has the local Delone property if it is the Delone edge of the quadrangle that it spans.
(Such an edge is also said to be locally Delone.) The quadrangle which is spanned
by a locally Delone diagonal edge satisfies the angle relations from Corollary 7.25,
or its vertices lie on a circle (which would imply that the second diagonal is also a
Delone edge).

112 7 Delone Triangulations

Algorithm 7.2: The flip algorithm for the computation of a Delone triangula-
tion

Input: an arbitrary triangulation T of a finite point set S ⊆R
2

Output: a triangulation D of S, such that every diagonal edge has the local
Delone property

1 while there exists a diagonal edge e ∈ T that is not locally Delone do
2 T ← Flip(T , e)

3 return T

The usefulness of edge flips for Delone triangulations can be seen in Algo-
rithm 7.2. We will see in Theorem 7.27 that the result is always a Delone trian-
gulation of S.

First, we have to show that Algorithm 7.2 terminates. To do this, we need some
sort of quality measure for triangulations of S that increases step-by-step throughout
the flip algorithm.

Every triangulation T of S has the same number of triangles, say k; this will
be shown in Exercise 7.29. Therefore, we can assign to T the vector W(T) of all
3k interior angles of T in increasing order. The lexicographic order of these angle
vectors induces a partial order on the set of all triangulations of S. We write T > T ′
if the vector W(T) is larger than W(T ′) with respect to the lexicographic order.
Since each flip of a diagonal edge which is not locally Delone strictly increases the
triangulation, and since there are only a finite number of triangulations of S, the
algorithm terminates.

Corollary 7.26 Let e be a diagonal edge of a triangulation T of S that is not locally
Delone. Then, Flip(T , e) > T .

Proof Under the assumptions of Corollary 7.25, [b, d] is a non-Delone edge of the
quadrangle conv{a, b, c, d}. The inequality (7.7) states that the non-Delone triangu-
lation 〈conv{a, b, d}, conv{b, c, d}〉 is smaller than the Delone triangulation

〈
conv{a, b, c}, conv{a, c, d}〉= Flip

(〈
conv{a, b, d}, conv{b, c, d}〉, [b, d]).

This property holds analogously for the quadrangle spanned by e and is inherited
by T . All other angles remain constant. �

We are now able to prove the main theorem of this section which states that the
flip algorithm 7.2 computes a Delone triangulation.

Theorem 7.27 A triangulation D of S whose diagonal edges satisfy the local De-
lone property is a Delone triangulation of S.

7.5 Planar Delone Triangulations 113

Fig. 7.7 An illustration of
the proof of Theorem 7.27

Proof Assume that the triangulation D is not a Delone triangulation. Then, by The-
orem 7.11, there exists a triangle Δ= conv{a, b, c} ∈D whose open circumdisk B

contains at least one point d ∈ S. Without loss of generality, let [a, c] be the edge of
Δ that separates d from Δ. Choose one pair from the set of such pairs (Δ,d) that
maximizes the angle (a, d, c). We illustrate this in Fig. 7.7.

The containment [a, c] ⊆ conv{a, b, c, d} implies that [a, c] is a diagonal edge of
D that by assumption satisfies the local Delone property. Thus, there exists a point
d ′ ∈ S such that Δ′ := conv{a, c, d ′} ∈D, which lies outside of B . The circumdisk
B ′ of Δ′ contains by construction the point d . Also, we have d ∈ Δ′, since D is a
triangulation of S. Without loss of generality, let [a, d ′] be the edge that separates d

from Δ′.
Proposition 7.23 implies that the angle (a, d, d ′) is larger than the angle (a, d, c),

which contradicts our choice of the pair (Δ,d) as maximal. �

In other words, the previous theorem states that a Delone triangulation is a max-
imal element in the partial order induced by the angle vectors.

Corollary 7.28 Every Delone triangulation maximizes the smallest interior angle
in the set of all triangulations of S.

In several applications, e.g., finite difference methods for solving partial differen-
tial equations, it is desirable to have triangulations including as few narrow triangles
as possible. By Corollary 7.28, this, in the planar case, naturally leads to Delone tri-
angulations.

It is possible to show that the Flip Algorithm 7.2 has quadratic worst case run-
time. In this sense, it is inferior to the beach line algorithm from Section 6.4. How-
ever, the expected run-time (in an appropriate probability model) of the flip algo-
rithm is linear. From a more theoretical viewpoint, the correctness of the algorithm
implies that the configuration space of all triangulations of a given finite point set is
connected with respect to flip operations.

Another reason for the flip algorithm’s popularity is that it can easily be extended
to a dynamic algorithm to compute Delone triangulations. By this we mean the fol-

114 7 Delone Triangulations

Fig. 7.8 The Voronoi diagram and Delone subdivision of ten points in the plane (the points labeled
H and I lie outside of the visible region of R2)

lowing: Let S ⊆ R
2 and x ∈ R

2 \ S be such that S ∪ {x} is in general position.
Assume we previously computed a unique Delone triangulation D of S. Since we
assumed S ∪ {x} to be in general position, x lies in the interior of a triangle Δ ∈D,
or on the outside of convS. In both cases it is easy to modify D so that we ob-
tain a triangulation of S ∪ {x}. Now, applying the flip algorithm yields a Delone
triangulation of S ∪ {x} after just a few steps.

In a similar way, we can compute a Delone triangulation of S \ {s} for s ∈ S.

7.6 Inspection Using polymake

polymake is able to construct Voronoi diagrams and Delone triangulations of ar-
bitrary dimension. We will only deal with the aspects concerning their visualization
in this section.

As a first example, we choose the set S to be ten points in the plane whose coor-
dinates represent the locations of the Berlin post offices from the introduction; see
Fig. 1.2. To do this, we generate an object $Postoffices of type VoronoiDi-
agram. The point set S is given in homogeneous coordinates as the defining prop-
erty SITES. Notice that we prepend the homogenizing ones as a single column
vector of length ten. The second property SITE_LABELS is optional but useful to
identify the points of S in the output.

polytope > $S
= new Matrix([[640,-406],[554,-252],[619,-81],[618,-698],

[628,-311],[136,-330],[961,-466],[148,-848],
[392,200],[1049,-308]]);

7.6 Inspection Using polymake 115

Fig. 7.9 16 points in R
3, their Voronoi diagram (left) and corresponding Delone subdivision and

Voronoi vertices (right). Both pictures only show the region inside the cube [−4,4]3

polytope > $Postoffices
= new VoronoiDiagram(SITES=>ones_vector(10)|$S,

SITE_LABELS=>"A B C D E F G H I J");

The command

polytope > javaview($Postoffices->VISUAL_VORONOI);

initiates the visualization of the Voronoi diagram, and simultaneously the Delone
subdivision. Here, by choice, we view the output in JavaView, although other
output methods are available. The result can be seen in Fig. 7.8. Since we listed
specific labels for S in the section SITE_LABELS, these labels appear in the output.
polymake automatically chooses a finite region of R2 that contains the points of
S and all vertices of the Voronoi diagram.

Our second example is 3-dimensional. As a point set we take the eight vertices of
a random polytope $R_3_8 as in Section 3.6.2; see Fig. 3.10, and additionally the
eight vertices of the cube with coordinates ±3/2. Since the vertices of the random
polytope are (almost) on the unit sphere, they are contained in the convex hull of the
cube’s vertices. In total, we have |S| = 16.

polytope > $R_3_8 = rand_sphere(3,8);
polytope > $C = cube(3,3/2);
polytope > $VD = new VoronoiDiagram(SITES=>($R_3_8->VERTICES/$

C->VERTICES));
polytope > javaview($VD->VISUAL_VORONOI);

It is difficult, however, to depict the Voronoi diagram in printed form. The inter-
active features of JavaView are very useful here. Figure 7.9 shows two snapshots
which may give the reader an impression of the 3-dimensional image.

116 7 Delone Triangulations

7.7 Exercises

Exercise 7.29 Let S be an m-element point set in the plane R
2 such that h points

lie on the boundary of the convex hull convS. Show that every triangulation of S

has exactly 2m− 2− h triangles and 3m− 3− h edges.

Exercise 7.30 Show that a triangulation of a finite point set in the plane is a Delone
triangulation if and only if for every interior edge e, and for the two triangles which
have e as an edge, the sum of the angles which lie opposite e is less than π .

7.8 Remarks

Euclid of Alexandria (ca. 365–300 B.C.) established the axiomatic method in math-
ematics with his groundbreaking work “The Elements”. However, many of the the-
orems appearing in this work are much older. For example, our Proposition 7.23
is often accredited to Thales of Milet (ca. 624–546 B.C.), indeed it might even be
traced back to Babylonian mathematics. We recommend to the reader the interactive
version of the “Elements” [68].

Further information about Delone triangulations can be found in [15, 31]. These
triangulations were named after the Russian mathematician Boris Nikolajewitsch
Delone. Note that several other texts use the name “Delaunay”, which comes from
a French translation of the name. Delone subdivisions generalize to regular subdi-
visions of polytopes, a concept which is highly relevant to applications in algebraic
geometry, for example; see De Loera, Rambau and Santos [32, §2.2.3].

The perturbation procedure of Lemma 3.48 directly gives rise to a triangulation
of any polytope. For this there is no need of an additional Delone subdivision as in
Exercise 7.14. Triangulations of this kind are known as pushing triangulations; see
[32, §4.3.4].

Dyer and Frieze showed that computing the volume of a polytope given in outer
description is #P-hard [37]. In practical applications it is common to use approx-
imative methods which are based on so-called “random walks”; see Vempala [96]
for a good overview.

Part II
Non-linear Computational Geometry

Chapter 8
Algebraic and Geometric Foundations

In the first part of the book we dealt exclusively with polyhedral and hence linear
structures. Many situations explicitly or implicitly required computing the intersec-
tion of a finite set of affine hyperplanes in the n-dimensional space R

n. This was
possible with methods from linear algebra. Although it is adequate to use linear
geometric structures in many applications, there are also problems which have a
natural non-linear representation. We restrict ourselves here to non-linear structures
that can be handled with algebraic methods. This chapter is devoted to systems of
polynomial equations in two unknowns.

8.1 Motivation

So far we have mainly used the real numbers as a coordinate field. It would seem
coherent, therefore, to continue this approach when we begin to look at non-linear
geometry. However, it quickly becomes clear that algebraic geometry over the field
R is significantly harder than over its algebraic closure C. Some of our results will
be applicable for any field, some will focus exclusively on the complex numbers,
and occasionally we will be able to transfer results from the complex to the real
numbers.

We begin by studying polynomials in one variable. The roots of a quadratic poly-
nomial f (x)= x2 + bx + c with real coefficients b, c can be real or complex. Re-
gardless of the root type, we can express them in terms of radicals:

x1,2 =−b

2
±
√

b2

4
− c.

Similarly, for polynomials f of degree three or four there exist the so-called Car-
dano formulas,1 which provide explicit expressions for the zeros of f .

1These formulas are implemented in most computer algebra systems such as Maple and Sage.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_8,
© Springer-Verlag London 2013

119

http://dx.doi.org/10.1007/978-1-4471-4817-3_8

120 8 Algebraic and Geometric Foundations

Fig. 8.1 The graph of the
function f (x)= x5 − 4x + 2

The situation for polynomials of degree ≥ 5, however, is completely different.
Galois theory shows that the zeros of a polynomial of degree ≥ 5 are in general not
expressible in terms of radicals. An example of such a polynomial (which has the
symmetric group of degree 5 as its Galois group) is

x5 − 4x + 2.

So we might have to accept that we have to use a polynomial itself to “code” the
zeros or to approximate the zeros with numerical methods. In this case we can give
an approximation to the complex zeros as

−1.518512, 0.508499, 1.243596, −0.116792± 1.438448i.

The corresponding real function is illustrated in Fig. 8.1.
Since polynomial systems are an extremely powerful tool in mathematical mod-

eling, it is a central task of geometry to study the sets of zeros of arbitrary polyno-
mials as well as the intersections of those sets. From a computational point of view
we focus on computing and manipulating these sets.

Example 8.1 The set of zeros of a quadratic polynomial f ∈R[x, y] defines a conic
section (or it is empty). For example, the polynomials

f (x, y)= x2 + y2 − xy − x − y − 1,

g(x, y)= 2x2 − 4y2 − xy − 2x − 2y − 1

define an ellipse and a hyperbola, see Fig. 8.2. It is an important task to characterize
the intersection points of such conic sections. Our focus is again on the correspond-
ing computational perspective: In which way(s) can we efficiently and systemati-
cally compute these intersection points?

Definition 8.2 For f ∈C[x1, . . . , xn] we call

V(f) := {x ∈Cn : f (x1, . . . , xn)= 0
}

the (complex) affine hypersurface or (complex) variety of f , and we denote by

VR(f) := {x ∈Rn : f (x1, . . . , xn)= 0
}

the real affine hypersurface or real variety of f .

8.1 Motivation 121

Fig. 8.2 The intersection of
the conic sections defined by
f and g (dashed)

Fig. 8.3 Real hypersurfaces
in the plane

Remark on the notation: In the case of a small number of unknowns we often use
x, y, z, . . . instead of x1, x2, x3,

Example 8.3 Consider the case n= 2. Here we have that

VR

(
x2 + y2 − 1

)
is a circle;

VR

(
x2 + y2

)
is a point;

VR

(
x2 + y2 + 1

)
is empty.

(see Fig. 8.3).

Example 8.4 For n = 3 there is a large number of famous examples, including
Steiner’s Roman Surface

V
(
x2y2 + y2z2 + z2x2 − 2xyz

)
(8.1)

and Clebsch’s Diagonal Surface

V
(
16x3+16y3−31z3+24x2z−48x2y−48xy2+24y2z−54

√
3z2−72z

)
. (8.2)

The real parts of these surfaces are depicted in Fig. 8.4.
Contrary to the intuition we get from the illustration, the algebraic surface defined

by the polynomial (8.1) contains the three coordinate axes as singular loci. We can
see this by directly examining the equation.

122 8 Algebraic and Geometric Foundations

Fig. 8.4 Left: Steiner’s Roman Surface (8.1), right: Clebsch’s Diagonal Surface (8.2)

8.2 Univariate Polynomials

We will again study the case of polynomials in one unknown. As mentioned before,
the roots of univariate polynomials of degree ≥ 5 are in general not expressible
in terms of radicals. For the numerical approximation of roots it is necessary to
distinguish between the task of computing just one and computing all of the roots
of a polynomial. Also, it may happen (e.g. in the case of coefficients which vary
extremely in size) that numerical methods are badly conditioned and will not con-
verge.

It is possible to formulate the computation of all roots of a univariate polynomial
over an arbitrary field K as an eigenvalue problem of linear algebra. For the com-
putation of the eigenvalues of a complex matrix numerous well-studied numerical
methods are available.

The eigenvalues of a matrix A ∈Kn×n are the roots of the characteristic polyno-
mial of A, i.e., the roots of

χA(t)= det(A− tI),

where I ∈Kn×n is the identity matrix. The characteristic polynomial p(t) is always
of degree n with leading coefficient (−1)n. In order to formulate the computation
of the roots of an arbitrary polynomial p as an eigenvalue problem, it is sufficient to
find a matrix A with characteristic polynomial p.

Definition 8.5 The companion matrix of the normalized polynomial

p(t)= tn + an−1t
n−1 + · · · + a1t + a0 ∈K[t]

8.3 Resultants 123

of degree n is the matrix

Cp =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎞
⎟⎟⎟⎟⎟⎠ ∈Kn×n.

Theorem 8.6 The characteristic polynomial of the companion matrix of the nor-
malized polynomial

p(t)= tn + an−1t
n−1 + · · · + a1t + a0 ∈K[t]

of degree n≥ 1 is

det(Cp − tI)= (−1)np(t).

Proof The proof is by induction on n. For n = 1 the statement is obvious and for
n > 1, eliminating the first row and the first column of Cp gives the companion
matrix of the polynomial q(t)= tn−1 + an−1t

n−2 + · · · + a2t + a1. Hence we can
write

det(Cp − tI)= (−t)(−1)n−1q(t)+ (−1)n+1(−a0),

which leads to

det(Cp − tI)= (−1)np(t). �

8.3 Resultants

Let K be an arbitrary field. Using the resultant of two polynomials f,g ∈K[x], we
can decide if f and g have a common factor of positive degree without explicitly
computing this factor. If K is algebraically closed, the existence of a non-trivial
common factor is equivalent to f and g having a common zero.

Definition 8.7 Let n,m≥ 1 and

f = anx
n + · · · + a1x + a0 and

g = bmxm + · · · + b1x + b0

124 8 Algebraic and Geometric Foundations

be polynomials of degree n and m in K[x]. The resultant Res(f, g) is the determi-
nant of the (m+ n)× (m+ n)-matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 . . . a0
. . .

. . .
. . .

an an−1 . . . a0
bm bm−1 . . . b0

. . .
. . .

. . .

bm bm−1 . . . b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭m rows,

⎫⎬
⎭n rows.

(8.3)

The matrix (8.3) is called the Sylvester matrix of f and g.

Theorem 8.8 Two polynomials f,g ∈K[x]\{0} of positive degrees have a common
factor of positive degree if and only if Res(f, g)= 0.

To prove this, we first need to show the following:

Lemma 8.9 The resultant Res(f, g) of two polynomials f,g ∈ K[x] with positive
degrees vanishes if and only if there exist polynomials r, s ∈ K[x] with (r, s) =
(0,0), deg r < degf , deg s < degg and sf + rg = 0.

Proof We interpret the rows of the Sylvester matrix as vectors

xm−1f, . . . , xf, f, xn−1g, . . . , xg, g

in the K-vector space of polynomials of degree < m+ n (with respect to the basis
xm+n−1, xm+n−2, . . . , x,1). The resultant Res(f, g) vanishes if and only if these
m+n vectors are linearly dependent, i.e., if there exist coefficients r0, . . . , rn−1 and
s0, . . . , sm−1 in K which do not simultaneously vanish and such that

sm−1x
m−1f + · · · + s1xf + s0f + rn−1x

n−1g+ · · · + r1xg+ r0g = 0.

Using the notation r :=∑n−1
i=0 rix

i and s :=∑m−1
j=0 sj x

j this is the case if and only
if (r, s) = (0,0), deg r < degf , deg s < degg and sf + rg = 0. �

Proof of Theorem 8.8 We show that f and g have a non-constant common factor if
and only if they satisfy the condition from Lemma 8.9. If f and g have a common
non-constant factor h ∈K[x] then there exist polynomials f0, g0 ∈K[x] with

f = hf0 and g = hg0,

and we can choose r := f0 and s := −g0.
To prove the reverse implication it is important to note that every non-constant

polynomial in K[x] can be uniquely written as a product of prime factors. From the

8.4 Plane Affine Algebraic Curves 125

prime factor decomposition of the four polynomials in the equation sf = −rg we
obtain the equation

s1 · · · sk · f1 · · ·fp =−r1 · · · rl · g1 · · ·gq, (8.4)

which may contain constant factors as well. Without loss of generality we assume
that s1, f1, r1, g1 are constant and that all other prime factors are normalized poly-
nomials of positive degree. Further, we can assume that s = 0 (otherwise we switch
the roles of f and g and of r and s). Therefore we have that degg > deg s ≥ 0, and
hence q ≥ 2 and g2 is a normalized prime factor of g with positive degree. Since
degg > deg s and since the prime factor decomposition is unique, there exists at
least one normalized prime factor gj of g that also appears in f2, . . . , fp . Hence gj

is a non-constant common factor of f and g. �

As mentioned above, the proof relies on the fact that the polynomial ring K[x]
is a unique factorization domain. That is, K[x] is commutative, does not contain
zero divisors and every polynomial in K[x] has a unique decomposition into prime
factors; see Appendix A. Gauss’ Lemma, Theorem A.4, shows that for every unique
factorization domain R, the polynomial ring R[x] is also a unique factorization
domain.

By analyzing the proofs in this section, one can see that all of the results hold for a
polynomial ring R[x] over an arbitrary unique factorization domain R. Note that R,
being zero divisor free and commutative, has a quotient field that we denote by K .
The linear algebraic methods which we used can then be interpreted with respect
to this field. Note furthermore that the polynomials r and s in Lemma 8.9 can be
chosen in R[x] for any f,g ∈ R[x], since we could otherwise simply multiply the
equation sf + rg = 0 by the lowest common denominator of r and s.

These abstract remarks are relevant since they imply that the statements of this
section also hold for polynomial rings K[x1, . . . , xn] in several variables over a
field K . To see this, note that

K[x1, . . . , xn] =
(
K[x1, . . . , xn−1]

)[xn]. (8.5)

When writing the resultant of two multivariate polynomials we have to keep track
of the variable which we use to build the resultant. In the case of (8.5) we write, for
example, Resxn and analogously degxn

for the degree in the unknown xn.
We summarize this result with a corollary.

Corollary 8.10 Two polynomials f,g ∈K[x1, . . . , xn] of positive degree in xn have
a common factor of positive degree in xn if and only if Resxn(f, g) is the zero poly-
nomial in K[x1, . . . , xn−1].

8.4 Plane Affine Algebraic Curves

Some of the simplest examples of non-linear structures are algebraic curves in the
plane. We will now examine the complex case.

126 8 Algebraic and Geometric Foundations

Definition 8.11 A subset C ⊆ C
2 is called an affine-algebraic curve if there exists

a non-constant polynomial f ∈C[x, y] such that

C =V(f)= {(x, y) ∈C2 : f (x, y)= 0
}
.

Obviously the polynomial f for a given hypersurface is not determined uniquely,
since we have for any λ ∈ C \ {0} and k ≥ 1 that V(f) = V(λf) = V(f k). An
important result of this section will be that this is the only type of uncertainty that
occurs. However, the situation is completely different when we restrict ourselves to
the real numbers. One of the easiest ways to see this is by observing that the empty
set may be written in various ways as a real hypersurface.

Every non-constant polynomial f ∈ C[x, y] defines a curve V(f) ⊆ C
2. If f

is a divisor of g, i.e., g = f · h for a polynomial h, then V(f) ⊂ V(g) and
V(g) = V(f) ∪ V(h). The following Lemma by Study, a predecessor of Hilbert’s
Nullstellensatz (see Section 10.4), enables us to use the point sets of curves to gain
insight about the divisibility of polynomials.

Lemma 8.12 (Study’s Lemma) Let f,g ∈C[x, y]. If f is irreducible, not constant,
and V(f)⊆V(g), then f divides g.

Proof Let

f = any
n + · · · + a1y + a0,

g = bmym + · · · + b1y + b0

be polynomials in C[x, y] with coefficients ai, bj ∈ C[x]. If f,g ∈K[x], i.e., f =
a0 and g = b0, the statement is true. So we can assume (possibly after switching
x and y) that n ≥ 1. We claim that m ≥ 1. If not, then there exists an α ∈ C with
an(α) = 0 and b0(α) = 0, since the univariate polynomials an and b0 have only
finitely many zeros. But this implies that V(f) and the line [−α : 1 : 0] intersect.
This in turn implies that V(g)∩ [−α : 1 : 0] = ∅ and this contradicts our assumption
that V(f)⊆V(g). We illustrate this in Fig. 8.5.

We will now show that the resultant Resy(f, g) has infinitely many zeros x ∈C.
Since Resy(f, g) is a polynomial in x this implies that it is the zero polynomial and
hence that f and g have a common divisor. As f was assumed to be irreducible, it
follows that f divides g.

In the following we study only those α ∈ C with an(α) = 0 and bm(α) = 0.
Doing this we exclude finitely many α ∈ C since an = 0 and bm = 0. Plugging
x = α in f and g results in polynomials fα,gα ∈ C[y]. If fα has pairwise distinct
zeros c1, . . . , ck ∈C, then they are also zeros of gα . Therefore, since 1≤ k ≤ n,

(y − c1) · · · (y − ck)

is a non-constant common factor of fα and gα in C[y]. It follows that(
Resy(f, g)

)
(α)= Resy(fα, gα)= 0. �

8.5 Projective Curves 127

Fig. 8.5 Illustration under
the assumption that m= 0

8.5 Projective Curves

When studying algebraic curves (and algebraic hypersurfaces in general) it is useful
to view them as objects in projective space. A reason for this is that the point set of
the projective space P

n
C

is compact, while that of Cn is not.

Example 8.13 The complex standard parabola V(x2−y) intersects a given line L in
at most two points. If the line is given in the form V(ax+ b− y) with a, b ∈C then
we can compute the intersection points by comparing the equations of the parabola
and the line.

The degenerate case appears when the line L lies tangent to V(x2 − y). In this
case we have a double intersection point (in the sense of the definition in Sec-
tion 8.6). So, counting multiplicity, we still have two intersection points.

If L = V(x − c) for a constant c ∈ C is a vertical line, the parabola and the
line intersect in only one point (see Fig. 8.6). Since the line is not tangent to the
parabola, this intersection point has multiplicity 1. In the following we will see that
in our example there is a second intersection point which is “invisible” in the affine
plane C

2. This point lies on the ideal line of the projective plane P
2
C

.
Note that the illustration of the situation in real space, as in Fig. 8.6, can be

misleading: The possibility of the line not intersecting the parabola does not occur
in complex space.

Curves in the projective plane are defined by homogeneous polynomials f ∈
C[w,x, y].

Definition 8.14

(a) A polynomial f ∈C[x1, . . . , xn] is homogeneous of degree d if for all λ ∈C we
have

f (λx1, . . . , λxn)= λdf (x1, . . . , xn).

(b) Let f ∈C[x1, . . . , xn] be a homogeneous polynomial. Then

V(f) := {(a1 : · · · : an)
T ∈ Pn−1

C
: f (a1, . . . , an)= 0

}
is called the (complex) projective hypersurface of f .

128 8 Algebraic and Geometric Foundations

Fig. 8.6 The intersection of a
parabola with a vertical line

(c) The total degree of a monomial x
α1
1 · · ·xαn

n is the sum of its exponents α1 +
· · ·+αn. The total degree tdegf of a polynomial f is the maximum of the total
degrees of its monomials (where we set tdeg 0=−∞).

(d) The degree of a projective hypersurface V ⊆ P
n
C

is the maximum of the total
degrees of all homogeneous f ∈C[x0, x1, . . . , xn] with V(f)= V .

Note that the condition f (x1, . . . , xn)= 0 in Definition 8.14b. is independent of
the choice of the homogeneous coordinates (a1 : · · · : an) since

f (λa1, . . . , λan)= 0 ⇐⇒ f (a1, . . . , an)= 0

for all λ ∈C \ {0} due to the homogeneity of f .
A projective algebraic curve is the projective hypersurface of a non-constant

homogeneous polynomial in C[w,x, y] without repeated factors. We can directly
see that a polynomial is homogeneous of degree d if each of its monomials has total
degree d .

Remark 8.15 For a not necessarily homogeneous polynomial f we define the ho-
mogeneous component of degree d as the sum of all terms of total degree d . Every
polynomial is the sum of its homogeneous components.

We will now illustrate the usefulness of the projective approach. To do this we
write a polynomial f ∈C[x1, . . . , xn] as the sum of its monomials

f =
∑
i∈I

cix
α

(i)
1

1 · · ·xα
(i)
n

n . (8.6)

Here the ci ∈C \ {0} are the coefficients and I is a (finite) set that serves as an index

set for the monomials. We abbreviate the total degree of the monomial x
α

(i)
1

1 · · ·xα
(i)
n

n

as di := α
(i)
1 + · · · + α

(i)
n . Then

d := tdegf =max{di : i ∈ I }

8.6 Bézout’s Theorem 129

is the total degree of f . The polynomial

f̄ :=
∑
i∈I

cix
d−di

0 x
α

(i)
1

1 · · ·xα
(i)
n

n ∈C[x0, x1, . . . , xn] (8.7)

is homogeneous of degree d and is called the homogenization of f .
In (2.1) we defined the map ι : Cn→ P

n
C

, (x1, . . . , xn)
T
→ (1 : x1 : · · · : xn)

T ,
which embeds the affine space C

n in its projective closure P
n
C

. Using ι we can treat
affine hypersurfaces as subsets of the projective space.

Proposition 8.16 Let f ∈ C[x1, . . . , xn] be an arbitrary non-constant polynomial
with homogenization f̄ ∈C[x0, x1, . . . , xn]. Then we have

ι
(
V(f)

)=V(f̄)∩ ι
(
C

n
)
.

Proof For a ∈ Cn we have ι(a)= (1 : a1 : · · · : an). Using the notation of (8.6) and
(8.7) we have that

f (a)=
∑
i∈I

cia
α

(i)
1

1 · · ·aα
(i)
n

n =
∑
i∈I

ci1
d−di a

α
(i)
1

1 · · ·aα
(i)
n

n = f̄
(
ι(a)

)
.

In particular, f (a) vanishes if and only if f̄ (ι(a)) vanishes. �

We call V(f̄) the projective closure of V(f).

Example 8.17 Recall Example 8.13. Let f = x2 − y ∈C[x, y] and f̄ = x2 −wy ∈
C[w,x, y] be its homogenization. Respectively we have that x − cw is the homog-
enization of the linear polynomial x − c for c ∈ C. The projective closure of the
affine line L = V(x − c) is the projective line [−c : 1 : 0] = V(x − cw). Its point
at infinity (0 : 0 : 1)T is contained in V(x2 − wy) since 02 − 0 · 1 = 0. This is the
“missing” intersection point we were looking for.

Exercise 8.18 Show that for every projective transformation π : Pn
C
→ P

n
C

and ev-
ery non-constant polynomial f ∈ C[x0, x1, . . . , xn] the image π(V(f)) of the pro-
jective hypersurface f under π is again a projective hypersurface of the same de-
gree.

8.6 Bézout’s Theorem

In this section we study how two projective (algebraic) curves C and D of degrees
n and m intersect in the complex projective plane. We will show that C and D

intersect in at most nm points unless they have a common component.

130 8 Algebraic and Geometric Foundations

Definition 8.19

(a) The curve C is said to be irreducible if there exists an irreducible polynomial
that defines C.

(b) Let f,g ∈C[w,x, y] be homogeneous. If g divides f we call V(g) a component
of V(f).

First, we will study the special case of a curve intersecting a line as in Ex-
ample 8.13. Let C = V(f) ⊆ P

2
C

be a curve with homogeneous polynomial f ∈
C[w,x, y] of degree n. To simplify the computations we assume that the line L is
given by V(y) = {(a : b : 0)T ∈ P2

C
: (a : b)T ∈ P1

C
}. The intersection points of C

and L satisfy

C ∩L= {(a : b : 0)T ∈ P2
C
: f (a, b,0)= 0

}
.

As in (8.5), f can be expressed as

f (w,x, y)= fny
n + fn−1y

n−1 + · · · + f0

with coefficients f0, . . . , fn ∈ C[w,x] and tdegfi = n− i (or fi = 0). This gives
f (w,x,0)= f0(w,x).

We distinguish between two cases: For f0 = 0, y divides f and L⊆ C follows.
If f0 = 0 we have that degf0 = n since f is homogeneous of degree n. By the
fundamental theorem of algebra (in its homogeneous formulation) there exists a
decomposition (unique up to the order)

f0 = (b1w− a1x)k1 · · · (bmw− amx)km

with uniquely determined (up to their order) pairwise distinct points (ai : bi)
T ∈ P1

C

and ki ∈N for 1≤ i ≤m. We define

multp(C,L) :=
{

ki for p = (ai : bi : 0)T for an i ∈ {1, . . . ,m},
0 for p /∈ {(ai : bi : 0)T : 1≤ i ≤m}

as the intersection multiplicity of C and L in the point p.

Remark 8.20 We showed in Exercise 8.18 that projective transformations map pro-
jective hyperplanes to projective hyperplanes of the same degree. Since every pro-
jective line can be transformed to any other projective line, we see that the above
definition of multiplicity is valid for the intersection of a curve with an arbitrary
line.

Lemma 8.21 Let C ⊆ P
2
C

be a curve of degree n≥ 1 and L a line which is not con-
tained in C. Then the number of intersection points of C and L counting multiplicity
is equal to n.

Proof This follows immediately from k1 + · · · + km = n. �

8.6 Bézout’s Theorem 131

Fig. 8.7 Intersection points of multiplicity 1 and 2

Example 8.22 The picture in Fig. 8.7 shows two intersection points of multiplicity 1
and the right picture shows an intersection point of multiplicity 2.

Exercise 8.23 Let f ∈ C[x] be a non-constant polynomial of degree n. Show that
the algebraic curve V(f (x)− y)⊆ C

2 and the line V(y) have a (k + 1)-fold inter-
section point at (α,0) if and only if α is a zero of order (k + 1), i.e., α is a zero of
f and of all derivatives f (1) = f ′, f (2) = f ′′, . . . , f (k) = f (k−1)′. In particular we
have that the sum of all orders of all zeros equals n.

We further clarify the multiplicity of intersection points of arbitrary curves below.
First, we will prove a weaker form of Bézout’s theorem.

Theorem 8.24 (Weak form of Bézout’s Theorem) If two projective curves C,D ⊆
P

2
C

of degrees n and m do not have a common component, then they intersect in at
most nm points.

To prove this we need the following technical lemma.

Lemma 8.25 Let f,g ∈ C[w,x, y] be non-constant homogeneous polynomials of
degrees n and m with

f (0,0,1) = 0 = g(0,0,1). (8.8)

Then f and g have a non-constant common factor if and only if the resultant
Resy(f, g) ∈C[w,x] is the zero polynomial. If f and g have no non-constant com-
mon factor then Resy(f, g) has degree nm.

Exercise 8.26 Show that the technical assumption f (0,0,1) = 0 guarantees that
the degree of the homogeneous polynomial f ∈ C[w,x, y] equals the degree of f

interpreted as a polynomial in y with coefficients in C[w,x].

Again, by Exercise 8.18 the assumption (8.8) is irrelevant.

Proof of Lemma 8.25 The first statement follows from the homogeneous version
of Corollary 8.10. For the second statement we first remark that the resultant

132 8 Algebraic and Geometric Foundations

Resy(f, g) is the determinant of an (n+m)× (n+m)-matrix whose non-zero en-
tries rij in row i and column j are homogeneous polynomials in C[w,x] of degree
dij with

dij =
{

j − i if 1≤ i ≤m,

j − i +m if m+ 1≤ i ≤ n+m.

Then Resy(f, g) is a sum of terms of the form

±
n+m∏
i=1

ri,σ (i),

where σ is a permutation of {1, . . . , n+m}. Each of these terms is either the zero
polynomial or a homogeneous polynomial of degree

m+n∑
i=1

di,σ (i) =
m∑

i=1

(
σ(i)− i

)+ n+m∑
i=m+1

(
σ(i)− i +m

)

= nm−
n+m∑
i=1

i +
n+m∑
i=1

σ(i)

= nm.

Since the resultant is not the zero polynomial it must be of degree nm. �

Proof of Theorem 8.24 As in the proof of Study’s lemma we sweep over the plane
with a set of lines. Without loss of generality we can assume that the curves C and
D do not contain the point (0 : 0 : 1)T . Consider the representation

f = any
n + an−1y

n−1 + · · · + a0,

g = bmym + bm−1y
m−1 + · · · + b0

with coefficients ai, bj ∈C[w,x]. Since f and g are homogeneous of degrees m and
n we have that degai = n− i and degbj =m− j if ai, bj = 0. (0 : 0 : 1)T /∈ C ∪D

implies an = 0 and bm = 0. As, by assumption, C and D do not have a common
component, Lemma 8.25 tells us that r := Resy(f, g) is a homogeneous polynomial
of degree nm in C[w,x].

To show that C ∩ D is finite we have to study the resultant in greater detail.
Substituting an arbitrary fixed point (α : β)T of the projective line P

1
C

into f and g

for x and w respectively, we obtain polynomials f(α:β) and g(α:β) in C[y]. We now
apply Theorem 8.8 to these two univariate polynomials.

A point (α : β)T ∈ P
1
C

is a zero of the resultant r if and only if there exists a
γ ∈C such that (α : β : γ)T ∈V(f) ∩V(g). Since we already know that r = 0, we
have that r can only have finitely many zeros on the projective line. For any fixed

8.7 Algebraic Curves Using Maple 133

zero (α : β)T of r there exist only finitely many γ with f (α,β, γ)= g(α,β, γ)= 0.
Otherwise the line

[−β : α : 0] = {λ(α : β : 0)T +μ(0 : 0 : 1)T : (λ : μ)T ∈ P1
C

}
= {(λα : λβ : μ)T : (λ : μ)T ∈ P1

C

}
connecting (α : β : 0)T and (0 : 0 : 1)T would be a common component of C and D.
Hence C ∩D is finite.

Between the finitely many intersection points we can have only finitely many
connecting lines. Using a proper projective transformation we can guarantee that
the point (0 : 0 : 1)T is not contained in any of the connecting lines. So each line
[−β : α : 0] contains at most one intersection point of C and D and there are at most
nm= deg r intersection points. �

For a stronger statement we need to define the multiplicity of an intersection
point of two arbitrary curves C = V(f) and D = V(g) which have no common
component. As at the end of the proof of Theorem 8.24, we assume that each line
[−β : α : 0] with (α : β)T ∈ P

1
C

contains at most one point from C ∩ D and that
(0 : 0 : 1)T /∈ C ∪D.

The key concept for the following statements is the resultant r = ry(f, g), whose
zeros on the projective line P

1
C
= [0 : 0 : 1] ⊆ P

2
C

parameterize the intersection C ∩
D. The point (α : β : γ)T ∈ C ∩D is a k-fold intersection point if the corresponding
zero (α : β)T of r has order k.

Theorem 8.27 (Bézout’s Theorem) If two projective curves C,D ⊆ P
2
C

of degrees
n and m have no common component, then the sum of the multiplicities of their
intersection points is nm.

Proof Using the above notation let s be the cardinality of the intersection C ∩D.
For pi ∈ C ∩D let ki denote the intersection multiplicity. Then we have

∑s
i=1 ki =

deg r = nm. �

8.7 Algebraic Curves Using Maple

Many computer algebra systems enable us to study and visualize algebraic curves.
We think it is sufficient to illustrate this with the commercial universal software
package Maple.

The following Maple commands load packages for studying and illustrating
algebraic curves.

> with(algcurves):
> with(plots):

134 8 Algebraic and Geometric Foundations

Fig. 8.8 A three-leaf clover and its intersection with a parabola

We define the polynomial f := (x2+ y2)2+ 3x2y − y3 ∈C[x, y] and visualize the
affine curve C defined by f via

> f := (x^2+y^2)^2 + 3*x^2*y - y^3;
> plot_real_curve(f,x,y);

See the left hand side of Fig. 8.8. The curve C of degree 4 is also called a three-leaf
clover. We will study now the parabola given by

> g := y-(x^2-1);

see the right hand side of Fig. 8.8.
To calculate the x-coordinates of the real intersection points of C with the

parabola defined by g we use

> r := resultant(f,g,y);

to determine the resultant Resy(f, g), which gives

r := 9*x^4-8*x^2+2-3*x^6+x^8.

Using the command

> fsolve(r,x,complex);

we get a numerical approximation of the complex zeros of r . As seen in Fig. 8.9,
r has real zeros with the numerical values

±0.8281 and ± 0.6656.

Additionally, we have four non-real zeros

±1.3232± 0.9029i.

8.8 Exercises 135

Fig. 8.9 The graph of the
resultant r

Theorem 8.8 implies that for every zero α of r , the univariate polynomials
f (α, y) and g(α, y) have a common factor and therefore a common zero. Hence
we get for every α (at least) one point in the intersection of C with the parabola.

When plotting the resultant r with Maple a “naive” call of the function plot
does not yield a reasonable result, since deg r = 8 is relatively large. We can fix
this by either choosing the number of points at which the function is evaluated to
be large (optional argument numpoints) or by using the more intelligent function
plot_real_curve.

8.8 Exercises

Exercise 8.28 Let

f = anx
n + an−1x

n−1 + · · · + a0,

g = bmxm + bm−1x
m−1 + · · · + b0

be polynomials in C[x] of degrees n and m with their (not necessarily pairwise
distinct) zeros α1, . . . , αn and β1, . . . , βm.

(a) Show

Res(f, g)= an
nbm

m

n∏
i=1

m∏
j=1

(αi − βj)

= an
n

n∏
i=1

g(αi)= (−1)mnbm
m

m∏
j=1

f (βj).

(b) Deduce that Res(f1f2, g) = Res(f1, g)Res(f2, g) for f1, f2, g ∈ C[x]. Is this
statement true only in C or over other fields as well?

Exercise 8.29 Show that the set A = {(x, x) ∈ R2 : x ≥ 0} is not an algebraic hy-
persurface and cannot be written as an intersection of hypersurfaces.

136 8 Algebraic and Geometric Foundations

Exercise 8.30 For which α,β ∈R are all points in V(f)∩V(g) with

f (x, y)= (x − 2α)2 + y2 − 1, g(x, y)= (x − 2β)2 + y2 − 1 ∈C[x, y]
real?

Exercise 8.31 Let f ∈ C[x1, . . . , xn] be a non-constant polynomial with homoge-
nization f̄ ∈ C[x0, x1, . . . , xn]. Show that f is irreducible if and only if f̄ is irre-
ducible.

8.9 Remarks

For the numerical computation of eigenvalues we refer to the textbook of Stoer
and Bulirsch [93]. The fundamentals of Galois theory can be found in Howie’s
book [66].

It is extremely difficult to accurately illustrate algebraic surfaces including their
singularities. One interesting possibility is to use ray-tracing techniques, as is
shown, for example, by surfex [64]. The examples of Fig. 8.4 were generated
using SingSurf [79] and JavaView [82]. SingSurf provides a grid model of
the surface and JavaView provides an interactive view of the model.

Bézout’s Theorem can be traced back to the 18th century (however, the proof
given by Étienne Bézout was incorrect, and it appeared after the first proof of the
theorem). Our approach is based on Fischer’s book [39]. Furthermore, we would
like to refer to the books of Cox, Little, O’Shea [29] and Kirwan [70].

Chapter 9
Gröbner Bases and Buchberger’s Algorithm

We next examine the problem of finding the common roots of a finite set of poly-
nomials over a field K . To do this, we first introduce some necessary algebraic
structures. Gröbner bases play a key role in the computational aspect of this prob-
lem.

In Chapter 10 we will see how to computationally solve arbitrary systems of
polynomial equations using Gröbner bases.

9.1 Ideals and the Univariate Case

In the following we study a polynomial ring over an arbitrary field K . In Chapter 8
we defined (affine and projective) algebraic varieties for a given polynomial. We
now generalize this definition to a set of polynomials. Let S ⊆K[x1, . . . , xn] be an
arbitrary set of polynomials. Then

V(S) := {a ∈Kn : f (a1, . . . , an)= 0 for all f ∈ S
}=⋂

f∈S
V(f)

is called the affine variety of S over the field K . Hence, an affine variety is an
intersection of affine hyperplanes. One can immediately observe that any common
root of the polynomials f1, . . . , ft ∈K[x1, . . . , xn] is also a root of

∑t
i=1 hifi . This

holds for an arbitrary choice of h1, . . . , ht ∈ K[x1, . . . , xn], which motivates the
following definition.

Definition 9.1 A non-empty set I ⊆ K[x1, . . . , xn] is called an ideal if for all
f,g ∈ I and all h ∈K[x1, . . . , xn] we have f + g ∈ I and hf ∈ I .

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_9,
© Springer-Verlag London 2013

137

http://dx.doi.org/10.1007/978-1-4471-4817-3_9

138 9 Gröbner Bases and Buchberger’s Algorithm

For S ⊆K[x1, . . . , xn] we denote by 〈S〉 the ideal generated by S, i.e., the small-
est ideal of K[x1, . . . , xn] that contains S. We have

〈S〉 =
{

t∑
i=1

hifi : f1, . . . , ft ∈ S, h1, . . . , ht ∈K[x1, . . . , xn], t ∈N
}

.

The following exercise illustrates how varieties can be defined using ideals.

Exercise 9.2 Show that V(S)=V(〈S〉).

A generating system of an ideal I is also called a basis of I . Here we need to
stress that—unlike in the case of vector spaces—an ideal can have bases of different
cardinalities: For example, every subset of an ideal I which contains a basis of I

is also a basis of I . In Corollary 9.23, which is also known as the Hilbert Basis
Theorem, we will see that every ideal I ⊆K[x1, . . . , xn] is finitely generated.

Not every basis of an ideal is of equal quality. Some bases allow for the obser-
vation of more characteristics of the ideal than others. We illustrate this with an
example.

Example 9.3 Let f = x2y+ x+ 1, g = x3y+ x+ 1 ∈C[x, y]. In order to compute
the common roots of f and g, it is helpful to have a polynomial of I = 〈f,g〉 that
depends on only one unknown (e.g. on x). In this case we have

x2 − 1= x · f − g ∈ I.

Therefore, for every common root (a, b)T of f,g we know that a ∈ {−1,1}. Sub-
stituting and solving the equations for y shows that the two points (−1,0)T and
(1,−2)T are the common roots of f and g. Figure 9.1 illustrates the real part of the
curves V(f) and V(g). We have x · f − (x2 − 1)= g, hence I = 〈f,x2 − 1〉.

At this point, we briefly remark that the resultant Resy(f, g) = −x2(x2 − 1)

is also contained in I . We shall return to this connection in Chapter 10 (Proposi-
tion 10.4).

The previous example suggests the idea of solving a system of polynomial
equations via step by step elimination of variables followed by backwards substi-
tution. This corresponds to solving a linear system of equations in row echelon
form. This approach motivates the following term: For an ideal I = 〈f1, . . . , ft 〉 ⊆
K[x1, . . . , xn] and i ∈ {1, . . . , n− 1} let

I ∩K[xi+1, . . . , xn]
denote the i-th elimination ideal.

Exercise 9.4 Show that the i-th elimination ideal of I is indeed an ideal in
K[xi+1, . . . , xn].

9.1 Ideals and the Univariate Case 139

Fig. 9.1 Varieties V(f)

and V(g)

We now lay the foundation for the study of elimination ideals in Chapter 10. To
do this we study the question of how, given an ideal I and a polynomial f , we can
determine if f is in I . This is the so-called ideal membership problem for which
Algorithm 9.3 on p. 148 provides a solution.

We first examine the special case of the ideal membership problem with
one unknown: For given polynomials f1, . . . , ft , f ∈ K[x] we ask whether f ∈
〈f1, . . . , ft 〉. A polynomial ring K[x] in one variable is a Euclidean ring since we
can define a division algorithm. Division (via the Euclidean Algorithm 9.1) allows
us to compute the greatest common divisor g of the polynomials f1, . . . , ft , with
〈g〉 = 〈f1, . . . , ft 〉. Furthermore, the Euclidean algorithm allows us to solve the ideal
membership problem, since it in particular enables us to determine if the remainder
of f divided by g is 0.

We assume that the reader knows the basic principles of the algorithm. However,
due to the significance of these two algorithms in our further work, we will illustrate
them.

For two polynomials f,g ∈K[x] \ {0} there exist r, s ∈K[x] such that

f = q · g+ r where deg r < degg. (9.1)

When degf ≥ degg, we do the following: Assume that f =∑n
i=0 aix

i and g =∑m
j=0 bjx

j where n ≥ m and an, bm = 0. Via induction over the degree we can
assume that the polynomial h := f − an

bm
· xn−m · g of degree ≤ n− 1 has a decom-

position h= q ′ · g + r , such that deg r < degg. This implies

f = h+ an

bm

· xn−m · g =
(

q ′ + an

bm

xn−m

)
g+ r.

Using q := q ′ + an

bm
xn−m we get the desired statement. We denote the remainder r

as rem(f ;g) and write g | f if rem(f ;g)= 0.

Definition 9.5 Let K be a field. A polynomial g ∈K[x] is called a greatest common
divisor (gcd) of f1, . . . , ft ∈K[x] \ {0} if the following conditions are satisfied.

140 9 Gröbner Bases and Buchberger’s Algorithm

Algorithm 9.1: The Euclidean algorithm
Input: f,g ∈K[x] \ {0} with degf ≥ degg

Output: gcd(f, g)

1 r0← f ; r1← g; i← 1
2 while ri = 0 do
3 ri+1← rem(ri−1; ri)
4 i← i + 1

5 return ri−1

(a) g | fi for all i ∈ {1, . . . , t};
(b) if h | f1, . . . , h | ft then h | g for all h ∈K[x].

In every unique factorization domain there exists a greatest common divisor
which is unique up to multiplication by a unit (here a non-zero constant in K),
see Appendix A. For uniqueness we choose the gcd with leading coefficient 1.

Analogously we can define the least common multiple of f1, . . . , ft . Alterna-
tively we can read the following computational rule for two polynomials as a defi-
nition:

lcm(f1, f2) := f1f2

gcd(f1, f2)
.

This also shows that the computation of the least common multiple can be reduced
to the computation of the greatest common divisor.

A special property of the ring K[x], or of any Euclidean ring, is that the gcd can
be algorithmically computed.

The Euclidean Algorithm 9.1 terminates since the degrees of the polynomials ri
are strictly decreasing. We denote by qi the polynomial such that in Step 2 we have

ri−1 = qi · ri + ri+1. (9.2)

To prove that the algorithm is correct we show that r := ri−1, which is returned
in the last step, satisfies the two conditions from Definition 9.5. Using (9.2) we can
successively deduce that r divides the remainders ri−2, ri−3, . . . , r1 = g and r0 = f .
If h divides f as well as g, then h divides r2, r3, . . . , ri−1. This can also be deduced
from (9.2).

Every remainder computed throughout the Euclidean algorithm is contained
in the ideal 〈f,g〉 of the two input polynomials f,g ∈ K[x] and hence we have
gcd(f, g) ∈ 〈f,g〉. Therefore, 〈

gcd(f, g)
〉= 〈f,g〉.

Example 9.6 Applying the Euclidean algorithm to the two polynomials f = x4−x3

and g = x3−x repeatedly yields (q1, r2)= (x−1, x2−x) and (q2, r3)= (x+1,0),
so that x2 − x is the gcd of f and g.

9.2 Monomial Orders 141

To determine a single generator of an ideal which is given by more than two
polynomials it is sufficient to verify the following rule:

Exercise 9.7 For t ≥ 3 we have gcd(f1, . . . , ft)= gcd(f1,gcd(f2, . . . , ft)).

Given a sequence of generators f1, . . . , ft of an ideal I ⊆ K[x], the represen-
tation of I as a principal ideal I = 〈gcd(f1, . . . , ft)〉 is called a normal form of I .
This notion is justified by the following exercise.

Exercise 9.8 For univariate polynomials f1, . . . , ft , g1, . . . , gs ∈ K[x] \ {0} with
〈f1, . . . , ft 〉 equal to 〈g1, . . . , gs〉, show that up to a constant factor the polynomials
gcd(f1, . . . , ft) and gcd(g1, . . . , gs) coincide.

In particular, the special case s = 1 implies that in any representation of an ideal
I ⊆ K[x] as a principal ideal I = 〈g1〉, the polynomial g1 is uniquely determined
up to a constant factor.

The Euclidean algorithm serves to compute a normal form for a given ideal I in
K[x]. If an ideal in K[x] is given in normal form, i.e., by a single generator, then the
Euclidean division solves the ideal membership problem. The goal of the following
sections is to generalize these two methods to polynomial rings with an arbitrary
number of unknowns.

9.2 Monomial Orders

The degree naturally defines a partial order on the polynomials in one unknown,
which were studied in the previous section. The remainder polynomial, which is the
result of the division of a polynomial f by g, is smaller than g with respect to this
partial order. To define a proper division in the multivariate case it is necessary to
first define a suitable order on the set of monomials.

A monomial x
α1
1 · · ·xαn

n in K[x1, . . . , xn] is denoted by xα , where α = (α1, . . . ,

αn) ∈Nn is a multi-index. In Definition 8.14 we defined the total degree of a mono-
mial as tdegxα := α1 + · · · + αn. The notation |α| is also used as an alternative to
tdegxα .

Definition 9.9 A monomial order on K[x1, . . . , xn] is a relation ≺ on N
n (or equiv-

alently a relation on the set of monomials xα for α ∈ Nn), which satisfies the fol-
lowing properties.

(a) The relation ≺ is a well-ordered relation on N
n, i.e., every non-empty subset of

N
n has a minimal element with respect to ≺.

(b) α ≺ β and γ ∈Nn implies α + γ ≺ β + γ .

Every well-ordered relation is a total order. From condition (b) it follows that
the zero vector (respectively the empty monomial 1) is the unique smallest element

142 9 Gröbner Bases and Buchberger’s Algorithm

with respect to every monomial order. The second condition requires a compatibility
with respect to multiplication: xα · xγ ≺ xβ · xγ (when expressed in the monomial
description).

Definition 9.10 (Lexicographic order) Let α,β ∈ Nn. We define xα ≺lex xβ if the
leftmost non-zero coefficient in the difference β − α ∈ Zn is positive.

Example 9.11 We have (4,3,1) "lex (3,7,10) and (4,3,1) ≺lex (4,7,10). Ex-
pressed as monomials in K[x, y, z], this translates to x4y3z1 "lex x3y7z10 and
x4y3z1 ≺lex x4y7z10 respectively.

The relation ≺lex is a monomial order. It suffices to check that the relation is a
well-ordered relation. If we assume that ≺lex is not a well-ordered relation, then we
can find a strictly decreasing series

α(1) "lex α(2) "lex α(3) "lex · · · (9.3)

of elements in N
n. By the definition of the lexicographic order, the leftmost entries

α
(i)
1 define a non-increasing series in N. Since the set of natural numbers is well-

ordered, there exists an N1 such that (α(i))1 = (α(N1))1 for all i ≥ N1. Now by
considering only the series elements after the index N1, we can in the same way
deduce that there exist N2, . . . ,Nn such that (α(i))j = (α(Nj))j for all i ≥ Nj and
j ∈ {2, . . . , n}. This contradicts the series (9.3) being strictly decreasing.

A monomial order yields a unique sorted description for arbitrary polynomi-
als. For the remaining part of this section we will fix a monomial order ≺ on
K[x1, . . . , xn]. For a non-zero polynomial f =∑α cαxα in K[x1, . . . , xn] let α∗ :=
max≺{α : cα = 0}. The leading monomial of f is lm≺(f) := xα∗ and the corre-
sponding coefficient lc≺(f) := cα∗ is called the leading coefficient. Their product

lt≺(f) := lc≺(f) · lm≺(f)= cα∗ · xα∗

is called the leading term of f . When the monomial order is contextually clear it is
often neglected in the notation.

Example 9.12 For f = 5x4y3z + 2x3y7z10 in K[x, y, z] we have that lt≺lex(f) =
x4y3z, lc≺lex(f)= 5 and lm≺lex(f)= 5x4y3z with respect to the lexicographic or-
der.

We are now able to generalize the division algorithm to the multivariate case.
Here there is a major difference in comparison to the univariate case: It is useful
to describe the division of a polynomial f ∈ K[x1, . . . xn] by a set of polynomials
(f1, . . . , ft) since ideals in K[x1, . . . , xn] are in general not generated by a single
polynomial.

We look at the leading monomial lm(f) of f and check if division by any of
the leading monomials lm(f1), . . . , lm(ft) results in a remainder of 0. For the first

9.2 Monomial Orders 143

Algorithm 9.2: The multivariate division algorithm
Input: f,f1, . . . , ft ∈K[x1, . . . , xn] with fi = 0
Output: a1, . . . , at , r with f =∑t

i=1 aifi + r

1 ai← 0 for all i ∈ {1, . . . , t}
2 p← f

3 while p = 0 do
4 m← lt(p)

5 i← 1
6 while i ≤ t and m = 0 do
7 if lt(fi) divides m then
8 ai← ai + m

lt(fi)
; p← p− m

lt(fi)
fi

9 m← 0

10 i← i + 1

11 r← r +m ; p← p−m

12 return (a1, . . . , at ; r)

polynomial fk which satisfies this condition, we subtract a suitable multiple of fk

from f ,

f − lt(f)

lt(fk)
fk,

and obtain a new polynomial which is strictly smaller than f with respect to the
monomial order. We replace f by the new polynomial and repeat the process. If the
leading monomial of f is not divisible by any of the leading terms lt(f1), . . . , lt(ft),
we add the leading term to the remainder, subtract it from f and start again at the
beginning.

The remainder r which is produced by Algorithm 9.2 is called the remainder of
f after division by (f1, . . . , ft) and we denote it by rem(f ;f1, . . . , ft). In general
this remainder is not independent of the order of the polynomials by which we
divide.

Example 9.13 Let f = xy2 − y, f1 = xy − 1 and f2 = y2 + 1 be polynomials in
K[x, y]. With respect to the lexicographic order and the ordering (f1, f2) of the
polynomials, the division algorithm divides the leading term xy2 by xy resulting
in y. Since f − y · f1 = 0 the algorithm terminates and returns the decomposi-
tion

xy2 − y = y · (xy − 1)+ 0 · (y2 + 1
)+ 0.

If we reverse the ordering of the polynomials, i.e., we divide by (f2, f1), the term
xy2 is divided by the leading monomial y2, resulting in x. Since the polynomial
f − x · f2 = −y − x is not divisible any further by f1 or f2, the algorithm yields

144 9 Gröbner Bases and Buchberger’s Algorithm

the decomposition

f = x · (y2 + 1
)+ 0 · (xy − 1)+ (−x − y).

Our remainders are: rem(f ;f1, f2)= 0 and rem(f ;f2, f1)=−x − y.

In general, the multivariate division algorithm results in a representation of the
following form.

Lemma 9.14 For given polynomials f,f1, . . . , ft ∈K[x1, . . . , xn] the Division Al-
gorithm 9.2 returns polynomials a1, . . . , at and r = rem(f ;f1, . . . , ft), for which
we have

f = a1f1 + · · · + atft + r,

where no term of r is divisible by any of the monomials lm(f1), . . . , lm(ft). Fur-
thermore, we have for each i ∈ {1, . . . , t} with ai = 0 that

lm(aifi)# lm(f).

Proof It is clear by the construction of the algorithm that no term of the remainder
r is divisible by any of the leading monomials lm(f1), . . . , lm(ft). The assignment
ai← ai + lt(p)

lt(fi)
ensures that the product ai lt(fi) is a sum of terms of f . However,

the terms of f are dominated by their leading term. �

Exercise 9.15 Let ≺ be a monomial order on K[x1, . . . , xn]. Show that

α ≺tdeg β : ⇐⇒ tdegα < tdegβ or (tdegα = tdegβ and α ≺ β),

defines a monomial order.

The construction in Exercise 9.15 can, in certain cases, yield a monomial order
even if the original order does not satisfy all the axioms of a monomial order. The
next exercise exhibits this phenomenon for ≺grevlex, a monomial order that is often
a very efficient one in practical computations.

Exercise 9.16 Let α,β ∈ N
n. We define xα <revlex xβ if the rightmost non-zero

coefficient in the difference β − α ∈ Zn is negative.

(a) Show that the reverse lexicographic order <revlex is not a monomial order.
(b) Show that the graded reverse lexicographic order defined by

α ≺grevlex β : ⇐⇒ tdegα < tdegβ or

(tdegα = tdegβ and α <revlex β),

is a monomial order.

9.3 Gröbner Bases and the Hilbert Basis Theorem 145

9.3 Gröbner Bases and the Hilbert Basis Theorem

In this section we introduce the key concept for solving the ideal membership prob-
lem. We start with an example that illustrates why the multivariate case is much
more complicated than the univariate case.

Example 9.17 Let f1 = xy + 1, f2 = yz + 1 be polynomials in K[x, y]. In the
univariate case it would be desirable to use Euclidean division to determine if the
polynomial f = z− x is contained in the ideal I = 〈f1, f2〉. In fact we do have

z− x = z · (xy + 1)− x(yz+ 1) ∈ 〈f1, f2〉.
However, neither for the ordering (f1, f2) nor for the ordering (f2, f1) is the re-
mainder zero when applying Euclidean division with respect to lexicographic order.
Of course, adding z− x to the ideal basis would give that division of z− x by the
new basis would have 0 as the remainder.

It may seem naive to enlarge the original generating system of an ideal by proper
polynomials so that every polynomial of the ideal has a remainder of zero when
divided by the basis. However, this can be algorithmically achieved. What we need
for this is a criterion that determines if the generating system is large enough.

We denote the set of leading terms of an ideal I with respect to the monomial
order ≺ by lt≺(I). The ideal 〈lt≺(I)〉 generated by the leading terms is called the
initial ideal of I with respect to ≺, and we write in≺(I) := 〈lt≺(I)〉.

Definition 9.18 Let I be an ideal. A finite subset G = {g1, . . . , gt } ⊆ I is called
a Gröbner basis of I with respect to the monomial order ≺ if the leading terms
lt≺(g1), . . . , lt≺(gt) generate the initial ideal of I , i.e.,〈

lt≺(g1), . . . , lt≺(gt)
〉= in≺(I).

Our next important intermediate goal is to show that every ideal has a Gröbner
basis. We begin by proving this statement for the special case of monomial ideals.
Monomial ideals are those ideals which have a generating system consisting only of
monomials. Initial ideals are always monomial ideals.

Lemma 9.19 Let I = 〈xα : α ∈ A〉 where A ⊆ N
n is a monomial ideal. We have

xβ ∈ I if and only if xβ is a multiple of xα for an α ∈A.

Proof If xβ is a multiple of xα for an α ∈ A, then by the definition of an ideal,
xβ ∈ I .

Conversely, if xβ ∈ I , then there exists a representation xβ =∑t
i=1 hix

α(i)
with

hi ∈K[x1, . . . , xn] and α(i) ∈A for 1≤ i ≤ t . Every term of the polynomial on the
right hand side of the equation is a multiple of a term xα for some α ∈A. Therefore,
the polynomial on the left hand side of the equation also has this property. �

146 9 Gröbner Bases and Buchberger’s Algorithm

Fig. 9.2 A visualization of
the Gordan–Dickson lemma
for n= 2. Every lattice point
(α1, α2) represents a
monomial x

α1
1 x

α2
2

The following theorem shows that monomial ideals are finitely generated.

Theorem 9.20 (Gordan–Dickson Lemma) Every non-empty set M of monomials
in K[x1, . . . , xn] contains a finite subset E ⊆M such that every monomial of M is
a multiple of a monomial in E.

Before beginning the proof, we illustrate the theorem for the case n = 2. Each
point (i, j) in Fig. 9.2 represents a monomial xiyj in K[x, y]. If a monomial xiyj

is contained in a monomial ideal I , then Lemma 9.19 states that every monomial
xkyl with k ≥ i and l ≥ j is contained in I as well. So the Gordan–Dickson lemma
implies that the points corresponding to monomials in I can be represented as a
finite union of transposed copies of the points in the positive orthant.

Proof The proof is by induction over the number of unknowns n. For n = 1 we
have M = {xα : α ∈ A} for a subset A ⊆ N. A has a smallest element β . Using
Lemma 9.19 we conclude I = 〈xβ〉.

So let n ≥ 2 and assume that the statement is true for n− 1 unknowns. Take an
arbitrary monomial

xα = x
α1
1 · · ·xαn

n

from M .
We first show that every monomial xβ ∈M which is not a multiple of xα belongs

to at least one of the sets Mi,j , where: for i ∈ {1, . . . , n} and j ∈ {0, . . . , αi − 1},
Mi,j is the set of those monomials xγ ∈ M for which degxi

(xγ) = j . Since xα

does not divide the monomial xβ , we have βi < αi for some i ∈ {1, . . . , n}. Hence,
xβ ∈Mi,βi

.
Let M ′i,j be the set of monomials in K[x1, . . . , xi−1, xi+1, . . . , xn] that can be

obtained from monomials of Mi,j by dropping the factor x
j
i . By the inductive hy-

pothesis there exist finite subsets E′i,j ⊆M ′i,j such that every monomial in M ′i,j is a
multiple of the monomial E′i,j . We define

Ei,j :=
{
p · xj

i : p ∈E′i,j
}
.

9.3 Gröbner Bases and the Hilbert Basis Theorem 147

Now it is clear that every monomial in M is a multiple of a monomial in the finite
set

E := {xα
}∪⋃

i,j

Ei,j ⊆M. �

Remark 9.21 This lemma will play a key role in proving the termination of several
algorithms. The statement is actually purely combinatorial: Given a set A of subsets
of N

n such that every A ∈ A is of the form αA + N
n with αA ∈ N

n, the union⋃
A∈A A is a finite union, i.e., there exist A1, . . . ,Ak ∈A with

⋃
A∈A A=⋃k

i=1 Ai .

Using the Gordan–Dickson lemma it is now possible to prove that every non-zero
ideal in K[x1, . . . , xn] has a Gröbner basis.

Theorem 9.22 Let ≺ be a monomial order on K[x1, . . . , xn]. Then:

(a) Every non-zero ideal I has a Gröbner basis.
(b) The elements of a Gröbner basis of I generate the ideal I .

Proof Let I = {0} be an ideal.
(a): The initial ideal in≺(I) is generated by the monomials lm≺(g), with g ∈

I \ {0}. By the Gordan–Dickson lemma 9.20 there exist finitely many g1, . . . , gt

with 〈
lt≺(g1), . . . , lt≺(gt)

〉= lt≺(I),

which ensures the existence of a Gröbner basis.
(b): The ideal J which is generated by the polynomials g1, . . . , gt of a Gröb-

ner basis is clearly contained in I . To show the reverse inclusion we assume that
I \ J = ∅. Let f be a polynomial in I \ J with a leading term that is minimal with
respect to ≺. Since lm≺(g1), . . . , lm≺(gt) generate the initial ideal in≺(I), there
exist polynomials h1, . . . , ht with

lm≺(f)= lm≺(g1) · h1 + · · · + lm≺(gt) · ht .

The polynomial

g = f −
t∑

i=1

gihi

is contained in I but not in J (otherwise we would have f ∈ J). We also have that
the leading monomial of f does not appear in g, which means that the correspond-
ing coefficient is zero. Hence lm≺(g) is smaller than lm≺(f) with respect to the
monomial order ≺. This contradicts the minimality of f . We therefore have I = J ,
which proves our statement. �

As an immediate consequence of Theorem 9.22 we get the following finiteness
statement.

148 9 Gröbner Bases and Buchberger’s Algorithm

Algorithm 9.3: A solution of the ideal membership problem
Input: f,g1, . . . , gt ∈K[x1, . . . , xn], such that G := {g1, . . . , gt } is a Gröbner

basis of the ideal I = 〈G〉 with respect to the monomial order ≺
Output: Determine if f ∈ I

1 r← rem≺(f ;g1, . . . , gt)

2 if r = 0 then
3 return “Yes”
4 else
5 return “No”

Corollary 9.23 (Hilbert Basis Theorem) Every ideal I ⊆K[x1, . . . , xn] has a finite
generating system.

The important property of Gröbner bases is that they provide a solution to the
ideal membership problem, as carried out in Algorithm 9.3.

Correctness of Algorithm 9.3 If rem≺(f ;g1, . . . , gt)= 0, then f is contained in I .
It remains to be shown that rem≺(f ;g1, . . . , gt) = 0 implies that f /∈ I . Assume that
rem≺(f ;g1, . . . , gt) = 0 and f ∈ I . Then the remainder r = rem≺(f ;g1, . . . , gt) ∈
I and therefore lt≺(r) ∈ in≺(I). Since G is a Gröbner basis, it follows that in≺(I)=
〈lt≺(g1), . . . , lt≺(gt)〉. By Lemma 9.19, lt≺(r) is a multiple of a leading term lt≺(gi)

for an i ∈ {1, . . . , t}. But by Lemma 9.14, the divisibility of lt≺(r) by lt≺(gi) con-
tradicts the fact that r is a remainder of the division by g1, . . . , gt . �

For the remaining part of this section assume that G= {g1, . . . , gt } is a Gröbner
basis of the ideal I ⊆K[x1, . . . , xn] with respect to the monomial order ≺.

Exercise 9.24 Show that Euclidean division is independent of the order of polyno-
mials in G:

rem≺(f ;g1, . . . , gt)= rem≺(f ;gσ(1), . . . , gσ(t))

for all permutations σ .

We can therefore write rem≺(f ;G) instead of rem≺(f ;g, . . . , gt). The follow-
ing holds for polynomials which need not form a Gröbner basis.

Exercise 9.25 Let f1, . . . , ft be an arbitrary finite family of polynomials in
K[x1, . . . , xn]. Show that for arbitrary f,g ∈K[x1, . . . , xn] and c ∈K :

(a) rem≺(f + g;f1, . . . , ft)= rem≺(f ;f1, . . . , ft)+ rem≺(g;f1, . . . , ft);
(b) rem≺(cf ;f1, . . . , ft)= c rem≺(f ;f1, . . . , ft).

9.4 Buchberger’s Algorithm 149

This implies that a Gröbner basis defines a normal form for the equivalence
classes

f + I = rem(f ;G)+ I.

Furthermore, the normal forms of the equivalence classes for I define a K-vector
space.

9.4 Buchberger’s Algorithm

The proof of the existence of Gröbner bases in Theorem 9.22 was not constructive.
The topic of this section is an algorithm for computing Gröbner bases that dates
back to the PhD thesis of Bruno Buchberger in 1965. His method is one of the most
important methods in modern computer algebra.

The following finiteness statement will later provide an argument for the termi-
nation of Buchberger’s algorithm.

Proposition 9.26 (Ascending Chain Condition) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a mono-
tonically ascending chain of ideals in K[x1, . . . , xn], then there exists an N ≥ 1 with
IN = IN+1 = IN+2 = · · · .

In other words: Every ascending chain of ideals terminates.

Proof Given an ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · we study the union I =⋃∞
i=1 Ii . Definition 9.1 gives that I is an ideal. Hilbert’s Basis Theorem 9.23 shows

that I has a finite set of generators f1, . . . , ft . Every polynomial fi is contained in an
ideal Iji

for a suitable ji ∈N. For N =max{ji : 1≤ i ≤ t} we have f1, . . . , ft ∈ IN

and therefore, IN = IN+1 = · · · = I . �

A commutative ring is called Noetherian if the ascending chain condition holds.
In the proof above we saw that the ascending chain condition follows from the
fact that all ideals are finitely generated. The converse is also true: Hilbert’s basis
theorem and the ascending chain condition are equivalent.

As before we fix the monomial order ≺ for the following.

Definition 9.27 The S-polynomial of two non-zero polynomials f and g in
K[x1, . . . , xn] is defined as

spol≺(f, g) := lt≺(g)

m
f − lt≺(f)

m
g,

where m denotes the greatest common divisor of lm≺(f) and lm≺(g).

Buchberger’s Gröbner basis algorithm uses the following characterization.

150 9 Gröbner Bases and Buchberger’s Algorithm

Theorem 9.28 (Buchberger’s Criterion) A finite set G = {g1, . . . , gt } ⊆
K[x1, . . . , xn] is a Gröbner basis for 〈G〉 with respect to ≺ if and only if the re-
mainder rem≺(spol≺(gi, gj);G) vanishes for all i, j ∈ {1, . . . , t}.

Proof If G is a Gröbner basis, then we have spol(gi, gj) ∈ I and the remainder after
Euclidean division by G is the zero polynomial.

For the reverse implication let rem(spol(gi, gj);G)= 0 for all i, j . A polynomial
f ∈ I has a representation

f =
t∑

i=1

higi (9.4)

with polynomials h1, . . . , ht ∈K[x1, . . . , xn]. We have to show that the leading term
lt(f) is a multiple of lt(gi) for some basis element gi ∈G. The representation (9.4)
immediately gives that

lm(f)#max
{
lm(higi) : 1≤ i ≤ t

}= xα

for an α ∈ Nn. Without loss of generality we can assume that lm(h1g1) = xα and
lc(gi)= 1 for all i ∈ {1, . . . , t}. We distinguish between two cases.

Case 1: lm(f)= xα . Here the monomial xα is a multiple of lm(g1) and we have
nothing left to show.

Case 2: lm(f)≺ xα . In this case there exists at least one other polynomial higi

such that lt(higi)= xα , as otherwise it would be impossible to cancel the xα terms
through addition. Without loss of generality we can assume that lm(h2g2) = xα .
Using the notation lt(h1)= bβxβ and lt(h2)= cγ xγ we have

h1g1 =
(
bβxβ + · · ·)g1 = bβxβg1 +

(
terms≺ xα

)
and

h2g2 =
(
cγ xγ + · · ·)g2 = cγ xγ g2 +

(
terms≺ xα

)
.

By construction we have that xα is a multiple of the leading monomials of g1 and
g2 and hence also a multiple of xμ := lcm(lm(g1), lm(g2)). This yields

h1g1 + h2g2 = (bβ + cγ)xβg1 + cγ

(
xγ g2 − xβg1

)+ (terms≺ xα
)

= (bβ + cγ)xβg1 − cγ xα−μ spol(g1, g2)+
(
terms≺ xα

)
.

Our assumption implied rem(spol(g1, g2);G) = 0 and thus Lemma 9.14 implies
that there exist polynomials u1, . . . , ut with

spol(g1, g2)=
t∑

i=1

uigi

9.4 Buchberger’s Algorithm 151

Algorithm 9.4: Buchberger’s algorithm
Input: finite set of polynomials F = {f1, . . . , ft } ⊆K[x1, . . . , xn]
Output: Gröbner basis G for 〈F 〉 with respect to ≺ with F ⊆G

1 G← F

2 repeat
3 G′ ←G

4 foreach pair {p,q} ⊆G′ with p = q do
5 r← rem≺(spol≺(f, g);G′)
6 if r = 0 then
7 G←G∪ {r}
8 until G=G′
9 return (G)

and lm(uigi) # lm(spol(g1, g2)) ≺ xμ. In particular we have lm(xα−μuigi) ≺ xα

for 1≤ i ≤ t , which implies that there exist polynomials h′1, . . . , h′t with

f =
t∑

i=1

h′igi .

Compared to the original representation (9.4), the number of terms h′igi whose lead-
ing monomial is xα either decreases, or we have

max≺
{
lm
(
h′igi

) : 1≤ i ≤ t
}≺ xα.

Therefore, after finitely many steps, the problem can be reduced to the first case.
This proves the statement. �

The basic idea behind the computation of a Gröbner basis of an ideal is to succes-
sively add S-polynomials to a given generating system. By Buchberger’s criterion
we know that we have a Gröbner basis if all of the remainders of the S-polynomials
vanish when divided by the generators. We summarize the method in Algorithm 9.4.

Theorem 9.29 Let f1, . . . , ft ∈ K[x1, . . . , xn] with 〈f1, . . . , ft 〉 = {0}. Buch-
berger’s algorithm computes a Gröbner basis for the ideal I = 〈f1, . . . , ft 〉.

Proof Every polynomial that is added to G throughout the algorithm is contained
in the ideal I . Since no polynomial is ever removed from G, we retain the property
〈G〉 = I after each step. If the algorithm terminates, Buchberger’s Criterion 9.28
implies that G is a Gröbner basis.

It remains to be shown that the algorithm terminates after finitely many steps.
Throughout the algorithm, when r = 0 we have that lt(r) /∈ 〈lt(g) : g ∈G〉. Hence,

152 9 Gröbner Bases and Buchberger’s Algorithm

adding r to the basis G makes the ideal 〈lt(g) : g ∈ G〉 strictly larger. If the al-
gorithm did not terminate, it would yield an infinitely ascending chain of ideals,
contradicting Proposition 9.26. �

9.5 Binomial Ideals

A polynomial of the form xα − xα′ ∈ K[x1, . . . , xn] with α,α′ ∈ N
n is called a

binomial, and an ideal that has a generating system consisting of binomials is called
a binomial ideal. The previously described theories are very simple in the case of
binomial ideals. This will be particularly useful in Section 10.6.

Two elementary observations illustrate the uniqueness of the situation. First,
we divide two binomials. For this we fix a monomial order ≺. If we assume for
α,α′, β,β ′ ∈Nn that xα " xα′ , xβ " xβ ′ and that xβ divides xα , then we get

xα − xα′ = xα−β · (xβ − xβ ′)− xα′ + xα−β+β ′ . (9.5)

In particular,

rem
(
xα − xα′ ;xβ − xβ ′)= xα−β+β ′ − xα′ (9.6)

is a binomial. From this we can deduce the following.

Lemma 9.30 Let b1, . . . , bt be a family of binomials. Then:

(a) for every monomial xα , rem(xα;b1, . . . , bt) is again a monomial; and
(b) for every binomial xα − xα′ , rem(xα − xα′ ;b1, . . . , bt) is again a binomial.

Proof For the special case t = 1 we explicitly showed the second statement in (9.5).
The general case t ≥ 2 follows since we can simply iterate the computation.

The first statement follows analogously. In (9.5) we can alternatively set
α′ = −∞ with the convention that x−∞ = 0. Then xα − xα′ = xα is a monomial
and rem(xα;xβ − xβ ′)= xα−β+β ′ . Again, a simple iteration yields the result of the
division by several polynomials. �

The second observation is of similar simplicity.

Lemma 9.31 The S-polynomial of two binomials is a binomial.

Proof We assume α,α′, β,β ′ ∈ Nn with xα " xα′ and xβ " xβ ′ . Furthermore, let
xμ = gcd(xα, xβ). Then we have the equation

spol
(
xα − xα′ , xβ − xβ ′)= xβ−μ · (xα − xα′)− xα−μ · (xβ − xβ ′)

= xα+β ′−μ − xα′+β−μ. �

When we examine the individual steps of Algorithm 9.4, the most important
statement about binomial ideals follows directly from the above two lemmas.

9.6 Proving a Simple Geometric Fact Using Gröbner Bases 153

Theorem 9.32 Given a binomial generating system of a (necessarily binomial)
ideal, Buchberger’s algorithm computes a Gröbner basis consisting of binomials.

9.6 Proving a Simple Geometric Fact Using Gröbner Bases

We now demonstrate how Gröbner bases can be employed to prove incidence state-
ments and length relations in elementary geometry.

Theorem 9.33 The three medians of a (non-degenerate) triangle conv{a, b, c} ⊆R
2

intersect in a single point which we will call s. Each of the medians is divided by s

in the relation 2 : 1.

In high school this theorem is proven directly, e.g. by setting up a system of
equations that is obtained by the equations of the involved lines.

Proof Note that we can simplify our task by observing that the statement is inde-
pendent of translation. That is, we can assume that the vertex a is the origin (0,0).
We can choose a second point, say b, as (1,0) since the statement is independent of
rotation and scaling. We denote the coordinates of the third point by c= (x, y).

We use the notation from Fig. 9.3. The three midpoints of the sides have coordi-
nates

p =
(

x + 1

2
,
y

2

)
, q =

(
x

2
,
y

2

)
, r =

(
1

2
,0

)
.

Let s := (u, v) be the intersection of aff(a,p) and aff(b, q). The fact that s lies on
aff(a,p) is (by comparing the slope of the lines aff(a, s) and aff(a,p)) equivalent
to

f1 := uy − v(x + 1)= 0.

Analogously, the relation s ∈ aff(b, q) is equivalent to

f2 := (u− 1)y − v(x − 2)= 0.

s lies on aff(c, r) if and only if

g1 := −2(u− x)y − (v − y)(1− 2x)=−2uy − (v − y)+ 2vx = 0.

The point s divides the medians in a 2 : 1 relation if and only if the following three
equations hold:

(u, v) = s − a = 2(p− s)= (x + 1− 2u,y − 2v),

(u− 1, v) = s − b= 2(q − s)= (x − 2u,y − 2v),

(u− x, v− y) = s − c= 2(r − s)= (2u− 1,2v).

154 9 Gröbner Bases and Buchberger’s Algorithm

Fig. 9.3 The medians of a
triangle meet in a common
point s, which is in fact the
center of mass

This reduces to

g2 := 3u− x − 1= 0,

g3 := 3v− y = 0.

We have to respect the condition that our triangle conv{a, b, c} is not degenerate,
i.e., y = 0. This can be expressed by an equation if we introduce another variable z:

f3 := yz− 1= 0.

Now we want to show that

f1 = f2 = f3 = 0 =⇒ g1 = g2 = g3 = 0

or, in other words, that V(f1, f2, f3) ⊆ V(g1, g2, g3). Our proof is complete if we
can show the stronger statement

g1, g2, g3 ∈ 〈f1, f2, f3〉.

We compute a Gröbner basis of the ideal I := 〈f1, f2, f3〉 ⊆ R[u,v, x, y, z]
for, say, the graded reverse lexicographic order ≺grevlex. Using Buchberger’s Cri-
terion 9.28 we can verify that

G= {3v− y,3u− x − 1, yz− 1}

is a≺grevlex-Gröbner basis of I . Dividing out three candidates g1, g2, g3 by G yields

rem(g1;G)= rem(g2;G)= rem(g3;G)= 0,

i.e., g1, g2, g3 ∈ I . �

Observe that we didn’t assume x, y, u and v to be real numbers. The proof is
therefore also valid over C.

9.7 Exercises 155

9.7 Exercises

Exercise 9.34 Show that, given two univariate polynomials f,g ∈K[x] \ {0}, there
exist polynomials a, b ∈K[x] such that

gcd(f, g)= af + bg.

To do so, analyze the Euclidean Algorithm 9.1 and modify it in such a way that the
polynomials a and b are computed.

The method described in Exercise 9.34 is called the extended Euclidean algo-
rithm.

Exercise 9.35 Let G= {g1, . . . , gt } be a Gröbner basis of an ideal I ⊆K[x1, . . . ,

xn] with respect to the monomial order ≺ and let f,g be polynomials whose dif-
ference f − g lies in I . Show that g = rem≺(f ;G) if and only if no term of g is
divisible by one of the leading monomials of lt≺(g1), . . . , lt≺(gt).

For a Gröbner basis G of an ideal I , we have that every superset G′ of G with
G′ ⊆ I is a Gröbner basis of I . This leads to the question if a given Gröbner basis
can have superfluous elements.

Definition 9.36 A Gröbner basis G of an ideal I is called reduced if for all g ∈G:

(a) The leading coefficient is normalized: lc≺(g)= 1.
(b) No monomial of g lies in in≺(G \ {p}).

Exercise 9.37 Show that every non-zero ideal has a unique reduced Gröbner basis
for the monomial order ≺.

9.8 Remarks

The structure of our presentation is based on the beautiful and comprehensive intro-
duction to the theory of Gröbner bases by Cox, Little and O’Shea [28]. Another text
worth reading is the monograph of Adams and Loustaunau [1]. The example of the
geometric proof was taken from zur Gathen and Gerhard [97].

Gröbner bases were introduced in the 1960s by Hironaka [60, 61] (who called
them “standard bases”) and independently by Buchberger in his dissertation [17] in
1965. The term “Gröbner basis” was established by Buchberger in honor of his PhD
advisor Wolfgang Gröbner. The exact origin of the “S” in the term “S-polynomial”
is not clear. It is sometimes interpreted as “subtraction” or “syzygy”.

The statement of the Gordan–Dickson Lemma 9.20 was (re)discovered several
times. Its first explicit appearances are usually credited to the German mathemati-
cian Paul Gordan [50] and to the American mathematician Leonard Eugene Dick-
son [35].

156 9 Gröbner Bases and Buchberger’s Algorithm

If the coefficients of two polynomials f and g are rational numbers, then the
computation of the greatest common divisor via the Euclidean algorithm is per-
formed in polynomial time. As stated in Appendix C, polynomial time performance
refers to the total length of the input coded as a series of bits. In contrast to this,
the ideal membership problem, as well as the problem of computing a Gröbner ba-
sis, are intrinsically difficult problems. Mayr and Meyer [76] showed that, with re-
spect to complexity theory, every problem that can be solved with an exponentially
large memory can be reduced to an ideal membership problem. Since an exponen-
tially large memory is sufficient, we have that the ideal membership problem is
EXPSPACE-complete. EXPSPACE-complete problems are significantly more diffi-
cult than NP-complete problems: All known algorithms for EXPSPACE-complete
problems have at least double-exponential worst-case run-time.

From a practical viewpoint, Buchberger’s algorithm can be more efficient in sev-
eral ways, e.g. by avoiding the computation of superfluous S-polynomials (besides
the aforementioned books, see also Using Algebraic Geometry by Cox, Little and
O’Shea [29] as well as the book by Becker and Weispfenning [11]).

Algorithmic concepts which occur in the solution of problems in the field of real
algebraic geometry include a variety of methods which are not mentioned in this
book. For an overview we refer to the monograph by Basu, Pollack and Roy [10].
Additionally, over the real numbers the question of how to deal with systems of poly-
nomial inequalities arises. This leads to semi-algebraic geometry. For this, Collins
developed an important approach called the cylindric algebraic decomposition [25]
(for quantifier elimination over real-closed fields). This method is implemented in
QEPCAD [65].

Chapter 10
Solving Systems of Polynomial Equations
Using Gröbner Bases

The focus of this chapter is on a general method for solving systems of polyno-
mial equations via Gröbner bases. We will first briefly present how the computer
algebra systems Maple and Singular can be used to compute Gröbner bases
and solve systems of polynomial equations. We illustrate the methods discussed in
later sections of this chapter with an analysis of several examples using Maple and
Singular. A short introduction to these programs can be found in Appendix D.

When solving systems of polynomial equations, we must also determine the con-
ditions a system needs to satisfy in order to have solutions. This leads to Hilbert’s
Nullstellensatz, which we prove in Section 10.4.

Finally, we sketch in Section 10.6, a possibly unexpected, application of elimi-
nation theory to integer linear programs.

10.1 Gröbner Bases Using Maple and Singular

Standard computer algebra systems provide several methods for the computation
of Gröbner bases. We begin by illustrating some computations with the commercial
mathematical software system Maple. Our main goal is to demonstrate the effective
availability of the specific algorithms within the computer algebra packages, and to
motivate the reader to use them. We do not detail the slight variations in the syntax
for specific commands of different software packages.

To be able to use algorithms for the computation of Gröbner bases in Maple,
we first have to load the package Groebner. If a command line ends with a colon
instead of a semicolon, Maple suppresses the output.

> with(Groebner):

We now compute a Gröbner basis of the ideal I = 〈xy+1, yz+1〉 in C[x, y, z] with
respect to the lexicographic monomial order (which is called plex in Maple).

> G:=[x*y+1,y*z+1]:
> Basis(G,plex(x,y,z));

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_10,
© Springer-Verlag London 2013

157

http://dx.doi.org/10.1007/978-1-4471-4817-3_10

158 10 Solving Systems of Polynomial Equations Using Gröbner Bases

The output is

[y z + 1, -z + x].

That is, the polynomials yz+ 1 and x − z form a Gröbner basis of the ideal I .
The computation of a Gröbner basis with respect to the graded reverse lexico-

graphic order (called tdeg in Maple) via

> Basis(G,tdeg(x,y,z));

yields the output

[-z + x, y z + 1].

In this case, both monomial orders produce the same Gröbner basis.
The free software package Singular (which is also part of the Sage software

system) is much more specialized for methods based on Gröbner bases than Maple.
Furthermore, the number of methods available in Singular is larger. To begin, we
need to specify the base ring in Singular.

> ring R = 0, (x,y,z), lp;

declares that we are working in the polynomial ring Q[x, y, z]. The coefficient field
Q is the prime field of characteristic 0, which is why it is written as “0” in Sin-
gular; similarly, a prime number in this position would declare the corresponding
finite (prime) field. The parameter lp causes all of the following computations to
use the lexicographic order. The graded reverse lexicographic order can be used by
writing dp.

To compute the Gröbner basis of the above example in Singular, we define
the ideal I = 〈xy + 1, yz+ 1〉 via its two generators:

> ideal I = x*y+1, y*z+1;

The computation of the Gröbner basis with respect to the lexicographic order via

> groebner(I);

yields the output of the polynomials (with numeric labels)

_[1]=yz+1
_[2]=x-z.

The input

> quit;

causes Singular to politely exit saying

Auf Wiedersehen.

10.2 Elimination of Unknowns

As announced in Section 9.1, we will now study elimination ideals

Ik := I ∩K[xk+1, . . . , xn], for 0≤ k < n,

10.2 Elimination of Unknowns 159

of an ideal I in K[x1, . . . , xn]. From Exercise 9.4, we know that Ik is an ideal
in K[xk+1, . . . , xn]. The lexicographic order has a special property with regard to
elimination ideals.

Theorem 10.1 Let I be an ideal in K[x1, . . . , xn] and G be a Gröbner basis of I

with respect to the lexicographic order x1 "lex · · · "lex xn. Then

Gk :=G∩K[xk+1, . . . , xn]
is a Gröbner basis for the k-th elimination ideal Ik with 0≤ k < n.

Proof Let k ∈ {0, . . . , n − 1} and let G = {g1, . . . , gt }. Without loss of general-
ity we can assume Gk = {g1, . . . , gs} for an s ≤ t . First, we show that Gk gen-
erates the ideal Ik . Since Gk ⊆ Ik , it suffices to show that every polynomial
f ∈ Ik can be written as a linear combination of g1, . . . , gs with coefficients in
K[xk+1, . . . , xn].

Since f ∈ I , by Lemma 9.14, dividing the polynomial f by the ordered series of
the Gröbner basis G gives a representation

f = h1g1 + · · · + htgt

with h1, . . . , ht ∈K[x1, . . . , xn] and

lm(f)$lex lm(higi).

By construction, at least one of the unknowns xi with i ≤ k occurs in every poly-
nomial gs+1, . . . , gt . Thus, lm(gi) "lex lm(f) for i ∈ {s + 1, . . . , t} and hs+1, . . . ,

ht = 0. With this we obtain the desired representation

f = h1g1 + · · · + hsgs.

To prove that {g1, . . . , gs} is a Gröbner basis, we show that it satisfies Buch-
berger’s Criterion 9.28. Therefore, we need that each S-polynomial spol(gi, gj)

for 1 ≤ i = j ≤ s has remainder zero after division by g1, . . . , gs . Since
spol(gi, gj) ∈ Ik , this follows from the first part of the proof. �

The last elimination ideal In−1 ⊆ K[xn] is univariate. Hence, the correspond-
ing reduced Gröbner basis Gn−1 consists of only one element, which is called the
eliminant of I , or we have In−1 = {0}.

Example 10.2 We return to Example 8.1 and perform the calculations with
Maple.

> with(Groebner):
> f := x^2+y^2-x*y-x-y-1:
> g := 2*x^2-4*y^2-x*y-2*x-2*y-1:
> G := Basis([f,g],plex(x,y));

160 10 Solving Systems of Polynomial Equations Using Gröbner Bases

We obtain

2 3 4 2 3
G := [1 + y - 12 y - 7 y + 31 y , -1 + 6 y + 7 y - 31 y + x]

Thus, the first (and last) elimination ideal I1 of I = 〈f,g〉 is generated by the elim-
inant p := 31y4 − 7y3 − 12y2 + y + 1.

For every point (ξ, η) ∈ V(I), the number η is a root of p. Since p is of degree
4, it would be possible to compute explicit representations of its zeros in terms of
radicals. We will not do this here, but instead choose a strategy that also works for
higher degrees: We only compute numerical approximations of the zeros; see the
discussion in Section 8.1.

> p := G[1];
> fsolve(p=0,y);

This yields

-0.4416023314, -0.3223146983, 0.3597572748, 0.6299662065.

The numerical values of the x-coordinates, and with this the intersection points
of the two conic sections, can be obtained with the following:

> eta := [fsolve(p=0,y)]:
> seq([fsolve(subs(y=eta[i],G[2]=0),x), eta[i]], i=1..4);

Compare the output

[-0.3851331910, -0.4416023314], [1.168669669, -0.3223146983],
[-0.6211082730, 0.3597572748], [2.192410502, 0.6299662065]

with Fig. 8.2.

We saw in the last example how to obtain the variety from the roots of the elim-
inant. Two questions remain to be answered. First, does every root of an eliminant
lead to a point of the variety? This will be discussed in the following section. Sec-
ondly, under which conditions does an eliminant exist?

Example 10.3 As an example, take the ideal 〈xy〉 ⊆K[x, y] with the Gröbner basis
{xy} (for any monomial order). Here, we see that an eliminant does not always exist.

We discuss this phenomenon in more detail in Section 10.5. First, we will estab-
lish a connection between elimination ideals and resultants.

Proposition 10.4 Let f,g ∈ K[x1, . . . , xn] with positive degree in x1. Then there
exist polynomials a, b ∈K[x1, . . . , xn] such that

af + bg = Resx1(f, g).

In particular, Resx1(f, g) is contained in the first elimination ideal of 〈f,g〉.

10.2 Elimination of Unknowns 161

Proof Let f,g ∈K[x1, . . . , xn] be given in the form

f = alx
l
1 + · · · + a1x1 + a0,

g = bmxm
1 + · · · + b1x1 + b0

with ai, bj ∈K[x2, . . . , xn] and al, bm = 0. Then the Sylvester matrix of f and g is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

al al−1 . . . a0
. . .

. . .
. . .

al al−1 . . . a0
bm bm−1 · · · b0

. . .
. . .

. . .

bm bm−1 . . . b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭m rows,

⎫⎬
⎭ l rows.

(10.1)

We want to compute the resultant of (10.1) by modifying the matrix via the follow-
ing elementary column operation. Adding the i-th column multiplied by xl+m−i

1 to
the last column gives

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

al al−1 . . . a0 xm−1
1 f

al al−1 . . . a0 xm−2
1 f

. . .
. . .

. . .
...

al . . . a1 f

bm bm−1 . . . b0 xl−1
1 g

bm bm−1 . . . b0 xl−2
1 g

. . .
. . .

. . .
...

bm . . . b1 g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.2)

Expanding along the last column leads to

Resx1(f, g)= detM = xm−1
1 f · p1 + · · · + f · pm + xl−1

1 g · q1 + · · · + g · ql

with polynomials pi, qj ∈K[x2, . . . , xn]. Reordering gives the desired linear com-
bination

Resx1(f, g)= (p1x
m−1
1 + · · · + pm

) · f + (q1x
l−1
1 + · · · + ql

) · g = af + bg

with a = p1x
m−1
1 + · · · + pm and s = q1x

l−1 + · · · + ql . �

To explicitly construct a (non-zero) polynomial in an elimination ideal, in the
case where we have an ideal 〈f1, . . . , ft 〉 which is generated by more than two
polynomials, we use the parametric version

Resx1(f1, λ2f2 + · · · + λtft) ∈K[x2, . . . , xn, λ2, . . . , λt]

162 10 Solving Systems of Polynomial Equations Using Gröbner Bases

with parameters λ2, . . . , λt . The distinction between unknowns and parameters is
from a formal viewpoint arbitrary. However, it hints that we will later deduce state-
ments about polynomials in certain unknowns with respect to special parameters.
Compare this with the discussion of multivariate resultants prior to Corollary 8.10.

Lemma 10.5 Assume I = 〈f1, . . . , ft 〉 ⊆ K[x1, . . . , xn], and Resx1(f1, λ2f2 +
· · · + λtft) has a representation

∑
α hαλα with polynomials hα ∈ K[x2, . . . , xn].

Then each of the polynomials hα is contained in the first elimination ideal I1 =
I ∩K[x2, . . . , xn].

Proof Since every polynomial hα depends only on the unknowns x2, . . . , xn, it suf-
fices to show that every hα is contained in I . By Proposition 10.4, Resx1(f1, λ2f2+
· · · + λtft) has a representation of the form

Resx1(f1, λ2f2 + · · · + λtft)= af1 + b(λ2f2 + · · · + λtft)

with polynomials a, b ∈K[x2, . . . , xn, λ2, . . . , λt]. We write a and b as polynomials
in terms of the parameters λ2, . . . , λt ,

a =
∑
α

aαλα, b=
∑
α

bαλα,

with coefficients aα, bα ∈K[x2, . . . , xn] and obtain

∑
α

hαλα =
(∑

α

aαλα

)
f1 +

(∑
α

bαλα

)(t∑
i=2

λifi

)

=
∑
α

(
aαf1 +

t∑
i=2

bα+e(i)fi

)
λα,

where e(i), for 2≤ i ≤m, denotes the i-th unit vector in the coordinates (λ2, . . . , λt).
Comparing coefficients gives a representation of the polynomials hα in terms of the
generators f1, . . . , ft . �

10.3 Continuation of Partial Solutions

Up until now, we have developed the theory of Gröbner bases over an arbitrary field.
It should be mentioned, however, that the process of solving arbitrary systems of
polynomial equations must utilize properties of the base field. Here, we concentrate
on the complex numbers as an algebraically closed field of characteristic 0.

From now on, we study an ideal I ⊆ C[x1, . . . , xn] and the corresponding k-th
elimination ideal Ik = I ∩C[xk+1, . . . , xn] for a k ∈ {1, . . . , n− 1}. Having proved
Theorem 10.1, the most important remaining open question is which conditions are
necessary in order for a partial solution (ξk+1, . . . , ξn) ∈ V(Ik) to be extendable

10.3 Continuation of Partial Solutions 163

to a solution (ξ1, . . . , ξn) ∈ V(I). By induction, it suffices to determine necessary
conditions for the last extension step.

Theorem 10.6 Let f1, . . . , ft ∈ C[x1, . . . , xn], I = 〈f1, . . . , ft 〉 and let I1 be the
first elimination ideal of I . Furthermore, for i ∈ {1, . . . , t} let

fi = gi,di
x

di

1 + · · · + gi,0

with degx1
fi = di and gi,j ∈ C[x2, . . . , xn]. Then, for all (ξ2, . . . , ξn) ∈ V(I1) \

V(g1,d1 , . . . , gt,dt) there exists a ξ1 ∈C with (ξ1, . . . , ξn) ∈V(I).

Proof Only the leading coefficient polynomials of fi in the unknown x1 are impor-
tant in the following. Thus, we write gi := gi,di

.
Let ξ = (ξ2, . . . , ξn) ∈ V(I1) \ V(g1, . . . , gt). Without loss of generality, we

can assume g1(ξ) = 0. The resultant Res(f1, λ2f2 + · · · + λtft) with parameters
λ2, . . . , λt has a representation of the form

Resx1(f1, λ2f2 + · · · + λtft)=
∑
α

hαλα (10.3)

with polynomials hα ∈C[x2, . . . , xn]. By Lemma 10.5, every polynomial hα is con-
tained in the elimination ideal I1. Since ξ ∈ V (I1), the resultant Resx1(f1, λ2f2 +
· · · + λtft) vanishes at the point ξ , i.e.,

Resx1(f1, λ2f2 + · · · + λtft)|(x2,...,xn)=ξ = 0. (10.4)

We now take advantage of the vanishing of this resultant at ξ . The only problem is
that the x1-degree of the polynomial λ2f2+· · ·+λtft may decrease when evaluated
at ξ . To avoid this, we change the basis of I .

For an arbitrary N ∈ N, the polynomials f1, . . . , ft−1, ft + xN
1 f1 generate the

ideal I . So we can choose N large enough such that

degx1
ft + xN

1 f1 > degx1
fi, for all i ∈ {2, . . . , t}.

Since g1(ξ) = 0 and degx1
ft + xN

1 f1 > degx1
ft , we know that gt (ξ) = 0 still holds

after the change of basis.
Since g1(ξ) = 0, gt (ξ) = 0 and degx1

gt > degx1
g2, . . . ,degx1

gt−1, building the
resultant and substituting (in the last n − 1 unknowns) can be switched. Thus we
have, by (10.4),

Resx1

(
f1(x1, ξ), λ2f2(x1, ξ)+ · · · + λtft (x1, ξ)

)
= Resx1(f1, λ2f2 + · · · + λtft)|(x2,...,xn)=ξ = 0.

The univariate polynomials f1(x1, ξ), . . . , ft (x1, ξ) have a common factor of posi-
tive degree by Corollary 8.10. Since C is algebraically closed, there exists a common
root ξ1, and (ξ1, . . . , ξn)= (ξ1, ξ) ∈V(I). �

164 10 Solving Systems of Polynomial Equations Using Gröbner Bases

Example 10.7 We again study Example 10.2. Here,

f = x2 + y2 − xy − x − y − 1= 1 · x2 − (y + 1) · x + (y2 − y − 1
)

and

g = 2x2 − 4y2 − xy − 2x − 2y − 1= 2 · x2 − (y + 2) · x − (4y2 + 2y + 1
)
.

For I = 〈f,g〉,{
x − 31y3 + 7y2 + 6y − 1, 31y4 − 7y3 − 12y2 + y + 1

}
is a ≺lex-Gröbner basis of I .

We saw in Example 10.2 that all roots of the eliminant 31y4−7y3−12y2+y+1
can be extended to points in V(I). We know this is true by Theorem 10.6 and the fact
that (with respect to x) the leading coefficient polynomials 1 and 2 are constant, and
therefore the set of common zeros of the leading coefficient polynomials is empty.

It remains to be determined exactly which conditions guarantee the existence
of an eliminant. To do this, in the next section we study a fundamental result of
commutative algebra.

10.4 The Nullstellensatz

If a non-zero constant polynomial is contained in I , then we clearly have V(I)= ∅.
The weak form of Hilbert’s Nullstellensatz states that, over the complex numbers,
the reverse implication is also true.

Theorem 10.8 (Nullstellensatz, weak form) Let I be an ideal in C[x1, . . . , xn] such
that V(I)= ∅, then 1 ∈ I .

The property 1 ∈ I is clearly equivalent to I = C[x1, . . . , xn]. An ideal I with
I �C[x1, . . . , xn] is called a proper ideal of C[x1, . . . , xn].

Similar to the characterization of the feasibility of linear programming problems
by Farkas’ lemma, see Exercise 4.26, the Nullstellensatz characterizes the solvabil-
ity of a system of polynomial equations.

Example 10.9 The polynomials f = x2 and g = 1− xy do not have a common root
in C

2. In order to prove this, it obviously suffices to provide a pair of polynomials
(a, b) with

1= af + bg. (10.5)

Independent of how difficult it is to determine such a and b, once we know them it is
rather easy to verify the identity (10.5). Therefore we call the pair (a, b) a certificate
for the non-existence of common roots of f and g.

For our example of f and g, a pair of polynomials (a, b) satisfying (10.5) is
a = y2 and b = 1+ xy. The Nullstellensatz guarantees the existence of such poly-
nomials, without explicitly stating them.

10.4 The Nullstellensatz 165

We describe here the proof of Hilbert’s Nullstellensatz by Arrondo [5], which is
formulated in relatively elementary terms. The following lemma will be employed
to transform the polynomials into a form which simplifies the analysis.

Lemma 10.10 (Noetherian Normalization Lemma) Let n ≥ 2 and f ∈ C[x1, . . . ,

xn] be a non-constant polynomial of total degree d . Then there exist complex num-
bers λ2, . . . , λn such that the monomial xd

1 has a non-zero coefficient in the polyno-
mial

f (x1, x2 + λ2x1, . . . , xn + λnx1). (10.6)

Proof From tdegf = d it follows that degx1
f (x1, x2 + λ2x1, . . . , xn + λnx1)= d .

If fd denotes the homogeneous component of f of degree d , then we can rep-
resent the coefficient of xd

1 in (10.6) as fd(1, λ2, . . . , λn). Since the polynomial
fd(1, x2, . . . , xn) is not the zero polynomial, there exists a point (λ2, . . . , λn) ∈
C

n−1 at which it does not vanish (see Exercise 10.30). �

We are now able to prove the Nullstellensatz in its weak form.

Proof of Theorem 10.8 We prove the contrapositive: For every proper ideal I �

C[x1, . . . , xn], there exists a ξ ∈Cn such that f (ξ1, . . . , ξn)= 0 for all f ∈ I .
Without loss of generality, let I = {0}. The statement is clear for n = 1, since

C[x1] is a Euclidean ring, i.e., every ideal I is generated by a non-constant poly-
nomial. By the fundamental theorem of algebra, every such generator of I has a
root.

We handle the case n ≥ 2 inductively. By Lemma 10.10 we can assume that I

contains a normalized polynomial g in the unknown x1.

I1 = I ∩C[x2, . . . , xn] ⊆C[x2, . . . , xn]
is the first elimination ideal of I . Since 1 ∈ I , I1 is a proper ideal. By the inductive
hypothesis, there exists a point (ξ2, . . . , ξn) ∈Cn−1 at which all polynomials from I1
vanish.

The crucial step is to show that the set

J = {f (x1, ξ2, . . . , ξn) : f ∈ I
}

is a proper ideal of C[x1].
By the distributive laws, it is clear that J is an ideal. To complete this step, we use

an indirect approach. Assume that 1 ∈ J , i.e., there exists a g(x1, ξ2, . . . , ξn) = 1.
If g has x1-degree d , there exists a representation of the form g = ∑d

i=0 gix
i
1

with g0, . . . , gd ∈ C[x2, . . . , xn], g0(ξ2, . . . , ξn) = 1, and gi(ξ2, . . . , ξn) = 0 for
1≤ i ≤ d .

The x1-normalized polynomial f with degx1
f = e, which we obtained above,

can be written in the form f = xe
1 +

∑e−1
i=0 fix

i
1 with fi ∈C[x2, . . . , xn]. By Propo-

sition 10.4, we know that the resultant Resx1(f, g) is contained in the elimination

166 10 Solving Systems of Polynomial Equations Using Gröbner Bases

ideal I1. Since

Resx1(f, g)= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 fe−1 . . . f0
. . .

. . .
. . .

1 fe−1 . . . f0
gd gd−1 . . . g0

. . .
. . .

. . .

gd gd−1 . . . g0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭d rows,

⎫⎬
⎭ e rows

the resultant Resx1(f, g) at the point (ξ2, . . . , ξn) can be evaluated as the determi-
nant of an upper triangular matrix, with all entries on the main diagonal equal to 1.
Therefore, Resx1(f, g) is 1 at (ξ2, . . . , ξn), which contradicts Resx1(f, g) ∈ I1 and
(ξ2, . . . , ξn) ∈V(I1). This proves the statement J �C[x1].

Therefore, the ideal J is generated by a polynomial h ∈C[x1] of positive degree,
or by h= 0. In both cases, h has at least one root ξ1 ∈C. Thus, every polynomial of
I vanishes at (ξ1, . . . , ξn). �

The following strong form of the Nullstellensatz can be obtained from the weak
form. We present here the key to the proof which is often referred to as the “trick of
Rabinowitsch”.

Theorem 10.11 (Nullstellensatz, strong form) If I is an ideal in C[x1, . . . , xn],
and f ∈C[x1, . . . , xn] a polynomial which vanishes at all points of V(I), then there
exists a natural number s ≥ 1 such that f s ∈ I .

Proof We assume that g1, . . . , gt generate the ideal I .
If f = 0, then nothing remains to be shown. For f = 0 we study the polynomials

g1, . . . , gt ,1− yf ∈C[x1, . . . , xn, y].
These do not have a common zero, since for all ξ = (ξ1, . . . , ξn) ∈V(g1, . . . , gt) we
have that 1− yf has the value

1− ηf (ξ1, . . . , ξn)= 1− η · 0= 1

at the point (ξ1, . . . , ξn, η). The weak form of Hilbert’s Nullstellensatz yields
h1, . . . , ht+1 ∈C[x1, . . . , xn, y] such that

h1g1 + · · · + htgt + ht+1(1− yf)= 1. (10.7)

If we perform our computations in the quotient field C(x1, . . . , xn, y) of rational
functions, we can substitute the rational function 1/f for the unknown y in (10.7).
Thus, there exist h′1, . . . , h′t ∈K[x1, . . . , xn] and s1, . . . , st ∈N such that

h′1
f s1

g1 + · · · + h′m
f st

gt = 1.

Choosing s =max{s1, . . . , st } and multiplying by f s yields the statement. �

10.5 Solving Systems of Polynomial Equations 167

Example 10.12 The Nullstellensatz implies for an arbitrary monomial order that the
uniquely determined reduced Gröbner basis of an ideal I consists of the constant
polynomial 1 if and only if V(I)= ∅.

We use Maple to verify this statement for the polynomials f = x2, g = 1− xy

from Example 10.9:

> with(Groebner):
> Basis([x^2,1-xy],plex(x,y));
[1]

Note that Study’s Lemma 8.12 is a special case of the Nullstellensatz. Let f be a
non-constant, irreducible polynomial such that V(f)⊆ V(g), then the Nullstellen-
satz implies that gk ∈ 〈f 〉 for some k ≥ 1, and hence that f divides g.

Definition 10.13 For an ideal I of an arbitrary ring R the set

rad(I) := {a ∈R : there exists a s ≥ 1 such that as ∈ I
}

is called the radical of I in R.

Example 10.14 Consider the ideal I = 〈x2, xy, y2〉 ⊆ C[x, y]. Clearly, we have
V(I)= {(0,0)}. The polynomial x vanishes at the unique zero of I , so that Hilbert’s
Nullstellensatz implies that a suitable power of x must be in I . The polynomial x2

was explicitly stated as a generator of I . With a little more work, we see that 〈x, y〉
is the radical of I .

10.5 Solving Systems of Polynomial Equations

Now, we will combine the main statements from the theory of Gröbner bases and
show how to use them to systematically solve systems of polynomial equations.

Theorem 10.15 Let I be an ideal in C[x1, . . . , xn], k ∈ {1, . . . , n − 1} and let Ik

be the k-th elimination ideal of I . Then V(Ik) is the smallest algebraic variety that
contains the projection of V(I) to lin{e(k+1), . . . , e(n)}.

Here, “smallest” algebraic variety is interpreted with respect to the partial order
induced by set containment. That is, every algebraic variety that contains the pro-
jection of V(I) is a superset of V(Ik). Also, e(i) denotes the i-th unit vector in C

n,
and hence the projection is to the last n− k coordinates.

Remark 10.16 The projection π of V(I) to the coordinates xk+1, . . . , xn is not
necessarily an algebraic variety. As an example, consider f = xy − 1 ∈ C[x, y].
Here, π(V(I)) is the projection of the hyperbola defined by xy = 1, i.e., π(V(I))=
C \ {0}. This set is not an algebraic variety.

168 10 Solving Systems of Polynomial Equations Using Gröbner Bases

Proof The projection of V(I) is clearly contained in V(Ik). To show that V(Ik) is
the smallest algebraic variety that contains the projection of V(I), we study an arbi-
trary polynomial f in C[xk+1, . . . , xn] that vanishes at all points of the projection.
As a polynomial in C[x1, . . . , xn], f vanishes at all points of V(I). By the Nullstel-
lensatz, there exists an s ≥ 1 with f s ∈ I . Since f s does not depend on x1, . . . , xk ,
f s ∈ Ik . Therefore, f is contained in the radical of Ik . �

We have now arrived at the main goal of the second part of this book, i.e.,
a method to solve systems of polynomial equations

f1(x1, . . . , xn)= · · · = ft (x1, . . . , xn)= 0. (10.8)

Here, let f1, . . . , ft ∈ C[x1, . . . , xn] and, as usual, set I = 〈f1, . . . , fr〉. We will
assume that (10.8) has only finitely many solutions, i.e., the corresponding affine
variety V(I)⊆C

n is 0-dimensional. The analysis of higher dimensional varieties is
beyond the scope of this book. One of the difficulties of this analysis is illustrated
in Example 10.19.

Since we assumed the number of solutions to be finite, we know that for each
k ∈ {1, . . . , n − 1} the projection of V(I) to the last n − k coordinates is finite,
and therefore is also an algebraic variety. By Theorem 10.15, this projection equals
V(Ik). For the special case k = n− 1, this implies by Theorem 10.1 that there exists
a polynomial f ∈ In−1. By Theorem 10.6, the roots of this univariate polynomial in
xn are the xn-components of the solutions of (10.8).

Using this technique, we can employ Gröbner bases to reduce the task of solving
systems of polynomial equations to the computation of roots of univariate polyno-
mials. The computed (or approximated) roots of the univariate polynomials can then
be used to combine the single components of the partial solutions to form a general
solution. In addition to Example 10.2, we analyze several other examples.

Example 10.17 We use Singular to compute the intersection of Steiner’s Roman
surface (8.1) from Example 8.4 with a circle. The circle will be defined as the in-
tersection of a sphere and a plane. The necessary steps in Singular are hence the
following.

First, we load the library solve.libwhich provides several functions for solv-
ing polynomial equations.

> LIB "solve.lib";

The output of this command is suppressed here (and in all of the following exam-
ples); here Singular would print a list of currently available libraries.

> ring R = 0, (x,y,z), lp;
> poly roman = x^2*y^2 + y^2*z^2 + z^2*x^2 - 2*x*y*z;
> poly sphere = x^2 + y^2 + z^2 - 1;
> poly plane = x-z;
> ideal I = roman, sphere, plane;
> ideal G = groebner(I);
> G;

10.5 Solving Systems of Polynomial Equations 169

G[1]=9z6-4z4
G[2]=2yz2+3z4-2z2
G[3]=y2+2z2-1
G[4]=x-z

The first polynomial in the output is the eliminant 9z6 − 4z4 whose roots can be
found using the command laguerre_solve.

> laguerre_solve(G[1]);
[1]:

-0.66666667
[2]:

0.66666667
[3]:

0
[4]:

0
[5]:

0
[6]:

0

The eliminant has 0 as a root of order 4 and the two order 1 roots±2/3. By iterating
the process of substituting and solving univariate polynomials, we can compute the
points of the variety step by step. We illustrate an example of this procedure for the
value z=−2/3.

> laguerre_solve(subst(G[2],z,-2/3));
[1]:

0.33333333

shows that for z=−2/3, only y = 1/3 is possible. Since

> subst(subst(G[3],z,-2/3),y,1/3);
0

we see that (1/3,−2/3) is actually a point of V(I1). So

> laguerre_solve(subst(subst(G[4],z,-2/3),y,1/3));
[1]:

-0.66666667

yields the first point (−2/3,1/3,−2/3) of the variety. In this manner, we find that
the variety consists of four points, all of which are real:

(−2/3,1/3,−2/3), (2/3,1/3,2/3), (0,−1,0) and (0,1,0).

Example 10.18 In Section 8.7 we studied the intersection of two algebraic curves
in the plane using Maple; see Fig. 8.8. The common intersection points were com-
puted using resultants.

Since there exist only finitely many intersection points, we are able to compute,
as above, an eliminant via a≺lex-Gröbner basis, and then iterate the partial solutions

170 10 Solving Systems of Polynomial Equations Using Gröbner Bases

to points of the variety. In Singular, this approach is implemented in the library
solve.lib.

> LIB "solve.lib";
> ring R = 0, (x,y), lp;
> poly f = (x^2+y^2)^2+3*x^2*y-y^3;
> poly g = y-(x^2-1);
> ideal I = f,g;
> ideal G = groebner(I);

The output of the following command is almost self-explanatory. For further details
we refer to the Singular user manual.

> solve(G);
[1]:

[1]:
-0.66555112

[2]:
-0.5570417

[2]:
[1]:

0.66555112
[2]:

-0.5570417
[3]:

[1]:
-0.82810567

[2]:
-0.314241

[4]:
[1]:

0.82810567
[2]:

-0.314241
[5]:

[1]:
(-1.32317595-i*0.90285837)

[2]:
(-0.064358647+i*2.389281)

[6]:
[1]:

(1.32317595+i*0.90285837)
[2]:

(-0.064358647+i*2.389281)
[7]:

[1]:
(-1.32317595+i*0.90285837)

[2]:
(-0.064358647-i*2.389281)

10.6 Gröbner Bases and Integer Linear Programs 171

[8]:
[1]:

(1.32317595-i*0.90285837)
[2]:

(-0.064358647-i*2.389281)

// ’solve’ created a ring, in which a list SOL of numbers
// (the complex solutions) is stored.
// To access the list of complex solutions, type (if the
// name R was assigned to the return value):

setring R; SOL;
// characteristic : 0 (complex:8 digits,

additional 8 digits)
// 1 parameter : i
// minpoly : (i^2+1)
// number of vars : 2
// block 1 : ordering lp
// : names x y
// block 2 : ordering C

The details of the higher dimensional case are beyond the scope of this book.
However, we want to at least provide the reader with an example. It is simple to
show that a 0-dimensional, i.e., finite affine variety in C

n is defined by at least n

polynomials. However, the converse, even in the case where the polynomials have
no common divisor, is in general not true.

Example 10.19 We again study Steiner’s Roman surface from Example 8.4. As pre-
viously mentioned, the surface has the three coordinate axes as singular loci. The
intersection of the surface with the z-axis can be modeled as the affine variety of the
ideal

I = 〈x2y2 + y2z2 + z2x2 − 2xyz, x, y
〉⊆C[x, y, z].

One can see (without using Singular) that {x, y} is a ≺lex-Gröbner basis for I .
Hence, V(I) is the z-axis.

Eliminating the variables with respect to the order x, y, z is not a good idea here.
The second elimination ideal I2 is the zero ideal, and hence we do not have an
eliminant.

If we change the order of unknowns to z, x, y, then I2 = 〈y〉 and I1 = 〈x, y〉
implies x = y = 0 for the common roots (x, y) of I1 and I2. Since z is then arbi-
trary, this example shows that the extension of the solution by Theorem 10.6 is not
necessarily unique.

10.6 Gröbner Bases and Integer Linear Programs

We conclude this chapter by discussing one of the many connections between Gröb-
ner bases and algorithmic questions about integer point sets. This is based on the

172 10 Solving Systems of Polynomial Equations Using Gröbner Bases

simple fact that points with integral coordinates can be identified with monomials
via their exponents. We already saw this when we discussed the Gordan–Dickson
Lemma 9.20.

For A ∈Rm×n, b ∈Rm and c ∈ (Rn)∗ we call

min
{
cx :Ax = b, x ∈Nn

}
(10.9)

an integer linear program in standard form. Note that the condition x ∈Nn implies
the non-negativity of all variables.

Remark 10.20 Similar to our comments on linear programs in Section 4.7, we re-
mark that there are also other normal forms for integer linear programs. For our
purposes, the form (10.9) seems most suitable since the inequality constraints have
a rather simple structure (x ∈ Nn) and the equality constraints will be particularly
accessible from the viewpoint of ideals.

Conti and Traverso developed a method based on Gröbner techniques to solve
arbitrary problems of the form (10.9). We discuss here the special case where
A ∈Nm×n, b ∈Nm and c ≥ 0.

The basic idea is to code the given natural numbers as exponents of polynomials.
For this we define n monomials

fj :=w
a1j

1 · · ·w
amj
m , for j ∈ {1, . . . , n}

in the polynomial ring K[w1, . . . ,wm] over an arbitrary field K . Furthermore, we
define the map φ :K[x1, . . . , xn]→K[w1, . . . ,wm] via

φ(xj) := fj

and its extension by φ(g(x1, . . . , xn)) = g(φ(x1), . . . , φ(xn)). A point ζ ∈ Nn is a
feasible point of the integer program (10.9) if and only if φ(xζ)=wb .

It is possible to elegantly express the property φ(xζ)=wb using the subalgebra

K[f1, . . . , fn]
:= {p(f1, . . . , fn) ∈K[w1, . . . ,wm] : p polynomial with coefficients in K

}
of K[w1, . . . ,wm] generated by the polynomials f1, . . . , fn. The subalgebra gener-
ated by a set of polynomials is clearly contained in the ideal generated by the same
polynomials, but is usually (much) smaller: As an example, consider the subalgebra
K[1] generated by the constant polynomial 1. While K[1] is the subalgebra of all
constants in K[w1, . . . ,wm] (which is isomorphic to K itself), the ideal 〈1〉 is the
whole polynomial ring.

Theorem 10.21 The optimization problem (10.9) has a feasible solution if and only
if

w
b1
1 · · ·wbm

m ∈K[f1, . . . , fn]. (10.10)

10.6 Gröbner Bases and Integer Linear Programs 173

The image of φ consists of exactly those polynomials in K[w1, . . . ,wn] which
can be expressed as polynomials in f1, . . . , fn. To prove Theorem 10.21 we need
to show that every monomial in the image of φ is the image of a monomial. For
the Gröbner-based proof and the corresponding solution algorithm, let IA be the
binomial ideal

IA := 〈f1 − x1, . . . , fn − xn〉 ⊆K[w1, . . . ,wm,x1, . . . , xn].
Here it is crucial to choose a monomial order which is suitable for our problem.

Exercise 10.22 Show that for an arbitrary monomial order ≺,

α ≺c β : ⇐⇒ cα < cβ or (cα = cβ and α ≺ β)

defines a monomial order on K[x1, . . . , xn]. Which property of monomial orders
requires the non-negativity of c?

For example, if ≺ = ≺lex and c = 1 is the all-ones vector then ≺c = ≺glex is
the graded lexicographic order, which first compares by total degree and then lexi-
cographically to break ties.

We extend≺c to a monomial order on the larger ring K[w1, . . . ,wm,x1, . . . , xn];
here, each monomial that contains an unknown wi has to be larger than every
monomial that consists only of unknowns xj , and furthermore, the extended mono-
mial order has to be the lexicographic order when we restrict it to the subring
K[w1, . . . ,wm]. We also denote this extension by ≺c .

From now on, let G= {g1, . . . , gt } be a Gröbner basis of the ideal IA with respect
to the monomial order ≺c .

Proposition 10.23 Let f ∈K[w1, . . . ,wm] and g = rem(f ;G).

(a) We have f ∈K[f1, . . . , fn] if and only if g ∈K[x1, . . . , xn].
(b) If f ∈K[f1, . . . , fn], then we have f = g(f1, . . . , fn).

The following representation for given polynomials

u1, . . . , un ∈K[w1, . . . ,wm,x1, . . . , xn]
and α ∈Nn will be very useful in the proof:

u
α1
1 · · ·uαn

n =
(
(u1 − x1)+ x1

)α1 · · · ((un − xn)+ xn

)αn

= v1 · (u1 − x1)+ · · · + vn · (un − xn)+ x
α1
1 · · ·xαn

n (10.11)

with suitable polynomials v1, . . . , vn ∈K[w1, . . . ,wm,x1, . . . , xn].

Proof By the definition of g, there exist h1, . . . , ht ∈ K[w1, . . . ,wm,x1, . . . , xn]
such that

f = h1g1 + · · · + htgt + g. (10.12)

174 10 Solving Systems of Polynomial Equations Using Gröbner Bases

If we assume that g ∈ K[x1, . . . , xn], then we can substitute the polynomial fj

in (10.12) for each unknown xj . Then, since f ∈ K[w1, . . . ,wm], the left hand
side does not change. On the right hand side we have gk(f1, . . . , fn) = 0 for
all k, since the generators of the Gröbner basis G are contained in the ideal I =
〈f1 − x1, . . . , fn − xn〉. Thus, f = g(f1, . . . , fn), and therefore f ∈K[f1, . . . , fn].

Conversely, let f ∈ K[f1, . . . , fn]. Then, there exists a polynomial h ∈
K[x1, . . . , xn] with f = h(f1, . . . , fn). We need to show that rem(f ;G) is con-
tained in K[x1, . . . , xn]. If we apply the trick from (10.11) to all monomials in h,
multiply by the corresponding coefficients, and sum the “coefficient polynomials”
vi of the corresponding factors (fi − xi), we obtain

f = h(f1, . . . , fn)= p1(f1 − x1)+ · · · + pn(fn − xn)+ h(x1, . . . , xn) (10.13)

for suitable polynomials p1, . . . , pn ∈K[w1, . . . ,wm,x1, . . . , xn]; in particular, the
difference f − h is contained in the ideal I .

Now, let G′ := G ∩ K[x1, . . . , xn]. Without loss of generality, we can assume
that G′ = {g1, . . . , gs} for an s ≤ t . Multivariate division with remainder yields

h= q1g1 + · · · + qsgs + h′ (10.14)

for suitable polynomials q1, . . . , qs ∈K[x1, . . . , xn] and

h′ = rem(h;g1, . . . , gs) ∈K[x1, . . . , xn].
Since each of the polynomials gi is contained in the ideal IA, by (10.13) and (10.14)
there exist polynomials q ′1, . . . , q ′n ∈K[w1, . . . ,wm,x1, . . . , xn] such that

f = q ′1(f1 − x1)+ · · · + q ′n(fn − xn)+ h′.

We will now show that h′ = rem(f ;G), which implies the statement. By Exer-
cise 9.35, this is equivalent to showing that no term of h′ is divisible by one of the
leading terms lt(g1), . . . , lt(gt).

Now assume that lt(gi) divides a term of h′. Then lt(gi) ∈K[x1, . . . , xn], since
h′ ∈K[x1, . . . , xn]. Due to our special choice of the monomial order≺c , this implies
gi ∈K[x1, . . . , xn], and thus i ≤ s or gi ∈G′, respectively. This contradicts h′ being
the remainder of a division by g1, . . . , gs . �

Based on this we can present the Gröbner-based method of solving the integer
programming problem (10.9).

Theorem 10.24 If wb =w
b1
1 · · ·wbm

m ∈K[f1, . . . , fn], then rem(wb;G) is a mono-
mial, i.e., rem(wb;G)= xω for some ω ∈ Nn, and the multi-index ω is an optimal
solution of the integer linear program (10.9).

In particular, this statement implies the criterion for the existence of a solution
that was given in Theorem 10.21.

10.6 Gröbner Bases and Integer Linear Programs 175

Proof Let wb = w
b1
1 · · ·wbm

m ∈ K[f1, . . . , fn]. By Proposition 10.23(a), we have
that rem(wb;G) is contained in the subring K[x1, . . . , xn]. By the property of bino-
mial ideals stated in Lemma 9.30(a), rem(wb;G) is a monomial, which we denote
by xω.

Assume there exists a ζ ∈ N
n with cζ < cω. Then φ(xω) = wb = φ(xζ), and

hence φ(xω − xζ) = 0. This implies xω − xζ ∈ IA, and therefore rem(xω − xζ ;
G)= 0. By construction of the monomial order ≺c , cω > cζ yields lt(xω − xζ)=
xω. Since rem(xω − xζ ;G) = 0, xω must be divisible by one of the binomials
g1, . . . , gt . This contradicts the assumption that xω = rem(wb;G) is the remainder
of a division by g1, . . . , gt . �

Example 10.25 We examine the integer linear program min{cx : Ax = b, x ∈ N3}
where

A=
(

2 1 1
1 3 0

)
, b=

(
2
3

)
and c= (1,5,2). (10.15)

The solution set of the linear system of equations Ax = b is the line

⎛
⎜⎝

3
5
4
5

0

⎞
⎟⎠+R

⎛
⎝−3

1
5

⎞
⎠ ,

and the point (0,1,1) is a feasible solution.
We can apply the Conti–Traverso method using Singular in the following

way. First, define a ring R =Q[w1,w2, x1, x2, x3] with monomial order ≺c.

> ring R = 0, (w1,w2,x1,x2,x3), (lp(2), Wp(1,5,2));

The parameter (lp(2), Wp(1,5,2)) determines the monomial order: On the
subalgebra generated by the first two unknowns, i.e., Q[w1,w2], the lexicographic
order is induced. On the complementary subalgebra Q[x1, x2, x3] the monomial or-
der from Exercise 10.22 (with the lexicographic order as secondary criterion) is
induced. In general, the product order of these two monomial orders is used where
the first unknowns are larger than the last unknowns in this ordering.

Next, we define the monomials f1, f2, f3, and print, as a test, the leading mono-
mial of the binomial f1 − x1:

> poly f1 = w1^2*w2;
> poly f2 = w1^1*w2^3;
> poly f3 = w1^1*w2^0;
> lead(f1-x1);

w1^2*w2

We compute the Gröbner basis of IA with respect to ≺c , and determine the normal
form of wb =w

b1
1 w

b2
2 :

176 10 Solving Systems of Polynomial Equations Using Gröbner Bases

> ideal I_A = f1-x1, f2-x2, f3-x3;
> ideal G = groebner(I_A);
> G;

G[1]=x2*x3^5-x1^3
G[2]=w2*x1^2-x2*x3^3
G[3]=w2*x3^2-x1
G[4]=w2^2*x1-x2*x3
G[5]=w2^3*x3-x2
G[6]=w1-x3

> reduce(w1^2*w2^3, G);
x2*x3

That is, the point (0,1,1) is an optimal solution of the integer linear program given
by (10.15).

Now we modify the right side to (5,3) and (3,1), and obtain optimal solutions
for the modified integer linear programs.

> reduce(w1^5*w2^3, G);
x2*x3^4

> reduce(w1^3*w2, G);
x1*x3

Hence, the solutions are (0,1,4) and (1,0,1). We again modify the right hand side
to (3,2) and obtain:

> reduce(w1^3*w2^2, G);
w2*x1*x3

Since w2x1x3 ∈Q[x1, x2, x3], the corresponding integer linear program has no fea-
sible solution.

Singular has specific functions for solving integer linear programs of the
type (10.9).

Example 10.26 We again study Example (10.15). First, we load a library that pro-
vides specific functions for this class of problems.

> LIB "intprog.lib";

The matrix A, the right side b, and the objective function are defined as integer
matrices and vectors respectively.

> intmat A[2][3]=2,1,1, 1,3,0;
> intvec b=2,3;
> intvec c=1,5,2;

Calling the function solve_IP computes the solution.

> print(solve_IP(A,b,c,"pct"));
0,
1,
1

10.7 Exercises 177

The parameter value pct indicates the positive version of the Conti–Traverso algo-
rithm. For other options, we refer to the Singular user manual.

10.7 Exercises

Exercise 10.27 An ideal I is called a radical ideal if I = rad(I). Show that if I and
J are radical ideals, then I ∩ J is a radical ideal.

Exercise 10.28 Sketch an alternative proof for Theorem 10.1 in which the Gröbner
basis property is verified directly for the sets Gk =G∩K[xk+1, . . . , xn].

Exercise 10.29 Sketch an alternative proof for Proposition 10.4 based on Lem-
ma 8.9 and the extended Euclidean algorithm from Exercise 9.34.

Exercise 10.30

(a) Let K be an arbitrary infinite field. Show (via induction on the number of un-
knowns) that for every non-zero polynomial in K[x1, . . . , xn] there exists a point
in Kn where the polynomial does not vanish.

(b) Now let K be an arbitrary finite field. Show that there exist for all n ≥ 1 non-
zero polynomials f ∈K[x1, . . . , xn] such that VK(f)=Kn.

10.8 Remarks

In addition to the programs Maple, Sage and Singular which are described
in Appendix D, there exist several other software packages for the computation of
Gröbner bases, including CoCoA [24] and Macaulay 2 [51].

Rabinowitsch’s trick to deduce the strong form of the Nullstellensatz from the
weak form can be traced back to the one-page paper [87].

Further sources for algorithms and applications of Gröbner bases are the books
by Cox, Little and O’Shea [28, 29], as well as Greuel and Pfister [52].

We limited our presentation of the algorithm by Conti and Traverso to a special
case. Please refer to the original work [26], as well as the book by Cox, Little and
O’Shea [29], for a general approach. Several further connections between Gröbner
bases, convex polytopes and lattice points (e.g., the theory of toric ideals), and ad-
ditional approaches to solving polynomial equations, can be found in Sturmfels’
books [94, 95].

Besides its theoretical relevance, the Conti–Traverso algorithm for solving in-
teger linear programs (ILP) is also practically important in certain special cases
(in particular for series of ILPs with constant matrix A and varying right side b).
However, the standard method is the Branch-and-Bound method or rather its refined
version Branch-and-Cut, see Schrijver [91, §24], Korte and Vygen [72, Chapter 5],
or Bertsimas and Weismantel [12].

Part III
Applications

Chapter 11
Reconstruction of Curves

There are several ways to define a curve in the plane. For example, explicitly param-
eterized as a continuous function f : [0,1]→R

2, or (as in the case of an affine alge-
braic curve) implicitly as the zero set of a bivariate polynomial. For some technical
applications, there are different ways of representing a curve which are more useful
in those contexts, for example the representation as a Bézier curve in computer aided
design (CAD). A different approach is necessary when we want to represent curves
which are the result of a measurement, i.e., when they are only partially known, or
the description is not exact.

We study the problem of reconstructing a curve from a given unordered set of
points. Clearly, there are infinitely many curves that contain a given finite set of
points. The question arises if one of these curves is privileged in any way. As an
example, consider a scan of a curve drawn by hand (see Fig. 11.1). Here, the (finitely
many) scanned points lie so densely that the trajectory of the curve is easy to see.
A key aspect of curve reconstruction is to develop criteria for sets of points to be
“sufficiently dense”. For this, we introduce in the first part of this chapter the medial
axis and the local feature size as intrinsic properties of a curve. After this, we define
the surprisingly simple curve reconstruction method NN-Crust. The fundamental
concept behind this method is the Delone subdivision of the given points.

11.1 Preliminary Considerations

We focus on the simplest case where each connected component of the curve is
closed. Furthermore, we restrict ourselves to the problem of partitioning the given
point set into connected components, and to order the points within each component.
Then, we obtain the (re-)constructed curve by connecting the ordered points with
line segments in each component. In particular, the reconstructed curve is piecewise
linear.

A closed Jordan curve J is the image of a continuous function f : [0,1] → R
2

which is homeomorphic to the circle S1. By the Jordan curve theorem, we know that

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_11,
© Springer-Verlag London 2013

181

http://dx.doi.org/10.1007/978-1-4471-4817-3_11

182 11 Reconstruction of Curves

Fig. 11.1 A scan of a curve

R
2 \ J has exactly two connected components, i.e., that the curve divides the plane

into an inner and an outer part. A subset of J that is homeomorphic to the interval
[0,1] is called a curve arc of J . A sample S on J is a finite subset of J such that
|S| ≥ 3. Two points s(1), s(2) ∈ S are called neighbors on J with respect to S if one
of the curve arcs between s(1) and s(2) contains no other point of S. Since |S| ≥ 3,
there exists exactly one such connecting curve arc for each set of neighboring points
s(1) and s(2).

A polygonal reconstruction P of a curve J is a closed polygonal chain whose
vertices S form a sample on J , such that the points s(1), s(2) ∈ S are neighbors in P

if and only if they are neighbors in J .
For simplicity, we stretch the common terminology by calling a union C of

finitely many pairwise disjoint closed Jordan curves a curve. Accordingly, a sample
is a union of samples of the connected components.

Remark 11.1 It seems natural to restrict our discussion to connected curves. How-
ever, the connectedness of the result of a polygonal reconstruction of a point set S

depends on both the method used and the assumptions about S.

11.2 Medial Axis and Local Feature Size

In the following, let C be a curve in R
2. We now define a continuous counterpart of

the Voronoi diagram of a finite point set; compare Fig. 11.2 with Fig. 11.6 on p. 189.

Definition 11.2 The medial axis of C is the topological closure MC ⊆R
2 of the set

of points in R
2 whose nearest point on C is not unique.

Exercise 11.3 Let J be a closed Jordan curve. Show that the interior of J contains
at least one point of the medial axis MJ . Under what conditions does the outer part
of J contain at least one point of MJ ? When does MJ consist of exactly one point?

11.2 Medial Axis and Local Feature Size 183

Fig. 11.2 A smooth curve
with its medial axis

Throughout this chapter, we assume that the curve C is smooth in the sense that
it is twice differentiable at every point. This implies that at each point p ∈ C we can
define the curvature κ(p). Assume the connected component of p is parameterized
by the function f : [0,1]→R

2 : t
→ (x(t), y(t)). Then the curvature is defined as

κ(p) :=
∣∣∣∣ ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3/2

∣∣∣∣.
Here, ẋ denotes the derivative of x with respect to t . Just as the tangent at p is the
best approximation of the curve at p by a line, the osculating circle to C in p is for
κ(p) = 0 the best approximation by a circle (with common tangent). The radius of
the osculating circle is 1/κ(p); see Fig. 11.3(a).

We will not need any further concepts from differential geometry for the remain-
der of this text. We refer the reader to the books of Kühnel [81] and Pressley [85]
for more details.

Lemma 11.4 Let B ⊆R
2 be a circular disk that contains at least two points of the

smooth curve C. Then the intersection B ∩C is homeomorphic to the interval [0,1],
or B contains a point of the medial axis of C.

Proof If B ∩C is homeomorphic to [0,1], there is nothing to show. Therefore, as-
sume that B ∩C is not homeomorphic to [0,1]. If one of the connected components
J of C is completely contained in B , then the interior of J is also contained in B

and the statement follows from Exercise 11.3.
Otherwise, B ∩C is disconnected. Let z be the center of B and let p be a nearest

point of z on C. We can assume that p is unique since otherwise z would be a point
in MC , and the proof would be finished. Let q be a nearest point of z on C that is
not contained in the same connected component Cp of B ∩ C as p. Each point x

184 11 Reconstruction of Curves

Fig. 11.3 Left: The center z of the osculating circle of the point p with locally maximal curvature
lies on the medial axis. Right: The local feature size at two points q and q ′

on the connecting segment of z and q is closer to q than to any point on the outside
of B . Also, for each such x, the nearest point to x on C is either contained in the
component Cp , or is the point q . Since z is closer to Cp than to q , the intermediate
value theorem implies that there exists a point on the connecting segment of z and q

that has the same distance from Cp and q . By construction, this point is contained
in MC . �

We now examine the intersection of certain disks with the curve. The above
lemma is crucial to this. Specifically, it states that the intersection of a disk which
contains no point of the medial axis with the curve is either a curve arc, or is empty.

First, we will develop a criterion that helps to determine if the given points are
sufficiently dense on a curve C to allow a polygonal reconstruction.

Definition 11.5 The local feature size λC(p) of a curve C at the point p ∈ C is the
distance of p to the medial axis MC .

The local feature size at a point p depends on the curvature at p, and on the other
points on the curve that lie close to p.

The following statement is illustrated in Fig. 11.3(right).

Lemma 11.6 For q and q ′ on C, the inequality λC(q)≤ λC(q ′)+ ‖q − q ′‖ holds.

Proof Let x be a point on the medial axis of C which is closest to q ′. Then the
triangle inequality yields that ‖q − x‖ ≤ ‖q ′ − x‖+‖q − q ′‖ = λC(q ′)+‖q − q ′‖.
Since, trivially, we have λC(q)≤ ‖q − x‖, the claim follows. �

We now provide a result on the intersection of curves with certain circular disks.

Lemma 11.7 A circular disk tangent to C at the point p ∈ C whose radius is less
than or equal to λC(p) contains no points of C in its interior.

11.3 Samples and Polygonal Reconstruction 185

Proof Let z be the center of the largest circular disk B which lies tangent to C at
p and has no points of the curve in its interior. Without loss of generality we can
assume that in a neighborhood of p, B and C lie on the same side of the tangent
line at p. Since B is maximal, it intersects the curve C in at least two points, or B

is an osculating circle. In both cases, the center z of B is on the medial axis MC .
The local feature size at p, i.e., the distance from p to MC , is at most as large as the
distance from p to z. Therefore, the statement follows from the fact that each disk
which lies tangent to C at p with a radius smaller than B is fully contained in B . �

11.3 Samples and Polygonal Reconstruction

After defining samples and the local feature size, we are able to precisely state a con-
dition under which points lie sufficiently dense on a smooth curve C, thus allowing
the polygonal reconstruction.

Definition 11.8 A set S ⊆ C is called an r-sample of C for r ≥ 0 if there exists for
each curve point p a sample point s ∈ S such that ‖p− s‖ ≤ rλC(p).

We will see that if S is an r-sample of a curve C (for a sufficiently small r),
then the edge set of a polygonal reconstruction is a subset of the Delone subdivision
(Theorem 11.9). Furthermore, Lemma 11.15 will prove that the edges to the nearest
neighbors of a sample point must be contained in the edge set of the polygonal
reconstruction.

In the following, let S be an r-sample of the curve C. The smaller r is, the denser
the points lie on the curve. As the density of the points on the curve increases, so
does the precision with which one can make statements about the polygonal re-
construction of C by S. We assume that S contains at least three points of each
connected component of C. In this case, there exists for each two neighboring sam-
ple points s(1) and s(2) exactly one curve arc of C with s(1) and s(2) as endpoints
that contain no other points of S.

Theorem 11.9 Let S be an r-sample of the curve C for r < 1, and let s(1), s(2) ∈ S

be neighboring sample points on C. Then [s(1), s(2)] is an edge of the Delone sub-
division of S and

∥∥s(1) − s(2)
∥∥≤ 2r

1− r
λC

(
s(i)
)
, 1≤ i ≤ 2. (11.1)

If r ≤ 1/3, in particular, the inequality ‖s(1) − s(2)‖ ≤ λC(s(i)) holds.

Proof Let p be an intersection point of the curve arc between s(1) and s(2) and
the bisector of the connecting segment [s(1), s(2)]. Also, let δ be the distance from
p to the nearest sample point. Clearly, δ ≤ ‖p − s(1)‖ = ‖p − s(2)‖. Assume that
the intersection of the circular disk B around p with radius δ and the curve C is

186 11 Reconstruction of Curves

Fig. 11.4 Sketch for the
proof of Theorem 11.9: The
construction of a circle
without interior sample points
for sufficiently dense
neighboring sample points

not connected. Then, by Lemma 11.4, the disk B contains a point of the medial
axis. But r < 1 implies that there exists a sample point in the interior of B which
contradicts δ being minimal. Hence, s(1) and s(2) are the sample points closest to p,
i.e., δ = ‖p− s(1)‖ = ‖p− s(2)‖. Figure 11.4 illustrates this.

The intersection of the disk B with C is the curve arc between s(1) and s(2). In
particular, B contains no sample points apart from s(1) and s(2). Theorem 7.11 states
that [s(1), s(2)] is the edge of a Delone subdivision.

Since S is an r-sample, we have δ ≤ rλC(p). The triangle inequality yields∥∥s(1) − s(2)
∥∥≤ 2δ ≤ 2rλC(p). (11.2)

Lemma 11.6 states that λC(p)≤ λC(s(i))+ δ ≤ λC(s(i))+ rλC(p). By (11.2) and

∥∥s(1) − s(2)
∥∥≤ 2rλC(p)≤ 2r

1− r
λC

(
s(i)
)
,

we achieve the desired inequality. �

We use the assumptions and notation from Theorem 11.9. Let p be the inter-
section of the curve arc between s(1) and s(2) and the bisector of the connecting
segment [s(1), s(2)].

Exercise 11.10 Show that p is the only intersection of the curve arc between s(1)

and s(2) and the bisector of the connecting segment [s(1), s(2)].

Lemma 11.11 The angle (s(1), p, s(2)) is at least π − 2 arcsin(r/2).

Proof Let B be one of the two circular disks with radius λC(p) that are tangent to C

at p. Let z be the center of B and let q(1), q(2) be the intersections of the connecting
segments [s(i), z] with the circle ∂B . By Lemma 11.7, the curve C does not intersect
the interior of B . The same is true for the point reflection of the disk at p, which is
also tangent to C. We can now assume that there is no inflection point of C between
s(1) and s(2). Then, the curve arc between s(1) and s(2) lies entirely on one side of
the tangent line at p. Otherwise, the angle at p would increase.

The largest angle (s(1), p, s(2)) occurs if s(1) and s(2) are on the boundary of B .
We define q(i) as the intersection of the segment [s(i), z] with ∂B for i ∈ {1,2}.

11.4 The Algorithm NN-Crust 187

Fig. 11.5 Sketch for the
proof of Lemma 11.11

We want to provide a lower bound for the angle between s(1), p and s(2). To do
this, it suffices to give a lower bound for the sum of the angles φi between q(i),
p and z. Figure 11.5 provides a sketch of this. After rescaling, we can assume for
simplicity that λC(p)= 1.

Since q(i) lies between s(i) and z, and since s(1) and s(2) are the closest sample
points to p, ∥∥q(i) − p

∥∥≤ ∥∥s(i) − p
∥∥≤ r, 1≤ i ≤ 2. (11.3)

Consider the two right triangles with vertices p, z and the midpoints of the seg-
ments between p and q(i). By (11.3), the length of the adjacent legs of φi is at
most r/2. Since the sine function is monotonic on the interval [0,π/2], the inequal-
ity π/2− φi ≤ arcsin(r/2) holds. This implies

π − φ1 − φ2 ≤ 2 arcsin(r/2),

which proves the statement. �

A very similar argument solves the following exercise.

Exercise 11.12 Show that for three neighboring sample points s(1), s(2), s(3)

on C, the angle ψ between the segments [s(1), s(2)] and [s(2), s(3)] is at least
π − 4 arcsin(r/2).

In particular, ψ > 1.782 > π/2 holds if r ≤ 1/3. [Hint: Consider a circular disk
which lies tangent to C at s(2) and has radius λC(s(2)), and apply Lemma 11.11 to
(s(1), s(2)) and (s(2), s(3)).]

11.4 The Algorithm NN-Crust

Here we introduce a very simple algorithm which solves the curve reconstruction
problem for a given sample S ⊆R

2, if the sample is sufficiently dense on the (a pri-
ori) unknown curve C. Due to the significance of the nearest neighbors, this algo-
rithm is called NN-Crust. The descriptions of Steps 2 and 5 in Algorithm 11.1 are
intentionally vague.

188 11 Reconstruction of Curves

Algorithm 11.1: NN-Crust

Input: finite sample S ⊆R
2

Output: a subset G(S) of the edges of the Delone subdivision of S

1 Compute the edge set D of the Delone subdivision of S.
2 Compute the edge set N ⊆D which connects nearest neighbors in S.
3 G←N

4 foreach sample point s ∈ S that is contained in exactly one edge e ∈N do
5 Determine the shortest edge e′ ∈D containing s that forms an angle

greater than π/2 with e.
6 G←G∪ {e′}
7 return G

Before we analyze the conditions under which the output G of this algorithm is
a polygonal reconstruction of a curve, we analyze its complexity. Let m be the size
of the sample. We can compute the Delone subdivision for S with cost O(m logm).
Note that the size of D grows linearly in m. The following exercise shows that the
total cost of NN-Crust is of order O(m logm).

Exercise 11.13 Provide exact formulations of Steps 2 and 5 in the algorithm NN-
Crust which each have a cost of at most O(m).

Let S be an r-sample of the curve C.

Lemma 11.14 Let e= [s(1), s(2)] be the connecting segment of two non-neighboring
sample points s(1), s(2) ∈ S. Then, for i ∈ {1,2} the inequality ‖s(1) − s(2)‖ >

λC(s(i)) holds, or there exists a neighboring sample point s′ ∈ S on C for s(i),
such that the angle between e and e′ := [s(i), s′] is less than or equal to π/2 and
‖s(i) − s′‖< ‖s(1) − s(2)‖.

Proof Let z be the midpoint of the segment e and let B be the circular disk with
center z and diameter δ := ‖s(1)− s(2)‖. Assume that the intersection of B and C is
a curve arc. Since, by assumption, the points s(1) and s(2) are not neighbors, there
exists a third sample point s′ ∈ S \ {s(1), s(2)} between s(1) and s(2) that is contained
in B . By construction, the angle between e and e′ := [s(1), s′] is less than or equal
to π/2.

If B ∩C is disconnected, then, by Lemma 11.4, the interior of B contains a point
of the medial axis. This implies ‖s(1) − s(2)‖> λC(s(i)). �

The following lemma determines which values of r are useful in this context.

Lemma 11.15 Let s(1) ∈ S be an arbitrary sample point and let s(2) ∈ S \ {s(1)}
have minimal distance to s(1). For r ≤ 1/3, the points s(1) and s(2) are neighbors on
the curve C.

11.4 The Algorithm NN-Crust 189

Fig. 11.6 Reconstruction of
the curve in Fig. 11.2 from 96
(white) sample points. The
solid lines are the edges of the
Delone subdivision; the bold
edges within the subdivision
form the polygonal
reconstruction. The dashed
lines are the edges of the
Voronoi diagram and the
black points are its vertices

Proof Assume, for the sake of contradiction, that s′ is a neighboring sample point of
s(1) which is different from s(2). Consider the case where ‖s(1) − s(2)‖> λC(s(1)).
Then r ≤ 1/3 and (11.1) imply

∥∥s(1) − s′
∥∥≤ 2r

1− r
λC

(
s(1)
)≤ λC

(
s(1)
)
.

From this it follows that ‖s(1) − s′‖< ‖s(1) − s(2)‖, which contradicts our assump-
tion that s(2) was a sample point with minimal distance to s(1).

The case ‖s(1) − s(2)‖ ≤ λC(s(1)) remains to be addressed. Here, by Lem-
ma 11.14, there exists a sample point neighboring s(1) which is closer to s(1)

than s(2). This is again a contradiction, and thus completes the proof. �

The main result of this chapter states that the algorithm NN-Crust yields the
desired result for sufficiently small values of r .

Theorem 11.16 Let S be an r-sample of the closed curve C with r ≤ 1/3. Then
the algorithm NN-Crust(S) determines the edges of the polygonal reconstruction
through S.

Proof First we have to show that the edges which the algorithm computes connect
neighboring sample points on the curve C. Secondly, we have to prove that the
algorithm handles all edges.

Let e= [s(1), s(2)] be an edge computed by NN-Crust(S). If e was determined
in Step 2, then, by Lemma 11.15, the points s(1) and s(2) are neighbors on C. Now
we can assume that e was computed in Step 5. Let x, y ∈ S be the neighboring

190 11 Reconstruction of Curves

sample points of s(1). Then the edge [s(1), x], or the edge [s(1), y] was computed
in Step 2; assume [s(1), x] was computed. The angle between the segments [s(1), x]
and [s(1), s(2)] is greater than π/2. By the inequality from Exercise 11.12, the angle
of [s(1), x] and [s(1), y] is also greater than π/2. If s(1) and s(2) were not neighbors,
then Lemma 11.14 would imply that ‖s(1) − y‖ < ‖s(1) − s(2)‖. This contradicts
our assumption that, in Step 5, e was the shortest edge which forms an obtuse angle
with [s(1), x].

Conversely, assume that s(1) and s(2) are neighboring sample points on C. If s(2)

is a sample point with minimal distance to s(1), then the edge [s(1), s(2)] will be
computed in Step 2. Otherwise, Lemma 11.15 implies that the edge [s(1), s′] was
computed in Step 2, where s′ is the other neighbor of s(1) on C. By the inequality
in Exercise 11.12, the angle between [s(1), s′] and [s(1), s(2)] is larger than π/2.
Lemma 11.14 implies that e= [s(1), s(2)] is the shortest of all such edges. Therefore,
the edge e is computed in Step 5. �

11.5 Curve Reconstruction with polymake

As discussed in Chapter 6, we can generate objects of type VoronoiDiagram in
polymake, for example, in the following way

polytope > $S=new Matrix([[32,99.2],[24.375,81.05],
[40.6,76.4],[28.925,61.975],
[42,52.2],[58.2,61.25],
[54.2,75.4],[70.35,73.9],
[79,85],[63.8,90.93],
[49.8,83.2],[51.95,102.3]]);

polytope > $m=$S->rows();
polytope > $D=new VoronoiDiagram(SITES=>ones_vector($m)|$S);

The 12 rows of the matrix $S define a point set in R
2 that we want to reconstruct a

curve from. Notice that the property SITES needs the point coordinates in homog-
enized form. The steps of the algorithm NN-Crust can be visualized via:

polytope > metapost($D->VISUAL_NN_CRUST);

polymake offers interfaces to a variety of visualization tools. The interface to
METAPOST [62] creates a file (here named D_Voronoi_Diagram.mp) which
is useful as a starting point for a high-quality planar drawing. The result is illustrated
in the upper left hand corner of Fig. 11.7.

11.6 Exercises

Recall the following definition from Chapter 6: An S-Voronoi disk of a finite set
S ⊆ R

2 is a circular disk whose center is a vertex of the Voronoi diagram of S and
whose interior contains no point of S, but its boundary contains at least one point

11.6 Exercises 191

Fig. 11.7 Output of the algorithm NN-Crust for 12, 24, 48 and 96 sample points. The picture
show the edges of the Delone subdivision. The edges between closest neighbors are drawn bold
and the edges that are added in Step 5 of the algorithm are drawn as bold dots

Fig. 11.8 A curve and
Voronoi disk around v. The
intersection of the slightly
contracted disk with the curve
is disconnected

of S. By Corollary 6.15, the boundary of an S-Voronoi disk contains at least three
points of S.

Exercise 11.17 Let S be a finite set of points on C. Show that every S-Voronoi disk
contains one point of the medial axis MC . [Hint: Study Fig. 11.8.]

192 11 Reconstruction of Curves

The next two exercises examine versions of the question of how small a disk
needs to be in order to guarantee that the intersection with the curve is either empty,
or a curve arc.

Exercise 11.18 Let B be a circular disk that contains a curve point p ∈ C. Show
that if the diameter of B is not greater than the local feature size λC(p), then B

intersects the curve C in a curve arc.

Exercise 11.19 Let B be a circular disk with center z on the curve C. Show that if
the radius of B is not greater than the local feature size λC(z), then B intersects the
curve C in a curve arc.

11.7 Remarks

In some applications we are interested in achieving smoother approximations. How-
ever, even then it is useful to start with a polygonal reconstruction. Constructions
such as Bézier curves or other interpolation methods assume that the order of the
given points on the curve is known.

For further background on the fundamental concepts of differential geometry
described here, see the books of O’Neill [81] and Pressley [85].

The medial axis was introduced in 1967 by Blum in the context of biological
forms [14].

The algorithm NN-Crust goes back to Dey and Kumar [34]. Our presentation
of this algorithm is also based on Amenta, Bern and Eppstein [4].

Althaus and Mehlhorn [3] introduced an interesting algorithm for curve recon-
struction that makes use of relations to the traveling salesman problem from combi-
natorial optimization.
CGAL provides functions for the reconstruction of curves and surfaces.

Chapter 12
Plücker Coordinates and Lines in Space

Lines, especially in R
3, play a significant role in the modeling of geometric prob-

lems in computer graphics and machine vision. For example, a point b is visible
from a point a if the line segment from a to b does not intersect another object of
the scene.

Although a line is an affine subspace of the original space, the conditions for
the intersection of lines are intrinsically non-linear. To illustrate this, we briefly
study the problem of determining the set of lines that intersect four given lines
�1, . . . , �4 ⊆ R

3. (These intersection lines are called transversals.) If this problem
were a linear or an affine linear problem, the number of solutions would always be
0, 1, or infinite. Actually, we will see below that for lines in general position, there
exist exactly two (in general complex) lines with this property.

For many problems which involve the configurations of lines, it is useful to iden-
tify the lines, in a non-linear manner, with points in a higher dimensional space.
This then leads to linear intersection conditions. The so-called Plücker coordinates
achieve this.

Before we begin to study the line configurations, we will first define Plücker
coordinates for arbitrary subspaces of a projective space. We study the linear inter-
section conditions mentioned above in this general setting before we return to the
three-dimensional case at the end of this chapter.

12.1 Plücker Coordinates

A line in projective space can be represented by two points on it. However, this rep-
resentation is far from unique. It is very useful in many applications to work with
a unique representation of lines. Plücker coordinates have proven to be a very ele-
gant tool in several contexts. We define these coordinates for arbitrary subspaces of
projective spaces over a field K . To simplify the notation and prevent writing unnec-
essary indices, in this chapter we always work with a k-dimensional linear subspace
of the n-dimensional space Kn. This corresponds to the (k − 1)-dimensional pro-
jective subspaces of the projective space P

n−1
K .

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_12,
© Springer-Verlag London 2013

193

http://dx.doi.org/10.1007/978-1-4471-4817-3_12

194 12 Plücker Coordinates and Lines in Space

In the following, we set N := (n
k

)− 1. Let U be a k-dimensional subspace of Kn

that is spanned by the columns of an n×k-matrix L. For every subset I ⊆ {1, . . . , n}
of cardinality k, let pI be the k× k subdeterminant of L that is defined by the rows
of I . Then the vector

p := (pI)I⊆{1,...,n}, |I |=k

is called the vector of Plücker coordinates of U . Since at least one of the coordinates
is non-zero, this defines a point in P

N = P
N
K .

Remark 12.1 For k = 1 we obtain the homogeneous coordinates of a point in P
n−1.

In this sense, the Plücker coordinates are a generalization of homogeneous coordi-
nates.

Example 12.2 We examine the case n = 4, k = 2, which corresponds to lines in
3-dimensional projective space. If a line � is spanned by the columns of the (4× 2)-
matrix

L=

⎛
⎜⎜⎝

x1 y1
x2 y2
x3 y3
x4 y4

⎞
⎟⎟⎠ ,

then the vector p of Plücker coordinates has the six components

pi,j = xiyj − xjyi, 1≤ i < j ≤ 4.

First, we show that these coordinates are well defined. For this, let L and L′ be
two k×n-matrices whose columns span U . From linear algebra we know that there
exists a regular k × k-matrix C such that L= C · L′. Therefore, all coordinates of
the Plücker vector with respect to L differ from the coordinates of the Plücker vector
with respect to L′ by the same factor detC = 0. The points in P

N corresponding to
the two Plücker vectors are hence the same.

Not every vector p ∈ PN is the Plücker vector of a k-dimensional subspace of
Kn, since the components of the vector satisfy an algebraic relation. It is necessary
to understand these algebraic relations in greater detail to answer computational
questions (such as: is a given vector p ∈ P

N the Plücker vector of a line?). As a
central structural result, we show in the following sections that these relations can
be expressed by quadratic equations. To do so, it is useful to study this definition
from a more abstract viewpoint—the exterior algebra of a vector space. This enables
us to express interesting properties of line configurations by Plücker coordinates in
a very compact form.

12.2 Exterior Multiplication and Exterior Algebra

Let K be an arbitrary field and let V be the n-dimensional vector space Kn with the
standard basis e(1), . . . , e(n). For k ∈ {1, . . . , n} and indices 1≤ i1 < · · ·< ik ≤ n we

12.2 Exterior Multiplication and Exterior Algebra 195

introduce the formal symbol

e(i1) ∧ · · · ∧ e(ik)

which we call the exterior product of the basis vectors e(i1), . . . , e(ik).
We construct a new vector space

∧k
V from the symbols e(i1,...,ik) for

i1 < · · ·< ik .

Definition 12.3 For 1≤ k ≤ n we define the k-th exterior power
∧k

V as the set of
formal K-linear combinations, the free K-vector space product, of the symbols

e(i1) ∧ · · · ∧ e(ik), 1≤ i1 < · · ·< ik ≤ n.

This generating system is called the canonical basis of
∧k

V . Furthermore, let∧0
V :=K . The (exterior) direct sum

∧
V =

∧0
V ⊕

∧1
V ⊕ · · · ⊕

∧n
V

is called the exterior algebra over V .

Since there exist
(
n
k

)
index sequences 1≤ i1 < · · ·< ik ≤ n,

dimK

∧k
V =

(
n

k

)
and dimK

∧
V = 2n.

Usually,
∧1

V is identified with the vector space V itself. Furthermore, we define
all vector spaces

∧k
V with k > n as the zero space.

The term “algebra” suggests that there exists a multiplication on
∧

V . Before we
define the multiplication, we analyze an example.

Example 12.4 Let V = K4. The second exterior power
∧2

V has the canonical
basis

e(1) ∧ e(2), e(1) ∧ e(3), e(1) ∧ e(4),

e(2) ∧ e(3), e(2) ∧ e(4), e(3) ∧ e(4),∧3
V has the canonical basis

e(1)∧ e(2)∧ e(3), e(1)∧ e(2)∧ e(4), e(1)∧ e(3)∧ e(4), e(2)∧ e(3)∧ e(4),

and
∧4

V has the canonical basis e(1) ∧ e(2) ∧ e(3) ∧ e(4). Therefore, the K-vector
space dimension of the exterior algebra

∧
V is 1+ 4+ 6+ 4+ 1= 16= 24.

Now we define the following exterior multiplication, denoted by ∧, on a pair of
basis vectors of V via

e(i) ∧ e(i) := 0 and e(j) ∧ e(i) := −(e(i) ∧ e(j)
)

(12.1)

196 12 Plücker Coordinates and Lines in Space

for i < j . This map has a unique associative extension to the set of all pairs of
canonical basis vectors of

∧
V such that

e(i1) ∧ · · · ∧ e(ik) = sgn(σ) · (e(σ(i1)) ∧ · · · ∧ e(σ(ik))
)
,

where σ ∈ Sym({i1, . . . , ik}) is a permutation.

Example 12.5 If n≥ 3, then e(1) ∧ e(2) ∧ e(3) =−(e(2) ∧ e(1) ∧ e(3)).

Exercise 12.6 Show that the exterior multiplication defined on pairs of canonical
basis vectors has a unique extension to a K-bilinear map

∧ :
∧

V ×
∧

V →
∧

V,

the exterior multiplication on V .

For a systematic approach, we need to first prove some general properties of the
exterior multiplication:

Exercise 12.7 Show:

(a) The exterior multiplication is associative.
(b) The exterior multiplication is skew-symmetric, i.e., x ∧ y = −y ∧ x for all

x, y ∈ V .
(c) For x(1), . . . , x(k) ∈ V we have x(1) ∧ · · · ∧ x(k) = 0 if and only if x(1), . . . , x(k)

are linearly dependent over K .

The relevance of the exterior algebra for Plücker coordinates, and thus for con-
figurations of subspaces, is based on the following lemma.

Lemma 12.8 Let U be the k-dimensional subspace of V spanned by u(1), . . . , u(k).
Then the vector of coefficients pi1,...,ik , where i1 < · · ·< ik , in the basis representa-
tion

u(1) ∧ · · · ∧ u(k) =
∑

i1<···<ik

pi1,...,ik · e(i1) ∧ · · · ∧ e(ik) (12.2)

of the exterior product u(1) ∧ · · · ∧ u(k) equals the Plücker coordinates of U in
homogeneous coordinates, i.e., both vectors denote the same point in P

N .

Proof By repeated use of linearity, we have

u(1) ∧ · · · ∧ u(k) =
∑

i1,...,ik∈{1,...,n}
u

(1)
i1
· · ·u(k)

ik
· e(i1) ∧ · · · ∧ e(ik). (12.3)

Then the skew-symmetry from (12.1) gives the coefficient

pi1,...,ik =
∑

σ∈Sym({i1,...,ik})
sgn(σ)u

(i1)
σ (i1)
· · ·u(ik)

σ (ik)

12.2 Exterior Multiplication and Exterior Algebra 197

in the basis representation (12.3), where sgn(σ) denotes the sign of the permuta-
tion σ . Using the Leibniz expansion of the determinant, we recognize this expres-
sion for pi1,...,ik as the Plücker coordinate with index {i1, . . . , ik}. �

We call the representation of Plücker coordinates in Lemma 12.8 via the exterior
product the exterior Plücker representation.

Now we will describe when a given element ω ∈∧k
V is the Plücker vector of

a k-dimensional subspace, i.e., when v(1), . . . , v(k) ∈ V exist such that ω = v(1) ∧
· · · ∧ v(k). To do this, fix ω ∈∧k

V and examine the linear map

∧ω : V →
∧k+1

V,

v
→ v ∧ω.

By choosing the canonical basis for V and
∧k+1

V in lexicographic order, we obtain
the corresponding representation matrix

Mω ∈K(n
k+1)×n.

Lemma 12.9 Let ω ∈∧k
V \ {0}, then the following properties are equivalent:

(a) There exist v(1), . . . , v(k) ∈ V with ω= v(1) ∧ · · · ∧ v(k).
(b) dim ker∧ω = k.
(c) rankMω = n− k.

Proof We show that (a) is equivalent to (b).
For any vector v and linearly independent v(1), . . . , v(k) ∈ V , by Exercise 12.7(c)

v ∧ v(1) ∧ · · · ∧ v(k) = 0 ⇐⇒ v ∈ lin
{
v(1), . . . , v(k)

}
. (12.4)

If 0 = ω = v(1) ∧ · · · ∧ v(k), then the vectors v(1), . . . , v(k) are linearly indepen-
dent, and ker∧ω = lin{v(1), . . . , v(k)}, hence dim ker∧ω = k.

To prove the converse, let v(1), . . . , v(n) be a basis of V such that the first k

vectors v(1), . . . , v(k) are a basis of the kernel of ∧ω . The set of vectors v(I) =
v(i1)∧ · · · ∧ v(ik) with I = {i1, . . . , ik} and 1≤ i1 < · · ·< ik ≤ n is a basis for

∧k
V .

Therefore, there exists a unique representation of ω as a linear combination of the
basis vectors

ω=
∑
I

ωI v
(I)

with coefficients ωI ∈K . For every i ∈ {1, . . . , k}, by construction v(i)∧ω= 0, and
therefore, by the definition of the exterior product, all ωI with i /∈ I vanish. As a
consequence, only the coefficient ω{1,...,k} can be non-zero.

The equivalence of (b) and (c) is clear. �

The next exercise is an alternative version of the previous lemma.

198 12 Plücker Coordinates and Lines in Space

Exercise 12.10 Let ω ∈∧k
V \ {0}. Show that:

dim ker∧ω = k ⇐⇒ dim ker∧ω ≥ k.

We can now justify the term “coordinates” by showing that any two different
k-dimensional subspaces have different Plücker vectors.

The set of k-dimensional subspaces of Kn is denoted by Gk,n K and is called the
k-th Grassmannian of Kn. We have that G1,n K and G2,n K are the set of points and
lines of the projective space P

n−1
K .

Lemma 12.11 The map from the Grassmannian Gk,n K to P
N
K that maps a

k-dimensional subspace to its Plücker coordinates is injective.

Proof Let ω= v(1)∧· · ·∧v(k) and ω′ =w(1)∧· · ·∧w(k) be exterior Plücker repre-
sentations (hence, in particular, non-zero). We have to show that lin{v(1), . . . , v(k)} =
lin{w(1), . . . ,w(k)} if and only if ω′ is a non-zero multiple of ω.

Assume, first, that lin{v(1), . . . , v(k)} = lin{w(1), . . . ,w(k)}, which implies that
every vector w(i) has a representation as w(i) =∑k

j=1 λij v
(j). Therefore, we have

ω′ =
∑

j1,...,jk

λ1,j1 · · ·λk,jk
· v(1) ∧ · · · ∧ v(k).

Only those terms for which {j1, . . . , jk} is a permutation of {1, . . . , k} can be non-
zero, and thus we obtain, as in Lemma 12.8,

ω′ = det
(
v(1), . . . , v(k)

) · v(1) ∧ · · · ∧ v(k),

so that ω′ is a multiple of ω.
The converse follows from Lemma 12.8 and from the fact that the Plücker coor-

dinates are well defined. �

Example 12.12 We again study the case n= 4, k = 2 for an illustration. Each vector
ω ∈∧2

V has a representation of the form

ω=
∑

1≤i<j≤4

pij · e(i) ∧ e(j)

with Plücker coordinates pij . As we saw before, the columns of the representation
matrix Mω of ∧ω consist of the coordinate vectors of the images of the canonical
basis vectors. For the order e(1), . . . , e(4) of the canonical basis vectors of V , and
the order e(1) ∧ e(2) ∧ e(3), e(1) ∧ e(2) ∧ e(4), e(1) ∧ e(3) ∧ e(4), e(2) ∧ e(3) ∧ e(4) of
the canonical basis vectors of

∧3
V , we obtain the representation matrix Mω of ∧ω

as

Mω =

⎛
⎜⎜⎝

p23 −p13 p12 0
p24 −p14 0 p12
p34 0 −p14 p13
0 p34 −p24 p23

⎞
⎟⎟⎠ .

12.3 Duality 199

By Lemma 12.9, the vector ω defines the Plücker vector of a line in P
3 if and only

if this matrix has rank 2.

12.3 Duality

Duality is also important in the context of Plücker coordinates. When we defined the
Plücker coordinates, we described subspaces U of V =Kn as the span of k linearly
independent vectors. If we describe U as an intersection of n− k hyperplanes we
obtain the dual Plücker coordinates which will be defined in the following.

Let U be a k-dimensional subspace in Kn which is given as an intersection of
n− k hyperplanes,

n∑
i=1

u
(1)
i xi = 0, . . . ,

n∑
i=1

u
(n−k)
i xi = 0,

whose coefficient vectors u(1), . . . , u(n−k) define the rows of an (n − k) × n-ma-
trix M . For every subset I ⊆ {1, . . . , n} of cardinality n− k, let qI be the (n− k)×
(n− k) subdeterminant of M that is defined by the columns of I . Then the vector
in P

N defined by

q := (qI)I⊆{1,...,n}, |I |=n−k

is called the vector of dual Plücker coordinates of U . Analogous to the representa-
tion of primal Plücker coordinates, it is possible to represent the dual Plücker co-
ordinates as an exterior product. The dual basis (e(1))∗, . . . , (e(n))∗ of the standard
basis consists of the linear forms x
→ x1, . . . , x
→ xn. As previously done, we can
define the exterior algebra

∧
V ∗ on the dual vector space V ∗.

Remark 12.13 For k = n − 1 the dual Plücker coordinates are the homogeneous
coordinates of hyperplanes in P

n−1. This is the dual version of Remark 12.1.

The dual Plücker coordinates are closely related to the primal Plücker coordi-
nates. To study this connection, it is convenient to use the compact notation

e(I) := e(i1) ∧ · · · ∧ e(ik)

for any index set I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n. We define the oper-
ator ∗ as a linear map

∧k
V →∧n−k

V ∗ by defining the images of the basis ele-
ments e(I) of

∧k
V (and by linear extension). Let I = {i1, . . . , ik} with 1≤ i1 < · · ·

< ik ≤ n, and J = {j1, . . . , jn−k} := {1, . . . , n} \ I with increasing indices j1 <

· · ·< jn−k be the complement of I . Then we define

∗(e(I)
) := sgn(i1, . . . , ik, j1, . . . , jn−k) ·

(
e(J)
)∗

= sgn(i1, . . . , ik, j1, . . . , jn−k) ·
(
e(j1)

)∗ ∧ · · · ∧ (e(jn−k)
)∗

.

200 12 Plücker Coordinates and Lines in Space

Note that here and in the following, we write the permutation (1
→ i1, . . . , n
→ in)

as the vector of the images (i1, . . . , in).

Example 12.14 For n= 4, k = 2 the ∗ operator yields ∗(1)= e(1234), ∗(e(1234))= 1
and

∗e(1) = (e(234)
)∗

, ∗e(12) = (e(34)
)∗

, ∗e(123) = (e(4)
)∗

,

∗e(2) =−(e(134)
)∗

, ∗e(13) =−(e(24)
)∗

, ∗e(124) =−(e(3)
)∗

,

∗e(3) = (e(124)
)∗

, ∗e(14) = (e(23)
)∗

, ∗e(134) = (e(2)
)∗

,

∗e(4) =−(e(123)
)∗

, ∗e(23) = (e(14)
)∗

, ∗e(234) =−(e(1)
)∗

,

∗e(24) =−(e(13)
)∗

,

∗e(34) = (e(12)
)∗

.

We show that the dual exterior Plücker representation of the subspace U equals
(up to a multiplicative constant) the primal exterior Plücker representation after ap-
plying the ∗ operator. For this, we need the following determinant identity of Jacobi.

Lemma 12.15 Let A ∈Kn×n be invertible and of the form

A=
(

A11 A12
A21 A22

)
, B :=A−1 =

(
B11 B12
B21 B22

)

with k × k-matrices A11, B11. Then

detB22 · detA= detA11.

Proof Since A ·A−1 = Id we have(
A11 A12
A21 A22

)
·
(

Id B12
0 B22

)
=
(

A11 0
A21 Id

)
.

By computing the determinant on both sides, we immediately obtain the result. �

Theorem 12.16 Let p and q be the vectors of the primal and dual Plücker co-
ordinates of a k-dimensional subspace U of V . If we interpret p and q as vec-
tors in R

N+1, then there exists a constant c = 0 such that for all permutations
(i1, . . . , in) ∈ Sym({1, . . . , n})

pi1,...,ik = c · sgn(i1, . . . , in) · qik+1,...,in . (12.5)

Proof We begin with the special case of the k-dimensional subspace defined by
xk+1 = · · · = xn = 0. This is spanned by the unit vectors e(1), . . . , e(k). The coor-
dinate pi1,...,ik is non-zero if and only if {i1, . . . , ik} = {1, . . . , k}, and in this case
pi1,...,ik is 1 if and only if the permutation (i1, . . . , ik) has a positive sign. The

12.3 Duality 201

same holds for qik+1,...,in , and hence the statement follows from sgn(i1, . . . , ik) ·
sgn(ik+1, . . . , in)= sgn(i1, . . . , in).

For the general case, we assume that the k-dimensional subspace U can be ob-
tained from the special subspace by a linear map with representation matrix M . By
Jacobi’s determinant identity, Lemma 12.15, the proportionality between the primal
and dual Plücker coordinates remains. �

Corollary 12.17 Let ω ∈∧k
V be the exterior Plücker representation of a k-di-

mensional subspace U of V , then ∗(ω) ∈∧n−k
V ∗ is an exterior representation of

the dual Plücker coordinates of U .

Corollary 12.17 and ∗(∗(ω))= (−1)k(n−k)ω yield:

Corollary 12.18 An element ω ∈∧k
V is an exterior Plücker representation of a

k-dimensional subspace of V if and only if ∗(ω) is a dual exterior Plücker repre-
sentation of a k-dimensional subspace of V .

Analogous to ∧ω , we define the map

∧∗(ω) : V ∗ →
∧n−k+1

V ∗,
φ
→ φ ∧ ∗(ω).

The representation matrix of this map (with respect to the lexicographically ordered
canonical basis) is denoted by M∗ω ∈K(n

n−k+1)×n.

Example 12.19 In the case n = 4, k = 2, and for ω =∑1≤i<j≤4 pij (ei ∧ ej), we
have

∗(ω) = p12
(
e(34)

)∗ − p13
(
e(24)

)∗ + p14
(
e(23)

)∗
+ p23

(
e(14)

)∗ − p24
(
e(13)

)∗ + p34
(
e(12)

)∗
.

This implies in particular(
e(1)
)∗ ∧ ∗(ω)= p14

(
e(123)

)∗ − p13
(
e(124)

)∗ + p12
(
e(134)

)∗
,

which gives the first column of the representation matrix

M∗ω =

⎛
⎜⎜⎝

p14 p24 p34 0
−p13 −p23 0 p34
p12 0 −p23 −p24
0 p12 p13 p14

⎞
⎟⎟⎠ .

Theorem 12.20 An element ω ∈∧k
V \ {0} is an exterior Plücker representation

of a k-dimensional subspace of V if and only if

Mω ·
(
M∗ω
)T = 0. (12.6)

202 12 Plücker Coordinates and Lines in Space

Proof By Corollary 12.18, the vector ω is an exterior Plücker representation of
a k-dimensional subspace if and only if ∗(ω) is a dual exterior Plücker repre-
sentation of a k-dimensional subspace. Therefore, in this case there exists a basis
v(1), . . . , v(n) of V such that

ω= v(1) ∧ · · · ∧ v(k) and ∗(ω)= (v(k+1)
)∗ ∧ · · · ∧ (v(n)

)∗
.

For each v ∈ V , the linear form u∧∗(ω) vanishes on v∧ω, which implies the stated
property.

Now we study the converse. By Lemma 12.9 and Exercise 12.10, the prop-
erty dim ker∧ω ≤ k, and analogously dim ker∧∗(ω) ≤ n − k, holds for every ω ∈∧k

V \ {0}. Therefore, if (12.6) is satisfied we must have equality in both cases. By
Lemma 12.9, the vector ω is an exterior Plücker representation. �

As a corollary we now obtain the desired characterization of those points p ∈ PN

which are Plücker coordinates of a k-dimensional subspace of V =Kn.

Theorem 12.21 The Plücker coordinates (pI)I⊆{1,...,n},|I |=k of the k-dimensional
subspaces of V correspond to those points of PN which satisfy the condition

k+1∑
l=1

(−1)lp
i1,...,îl ,...,ik+1

pj1,...,jk−1,il = 0 (12.7)

for all i1, . . . , ik+1, j1, . . . , jk−1 ∈ {0, . . . , n}, where îl denotes that the index il is
omitted.

Proof The representation matrix Mω ∈K(n
k+1)×n satisfies

(Mω)Ij =
{

0 if j /∈ I,

εpI\{j} if j ∈ I,

where I \ {j} = {i1, . . . , ik} with i1 ≤ · · · ≤ ik , and

ε = sgn(j, i1, . . . , ik).

Analogously, M∗ω ∈K(n
n−k+1)×n satisfies

(
M∗ω
)
I ′j =

{
0 if j /∈ I ′,
ε′pJ if j ∈ I ′

with I ′ = {i′1, . . . , i′n−k+1}, i′1 ≤ · · · ≤ i′n−k+1, J = {1, . . . , n} \ I ′ = {j1, . . . , jk−1},
j1 ≤ · · · ≤ jk−1 and ε′ = sgn(i′1, . . . , i′n−k+1, j1, . . . , jk−1). This yields (12.7). �

For the special case k = 2, i.e., the case of lines in projective space, we obtain
the following corollary.

12.4 Computations with Plücker Coordinates 203

Corollary 12.22 The Plücker coordinates of a line � in P
n−1 satisfy the following

conditions.

pijprs − pirpjs + pispjr = 0, for 1≤ i < j < r < s ≤ n.

For n= 4 these conditions reduce to a single quadratic equation

p12p34 − p13p24 + p14p23 = 0. (12.8)

The quadric in P
5 defined by (12.8) is called the Klein quadric. We summarize

the statements of this section in the following way:

Corollary 12.23 The map from Gk,n K to the variety in P
N defined by (12.7) which

maps a subspace to its Plücker vector is bijective.

12.4 Computations with Plücker Coordinates

The reason for introducing primal and dual Plücker coordinates is that they allow for
the computation of the intersections of subspaces in a very comfortable way. Propo-
sition 2.5 showed how the incidence relation of points and hyperplanes in projective
space can be expressed using the inner product of homogeneous coordinate vectors.
We generalize this now.

The inner product of two points in the projective space Pn−1 (as the inner product
of the representatives in Kn) is defined only up to a non-zero multiplicative con-
stant; but analogously to Proposition 2.5, determining if the inner product vanishes
is independent of the choice of representatives.

Theorem 12.24 A (k − 1)-dimensional projective subspace U of Pn−1 intersects
an (n− k − 1)-dimensional projective subspace W of Pn−1 if and only if the inner
product of the Plücker coordinates p of U and the dual Plücker coordinates q of W

vanishes, i.e., if ∑
I⊆{1,...,n},|I |=k

pI qI = 0. (12.9)

Proof We identify projective subspaces of Pn−1 with linear subspaces of V =Kn.
Let u(1), . . . , u(k) be a basis of the linear subspace U of V , and let w(1), . . . ,w(k)

be the coefficient vectors of the equations defining the linear subspace W . A point∑k
i=1 λiu

(i) ∈U with coefficients λ1, . . . , λk is contained in W if and only if

k∑
i=1

k∑
l=1

λlu
(i)
l w

(j)
l = 0, for all j ∈ {1, . . . , k}.

204 12 Plücker Coordinates and Lines in Space

This system of equations has exactly one non-trivial solution in λ1, . . . , λk if

det

(
n∑

l=1

u
(i)
l w

(j)
l

)
1≤i≤k
1≤j≤k

= 0. (12.10)

This determinant can also be interpreted as the determinant of the product of the
matrices (u

(i)
l)l,i and (w

(j)
l)j,l .

The Cauchy–Binet formula says that for two arbitrary matrices A ∈ Kn×k ,
B ∈Kk×n we have

detAB =
∑

I⊆{1,...,n},|I |=k

detAI detBI , (12.11)

where AI and BI are the submatrices of A and B in which only those columns of A

and rows of B are used whose indices are in I . (A very elegant proof of this state-
ment can be found in THE BOOK [2].) Using the Cauchy–Binet formula (12.11),
we can write (12.10) as ∑

I

pI qI ,

which implies the statement. �

12.5 Lines in R
3

Lines in three-dimensional space occur, for example, in ray shooting problems, in
computer graphics. In the simplest situation we are given a line and a polytope in
R

3 (in computer graphics often a polygon), and we want to test if the line and the
polytope intersect. Or, for a directed line � and a finite set of disjoint polytopes, we
have to determine the order in which � intersects the polytopes. There are numerous
applications of this kind.

From the viewpoint of non-linear geometry, it is especially interesting if the line
� ⊆ R

3 is tangent to a polytope P ⊆ R
3. In this case, there exists a point p on an

edge e of P that is contained in the line �. If �′ denotes the line containing the edge
e, we have the same situation as in Theorem 12.24. In 3-dimensional projective
space with homogeneous coordinates x1, . . . , x4 the intersection condition can be
stated as follows:

Corollary 12.25 A line � intersects a line �′ in P
3 if their Plücker coordinates p

and p′ satisfy

p12p
′
34 − p13p

′
24 + p14p

′
23 + p23p

′
14 − p24p

′
13 + p34p

′
12 = 0. (12.12)

With the elimination techniques developed in Section 10.2, we can simply let
Singular compute the Plücker relation (12.8) from Corollary 12.22. For this, let

12.5 Lines in R
3 205

Fig. 12.1 The geometry of
the common transversal of
four given lines. The two
transversals are dashed

pij = xiyj − xjyi , and eliminate all x and y variables from the ideal generated by
these equations.

> ring R = 0, (x1,x2,x3,x4,y1,y2,y3,y4,
p12,p13,p14,p23,p24,p34), lp;

> ideal I = p12 - (x1*y2 - x2*y1), p13 - (x1*y3 - x3*y1),
p14 - (x1*y4 - x4*y1), p23 - (x2*y3 - x3*y2),
p24 - (x2*y4 - x4*y2), p34 - (x3*y4 - x4*y3);

> eliminate(I,x1*x2*x3*x4*y1*y2*y3*y4);
_[1]=p12*p34-p13*p24+p14*p23

The lexicographic Gröbner basis of the ideal I consists of 17 polynomials. By
Theorem 10.1, one of these polynomials is the polynomial of Plücker coordinates
obtained by the elimination of all x and y variables.

12.5.1 Transversals

Determining all lines � that intersect a given set of lines �1, . . . , �k ⊆ R
3 is a stan-

dard operation in computer graphics. Every line of this type is called a transversal
of �1, . . . , �k . This problem is well suited to illustrate the passage from linear to
non-linear structures. Even though lines are affine subspaces of R3, there exist—as
mentioned in the introduction to this chapter—in general two (possibly complex)
transversals for any four given lines.

If �1, . . . , �k are given in dual Plücker coordinates, then the intersection condition
�∩ �i = 0 yields, by Corollary 12.25, the condition

fi(p12, . . . , p34)= 0,

which is linear in the Plücker coordinates p which we want to compute. If k = 4, and
these conditions are linearly independent, this homogeneous system of equations in
R

6 has a 2-dimensional solution space. If v and w are the generators of this solution

206 12 Plücker Coordinates and Lines in Space

space, then substituting the general solution λv+μw (for λ,μ ∈R) into the Plücker
equation yields a homogeneous quadratic equation in λ,μ. The solutions can then
be easily obtained by dehomogenization.

Actually, this situation has a very nice geometric interpretation. If �1, �2 and
�3 are skew, then �1, �2 and �3 either lie in a uniquely determined hyperboloid of
one sheet, or in a hyperbolic paraboloid; see Exercises 12.26 and 12.27. In both
cases, this quadric contains two families of lines, and �1, �2 and �3 are contained in
the same family. In general, �4 intersects the quadric in two points. The two lines
of the other family of lines determined by these two intersections intersect �1, �2,
�3 and �4. See Fig. 12.1 for the case where the first three lines are contained in a
hyperboloid of one sheet.

The degenerate cases can also be solved using this approach. If �4, like the first
three lines, is contained in the family of lines defined by the quadric, then each line
of the other family of lines intersects the four given lines.

12.6 Exercises

Exercise 12.26 Assume we are given a hyperboloid H of the form

x2

a2
+ y2

b2
− z2

c2
= 1, with a, b, c > 0.

Determine a parametrization of the two families of lines contained in H .

Exercise 12.27 Show that three given pairwise skew lines in R
3 lie on a uniquely

determined quadratic hypersurface; specifically, on a hyperboloid of one sheet, or a
hyperbolic paraboloid.

Exercise 12.28 Write a Singular program that computes for three given skew
lines the quadric from the last exercise.

Exercise 12.29 The Plücker coordinates of the set of tangential hyperplanes to the
unit sphere S

2 ⊆ R
3 centered at the origin defines a hypersurface in P

5. What is its
defining polynomial?

12.7 Remarks

Plücker coordinates can be traced back to Julius Plücker (1808–1868). Further in-
formation on Plücker coordinates and Grassmann manifolds can be found in the
classical book of Hodge and Pedoe [63], Pottmann and Wallner [83] and Fischer
and Piontkowski [40].

12.7 Remarks 207

The fact that the exterior multiplication defined on the canonical basis vectors
has a unique bilinear extension to the exterior algebra

∧
V (as was to be shown in

Exercise 12.6) is based on the corresponding universal property of the tensor algebra
of V , since

∧
V can be written as a quotient of V . See, for example, the treatment

in Roman’s book [89].
For some contemporary developments in computational line geometry, see the

survey article by Sottile and Theobald [92].

Chapter 13
Applications of Non-linear Computational
Geometry

In this concluding chapter, we study some applications of non-linear computa-
tional geometry. First, we will study Voronoi diagrams for line segments (instead
of points), which leads to non-linear edges. Next, we illustrate how some two- and
three-dimensional real world problems (from robotics and satellite geodesy) can be
formulated in terms of polynomial equations, and how they can be solved using the
methods described in the previous chapters. Note that we will give simplified exam-
ples and that our focus is always on demonstrating the modeling of these problems
with polynomial equations. Many related questions quickly lead to algorithmic and
algebraic topics that are beyond the scope of this book.

13.1 Voronoi Diagrams for Line Segments in the Plane

Let S = {s(1), . . . , s(m)} be a finite set of line segments in R
2. We define, analogously

to the ordinary Voronoi diagrams in Chapter 6, the Voronoi region of s(i) as

VR
(
s(i)
) := {x ∈R2 : dist

(
x, s(i)

)≤ dist
(
x, s(j)

)
for all 1≤ j ≤m

}
,

where dist(x, s(i)) denotes the Euclidean distance from the point x to the seg-
ment s(i). Our first observation is that the Voronoi regions of S are in general not
polyhedral, but can be described by non-linear arcs (see Fig. 13.1).

Let y be a point of a Voronoi region VR(s(i)) and let z be the point on s(i) which
has the shortest distance to y. The segment [y, z] is therefore contained in VR(s(i)).
This implies that there exists a convex set (the segment s(i)), such that for each point
of the Voronoi region of s(i) at least one point of the convex set is visible. Any object
with this property is called weakly star shaped. With regard to topology, this implies
that every Voronoi cell s(i) is (simply) connected.

We first consider the case where the segments s(i) are pairwise disjoint. For given
indices i = j we study the bisector curve (for short: the bisector)

Bij :=VR
(
s(i)
)∩VR

(
s(j)
)
.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3_13,
© Springer-Verlag London 2013

209

http://dx.doi.org/10.1007/978-1-4471-4817-3_13

210 13 Applications of Non-linear Computational Geometry

Fig. 13.1 In this example,
the bisector of two disjoint
segments s(i) and s(j)

consists of two parabolic arcs,
two infinite rays and a line
segment

Fig. 13.2 The bisector of
two segments s(i) and s(j)

that intersect in an endpoint
consists of the shaded region
as well as the dashed edges

The bisector Bij is an unbounded and piecewise algebraic curve in the plane (see
Fig. 13.1). We saw in Section 6.4 that the set of points which are equidistant from
a given point and a given line define a parabola. Therefore, Bij consists of line
segments and parabolic arcs. In fact, we have:

Exercise 13.1

(a) The bisector curve Bij of two disjoint segments s(i) and s(j) is an unbounded
and piecewise algebraic curve in the plane consisting of at most 7 (possibly
unbounded) line segments and parabolic arcs.

(b) The bound 7 is sharp, i.e., there exist pairs of segments whose bisectors consist
of exactly 7 line segments and parabolic arcs.

If the two segments s(i) and s(j) share an endpoint, then the bisector Bij

is no longer a curve, but rather a two-dimensional set (see Fig. 13.2). Such
“2-dimensional Voronoi edges” do not behave nicely and we will not delve deeper
into this case.

Instead, we return our focus to disjoint segments. Even though the Voronoi re-
gions do not define a polyhedral complex, the 0-, 1- and 2-dimensional (non-linear)
cells define a cellular decomposition of R2. The 1-cells are the linear and parabolic
pieces of the bisectors; the 0-cells are the points in between. The non-linear cell-
complex constructed in this way is called the Voronoi diagram of S. As in the poly-
hedral case, inclusion defines a partial order on the cells, the f -vector (f0, f1, f2)

counts the cells of different dimensions, and we have the two-dimensional version of

13.1 Voronoi Diagrams for Line Segments in the Plane 211

Fig. 13.3 The Voronoi diagram of disjoint line segments

Euler’s formula f0− f1+ f2 = 1. We define the complexity of the Voronoi diagram
for line segments as the sum f0 + f1 + f2.

Theorem 13.2 A Voronoi diagram for m segments has linear complexity O(m).

Proof The Voronoi diagram of the m segments consists of m connected Voronoi
regions. If the segments are in general position, each vertex is contained in exactly
three regions. Exercise 13.1 shows that each edge consists of at most 7 line segments
and parabolic arcs. By Euler’s formula, the complexity of the Voronoi diagram is
linearly bounded.

If the segments are not in general position, they can be transformed into general
position by perturbation. Through this process, the number of vertices, edges and
2-dimensional faces is not reduced. �

The beach line algorithm from Section 6.4 can be generalized to a sweep line
algorithm to construct the Voronoi diagram of line segments.

Exercise 13.3 Show that the Voronoi diagram of m line segments can be con-
structed in O(m logm) steps using the sweep line algorithm.

In Chapter 11 we defined the medial axis of a plane curve C as the topological
closure of the set of those points in the plane whose closest point of C is not uniquely
defined. If the set S of line segments is regarded as a non-connected curve C :=⋃m

i=1 s(i), then the medial axis of C consists of the vertices and edges of the Voronoi
diagram of S.

The software package CGAL can compute the Voronoi diagrams of disjoint line
segments. Figure 13.3 displays a possible output.

212 13 Applications of Non-linear Computational Geometry

Fig. 13.4 Notations for the
direct kinematic problem

13.2 Kinematic Problems and Motion Planning

We now examine elementary robot mechanisms that we will model with a system
of rigid elements, joints and axes whose parameters (e.g., the length of an element
or the angle between two elements) are variable. In particular, we focus on so-called
manipulators which are robot mechanisms that are fixed at a certain workspace.

The goal of kinematics is to study the geometry and the time dependent aspects
of the movement of such mechanisms; the forces causing movement are not taken
into consideration.

To begin, we study the following simple robot mechanism in the plane: We have
three fixed points p(1), p(2), p(3) ∈ R

2 whose coordinates can be chosen without
loss of generality such that p(1) = (0,0) and p(2) = (p21,0). Consider the rigid
triangle (with vertices q(1), q(2), q(3) that is connected to the fixed points via three
segments with variable length. We denote the length of the i-th connecting segment
by �i , and assume that there is a freely moving joint at the endpoints of each segment
(see Fig. 13.4).

For robot mechanisms it is typically much easier to determine the length of the
connecting segments than the Cartesian coordinates of the mobile points. In general,
however, the lengths of the connecting segments do not uniquely define the positions
of the relevant vertices (the vertices of the triangle (in this case). The so-called
direct kinematic problem poses the question of determining all possible positions of
the triangle for a given set of lengths.

A straightforward (but, as we see below, not optimal) way to model the planar
problem is with the following system of equations:

�2
i =

(
q(i) − p(i)

)2
, 1≤ i ≤ 3,

s2
ij =

(
q(i) − q(j)

)2
, 1≤ i < j ≤ 3

(13.1)

where sij = dist(q(i), q(j)) denotes for 1≤ i ≤ 3 the given distance between q(i) and
q(j). We will see below that given generic values for p(i), this system of equations
has 12 (complex) solutions for q(1), q(2), q(3). These equations (13.1) determine
the triangle only up to congruence. Therefore, some of the solutions correspond

13.2 Kinematic Problems and Motion Planning 213

to reflections of the mobile triangle illustrated in Fig. 13.4. We will later return to
this system and its additional solutions. Before we do that, we first study another
formulation which avoids these additional unwanted solutions.

If we write q(1) = (x, y), then according to Fig. 13.4, the problem can be modeled
by the following system of equations.

�2
1 = x2 + y2,

�2
2 = (x + s12 cosφ − p21)

2 + (y + s12 sinφ)2,

�2
3 =

(
x + s13 sin(φ + θ)− p31

)2 + (y + s13 sin(φ + θ)− p32
)2

.

(13.2)

Here θ and φ denote the angle in the triangle at vertex q(1) and the angle between the
triangle and the horizontal axis at point q(1). The solutions to these three equations
for the unknowns (x, y,φ) are the solutions to the direct kinematic problem.

Since the system of (13.2) contains trigonometric expressions, we need to trans-
form it into a system of polynomial expressions before we can begin using algebraic
methods. This can be done by first writing the equations in the form

�2
1 = x2 + y2,

�2
2 = x2 + y2 +Rx + Sy +Q,

�2
3 = x2 + y2 +Ux + Vy +W

where

R = 2s12 cosφ − 2p21,

S = 2s12 sinφ,

Q=−2s12p21 cosφ + s2
12 + p2

21,

U = 2s13 cos(φ + θ)− 2p31,

V = 2s13 sin(φ + θ)− 2p32,

W =−2s13 cos(φ + θ)p31 − 2s13 sin(φ + θ)p32 + s2
13 + p2

31 + p2
32.

To express the trigonometric functions in terms of polynomials, we use the substi-
tutions

sinφ = 2T

1+ T 2
and cosφ = 1− T 2

1+ T 2
.

By Lemma 7.1 we know that the stereographic projection

T
→
(

1− T 2

1+ T 2
,

2T

1+ T 2

)

maps the real axis bijectively to S
1 \ {(−1,0)} ⊆R

2.

214 13 Applications of Non-linear Computational Geometry

We now examine the following example: p(1) = (0,0), p(2) = (16,0), p(3) =
(0,10), s12 = 17, s13 = 21, l1 = 15, l2 = 15, l3 = 12, and sin θ = 3/5, where 0 ≤
θ ≤ π/2. In Maple this can be expressed as:

> with(Groebner):

> p21 := 16: p31 := 0: p32 := 10:
> s12 := 17: s13 := 21:
> l1 := 15: l2 := 15: l3 := 12:
> sth := 3/5: cth := sqrt(1-sth^2):

For the transformation we use the addition theorems

sin(φ + θ)= sinφ cos θ + cosφ sin θ and cos(φ + θ)= cosφ cos θ − sinφ sin θ.

So the necessary equations are:

> sphi := 2*T/(1+T^2): cphi := (1-T^2)/(1+T^2):
> sphith := sphi*cth + cphi*sth: cphith

:= cphi*cth - sphi*sth:

> R := 2*s12*cphi - 2*p21:
> S := 2*s12*sphi:
> Q := -2*s12*p21*cphi + s12^2 + p21^2:
> U := 2*s13*cphith - 2*p31:
> V := 2*s13*sphith - 2*p32:
> W := -2*s13*p31*cosphith - 2*s13*p32*sphith

+ s13^2 + p31^2 + p32^2:

> eq1 := x^2 + y^2 - l1^2;
> eq2 := x^2 + y^2 + R*x + S*y + Q - l2^2;
> eq3 := x^2 + y^2 + U*x + V*y + W - l3^2;

The term eq1 is already a polynomial and we have:

eq1 := x^2+y^2-225

After applying the addition theorems, the expressions eq2 and eq3 become poly-
nomials in x and y, but only rational functions in T . Multiplying by 1+T 2 resolves
this and results in polynomials in the unknowns T ,x, y:

> eq2b := simplify((1+T^2)*eq2);
> eq3b := simplify((1+T^2)*eq3);

2 2 2 2 2 2
eq2b := x + x T + y + y T + 2 x

2 2
- 66 x T + 68 T y - 224 + 864 T

13.2 Kinematic Problems and Motion Planning 215

2 2 2 2 2 2 2
eq3b := x + x T + y + y T + 168/5 x - 168/5 x T

2
- 252/5 x T + 336/5 T y + 26/5 y - 226/5 y T

2
+ 145 + 649 T - 672 T

Using the results of previous chapters, we can compute the x-coordinate of the point
(x, y) by computing the univariate polynomial in the ideal generated by eq1, eq2b
and eq3b. From this we obtain the y-coordinate by continuation of the partial so-
lutions, and via T we obtain the angle φ.

> p := UnivariatePolynomial(x, [eq1, eq2b, eq3b], {T,x,y});
> xi := fsolve(p,x);

The result of this computation is:

p := 429366265301742624625 + 178314148629310179920 x

2 3
+ 14077640037857031888 x - 1525932079400113280 x

4 5
- 175035877377261312 x + 3063379125125120 x

6
+ 476463824896000 x

xi := -12.85759683, -9.949639909, -8.770015468, -3.829357647,
14.07828959, 14.89891479

For our particular example, all six solutions are real, however this is not always the
case. Figure 13.5 depicts the six solutions of the direct kinematic problem.

We now study a more complicated three-dimensional manipulator, the so-
called Stewart platform. This manipulator is a robot mechanism which has six
points, p(1), . . . , p(6), fixed in space (usually in the base plane), and six points,
q(1), . . . , q(6), positioned on a rigid body K , which is mobile in space (via trans-
lation and rotation). For each i, the points p(i) and q(i) are connected via segments
(“legs”) of variable length. These legs are connected to the endpoints p(i) and q(i)

by ball joints (see Fig. 13.6). Mechanisms of this kind are used in special vehicles
and flight simulators.

In the direct kinematic problem for the Stewart platform we want to determine
the position and orientation of K for given lengths of the six connecting segments.
For each leg the distance condition is defined by an equation. In the modeling pro-
cess it is common to first choose different coordinate systems Σ1 and Σ2 for the
basis points and the points on the platform respectively. Let p(i) denote the basis

216 13 Applications of Non-linear Computational Geometry

Fig. 13.5 The six solutions of the direct kinematic problem

Fig. 13.6 The Stewart platform

points and q(j) denote the points on the platform with respect to their correspond-
ing coordinate systems. Furthermore, let x = (x1, x2, x3) denote the coordinates of
the origin of Σ2 in Σ1, and let R denote the orthogonal 3× 3-matrix that describes
the orientation (i.e., the rotation) of K in the outer coordinate system Σ1. The equa-

13.2 Kinematic Problems and Motion Planning 217

tion for the i-th leg can now be written as(
x +Rq(i) − p(i)

)(
x +Rq(i) − p(i)

)= �2
i . (13.3)

The matrix R can be expressed as

R =
⎛
⎝cosα cosβ cosα sinβ sinγ − sinα cosγ cosα sinβ cosγ + sinα sinγ

sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ − cosα sinγ

− sinβ cosα sinγ cosβ cosγ

⎞
⎠ .

Substituting the matrix R in (13.3) results in a system of six equations in the six
unknowns x = (x1, x2, x3), α, β and γ . To transform this system into a system of
polynomial equations we let

x4 = sinα, x5 = cosα,

x6 = sinβ, x6 = cosβ,

x7 = sinγ, x7 = cosγ

and employ the relations

x2
4 + x2

5 = 1, x2
6 + x2

7 = 1, x2
8 + x2

9 = 1.

Combining this with the six equations (13.3) for the legs, we obtain a system of nine
equations in nine unknowns.

The direct kinematic problem for the Stewart platform has 40 solutions over C if
the lengths are chosen generically, and there exists lengths such that all 40 solutions
are real.

In the following, we focus on a special case, where the points p(i) and p(3+i)

lie above one another on a line which is perpendicular to the plane, as if they were
placed along a vertical pillar. We also assume that q(i) = q(3+i) for 1≤ i ≤ 3. This
special Stewart platform is illustrated in Fig. 13.7. For given lengths �i of the con-
necting segments the possible endpoints of the segments [p(1), q(1)] and [p(4), q(4)]
define a circle C1 in a horizontal plane of R3. The center of this circle lies on the
line connecting p(1) and p(4). Similar statements hold for the remaining pairs of the
connecting segments. Hence, we can replace each of the connected pairs by just one
connection that rotates around the corresponding vertical axis aff{p(i),p(3+i)} (see
Fig. 13.7). The radii of the circles C1, C2 and C3 are denoted by r1, r2 and r3.

Let Hi be the plane that contains the circle C1. For each 1 ≤ i ≤ 3, the
plane Hi is parallel to the base plane. Consider the orthogonal projections π(C2)

and π(C3) on H1. Every movement of q(2) along C2 induces a movement of
π(q(2)) along the circle π(C2). The length of the edge [q(1), q(2)] of the triangle
conv{q(1), q(2), π(q(2))} is constant; the length of the edge [q(2), π(q(2))] is con-
stant as well and equals the distance between the planes H1 and H2. Since the angle
(q(2), π(q(2)), q(1)) is a right angle, the distance of π(q(2)) to q(1) is constant. There
are corresponding statements for the triangle conv{q(1), q(3), π(q(3))}. Hence, we
obtain a triangle conv{q(1), π(q(2)),π(q(3))} in the plane H1 with constant edge

218 13 Applications of Non-linear Computational Geometry

Fig. 13.7 The special
Stewart platform

lengths and vertices that are connected to fixed points by segments with lengths
r1, r2 and r3. This is the exact situation of the planar robot mechanism that we stud-
ied earlier, but here we cannot exclude the solutions coming from reflections. For
every triangle that satisfies the distance requirements, there exists a reflection that
satisfies the conditions. We formally state these results with a corollary.

Corollary 13.4 A special Stewart platform (in general position) has exactly twelve
real solutions if the corresponding planar robot mechanism has twelve real solutions
(counting reflections).

We can now see how this problem can be formulated in Singular. Here, the
variables p1p, p2p, p3p denote the orthogonal projections of p(1), p(2), p(3) on
the plane H1.

> LIB "solve.lib";
> ring R = 0, (q11,q12,q21,q22,q31,q32), (lp);

> vector p1p, p2p, p3p;
> int s1p,s2p,s3p;
> int r1, r2, r3;
> int q13, q23, q33;

> p1p = [1,2]; p2p = [7,4]; p3p = [4,5];
> s1p = 3; s2p = 5; s3p = 7;
> r1 = 7; r2 = 8; r3 = 9;
> q13 = 0; q23 = 0; q33 = 0;

> poly f1 = (q11-q21)^2 + (q12-q22)^2 + (q13-q23)^2 - s1p^2;
> poly f2 = (q11-q31)^2 + (q12-q32)^2 + (q13-q33)^2 - s2p^2;
> poly f3 = (q21-q31)^2 + (q22-q32)^2 + (q23-q33)^2 - s3p^2;
> poly f4 = (q11-p1p[1])^2 + (q12-p1p[2])^2 - r1^2;

13.3 The Global Positioning System GPS 219

Fig. 13.8 A degenerate
planar mechanism

> poly f5 = (q21-p2p[1])^2 + (q22-p2p[2])^2 - r2^2;
> poly f6 = (q31-p3p[1])^2 + (q32-p3p[2])^2 - r3^2;

> ideal I = f1, f2, f3, f4, f5, f6;

We obtain the q11-coordinates of the mobile triangle via

> ideal J = eliminate(I, q12*q21*q22*q31*q32);
> laguerre_solve(J[1]);

Finally, we have twelve complex solutions, of which eight are real:

[1]: -2.8003292 , [2]: -2.69678323 ,
[3]: 1.453208 , [4]: 2.18551634 ,
[5]: 2.37409582 , [6]: 4.28762055 ,
[7]: 6.82883162 , [8]: 7.309411 ,
[9]: (6.39757021+i*1.05308349) ,
[10]: (6.39757021-i*1.05308349) ,
[11]: (7.71054443+i*1.71522046) ,
[12]: (7.71054443-i*1.71522046)

Exercise 13.5 Consider the special case of the planar robot mechanism where the
fixed points p(1), p(2) and p(3) are collinear and where the triangle with the ver-
tices q(1), q(2) and q(3) degenerates to a segment with sections of length s1 and s2
(see Fig. 13.8). How many solutions does the direct kinematic problem for generic
lengths �1, �2 and �3 have?

13.3 The Global Positioning System GPS

The Global Positioning System (GPS) is a global navigation satellite system. It op-
erates with the help of satellites which continuously orbit the earth in such a way
that from almost every point on the earth’s surface, at any given time, it is possi-
ble to reach at least four different satellites via a straight line. In the early years of
GPS there were 18 satellites. Now there are 24. Each satellite continuously emits
messages containing the actual position of the satellite and the exact time when the
message was sent. There are Earth-based stations that synchronize the satellites’
clocks and inform them about their current movement.

220 13 Applications of Non-linear Computational Geometry

Fig. 13.9 The Apollonius
problem, a “planar variant” of
the GPS problem

With a small hand-held receiver, we can determine within seconds our actual
position within a few meters. To do this, the hand-held device, whose position we
denote by x, simultaneously receives signals from at least four satellites with posi-
tions p(1), . . . , p(4) ∈R3.

The receiver computes the time it took the signal to reach the device and there-
fore knows its distance to the sender. Since it is impossible to fully synchronize the
clocks of the sender and the receiver, the distance can only be computed up to a con-
stant z. If the clock on the receiving side runs slightly too slowly, the measured time
difference, and therefore the computed distance, becomes a little smaller. Hence, we
speak of determining the pseudo distances

ri :=
∥∥x − p(i)

∥∥− z.

This leads to the following system of equations:

(
x1 − p

(i)
1

)2 + (x2 − p
(i)
2

)2 + (x3 − p
(i)
3

)2 = (z+ ri)
2, 1≤ i ≤ 4. (13.4)

We can think of the pseudo distance ri as a radius of a sphere Si with center p(i); the
two-dimensional case (with three circles) is illustrated in Fig. 13.9. The center x of
the sphere S with radius z has to touch the four spheres S1, . . . , S4. The GPS prob-
lem is therefore strongly related to the classical geometric Apollonius problem (in
its three-dimensional version), which asks for spheres that touch four given spheres
in R

3. The position x we were looking for is one of the 16 solutions to the three-
dimensional Apollonius problem for the given spheres S1, . . . , S4. Since S touches
either all four spheres Si from the outside (if z > 0), or all Si from the inside (if
z < 0), the system of (13.4) defines only 2 of the 16 solutions of the Apollonius
problem. The correct solution is usually the one with the smaller radius r , since the
inaccuracy of time is small.

We study the example from Table 13.1 using Maple. We assume in the following
that the variables p[i,j] and r[i] are already initialized with values from the
table. Using the commands

> for i from 1 to 4 do
> f[i] := (x1-p[i,1])^2 + (x2-p[i,2])^2

+ (x3-p[i,3])^2 - (z+r[i])^2;
> od;

13.4 Exercises 221

Table 13.1 Sample data for the GPS problem, taken from [9]

i p
(i)
1 p

(i)
2 p

(i)
3 ri

1 14832308660 −20466715890 −7428634750 24310764064

2 −15799854050 −13301129170 17133838240 22914600784

3 1984818910 −11867672960 23716920130 20628809405

4 −12480273190 −23382560530 3278472680 23422377972

All lengths are given in 10−3 m

Table 13.2 Solution to the GPS problem for the data from Table 13.1

x1 x2 x3 z

−2892123412 7568784349 −7209505102 −57479918164.14

1111590460 −4348258631 4527351820 −100000.55

we generate the system of equations. To obtain all solutions for, say x1, we compute:

> with(Groebner):
> g := UnivariatePolynomial(x1, [f[1],f[2],f[3],f[4]],

{x1,x2,x3,z}):
> fsolve(g,x1,complex);

Numerically this leads to the solution

-2892123412., 1111590460.

The two numerical solutions for (x1, x2, x3, z) can be read from Table 13.2. In this
case, the second solution is the correct one.

If more than four satellites can be reached simultaneously, the computations can
be performed with a higher precision. This leads to a number of numerical topics
and questions about stability.

13.4 Exercises

Exercise 13.6 For a ≥ 0 and n ≥ 1 compute the Voronoi diagram of the line seg-
ments

conv
{
(ai, i)T ,

(
(a + 1)i, i

)T }
, 1≤ i ≤ n

corresponding to a staircase configuration.

Exercise 13.7 Generalize the characterization of the vertices of a Voronoi diagram
via Voronoi circles (Corollary 6.15) to Voronoi diagrams of line segments.

222 13 Applications of Non-linear Computational Geometry

Exercise 13.8 Given four spheres with radius r > 0 centered at the vertices of a
regular tetrahedron in R

3, determine all spheres touching the four given spheres.

13.5 Remarks

A detailed description of Voronoi diagrams for line segments can be found in the
monograph of Boissonnat and Yvinec [15].

For further material concerning robot motion planing and kinematic problems
see the book by McCarthy [77] and the survey article by Halperin, Kavraki and
Latombe [57]. An example of a Stewart platform (which is sometimes referred to as
a Stewart Gough platform) with 40 real solutions was described by Dietmaier [36].
The kinematic problem for the special Stewart platform was studied by Lazard and
Merlet [75].

Further information about the computational geometric questions concerning the
Global Positioning System can be found in the book by Awange and Grafarend [9].

Appendix A
Algebraic Structures

We introduce some fundamental algebraic terms here which can also be found in
any regular introduction to the subject, for example in Herstein [59] or Lang [74].
The main purpose is to standardize our notation.

A.1 Groups, Rings, Fields

Definition A.1 A non-empty set G with a binary operation ◦ is called a group if the
following conditions are satisfied:

(a) associativity: (a ◦ b) ◦ c= a ◦ (b ◦ c) for all a, b, c ∈G;
(b) there exists a neutral element e, i.e., we have e ◦ a = a ◦ e= a for all a ∈G;
(c) every element a has an inverse, i.e., there exists an element b ∈ G such that

a ◦ b= b ◦ a = e.

If commutativity holds (i.e., a ◦ b = b ◦ a for all a, b ∈ G) in addition to the
group axioms, we call G abelian. A semi-group is a non-empty set G with a binary
operation ◦ satisfying conditions (a) and (b).

Definition A.2 A non-empty set R with two binary operations + and · (“addition”
and “multiplication”) is called a ring if the following hold:

(a) (R,+) is an abelian group with neutral element 0;
(b) (R, ·) is a semi-group;
(c) the distributive laws hold: a(b+ c)= ab+ ac and (a + b)c= ab+ ac.

A ring is called commutative if multiplication is commutative.

An identity element 1 ∈ R \ {0} in a ring is a neutral element with respect to
multiplication. All rings that we come across in this text, unless otherwise stated,
have an identity element. The set

R× := {a ∈R : there exists b ∈R such that ab= 1}
M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

223

http://dx.doi.org/10.1007/978-1-4471-4817-3

224 A Algebraic Structures

is a group with respect to multiplication, which is called the group of units of R. If
(R \ {0}, ·) is an abelian group then (R,+, ·) is a field.

There exist rings that contain non-zero elements a and b such that ab= 0. In this
case, a and b are called zero divisors. In rings without zero divisors we can cancel,
i.e., ac = bc implies (a − b)c = 0 and hence a = b if c = 0. A commutative ring
without zero divisors is called an integral domain.

Let R be an integral domain (with identity element). An element p ∈R \{0} with
p ∈ R× is said to be irreducible if for any decomposition p = ab with a, b ∈ R we
have that a ∈ R× or b ∈ R×. An element p ∈ R \ {0} with p ∈ R× is prime if for
all a, b ∈ R such that p|ab it follows that p|a or p|b. The ring R is called a unique
factorization domain if every non-zero element that is not a unit is a prime element
or the product of finitely many prime elements.

In unique factorization domains the set of prime elements and the set of ir-
reducible elements are the same. Furthermore, the decomposition of an element
into its prime factors is unique up to units and ordering. More precisely: If a ∈
R \ ({0} ∪ R×) has the prime factor decomposition a = p1 · . . . · pr = q1 · . . . · qr ,
then r = s and, after a suitable permutation of the qi , we have pi = eiqi with unit
elements ei for i ∈ {1, . . . , r}.

Example A.3 The ring

Z[√−5] = {a + b
√−5 : a, b ∈ Z}

is not a unique factorization domain. The number 6 has the decompositions

6= 2 · 3= (1+√−5)(1−√−5),

and we can show that all factors 2, 3, 1 + √−5, 1 − √−5 that appear are irre-
ducible elements of Z[√−5]. Moreover, 1 and −1 are the only units and thus the
two factorizations of 6 are truly distinct.

By analogy with the definitions of integers and rational numbers, we can define
for an integral domain R the quotient field Q of R. The elements of Q are the
“fractions” p/q where p ∈R and q ∈R \ {0}. Addition and multiplication in Q are
defined just as the corresponding operations for rational numbers:

p

q
+ s

t
= pt + qs

qt
and

p

q
· s
t
= ps

qt
.

Two elements p
q

and p′
q ′ represent the same element of Q if and only if pq ′ = p′q .

A.2 Polynomial Rings

Let R be a commutative ring with an identity element. Then the set of all (formal)
polynomials anx

n + · · · + a1x + a0 with ai ∈ R in the unknown x defines a ring.

A.2 Polynomial Rings 225

Addition and multiplication of two polynomials f =∑n
i=0 aixi and g =∑m

j=0 bjx
j

are defined via

f + g :=
max(m,n)∑

i=0

(ai + bi)x
i,

f · g :=
m+n∑
i=0

cix
i where ci :=

∑
j+k=i

aj bk.

Here we agree to write ai = bj = 0 for all i > n and all j > m. The ring of coef-
ficients R is embedded in R[x] via the constant polynomials. A unit in R is also
a unit in R[x]. For integral domains R we have R[x]× = R×. We say that R[x] is
generated from R by adjoining the unknown x.

Over a finite field K there exist several polynomials whose corresponding func-
tions

K→K : x
→ f (x)

are identical; in the case of fields with an infinite number of elements the mapping of
a polynomial to its corresponding function is always injective. See Exercise 10.30.

When studying polynomial rings the following statement is absolutely essential:

Theorem A.4 If R is a unique factorization domain, then R[x] is a unique factor-
ization domain.

We can deduce inductively that for each unique factorization domain R the ring
of polynomials R[x1, . . . , xn] in the unknowns x1, . . . , xn is also a unique factoriza-
tion domain.

For a field K , the quotient field of the polynomial ring K[x1, . . . , xn] is called
the field of rational functions over K which is usually denoted by K(x1, . . . , xn).

A field K is algebraically closed if every non-constant polynomial f in K[x]
has a root in K , i.e., an element a ∈K with f (a)= 0. We have:

Theorem A.5 Every algebraically closed field has an infinite number of elements.

Idea of proof Assume that a field K has only finitely many elements a1, . . . , ak .
Then we can use a Lagrange interpolation polynomial to construct a polynomial f

of degree k− 1 such that f (ai)= 1 for all i. �

For every field there exists an algebraic closure, i.e., an algebraically closed field
that contains K and that is minimal with respect to inclusion. The algebraic closure
is unique up to isomorphism.

Appendix B
Separation Theorems

The interplay between analysis and convexity gives rise to a rich theory. For a de-
tailed account we refer to the monograph of Gruber [55]. An introductory approach
can also be found in Grünbaum [56, § 2].

Two sets A,B ⊆ R
n are (strictly) separated if there exists an affine hyperplane

H such that A⊆H+◦ and B ⊆H−◦ (see (2.4) and (2.5)). If A and B are each only
in the closed affine subspaces of H , then we say that they are weakly separated.

A subset of Rn is called compact if it is closed and bounded. Polytopes are com-
pact.

Theorem B.1 Let C be a closed convex set in R
n and p ∈Rn \C. Then there exists

a hyperplane H ⊆R
n with p ∈H and H ∩C = ∅.

Since every convex set is connected, but Rn \H is not connected, we therefore
have that p is weakly separated from C.

Proof Without loss of generality we can assume p = 0 and C = ∅. Let c be an
arbitrary point of C and let B̄ := B̄(0,‖c‖) be the closed ball with center 0 and
radius ‖c‖, where ‖ · ‖ denotes the Euclidean norm.

Since the set C ∩ B̄ is non-empty and compact, the minimum with respect to
the Euclidean norm is attained on the set C ∩ B̄ at a point b. Let H := {x ∈ Rn :∑n

i=1 bixi = 0}. Since p ∈ C, we have b = 0. Also 0 ∈H , so it suffices to show that

〈b, c〉 =
n∑

i=1

bici ≥ ‖b‖2 > 0 (B.1)

for all c ∈ C.
Assume there exists a point c ∈ C with

∑n
i=1 bici < ‖b‖2. Since C is convex, it

contains the segment [b, c] and the points of this segment have the form

x(λ) := b+ λ(c− b), 0≤ λ≤ 1.

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

227

http://dx.doi.org/10.1007/978-1-4471-4817-3

228 B Separation Theorems

We now show that there exists a λ ∈ (0,1) with ‖x(λ)‖ < ‖b‖, contradicting the
choice of b. For this, consider the differentiable function of λ defined by

φ :R→R, φ(λ) := ‖b‖2 − ∥∥x(λ)
∥∥2 =−λ2‖c− b‖2 − 2λ〈b, c− b〉.

The derivative at λ = 0 is 2(‖b‖2 − 〈b, c〉) > 0. Hence, there exists an ε > 0 such
that ‖x(λ)‖ = ‖b+ λ(c− b)‖< ‖b‖ for 0 < λ < ε. �

Examining the proof carefully, one can see that p and C are strictly separated.

Corollary B.2 Let C be a closed convex set in R
n and p ∈Rn \C. Then there exists

a hyperplane H ⊆R
n with p ∈H−◦ and C ⊆H+◦ .

Proof Since the inequality 〈b, c〉 > 0 in (B.1) is strict, we can move the hyper-
plane H constructed in the proof of Theorem B.1 slightly towards C without touch-
ing C. The explicit calculation is analogous to that in the proof of Theorem 3.8, see
Fig. 3.3. �

An affine hyperplane H is called a supporting hyperplane for a convex set C ⊆
R

n if H ∩ C = ∅ holds and C is completely contained in one of the closed affine
half-spaces H+ or H−. Therefore, at least one of the open half-spaces H+◦ or H−◦
has an empty intersection with C.

In the case dimC < n it is possible that both open half-spaces have an empty in-
tersection with C; thus for a non-full-dimensional and non-empty C any hyperplane
containing C is a supporting hyperplane.

Corollary B.3 Let C be a closed convex subset of Rn. Then every point of the
boundary of C is contained in a supporting hyperplane.

Proof Without loss of generality let p = 0 be a point on the boundary of C. Since
p is a boundary point of C there exists a sequence (p(k))k∈N outside of C that
converges to the origin. For each sequence element p(k) there exists by Theorem B.1
a hyperplane

H(k) =
{

x ∈Rn : b(k) +
n∑

i=1

a
(k)
i xi = 0

}
,

with a(k) ∈Rn \ {0} and b(k) ∈R, such that C is contained in the half-space

(
H(k)

)+ =
{

x ∈Rn : b(k) +
n∑

i=1

a
(k)
i xi ≥ 0

}
.

We can further assume that ‖a(k)‖ = 1. Then |b(k)| is the Euclidean distance from
H(k) to the origin. Since p(k) converges to the origin the sequence (a(k), b(k))

B Separation Theorems 229

is bounded in R
n+1. By the Bolzano–Weierstrass Theorem there exists a con-

vergent subsequence (see [86]). Let (a, b) be the limit of that subsequence and
H = {x ∈ Rn : b +∑n

i=1 aixi = 0} the hyperplane defined by this point. By con-
tinuity it follows that b= 0 and that C is contained in the half-space

H+ =
{

x ∈Rn :
n∑

i=1

aixi ≥ 0

}
.

Since 0 ∈H we have that H is a supporting hyperplane to C. �

The theorems introduced here have numerous specializations and versions which
are also usually called separation theorems in the literature. Sometimes Farkas’
lemma from Exercise 4.26 is included under this label as well.

Appendix C
Algorithms and Complexity

Here we explain some terms regarding algorithms and complexity. Systematic in-
troductions can be found, for example, in the books by Cormen, Leiserson, Rivest
and Stein [27] and Garey and Johnson [46].

C.1 Complexity of Algorithms

Usually, the quality of an algorithm is measured by its run-time and the required
storage space. The demand of resources is typically measured in relation to the size
of the input.

The coding length (or size) sizeof(x) of a data object x is the number of bits
which are necessary to store the object in the computer. The computational model
which we employ is the commonly used Turing machine (or its real-world coun-
terpart, the von Neumann computer). A natural number n > 0 has, say, a binary
representation with �log2 n� + 1 digits, so we have sizeof(n) = �log2 n� + 1. Ra-
tional numbers can be coded as pairs of natural numbers with an additional bit for
their sign. Matrices or polynomials are stored as the sequence of their coefficients
(of rational numbers, for example) and so forth.

The run-time complexity tA(n) of an algorithm A denotes the maximal number
of steps that A needs to obtain a solution for one instance of the problem of coding
length n. Analogously, the space complexity sA(n) denotes the maximal number of
storage cells that are needed to solve one instance of the problem of size n. Our
focus is on the run-time complexity of algorithms.

Often it is impossible to determine the exact complexity of an algorithm A. Usu-
ally we are interested in determining, as accurately as possible, the growth of the
functions tA(n) and sA(n) with respect to the input size n. Bounds for the growth
serve as a measure of the quality of an algorithm.

It is useful to neglect constant factors since we do not want to take technical
aspects such as the specific hardware (within our computational model) or the pro-
gramming language into consideration. Furthermore, it is practical to ignore all non-

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

231

http://dx.doi.org/10.1007/978-1-4471-4817-3

232 C Algorithms and Complexity

dominant terms of the complexity functions that occur in the complexity analysis.
This is called asymptotic analysis.

For the asymptotic characterization of the upper bound of a complexity function
f :N→R≥0 we use the notation

f ∈O(g)

if two constants c,n0 ∈N exist such that for all n≥ n0

f (n)≤ c · g(n).

We say that “f is at most of order g”. It is also common to use O(n) as a term in
arithmetic expressions.

Example C.1 The class O(1) is the class of functions bounded by a constant.
f ∈ nO(1) means that f is bounded above by a polynomial in n.

When studying lower bounds for a complexity function f we use the following
notation. We write

f ∈Ω(g),

which is read as “f is at least of order g” if there exist two constants c,n0 ∈N such
that for all n≥ n0

f (n)≥ c · g(n).

We write

f ∈Θ(g),

if f ∈O(g) and g ∈O(f), i.e., if f and g have the same order of growth.

Example C.2 (Binary Search) Given an increasing sequence (a1, . . . , an) of pair-
wise distinct natural numbers and a number x ∈ N, we want to determine algorith-
mically if x is contained in the sequence. A naive method would be to compare x

successively with every element a1, . . . , an. This method needs Θ(n) steps in its
worst case, which occurs when x is not contained in the sequence.

Since our sequence was given in a monotonic order, the “divide-and-conquer”
principle decreases the number of steps required. By comparing x to a�n/2�, we can
determine whether x is contained in the first or second half of the sequence. By
recursively repeating this step, we can determine in O(logn) many steps whether x

is contained in the sequence.
This binary search principle is employed, for example, when determining the

closest neighbor in Section 6.5.

The Algorithm 5.4 from Section 5.3 which computes the convex hull in the plane
is also based on the “divide-and-conquer” principle.

C.2 The Complexity Classes P and NP 233

Algorithm C.1: MergeSort

1 Partition. The sequence A is partitioned into two subsequences
A1 = (a1, . . . , an/2), A2 = (an/2+1, . . . , an).

2 Recursion. Every subsequence is sorted recursively using the same method.
Let B1 and B2 be the two resulting sorted subsequences.

3 Merge. Merge the two sorted sequences B1 and B2 into a new sorted sequence
for the sequence A.

A simple example which illustrates several paradigms of efficient algorithms is
the problem of sorting numbers. This problem is also essential for many geometric
algorithms (i.e., for planar convex hull algorithms). We have:

Theorem C.3 Sorting n numbers can be done in O(n logn) steps.

Proof (Sketch)We consider, without loss of generality, a sequence A= (a1, . . . , an)

of pairwise disjoint numbers, where n is a power of 2. In the following we illustrate
the algorithm merge sort, that is also based on the “divide-and-conquer” principle
and is a method that does not exceed the upper bound for the run-time. The Algo-
rithm C.1 consists of the three steps described below.

We have the following recursive relation for the run-time t (n) of merge sort

t (n)≤ 2t

(
n

2

)
+ dn

where d > 0 is a constant. Solving this recursion yields the upper bound for sorting
algorithms. �

A fundamental statement of complexity theory says that no algorithm based on
the comparison of numbers as its elementary step can have an asymptotically better
run-time than merge sort. This can be proved using a decision tree model, see [27].
Through this we obtain an asymptotically exact estimation of the run-time complex-
ity of the sorting problem.

Theorem C.4 Sorting n numbers based on comparisons has complexity Θ(n logn).

C.2 The Complexity Classes P and NP

A decision problem is an algorithmic problem that has only two possible solutions:
“Yes” or “No”. An optimization problem requires finding an optimal solution from a
possibly large set of feasible solutions. The quality of a solution is measured using a
cost function. Every optimization problem induces a filtration of decision problems:

234 C Algorithms and Complexity

The optimization problem max{c(x) : x ∈X} and the bound k suggest the question
of whether there exists a solution x ∈X such that c(x)≥ k.

Determining if a class of algorithms is considered efficient depends on the spe-
cific application. In the context of optimization, only those algorithms whose run-
time is bounded above by a polynomial expression in the coding length of the input
are considered efficient. In general, we try to avoid algorithms with exponential
costs. In contrast, we have that for Gröbner bases, as seen in Chapter 9, the cur-
rently known algorithms have a run-time complexity which is doubly exponential in
the input length. Despite this, many modern applications rely on such methods.

Definition C.5 An algorithm A is called a polynomial time algorithm if there exists
a univariate polynomial p such that for every input x, the algorithm A terminates in
O(p(sizeof(x))) steps.

An important goal of complexity theory is to determine which problems have
such algorithms. In the following we will focus mainly on decision problems. As a
measurement for efficiency we use Definition C.5.

The Complexity Class P The class P (polynomial time) denotes the set of all
decision problems for which there exists a polynomial time algorithm that solves
the problem.

The class of algorithms which only need a polynomially bounded storage space
is called PSPACE. Clearly, P is contained in PSPACE.

The Complexity Class NP The class NP (non-deterministic polynomial time),
which we define below, consists of those problems which have an efficient non-
deterministic solution algorithm. In contrast to the deterministic case, where there
is exactly one possible step at each stage, the non-deterministic approach allows
various possible actions at each stage.

Consider, for example, the search for a proof of a mathematical theorem. If the
statement is wrong, there exists no such proof, but if a proof for the statement exists,
then there is often more then one proof. To show that the theorem is correct it is
of course sufficient to show that at least one proof exists. Finding a proof can be
arbitrarily difficult. Once we are given a proof, it is in general not as difficult to
verify the correctness of the proof and thus accept the theorem. In complexity theory
such proofs are also referred to as certificates (or witnesses).

Definition C.6 A decision problem A is contained in NP if there exists a polyno-
mial p and a polynomial algorithm A such that for every input x and every possible
certificate y of size at most p(sizeof(x)), the algorithm A computes a value t (x, y)

that satisfies the following:

(a) If the answer to the input x is “No” then t (x, y) = 0 holds for all possible
certificates.

(b) If the answer to the input x is “Yes” then t (x, y) = 0 holds for at least one
certificate.

C.2 The Complexity Classes P and NP 235

The Question “P = NP?” The class P is clearly contained in the class NP. A very
important open problem of complexity theory is the question

“P
?= NP”.

It belongs to the Millenium Prize Problems listed by the Clay Mathematics Insti-
tute, which has offered 1 million US dollars for a solution. The importance of the
problem can be explained by the fact that there exist numerous problems for which
no polynomial time algorithm is known, but it can be shown that they are contained
in the class NP. To determine if there does not exist a polynomial time algorithm
for these problems or if such an algorithm exists and is simply not yet found, it is

necessary to answer the question “P
?= NP”.

A decision problem A is called NP-hard if every problem in NP can be reduced
to A in polynomial time. We call A NP-complete if it is additionally contained in
NP. For an exact definition of these terms we refer to Garey and Johnson [46].

NP-complete problems are the “hardest” problems in the class NP. We have: If
any NP-complete problem can be solved in polynomial time, then so can every other
problem in NP and we have P=NP.

An example of an NP-complete decision problem is the question of whether a
given finite graph contains a Hamilton cycle:

Example C.7 Let G be an (undirected) finite graph. Does there exist a closed path
in G that passes through each vertex exactly once?

Almost all experts in the field of complexity theory believe that the classes P and
NP are distinct.

The Complexity Class #P Enumeration problems can be studied analogously to
decision problems. The output here is a natural number. In the same way as for
optimization problems, there exists a direct relation to decision problems.

Definition C.8 An enumeration problem A is contained in #P if there exists a deci-
sion problem B ∈NP such that the task of A is to compute the number of solutions
that validate B.

Similarly to the terms “NP-hard” and “NP-complete”, it is possible to define
corresponding classes for enumeration problems. An enumeration problem is #P-
hard if every problem in #P can be reduced to it. It is called #P-complete if it is
#P-hard and contained in #P.

Example C.9 The problem of determining the number of different Hamilton cycles
in a given finite graph is #P-complete.

236 C Algorithms and Complexity

Further Complexity Classes The number of complexity classes which are stud-
ied in the literature seems to be continuously increasing. This collection of all such
classes is sometimes described as the “zoo” of complexity classes.

In the remarks to Chapter 9 we mention EXPSPACE, the class of algorithms that
need at most expO(1) storage space.

Appendix D
Software

There exists a large volume of software devoted to the topic of computational ge-
ometry. The variety ranges from the implementation of single algorithms to large
systems with a broad spectrum of applications. This section lists five software pack-
ages and their applications regarding computational geometry.

D.1 polymake

The system polymake specializes in algorithms to study the geometry and com-
binatorics of polytopes and polyhedra in arbitrary dimension [47, 48]. There are
several convex hull algorithms available and Voronoi diagrams and Delone subdi-
visions can also be computed. In addition to the study of polytopes, the current
version 2.12 supplies methods to study matroids, algebraic invariants of finite sim-
plicial complexes as well as algorithms for tropical geometry.
polymake is an open-source system which is written in Perl and C++. Both

languages can be used to extend the software. It also offers a substantial C++ library
for linear algebra and computational geometry, which can be used independently
of the system. The interface is based on a shell which uses a dialect of Perl as its
language. Alternatively, polymake can be used as a callable library.

On the Web you can find polymake at www.polymake.org.

D.2 Maple

Maple is a commercial mathematical software system with extensive functionality.
The current version 15 provides only a few of the computational geometric algo-
rithms which are discussed in the first part of this book. Specifically, it contains a
convex hull algorithm in the plane and a library for solving linear programs. How-
ever, Maple can compute Gröbner bases and can handle the elimination techniques

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

237

http://www.polymake.org
http://dx.doi.org/10.1007/978-1-4471-4817-3

238 D Software

from the second part of the book. Furthermore, Maple provides simple visualiza-
tion techniques.

Maple has numerous extensions and application examples. A good source for
information on these is www.maplesoft.com. Maple defines its own programming
language and has interfaces to C and Java.

In comparison to the special foci of the other programs listed here, Maple is
often inferior with regard to the scope and speed of its methods. However, it offers
the possibility to combine methods from these special areas in one package.

When trying the code examples given in this book, please remember that the
syntax of different versions of Maple may vary.

D.3 Singular

Singular is an open-source software project that is dedicated to computational
commutative algebra and algebraic geometry [33, 52]. The current version is num-
ber 3.1.3. It implements several methods for the computation of Gröbner bases.
Elimination and many refinements such as the Conti–Traverso method from Sec-
tion 10.6 are available. In addition, the system offers algorithms for invariant theory
and coding theory as well as numerical methods for solving systems of polynomial
equations. Singular has its own programming language.

The webpage is www.singular.uni-kl.de. Singular is included in the mathe-
matical software system Sage, and thus any distribution of Sage also contains
Singular.

D.4 CGAL

The “Computational Geometry Algorithms Library” (CGAL) is a broad open-source
software system specifically designed for lower dimensional computational geome-
try [18]. Voronoi diagrams and Delone triangulations are available in many versions
and refinements, including the Voronoi diagrams of line segments given in Sec-
tion 13.1. It also contains a convex hull algorithm for arbitrary dimensions.

The spectrum of applications ranges from arrangements of lines and curves, lat-
tice generation, geometrical data processing and search structures to motion plan-
ning [41].
CGAL is a C++ library which is available in its current version 4.0. There are

many examples on the webpage www.cgal.org.

D.5 Sage

Sage is a free open-source mathematics software system which combines the power
of many existing open-source packages into a common Python-based interface. For

http://www.maplesoft.com
http://www.singular.uni-kl.de
http://www.cgal.org

D.5 Sage 239

the topics in this book, the most important feature is the interface to Singular;
in particular, all the example computations with Gröbner bases and similar objects
could also be done in Sage.

The most recent version 5.0.1 can be downloaded from www.sagemath.org. An
interface from Sage to polymake is being developed; a current snapshot is avail-
able at https://bitbucket.org/burcin/pypolymake/src.

http://www.sagemath.org
https://bitbucket.org/burcin/pypolymake/src

Appendix E
Notation

The elements of a vector space are usually denoted as column vectors. Although we
strictly adhered to this in the first part of the book, we relax this rule in the second
and third part to simplify notation.

The table below lists the most important symbols, usually together with a page
number that corresponds to its first appearance.

|M| Number of elements in the set M

N= {0,1,2, . . . } Natural numbers
Z Integers
Q Rational numbers
R Real numbers
C Complex numbers

Id Identity matrix (of suitable dimension)

Sym(M) Set of permutations of the set M , symmetric group
acting on M

sgn(σ) Sign of the permutation σ ∈ Sym(M)

intM Interior of a set M ⊆R
n 15

M Closure of M 15
∂M Boundary of M 15
relintC Relative interior of a convex set C ⊆R

n 15

(Kn)∗ Dual space of the vector space Kn

P
n
K n-dimensional projective space over K 9

Gk,n K k-th Grassmannian of Kn 198

linM Linear hull of a subset M of a vector space
affM Affine hull 14
convM Convex hull 14
[x, y] = conv{x, y} Segment between two points x, y ∈Rn

posM Positive hull 33

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

241

http://dx.doi.org/10.1007/978-1-4471-4817-3

242 E Notation

(x0 : x1 : · · · : xn)
T Homogeneous coordinates of a point in projective

space
10

[a0 : a1 : · · · : an] (Oriented) homogeneous coordinates of a hyperplane 11, 14
〈·, ·〉 Inner product, Euclidean scalar product 11, 14
‖ · ‖ Euclidean norm 28
volM n-dimensional volume of M ⊆R

n

M◦ Polar set of M 28
F(P) Face lattice of a polytope P 34
I (V,H) Incidence matrix of the double description (V ,H) 70
[C] Polyhedral complex, generated by a family C of

polyhedra (with intersection condition)
83

VRS(p) Voronoi region of the point p with respect to S ⊆R
n 81

VD(S) Voronoi diagram of S ⊆R
n 84

P(S) Polyhedron that emerges from VD(S) as vertical
projection

86

P∗(S) Delone polytope 101
DS(S) Delone subdivision 103

gcd(f, g) Greatest common divisor of f and g

lcm(f, g) Least common multiple of f and g

degx f Degree of the polynomial f in the unknown x

tdegf Total degree of f 127
Resx(f, g) Resultant of f and g with respect to the unknown x 123
〈f1, . . . , ft 〉 Ideal generated by the polynomials f1, . . . , ft 137
V(I) Affine or projective algebraic variety defined by the

ideal I

137

Ik k-th elimination ideal of I 137, 158
rem≺(f ;g1, . . . , gt) Remainder of the multivariate division 139, 143
≺lex Lexicographic monomial order 142
≺glex Graded lexicographic monomial order 173
≺grevlex Graded reverse lexicographic monomial order 144

MC Medial axis of the curve C 182
λC(p) Local feature size of the curve C in point p 184∧k

V k-th exterior power of the vector space V 195∧
V Exterior algebra of the vector space V 195

x ∧ y Exterior product of x and y 195

P, NP, #P Complexity classes 234

References

1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Math-
ematics, vol. 3. American Mathematical Society, Providence (1994)

2. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 4th edn. Springer, Berlin (2010)
3. Althaus, E., Mehlhorn, K.: Traveling Salesman-based curve reconstruction in polynomial

time. SIAM J. Comput. 31(1), 27–66 (2001)
4. Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: combinatorial curve recon-

struction. Graph. Models Image Process. 60, 125–136 (1998)
5. Arrondo, E.: Another elementary proof of the Nullstellensatz. Am. Math. Mon. 113(2), 169–

171 (2006)
6. Avis, D.: lrslib 4.2. http://cgm.cs.mcgill.ca/~avis/C/lrs.html
7. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom.

7(5–6), 265–301 (1997)
8. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of ar-

rangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)
9. Awange, J.L., Grafarend, E.W.: Solving Algebraic Computational Problems in Geodesy and

Geoinformatics. Springer, Berlin (2005)
10. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algo-

rithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006)
11. Becker, T., Weispfenning, V.: Gröbner Bases. Graduate Texts in Mathematics, vol. 141.

Springer, New York (1993)
12. Bertsimas, D., Weismantel, R.: Optimization over Integers. Dynamic Ideas, Belmont (2005)
13. Beutelspacher, A., Rosenbaum, U.: Projective Geometry: From Foundations to Applications,

p. 258. Cambridge University Press, Cambridge (1998)
14. Blum, H.: A transformation for extracting new descriptors of shape. In: Whaten-Dunn, W.

(ed.) Proc. Symposium on Models for the Perception of Speech and Visual Form, pp. 362–
380. MIT Press, Cambridge (1967)

15. Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cam-
bridge (1998)

16. Brøndsted, A.: An Introduction to Convex Polytopes. Graduate Texts in Mathematics, vol. 90.
Springer, New York (1983)

17. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach
einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck (1965)

18. CGAL, Computational Geometry Algorithms Library. www.cgal.org
19. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions.

Discrete Comput. Geom. 16(4), 361–368 (1996)

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

243

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.cgal.org
http://dx.doi.org/10.1007/978-1-4471-4817-3

244 References

20. Chan, T.M., Snoeyink, J., Yap, C.-K.: Primal dividing and dual pruning: output-sensitive con-
struction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete
Comput. Geom. 18(4), 433–454 (1997)

21. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput.
Geom. 10(4), 377–409 (1993)

22. Chvátal, V.: Linear Programming. W. H. Freeman and Company, New York (1983)
23. Clarkson, K.L., Shor, P.W.: Algorithms for diametral pairs and convex hulls that are optimal,

randomized, and incremental. In: Proc. Fourth Annual Symposium on Computational Geom-
etry, Urbana, IL, 1988, pp. 12–17. ACM, New York (1988)

24. CoCoA-Team: CoCoA: a system for doing Computations in Commutative Algebra.
cocoa.dima.unige.it

25. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. In: Automata Theory and Formal Languages, Second GI Conf., Kaiserslautern, 1975.
Lecture Notes in Comput. Sci., vol. 33, pp. 134–183. Springer, Berlin (1975)

26. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, New Orleans, LA, 1991. Lecture Notes in
Comput. Sci., vol. 539, pp. 130–139. Springer, Berlin (1991)

27. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press, Cambridge (2009)

28. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Undergraduate Texts
in Mathematics. Springer, New York (2007)

29. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts in
Mathematics, vol. 185. Springer, New York (2005)

30. Crossley, M.D.: Essential Topology. Springer Undergraduate Mathematics Series. Springer,
London (2005)

31. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, 2nd
edn. Springer, Berlin (2000)

32. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Math-
ematics, vol. 25. Springer, Berlin (2010)

33. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.1.3. A com-
puter algebra system for polynomial computations, Universität Kaiserslautern (2011).
www.singular.uni-kl.de

34. Dey, T.K., Kumar, P.: A simple provable algorithm for curve reconstruction. In: Proc. Sympo-
sium on Discrete Algorithms, Baltimore, MD, pp. 893–894 (1999)

35. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Am. J. Math. 35, 413–422 (1913)

36. Dietmaier, P.: The Stewart–Gough platform of general geometry can have 40 real postures.
In: Lenarcic, J., Husty, M.L. (eds.) Advances in Robot Kinematics: Analysis and Control, pp.
7–16. Kluwer Academic, Dordrecht (1998)

37. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM
J. Comput. 17(5), 967–974 (1988)

38. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoreti-
cal Computer Science, vol. 10. Springer, Berlin (1987)

39. Fischer, G.: Plane Algebraic Curves. Student Mathematical Library, vol. 15. American Math-
ematical Society, Providence (2001)

40. Fischer, G., Piontkowski, J.: Ruled Varieties. Vieweg, Braunschweig (2001)
41. Folgel, E., Halperin, D., Wein, R.: CGAL: Arrangements and Their Applications. Geometry

and Computing, vol. 7. Springer, Berlin (2012)
42. Fortune, S.: A sweepline algorithm for Voronoı̆ diagrams. Algorithmica 2(2), 153–174 (1987)
43. Fukuda, K.: cddlib 0.94b. http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
44. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics and Com-

puter Science, Brest, 1995. Lecture Notes in Comput. Sci., vol. 1120, pp. 91–111. Springer,
Berlin (1996)

45. Gallier, J.: Discrete Mathematics. Universitext. Springer, New York (2011)

http://cocoa.dima.unige.it
http://www.singular.uni-kl.de
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

References 245

46. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

47. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In:
Polytopes—Combinatorics and Computation, Oberwolfach, 1997. DMV Sem., vol. 29, pp.
43–73. Birkhäuser, Basel (2000)

48. Gawrilow, E., Joswig, M.: polymake 2.12. Technical report, Technische Universität Darm-
stadt (2012). With contributions by many others, see www.polymake.org

49. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry, 2nd
edn. Chapman & Hall/CRC, Boca Raton (2004)

50. Gordan, P.: Neuer Beweis des Hilbert’schen Satzes über homogene Functionen. Nachr. Königl.
Ges. Wiss. Gött. 3, 240–242 (1899)

51. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic
geometry. http://www.math.uiuc.edu/Macaulay2/

52. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer,
Berlin (2002)

53. Gritzmann, P.: Grundlagen der Mathematischen Optimierung. Springer, Berlin, in preparation
54. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-

tion, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)
55. Gruber, P.: Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften,

vol. 336. Springer, Berlin (2007)
56. Grünbaum, B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221.

Springer, New York (2003)
57. Halperin, D., Kavraki, L., Latombe, J.-C.: Robotics. In: Handbook of Discrete and Computa-

tional Geometry, 2nd edn. CRC Press Ser. Discrete Math. Appl., pp. 1065–1094. CRC, Boca
Raton (2004)

58. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
59. Herstein, I.N.: Topics in Algebra, 2nd edn. Xerox College Publishing, Lexington (1975)
60. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic

zero. I. Ann. Math. (2) 79, 109–203 (1964)
61. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic

zero. II. Ann. Math. (2) 79, 205–326 (1964)
62. Hobby, J.: METAPOST. http://cm.bell-labs.com/who/hobby/MetaPost.html
63. Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vols. i, II. Cambridge University

Press, Cambridge (1947)
64. Holzer, S., Labs, O.: surfex 0.89. Technical report, Universität Mainz and Universität Saar-

brücken (2007). www.surfex.AlgebraicSurface.net
65. Hong, H., Brown, C.W., et al.: QEPCAD b 1.46. Technical report, RISC Linz and U.S. Naval

Academy, Annapolis (2007). http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
66. Howie, J.M.: Fields and Galois Theory. Springer Undergraduate Mathematics Series. Springer,

London (2006)
67. Joswig, M.: Beneath-and-Beyond revisited. In: Algebra, Geometry, and Software Systems,

pp. 1–21. Springer, Berlin (2003)
68. Joyce, D.E.: Euclid’s Elements. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

(1998)
69. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating all vertices of a

polyhedron is hard. Discrete Comput. Geom. 39(1–3), 174–190 (2008)
70. Kirwan, F.: Complex Algebraic Curves. London Mathematical Society Student Texts, vol. 23.

Cambridge University Press, Cambridge (1992)
71. Klein, R.: Algorithmische Geometrie, 2nd edn. Springer, Berlin (2005)
72. Korte, B., Vygen, J.: Combinatorial Optimization, 3rd edn. Algorithms and Combinatorics,

vol. 21. Springer, Berlin (2006)
73. Lang, S.: Calculus of Several Variables, 3rd edn. Undergraduate Texts in Mathematics.

Springer, New York (1988)

http://www.polymake.org
http://www.math.uiuc.edu/Macaulay2/
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.surfex.AlgebraicSurface.net
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

246 References

74. Lang, S.: Undergraduate Algebra, 3rd edn. Undergraduate Texts in Mathematics. Springer,
New York (2005)

75. Lazard, D., Merlet, J.-P.: The (true) Stewart platform has 12 configurations. In: Proc. IEEE
International Conference on Robotics and Automation, San Diego, CA, pp. 2160–2165 (1994)

76. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups
and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

77. McCarthy, J.M.: Geometric Design of Linkages. Interdisciplinary Applied Mathematics,
vol. 11. Springer, New York (2000)

78. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–
184 (1970)

79. Morris, R.: SingSurf: A program for calculating singular algebraic curves and surfaces.
www.singsurf.org (2005)

80. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, Englewood Cliffs (1993)

81. O’Neill, B.: Elementary Differential Geometry, 2nd edn. Elsevier/Academic Press, Amster-
dam (2006)

82. Polthier, K., Preuss, E., Hildebrandt, K., Reitebuch, U.: JavaView, Version 3.95.
www.javaview.de (2005)

83. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)
84. Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions.

Commun. ACM 20(2), 87–93 (1977)
85. Pressley, A.: Elementary Differential Geometry, 2nd edn. Springer Undergraduate Mathemat-

ics Series. Springer, London (2010)
86. Pugh, C.C.: Real Mathematical Analysis. Undergraduate Texts in Mathematics. Springer, New

York (2002)
87. Rabinowitsch, J.L.: Zum Hilbertschen Nullstellensatz. Math. Ann. 102, 520 (1929)
88. Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, Heidelberg (2011)
89. Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135. Springer,

New York (2008)
90. Santos, F.L.: A counterexample to the Hirsch conjecture. Ann. Math. 176, 383–412 (2012)
91. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
92. Sottile, F., Theobald, T.: Line problems in nonlinear computational geometry. In: Surveys on

Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 411–432. American
Mathematical Society, Providence (2008)

93. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathe-
matics, vol. 12. Springer, New York (2002)

94. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. Amer-
ican Mathematical Society, Providence (1996)

95. Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series
in Mathematics, vol. 97. American Mathematical Society, Providence (2002)

96. Vempala, S.: Geometric random walks: a survey. In: Combinatorial and Computational Geom-
etry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 577–616. Cambridge University Press, Cambridge
(2005)

97. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University
Press, Cambridge (2003)

98. Webster, R.: Convexity. The Clarendon Press/Oxford University Press, New York (1994)
99. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New

York (1995)

http://www.singsurf.org
http://www.javaview.de

Index

A
Addition theorems

trigonometric, 214
Algebra

exterior, 194
Algorithm

beach line, see beach line algorithm
of Buchberger, see Buchberger’s algorithm
of Conti and Traverso, 172
of Preparata and Hong, 73
simplex, see simplex algorithm

Anti-isomorphism
of posets, 31

Apollonius problem, 4, 220
Automorphism

affine, 20
Axis

medial, 182

B
Basis

of an ideal, 138
Beach line algorithm, 88, 211
Bézout

theorem of, 129
Bipyramid, 26
Bisector, see bisector curve
Bisector curve, 209
Bland’s pivot rule, 58
Boundary complex

of a polytope, 83
Buchberger’s algorithm, 137, 151
Buchberger’s criterion, 150

C
Cardano’s formulas, 119
Cauchy–Binet formula, 204

Cddlib, 61, 76
Center of mass, 154
CGAL, 211, 238
Chain condition

ascending, 149
Circle event

in the beach line algorithm, 90
Circumradius, 109
Clebsch’s Diagonal Surface, 121
Closure

projective, 11, 129
Clover

three-leaf, 134
CoCoA, 177
Coding length, 231
Collinear, 13
Compact, 227
Companion matrix, 122
Compatibility, 142
Complementary slackness, 52
Complex

polyhedral, 83
polytopal, 83
simplicial, 83

Component
of a curve, 130

Cone
convex, 34
outer normal, 50

Convex, 14
Convex hull algorithm

iterative, 67
Coordinates

homogeneous, 10, 194
Cross-polytope, 19
Cuboctahedron, 77
Curvature, 183

M. Joswig, T. Theobald, Polyhedral and Algebraic Methods in Computational Geometry,
Universitext, DOI 10.1007/978-1-4471-4817-3,
© Springer-Verlag London 2013

247

http://dx.doi.org/10.1007/978-1-4471-4817-3

248 Index

Curve
irreducible, 130
plane algebraic, 125
projective, 127
smooth, 183

D
Decomposition

cellular, 210
polyhedral, 83

Dehn–Sommerville equations, 40
Delone circle, 110
Delone polytope, 101
Delone property

local, 111
Delone subdivision, 103
Delone triangulation, 104
Description

double, 67
inner, 23
outer, 23

Diagonal edge, 111
Diamond property, 26
Dimension

of a convex set, 14
Distance

Euclidean, 81
Divide-and-conquer, 73, 77, 232
Divisor

greatest common, 139
Double description method, 66
Double tangents

of two polygons, 73
Dual space, 11
Duality

linear program, 49
of polytopes, see polytope, dual

Duality theorem
strong, 52
weak, 52

E
Edge

of a polytope, 21
Edge mid-points, 78
Eigenvalue, 122
Eliminant, 159
Elimination, 138, 158
Elimination ideal, 138, 158
Euclidean algorithm, 140, 156

extended, 155
Euler characteristic, 38
Euler’s formula, 38, 211

Evenness criterion of Gale, 37
EXPSPACE, 156, 236

F
f -vector, 27, 84
Face

of a polytope, 21
Face figure, 26
Face lattice

of a polytope, 25
Face poset

of a polyhedral complex, 83
Facet

lower, 101
of a polytope, 21
upper, 101
vertical, 101

Farkas’ lemma, 63
Feasible solution, 47
Feature size

local, 184
Flip, 111
Fourier–Motzkin-Elimination, 77

G
Gauss

lemma of, 125
Global Positioning System, 219
Gordan–Dickson lemma, 146, 155
Graph

of a polytope, 27
Grassmann algebra, see algebra, exterior
Grassmannian, 198
Gröbner basis, 137, 145, 157

H
H-representation, see description, outer
Half-edge, 92
Hamilton cycle, 235
Heap

binomial, 93
Hilbert basis theorem, 145, 148
Hull

convex, 14, 65
positive, 33

Hyperboloid, 206
Hypersurface, 120

projective, 127

I
Ideal, 137

binomial, 152
proper, 164

Ideal membership problem, 139

Index 249

Ideal point, 10
Incidence matrix

of a polytope, 41
of a projective space, 17
of the double description, 70

Inclusion-exclusion, 105
Inequality

active, 50
Initial ideal, 145
Intersection condition, 83
Intersection multiplicity, 130
Isomorphism

combinatorial, 25

J
Jacobi’s determinant identity, 200
JavaView, 115, 136
Jordan curve, 181

K
Kinematic problem

direct, 212
Kinematics, 212
Klein quadric, 203

L
Lattice, 25
Leading coefficient, 142
Leading monomial, 142
Leading term, 142
Line

projective, 10
Lineality space, 33
Linear form, 11
List

doubly linked, 92
LP, see program, linear
Lrslib, 61

M
Macaulay 2, 177
Manipulators, 212
Maple, 133, 157, 237
Median, 153
Merge sort, 233
METAPOST, 6, 190
Minkowski sum, 33
Moment curve, 20
Monomial ideal, 145
Monomial order, 141
Multiple

least common, 140
Multiplication

exterior, 195

N
Nearest neighbor, 81, 96
NN-Crust, 187
Noetherian normalization lemma, 165
Normal form, 141
Normal vector

inner, 24
outer, 24

NP-complete, 235
NP-hard, 235
Nullstellensatz, 164, 166

O
Octahedron

regular, 19
Order

graded lexicographic, 173
graded reverse lexicographic, 144, 158
lexicographic, 142, 158
reverse lexicographic, 144

Osculating circle, 183

P
#P-complete, 235
#P-hard, 235
Perturbation, 36
Pivot rule

of Bland, see Bland’s pivot rule
Plane

projective, 10
Plücker coordinates, 193

dual, 199
Plücker representation

exterior, 197
Point event

in the beach line algorithm, 89
Polarity, 28
Polyhedron, 32

pointed, 32
Polymake, 40, 76, 114, 237
Polynomial

characteristic, 122
univariate, 119, 122

Polynomial equations
system of, 157, 167

Polytope, 19
cubical, 44
cyclic, 19, 40
dual, 31
random, 42
simple, 27
simplicial, 27

Poset, 25
Position

general, 27, 73, 88, 103

250 Index

Positive combination, 33
Power

exterior, 195
Product

of polyhedra, 34
Program

dual, 52
integer linear, 172
linear, 47

Projection
canonical, 9
stereographic, 100, 213

Property
of a polymake object, 41, 76, 114

Proving
geometric, 153

Pseudo distances, 220

R
Rabinowitsch

trick of, 166
Radical ideal, 167, 177
Ray

of a cone, 34
Ray shooting, 204
Recession cone, 34
Reconstruction

polygonal, 182
Relation

well-order, 141
Resultant, 123
Ridge

of a polytope, 21
Ring

Euclidean, 139
noetherian, 149

Run-time
combined, 79

Run-time complexity, 231

S
S-polynomial, 149
Sage, 238
Sample, 182
Search

binary, 232
Search tree

balanced, 93
Separation theorem, 15, 22, 227
Set

polar, 28
Simplex, 19
Simplex algorithm, 53
Simplicial cone, 69
SingSurf, 136

Singular, 157, 238
Software, 237
Space

projective, 9
Space complexity, 231
Sphere

smallest enclosing, 108
spanned by a simplex, 106

Standard basis, 155
Standard cube, 19
Standard paraboloid, 85
Steiner’s Roman Surface, 121
Stewart platform, 215

special, 217
Study’s Lemma, 126
Subdivision

polytopal, 101
Supporting hyperplane, 16, 228
Surfex, 136
Sweep line method, 88
Sylvester matrix, 124
Syzygy, 155

T
Tensor algebra, 207
Total degree, 128, 141
Transformation

affine, 13
linear, 12
projective, 12

Transversals, 193, 205
Triangulation, 83

pushing, 116

U
Unique factorization domain, 125
Upper-bound Theorem, 35

asymptotical, 35

V
V-representation, see description, inner
Variety, 120

affine, 137
Vertex

of a polytope, 21
Vertex figure, 26
Voronoi cell, 84
Voronoi diagram, 84, 210
Voronoi disk, 87
Voronoi region, 81

of a line segment, 209

Z
Zero of order (k + 1), 131
Zonotope, 45

	Polyhedral and Algebraic Methods in Computational Geometry
	Preface
	Audience and Required Background
	Aim of the Book
	History and Acknowledgments

	Contents

	Chapter 1: Introduction and Overview
	1.1 Linear Computational Geometry
	1.2 Non-linear Computational Geometry
	1.3 Applications
	Appendix
	The Structure of This Text

	Part I: Linear Computational Geometry
	Chapter 2: Geometric Fundamentals
	2.1 Projective Spaces
	2.2 Projective Transformations
	2.3 Convexity
	2.3.1 Orientation of Afﬁne Hyperplanes
	2.3.2 Separation Theorems

	2.4 Exercises
	2.5 Remarks

	Chapter 3: Polytopes and Polyhedra
	3.1 Deﬁnitions and Fundamental Properties
	3.1.1 The Faces of a Polytope
	3.1.2 First Consequences of the Separating Hyperplane Theorem
	3.1.3 The Outer Description of a Polytope

	3.2 The Face Lattice of a Polytope
	3.3 Polarity and Duality
	3.4 Polyhedra
	3.5 The Combinatorics of Polytopes
	3.6 Inspection Using polymake
	3.6.1 Cyclic Polytopes
	3.6.2 Random Polytopes
	3.6.3 Projective Transformations

	3.7 Exercises
	3.8 Remarks

	Chapter 4: Linear Programming
	4.1 The Task
	4.2 Duality
	4.3 The Simplex Algorithm
	4.4 Determining a Start Vertex
	4.5 Inspection Using polymake
	4.6 Exercises
	4.7 Remarks

	Chapter 5: Computation of Convex Hulls
	5.1 Preliminary Considerations
	5.2 The Double Description Method
	5.3 Convex Hulls in the Plane
	5.4 Inspection Using polymake
	5.5 Exercises
	5.6 Remarks

	Chapter 6: Voronoi Diagrams
	6.1 Voronoi Regions
	6.2 Polyhedral Complexes
	6.3 Voronoi Diagrams and Convex Hulls
	6.4 The Beach Line Algorithm
	Data Structures
	6.4.1 The Algorithm

	6.5 Determining the Nearest Neighbor
	6.6 Exercises
	6.7 Remarks

	Chapter 7: Delone Triangulations
	7.1 Duality of Voronoi Diagrams
	7.2 The Delone Subdivision
	7.3 Computation of Volumes
	7.4 Optimality of Delone Triangulations
	7.5 Planar Delone Triangulations
	7.6 Inspection Using polymake
	7.7 Exercises
	7.8 Remarks

	Part II: Non-linear Computational Geometry
	Chapter 8: Algebraic and Geometric Foundations
	8.1 Motivation
	8.2 Univariate Polynomials
	8.3 Resultants
	8.4 Plane Afﬁne Algebraic Curves
	8.5 Projective Curves
	8.6 Bézout's Theorem
	8.7 Algebraic Curves Using Maple
	8.8 Exercises
	8.9 Remarks

	Chapter 9: Gröbner Bases and Buchberger's Algorithm
	9.1 Ideals and the Univariate Case
	9.2 Monomial Orders
	9.3 Gröbner Bases and the Hilbert Basis Theorem
	9.4 Buchberger's Algorithm
	9.5 Binomial Ideals
	9.6 Proving a Simple Geometric Fact Using Gröbner Bases
	9.7 Exercises
	9.8 Remarks

	Chapter 10: Solving Systems of Polynomial Equations Using Gröbner Bases
	10.1 Gröbner Bases Using Maple and Singular
	10.2 Elimination of Unknowns
	10.3 Continuation of Partial Solutions
	10.4 The Nullstellensatz
	10.5 Solving Systems of Polynomial Equations
	10.6 Gröbner Bases and Integer Linear Programs
	10.7 Exercises
	10.8 Remarks

	Part III: Applications
	Chapter 11: Reconstruction of Curves
	11.1 Preliminary Considerations
	11.2 Medial Axis and Local Feature Size
	11.3 Samples and Polygonal Reconstruction
	11.4 The Algorithm NN-Crust
	11.5 Curve Reconstruction with polymake
	11.6 Exercises
	11.7 Remarks

	Chapter 12: Plücker Coordinates and Lines in Space
	12.1 Plücker Coordinates
	12.2 Exterior Multiplication and Exterior Algebra
	12.3 Duality
	12.4 Computations with Plücker Coordinates
	12.5 Lines in R3
	12.5.1 Transversals

	12.6 Exercises
	12.7 Remarks

	Chapter 13: Applications of Non-linear Computational Geometry
	13.1 Voronoi Diagrams for Line Segments in the Plane
	13.2 Kinematic Problems and Motion Planning
	13.3 The Global Positioning System GPS
	13.4 Exercises
	13.5 Remarks

	Appendix A: Algebraic Structures
	A.1 Groups, Rings, Fields
	A.2 Polynomial Rings

	Appendix B: Separation Theorems
	Appendix C: Algorithms and Complexity
	C.1 Complexity of Algorithms
	C.2 The Complexity Classes P and NP
	The Complexity Class P
	The Complexity Class NP
	The Question "P=NP?"
	The Complexity Class #P
	Further Complexity Classes

	Appendix D: Software
	D.1 polymake
	D.2 Maple
	D.3 Singular
	D.4 CGAL
	D.5 Sage

	Appendix E: Notation
	References
	Index

