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Preface

This book is an outgrowth of the 2nd Workshop on Eye Gaze in Intelligent Human
Machine Interaction at the 16th International Conference on Intelligent User Inter-
faces (IUI 2011), which was held at Palo Alto, California, USA on February 13,
2011. The first eye-gaze workshop was held at IUI 2010 in Hong Kong, and was
organized by Dr. Elisabeth André and Dr. Joyce Y. Chai. Following the first work-
shop, this workshop has continued to explore this important topic and covers a wider
range of topics, including eye-tracking technologies, analyses of human eye-gaze
behaviors, multimodal interpretation, gaze-based interactive IUIs, and presenting
gaze behaviors in humanoid interfaces. Moreover, the workshop aimed at creating
a network of researchers with different backgrounds, such as human sensing, intel-
ligent user interface, multimodal processing, and communication science, who are
interested in exploring how attentional information can be applied to novel intelli-
gent user interfaces.

The research areas and questions targeted in the workshop are as follows:

• Technologies for sensing human attentional behaviors in IUI
• Interpreting attentional behaviors as communicative signals in IUI
• Gaze model for generating eye-gaze behaviors by conversational humanoids
• Analysis of human attentional behaviors
• Evaluation of gaze-based IUI

From the workshop presentation, we carefully selected papers that significantly
contribute to the theme of this book and asked the authors to extend their origi-
nal work presented at the workshop. In addition, we have invited two papers so as
to cover a wider range of topics for attention-aware interfaces: Chap. 5 by Marc-
Antoine Nussli, Patrick Jermann, Mirweis Sangin, and Pierre Dillenbourg, and
Chap. 10 by Jens Edlund, Samer Al Moubayed, and Jonas Beskow.

The collected papers are organized into three sections:

Part I: Gaze in Human Communication
Part II: Gaze-Based Cognitive and Communicative Status Estimation
Part III: Gaze Awareness in HCI
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Part I focuses on analyzing human eye gaze behaviors to reveal the characteris-
tics of human communication and cognition. Part II addresses the estimation and
prediction of the cognitive state of the users using gaze information. Finally, Part III
presents novel gaze-aware interfaces that integrate eye-trackers as a system com-
ponent. This part provides information on the direction of future human-computer
interaction and discusses issues to be addressed in designing gaze-aware interactive
interfaces.

We would like to thank the program committee members of the IUI 2011
workshop: Elisabeth André (University of Augsburg, Germany), Nikolaus Bee
(University of Augsburg, Germany), Justine Cassell (Carnegie Mellon University,
USA), Joyce Chai (Michigan State University, USA), Andrew Duchowski (Clem-
son University, USA), Jürgen Geisler (Fraunhofer IOSB, Germany), Patrick Jer-
mann (Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland), Yoshinori
Kuno (Saitama University, Japan), Kasia Muldner (Arizona State University, USA),
Toyoaki Nishida (Kyoto University, Japan), Catherine Pelachaud (TELECOM Paris
Tech, France), Christopher Peters (Coventry University, UK), Shaolin Qu (Michi-
gan State University, USA), Matthias Rötting (University of Berlin, Germany), and
Candy Sidner (Worcester Polytechnic Institute, USA). These individuals donated
their precious time and effort in reviewing the papers presented herein.

We also would like to thank SMI SensoMotoric Instruments GmbH for support-
ing the workshop and Springer London for their support and cooperation in publish-
ing this collection.

Yukiko I. Nakano
Cristina Conati
Thomas Bader

Tokyo, Japan
Vancouver, BC, Canada
Darmstadt, Germany
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Chapter 1
Introduction

Yukiko I. Nakano

Abstract This chapter first discusses various areas of eye gaze research in order to
show that gaze information plays an important role in various human cognitive ac-
tivities. Based on the discussion, a three-step approach towards effective and natural
gaze-aware human-computer interaction is proposed, which involves the analysis
of human attentional behaviors, establishing computational models for interpreting
eye gaze information, and building gaze-aware user interfaces. Finally, an overview
of each chapter is provided to discuss how each of them contributes to one of these
aspects.

1.1 Eye Gaze in Various Human Activities

Humans are looking at some sort of objects in order to obtain visual information,
which is used to recognize objects and events to comprehend their situation. On
the other hand, by observing the attentional behaviors of another person, we can
estimate the object of concentration and interest of the person. Moreover, we may
infer her/his internal cognitive state based on their eye gaze. Suppose that a person
is operating a machine and the next step is pushing button A. If the person is looking
at button B, we may infer that the person will push the wrong button and so provide
a warning “No, that’s not it!”

Even though eye gaze is simple and subtle compared to gesture and speech, eye
gaze provides rich information on human activities. Intriguingly, in many different
languages, there are similar phrases suggesting the eloquence of eye gaze: “One can
say more with a look than with ten thousand words,” and “The eyes are the windows
to the soul.”

In face-to-face communication, conversational participants observe each other’s
eye gaze, and this serves as a nonverbal communication signal (Kendon 1967). If
the listener is looking at the speaker, this is a sign that the listener is engaged in the
conversation. If the speaker looks at the listener and the listener also looks at the

Y.I. Nakano (B)
Department of Computer and Information Science, Seikei University, Tokyo, Japan
e-mail: y.nakano@st.seikei.ac.jp

Y.I. Nakano et al. (eds.), Eye Gaze in Intelligent User Interfaces,
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2 Y.I. Nakano

speaker, they establish mutual gaze or eye contact, which contributes to maintain-
ing the communication (Clark 1996). If the conversational participants talk about a
shared object, then joint attention is indispensable to the process of identifying and
using the referent as shared knowledge (Whittaker 2003). Eye gaze also plays an
important role in floor management (Duncan 1974). When releasing a turn, the cur-
rent speaker looks at the next speaker at the end of the turn. Then, the next speaker
averts his/her gaze at the beginning of his/her turn and starts speaking. Therefore,
gaze information is key in understanding face-to-face communication.

Not only in communication, but also in working on a task, we can see how well
the person is performing the task by observing his/her attentional behaviors. More-
over, we can also infer the person’s cognitive states by analyzing gaze. One of the
most typical examples is reading activity. The gaze target indicates which word in
a line the user is reading, and we can monitor the reading activity even if the user
does not read aloud. In the object manipulation task, gaze information indicates on
which object the user is concentrating, and this information is more precise and reli-
able than think-aloud reporting (Ericsson and Simon 1993). Even in a collaborative
group work by multiple users, gaze information enables to estimate what is shared
between the users (Brennan et al. 2008). Thus, gaze provides valuable information
to understand task performing activities and to infer the cognitive states that are not
expressed verbally.

1.2 Approach Towards Gaze-Aware Human-Computer
Interaction

As discussed above, gaze information is indispensable in order to get better under-
standing of various human activities. However, attentional behaviors are very subtle
compared to other expressions, such as gestures and speech, and are performed un-
consciously in most cases. Therefore, if a system can recognize and interpret such
delicate signals from the user, then the system can facilitate a completely new style
of human-computer interaction where the system senses the user’s cognitive states
and responds to the user without any explicit command from the user. Due to the
development of eye tracking technology, research on such gaze-aware user inter-
faces has just begun and has attracted a lot of attention from researchers in various
fields.

Research on gaze-aware user interfaces consists of at least the following three
phases, each of which has different issues that must be addressed.

(1) Analysis of human attentional behaviors
As the first step towards gaze-aware user interfaces, the characteristics of hu-

man eye gaze behavior need to be revealed. In communication studies, researchers
analyzed eye gaze by manually observing videos, now however eye trackers can
automatically measure gaze behaviors. Using an eye tracker, gaze data can be au-
tomatically collected to an accuracy of milliseconds with an error of less than one
degree. This enables far more precise analysis of gaze.
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Moreover, gaze is deeply related to other modalities, such as speech, gesture,
and object manipulation. There are many issues concerning multimodality, such
as how gaze and speech correlate in referent identification, how gesture is used in
coordination with gaze, and how gaze and object manipulations are correlated.

(2) Computational models for interpreting eye gaze information
In order to implement gaze-awareness functionality, computational models for

interpreting gaze information are necessary. A large amount of precise gaze data
measured within 10 to 30 ms are applied to statistical models and machine learn-
ing techniques. Probabilistic models are also useful in combining information from
other modalities. Note that the most important point is that the models and methods
should be established based on the analysis of human attentional behaviors, which
provide a reasonable basis for the models. After establishing a model, the accuracy
and effectiveness of the model need to be evaluated.

(3) Building gaze-aware user interfaces
At the final step, computational models are implemented and exploited in human-

computer interaction. There are several ways of exploiting gaze-awareness, such as
simply using as an input device, changing the system’s behaviors according to the
user’s interest and attitude estimated from gaze information, and interpreting the
user’s intention in multimodal understanding. These functionalities can be used in
various types of applications, such as multimodal input interfaces, educational sys-
tems, cooperative work environments, and human-robot communication. In devel-
oping such gaze-aware user interfaces, design and implementation issues, such as
misrecognition and missing data due to the failure of measurement and the usability
of calibration tools, must be considered.

1.3 Outline of the Book

Based on the above discussion, this book consists of three parts, each of which
addresses issues for each of the research phases discussed in the previous section.
The overviews of each chapter are introduced below.

Part I: Gaze in Human Communication
Part I presents research that focuses on analyzing human eye gaze behaviors in

order to reveal the characteristics of human communication and cognition.
Guo and Feng (Chap. 2) investigated how gaze information affects story book

reading between a parent and a pre-reading child. Children who received eye gaze
feedback from the parent learned more keywords in the book. They also investi-
gated whether informing the parents of children’s real-time visual attention helps
the parents regulate joint attention in shared book reading. They revealed that by
showing where the parent is looking and where the child is looking, the number of
occurrences of joint attention to print words increases, and in such environments,
children learned more words.
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Liu et al. (Chap. 3) conducted an experiment to solve a naming game. In their
experiment, they found that the subjects had to spend more time and effort when the
views were mismatched with the partner. In addition, the subjects’ collaboration be-
came significantly more efficient when the matcher was aware of the director’s eye
gaze during the interaction. These results suggest that the awareness of the partner’s
gaze is more helpful in mismatched views than in a matched view. The analysis in
this chapter provides a good basis for modeling situated interaction between human
users and vision-based interactive systems.

Broz et al. (Chap. 4) reported an automatic dyadic gaze analysis using two eye
trackers. They implemented a mechanism that integrates gaze data from two eye
trackers and automatically detects mutual gaze. They used this mechanism in col-
lecting and analyzing mutual gaze in dyadic communication and characterized the
communication using mathematical techniques. Although video analysis of gaze be-
haviors requires enormous time and effort, this chapter shows that eye-trackers are
useful in reducing such costs.

Part II: Gaze-Based Cognitive and Communicative Status Estimation
The research in Part II addresses the estimation and prediction of the internal

state of the users using gaze information.
Nussli et al. (Chap. 5) proposed the Remote Gaze-Aware Reference Detector

(REGARD) system. They measured the time lag between gaze and speech. There
is a time lag between the time that the speaker looks at an object and the time that
the reference word is uttered. There is another time lag between the time that the
listener hears the word and the time that he/she looks at the referent. They applied
the empirical results to a mechanism that automatically recognizes referential ex-
pressions in speech stream and identified the referred objects. The system provides
multimodal understanding by combining speech and gaze in dialogues in which two
individuals are working or discussing in a shared workspace.

Ishii et al. (Chap. 6) analyze various types of data obtained from an eye-tracker
and propose a decision tree model for estimating conversational engagement. They
also build a conversational agent that is aware of the user’s conversational engage-
ment. In their system evaluation, they show that the agent’s simple feedback, which
expresses only the awareness of engagement, has a significant impact on the sub-
jects’ verbal and nonverbal behaviors during the interaction with the agent, as well
as on the subjective impression of the agent.

Bednarik et al. (Chap. 7) used a computational approach for predicting problem-
solving behavior. They defined categories for cognitive status, such as cognition,
evaluation, planning, and intention, based on the subjects’ think-aloud utterances
and then proposed a classifier for these cognition categories by applying a sup-
port vector machine (SVM) to eye-tracking data. They also proposed a model for
predicting the performance level of a user in problem solving. Their model shows
that the higher-order cognitive traits can be predicted from lower-order eye-tracking
data and suggests the possibility of monitoring the user’s cognitive status in real
time.
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Part III: Gaze Awareness in HCI
Part III presents studies that propose novel gaze-based interfaces that integrate

eye-trackers as a system component. These studies show the direction of future
human-computer interaction and discuss issues to be addressed in designing gaze-
aware interfaces.

Biedert et al. (Chap. 8) reported an evaluation experiment for their proposed
eBook, namely, eyeBook, which provides background music, sound effects, and
images at the moment that the user is looking at some specific sentences. They then
extended their idea to a multimodal eBook reader, which integrates speech recog-
nition, hand-writing recognition, and emotion recognition using EEG. These mul-
timodal cues trigger specific scripts to provide feedback to the reader. This chapter
shows how such gaze-aware user interfaces enable a richer reading experience.

Bader and Beyerer (Chap. 9) revealed different factors that influence natural gaze
behaviors in object manipulation tasks. They focus on proactive attentional behav-
ior, which is used to estimate the user’s intention in human-computer interaction.
They investigated whether such natural gaze behavior is useful as an additional in-
put modality combined with gestures in a multi-display environment. They reported
that gaze-based intention estimation is valuable in compensating for inaccurate hand
gestures and results in less physical fatigue.

Edlund et al. (Chap. 10) discussed the production of eye-gaze expressions in hu-
manoid interfaces. Not only recognizing human attentional behavior, but also study-
ing how people perceive eye gaze expressions displayed by embodied interfaces is
another important aspect in designing human-computer interaction. This chapter fo-
cuses on Mona Lisa gaze effect in viewing 2D images of gaze, and proposes project-
ing animated faces on head-shaped 3D surfaces, by which people can more reliably
estimate gaze targets in the physical world.

References
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Chapter 2
How Eye Gaze Feedback Changes Parent-Child
Joint Attention in Shared Storybook Reading?

An Eye-Tracking Intervention Study

Jia Guo and Gary Feng

Abstract Joint attention is critical for effective communication and learning during
shared reading. There is a potential disassociation of attention when the adult reads
texts while the child looks at pictures. We hypothesize the lack of joint attention lim-
its children’s opportunity to learn print words. Traditional research paradigm does
not measure joint attention in real-time. In the current study, three experiments were
conducted to monitor parent-child joint attention in shared storybook reading. We
simultaneously tracked eye movements of a parent and his/her child with two eye-
trackers. We also provided real-time eye gaze feedback to the parent about where
the child was looking at, and vice versa. Changes of dyads’ reading behaviors be-
fore and after the intervention were measured from both eye movements and video
records. Baseline data showed little joint attention in the naturalistic parent-child
shared reading. The real-time eye gaze feedback significantly increased parent-child
joint attention and improved children’s learning.

2.1 Introduction

Joint attention, the capacity to coordinate attention with a social partner on a particu-
lar action or object, is essential for communication, visual search, problem solving,
and many other collaborative activities (Brennan et al. 2008; Carletta et al. 2010;
Nüssli et al. 2009; Richardson et al. 2007). Parent-child shared storybook reading is
one of such activities. There is converging evidence that a key to learn print words
is to engage children in a joint attention on texts during reading, i.e., children and
adults must attend simultaneously to the target of learning and among themselves

J. Guo (B)
Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
e-mail: jiaguo.elaine@gmail.com
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(Ezell and Justice 2000; Gong and Levy 2009; Justice et al. 2006, 2008). However,
prior eye-tracking studies showed that pre-reading children focus almost exclusively
on pictures while parents read from print texts (Evans and Saint-Aubin 2005; Feng
and Guo 2012; Justice et al. 2005, 2008). Additionally, most existing join attention
regulation strategies such as finger pointing are adult-centered and limited, such that
a parent regulates a child’s attention without accurate information about the child’s
real-time attention state. We argue that the lack of joint attention and the limitation
of traditional join attention regulations impede children’s learning of print words.
And we conjecture that the ideal solution is to provide reading partners consistent,
individualized, and real-time attention feedback.

The state of eye-tracking technologies allows us to show this feedback in real-
time. We can show parents or children, a cursor on the computer screen that cor-
responds to the gaze location of the other person. The eye gaze feedback provides
critical information that is missing in the traditional shared reading task.

First, the location of the eye gaze indicates the focus of attention at any given mo-
ment (Rayner 1998; Rayner et al. 2006). We expect that discovering children’s real-
time attention state may trigger adults’ regulations of joint attention during shared
book reading. The real-time eye gaze information is more instructional to the pre-
reading children, who will see where and how grown-ups look when they read.

Second, having access to the other partner’s eye movements may change the dy-
namics of shared reading as well as greatly reduce the time and energy that partners
spend on reengaging joint attention. The success or failure of a pedagogical attempt
is immediately seen on the screen. Adults can give children more prompt and precise
feedback when they watch children’s real-time eye movements.

Utilizing the advanced eye-tracking technique to measure and facilitate joint at-
tention provides a new model of understanding the joint attentional interactions in
shared book reading. As such, two aims are addressed in the current study. First,
we seek to objectively measure the joint attention in shared storybook reading, by
simultaneously tracking the eye gazes of both the parent and the child. While there
are a handful of published studies looking at children’s eye gaze during reading,
none has investigated the correlation and contingency between eye movements of
children and parents. Using two eye trackers, we tracked dyads’ eye movements
and measured their joint attention in real-time during shared book reading. The data
and methodology will be useful to a wide array of researchers interested in joint
attention and collaborative behaviors.

Second, we investigate whether two eye gaze based interventions enhance parent-
child joint attention during reading. The interventions target the fact that partners in
shared reading do not know where the other person is attending to. One interven-
tion involves showing a moving cursor on the child’s monitor that indicates where
the parent is looking. The other intervention shows the parent where the child is
looking. With this critical piece of information, it is hypothesized that the dyad can
better regulate their joint attention, which will facilitate children’s learning of print
words.
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Fig. 2.1 Examples of parent-child joint attention on one book page during the shared reading

2.2 General Method

2.2.1 Design and Analysis

Three experiments were conducted in the current study. Experiment 1 is the baseline
in which we measured how much joint attention on print exists during the natural-
istic shared book reading. We hypothesize that children rarely look at texts and
therefore there is little joint attention on print between children and parents. This in
turn implies limited print word learning during the reading sessions, as measured by
children’s gains in the sight word recognition. Experiment 1 serves as the control
condition for Experiments 2 and 3 in both of which we investigated whether the
real-time feedback of eye gaze enhances parent-child joint attention and children’s
word learning. We presented children how their parents read texts in Experiment 2
and showed parents their children’s real-time eye movements in Experiment 3. We
hypothesize that the new paradigm will help dyads regulate joint attention and help
children learn print words.

Joint attention was defined in the study as when the partners look simultaneously
at (or near) the same visual object on a page (see the examples in Fig. 2.1).

The distance between the screen coordinates of a parent’s eye gaze and those of
a child’s eye gaze was calculated at every 20 milliseconds for all reading sessions.
To measure the real-time joint attention, we compared the average distance of two
partners’ eye gaze locations with a cut-off value of 201.18 pixels which was deter-
mined for three reasons. First, when reading partners were asked to look at the same
object on the screen in a pilot test, 80 percent of the calculated distance values were
within 201.18 pixels. This result suggested when parents and children had joint at-
tention on the screen, most of their eye gaze distance values were less than 201.18
pixels. Second, the visual angle which corresponds to the 201.18 pixels is about 10
degrees (Eyelink systems typically have 20 pixels/degree). The human fovea, where
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we have clear vision, is about 2 degrees. So the visual angle of 10 degrees is not
a too small window size for a definition of joint attention. Third, the 201.18 pixels
are close to the size of two 5-letter-long print words in pixels (the average length of
a 5-letter-long word is 100 pixels). Therefore, we believe this is a very reasonable
window to define joint attention in reading.

We determined the joint attention exists if the distance is smaller than 201.18
pixels and does not exist if the distance is larger than or equal to 201.18 pixels. The
percentage of time when the distance of two partners’ eye gaze locations is smaller
than 201.18 pixels represents how much joint attention the dyad has when reading
together.

Video recordings of the parent-child reading interactions were transcribed and
coded with InqScribe software. Adapting from the coding systems in previous stud-
ies (Chi et al. 2001; Ortiz et al. 2001; Whitehurst et al. 1988; Sulzby 1985), we have
developed a coding system to analyze parent-child joint attention interactions. The
inter-rater reliability analysis of the behavior coding was performed using 20 % of
the sample.

We hypothesized that (a) there is limited parent-child joint attention to texts in
the naturalistic shared storybook reading, and (b) the eye gaze feedback facilitates
joint attentional regulation and improves the learning of print words.

2.2.2 Participants and Materials

Altogether we recruited ninety-two parent-child dyads for this study. Thirty-seven
dyads participated in Experiment 1; they also serve as the comparison group for the
subsequent intervention experiments. Experiment 2 involved twenty-seven parent-
child dyads. Experiment 3 involved twenty-eight dyads. All children participants
were 4–5 year old English speakers who had no history of hearing, vision, or cog-
nitive impairments. Parent participants were required to be person who reads most
frequently with children at home. Three age appropriate storybooks were presented
for dyads to read in all three experiments. Children’s sight word learning was mea-
sured before and after reading by asking children to name content words sampled
from the storybooks.

2.2.3 Apparatus

Two contact-free eye trackers, a Tobii X50 and an Eyelink 1000 system, were used
in the study. Both of the eye trackers are infrared-based remote eye tracking systems
that make no contact with the participant. For each dyad, the parent was eye tracked
by Tobii X50 and the child was eye tracked by Eyelink 1000. Two video recorders
were used to record reading interactions among the dyad.

For each dyad, the parent and the child sat across a child-sized table at a 90 de-
gree angle. One LCD monitor (1280 × 1024 pixels resolution) and Eyelink 1000
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Fig. 2.2 The apparatus and
experiment set-up

were put approximately 60 cm away from the child; while another LCD monitor
(1280 × 1024 pixels resolution) and Tobii X50 were put approximately 60 cm away
from the parent (see Fig. 2.2 for details of the set-up). Stimuli were presented simul-
taneously on both monitors. Stimulus presentation and eye movement calibration
and recording were done using the Double Tracker program developed in our lab.
The data were then exported offline for statistical analyses.

2.3 Experiment 1: Joint Attention in the Naturalistic Shared
Book Reading

Experiment 1 serves as the baseline condition for the subsequent intervention exper-
iments. For each reading dyad, both the parent and the child were eye tracked and
video-taped in a naturalistic shared reading task. Before and after the reading trials,
we measured children’s sight word recognition to determine they have learned new
words.

Specifically, each parent read three books to his/her child in four reading trials
(order counter-balanced among participants). They read one storybook in the first
and fourth trial, and the other two different storybooks in the second and third trial.
In the fourth trial the parent was asked to teach three words that the child did not
recognize in the pre-test. To tease apart the impact of the instructions from the mov-
ing cursor in Experiment 2, children were asked to follow the parent’s eye gaze
while listening to stories, even though they could not actually see the eye gaze on
the screen. The average percentage of time children had joint attention with adults
on texts in reading trial 1 (no word teaching) was compared to that in trial 4 (with
word teaching). Children’s sight word recognition was measured before and after
the reading.

The results in Experiment 1 supported our hypothesis that parent-child dyads did
not have much joint attention on print and children did not learn many keywords
from the pre-test to the post-test. Specifically, in trial 1 when word teaching was not
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required, the average percentage of time children had joint attention with parents on
print was 2.91 %. In the reading trial 4, when adults were asked to teach children
three words in the books, children significantly increased their joint attention on
print to 6.41 %, t (36) = 2.48, p = .018. Children’s average pre-test raw score of
the sight word recognition were 1.81 (out of 10 words), which was lower than the
post-test raw score of 2.19 (out of 10 words), t (36) = 3.19, p = .003. Children’s
average number of learned new words was .38 words, measured by the difference
of the pre- and post-test raw scores of the sight word recognition.

Taken together, children’s joint attention with parents on print in the naturalistic
shared book reading trial were small. Children’s average word learning gain from
the pre-test to the post-test was limited. These results were consistent with previous
research findings (Evans and Saint-Aubin 2005; Evans et al. 2009; Feng and Guo
2012; Justice et al. 2005, 2008). When children read books with adults, they usually
prefer pictures and avoid looking at texts. Since adults read from texts most of the
time, children’s ignorance of texts would lead to little adult-child joint attention
on print during the naturalistic shared book reading. Therefore, children can hardly
improve their sight word learning from the shared book reading activity.

The naturalistic nature of the data set and the analyses we have done in Experi-
ment 1 point to the need for the experimental evaluation of the relationship between
children’s joint attention on texts and their word learning. A natural follow-up ex-
periment would be to keep everything else (e.g., the reading materials, study set-up
and procedures) the same, and use our newly developed eye tracking technology
to let children see parents’ real-time reading eye movements during shared book
reading.

2.4 Experiment 2: Externalizing Adults’ Visual Attention
for Children in Shared Book Reading

Our pilot studies showed that most preschool children are unaware of the facts that
we take for granted such as adults pay attention to print during shared book reading
and they read texts from left to right. In Experiment 2, we investigate whether the
externalization of adults’ reading processes helps children understand how adults
read books as well as how this understanding helps children switch their own atten-
tion focus to print. Furthermore, we examine whether the increased joint attention
on print promotes children’s word learning.

Experiment 2 involved showing a moving cursor on the children’s screen from
reading trial 2 to 4; the moving cursor indicated the location of the parent’s eye
gaze in real-time. Parents looked at a normal, static display of the page for all four
reading trials. We ensured children and parents understood the gaze indicator using
an iSpy-like game. Even the youngest children had no problem understanding the
correspondence. Children’s sight word recognition was measured before and after
the reading. In the fourth trial the parent was asked to teach three words that the
child did not recognize in the pre-test. The average percentage of parent-child joint
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Fig. 2.3 Percentages of parent-child joint attention on print from reading trial 1 (no intervention)
to trial 4 (with intervention) between Experiment 1 and 2

attention on texts and children’s sight word learning outcomes in Experiment 2 were
compared with those in Experiment 1.

The eye-tracking results showed that the intervention of eye gaze feedback for
children significantly increased parent-child joint attention on texts. In trial 1 when
no intervention was involved, the percentage of time children had joint attention
with adults on texts was 5.35 %; in trial 4 when children read the same book while
watching their parents’ real-time eye gaze, children significantly increased the per-
centage of time they had joint attention on texts to 22.7 %, t (26) = −8.01, p < .001.

To further compare the eye movement changes from the first to the fourth read-
ing trial between Experiment 1 and 2, we did a repeated measures ANOVA using
children’s average percentage of joint attention on texts as the dependent variable,
the reading trial as the within-subjects independent variable (the first vs. the fourth
reading trial), and whether children received the eye gaze feedback as the between-
subjects factor (Experiment 1 vs. Experiment 2). The results showed that the main
effect of the within-subjects variable was significant, F(1,62) = 70.8, p < .001,
suggesting that reading dyads on average significantly increased their joint attention
on texts from the first to the fourth reading trial. The main effect of whether children
received the eye gaze feedback was also significant, F(1,62) = 23.51, p < .001. So
was the interaction effect, F(1,62) = 31.24, p < .001, indicating that the increase
of percentage of joint attention on texts from the first to the fourth reading trial in
Experiment 2 was significantly higher than that in Experiment 1 (see Fig. 2.3).

More print-directed joint attention resulted in more word learning: children
learned on average 1.0 word, significantly higher than the 0.38 words children in
Experiment 1 learned, t (62) = 2.37, p = .02. This result indicates that children
who received the eye gaze feedback learned more words from the pre-test to the
post-test than children who did not receive this eye gaze information.

To examine how the eye gaze intervention changes parent-child reading inter-
actions, we included thirty-six dyads in Experiment 1 (data from one dyad were
excluded due to poor video quality) and twenty-seven dyads in Experiment 2 in
the video coding and analysis. The inter-rater reliability was 0.79 (p < .01), which
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Fig. 2.4 The frequency of the behavior of children’s reading texts along with parents from reading
trial 1 (no intervention) to trial 4 (with intervention) between Experiment 1 and 2

could be claimed as good levels of agreement according to previous research (Lan-
dis and Koch 1977; Ortiz et al. 2001). We did repeated measures ANOVAs using
the average frequency of each coded behavior (time per minute) as the depen-
dent variable, the reading trial as the within-subjects independent variable (no in-
tervention trial 1 vs. with intervention trial 4), and whether children received the
eye gaze feedback as the between-subjects factor (Experiment 1 vs. Experiment 2).
The results revealed children did respond more to parents’ reading strategies when
seeing parents’ real-time eye scanning patterns. For example, children in both ex-
periments increased the occurrences of the behavior of reading texts along with
parents from the first to fourth reading trial (Fwithin(1,61) = 23.09, p < .001),
but children who received the eye gaze feedback showed a significantly larger in-
crease (Fbetween(1,61) = 4.34, p = .041; Finteraction(1,61) = 4.31, p = .042, see
Fig. 2.4).

Overall, the comparisons between Experiment 1 and 2 indicated that with the eye
gaze direction more tightly tied to the focus of join attention, children saw an exter-
nal representation of reading processes unfolding in real-time. When children heard
adults read texts while simultaneously looking at the corresponding words, they
had the best opportunity to learn the correspondence between the sound, spelling,
and meaning of the words. Furthermore, the real-time eye gaze feedback helped
adults efficiently draw children’s attention to those target words and children also
responded more to parents’ word teaching attempts. Children’s increased responses
to parents’ pedagogical efforts, as well as the increased joint attention on print and
the improved understanding of reading processes further promoted children’s print
learning.

One limitation for Experiment 2 is that only children had the opportunities of
knowing where adults look at on books but adults were still blind to children’s at-
tention states. As a trade-off to this limitation, in Experiment 3 we show parents
where children pay attention to during shared reading.
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2.5 Experiment 3: Informing Parents of Children’s Real-Time
Visual Attention in Shared Book Reading

Parents control the reading activity in the traditional shared reading paradigm, but
they have little knowledge about where their children are paying attention to and
whether their reading strategies are effective. We argue that informing parents of
children’s real-time visual attention can help parents regulate joint attention in
shared book reading.

In Experiment 3, we presented each parent a moving cursor on the screen from
reading trial 2 to 4. The moving cursor indicated children’s eye gaze location as
children read. For all four reading trials children looked at a normal, static display
of the page. Parents were encouraged to utilize the eye gaze information to regulate
children’s attention. To tease apart the impact of the instructions from the moving
cursor in Experiment 2, children were asked to follow the parent’s eye gaze while
listening to stories, even though they could not actually see the eye gaze in Exper-
iment 3. Dyads’ eye movements and reading interactions during reading sessions
were recorded and analyzed. Children’s sight word recognition was measured be-
fore and after the reading. In the fourth trial the parent was asked to teach three
words that the child did not recognize in the pre-test. The average percentage of
parent-child joint attention on texts and children’s sight word learning outcomes in
Experiment 3 were compared with those in Experiment 1. We predict that seeing
children’s real-time visual attention makes parents adjust their reading strategies ac-
cordingly. The parents’ changed reading behaviors would enhance the efficiency of
joint attention regulation and therefore significantly increase the time children spend
scanning texts in reading. Children can learn more words due to the increased print
exposure.

Positive intervention effects were also found in Experiment 3. The percentage of
joint attention on texts increased from 3.48 % in reading trial 1 (no intervention trial)
to 12.87 % in reading trial 4 (with intervention trial), t (27) = −5.05, p < .001. To
further compare the eye movement changes from the first to the fourth reading trial
between Experiment 1 and 3, we did a repeated measures ANOVA using children’s
average percentage of joint attention on texts as the dependent variable, the read-
ing trial as the within-subjects independent variable (the first vs. the fourth reading
trial), and whether parents received the eye gaze feedback as the between-subjects
factor (Experiment 1 vs. Experiment 3). The results showed that the main effect
of the within-subjects variable was significant, F(1,63) = 31.72, p < .001, sug-
gesting that reading dyads on average significantly increased their joint attention on
texts from the first to the fourth reading trial. The main effect of the eye gaze feed-
back was also significant, F(1,63) = 5.35, p = .024. So was the interaction effect,
F(1,63) = 6.62, p = .012. The results indicated that the increase of percentage of
joint attention on texts from the first to the fourth reading trial in Experiment 3 was
significantly higher than that in Experiment 1 (see Fig. 2.5).

Parents became more effective facilitating children’s word learning. Children
learned 1.25 words, significantly higher than the word learning gain in Experiment 1
(0.38 words), t (63) = 3.83, p < .001. This result further confirmed that children
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Fig. 2.5 Percentages of parent-child joint attention on print from reading trial 1 (no intervention)
to trial 4 (with intervention) between Experiment 1 and 3

learned more words from the pre-test to the post-test when parents used the eye
gaze feedback to effectively direct children’s attention to words.

The behavioral coding and analysis also supported our hypotheses. Thirty-six
dyads in Experiment 1 (data from one dyad were excluded due to poor video qual-
ity) and twenty-eight dyads in Experiment 3 were included in the comparisons
for the changes of the frequencies of the behaviors from reading trial 1 (no inter-
vention) to reading trial 4 (with intervention) between Experiment 1 and Experi-
ment 3. The inter-rater reliability was 0.78 (p < .01). We did repeated measures
ANOVAs using the average frequency of each coded behavior (time per minute) as
the dependent variable, the reading trial as the within-subjects independent variable
(no intervention trial 1 vs. with intervention trial 4), and whether parents received
the eye gaze feedback as the between-subjects factor (Experiment 1 vs. Experi-
ment 3).

The results revealed when informed with children’s real-time eye gaze locations,
parents increased the frequencies of regulating joint attention and teaching words.
For example, parents in both experiments increased the occurrences of behavior of
asking children to look at specific words (e.g., “Can you help me find the word ‘cat’
on the screen?”) from the first to fourth reading trial (Fwithin(1,62) = 62.95, p <

.001), but parents who received the eye gaze feedback showed a significantly larger
increase (Fbetween(1,62) = 15.32, p < .001; Finteraction(1,62) = 15.32, p < .001,
see Fig. 2.6).

Compared to parents in Experiment 1, parents in Experiment 3 significantly in-
creased the occurrences of the behavior of providing specific feedback (e.g., adults
saying “Yes, you are looking at the right place.”; “No, you are not looking at the
place I want you to look.”) from the first to fourth reading trial (Fbetween(1,62) =
26.57, p < .001; Finteraction(1,62) = 26.57, p < .001; Fwithin(1,62) = 27.63, p <

.001, see Fig. 2.7).
Parents’ behavior changes induced children’s more frequent verbal responses.

Although children in both experiments increased the occurrences of the behavior
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Fig. 2.6 The frequency of adults asking children to look at specific words behavior from reading
trial 1 (no intervention) to trial 4 (with intervention) between Experiment 1 and 3

Fig. 2.7 The frequency of adults providing specific feedback behavior from reading trial 1 (no
intervention) to trial 4 (with intervention) between Experiment 1 and 3

of asking or answering print-related questions from the first to fourth reading trial
(Fwithin(1,62) = 54.59, p < .001), children in Experiment 3 showed a significantly
larger increase (Fbetween(1,62) = 22.71, p < .001; Finteraction(1,62) = 22.64, p <

.001, see Fig. 2.8).
The above comparisons between Experiment 1 and Experiment 3 suggested when

parents received the real-time eye gaze feedback, parents had better opportunities to
observe their child’s attention state and fine-tune their strategies to increase child in-
terest and participation. Children who experienced positive direction, coaching, and
correction more easily attended to and internalized the knowledge parents attempted
to teach them, and developed the interest and motivation to sustain their learning.
These changes in turn provided more teachable moments for parents.
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Fig. 2.8 The frequency of children’s talking about print behavior from reading trial 1 (no inter-
vention) to trial 4 (with intervention) between Experiment 1 and 3

2.6 Conclusion

The current study measured parent-child joint visual attention in real-time, which
allows us to go beyond prior research that focuses exclusively on the child in shared
reading, and study shared reading as a joint attentional interaction involving dy-
namic transactions between partners and real-time cognitive strategies within indi-
viduals. Building on prior research, we found that pre-reading children had limited
joint attention with their parents in the naturalistic shared reading paradigm. Parents
had little information about where children were attending to, and children had even
less idea about how adults actually read. This resulted in a poorly regulated joint
attentional interaction when it comes to learning print words.

More importantly, our eye gaze interventions successfully remedied the joint at-
tentional structure by leveraging the eye-tracking technology in the shared reading.
By providing real-time feedback of the partner’s visual attention, we demonstrated
significant improvements in the amount of joint attention on print and changes in
parental attentional regulation strategies during reading. More interestingly, chil-
dren did not simply look at the moving cursor or print words, but actually read and
processed the words. This was shown by increased word learning by children, along
with children’s changes of concept of reading processes. These results suggest that
by providing a critical piece of information—namely, where the partner is looking—
we can facilitate the regulation of joint attention and improve children’s learning of
print words. Our intervention targets limitations in joint attention regulation in the
traditional shared reading practice, but it is not specific to reading. The data and
methodology of this study would also be useful to a wide array of research topics on
collaborative learning activities. To the extent learning involves joint attention (e.g.,
in math tutoring), the eye gaze feedback can be an effective aid for learning. Addi-
tionally, the scenario of this research is quite similar to online collaborative activities
where partners focus on the common content on different screens (e.g., online gam-
ing, collaborative search, etc.). Insights into such behaviors and mental processes
may help design better multimedia software products and web applications.
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Chapter 3
Shared Gaze in Situated Referential Grounding:
An Empirical Study

Changsong Liu, Rui Fang, and Joyce Y. Chai

Abstract In situated dialogue, although an artificial agent and its human partner
are co-present in a shared environment, they have significantly mismatched capa-
bilities in perceiving the environment. When a shared perceptual basis is broken,
referential grounding between partners becomes more challenging. Our hypothesis
is that in such a situation, non-verbal modalities such as eye gaze play an important
role in coordinating the referential process. To validate this hypothesis, we devel-
oped a system to simulate mismatched visual perceptions of the shared environment
between human partners. Using this system, we further designed experiments to ex-
amine how partners with mismatched visual perceptual capabilities collaborate to
accomplish joint tasks. Our studies have shown that, partners with mismatched per-
ceptions make more effort to collaborate. When one partner pays attention to the
other partner’s naturally occurred eye gaze during interaction, referential grounding
becomes more efficient. This paper describes our empirical findings and discusses
their potential implications.

3.1 Introduction

As a new generation of robots start to emerge into our daily life, techniques that
enable situated human robot dialogue have become increasingly important (Bohus
and Horvitz 2009). Human robot dialogue often involves objects and their identities
in the environment. One critical problem is referential grounding, where the robot
needs to correctly identify intended referents from the speaker’s (human’s) referring
expressions (Clark and Brennan 1991).
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In situated dialogue, although an artificial agent and its partner (a human or a
proxy controlled by a human) are co-present in a shared environment, they have sig-
nificantly mismatched capabilities in perceiving the environment. The mismatched
perceptions of the shared surroundings have a massive influence on the interaction
between the human and the agent. For example, if the human refers to something
in the environment which the robot cannot perceive correctly, referential grounding
becomes more challenging. Therefore, language alone may be inefficient and other
extralinguistic information will need to be pursued. In this paper, we investigate one
type of non-verbal modalities—eye gaze during speech communication.

Eye gaze serves many functions in mediating interaction (Argyle and Cook 1976;
Clark 1996), managing turn taking (Novick et al. 1996) and grounding (Nakano
et al. 2003). Previous psycholinguistic findings have shown that eye gaze is tightly
linked with language production and comprehension (Just and Carpenter 1975;
Tanenhaus et al. 1995; Meyer et al. 1998; Griffin and Bock 2000). Eye gaze has
also been shown efficient for providing early disambiguating cues in referential
communication (Hanna and Brennan 2007), for intention recognition during object
manipulation (Bader et al. 2009), and for attention prediction (Fang et al. 2009).
Specifically, in human machine dialogue, recent work has incorporated eye gaze in
resolving exophoric referring expressions (Prasov and Chai 2008, 2010).

Motivated by previous work, our hypothesis is that eye gaze plays an important
role in referential grounding, especially between partners with mismatched percep-
tions of the shared environment. More specifically, we are interested in the following
questions:

1. How difficult is it for partners with mismatched perceptions of the shared envi-
ronment to collaborate?

When a shared perceptual basis of the environment is broken, partners may
not be able to communicate as they normally do. We are interested in how the
mismatched perceptions may impact collaboration, dialogue, and automated lan-
guage processing.

2. To what extent does the collaboration benefit from the shared gaze between part-
ners? Is the shared gaze more helpful for partners with mismatched perceptions?

Our hypothesis is that partners with mismatched perceptions could benefit
more from the shared gaze. This is because on the one hand verbal communica-
tion could be more difficult in this situation, and on the other hand being aware of
partner’s eye gaze may allow many joint actions to be done non-verbally (Bren-
nan et al. 2008).

To validate our hypothesis and address the above questions, we designed an ex-
periment which required a director and a matcher to collaboratively play a naming
game. The director has a complete view of the shared environment. By controlling
what the matcher “sees” from the environment, we are able to simulate mismatched
perceptions of the shared environment between the director and the matcher. Be-
sides, by tracking either the director’s or the matcher’s eye gaze and showing it to
the other, we are able to study the role of shared gaze in referential grounding.

Our results indicate that collaboration between partners with mismatched per-
ceptions of the shared environment is inherently difficult. It takes extra efforts for
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partners to overcome the perceptual discrepancies and to establish a shared basis
for communication. We also found that under such circumstance human partners
tend to rely on communicating strategies that are less preferred in normal situations.
Nevertheless, when one partner’s naturally occurred eye gaze was made available to
the other during the interaction, their collaboration became significantly more effi-
cient. These results imply that monitoring and sharing naturally occurred eye gaze
provides an important mechanism to facilitate language-based interactions between
partners with mismatched perceptions such as in human robot communication.

3.2 Related Work

3.2.1 Collaborative Model of Referring

Conversation is a joint activity between its participants (Clark 1996). In conversa-
tion, participants coordinate their mental states based on their mutual understanding
of their intention, goals, and current tasks (Clark 1992). An important notion, also a
key to the success of communication is grounding, a process to establish mutual un-
derstanding between conversation participants. Specifically for the referential pro-
cess in conversation, Clark and Wilkes-Gibbs developed the collaborative model
of referring to explain the referential behaviors of participants (Clark and Wilkes-
Gibbs 1986). This work states that grounding references is a collaborative process
following the principle of least collaborative effort (Clark and Wilkes-Gibbs 1986):

. . . speakers and addressees try to minimize collaborative effort, the work both speakers and
addressees do from the initiation of the referential process to its completion.

The collaborative model indicates that speakers tend to use different types of
noun phrases other than elementary noun phrases during communication. The ad-
dressee attends to what has been said almost at the same time that the utterance is
produced by the speaker. The speaker often adapts his language production in the
middle of the planning based on the feedback from the addressee. Similarly, ad-
dressees make efforts to accept or reject references using alternative descriptions
and indicative gestures (e.g., pointing, looking, or touching) (Clark and Brennan
1991). Different types of evidence can be used to indicate grounding of references
such as back-channel responses, relevant next turn, and continued attention (e.g.,
indicated by eye gaze) (Clark and Brennan 1991). When an initial noun phrase is
not acceptable, it must be refashioned. The collaborative model also identified three
types of refashioning: repair, self-expansion, and replacement. Through these mech-
anisms, the speaker and the addressee strive to minimize the collaborative effort in
grounding the reference (Clark and Wilkes-Gibbs 1986).

The collaborative model and the concept of grounding have motivated previ-
ous work on spoken dialogue systems (Traum 1994) and embodied conversational
agents (Cassell et al. 2000). However, the implications of the collaborative model
is not clear in situated dialogue where conversation partners have significantly mis-
matched capabilities in perceiving the environment. It is not clear in this setting how
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participants strive to collaborate and minimize the collaborative effort in grounding
references. Understanding these new implications is critical to enable the collabora-
tive referential process between a human and an artificial agent such as a robot. The
work presented in this paper is our first step towards understanding how participants
with mismatched capabilities use language and indicative gestures such as eye gaze
to coordinate the collaborative referring process.

3.2.2 Eye Gaze in Human Machine Communication

Eye gaze serves many functions in human communication. It is the most basic form
of what the addressee is attending to (Clark 1996). In face-to-face conversation, eye
gaze can signal partners’ intention to give or keep the turn (Novick et al. 1996).
Addressees often signal their attentiveness with eye gaze (Argyle and Cook 1976).
Recent work has also shown that speakers’ gaze can provide early disambiguating
cues for the addressee to interpret referring expressions (Hanna and Brennan 2007).
Eye gaze can also facilitate grounding by establishing joint attention indicating mu-
tual acceptance (Garrod and Pickering 2004; Pickering and Garrod 2004).

At the utterance level, psycholinguistic studies have shown that eye gaze is tightly
linked to human language processing (Tanenhaus et al. 1995). Almost immediately
after hearing a word, the eyes move to the corresponding real-world referent (Al-
lopena et al. 1998). Directly before speaking a word, the eyes move to the mentioned
object (Griffin and Bock 2000). Objects are fixated in the same order in which they
are spoken (Bock et al. 2004). Not only is eye gaze highly reliable, it is also an im-
plicit, subconscious reflex of speech. The user does not need to make a conscious
decision; the eye automatically moves toward the relevant object, without the user
even being aware.

Based on these empirical findings, gaze modeling has been incorporated in hu-
man computer interaction in several aspects. For example, the role of eye gaze in co-
ordinating conversation is implemented in embodied conversational agents (Nakano
et al. 2003). Previous work has also incorporated human eye gaze to help interpret
user input (Kaur et al. 2003; Cooke and Russell 2008; Byron et al. 2005). In our
group’s own work, we have developed approaches to incorporate eye gaze for lan-
guage interpretation in human computer dialogue. Our findings indicate that gaze
fixation intensity serves as an integral role in attention prediction (Prasov et al.
2007). Incorporation of eye gaze can significantly improve automated language
processing at multiple levels from recognition of spoken hypotheses (Qu and Chai
2007) and reference resolution (Prasov and Chai 2008, 2010) to automated vocabu-
lary acquisition (Liu et al. 2007; Qu and Chai 2008). Motivated by previous work,
our hypothesis in this paper is that eye gaze plays an important role in referential
communication between partners with mismatched perceptions of the shared envi-
ronment.

In human robot interaction, previous research has focused on the control of robot
gaze behaviors to facilitate interaction (Sidner et al. 2004, 2005; Breazeal et al.
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2004; Miyauchi et al. 2004; Staudte 2006; Yoshikawa et al. 2006; Mutlu et al. 2009a,
2009b), for example, to provide feedback of understanding (Breazeal et al. 2004),
to signal engagement (Sidner et al. 2005), to demonstrate the role of participation
(Mutlu et al. 2009a), and to indicate intention (Mutlu et al. 2009b). However, most
of previous work on robot’s gaze controls is not concerned with language processing
and interpretation of referents. More related work can be found in Staudte (2006),
Kruijff and Staudte (2007), Staudte and Crocker (2009), where the gaze of the robot
is controlled during the referential process based on simple strategies. A pilot study
has shown statistical significant interactions between congruence (robot gaze to the
intended referent) and the believability of the robot (Kruijff and Staudte 2007). A re-
cent work has shown that the robot’s eye gaze can inform its human partners about
its intended referents and help humans comprehend the robot’s speech (Staudte and
Crocker 2009).

These previous works have provided empirical evidence on the important role
of gaze modeling in human machine or human robot dialogue. To extend these
previous works, here we specifically evaluate the role of shared gaze in facilitat-
ing collaborations between partners with mismatched visual perceptual capabilities.
The empirical results will contribute to the design of collaborative robots that can
effectively mediate this discrepancy through manipulations of shared gaze.

3.3 Method

The architecture of our experimental system is shown in Fig. 3.1. Two partners (a di-
rector and a matcher) collaborate on an object naming task. The director’s goal is to
communicate the “secret” names of some objects to the matcher, so that the matcher
knows which object has what secret name. They both face the same scene that is
composed by some daily-life objects (office supplies, fruits, etc.). However, what
they actually see can be different: while the director always sees the original image
taken from the scene, the matcher sees either the original image or an impoverished
version of the image, depending on the experimental condition. During their inter-
action, either the director’s or the matcher’s naturally occurred eye gaze is captured
by a display-mounted eye tracker and can be made available to the other (shown as
a gaze cursor on the other’s screen) in real time.

3.3.1 Mismatched Views

In previous studies (Passonneau et al. 2009; Levin and Passonneau 2006), an ab-
lated Wizard of Oz paradigm was applied to investigate human strategies to deal
with ASR errors. In these ablated Wizard of Oz studies, a human wizard’s capac-
ities were incrementally restricted to simulate the capability of a real system, thus
the system could learn better error-handling strategies from the wizard. Inspired by
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Fig. 3.1 The architecture of our experimental system. Two partners in the same room are sepa-
rated by a divider. The director is seated in front of a display-mounted Tobii 1750 eye tracker (Tobii
Technology) and the matcher in front of a regular computer. Two computers are connected and syn-
chronized via an Ethernet hub. The director’s eye gaze position is captured and can be displayed
as a gaze cursor (a 32 by 32 pixels pink dot) superimposed over the matcher’s display. A bi-di-
rectional microphone-speaker system is used as the speech channel for two partners to verbally
communicate with each other

those studies, we designed our experiment to investigate the collaborative strategies
and the potential role of eye gaze in a referential communication task. To simu-
late mismatched perceptions, we ablated the matcher’s capability by only showing
him/her an impoverished version of the original image. An example of the original
and the impoverished images is illustrated in Fig. 3.2.

To faithfully simulate the perceptual capability of an artificial agent, we applied
standard computer vision algorithms to process the original image and generate
the impoverished representation of the same scene. This procedure is illustrated in
Fig. 3.3. To create the impoverished image, we first used the OTSU algorithm (Otsu
1975) to separate foreground objects from the background. Then each segmented
object was fed into a feature extraction routine that computed a set of region-based
and contour-based shape features of the object (Zhang and Lu 2002). The feature
vector of the object was then compared with all the “known” objects in a knowledge
base. The object was recognized as the class of its nearest neighbor in the knowl-
edge base. After this segmentation → feature extraction → recognition pipeline,
the final outcome was then displayed as an abstract illustration in the impoverished
image. For instance, if an object was recognized as a pear, an abstract illustration
of pear was displayed in the impoverished image at the position of the original ob-
ject. The color of the illustration was set to the average color of the pixels of the
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Fig. 3.2 An example of the “mismatched views” in our experiment. The left image is the original
image which is always shown to the director. The right image is the impoverished version of the
left image, which is shown to the matcher depending on the experimental condition

Fig. 3.3 The procedure of generating the impoverished image from the original image

original object, and the height and width were set according to the bounding box of
the original object.

3.3.2 Experiment Design

As mentioned in Sect. 3.1, we are mainly interested in two specific questions:

1. How difficult is it for partners with mismatched representations of the shared
environment to collaborate?



30 C. Liu et al.

2. To what extent does the collaboration benefit from the shared gaze between part-
ners?

To address those questions, we designed a 2 by 2 factorial experiment to inves-
tigate the effects of two factors on the task performance. We denote the two factors
as view and gaze, each of which has two levels:

• View: whether the director and the matcher have matched views or mismatched
views. “v+” means their views are matched, i.e. both of them see the original
image; “v−” means the views are mismatched, i.e. the director sees the original
image, but the matcher sees the impoverished image.

• Gaze: whether shared gaze is available between partners. “g+” means one part-
ner’s eye gaze is captured and rendered as real-time gaze cursors on the other
partner’s screen; “g−” means eye gaze is not available to the other partner.

Based on the above two factors, we have a total of four experimental conditions:

• v + g−: matched views without shared gaze.
• v − g−: mismatched views without shared gaze.
• v + g+: matched views with shared gaze.
• v − g+: mismatched views with shared gaze.

Besides the two main factors, two other nuisance factors may also affect the
task performance: the randomly composed scenes and the participants. Therefore, a
Latin square design (Montgomery 2008) was used to block the possible effects of
these two nuisance factors.

3.3.3 Participants and Procedure

Sixteen (eight pairs) undergraduate/graduate students from Michigan State Univer-
sity were recruited to participate in our experiments. In each pair of participants,
one played the role of the director and the other played the role of the matcher
throughout the entire experiment. Each pair of participants went through two exper-
iments. In the first experiment, the matcher’s eye gaze was captured and shared. In
the second experiment, the director’s gaze was captured and shared. In both experi-
ments, each pair of participants went through four trials with different conditions as
described above. In each trial, the director needed to communicate to the matcher
the secret names of six randomly selected objects from a total of twelve objects in
an image. When the matcher believed that he/she acquired the name of an object,
he/she needed to record the name by clicking on the object and repeating its name,
e.g. to click on the pear in his image and say “this is Alexis”. A trial was finished
when all the secret names had been recorded by the matcher. We put no restric-
tions on what the two partners could say to each other. The only requirement was
to finish each trial as quickly as possible. Each experiment lasted approximately
40 minutes.
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Table 3.1 Time (seconds) spent to finish each trial

Pair of participants Image

1 2 3 4

1 (v + g+) = 63.9 (v + g−) = 75.3 (v − g−) = 83.2 (v − g+) = 69.8

2 (v − g+) = 62.5 (v − g−) = 103.6 (v + g+) = 66.1 (v + g−) = 70.5

3 (v − g−) = 82.1 (v − g+) = 53.6 (v + g−) = 53.3 (v + g+) = 49.9

4 (v + g−) = 49.1 (v + g+) = 44.8 (v − g+) = 71.4 (v − g−) = 128.2

5 (v + g+) = 52.3 (v + g−) = 51.0 (v − g−) = 123.8 (v − g+) = 61.8

6 (v − g+) = 122.7 (v − g−) = 245.4 (v + g+) = 80.7 (v + g−) = 90.3

7 (v − g−) = 218.8 (v − g+) = 140.5 (v + g−) = 55.5 (v + g+) = 74.5

8 (v + g−) = 80.4 (v + g+) = 55.5 (v − g+) = 65.0 (v − g−) = 151.7

3.4 Result and Discussion

During the experiment, several kinds of information were logged, including all the
speech communications between the director and the matcher, the starting and end-
ing time of each trial, the screen positions where the matcher clicked to record the
names, etc. Two specific kinds of information were extracted from the logged data:
the time the participants spent to finish each trial and the total number of utterances
they issued in each trial. These two kinds of information were used as the response
variables in our statistical analyses.

Our results have not found statistical significance on the effect of sharing the
matcher’s gaze. This could be partly due to the experiment design. During the ex-
periments, the matchers were asked to use the mouse to click on the communicated
objects and record the names. Using the mouse could possibly interfere with the
matchers’ gaze behaviors. Therefore, the finding of the role of the matcher’s gaze is
not conclusive, which requires further investigation. For the rest of this section, we
will only report the results from experiments where the director’s gaze is captured
and shared by the matcher.

3.4.1 Hypothesis Test

Table 3.1 shows the time (in seconds) spent to finish each trial and Table 3.2 shows
the number of utterances of each trial. Based on our experiment design, we em-
ployed a 2 by 2 factorial ANOVA with replicated Latin square to analyze our data
(Montgomery 2008). The analysis results are shown in Table 3.3 and Table 3.4. The
ANOVA results show that the effects of both the view and the gaze are significant.
It indicates that on one hand it is really difficult for the partners to collaborate and
they had to spend more time and efforts when the views were mismatched, and
on the other hand their collaboration became significantly more efficient when the
director’s eye gaze was available to the matcher during the interaction.
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Table 3.2 Number of utterances in each trial

Pair of participants Image

1 2 3 4

1 (v + g+) = 20 (v + g−) = 22 (v − g−) = 22 (v − g+) = 22

2 (v − g+) = 27 (v − g−) = 45 (v + g+) = 22 (v + g−) = 35

3 (v − g−) = 40 (v − g+) = 23 (v + g−) = 20 (v + g+) = 25

4 (v + g−) = 22 (v + g+) = 23 (v − g+) = 37 (v − g−) = 65

5 (v + g+) = 16 (v + g−) = 14 (v − g−) = 26 (v − g+) = 19

6 (v − g+) = 41 (v − g−) = 91 (v + g+) = 34 (v + g−) = 37

7 (v − g−) = 72 (v − g+) = 53 (v + g−) = 16 (v + g+) = 25

8 (v + g−) = 33 (v + g+) = 28 (v − g+) = 33 (v − g−) = 65

Table 3.3 ANOVA results for time

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square

F0 p-value

View 18576.3 1 18576.3 24.4 <0.0001

Gaze 8685.7 1 8685.7 11.4 0.0034

Interaction 6378.8 1 6378.8 8.4 0.0097

Row 10803.5 6

Column 2010.0 3

Replication 9200.5 1

Error 13708.1 18 761.6

Total 69362.9 31

The interaction effect between these two factors is also significant, which in-
dicates that the shared gaze could be more helpful under mismatched views. The
interaction plot shown in Fig. 3.4 reveals more details. As it shows, when the part-
ners had matched views, the effect of gaze was not significant (paired t-test between
v + g− and v + g+, t (7) = 1.07, p > .3 for time and t (7) = .32, p > .75 for num-
ber of utterances). Since our task was relatively easy when the two partners had
matched views, thus they could finish one trial efficiently either with or without the
help of gaze. As expected, gaze became very helpful under the condition of mis-
matched views. In this situation, making the director’s gaze available to the matcher
resulted on average 61.2 seconds shorter time and 21 less utterances to finish a trial.
The improvement of collaboration efficiency is significant (v − g− versus v − g+,
t (7) = 4.97, p = .002 for time and t (7) = 3.91, p = .006 for number of utterances).
The results have confirmed our initial hypothesis that collaboration can benefit from
the shared gaze, especially when the partners have mismatched perceptions of the
shared environment.
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Table 3.4 ANOVA results for number of utterances

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square

F0 p-value

View 2610.1 1 2610.1 26.0 <0.0001

Gaze 979.1 1 979.1 9.7 0.0059

Interaction 850.8 1 850.8 8.5 0.0093

Row 2713.4 6

Column 619.9 3

Replication 552.8 1

Error 1808 18 100.4

Total 10134 31

Fig. 3.4 Interaction plot
between gaze and view

We further examined the accuracy of our participants in the referential commu-
nication tasks.1 All the pairs of participants made no mistake (100 % accuracy)
when the views were matched, and they achieved an average accuracy of 87.5 %
when the views were mismatched. The impact of the mismatched views on accu-
racy is marginally significant (paired t-test between the average accuracy of v+ and
v− within each pair of participants, t (7) = 2.0, p = .085). Four out of eight pairs
of participants achieved 100 % accuracy even under mismatched views. For those
other four pairs who made mistakes under mismatched views, shared gaze helped to

1The accuracy is measured by the ratio between the number of objects that were correctly named
by the matcher and the total number of objects to be named.
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improve the accuracy from 58.3 % to 91.8 %. This effect is significant (t (3) = 4.97,
p < .02).

3.4.2 Mismatched Perceptions

Under the mismatched views, it is more difficult for partners to collaborate in the
naming task that is otherwise easy to do when the views are matched. The partic-
ipants in our experiment spent 76.4 seconds longer and issued 28 more utterances
on average to finish a trial, when gaze from the director was not made available.
Even with the help of gaze, it still took an average of 20.0 seconds longer and 8
more utterances under mismatched views. Since we applied standard computer vi-
sion algorithms to generate the mismatched views, it implies that computer vision
errors can significantly impact the interaction between humans and artificial agents.
In general, there are two types of errors:

(1) Recognition error: an object or part of an object is correctly separated from
the background and other objects, but it is not correctly recognized due to the
insufficiency of machine recognition or partial segmentation.

(2) Segmentation error: three cases are considered as this type of error.

• Missing object: an object cannot be separated from the background, thus it is
unseen to the agent.

• Merging error: two or more objects cannot be separated from each other, e.g.
due to overlapping, and together they are treated as a single object.

• Splitting error: an object is split into separated parts, each of which is treated
as a different object.

Due to these computer vision errors, a shared perceptual basis of the environ-
ment is missing, and communication between partners becomes more challenging.
To overcome this difficult situation, artificial agents will need to integrate linguis-
tic information, situated environment and non-verbal modalities such as eye gaze.
Besides, error-tolerant approaches such as partial constraint satisfaction or inexact
graph matching (e.g. Chai et al. 2004; Liu et al. 2012) will need to be pursued.

3.4.3 Use of Spatial Language

Despite the difficulties of collaboration under mismatched views, the participants
in our experiments still performed reasonably well with an overall 87.5 % accuracy
rate. An interesting question here is how they strive to collaborate under mismatched
views. What strategies did they use to cope with the visual perception errors? By
examining our data, we found that all of our participants overwhelmingly relied on
using spatial language to ground referential communications. Here is one example
from our data:2

2In our transcripts, “D” stands for director and “M” for matcher.
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D: ok, the left, ah, upper there is a coffee cup named Ryan
M: this is Ryan
D: yes
D: top row left, um, actually in the middle of the top row is a small key named

David
M: the middle of the top row?
M: where is the position to compare to some scissors
D: it is immediately to the left of the scissors
M: and what is the name again
D: David
M: this is David
D: the scissors next to it are named Lauren
. . . . . .

Spatial language, although less preferred in normal situations, turned out to be the
spontaneously chosen strategy of all our participants in the experiments. Once the
participants had gone through some practice trials and figured out that those object-
properties based descriptions would not work well under the mismatched views,
they switched to relying on spatial language. As demonstrated in the above example,
spatial language, combined with the object-property descriptions, is a good strat-
egy to establish common ground and facilitate referential communication. There
are three types of spatial descriptions that were commonly used in our data:

• Relatum-based: the intended object (i.e. referent) is referred by its spatial relation
with respect to another known object (i.e. a relatum), e.g. “it is immediately to the
left of the scissors”.

• Group-based: the referent is identified by its relative position within a local group
of objects, e.g. “in the middle of the top row is a small key named David”.

• Environment-based: the referent is identified by its position with respect to the
global environment, e.g. “the left, ah, upper there is a coffee cup named Ryan”.

By properly issuing one of the three types of spatial descriptions based on the sit-
uation in hand, it can uniquely identify those objects with perceptual errors, which
otherwise would be impossible or ambiguous to be referred using object-property
based descriptions. Therefore, under the situation of mismatched views, spatial lan-
guage becomes the most reliable and effortless channel to establish common ground.
This possibly is the reason that spatial language became the best choice of collabo-
rating strategies in our experiments.

For developing situated dialogue agents, spatial language brings in both great
opportunities and challenges. Advanced spatial sensing technologies such as Mi-
crosoft’s Kinect can provide very accurate spatial representation of the environment.
Since every object uniquely occupies a space in the environment, spatial language,
if issued properly, can always be used to distinguish an object from all other objects
(Kriz et al. 2007). However, spatial language understanding is also a challenging
problem by itself. The use of spatial expressions presupposes underlying concep-
tual reference systems, or the so-called frame-of-reference (Levinson 2003). While
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a significant amount of research has been focused on frames of reference and per-
spective taking in spatial cognition (Schober 1993; Carlson-Radvansky and Logan
1997; Tversky and Lee 1998; Bryant and Tversky 1999) and more recently in human
robot interaction (Trafton et al. 2005; Moratz and Tenbrink 2006; Moratz 2006),
automated recognition of frames of reference still remains a challenging problem
(Tenbrink et al. 2007; Liu et al. 2010). Potential solutions to this problem perhaps
should be based on designing sophisticated dialogue management and integrating
non-verbal modalities such as eye gaze.

3.5 Conclusion

In situated human robot dialogue, robots and human partners have different capa-
bilities in perceiving the shared environment. Because of the lack of shared visual
basis of the environment, referential grounding is more difficult. To help design
robots to better engage in referential grounding, we conducted experiments to ex-
amine how human partners with mismatched visual perceptual capabilities collab-
orate with each other. In particular, our hypothesis is that when shared visual basis
is missing, eye gaze from partners can be especially important in the referential
grounding process. Our empirical results validated this hypothesis. When the nat-
urally occurred eye gaze of the director (i.e. the partner with a higher perceptual
capability) was displayed to the matcher (i.e. the partner with a lower perceptual ca-
pability) in real time, the efficiency and accuracy of accomplishing the collaborative
task were significantly improved. In addition, our results have further demonstrated
the critical need of spatial language processing in mediating shared basis. All these
findings have important implications for developing artificial agents that interact
with humans in the real world.
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Chapter 4
Automated Analysis of Mutual Gaze in Human
Conversational Pairs

Frank Broz, Hagen Lehmann, Chrystopher L. Nehaniv,
and Kerstin Dautenhahn

Abstract Mutual gaze arises from the interaction of the gaze behavior of two indi-
viduals. It is an important part of all face-to-face social interactions, including verbal
exchanges. In order for humanoid robots to interact more naturally with people, they
need internal models that allow them to produce realistic social gaze behavior. The
approach taken in this work is to collect data from human conversational pairs with
the goal of learning a controller for robot gaze directly from human data. In a small
initial data collection experiment, mutual gaze between pairs of people is detected
and recorded in real time during conversational interaction. A Markov model rep-
resentation of human gaze data is produced in order to demonstrate how this data
could be used to create a controller. We also discuss how an algebraic analysis of
the state transition structure of such models may reveal interesting properties of hu-
man gaze interaction. Results are also presented from a second, larger experiment in
which mutual gaze is detected offline using recorded video data for greater accuracy.
Trends in behavior linking gaze and speech in this data set are also discussed.

4.1 Introduction

The information revealed by the movement of the eyes during social interactions
is essential for the coordination of the complex social behaviors characteristic for
the human species. Compared to other primates humans have very visible eyes
(Kobayashi and Kohshima 1997, 2001). A possible explanation for this phenomenon
is the evolution of a new function of the human eye in close range social interactions
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as an additional source of information about the intention of the other (Tomasello
et al. 2007). In many studies it has been shown that apes and monkeys have only
very limited abilities to follow a human experimenters eye movement to locate a
hidden reward (Call and Tomasello 2003). Human infants on the other hand are
able to reliably follow eye movements from around 18 months of age (Moore and
Corkum 1998).

The importance of eye gaze especially during cooperative, mutualistic social in-
teractions shows in the trouble humans with autism have in understanding the inten-
tions of others which could be inferred from information contained in the eye region
of the face (Baron-Cohen et al. 1995, 1997; Ristic and Kingstone 2005). Gazing and
the ability to follow the eye gaze of others enables us to communicate non-verbally
and improves our capacity to live in large social groups. It serves as a basic form
of information transmission between individuals which understand each other as in-
tentional agents. Additionally, human eyes signal relevant emotional states (Baron-
Cohen et al. 1997, 2001) enabling us to interact empathically. More mutual gaze for
example is positive for engagement (Cook and Smith 1975), while too much can
be threatening or stressful (Mazur et al. 1980). As a consequence humans need eye
gaze information to feel comfortable and to function adequately while interacting
with others.

For most social interactions it is essential to coordinate one’s behavior with one
or more social partners. It is therefor not only necessary to transmit information,
but also to jointly regulate the eye contact in an continues ongoing process with one
another. This process is called mutual gaze (Argyle 1988). Mutual gaze involves
always more than one individual. Being able to interact with others in this fashion
is of great social importance from an early developmental stage and seems to be
the basis of and precursor to more complex task-oriented gaze behaviors such as
visual joint attention (Farroni 2003). Recent research in neuroscience suggest that
episodes of mutual gaze may “prime” the brain for joint attention (Saito et al. 2010).
Mutual gaze is also important for face-to-face communication. It is a component of
turn-taking “proto-conversations” between infants and caretakers that set the stage
for language learning (Trevarthen and Aitken 2001) and is known to play a role in
regulating conversational turn-taking in adults (Kleinke 1986; Novick et al. 1996).

Since gaze behavior and mutual gaze is such an inherent part of our perception
of others and of they way we interact with our social environment it seems impera-
tive for the development of artificial systems fulfilling a role in this environment to
understand the mechanisms of human gaze. This is especially true in cases where
the system that a person interacts with has a humanoid form that includes eyes, as
is the case with many interactive virtual agents or robots. Having the capability of
producing readable gaze behavior may lead humans to expect these agents to ex-
hibit natural and/or meaningful gaze. If these expectations are not met, the quality
of interaction with the agent may be reduced or the agent may even be rejected as
interaction partner.

There have recently been a number of studies on people’s responses to mutual
gaze with robots in conversational interaction tasks. But the models used to produce
the robot’s gaze behavior are typically either not based on human gaze behavior or
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not reactive to the human partner’s gaze actions. In work by Yoshikawa and col-
leagues, the robot responds to human gaze, but its gaze controller is not based on
human data and does not take any action to regulate the duration or frequency of mu-
tual gaze (Yoshikawa et al. 2006). In a story-telling robot study by Mutlu, Forlizzi
and Hodgins, a robot produces human-directed gaze behavior based on a model with
realistic timings that is not responsive to its audience’s gaze (Mutlu et al. 2006). Yu
and colleagues performed a temporal analysis of human gaze and speech behavior
from a human-robot interaction word teaching task with a robot that autonomously
performed a simple form of joint attention (Yu et al. 2010). While this study pro-
vides insight into patterns of human gaze at a robot, the simplicity of the robot’s
controller makes it unlikely that humans found the gaze interaction to be natural or
its dynamics to be similar to gaze between two humans.

We hypothesize that correctly modeling the social aspect of gaze is important to
achieving natural interactions between humans and agents that give gaze cues, and
there is some experimental evidence to support this. In a study of interaction with a
virtual agent, simple approaches to achieve high levels of mutual gaze through con-
stant attentiveness by the agent led to negative reactions from the people the agent
interacted with, demonstrating the need for a more realistic model (Wang and Gratch
2010). In a study comparing human tutoring behavior towards a human child and a
childlike virtual robot, Vollmer and colleagues used a gaze controller based on low-
level salience rather than the face-oriented nature of human social gaze (Vollmer
et al. 2009). In their discussion of their results, they suggest that the robot’s gaze
policy may have affected tutoring behavior, causing people to interact differently
with the robot because its gaze was noticeably dissimilar to a child’s. Gaze behavior
is part of conversational interaction, and the robot’s gaze policy will have an im-
pact on both the human’s gaze behavior and the impressions they form about the
agent they are interacting with. Robotic systems designed to learn language through
interaction by exploiting the structure of child-directed speech (e.g., work by Saun-
ders et al. 2010) could especially benefit from a gaze model that supports social
engagement.

In order to support natural and effective gaze interaction between artificial agents
and humans, it is worthwhile to first look at gaze behavior in human-human pairs.
We propose that by using eye tracking software to record dyadic interactions in a
setting with as few constraints as possible and computer programs to analyze the
collected data in an automated manner we can achieve a much higher resolution in
the examination of behavioral data than with usual methods like the manual coding
of video recordings. The interpretation of the results from these analyses should give
us the possibility to gain insight into how to build better gaze policies for agents that
interact with people.

There has been some previous research into using automated collection of
human-human gaze data to produce agent gaze. Raidt and colleagues conducted
a study into face-to-face real time communication and gaze direction (Raidt et al.
2007). However, people interacted through a pair of video displays, which, while
appropriate to their computer-agent model, unnaturally constrains people’s options
for movement (as opposed to co-located face-to-face conversation). Also, the speech
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task involved was one of repetition and memorization rather than natural conversa-
tion. Given these constraints, it is unclear whether the data collected is representative
of human conversational gaze behavior.

In this chapter we describe a set of studies in which we used an experimental
setup that allowed us to monitor the dyadic eye gaze directions of social partners
with a high degree of precision. To ensure the ecological validity of the data, the
participants of our study were encouraged to engage in a free casual conversation.
We will illustrate our automated approach to analyze this kind of behavioral data
and give a first insight on how to generate a gaze controller for robotic platforms
based on naturalistic gaze behavior.

Our goal is to underline the importance of a precise understanding of human
eye gaze during conversations for the development of more comfortable human-
robot interaction. We will show how the gaze and speech data can be represented by
Markov models that express interaction dynamics and how algebraic analysis these
models may reveal characteristics of the behavioral data.

4.2 Experiment 1

For our initial experiment, a real-time system for detecting mutual gaze between
conversation partners was designed. This system was used to collect data from the
conversational interaction of a small number of human-human pairs. The capabili-
ties and limitations of this system for detecting mutual gaze will be discussed. Data
collected from this experiment was used to produce a Markov model of the pairs’
interaction behavior. The algebraic analysis of this model suggests the use of new
mathematical approaches to assess the complexity of these types of social interac-
tions.

4.2.1 System

The automated detection of mutual gaze requires a number of signal-processing
tasks to be carried out in real time and their separate data output streams to be com-
bined for further processing. Note that if the goal of this work were solely to study
mutual gaze in humans rather than to provide input for a robot control system, there
would be no requirement for real-time operation. The video could be collected and
then analyzed later offline. The system is a mixture of off-the-shelf programs and
custom-written software combining and processing their output. The interprocess
communication was implemented using YARP (Metta et al. 2006).

ASL MobileEye gaze tracking systems were used to collect the gaze direction
data (see Fig. 4.1 for an example) (Applied Science Laboratories 2009). The output
of the scene camera of each system was put into real-time face-tracking software
based on the faceAPI library (Seeing Machines, Inc. 2011). Each participant also
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Fig. 4.1 ASL MobileEye gaze tracking systems were worn by both conversation partners during
the experiment

wore a microphone which was used to record a simple sound level (speech content
was not stored during this experiment). Timestamped data of gaze direction (in x, y

image pixel coordinates), location of the partner’s facial features (in pixel coordi-
nates), and microphone sound level were logged for each participant at a rate of
30 Hz. In order to synchronize time across machines to maintain timestamp accu-
racy, a Network Time Protocol (NTP) server/client setup was used. NTP is typically
able to maintain clock accuracy among machines to within a millisecond or less
over a local area network (Mills 1994).

4.2.2 Setup and Procedure

Experiment participants were recruited in pairs from the university campus. A re-
quirement for participation was that the members of each pair know one another.
This restriction was used because strangers have been shown to exhibit less mutual
gaze than people who are familiar with one another and because the conversational
task could be awkward for participants to perform with a stranger. The pairs were
seated approximately six feet apart with a desk between them. An example image
of the experiment setup can be seen in Fig. 4.2. Ten pairs of people participated in
the study.

Pairs were informed that they would engage in an unconstrained conversation for
ten minutes while multimodal data was recorded. The participants were asked to
avoid discussing upsetting or emotionally charged topics and given a list of sugges-
tions should they need one, which included: hobbies, a recent vacation, restaurants,
television shows, or movies. After filling out a consent form and writing down their
demographic information, each participant was led through the procedure to cali-
brate the gaze tracking system by the experimenter before the trial began. Because
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Fig. 4.2 Two participants engaged in an conversation during Experiment 1

the gaze trackers used calculate gaze direction as a 2 dimensional image coordinate
rather than as a 3 dimensional vector, it is important that the systems be calibrated
for an image plane that is at the correct distance (the distance from the wearable
camera to the partner’s face) in order to obtain the most accurate possible results.
This was achieved by using a board with numbered dots for calibration which was
held at the distance of the partner’s face while each participant was seated at the
table as they would be throughout the experiment. During the experiment, the ex-
perimenter stayed out of sight of the participants behind a divider in order to monitor
the computers running the tracking and data collection software.

4.2.3 Data Analysis

Of the ten pairs, five experienced errors during data collection that resulted in their
data being discarded from the study. The nature of these errors were: loss of gaze
tracker calibration due to the glasses with the camera mount slipping or being moved
by the participant, failure of the face tracker to acquire and track the face of a par-
ticipant, and failure of the firewire connection that was used to transmit the video
data to the computers for analysis. These failures reflect the difficulty of deploying
a real-time system for mutual gaze tracking due to the complexity of the neces-
sary hardware and software components. The five remaining pairs of participants
for whom complete face and gaze tracking data were available were used for data
analysis. They ranged in age from 23 to 69. Of the pairs, two were male-male, two
were male-female, and one was female-female.

The face location is reported by the face tracker in terms of facial features, specif-
ically the eyes and mouth. The location and dimensions of these features are used
to compute the bounding box for the face. The bounding box was computed based
on the location of the mouth and eyes and width of the eye. This heuristic method
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(rather than using the full contour defining the outline of the face) is easy to com-
pute and typically results in a box that covers the width of the face and the vertical
area of the face from the hairline to the chin. The location of the eyes are reported as
a diamond-shaped outer counter. From these points, the width of each eye is com-
puted. The larger of these two widths is used to define the face bounding box as: one
eyewidth past the outside corner of each eye, three eyewidths above, and 1.5 eye-
widths below the bottom of the mouth. The facial feature contours and the bounding
boxes computed from them can be seen in Fig. 4.6.

The data was classified into high-level behavioral states depending on where
both participants were looking and who was speaking at each timestep. In order to
generalize across multiple interactions between different partners, each member of a
pair was assigned an identifier based on their gaze behavior over the entire duration
of experimental data selected for analysis. The pair member that looked the most at
her/his partner’s face during their interaction will be referred to as the “high” gaze
participant and the partner with the lower level of face-directed gaze will be referred
to as “low” (in all pairs observed, one participant looked at their partner noticeably
more than the other). The gaze states and their descriptions are given below. Note
that the states are mutually exclusive.

• Mutual—Mutual gaze, as defined as both participants’ looking at one another’s
face area

• At Low—The high gaze level partner looks at the face of the low gaze level
partner while they look elsewhere

• At High—The low gaze level partner looks at the face of the high gaze level
partner while they look elsewhere

• Away—Both partners look somewhere other than their partner’s face
• Unknown—Gaze state could not be classified due to missing gaze direction or

face location data

It should be noted that the “Unknown” state may be caused by loss of gaze or
face tracking for one of the participants at a timestep. There are a number of reasons
this may occur: intermittent gaze tracking failure caused by gaze directed outside
the field of view of the system, intermittent face tracking failure caused by rapid
movement of the scene image (such as when a participant nods their head vigor-
ously), or the conversation partner’s face being absent from the scene image due
to a participant’s head direction. This state measures a combination of system er-
ror and participant behavior that cannot reliably be distinguished between using the
current approach. Tracking participants’ head orientations and their location in the
shared 3D space would improve the system’s ability to determine whether missing
face location data was due to tracking failures or to turning the head away from the
conversation partner.

The data was analyzed according to speaker role as well as gaze behavior. Which
participant was speaking at a particular timestep was determined by computing the
sum over a one-second wide sliding window for the sound level recorded from each
participant’s microphone and assigning the participant with the higher sum as the
speaker. This was intended to smooth over brief pauses while speaking and detec-
tion errors. While the sound recording levels for the microphones were adjusted for
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each speaker at the start of an experiment, the microphones still sometimes failed
to detect quiet speech. These results most likely have classified some parts of both
speakers’ conversational turns as times when neither are speaking. In the second
experiment, we revised our method of data collection for speech in order to improve
its accuracy and stored full audio for later analysis. The high level states used for
analysis were created by combining the gaze states described above with additional
state information about which participant in the pair was speaking as follows:

• Neither Speaking—Neither participant is speaking for the last second
• High Speaking—High gaze level participant is speaking more over the last second
• Low Speaking—low gaze level participant is speaking more over the last second

There are fifteen behavioral states in all.

4.2.4 Results

For each pair, the contiguous two minute period of conversation with the lowest
amount of missing data was selected for analysis. The overall amount of time spent
in each state by each pair is shown in Fig. 4.3. It can be seen that the amount of time
spent in each gaze state varies a great deal among the pairs. This is because their
behavior was likely determined by who was speaking as well as individual differ-
ences based on personality and characteristics of their interpersonal relationship. In
the second experiment, we collect data from a larger set of participants so that we
get a more clear picture of what constitutes average gaze and speech behavior in this
conversational situation.

4.2.5 Markov Model

As a method of analysis and as a first step towards using this data to implement
a gaze controller for a robot, we created a Markov model of the interaction using
data from all five pairs. A Markov model (or Markov chain) is a graphical proba-
bilistic model that describes the state transitions of a system or process (Meyn and
Tweedie 1993). The same behavioral gaze state classifications for each timestep
of data that were described in Sect. 4.2.3 and analyzed in terms of percentages in
Sect. 4.2.4 were used as the discrete states of the Markov model. This model is
shown in Fig. 4.4. Each gaze state of the interaction is a node in the model. The
chance of reaching any other state from a given state at the next timestep is given by
the probabilities on the outgoing edges from that state. The probability of staying in
the same state at the next timestep is the probability of the state’s edge that points
back to itself. These self-transitions cause the time spent in each state to follow a
geometric distribution, which agrees well with the form of the data observed. In
order to improve the readability of the model and emphasize its major dynamics,
transitions of less that 0.01 probability are not shown.
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Fig. 4.3 The percentage of time spent in each gaze state for each speech state for all of the con-
versational pairs in Experiment 1

It can be seen in Fig. 4.4 that the gaze states in which the same member of the
pair is the speaker are highly connected. This reflects the fact that the gaze behavior
varies at a faster timescale than the conversational turn. The model’s connections
show that there may be different dynamics in the gaze behavior depending on who
is speaking. It would be difficult to draw generalizable conclusions from this small
data set, but this type of modeling provides us with a tool to examine the way that
gaze behavior changes over time during an interaction.
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Fig. 4.4 Markov model of the gaze state transitions for all the conversational pairs in Experi-
ment 1. A node’s color and its ending label letter indicates the speaker role for its gaze state: neither
speaking (“N”, blue), high gaze partner speaking (“H”, yellow), or low gaze partner speaking (“L”,
green)
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4.2.6 Algebraic Analysis

It is possible to explore the interactions for hidden structure algebraically. Krohn-
Rhodes Theory (or algebraic automata theory) established already in 1965 how to
decompose any deterministic finite-state automaton into a series-parallel product of
irreducible components (Krohn and Rhodes 1965), founding a field that has grown
in mathematical sophistication since then. One of its founders, John Rhodes, sug-
gested early on to apply the theory to the analysis of interaction, e.g. to analyze
games, marriages or other interpersonal relationships (Rhodes 2009). This has not
yet been carried out to date, but the methods apply equally to analysis of non-verbal
interactions or other types of human-human interaction. Only in the last few years,
however, have computational tools to carry out such a decomposition become avail-
able (Egri-Nagy and Nehaniv 2005, 2008, 2011). Markov models (such as the ones
reflecting the dyadic gaze interactions) and non-deterministic automata in general
can be converted to deterministic models using a standard power set construction,
making it possible to use these decomposition methods to explore their structure.

Using this method, our preliminary analysis shows that pair 4’s interaction is
more complex than that of other dyads: the number of series levels needed to decom-
pose the automaton corresponding to their interaction (using the holonomy method)
is nearly twice that required for the other dyads, and also unlike the other pairs
contains a non-trivial group.

The behavior of pair 4 is clearly distinct from the other pairs (as can be seen in
Fig. 4.3) in that the overall amount of mutual gaze during the interaction is far lower,
though we cannot yet characterize what relationship (if any) there is between this
distinction in behavior and the observed differences in complexity. Pair 4 was one
of the two male-female pairs we observed, and the most notable difference between
them and the other groups was that they both indicated that they knew each other
only “a little” on the questionnaire, while in all other pairs at least one participant
answered that they knew the other “fairly well” or “very well”. There is far to little
data to determine whether this may play a role in the behavior differences observed,
but it is an area for further investigation. We are currently exploring what aspects of
interaction are reflected by this algebraic complexity.

4.3 Experiment 2

The first experiment demonstrated the power of using automated methods to detect
mutual gaze, allowing real-time detection and providing data that had a high tempo-
ral resolution to capture the quickly changing dynamics of gaze interaction. How-
ever, the system employed had limitations both in tracking performance and in the
ability to accurately detect speech. Rather than creating an entirely real-time system
as in the earlier experiment, in the second experiment the face tracking was per-
formed on the video stream offline after the completion of the experiment. This was
done in order to ensure the best possible accuracy from the face tracking library, as
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it would then not be restricted by the computational constraints of real-time perfor-
mance. Additionally, high quality directional microphones and more sophisticated
analysis of the audio signal were employed.

The size of the initial experiment and the short time period of analysis also made
it unreliable to generalize the results from individual interactions. A larger number
of participants were studied and longer conversations were analyzed in this second
experiment in order to begin to identify common characteristics of conversational
gaze and speech interaction.

4.3.1 System

ASL MobileEye gaze tracking systems were used to collect the gaze direction data
as in the initial experiment (Applied Science Laboratories 2009). Video of the scene
and eye-directed cameras, as well as gaze direction data (in x, y image pixel coordi-
nates) indexed by its corresponding video frame, was logged by the gaze track-
ing systems’ proprietary software. The output of the scene camera of each sys-
tem (which is forward-mounted on the glasses worn for each system to capture
the area the wearer is facing) was later input into face-tracking software based on
the faceAPI library (Seeing Machines, Inc. 2011). The face-tracking software out-
put facial feature coordinates in image pixels that were later used to compute a
face bounding box, indexed by the video frame number. This allowed the conversa-
tion partner’s face to be located in the video images from each participant’s scene
camera and compared to their gaze direction so that face-directed gaze could be
detected. Two directional microphones were also arranged in such a way that each
only recorded the speech of one of the participants. These microphones were used
to record the audio track for each gaze tracking system’s video.

4.3.2 Setup and Procedure

Experiment participants were recruited in pairs from the university campus. The
only requirement for participation in this study was that a participant be comfortable
having a fifteen minute conversation in English with their experiment partner. The
pairs were seated approximately six feet apart with a desk between them. After
giving the instructions the experimenter disappeared behind a blind and was not
present during the entire session.

The participants were informed that they would engage in an unconstrained con-
versation for fifteen minutes while multimodal data was recorded. The participants
were also informed that they could discuss topics of their own choice and given a
list of suggestions should they need one, which included: hobbies, a recent vacation,
restaurants, television shows, or movies. Participants filled out a consent form and
an additional form collecting their demographic information and level of familiarity
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Fig. 4.5 The setup for the second experiment was similar to that of the first, with the addition of
the use of directional microphones to capture each participant’s speech

with their partner. Each participant was led through the procedure to calibrate the
gaze tracking system by the experimenter before the trial began. The setup for the
second experiment can be seen in Fig. 4.5.

In order to allow the video streams from the two gaze tracking systems to be
correctly aligned for analysis, the experimenter clapped his hands over the table be-
tween the participants (with the handclap visible in both systems’ scene cameras) at
the beginning and end of the experiment trial. During the course of the conversation,
the experimenter stayed behind a divider out of sight of both participants so as not
to be a source of distraction during the conversation. At the end of the session, par-
ticipants were ask to complete a short paper questionnaire, the Ten Item Personality
Inventory (TIPI) (Gosling et al. 2003), in order evaluate their personality dimen-
sions (this data is not used in the analysis described in this chapter). Thirty-seven
pairs of people participated in this experiment.

4.3.3 Data Analysis

For the analysis, the data from 34 of the 37 pairs were used. Two pairs had to be
excluded due to technical difficulties in the calibration process leading to the early
termination of the experiment. One pair was excluded from analysis because of
poor performance by the face tracking software due to large amounts of rapid head
movement during conversation. Compared to its real-time performance, the offline
performance of the face tracking library used was more robust to problems caused
by rapid head movement by the participant wearing the camera. This is because
more computationally intensive methods could be used without the real-time oper-
ation requirement. It is possible that real-time tracking would be made easier in the
presence of head movement by the use of cameras with a higher frame rate (because
there would be smaller differences in the field of view from frame to frame), but this
system was restricted to the 30 Hz framerate of the gaze tracking system used.

The gaze data for a participant and the face tracking data for their conversation
partner can be easily associated for each frame of scene camera video of the exper-
iment conversation. This produces an individual data file of aligned gaze direction
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and facial feature location data, expressed in pixel coordinates and indexed by frame
number.

The data was analyzed according to speaker role as well as gaze behavior, as in
the first experiment. Due to the limitations of the low quality microphones and crude
approach to determining the speaker in the first experiment, an alternative method
was used in the second. Each speaker’s audio was recorded onto their video stream
for a more thorough later analysis. The timesteps at which each participant was
speaking were determined using Praat, a software tool commonly used for audio
speech analysis (Boersma and Weenink 2011). A Praat script1 was used to identify
periods of silence between a speaker’s utterances based on pitch and sound level
information. The time of each frame of video data was compared to script output
in order to determine whether it fell into a time period of speech or silence. This
information was added to the gaze and face location for that frame in the speaker’s
data log. Which participant was classified as speaking at a particular timestep was
determined by computing the max sum over a one-second wide sliding window for
the speech signal for each speaker, as it was in the first experiment.

Because we are interested in measuring mutual gaze, the data for both individuals
in a conversational pair must be combined so it can be determined where each was
looking during the interaction. It is critical to correctly align the face and gaze data
for each participant with their partner’s so that data from the video frames recorded
closest together in time are combined for analysis. This alignment was achieved
by manually locating the frames in which handclaps occurred at the start and end
of conversation in each partners’ scene camera video files. Aligned frames from a
conversation with their gaze and face tracking data overlaid are shown in Fig. 4.6.

The data was classified into the same high level behavioral gaze and speech states
used in Experiment 1. The features making up these states are summarized in Ta-
ble 4.1.

4.3.4 Results

For each pair, the contiguous twelve minute period with the smallest amount of
missing data was selected for analysis. The average percentage of time spent in
each state for all of the experiment pairs analyzed are shown in Fig. 4.7.

It can be seen in Fig. 4.7 that on average there is a large difference in the per-
centage of time that the high gaze and low gaze participants look at their partner.
On average, during an interaction one participant will be exhibit more face-directed
gaze. Because mutual gaze can only occur when face-directed gaze is reciprocated,
we hypothesize that the low gaze participant is the conversation partner that actu-
ally controls the amount of mutual gaze that occurs during a conversation. The low
gaze participant in a pair can keep the amount of mutual gaze to a level that they

1This script was developed by Frank Kuegler and can be found at http://www.ling.uni-potsdam.de/
~kuegler/docs/praattut/mark_pauses.script.

http://www.ling.uni-potsdam.de/~kuegler/docs/praattut/mark_pauses.script
http://www.ling.uni-potsdam.de/~kuegler/docs/praattut/mark_pauses.script
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Fig. 4.6 Aligned video frames from the conversation between a pair of participants in Experi-
ment 2. The facial features detected and face bounding box are shown. The gaze location is dis-
played as a white circle with a black circle inside it. The blue dot in the upper left of the right
image indicates that the other partner is speaking

are comfortable with by less frequently reciprocating the face-directed gaze of their
partner. We expect that the way in which individual gaze behavior produces differ-
ent amounts of mutual gaze during different conversations is likely to be influenced
both by conversational context and by the interaction of the individual traits of the
conversation partners. Identification of these factors and the exploration of their im-



56 F. Broz et al.

Table 4.1 Definition of the features of the behavioral states for the experiment

Partner ID

High Performed the most face-directed gaze

Low Gazed less at their partner’s face

Gaze state

Mutual Looking at each other’s face

At Low High looks at Low’s face, Low looks away

At High Low looks at High’s face, High looks away

Away Both partners look away

Unknown Missing gaze or face data

Speech state

High Speaking (HS) High gaze participant is speaking

Low Speaking (LS) Low gaze participant is speaking

Neither Speaking (NS) Neither participant is speaking

Fig. 4.7 The average percentage of time spent in each gaze state for all conversational pairs in
Experiment 2, shown with 95 % bootstrap confidence intervals

pact could give insight into how robot controllers that can establish comfortable
mutual gaze with a variety of individuals in different situations should be designed.

An important issue in designing robots that interact with people is their perceived
social dominance. Depending on the application and conversation partner, an agent
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that behaves in a socially dominant manner may or may not be desirable. It can be
seen in the data set that while the amount of mutual gaze was similar whether the
high gaze or low gaze partner was speaking, the high gaze participant exhibited more
unreciprocated face-directed gaze at the low gaze participant when they were listen-
ing to them (AtLow_ LS) than when they were speaking themselves (AtLow_HS).
Based on studies linking gaze while speaking versus listening to social dominance
as in Dovidio and Ellyson’s visual dominance ratio (Dovidio and Ellyson 1982), this
suggests that the high gaze partners of a pair may on average be less socially dom-
inant than the low gaze partners. The fact that the pair members’ behavior did not
follow the same pattern on average demonstrates that factors such as conversational
role or the relationship between the conversation partners has an impact on each
member’s gaze behavior in relation to the other. Considering these differences may
be important for designing controllers that exhibit natural-seeming mutual gaze.

4.4 Conclusions

In this chapter, a system for the automated detection of mutual gaze was described,
and results were presented from two experiments measuring natural conversational
interactions between human pairs. The real time system used in the first experi-
ment is designed not purely for analysis, but to demonstrate that mutual gaze can be
detected for use as input to a controller for a humanoid robot in the future. Prelim-
inary approaches to estimating the current speaker role based on the sound level of
speech were also employed in order to associate gaze state with conversational state
and investigate the relationship between gaze behavior and conversational turns.

As a demonstration of how we intend to use this human-human gaze data to pro-
duce a robotic gaze controller, we created a Markov model from the data collected
and discussed how it captures the gaze behavior dynamics of the human conversa-
tional pairs. These models allow the tracking of gaze and speech behavior. Related
Markov models that allow for action selection, such as Markov decision processes
(MDPs) or partially observable Markov decision processes (POMDPs), could be
used by a robot to choose its conversational gaze behavior so as to optimize cer-
tain desirable characteristics of an interaction. Additionally, we present preliminary
results from an algebraic analysis of the structure of the Markov model obtained
from the data and discuss how this type of analysis may be used to computationally
investigate qualities of the gaze interaction.

In response to the limitations of the original system’s real-time operation, a re-
vised approach based on offline analysis and employing improved audio processing
was designed. The system was used to collect data in a larger second experiment fo-
cused on accurately measuring characteristics of human-human conversational gaze
behavior. Results showed differences between the gaze behavior of the conversation
partners making up a pair that may relate to who was the dominant partner in the
conversation. Our results demonstrate that different conversational pairs may en-
gage in very different amounts of mutual gaze. Understanding the characteristics of
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the participants or the conversation itself that may lead to these differences and the
relationship between the amount of mutual gaze and the quality of interaction for a
particular conversational pair are major future directions for this work.

There are still limitations to the technical approach used that could be addressed
in order to improve the accuracy of the system, primarily that the ability to detect
mutual gaze is limited by the accuracy and robustness of the gaze tracking and face
tracking systems employed. The limited field of view of the gaze tracking systems
(which leads to missing data) could be overcome by using a more costly custom
camera setup. In terms of speech data, the approach currently employed is very
simple. While determining which partner is currently speaking automatically is rel-
atively straightforward, there is other information about the conversational state that
is more difficult to obtain through automated means. For example, it is not straight-
forward to determine which speaker’s “turn” it is in the conversation, because a
person might speak to indicate attention (backchanneling) or they might fall silent
during the middle of a turn. The semantic content of speech is also difficult to de-
termine without manual coding, and our work does not begin to address possible
relationship between gaze and types of speech acts. Still, this work demonstrates
the feasibility of the automated detection of mutual gaze and shows how mutual
gaze behavior differs between different pairs of people. These differences highlight
why it is necessary to design robot controllers that can engage in mutual gaze by
detecting and adapting to the gaze behavior of their human partner.
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tegration and Transfer of Action and Language in Robots) funded by the European Commission
under contract number FP7-214668.
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Chapter 5
REGARD: Remote Gaze-Aware Reference
Detector

Marc-Antoine Nüssli, Patrick Jermann, Mirweis Sangin,
and Pierre Dillenbourg

Abstract Previous studies have shown that people tend to look at a visual referent
just before saying the corresponding word, and similarly, listeners look at the refer-
ent right after hearing the name of the object. We first replicated these results in an
ecologically valid situation in which collaborators are engaged in an unconstrained
dialogue. Secondly, building upon these findings, we developed a model, called
REGARD, which monitors speech and gaze during collaboration in order to au-
tomatically detect associations between words and objects of the shared workspace.
The results are very promising showing that the model is actually able to detect cor-
rectly most of the references made by the collaborators. Perspectives of applications
are briefly discussed.

5.1 Introduction

When two people discuss together about some shared visual content, gazes and
speech become coupled. Indeed, we tend to look at the things we are talking about
in a methodical way. More precisely, it has been shown that, during speech pro-
duction and speech comprehension, eye-movements are closely related to verbal
reference (Griffin and Bock 2000; Griffin 2001; Griffin and Oppenheimer 2006;
Zelinsky and Murphy 2000; Meyer et al. 1998; Allopenna et al. 1998; Richardson
and Dale 2005). For example, the pronunciation of a word referring to an object
present in the visual field of the speaker is generally preceded, around one second
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before, by a fixation on the corresponding object. Similarly, but to a lesser extent,
a person hearing the name of a visually reachable object will often fixate the cor-
responding object a short time after having heard this name. In this work, we first
replicated previous results in a ecologically valid situation. This is an important step
if we consider that they were generally found in highly controlled settings. Second,
based on these results, we developed an algorithm, called REGARD, that aims to
identify automatically verbal references present in the dialogue of two collaborators
working on a shared workspace. The principle of this algorithm is that, if a word,
which is a verbal reference to a visual object, is pronounced several times, the cor-
responding speaker and listener’s gazes before and after these utterances should be
essentially distributed on the referenced object. Hence, by monitoring the gaze data
of the speaker (respectively the listener) before (respectively after) each pronounced
word and by computing how well they match over multiple pronunciations of the
same word, we should be able to decide whether the word is a reference or not and
if it is, to which object it is directed. We developed a model from this principle and
we tested its effectiveness to detect automatically from a raw transcribed dialogue
the words that are verbal references and to which object they refer to.

5.2 Background

The model developed in this contribution is largely based on the tight inter-coupling
between gaze and speech. Hence, in the following section, we review the main re-
sults concerning this interplay.

5.2.1 Gaze and Speech

Several previous studies show that eye-movements may be related to collaborative
activities. Indeed, it appears that gaze is largely influenced by speech which is at the
heart of collaboration. Gaze appears to be used to monitor the environment while
speaking or listening. More specifically, while speaking, there exists an eye-voice
span which is a time delay between gazing at some specific object and uttering the
name of that same object and conversely, while listening there is a voice-eye span
which is the time between hearing the name of an object and the first gaze on that
object.

For example, in a simple picture description task (Meyer et al. 1998), subjects
started to gaze at the object to be named 700 ms before starting their utterance. Also
they started to look at the second object to be named 300 ms before their utterance.
In a more realistic situation, it has been shown in a simple sentence formulation
experiment that speakers will to tend to look at the things they are referring to just
before pronouncing the corresponding words, in average 900 ms before the word
onset (Griffin and Bock 2000). In this same study, Griffin and Bock showed that
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this effect was not significantly affected by variations of causal structure (active or
passive) of the formulated sentence. On the opposite the order of mention was the
main factor explaining what was fixated when. These results suggest that the visual
scene is used as a kind of cognitive support during sentence formulation. Other
studies (Griffin 2001; Griffin and Oppenheimer 2006) show that the durations of the
fixations on the referents is affected by the difficulty of retrieving the corresponding
word and also it is increased when speakers are forced to use an inaccurate label.
This latter result tends to show that these gazes on referents preceding speech are not
simple aids to find the word but rather a cognitive support for sentence construction.

In a similar way, Allopenna et al. (1998) have shown that in a simple task in
which people have to find a referenced object among four objects, they gaze at the
referent object some time after hearing the corresponding noun. More precisely, the
probability of fixating a referent becomes larger than the probability of fixating any
other object 500 ms after the onset of the word and becomes close to one 800 ms
after the onset of the word. This is of course a very simple situation not comparable
to dialogue but this gives a first insight on the time required for gaze to follow
perception of speech. We can however expect longer lags in more realistic, more
complex situations in which the number of objects is larger, as this could require
some time to find the object of interest.

The existence of those systematic spans between voice and gaze leads to a lagged
coupling of the gazes of two interlocutors, as both the speaker and the listener mon-
itor the objects that are referenced. Using cross-recurrence analysis,1 Richardson
and Dale (2005) showed that there exists a coupling between speaker’s gazes and
listener’s gazes. More specifically, the listener tends to look at the same objects as
the speaker with a delay of 2 seconds. Moreover, the level of this coupling appears
to be related with the level of understanding of the listener, thus suggesting that this
monitoring mechanism is important for the comprehension process. We can also
note that this 2-seconds lag is coherent with the spans found in the studies cited
above. Indeed, this lag should correspond to the sum of the speaker’s span and of
the listener’s span, which is almost the case. Actually, the sum of the individual
spans is slightly lower than 2 seconds which could be explained by a difference of
complexity of the visual field.

5.2.2 Motivations

Building upon these findings, we investigated the eye-voice as well as the voice-
eye spans from the eye movement and verbal interactions data collected during a
computer-supported collaborative learning experiment. First, we replicated these
results in our specific situation which contrasts a lot with the strictly controlled
experimental settings used in the studies presented above. Indeed, our participants

1Cross-recurrence is a general measure that quantifies the similarity or the coupling between two
dynamical systems.
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were involved in a problem solving dialogue and a far more complex task, namely
concept-mapping, in terms of social and cognitive processes. Hence, while we ex-
pect less systematic results, we believe that replicating these results in more complex
and ecologically valid settings may provide insightful results and perspectives, if we
keep the richness and complexity of the underlying processes in mind. Second, by
using the data from the same experiment, we developed and tested a model that takes
advantage of these phenomena in order to automatically detect which words are ver-
bal references to objects and also which objects are referenced by these words. This
model takes as input the transcribed speech of the collaborators, the list of objects
present in the visual field and the synchronized streams of eye-movements of both
partners. From these data, it categorizes the words of the speech into two categories,
the common words, i.e. words which are not references to any of the object, and the
reference words and for each reference word, it indicates the corresponding object.
Such a model is a promising step for the design of multi-modal intelligent user in-
terfaces, as it takes advantage of the natural relationships that exist between speech
and eye-movements. This contrasts with classical speech or gaze-sensitive user in-
terfaces in which the user has to behave in a specific predefined way (for example,
by pronouncing specific keywords or by looking at specific places intentionally).
On a more practical side, the proposed model could be used to annotate in real-time
the visual field of collaborators in order to improve their interaction or to produce
a visual output of their verbal interaction. Finally, this model has a strong potential
for applications in artificial intelligence and robotics. Indeed, it could be used within
a larger system that aims to identify objects, understand semantic relationships and
communicate with humans.

5.3 Method

The experiment was conducted primarily to study the effect of a specific collab-
orative tool on the collaboration between two students learning together a com-
plex topic. However, we will not describe it here in details as it is not the focus of
this work but interested readers may refer to Sangin et al. (2011, 2008) and Sangin
(2009) for more information about the experiment and the main results.

5.3.1 Task Description

The task consisted in building collaboratively a concept-map2 to synthesize a text
about “Neural transmission” read by both of the subjects individually beforehand

2Concept-maps are diagrams consisting of boxes representing concepts and labeled links repre-
senting relations between concepts.
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Fig. 5.1 Screenshot of the experiment. We can see the beginning of a concept-map built by the
collaborators. Note that the labels are in French because the subjects were French-speaking

(see Fig. 5.1). The goal was to understand the concepts presented in the text by shar-
ing their knowledge while constructing the concept-map. This consisted in drawing
boxes (yellow boxes in Fig. 5.1) representing the main concepts of interest (neu-
ron, axon, action potential, etc.) as well as connections between concept-boxes with
linking phrases (“is a”, “contains”, “is produced by”, . . .) to relate the concepts (see
the arrows and the central white box in Fig. 5.1). Both subjects could modify the
concept-map and the changes were immediately visible to their peer. They could
speak to each other which was necessary to complete the task correctly. Dialogue
excerpts can be found in the Appendix.

5.3.2 Participants

Sixty-four French-speaker first semester university students (18 women and 46
men) were recruited and remunerated to participate to the study. Learners with a
high degree of knowledge about the instructional material (i.e. the neural trans-
mission) were filtered through a prior knowledge test and were excluded from
the sample. Peers within same pairs did not know each other before the experi-
ment.
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5.3.3 Procedure

The two subjects were installed in front of two identical computer setups running
the instructional material. The instructional material consisted of an explanatory text
about the phenomenon of neural transmission, based on textbook materials and de-
veloped with the help of two experts of the domain. During the collaborative phase,
we used an online concept-map building software, CMapTools.3 The experimental
session lasted about 90 min and consisted of six phases including two main learning
phases: an individual explanatory reading phase and a remote collaborative concept-
map building phase. These phases were:

1. Prior knowledge verification test. This was used to detect and remove potential
experts of the domain.

2. Individual text reading. Subjects had 12 minutes to read and learn individually a
text about neural transmission.

3. First learning test (pretest). A multiple-choice questionnaire to measure what
they learn during the individual reading phase.

4. Collaborative concept-map instructions. Instructions about the collaborative
phase with a short video tutorial on how to use the concept-map tool.

5. Collaborative concept-map building. Subjects had 20 minutes to build together a
concept-map about the text they read. They could speak to each other through a
headset.

6. Second learning test (posttest). It was similar to the pretest but with questions in
a different order. It was used to assess what they learn during the collaborative
phase.

5.3.4 Data Collection and Analysis

Gaze data of both participants were collected using two Tobii1750 eye-trackers.
Speech was recorded by using a video-conferencing tool and was transcribed af-
terwards. In addition, all actions on the concept-map were also logged by the col-
laborative concept-mapping tool. These were logged within the same file and with
the same time base for both subjects. A post-synchronization was performed first to
match the time of both gaze streams with the time of the concept-map by finding
correspondences between specific concept-map events and input events logged by
the eye-tracker software (see Nüssli 2011, Chap. 4). A second post-synchronization
was also accomplished to match the time of the audio recordings and the time of
the gaze data. Finally, a spatial synchronization was accomplished as the two users
could scroll independently in the shared workspace, which made their gaze coordi-
nates not directly comparable.

3IHMC: http://cmap.ihmc.us/.

http://cmap.ihmc.us/
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In order to analyze the precise timing between verbal references and gazes on the
referenced objects, we had to identify within the whole speech corpus every time a
reference to an object is made. Actually, the specific situation of this experiment
greatly facilitates this process as the objects referred to are the concepts (yellow
boxes in Fig. 5.1) and the linking phrases (white box in Fig. 5.1) drawn and labeled
by the collaborators. Thus, we could consider, as an approximation, that when one
of the collaborators pronounces the label of one of those concept-map objects, she
is actually referring to this latter object. Hence, we simply matched each word of
the transcript with the labels of all the objects present when the word was uttered.
We used a fuzzy matching in order to prevent mis-detection due to typos or to very
small differences between uttered words and objects labels.

Secondly, we also needed to have the precise onset for all detected verbal refer-
ences. Indeed, the original speech transcription was not segmented at every uttered
words but rather for utterances consisting of between 5 and 30 words. Hence, it
was necessary to segment more precisely for those verbal reference words. We per-
formed this step in two different ways. First, we manually segmented the verbal
references of two selected dyads (11.2 % of the overall corpus). This consisted in
selecting for each of the references the right portion of the corresponding audio
file by using a transcription software (we used Transcriber4). This process is rel-
atively easy and could not lead to important mistakes. Hence, a single person did
this audio segmentation task alone. This resulted in 49 references for the first pair
and 107 references for the second pair. Hence, we obtained a set of 156 verbal ref-
erences for which we knew precisely the timing and thus, allowing us to perform
precise analyses. In a second step, we developed and used an automatic transcript-
speech alignment software using the Sphinx speech recognition library.5 Since the
speech data was in French, we had to use a language model, as well as an acous-
tic model, for French developed by LIUM (Deléglise et al. 2005). This engine was
used to segment the original speech transcription into individual words in order to
get the onsets for each individual word. This technique was applied on the dialogue
of the 18 pairs for which we had workable data (i.e. sufficient quality speech data
and eye-gaze data) and we detected a total of 431 verbal references with a mean of
23.9 references per pair. While this automatic solution allowed us to get much more
data, it has the drawback that the resulting data are more noisy. Indeed, first, not all
words are detected by the speech recognition engine. Second and more importantly,
some words are incorrectly detected and consequently, get misaligned, thus result-
ing in incorrect onsets. Finally, even for correctly detected words, the alignment is
sometimes not very precise and can lead to difference of several hundredth of mil-
liseconds with the actual onset. To sum up, the results of this initial data processing
are two sets of words which are verbal references with their precise onsets as well as
their corresponding object in the concept map. The first set contains 156 references

4http://transag.sourceforge.net/.
5CMU-Sphinx (http://cmusphinx.sourceforge.net/html/cmusphinx.php) is an open-source general
speech recognition engine developed at Carnegie Mellon University.

http://transag.sourceforge.net/
http://cmusphinx.sourceforge.net/html/cmusphinx.php
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and results from a manual segmentation of the words. It offers data of high qual-
ity with only correct and precise word onsets. The second set favor quantity over
quality and contains 4 times more references (431) but potentially with more noise.

5.4 Eye/Voice Spans Analyses

As outlined above, our first contribution concerns the replication of the results found
in the literature about the link between speech and gaze. This is the foundation upon
which the REGARD model (see Sect. 5.5) is based.

5.4.1 Data Analysis

We analyzed for each verbal reference when, relatively to the reference onset, do
fixations on the referred object occur. More precisely, our goal was to estimate the
time, relative to the word onset, for which there is most chances that the speaker,
respectively the listener, look at the referenced object. To do so, we computed the
ratio of fixations falling on the referred object for different values of eye-voice span.
We define the set V , of size NV , of all verbal references, with vi being an object
referenced at time ti . We also define the object fixated by the speaker at time t as
GS(t). Then, for a given eye-voice span δS (called speaker’s span hereafter), the
corresponding ratio of speaker’s fixations on referenced object RS(δS) is computed
according to the following formula:

RS(δS) =
∑

vi∈V 1GS(ti−δS)=vi

NV

(5.1)

where 1p is indicator function returning 1 when predicate p is true and 0 otherwise.
Similarly, we define the object fixated by the listener at time t as GL(t). And we can
define, for a given voice-eye span δL, the corresponding ratio of listener’s fixations
on referenced object RL(δL) (called listener’s span hereafter) with formula:

RL(δL) =
∑

vi∈V 1GL(ti+δL)=vi

NV

(5.2)

We used these formulas to produce two curves. The first represents the proportion
of speaker fixations on the referenced object according to the time relative to the
verbal reference onset and the second represents the same thing but for the listener’s
fixations.

5.4.2 Results

We computed the ratio of matching fixations for the speaker and the listener sepa-
rately for various spans between −10 s and +10 s using Eqs. (5.1) and (5.2). We
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Fig. 5.2 Average gaze ratio on referenced object for different time-spans from the verbal reference
onset for manually segmented verbal references

performed this computation both for the manually segmented data and the automat-
ically segmented data (see Sect. 5.3.4). With regards to the hand-segmented verbal
references produced by the two selected dyads, we plotted the gaze ratios of the
speakers and the listeners for different time-spans in Fig. 5.2. The origin of the
graph has a span of 0, which corresponds to the onset of the verbal references. Con-
sequently, the negative values on the X-axis correspond to positive (respectively
negative) values of the speaker’s (respectively listener’s) span; the positive values of
the X-axis correspond to the positive (respectively negative) values of the listener’s
(respectively speaker’s) span. The dotted line (ratio of speaker’s fixations on refer-
ence) peaks at −700 ms with an associated average gaze ratio of 0.675. In other
words, there is 67.5 % chance of getting a speaker’s fixation on the to-be-referenced
object 700 ms before she formulates the verbal reference. With regards to the lis-
teners’ gaze ratios on reference (continuous line), the peak is not as well defined
as for the speaker. The highest average gaze ratio on the referenced object peaks at
0.425 at 1200 ms. Accordingly, there is 42.5 % chance that the listener looks at the
referenced object 1200 ms after the speaker started to pronounce its name. In both
cases, the peaks are not very sharp which indicates that these spans are not very
systematics but may vary from one situation to another.

We replicated the same procedure for the automatically segmented verbal ref-
erences and the results are shown in Fig. 5.3. The corresponding optimal speaker-
span is 900 ms with a corresponding gaze ratio of 0.49. With regards to the listener,
the peak is even more diffuse and reaches 0.27 of average gaze ratio for a span of
1400 ms. Figure 5.4 illustrates schematically these findings by showing the time-
course of the gaze and speech when one person pronounces a verbal reference to the
concept-box “neuron”.

These results give the probability that the speaker or the listener looks at the
referred object at a specific time lag from the word onset but this does not tell us the
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Fig. 5.3 Average gaze ratio on referenced object for different time-spans from the verbal reference
onset for automatically detected verbal references

Fig. 5.4 Schematic time-course of gaze and speech during a verbal reference illustrating our main
results

probability that the subject looks at the referred object for any lag in some range,
for example between 0 s and 2 s from the word onset. Hence, we did additional
computations with the automatically segmented data to obtain the probability of
getting at least one fixation of the speaker on a referred object during a four second
and a two second time-window before the onset of the verbal reference (namely
between −4 s and 0 and −2 s and 0). There is a probability of 0.74 that the speaker
fixates the referred-object within four seconds before producing the verbal reference
and a probability of 0.69 within two seconds. For instance, if during an utterance a
speaker refers to the concept “neuron”, there is a 74 % chance that she looked at
the associated concept-box labeled “neuron” within the four seconds preceding the
verbal reference, and a 69 % chance that she looked at the box within the two last
seconds before producing the verbal reference. For the listener, there is a probability
of 0.66 that the listener fixated on the referred-object four seconds after the verbal
reference and a probability of 0.55 that the listener looked at the object within two
seconds after the reference.
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5.4.3 Discussion

Overall, both the manually and automatically segmented datasets provide results
that are fairly supportive of the robustness of the speaker’s span (eye-voice span) and
listener’s span (voice-eye span) mechanisms, even in realistic and complex collabo-
rative situations. Indeed, we found that the ratio of speaker’s fixations on referenced
object peaked at 700 ms (900 ms with the automatically segmented data) before the
onset of the reference. This is relatively consistent with the findings of Griffin and
Bock (2000) who found an eye-voice-span between 800 ms and 1000 ms. Similarly,
for the listener, we found that the ratio of fixations on the referenced object peaked
at 1200 ms (1400 ms for the automatically segmented data) after the onset of the
reference. Again, this is relatively consistent with the estimation of Allopenna et al.
(1998) who found a voice-eye span between 500 ms and 1000 ms. The longer span
that we found could be explained by the fact that we have a complex visual stimulus
for which it can take more time to localize the referenced object, while Allopenna
et al. (1998) used a very simple stimulus with only few objects to be looked at. The
more diffuse nature of the listener’s peak can be explained by the fact that the lis-
tener’s span (or eye-voice span) is less systematic than the speaker’s span and may
depend on various factors, such as the familiarity of the subject with the stimulus or
the number of objects present in the stimulus. Indeed, this voice-eye span may actu-
ally reflect, at least partly, the seek time required to find the referred object among all
possible objects and this is certainly affected by variety of factors. In particular, the
number of objects in the stimulus could play an important role in our case because it
varied over time as subjects built the concept-map. More specifically, at the begin-
ning of the task, they were generally no more than 3 objects, while it could reach up
to 20 objects in the last minutes of the experiment. This could lead to longer spans
for references made at the end of task.

The ratios of fixations on references for the automatically segmented data are
much lower than for the manually segmented references. This is mainly explained
by the fact that the automatically segmented data contains a number of false refer-
ences and possibly also words which have been badly aligned with the audio file
because of errors from the speech recognition engine. This could be certainly im-
proved by further developing the alignment module and having better rules for the
detection of references in speech. However, the analysis performed with the au-
tomatically segmented data shows that these results are generalizable and are not
specific to the two manually segmented pairs.

Besides their empirical value, these results have an interesting application po-
tential. Indeed, this relation between verbal references and eye-movements seems
relatively robust, at least for the speaker (70 % chances of looking at the reference
within the 2 seconds preceding the verbal reference) but also in a lesser extent, for
the listener (55 % chances of looking at the reference within the 2 seconds following
the verbal reference). These results, coupled with the recent technological advances,
open exciting perspectives in terms of design and implementation of eye and speech-
sensitive attentive technologies. In the next section, we present a prototype of such
an application, called REGARD, that aims to use these phenomena to automatically
detect verbal references in real-time.
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5.5 REGARD Model

We developed an algorithm, called REGARD6 (Remote Gaze Aware Reference De-
tector) that identifies automatically verbal references in the dialogue of two collab-
orators working on a shared workspace. The principle of this algorithm relies on the
existence and the robustness of the eye-voice interrelation that we presented above.
The idea is that, if a word, which is a reference to a visual object, is pronounced
several times, the corresponding speaker and listener’s gazes before and after these
utterances should be essentially distributed on the referred object. Hence, by mon-
itoring the gaze data of the speaker (and of the listener) before (respectively after)
each pronounced word and by computing how well they match over multiple pro-
nunciations of the same word, we should be able to decide whether the word is a
reference or not and if it is, to which object it is directed. More generally, this model
can be seen as a sort of classifier. It receives a set of words, along with the corre-
sponding interlocutors’ gazes and the list of objects in the workspace and it classifies
these words either into common-word which are not reference to any object, or into
reference-words which are references to objects of the workspace. Furthermore, it
also provides for each of the words classified as references, the corresponding object
of the workspace.

5.5.1 Model Design

In practice, the algorithm consists in creating for each pronounced word, a gaze
density vector over all the possible objects and in aggregating at each pronunciation
of a given word the speaker’s and listener’s gazes inside the corresponding vector.
More specifically, we aggregate the fixations with weights which depend on the
time of the fixation relatively to the word onset. The rationale is that the closer is a
speaker’s (or listener’s) fixation from the optimal eye-voice (respectively voice-eye)
span, the more chances it has to be on the referenced object. Hence, we give more
weight to fixations which are close to the optimal span and less weight to those
that are further. More precisely, we use a Gaussian function centered on the optimal
spans to compute the weight of a fixation (see Fig. 5.5). After each aggregation of
gazes in the gaze density vector associated to a given word, the algorithm performs
some computations with the vector values to check whether there seems to be a
verbal reference. More specifically, it first compares the total amount of gaze data
that have been aggregated in the vector to a minimum gaze threshold to test whether
these accumulated data may be considered as meaningful and thus if a decision can
be taken for this word. Secondly, if enough data are present, it tests whether one
cell of the vector contains a high amount of data compared to all other cells by
comparing the sum of the maximum cell, i.e. the cell having the highest value, and

6“Regard” is also the French word corresponding to “gaze”.
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Fig. 5.5 Gaussian weighting functions used to aggregate the speaker and listener’s gazes at each
word utterance. Fixations B and F fully contribute to the model, whereas fixations A and E partially
contribute to the model. Fixations D and C do not contribute to the model

the difference between the two maximum cells to a matching threshold. Indeed, if
the word was a reference to an object, then most the accumulated gazes should be
in the cell of the corresponding object and all other cells should have low values.
Hence, if one cell contains a high amount of gazes relatively to all other cells then
the algorithm marks this word as being a reference to the corresponding object.
Otherwise, it tags the word as not being a reference to an object.

5.5.2 Parameters Optimization

Thanks to the data processing described in Sect. 5.3.4, we had a set of words for
which we knew which ones were references and also which objects they refer to.
This constitutes a ground-truth against which our algorithm could be tested. To build
this dataset, we took only the 18 pairs that had high quality gaze data. Hence, we
ended up with 301 references among the 587 manually or automatically segmented
(see Sect. 5.3.4) and 737 words which were not references to any object, called
common-words. Our first step was to use these ground-truth data to optimize the
different parameters that appear in the algorithm.

First, we optimized the mean and the standard deviation of the Gaussian used as
weighting functions. Second, we tried to identify the optimal values for the mini-
mum gaze threshold used to assess whether a gaze density vector contains enough
accumulated gazes and the matching threshold which assess whether the relative
amount of gazes in a cell is sufficient to consider the word as a verbal reference.

The Gaussian parameters were optimized by using only the 301 reference-words.
The procedure consisted in applying this algorithm, without the two decision steps,
on these words and in computing for how many of these words, the highest cell in
the gaze density vector corresponded to the associated object. This was done for
several values of mean and standard deviation so that we found the optimal values
for both of these parameters (see Fig. 5.6). The peak value suggests that the optimal



76 M.-A. Nüssli et al.

Fig. 5.6 The speakers’ average span and plotted against the model’s detection score. The various
curves represent different values for the standard deviation

values for the speaker’s span mean is 800 ms and the optimal speaker’s span standard
deviation, the optimal value is 100 ms. A similar procedure was undertaken to detect
the optimal listener’s span mean and standard deviation which resulted in values of
1600 ms for the mean and 350 ms for the standard deviation.

For the optimization of the two decision thresholds, namely the minimum gaze
threshold and the matching threshold, the whole dataset was used and the kappa
statistics measuring the agreement between the algorithm output and the reality was
used as a measure of fitness. We optimized both parameters at the same time as
there could potentially be some interaction between the two. Similarly than for the
Gaussian parameters, we simply computed the algorithm performance for various
couples of decision threshold values. We obtained the graphs shown in Figs. 5.7
and 5.8. First, we noted that there was very few interaction between the two param-
eters (the curves are almost parallels). From this, we deduced the optimal minimum
gaze threshold above which the kappa score does not increase anymore (see Fig. 5.7)
which corresponds to a value of 2. We also extracted the optimal matching threshold
that maximizes the kappa score (see Fig. 5.8) which is 0.8.

5.5.3 Classification Results

In order to asses the performance of the model with optimal parameters, we ran
the optimized algorithms on the whole dataset and measured how well results fit
with reality. Note that while we could have used a classical validation technique,
such as cross-validation, this is not a real concern in our specific situation because
our model is highly specific and has very few parameters compared to the number of
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Fig. 5.7 REGARD classification performance plotted against the minimum gaze threshold. The
bold vertical line shows the optimal value that has been chosen (2.0). Indeed, beyond this value,
the performance doesn’t increase anymore, suggesting that it doesn’t help to have more aggregated
gaze data to take the classification decision. The various curves are for different values of the other
decision parameters (minimum gaze threshold) so that we can see a potential interaction between
the two parameters

Fig. 5.8 REGARD classification performance plotted against the matching threshold. The bold
vertical line shows the optimal value that has been chosen (0.8). As we can see, it is simply
the value which yields the best performance. A higher value would cause more reference-words
to be detected as common-words, while a lower value would have the opposite effect (more
common-words detected as reference-words)
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Table 5.1 REGARD model’s classification and matching performance details for the 182 words
that passed the minimum gaze threshold. Incorrect cases (gray cells) have been grayed according
to the seriousness of the error

Classified as
common-words

Classified as reference-words Totals

Correctly matched Incorrectly matched

Actual common-
words

112 9 121

Actual
reference-words

14 43 4 61

Totals 126 56 182

data (6 parameters for more than 1000 data samples). Hence, it is highly improbable
that the optimal model has simply over-fitted the data used to optimize it.

Among the 1038 words composing the dataset, 182 passed the minimum gaze
threshold allowing the algorithm to classify them as common or reference words.
Table 5.1 shows the confusion matrix between the actual classification and the out-
put of the algorithm for these 182 words. It indicates first whether the words were
correctly classified as common or reference word and secondly if the identified
reference-words were correctly associated to their object on the map.

The algorithm makes several types of errors which can be classified according to
their seriousness level. The actual seriousness of an error certainly depends on the
application for which the model is used but we can still make a general classification
in order to get a rough picture of the actual performance of the model. The first type
of error is reference words classified as common words (light gray cell), i.e. fail to
detect that a word is a reference to an object, which is not a very serious type of error.
Secondly, it can classify correctly a reference-word but associate it to the wrong
object (medium gray cell) which is more serious error. Finally, it can incorrectly
classify a common-word as being a reference-word (dark gray cell) which is also a
serious type of error. These two latter types of errors are the most serious as they
correspond to incorrect reference detection, i.e. the model “believes” that a word
refers to an object while it refers to another object or it doesn’t refer to any object.
However, they are quite few with only 13 cases over 182 words which represent 7 %
of the words. Overall, the performance of the algorithm is quite good with a kappa
score of 0.71. We should also note that some errors are due to the fact that the word
onset timestamps, found by aligning automatically the speech transcript with the
audio file, were not always correct and also that the reference-word are not always
correct as they were also detected automatically by comparing words and concept’s
labels on the map.

In Table 5.2, we detail the words incorrectly classified and/or incorrectly matched
by the model in order to shed light on the different kinds of mistakes the model
makes. We discuss hereafter these various mistakes.

• Reference-words incorrectly classified (false negatives): These words are those
the model failed to classify. A closer look to the words points out to some ambigu-
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Table 5.2 Lists of the words incorrectly classified and/or incorrectly associated by the REGARD
model. Note that the participants were French speakers. Hence, the words used are in French

Reference-words
incorrectly classified

Reference-words matched with
the wrong object

Common-words
incorrectly classified

neurone seuil excitation donc

met neurone phase cellule

mettre membrane seuil elle

pompe neurone canaux pour

entre changement cellule

intérieur dépolarisation comme

potentiel pense

polarisation donc

peut

ities. Indeed, “met”, “mettre” (put), and “entre” (enter) are seemingly common-
words that could also have been used by co-learners in their map (e.g. “entre”
could be identified as an actual reference-word because it can be considered as a
part of the concept-box label “entrée de K+” or a common word, as in saying “en-
ter”). The automatic technique used to define the testing dataset (see Sect. 5.3.4)
may explain part of the model’s mistakes. More generally, this list seems to con-
tain the most basic words of the domain knowledge. Therefore, it is possible that
their use in the dialogue goes far beyond the simple referencing process explain-
ing the model’s mistakes.

• Reference-words matched with the wrong object: These types of mistakes are
probably those that we most would like to avoid as they result in an incorrect
link between a word and an object. Fortunately, these errors are very rare with
only 4 cases among the 182 words (2 %) for which the model took a decision.
The most likely explanation for these mistakes is that these words have been used
extensively while referring to another concept-box. This is supported by the fact
the words under concern are likely to be part of an explanation involving other
concepts (for example “phase” may be used to speak of the “rising phase” or
“falling phase”).

• Common-words incorrectly classified: On a semantic level, we can see that
among the nine false positives, two are potential references (i.e. “cellule”) and
seven are actual common words. As “cellule” means cell and can be considered
as a reference to a “brain cell” (consequently a synonym of “neuron”), we may
argue that these false positives may be actual true positives on the socio-cognitive
level. Collaborators may have referred to a concept-box they named “neuron”
with the more general reference, “cell”. It can be argued that these types of mis-
take are mainly due to the limitation of the automatically defined dataset serving
as reference to assess the model’s performance. The automatic detection of actual
reference-words in the set of objects’ labels (see Sect. 5.3.4) is not able to identify
synonyms.
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As we have seen, it is likely that several of the errors done by the model could
actually be explained by imperfections of the automatic method used to detect ref-
erences in the speech corpus. Hence, these are not real mistakes but rather problems
in the ground truth dataset. Thus, the actual performance of the system could be a
little higher than the numbers reported above.

5.5.4 Discussion

We developed a multi-modal computational model that simultaneously monitors
two (or potentially more) users’ gaze patterns and verbal interactions in order to
match the verbal references to the visual objects of reference. For sake of concep-
tualization and testing, we developed a version of the model which assumes the
availability of certain data. More specifically, in addition to the gaze data, the RE-
GARD model in its current iteration relies on two other datasets which may be not
available in any situation. First, it requires to have a complete knowledge of all the
objects that are visually accessible by the collaborators. In our case, these objects
were simply the boxes and links drawn by the users on the map. They were easily
accessible to us as these latter are logged by the concept-map software. However,
in other situations, these objects and their geometry may be not directly accessible
while in other cases, such as with natural images, the objects may even be difficult
to define. The second kind of data that the current version of REGARD requires is
the speech transcript. Indeed, we relied on the fact that we knew exactly the words
that were uttered which allowed us to detect when a given word is uttered again
and again. This data is clearly hard to obtain in a general situation as it has been
accomplished by a manual process.

However, these two main limitations on the current implementation of REGARD,
namely the need for a complete list of objects and for a transcribed version of the
speech may be overcome in future versions. First, concerning the knowledge of all
objects, this could be avoided by designing a slightly more complex version that
would be based on workspace areas instead of objects (see Cherubini et al. 2008
for an example of a similar approach). Indeed, we could imagine that instead of
maintaining a gaze vector associating aggregated gazes to the stimulus objects, we
could a more complex structure that associate to every word gazes to region of the
workspace. Then the algorithm would have to determine whether the accumulated
gazes are mainly clustered in one region or rather are distributed uniformly across
the workspace and if it appears that they are clustered, it could be decided that the
corresponding word is a reference for that zone. Such a solution would however
require that the workspace landscape doesn’t change over time.

The second issue, namely the fact that the model requires transcribed speech, is
more difficult to overcome. The best solution would be to have a working speech
recognition module that would make the transcription automatic. However, while
this technology is constantly improving, speech recognition has currently not yet
reached a sufficient level of accuracy to perform such a task correctly in any situa-
tion. A possible workaround could be not to do full speech transcription but rather,



5 REGARD: Remote Gaze-Aware Reference Detector 81

to detect similarity of sound between different part of the speech. The idea is to be
able to detect several occurrence of a word at different moment in time. Hence, in-
stead of associating written word with region or object of the stimulus, the algorithm
would be able to associate sounds.

The results of the classification suggest that the REGARD model performs rea-
sonably well at associating objects on the screen to specific verbal references. Given
the complexity of the collaborative situation and its ecological validity, REGARD
reaches a more than satisfactory level of performance. It is also noteworthy that the
performance of the model depends on the fine-tuning of the parameters and thresh-
olds. Even though the first verbal reference would be sufficient to establish, with
reasonable confidence, matches between a set of fixations and a verbal reference,
a greater number of occurrences (e.g. waiting for at least three co-occurrences of
a verbal reference and associated fixation on a specific object) would lead to bet-
ter confidence and precision. In other words, the performance of the model greatly
depends on the quality and quantity of data it collects.

Furthermore, the performance of the model also depends on the complexity of
the data (i.e. knowledge domain). The experiment done in this work is characterized
by a highly complex vocabulary that may imply a high level of ambiguity such
as the use of multiple words to refer to the same concept (e.g. “neuron”, “cell”,
“brain cell”). Furthermore, the dynamic aspect of the concept-map building task
induces an extra level of complexity that may have impaired the REGARD model’s
performance. Most often, co-learners talk about the knowledge domain concepts
first and build the associated concept-map objects afterwards. Consequently, we can
expect significantly fewer references to objects that are already present on the shared
interface. The performance of REGARD should be significantly higher in the cases
of more static collaborative activities such as discussing graphical contents, where
the visual scene is less prompt to constantly evolve.

Finally, one of the main criticism that can be done concerns the type of stimulus
that was used. Indeed, in our specific situation, the verbal references are simply the
labels used for the objects. While this was of a great help to perform the analyses
presented here as it allowed us to detect automatically the verbal references, it makes
a limitation on the scope of the results because we have a special situation in which
the references are written on the objects. Hence, the process of referring to an object
may be mixed with a process of reading the label of the object. It is possible that the
effects exposed in this work are partly explained by this reading aspect. However,
considering the previous works in this area (Griffin and Bock 2000; Griffin 2001)
which have been done with pure image stimuli, it is very likely that these phenomena
are mainly due to the referencing process.

5.6 Conclusion and Future Works

This work brings two contributions on both the theoretical and the practical sides.
First, on the theoretical aspect, we have replicated important results about the time
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intercourse of gaze and speech in a complex ecologically valid collaborative situ-
ation. This is an important finding as it shows the robustness and the systematic
aspect of such phenomena. Moreover, it also shows that these effects are not arti-
facts due to the specific highly-controlled settings used in previous works. Secondly,
on a more practical side, we have developed an algorithm that is able to detect ver-
bal references, as well as their referenced object, from the dialogue and the gazes of
two individuals working or discussing about some shared workspace. This model is
a great step towards the design of intelligent multi-modal interface that would take
advantage of other modalities in a natural way, i.e. without forcing the user to adapt
to the computer.

The potential applications that would benefit from such a model are various. For
example, this could be used to automatically annotate images viewed by collabora-
tors. This could provide interesting outputs or feedbacks for the collaborators or for
other subsequent automatic post-processing. Alternatively, REGARD could part of
a more complex system that could use the discovered references in order to infer
semantics from the dialogue of the partners. Indeed, the system could use the re-
lations between words and objects it found coupled with a more general model of
semantics in order to interpret the meanings of what the collaborators say so that
it could take appropriate actions. Finally, REGARD could also serve as a ground-
ing detector, by identifying which terms are used as verbal references in a coherent
way by both the speaker and the listener. Such information can be useful to provide
intelligent feedback or user-interface adaptation fro the collaborators.

These results open several interesting avenues for future work. First, on the the-
oretical side, it would be worth to replicate these results in different, while still eco-
logically valid, settings. Specifically, it would be interesting to make similar analy-
ses with a stimulus with none-labeled object, i.e. that have implicit names instead
of being labeled. This would allow us to avoid effects due to reading the labels.
Another interesting point would also to vary the type of referents. For example,
we can have a situation with usual easy-to-label objects such as cars or animals,
compared with a situation with more abstracts objects that may resemble to several
possible known objects (such as Tangram). This could inform us on the possibility
of detecting common-ground with REGARD. Concerning the algorithm itself, the
main directions to follow consist in making it more general by overcoming the two
main limitations described above, namely the need of the list of all objects and the
need of transcribed speech. In this respect, the best potential we can see come from
the proposed solutions, namely to deal with fuzzy regions instead of objects and to
compare sounds instead of comparing written words.

Acknowledgements This work was funded by the Swiss National Science Foundation (grant
#K-12K1-117909).

Appendix

In order to allow the reader to get a general idea of the type of dialogue that occurred
during the task, Tables 5.3 and 5.4 show two translated excerpts from two different
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Table 5.3 Translated excerpt from the verbal interaction of a dyad (originally in French)

Subject Duration [s] Utterance

A 3.3 Hence we can add under “axon”, “myelin” for instance.

A 2.2 With the “Ranvier’s nodes”.

A 27.6 We put “myelin” like this. Wait I’ll do it.

B 2.6 Yes, then we put « have » everywhere.

A 2.8 It’s an idea. I added “Jumps” for the. . .

B 1.1 “Jumps”? Why?

A 8.8 Yeah because these are « jumps ». . . huh. . .hum! . . . I don’t know. . .

B 11.8 Ha but. . . yeah. . . between “electric potential” and “axon” I’d put
“electric potential IN the axons”.

A 2.6 Yeah! It’s not bad.

B 7.0 Moreover the “membranar potential”, yes between “electric potential”
and “membranar potential” we should change. Remove “have”.

A 7.6 We can put “more precisely”.

Table 5.4 Translated excerpt from the verbal interaction of a dyad (originally in French)

Subject Duration [s] Utterance

A 7.6 Afterwards, there is the current that passes, it is. . . it goes. . . I forgot
where exactly. Anox. . . something like that.

A 10.9 Wait! Anox? Anobsine. I forgot. Onoxine something like this. It goes
there.

B 4.2 Huh! Ok then just add what you’re thinking about.

A 7.9 I can’t really manage to. . .

A 17.7 We’ll put it with “passing current”. It is better.

B 15.3 It is becoming pretty nice.

A 3.2 At the end of the synapse.

B 8.3 Huh! Yes it was. . . end of the synapse and so forth. And you add what
you think of, concerning the term. I don’t remember the term.

A 3.3 There are the chemical reactions.

B 4.1 But I don’t remember the term, I didn’t retain all the terms.

A 0.6 Ok no problem.

dyads. The references to objects of the map have been put in quotation marks. The
first excerpt (see Table 5.3) shows a dialogue centered around the objects that are
drawn on the map while the second excerpt (see Table 5.4) is more conceptual with
few explicit references to the objects of the concept-map.
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Chapter 6
Effectiveness of Gaze-Based Engagement
Estimation in Conversational Agents

Ryo Ishii, Ryota Ooko, Yukiko I. Nakano, and Tokoaki Nishida

Abstract In face-to-face conversations, speakers monitor the listener’s gaze to
check whether the listener is engaged in the conversation. The speaker may change
the conversational strategy if the listener is not fully engaged in the conversation.
In this chapter, we propose an algorithm to estimate the user’s conversational en-
gagement based on various types of gaze information, such as gaze shift patterns,
gaze duration, amount of eye movement, and pupil size. By applying the proposed
algorithm, we implement an agent that can change its conversational strategy ac-
cording to the user’s conversational engagement. We also evaluate the agent system
by investigating how the agent’s awareness of the user’s engagement affects the
user’s verbal and nonverbal behaviors as well as the subjective impressions of the
agent. First, based on an empirical study, we identify useful information for esti-
mating user engagement, and establish an engagement estimation model using a
decision tree technique. The model can predict the user’s disengagement with an
accuracy of over 70 %. Then, the model is implemented as a real-time engagement-
judgment mechanism and is incorporated into a multimodal dialogue manager in a
conversational agent. Finally, our evaluation experiment reveals that probing ques-
tions by the engagement-sensitive agent successfully recover the subject’s conversa-
tional engagement, change the gaze behaviors of the subject, and elicit more verbal
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contribution. Moreover, such timely probing questions also improve the subject’s
impression of the agent.

6.1 Introduction

In conversation, nonverbal behaviors work in a complementary manner with ver-
bal behaviors to convey the meaning of utterances. One of the essential aspects to
realizing such a process is the conversation participation attitude, or engagement.
According to the definition by Sidner et al. (2004), engagement is the process by
which two (or more) participants establish, maintain, and end their perceived con-
nection. For example, in order to maintain the communication, speakers continue to
check whether the listener positively participates in the conversation, while paying
attention to the speaker. On the other hand, listeners demonstrate their participation
attitudes through nonverbal behaviors, such as nodding and eye gaze, and express
their desire to continue communication (Argyle et al. 1973).

Therefore, in order to establish better communication partnership between hu-
man users and conversational humanoids, the system should be able to recognize
such nonverbal signals and estimate the user’s engagement state. Automatically
judging whether the user is actively participating in the conversation with the sys-
tem may be useful in adaptively determining the system behavior. For example,
when the system detects the user’s disengagement from the conversation, the sys-
tem should encourage the user’s active participation in a conversation or change the
topic. However, few studies have examined automatic interpretation of the user’s
attitudes based on the gaze information, even though off-the-shelf eye tracking tech-
nologies are sufficient to recognize the user’s eye gaze.

Thus, in an attempt to improve the smoothness of communication between the
user and the agent, the present study proposes an engagement estimation method.
The proposed method is implemented in a conversational agent, and the autonomous
agent system is evaluated. In particular, we focus on the user’s gaze behaviors while
communicating with virtual agents, and address the following issues:

(1) Identification of gaze behaviors that are distinctively observed when users are
disengaged from the conversation based on the analysis of the correlation be-
tween various types of gaze information and the human judgment of engage-
ment.

(2) Based on empirical results, we propose an engagement estimation method, de-
velop a mechanism that can detect user disengagement in real time based on
gaze information, and implement an autonomous conversational agent by in-
corporating the engagement estimation mechanism.

(3) An evaluation experiment to show how probing questions by the engagement-
sensitive agent affect the subject’s gaze behaviors and verbal behaviors and im-
prove the impression of the agent is performed.

In the next section, we will describe how this study is related to previous research.
As such, we analyze our corpus and propose an engagement estimation model based
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on the analysis. After describing the implementation of the system, an evaluation
experiment is conducted. Finally, we discuss the results of the evaluation experiment
and areas for future research.

6.2 Related Research

In communication science and psychology, a number of studies have investigated
functions of eye-gaze in face-to-face communication. Kendon (1967) observed eye-
gaze behaviors using the ethnomethodological method and discussed various types
of eye-gaze functions. Psychological studies reported that eye gazing, specifically
accompanied by head nods, serves as positive feedback to the speaker, and demon-
strates that the listener is paying attention to the conversation (Clark 1996; Argyle
and Cook 1976). This type of mutual gaze also contributes to smooth turn-taking
(Novick et al. 1996). In contrast, when conversational participants share the same
physical environment and their task requires complex reference to, and joint ma-
nipulation of physical objects, joint attention between the participants is a positive
signal of conversational engagement (Argyle and Graham 1977; Anderson et al.
1997; Whittaker 2003).

Although in previous studies on interactive systems, the main application of
head/eye tracking technology is to estimate the user’s interest (Iqbal and Bailey
2004; Qvarfordt and Zhai 2005; Iqbal et al. 2005; Eichner et al. 2007; Nakano and
Nishida 2007), some studies have been more directly related to sensing communica-
tive signals displayed by gaze, which contribute to interaction management between
the user and the agent. Nakano et al. (2003) proposed a gaze model for nonverbal
grounding in conversational agents and used a head tracker to implement an agent
that can judge whether the information provided by the agent is grounded.

More recently, Bohus and Horvitz proposed a method of predicting the user’s en-
gagement intention in multiparty situations using a head tracker (Bohus and Horvitz
2009). They focused on predicting whether the user will be engaged in the conver-
sation, but not on judging whether the user is engaged in the ongoing conversation,
to maintain the communication. In human-robot interaction, Morency et al. (2007)
and Rich et al. (2010) used a head tracker to recognize a user’s gaze direction and
head nods, and exploited the recognized user’s behaviors in order to judge whether
the user is engaged in conversation with the robot.

The results of these studies suggest that off-the-shelf eye tracking systems are
sufficiently accurate and stable to be used in complex agent systems. They also sug-
gest that the user’s gaze direction can be roughly estimated from the head direction,
as measured by a head tracker. Thus, we believe that combining these sensing tech-
nologies with a dialogue management mechanism will enable conversational agents
to become more sensitive to the user’s conversational engagement.

Based on the above research, the present study attempts to build an information-
providing agent that explains products on a display as a virtual salesperson, which
requires that the agent accurately sense the user’s attentional behavior. In order to
achieve this goal, we use an eye (pupil) tracker to measure gaze information more
accurately and estimate the user’s engagement during conversation with the agent.
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Fig. 6.1 Agent screen shot

6.3 Corpus Collection and Analysis

With the goal of establishing an engagement estimation model, first, we analyze
gaze data to identify useful parameters for estimating conversational engagement.
Since it was reported that gaze shifting patterns and gaze duration correlate with user
interest (Qvarfordt and Zhai 2005), we herein investigate whether these two types
of information are also useful in estimating the user’s engagement in a conversation.
If the user is not engaged in the conversation, her/his gaze may move significantly
because of distractions from the conversation. In contrast, if the user is positively
engaged in the conversation, the gaze remains fixed on the same object for a longer
time because the user carefully looks at the object. Moreover, it is widely known
that pupil size becomes larger when people are looking at something interesting or
exciting (Hess 1965). Therefore, it is assumed that the pupil size may become larger
when the user is engaged in the conversation. In contrast, if the user is not engaged,
the pupil size may become smaller because the user is looking at the object without
substantial interest.

By investigating the correlation between these various types of eye gaze infor-
mation and human judgment of engagement, we will determine gaze parameters for
generating an estimation model for the user’s conversational engagement.

6.3.1 Corpus Collection

6.3.1.1 Wizard-of-Oz Experiment in Human-Agent Conversation

In order to collect eye gaze data in human agent interaction, we conduct a Wizard-
of-Oz experiment, in which a female animated character is displayed on a 120-inch
rear-projection screen (Fig. 6.1). The female animated character acts as a salesper-
son at a mobile phone store. In the experiment, a subject acts as a user (hereinafter
referred to as the “user”). The user listens to the agent’s explanation of six cell
phones, each of which lasts approximately three to five minutes. The entire process
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Fig. 6.2 Snapshot of video
for annotation

takes approximately 20 minutes if the user listens to all of the explanations (109
utterances, each having an average duration of 10 sec). The user was allowed to ask
questions about cell phone functions and other yes-no questions and was allowed to
request to change the topic to the next cell phone. Since the purpose of the data col-
lection experiment is to collect the typical behaviors of a subject when the subject is
disengaged, the agent’s explanations were required to be less interesting, or boring,
to the subjects. Therefore, we created agent explanations with longer utterances and
less attention-grabbing nonverbal behavior animations. When the wizard (an exper-
imenter) produced the agent’s utterances by operating a GUI, the agent looked at
the target cell phone most of the time and looked at the subject every 10 utterances.
The agent repeated this explanation style for the entire session in order to provide
the user with boring animation contents.

6.3.1.2 Collected Corpus

We collected 10 conversations from 10 subjects. The average length of the conver-
sations was 16 minutes. We created a multimodal corpus containing the following
verbal and nonverbal data:

• Verbal data: The user’s speech was transcribed from the recorded speech, and the
agent’s utterances were extracted from the log of the Wizard-of-Oz system. The
total number of utterances of the agent was 951, and that of the user was 61.

• Nonverbal data: The agent’s gestures and gaze behaviors were extracted from the
Wizard-of-Oz system log. We collected the user’s gaze data using a Tobii X50
eye-tracker.

• Human judgment of engagement: Another 10 people were recruited as video an-
notators. They were asked to watch the video of the subjects in the Wizard-of-Oz
experiment and to mark the times at which the subject on the video looked disen-
gaged from the conversation. Figure 6.2 shows a snapshot of a video viewed by
the annotators. In order to see the subject’s gaze and facial expressions, the anno-
tators watched videos that captured the front face of the subjects. In addition, the
agent’s animation synchronized with the subject’s video was also shown to the
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annotators. We used the Anvil video annotation tool to annotate the video (Kipp
2001).

Since the video data was recorded at 30 fps, the annotation results were discretized
into 1/30-sec time frames. A disengagement score of 0 to 10 was assigned to each
time frame by counting how many of the 10 annotators marked the frame as disen-
gagement. For example, if none of the annotators marked the frame as disengage-
ment, the score is 0. This suggests that the subject may be fully engaged in the
conversation. Through this process, a total of 246,338 disengagement score data for
1/30-sec time frame were collected. We believe that collecting engagement judg-
ments from 10 annotators provides an evaluation criterion that is more reliable and
stable and that provides better ground truth.

6.3.2 Corpus Analysis

In this section, we analyze various types of gaze data to determine the engagement
estimation parameters.

6.3.2.1 Analysis of Gaze Transition Patterns

It has been found that, in estimating user interest with respect to visual stimulus,
gaze transition pattern is more useful than gaze state (Qvarfordt and Zhai 2005).
Therefore, we assume that looking at gaze transition is also useful in estimating
conversational engagement. In order to analyze the gaze transition patterns, we cre-
ated gaze direction transition 3-grams using the following labels:

• T: Looking at the target object of the agent’s explanation, which is the discourse
focus.

• M: Mutual gaze, in which the subject establishes eye contact with the agent.
• AH: Looking at the agent (non-mutual gaze), in which the agent gazes away from

the subject when the subject gazes at the agent.
• F: Looking at non-target objects, such as other cell phones or an advertisement

poster (F1 �= F2 �= F3), where F1, F2, and F3 indicate different objects. For exam-
ple, while the agent is explaining Cell phone A, the user is looking at non-target
Cell phone B, followed by non-target Cell phone E, and then looking again at
non-target Cell phone B. In such a case, the gaze transition of the user is indi-
cated as F1-F2-F1.

As described in Sect. 6.3.1.1, the agent looked at the user every 10 utterances in
order to show simple repeated behaviors. If the subject is looking at the agent at
that time, it is presumed that a mutual gaze is established between them, and the
label M is assigned to the corresponding time frames. During the remainder of the
time, the agent is looking away from the subject in the general direction of the target
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Fig. 6.3 3-gram construction

cell phone, and it is presumed that joint attention is established between the subject
and the agent when the subject’s gaze label is T.

Figure 6.3 shows how to construct a gaze transition 3-gram. Since the eye-tracker
fails to measure the pupils’ movement during blinks, small blanks often occur in
gaze data. For this reason, we counted two consecutive gaze data as a single con-
tinuous eye gaze if the same object was continuously looked at in both data and the
data blank was less than 200 ms in duration.

For example, as shown in Fig. 6.3, suppose that the agent’s gaze direction shifts
as follows: Cell phone A-(165-ms blank)-Subject-(165-ms blank)-Cell phone B.
The subject’s gaze shifts are shown in the second line. In this example, the gaze-
3-gram is AH-M-T at time t . Since the first two blocks are labeled AH and the
blank between these blocks is 99 ms, the first two blocks are merged. Then, the
next block is relabeled M, because this block overlaps with the agent’s looking at
the subject. The third block (originally, the fourth block) is labeled as T because
the subject is looking at Cell phone B, which is the target object that the agent is
explaining about. At time t + m, the subject is looking at Cell phone A, which is
not the target object. Thus, the third block for constructing a 3-gram is labeled F1,
and by combining F1 with the last two blocks, the M-T-F1 3-gram is assigned to
this time frame. Likewise, at time t + n, the current gaze is F (Cell phone C) and
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Fig. 6.4 Relationship between eye-gaze 3-grams and disengagement score

the last two gaze blocks are T and F (Cell phone A), respectively. Consequently, the
T-F1-F2 gaze 3-gram is assigned to this time frame.

If the gaze blank between two gaze blocks is longer than 1 sec, then we ignore
such a sequence as an incomplete 3-gram and start a new 3-gram from the next gaze
data. In our corpus, most of the gaze data can be used to construct 3-grams, and
incomplete 3-grams are rare. We obtained a total of 140,819 1/30-sec data points.

Using the 3-grams described above, we investigate the correlation between the
3-gram type and the disengagement score for each 1/30 time frame. The average
disengagement score was calculated for each 3-gram pattern. For example, 1,085
data points were assigned to the AH-F1-F2 3-gram, and the average disengage-
ment score for these data points was 5.50. The average disengagement scores for all
3-gram types are shown in Fig. 6.4. The x-axis shows the average disengagement
score. The first quartile and the third quartile are also shown on the bar chart. The
y-axis shows the 3-gram types. The average disengagement score differs consider-
ably depending on the 3-gram type. The 3-gram with the highest score is M-T-AH,
the average score of which is 5.9. The 3-gram with the lowest score is M-F1-M,
the average score of which is 0.26. These results suggest that 3-grams with higher
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Fig. 6.5 Eye-gaze 3-gram and disengagement score for a long duration

scores frequently co-occurred with the subject’s disengagement states. Therefore,
the average disengagement score for each 3-gram may be a useful parameter for
estimating conversational engagement.

6.3.2.2 Analysis of Gaze Duration

In this section, focusing on gaze duration, we analyze the correlation between
3-gram duration and user engagement. Specifically, we subcategorize each 3-gram
type into three sub-types, according to the total duration of all constituents of the
3-gram. The thresholds for subcategorization were determined based on the average
(μ) and the standard deviation (σ ) for the cumulative duration of all three con-
stituents:

• Long duration: t ≥ μ + σ/2
• Middle duration: μ + σ/2 > t ≥ μ − σ/2
• Short duration: t < μ − σ/2

Here, t is the time duration from the start of the first constituent of the 3-gram
to the current time. If t is greater than μ + σ/2, then the 3-gram for the data
point at time t is “long”. We calculated the average disengagement scores for each
subcategory. Figure 6.5 shows the averages for the long-duration categories. The
x-axis shows the average disengagement score, and the y-axis shows the 3-gram
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type. For example, in the M-F1-T 3-gram, the average duration (μ) was 7.85 sec,
and σ/2 was 2.03 sec. In subcategorizing this 3-gram, the average disengagement
scores for the long-duration category (t ≥ 9.88 (sec)), moderate-duration category
(7.85 > t ≥ 5.82 (sec)), and the short-duration category (5.82 ≥ t (sec)) were 4.93,
3.47, and 0.86, respectively. Since the average disengagement score in the original
M-F1-T 3-gram was 2.89, the M-F1-T 3-gram with a long duration has a much
higher disengagement score than the original M-F1-T 3-gram. Thus, we expect
that by taking the 3-gram duration into consideration, the correlation between gaze
3-grams and disengagement score will be further clarified.

6.3.2.3 Analysis of the Amount of Eye Movement

It may be assumed that if the subject is not engaged in the conversation, his/her gaze
moves significantly because he/she more frequently looks around at other objects,
such as advertisements or cell phones that are not currently being explained. We
herein investigate whether the amount of eye movement increases when the subject
is not engaged in the conversation.

We calculated the moving average of a 400-ms window for the eye movement.
For instance, when the user was engaged (the average disengagement score is 2.38),
the amount of eye movement was small (the distance ranged from 9.01 to 10.0 pix-
els). In contrast, the amount of eye movement increased (the distance ranged from
57.01 to 58.0 pixels) when the subject was fully distracted (average disengagement
score: 4.0). The correlation coefficient between the disengagement score and the
amount of eye movement was 0.76, which is very high. Thus, we expect that the
amount of eye movement may be a useful parameter for estimating conversational
engagement.

6.3.2.4 Analysis of Pupil Size

Pupil size is known to increase when people are looking at something interesting
and exciting. In order to examine whether pupil size is also useful for estimating en-
gagement, we analyzed the correlation between pupil size and user conversational
engagement. The correlation coefficient between the disengagement score and the
pupil size was −0.77. As the disengagement score increases (i.e., the more the sub-
ject is disengaged), the pupil size decreases. Therefore, the pupil size may be a
useful parameter for estimating the conversational engagement.

6.4 Engagement Estimation Model

The analysis results described in the previous sections indicate that 3-grams, eye-
gaze duration, eye movement distance, and pupil size may be useful predictors of a
user’s engagement in a conversation. In this section, using a decision tree technique,
we establish an engagement estimation model using these parameters.



6 Effectiveness of Gaze-Based Engagement Estimation 95

Table 6.1 Disengagement score analysis

Score

1 2 3 4 5 6 7 8 9

Average max. score 3.34 3.90 5.27 5.89 6.47 7.47 8.12 8.80 9.39

Difference 2.34 1.90 2.27 1.89 1.47 1.47 1.12 0.80 0.39

6.4.1 Training Data

Following the analysis in Sect. 6.3, we use the data for 1/30-sec time frames as
one case of training data and apply decision tree learning. Each case consists of
five eye-gaze feature values and the user’s conversational engagement state (en-
gaged/disengaged) as the supervising feature. We set a threshold for the disengage-
ment score in order to determine the supervising feature value, i.e., engaged or
disengaged. Since the disengagement score is the number of annotators marking
a given time frame as a disengagement state, it was assumed that the start time of
disengagement marking differed depending on the annotator. Therefore, the disen-
gagement score shifts up and down, and in some cases, the peak value was very low,
e.g., 1 or 2. In other cases, the peak value was very high. Table 6.1 shows the average
peak values for each score. For instance, the average peak value for shifts including
score 2 was 3.90, whereas for score shifts including score 3, the average peak value
was 5.27. Therefore, when the disengagement score was 3 at any given time, this
movement had a higher possibility of reaching higher scores, as compared to cases
with score 2. Since the difference in peaks between shifts with score 2 and shifts
with score 3 was the largest (2.27) and the average peaks for shifts with score 3 was
over 5 (i.e., more than half of the annotators made a “disengagement” judgment), we
set the disengagement threshold to 3. In order to enable a binary judgment (engaged
or disengaged), we assigned supervising label as follows:

• Engaged: 0 ≤ disengagement score ≤ 2
• Disengaged: 3 ≤ disengagement score ≤ 10

Since the disengagement score for each time frame is an integer value, the threshold
is set between 2 and 3. By applying this threshold, we obtained 82,703 engagement
cases and 42,500 disengagement cases.

Based on the analysis in Sect. 6.3, we used the following four features in our
estimation model:

• 3-gram: The current gaze transition 3-gram, as shown in Fig. 6.3. The feature
value is a 3-gram label specified by the current gaze data and the last two gaze
data.

• Duration of 3-gram: In addition to the duration from start to finish of the current
3-gram, the duration of each constituent was also used as a feature in decision
tree learning.

• Eye movement distance: The amount of eye movement for the last 400 ms.
• Pupil size: The average pupil size of both eyes for that time frame.
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Table 6.2 Evaluation results

Model Result

Engagement Disengagement

Precision Recall F-measure Precision Recall F-measure

3-gram 0.828 0.940 0.880 0.603 0.299 0.400

3-gram + Dr 0.866 0.803 0.833 0.659 0.722 0.689

3-gram + Ds 0.822 0.925 0.870 0.647 0.436 0.521

3-gram + PS 0.827 0.913 0.868 0.650 0.476 0.549

All 0.880 0.829 0.854 0.685 0.723 0.704

Thus, the training data consists of these four eye-gaze feature values and the user’s
conversational engagement state (engaged/disengaged) as supervising data.

6.4.2 Tested Models

We combined these features to test the following five estimation models:

• 3-gram: Estimation using only 3-gram labels
• 3-gram + Dr: Estimation using 3-gram and eye-gaze duration
• 3-gram + Ds: Estimation using 3-gram and eye movement distance
• 3-gram + PS: Estimation using 3-gram and pupil size
• All-parameter model (ALL): Estimation using 3-gram, duration, eye movement

distance, and pupil size

We employed leave-one-out, 10-fold cross validation. Since we have 10 subjects,
we chose nine of the subjects to obtain training data and the remaining subject was
used to obtain the test data. This procedure was repeated 10 times, and the average
estimation accuracy was calculated.

6.4.3 Evaluation of Engagement Estimation Methods

The results of decision tree learning are shown in Table 6.2. We used J48 in
the WEKA implementation (Remco et al. 2010). In the overall evaluation, the F-
measure of the all-parameter model (ALL) is found to be 0.854 for positive engage-
ment and 0.704 for disengagement, which is the best score among all of the models.
This suggests that all of the parameters contribute to estimating the user’s conversa-
tional engagement. The performance of the 3-gram + Dr model is much better than
that of the 3-gram model. This suggests that gaze duration is a strong predictor of
user engagement. Compared to the 3-gram model, the performance of the 3-gram +
Ds model and that of the 3-gram + PS model are much better, but are not as good
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Fig. 6.6 System architecture

as that of the 3-gram + Dr model. This suggests that the eye movement distance
and the pupil size are useful in estimating conversational engagement, but are not as
effective as duration information.

6.5 Implementation of an Engagement-Sensitive Conversational
Agent

By incorporating the all-parameter model obtained in the previous section into a
fully autonomous dialogue system, we create an engagement-sensitive conversa-
tional agent. The system architecture is shown in Fig. 6.6, and the primary compo-
nents are described below.

6.5.1 Understanding and Sensing

User’s verbal and nonverbal behaviors are sensed and interpreted in the following
modules. In addition, we also implemented a simple language understanding.

• Input Controller: The input controller receives the recognition results from the
julius-4.0.2 speech recognition system (ASR)1 and eye gaze data from the To-
bii X-120 eye tracker. The eye tracker measures the user’s gaze points at 50 Hz.

1julius-4.0.2. Available from http://julius.sourceforge.jp/forum/viewtopic.php?f=13&t=53.

http://julius.sourceforge.jp/forum/viewtopic.php?f=13&t=53
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The input controller also obtains the interpretation results from language under-
standing and engagement estimation and sends the interpretation results to the
discourse model.

• Engagement Estimation Module: We implemented the engagement estimation
method proposed as an engagement estimation module. This module receives eye
tracking information through the input controller and uses the gaze information
to judge whether the user is engaged in the conversation with the agent. In the
current implementation, disengagement judgments are calculated for a 500-ms
window. If the system judged that the user is disengaged 40 % of the time, i.e.,
more than six of the 16 estimations during the 500-ms period, the system judges
that the user is disengaged from the conversation. Then, the judgment results are
sent back to the input controller to update the dialogue state.

6.5.2 Discourse Model

The discourse model maintains the state of the dialogue. In the current system, gaze
information is updated 50 times per second. On the other hand, verbal information
is updated upon each utterance, which is normally several seconds long. In order
to keep track of the dialogue state, we use the concept of the information state (IS)
(Matheson et al. 2000) and modified the IS to manipulate such heterogeneous ver-
bal and nonverbal information. Subscription and trigger relationships are defined in
a configuration file to specify which component subscribes to which information
and which information triggers which component. For example, when the gaze in-
formation is updated, a message is sent to the engagement estimation module, which
processes the message to judge whether the user is engaged in the conversation.

6.5.3 Dialogue Management and Generation

The decision making module decides the agent’s next action by referring to the IS
and the agenda. The agenda is implemented as a stack and is updated by the dialogue
planner. The dialogue planner receives a user’s request for explaining a cell phone
as input and generates communicative goals, which are added to the agenda. When
the engagement estimation module detects user disengagement and reports this to
the IS, the decision making module generates a probing question, such as “Do you
have any questions?” or “Would you like to move on to the next cell phone?”

Once the agent’s action is determined, multimodal output is produced using TTS
software and an animation system. Canned agent’s speech is synthesized using Hi-
tachi Hit-Voice TTS and is saved as a .wav file. A sequence of animation commands
for each speech is saved as a script file, which is automatically generated by the
CAST system (Nakano et al. 2004). Animation scripts consist of a sequence of an-
imation commands along with the time at which the animation should be executed.
The animation scripts are interpreted by the Haptek animation system to generate
agent animations according to the specified timing.
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6.6 Evaluation

In order to examine whether the agent’s ability to estimate user engagement affect
human-agent interaction, we performed an evaluation experiment.

6.6.1 Subjects and Task

Three female and seven male subjects participated in the experiment. The subjects
did not participate in the Wizard-of-Oz corpus collection experiment in Sect. 6.3.1.1,
and the subjects were not the annotator for disengagement judgment in Sect. 6.3.1.2.
The subject’s task was the same as in the previous experiment, namely, listening to
the agent’s explanation and guessing which cell phone models are the most popular
among female high school students or businessmen. A list of questions that the sub-
ject was allowed to ask (related to price, game functions, slenderness, one-segment
broadcasting function, and display size) was displayed in front of the subject.

The subjects wore a headset microphone for speech input. In the experiment,
however, the user’s speech was interpreted by an experimenter in order to avoid
speech recognition errors, which would seriously influence the quality of the inter-
action.

6.6.2 Experimental Design and Hypotheses

If the system successfully detects the subject’s disengagement status and notifies
that system is aware of their attitude, the subjects may change their verbal and non-
verbal behaviors. To examine the effectiveness of the system’s awareness of the sub-
ject’s attitude, we investigate the subject’s response to the system’s probing ques-
tions. For this purpose, we set the following two experimental conditions:

• Probing based on engagement estimation (engagement estimation condition):
The agent generates probing questions when the Engagement Estimation Mod-
ule detects the user’s disengagement. This is the proposed system.

• Periodic probing (periodic probing condition): The agent asks probing questions
once every 10 utterances. The agent’s behaviors are mostly the same as those in
the Wizard-of-Oz experiment described in Sect. 6.3.1.1, except for periodically
producing probing questions. Since the frequency of probing questions asked by
the agent may affect the subject’s response, the frequency was determined based
on the average probing frequency of the proposed system measured in a prelimi-
nary experiment. Thus, the total number of probing questions from the agent was
assumed to be approximately equal between these two conditions.

We employed a within-subject design, and each subject experienced both con-
ditions. In order to cancel the order effect, half of the subjects started with the en-
gagement estimation condition and the other half started with the periodic probing
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condition. By comparing these two conditions, we test the hypothesis that the en-
gagement estimation condition can probe the subject with a more proper timing
than the periodic probing condition. To test this hypothesis, we employ the follow-
ing measures:

• (a) Gaze behaviors: If probing questions are effective in restoring the subject’s en-
gagement, the subject’s gaze behaviors may be changed after the agent’s probe. To
test this hypothesis, we measure the gaze shifting pattern represented as 3-grams,
eye movement distance, and pupil size in both conditions, and investigate whether
these measured values are changed before and after the probing questions. If the
results are consistent with what the result of the empirical studies reported in
Sect. 6.3.2, then in the engagement estimation condition, 3-grams with higher av-
erage disengagement scores are frequently observed before probing and decrease
after probing, the eye movement distance is longer before probing and becomes
shorter after probing, and the pupil size decreases before probing and recovers
after probing. If all of these hypotheses are supported, then the engagement es-
timation mechanism may work as expected, and, in the engagement estimation
condition, the agent’s probing questions are generated with the proper timing
needed to recover the subject’s engagement.

• (b) Frequency of verbal contributions: As a verbal measure, the frequency of ver-
bal contributions from the subjects was counted. We assume that the subject is
more likely to ask questions or request to change the topic during her/his turn
following the agent’s probing question if the question is presented with an appro-
priate timing. Thus, if the subject’s verbal contributions become more frequent in
the engagement estimation condition than that in the periodic probing condition,
this may prove that the probing timing is more appropriate in the engagement
estimation condition.

• (c) Subjective measure: We used a six-point Likert scale to ask the subjects about
their impressions of the agent. The questionnaire contained 33 questions, which
were classified into seven categories: awareness of engagement, appropriateness
of behaviors, smoothness of conversation, favorability, naturalness of motion, hu-
manness, and intelligence.

6.6.3 Results

6.6.3.1 Gaze Behavior

In order to examine whether the subjects’ gaze behaviors were changed after the
agent’s probing question, we investigated the subjects’ gaze behaviors 10 sec before
and 10 sec after the agent’s probing question, since 10 sec is the average utterance
length.
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Fig. 6.7 Changes in disengagement score of 3-grams

(1) Changes in 3-Grams We use the average disengagement scores for each
3-gram shown in Fig. 6.4 as the value of each 3-gram. If a 3-gram value is higher,
this indicates that the 3-gram is more frequently observed when the user is disen-
gaged. We split each subject’s data into 33-ms time intervals and identified 3-grams
observed in each time interval and calculated the average 3-gram value in a given
time interval. Figure 6.7 plots the averages of 3-gram values for 10 sec before and
after probing questions and shows how the 3-gram values are changed over the 20-
sec period.

First, we calculated the averages of 3-gram values for 10 sec before probing
questions and for 10 sec after the probe. As a result of the t-test, in the engagement
estimation condition, the difference in average 3-gram values for these two time
periods was statistically significant. The average for before probing was 3.12 (see
Fig. 6.7-c), and that after probing was 2.06 (see Fig. 6.7-d), t (9) = 2.03, p < 0.05).
However, the difference was not statistically significant in the periodic probing con-
dition. The average for the period before probing was 2.07 (see Fig. 6.7-a), and that
for the period after probing was 2.24 (see Fig. 6.7-b). This suggests that in the en-
gagement estimation condition, disengagement gaze patterns are more frequently
observed before probing and such gaze patterns decreased after probing.
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Fig. 6.8 Changes in 3-grams
in corpus data

In the periodic probing condition, the average of 3-gram values did not change
over time. In contrast, in the engagement estimation condition, the average of 3-
gram values increased before probing questions, and was close to 4 just before
probing.

We investigated whether a similar trend is found in the corpus analyzed in
Sect. 6.3.2. We identified the time at which the disengagement score exceeded 3,
and analyzed 3-gram data observed for the last 10-sec period. Figure 6.8 shows how
the average 3-gram value changed during this 10-sec period. Note that the slope of
the graph is very similar to that shown in Fig. 6.7-c. Thus, this result suggests that
the changes in gaze patterns observed in the engagement estimation condition were
quite similar to those in the corpus data.

(2) Changes in Eye Movement Distance We analyzed the eye movement dis-
tance 10 sec before and after probing questions, as shown in Fig. 6.9. The y-axis
indicates the average amount of eye movement for each time interval. In the peri-
odic probing condition, the average eye movement amount did not change over time.
The average for the period before probing was 26.1 (see Fig. 6.9-a), and that for the
period after probing was 27.3 (see Fig. 6.9-b). In contrast, in the engagement esti-
mation condition, the average amount of eye movement before probing questions
was larger than that after probing. The average for the period before probing was
29.7 (see Fig. 6.9-c), and that for the period after probing was 25.3 (see Fig. 6.9-d).
The result of a paired t-test was statistically significant (t (9) = 6.32, p < 0.05).

We also investigated the corpus analyzed in Sect. 6.3.2, where strong correlation
was found between the amount of eye movement and disengagement. We identified
the time when the disengagement score exceeded 3 and measured the amount of eye
movement for the last 10 sec as shown in Fig. 6.10. As shown in the graph, before
probing questions, the amount of eye movement increased over time (the correla-
tion coefficient between time (x-axis) and the amount of eye movement (y-axis)
was 0.76). At the time when a probing question was introduced, the average eye
movement distance exceeded 40 pixels. Thus, we can claim that the results obtained
in the corpus data and those in the engagement estimation condition are consis-
tent.



6 Effectiveness of Gaze-Based Engagement Estimation 103

Fig. 6.9 Changes in eye movement distance

Fig. 6.10 Changes in eye
movement distance in corpus
data

(3) Changes in Pupil Size Using a method similar to that described above, we
also analyzed the pupil size 10 sec before and 10 sec after probing questions, as
shown in Fig. 6.11. The y-axis indicates the average pupil size for each time in-
terval. Under the periodic probing condition, the average pupil size did not change
over time. The average for the period before probing was 4.52 (see Fig. 6.11-a), and
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Fig. 6.11 Changes in pupil size

that for the period after probing was 4.51 (see Fig. 6.11-b). In contrast, under the en-
gagement estimation condition, the average pupil size before probing questions was
smaller than that after probing. The average for the period before probing was 4.44
(see Fig. 6.11-c), and that for the period after probing was 4.65 (see Fig. 6.11-d). The
result of a paired t-test was statistically significant (t (9) = 1.40, p < 0.05). These
results suggest that under the engagement estimation condition, the agent produces
probing questions with a proper timing and successfully re-captures the subject’s
interest.

We also investigated the corpus analyzed in Sect. 6.3.2, where we found that a
smaller pupil size was strongly correlated with the disengagement. We identified the
time at which the disengagement score exceeded 3 and measured the pupil size for
the last 10 sec. As shown in Fig. 6.12, the pupil size decreased over time. At the time
when a probing question was introduced, the average pupil size was approximately
4.4 mm. The correlation coefficient between time and pupil size was −0.94, which
is very high. Thus, the results obtained under the engagement estimation condition
are consistent with the results we found in the corpus analysis.
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Fig. 6.12 Changes in pupil
size in corpus data

6.6.3.2 Difference in Verbal Behaviors

As another behavioral measure, we investigated the subjects’ verbal behaviors. The
sample of interaction under both conditions is shown in Fig. 6.13 and Fig. 6.14.
We hypothesized that, in the engagement estimation condition, the agent’s probing
questions presented in a proper timing successfully elicit verbal contributions from
subjects, such as asking a question or requesting a change of topic. Therefore, such
behaviors are expected to be more frequently observed in the engagement estimation
condition than in the periodic probing condition.

As shown in Fig. 6.13, in the periodic probing condition, even though the system
detects the subject’s disengagement, the agent did not ask probing questions at that
time. Therefore, the subject asked a question or requested a change of topic even
though he/she had to interrupt the agent. On the other hand, even when the sub-
jects were fully engaged in the conversation, the agent produced probing questions.
In such situations, the subjects did not make use of the opportunity to change the
topic. In contrast, in the engagement estimation condition, the agent asked probing
questions immediately after detecting the subject’s disengagement from the con-
versation. As shown in Fig. 6.14, at this time, the subject took advantage of this
opportunity and asked to change the topic.

Figure 6.15 shows the average ratios of (1) subject’s asking a question and (2)
requesting a change of topic with respect to the total number of the agent’s prob-
ing questions. In the engagement estimation condition, the subjects asked questions
36.1 % of the time when an opportunity was presented, but in the periodic prob-
ing condition they did so only 19.0 % of the time. A statistical trend was observed
by means of a two-tailed t-test (t (9) = 1.82, 0.05 < p < 0.1). Similarly, under the
engagement estimation condition, the user changed the conversation topic 55.6 %
of the time when an opportunity was presented, but did so only 21.4 % of the
time under the periodic probing condition. This difference is statistically signifi-
cant (t (9) = 2.42, p < 0.05). These results indicate that in the engagement estima-
tion condition, the subjects are more likely to provide a verbal contribution when
the agent poses probing questions, which suggests that the proposed agent system
poses probing questions with a proper timing. These results support our hypothesis
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(16) A: This model is only 16.8 mm thick, the thinnest of all the 904i series phones.
<The system detects a user’s disengagement state>
(17) A: The model also has a recently-developed assisting slide that makes the cell phone

body smooth.
(18) A: The first time I picked it up, the slide felt very comfortable to me.
(19) A: If you are looking for an attractive and comfortable cell phone, I recommend this

model.
(20) A: And, this model has...
<A subject interrupts the agent’s utterance and asks her to change the topic to a different
cell phone>
(21) S: Could you change the topic and talk about another cell phone?
(22) A: Yes, let me resume my explanation.
<The topic is changed after a user’s explicit request>
(23) A: At right center is the “SIMPURE L2”, which is a worldwide model and can be used

anywhere in the world.
(24) A: Its body is only 17.6 mm thick and fits easily into your hand. It is beautifully solid and

very usable.
(25) A: It also features a comfortable slide.
(26) A: Its main feature is that unlike other phones it can be used in overseas countries.
(27) A: So when you use it overseas, you can use the same number and email address that you

use in Japan.
<After speaking 10 utterances about the cell phones, the agent asks probing questions>
(28) A: Would you like to move on to the next cell phone?
(29) S: No. I want to hear more about this model.
(30) A: Ok, I will keep explaining the model.
<The topic continues>
(31) A: When you go overseas, you don’t need to worry about getting a new cell phone.

Fig. 6.13 Periodic probing condition

(4) A: At your upper right is the “Raku-raku phone IV” model, which is the newest model of
the “Raku-raku” phone series and has a GPS feature.

(5) A: The model is an advanced cell phone that incorporates the concepts of friendliness,
security, and usability to make it universally user-friendly.

(6) A: This model has especially been strengthened with the inclusion of a security function
with GPS.

<The system detects a user’s disengagement state and asks probing questions>
(10) S: Would you like to move on to the next cell phone?
(11) A: Yes, please.
(12) A: Let us resume the explanation.
<The topic is changed>
(11) A: At the left center is the “SH904i”, which has a finger-sensitive touch pad and a

three-inch wide screen.

Fig. 6.14 Engagement estimation condition

and serve as evidence that the proposed engagement estimation method is valid and
that the implemented estimation mechanism works quite well in a real-time agent
system.
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Fig. 6.15 Ratios of returning verbal contribution to the agent’s probing questions

Fig. 6.16 Subjective evaluation results

6.6.3.3 Subjective Evaluation

As a subjective evaluation, the averages were calculated for each question cate-
gory in the questionnaire. As shown in Fig. 6.16, all of the scores were higher in
the engagement estimation condition than in the periodic probing condition. For
“awareness of engagement”, “appropriateness of behaviors”, “smoothness of con-
versation”, “favorability”, and “intelligence”, we found a statistical significance or
trend in two-tailed t-tests (t (9) = 2.91, p < 0.05 for “awareness of engagement”,
t (9) = 3.28, p < 0.01 for “appropriateness of behaviors”, t (9) = 2.85, p < 0.05 for
“smoothness of conversation”, t (9) = 2.13, 0.05 < p < 0.10 for “favorability”, and
t (9) = 2.86, p < 0.05 for “intelligence”).
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6.6.4 Discussion

In the evaluation experiment, we focused on the effect of the agent’s probing ques-
tions. Although there are several other ways to re-establish engagement (e.g., at-
tracting user’s attention through the use of gestures), the results of the present study
clearly indicate that the agent’s simple feedback, which only expresses the aware-
ness of engagement, has a significant effect on the subjects’ verbal and nonverbal
behaviors, as well as their subjective impression.

First, in the engagement estimation condition, disengagement gaze patterns were
more frequently observed before probing, and such gaze patterns decreased after
probing. This result was supported by the results of analyzing individual gaze be-
haviors. The probing questions by the engagement-sensitive agent successfully de-
creased the eye movement distance and widened the pupil size. In contrast, under
the periodic probing condition, these values were not very different before and after
a probing question. These results suggest that the engagement-sensitive agent gen-
erates probing questions with a proper timing and that these questions recover the
subjects’ engagement. Under the periodic probing condition, the agent is assumed
to have asked probing questions even when the subjects were fully engaged in the
conversation. Thus, the participation attitudes of the subjects did not change.

More interestingly, we found consistent results between the engagement estima-
tion condition in the evaluation experiment, in which the disengagement judgment
was performed using the proposed agent system, and the corpus analysis described
in Sect. 6.3.2, in which the disengagement judgment was performed by human an-
notators. This result suggests that the parameters used in our estimation model were
properly selected and that the system’s judgment of disengagement is quite similar
to judgment by human.

In measuring the verbal behavior, it was found that the subjects have asked ques-
tions and changed the topic more frequently when the agent asked probing questions
under the engagement estimation condition. This result also supports our hypothesis
that, under the engagement estimation condition, probing questions were asked at
the right moment according to the user’s disengagement state.

For the subjective evaluation, the subjects felt that the proposed system was more
aware of the subject’s engagement and that the conversation with the agent was
smoother. In addition, the subjects felt that the agent’s behaviors were appropriate.
Since the variation of the agent’s probing was the same under both conditions, it is
assumed that the subjects felt that the timing of the agent’s behaviors was more ap-
propriate under the engagement estimation condition than under the periodic prob-
ing condition. Interestingly, even though the agent utterances were completely the
same under both conditions, the subjects felt that the proposed agent was smarter
than the periodic probing agent. However, we found no difference in the humanness
and naturalness of the agent’s motion. These findings suggest that the timing of the
agent’s behaviors affects the subject’s impression of the agent’s intelligence, but not
the naturalness as a human. In summary, the agent’s verbal behaviors presented with
a proper timing improve the user’s impression of the agent’s nonverbal expressions
and selecting the agent’s behaviors according to the results of engagement estima-
tion is effective in human-agent interaction.
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6.7 Conclusion and Future Work

In this chapter, we first collected a human-agent interaction corpus in a Wizard-of-
Oz experiment and then analyzed the corpus concerning gaze 3-gram, gaze duration,
amount of eye movement, and pupil size. The analyses revealed that all of these
values were correlated with human observational judgment of conversation engage-
ment. Based on these corpus analysis results, we used these factors in decision tree
learning and found that the model using all of these factors performed the best. We
then incorporated the model into a conversational agent serving as a salesperson.
In an evaluation experiment, we compared the proposed model and the periodic
probing system and found that our agent system generates probing questions with a
proper timing, which demonstrates that the proposed engagement estimation mech-
anism can judge conversation engagement quite well. The engagement estimation
mechanism also works well in a complex conversational agent system in real time
and is useful for improving the quality of user-agent interaction.

As future directions for our work, we intend to improve the accuracy of the
proposed model for estimating disengagement states in particular, because the
F-measure of our current model is still only 0.7. Moreover, eye-tracking is not very
robust because gaze data cannot be measured when the user’s head moves signifi-
cantly. Thus, in order to improve engagement judgment robustness, it is necessary to
combine gaze information with other nonverbal information, such as facial expres-
sions and head nods, because these behaviors are used as a feedback from listeners.
On the other hand, it is also necessary to simplify the model by trying to use other
possible gaze patterns, such as uni-grams and bi-grams.

Finally, we need to address issues related to how to select the most appropriate
agent actions according to the user’s engagement states. In addition to asking prob-
ing questions, there may be other possibilities for re-acquiring user engagement,
such as asking the user’s preference or telling the user to disregard other objects.
More basic research is necessary in order to select effective agent actions.
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Chapter 7
A Computational Approach for Prediction
of Problem-Solving Behavior Using Support
Vector Machines and Eye-Tracking Data

Roman Bednarik, Shahram Eivazi, and Hana Vrzakova

Abstract Inference about high-level cognitive states during interaction is a funda-
mental task in building proactive intelligent systems that would allow effective of-
floading of mental operations to a computational architecture. We introduce an im-
proved machine-learning pipeline able to predict user interactive behavior and per-
formance using real-time eye-tracking. The inference is carried out using a support-
vector machine (SVM) on a large set of features computed from eye movement data
that are linked to concurrent high-level behavioral codes based on think aloud pro-
tocols. The differences between cognitive states can be inferred from overt visual
attention patterns with accuracy over chance levels, although the overall accuracy
is still low. The system can also classify and predict performance of the problem-
solving users with up to 79 % accuracy. We suggest this prediction model as a uni-
versal approach for understanding of gaze in complex strategic behavior. The find-
ings confirm that eye movement data carry important information about problem
solving processes and that proactive systems can benefit from real-time monitoring
of visual attention.

7.1 Introduction

Effective modeling of human behavior and cognition is one of the primary chal-
lenges for building adaptive and proactive systems. Traditional data collection meth-
ods, such as interaction logs or verbal protocols, are often not reliable or applicable.
For instance, it has been frequently argued that tasks such as reading, mental com-
putations, and problem solving are hard to be assessed by methods such as verbal
protocol (Surakka et al. 2003). In this chapter we focus on eye-tracking as a rich
source of data for prediction of human cognitive states and actions.
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Modern eye-tracking research tends to rest on the eye-mind hypothesis (Just and
Carpenter 1976); eye-tracking data are commonly considered as a measure of overt
visual attention and that, according to the hypothesis, is linked to the internal pro-
cessing. Understanding of the relations between eye movements and human cogni-
tion has indeed proven fruitful in many domains, such as reading comprehension,
visual search, selective attention, and studies of visual working memory (Kaller
et al. 2009).

Eye tracking is thus considered as a technology that allows an unobtrusive, ro-
bust and real-time user behavioral data collection. The capture of the ongoing visual
and cognitive processes is achieved through registering the eye-movements of users
and computational approaches for processing the data. The increased availability of
eye-trackers makes eye-tracking also feasible as an input device in gaze-aware inter-
faces (Hsu et al. 2003). For example, the technology has been applied in eye-typing
(Meyer et al. 2003), object pointing and selection (Salvucci 2001), gaming (Smith
and Graham 2006), or interaction with problem solving (Bednarik et al. 2009).

Previous research shows that eye movements during interaction with complex
visual stimuli are often regular and systematic (Yarbus 1967; Rayner 1998). The
existence of detectable and stable patterns in eye-movements motivates researchers
in creating of cognitive models of user behavior. For example, expertise differences
have frequently been linked to the differences in the eye-movement patterns.

In the domain of user modeling, Loboda and Brusilovsky (2010), Bednarik
(2005) and Conati and Merten (2007) argued that eye tracking can be applied for
improving the accuracy of prediction models. Loboda and Brusilovsky highlighted
the advantages of eye movement data for on-line assessment of user meta-cognitive
behavior. Conati and Merten (2007) showed that eye-tracking data improves the
performance of probabilistic models in online assessment.

Despite the great potentials, it is not yet well understood, however, how abundant,
low-level raw eye-tracking data can be employed for modeling of high-level user in-
ternal states. In this chapter we describe the design and components of a system that
employs eye-tracking data in an offline manner to model user performance and cog-
nitive activities in an interactive problem solving task. The presented experiments
investigate three prediction models aiming to provide a recognition and unambigu-
ous interpretation of eye gaze patterns. We describe the design of the approach to
process raw eye-movement data into features that can be fed to the computational
models in ways that would allow providing new intelligent user interfaces with be-
havioral predictions about user strategies and performance.

7.1.1 Related Work

People apply a range of strategies when they have to make a choice or decision to
achieve their goals. Understanding these processes as they occur with interactive
interfaces is not an easy task, but at the same time, it is a central research problem to
tackle on the way towards more intelligent interactive systems. Understanding users’
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plans and goals in real time would enable us to significantly improve the interaction.
Therefore, in order to create interfaces that are more sensitive and proactive to user’s
needs, the user cognitive states must first be invariably recognized.

Ericsson and Simon (1993) assumed that think aloud reports are a reflection of
the cognitive processes that generate user’s behavior and action. In real-time sys-
tems, however, data collection using verbal protocol methods is problematic for
several reasons: think aloud utterances are often incoherent (Ericsson and Simon
1993), verbalizing thought is not a natural procedure in everyday situations, many
inner processes are unconscious, and the rate of thoughts is typically faster than one
is able to articulate. According to van Someren et al. (1994) in many cases it is pos-
sible to combine think aloud method with other data collection methods, in such a
way that think aloud method is employed to provide primary data and later this data
can be used to support and promote analysis using complementary methods.

Another data collection approach frequently applied to get insights into cogni-
tion is eye tracking. Eye tracking offers several advantages over other protocols and
it has been proposed as particularly feasible for assessment of user strategies (Gold-
berg and Kotval 1999). Fore mostly, eye tracking is non-invasive, non-intrusive and
typically does not require user cooperation and conscious awareness. Glöckner and
Herbold (2010) argued that in a problem solving experiment, recording data with
eye tracking methods decreases the chance of influence on the decision processes
of users. They considered eye movement-based analysis as an evaluation technique
that enhances the traditional performance data such as think-aloud protocols and
walk-through evaluations of computer interfaces.

With few notable exceptions (e.g. Anderson et al. 2004) it is generally accepted
that eye movements, fixations and the derived measures provide information about
cognitive processes. For instance, Velichkovsky (1999) claimed that fixation dura-
tions increase during solving a problem with increasing the level of cognitive pro-
cessing. Thus, short fixations are related to more superficial levels of processing (e.g.
screening or perception), whereas longer fixations are related to deeper processing,
such as deliberate consideration of information and planning (Glöckner and Herbold
2010).

Both user expertise and cognitive states have been previously modeled through
an eye-tracking data analysis. Based on a machine learning classification, Liu et al.
(2009) explained differences between experts and novices in building concept maps.
Participants constructed collaboratively concept maps of the content for 20 minutes
as their eye-movement data were recorded. Results showed 96 % recognition rate
for two distinct clusters of experts and novices. The authors reported that while
high-skilled participants concentrated on specific concepts longer, low-skilled par-
ticipants had shorter attention spans and scattered gazes.

Liang et al. (2007) claimed that a general Support Vector Machine (SVM) is a
suitable machine learning method for classification of human behavior, especially
for detecting cognitive states with eye movement data. Authors demonstrated that
driver distraction can be detected using driver performance measures and eye move-
ment measures in real time.

In another study, Simola et al. (2008) applied Hidden Markov Models to predict
what task a user is currently conducting, out of three information search tasks: word
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search, searching for an answer, or choosing the most interesting title from a list.
The model was trained on eye-tracking data and achieved an accuracy of 60.2 %.

Several other recent studies employed a machine learning approach to analyze
eye-tracking data. Vidal et al. (2011) applied k-Nearest Neighbor, as a machine
learning method, to distinguish feature space of fixations, saccades and smooth pur-
suits, together with EOG signal. Ishii and Nakano (2008) used eye movements fea-
tures and an SVM to create an intelligent agent that is able to evaluate engagement
in multi-user conversations.

Xu et al. (2008) proposed a personalized online content recommendation system
based on acquiring individual user’s visual attention over their previously read doc-
uments, browsed images and watched videos. Using a data mining pipeline, they
predicted user’s attention on unseen materials.

A personalized notification system reacting according to eye movements was
also studied by Bailey and Iqbal (2008). Their system benefited from the correlation
between visual attention to proceeded task and changes in pupillary responses as
a source for adaptive notification system. With a proper alignment of user’s eye
movements and tasks, notification can be then presented in less disturbing moments.
Xu et al. (2009) also employed user’s visual attention during reading as a corner
stone for a document summarization algorithm. The hybrid summarization process
suggested candidates for text summarization using the prediction of visual attention
and word semantics analysis. Vrochidis et al. (2011) studied the potentials of eye-
movements as a source of implicit feedback in video retrieval tasks. They built a
recommendation system for finding similar topics in videos based on Support Vector
Machines.

Finally, few studies have employed also pupillary data as a source for ma-
chine learning-based prediction of relevant events. For example, Bednarik et al.
(2012) performed interaction intention prediction based on computational models
learned from eye-movements and pupillary responses. The employed SVM classi-
fiers achieved accuracy of about 75 %.

7.2 Mapping Gaze to Behavior

Modeling internal cognitive states using computational approaches is an active re-
search topic, however complex problem solving is a domain not previously explored
in greater detail using eye-movement tracking. Yet, in order to support the user’s in-
teraction with an interface in an intelligent way, the IUIs have to accurately tap into
the sequence of thoughts and actions of the users.

In this study we thus employ eye-tracking to reveal such relevant information
from user’s ocular behavior. At the core of the method described here, gaze data
are associated with human cognition states by aligning them with the annotations of
think aloud protocol, as a ground truth. The presented method progresses according
to the following main steps: verbal protocol analysis of the cognition, feature extrac-
tion and mapping to the verbal protocols, application of a machine learning method
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Fig. 7.1 Procedures of the
proposed mapping. Adapted
from Eivazi and Bednarik
(2010)

for building associations between the two, and classification using the learned mod-
els.

In detail, first, we code all think-aloud data recorded from user’s speech during
interaction. We suggest to apply for example the coding scheme proposed by O’Hara
and Payne (1998) that is based on the Ericcson (1975)’s approach and has also been
applied with modifications in other studies (Morgan et al. 2007; Davies 2003). The
details of the coding as applied for the case dataset are presented in Sect. 7.3.1.1.

In the second phase, we perform mapping of gaze-based data to qualitative dif-
ferences in the corresponding think-aloud protocols. We compute a large set of eye-
tracking features that are informed by the theories of cognition and visual attention,
and for each data-point in the think-aloud protocol we build a corresponding vector
of these features. In the last stage, we present the inference task as a typical clas-
sification problem and we apply machine learning and pattern recognition methods
to solve it. Figure 7.1 presents the computational architecture of the proposed ap-
proach.

The mapping system described above enables us to 1) investigate the relation-
ships between high-level cognitive traits and low-level eye-tracking data, and 2) pro-
pose a prediction real-time model to recognize user’s cognitive states and user’s per-
formance. Future interactive systems can make use of such automatic modeling and
classification methods.
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Fig. 7.2 Target
configuration. Adapted from
Eivazi and Bednarik (2010)

Because it is known that preprocessing stage is highly important for successful
performance of prediction models such as the one employed here (Graf and Borer
2001) and that normalization is the central part of the process when SVM is used
(Chang and Lin 2011), in the following experiments we specifically investigate the
effects of various normalization and windowing approaches on the performance of
the proposed system.

7.3 Method

In order to answer the question whether gaze data can be used to classify and predict
human strategies and performance we choose the classical 8-tiles puzzle game. We
employ the data collected from the experiment of Bednarik et al. (2009). Similar set-
tings have been used in numerous studies investigating interactive human problem
solving.

To achieve the goal of predicting user’s actions and performance through the eye
movement data, two main analysis techniques had to be carried out. First, outcome
measures had to be defined and computed, including feature extraction and cluster-
ing of the features. Second task consisted of creation and validation of the prediction
model. We will next briefly describe the settings of the original study and then the
methods of data labeling, feature extraction and model building.

In the original study, the authors had instructed a group of participants to think
aloud while solving the 8-tiles puzzle game. Each tile in the puzzle had dimensions
of 200 × 200 pixel, and each tile had a width of 5.29 cm and height was 5.29 cm,
measured on the screen.

Fourteen participants solved three trials of the game using computer mouse as an
interaction method. They started with a warm-up puzzle and a think aloud practice
and then continued for three unique initial configurations of the puzzle game. The
three configurations were comparable in the level of complexity and were presented
in random order. The target goal state of the puzzle is shown in Fig. 7.2; the goal
state was visible to the participants at bottom left side of the screen all times.

Figure 7.3 present the three initial states of the puzzle game. In addition to par-
ticipants’ voice protocols, eye movements were recorded using Tobii ET 1750 eye
tracker. The resolution of the 17 inches screen was 1280 × 1024 and the viewing
distance 60 cm (Bednarik et al. 2009).
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Fig. 7.3 Initial configurations. Adapted from Eivazi and Bednarik (2010)

7.3.1 Data Analysis

For the purposes of this experimentation, two feature extraction methods were per-
formed on eye movements sequence. The first method computed features using win-
dows with dynamic durations and the second method computed features for a fixed
window interval. The dynamic window size was contingent with the length of the
respective utterance, whereas the fixed window size was systematically modified
from 200 ms to 7400 ms in 200 ms steps to evaluate the effects of the window size
on the prediction performance.

7.3.1.1 Outcome Measures

To address the first problem of outcome measures, verbal data were classified into
six categories based on O’Hara and Payne (1998) with a slight modification. The
classification categories described qualitatively the following different utterances:
Cognitions referred to statements describing what concrete and specific information
a participant is currently attending to and what information he is processing. Exam-
ples of cognition statements would be “... number 3... ok 1, 2, 8, 7” or “No, you are
messed up”.

Evaluations were conceptually similar to cognitions, however they were less ac-
curate about the object of interest. In addition, when participants were referring to
how well they performed or what is the general situation in the problem-space, we
coded that utterance as belonging to evaluations. Examples of evaluative statement
would be “... this one will mess my things” or “... I am doing something...a mistake
over here”.

Plans and planning were utterances containing a description or reference to plan
development, its specific goals and detailed actions to be taken next. Examples of
planning statements would be “... I have to reshuffle the first row by changing the
position of 1 and 4” or “... I want to get the 6 from the upper left corner out there”.

Intentions, on the other hand, were utterances describing the general aims, with-
out a specific descriptions how to achieve them. Examples of intention statements
would be “... I will start playing little bit around to sort the left part” or “... how do
I rotate these whole thing”.
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Table 7.1 Fixation-based features

Variable Feature Description Unit

Fixation Count* Number of fixation n

Polygon area Area covered by fixations px2

Fixation duration First Features describing distribution of
fixation duration (= total 8 features)

ms

Last

Minimal

Maximal

Sum*

Mean*

Median

Standard deviation

Distance
between fixations

First Euclidean distance between consecutive
fixations (= total 8 features)

degree

Last

Minimal

Maximal

Sum*

Mean*

Median

Standard deviation

Angle between
fixations

Mean Angle between consecutive fixations
(= total 6 features)

degree

Minimal

Maximal

First two

Last two

First and last

Concurrent move utterances referred to description of the changes in the problem
along the manipulation with it. Examples of concurrent move statements would be
“... 4 will be there” or “... there will be 8 coming here and the 7 coming here”.

Finally, we applied a category of not applicable for other utterances; however, we
do not consider those data in this analysis. More detailed description can be found
in O’Hara and Payne (1998).

The unit of analysis was one sentence. Two independent coders conducted the
coding and achieved the inter-rater agreement of 86 %. Eye-gaze replay was used to
resolve particular difficulties and unclear codes.

Of all three trials and all participants, the coding yielded a total of 1389 labeled
utterances, of which 281 data points belonged to Cognition states, 397 data points
to Evaluation activities, 130 data points to Planning, 247 data points to Intention re-
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Table 7.2 Saccade-based features

Variable Feature Description Unit

Saccade Count Number of saccades n

Polygon area Area covered by saccades px2

Saccade duration Sum Features describing distribution of
saccade duration (= total 4 features)

ms

Mean

Median

Standard deviation

Saccade amplitude First Euclidean distance between consecutive
fixations (= total 8 features)

degree

Last

Minimal

Maximal

Sum

Mean

Median

Standard deviation

Saccade direction First Angle between consecutive saccades
(= total 6 features)

degree

Last

Minimal

Maximal

Sum

Mean

lated utterances, and 334 utterances contained the descriptions of concurrent moves.
The mean duration of a coded sentence was 6829 ms (SD = 8110).

The eye movement features that were used in this experiment are listed in Ta-
bles 7.1, 7.2 and 7.3. The features marked by (*) were already used in the previous
work by authors (Eivazi and Bednarik 2010). Similarly as the coded utterances,
eye-movement data carried a timestamp, enabling their easy mapping to the verbal
protocol. Furthermore, we partitioned the screen into areas of interest (AOIs). The
user interface was partitioned into nine AOIs corresponding with the nine possible
positions of tiles of the game, and one additional surrounding area for the remain-
ing part of the screen. The goal state of the game was shown constantly at the left
bottom of the screen. In total 49 features were computed.

7.3.1.2 Feature Construction, Extraction and Selection

The preprocessing of the raw eye movement data was performed using the velocity-
based fixation identification algorithm (Salvucci and Goldberg 2000). The fixation



120 R. Bednarik et al.

Table 7.3 Interface-dependent features

Feature Description Unit

Total number of visited tiles Total number of fixations, located on the tiles
(including multi visits)

n

Unique number of visited tiles Unique number of fixations, located on the tiles n

Number of switches between tiles Total number of fixation switches between the tiles n

Number of visited goal area Total number of fixations, located in the goal area n

identification software was designed by authors in Matlab and the best settings for
the algorithm was chosen after manually comparing the results using visual replay
of the gaze. As a result, the velocity threshold 100 deg/s, the minimum fixation
duration 100 ms, and the minimum distance between two gaze points of 30 pixels
were applied on the dataset. The LibSVM Matlab toolbox of Hsu et al. (2003) was
used to build and train the prediction model along with custom developed scripts in
Matlab.

To describe the cognitive processes occurring during problem solving task,
a large number of eye movement features were constructed using two window-based
feature extraction methods: a dynamic window extraction and a fixed window size
approach.

In the case of the dynamic window size feature extraction, each feature vector
was computed from the eye-movement data belonging to the whole duration of the
corresponding utterance. For example, during three seconds of single state such
as evaluation, we computed the eye movement features using data from the entire
interval.

In the case of the fixed window size feature extraction, each vector was computed
from eye-movement data for the duration of a fixed window size. For example,
during each 1000 ms window the eye movement features were computed and labeled
according to the corresponding state.

Even though we constructed nearly fifty eye movement features, a question arises
whether a more compact set would perform similarly and thus allow a more effective
computation. Thus, we used a simple experimental evaluation method to select a
subset of the features. The aim was to reduce the number of features which are
sufficient to describe classes separately. The differences in individual features were
observed by visually plotting the distributions of the features for each class. For
modeling problem-solving behavior 10 out of 49 features were selected:

• number of fixations
• sum fixation duration
• area covered by fixations
• mean fixation distance
• unique number of visited tiles
• number of switches between tiles
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• number of visited goal area
• sum saccade duration
• area covered by saccades
• sum saccade amplitude

And for modeling performance groups 20 out of 49 features were selected:

• number of fixations
• number of saccades
• maximal fixation duration
• sum fixation duration
• mean fixation duration
• area covered by fixations
• distance between first and last fixations
• minimal fixation distance
• maximal fixation distance
• sum fixation distance
• mean fixation distance
• total number of visited tiles
• number of visited goal area
• sum saccade duration
• area covered by saccades
• maximal saccade amplitude
• sum saccade amplitude
• mean saccade amplitude
• minimal change in saccade direction
• maximal change in saccade direction

7.3.1.3 Prediction Model

To address the second task (prediction model) we employ a well-established ma-
chine learning approach. Support vector machine (SVM) is a standard and fre-
quently applied tool that has been previously shown performing well for various
classification tasks (Meyer et al. 2003). SVM has been successfully used in detec-
tion, verification, recognition, and information retrieval from a range of datasets
(Liang et al. 2007). Liang et al. (2007) presented three reasons that make SVM
suitable for classification of human cognition states: first, it is rarely possible to rep-
resent cognitive states of humans by a linear model. SVM can compute nonlinear
models as efficiently as the linear models. Second, SVM can be applied without
prior knowledge before training. In addition, it can extract information from noisy
datasets. Third, while traditional learning methods (e.g., logistic regression) only
minimize training error, SVM minimizes the upper bound of the generalization er-
ror. This makes SVM able to produce more robust models. In our application, SVM
is used as a supervised learning classification method.
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In total, three prediction models were trained to predict user’s actions and per-
formance. The first model learns the patterns of problem-solving behaviors on a
5-class problem corresponding to all five states and corresponding eye movement
features (hereafter we refer to this task as the 5-class task). The second model deals
with a simplified 2-class task of detecting planning and intention activities versus
cognition and evaluation activities (hereafter 2-class task).

The third model searches for patterns in data vectors originating from different
performance groups (two classes, high- and low-performing participants) and eye
movement features (we refer to this task as the performance task). The task is to
predict to which performance group any given data vector belongs.

For the first model, the ground truth was labeled for each class (five coding states)
in the sample data. For the second model, ground truth was created by merging the
five coding states into two coding states. Finally for the last model, the ground truth
was established by computing the task completion times.

The LibSVM Matlab toolbox developed by Hsu et al. (2003) was used to build
the prediction models. Whole dataset was randomly partitioned into 70 % training
data and 30 % testing data for which the gaze data was available. Normalization of
data was applied in two ways on the balanced dataset: linear transformation within
an interval [0,1], and Z-score normalization. Both training and testing data were
normalized with the same method. For linear transformation, first from the training
data the minimum and maximum values were computed for each feature separately,
and next the same minimum and maximum value were applied in testing data. Sim-
ilarly in Z-score normalization, mean and standard deviation of each features were
computed separately and next the same constants were applied in testing data.

Similar to the Eivazi and Bednarik (2010) approach in order to find best hyper-
parameter of the prediction model, an optimal cost (c) and gamma (g) value of the
RBF kernel was estimated by a 2D grid search (Hsu et al. 2003). The prediction
performance for each hyper-parameter setting was computed by 5-fold cross valida-
tion on the training data. The training data was randomly divided into five subsets.
Consequently, one subset was tested by using the model based on the remaining
data (four subsets). The objective function for performance measure was Equal Er-
ror Rate (EER) in 2-classes prediction models and for 5-classes prediction model
the objective function was accuracy.

7.4 Results

In this chapter we analyze user behavior during a problem-solving task. In partic-
ular, we analyze the eye movement data and features as subsets aligned with the
categories of verbal protocols. Compared to Eivazi and Bednarik (2010) study, we
changed the setting to a randomized and task-independent approach. Here, we sys-
tematically evaluate the effects of normalization method and the type and size of
windowing for feature extraction.
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Fig. 7.4 Histograms of mean fixation duration

7.4.1 Descriptive Analysis

Compared to Eivazi and Bednarik (2010, 2011), we present a more complete set of
features and a more detailed evaluation of different feature extraction parameters
and normalization methods. In the following, we highlight some of the peculiarities
of applying various settings of feature extraction window.

The differences in individual features related to the cognitive states were gen-
erally small and the features contained great variances. In addition, window size
seems to have an effect on the shape of the feature distributions. To demonstrate
visually the nuances, we plot two features under changing settings, see Fig. 7.4 and
Fig. 7.5.
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Fig. 7.5 Histograms of sum fixation distance

Figure 7.4 shows the distributions of mean fixation duration. In the left column,
a window size of one second is applied, while the right column contains visualiza-
tions of dynamic window effect (Figs. 7.4b and 7.4d) and a four-second window
(Fig. 7.4f). It seems that longer window sizes better highlight differences between
the distributions of the mean fixation duration for the respective classes for all three
problems, as the distribution plots and peaks overlap less.

Figure 7.5 presents the distributions of the sum of fixation distance feature under
the three tasks and window sizes. he left column shows distributions when a rela-
tively short one-second window was applied. Similarly as with the previous case,
the effect of the window size during feature extraction is visible through better sep-
aration of the histograms when longer window size was applied, in particular for the
performance classification task (Fig. 7.5f).
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7.4.2 Classification Performance

7.4.2.1 Problem-Solving States

The performance on the multi-class classification task with five distinct classes has
been compared using two sets of features, two normalization methods, and by sys-
tematically adjusting the window size. A baseline majority classifier would have an
accuracy of 29 % in this case. The best resulting accuracy of 31 % was achieved
when dynamic window size method and linear transformation method were applied
together. When window size was fixed, the best accuracy was 32 % (window size of
4800 ms). While performance was slightly better when data were preprocessed us-
ing normalization, the type of normalization had no effect on the results. Figure 7.6a
shows the effect of window size and normalization method on the prediction per-
formance. The enumerations of the prediction performances for all tested window
sizes and normalization settings are presented in Table 7.4.

Considering that a multi-class classification problem is far more challenging
compared to a binary classification problem, we turn the problem into 2-class clas-
sification problem by merging the related classes. The first such resulting class in-
cludes samples from both cognition and evaluation classes and the second class
includes samples from both planning and intention classes. Samples related to the
concurrent move class were ignored in this task.

Similar to the multi-class classification task, using two sets of features, two nor-
malization methods, and systematically adjusted window size the prediction per-
formances for 2-class classification task have been compared. A baseline majority
classifier would have an accuracy of 64 %. The best resulting accuracy of 60 %
was achieved when dynamic window size method and linear transformation method
were applied together. When window size was fixed 3400 ms, the best accuracy was
56 %. Normalization had a sizable effect on the performance, however, both meth-
ods of normalization performed nearly equally when the window size was fixed.
When using dynamic window size, linear normalization showed a slight improve-
ment over the Z-score normalization. Figure 7.6b shows the effect of window size
and normalization method on the prediction performance. The prediction perfor-
mances for all tested window sizes and normalization settings are presented in Ta-
ble 7.5.

7.4.2.2 Problem-Solving Performance Classification

In this study, all users were divided into two groups: expert and novice. The average
time for solving the puzzle was 234 seconds and thus the users who solved the
puzzle less than 234 seconds were denoted as experts and other users as novices.
In total, nine users belonged to the expert group and five users were regarded as
novices.
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Fig. 7.6 Window size and normalization effects on prediction performance, a 5-class and b 2-class
problem

The performance of 2-class classification task with the expert and novice groups
has been compared using two sets of features, two normalization methods, and a
systematically adjusted window size. A baseline majority classifier would have an
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Table 7.4 The effect of window size and normalization setting on 5-class prediction performance

Window
size [ms]

Accuracy (testing)

Linear normalization Z-score normalization

feature subset all features feature subset all features

200 20 18 26 26

400 26 27 27 26

600 26 27 27 27

800 27 27 27 27

1000 27 28 27 27

1200 28 27 28 28

1400 29 28 29 28

1600 28 29 27 27

1800 28 28 28 28

2000 28 29 28 28

2200 28 30 28 29

2400 29 29 29 29

2600 29 29 28 29

2800 29 27 28 28

3000 29 28 28 30

3200 28 27 27 28

3400 28 30 28 29

3600 30 30 29 28

3800 28 29 28 29

4000 28 28 28 29

4200 30 31 30 30

4400 31 31 28 31

4600 29 30 29 29

4800 29 31 29 28

5000 29 31 28 29

5200 30 31 29 32

5400 31 31 30 30

5600 29 30 29 31

5800 28 31 29 31

6000 27 31 30 29

6200 29 30 29 30

6400 27 31 30 29

6600 30 30 29 29

6800 30 32 29 30

7000 29 31 28 30

7200 31 31 31 31

7400 30 32 30 31

Average 28.43 29.19 28.43 28.92

Dynamic 31 31 31 30
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Table 7.5 The effect of window size and normalization setting on 2-classes prediction perfor-
mance

Window
size [ms]

Accuracy (testing)

Linear normalization Z-score normalization

feature subset all features feature subset all features

200 50 49 50 49

400 50 50 48 48

600 51 50 49 49

800 52 51 51 51

1000 52 52 52 54

1200 51 53 53 53

1400 54 53 52 53

1600 54 53 53 53

1800 53 51 52 52

2000 54 55 54 53

2200 52 52 51 55

2400 53 55 53 55

2600 53 54 52 56

2800 54 55 55 55

3000 54 55 53 54

3200 54 53 55 54

3400 56 54 54 56

3600 55 56 56 56

3800 54 54 55 56

4000 55 55 55 54

4200 55 53 54 54

4400 54 54 53 56

4600 55 55 54 54

4800 55 54 53 56

5000 56 53 56 54

5200 54 56 55 55

5400 55 55 53 55

5600 53 52 53 56

5800 56 54 53 55

6000 55 54 52 56

6200 53 52 52 52

6400 55 53 53 56

6600 55 54 55 54

6800 53 56 53 57

7000 51 53 53 55

7200 52 55 52 52

7400 56 55 55 56

Average 54 54 53 54

Dynamic 60 56 58 56
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Fig. 7.7 Window size and normalization effect on performance prediction

accuracy of 64 %. The best resulting accuracy of 79 % was achieved when 7000 ms
fixed window size and linear transformation method were applied together. Linear
normalization had always performed slightly better than Z-score transformation.
Figure 7.7 shows the effect of window size and normalization method on the pre-
diction performance. The prediction performances for all tested window sizes and
normalization settings are presented in Table 7.6.

7.5 Discussion

In this chapter we presented an evaluation of window size and normalization meth-
ods for automatic classification of problem solving strategies from eye-tracking
data. We presented the approach for such modeling, the design of features, two
normalization methods, and performance results in three tasks.

The preliminary results from a previous experimentation on this dataset shown
a 53 % accuracy on the prediction accuracy for the five classes task (Eivazi and
Bednarik 2010) and 66 % accuracy on the prediction accuracy for the performance
classification task (Eivazi and Bednarik 2011). While ten features were computed
using primarily fixation data in the preliminary work, in the present work we signif-
icantly increased the number of features by five folds.

In our previous work, the baseline performance was established as a classification
accuracy of a majority classifier. For the problem-solving states task, the baseline
majority classifier had an accuracy of 27 % and for the problem-solving perfor-
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Table 7.6 The effect of window size and normalization setting on performance prediction perfor-
mance

Window
size [ms]

Accuracy (testing)

Linear normalization Z-score normalization

feature subset all features feature subset all features

200 50 49 52 50

400 57 54 54 53

600 57 58 57 54

800 63 60 62 56

1000 65 62 65 60

1200 65 61 64 61

1400 66 64 65 62

1600 68 65 67 64

1800 69 66 69 65

2000 72 69 71 68

2200 73 69 72 69

2400 72 69 72 68

2600 74 70 73 68

2800 73 70 73 69

3000 73 72 73 69

3200 74 71 74 69

3400 75 72 75 71

3600 75 72 74 72

3800 76 73 75 72

4000 77 73 76 72

4200 75 75 72 75

4400 73 74 74 72

4600 75 75 74 74

4800 74 73 76 73

5000 75 75 75 75

5200 77 76 75 75

5400 75 75 75 73

5600 75 75 74 74

5800 77 76 75 75

6000 76 77 77 74

6200 78 76 76 74

6400 76 76 75 75

6600 76 76 77 74

6800 78 76 75 74

7000 79 77 77 74

7200 77 76 76 75

7400 79 77 76 78

Average 72 70 71 69
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mance classification task the baseline majority classifier had an accuracy of 55 %
(Eivazi and Bednarik 2011).

In the Eivazi and Bednarik (2010) approach, the selection of training and testing
data, the normalization approach, and a k-fold cross validation may not be generaliz-
able to the real time prediction systems. This is due to the fact that the whole dataset
was subdivided only into two training and testing datasets according to boundaries
of the three problem-solving sessions. The training data was then derived from the
first two trials and the remaining last trial was selected for testing purposes. It is
thus questionable, whether such approach brings about some time-dependency and
whether it does consider a truly random selection of data as in a real time system.

Furthermore, the normalization method originally involved was both session and
class dependent, which is a possible approach given the data set is available as in an
offline prediction. However, in real-time systems the target class label is not known
beforehand, and thus the normalization phase cannot distinguish it. We adopted a
class-independent approach in this chapter.

Finally, the comparison with previous experimentation needs to take into account
the metrics of prediction performance. Namely, the number of classes in each trial
was not balanced before, and therefore using accuracy as an objective function may
not be adequate for more detailed studies. Moreover, using accuracy as a measure
in k-fold cross-validation method may lead to choosing an not generalizable param-
eters for SVM prediction model. The results of the Eivazi and Bednarik test show
large differences between cross validation and testing data accuracy, which we be-
lieve is the results of improper objective function.

7.5.1 The Current Results

The presented work is built upon a significantly improved machine learning
pipeline. The described approach, however, did not achieve classification perfor-
mances as high as reported before. In sum, in the 5-class problem, the best accuracy
was 32 % using linear transformation method and 6800 ms window size. However,
around the same 31 % accuracy was achieved also using dynamic window size.
When the number of classes was reduced as in the 2-class problem, the best accu-
racy was 60 % using the dynamic window size and linear transformation method.
Moreover, the accuracy was 56 % when 3400 ms window size with linear transfor-
mation method were used to train classifier. In the performance classification task,
the highest accuracy was 79 % using linear transformation method with 7000 ms
window size.

In sum, our results show that the linear transformation method suits better for
most cases, however the prediction performance differences were not large. It seems
that longer window-size works better than short windows, and that the dynamic
window approach performs best. The challenge is, however, that in a real-time im-
plementation one would need to wait longer for the classifier response. In addition,
implementation of the dynamic windowing in the real-time is hard, since the bound-
aries between different labels would need to be predicted.
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A visual comparison of Fig. 7.4 and Fig. 7.5 suggests that there may be an inter-
action between the windowing parameters, feature type and task at hand. We plan
to investigate this phenomena in more detail in our future work.

Even though it is well known that oculomotor behavior is task-dependent to a
certain degree (Yarbus 1967; Lipps and Pelz 2004), the way the present method
builds on this observation seems not entirely effective. When dealing with classifi-
cation of user strategies during problem solving, the individual differences in certain
eye-movement measures are known to be large and temporally dependent (Bednarik
et al. 2006; Bednarik and Tukiainen 2008). We believe that is one of the reasons for
the observed performance results presented above.

7.6 Conclusions and Future Work

In this chapter we applied an SVM-based classification to predict problem-solving
cognition states and user’s performance. The goal was to evaluate whether eye track-
ing can be used to detect cognitive behavioral patterns for a purpose of proactive
intelligent user interfaces. We clearly showed that normalization of eye-movement
features is beneficial for classification performance. Although the method of nor-
malization does not seem have significant effects on the overall performance, we
recommend applying linear scaling that seemed to perform slightly better. Consid-
ering the effects of window size on extraction of the eye-movement features, we
observed that even for same feature, the density distributions can vary depending
on the size of the window. The prediction performance of the classification however
generally improves with increased sizes of the extraction window.

Finally, we performed a naïve selection of features to show that computational
complexity can be significantly decreased without impacting the performance. This
observation opens new pathways for future research, in which we plan to investi-
gate the relative contribution of the features. We hypothesize that the discriminative
power of a feature should be evaluated across different window sizes as it seems
that some features provide good performance at short windows while other features
work best at longer extraction boundaries.

Compared to our previous attempt, we improved the methodology to a more
rigorous settings that truly emulates the conditions of real-time prediction problem.
The accuracy of cognitive activity classification was not extremely great and while
one can see them as dissatisfying, we perceive them as setting the baseline of what
is possible to achieve with applying the rigorous approach presented here.
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Chapter 8
Gazing the Text for Fun and Profit

Ralf Biedert, Georg Buscher, and Andreas Dengel

Abstract Reading digital books is becoming more and more common, and modern
interface technologies offer a wide range of methods to interact with the user. How-
ever, few of them have been researched with respect to their impact on the reading
experience. With a special focus on eye tracking devices we investigate how novel
text interaction concepts can be created. We present an analysis of the eyeBook,
which provides real time effects according to the read process. We then focus on
multi-modal interaction and the usage of EEG devices for the recording of evoked
emotions.

8.1 Introduction

Digital book sales have just recently surpassed (Miller and Bosman 2011) the num-
ber of paper books. Hundreds of thousands of smart phones, tablets and e-book read-
ers are sold every day and with them new interaction techniques. With the advent
of sophisticated touch screens, speech recognition processing power and storage,
these devices are capable of providing dense multi medial experiences. At the same
time the first eye tracking vendors began to target a mass market production and
miniaturization of their units (Eisenberg 2011) and they likewise are high potential
candidates for an integration into future generations of digital companions.

Plenty of research and development on interactive gaze-based applications has
emerged since eye tracking has first been used for entertainment (Starker and Bolt
1990). However, we would like to focus the attention on a topic that is in our opinion
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quite underrepresented so far: text, and the entertaining potential eye tracking can
provide. Text, as we argue in this respect, is special. Like no other stimulus have
eye movements on text, commonly referred to as reading, been researched for more
than hundred years (Rayner 1998). In fact, it was reading which motivated the de-
velopment of first eye tracking methods.1 Also, eye tracking has seen great progress
during the last some forty years with the availability of simple, video-based remote
eye tracking and computing devices capable of reacting to these measurements in
less than the blink of an eye. What makes eye tracking on text so special today are
a number of reasons. It is highly structured and imposes a certain behavior onto its
readers and reveals their cognitive processes towards the machine. During the time
the users are reading there is some sort of shared knowledge what’s on their mind
which the machine is likewise able to comprehend. In contrast to scenery perception
or images the machine is able to elicit a huge amount of information of the given
text, thanks to the widespread availability of search engines, semantic databases and
the Internet as a whole. While we could already show that these properties allow for
ground-breaking interfaces and information provision systems (Biedert et al. 2010;
Buscher 2010), in this work we want to investigate how gaze tracking can be used
to improve the experience part of the reading experience. We consider this to be
of special concern due to two reasons. The sublime one is that literacy education
and motivating (especially the young) to read has become a key issue recently since
reading rates among youths are dropping in the U.S.2 (Anonymous 2007). The more
practical reason is the fact that most e-books sold today are, in fact, bought and con-
sumed for pleasure nonetheless (Milliot 2011). Hence, focusing only on the practical
aspects of improving information transmission would miss the point.

With these points in mind the rest of the chapter is structured as follows. In
Sect. 8.2 we start by giving a general overview on related work in the domain of
gaze-active textual interfaces. In Sect. 8.3 we present the foundations upon which
we built our applications. This includes the technical frameworks and core struc-
tures, such our extensions to the current HTML standards,3 as well as a real-time
reading detection algorithm needed by most prototypes. In Sects. 8.4 and 8.5 we
present two prototypes that facilitate gaze to enhance the reading experience, either
as an uni-modal input, or as an integrated application in combination with speech
recognition and handwriting interaction. Both serve the purpose of outlining how
these multimodal gaze concepts are being perceived by users. Section 8.6 reports on
our findings how the emotions evoked during reading can be recognized and linked
to the underlying text. Eventually we argue that the real-time recording and aggre-
gation of gaze and the books’ evoked emotions can lead to an improvement of the
texts themselves.

1Although, one might argue, that technology had nothing in common with the devices researchers
have access to today.
2And likely in some other countries as well.
3See http://www.w3.org/MarkUp/.

http://www.w3.org/MarkUp/
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8.2 Related Work

Tracking eye movements on text has a long history. In first experiments conducted
during the 19th century, subjects reading text were monitored with the simplest
means and the findings were basically of descriptive nature. Javal (1878), Landolt
(1881) and Lamare (1892) were among the first to conduct eye movement studies
(Wade and Tatler 2009), and eye movements on text were among the first aspects to
be researched. While early experiments were of rather descriptive nature and pro-
vided early evidence that the eye moves in a series of jerks (i.e., saccades) while
reading, the second half of the 20th century started to focus on cognitive aspects.
Especially during the last thirty years of the last century the available tracking meth-
ods improved dramatically and with the availability of remote eye tracking devices
and a computer-based evaluation of eye movements there was a dramatic increase
in insights into the human perception and reading process (Rayner 1998). Sophis-
ticated experiments could be performed with gaze-contingent stimuli, based on the
subject’s eye movements and behavior. Also, the first truly interactive eye tracking
applications were implemented (Starker and Bolt 1990) in which eye tracking was
used for entertainment. However, the real-time usage of gaze on text, for the sake
of entertainment or information provision, has not explicitly been considered for
a long time. The first application focusing on that aspect was iDict by Hyrskykari
et al. (2000, 2006), which was designed to provide translations on comprehension
problems detected in the reader’s gaze patterns. In it translations tooltips (glosses)
are presented after a certain dwell time on problematic words or provided in a gaze-
responsive side bar.

8.3 Combining Gaze and Text

In order to properly implement and evaluate applications that can react on eye move-
ments we need a way to integrate tracking data in a structured way, so that they can
be combined with text naturally. While in many scenarios a rendered image that is
subsequently studied in an eye tracking experiment is sufficient, there are challenges
imposed by complex document layouts and textual interaction that require a more
sophisticated solution. Hence, as the principal foundation for our approach we chose
a browser as a rendering engine which we extend with gaze functionality. It already
contains established means to structure and layout documents (i.e., HTML), as well
as the necessary scripting facilities to react to external events (i.e., JavaScript). Into
the browser we integrate a plugin that interfaces with the loading and setup process
of a document, preprocessing and preparing it for the implementation of various
interactive handlers as well as subsequent analysis. While some parts of the actual
integration are merely implementation aspects, in this chapter we focus on key func-
tionality actually needed by the applications and experiments that build upon it.
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Fig. 8.1 Internal representation of the document/application which is being used for internal pro-
cessing and later evaluation. The geometry of all words and punctuations is accessible at runtime
and can also be stored for later evaluation, along with incoming gaze, interaction, and EEG data

8.3.1 Document Preparation and Recording

After a document4 is opened by a browser it transforms the structured HTML doc-
ument into a DOM5 tree which serves as the browser’s basic data structure for ren-
dering. Although the process itself is mostly straightforward the biggest challenge
in this process is the transformation and handling of text and text nodes. While most
of the resulting DOM model is, from an application’s point of view, easily accessi-
ble and computable, e.g., in terms of size and layout, text nodes are usually treated
as opaque blocks unavailable for detailed inspection. We address this problem by
an intermediate step called spanification (Biedert et al. 2010) in which we break
up each text node into individual words, forming DOM elements on their own, for
which we can then again receive geometry information. This mechanism constructs
an internal representation for which we can get the exact document coordinates and
bounding boxes for textual elements, including punctuation and are able to store ar-
bitrary meta-attributes to the individual elements during runtime, compare Fig. 8.1.

The preprocessing step also allows for another important property for the con-
duction of experiments, which is interaction recording. Taking advantage of the fact

4We use the terms document and application synonymously, since in our case each application has
the nature of a (often highly dynamic) HTML/text document, and also all the HTML documents
we work with usually have a considerable amount of processing logic built in or at least rely on
them.
5See http://www.w3.org/DOM/.

http://www.w3.org/DOM/
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that the relevant page geometry is known during runtime, the geometry information
is serialized along with arriving gaze data, and for example mouse, interaction and
EEG measurements, into a storage file that enables us to replay and automatically
process the interaction session.

8.3.2 Event Handling

Apart from the general preparations for gaze-based interaction and recording we
also have to consider how we can integrate eye tracking data into the document
format elegantly. Since there is already an established mechanism for event handling
in the DOM model6 probably familiar to most web developers, we integrate gaze
in a similar fashion. We propose a set of new event handlers (attributes) that can
be attached directly to nodes in order to make them react to certain types of gaze
patterns. The handlers we propose are:

onGazeOver The script annotated with this attribute is being executed when a
fixation enters the element, or any embedded element, for the first
time. Subsequent fixations on the element are ignored.

onGazeOut The associated script is being executed when the first fixation is de-
tected outside the tagged element, given that a fixation was detected
within before.

onFixation The associated code is executed on every detected fixation to the
element.

onRead Triggered when reading is detected (see Sect. 8.3.3 below) and one
of the last saccades was moving over the specified element.

8.3.3 Reading Detection

As mentioned in the introduction, the integral part of our work is focused on text.
Hence, a robust and reliable detection of reading is a prerequisite to properly im-
plement many of our prototypes. Depending on the specific application there are a
number of reasons why one would want to use such a reading detector. The most
common one is to ensure that the application’s reactions are bound to actual read-
ing taking place. For example, one would want to trigger certain reactions such as
acoustic effects only when a user actually reads a given paragraph, not merely when
he looks at it occasionally or accidentally. While for some applications simple solu-
tions, e.g., measuring raw average character progress, sometimes work they usually
fail with a decrease in font size or increase of eye tracking noise. Thus, in this sec-
tion we present our most thorough solution (Biedert et al. 2012) that forms likewise
the foundation for a number of applications.

6See http://www.w3.org/TR/DOM-Level-2-Events/events.html.

http://www.w3.org/TR/DOM-Level-2-Events/events.html
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Fig. 8.2 Generation of the two feature vectors. The average forward speed (left) is computed as the
normalized forward lengths of all saccades that pointed approximately into the reading direction.
The angularity (right) reflects how horizontal or vertical the window w actually is. Both serve as
the input for the successive classification

This approach uses overall saccade shape of a number of subsequent saccades
(see Fig. 8.2). The algorithm’s principal inputs are the incoming stream of gaze data,
as well as the average font size of the area below the observed saccades, as well as
the information whether there was text present at all. If there is no text present, such
as when the user’s gaze is directed on an image, we already know that no reading
takes place and thus the following computation is skipped. Otherwise the following
multi-stage process is being invoked.

Filtering The incoming gaze stream G = (g1, g2, . . .), where gi denotes the
ith measured pixel position, first filtered by two independent 5-stage
median filters. One is applied to the x-axis, one to the y-axis, and the
resulting virtual median is considered as the current gaze position.
On top of the gaze position a (100 ms, 50 px)-dispersion based fix-
ation detection is being performed, resulting in a stream of fixations
F ′ = (f ′

1, f
′
2 . . .).

Conversion The fixations F ′, which are being recorded in screen coordinate
space, are converted to document coordinate space F = (f1, f2 . . .).
This has the advantage that all elements can later be directly
matched to the nearest word bounding box. Also this measure im-
plicitly encodes the user’s scrolling behavior.

Normalization Based on F we compute the stream of saccades S = (s1, s2, . . .),
such that si equals the saccade from fi to fi+1. We consider each si
in its polar coordinate form, such that si = (θi, li), where θi equals
the angle and li the length, expressed in virtual character units
(vcu). A vcu, in turn, is the average pixel-width of a single character
underneath the saccades of consideration.

Windowing Based on S we consider a window w ⊂ S of subsequent saccades,
where the size |w| varies somewhat on the specific use case. Ac-
cording to our findings the most accurate results can be obtained
with |w| = 3 (compare Biedert et al. 2012 for details), which gives
the reading detection a reaction time of approximately 750 ms.
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Extraction With w we next compute the overall saccade shape that manifests
itself as two parameters h, which is the window’s angularity, and p,
the average forward speed. For the saccades s ∈ w, h is being com-
puted as

h = atan 2

(∑

s∈w

( |sx |
|sy |

))

while the forward speed is calculated as

p = β · �
{

li ∈ w : |θi | < π

3

}

where β is a corrective factor to personalize the reading speed and� the average operator of the given set.
Classification The tuple (h,p) eventually serves as the input of a classification

step. Trained on a set of six users and evaluated on a set of six differ-
ent users, we found that the linear classifier −2.97 + 5.36h + 0.17p

already gives reasonable results which we could also empirically
verify in a number of demos. It returns values > 0 for likely skim-
ming patterns and values < 0 for likely reading patterns. Again, see
Biedert et al. (2012) for a more detailed discussion of the emerged
classifier and its results.

With the technical measures presented in this section we have the tools to build
gaze-responsive applications, which can likewise also store their usage traces for
later analysis.

8.4 Uni-modal Gaze Interaction

In this section we will investigate how gaze input alone can be used to enhance
the reading experience. We present how augmenting texts with manually authored
effects, triggered through the user’s reading progress, is being perceived by its users.
The concept is centered around Hollywood books, implemented as the eyeBook
(Biedert et al. 2010) prototype, a gaze aware e-book reader. In addition to the story’s
text it also contains onRead annotations that trigger effects such as background
music, sound effects, themes or additional images exactly at the moment when the
user is reading the corresponding passage, compare Fig. 8.3. The user therefore
progresses through the story according to his speed, while at the same time he can
enjoy multimedia effects that support the story’s progress. Technically the eyeBook
is implemented as full-screen Java/HTML book reader application. The main view
is split into two areas, a content or text area, which also contains two scrolling
buttons, as well as an image area on the right. After a book is loaded the content area
renders the book’s text like in a normal e-book reader. The visible key difference to
traditional e-book readers is the presence of two gaze active scrolling buttons. If the
user dwells upon them they are being executed within 500 to 1000 ms, depending
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Fig. 8.3 Interface of the eyeBook application. The left part of the screen is dominated by the
HTML reading area. The right part contains the image area. The text area renders the story’s text
and contains the two dwell-based scrolling buttons. When reading is detected and the user gaze
passes by an annotated word, its associated effect is executed, such as the playing music or sound
effects, displaying an image or changing the theme

on how often they have been triggered before, thus exercising some sort of learning
behavior and addressing the tradeoff between perceiving and interaction related to
the Midas touch (Jacob 1995). When reading is detected the books also evaluates
the annotations linked to the text to trigger certain effects. These include playing
background music, sound effects, displaying an image in the right frame or changing
the theme.

The key question in the creation of the eyeBook was how the technology is be-
ing perceived by its users. Since the application provides visual and acoustic feed-
back in parallel to the reading process there is likewise a huge potential for cogni-
tive conflicts and distractions, especially if the augmented effects are not integrated
well.

8.4.1 Experiment

For our experiment we therefore carefully annotated two book implementations ac-
cording to what we considered esthetic. The source texts we selected for annotation
were the chapters of The Little Prince as well as excerpts from Jonathan Harker’s
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diary of the novel Dracula. We considered them to be suitable since they contained
only few philosophical passages (which are hard to augment with suitable effects)
and in contrast more of the protagonist’s action and environmental descriptions. The
music composition for the Little Prince was selected to be unobtrusive, e.g., easy
listening, for Dracula we also took parts of the cinema’s musical theme. The sound
effects used for annotation were partially ambient effects such as wind and rain that
accompanied the reader during a whole passage, and partially singular effects such
as a leaving carriage. Overall each text is about ten screen pages long and contains
between one to five annotations per page.

The actual experiment was performed on a book fair. The scenario allowed us
to access a broad audience with a wide variety of backgrounds. For three days we
randomly asked visitors during low-traffic times if they were willing to participate
anonymously in a usability study of a novel book concept. If they agreed we ex-
plained them the function of the eye tracking system, a Tobii 1750 device, and how
the subsequent calibration and experiment was to take place. They were seated in
front of the eye tracker facing towards a wall and given head phone, effectively
preventing most visual and acoustical distractions. We instructed them to relax and
read normally, as if they would read a book, without skipping or skimming, and
that they should take as much or as little time as they wanted. The participants were
told that they were under no time pressure and that the experimenter would leave
them alone. A questionnaire was given with the request to fill it out and put it folded
into a drop box. The questionnaire contained 22 items related to the eyeBook and
general statistical information. We took care to balance the items as positive and
negative statements7 to counter possible answer biases. All items were rated on a
five-point Likert scale ranging from −2 (strong disagreement) to +2 (strong agree-
ment). Eventually the calibration was being performed and the application started.

8.4.2 Evaluation

Overall we had 17 visitors participating, while two declined to take part in the sur-
vey. Five of our participants were male, 12 female. Their average age was 35.6
years, ranging from 18 to 68, two participants refused to specify their age. Nine
of them wore vision aids and all of them reported that the text was clearly visible
to them. Also, all of them reported that they believed and were aware of that the
survey was conducted anonymously. Regarding their background knowledge all of
them reported to be German, with an average of 20.5 years of English experience.
The eyeBook version Dracula was used by 15 of our readers, while 9 reported that
they had read The Little Prince. We also investigated some aspects related to the
entertainment value of the books, compare Table 8.1. There are a few aspects worth
noticing. In general the application was seen very positively. While the majority of

7For example “The effects happened at the right time.” as a positively formulated statement and
“The effects were distracting.” as a negatively formulated statement, see Table 8.1.



146 R. Biedert et al.

Table 8.1 Detailed list with answers of the eyeBook survey. The possible answers ranged from
+2 (very strong agreement) over 0 (neutral) to −2 (very strong disagreement)

Question Average rating

I can remember having read The Little Prince earlier. 1.09

I can remember having read Dracula earlier. −0.57

The effects were appropriate in time. 1.13

The effects were appropriate in content. 1.38

The effects were distracting. −0.57

I would like to have disabled the effects after some time. −0.71

It was unclear to me why an effect was being played. −1.21

I would like to have had other effects. −0.71

In the future, I would refrain from buying books with such a technology. −1.14

The acoustic effects became distracting after some time. −0.93

The scrolling was pleasant. 1.29

After scrolling I often lost my line. 0.07

the effects was played at the right time (1.13) and also perceived as being seman-
tically appropriate (1.38) apparently the visual effects were considered slightly dis-
tracting (there as a not very strong (−0.57) rejection of the statement that they were
not). The acoustic effects on the other hand were perceived as better (−0.93) and
overall there was a general agreement that the users would want to buy or use similar
technology in the future (−1.14). Anecdotally one girl, which did not participate in
the survey, started crying while reading The Little Prince. However, we did not ask
whether it was mainly because of the story or due to our implementation. In general
approximately 200 users took the demo during the event, several hundreds for the
whole lifetime of the eyeBook application during numerous other events, and the
survey results are in line with our general impression of these other demos. The ma-
jority of our users reported to enjoy the interaction and the most common cause for
problems are inaccurate calibrations and excessive pupil-size-change-based drift.8

Also, the placement of scroll buttons near the camera region of the used eye track-
ing device, where the detection of the eyes, precision and accuracy apparently drop
notably, has caused scrolling problems for some. From the content perspective espe-
cially the music and ambient sounds are reported to be highly regarded, while some
of the effects are reported to be somewhat intrusive. In general—not in particular—
we got the impression that the more unobtrusive and subtle an effect was, the better
is was being perceived.

8Especially the implementation of Dracula was prone to drift since it contained a theme change
from day (white background) to night (black background) which caused the measured gaze position
to go off for some of our participants.



8 Gazing the Text for Fun and Profit 147

Fig. 8.4 The Tobii C12 device upon which we implemented the eyePad prototype. The book reacts
to the reader’s gaze, e.g., by updating a visual map while reading the related text. Also it allows
the user to write commands and perform ad-hoc speech interaction, like by asking “Who is that
again?”

8.5 Multimodal Gaze Interaction

In the previous chapter we established that the uni-modal use of gaze can already
enhance the reading experience. Motivated by the current trends in interaction tech-
niques we can see a convergence of different input modalities into current appli-
cation architectures. High precision touch sensitive devices, which can likewise be
used for handwriting, are put into cell phones and e-book readers. At the same time
speech recognition techniques built into platforms such as Android9 or iOS10 de-
vices have seen notable interest, and eye tracking companies like Tobii and SMI are
pushing into the market to provide low cost, embedded eye tracking systems. Thus
given eye tracking devices become available for the mass market, we argue it will
only be a matter of time until they will also be found in book readers. Therefore, in
this chapter we will investigate how augmented text, using gaze, handwriting and
speech interaction can be used to enhance the reading experience, as well as the
obstacles portable devices might cause.

We present the application eyePad (see Fig. 8.4), which as a successor to the
eyeBook also uses gaze as one of its inputs. In addition we added two new input
modules interfacing with the touch screen and microphone. They allow the user,
besides the implicit gaze interaction to explicitly write commands or commence in
an ad-hoc conversation on a certain topic he is currently looking at.

9See http://www.android.com/.
10See http://www.apple.com/ios/.

http://www.android.com/
http://www.apple.com/ios/
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Fig. 8.5 Internal architecture of the eyePad. At each time a certain story fragment (similar to a
chapter, topic or scenario in a book) is being displayed on the screen which with the reader can
interact. Depending on the user’s input the book will either change to another fragment or provide
additional information about the current fragment

8.5.1 Architecture

From a hardware perspective the eyePad is implemented on a Tobii C12 eye tracking
tablet.11 The unit contains a 12′′ resistive touch screen with 1024 × 768 pixel reso-
lution, microphone and speakers and an Intel Core Duo U2500, 1.2 GHz CPU and
2 GB RAM for processing. The eye tracking module allows for 60 cm remote eye
tracking with a 40 cm × 30 cm × 20 cm tracking box and a reported 0.5° accuracy.
The overall device weight is approximately 3.3 kg.

From an architectural perspective there are two key differences between the eye-
Book and the eyePad. The eyeBook is in principal a reader that displays a linear
story at a given time. Although the user is free to read at any speed and skip or
skim text this is not intended usage behavior and the reading experience is likely to
degrade if the user does so since parts of the story will be missed. Also, the user is
normally not actively interacting with the book, but rather progresses through the
story while the book implicitly adds additional effects.

The eyePad on the other hand targets a scenario with a high degree of interac-
tion, in which the user also possesses the freedom to progress throughout the story
according to his interests. While there is a single starting point the actual passage
through the book’s story is nonlinear. Also the means by which the reader progresses
is to some extent open. Parts of the story and interactions are reached or triggered by
mere reading, while others are responses to handwritten input or spoken commands
or questions. This is also reflected in the more complex detailed architecture of the
application, see Fig. 8.5.

The application consists of three main modules, related to the story, the input
and the output. Like the eyeBook it is written in Java and interfaces with the system
IO facilities to perform low level input and output operations. Since the platform’s
performance is very limited home tricks had to be applied however. Instead of inte-
grating the full-fledged HTML setup as described in Sect. 8.3.1 into the application
we re-implemented a simpler renderer and layout module to provide us with the
bounding boxes. While the gaze integration is straightforward and similar to the

11See http://www.tobii.com/en/eye-tracking-integration/global/products-serviceshardware/tobii-
c12-eye-tablet/.

http://www.tobii.com/en/eye-tracking-integration/global/products-serviceshardware/tobii-c12-eye-tablet/
http://www.tobii.com/en/eye-tracking-integration/global/products-serviceshardware/tobii-c12-eye-tablet/
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eyeBook implementation as described in Sect. 8.4, some of the modules required
special consideration about which we will give an overview below.

8.5.1.1 Story Module

The application’s core is the story module that plays an eyePad book and provides
the high-level logic. A book is a bundle that consists of a number of fragments, each
of which represents a part of the story the book is supposed to tell. Besides text, these
fragments also contain fonts, images, sounds and dialog information, as well as
pointers to other fragments which can be reached through some form of interaction.
In addition, variables may be kept between fragments so that the interaction within
one fragment might affect the status or behavior of others. In game development
terms each book could be considered as a mixture between a (textual) game book12

and visual point-and-click adventures lifted to multimodal reading interaction. The
individual fragments can also be programmed with fragment-dependent logic, as
well as there is a general database with background information about various top-
ics which can be queried by the user. As with many dialog systems usually there are
multiple ways the user can ask about a certain topic to receive an answer. For ex-
ample “I want to know what X did.”, “What did X do?”, or sometimes even simply
“X”, would be valid questions to address the topic X, and the book engine responds
by picking a suitable answer for it. Similar to grammars used for speech recognition
we also implemented an extension to allow for a JSGF13-based dialog output synthe-
sis. With a very limited amount of work this allows for a huge amount of possible
output combinations. For example a simple greeting encoded in the grammatical
form [It is][nice|good] to see you [again|today|this day].
would already generate 12 possible responses the system could produce, dramati-
cally increasing the diversity of answers.

8.5.1.2 Handwriting Recognition

Besides gaze input the handwriting recognition is our second input modality. In con-
trast to touch-based input it allows for a greater freedom of input, at the expense of
computational ability to reason on or react to the space of all possible inputs. As
the processing power of the C12 unit is very limited we implemented a lightweight
handwriting recognition that fulfills the needs of the fragments for the planned eval-
uation. It basically consists of a two-stage process with the phases transcription
and matching. In the transcription phase we recognize strokes as a series of co-
herent pen measurements and extract raw gestures as a series of pixel coordinates
r ′ = (p′

i , p
′
i+1, . . .). The stroke is successively normalized and a series of relative

12See http://en.wikipedia.org/wiki/Gamebook for an overview on the topic.
13Java Speech Grammar Format, see http://www.w3.org/TR/jsgf/.

http://en.wikipedia.org/wiki/Gamebook
http://www.w3.org/TR/jsgf/
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Fig. 8.6 The raw pixel positions of a consecutive stroke are converted into a normalized form,
resulting in 40 equidistant points in polar coordinate form. These are then classified as single
characters using a trained SVM. The characters are concatenated and matched against a built-in
library of expected commands

points is being extracted, similar to the normalization step described in Sect. 8.3.3
where absolute lengths are being converted to relative lengths and angles, resulting
in a normalized gesture r , which consists of a fixed set of points in polar coordinates
form (θi, di, θi+1, di+1, . . .), as can be seen in Fig. 8.6. Each vector r is eventually
classified with a trained RBF-SVM into a single letter. The matching phase then
concatenates all detected letters into a string, which is eventually matched against a
built-in database of all available commands. The matching is performed by comput-
ing the edit distance between all possible candidates. Edit distances above a certain
threshold empirically determined in a pre-test are generally rejected, and the mini-
mal edit distance still accepted is considered as the user’s input.

8.5.1.3 Speech Recognition and Synthesis

As with the handwriting recognition, the speech recognition and synthesis showed
to be somewhat problematic in terms of available performance, and available voices.
Both problems could be addressed by outsourcing the speech synthesis to a remotely
connected computer to which the speech module could submit phrases generated
by the dialog system that were subsequently returned as synthesized audio files.
These files then merely had to be played. The speech recognition was performed by
Windows’ built-in speech recognition system. For each state in the dialog the set
of all expected user utterances were grouped and passed to the recognizer that, in
turn, called back the application when something was detected. Since the device was
hand-held we could also notice that there was quite some interaction noise, either
from handling the device, and also the pen interaction often caused false positives
for the speech recognizer. We therefore designated an embedded device button as a
push-to-talk button.



8 Gazing the Text for Fun and Profit 151

8.5.2 Experiment

In the previous evaluation we could quantitatively show that using gaze to provide
a rich multi multimedia experience is well perceived. While for the uni-modal eye-
Book such an evaluation is already highly influenced by the specific story being
used, this matter is even more complex in the multimodal setup of the eyePad. For
the purpose of this evaluation we therefore focus primarily on a qualitative analysis
of confluence of the presented methods—in other words: what inherent challenges
would someone face (commercially) producing such a product. Our key question
therefore are how the interaction with the device is being perceived, what issues
arise in the fusion process and how the tracking performance is being affected due
to the movement and interaction with the handwriting part.

In lack of adequate source material for such a technology we created a demo
book from scratch. Inspired by the works Harry Potter, Into the Wild, and Dragon
Age we created a mashup with ideas from these works. It consists of a number of
fragments which narrate the story of a character traveling into the wilderness whose
companion the book has been. When being taken into the hand by the user and gaze
is detected the book starts to initiate a conversation by fading in handwritten text.
The texts and book’s utterances were composed in a way that they revealed clues
to the human on how to continue the conversation. After the introduction the book
would provide the reader with:

I’m Aedan’s memory, do you want to hear the story of Ferelden? Or perhaps I should tell
you about the darkspawn . . . If this is your first time you should probably ask me how do I
work.

To this the reader could then respond either verbally or in written form asking
how the book worked, or about the places it mentioned. For our experiment our
participants were also asked to particularly explore a number of special fragments
which in addition provided novel interaction paradigms, most notably an interactive
map fragment. In addition, the text as part of the diary also a map is presented on
the left side of the screen, compare Fig. 8.7. When the user reads about a certain lo-
cation, an icon on the map will slightly fade in and when the user shifts his attention
to the map it is highlighted fully.

8.5.3 Evaluation

For the evaluation we invited eight students, four of them male, four of them female.
Their average age was 21.5 years and all of them were engineering or computer
science students. The device was presented and they were told to participate in a
usability study. We asked them to interact with the device extensively and told them
to perform a think-aloud evaluation. Afterwards we conducted a training run on the
handwriting recognition and calibrated the tracking device. Eventually the book was
handed over to them and they could interact with it freely. The overall time for the
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Fig. 8.7 One of the special fragments. While the user reads the text on the right side the map on
the left is visually fades in small icons reflecting the currently considered location

completion of the experiment was 30 minutes, including calibration and training.
The time spent on the interaction was approximately 15–20 minutes. Similar to the
eyeBook evaluation we also asked a number of questions regarding the participant’s
general impression of the prototype.

The overall results of the survey can be seen in Table 8.2. Most participants
agreed that in this scenario eye tracking improved the experience of interaction
(1.38); as well as it helped to visualize and imagine locations read in the text (1.88).
Handwriting and speech input were also perceived as favorable but with less strength
(0.75). When investigating how well the participants thought the individual tech-
nologies were integrated, eye tracking again was rated highest in terms of how
often errors or glitches in the interaction were being perceived (1.13) with some
distance to the other two modalities (0.86). We believe this is mainly an indicator
that in the specific scenarios we implemented eye tracking was the best suited in-
teraction method, especially with respect to the method’s accessibility. While the
gaze-reliant parts were mostly straightforward to use, handwriting and speech al-
lowed for a much greater space of possible inputs, and in return disappointment
when certain questions or commands were not understood or could not properly be
answered.

While most of the participants enjoyed the interaction in general we also received
a number of other remarks. One participant said he was annoyed by the handwriting
interaction and would have preferred to tap or click on keywords in the text instead
of having to write something. Also, another participant would have liked the hand-
writing to be faster in terms of interaction speed, since typing versus talking was
considerably slower. We could also notice that handwriting requires the user to hold
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Table 8.2 Detailed list with answers of the eyePad survey for our eight participants. The possible
answers ranged from +2 (very strong agreement) over 0 (neutral) to −2 (very strong disagreement)

Question Average (μ) σ 2

Integrating the eye tracker enhances the reading experience. 1.38 1.41

Integrating handwriting enhances the reading experience. 0.75 1.04

Integrating the speech interaction enhances the reading experience. 0.75 0.46

Overall the eye tracking quality was very good. 1.13 0.83

Overall the handwriting recognition was very good. 0.86 1.36

Overall the speech recognition was very good. 0.86 0.99

The quality of the speech synthesis was very good. 0.5 0.76

I had the feeling the diary was able to respond to what I say. 0.75 0.89

The map application helps to visualize the geographical subcontext. 1.88 0.35

the unit differently in order to free one hand for a pen which makes it, in contrast to
speech or gaze, uncomfortable to use for spontaneous interaction. While the speech
synthesis was explicitly criticized by only one participant as hard to understand
there was a number of issues with the speech recognition overall (0.5). A few par-
ticipants also forgot to press the push-to-talk key or expected casual utterances to
be recognized as well. The gaze interaction was most problematic for one partici-
pant with high prescription numbers, which caused problems during calibration and
tracking. It was also remarked by one user that had liked to move more during the
interaction and change their body posture.

8.6 Considering Emotions

In the previous two chapters we presented prototypes which target at enhancing the
reading experience, i.e., making reading and text interaction more entertaining. To
evaluate these prototypes we mostly made use of explicit user feedback question-
naires and our own observations. This is even ahead of the process how texts are
being produced in today, where often only anecdotal usage feedback is being pro-
vided to the creators of a work. Obviously there are a number of problems with
these methods. Through mere study observations tend to be biased and users tend
to give socially acceptable (social desirability bias) or anticipated answers (experi-
menter effect) when reporting back. Also, the presentation of new concepts, media
or technologies is known to elicit a positive feedback initially, even though in the
long term other results would be obtained (novelty effect). In this section we there-
fore investigate how live manifested usage experience—emotions—during reading
can be acquired objectively, how they can be matched to the text and stored for later
analysis, as well as being used in real time.
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Fig. 8.8 For the emotion measurement we make use of a low cost EEG device. While the user
works on the eye tracker muscular activity and brain waves are also recorded and stored with the
gaze data for real-time reaction and later analysis

8.6.1 Emotion Measurement

There are many definitions of what emotions are (Kleinginna and Kleinginna 1981),
and in this work we will focus only on a small subset. Since our main task is not
proposing novel ways to detect emotions but rather how they can be integrated we
limit ourselves to four emotions we considered pivotal in human-text interaction.
These are joy, boredom, interest and doubt, in addition to a neutral state. We con-
sider joy and doubt to manifest primarily through muscular activity, such as smiling
and furrowing. Interest and boredom, while they also should be perceivable exter-
nally, are likely to be measured best cognitively. Hence, as our primary source of
emotion detection we make use of a low cost EEG headset produced by Emotiv.14

It is a low cost EEG measurement device,15 that features 14 saline sensors at the
regions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, compare
Fig. 8.8. Internally the device samples with 2048 Hz and provides data with 128 Hz
resolution from the given locations. While the device’s capabilities of measuring
actual brain signals are somewhat limited compared to full scale EEGs (Ekanayake
2010; Campbell et al. 2010; Hoffmann 2010) it is capable of measuring facial mus-
cular activity. For the purpose of measuring emotions on text we rely on two of
Emotiv’s APIs which deliver low level muscular activity (expressiv[sic] suite) and

14See http://www.emotiv.com.
15For specification details see http://emotiv.com/upload/manual/sdk/Research%20Edition%20
SDK.pdf.

http://www.emotiv.com
http://emotiv.com/upload/manual/sdk/Research%20Edition%20SDK.pdf
http://emotiv.com/upload/manual/sdk/Research%20Edition%20SDK.pdf
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Fig. 8.9 The expressiv suite channels provided by the Emotiv API. For our muscular based detec-
tion of emotions we rely on the channels smile, furrow and laugh

engagement levels (affectiv suite, based on the intensity of alpha and beta band)
upon which we built an additional classification and mapping scheme.

Since our targeted emotions do not directly map to the device’s output (compare
Fig. 8.9) we introduce a mapping which allows us to convert the device’s output
into our four required classes. The subject first needs to train her emotions using the
provided Emotiv tools, afterwards we perform a subsequent internal training run on
prepared texts that were previously classified as falling into one of the emotional
classes. Eventually we acquire individual thresholds for each subject and each of
the emotions to discriminate when they were actually evoked.

8.6.2 Tagging and Interaction

To be able to use the detected emotions in real time or for later analysis they need to
be matched to the text and stored. Since due to eye tracking inaccuracies and user
behavior such as saccades and re-reading we cannot just assign measured emotions
to the word the user is fixating. Instead we employ a multi-stage process to filter and
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match the reading data accordingly. Since we are interested in the evoked emotions
during the first reading pass reading incoming gaze data is filtered for reading. Dur-
ing phases when no reading is detected also no emotions will be assigned to the text,
for example when the user is skimming or jumping back and forth. The next issue
are saccades and the fact that even during reading not every word is in fact fixated.
Hence, for every saccade we extract a slice of words between the current fixation
and the previous fixation and assign all emotions measured during the time the slice.
Technically the assignment is being performed by updating the words’ DOM ele-
ments with information about the most prevalent emotion measured. At the same
time this information is also written into the meta information layer of the recording
stream (Sect. 8.3.1) for later analysis.

In addition the measured emotions are made available to the JavaScript layer to
support new emotional event handlers. In the same way as the handling facilitates
described previously (Sect. 8.3.2) we introduce an emotional set of handlers which
not only take into account the gaze data, but also the emotional state of the user.

onSmile When the user is looking at a certain element and the emotion joy
is being detected for the first time the attribute’s associated script is
being executed.

onInterest Similar to on onSmile the script is being executed when interest
was measured. In contrast to muscular activity like smiling the cog-
nitive engagement level associated to interest usually takes longer
to rise or decline.

onFurrow Also mostly triggered by a muscular reaction the associated script
is evaluated when furrowing was detected in the consideration area
annotated with this attribute.

onBoredom Like the onInterest rather the results of a cognitive measure-
ment, triggered when boredom was measured through the affectiv
API.

8.6.3 Experiment

In order to evaluate the overall performance of the system with respect to how
closely the tagged text parts match the user’s evoked emotions we prepared a reading
experiment. We prepared a number of articles from web sites such as reuters.com,
slashdot.org and dailyme.com, which mostly were already pre-rated into categories
such as mostly funny or interesting through the readers of the according web site.
For the experiment we invited nine users, four female, five of them male. They were
introduced to the setup and told to participate in a reading experiment. We then
calibrated them with the Emotiv headset on training texts and performed the eye
tracking calibration on a Tobii X120 unit. Each of them was presented five docu-
ments which they were supposed to read. After they completed all documents the
texts were presented to them again and they could manually tag the texts with four
different markers related to the actually evoked emotions, which then served as the
ground truth for our subsequent evaluation.

http://reuters.com
http://slashdot.org
http://dailyme.com
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Table 8.3 Precision, recall and F-measures for the four emotions and the neutral state for the
tagging experiment

Emotion Precision Recall F-measure

Joy 0.74 0.93 0.82

Doubt 0.54 0.93 0.68

Interest 0.85 0.72 0.78

Boredom 0.67 0.13 0.22

Neutral 0.56 0.41 0.47

8.6.4 Evaluation

After an initial observation of the eye tracking data we noticed we had to discard
13 out of 45 read documents due to missing or bad eye tracking data, resulting in
32 tagged texts left for evaluation. The emotions joy and doubt were evaluated on a
sentence level, i.e. if a word was tagged with joy, although this particular word did
not evoke this feeling, but another one in the same or adjacent sentence did, then it
was considered as correctly classified and tagged. The neighboring sentences were
allowed due to the fact that the emotions might be shifted because of the skipping
or skimming of words.

The emotions interest, boredom and neutral on the other hand were evaluated
on a paragraph level. This distinction was made because of the difference in the
nature of the neuroheadset’s signals. Joy and doubt depend on muscular movements
represented by pulses and are usually instantaneously detected. The detection of
interest and boredom is based on a continuous EEG data signal and it needs time
to rise and fall with the reader’s mood. Thus, since changes are not instantaneously
detected, we agreed on a range of a paragraph which would provide enough time for
the signal to stabilize itself and give correct feedback about the current emotional
state of the user.

The results of this evaluation can be seen in Table 8.3. While the rather expres-
sive emotions joy and doubt were often detected when they occurred, boredom was
almost imperceivable. The most common cause for misclassification of joy and
doubt were unintentional facial movements by the readers. This included moving
lips while reading or furrowing the forehead when being highly concentrated.

In addition to these measured numbers we also performed a survey of how the
system was perceived. Although all said that the presented choice of emotions was
useful to start with, most of them commented that it was difficult for themselves
to differentiate between doubt and interest. Either because the difference between
them was too small, or because they found that the emotional state doubt was already
included in interest. Interestingly, all male students suggested further to add anger or
frustration to the emotion selection. Regarding the necessity of a neutral emotional
state, two students claimed that neutrality did not exist while reading.

According to some of our participants’ further comments, text should always
be assigned to an explicit emotion, i.e. it is either boring or interesting but never
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Fig. 8.10 Sample output of automatically tagged text by using the emotions measured by the
Emotiv device

neutral for example. The remaining five students on the other hand indicated that the
neutral state did exist, that in situations where they were just reading to complete
certain text parts in order to continue no explicit emotions were evoked, thus, were
said to be neutral. But it was also mentioned that sometimes the neutral state could
be interpreted as boredom. When asked about the emotions they thought would be
useful in applications such as searching all agreed on the practicality of the emotions
interest and joy and the redundancy of having doubt and boredom, but the need for
all of them in other applications such as article rating. Finally, it was stated that in
general the combination of emotions and text in real time had augmented the reading
experience and that it had provided the users with a new understanding, reflecting
their interaction with the text. In addition, they remarked that this idea could be used
in future implementations of web applications for on-the-fly rating and advertising.
A sample output of an automatically tagged text can be seen in Fig. 8.10.

8.7 Conclusion and Outlook

In this paper we presented various ways how eye tracking can be used to enhance
the reading experience, and how the readers’ emotions and interactions can be ac-
quired for later analysis. We started by outlining and evaluating the eyeBook, a gaze
aware e-book reader which plays music, sounds and images according to the user’s
progress throughout the story. We could show that augmenting the text with addi-
tional, especially ambient, effects was in general well received and that there was
a significant user interest in the technology. We continued our investigation with a
multimodal prototype, that in addition to gaze also included a speech- and hand-
writing recognition. While in this scenario eye tracking again blended in nicely,
there were some issues with the more open input technologies. Although both were
well received likewise, it appears that they suffered somewhat from the fact that
some of the things said or entered could not be answered or responded to. We think
integrating complex dialog management (Holzapfel 2008) and the general strate-
gies involved to overcome communication problems in human-robot interaction
(Holzapfel and Gieselmann 2004) could make at least the verbal book interaction
more dynamic and responsive. Handwriting, in contrast, we found was by far the
slowest interaction and it took a considerable amount of time to enter commands
instead of saying them (or, preferably clicking as it was reported). Eventually we
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presented a way to record and use emotions elicited during human text interaction.
By using a low cost EEG we are able to measure muscular and to some extent brain
activity to identify the emotions interest, boredom, joy and doubt. We provide an
architecture to annotate the text with these emotions and introduce a set of four
handlers to enable the text to react to them in real time.
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Chapter 9
Natural Gaze Behavior as Input Modality
for Human-Computer Interaction

Thomas Bader and Jürgen Beyerer

Abstract Natural gaze behavior during human-computer interaction provides valu-
able information about user’s cognitive processes and intentions. Including it as
an additional input modality therefore provides great potential to improve human-
computer interaction. However, the relation between natural gaze behavior and un-
derlying cognitive processes still is unexplored to a large extend. Additionally, most
interaction techniques proposed in recent years which incorporate eye gaze as input
modality require the user to consciously diverge from natural gaze behavior in order
to trigger certain events. In this paper we present results from two user studies. The
first one aims at identifying and characterizing major factors which influence natural
gaze behavior during human-computer interaction with a focus on the role of user’s
mental model about the interactive system. We investigate how natural gaze behav-
ior can be influenced by interaction design and point out implications for usage of
gaze as additional modality in gaze-based interfaces. With the second user study we
demonstrate how gaze-based intention estimation based on analysis of natural gaze
behavior can be used to improve interaction in multi-display environments.

9.1 Introduction

In general there are two ways to incorporate eye gaze as an input modality into mul-
timodal human-computer interfaces. The first way forces users to consciously look
at certain locations in order to trigger actions. One example for such approaches is
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eye typing, which has been studied for decades (Majaranta and Räihä 2002). Eye
gaze is used directly as pointing device and actions are mostly triggered by dwell
times, which determine how long a certain object needs to be looked at until it is acti-
vated (e.g., a key on a virtual keyboard). The biggest advantages of such approaches
are, that they are easy and straightforward to implement and do not require analysis
of complex gaze behavior. Especially for people with severe disabilities such input
techniques often provide the only way for interacting with visual interfaces. How-
ever, for most people conscious and direct usage of gaze as input modality is very
unnatural and hence requires training and/or induces cognitive workload (Jacob and
Karn 2003).

The second way to use eye gaze as input modality is to interpret natural gaze be-
havior during human-computer interaction in the sense of non-command interfaces
(Nielsen 1993; Jacob 1993). Also other modalities can be incorporated as primary
input modality. Promising examples for such interaction techniques are presented
in Hyrskykari et al. (2003) and Zhai et al. (1999). In both approaches natural gaze
behavior is analyzed and the user is not forced to diverge from that natural behav-
ior for interaction purposes. iDict (Hyrskykari et al. 2003) analyzes the duration of
fixations while the user reads a text in a foreign language and automatically pro-
vides a translation of the fixated word if a longer fixation is detected. In the ap-
proach “Manual And Gaze Input Cascaded (MAGIC) Pointing” (Zhai et al. 1999)
the mouse pointer is placed close to the currently fixated object in order to eliminate
a large portion of the cursor movement. Both approaches do not use gaze directly as
pointing or input device, but interpret gaze data in the context of the task (reading,
pointing).

In general, the second approach has the advantage that valuable information con-
tained in natural gaze behavior can be used for improving human-computer interac-
tion. Additionally, the user has not to consciously diverge from natural gaze behav-
ior.

However, natural gaze behavior is highly complex and many different influencing
factors have to be considered for appropriate interpretation (see Fig. 9.1). Therefore,
a thorough understanding of natural gaze behavior during human-computer interac-
tion is necessary in order to incorporate it as input modality in intelligent user in-
terfaces. It has been shown that the task and the experience of users are key factors
influencing natural gaze behavior (e.g., in Johansson et al. 2001; Land and McLeod
2000).

Numerous studies of natural gaze behavior and hand-eye coordination during
manipulative activities in natural environments like block-copying (Pelz et al. 2001),
basic object manipulation (Johansson et al. 2001), driving (Land and Lee 1994)
and playing cricket (Land and McLeod 2000) revealed gaze shifts and fixations to
be commonly proactive (eye-movements occurred previous to movements of the
manipulated object or the manipulator). In addition, a detailed study on hand-eye
coordination during an object manipulation task (Johansson et al. 2001) revealed,
that subjects almost exclusively fixated landmarks critical for the control of the task
and never the moving object or hand. Such landmarks could be obstacles or objects
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Fig. 9.1 Dependency of natural gaze behavior from various factors

in general that are critical for the completion of the task, like in Land and McLeod
(2000), where batsmen concentrated on the ball, and not on their hands or the bat.
These studies show, that natural gaze behavior is complex and determined by many
different parameters (e.g., position of obstacles in Johansson et al. 2001 or previous
experience of a person, Land and McLeod 2000).

Gaze behavior was also studied in various tasks related to HCI. In Smith et al.
(2000) results of a study on hand-eye coordination during a pointing task with differ-
ent indirect input devices are described. The main finding of the study is that users
used a variety of different hand-eye coordination patterns while moving the cursor to
a target on the screen. Also in Bader et al. (2009), where natural gaze behavior was
investigated during a direct manipulation task at a large tabletop display, many dif-
ferent gaze behaviors were observed. Other studies from the field of psychology and
physiology, e.g. Gesierich et al. (2008), Flanagan and Johansson (2003) investigated
differences in gaze behavior during action execution and observation. They distin-
guished three different gaze behaviors during object manipulation, namely proactive
(gaze between object position and target), reactive (gaze between object position and
its starting position) and tracking gaze behavior (smooth pursuits) (Gesierich et al.
2008).

In all of the above studies on natural gaze behavior, numerous different gaze pat-
terns were observed during task execution and were described informally. However,
an understanding of the reasons why a person looks at a certain location in a certain
situation is necessary to judge the usefulness of natural gaze behavior for HCI and
to integrate gaze with other modalities, respectively.
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Fig. 9.2 Input devices and task

9.2 Influence of User’s Mental Model on Natural Gaze Behavior

In this section we report about a study in which we tried to characterize different
influences on natural gaze behavior during an object manipulation task. Addition-
ally, we point out their implications for designing gaze-based multimodal interaction
techniques for future intelligent user interfaces.

9.2.1 Task and Apparatus

The task to be solved by participants is designed based upon a basic object manipu-
lation task as it commonly appears during work with graphical user interfaces. The
visual representation of an object has to be moved from one location to another on a
display. However, in order to being able to investigate effects of user’s mental model
on natural gaze behavior in a controlled way, we designed the mapping between in-
put and system reaction in an unusual way not expected by the users. This ensures
that all users have the same level of knowledge about the system at the beginning
of the experiment and can be considered as novice users. Additionally, we are able
to monitor changes in natural gaze behavior with increasing knowledge about the
system.

As input devices we use one single key of a keyboard (Fig. 9.2a) and a pen
tablet, while only horizontal movements of the pen on the tablet are interpreted by
the system (Fig. 9.2b). The task is illustrated in Fig. 9.2c. A colored point which
initially is displayed at the center of the display is to be moved to one of the four
squares T0, . . . , T3 with the same color. Note that the labels T0, . . . , T3 shown in
Fig. 9.2c were not displayed to the user during the experiment and only serve as
reference for the respective target areas within this section.

For manipulating the object position we implemented two different interaction
techniques. The mapping between inputs and system state transitions (position of
the point) is graphically illustrated for the first technique in Fig. 9.3a. For example,
a horizontal movement of the pen to the right (R) causes a movement of the point to
the upper right if the key is not pressed (U) and to the lower right if the key is pressed
(D). In principle the mapping for the second technique is the same. However, before
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Fig. 9.3 Mapping of input to system actions for different interaction techniques

the object is moved from its initial position, as soon as the pen touches the tablet,
its visual representation is split into eight objects arranged on a circle around the
initial position, representing possible future object positions (see Fig. 9.3b, left).
This representation in the following is denoted as expanded state of the object. In
order to avoid hints about the true mapping of inputs to movement directions by
this representation, objects are also displayed along directions the object cannot
be moved to directly (e.g., to the right). However, all eight representations have
the same color, namely the color of the target area the object is to be moved into.
As soon as the object is in expanded state, a movement of the pen on the tablet
leads to a movement of one of the eight object representations into the respective
direction, while all other representations disappear. For example, if the pen is moved
horizontally to the right (R) and the key is not pressed (U), the object representation
in upper right direction is moved to the upper right, while all other objects are faded
out (Fig. 9.3b, right).

In order to move the object from its initial position to the (green) target area T0 at
the top of the display along the path illustrated in Fig. 9.2c, for both techniques users
first would have to move the pen to the right (R) while leaving the key unpressed (U)
and, as soon as the little orange help point is reached, press the key (D) and move
the pen to the left. An alternative way to solve the task would be to first move the
point to the upper left (input: L, D) and then to the upper right (input: R, U). Users
were free to chose the way to the respective target areas during the experiment.

In preliminary experiments with Technique1 we observed that experience of
users seems to have significant influence on proactivity of gaze behavior. Novice
users, for example, mainly directed visual attention towards the initial object po-
sition at the beginning of the task. In contrast, expert users predominantly antici-
pated future object positions. With Technique2 we wanted to investigate whether
it is possible to induce more proactive gaze behavior, especially for novice users,
by avoiding visual feedback in proximity to the initial object position right before
the first object movement. By explicitly presenting possible future object positions
to the user we expected gaze movements to be directed more towards those visual
targets than towards the initial object position. As an example this would allow for
robust estimation of users’ intention from gaze data.
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The size of the display is 33.7 × 27 cm with a resolution of 1280 × 1024 pixels.
Eye-gaze of the users was captured during task execution by a Tobii 1750 tracking
device.

9.2.2 Participants

Since we want to investigate effects of mental model building on natural gaze behav-
ior we chose a between-subjects design to avoid any prior knowledge of participants
about the task or interaction techniques. We had two groups with 10 participants
each. Participants were between 21 and 32 years old and did not know anything
about the experiment, except that their gaze is being measured.

9.2.3 Procedure

The experiment was organized in two phases A1 and A2 with 40 runs each. Every
run consists of moving an object from its initial position at the center of the screen
to the respective target area. During both phases of the experiment every color of the
object and hence every task occurred 10 times. The order of tasks was randomized
to avoid consecutive repetition of the same task. For all participants the task order
was the same to allow for direct comparison of performance and gaze behavior and
to investigate influence of certain tasks and task order. Except the order of tasks
there was no difference between phase A1 and A2.

In order to allow for a more detailed analysis of the temporal development of
objective measures in subsequent sections the two phases are further divided into
A1/1, A1/2, A2/1 and A2/2 with 20 runs each.

9.2.4 Results

Most interesting from the interaction design perspective are gaze movements which
occur before any object movement. In the following we denote such gaze data as
pre-object gaze data and pre-object fixations, respectively. Such data allows for es-
timating users intentions previous to any input made by the user. Therefore in this
work we mainly focus on the analysis of such data.

In Fig. 9.4 a plot of object- and gaze-data during the first 40 runs is shown for
each of the two interaction techniques for one user. Green dots represent object
positions, small red dots connected by gray lines are pre-object fixations and larger
dots, colored from gray to black, indicate the last pre-object fixation for each run.
The red diagonal lines indicate possible movement directions of the object from its
initial position and were not shown to the users during the experiments.
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Fig. 9.4 Data captured for different interaction techniques during phase A1 from one user for each
technique

Fig. 9.5 Task solution strategy of users and definition of variables

For the first interaction technique two things can be easily seen from Fig. 9.4.
First, the preferred policy for solving the task seems to be first moving the object
along the diagonal line reaching from the lower left to the upper right (D1, see
Fig. 9.5b for definition). This corresponds to an input sequence where the key is
not pressed (U) during the first phase. Second, fixations are mainly located at three
different positions on the screen. While the last pre-object fixation is either located
at the initial position of the object or along the preferred diagonal axis D1, other
fixations also can be observed towards or at the target areas.
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Fig. 9.6 Distribution of pre-object fixations

Both observations in average can be confirmed for all participants. In Fig. 9.5a
the distribution of tasks which were solved by moving the object first along the dif-
ferent axes D1 and D2 is shown for both interaction techniques. A clear majority of
the users first moved the object along D1 for both interaction techniques. However,
the policies with first movement direction along axis D2 was used more often for
Technique2 (31.5 %) compared to Technique1 (15.38 %).

This difference in interaction behavior also shows an effect on pre-object gaze
behavior. Figure 9.6 shows the distribution of positions of all pre-object fixations
for all users and tasks for the two interaction techniques. Note that the color scale at
the lower end is not linear in order to improve the visibility of the plot. Both plots
show that most pre-object fixations are centered around the initial position of the
object. However, also a significant amount of fixations can be observed at different
locations on the screen which are related to the task. Except from the initial object
position for Technique1 fixations are mainly distributed along axis D1 or at the
target areas. The plot for Technique2 in Fig. 9.6b shows also fixations along axis D2
and in general more proactive fixations. For further task related characterization of
fixations we use two features:

• Distance d of a fixation from initial object position
• Direction α of the vector between fixation and object position

Along d , fixations are classified in proactive fixations (d > rp) and reactive fix-
ations (d ≤ rp). The threshold rp defines when a fixation is considered to be on
the object (reactive) or not (proactive). While reactive fixations indicate attention
allocation towards the current state of the object, proactive fixations are induced by
mental planing activity for solving the task or anticipation of future system states.
In our experiment we defined rp = 100 based on the observed distribution of gaze
positions when focusing on a certain object. The design of the task additionally
allows for distinguishing between fixations which are directed towards one of the
target areas and fixation induced by anticipation of the first movement direction of
the object by evaluating α. We further denote the different target areas as T0, . . . , T3
in clockwise direction, starting from the top. The different policies users can choose
to solve a task are denoted by P0, . . . ,P3 in clockwise direction according to the
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Fig. 9.7 Development of ratio between proactive and reactive fixations with increasing knowledge
about the system

first primary movement direction starting from the top. The definition of Ti and Pi

is also illustrated in Fig. 9.5b. For example, if the task of moving the object to the
upper target area is solved by moving the object first to the upper right (R, U) and
then to the upper left (L, D), this corresponds to P0. First moving the object to the
upper left and then to the upper right for the same task would be P3.

Based on these definitions the target of visual attention A indicated by a fixation
can be categorized as follows:

A =
⎧
⎨

⎩

Ti if |αTi
− α| < αmax

Pi if |αPi
− α| < αmax

other

where αTi
and αPi

denote directions of vectors between the initial object posi-
tion and the corresponding target Ti or first movement direction of policy Pi (see
Fig. 9.5b).

The threshold αmax = 20° was chosen based on the analysis of gaze data captured
during the experiments.

The development of the ratio of proactive and reactive last pre-object fixations
over all phases of the experiment is shown in Fig. 9.7. In average the ratio for
Technique1 is about 58/41 (proactive/reactive) and 67/32 for Technique2. For phase
A1/1 (first 20 runs) with Technique1 66.5 % of all last pre-object fixations are re-
active and 33.5 % are proactive. In contrast, during phase A1/1 with Technique2
57.5 % of the fixations are proactive and 42.5 % reactive. The plots show both,
significant influence of growing experience on the location of the last pre-object
fixation and significant differences between the two interaction techniques.

As already mentioned above, we further analyze pre-object proactive fixations re-
garding the underlying target of visual attention A. Figure 9.8 shows the distribution
of A over all possible targets T0, . . . , T3,P0, . . . ,P3 for all last pre-object fixations.
The different areas represent the categories as defined above by rp and αmax and are
colored according to the occurrence of fixations within the corresponding area on
the screen.
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Fig. 9.8 Distribution of target of visual attention of last fixation before first object movement for
all users and tasks

For both techniques the number of last pre-object fixations which occur on the
object are reduced from phase A1 to phase A2 of the experiment almost to the
half. For Technique2 approximately 10 % less fixations are made on the object for
both of the two phases compared to Technique1. In all plots among all policies
P0, . . . ,P3 a clear majority of fixations can be found along policy P0. While for
Technique1 proactive fixations are mainly distributed along axis D1 (policies P0
and P2), for Technique2 an almost equal distribution over policies P1, P2 and P3
can be observed. This corresponds to findings illustrated in Fig. 9.5a, where similar
differences in policies chosen by the users for solving the task are depicted.

9.2.5 Discussion

The results in the previous section show that both independent variables we used in
the experiment, namely the interaction technique and the experience of users, have
significant influence on natural gaze behavior during human-computer interaction.
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For both interaction techniques, increasing experience of the user with the sys-
tem resulted in a highly increased number of proactive fixations with increasing
orientation towards policies at the expense of decreasing orientation towards target
areas. This development can be explained from an information theoretical perspec-
tive. The more knowledge the user has about the dynamics of the system the less
new information can be acquired by reactive fixations on the initial object position
and by observing the first object movement, respectively. If future expected object
positions can be accurately predicted by acquired knowledge, it is more efficient to
directly draw visual attention towards expected future object states, e.g., in order to
support accurate positioning of the object at the intended target location. The de-
creasing orientation of visual attention towards target areas can be explained by the
same effect. Increasing knowledge of the location of certain target areas decreases
the value of directing visual attention towards the target areas.

When comparing gaze data for the different interaction techniques a significantly
increased number of proactive fixations and a slight increase in fixations directed to-
wards the target areas can be observed for Technique2. Additionally, while for Tech-
nique1 the policies along axis D1 are predominantly chosen by the users and proac-
tive fixations are mainly distributed along this axis, with Technique2 the policies
along axis D2 are chosen significantly more often and fixations along P1, . . . ,P3
are almost equally distributed. Obviously, the different ways how visual feedback
is organized for the different interaction techniques not only influences natural gaze
behavior, but also human decision processes and task solution strategies.

For both interaction techniques and independent from experience of users, by
far most of the proactive fixations are made along P0. Participants’ gaze behavior
seems to be more proactive when moving the object from the left to the right than
into the opposite direction. Possible explanations for that bias could be found by
further examination of influence of writing direction, handedness or other cultural
and individual factors.

For designing interaction based on natural gaze behavior the observations above
have different implications. Natural gaze behavior is influenced by many different
factors. These factors can either be used for adapting human-computer interaction
or they prevent the development of consistent interaction techniques due to their
dependency from uncontrollable and varying environmental conditions (e.g., expe-
rience of users, different cultural background).

In this user study we identified 4 classes of major factors influencing natural gaze
behavior during object manipulation and characterized their influence in proactivity
and direction of visual attention:

1. task
2. policy
3. experience of users/state of mental model
4. visual feedback/interaction technique

We further identified phenomenons which probably could be explained by indi-
vidual differences among users and/or cultural factors (e.g., increased proactivity
for P0).
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The first two factors can be used for estimating user’s intention from gaze data.
Either the goal of the task or the policy chosen by the user to solve the task can be es-
timated previous to the first object movement and user input, respectively. However,
their visibility in gaze data in the form of proactive fixations towards a certain task
related location on the display depends to a large extend on the third factor, namely
the state of user’s mental model. This fact in principal can be used for estimating
user’s experience and adaptation of interaction (see, e.g., Bader 2011). However, if
the main goal is to design a consistent gaze-based interaction technique for novice
and experienced users the goal would be to minimize the influence of experience on
natural gaze behavior. According to the results of our study one option would be to
use the fourth factor and to design interaction techniques which reduce this influ-
ence as we demonstrated it with Technique2. However, as we showed in the results
section there still remain variances in natural gaze behavior which probably can be
explained by individual differences among users or cultural factors. These factors
have also to be considered when interpreting natural gaze behavior and designing
appropriate system reactions.

9.3 Multimodal Interaction Using Gaze-Based Intention
Estimation

In this section we illustrate by example how the identified factors influencing natural
gaze behavior can be used to incorporate eye gaze as an additional modality in
multimodal interaction techniques. We especially use proactive gaze behavior and
its dependency on the task and goal the user has in mind to estimate user’s intention
from observed gaze patterns.

The following section specifies the task considered for the user study which is
described in Sect. 9.3.2. The results of the study are discussed in Sect. 9.3.3.

9.3.1 Task and Interaction Design

As application domain for our investigations we selected interaction in multi-display
environments. Due to increasing number and variety of available displays and de-
vices such environments have gained increasing attention by the international re-
search community in recent years. Early work on that field such as Rekimoto and
Saitoh (1999), Streitz et al. (1999) focused on software infrastructure and interac-
tion techniques spanning multiple displays for supporting collaborative co-located
teamwork. More recent work with similar research goals can be found, e.g., in Bor-
ing et al. (2010), Johanson and Fox (2002), Johanson et al. (2002), Nacenta et al.
(2006).

Especially interaction with distant displays could benefit from taking eye gaze
as additional input modality into account. Pointing gestures, which are often used
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Fig. 9.9 Two interaction techniques for moving objects from within grasping range to a distant
display

for interaction with distant or large displays (see, e.g., Schick et al. 2009), are fa-
tiguing and inaccurate (Nickel and Stiefelhagen 2003). This disadvantage could be
compensated for by taking into account gaze as additional input modality.

In the following we consider an object manipulation task spanning multiple dis-
plays for further investigations. Objects need to be moved by users from one display
to another. In particular, a colored object displayed on a tabletop display in front of
the user needs to be moved into the corresponding target area on a vertical display
which is mounted behind the tabletop (see Fig. 9.9).

For this task two interaction techniques are investigated. They are illustrated in
Fig. 9.9. For the interaction technique Pointing the object first needs to be selected
on the tabletop display by touching it. The success of the selection is indicated by a
slight fade of the object. Afterwards the object can be moved to the vertical display
by means of a pointing gesture. The movement of the object on a straight line to-
wards an indicated target area is triggered by changing the hand pose as illustrated
in Fig. 9.9a. Previous to the execution of this gesture the object remains at its initial
position on the tabletop. The selection for the interaction technique Pushing is iden-
tical to selection for Pointing. The movement of the object towards the target area,
however, is triggered by a small pushing movement towards the respective target
area. This requires significantly less physical movement of the hand compared to
pointing. Hence, we expect less physical fatigue for Pushing compared to Pointing.
However, since the accuracy of the pushing movement is very limited, the target
area cannot be indicated through pushing accurately. Also for pointing gestures it
is known that they do not always indicate the target position pointed to by the user
very accurately (Nickel and Stiefelhagen 2003).

For both techniques in the following we investigate to which extend natural gaze
behavior during interaction can be used to accurately determine the desired target
position of the object on the vertical display and hence to compensate for disad-
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Fig. 9.10 Experimental setup

vantages of gesture-based interaction (physical fatigue, inaccuracy of pointing and
pushing gesture). For recognizing the individual gestures video-based gesture recog-
nition systems like Bader et al. (2009), Schick et al. (2009) or commercial systems
like Microsoft Kinect1 can be used.

9.3.2 User Study

In the following we describe apparatus, task, procedure and results of the user study
which was conducted in order to further investigate the role of eye gaze in the sce-
narios described above.

9.3.2.1 Apparatus

As multi-display environment we used a setup consisting of two displays as illus-
trated in Fig. 9.10. It consists of a horizontal rear projected display (124 × 89 cm)
and a large scale vertical LCD display (102.5 × 57.5 cm, 1024 × 768 pixels reso-
lution). For capturing gaze data the mobile eye tracking system Dikablis from Er-
goneers is used. Through markers attached to the vertical display the gaze position
can be transformed to display coordinates. The distance of participants from the
vertical display is approximately 1 m. With a good calibration the accuracy of mea-
surement of gaze position on the vertical display is approximately ±10 pixel for a
certain object fixated. However, it largely depends on the quality of the calibration
of the eye tracker which highly varies for different users. Since the system only can
be calibrated to one single surface, the gaze position on the horizontal display can
be determined only at a very coarse level. Hence, detailed analysis of gaze data in

1http://www.xbox.com/kinect.

http://www.xbox.com/kinect
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Fig. 9.11 Task and coordinate system spanning multiple displays

this experiment is limited to the vertical display. For the horizontal display we only
distinguish whether eye gaze is located on the display or not.

The eye tracking system delivers data with 25 Hz. We empirically determined a
latency of approximately 160 ms. For offline analysis of the captured eye tracking
data we compensated this latency by synchronization with other system events.

9.3.2.2 Task

For every task in the beginning a colored circle is displayed on the horizontal display
which is to be moved to the corresponding target area on the vertical display. In
Fig. 9.11a this task is schematically displayed for a blue object (T0). The labels
T0, . . . ,T4 in Fig. 9.11b were not displayed to the users. The center of the target
was [155,440] for T0, [246,88] for T1, [498,330] for T2, [707,517] for T3 and
[799,210] for T4 target in pixels of the coordinate system of the vertical display.

Some of the target areas on purpose are arranged in a row along the movement
direction of the object in order to investigate the influence of this arrangement on
natural gaze behavior (see, e.g., target T3 and T4). The initial object position is
varied along the dotted red line in Fig. 9.11b.

9.3.2.3 Procedure

The user study is conducted with 16 participants (2 female, 14 male) and is based
on within-subject-design. Participants are divided into two groups and the order of
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the two interaction techniques is varied among them to balance potential learning
effects regarding the task. Every participant executes 80 tasks as described above,
40 task with each interaction technique. Instructions for the different interaction
techniques are given prior to every sequence of tasks with the respective techniques
through a short video showing the technique. No participant practiced any of the
interaction techniques before.

The study is conducted as so-called Wizard-of-Oz experiment. The triggering
input (change of hand pose or pushing gesture) is not recognized by the system
directly but by the experimenter who manually triggers the respective action (move-
ment of the object into the target area as soon as he observes it). This has the advan-
tage that errors at recognition level of the triggering event are mostly excluded and
do not lead to wrong system reactions. For 36 of the 40 tasks for each interaction
technique the object moves to the correct target area. In order to investigate the in-
fluence of wrong system reaction to users’ natural gaze behavior for task 31, 32, 34
and 36 wrong system reactions are triggered and the object moves to a wrong target
area.

Between the two interaction techniques and after the experiment users were
asked to fill in a questionnaire to capture if system reaction was according to their
expectations, if the Wizard-of-Oz experiment was recognized by the users and sub-
jective ratings for accuracy, physical fatigue and satisfaction.

9.3.2.4 Results

Over all 16 participants and 40 tasks with interaction technique Pushing the last fix-
ation before the object movement was triggered was located on the vertical display
in 86 % of the cases. For Pointing with 98 % this number is even higher. The differ-
ence can be explained by the design of the interaction techniques. For Pointing the
object movement is triggered by the change of the hand pose. The visual attention
obviously is directed towards the target area while the pointing gesture is executed
by the user and does not have to be turned away for the execution of the triggering
hand movement. In contrast, for Pushing the triggering gesture is to be performed on
the horizontal display. The visual focus of most users is directed towards the target
area during this movement as well, however, in the user study especially two users
diverged from that behavior significantly. This can be seen from Fig. 9.12, where
the number of last fixations before the triggering event which are directed towards
the vertical display are shown for all tasks and individual participants. Especially
for participants 1 and 11 in the videos recorded by the eye tracking system it can be
observed that their visual focus of attention remains on the horizontal display until
the object starts moving and then jumps towards the respective target area.

Intention estimates are based on the last fixation before the respective triggering
event is detected. They consist of a target area to which the current object most
likely is moved according to user’s gaze behavior. In order to determine this target
area the last fixation before the triggering event is assigned according to its position
on the vertical display with respect to the following criteria:
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Fig. 9.12 Proactivity of last pre-input fixation for interaction technique Pushing. Participants 1
and 11 significantly diverge from proactive gaze behavior of other participants

Fig. 9.13 Areas defining the
assignment of fixations to
target area T0 according to
gaze position on the vertical
display. Different assignment
areas resulting from the two
assignment criteria (distance
to center of target area and
movement direction of
object) are colored differently

• distance to center of target area rT is less than 140 pixels
• angle between movement direction of object and direction of gaze with respect to

the initial position of the object αT is less than 5°

See Fig. 9.13 for an illustration of these assignment criteria. The threshold for
the first criterion is chosen so that no double assignment to different target areas is
possible based on this criterion. The second criterion, however, allows for assign-
ment of one fixation to multiple target areas which are located along the same line
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Table 9.1 Confusion matrices showing the results of gaze-based intention estimation for interac-
tion techniques Pushing (a) and Pointing (b)

True
target

Estimated target

T0 T1 T2 T3 T4

T0 92 7 1 0 0

T1 14 71 17 1 1

T2 0 0 85 16 3

T3 0 0 0 78 16

T4 0 3 1 19 62

(a)

True
target

Estimated target

T0 T1 T2 T3 T4

T0 109 7 0 0 0

T1 12 100 9 0 0

T2 0 1 109 10 1

T3 0 0 2 105 14

T4 0 3 0 14 76

(b)

of movement (e.g., for T3 and T4). An estimation is considered as correct if the
last fixation is assigned to the correct target area corresponding to the current object
based on one of the criteria described above. In the case of an assignment based on
the second criterion the correct assignment needs to be among all possible assign-
ments in order to be considered as correct. A correct assignment based on the first
criterion superimposes a different assignment according to the second criterion.

In Table 9.1 the confusion matrices for intention estimates for both of the two
different interaction techniques are shown. For both techniques the matrices show
good results. Precision and recall both are around 80 % for Pushing (average over
individual measures for Ti ). For Pointing 87 % is achieved for both measures. These
results can be further improved, especially for Pushing, by also taking fixations into
account for intention estimation which occur during the movement phase of the
object and not only right before the triggering event.

Table 9.1 shows that most of the wrong estimates occur for neighboring target
areas or targets lying along the same movement direction (e.g., T3 and T4). Such
wrong estimates are mainly caused by inaccuracy of measurements by the eye track-
ing system and the transformation into display coordinates, respectively. With more
accurate measurements the intention estimation is expected to be improved signif-
icantly. Additionally, the results in Table 9.1 indicate that intention estimates for
targets lying along the same movement direction such as T3 and T4 are less accu-
rate compared to others.

9.3.2.5 Subjective Data

In addition to the eye tracking data subjective impressions of participants were col-
lected via questionnaire. Results of general questions are shown in Fig. 9.14.

For both interaction techniques in average four participants indicated a system
reaction which does not meet their expectations. As reasons all of them mentioned
the wrong system reaction which was implemented on purpose at the end of the trial
in order to investigate users’ behavior in such cases. Hence, these indications of
unexpected system behavior is not related to the interaction techniques investigated
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Fig. 9.14 Results of general questions in questionnaire

Fig. 9.15 Subjective rating of both interaction techniques regarding different criteria (individu-
ally)

in this study. Three of 16 participants state that they have recognized that the trial
was conducted as a Wizard-of-Oz experiment, in particular, that system reactions
were triggered by the experimenter. However, due to comments made by the par-
ticipants while answering this question it can be assumed that this was only due to
the perfect system reaction (movement of the object to the correct target area) dur-
ing the first phase of the experiment. Participants wondered why the objects moved
to the correct target even if their input was very vague (e.g., through the pushing
movement).

In Fig. 9.15 the subjective ratings of both interaction techniques regarding dif-
ferent criteria is shown. Pointing is rated slightly better regarding accuracy than
Pushing. However, it needs to be mentioned that the accuracy of both interac-
tion techniques due to the Wizard-of-Oz experiment was identical. The difference
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Fig. 9.16 Subjective rating of both interaction techniques regarding different criteria (direct com-
parison)

between mean values of both techniques is statistical not significant (t (24) = 0.548;
p = 0.589). In contrast, for the rating of physical fatigue a statistical significant
difference of mean values can be observed (t (19) = 2.467; p = 0.024). Regard-
ing user satisfaction again no significant difference is measured (t (30) = 0.255;
p = 0.801).

If participants are asked to directly compare both techniques and rate them as
better or worse compared to each other the results shown in Fig. 9.16 are obtained.
They show the same tendency as the isolated rating of each technique.

9.3.3 Discussion

The subjective ratings of both techniques confirm the expected advantage of Push-
ing compared to Pointing regarding physical fatigue. Pushing is rated by 81 % of
participants as less fatiguing compared to Pointing. It can be expected that this rat-
ing further develops in favor of Pushing if the interaction techniques are used over
a longer period of time.

In order to allow for accurate interaction with techniques like Pushing, where
user input only provides very vague information for target oriented object manipu-
lation, an additional input modality may be included. The results of the experiment
regarding proactivity of gaze behavior around the triggering pushing movement and
gaze based estimation of user’s intention are positive indications for using eye gaze
as additional modality in this context. In 88 % user’s intention can be estimated
correctly for the setting described above. Errors almost exclusively occur for target
areas which are located close to each other or for targets located along the same
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movement direction of the object in the form of a straight line. One option to im-
prove intention estimation further would be to trigger the object movement based on
intention estimated previous to the triggering event and to adjust the movement path
according to refined estimations based on gaze data analysis during the movement
phase. Additionally, for calculation of the initial movement direction of objects the
direction of the pushing movement could be combined with gaze-based intention
estimation.

For Pushing a significant smaller amount of proactive fixations can be detected
before the object movement is triggered compared to Pointing. One reason could be
the subjective perception of Pushing as inaccurate, as indicated by the results ob-
tained from the questionnaires. As illustrated in Sect. 9.2 the uncertainty of user’s
mental model about system reactions has significant influence on natural gaze be-
havior during interaction and in particular on its proactivity. Therefore this could be
one reason for reduced proactivity of gaze behavior compared to Pointing.

The results also indicate the potential of improving accuracy of pointing gestures
through multimodal combination with gaze-based intention estimation. For Pointing
user’s intention is estimated correctly with 92 % before the triggering input is de-
tected. Additionally, gaze behavior is proactive in 97 % before the object movement
is triggered.

One further interesting aspect regarding usage of natural gaze behavior as input
modality can be derived from the rating of Pushing as inaccurate input and the
comments given by participants on the Wizard-of-Oz experiment. Some participants
mentioned that they were surprised that objects always moved to the correct target
area during the first phase of the experiment. The same effect could happen if the
system really reacts on natural gaze behavior according to the interaction technique
Pushing. Ideally the object always moves to the correct target area as it was the
case in the first phase of the experiment. For some participants it can be observed
that they start to provoke wrong system reactions if, despite of very imprecise input
via pushing gestures, the object always moves to the correct target area. Hence, it
could be useful to help users to become aware of the functional principle of the
interaction technique (e.g., through appropriate visual feedback) in order to allow
for generation of an adequate mental model.

In the experiment target areas are located relatively far away from each other.
How close target areas can be located to each other for still being able to estimate
user’s intention robustly mainly depends on the accuracy of the eye tracking system.
Therefore, with increasing accuracy of eye trackers applications for graphical user
interfaces with finer structure can be considered.

Finally, based on the results obtained from the user study natural gaze behavior
can be considered as a valuable input modality for the application scenario outlined
within this section. Based on gaze-based intention estimation accuracy of imprecise
inputs like pushing or pointing gestures can be improved by combining them into
multimodal interaction techniques. With gaze-based multimodal interaction tech-
niques like Pushing the subjectively sensed physical fatigue can be reduced com-
pared to alternative solutions such as Pointing.
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9.4 Conclusion

In this chapter we presented results of two experiments which were conducted to
investigate the use of natural gaze behavior as input modality for human-computer
interaction. In the first experiment we were able to identify different factors influ-
encing natural gaze behavior during an object manipulation task and to characterize
their influence on proactivity and direction of fixations towards different task-related
targets. Additionally, we demonstrated that the influence of individual factors can
be changed by interaction design and adjusted visual feedback, respectively. The re-
sults reported regarding this experiment show the variety of information contained in
natural gaze behavior. By analyzing natural gaze behavior during human-computer
interaction information like user’s intention or experience can be inferred which can
be used for designing proactive or adaptive intelligent user interfaces.

In the second study we investigated natural gaze behavior as additional input
modality for interaction in multi-display environments and especially in combina-
tion with gesture based interaction. By means of two interaction techniques for mov-
ing objects from one display within grasping range to another distant display new
opportunities for combining gesture and gaze in multimodal interaction techniques
were explored and evaluated. The results show that gaze-based intention estima-
tion is valuable for compensation of inaccuracy of imprecise hand gestures (e.g.,
pushing or pointing gestures) and hence for designing new multimodal interaction
techniques which cause less physical fatigue.

In general both of the two experiments show that natural gaze behavior contains
valuable information about user’s cognitive processes which can be used to improve
human-computer interaction for conventional workspaces but also for novel interac-
tive multi-display environments. Further research needs to be done in order to extend
the knowledge about natural gaze behavior, especially for more complex tasks and
larger user groups. The Wizard-of-Oz experiment used in the second study revealed
important insights regarding usage of natural gaze behavior for object manipulation
tasks in multi-display environments. These results need to be extended by further
studies where input data is captured by technical input devices (e.g., video-based
gesture recognition system and real-time eye tracking) causing uncertainty due to
misrecognition and wrong system reactions. Interesting research questions which
could be addressed by further studies concern the influence of such uncertain input
channels on natural gaze behavior as well as effects related to long term usage of
gaze-based interaction. In the latter case changes in natural gaze behavior may occur
due to training effects and changing mental models.
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Chapter 10
Co-present or Not?

Embodiment, Situatedness and the Mona Lisa
Gaze Effect

Jens Edlund, Samer Al Moubayed, and Jonas Beskow

Abstract The interest in embodying and situating computer programmes took off
in the autonomous agents community in the 90s. Today, researchers and designers of
programmes that interact with people on human terms endow their systems with hu-
manoid physiognomies for a variety of reasons. In most cases, attempts at achieving
this embodiment and situatedness has taken one of two directions: virtual characters
and actual physical robots. In addition, a technique that is far from new is gaining
ground rapidly: projection of animated faces on head-shaped 3D surfaces. In this
chapter, we provide a history of this technique; an overview of its pros and cons;
and an in-depth description of the cause and mechanics of the main drawback of 2D
displays of 3D faces (and objects): the Mona Liza gaze effect. We conclude with a
description of an experimental paradigm that measures perceived directionality in
general and the Mona Lisa gaze effect in particular.

10.1 Introduction

The interest in embodying and situating computer programmes took off in the au-
tonomous agents community in the 90s (e.g. Steels and Brooks 1995). Today, re-
searchers and designers of programmes that interact with people on human terms—
most notably using speech in human-machine dialogue and computer-mediated
human-human dialogue—endow their systems with humanoid physiognomies for
a variety of reasons, ranging from a hope to exploit the purported benefits of hu-
manlike dialogue as a human-machine interface—people know how to speak and
many of us are most comfortable communicating face—to a desire to use speech
technology and working models of human dialogue to gain deeper understanding of
how people communicate (Traum 2008; Edlund 2011).

In most cases, attempts at achieving this embodiment and situatedness has taken
one of two directions. The first is to implement virtual characters, often referred to
as virtual humans (e.g. Traum and Rickel 2002) or embodied conversational agents
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(ECAs; e.g. Cassel et al. 2000). We will adhere to the latter terminology and use
ECA here. In principal, an ECA is a 2D or 3D model of a character in virtual space,
that is displayed as a 2D rendition on a monitor in physical space. The relationship
between the ECA and its virtual space, the monitor, and the humans watching the
ECA can be portrayed in several ways by the ECA designer. Common images in-
clude the ECA living its life in another world, which is displayed to the onlookers
as if it were a movie, as exemplified by Cloddy Hans and Karen in the NICE project
(Boye and Gustafson 2005); the ECA again living in its virtual reality but peering
out through a window (the monitor) through which the onlookers peer back in, as
exemplified by Ville in the DEAL system (Hjalmarsson et al. 2007); and the ECA
not living in a virtual world at all, but rather sharing the same physical world as the
onlookers, as exemplified by MACK (Cassell et al. 2002) and the characters of the
Gunslinger project (Hartholt et al. 2009).

The other main direction is to implement actual physical robots which imitate
people, such as MIT’s Cog and Kismet (Breazeal and Scassellati 2001). Honda Re-
search’s robot Asimo is also merits mention in this context. Although not chiefly de-
veloped for communication studies, recent work on retargeting of motion captured
from humans allows Asimo to reproduce human gestures quite closely in real-time,
which opens up new possibilities for investigations into human communicative ges-
ture (Dariush et al. 2008).

In studies of face-to-face communication, the head and face are often given centre
stage. This is particularly true for head pose and gaze, as these are associated with
a number of important communicative functions such as turn-taking and grounding.
In addition, a number of other features of the head and face—for example facial ex-
pressions, eye brow movements, and lip synchronization—frequently receive spe-
cial attention. In this chapter, we focus on a particular type of face and head embod-
iment which is becoming increasingly popular—a combination of a virtual talking
head and a physical robotic head: projection of animated faces on head-shaped 3D
surfaces.

The following section provides a history of the technique. After that, the next sec-
tion holds a brief overview of the pros and cons of the technique compared to other
methods of embodiment, followed by a section providing an in-depth description of
the main drawback of 2D displays of 3D faces (and objects): the Mona Liza gaze
effect. This section includes a proposed explanation of the cause and mechanics of
the effect; an examination of its consequences for face-to-face communication; a
description of an experimental paradigm that measures perceived directionality in
general and the Mona Lisa gaze effect in particular. Finally, the chapter is summed
up with an account of how projection on head-shaped 3D surfaces completely can-
cels the effect.

10.2 Face Projection on 3D Surfaces

The method of embodiment that is our focus here is sometimes called relief pro-
jection, and the result is sometimes called a projection augmented model. In short,
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Fig. 10.1 Drawings of front and back projected faces taken from US Patent 1653180 of 1925. The
drawing is in the public domain and copyright free, like all patents issued in the United States

a photographic image of an object is projected on a physical, three-dimensional
model of the same shape as the object with the aim of creating a realistic-looking
3D object with properties that can be changed by manipulating the image. In the
cases we are interested in, the image is a moving image, either a film of a person’s
face or a generated face such as those used for ECAs.

The earliest attestation of this technique is a patent application submitted by
Georges Jalbert in December 1924 (France) and May 1925 (US; Jalbert 1925). The
application describes both front projected faces and faces projected from the inside
of a translucent bust, as seen in Fig. 10.1. Another patent (Liljegren and Foster 1989)
specifically adds fibre optics as the means of transferring the images to within the
bust.

The first modern well-documented implementation of face projection on 3D sur-
faces is the ghosts performing Grim Grinning Ghosts at the Disneyland Haunted
Mansion ride. The ride was built in the 60s and opened in 1969, and the tech-
nology was described in a 1970 behind-the-scenes TV feature called Disneyland
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Showtime,1 which incidentally also features facial animatronics that seemingly
measures up to MIT’s Kismet. The ghosts are created by projecting films of strongly
lit, highly contrasted faces against a black background onto relatively featureless
white busts with shapes matching the faces in the films. Disney’s ghosts, as well
as another Haunted Mansion character produced with a similar technique, Madame
Leota, are popular projections in private Halloween installations featuring face pro-
jection on busts. Films showing such installations dating from some time into the
2000s and onwards are easily found on the Internet, and a number of amateur spe-
cial effects makers claim having produced them as early as the early 80s. Although
there are several claims of proof in the form of footage and films, we have not been
able to find any of these materials.

Another early and well-attested creation is the talking head projection of MIT’s
Architecture Machine Group in the early 80s. Inspired by Disney’s Haunted Man-
sion creations. One of the creators of the MIT talking head projection, Michael
Naimark, observed visitors at one of the talking heads in the Haunted Mansion
at length. He concludes: “It was clear that as the woman spoke, the image of her
moving lips would mis-register from the mask-shaped screen, but to most everyone
viewing it briefly from their dark-ride car, this anomaly went unnoticed. Most people
seemed convinced that they had just seen a full color, moving hologram (which, of
course, is nonsense)” (Naimark 2005). The experience led Naimark and colleagues
to develop the MIT talking head projection, an elaborate contraption which recorded
not only image and sound, but also motion. The film was back projected to a head
shaped mask moving in sync with the recorded person (Naimark 2005).2 MIT Me-
dia Lab presented similar display in a tribute to the original experiments at their
Defy Gravity exhibition in 2010.

In more recent years, a number of groups have put together 3D projection sur-
faces that are intended to be used with computer animated faces. From the more
obscure prototype system HyperMask, which aims to project a face onto a mask
worn by an actor who is free to move around in a room (Morishima et al. 2002)
to more mundane ideas of embodying computer persons or improving telepresence.
Hashimoto and Morooka (2006) use a spherical translucent projection surface and a
back projected image of a humanoid face in combination with a robot neck. Light-
Head of University of Plymouth (Delaunay et al. 2009) is more elaborately shaped,
but maintains a stylized quality, while Technische Universität München’s Mask-bot
(Kuratate et al. 2011) and KTH Royal Technical Institute’s Furhat (Al Moubayed
et al. 2011) aim for higher degrees of human-likeness and project realistic faces
into masks more closely resembling the human anatomy. It is worth mentioning that
there are other ways to go as well, such as simplistic robot heads with small moni-
tors for eyes and lips or the life-like mechatronic design of Hanson Robotics. And
for the future, flexible and curved displays such as the spherical OLED displayed at

1Walt Disney’s Wonderful World of Color, Season 16, Episode 20, Walt Disney Productions.
2Michael Naimark has made a film showing the talking head projection in action available at http://
www.naimark.net/projects/head.html.

http://www.naimark.net/projects/head.html
http://www.naimark.net/projects/head.html
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the Museum of Science and Education in Tokyo, and display techniques that utilize
reflected light only, such as the Kindle, hold promise for development.

10.3 Pros and Cons of Face Projection

This section provides an overview of salient differences between face projection on
3D surfaces and the two main alternatives, physical robotic faces and 2D displays
of 3D models.

10.3.1 Compared to Physical Robotic Faces

Compared to physical robot heads with moving parts for lips, eye brows, eyes, and
other facial features, a projected face has a several advantages. To begin with, it
is considerably cheaper to develop, and even more so to modify, as long as the
modification can be done using the projection, rather than modifying the actual mask
and other hardware. Development and in particular modification and adaptation is
not only cheaper, but much faster, making face projection a much more feasible
alternative for rapid development and experimentation, regardless of budget.

Another advantage is that projected movements—eye gaze shifts, brow raises,
lip movements, and so on—are soundless in the projected face, whereas the hy-
draulics usually used in robotic components make noises that risks countering the
humanlike impression of the robot. The projection is also able to make these move-
ments more rapidly than robot actuators, at a speed that can easily match that with
which a human produces them. An example of this is the SynFace lip synchroniza-
tion (Beskow et al. 2009) that can be used with Furhat, allowing it to function as a
remote representation of a human using the original voice of the human, but its own
lip synchronization based on analysis of the acoustic signal, eliminating the need
for a video stream in order to acquire lip movements.

As for disadvantages, there are two major drawbacks compared to robotic faces.
The first one is that the light conditions needed for the back projection to be efficient
are restrictive—even though the type of pico projector used in Furhat and other back
projected talking heads are rapidly getting stronger at ever-better prices, with the
current technology it is unlikely that the face will ever work well in direct sunlight.
The second has to do with the inflexibility of the projection surface. Although the
small misalignments caused by for example speaking are barely noticeable, as noted
by Naimark (2005), larger jaw movements such as wide yawning will cause the face
to look clearly out of order, with a projected jaw line clearly missing the jaw line of
the projection surface.
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10.3.2 Compared to 2D Displays of 3D Models

The most salient difference is the manner in which eye gaze is perceived, which we
go through in detail in the next section. Besides that, the most obvious difference is
how the projection is interpreted compared to a monitor. Whereas an ECA displayed
on a monitor requires interpretation—it is not obvious whether it should best be
interpreted as something in another world seen through a window or peeking out of
a window or if it is supposed to be viewed as sharing the same space as its onlooker,
it is immediately clear that the latter is the case for the chase minor advantages
in being even more inexpensive and adaptable than the other method, and its gaze
characteristics can be utilized as an advantage for specific purposes.

10.4 The Mona Liza Gaze Effect

The perception of 2D renditions of 3D scenes is notoriously riddled with artefacts
and illusions—for an overview, see Gregory (1997). The most important of these
for embodiment is the Mona Lisa gaze effect, commonly described as an effect that
makes it appear as if the Mona Lisa’s gaze rests steadily on the viewer as the viewer
moves through the room (Fig. 10.2). Although the reference to the Mona Lisa is a
modern invention, documentation of the effect dates back at least as far as Ptolemy
in around 100AD “[. . .] the image of a face painted on panels follows the gaze of
moving viewers to some extent even though there is no motion in the image itself”
(Smith 1996).

10.4.1 Mechanics of the Mona Lisa Gaze Effect

The Mona Lisa gaze effect has earned frequent enough mention, and a number of
more or less detailed explanations have been presented from Ptolemy and onwards
(e.g. Smith 1996; Cuijpers et al. 2010), but these do not provide an explanation
that satisfies the requirements of a designer of embodied computer programmes. In
Al Moubayed et al. (2012a, 2012b), we propose a model that explains Mona Lisa
stare effects as well as other observations with a minimum of complexity, and ver-
ified its predictions experimentally. The model is based a number of observations,
which are described in the following, before the model in itself is presented.

Our first, seemingly trivial observation is that in order to judge gaze direction,
it is not sufficient to know the angle of the eyes relative to the head—which can
be estimated for example by means of relative pupil position within the sclera (e.g.
Cuijpers et al. 2010). An estimation of the position and angle of the head is also re-
quired. The background of Fig. 10.3 shows the Wollaston effect (Wollaston 1824),
in which two pair of identical eyes appear to gaze at different points when drawn
in to heads that have different angles. This “effect” seems to result from an insis-
tence to view our interpretation of depicted eyes as somehow isolated from the head
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Fig. 10.2 Leonardo da
Vinci’s Mona Lisa. Mona
Lisa appears to be looking
straight at the viewer,
regardless of viewing angle.
The painting is the public
domain and copyright free

in which they are lodged. If we, like Todorović (2006), instead assume that head
and eyes are interpreted in relation to each other and to the space they are depicted
in, the Wollaston effect is not only accounted for, but rather ceases being an effect,
as illustrated in the foreground of the figure. Todorović’s account relates eyes and
head pose in virtual space directly to perceived gaze direction in physical space. We
generalize this account by means of simplification, and speak exclusively of gaze
direction within the same (virtual or physical) space: the perceived gaze direction
within a space, virtual or physical, of a creature within that same space, is a func-
tion of the perceived angle of the gazing creature’s head within that space, and the
perceived angle of her eyes, relative her head.

The second observation, illustrated in Fig. 10.4, is that the Mona Lisa gaze effect
is not restricted to eye gaze, but generalizes to anything pointing out from a picture,
such as an outstretched index finger. Most viewers feel that complete Uncle Sam
in the left pane of the figure and faceless Uncle Sam in its right pane both point
straight at them, regardless of viewing angle. This means that although eye and
pupil position clearly affects how we perceive gaze direction, they cannot hold the
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Fig. 10.3 The Wollaston effect is seen in the two drawings: gaze direction is perceived differently
although the eyes are identical, and only the head shape differs. The ovals with two circles represent
a possible interpretation of the drawings as seen from above in virtual space. The two drawings are
from Wollaston (1824), and are in the public domain and are copyright free

Fig. 10.4 I want you for the U.S. Army nearest recruiting station, commissioned by the US federal
government and painted by James Montgomery Flagg (cropped in the left pane, and cropped and
edited in the right pane). The painting is in the public domain and copyright free

key to the effect, as the effect is present also when eyes and pupils are not. This
observation also allows to generalize our statement from the last paragraph to not
concern not only eyes and heads, but any object with a perceived direction contained
within another.
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Fig. 10.5 Interiors of the Winter Palace. The Throne Room of Empress Maria Fiodorovna. Paint-
ing by Yevgraf Fyodorovich Krendovsky. The picture is in the public domain and copyright free

The third observation is that 2D images representing 3D objects or scenes are
interpreted as having their own virtual 3D space, distinct from physical space. The
axes of this virtual space are oriented along the horizontal and vertical edges of the
image (perceived as width and height, respectively), with the third axis perpendic-
ular to its surface (perceived as depth). This is particularly clear when we watch
photos or paintings of large rooms with walls, ceiling and floors at right angles, as
in Fig. 10.5. The painting in the figure gives a clear impression of a large three-
dimensional space with a throne located at the far back. The location of the throne
in relation to physical space is ambiguous: if our viewing angle and distance to the
painting is varied, the throne’s position in the portrayed virtual space is maintained,
and its position in physical space remains unclear.

Our forth observation has to do with the high degree of interpretation that goes in
to the shapes we perceive in images. The phenomenon, known as shape constancy,
is well-documented and was described early on. Descartes states in his Dioptrics
of 1637: “[. . .] shape is judged by the knowledge, or opinion, that we have of the
position of various parts of the objects, and not by the resemblance of the pictures in
the eye; for these pictures usually contain only ovals and diamond shapes, yet they
cause us to see circles and squares” (Descartes 1637, p. 107). Phrased differently,
viewers of 2D images perceives the shapes in the images as invariant, even when
the viewing angle changes, as exemplified by the two top right groups of circles
in Fig. 10.6. Although the top left group contains exactly the same shapes, it is
not necessarily perceived as three circles but rather as a circle and two ovals. This
indicates that this perception is indeed dependent on interpretation. Note that when
the circular shapes are viewed at a steep angle, most viewers still perceive a circle,
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Fig. 10.6 Three groups of three rounded shapes, a group of picture frames, and two computer
monitors

although the shape is in fact distorted to one of Descartes’ ovals. The figure also
illustrates that shape constancy holds true for other shapes, such as the rectangular
shape of the frame of the Mona Lisa or the edge of a standard monitor, both of
which are perceived as perfectly rectangular regardless of viewing angle. For a more
detailed account of shape constancy, see Gregory (1997).

We now have all the pieces we need for our explanation of the Mona Lisa gaze
effect except one: a description of how viewers of 3D virtual space align that virtual
space with their own, physical space. To solve this, we assume that a mechanism
similar to shape constancy is at play: viewers of 2D images depicting 3D objects
interpret their position in relation to the virtual 3D space as head-on, perpendicular
to the surface plane of the image.

In addition to the support provided by what is known about shape constancy, this
is intuitively pleasing as well. 2D images, at least those that use perspective to depict
a 3D space, are created as seen from some vantage point in front of the objects seen
in the picture. In the case of photographs or paintings created using camera obscura,
this vantage point can be calculated exactly from the geometry of the image and
the characteristics of the lens. Paintings allow for artistic license and may leave
more ambiguity, but are still generally interpreted as seen head-on. This is again an
observation that may seem trivial, but it has bearing as to how we may connect the
virtual 3D space depicted in an image to the physical space of our surroundings.

It is worth pointing out that provided that we are standing in front of a picture,
interpreting the general orientation and left-right position of the objects depicted in
it is straightforward, whereas deciding the distance to the objects from the imagined
vantage point of the creator can pose more of a problem, as illustrated by Fig. 10.7.
It is trivial in both panes to see that all of the animals in the sculpture face left and
that the rooster is on top and the horse at the bottom. Size variation, however, is
ambiguous in 2D depictions and can be interpreted as deriving from at least three
sources: the size of the depicted object, the distance and projection from the object
to the position from which it is captured, and the size of the actual 2D image. The
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Fig. 10.7 Bremen Town Band, Bremen, Germany. The picture was taken in 1990 by Adrian Ping-
stone and released into the public domain

image in the figure’s left pane has been edited to remove the sculpture’s surround-
ings. Without references, it is difficult to judge the size of the sculpture. The right
pane contains more clues for the viewer to get a fair sense of distance and size,
but the distance from the vantage point of the camera to the sculpture and from the
sculpture to the people in the back are difficult to guess, so the size of the sculpture
is elusive in that pane too.

We now have all the observations and assumptions we need for our proposed
interpretation of the Mona Lisa gaze effect. Combining the assumptions we propose
that the directionality of objects in 2D images are interpreted in relation to a virtual
3D space with axes oriented along the horizontal and vertical edges of the image
and the third axis perpendicular to it, and that this space is aligned to the physical
space of the viewer as if the image were viewed head-on. Shape constancy further
allows us to make this interpretation regardless of the actual viewing angle, so that
when observed, anything pointing straight out of the picture is perceived as pointing
directly at the viewer, regardless of viewing angle. Figure 10.8 illustrates the model.
The leftmost pane relates the head and eye of the gazing creature to the 3D space
of the virtual space created by the picture, and to the picture plane. The illustration
represents a head in virtual 3D space at a 20° angle relative to the depth axis, and
eyes at the same but opposite angle relative to the head. The resulting eye direction is
parallel with the virtual 3D depth axis and perpendicular to the picture plane. Virtual
space is then aligned to physical space along the along their respective depth axes,
as illustrated in the centre pane. Finally, shape constancy allows the viewer to view
the picture as if facing it head-on, regardless of the viewer’s position in the room, as
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Fig. 10.8 Our observations and assumptions combined into a model of how gaze direction (and
the directionality of other objects) in 2D pictures are perceived

in the rightmost pane, causing the Mona Lisa gaze effect to occur. In other words:
if something points straight out of a two-dimensional picture, it will be perceived
by each on-looker, regardless of position in the room, to point straight at said on-
looker. The model predicts that people viewing 2D images of gaze should have no
problem judging gaze relative the virtual space coordinates, and should judge gaze
direction in physical space as if they were standing directly in front of the picture.
In other words, any gaze directed straight out of the picture would be perceived as
looking straight at an on-looker, as is the case with Mona Lisa. Furthermore, gaze
to the left or to the right the depth of the virtual space should always to the left or
right, respectively, of an on-looker, and by a constant angle. As it turns out, all of
these predictions bear out (Al Moubayed et al. 2012a, 2012b).

The model is very similar to that suggested by Todorović (2006), with the ad-
dition of shape constancy to account for the fact that most viewers do not perceive
drawings viewed at an angle as distorted. The processing model, in which differ-
ences caused by viewing angle are removed initially, has the further advantage that
the actual recognition becomes simpler, as there is less variability left to account
for.

10.4.2 Impact on Human-Human and Human-Machine
Communication

The importance of gaze in social interaction is well-established. From a human com-
munication perspective, Kendon’s work on gaze direction in conversation (Kendon
1967) is particularly important in inspiring a wealth of studies that singled out gaze
as one of the strongest non-vocal cues in human face-to-face interaction (see e.g. Ar-
gyle and Cook 1976; Bavelas et al. 2002). Gaze has been associated with a variety
of functions within social interaction—Kleinke’s review article from 1986, for ex-
ample, contains the following list: “(a) provide information, (b) regulate interaction,
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(c) express intimacy, (d) exercise social control, and (e) facilitate service and task
goals” (Kleinke 1986).

These efforts and findings, in turn, were and are shadowed by an increasing effort
in the human-computer interaction community, which recognized the importance
of modelling gaze and its social functions such as expressing and communicating
attitudes and emotions in embodied conversational agents (ECAs). Examples in-
clude Takeuchi and Nagao (1993), Poggi and Pelachaud (2000), Bilvi and Pelachaud
(2003), and Lance and Marsella (2008). As multimodal and facial communication
with communication devices become more advanced and more popular, the demand
for ECAs in control of their gaze behaviour increases. Multimodal interfaces are
now able to provide testing and manipulation frameworks for behavioural models of
gaze and other non-vocal signals. Such systems have recently been effectively used
to investigate and quantify the effects of gaze using controlled experiments (Edlund
and Nordstrand 2002; Lance and Marsella 2008; Gu and Badler 2006; Edlund and
Beskow 2009; Nordenberg et al. 2005).

Given the importance of gaze, the effects of presenting an ECA which displays
a perceivable gaze direction without being able to control this direction are poten-
tially devastating for the communication and for how the ECA is perceived. Oddly
enough, there is one clear example when the Mona Lisa gaze effect does not cause
this to happen, but rather presents us with the remedy: when our ECA communicates
with one single person whose head and face we have no ability to track. Inciden-
tally, this is historically the most common setup for interactional experiments with
spoken dialogue systems represented by an ECA.

The way this works is as follows. A key problem with using ECA gaze for com-
municative purposes is that unless we have access to sensors and head tracking
equipment, which were expensive and hard-to-get until rather recently, the system
does not know where its human interlocutor’s head and eyes are, which makes di-
recting the ECAs gaze at them a feat of magic. In many cases, experimenters have
simply hoped that the human interlocutor will stay relatively immobile in front of
the mobile, and used a gaze straight out from the monitor as an approximation of
“looking at the interlocutor”. Whether a case of insight or sheer luck, this method
is quite reliable—more so than one would think. As movements by the human in-
terlocutor are negated by the Mona Lisa gaze effect, the system is always perceived
as gazing at the interlocutor when it attempt to do so, and never when it attempts to
look away. Under these quite restricted but rather common circumstances, harness-
ing the Mona Lisa gaze effect is the only way to achieve gaze reliably towards the
interlocutor, as access to head pose information does not improve the situation—on
the contrary, attempting to gaze at the real position of the interlocutors head would
have the opposite effect in all cases except when the interlocutors sits straight in
front of the monitor.

As soon as there is more than one person in the room, the Mona Lisa gaze effect
becomes a very real problem. The system designer has a choice of having the ECA
look straight out from the monitor, thus being perceived as looking straight at each
person in the room simultaneously (and meeting their gaze of they look back), or
look away from every person in the room. Note that having access to head pose data
still will not help.
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Fig. 10.9 Schematic layout of a subject/target experiment with 5 targets at x meters distance from
the stimuli—a projection surface—and with equal distances between adjacent subject/targets

10.4.3 Measuring Perceived Direction

There are many cases where we would want to test how directionality in face-to-face
situations is perceived, for example to verify a model such as the one just proposed;
to investigate the accuracy of perception, perhaps under adverse conditions; or to
train targets of a robot so that they match human perception. There are also ways to
present ECAs that make it less than obvious whether the Mona Lisa gaze effect is in
place or not, or that are perhaps only partially susceptible to the effect, such as the
illusionistic 3D ECA presented by Kipp and Gebhard (2008).

Beskow and Al Moubayed (2010) pioneered an experimental paradigm that was
developed to allow experimenters to quickly investigate and gather large amounts of
data on human perception of gaze targets/direction. The paradigm is described here
in generalized form, allowing it to function as a means of comparing not only gaze
targets but arbitrary directional stimuli such as directional audio or verbal descrip-
tions. In recognition of the fact that the key to the effectiveness of the paradigm is
to utilize the same people as subjects and targets for the directional stimuli, we will
call the method the subject/target paradigm here. The practice of using subjects as
targets also adds to the ecological validity of the paradigm, as the distinction be-
tween being or not being the person gazed at or spoken to is a salient distinction in
face-to-face interaction.

In the subject/target paradigm, a group of N subjects are placed in a circle or
semi-circle, so that there is one point at their centre which is equidistant to each
subject, from which all stimuli are presented (the centre). Subjects positions are
numbered P1 to PN , and the angle between each subject’s position, that of the cen-
tre, and that of the subject’s closes neighbouring subjects (A(P1P2) . . .A(PNP1)) is
calculated. Subjects may or may not be equidistant from their closest neighbours.
Figure 10.9 shows a subject/target setup with five subjects and stimuli presented on
a projection surface.
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All subjects double as targets for the directional stimuli. During an experiment,
directional stimuli are aimed at each of the subjects. The order is varied systemati-
cally, and the number of stimuli is such that each subject is targeted as many times
as the others in one set of stimuli. A set of stimuli, then, contains a multiple R of N

for a total of R∗N stimuli. Once one set is completed, the subjects rotate—they shift
their positions by one step and the process of presenting a set of N∗R stimuli is re-
peated. The rotation is repeated N times, until each subject has been in each position
once, making the total number of stimuli presented in an experiment N∗R∗N .

Each time a stimulus has been presented, each subject is asked to point out the
intended target in such a manner that the other subjects cannot see it. This result
in N judgements for each stimulus, for a total of N∗R∗N∗N data points in one
experiment. If more than one experiment condition is to be tested, the entire process
is repeated from the beginning. The manner in which the subject/targets point out
the intended target is not prescribed by the paradigm. Methods that have been used
to date include jotting the result down on a predesigned form, which requires the
full use of hands and eyes (Beskow and Al Moubayed 2010); simply asking the
addressee to respond in an interactive test, which yields considerably fewer data
points, but may increase ecological validity (Al Moubayed and Skantze 2011); and
marking the target with through manual signing, for example by showing different
numbers of fingers, which obviates the need for eye sight and so can be used for tests
of acoustic directionality—the use of blindfolds would render regular form filling
impractical, as the subjects cannot see to write (Edlund et al. 2012).

The experiment results can be analyzed in a number of ways. Subject perfor-
mance measures such as inter-subject agreement, target accuracy, and average er-
ror in degrees are obvious examples, which can be analyzed more finely to show
whether the average error is, for example, larger when the target is far away from
the subject. Another use of the paradigm that is useful when the exact relation be-
tween system internal controls for pointing and perceived reality of the pointing
is unknown. By pointing (gazing) at systematically varied spots along the circle
of subject/targets and analyzing the resulting judgements, we can find a function
connecting the system controls to perceived target angles. The experiments showed
clearly that subjects are very good at reliably estimating gaze targets from 3D pro-
jected talking heads, but considerably less so from 2D displays.

A final example of analysis takes us back to the Mona Lisa gaze effect. We have
stated that this effect ought not ruin a person’s ability to judge directions altogether,
but merely change the way these directions are mapped into the physical world of
the person. This allows us to remap the subjects responses from an absolute target
to a target relative to the subject’s position. If the Mona Lisa gaze effect is in place,
the re-mapped responses should be as accurate, or almost as accurate if we allow
for some loss in translation, as the absolute targets when the Mona Lisa gaze effect
is not in place. Al Moubayed et al. (2012a, 2012b) show in that this is indeed the
case: the original mappings (as stated above) yield good results for the 3D projected
talking heads and less so from 2D displays, while the remapped responses yield the
opposite result.
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We can take this reasoning one step further. The Mona Lisa gaze effect is in place
when the gazing creature is perceived as being present in a separate space, such as
a painting or the virtual reality inhibited by ECAs. And when the Mona Lisa gaze
effect is in place, we get high accuracy of subject/target experiments once the results
are re-mappen into subject-relative terms. On the other hand, the Mona Lisa gaze
effect is not present when the gazing creature is perceived as sharing the same space
as the subject—that is when it is co-present with the subject. In these cases, we get
high accuracy of subject/target experiments with the original results. This suggests
that by comparing the score of re-mapped, relative accuracy with original, absolute
accuracy, we may be able to get a bearing on to what extent the subjects perceive an
embodiment as co-present, as suggested by preliminary results presented in Edlund
et al. (2011).

10.5 Summary

Hashimoto and Morooka (2006) state that “a curved surface image has a dependable
direction of observation and presence in actual space”. To quantify this, the results
of several studies of the accuracy and inter-subject agreement of perceived gaze
targets of Furhat show unequivocally that the use of a front or back projected talking
head onto a surface of similar shape completely cancels the Mona Lisa gaze effect
(Beskow and Al Moubayed 2010; Al Moubayed and Skantze 2011; Al Moubayed
et al. 2012a, 2012b). Preliminary results from multi-party conversations with Furhat
also suggest that its gaze characteristics are suitable for turn-taking and addressee
selection (Al Moubayed et al., in press).

What, exactly, is it that causes this? We have established that the Mona Lisa
gaze effect is derived from human interpretation and is a result of a person aligning
the coordinate system of a perceived virtual space with that of the physical space
in which the human resides in such a manner that the human places herself in a
position straight ahead of the image or movie that portrays the virtual space. We have
even suggested that a measure based on a comparison of absolute (non-Mona Lisa)
direction accuracy versus relative (Mona Lisa) gaze accuracy may give us some
insight as to the extent to which an embodied computer programme is perceived as
co-present with the viewer.

We suggest that in the end, it boils down to a simple matter on whether the
viewer interprets the person gazing or the finger pointing as being present in the
same room, or as being portrayed through a “window” onto another space. We leave
this narration with an image—two pen drawings of two pairs of eyes on two plain
sheets of A4 paper. When the drawings are viewed flat—as images on a rectan-
gular piece of paper—they display the Mona Lisa gaze effect to its fullest. When,
on the other hand, they are curved into cylinders, as in Fig. 10.10, their gaze is
easily perceived as having an absolute target in the room—even though the area be-
hind the eyes is forced flat by a piece of cardboard behind the eyes. Clearly, more
study is needed to learn exactly what is needed to turn our perception from through-
the-looking-glass to co-present mode. As it stands, it may well be a question of
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Fig. 10.10 Two pen
drawings on rolled-up A4
sheets of paper

whether the features of a face appear to be drawn inside their own space on a piece
of paper, or outside the object boundaries outlined by the same piece of curved
paper.
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