
Chapter 1

Financial Transmission Rights: Point-to Point

Formulations

William W. Hogan

1.1 Introduction

Transmission rights stand at the center of market design in a restructured electricity

industry. Beginning with the intuition that electricity markets require some rights to

use the transmission system, simple models of transmission rights soon founder

after confronting the limited capacity and complex interactions of a transmission

grid. The industry searched for many years without success looking for a workable

system of physical rights that would support decentralized decisions controlling use

of the grid.

The physical interpretation of transmission rights was the principal complaint

that buried the Federal Energy Regulatory Commission’s (FERC) original Capacity

Reservation Tariff (FERC1996). Any attempt to match a large number of scheduled

transactions to a set of transmission rights creates a burden that threatens the

flexibility of trade needed to support a market or the flexibility of operations needed

to maintain reliability. And in a design built on the centerpiece of a coordinated spot

market (FERC 2002a), physical transmission rights or any associated scheduling

priority would create perverse incentives and conflicts with priorities defined by the

bids used in a security-constrained economic dispatch. The idea that a simple

physical right can be made to work soon mutates into a complex system of rules

intended to force market participants to act against market incentives. In the end,

the right becomes not so physical and not much of a right. The idea dies hard, but

the physical rights model deserves a decent burial.

If physical rights will not work, then something different is needed to achieve the

same objective in providing a compatible definition of transmission rights for a

competitive electricity market. As electricity market design developed, the focus
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turned from so-called physical transmission rights to a redefinition of transmission

rights as financial instruments defined with a close connection to both the transmis-

sion grid and a spot market organized through a bid-based, security-constrained,

economic dispatch (Hogan 1992). The financial approach separates actual use of the

grid from ownership of the transmission rights and provides many simplifications

that avoid the principal obstacles encountered in the search for physical rights.

A coordinated spot market with locational prices complemented by financial

transmission rights is a hallmark of market design that works.

There are many possible definitions of financial transmission rights, each with its

advantages and disadvantages. Further, the basic building blocks of financial

transmission rights could support a secondary market with a wide variety of other

trading instruments, just as a forward contract can be decomposed into a variety of

elements with different risk properties.

The basic building blocks under different definitions have different properties.

The purpose here is to organize a common analysis covering different types of

point-to-point financial transmission rights and compare them in regards to four

critical aspects of the transmission rights model. The common notation is an

eclectic synthesis designed to bridge the electrical engineering and economic

market formulations.1

The four aspects of the design cover modeling approximations, revenue

adequacy, auction formulation, and computational requirements. These do not

include important related subjects such as investment incentives. However, an

understanding of at least these four aspects of the formulations would be important

in choosing among the types of rights to include in a market design. The same

would be true of a decision to include all types of rights, where the market

participants could ask for any combination (O’Neill et al. 2002).

Approximation refers to the simplifications inherent in the transmission rights

model in comparison to the complexity of the real transmission system. To illustrate

the point, the simplification that there are no loop flows makes the contract-path

transmission model workable in theory. But the simplification deviates from the

reality and the contract-path model became recognized as inefficient and unwork-

able in practice. The different transmission right definitions depend to different

degrees on approximations of the reality of the network. The discussion here begins

with a simplified but explicit characterization of an alternating current load flow to

then specialize it in the market context for an examination of different transmission

rights.

Revenue adequacy refers to a financial counterpart of physical “available trans-

mission capacity.” A financial transmission right as defined here is a contract for a

financial payment that depends on the outcome of the spot market. By definition,

the system is revenue adequate whenever the net revenue collected by the system

operator for any period of the spot market is at least equal to the payment

1 This paper is an abridged version of the working paper, Hogan (2002). The working paper

includes an elaboration of flowgate financial transmission rights and hybrid models.
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obligations under the transmission rights. The analogous physical problem would

be to define the available capacity for transmission usage rights such that the

transmission schedules could be guaranteed to flow in any given period. A common

requirement of both is to maintain the capability of the grid, but the complex

interactions make it impossible to guarantee that physical rights could flow no

matter what the dispatch conditions. By contrast, we examine here conditions that

do ensure revenue adequacy for the financial transmission rights.

A natural approach to allocating some or all transmission rights is through an

auction. The auction design also extends to regular and continuing coordinated

auctions that could be employed to reconfigure the pattern of transmission rights,

supplemented by secondary market trading. The auction formulation interacts with

the conditions for revenue adequacy, with different implications for different

definitions of financial transmission rights.

The computational requirements for execution of a transmission rights auction

differ for the different models. The inherent scale of the security-constrained

economic dispatch model takes the discussion into a realm where the ability to

solve the problem cannot be taken for granted. In some cases, the auction model is

no more complicated than a conventional security-constrained economic dispatch,

and commercial software could be and has been adapted successfully for this

purpose. In other cases, the ability to solve the formal model is not assured, and

new approaches or various restrictions might be required. Hence, proposals for

more ambitious financial transmission right formulations have been offered with

the caveat that the expanded service beyond point-to-point rights should be offered

“as soon as it is technically feasible” (FERC 2002b).2

The purpose here is to identify some of the issues raised in the evaluation of

technical feasibility. The comparison of transmission rights models involves

tradeoffs. Some versions may be impossible to implement. At a minimum, ease

of both implementation and use for alternative transmission rights models should

not be taken for granted.

1.2 Transmission Line Load Flow Model

Every alternating current (AC) electrical network has both real and reactive power

flows. The sinusoidal pattern of instantaneous power flow produces a complex

power representation with real and imaginary parts that correspond to real and

reactive power. The real power flows are measured in Mega-Watts (MWs), and the

reactive power flows are measured in Mega-Volt-Amperes-Reactive (MVARs).

The VAR is the product of voltage and current, which is the same unit as the

watt; the notational difference is maintained to distinguish between real and

reactive power. Real power is defined as the average value of the instantaneous

2 Similar qualifications appear in discussions of an introduction of options or flowgate rights in

PJM, New York, New England, the Midwest, and so on.
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power and is the “active” or “useful” power. Reactive power is the peak value of the

power that “travels back and forth” over the line and has average value of zero and

is “capable of no useful work . . . [and] represents a ‘nonactive,’ or ‘reactive,’ power
(Elgerd 1982).”3 The combination of real and reactive power flow is the apparent

power in Mega-Volt-Amperes (MVA), which is a measure of the magnitude of the

total power flow.

The basic model characterizing electricity markets and financial transmission

rights (FTR) centers on the description of a network of lines and buses operating in

an electrical steady-state. A critical element is the representation of a transmission

line. There is a developed literature on this subject. The choices here do not exhaust

all that is relevant, but illustrate the basic issues in the treatment of AC networks for

purposes of modeling economic dispatch, locational pricing and the related defini-

tion of financial transmission rights. In particular, although the focus is on real power

flow, the model includes non-linear features of real and reactive power and control

devices to illustrate the implications of various simplifications and approximations

often suggested for economic dispatch, pricing and definition of financial transmis-

sion rights. Further extensions to include other elements of flexible AC transmission

systems (FACTS) could be added, with the associated non-linear characterizations

of even the effects on real power flows (Ge and Chung 1999).

A generic transmission line as represented here is illustrated in Fig. 1.1. The data

include the resistance (r), reactance (x), and line charging capacitance (2Bcap).

Variable controls include a transformer with winding tap ratio (t) and a phase shift

angle (α). The voltage magnitude at bus i is Vi and the voltage angle is δi. The flow of

real and reactive power bus from i towards j is the complex variable Zij. Assuming a

steady-state flow can be achieved, the conditions relate the flow of complex power on

a line to the control parameters including the voltage magnitudes and angles. Due to

losses, the flow out of one bus is not the same as the flow into the other. With these

sign conventions, positive flow away from a bus adds to net load at the bus.

The sign conventions support an interpretation of an increase in net load as

typically adding to economic benefit and associated with a positive price. Corre-

spondingly, an increase in generation reduces net load and typically adds to cost.4

The flow of power in an AC electric network can be described by a system of

equations known as the AC load flow model.5

3 For an excellent summary of the basics for those other than electrical engineers, see Elgerd

(1982), pp. 19–32.
4 Atypical negative prices are allowed, and in the presence of system congestion may not be so

atypical.
5 In anticipation of later simplifications, the notation here follows the development of the “DC”

Load Flow model in Schweppe et al. (1988), Appendices A and D. The DC Load flow refers to the

real power half of the nonlinear AC load flow model. Under the maintained assumptions, there is a

weak link between the reactive power and real power halves of the full problem. And the real

power flow equations have the same general form as the direct current flow equations in a purely

resistive network; hence the name “DC Load Flow.” Similar linear approximations are available

for reactive power flow, but the approximation is poor in a heavily loaded system. Hence, if in

addition to real power flow, voltage constraints and the associated reactive power are important,

then we require the full AC model and spot pricing theory as in Caramanis (1982).
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Let:

nB¼ Number of buses,

nL ¼ Number of transmission lines, with each line having per unit resistance rk,
reactance xk, and shunt capacitance Bcapij for theΠ—equivalent representation

of line k,6

~yP ¼ dP � gP ¼ nB�1 vector of net real power bus loads, i.e. demand minus

generation, ytP ¼ yPs; ~y
t
P

� �
where yPs is at the swing bus,

~yQ¼ dQ � gQ ¼ nB�1 vector of reactive power bus loads, i.e. demand minus

generation, ytQ ¼ yQs; ~y
t
Q

� �
where yQs is at the swing bus,

δ ¼ nB Vector of voltage angles relative to the swing bus, where by definition

δs ¼ 0,
V ¼ nB Vector of voltage magnitudes, where by assumption the voltage at the

swing bus, Vs, is exogenous,

tk ¼ ideal transformer tap ratio on line k,

αk ¼ ideal transformer phase angle shift on line k,

A ¼ the oriented line-node incidence matrix, the network incidence matrix with

elements of 0, 1, �1 corresponding to the network interconnections. If link k
originates at bus i and terminates at bus j, then aki ¼ 1 ¼�akj.

Bcapk Bcapk

Vi

d i δj

Vj

Zij Zji

1:

rk xk

1:1:tk e
jak

Fig. 1.1 Generic

transmission line

representation

6 For a development of theΠ—equivalent representation of a transmission line, see Bergen (1986),

Chap. 4. Here we follow Wood and Wollenberg (1984) in representing Bcap as one-half the total

line capacitance in the Π—equivalent representation; (Wood and Wollenberg 1984), p.75. A. See

also Skilling (1951), pp. 126–133.
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Define7

Gk ¼ rk/(rk
2 þ xk

2),
Ωk ¼ xk/(rk

2 þ xk
2),

zPijk ¼ real power (MWs) flowing out of bus i towards bus j along line k, and
zQijk ¼ reactive power (MVARs) flowing out of bus i towards bus j along line k.

Then the complex power flow Zij includes the real and reactive components8:

zPijk ¼ Gk½V2
i � ðViVj=tkÞ cosðδi � δj þ αkÞ� þΩkðViVj=tkÞ sinðδi � δj þ αkÞ;

zPjik ¼ Gk½ðVj=tkÞ2 � ðVjVi=tkÞ cosðδj � δi � αkÞ� þ ΩkðVjVi=tkÞ sinðδj � δi � αkÞ:
(1.1)

and

zQijk ¼ Ωk½V2
i � ðViVj=tkÞ cosðδi � δj þ αkÞ� � GkðViVj=tkÞ sinðδi � δj þ αkÞ

� V2
i Bcapk ;

zQjik ¼ Ωk½ Vj=tk
� �2 � ðVjVi=tkÞ cosðδj � δi � αkÞ�

� GkðVjVi=akÞ sinðδj � δi � αkÞ � V2
j Bcapk :

Real losses on line k are given by

lPk ¼ zPijk þ zPjik:

Hence, in terms of the angles and voltages we have

lPk δ;V; t; αð Þ ¼ Gk V2
i þ Vj tk=

� �2 � 2 ViVj tk=
� �

cos δi � δj þ αk
� �h i

:

Similarly, reactive power losses are

lQk ¼ zQijk þ zQjik;

7 Here the notation follows Schweppe et al. (1988). The purpose is to connect to the discussion of

the economics of spot markets and the definition of FTRs. However, the electrical engineering

literature follows different notational conventions. For example, Wood and Wollenberg (1984)

and others use a different sign convention for Ω. Also note that here Vi is the magnitude of the

complex voltage at bus i, not the complex voltage itself as in the appendix. Finally, we use y to

denote the net loads at the buses. This should not be confused with the complex admittance matrix,

often denoted as Y, which is composed of the elements of G and Ω. See the appendix for further

discussion.
8 For details, see the appendix.
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or

lQk δ;V; t; αð Þ ¼ Ωk V2
i þ Vj tk=

� �2 � 2 ViVj tk=
� �

cos δi � δj þ αk
� �h i

� V2
i þ V2

j

� �
Bcapk:

Given these flows on the lines, conservation of power at each bus requires that

the net power loads balance the summation of the flows in and out of each bus.

Under our sign conventions and summing over every link connected to bus i, we
have

dPi þ
X
kði; jÞ

zPijk ¼ gPi �
X
kðj; iÞ

zPjik; and

dQi þ
X
kði; jÞ

zQijk ¼ gQi �
X
kðj; iÞ

zQjik:

Here the summation includes each directed line that terminates at i (k(j,i)) or
originates at i (k(i,j)) Hence, the net loads satisfy:

yPi � dPi � gPi ¼ �
X
kðj;iÞ

zPjik �
X
kði;jÞ

zPijk; and

yQi � dQi � gQi ¼ �
X
kðj;iÞ

zQjik �
X
kði;jÞ

zQijk:

Recognizing that the individual flows can be expressed in terms of the several

variables, we obtain the relation between net loads, bus angles, voltage magnitudes,

transformer ratios, and phase angle changes:

~yP
~yQ

� �
¼ ~yPðδ;V; t; αÞ

~yQðδ;V; t; αÞ
� �

¼ ~Yðδ;V; t; αÞ:

Assuming that there is convergence to a non-singular solution for the steady-

state load flow, this system can be inverted to obtain the relation between the bus

angles, voltage magnitudes and the net power loads given the transformer ratios and

phase angle changes9:

9 The convention here is that gradients are row vectors. Hence, with

f u; vð Þ ¼ f1 u; vð Þ
f2 u; vð Þ
� �

; rf ¼ @f1 u; vð Þ @u= @f1 u; vð Þ @v=
@f2 u; vð Þ @u= @f2 u; vð Þ @v=

� �
:
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δ

V

� �
¼ Jδ ð~yP; ~yQ; t; αÞ

JV ð~yP; ~yQ; t; αÞ

" #
¼ Jð~yP; ~yQ; t; αÞ; and

rJ ¼ rJδP r JδQ

r JVP r JVQ

� �
¼ r yPδ r yPV

r yQδ r yQV

" #�1

¼ r ~Y
�1
:

This formulation treats all buses, other than the swing bus, as load buses, with

given real and reactive power loads. These are sometimes referred to as PQ

buses.10 In practice, many generator buses are operated as PV buses, where ~yP
and V are given and the required reactive power is determined in order to

maintain the voltage (Bergen 1986). There are 4(nB�1) variables (i.e., ~yP , ~yQ ,

δ, V) and 2(nB�1) independent node balance equations. Hence, half of the

variables must be specified and then the solution obtained for the remainder.

The corresponding change on the representation of the equations for different

treatment of the buses is straightforward. For example, in the DC-Load model

discussed below, all buses are treated as PV where the first step is to fix ~yP and V
to solve for δ and implicitly ~yQ.

The power flow entering a line differs from the power leaving the line by the

amount of the losses on the line. Typically, but not always, real power losses

will be a small fraction of the total flow and it is common to speak of the power

flow on the line. In the DC-Load case discussed below, losses are ignored and

the real power flow is defined as the same at the source and destination. In the

case of an AC line, we could select either or both ends of the line as metered

and focus on the flow at that location for purposes of defining transmission

constraints.

We can use these relations to define the link between the power flows on the lines

and the net loads at the buses:

z ¼
zPðδ;V; t; αÞ
zQðδ;V; t; αÞ

" #
¼

zPðJð~yP; ~yQ; t; αÞ; t; αÞ
zQðJð~yP; ~yQ; t; αÞ; t; αÞ

" #
¼

~KPð~yP; ~yQ; t; αÞ
~KQð~yP; ~yQ; t; αÞ

" #
¼ ~Kð~yP; ~yQ; t; αÞ;

and

r ~Ky ~yP; ~yQ; t; α
� � ¼ r ~KP

r ~KQ

" #
¼ rzPrJ

rzQrJ

� �
¼ rzPr ~Y

�1

rzQr ~Y
�1

" #
:

(1.2)

10 The swing bus is a δV bus for which the angle and the voltage are exogenous.
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Summing over all lines gives total losses as:

LP

LQ

� �
¼

P
k

lPkðδ;V; t; αÞP
k

lQkðδ;V; t; αÞ

2
64

3
75 ¼ lPðJð~yP; ~yQ; t; αÞ; t; αÞ

lQðJð~yP; ~yQ; t; αÞ; t; αÞ

" #
¼ LPð~yP; ~yQ; t; αÞ

LQð~yP; ~yQ; t; αÞ

" #
;

and

rL ¼ rlrJ ¼ rlr ~Y
�1
:

Finally, conservation of power determines the required generation at the swing

bus, gPs and gQs, as:

gPs ¼ �yPs ¼ LPð~yP; ~yQ; t; αÞ þ ιt~yP; and

gQs ¼ �yQs ¼ LQð~yP; ~yQ; t; αÞ þ ιt~yQ:

where ι is a unity column vector, ιt ¼ 1 1 � � � 1ð Þ. Equivalently,
LPð~yP; ~yQ; t; αÞ þ ιtyP ¼ 0; and

LQð~yP; ~yQ; t; αÞ þ ιtyQ ¼ 0:

These relationships summarize Kirchoff’s Laws that define the AC load flow

model in terms convenient for our subsequent characterization of the optimal

dispatch problem. Given the configuration of the network consisting of the buses,

lines, transformer settings, resistances and reactances, the load flow equations

define the relationships among (1) the net inputs at each bus, (2) the voltage

magnitudes and angles, and (3) the flows on the individual lines.

1.3 Optimal Power Flow

The optimal power flow or economic dispatch problem is to choose the net loads,

typically by controlling the dispatch of power plants, in order to achieve maximum

net benefits within the limits of the transmission grid. Under its economic interpre-

tation, the solution of the power flow problem produces locational prices in the usual

way. For our present purposes we define abstract benefit and cost functions. The

model developed here includes three simplifications. First, strictly for notational

convenience, we assume that all transmission constraints are defined in terms of the

effects of net loads at buses. In reality, transmission constraints may treat loads and

generation differently. Incorporating different buses for generation and load

connected by a zero impedance line would accommodate different effects of load

and generation. This would allow for different prices for load and generation by

treating them as at different locations.

The second simplification is to focus on the real power part of the problem, even

in the AC case. Here we anticipate a market in which we have FTRs for real power

1 Financial Transmission Rights: Point-to Point Formulations 9



but none are required or available for reactive power and there is no reactive power

market. This is not a trivial simplification. It would be appropriate as a model under

the assumption that there are no direct costs of producing reactive power and the

dispatch of reactive power sources is fully under the control of the system operator.

Finally, we abstract from explicit consideration of generation operating reserves.11

With these assumptions, we formulate the economic dispatch problem and then

extend it to the case of security-constrained economic dispatch.

1.3.1 Economic Dispatch

We first specialize the notation to represent the transmission constraints, and then

the simplified aggregate benefit function.

The constraints for the economic dispatch problem derive from the characteri-

zation of the power flow in transmission lines. Under the simplifying assumptions,

we treat the real and reactive power elements differently. Henceforth, we drop the

subscript and treat the variable y ¼ yP ¼ dP � gP as the real power bus loads,

including for the swing bus (yt ¼ ys; ~y
tð Þ). We further subsume all other parameters

above in the generic control vector u, with its own constraints as in:

u ¼
yQ

t
α

0
@

1
A;

u 2 U:

In addition to these control variables, we recognize that system operators may

change to topology of the network as summarized in A. For simplicity, we limit

attention to differentiable elements of u. However, in the applications discussed

below, the incidence matrix could change. The principal impact of changes in A is

to introduce discrete choices with complications for the optimization problem but

not for the main results for FTRs.

With this notational adjustment, we restate the transmission flows as the function
~Kðy; uÞ and the losses as Lðy; uÞ . We assume that the flows are constrained.

In addition, we incorporate the constraint limits as part of the function and append

any other constraints on the real power flows. For example, a constraint on MVA of

apparent power flow at a metered end of the line would be:

z2Pijk þ z2Qijk � bMVA MAXk � 0: (1.3)

11 Cadwalader et al. (1998) provides an outline of transmission rights and revenue adequacy in the

context of explicit reserve markets. The analysis is limited to point-to-point obligations, as

discussed below, but could be extended to include other types of financial transmission rights.
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We treat this as simply another element of ~Kðy; uÞ. All joint constraints on real

power flows and the various control parameters, including interface and other

operating limits, appear under ~Kðy; uÞ. The separate limits on the control variables

appear in the set U. Hence, the summary of the constraints is:

Lðy; uÞ þ ιty ¼ 0;

~Kðy; uÞ � 0;

u 2 U:

The objective function for the net loads derives from the benefits of load less the

costs of generation. Anticipating a bid-based economic dispatch from a coordinated

spot market, we formulate the benefit function for net loads as:

BðyÞ ¼ Max
d2D;g2G

BenefitsðdÞ � CostsðgÞ
s:t:

d � g ¼ y:

Under the usual convexity assumptions, the constraint multipliers for this opti-

mization problem define a sub-gradient for this optimal value problem. For sim-

plicity in the discussion here, we treat the sub-gradient as unique so that B is

differentiable with gradient rB . This gives the right intuition for the resulting

prices, with the locational prices of net loads at pt ¼ rB. The more general case

would require little more than recognizing that market-clearing prices might not be

unique, as for example at a step in a supply function.

Then the economic dispatch problem is:12

Max
y;u2U

BðyÞ
s:t:

Lðy; uÞ þ ιty ¼ 0;

~Kðy; uÞ � 0: (1.4)

In general, this can be a complicated non-linear and typically non-convex

problem. In most cases, but not all, the economic dispatch problem is well-behaved

in the sense that there is a solution with a corresponding set of Lagrange multipliers

and no duality gap. The problem may still be hard to solve, but that is the challenge

for software implementation.

12 This is similar to the formulation in Caramanis et al. (1982); the principal difference is in

imposing the thermal limit not just on the real power flow, but on the total MVA flow to account

for the total thermal impact. The constraints could also include generator capability tradeoffs. See

Feinstein et al. (1988), pp. 22–26, for a discussion of the generator capability curve tradeoffs

between real and reactive power.
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Cases where there may be no solution present a real challenge to electrical

systems, as when there is no convergence to a stable load flow, or for markets, when

there may be no price incentives that can support a feasible equilibrium solution.

Both pathological circumstances would present difficulties for electricity markets

that go beyond the discussion of FTR formulations. Hence, while not claiming that

all such economic dispatch problems are well-behaved, we will restrict attention to

the case when (1.4) is well-behaved.

There are many conditions that could be imposed to guarantee that the economic

dispatch problem in (1.4) meets this condition. For our purposes, it is simple to

restrict attention to problems that satisfy the optimality conditions13:

There existsðy�; u�; λ; ηÞ; such that

Lðy�; u�Þ þ ιty� ¼ 0;

~Kðy�; u�Þ � 0; ηt ~Kðy�; u�Þ ¼ 0;

η � 0; u� 2 U;

ðy�; u�Þ 2 arg max
y;u2U

BðyÞ � λ Lðy; uÞ þ ιtyð Þ � ηt ~Kðy; uÞ� 	
:

Hence, there is no duality gap (Bertsekas 1995). The Lagrange multipliers

provide the “shadow prices” for the constraints. The solution for the economic

dispatch problem is also a solution for the corresponding dual function for this

economic dispatch problem:

Max
y;u2U

BðyÞ � λ Lðy; uÞ þ ιtyð Þ � ηt ~Kðy; uÞ� 	
:

Assuming differentiability, the first order conditions for an optimum ðy�; u�Þ
include:

rBðy�Þ � λ rLyðy�; u�Þ þ ιt
� �� ηtr ~Kyðy�; u�Þ ¼ 0:

Hence, we have the locational prices as

pt ¼ rB y�ð Þ ¼ λιt þ λrLy y�; u�ð Þ þ ηtr ~Ky y�; u�ð Þ:

The locational prices have the usual interpretation as the price of power at

the swing bus (pG ¼ λ), the marginal cost of losses pL ¼ λrLy y�; u�ð Þ� �
and the

13As an historical note, apparently the early work on optimality conditions by Kuhn and Tucker

was motivated by an inquiry into the theory of electrical networks. Kuhn (2002), p. 132.
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marginal cost of congestion pC ¼ ηtr ~Ky y�; u�ð Þ� �
.14 These locational prices

play an important role in a coordinated spot market and in the definition of

FTRs.

1.3.2 Security-Constrained Economic Dispatch

The optimal power flow formulation in (1.4) ignores the standard procedure of

imposing security constraints to protect against contingent events. Although the

formulation could be interpreted as including security constraints, it is helpful here

to be explicit about the separate security constraints in anticipation of the later

discussion of FTR formulations and auctions that include the many contingency

limits.

The basic idea of security-constrained dispatch is to identify a set of possible

contingencies, such as loss of a line or major facility, and to limit the normal

dispatch so that the system would still remain within security limits if the contin-

gency occurs. The modeled loss of the facility leaves the remaining elements in

place, suggesting the name of n�1 contingency analysis.15

Hence, a single line may have a normal limit of 100 MW and an emergency

limit of 115 MW.16 The actual flow on the line at a particular moment might be

only 90 MW, and the corresponding dispatch might appear to be unconstrained.

However, this dispatch may actually be constrained because of the need to

protect against a contingency. For example, the binding contingency might be

the loss of some other line. In the event of the contingency, the flows for the

current pattern of generation and load would redistribute instantly to cause

115 MW to flow on the line in question, hitting the emergency limit. No more

power could be dispatched than for the 90 MW flow without potentially

violating this emergency limit. The net loads that produced the 90 MW flow,

therefore, would be constrained by the dispatch rules in anticipation of the

contingency. It would be the contingency constraint and not the 90 MW flow

that would set the limit. The corresponding prices would reflect these contin-

gency constraints (Boucher et al 1998).

Depending on conditions, any one of many possible contingencies could

determine the current limits on the transmission system. During any given

hour, therefore, the actual flow may be, and often is, limited by the impacts

that would occur in the event that the contingency came to pass. Hence, the

14 The dispatch and prices are not changed by the arbitrary designation of the swing bus. However,

the choice of the reference bus for pricing, which need not be the same as the swing bus, does

affect the decomposition of the prices.
15 A simultaneous loss of multiple facilities would be defined as a single contingency.
16 Expressing the limits in terms of MW and real power is shorthand for ease of explanation. Line

limits in AC models appear in terms of MVA for real and reactive power.

1 Financial Transmission Rights: Point-to Point Formulations 13



contingencies do not just limit the system when they occur; they are anticipated

and can limit the system all the time. In other words, analysis of the power flows

during contingencies is not just an exception to the rule; it is the rule. The

binding constraints on transmission generally are on the level of flows or voltage

in post-contingency conditions, and flows in the actual dispatch are limited to

ensure that the system could sustain a contingency.

For instance, suppose that the contingency ω is the loss of a line. For sake of

simplicity in the illustration, assume that the only adjustment in the case of the

contingency is to change the net load at the swing bus to rebalance the system. Then

there would be a different network, different flows, and different losses, leading to a

new set of power flow constraints described as:

Lω yωs ; ~y; u
� �þ yωs þ ιt~y ¼ 0;

~K
ω
yωs ; ~y; u
� � � 0;

u 2 U: (1.5)

The values of the constraint limits could be different in different contingencies,

including changes in monitored elements. Extension of this model to allow other

changes in dispatch or control parameters present no problem in principle, but

would add to the complexity of the notation. The set of constraints and balancing

equations would be different for each contingency.

If we treat normal operations as the contingencyω ¼ 0, then the combined set of

constraints on the dispatch would be:

Lω yωs ; ~y; u
� �þ yωs þ ιt~y ¼ 0; ω ¼ 0; 1; 2; � � � ;N;
~K
ω
yωs ; ~y; u
� � � 0; ω ¼ 0; 1; 2; � � � ;N;

u 2 U:

The security-constrained economic dispatch imposes all these constraints on

the net loads in advance of the realization of any of the contingencies. However,

since the swing bus net load is different in every contingency, we subsume the

load balance impacts for ω> 0 in the definition of the constraints, and keep

explicit only the loss balance in normal conditions. Then with the appropriate

change in notation with (yt ¼ y0s ; ~y
t

� �
), we arrive at a compact representation of

the constraints as:
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L y; uð Þ þ ιty ¼ 0;

K y; uð Þ �

~K
0
y0s ; ~y; u
� �

~K
1
y1s ; ~y; u
� �

..

.

~K
ω
yωs ; ~y; u
� �

..

.

~K
N
yNs ; ~y; u
� �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

� 0;

u 2 U:

With this notational convention, we can then restate the security-constrained

economic dispatch problem as:

Max
y;u2U

BðyÞ
s:t:

L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0: (1.6)

However, we now recognize that the single loss balance equation that affects the

benefit function is appended by many contingency constraints that limit normal

operations. If there are thousands of monitored elements for possible overloads of

lines, transformers, or voltage constraints, and there are hundreds of contingencies

that enter the protection set, the total number of constraints in K would be on the

order of hundreds of thousands. This large scale is inherent in the problem, and a

challenge for FTR models.

It is a remarkable fact that system operators solve just such contingency-

constrained economic dispatch problems on a regular basis. Below we summarize

a basic outline of a solution procedure to capture the elements relevant to the FTR

formulations. This method exploits a relaxation strategy and the feature that as we

get closer to the actual dispatch, the pattern if loads are better known and the list of

plausible contingencies and monitored elements reduces accordingly. Anticipating

the discussion of FTRs, however, the larger potential set of constraints would be

relevant.

Under the assumed optimality conditions, the corresponding prices obtained

from the solution appear as:

pt ¼ rB y�ð Þ ¼ λιt þ λrLy y�; u�ð Þ þ ηtrKy y�; u�ð Þ:

Hence, the congestion cost could arise from any of the (many) contingency

constraints.
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1.3.3 Market Equilibrium

The security-constrained economic dispatch problem has the familiar close connec-

tion to the competitive partial equilibrium model where market participants act as

profit maximizing or welfare maximizing price takers.

Assume that each market participant has an associated benefit function for

electricity defined as Bi yið Þ , which is concave and continuously differentiable.17

In FERC terminology, the market participants are the transmission service

customers. The customers’ benefit functions can arise from a mixture of load or

demand benefits and generation or supply costs. In this framework, the producing

sector is the electricity transmission provider, with customers injecting power into

the grid at some points and drawing power out of the grid at other points. The

system operator receives and delivers power, coordinates a spot market, and

provides transmission service across locations.

The competitive market equilibrium applied here is based on the conventional

partial equilibrium framework that stands behind the typical supply and demand

curve analysis.18 The market consists of the supply and demand of electric energy

and transmission service plus an aggregate or numeraire “good” that represents the

rest of the economy. Each customer is assumed to have an initial endowment ~wi of

the numeraire good. In addition, each customer has an ownership share si in the

profits “π” of the electricity transmission provider, with
P
i

si ¼ 1.

An assumption of the competitive model is that all customers are price takers.

Hence, given market prices, p, customers choose the level of consumption of the

aggregate good, ci, and electric energy including the use of the transmission system

17A sufficient condition for these to obtain would be that the demand and supply functions at each

node are continuous, additively separable and aggregate into a downward sloping net demand

curve. The benefit function would be the area under the demand curves minus the area under the

supply curves in the usual consumer plus producer surplus interpretation at equilibrium. To avoid

notational complexity, the assumption here is that each participant has a continuously differentiable

concave benefit function defined across the net loads at every location. Concavity is important for

the analysis below of the equivalence of economic dispatch and market equilibrium, if there is a

market equilibrium. This would eliminate from this competitive market analysis the related unit

commitment problem which includes non-convex start-up conditions. As is well known, in the

presence of non-concave benefit functions there may be no competitive market equilibrium.

Differentiability can be relaxed, with no more than the possibility of multiple equilibrium prices.

Restricting the benefit function to definition at a subset of the locations would be more realistic, but

different only in the need to account for the corresponding variable definitions. It would not affect

the results presented here. In practice, as is often assumed, the benefits functions may be separable

across locations.
18 The partial equilibrium assumptions are that electricity is a small part of the overall economy

with consequent small wealth effects, and prices of other goods and services are approximately

unaffected by changes in the electricity market. See Mas-Colell et al. (1995), pp. 311–343.

Importantly, we adopt here a relaxed set of assumptions that do not include convexity of the set

of feasible net loads.
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according to the individual optimization problem maximizing benefits subject to an

income constraint:

Max
yi;ci

Bi yið Þ þ ci

s:t:

ptyi þ ci � ~wi þ siπ: (1.7)

In this simple partial equilibrium model of the economy, there is only one

producing entity, which is the system operator providing transmission service.

Under the competitive market assumption, the producer is constrained to operate

as a price taker who chooses inputs and outputs (yi) that are feasible and that

maximize profits. The profits amount to π ¼ pt
P
i

yi . Hence, the transmission

system operator’s problem is seen as:

Max
y;u2U

yi

pty

s:t:

y ¼
X
i

yi;

L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0: (1.8)

Of course, the transmission service provider is a monopoly and would not be

expected to follow the competitive assumption in the absence of regulatory over-

sight. However, the conventional competitive market definition provides the

standard for the service that should be required of the system operator.19

Given the initial endowment of goods ~wi, and the ownership shares si, a competi-

tive market equilibrium is defined as a vector of prices, p, profits,π, controls, u, and a
set of net loads, yi, for all i that simultaneously solve (1.7) and (1.8).

A competitive equilibrium will have a number of important properties that we

can exploit. First, note that
P
i

ci ¼
P
i

~wi , which is implied and necessary for

feasibility. Furthermore, every customer’s income constraint is binding and the

derivative of each benefit function will equal the common market prices, p ¼ rBt
i.

Hence, the equilibrium price at each location is equal to the market clearing

19 It is the standard formulation to include both the consumption (1.7) and production (1.8) sectors

as part of the definition of competitive market equilibrium. Failure to follow this well established

convention leads to confusion when the term “market equilibrium” is applied excluding the

producing sector in (1.8), as in Wu et al. (1996), pp. 5–24. For a further discussion of equivalence

results, see Boucher and Smeers (2001), pp. 821–838.
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marginal benefit of net load and the marginal cost of generation and redispatch to

meet incremental load.

Finally, a motivation for the connection with economic dispatch is that a market

equilibrium y�i

 �

; u�
� �

must also be a solution to the economic dispatch problem

with BðyÞ ¼P
i

Bi yið Þ. If not, there would be a set of feasible net loads y1i

 �

withP
i

Bi y
1
i

� �
>
P
i

Bi y
�
i

� �
. Therefore, by concavity of B we would have:

pt
X
i

y1i � y�i
� � !

¼
X
i

rBi y
1
i � y�i

� � �X
i

Bi y
1
i

� �� Bi y
�
i

� �� �
>0:

But this would violate the optimality of y�i

 �

; u�
� �

. Hence, a market equilibrium

is also a solution to the economic dispatch problem.

Therefore, under the optimality conditions assumed, the market equilibrium

would satisfy the same local first-order necessary conditions as an optimal solution

to the economic dispatch. In particular, for a market equilibrium we have the

pricing condition that:

pt ¼ rB y�ð Þ ¼ λιt þ λrLy y�; u�ð Þ þ ηtrKy y�; u�ð Þ:

Another way to look at this problem is to interpret the equilibrium as satisfying

the “no arbitrage” condition. At equilibrium, there are no feasible trades of electric

loads in (1.8) that would be profitable at the prices p. Hence, let y1 be any other

feasible set of net loads, such that there is a u1 with:

L y1; u1
� �þ ιty1 ¼ 0;

K y1; u1
� � � 0;

u1 2 U:

Then by (1.8), we have,

pt y� � y1
� � � 0: (1.9)

This no arbitrage condition will be important as part of the analysis of

revenue adequacy in the FTR formulations. Importantly, the condition allows

for the controls to change from u�. This implies a great degree of flexibility in

changing the dispatch while maintaining the no-arbitrage condition for a market

equilibrium.
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1.3.4 Linear Approximation of Constraints

The full AC security-constrained economic dispatch problem is a large optimiza-

tion problem with very many constraints. Solution procedures for solving this

problem often rely on local linearizations of at least the constraints and exploit

the condition that in any particular dispatch only relatively few (tens to hundreds) of

the many potential constraints might be binding.

One motivation for the linearization follows from the first order conditions for an

optimum. Suppose we have a solution to the economic dispatch problem at y�; u�ð Þ.
The usual Taylor approximation gives:

L y; uð Þ 	 L y�; u�ð Þ þ rL y�; u�ð Þ y� y�

u� u�

� 
;

K y; uð Þ 	 K y�; u�ð Þ þ rK y�; u�ð Þ y� y�

u� u�

� 
:

Then if we have a solution that satisfies the first order conditions for the security-

constrained economic dispatch problem (1.6), this would also satisfy the first order

conditions for the linearized constraints as in:

Max
y;u2U

BðyÞ
s:t:

L y�; u�ð Þ þ rL y�; u�ð Þ y� y�

u� u�

� 
þ ιty ¼ 0;

K y�; u�ð Þ þ rK y�; u�ð Þ y� y�

u� u�

� 
� 0:

If the functions are well behaved, then finding a solution to this approximate

problem might also provide a good estimate of the solution to the full problem.

Although the functions are not so well behaved as to be everywhere convex,

practical computational approaches for solving this problem search for a solution

that satisfies the first order conditions. It is not fail safe, and when it fails other

approaches would be necessary. However, given a starting point close to the

optimum, and some judicious choices, this approximation can work well. Since

the actual dispatch involves reoptimization starting with a good solution from the

immediate previous period, as well as feedback from metering actual flows and a

fair bit of operator judgment, this linearization of the model can be a reasonable

approximation. However, as discussed below, the linearization changes with the

dispatch.

The local linear approximation suggests an outline for solving this large problem

through a familiar relaxation approach by ignoring non-binding constraints

(Geoffrion 1970).
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Relaxation Solution Procedure

Step 1: Select an initial candidate solution y0; u0ð Þ, ignore most (or all) of the

constraints in the economic dispatch using only the small subsetK0 y; uð Þ,
and set the iteration count to m ¼ 0.

Step 2: Construct the relaxed master problem as:

Max
y;u2U

BðyÞ
s:t:

L ym; umð Þ þ rL ym; umð Þ y� ym

u� um

� 
þ ιty ¼ 0;

Km ym; umð Þ þ rKm ym; umð Þ y� ym

u� um

� 
� 0:

Let a solution be ymþ1; umþ1ð Þ and update m ¼ m þ 1.

Step 3: Check to see if the candidate solution ym; umð Þ violates any of the

constraints in (1.6). If so, create a new Km y; uð Þ including some or all

of these constraints and repeat Step 2. Else done.

The central idea here is that the master problem is much smaller than the full

problem and relatively easy to solve. With judicious choices of the initial solution

and constraint set, the method works well in practice with relatively few iterations

required. In the case that the objective function is represented by a piecewise

linearization (as would be true naturally with step-wise representation of supply

and demand), the master problem is a linear program for which there are efficient

algorithms. Furthermore, in the case of this dispatch problem, evaluation of

constraints in Step 3 requires only that a standard load flow be solved for each

contingency. Although not trivial, this is well-understood albeit non-linear

problem.

One difficulty with this computational approach is the need to calculate rKm

ym; umð Þ.20 This gradient is the set of “shift factors” summarizing the marginal

impact on constraints from changes in the loads and controls. Although it is

possible to solve the load flow problem exploiting the sparsity of the network

arising from the few links connected to each bus, this sparsity depends on

explicit representation of the angles and voltage magnitudes. By contrast, the

inverse presentation in K y; uð Þ is dense. In a sufficiently meshed network, every

net load affects every constraint. Hence, virtually every element of rKm ym; umð Þ
could be non-zero. Part of the art of implementation of this computational

outline is in the details of exploiting sparse representations to evaluate load

20 For more detail on the construction of the gradients, see Weber (1997).
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flows, and minimizing the need to calculate or represent rKm ym; umð Þ. Such

commercial dispatch software is well developed and in regular use.21

Further note that in generalrK ym1 ; um1ð Þ 6¼ rK ym2 ; um2ð Þ, and this may require

frequent updates of the linearization. Finally, in general we have:

K ym1 ; um1ð Þ � rK ym1 ; um1ð Þ ym1

um1

� 
6¼ K ym2 ; um2ð Þ � rK ym2 ; um2ð Þ ym2

um2

� 
:

Hence, the “right hand side” of the linearized constraint can be different for each

candidate solution. These differences can be quite large, especially for interface

constraints in DC-Load approximations.22

This presents no difficulty in principle for the dispatch problem. However, these

complications are relevant in the discussion of the DC-Load model and in the

adaptation of the security-constrained economic dispatch formulation for FTR

auctions.

1.3.5 DC-Load Approximations

A common simplification of the load flow model for real power is known as the

DC-Load approximation (Schweppe et al. 1988). In terms of the present discussion,

the DC-Load model adds further restrictive assumptions that allow us to ignore both

real power losses and reactive power loads in determining the real power flows,

further specializing the linearization of the constraints.

The key assumptions include:

• There is sufficient reactive power net load at each bus to maintain per unit

voltages equal to 1.0 (Vi 	 1:0);
• All phase angle settings are at zero angle change and a fixed tap ratio for

transformers (t ¼ 1:0; α ¼ 0)23;

• The voltage angle differences across lines are small.

These assumptions imply a choice of controls (u ¼ u0) that yield full decoupling
between real and reactive power flow and no transmission losses. The real power

flow in (1.1) reduces to:

21 For example, firms providing such software include ALSTOM ESCA Corporation, Nexant, Inc.,

Open Access Technology International, Inc.
22 For examples, see Hogan (2000).
23 For simplicity, we can assume that the ideal transformers with a fixed tap ratio have been

incorporated in a per unit normalization, which results in a simplifiedΠ—equivalent representation

of a transmission line. See the appendix for further details
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zPijk ¼ Gk½1� cosðδi � δjÞ� þ Ωk sinðδi � δjÞ;
zPjik ¼ Gk½1� cosðδj � δiÞ� þ Ωk sinðδj � δiÞ:

Under the small angle difference assumption, we have:

cos δi � δj
� � 	 1;

sin δi � δj
� � 	 δi � δj:

Hence, the real power flow approximation becomes:

zPk ¼ zPijk ¼ Ωk δi � δj
� � ¼ �zPjik ¼ �Ωk δj � δi

� �
:

This linearity produces a substantial simplification. Let:

Ω ¼ the diagonal matrix of line transfer factors,

z ¼ the vector of line flows (zPk) in the DC-Load approximation.

Then, with our sign conventions we have:

y ¼ �Atz;

z ¼ ΩAδ:

Furthermore, the inversion that eliminates the angles as in (1.2) reduces to

another linear equation for the DC-Load formulation with

H ¼ rKy 0; u0
� �

:

This is the matrix of shift factors. Under the DC-Load assumptions, H ¼ 0 ~H
� �

,

where ~H ¼ �Ω ~A ~A
tΩ ~A

� ��1

with the swing bus dropped in defining ~A.24 Although A

is sparse, the matrix of shift factors is dense, meaning that nearly every net load

affects nearly every line. Calculating an element of row of H, meaning the shift

factors for a particular line in a particular contingency, is about the same amount of

work as finding a DC-Load flow for that contingency.

For a given contingency the matrix that links the angles and the net loads, as in

y ¼ �AtΩAδ;

is quite sparse, with the only non-zero elements being for the nodes that are directly

connected. Furthermore, solving for the angles given the vector of net injections, y,
involves no more than finding a particular solution for a set of linear equations. In

general, this is much less work than solving for the full matrix inverse, and in

advanced optimization algorithms this is done quickly and cheaply using sparse

24Also the transfer admittance matrix as described in Schweppe et al. (1988), p. 316.

22 W.W. Hogan



matrix techniques. Once the vector of angles is known for a given set of net loads, it

is an easy matter to complete the one matrix multiplication to obtain the complete

load flow in z for each contingency. The import of all this is the simplicity of

evaluating a particular load flow as compared to calculating the full transfer

admittance matrix in H.
Note that calculating a particular row ofH is about the same order of difficulty as

evaluating the load flow for that particular contingency. Let εi be the elementary

row vector with all zeros but a 1 in the ith position. We can obtain any row of H, say
hi, as the solution to a set of sparse linear equations. By construction:

hi ¼ εi ~H ¼ �εiΩ ~A ~A
tΩ ~A

� ��1

:

Hence, we have the sparse system:

hi ~A
tΩ ~A

� �
¼ �εiΩ ~A: (1.10)

In other words, calculating a complete load flow for all the lines is about as much

work as calculating the shift factors for one line. Both require solution of a sparse

set of linear equations of the dimension equal to the number of nodes. There are

specialized sparse matrix techniques for this computation as a part of commercial

dispatch software.

With these approximations, the constraints could be restated as:

ιty ¼ 0;

K 0; u0
� �þ Hy � 0:

Letting b ¼ �K 0; u0ð Þ, the familiar DC-Load restatement of the security-

constrained economic dispatch becomes:

Max
y

BðyÞ
s:t:

ιty ¼ 0;

Hy � b: (1.11)

It is an easy matter to extend the definition of H to include other linear

constraints on y, including interface constraints expressed as limits on aggregations

of flows on lines.

As above, the matrix H for the full security-constrained problem is very large

and dense, and successful solution of the security-constrained economic dispatch

exploits approaches such as the relaxation algorithm outlined above that avoid

unnecessary computation of the elements of H and include only the binding
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constraints. Furthermore, the DC-Load model is convex and the relaxation algo-

rithm will assure convergence to a global solution.

As discussed below, many models for transmission rights exploit the specialized

structure of (1.11) to simplify the problem and guarantee various equivalence

conditions between and among different FTRs. In this context, it is important to

remember that (1.11) is only a simplified approximation and that key elements of

these assumptions are violated by regular operating conditions in the system. The

different approximations have different effects on the alternative FTR models and

the associated auction problems.

Here we consider the implications of various modifications of these assum-

ptions. Suppose that the phase shifting transformers are set to shift the angles. If

we hold the angle shifts fixed, then the approximation under the other DC-Load

assumptions becomes:

zPk ¼ Ωk δi � δj
� �þ Ωkαk:

In principle, this changes the inversion in (1.2) to eliminate the bus angles such

that even under zero net loads there would be real power flow on all the lines in

order to maintain balance at every node. This preserves linearity and a constant H,
but changes the residual limits for the constraints. Hence, we would have b ¼ b αð Þ,
meaning that the limits on the power flow equations would be changing to reflect

the phase angle settings. In principle, a phase shift on one line could affect the

residual limit on every line.

If the ideal transformer tap ratio (t) were to change from 1.0, there would be a

modified Ω̂ to reflect the changing impedance.25 In addition, the inversion depends

on the topology of the network as summarized in A. This may change from one

dispatch to another. In each case, the inversion to eliminate the voltage angles

and the associated linearization of the constraints actually depends on the values of

(t; α;A). To the extent that these are treated as variables in the economic dispatch,

their constraints in U create additional non-linearities. For instance, if a phase-

shifting transformer is controlling flow but reaches a limit on the ability to control a

line, the representation of the phase angle regulator changes. Although the details

depend on the particular case, if there is any possibility of actual changing the

topology or settings of phase-shifting transformers, even for the simpl-

ified real power only DC-Load approximation we have H u0ð Þ ¼ rKy 0; u0ð Þ and

bðu0Þ ¼ �Kð0; u0Þ. In other words, the linear approximation is not the same across

the dispatches.

Therefore, the security-constrained, economic dispatch of the DC-Load approx-

imation could be written as:

25 For example, see Oliveira et al. (1999), pp. 111–118.
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Max
y

BðyÞ
s:t:

ιty ¼ 0;

H u0
� �

y � b u0
� �

: (1.12)

When this problem is solved at any given hour, for fixed u0 the resulting model

takes on the form of the DC-Load approximation. Both constraint limits and shift

factors adjust regularly. Hence, it is important below to be explicit about the fact

that the linearizations, and therefore, the model itself, changes from dispatch to

dispatch, especially for any changes in topology A.
Finally, in addition to these changes, other slight modifications of the DC-Load

model retain most of the computational simplicity but make the approximation

further sensitive to the non-linear properties of the system. For example, consider

incorporating line losses:

lPk δ; 1; 1; 0ð Þ ¼ Gk 2� 2 cos δi � δj
� �� 	

:

Using the approximation that for small angle differences,

cos δi � δj
� � 	 1� δi � δj

� �2
2

;

the approximate line losses are:

lPk δ; 1; 1; 0ð Þ ¼ Gk 2� 2 cos δi � δj
� �� 	 	 Gk δi � δj

� �2 	 rkz
2
Pk:

Here we have used the condition that rk << xk.
26

Define R as the diagonal matrix of line resistances, Aj j as the matrix of the

absolute values of the incidence matrix, and z2 as the vector of squares of the

individual line flows. Then we could include losses in the economic dispatch

problem that is almost like the DC-Load model27:

26 This approximation applies to high voltage systems, but is less usable on lower voltage circuits.
27 This approach is from Transpower in New Zealand.
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Max BðyÞ
y; z; δ

s:t:

y ¼ �Atz� 1
2
Aj jtRz2;

z ¼ ΩAδ;

δs ¼ 0;

z � b:

Note that this computational form of the problem does not need a separate

overall balance equation, as this is accounted for in the individual node equations.

Hence, we have net loads (generation) balancing losses as in:

ιt g� dð Þ ¼ �ιt d � gð Þ ¼ �ιty ¼ ιtAtzþ 1
2
ιt Aj jtRz2 ¼ ιtRz2:

This is no longer a linear problem, but the addition of the few quadratic terms in

the node balance equations is easier to deal with than a full AC model. However,

this simplified formulation would capture some of the interaction between losses

and congestion, with the additional power flows needed to account for losses adding

to losses and congestion. The inverse linearization of the solution in terms of the net

loads would now differ further from the pure DC-Load approximation.28

1.4 Point-to-Point Financial Transmission Rights

Financial transmission rights are defined in terms of payments related to market

prices. Although many years were spent in the search for well-defined and workable

physical transmission rights, the complexity of the grid and rapidly changing

conditions of the real market outcomes made it impossible to design physical rights

that could be used to determine the use of the transmission system.29 By contrast,

financial transmission rights specify payments that are connected to the market

outcomes but do not control use of the system. Rather, the actual dispatch or spot

market produces a set of market-clearing prices, and these prices in turn define the

payments under the FTRs.

The system operator accepts schedules and coordinates the spot market as a

bid-based, security-constrained, economic dispatch. The resulting locational prices

apply to purchases and sales through the spot market, or the difference in the

locational prices defines the price for transmission usage for bilateral schedules.

28 A version of this DC-Load-Flow implementation with losses appears in a GAMS model

available at www.whogan.com.
29 For further details, see Harvey et al. (1997).
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The need for transmission rights to hedge the locational price differences leads to

the interest in FTRs.30

1.4.1 PTP Obligations

The definition of point-to-point (PTP) forward obligations as FTRs follows closely

the notion of bilateral transmission schedules. A generic definition includes both

balanced and unbalanced rights. Given a vector of inputs and outputs by location,

the kth PTP forward obligation is defined by:

PTP f
k ¼

0�gi
0
dj
0

0
BBB@

1
CCCA:

With a corresponding vector of market clearing prices, this FTR is a contract to

receive

ptPTP f
k ¼ pt

0�gi
0
dj
0

0
BBB@

1
CCCA ¼ pjdj � pigi:

Although any such vector could be allowed, it is clear that any such FTR could

be restated as a mix of balanced and unbalanced rights:

PTP f
k ¼

0
�dj
0
dj
0

0
BBB@

1
CCCA�

0
gi � dj

0
0

0

0
BBB@

1
CCCA:

Motivated by the discussion of options below, it is convenient to define two

types of forward obligations, balanced (τ f
k) and unbalanced ( �g f

k), such as

30 For further discussion of market structure, see Chandley and Hogan (2002).
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τ f
k ¼

0�x
0
x
0

0
BBB@

1
CCCA; �g f

k ¼
0
0
g
0

0

0
BB@

1
CCA:

We can think of the balanced PTP-FTRs providing for the same input and output

at different locations. More generally, all that is required of a balanced PTP-FTR is

that the inputs and outputs sum to zero, ιtτ f
k ¼ 0. The unbalanced FTRs can be

thought of as forward energy sales at any location and would be a contribution

towards losses to balance the system. The notation suggests that individuals could

hold either or both types of PTP-FTR forward obligations, and there is no need that

the locations be the same.

The intended role of the PTP-FTR is to provide a hedge against variable

transmission costs. If a market participant has a balanced FTR between two

locations and schedules a corresponding bilateral transaction with the same inputs

and outputs (x), then the charge for using the system would be pj � pi
� �

x, which is

exactly the payment that would be received under the FTR. Hence, the balanced

FTR provides a perfect hedge of the variable transmission charge for the bilateral

transaction.

The holder of an unbalanced forward obligation FTR has an obligation to make

the payment equal to the value of the energy at the relevant location. If the holder

also sells an equal amount of energy at the same location in the actual dispatch, the

payment received for the energy is pig, equal to the payment required under the

FTR. Hence, we can think of the unbalanced FTR as a forward sale of energy.

Although in principle there would be no difficulty in allowing negative unbalanced

PTP-FTRs, equivalent to forward purchases of energy, it is convenient to interpret

unbalanced PTP-FTR obligations as forward sales of energy.

In this case of obligations, the PTP-FTRs are easily decomposable. For example,

an FTR from bus 1 to bus 2 can be decomposed into two PTP-FTR obligations from 1

to a Hub and the Hub to 2. The total payment is p2 � pHUBð Þ þ pHUB � p1ð Þ ¼
p2 � p1ð Þ. This provides support for trading atmarket hubs and the associated trading

flexibility. Periodic FTR auctions provide other opportunities to obtain other

reconfigurations of the pattern of FTRs

An attraction of the FTR is that the spot market can operate to set the actual use

of the transmission system and the FTRs operate in parallel through the settlements

system to administer financial hedges. Importantly, the system of payments will be

consistent as long as the set of PTP-FTRs satisfies a simultaneous feasibility

condition.
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1.4.1.1 Revenue Adequacy

Suppose that we have a set of balanced (τ f
k; k ¼ 1; . . . ;N) and unbalanced ( �g f

k;

k ¼ 1; . . . ;N ) PTP-FTRs obligations for any possible locations. Consider the

constraints from the security-constrained dispatch in (1.6) or equivalently in

(1.8). We say that the set of FTRs is simultaneously feasible if there is a u 2 U
such that:

y ¼
X
k

τ f
k �

X
k

�g f
k;

Lðy; uÞ þ ιty ¼ 0;

Kðy; uÞ � 0: (1.13)

Assume the set of PTP-FTR forward obligations is simultaneously feasible. If

we have a market equilibrium (p; y�; u� ) in the spot market, then from (1.9) it

follows immediately that we meet the revenue adequacy condition,

pty� � pt
X
k

τ f
k �

X
k

�g f
k

 !
¼ pt y� �

X
k

τ f
k þ

X
k

�g f
k

 !
¼ pt y� � yð Þ � 0:

In other words, at the market equilibrium prices the net payments collected

by the system operator through the actual dispatch (pty� ) would be greater than

or equal to the payments required under the PTP-FTR forward obligations

pt
P
k

τ f
k �

P
k

�g f
k

� � 
. This revenue adequacy condition is general enough to

accommodate a great deal of flexibility.

Note that the simultaneous feasibility condition does not require that the set of

PTP-FTRs be feasible at the current set of controls (u�) associated with the market

equilibrium. All that is required is that the system operator could choose a set of

controls that would make the PTP-FTRs feasible. There could be a very different set

of actual operating conditions, including changes in the configuration of the grid,

but as long as the controls and configuration could be set to make the PTP-FTRs

feasible, the simultaneous feasibility condition holds and revenue adequacy

follows. This is true even though actual physical delivery to match the FTRs

would be impossible at the current settings of the grid controls at u� . This is an
important simplification compared to physical rights and a primary attraction of

using financial rights.

The intuition of revenue adequacy is clear. If the dispatch of PTP-FTRs were

more valuable than the market equilibrium, in violation of the revenue ade-

quacy condition, the system operator could have selected this dispatch outcome.

Since we have by assumption a market equilibrium that differs from the PTP-

FTRs, and the PTP-FTRs are simultaneously feasible, the market equilibrium
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from (1.8) must be at least as valuable as the payment obligation under the

PTP-FTRs.31

1.4.1.2 PTP-FTR Auction

Allocation rules for FTRs follow different procedures. For example, in PJM

Load Serving Entities (LSE) are required to purchase network service and meet

installed capacity requirements. As part of this process, LSEs acquire FTRs.

Grandfathering rules under existing contracts might be another source of alloca-

tion, and so on.

A natural way to allocate PTP-FTR forward obligations would be to conduct an

auction. Suppose that we represent bids for balanced forward-obligations by (t fk; τ
f
k)

and for unbalanced forward obligations by (ρ f
k; �g

f
k ). Here the first element is the

scalar amount of the FTR and the second element is the vector pattern of inputs and

outputs. For simplicity, we subsume any upper bounds on the awards are part of

the concave and differentiable bid function βk t fk; ρ
f
k

� �
. With these notational

conventions, a formulation of the PTP-FTR forward obligation auction would be:

Max
y;u2U;t f

k
�0;ρ f

k
�0

X
k

βk t fk ; ρ
f
k

� �
s:t:

y ¼
X
k

t fkτ
f
k �

X
k

ρ f
k�g

f
k;

L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0: (1.14)

A solution of this problem would determine the award of FTRs and the

associated market clearing prices for the awards. The locational price p
_
would be

of the same form as in the market equilibrium model, with

p
_t ¼ λ

_

ιt þ λ
_rLy y�; u�ð Þ þ η

_trKy y�; u�ð Þ:

However, the prices here would be based on the expected value of the hedge over

the many dispatches to which it applies. The corresponding market clearing prices

31 The definition of FTRs could be extended to include the sharing rule for allocation of any

difference between the collections and payments. This is formalized in the market equilibrium

model as si. In practice, the FTR implementations for existing system redistribute any excess

collection to reduce access charges or some similar purpose. Although this is a more important

issue for defining incentives for system expansion, it does not affect the analysis here.
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for the auction awards would be the difference in the locational prices for the

balanced obligations and the locational price for loss contributions. Hence,

p
_

t f
k
¼

@βk t fk; ρ
f
k

� �
@t fk

¼ p
_t
τ f
k; p

_

�g f
k
¼ �

@βk t fk; ρ
f
k

� �
@ρfk

¼ p
_t
�g f
k:

By construction, the FTRs would be simultaneously feasible. In addition to an

initial sale to allocate FTRs for the existing grid, this same format accommodates

offers to sell existing FTRs. By this means, regular auctions of this form also

provide opportunities to reconfigure the pattern of FTRs.

It is obvious that the PTP-FTR auction problem in (1.14) is essentially of the

same form as the security-constrained economic dispatch problem in (1.6) or the

market equilibrium problem in (1.8), with the addition of a set of simple linear

constraints on the net loads as dictated by the bids. Furthermore, the addition of the

linear constraints on the awards could be included in the master problem of the

relaxation solution procedure described above, allowing for a direct adaptation of

familiar optimal dispatch software to solve the auction problem. This is the essence

of the AC-formulation of the PTP-FTR obligation auction conducted by the New

York Independent System Operator (NYISO), where the computational feasibility

of the solution procedure has been verified in practice.32

In the case of a dispatch that prices losses and includes losses in the PTP-FTRs,

the consistent model anticipates that market participants will take on the forward

commitment to meet the financial requirements for losses. Various approximations

might be considered where this is a requirement is modified.33 In the early

implementations, the focus of PTP-FTRs was on congestion costs.

1.4.1.3 PTP-FTR for Congestion

The initial PJM implementation employed a DC-Load dispatch model similar to

(1.12).34 The dispatch and the resulting market prices do not explicitly treat

marginal losses. Hence, the prices differ across locations only due to the effects

of congestion. The PTP-FTRs are defined for payments on congestion cost, and in

this case are the full hedge for the difference in locational prices. Under this system,

the payments for losses are treated as part of an uplift charge, and not covered by the

FTRs. Since the congestion costs define the only locational price differences

32 For results of New York auctions, see: http://www.nyiso.com/markets/tcc_auctions/

2001_2002_winter.html.
33 For a further discussion see Harvey and Hogan (2002).
34 In PJM, financial transmission rights are called fixed transmission rights (FTR).

http://www.pjm.com/energy/ftr/ftrauc.html.
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charged or hedged, revenue adequacy follows from the simultaneous feasibility

condition for the PTP-FTRs.

The implementation in New York differs in its treatment of losses. Losses are

included in the dispatch model and the associated market prices. However, the PTP-

FTRs are defined as balanced rights only and provide for payment of congestion

costs but not the cost of losses. The auction for FTRs uses an AC formulation as in

(1.14). Market participants obtain balanced FTRs and the NYISO includes

provisions for losses in the auction, in order to obtain a feasible solution in the

auction. However, the NYISO does not assume financial responsibility for loss

hedges. In New York, the FTRs provide a hedge only for congestion costs.35 This

New York type implementation leads to a different version of the revenue adequacy

condition.

Let the allocation of balanced FTRs in the auction be τ f ¼P
k

t fkτ
f
k . Choose

an arbitrary unbalanced vector of loss contributions �g f such that τ f ; �g f
� �

is

simultaneously feasible. Let there be a market equilibrium p; y�; u�ð Þ from

the actual dispatch. The prices decompose into the price of generation ( pG ¼ λ),
the marginal contribution to losses (ptL ¼ λrLy y�; u�ð Þ), and the cost of congestion

ðptC ¼ ηtrKy y�; u�ð Þ). By the simultaneous feasibility of the PTP-FTRs, we have

pty� � pt τ f � �g f
� � ¼ ptCτ

f þ pGι
t þ ptL

� �
τ f � pt �g f :

Define the loss rentals on the FTRs as the difference between the payment for

losses at the marginal cost and the average cost of the losses. Hence,

πL � ptLτ
f � pt �g f ¼ pGι

t þ ptL
� �

τ f � pt �g f :

If we have these loss rentals as non-negative, πL � 0, then the simultaneous

feasibility test coupled with this condition is enough to ensure that the total net

payments from the dispatch are at least as large as the congestion payments under

the PTP-FTRs, as in:

pty� � ptCτ
f : (1.15)

Since �g f is arbitrary but feasible, we could have chosen �g f to maximize the loss

rentals for the FTRs given the prices for this hour. In other words, if we have

sufficiently inexpensive locations at which to deem the unbalanced FTR loss

contribution, the loss rentals would be non-negative and along with the

35 In New York, financial transmission rights are called Transmission Congestion Contracts

(TCC).
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simultaneous feasibility condition would be sufficient to ensure revenue adequacy

in the sense of (1.15) for congestion hedges only.36

In the case of New York, the loss prices and loss rentals may be small, and the

typical situation would be that losses would be costly with the maximum loss

rentals implied for the FTRs being positive. Under typical conditions, therefore,

simultaneous feasibility would guarantee revenue adequacy for the congestion

payments under the FTRs.

1.4.2 PTP Options

A PTP-FTR obligation is a financial contract for the payment of the locational price

difference. When matched with a corresponding delivery of power, the charge for

transmission usage just balances the FTR payment, and there is a perfect hedge.

This is true whether or not the price difference is positive or negative. If the price

difference is negative, the schedule provides valuable counterflow for which the

provider is paid, and the payment from the spot market dispatch just balances

the obligation under the FTR. There is a perfect match either way.

A natural complement to the PTP-FTR obligation would be a PTP-FTR option

that did not require payment when the price difference was negative. Hence for the

balanced PTP-FTR option τok the payment would be max 0; ptτok
� �

. This financial

contract might be more attractive as a tool for hedging purposes, and it is typically

the first suggestion frommarket participants because of the perception that there is a

closer analogy to the presumed option not to schedule under a physical right. The

option might also be more valuable for speculators who want to trade rights but

don’t plan to match the FTR with a schedule.

Unlike obligations, PTP-FTRs are not decomposable in the sense of to and from

a hub. The difficulty is inherent in the option. For example, an FTR option from

bus 1 to bus 2 cannot be decomposed into two PTP-FTR options from 1 to a

Hub and the Hub to 2. The total payment under the two options would be max

0; p2 � pHUBð Þ þmax 0; pHUB � p1ð Þ 6¼ max 0; p2 � p1ð Þ. Hence, reconfiguration of

options would require coordination in a formal auction.

Whatever the merits of the PTP-FTR option, it presents complications that do

not arise in the case of obligations. The difficulty flows from the simple fact that the

dispatch formulation (1.6) does not include options; in the real dispatch everything

is an obligation. Hence the auction model for options does not follow directly from

the formulation for economic dispatch. Further, the associated settlement rules for

options do not follow immediately from the analysis for obligations.

36 It is a conjecture, but not proven, that this “optimized” FTR-loss rental is always non-negative,

and that simultaneous feasibility alone is sufficient for revenue adequacy in this congestion-only

case.
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The analytical problem for options is similar to the problem for physical rights.

Without knowing all the other flows on the system, it is not possible in general to

know if any particular transaction will be feasible. Hence, to guarantee feasibility it

is necessary to consider all possible combinations of the exercise of options. For

example, if too few of the other options are exercised, there may be insufficient

counterflow to support a particular transaction; or if all the options are exercised,

some other constraint might be limiting. This ambiguity does not arise with

obligations, which by definition are always exercised.

1.4.2.1 Revenue Adequacy for Options

As with PTP-FTR obligations, simultaneous feasibility of the exercised options is a

necessary condition to guarantee revenue adequacy.37 To demonstrate that simulta-

neous feasibility is also sufficient requires an expansion of the definition and test for

simultaneous feasibility. Once we know which options are exercised, we can treat

them like obligations for settlement purposes, so if the exercised rights are simulta-

neously feasible, we will have revenue adequacy. But the test of feasibility of all

possible combinations of exercise of options requires an expansion of the model.

Here we consider only the possibility of balanced PTP-FTR options, combined

with both balanced and unbalanced forward obligations. As above, we have a set

of balanced (τ f
k; k ¼ 1; . . . ;N) and unbalanced ( �g f

k; k ¼ 1; . . . ;N ) PTP-FTR

obligations for any possible locations. In addition, define the balanced options as

(τ0k ; k ¼ 1; . . . ;N). Let xk be the fraction of each option exercised. Since different

exercise patterns produce different losses, we need some flexibility in the total loss

provision. As with contingency constraints, we impose this balancing adjustment at

the swing bus. For the moment, assume the unbalanced obligations are large enough

to ensure that this adjustment is non-negative. Then for feasibility we require by

analogy to (1.13) that there is a u 2 U and a scalar balancing adjustment at the

swing bus with ε0s � 0 such that:

y ¼
X
k

τ f
k þ

X
k

xkτ
o
k �

X
k

�g f
k þ

1

0

� 
ε0s ;

L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0:

Since this must be true for an arbitrary exercise of options and applies to all

constraints collectively, it must be true for each contingency and constraint

37 The FTRs may be revenue adequate under some dispatch cases without simultaneous feasibility,

but not under all dispatch cases. For instance, if the FTRs follow the same pattern as the dispatch,

but imply even more of the valuable flows than is feasible, the FTRs would not be revenue

adequate.
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combination. A formulation that allowed for a different u 2 U for each exercise of

the options would be the weakest condition. A somewhat simpler test that provides

a sufficient condition for simultaneous feasibility is to require that any exercise of

the options be feasible for the same u 2 U.38

Consider first the constraints in K y; uð Þ. The constraints do not depend on the

value of y at the swing bus that is merely a balancing adjustment. Hence, the

constraints would be satisfied if there is a u 2 U such that

Max
y¼
P
k

τ
f
k
þ
P
k

xk τ
o
k
�
P
k

�g
f
k
;

0�xk�1

Max
i;ω

Kω
i y; uð Þ ¼ Max

i;ω
Max

y¼
P
k

τ
f
k
þ
P
k

xk τ
o
k
�
P
k

�g
f
k
;

0�xk�1

Kω
i y; uð Þ � 0:

(1.16)

Recall from (1.5) that there is a loss function for each contingency, and many

constraints. Here we represent these loss functions and constraints explicitly to

make clear the nature of the constraints induced by the options. Hence, define a new

function wω
i , meaning constraint i in contingency ω:

wω
i τ f ; tok


 �
; �g f ; u

� � ¼ Max
Es;y

0�xk�1

Kω
i y; uð Þ

s:t:

y ¼ τ f þ
X
k

xkt
o
kτ

o
k � �g f þ 1

0

� 
εs;

Lω y; uð Þ þ ιty ¼ 0: (1.17)

The notation tok

 �

refers to the vector of award levels of the options. Here εs is the
load adjustment at the swing bus to achieve balanced loads in the contingency. This

notation allows and anticipates a different solution y for every constraint and

contingency combination. Apparently the condition that the constraint Kω
i is

satisfied for all possible exercise of options is equivalent to:

wω
i τ f ; tok


 �
; �g f ; u

� � � 0:

Thiswω
i is an optimal-value function, the result itself of an optimization problem

(Shimuzu et al. 1997). However, it is a well-defined function that would allow

restatement of the auction problem in terms of the variables defining the auction

awards.

For the contingency we define:

38 These two definitions would be the same if there is a saddle point for the function f y; uð Þ ¼ Max
i;ω

Kω
i y; uð Þ:However, the usual convexity arguments would not apply to guarantee a saddle point as it

seems unlikely that f would be concave in y, Ponstein (1965), pp. 181–188. In any event, the

former computational problem appears more difficult.
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wω τ f ; tok

 �

; �g f ; u
� � �

wω
1 τ f ; tok


 �
; �g f ; u

� �
wω
2 τ f ; tok


 �
; �g f ; u

� �
..
.

wω
n τ f ; tok


 �
; �g f ; u

� �

0
BBBBB@

1
CCCCCA:

Hence, the sufficient condition in (1.16) for simultaneous feasibility of PTP-

FTRs with options requires:

w τ f ; tok

 �

; �g f ; u
� � �

w0 τ f ; tok

 �

; �g f ; u
� �

w1 τ f ; tok

 �

; �g f ; u
� �

..

.

wω τ f ; tok

 �

; �g f ; u
� �

..

.

wm τ f ; tok

 �

; �g f ; u
� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

� 0:

Finally, to treat losses and ensure that ε0s � 0 , define the worst case for the

contribution of losses and the unbalanced obligations:

L0O τ f ; tok

 �

; �g f ; u
� � ¼ Max

y

0�xk�1

L0 y; uð Þ

s:t:

y ¼ τ f þ
X
k

xkt
o
kτ

o
k � �g f ;

L0 y; uð Þ þ ιty ¼ 0:

If we have enough loss obligations to meet this maximized exercise of FTR

losses, then we have enough total forward unbalanced obligations to meet or exceed

the exercised FTR losses and ensure that we meet the assumption above that ε0s � 0.

Therefore, we set the simultaneous feasibility condition with PTP-FTR obligations

and options as:

L0O τ f ; tok

 �

; �g f ; u
� �� ιt�g f ¼ 0;

w τ f ; tok

 �

; �g f ; u
� � � 0;

u 2 U:

Consider a market equilibrium p; y�; u�ð Þ. Let τo� be the corresponding aggregate
of exercised options from the simultaneously feasible combination, τ f ; tok


 �
; �g f ; u

� �
:
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In other words, τo
�
is the aggregate of all the options with ptτ o

k � 0. Then let ε�s be the
difference in the net load at the swing bus required to achieve balance of the FTR in

the pre-contingency case ω ¼ 0, i.e.,

y ¼ τ f þ τo
� � �g f þ 1

0

� 
ε�s ;

L0 y; uð Þ þ ιty ¼ 0:

By construction it must be that ε�s � 0. Further, let

�g f� ¼ �g f � 1

0

� 
ε�s :

Then since �g f� differs from �g f only for the swing bus, which is allowed to adjust

freely for each contingency in the definition of w, we have a u 2 U with

w τ f ; tok

 �

; �g f�; u
� � � 0:

Therefore, the exercise of the options must be feasible. Hence, we have a

balanced load that satisfies every constraint, or

y ¼ τ f þ τo� � �g f�;
L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0;

u 2 U:

Following (1.9) we must have:

pt y� � yð Þ � 0:

The payments under the PTP-FTRs equal pt τ f þ τo� � �g f
� � ¼ pty� psε�s . By

construction, ε�s � 0. Hence, if the swing bus price ps � 0, the net revenue from the

dispatch will be adequate to pay out the obligations and exercise of options for

the PTP-FTRs. Typically,ε�s should be small so that even with a negative price at the

swing bus, any revenue inadequacy would be bounded by the small value of the

difference in losses.

1.4.2.2 PTP-FTR Auction with Options

With this background, the natural extension of the auction for PTP-FTRs in (1.14)

becomes:
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� �
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t fkτ
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;
X
k
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k
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w
X
k
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f
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;
X
k
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k�g

f
k; u

 !
� 0:

(1.18)

This is a well-defined model and the objective function is well-behaved.39 The

major change from the AC auction model with obligations only is that the conven-

tional constraint functions K have been replaced with the more complicated con-

straint functions w. Evaluating any element of the function K requires solving an

AC load flow problem, one for each contingency. Evaluating any element of

w requires solution of an AC optimal power flow problem, one for each contingency

and constraint combination. This is a significant increase in computational burden.

In a relaxation and sequential approximation approach for solving the AC

auction model with obligations only, the corresponding model from (1.14) is:

Max
y;u2U;0�t f

k
;0�ρ f

k

X
k

βk t fk; ρ
f
k

� �
s:t:

y ¼
X
k

t fkτ
f
k �

X
k

ρ f
k�g

f
k;

L y; uð Þ þ ιty ¼ 0;

K y; uð Þ � 0:

A computational approach to this problem would exploit the close similarity

with security-constrained optimal dispatch problem. The sequential approximation

approach begins with a simplified version of the problem that ignores many of the

constraints and is solved via a sequential linearization. Then a candidate solution

ŷ; ûð Þ ¼ t̂ f � �̂g f ; û
� �

is tested for feasibility by solving a load flow to evaluate Kω
i

ŷ; ûð Þ. If the constraint is violated, determine the gradient of the function and impose

the new constraint:

Kω
i ŷ; ûð Þ þ rKω

i ŷ; ûð Þt y� ŷ
u� û

� 
� 0:

39 This is a parametric satisfaction problem in the terminology of Shimuzu et al. (1997), p. 285.
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This linearized constraint would be appended to the auction model, and there

would be further iteration until a solution is found that optimizes the bid function

and satisfies all the constraints. Typically we are limited to search algorithms that

find solutions to the first-order Karush-Kuhn-Tucker (KKT) conditions and, there-

fore, to a guarantee only of local optimal solutions.

Applying this same idea to the AC auction with options would require a method

for (1) evaluating w and (2) finding a linear approximation whenever the constraint

is violated.

Consider first the question of evaluating a constraint. For each contingency

constraint, a good guess as to the solution of the unconstrained optimal power

flow in (1.17) would be to use the DC-Load approximation above to determine the

value for x, the pattern of the exercise of the option. For each option, ifHω
i τ

o
k > 0 set

the corresponding kth element x to 1, otherwise set the element to zero. Let the

result be the vector ~xωi that achieves this value for the ith constraint in contingencyω.
This is the same solution for x that would be obtained in the DC-Load case.

Then compute rKω
i ~xω

i
t̂ f þP

k

~xωikt
o
kτ

o
k � �̂g f ; û

� 
, the change in the constraint as

we change the exercise of the options. If the solution satisfies the condition that the

elements of this gradient vector have positive signs when and only when the

corresponding elements of ~xωi are at the upper bound, then we can show that ~xωi
satisfies the first-order conditions for achieving the maximum for the optimal value

function. If so, then we would expect that this is the optimal solution forwω
i , at least

for a well-behaved network. If the first order condition is satisfied at a local

optimum that is not a global optimum, then an ordinary local search algorithm

may not be able to find a global solution.

In practice, we accept approximate solutions of the first-order conditions as

optimal solutions. If the problem is well-behaved, then the simple solution based

on the DC-Load model should define the worst-case exercise of options for each

constraint without the necessity to conduct a further search. (Note that this is not the

same thing as saying that the DC-Load estimate of K is acceptable. We use the DC-

Load guess for the solution x, but use a full AC load flow to evaluate the constraint).

If the first order condition is not satisfied, then this should be a good starting

point for a search to find an acceptable solution to maximize Kω
i y; uð Þ. This case

would require iterative solution of an optimal power flow problem for the applica-

ble contingency. This is easier than finding the full security-constrained solution for

the auction model.

In any event, let the end result of evaluating the optimal value functionwω
i be x̂

ω
i ,

with corresponding solution ŷ; ûð Þ where wω
i

P
k

t̂k
f τ f

k; t̂ ok

 �

;
P
k

ρ̂ f
k�gk

f ; û

� 
¼ Kω

i

ŷ; ûð Þ. This gives us an evaluation of the constraint. If the value is greater than zero,
the constraint is violated.

Recognize that there will be different value of x̂ωi , the implied exercise of the

options, for each constraint i and contingency ω. This is not an obstacle in principle

because in using the optimal-value function we are interested only in the value of the
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violated constraint and its linear approximation relative to the option awards, not to

the exercised awards. Hence we need only use the exercised awards temporarily, at

each constraint, to evaluate the function and calculate the linear approximation.40

In the case of a violated constraint, the optimal-value function is not in general

differentiable or even convex. However, it does have a generalized gradient @ow
that serves a similar purpose (Clarke 1990).41 In the present application the

generalized gradient of the optimal value function wω
i has a simple form that limits

the domain where it is nondifferentiable to those points where some of the elements

of the options awards are zero. These are important points, since not all options will

have positive awards. Hence, the lack of a regular gradient is relevant.

The following vector will always be an element of the generalized gradient:

ϕω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �t �
ryK

ω
i ŷ; ûð Þt

Max 0;ryK
ω
i ŷ; ûð Þτok

� �
 �t
�ryK

ω
i ŷ; ûð Þt

ruK
ω
i ŷ; ûð Þt

2
664

3
775
t

2 @owω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �
:

(1.19)

To see this, note that the special nature of the problem in (1.17), where the swing

bus net load is determined freely to meet the condition, could be restated as:

wω
i τf ; tok


 �
; �g f ; u

� � ¼Max
εs;y

0�xk�1

~Kω
i ~y; uð Þ

s:t:

ys

~y

� 
¼ τ f þ

X
k

xkt
o
kτ

o
k � �g f þ 1

0

� 
εs:

40 Note: in the early stages of the computation, we might accept both the DC-Load solution and the

associated DC-Load shift factors as the estimates of the linearized constraint. However, when

close to the solution, the assumption that the DC-Load model is inadequate means that we need an

exact evaluation of both the function and the linearized representation of any violated constraint.
41 Here we follow the applications Shimuzu et al. (1997), p. 28. A generalized gradient of a

function f(x) at the point �x is defined as @of �xð Þ in terms of the generalized directional derivative as

the set of vectors

@of �xð Þ ¼ γ 2 Rnj f o �x : sð Þ � γts;8s 2 Rnf g;
where

f o �x : sð Þ ¼ lim sup
x!�x

τ#0

f xþ τsð Þ � f ðxÞ
τ

:
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In other words, ys does not enter the objective function and the resulting

gradients depend only on the objective function derivatives. At most points, w is

differentiable. But at points where it is not differentiable, the generalized gradient

exists and equals the convex hull of the limit points of the gradients, including

(1.19), (Shimuzu et al. 1997).

When the option award is zero, any element in the interval Max½
0;ryK

ω
i ŷ; ûð Þτok

� �
;þ1Þ would also give rise to a generalized gradient. Thus the

vector ϕω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �
is an extreme point of the generalized gradient. It should

give an adequate linear representation of the constraint function in the range of

interest over the non-negative allocations.

For a violated constraint, therefore, the idea is to introduce the linearized

constraint:

wω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �þ φω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �
P
k

t fkτ
f
k � t̂ f

tok

 �� t̂ok


 �P
k

ρ f
k �g

f
k � �̂g f

u� û

0
BBBBB@

1
CCCCCA � 0:

This would then serve as a constraint in the sequential approximation of the

nonlinear AC auction problem in the corresponding way that the constraint would

enter in the case of obligations only. For the linear approximation, the usual first

order KKT conditions would generalize to finding zero as an element of the

generalized gradient.

As a technical point, this application would depend on a slightly stronger set of

assumptions to guarantee that w is Lipschitz near the solution. These conditions

would apply for a slightly modified version of the problem where for a sufficiently

large value of the penalty M we redefine the value function as:

wω
i τ f ; tok


 �
; �g f ; u

� � ¼ Max
εs;y;0�xk ;0�mk ;

xk�mk�1

Kω
i y; uð Þ �M

X
k

mk

s:t:

y ¼ τ f þ
X
k

xkt
o
kτ

o
k � �g f þ 1

0

� 
εs;

Lω y; uð Þ þ ιty ¼ 0:

This allows the function to be finite for all τ f ; tok

 �

; �g f ; u
� �

and locally Lipschitz

everywhere (Shimuzu et al. 1997). The generalized gradient at a non-differentiable

point would be bounded by M, but the same lower extreme point should define the

appropriate local linearization to use in the large optimization problem. The

sequential linear approximations would use these function evaluations and
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selections from the generalized gradient to search for the optimal solution that

satisfied the generalized Karush-Kuhn-Tucker conditions for the master problem.

Relaxation Solution Procedure with PTP-FTR Options

Step 1: Select an initial candidate solution τ̂ f ; t̂ ok

 �

; �̂g f ; û
� �0

, ignore most (or all)

of the constraints in the economic dispatch using only the small subset

wω
i τ̂ f ; τ̂ o

k


 �
; �̂g f ; û

� �0
, and set the iteration count to m ¼ 0.

Step 2: Construct the relaxed master problem as:
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� �m þ ϕω
i τ̂ f ; t̂ ok
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; �̂g f ; û

� �mt
P
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t fkτ
f
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m

t ok

 �� t̂ ok


 �m
P
k
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u� ûm

0
BBBBBB@

1
CCCCCCA

� 0:

Let a solution be τ̂ f ; t̂ ok

 �

; �̂g f ; û
� �mþ1

and update m ¼ m þ 1.

Step 3: Check to see if the candidate solution τ̂ f ; t̂ ok

 �

; �̂g f ; û
� �m

violates any of

the constraints. If so, create a newwω
i τ̂ f ; t̂ ok


 �
; �̂g f ; û

� �m
including some or

all of these constraints and repeat Step 2. Else done.

Success with this proposed relaxation procedure for solving the auction problem

with PTP-FTR options depends on the expectation that relatively few of the (very)

many contingency constraints will be binding. This is a well-established condition

in the dispatch model and the associated PTP-FTR obligation-only auction model

that is of the same form as the dispatch. By contrast, if the introduction of options

produces many more bids and many more binding constraints, then the scale of the

problem may overwhelm current computational capabilities.

A concern with the potential number of binding constraints applies as well to the

case of a DC-Load model for PTP-FTR obligations and options. However, the DC-

Load formulation would have the computational advantage that evaluation of the

constraints and the associated generalized gradient would be a relatively simple

calculation that reduces to calculating the associated shift factors in H u0ð Þ and

evaluating the positive elements to construct the generalized gradient. In the DC-

Load formulation ignoring losses, we would have:
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Combining all the constraints and contingencies, we have

wDC τ f ; tok

 �

; u
� � � 0:

The corresponding auction model with bids for balanced forward-obligations by

(tfk; τ
f
k) and balanced forward-option by (tok ; τ

o
k) would be

Max
u2U;t f

k
�0;to
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�0

X
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βk t fk; t
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� �
s:t:

w
DC
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k; tok
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 !
� 0:

(1.20)

Even in the DC-Load case, therefore, this computation is not trivial. For

obligations we need to evaluate only the load flow for each contingency given τf ,
the aggregate of the obligations. Following the discussion of (1.10), this amounts to

solving a system of linear equations for each contingency but evaluates all

constraints in that contingency at once. But in order to evaluate the constraint in

(1.20), we need to calculate the shift factors for every constraint in the contingency,

each of which involves a similar system of linear equations. In other words, in the

relaxation algorithm the need to calculate shift factors expands from the violated

constraints only to every constraint when options are included.

Although this does require more computation, the evaluation of the constraints is

separable and efficient means should be available to do the many evaluations, at

least in the DC-Load case. Furthermore, not every constraint needs to be included in

the relaxed master problem. As long as the number of binding constraints is small,

meaning hundreds and not hundreds of thousands, this auction model might accom-

modate PTP-FTR options and obligations and be computationally feasible.

By construction of the constraints, exercise of the options along with the

obligations would be simultaneously feasible under the condition that the system

operator could select the set of controls needed to satisfy the constraints for the

obligations and exercised options. Hence, the revenue collected in the final spot

market dispatch would always be sufficient to pay the amounts required by the

various PTP-FTR contracts.
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1.5 Conclusion

So-called physical transmission rights present so many complications for a

restructured electricity market that some other approach is required to provide

property rights for the grid. Under a standard market design built on a bid-based,

security-constrained, economic dispatch with locational prices, the natural

approach is to define financial transmission rights that offer payments based on

prices in the actual dispatch. Different models have been proposed for point-to-

point, including obligations and options. With consistent definitions, the rights can

be shown to be simultaneously feasible and revenue adequate in various AC

formulations or approximations. The conditions for simultaneous feasibility also

define the form of auctions that would award or reconfigure the rights. In the case of

point-to-point obligations, the practical feasibility of the approach has been

demonstrated with adaptations of commercial dispatch software. In the case of

point-to-point options, the computational strategies are more demanding but have

been implemented in a limited way.

Appendix: Generic Transmission Line Representation

The generic transmission line analysis employs complex variables. To avoid

confusion here, the indexes for the two terminals of the line are k and m. For a
development of the model transmission line and transformer model, see Grainger

and Stevenson (1994). By choice of parameters, this generic transmission line

representation allows for a Π -equivalent representation of a line with no trans-

former, an ideal transformer, or a combination of both.

Here we follow Weber (1997)’s notation and conventions. This is useful in that

Weber also provides an extensive detail on the characterization of the Jacobian of

the power flow equations to provide further insight into the implications of the AC

power flow model, including calculation of the derivatives with respect to the

transformer parameters. As shown in Fig. 1.2 let Vk represent the complex voltage

with magnitude Vkj j and angle θk. The data include the line resistance (r), reactance
(x). The transformer includes turns ratio (tkm) and angle change (αkm ). The line

charging capacitance is the complex Ycap.

Vk Vm

Ik Im

1:tkme
ja

km

2

Ycap

2

Ycap

r x
Fig. 1.2 Transmission line

and transformer
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The line admittance (y) is the inverse of the line impedance (z) formed from the

resistance and reactance.

y ¼ 1

z
¼ 1

r þ jx
¼ 1

r þ jx

r þ jxð Þ�
r þ jxð Þ� ¼

1

r þ jx

r � jx

r � jx
¼ r � jx

r2 þ x2
¼ gþ jb:

With P as the real power and Q as the reactive power, the general rules for

complex power (S) have:

S ¼ Pþ jQ ¼ VI� ¼ zII� ¼ z Ij j2 ¼ P� jQð Þ� ¼ V�Ið Þ�:

The line capacitance is represented here as:

Ycap
2

¼ 0þ jBcap:

Following Weber, for the generic representation in Fig. 1.2, complex current (Ik)
from k towards m satisfies:

Ik ¼ Vk yþ Ycap
2

� 
� Vm

e�jαkm

tkm
y:

Therefore, the complex power flow from k to m is:

Sk¼VkI
�
k¼VkV

�
k yþYcap

2

� �
�VkV

�
m

ejαkm

tkm
y�

¼ Vkj j2 yþYcap
2

� �
� Vkj j Vmj jej θk�θmþαkmð Þ

tkm
y�;

¼ Vkj j2 g�j bþBcap

� �� �� Vkj j Vmj j
tkm

cos θk�θmþαkmð Þþjsin θk�θmþαkmð Þð Þ g�jbð Þ;

¼ Vkj j2g� Vkj j Vmj j
tkm

gcos θk�θmþαkmð Þþbsin θk�θmþαkmð Þð Þ

þj � Vkj j Vmj j
tkm

gsin θk�θmþαkmð Þ�bcos θk�θmþαkmð Þ � Vkj j2 bþBcap

� ��
:

���

The complex current (Im) from m towards k is

Im ¼ �Vk
ejαkm

tkm
yþ Vm

1

t2km
yþ Ycap

2

� 
:
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Hence,

Sm¼�VmV
�
k

e�jαkm

tkm
y�þVmV

�
m

1

t2km
yþYcap

2

� �
;

¼� Vmj j Vkj jej θm�θk�αkmð Þ

tkm
g�jbð Þþ Vmj j2 g

t2km
�j

b

t2km
þBcap

� � 
;

¼ Vmj j2 g

t2km
� Vmj j Vkj j

tkm
gcos θm�θk�αkmð Þþbsin θm�θk�αkmð Þð Þ

þj � Vmj j Vkj j
tkm

gsin θm�θk�αkmð Þ�bcos θm�θk�αkmð Þð Þ� Vmj j2 b

t2km
þBcap

� � 
:

If the system is normal and the angle change is fixed, then the angle change can

be included in the line admittance. Similarly for normal systems, if the transformer

tap setting is fixed, the turns ratio can be included in the per unit normalization of

the voltages, which would produce appropriately modified values of y but with the

elimination of the separate transformer parameters (t, α ).42 Ignoring the line

capacitance, this simplified representation would be

Sk ¼ Vkj j2ĝ� Vkj j Vmj j ĝ cos θk � θmð Þ þ b̂ sin θk � θmð Þ� �
þ j � Vkj j Vmj j ĝ sin θk � θmð Þ � b̂ cos θk � θmð Þ� �� Vkj j2b̂
� �

:

and

Sm ¼ Vmj j2ĝ� Vmj j Vkj j ĝ cos θm � θkð Þ þ b̂ sin θm � θkð Þ� �
þ j � Vmj j Vkj j ĝ sin θm � θkð Þ � b̂ cos θm � θkð Þ� �� Vmj j2b̂
� �

:

This is a familiar simplification often seen in the electrical engineering literature.

However, if the system is not normal, tap ratios are variable, or phase angle

adjustments are variable, it will be necessary to use the more general representation

as shown above.

The notation translation to the discussion in the main text has:

Gk ¼ g; Ωk ¼ �b; δi ¼ θk; Zij ¼ Sk; αk ¼ αkm; tk ¼ tkm:

42 Normal is a term of art, not necessarily intended to mean “usual.” A system is normal if for each

parallel path the product of ideal transformer gain magnitudes is equal and the sum of ideal

transformer phase shifts is the same. See Bergen and Vittal (2000), pp. 154–175.
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