
Chapter 9
Nonlinear Games for a Class
of Continuous-Time Systems Based on ADP

9.1 Introduction

Game theory is concerned with the study of decision making in situations where
two or more rational opponents are involved under conditions of conflicting inter-
ests. This has been widely investigated by many authors [5, 7, 8, 12, 13]. Though
the nonlinear optimal solution in term of Hamilton–Jacobi–Bellman equation is
hard to obtain directly [4], it is still fortunate that there is only one controller or
decision maker. In the previous chapter, we have studied discrete-time zero-sum
games based on the ADP method. In this chapter, we will consider continuous-time
games.

For zero-sum differential games, the existence of the saddle point is proposed
before obtaining the saddle point in much of the literature [1, 6, 11]. In many real
world applications, however, the saddle point of a game may not exist, which means
that we can only obtain the mixed optimal solution of the game. In Sect. 9.2, we will
study how to obtain the saddle point without complex existence conditions of the
saddle point and how to obtain the mixed optimal solution when the saddle point
does not exist based on the ADP method for a class of affine nonlinear zero-sum
games. Note that many applications of practical zero-sum games have nonaffine
control input. In Sect. 9.3, we will focus on finite horizon zero-sum games for a
class of nonaffine nonlinear systems.

The non-zero-sum differential games theory also has a number of potential ap-
plications in control engineering, economics and the military field [9]. For zero-sum
differential games, two players work on a cost functional together and minimax it.
However, for non-zero-sum games, the control objective is to find a set of policies
that guarantee the stability of the system and minimize the individual performance
function to yield a Nash equilibrium. In Sect. 9.4, non-zero-sum differential games
will be studied using a single network ADP.
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9.2 Infinite Horizon Zero-Sum Games for a Class of Affine
Nonlinear Systems

In this section, the nonlinear infinite horizon zero-sum differential games is studied.
We propose a new iterative ADP method which is effective for both the situation
that the saddle point does and does not exist. For the situation that the saddle point
exists, the existence conditions of the saddle point are avoided. The value function
can reach the saddle point using the present iterative ADP method. For the situation
that the saddle point does not exist, the mixed optimal value function is obtained
under a deterministic mixed optimal control scheme, using the present iterative ADP
algorithm.

9.2.1 Problem Formulation

Consider the following two-person zero-sum differential games. The system is de-
scribed by the continuous-time affine nonlinear equation

ẋ(t) = f (x(t), u(t),w(t)) = f (x(t)) + g(x(t))u(t) + k(x(t))w(t), (9.1)

where x(t) ∈R
n, u(t) ∈R

k , w(t) ∈ R
m, and the initial condition x(0) = x0 is given.

The cost functional is the generalized quadratic form given by

J (x(0), u,w) =
∫ ∞

0
l(x, u,w)dt, (9.2)

where l(x, u,w) = xTAx + uTBu + wTCw + 2uTDw + 2xTEu + 2xTFw. The
matrices A, B , C, D, E, and F have suitable dimensions and A ≥ 0, B > 0,
and C < 0. According to the situation of two players we have the following
definitions. Let J (x) := infu supw J (x,u,w) be the upper value function and
J (x) := supw infu J (x,u,w) be the lower value function with the obvious inequal-
ity J (x) ≥ J (x). Define the optimal control pairs to be (u,w) and (u,w) for up-
per and lower value functions, respectively. Then, we have J (x) = J (x,u,w) and
J (x) = J (x,u,w).

If both J (x) and J (x) exist and

J (x) = J (x) = J ∗(x) (9.3)

holds, we say that the saddle point exists and the corresponding optimal control pair
is denoted by (u∗,w∗).

We have the following lemma.

Lemma 9.1 If the nonlinear system (9.1) is controllable and both the upper value
function and lower value function exist, then J (x) is a solution of the following
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upper Hamilton–Jacobi–Isaacs (HJI) equation:

inf
u

sup
w

{J t + J
T
xf (x,u,w) + l(x, u,w)} = 0, (9.4)

which is denoted by HJI(J (x),u,w) = 0 and J (x) is a solution of the following
lower HJI equation:

sup
w

inf
u

{J t + J T
xf (x,u,w) + l(x, u,w)} = 0, (9.5)

which is denoted by HJI(J (x),u,w) = 0.

9.2.2 Zero-Sum Differential Games Based on Iterative ADP
Algorithm

As the HJI equations (9.4) and (9.5) cannot be solved in general, in the following,
a new iterative ADP method for zero-sum differential games is developed.

9.2.2.1 Derivation of the Iterative ADP Method

The goal of the present iterative ADP method is to obtain the saddle point. As the
saddle point may not exist, this motivates us to obtain the mixed optimal value
function J o(x) where J (x) ≤ J o(x) ≤ J (x).

Theorem 9.2 (cf. [15]) Let (u,w) be the optimal control pair for J (x) and (u,w)

be the optimal control pair for J (x). Then, there exist control pairs (u,w) and
(u,w) which lead to J o(x) = J (x,u,w) = J (x,u,w). Furthermore, if the saddle
point exists, then J o(x) = J ∗(x).

Proof According to the definition of J (x), we have J (x,u,w) ≤ J (x,u,w). As
J o(x) is a mixed optimal value function, we also have J o(x) ≤ J (x,u,w). As
the system (9.1) is controllable and w is continuous on R

m, there exists a con-
trol pair (u,w) which makes J o(x) = J (x,u,w). On the other hand, we have
J o(x) ≥ J (x,u,w). We also have J (x,u,w) ≥ J (x,u,w). As u is continuous
on R

k , there exists a control pair (u,w) which makes J o(x) = J (x,u,w). If the
saddle point exists, we have (9.3). On the other hand, J (x) ≤ J o(x) ≤ J (x). Then,
clearly J o(x) = J ∗(x). �

If (9.3) holds, we have a saddle point; if not, we adopt a mixed trajectory to obtain
the mixed optimal solution of the game. To apply the mixed trajectory method, the
game matrix is necessary under the trajectory sets of the control pair (u,w). Small
Gaussian noises γu ∈ Rk and γw ∈ Rm are introduced that are added to the optimal
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control u and w, respectively, where γ i
u(0, σ 2

i ), i = 1, . . . , k, and γ
j
w(0, σ 2

j ), j =
1, . . . ,m, are zero-mean Gaussian noises with variances σ 2

i and σ 2
j , respectively.

We define the expected value function as
E(J (x)) = minPIi

maxPIIj

∑2
i=1
∑2

j=1 PIiLijPIIj , where we let L11 =
J (x,u,w), L12 = J (x, (u + γu),w), L21 = J (x,u,w) and L22 = J (x,u,

(w + γw)). Let
∑2

i=1 PIi = 1 and PIi > 0. Let
∑2

j=1 PIIj = 1 and PIIj > 0. Next,
let N be a large enough positive integer. Calculating the expected value function N

times, we can obtain E1(J (x)),E2(J (x)), . . . ,EN(J (x)). Then, the mixed optimal
value function can be written as

J o(x) = E(Ei(J (x))) = 1

N

N∑
i=1

Ei(J (x)).

Remark 9.3 In the classical mixed trajectory method, the whole control sets R
k

and R
m should be searched under some distribution functions. As there are no con-

straints for both controls, we see that there exist controls that cause the system to be
unstable. This is not permitted for real-world control systems. Thus, it is impossible
to search the whole control sets and we can only search the local area around the
stable controls which guarantees stability of the system. This is the reason why the
small Gaussian noises γu and γw are introduced. So the meaning of the Gaussian
noises can be seen in terms of the local stable area of the control pairs. A proposi-
tion will be given to show that the control pair chosen in the local area is stable (see
Proposition 9.14). Similar work can also be found in [3, 14].

We can see that the mixed optimal solution is a mathematically expected
value which means that it cannot be obtained in reality once the trajectories
are determined. For most practical optimal control problems, however, the ex-
pected optimal solution (or mixed optimal solution) has to be achieved. To
overcome this difficulty, a new method is developed in this section. Let α =
(J o(x) − J (x))/(J (x) − J (x)). Then, J o(x) can be written as J o(x) = αJ (x) +
(1 − α)J (x). Let lo(x,u,w,u,w) = αl(x,u,w) + (1 − α)l(x,u,w). We have
J o(x(0)) = ∫∞

0 lodt . According to Theorem 9.2, the mixed optimal control pair
can be obtained by regulating the control w in the control pair (u,w) that mini-
mizes the error between J (x) and J o(x) where the value function J (x) is defined
as J (x(0)) = J (x(0), u,w) = ∫∞

0 l(x, u,w)dt and J (x(0)) ≤ J (x(0)) ≤ J (x(0)).
Define J̃ (x(0)) = ∫∞

0 l̃(x,w)dx, where l̃(x,w) = l(x, u,w) − lo(x,u,w,u,w).
Then, the problem can be described as minw(J̃ (x))2.

According to the principle of optimality, when J̃ (x) ≥ 0 we have the following
HJB equation:

HJB(J̃ (x),w) := min
w

{J̃t (x) + J̃xf (x,u,w) + l̃(x,w)} = 0. (9.6)

For J̃ (x) < 0, we have −J̃ (x) = −(J (x) − J o(x)) > 0, and we can obtain the
same HJB equation as (9.6).
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9.2.2.2 The Iterative ADP Algorithm

Given the above preparation, we now formulate the iterative ADP algorithm for
zero-sum differential games as follows:

1. Initialize the algorithm with a stabilizing control pair (u[0],w[0]), and the value
function is V [0]. Choose the computation precision ζ > 0. Set i = 0.

2. For the upper value function, let

V
[i]

(x(0)) =
∫ ∞

0
l(x, u[i+1],w[i+1])dt, (9.7)

where the iterative optimal control pair is formulated as

u[i+1] = − 1

2
(B − DC−1DT)−1(2(kT − DC−1F T)x

+ (gT(x) − DC−1kT(x))V
[i]
x

)
, (9.8)

and

w[i+1] = −1

2
C−1(2DTu[i+1] + 2F Tx + kT(x)V

[i]
x

)
. (9.9)

(u[i],w[i]) satisfies the HJI equation HJI(V
[i]

(x), u[i],w[i]) = 0, and V
[i]
x =

dV
[i]

(x)/dx.

3. If |V [i+1]
(x(0)) − V

[i]
(x(0))| < ζ , let u = u[i], w = w[i] and J (x) = V

[i+1]
(x).

Set i = 0 and go to Step 4. Else, set i = i + 1 and go to Step 2.
4. For the lower value function, let

V [i](x(0)) =
∫ ∞

0
l(x, u[i+1],w[i+1])dt, (9.10)

where the iterative optimal control pair is formulated as

u[i+1] = −1

2
g−1(2Dw[i+1] + 2kTx + gT(x)V [i]

x ), (9.11)

and

w[i+1] = − 1

2
(C − DTBD)−1(2(F T − DTg−1E)x

+ (kT(x) − DTg−1gT(x))V [i]
x ). (9.12)

(u[i],w[i]) satisfies the HJI equation HJI(V [i](x), u[i],w[i]) = 0, and V [i]
x =

dV [i](x)/dx.
5. If |V [i+1](x(0)) − V [i](x(0))| < ζ , let u = u[i], w = w[i] and J (x) = V [i+1](x).

Set i = 0 and go to Step 6. Else, set i = i + 1 and go to Step 4.
6. If |J (x(0)) − J (x(0))| < ζ , stop, and the saddle point is achieved. Else set i = 0

and go to the next step.
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7. Regulate the control w for the upper value function and let

J̃ [i+1](x(0)) = V [i+1](x(0)) − J o(x(0)) (9.13)

=
∫ ∞

0
l̃(x, u,w[i])dt.

The iterative optimal control is formulated as

w[i] = −1

2
C−1(2DTu + 2F Tx + kT(x)Ṽ [i+1]

x ), (9.14)

where Ṽ
[i]
x = dṼ [i](x)/dx.

8. If |V [i+1](x(0)) − J o(x(0))| < ζ , stop. Else, set i = i + 1 and go to Step 7.

9.2.2.3 Properties of the Iterative ADP Algorithm

In this part, some results are presented to show the stability and convergence of the
present iterative ADP algorithm.

Theorem 9.4 (cf. [15]) If for ∀i ≥ 0, HJI(V
[i]

(x), u[i],w[i]) = 0 holds, and for ∀t ,
l(x,u[i],w[i]) ≥ 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Proof According to (9.7), for ∀ t , taking the derivative of V
[i]

(x), we have

dV
[i]

(x)

dt
= V

[i]T
x

(
f (x) + g(x)u[i+1] + k(x)w[i+1]) . (9.15)

From the HJI equation we have

0 = V
[i]T
x f (x,u[i],w[i]) + l(x, u[i],w[i]). (9.16)

Combining (9.15) and (9.16), we get

dV
[i]

(x)

dt
=V

[i]T
x (g(x) − k(x)C−1DT)(u[i+1] − u[i])

− xTAx − u[i]T(B − DC−1DT)u[i] − 1

4
V

[i]T
x k(x)C−1kT(x)V

[i]
x

− 2xT(E − FC−1DT)u[i+1] + xTFC−1F Tx. (9.17)

According to (9.8) we have

dV
[i]

(x)

dt
= − (u[i+1] − u[i])T(B − DC−1DT)
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× (u[i+1] − u[i]) − l(x, u[i+1],w(i+1))

≤0. (9.18)

So, V
[i]

(x) is a Lyapunov function. Let ε > 0 and ‖x(t0)‖ < δ(ε). Then, there exist
two functions α(‖x‖) and β(‖x‖) which belong to class K and satisfy

α(ε) ≥ β(δ) ≥ V
[i]

(x(t0)) ≥ V
[i]

(x(t)) ≥ α(‖x‖). (9.19)

Therefore, system (9.1) is asymptotically stable. �

Theorem 9.5 (cf. [15]) If for ∀ i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, and for ∀ t ,
l(x, u[i],w[i]) < 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Corollary 9.6 If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, and for ∀t ,
l(x, u[i],w[i]) ≥ 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Proof As V [i](x) ≤ V
[i]

(x) and l(x, u[i],w[i]) ≥ 0, we have 0 ≤ V [i](x) ≤ V
[i]

(x).
From Theorem 9.4, we know that for ∀t0, there exist two functions α(‖x‖) and

β(‖x‖) which belong to class K and satisfy (9.19).

As V
[i]

(x) → 0, there exist time instants t1 and t2 (without loss of generality, let
t0 < t1 < t2) that satisfy

V
[i]

(x(t0)) ≥ V
[i]

(x(t1)) ≥ V [i](x(t0)) ≥ V
[i]

(x(t2)). (9.20)

Choose ε1 > 0 that satisfies V [i](x(t0)) ≥ α(ε1) ≥ V
[i]

(x(t2)). Then, there exists

δ1(ε1) > 0 that makes α(ε1) ≥ β(δ1) ≥ V
[i]

(x(t2)). Then, we obtain

V [i](x(t0)) ≥ α(ε1) ≥ β(δ1) ≥ V
[i]

(x(t2)) ≥ V
[i]

(x(t)) ≥ V [i](x(t)) ≥ α(‖x‖).
(9.21)

According to (9.19), we have

α(ε) ≥ β(δ) ≥ V [i](x(t0)) ≥ α(ε1) ≥ β(δ1) ≥ V [i](x(t)) ≥ α(‖x‖). (9.22)

Since α(‖x‖) belongs to class K, we obtain ‖x‖ ≤ ε.
Therefore, we conclude that the system (9.1) is asymptotically stable. �

Corollary 9.7 If for ∀i ≥ 0, HJI(V
[i]

(x), u[i],w[i]) = 0 holds, and for ∀t ,
l(x,u[i],w[i]) < 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.
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Theorem 9.8 (cf. [15]) If for ∀i ≥ 0, HJI(V
[i]

(x), u[i],w[i]) = 0 holds, and
l(x,u[i],w[i]) is the utility function, then the control pairs (u[i],w[i]) make system
(9.1) asymptotically stable.

Proof For the time sequence t0 < t1 < t2 < · · · < tm < tm+1 < · · · , without loss of
generality, we assume l(x, u[i],w[i]) ≥ 0 in [t2n, t(2n+1)) and l(x, u[i],w[i]) < 0 in
[t2n+1, t(2(n+1))) where n = 0,1, . . . .

Then, for t ∈ [t0, t1) we have l(x, u[i],w[i]) ≥ 0 and
∫ t1
t0

l(x, u[i],w[i])dt ≥ 0.
According to Theorem 9.4, we have ‖x(t0)‖ ≥ ‖x(t)‖ ≥ ‖x(t1)‖.

For t ∈ [t1, t2) we have l(x, u[i],w[i]) < 0 and
∫ t2
t1

l(x, u[i],w[i])dt < 0. Accord-
ing to Corollary 9.7, we have ‖x(t1)‖ > ‖x(t)‖ > ‖x(t2)‖. So we obtain ‖x(t0)‖ ≥
‖x(t)‖ > ‖x(t2)‖, for ∀t ∈ [t0, t2).

Using mathematical induction, for ∀t , we have ‖x(t ′)‖ ≤ ‖x(t)‖ where t ′ ∈
[t,∞). So we conclude that the system (9.1) is asymptotically stable, and the proof
is completed. �

Theorem 9.9 (cf. [15]) If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, and

l(x, u[i],w[i]) is the utility function, then the control pairs (u[i],w[i]) make system
(9.1) asymptotically stable.

Next, we will give the convergence proof of the iterative ADP algorithm.

Proposition 9.10 If for ∀i ≥ 0, HJI(V
[i]

(x), u[i],w[i]) = 0 holds, then the control

pairs (u[i],w[i]) make the upper value function V
[i]

(x) → J̄ (x) as i → ∞.

Proof According to HJI (V
[i]

(x), u[i],w[i]) = 0, we obtain dV
[i+1]

(x)/dt by re-
placing the index “i” by the index “i + 1”:

dV
[i+1]

(x)

dt
= −(xTAx + u(i+1)T(B − DC−1DT)u[i+1]

+ 1

4
V

[i]T
x k(x)C−1kT(x)V

[i]
x + 2xT(E − FC−1DT)u[i+1]

− xTFC−1F Tx). (9.23)

According to (9.18), we obtain

d(V
[i+1]

(x) − V
[i]

(x))

dt
= dV

[i+1]
(x)

dt
− dV

[i]
(x)

dt

= (u[i+1] − u[i])T(B − DC−1DT(u[i+1] − u[i])

> 0. (9.24)

Since the system (9.1) is asymptotically stable, its state trajectories x converge

to zero, and so does V
[i+1]

(x) − V
[i]

(x). Since d(V
[i+1]

(x) − V
[i]

(x))/dt ≥ 0
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on these trajectories, it implies that V
[i+1]

(x) − V
[i]

(x) ≤ 0; that is V
[i+1]

(x) ≤
V

[i]
(x). Thus, V

[i]
(x) is convergent as i → ∞.

Next, we define limi→∞ V
[i]

(x) = V
[∞]

(x).

For ∀i, let w∗ = arg maxw{∫ t̂

t
l(x, u,w)dτ + V

[i]
(x(t̂))}. Then, according to the

principle of optimality, we have

V
[i]

(x) ≤ sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[i]

(x(t̂))

}

=
∫ t̂

t

l(x, u,w∗)dτ + V
[i]

(x(t̂)). (9.25)

Since V
[i+1]

(x) ≤ V
[i]

(x), we have V
[∞]

(x) ≤ ∫ t̂

t
l(x, u,w∗)dτ + V

[i]
(x(t̂)).

Letting i → ∞, we obtain V
[∞]

(x) ≤ ∫ t̂

t
l(x, u,w∗)dτ + V

[∞]
(x(t̂)). So, we

have V
[∞]

(x) ≤ infu supw{∫ t̂

t
l(x, u,w)dt + V

[i]
(x(t̂))}.

Let ε > 0 be an arbitrary positive number. Since the upper value function is non-

increasing and convergent, there exists a positive integer i such that V
[i]

(x) − ε ≤
V

[∞]
(x) ≤ V

[i]
(x).

Let u∗ = arg minu{
∫ t̂

t
l(x, u,w∗)dτ + V

[i]
(x(t̂))}. Then we get V

[i]
(x) =∫ t̂

t
l(x, u∗,w∗)dτ + V

[i]
(x(t̂)).

Thus, we have

V
[∞]

(x) ≥
∫ t̂

t

l(x, u∗,w∗)dτ + V
[i]

(x(t̂)) − ε

≥
∫ t̂

t

l(x, u∗,w∗)dτ + V
[∞]

(x(t̂)) − ε (9.26)

= inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
− ε.

Since ε is arbitrary, we have

V
[∞]

(x) ≥ inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
.

Therefore, we obtain

V
[∞]

(x) = inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
.

Let t̂ → ∞, we have

V
[∞]

(x) = inf
u

sup
w

J (x,u,w) = J (x). �
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Proposition 9.11 If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, then the control
pairs (u[i],w[i]) make the lower value function V [i](x) → J (x) as i → ∞.

Theorem 9.12 (cf. [15]) If the saddle point of the zero-sum differential game ex-

ists, then the control pairs (u[i],w[i]) and (u[i],w[i]) make V
[i]

(x) → J ∗(x) and
V [i](x) → J ∗(x), respectively, as i → ∞.

Proof For the upper value function, according to Proposition 9.10, we have

V
[i]

(x) → J (x) under the control pairs (u[i],w[i]) as i → ∞. So the optimal control
pair for the upper value function satisfies J (x) = J (x,u,w) = infu supw J (x,u,w).

On the other hand, there exists an optimal control pair (u∗,w∗) making the value
reach the saddle point. According to the property of the saddle point, the optimal
control pair (u∗,w∗) satisfies J ∗(x) = J (x,u∗,w∗) = infu supw J (x,u,w).

So, we have V
[i]

(x) → J ∗(x) under the control pair (u[i],w[i]) as i → ∞.
Similarly, we can derive V [i](x) → J ∗(x) under the control pairs (u[i],w[i]) as
i → ∞. �

Remark 9.13 From the proofs we see that the complex existence conditions of the
saddle point in [1, 2] are not necessary. If the saddle point exists, the iterative value
functions can converge to the saddle point using the present iterative ADP algorithm.

In the following part, we emphasize that when the saddle point does not exist,
the mixed optimal solution can be obtained effectively using the iterative ADP al-
gorithm.

Proposition 9.14 If u ∈ R
k , w[i] ∈ R

m and the utility function is l̃(x,w[i]) =
l(x,u,w[i]) − lo(x,u,w,u,w), and w[i] is expressed in (9.14), then the control
pairs (u,w[i]) make the system (9.1) asymptotically stable.

Proposition 9.15 If u ∈ R
k , w[i] ∈ R

m and for ∀t , the utility function l̃(x,w[i]) ≥ 0,
then the control pairs (u,w[i]) make Ṽ [i](x) a nonincreasing convergent sequence
as i → ∞.

Proposition 9.16 If u ∈ R
k , w[i] ∈ R

m and for ∀t , the utility function l̃(x,w[i]) < 0,
then the control pairs (u,w[i]) make Ṽ [i](x) a nondecreasing convergent sequence
as i → ∞.

Theorem 9.17 (cf. [15]) If u ∈ R
k , w[i] ∈ R

m, and l̃(x,w[i]) is the utility function,
then the control pairs (u,w[i]) make Ṽ [i](x) convergent as i → ∞.

Proof For the time sequence t0 < t1 < t2 < · · · < tm < tm+1 < · · · , without
loss of generality, we suppose l̃(x,w[i]) ≥ 0 in [t2n, t2n+1) and l̃(x,w[i]) < 0 in
[t2n+1, t2(n+1)), where n = 0,1, . . . .
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For t ∈ [t2n, t2n+1) we have l̃(x,w[i]) ≥ 0 and
∫ t1
t0

l̃(x,w[i])dt ≥ 0. Accord-

ing to Proposition 9.15, we have Ṽ [i+1](x) ≤ Ṽ [i](x). For t ∈ [t2n+1, t2(n+1)) we
have l̃(x,w[i]) < 0 and

∫ t2
t1

l̃(x,w[i])dt < 0. According to Proposition 9.16 we have

Ṽ [i+1](x) > Ṽ [i](x). Then, for ∀t0, we have

∥∥∥Ṽ [i+1](x(t0))

∥∥∥=
∥∥∥∥
∫ t1

t0

l̃(x,w[i])dt

∥∥∥∥+
∥∥∥∥
∫ t2

t1

l̃(x,w[i])dt

∥∥∥∥

+ . . . +
∥∥∥∥
∫ t(m+1)

tm

l̃(x,w[i])dt

∥∥∥∥+ . . .

<

∥∥∥Ṽ [i](x(t0))

∥∥∥ . (9.27)

So, Ṽ [i](x) is convergent as i → ∞. �

Theorem 9.18 (cf. [15]) If u ∈ Rk , w[i] ∈ Rm, and l̃(x,w[i]) is the utility function,
then the control pairs (u,w[i]) make V [i](x) → J o(x) as i → ∞.

Proof It is proved by contradiction. Suppose that the control pair (u,w[i]) makes
the value function V [i](x) converge to J ′(x) and J ′(x) �= J o(x).

According to Theorem 9.17, based on the principle of optimality, as i → ∞ we
have the HJB equation HJB(J̃ (x),w) = 0.

From the assumptions we know that |V [i](x)−J o(x)| �= 0 as i → ∞. From The-
orem 9.5, we know that there exists a control pair (u,w′) that makes J (x,u,w′) =
J o(x), which minimizes the performance index function J̃ (x). According to the
principle of optimality, we also have the HJB equation HJB(J̃ (x),w′) = 0.

It is a contradiction. So the assumption does not hold. Thus, we have V [i](x) →
J o(x) as i → ∞. �

Remark 9.19 For the situation where the saddle point does not exist, the methods
in [1, 2] are all invalid. Using our iterative ADP method, the iterative value function
reaches the mixed optimal value function J o(x) under the deterministic control pair.
Therefore, we emphasize that the present iterative ADP method is more effective.

9.2.3 Simulations

Example 9.20 The dynamics of the benchmark nonlinear plant can be expressed by
system (9.1) where

f (x) =
[
x2

−x1+εx2
4 sinx3

1 − ε2cos2x3
x4

ε cosx3(x1−εx2
4 sinx3)

1 − ε2cos2x3

]T

,

g(x)=
[

0
−ε cosx3

1 − ε2cos2x3
0

1

1 − ε2cos2x3

]T

,
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Fig. 9.1 Trajectories of upper and lower value function

k(x)=
[

0
1

1 − ε2cos2x3
0

−ε cosx3

1 − ε2cos2x3

]T

, (9.28)

and ε = 0.2. The initial state is given as x(0) = [1,1,1,1]T. The cost functional is
defined by (9.2) where the utility function is expressed as l(x, u,w) = x2

1 + 0.1x2
2 +

0.1x2
3 + 0.1x2

4 + ‖u‖2 − γ 2‖w‖2 and γ 2 = 10.
Any differential structure can be used to implement the iterative ADP method.

For facilitating the implementation of the algorithm, we choose three-layer neural
networks as the critic networks with the structure of 4–8–1. The structures of the u

and w for the upper value function are 4–8–1 and 5–8–1; while they are 5–8–1 and
4–8–1 for the lower one. The initial weights are all randomly chosen in [−0.1, 0.1].
Then, for each i, the critic network and the action networks are trained for 1000 time
steps so that the given accuracy ζ = 10−6 is reached. Let the learning rate η = 0.01.
The iterative ADP method runs for i = 70 times and the convergence trajectory of
the value function is shown in Fig. 9.1. We can see that the saddle point of the game
exists. Then, we apply the controller to the benchmark system and run for Tf = 60
seconds. The optimal control trajectories are shown in Fig. 9.2. The corresponding
state trajectories are shown in Figs. 9.3 and 9.4, respectively.

Remark 9.21 The simulation results illustrate the effectiveness of the present itera-
tive ADP algorithm. If the saddle point exists, the iterative control pairs (u[i],w[i])
and (u[i],w[i]) can make the iterative value functions reach the saddle point, while
the existence conditions of the saddle point are avoided.
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Fig. 9.2 Trajectories of the controls

Fig. 9.3 Trajectories of state x1 and x3

Example 9.22 In this example, we just change the utility function to

l(x, u,w) =x2
1 + 0.1x2

2 + 0.1x2
3 + 0.1x2

4 + ‖u‖2 − γ 2‖w‖2 − 0.1uw

+ 0.1xTu + 0.1xTw,
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Fig. 9.4 Trajectories of state x2 and x4

and all other conditions are the same as the ones in Example 9.20. We obtain
J (x(0)) = 0.65297 and J (x(0)) = 0.44713, with trajectories shown in Figs. 9.5(a)
and (b), respectively. Obviously, the saddle point does not exist. Thus, the method
in [1] is invalid. Using the present mixed trajectory method, we choose the Gaus-
sian noises γu(0,0.052) and γw(0,0.052). Let N = 5000 times. The value function
trajectories are shown in Fig. 9.5(c). Then, we obtain the value of the mixed optimal
value function J o(x(0)) = 0.55235 and then α = 0.5936. Regulating the control w

to obtain the trajectory of the mixed optimal value function displayed in Fig. 9.5.
The state trajectories are shown in Figs. 9.6(a) and 9.7, respectively. The corre-
sponding control trajectories are shown in Figs. 9.8 and 9.9, respectively.

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear
Systems

In this section, a new iterative approach is derived to solve optimal policies of finite
horizon quadratic zero-sum games for a class of continuous-time nonaffine nonlin-
ear system. Through the iterative algorithm between two sequences, which are a
sequence of state trajectories of linear quadratic zero-sum games and a sequence
of corresponding Riccati differential equations, the optimal policies for nonaffine
nonlinear zero-sum games are given. Under very mild conditions of local Lips-
chitz continuity, the convergence of approximating linear time-varying sequences
is proved.
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Fig. 9.5 Performance index function trajectories. (a) Trajectory of upper value function. (b) Tra-
jectory of lower value function. (c) Performance index functions with disturbances. (d) Trajectory
of the mixed optimal performance index function

Fig. 9.6 Trajectories of state x1 and x3
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Fig. 9.7 Trajectories of state x2 and x4

Fig. 9.8 Trajectory of control u

9.3.1 Problem Formulation

Consider a continuous-time nonaffine nonlinear zero-sum game described by the
state equation

ẋ(t) = f (x(t), u(t),w(t)), x(t0) = x0 (9.29)
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Fig. 9.9 Trajectory of control w

with the finite horizon cost functional

J (x0, u,w) = 1

2
xT(tf )F (x(tf ))x(tf )

+ 1

2

∫ tf

t0

[
xT(t)Q(x(t))x(t) + uT(t)R(x(t))u(t)

−wT(t)S(x(t))w(t)
]

dt, (9.30)

where x(t) ∈ R
n is the state, x(t0) ∈ R

n is the initial state, tf is the terminal time,
the control input u(t) takes values in a convex and compact set U ⊂ R

m1 , and w(t)

takes values in a convex and compact set W ⊂ R
m2 . u(t) seeks to minimize the

cost functional J (x0, u,w), while w(t) seeks to maximize it. The state-dependent
weight matrices F(x(t)), Q(x(t)), R(x(t)), S(x(t)) are with suitable dimensions
and F(x(t)) ≥ 0, Q(x(t)) ≥ 0, R(x(t)) > 0, S(x(t)) > 0. In this section, x(t), u(t),
and w(t) sometimes are described by x, u, and w for brevity. Our objective is to
find the optimal policies for the above nonaffine nonlinear zero-sum games.

In the nonaffine nonlinear zero-sum game problem, nonlinear functions are im-
plicit function with respect to controller input. It is very hard to obtain the optimal
policies satisfying (9.29) and (9.30). For practical purposes one may just as well be
interested in finding a near-optimal or an approximate optimal policy. Therefore, we
present an iterative algorithm to deal with this problem. Nonaffine nonlinear zero-
sum games are transformed into an equivalent sequence of linear quadratic zero-sum
games which can use the linear quadratic zero-sum game theory directly.
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9.3.2 Finite Horizon Optimal Control of Nonaffine Nonlinear
Zero-Sum Games

Using a factored form to represent the system (9.29), we get

ẋ(t) = f (x(t))x(t) + g(x(t), u(t))u(t) + k(x(t),w(t))w(t),

x(t0) = x0, (9.31)

where f : Rn → R
n×n is a nonlinear matrix-valued function of x, g : Rn ×R

m1 →
R

n×m1 is a nonlinear matrix-valued function of both the state x and control input u,
and k : Rn ×R

m2 → R
n×m2 is a nonlinear matrix-valued function of both the state

x and control input w.
We use the following sequence of linear time-varying differential equations to

approximate the state equation (9.31):

ẋi (t) = f (xi−1(t))xi(t) + g(xi−1(t), ui−1(t))ui(t) + k(xi−1(t),wi−1(t))wi(t),

xi(t0) = x0, i ≥ 0, (9.32)

with the corresponding cost functional

Vi(x0, u,w) = 1

2
xT
i (tf )F (xi−1(tf ))xi(tf )

+ 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t) + uT

i (t)R(xi−1(t))ui(t)

−wT
i (t)S(xi−1(t))wi(t)

]
dt, i ≥ 0, (9.33)

where the superscript i represents the iteration index. For the first approxima-
tion, i = 0, we assume that the initial values xi−1(t) = x0, ui−1(t) = 0, and
wi−1(t) = 0. Obviously, for the ith iteration, f (xi−1(t)), g(xi−1(t), ui−1(t)),
k(xi−1(t),wi−1(t)), F(xi−1(tf )), Q(xi−1(t)), R(xi−1(t)), and S(xi−1(t)) are time-
varying functions which do not depend on xi(t), ui(t), and wi(t). Hence, each ap-
proximation problem in (9.32) and (9.33) is a linear quadratic zero-sum game prob-
lem which can be solved by the existing classical linear quadratic zero-sum game
theory.

The corresponding Riccati differential equation of each linear quadratic zero-sum
game can be expressed as

Ṗi(t) = − Q(xi−1(t)) − Pi(t)f (xi−1(t)) − f T(xi−1(t))Pi(t)

+ Pi(t)
[
g(xi−1(t), ui−1(t))R

−1(xi−1(t))

× gT(xi−1(t), ui−1(t)) − k(xi−1(t),wi−1(t))

× S−1(xi−1(t))k
T(x[i−1])(t),wi−1(t))

]
Pi(t),

Pi(tf ) =F(xi−1(tf )), i ≥ 0, (9.34)

where Pi ∈R
n×n is a real, symmetric and nonnegative definite matrix.
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Assumption 9.23 It is assumed that S(xi−1(t)) > Ŝ i , where the threshold value
Ŝ i is defined as Ŝ i = inf{Si(t) > 0, and (9.34) does not have a conjugate point on
[0, tf ]}.

If Assumption 9.23 is satisfied, the game admits the optimal policies given by

ui(t) = −R−1(xi−1(t))g
T(xi−1(t), ui−1(t))Pi(t)xi(t),

wi(t) = S−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t)xi(t), i ≥ 0, (9.35)

where xi(t) is the corresponding optimal state trajectory, generated by

ẋi (t) =[f (xi−1(t)) − g(xi−1(t), ui−1(t))R
−1(xi−1(t))

× gT(xi−1(t), ui−1(t))Pi(t) + k(xi−1(t),wi−1(t))

× S−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t)

]
xi(t),

xi(t0) =x0. (9.36)

By using the iteration between sequences (9.34) and (9.36) sequently, the limit
of the solution of the approximating sequence (9.32) will converge to the unique so-
lution of system (9.29), and the sequences of optimal policies (9.35) will converge,
too. The convergence of iterative algorithm will be analyzed in the next section. No-
tice that the factored form in (9.31) does not need to be unique. The approximating
linear time-varying sequences will converge whatever the representation of f (x(t)),
g(x(t), u(t)), and k(x(t),w(t)).

Remark 9.24 For the fixed finite interval [t0, tf ], if S(xi−1(t)) > Ŝ i , the Riccati dif-
ferential equation (9.34) has a conjugate point on [t0, tf ]. It means that Vi(x0, u,w)

is strictly concave in w. Otherwise, since Vi(x0, u,w) is quadratic and R(t) > 0,
F(t) ≥ 0, Q(t) ≥ 0, it follows that Vi(x0, u,w) is strictly convex in u. Hence, for
linear quadratic zero-sum games (9.32) with the performance index function (9.34)
there exists a unique saddle point; they are the optimal policies.

The convergence of the algorithm described above requires the following:

1. The sequence {xi(t)} converges on C([t0, tf ];Rn), which means that the limit of
the solution of approximating sequence (9.32) converges to the unique solution
of system (9.29).

2. The sequences of optimal policies {ui(t)} and {wi(t)} converge on C([t0, tf ];
R

m1) and C([t0, tf ];Rm2), respectively.

For simplicity, the approximating sequence (9.32) is rewritten as

ẋi (t) = f (xi−1(t))xi(t) + G(xi−1(t), ui−1(t))xi(t) + K(xi−1(t),wi−1(t))xi(t),

xi(t0) = x0, i ≥ 0, (9.37)
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where

G(xi−1, ui−1)
Δ= − g(xi−1(t), ui−1(t))R

−1(xi−1(t))
T(xi−1(t), ui−1(t))Pi(t),

K(xi−1,wi−1)
Δ= k(xi−1(t),wi−1(t))S

−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t).

The optimal policies for zero-sum games are rewritten as

ui(t) = M(xi−1(t), ui−1(t))xi(t),

wi(t) = N(xi−1(t),wi−1(t))xi(t), (9.38)

where

M(xi−1, ui−1)
Δ= −R−1(xi−1(t))g

T(xi−1(t), ui−1(t))Pi(t),

N(xi−1,wi−1)
Δ= S−1(xi−1(t))k

T(xi−1(t),wi−1(t))Pi(t).

Assumption 9.25 g(x,u), k(x,w), R−1(x), S−1(x), F(x) and Q(x) are bounded
and Lipschitz continuous in their arguments x, u, and w, thus satisfying:

(C1) ‖g(x,u)‖ ≤ b, ‖k(x,u)‖ ≤ e

(C2) ‖R−1(x)‖ ≤ r , ‖S−1(x)‖ ≤ s

(C3) ‖F(x)‖ ≤ f , ‖Q(x)‖ ≤ q

for ∀x ∈ R
n, ∀u ∈ R

m1 , ∀w ∈ R
m2 , and for finite positive numbers b, e, r , s, f ,

and q .

Define Φi−1(t, t0) as the transition matrix generated by fi−1(t). It is well known
that

‖Φi−1(t, t0)‖ ≤ exp

[∫ t

t0

μ(f (xi−1(τ )))dτ

]
, t ≥ t0, (9.39)

where μ(f ) is the measure of matrix f , μ(f ) = limh→0+ ‖I+hf ‖−1
h

. We use the
following lemma to get an estimate for Φi−1(t, t0) − Φi−2(t, t0).

The following lemma is relevant for the solution of the Riccati differential equa-
tion (9.34), which is the basis for proving the convergence.

Lemma 9.26 Let Assumption 9.25 hold; the solution of the Riccati differential
equation (9.34) satisfies:

1. Pi(t) is Lipschitz continuous.
2. Pi(t) is bounded, if the linear time-varying system (9.32) is controllable.

Proof First, let us prove that Pi(t) is Lipschitz continuous. We transform (9.34) into
the form of a matrix differential equation:
[

λ̇i (t)

Ẋi(t)

]
=
[−f (xi−1(t)) −Q(xi−1(t))

Ξ f (xi−1(t))

][
λi(t)

Xi(t)

]
,

[
λi(tf )

Xi(tf )

]
=
[
F(tf )

I

]
,
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where

Ξ =g(xi−1(t), ui−1(t))R
−1(xi−1(t))g

T(xi−1(t), ui−1(t))

− k(xi−1(t),wi−1(t))S
−1(xi−1(t))k

T(xi−1(t),wi−1(t)).

Thus, the solution Pi(t) of the Riccati differential equations (9.34) becomes

Pi(t) = λi(t) (Xi(t))
−1 . (9.40)

If Assumption 9.25 is satisfied, such that f (x), g(x,u), k(x,w), R−1(x), S−1(x),
F(x), and Q(x) are Lipschitz continuous, then Xi(t) and λi(t) are Lipschitz con-
tinuous. Furthermore, it is easy to verify that (Xi(t))

−1 also satisfies the Lipschitz
condition. Hence, Pi(t) is Lipschitz continuous.

Next, we prove that Pi(t) is bounded.
If the linear time varying system (9.32) is controllable, there must exist

ûi (t), ŵi(t) such that x(t1) = 0 at t = t1. We define ūi (t), w̄i(t) as

ūi (t) =
{

ûi (t), t ∈ [0, t1)

0, t ∈ [t1,∞)

w̄i(t) =
{

ŵi(t) = S−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t)xi(t), t ∈ [0, t1)

0, t ∈ [t1,∞)

where ûi (t) is any control policy making x(t1) = 0, ŵi(t) is defined as the optimal
policy. We have t ≥ t1, and we let ūi (t) and w̄i(t) be 0, the state x(t) will still hold
at 0.

The optimal cost functional V ∗
i (x0, u,w) described as

V ∗
i (x0, u,w) = 1

2
xT
i (tf )F (xi−1(tf ))xi(tf ) + 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ u∗T
i (t)R(xi−1(t))u

∗
i (t) − w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt, (9.41)

where u∗
i (t) and w∗

i (t) are the optimal policies. V ∗
i (x0, u,w) is minimized by u∗(t)

and maximized by w∗
i (t).

For the linear system, V ∗
i (x0, u,w) can be expressed as V ∗

i (x0, u,w) =
1/(2xT

i (t)Pi(t)xi(t)). Since xi(t) is arbitrary, if V ∗
i (x0, u,w) is bounded, then

Pi(t) is bounded. Next, we discuss the boundedness of V ∗
i (x0, u,w) in two

cases:

Case 1: t1 < tf ; we have

V ∗
i (x0, u,w) ≤ 1

2
xT
i (tf )F (xi−1(tf ))xi(tf ) + 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi (t) − w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt
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= 1

2

∫ t1

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi (t) − w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

=Vt1i (x)

<∞. (9.42)

Case 2: t1 ≥ tf ; we have

V ∗
i (x0, u,w) ≤ 1

2
xT
i (tf )F (xi−1(tf ))xi(tf ) + 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi(t) − w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

≤ 1

2

∫ ∞

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ūT
i (t)R(xi−1(t))ūi(t) − w̄T

i (t)S(xi−1(t))w̄i(t)
]
dt

= 1

2

∫ t1

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi(t) − w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

=Vt1i (x)

<∞. (9.43)

From (9.42) and (9.43), we know that V ∗
i (x) has an upper bound, independent of tf .

Hence, Pi(t) is bounded. �

According to Lemma 9.26, Pi(t) is bounded and Lipschitz continuous. If As-
sumption 9.25 is satisfied, then M(x,u), N(x,w), G(x,w), and K(x,w) are
bounded and Lipschitz continuous in their arguments, thus satisfying:

(C4) ‖M(x,u)‖ ≤ δ1, ‖N(x,w)‖ ≤ σ1,
(C5) ‖M(x1, u1) − M(x2, u2)‖ ≤ δ2‖x1 − x2‖ + δ3‖u1 − u2‖, ‖N(x1,w1) −

N(x2,w2)‖ ≤ σ2‖x1 − x2‖ + σ3‖w1 − w2‖,
(C6) ‖G(x,u)‖ ≤ ζ1, ‖K(x,w)‖ ≤ ξ1,
(C7) ‖G(x1, u1) − G(x2, u2)‖ ≤ ζ2‖x1 − x2‖ + ζ3‖u1 − u2‖, ‖K(x1,w1) −

K(x2,w2)‖ ≤ ξ2‖x1 − x2‖ + ξ3‖w1 − w2‖,

∀x ∈ R
n, ∀u ∈ R

m1 , ∀w ∈ R
m2 , and for finite positive numbers δj , σj , ζj , ξj , j =

1,2,3.

Theorem 9.27 (cf. [16]) Consider the system (9.29) of nonaffine nonlinear zero-
sum games with the cost functional (9.30), the approximating sequences (9.32) and
(9.33) can be introduced. We have F(x(t)) ≥ 0, Q(x(t)) ≥ 0, R(x(t)) > 0, and the
terminal time tf is specified. Let Assumption 9.25, and Assumptions (A1) and (A2)
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hold and S(x(t)) > S̃, for small enough tf or x0; then the limit of the solution of the
approximating sequence (9.32) converges to the unique solution of system (9.29) on
C([t0, tf ];Rn). Meanwhile, the approximating sequences of optimal policies given
by (9.35) also converge on C([t0, tf ];Rm1) and C([t0, tf ];Rm2), if

‖Ψ (t)‖ < 1, (9.44)

where

Ψ (t) =
⎡
⎣ψ1 ψ2 ψ3

ψ4 ψ5 ψ6
ψ7 ψ8 ψ9

⎤
⎦ ,

ψ1(t) =
{[

ζ2+ξ2
ζ1+ξ1

+ α(t − t0)
]
e(ζ1+ξ1)(t−t0) − ζ2+ξ2

ζ1+ξ1

}
(

1 + ζ1+ξ1
μ0

(
1 − eμ0(t−t0)

)) ‖x0‖ eμ0(t−t0),

ψ2(t) =
ζ3

ζ1+ξ1
‖x0‖ eμ0(t−t0)(e(ζ1+ξ1)(t−t0) − 1)(
1 + ζ1+ξ1

μ0

(
1 − eμ0(t−t0)

)) ,

ψ3(t) =
ξ3

ζ1+ξ1
‖x0‖ eμ0(t−t0)(e(ζ1+ξ1)(t−t0) − 1)(
1 + ζ1+ξ1

μ0

(
1 − eμ0(t−t0)

)) ,

ψ4(t) = δ1ψ1(t) + δ2 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ5(t) = δ1ψ2(t) + δ3 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ6(t) = δ1ψ3(t),

ψ7(t) = σ1ψ1(t) + σ2 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ8(t) = σ1ψ2(t),

ψ9(t) = σ1ψ3(t) + σ3 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

S̃ = max{Ŝ i}.
Proof The approximating sequence (9.37) is an nonhomogeneous differential equa-
tion, whose solution can be given by

xi(t) =Φi−1(t, t0)xi(t0) +
∫ t

t0

Φi−1(t, s)
[
G(xi−1(s), ui−1(s))

+K(xi−1(s),wi−1(s))
]
xi(s)ds. (9.45)

Then,

‖xi(t)‖ ≤ ‖Φi−1(t, t0)‖‖xi(t0)‖ +
∫ t

t0

‖Φi−1(t, s)‖
[‖G(xi−1, ui−1)‖
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+ ‖K(xi−1,wi−1)‖
]‖xi(s)‖ds. (9.46)

According to inequality (9.39) and assuming (C6) to hold, we obtain

e−μ0t ‖xi(t)‖ ≤ e−μ0t0 ‖x0‖ +
∫ t

t0

(ζ1 + ξ1)e
−μ0s ‖xi(s)‖ds. (9.47)

On the basis of Gronwall–Bellman’s inequality

‖xi(t)‖ ≤ ‖x0‖ e(μ0+ζ1+ξ1)(t−t0), (9.48)

which is bounded by a small time interval t ∈ [t0, tf ] or small x0.
From (9.45) we have

xi(t) − xi−1(t) = [
Φi−1(t, t0) − Φi−2(t, t0)

]
x0

+
∫ t

t0

Φi−1(t, s)G(xi−1, ui−1)
[
xi(s) − xi−1(s)

]
ds

+
∫ t

t0

Φi−1(t, s)K(xi−1,wi−1)
[
xi(s) − xi−1(s)

]
ds

+
∫ t

t0

Φi−1(t, s)
[
G(xi−1, ui−1) − G(xi−2, ui−2)

]
xi−1(s)ds

+
∫ t

t0

Φi−1(t, s)
[
K(xi−1,wi−1) − K(xi−2,wi−2)

]
xi−1(s)ds

+
∫ t

t0

[
Φi−1(t, s) − Φi−2(t, s)

]
G(xi−2, ui−2)xi−1(s)ds

+
∫ t

t0

[
Φi−1(t, s) − Φi−2(t, s)

]
K(xi−2,wi−2)xi−1(s)ds.

(9.49)

Consider the supremum to both sides of (9.49) and let

βi(t) = sup
s∈[t0,t]

‖xi(s) − xi−1(s)‖ ,

γi(t) = sup
s∈[t0,t]

‖ui(s) − ui−1(s)‖ ,

ηi(t) = sup
s∈[t0,t]

‖wi(s) − wi−1(s)‖ .

By using (9.39), (C6), and (C7), we get

βi(t) ≤α ‖x0‖ eμ0(t−t0)(t − t0)βi−1(t) + (ζ1 + ξ1)

∫ t

t0

eμ0(t−s)βi(s)ds
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+ ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)
[
ζ2βi−1(s) + ζ3γi−1(s)

]
ds

+ ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)
[
ξ2βi−1(s) + ξ3ηi−1(s)

]
ds

+ αζ1 ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)(t − s)βi−1(s)ds

+ αξ1 ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)(t − s)βi−1(s)ds. (9.50)

Combining similar terms, we have

βi(t) ≤ ψ1(t)βi−1(t) + ψ2(t)γi−1(t) + ψ3(t)ηi−1(t), (9.51)

where ψ1(t) through ψ3(t) are described in (9.44).
Similarly, from (9.38), we get

ui(t) − ui−1(t) =M(xi−1, ui−1)
[
xi(t) − xi−1(t)

]
+ [M(xi−1, ui−1) − M(xi−2, ui−2)

]
xi−1(t)

wi(t) − wi−1(t) =N(xi−1,wi−1)
[
xi(t) − xi−1(t)

]
+ [N(xi−1,wi−1) − N(xi−2,wi−2)

]
xi−1(t). (9.52)

According to (C4), (C5), and (9.48), we have

γi(t) ≤ ψ4(t)βi−1(t) + ψ5(t)γi−1(t) + ψ6(t)ηi−1(t)

ηi(t) ≤ ψ7(t)βi−1(t) + ψ8(t)γi−1(t) + ψ9(t)ηi−1(t), (9.53)

where ψ4(t) through ψ9(t) are shown in (9.44).
Then, combining (9.51) and (9.53), we have

Θi(t) ≤ Ψ (t)Θi−1(t), (9.54)

where Θi(t) =
[

βi(t)

γi (t)

ηi (t)

]
and Ψ (t) =

[
ψ1 ψ2 ψ3
ψ4 ψ5 ψ6
ψ7 ψ8 ψ9

]
.

By induction, Θi satisfies

Θi(t) ≤ Ψ i−1(t)Θ [1](t), (9.55)

which implies that we have xi(t), ui(t) and Cauchy sequences in Banach spaces
C([t0, tf ];Rn), C([t0, tf ];Rn), C([t0, tf ];Rm1), and C([t0, tf ];Rm2), respectively.
If {xi(t)} converges on C([t0, tf ];Rn), and the sequences of optimal policies {ui}
and {wi} also converge on C([t0, tf ];Rm1) and C([t0, tf ];Rm2) on [t0, tf ].

It means that xi−1(t) = xi(t), ui−1(t) = ui(t), wi−1(t) = wi(t) when i → ∞.
Hence, the system (9.29) has a unique solution on [t0, tf ], which is given by the
limit of the solution of approximating sequence (9.32). �
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Based on the iterative algorithm described in Theorem 9.27, the design proce-
dure of optimal policies for nonlinear nonaffine zero-sum games is summarized as
follows:

1. Give x0, maximum iteration times imax and approximation accuracy ε.
2. Use a factored form to represent the system as (9.31).
3. Set i = 0. Let xi−1(t) = x0, ui−1(t) = 0 and wi−1(t) = 0. Compute the cor-

responding matrix-valued functions f (x0), g(x0,0), k(x0,0), F(x0), Q(x0),
R(x0), and S(x0).

4. Compute x[0](t) and P [0](t) according to differential equations (9.34) and (9.36)
with x(t0) = x0, P(tf ) = F(xf ).

5. Set i = i + 1. Compute the corresponding matrix-valued functions f (xi−1(t)),
g(xi−1(t), ui−1(t)), k(xi−1(t),wi−1(t)), Q(xi−1(t)), R(xi−1(t)), F(xi−1(tf )),
and S(xi−1(t)).

6. Compute xi(t) and Pi(t) by (9.34) and (9.36) with x(t0) = x0, P(tf ) = F(xtf ).
7. If ‖xi(t) − xi−1(t)‖ < ε, go to Step 9); otherwise, go to Step 8.
8. If i > imax, then go to Step 9; else, go to Step 5.
9. Stop.

9.3.3 Simulations

Example 9.28 We now show the power of our iterative algorithm for finding optimal
policies for nonaffine nonlinear zero-sum games.

In the following, we introduce an example of a control system that has the form
(9.29) with control input u(t), subject to a disturbance w(t) and a cost functional
V (x0, u,w). The control input u(t) is required to minimize the cost functional
V (x0, u,w). If the disturbance has a great effect on the system, the single distur-
bance w(t) has to maximize the cost functional V (x0, u,w). The conflicting design
can guarantee the optimality and strong robustness of the system at the same time.
This is a zero-sum game problem, which can be described by the state equations

ẋ1(t) = − 2x1(t) + x2
2(t) − x1(t)u(t) + u2(t) − 3x(t)w(t) + 5w2(t),

ẋ2(t) =5x2
1(t) − 2x2(t) + x2

2(t) + u2(t) + w2(t). (9.56)

Define the finite horizon cost functional to be of the form (9.30), where F =
0.01 I2×2, Q = 0.01 I2×2, R = 1 and S = 1, where I is an identity matrix. Clearly,
(9.56) is not affine in u(t) and w(t), it has the control nonaffine nonlinear struc-
ture. Therefore, we represent the system (9.56) in the factored form f (x(t))x(t),
g(x(t), u(t))u(t) and k(x(t),w(t))w(t), which, given the wide selection of possi-
ble representations, have been chosen as

f (x(t)) =
[

2 x2(t)

5x1(t) −2 + x2(t)

]
, g(x(t), u(t)) =

[
x1(t) + u(t)

u(t)

]
,
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Fig. 9.10 The state trajectory x1(t) of each iteration

k(x(t),w(t)) =
[−3x1(t) + 5w(t)

w(t)

]
. (9.57)

The optimal policies designs given by Theorem 9.27 can now be applied to (9.31)
with the dynamics (9.57).

The initial state vectors are chosen as x0 = [0.6,0]T and the terminal time is set
to tf = 5. Let us define the required error norm between the solutions of the linear
time-vary differential equations by ‖xi(t) − xi−1(t)‖ < ε = 0.005, which needs to
be satisfied if convergence is to be achieved. The factorization is given by (9.57). Im-
plementing the present iterative algorithm, it just needs six sequences to satisfy the
required bound, ‖x[6](t)−x[5](t)‖ = 0.0032. With increasing of number of times of
iterations, the approximation error will reduce obviously. When the iteration number
i = 25, the approximation error is just 5.1205 × 10−10.

Define the maximum iteration times imax = 25. Figure 9.10 represents the con-
vergence trajectories of the state trajectory of each linear quadratic zero-sum game.
It can be seen that the sequence is obviously convergent. The magnifications of the
state trajectories are given in the figure, which shows that the error will be smaller
as the number of times of iteration becomes bigger. The trajectories of control in-
put u(t) and disturbance input w(t) of each iteration are also convergent, which is
shown in Figs. 9.11 and 9.12. The approximate optimal policies u∗(t) and w∗(t) are
obtained by the last iteration. Substituting the approximate optimal policies u∗(t)
and w∗(t) into the system of zero-sum games (9.56), we get the state trajectory.
The norm of the error between this state trajectory and the state trajectory of the
last iteration is just 0.0019, which proves that the approximating iterative approach
developed in this section is highly effective.
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Fig. 9.11 The trajectory u(t) of each iteration

Fig. 9.12 The trajectory w(t) of each iteration

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems
Based on ADP

In this section, a near-optimal control scheme is developed for the non-zero-sum
differential games of continuous-time nonlinear systems. The single network ADP
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is utilized to obtain the optimal control policies which make the cost functions reach
the Nash equilibrium of non-zero-sum differential games, where only one critic net-
work is used for each player, instead of the action-critic dual network used in a
typical ADP architecture. Furthermore, novel weight tuning laws for critic neural
networks are developed, which not only ensure the Nash equilibrium to be reached,
but also guarantee the stability of the system. No initial stabilizing control policy is
required for each player. Moreover, Lyapunov theory is utilized to demonstrate the
uniform ultimate boundedness of the closed-loop system.

9.4.1 Problem Formulation of Non-Zero-Sum Games

Consider the following continuous-time nonlinear systems:

ẋ(t) = f (x(t)) + g(x(t))u(t) + k(x(t))w(t), (9.58)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m and d(t) ∈ R
q are the control input

vectors. Assume that f (0) = 0 and that f (x), g(x), k(x) are locally Lipschitz.
The cost functional associated with u is defined as

J1(x,u,w) =
∫ ∞

t

r1(x(τ ), u(τ ),w(τ))dτ, (9.59)

where r1(x,u,w) = Q1(x) + uTR11u + wTR12w, Q1(x) ≥ 0 is the penalty on
the states, R11 ∈ R

m×m is a positive definite matrix, and R12 ∈ R
q×q is a positive

semidefinite matrix.
The cost functional associated with w is defined as

J2(x,u,w) =
∫ ∞

t

r2(x(τ ), u(τ ),w(τ))dτ, (9.60)

where r2(x,u,w) = Q2(x) + uTR21u + wTR22w, Q2(x) ≥ 0 is the penalty on the
states, R21 ∈ R

m×m is a positive semidefinite matrix, and R22 ∈ R
q×q is a positive

definite matrix.
For the above non-zero-sum differential games, the two feedback control policies

u and w are chosen by player 1 and player 2, respectively, where player 1 tries to
minimize the cost functional (9.59), while player 2 attempts to minimize the cost
functional (9.60).

Definition 9.29 u = μ1(x) and w = μ2(x) are defined as admissible with respect to
(9.59) and (9.60) on Ω ∈ R

n, denoted by μ1 ∈ ψ(Ω) and μ2 ∈ ψ(Ω), respectively,
if μ1(x) and μ2(x) are continuous on Ω , μ1(0) = 0 and μ2(0) = 0, μ1(x) and
μ2(x) stabilize (9.58) on Ω , and (9.59) and (9.60) are finite, ∀x0 ∈ Ω .
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Definition 9.30 The policy set (u∗,w∗) is a Nash equilibrium policy set if the in-
equalities

J1(u
∗,w∗) ≤ J1(u,w∗),

J2(u
∗,w∗) ≤ J2(u

∗,w) (9.61)

hold for any admissible control policies u and w.

Next, define the Hamilton functions for the cost functionals (9.59) and (9.60)
with associated admissible control input u and w, respectively, as follows:

H1(x,u,w) =Q1(x) + uTR11u + wTR12w

+ �J T
1 (f (x) + g(x)u + k(x)w), (9.62)

H2(x,u,w) =Q2(x) + uTR21u + wTR22w

+ �J T
2 (f (x) + g(x)u + k(x)w), (9.63)

where �Ji is the partial derivative of the cost function Ji(x,u,w) with respect to x,
i = 1,2.

According to the stationarity conditions of optimization, we have

∂H1(x,u,w)/∂u = 0,

∂H2(x,u,w)/∂w = 0.

Therefore, the associated optimal feedback control policies u∗ and w∗ are found
and revealed to be

u∗ = −1

2
R−1

11 gT(x)�J1, (9.64)

w∗ = −1

2
R−1

22 kT(x)�J2. (9.65)

The optimal feedback control policies u∗ and w∗ provide a Nash equilibrium for the
non-zero-sum differential games among all the feedback control policies.

Considering H1(x,u∗,w∗) = 0 and H2(x,u∗,w∗) = 0, and substituting the op-
timal feedback control policy (9.64) and (9.65) into the Hamilton functions (9.62)
and (9.63), we have

Q1(x)−1

4
�J T

1 g(x)R−1
11 gT(x)�J1 + �J T

1 f (x)

+ 1

4
�J T

2 k(x)R−1
22 R12R

−1
22 kT(x)�J2

− 1

2
�J T

1 k(x)R−1
22 kT(x)�J2 = 0, (9.66)
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Q2(x)−1

4
�J T

2 k(x)R−1
22 kT(x)�J2 + �J T

2 f (x)

+ 1

4
�J T

1 g(x)R−1
11 R21R

−1
11 gT(x)�J1

− 1

2
�J T

2 g(x)R−1
11 gT(x)�J1 = 0. (9.67)

If the coupled HJ equations (9.66) and (9.67) can be solved for the optimal value
functions J1(x,u∗,w∗) and J2(x,u∗,w∗), the optimal control can then be imple-
mented by using (9.64) and (9.65). However, these equations are generally difficult
or impossible to solve due to their inherently nonlinear nature. To overcome this
difficulty, a near-optimal control scheme is developed to learn the solution of cou-
pled HJ equations online using a single network ADP in order to obtain the optimal
control policies.

Before presenting the near-optimal control scheme, the following lemma is re-
quired.

Lemma 9.31 Given the system (9.58) with associated cost functionals (9.59) and
(9.60) and the optimal feedback control policies (9.64) and (9.65). For player i,
i = 1,2, let Li(x) be a continuously differentiable, radially unbounded Lyapunov
candidate such that L̇i = �LT

i ẋ = �LT
i (f (x) + g(x)u∗ + k(x)w∗) < 0, with �Li

being the partial derivative of Li(x) with respect to x. Moreover, let Q̄i(x) ∈ R
n×n

be a positive definite matrix satisfying ‖Q̄i(x)‖ = 0 if and only if ‖x‖ = 0 and
Q̄i min ≤ ‖Q̄i(x)‖ ≤ Q̄i max for ‖χmin‖ ≤ ‖x‖ ≤ χmax with positive constants Q̄i min,
Q̄i max, χmin, χmax. In addition, let Q̄i(x) satisfy limx→∞ Q̄i(x) = ∞ as well as

�J ∗T
i Q̄i(x)�Li = ri(x,u∗,w∗). (9.68)

Then the following relation holds:

�LT
i (f (x) + g(x)u∗ + k(x)w∗) = −�LT

i Q̄i(x)�Li. (9.69)

Proof When the optimal control u∗ and w∗ in (9.64) and (9.65) are applied to the
nonlinear system (9.58), the value function Ji(x,u∗,w∗) becomes a Lyapunov func-
tion, i = 1,2. Then, for i = 1,2, differentiating the value function Ji(x,u∗,w∗) with
respect to t , we have

J̇ ∗
i = �J ∗T

i (f (x) + g(x)u∗ + k(x)w∗)
= −ri(x,u∗,w∗). (9.70)

Using (9.68), (9.70) can be rewritten as

(f (x) + g(x)u∗ + k(x)w∗) = − (�J ∗
i �J ∗T

i )−1�J ∗
i ri(x, u∗,w∗)

= − (�J ∗
i �J ∗T

i )−1�J ∗
i �J ∗T

i Q̄i(x)�Li

= − Q̄i(x)�Li. (9.71)
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Next, multiplying both sides of (9.71) by �LT
i , (9.69) can be obtained.

This completes the proof. �

9.4.2 Optimal Control of Nonlinear Non-Zero-Sum Games Based
on ADP

To begin the development, we rewrite the cost functions (9.59) and (9.60) by NNs
as

J1(x) = WT
c1φ1(x) + ε1, (9.72)

J2(x) = WT
c2φ2(x) + ε2, (9.73)

where Wi , φi(x), and εi are the critic NN ideal constant weights, the critic NN
activation function vector and the NN approximation error for player i, i = 1,2,
respectively.

The derivative of the cost functions with respect to x can be derived as

�J1 = �φT
1 Wc1 + �ε1, (9.74)

�J2 = �φT
2 Wc2 + �ε2, (9.75)

where �φi � ∂φi(x)/∂x, �εi � ∂εi/∂x, i = 1,2.
Using (9.74) and (9.75), the optimal feedback control policies (9.64) and (9.65)

can be rewritten as

u∗ = −1

2
R−1

11 gT(x)�φT
1 Wc1 − 1

2
R−1

11 gT(x)�ε1, (9.76)

w∗ = −1

2
R−1

22 kT(x)�φT
2 Wc2 − 1

2
R−1

22 kT(x)�ε2, (9.77)

and the coupled HJ equations (9.66) and (9.67) can be rewritten as

Q1(x)−1

4
WT

c1�φ1D1�φT
1 Wc1 + WT

c1�φ1f (x)

+ 1

4
WT

c2�φ2S2�φ2
TWc2 − 1

2
WT

c1�φ1D2�φT
2 Wc2 − εHJ1 = 0, (9.78)

Q2(x)−1

4
WT

c2�φ2D2�φT
2 Wc2 + WT

c2�φ2f (x)

+ 1

4
WT

c1�φ1S1�φ1
TWc1 − 1

2
WT

c2�φ2D1�φT
1 Wc1 − εHJ2 = 0, (9.79)
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where

D1 =g(x)R−1
11 gT(x),

D2 = k(x)R−1
22 kT(x),

S1 =g(x)R−1
11 R21R

−1
11 gT(x),

S2 = k(x)R−1
22 R12R

−1
22 kT(x). (9.80)

The residual error due to the NN approximation for player 1 is

εHJ1 = − �εT
1

(
f (x) − 1

2
D1(�φT

1 Wc1 + �ε1)

− 1

2
D2(�φT

2 Wc2 + �ε2)

)
− 1

4
�εT

1 D1�ε1 + 1

2
WT

c1�φ1D2�ε2

− 1

2
�εT

2 S2�φT
2 Wc2 − 1

4
�εT

2 S2�ε2. (9.81)

The residual error due to the NN approximation for player 2 is

εHJ2 = − �εT
2

(
f (x) − 1

2
D1(�φT

1 Wc1 + �ε1)

− 1

2
D2(�φT

2 Wc2 + �ε2)

)
− 1

4
�εT

2 D2�ε2 + 1

2
WT

c2�φ2D1�ε1

− 1

2
�εT

2 S1�φT
1 Wc2 − 1

4
�εT

1 S1�ε1. (9.82)

Let Ŵc1 and Ŵc2 be the estimates of Wc1 and Wc2, respectively. Then we have
the estimates of V1(x) and V2(x) as follows:

Ĵ1(x) = ŴT
c1φ1(x), (9.83)

Ĵ2(x) = ŴT
c2φ2(x). (9.84)

Substituting (9.83) and (9.84) into (9.64) and (9.65), respectively, the estimates of
optimal control policies can be written as

û = −1

2
R−1

11 gT(x)�φT
1 Ŵc1, (9.85)

ŵ = −1

2
R−1

22 kT(x)�φT
2 Ŵc2. (9.86)

Applying (9.85) and (9.86) to the system (9.58), we have the closed-loop system
dynamics as follows:

ẋ = f (x) − D1�φT
1 Ŵc1

2
− D2�φT

2 Ŵc2

2
. (9.87)
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Substituting (9.83) and (9.84) into (9.62) and (9.63), respectively, the approxi-
mate Hamilton functions can be derived as follows:

H1(x, Ŵc1, Ŵc2) =Q1(x) − 1

4
ŴT

c1�φ1D1�φT
1 Ŵc1 + ŴT

c1�φ1f (x)

+ 1

4
ŴT

c2�φ2S2�φT
2 Ŵc2 − 1

2
ŴT

c1�φ1D2�φT
2 Ŵc2

= e1, (9.88)

H2(x, Ŵc1, Ŵc2) =Q2(x) − 1

4
ŴT

c2�φ2D2�φT
2 Ŵc2 + ŴT

c2�φ2f (x)

+ 1

4
ŴT

c1�φ1S1�φT
1 Ŵc1 − 1

2
ŴT

c2�φ2D1�φT
1 Ŵc1

= e2. (9.89)

It is desired to select Ŵc1 and Ŵc2 to minimize the squared residual error E =
eT

1 e1/2 + eT
2 e2/2. Then we have Ŵc1 → Wc1, Ŵc2 → Wc2, and e1 → εHJ1, e2 →

εHJ2. In other words, the Nash equilibrium of the non-zero-sum differential games
of continuous-time nonlinear system (9.58) can be obtained. However, tuning the
critic NN weights to minimize the squared residual error E alone does not ensure
the stability of the nonlinear system (9.58) during the learning process of critic NNs.
Therefore, we propose the novel weight tuning laws of critic NNs for two players,
which cannot only minimize the squared residual error E but also guarantee the
stability of the system as follows:

˙̂
W1 = − α1

σ̄1

ms1

(
Q1(x) − 1

4
ŴT

c1�φ1D1�φT
1 Ŵc1

+ ŴT
c1�φ1f (x) + 1

4
ŴT

c2�φ2S2�φT
2 Ŵc2 − 1

2
ŴT

c1�φ1D2�φT
2 Ŵc2

)

+ α1

4
�φ1D1�φT

1 Ŵc1
σ̄ T

1

ms1

Ŵc1 + α2

4
�φ1S1�φT

1 Ŵc1
σ̄ T

2

ms2

Ŵc2

+ Σ(x, û, ŵ)

(
α1�φ1D1�L1

2
+ α1�φ1D1�L2

2

)

− α1(F1Ŵc1 − F2σ̄
T
1 Ŵc1), (9.90)

˙̂
W2 = − α2

σ̄2

ms2

(
Q2(x) − 1

4
ŴT

c2�φ2D2�φT
2 Ŵc2

+ ŴT
c2�φ2f (x) + 1

4
ŴT

c1�φ1S1�φT
1 Ŵc1 − 1

2
ŴT

c2�φ2D1�φT
1 Ŵc1

)
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+ α2

4
�φ2D2�φT

2 Ŵc2
σ̄ T

2

ms2

Ŵc2 + α2

4
�φ2S2�φT

2 Ŵc2
σ̄ T

1

ms1

Ŵc1

+ Σ(x, û, ŵ)

(
α2�φ2D2�L2

2
+ α2�φ2D2�L1

2

)

− α2(F3Ŵc2 − F4σ̄
T
2 Ŵc2), (9.91)

where σ̄i = σ̂i/(σ̂
T
i σ̂i + 1), σ̂i = �φi(f (x) − D1�φT

1 Ŵc1/2 − D2�φT
2 Ŵc2/2),

msi = σ̂ T
i σ̂i + 1, αi > 0 is the adaptive gain, �Li is described in Lemma 9.31,

i = 1,2. F1, F2, F3, and F4 are design parameters. The operator Σ(x, û, ŵ) is given
by

Σ(x, û, ŵ) =
{

0 if �L1ẋ ≤ 0 and �L2ẋ ≤ 0,

1 else,
(9.92)

where ẋ is given as (9.87).

Remark 9.32 The first terms in (9.90) and (9.91) are utilized to minimize the
squared residual error E and derived by using a normalized gradient descent al-
gorithm. The other terms are utilized to guarantee the stability of the closed-loop
system while the critic NNs learn the optimal cost functions and are derived by
following Lyapunov stability analysis. The operator Σ(x, û, ŵ) is selected based
on the Lyapunov’s sufficient condition for stability, which means that the state x is
stable if Li(x) > 0 and �Liẋ < 0 for player i, i = 1,2. When the system (9.58)
is stable, the operator Σ(x, û, ŵ) = 0 and it will not take effect. When the system
(9.58) is unstable, the operator Σ(x, û, ŵ) = 1 and it will be activated. Therefore, no
initial stabilizing control policies are needed due to the introduction of the operator
Σ(x, û, ŵ).

Remark 9.33 From (9.88) and (9.89), it can be seen that the approximate Hamilton
functions H1(x, Ŵc1, Ŵc2) = e1 = 0 and H2(x, Ŵc1, Ŵc2) = e2 = 0 when x = 0.
For this case, the tuning laws of critic NN weights for two players (9.90) and (9.91)
cannot achieve the purpose of optimization anymore. This can be considered as a
persistency of the requirement of excitation for the system states. Therefore, the sys-
tem states must be persistently excited enough for minimizing the squared residual
errors E to drive the critic NN weights toward their ideal values. In order to satisfy
the persistent excitation condition, probing noise is added to the control input.

Define the weight estimation errors of critic NNs for two players to be W̃c1 =
Wc1 − Ŵc1 and W̃c2 = Wc2 − Ŵc2, respectively. From (9.78) and (9.79), we observe
that

Q1(x) = 1

4
WT

c1�φ1D1�φT
1 Wc1 − WT

c1�φ1f (x) − 1

4
WT

c2�φ2S2�φ2
TWc2

+ 1

2
WT

c1�φ1D2�φT
2 Wc2 + εHJ1, (9.93)
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Q2(x) = 1

4
WT

c2�φ2D2�φT
2 Wc2 − WT

c2�φ2f (x) − 1

4
WT

c1�φ1S1�φ1
TWc1

+ 1

2
WT

c2�φ2D1�φT
1 Wc1 + εHJ2. (9.94)

Combining (9.90) with (9.93), we have

˙̃
W1 =α1

σ̄1

ms1

[
−W̃T

c1σ̂1 + 1

4
W̃T

c1�φ1D1�φT
1 W̃c1 + 1

2
WT

c1�φ1D2�φT
2 W̃c2

− 1

2
W̃T

c2�φ2S2�φT
2 Wc2 + 1

4
W̃T

c2�φ2S2�φT
2 W̃c2 + εHJ1

]

− α1

4
�φ1D1�φT

1 Ŵc1
σ̄ T

1

ms1

Ŵc1 − α2

4
�φ1S1�φT

1 Ŵc1
σ̄ T

2

ms2

Ŵc2

− Σ(x, û, ŵ)

(
α1�φ1D1�L1

2
+ α1�φ1D1�L2

2

)

+ α1(F1Ŵc1 − F2σ̄
T
1 Ŵc1). (9.95)

Similarly, combining (9.91) with (9.94), we have

˙̃
W2 =α2

σ̄2

ms2

[
−W̃T

c2σ̂2 + 1

4
W̃T

c2�φ2D2�φT
2 W̃c2 + 1

2
WT

c2�φ2D1�φT
1 W̃c1

− 1

2
W̃T

c1�φ1S1�φT
1 Wc1 + 1

4
W̃T

c1�φ1S1�φT
1 W̃c1 + εHJ2

]

− α2

4
�φ2D2�φT

2 Ŵc2
σ̄ T

2

ms2

Ŵc2 − α2

4
�φ2S2�φT

2 Ŵc2
σ̄ T

1

ms1

Ŵc1

− Σ(x, û, ŵ)

(
α2�φ2D2�L2

2
+ α2�φ2D2�L1

2

)

+ α2(F3Ŵc2 − F4σ̄
T
2 Ŵc2). (9.96)

In the following, the stability analysis will be performed. First, the following
assumption is made, which can reasonably be satisfied under the current problem
settings.

Assumption 9.34

(a) g(·) and k(·) are upper bounded, i.e., ‖g(·)‖ ≤ gM and ‖k(·)‖ ≤ kM with gM

and kM being positive constants.
(b) The critic NN approximation errors and their gradients are upper bounded so

that ‖εi‖ ≤ εiM and ‖�εi‖ ≤ εidM with εiM and εidM being positive constants,
i = 1,2.

(c) The critic NN activation function vectors are upper bounded, so that ‖φi‖ ≤ φiM

and ‖�φi‖ ≤ φidM , with φiM and φidM being positive constants, i = 1,2.
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(d) The critic NN weights are upper bounded so that ‖Wi‖ ≤ WiM with WiM being
positive constant, i = 1,2. The residual errors εHJi are upper bounded, so that
‖εHJi‖ ≤ εHJiM with εHJiM being positive constant, i = 1,2.

Now we are ready to prove the following theorem.

Theorem 9.35 (cf. [17]) Consider the system given by (9.58). Let the control input
be provided by (9.85) and (9.86), and the critic NN weight tuning laws be given
by (9.90) and (9.91). Then, the system state x and the weight estimation errors of
critic NNs W̃c1 and W̃c2 are uniformly ultimately bounded (UUB). Furthermore, the
obtained control input û and ŵ in (9.85) and (9.86) are proved to converge to the
Nash equilibrium policy of the non-zero-sum differential games approximately, i.e.,
û and ŵ are closed for the optimal control input u∗ and w∗ with bounds εu and εw ,
respectively.

Proof Choose the following Lyapunov function candidate:

L = L1(x) + L2(x) + 1

2
W̃T

c1α
−1
1 W̃c1 + 1

2
W̃T

c2α
−1
2 W̃c2, (9.97)

where L1(x) and L2(x) are given by Lemma 9.31.
The derivative of the Lyapunov function candidate (9.97) along the system (9.87)

is computed as

L̇ =�LT
1

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ �LT
2

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ W̃T
c1α

−1
1

˙̃
W1 + W̃T

c2α
−1
2

˙̃
W2. (9.98)

Then, substituting (9.95) and (9.96) into (9.98), we have

L̇ =�LT
1

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ �LT
2

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ W̃T
c1σ̄1

(
−σ̄ T

1 W̃c1 + εHJ1

ms1

)
+ W̃T

c2σ̄2

(
−σ̄ T

2 W̃c2 + εHJ2

ms2

)

+ 1

4
W̃T

c1�φ1D1�φT
1 Wc1

σ̄ T
1

ms1

W̃c1 − 1

4
W̃T

c1�φ1D1�φT
1 Wc1

σ̄ T
1

ms1

Wc1
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+ 1

4
W̃T

c1�φ1D1�φT
1 W̃c1

σ̄ T
1

ms1

Wc1

+ 1

4
W̃T

c2�φ2D2�φT
2 Wc2

σ̄ T
2

ms2

W̃c2 − 1

4
W̃T

c2�φ2D2�φT
2 Wc2

σ̄ T
2

ms2

Wc2

+ 1

4
W̃T

c2�φ2D2�φT
2 W̃c2

σ̄ T
2

ms2

Wc2

+ 1

2
W̃T

c1
σ̄1

ms1

WT
c1�φ1D2�φT

2 W̃c2 − 1

2
W̃T

c1
σ̄1

ms1

W̃T
c2�φ2S2�φT

2 Wc2

+ 1

2
W̃T

c2
σ̄2

ms2

WT
c2�φ2D1�φT

1 W̃c1 − 1

2
W̃T

c2
σ̄2

ms2

W̃T
c1�φ1S1�φT

1 Wc1

+ 1

4
W̃T

c1�φ1S1�φT
1 Wc1

σ̄ T
2

ms2

W̃c2 − 1

4
W̃T

c1�φ1S1�φT
1 Wc1

σ̄ T
2

ms2

Wc2

+ 1

4
W̃T

c1�φ1S1�φT
1 W̃c1

σ̄ T
2

ms2

Wc2

+ 1

4
W̃T

c2�φ2S2�φT
2 Wc2

σ̄ T
1

ms1

W̃c1 − 1

4
W̃T

c2�φ2S2�φT
2 Wc2

σ̄ T
1

ms1

Wc1

+ 1

4
W̃T

c2�φ2S2�φT
2 W̃c2

σ̄ T
1

ms1

Wc1

− Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

− Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)

+ W̃T
c1F1Ŵc1 − W̃T

c1F2σ̄
T
1 Ŵc1

+ W̃T
c2F3Ŵc2 − W̃T

c2F4σ̄
T
2 Ŵc2. (9.99)

In (9.99), the last two terms can be rewritten as

W̃T
c1F1Ŵc1 − W̃T

c1F2σ̄
T
1 Ŵc1

= W̃T
c1F1Wc1 − W̃T

c1F2σ̄
T
1 W̃c1 − W̃T

c1F2σ̄
T
1 Wc1 − W̃T

c1F2σ̄
T
1 W̃c1

+ W̃T
c2F3Ŵc2 − W̃T

c2F4σ̄
T
2 Ŵc2

= W̃T
c2F3Wc2 − W̃T

c2F3W̃c2 − W̃T
c2F4σ̄

T
2 Wc2 − W̃T

c2F4σ̄
T
2 W̃c2. (9.100)
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Define z = [σ̄ T
1 W̃c1, σ̄

T
2 W̃c2, W̃c1, W̃c2]T; then (9.99) can be rewritten as

L̇ = − zT

⎡
⎢⎢⎣

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎤
⎥⎥⎦ z + zTδ

+ �LT
1

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ �LT
2

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2)

2

)

− Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

− Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)
, (9.101)

where the components of the matrix M are given by

M11 =M22 = I,

M12 =MT
21 = 0,

M13 =MT
31 = − 1

4ms1

�φ1D1�φT
1 Wc1 − F2

2
,

M14 =MT
41 = − 1

4ms1

�φ2D2�φT
1 Wc1 + 1

8
�φ2S2�φT

2 Wc2,

M23 =MT
32 = − 1

4ms2

�φ1D1�φT
2 Wc2 + 1

8
�φ1S1�φT

1 Wc1,

M24 =MT
42 = − 1

4ms2

�φ2D2�φT
2 Wc2 − F4

2
,

M33 = − 1

4ms2

�φ1S1�φT
1 Wc2σ̄

T
2 + F1,

M34 =MT
43 = 0,

M44 = − 1

4ms1

�φ2S2�φT
2 Wc1σ̄

T
1 + F3,

and the components of the vector δ = [d1 d2 d3 d4]T are given as

d1 = εHJ1

ms1

,
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d2 = εHJ2

ms2

,

d3 = − 1

4ms1

�φ1D1�φT
1 Wc1σ̄

T
1 Wc1

− 1

4ms2

�φ1S1�φT
1 Wc1σ̄

T
2 Wc2 + F1Wc1 − F2σ̄

T
1 Wc1,

d4 = − 1

4ms2

�φ2D2�φT
2 Wc2σ̄

T
2 Wc2

− 1

4ms1

�φ2S2�φT
2 Wc2σ̄

T
1 Wc1 + F3Wc2 − F4σ̄

T
2 Wc2.

According to Assumption 9.34 and observing the facts that σ̄1 < 1 and σ̄2 < 1, it
can be concluded that δ is bounded by δM . Let the parameters F1, F2, F3, and F4

be chosen such that M > 0. Then, taking the upper bounds of (9.101) reveals

L̇ ≤�L1

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ �L2

(
f (x) − D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

− ‖z‖2σmin(M) + ‖z‖δM

− Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

− Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)
. (9.102)

Now, the cases of Σ(x, û, ŵ) = 0 and Σ(x, û, ŵ) = 1 will be considered.
(1) When Σ(x, û, ŵ) = 0, the first two terms are less than zero. Noting that

‖x‖ > 0 as guaranteed by the persistent excitation condition and using the operator
defined in (9.92), it can be ensured that there exists a constant ẋmin satisfying 0 <

ẋmin < ‖ẋ‖. Then (9.102) becomes

L̇ ≤ − ẋmin(‖�L1‖ + ‖�L2‖) − ‖z‖2σmin(M) + ‖z‖δM

= − ẋmin(‖�L1‖+‖�L2‖)−σmin(M)

(
‖z‖− δM

2σmin(M)

)2

+ δ2
M

4σmin(M)
. (9.103)
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Given that the following inequalities:

‖�L1‖ ≥ δ2
M

4σmin(M)ẋmin
� B�L1, (9.104)

or

‖�L2‖ ≥ δ2
M

4σmin(M)ẋmin
� B�L2, (9.105)

or

‖z‖ ≥ δM

σmin(M)
� Bz (9.106)

hold, then L̇ < 0. Therefore, using Lyapunov theory, it can be concluded that
‖�L1‖, ‖�L2‖ and ‖z‖ are UUB.

(2) When Σ(x, û, ŵ) = 1, it implies that the feedback control input (9.85) and
(9.86) may not stabilize the system (9.58). Adding and subtracting �LT

1 D1ε1/2 +
�LT

2 D2ε2/2 to the right hand side of (9.102), and using (9.64), (9.65), and (9.80),
we have

L̇ ≤�LT
1 (f (x) + g(x)u∗ + k(x)w∗) + �LT

2 (f (x) + g(x)u∗ + k(x)w∗)

+ 1

2
�L1D1�ε1 + 1

2
�L2D2�ε2 + 1

2
�L1D2�ε2 + 1

2
�L2D1�ε1

− σmin(M)

(
‖z‖ − δM

2σmin(M)

)2

+ δ2
M

4σmin(M)
. (9.107)

According to Assumption 9.34, Di is bounded by DiM , where DiM is a known
constant, i = 1,2. Using Lemma 9.31 and recalling the boundedness of �ε1, �ε2,
and δ, (9.107) can be rewritten as

L̇ ≤ − Q̄1 min‖�L1‖2 − Q̄2 min‖�L2‖2 + 1

2
‖�L1‖D1Mε1dM

+ 1

2
‖�L2‖D2Mε2dM + 1

2
‖�L1‖D2Mε2dM

+ 1

2
‖�L2‖D1Mε1dM − σmin(M)

(
‖z‖ − δM

2σmin(M)

)2

+ δ2
M

4σmin(M)

≤ − 1

2
Q̄1 min‖�L1‖2− 1

2
Q̄2 min‖�L2‖2−σmin(M)

(
‖z‖− δM

2σmin(M)

)2

+η,

(9.108)

where

η = D2
1Mε2

1dM

4Q̄1 min
+ D2

2Mε2
2dM

4Q̄2 min
+ D2

2Mε2
2dM

4Q̄1 min
+ D2

1Mε2
1dM

4Q̄2 min
+ δ2

M

4σmin(M)
.
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Given that the following inequalities:

‖�L1‖ >

√
2η

Q̄1 min
� B ′

�L1
, (9.109)

or

‖�L2‖ >

√
2η

Q̄2 min
� B ′

�L2
, (9.110)

or

‖z‖ >

√
η

σmin(M)
+ δM

2σmin(M)
� B ′

z (9.111)

hold, then L̇ < 0. Therefore, using Lyapunov theory, it can be concluded that
‖�L1‖, ‖�L2‖, and ‖z‖ are UUB.

In summary, for the cases Σ(x, û, ŵ) = 0 and Σ(x, û, ŵ) = 1, if inequalities
‖�L1‖ > max(B�L1 ,B

′
�L1

) � B̄�L1 , or ‖�L2‖ > max(B�L2 ,B
′
�L2

) � B̄�L2 or

‖z‖ > max(Bz,B
′
z) � B̄z hold, then L̇ < 0. Therefore, we can conclude that ‖�L1‖,

‖�L2‖ and ‖z‖ are bounded by B̄�L1 , B̄�L2 , and B̄z, respectively. According to
Lemma 9.31, the Lyapunov candidates �L1 and �L2 are radially unbounded and
continuously differentiable. Therefore, the boundedness of ‖�L1‖ and ‖�L2‖ im-
plies the boundedness of ‖x‖. Specifically, ‖x‖ is bounded by B̄x = max(B1x,B2x),
where B1x and B2x are determined by B̄�L1 and B̄�L2 , respectively. Besides, note
that if any component of z exceeds the bound, i.e., ‖W̃c1‖ > B̄z or ‖W̃c2‖ > B̄z or
‖σ̄ T

1 W̃c1‖ > B̄z or ‖σ̄ T
2 W̃c2‖ > B̄z, the ‖z‖ are bounded by B̄z, which implies that

the critic NN weight estimation errors ‖W̃c1‖ and ‖W̃c2‖ are also bounded by Bz.
Next, we will prove ‖û − u∗‖ ≤ εu and ‖ŵ − w∗‖ ≤ εw . From (9.64) and (9.85)

and recalling the boundedness of ‖�φ1‖ and ‖W̃c1‖, we have

‖û − u∗‖ ≤
∥∥∥∥−1

2
R−1

11 gT�φT
1 W̃c1

∥∥∥∥
≤ λmax(R

−1
11 )�φ1MB̄z

� εu. (9.112)

Similarly, from (9.65) and (9.86) and recalling the boundedness of ‖�φ2‖ and
‖W̃c2‖, we obtain ‖ŵ − w∗‖ ≤ εw .

This completes the proof. �

Remark 9.36 In [10], each player needs two NNs consisting of a critic NN and an
action NN to implement the online learning algorithm. By contrast with [10], only
one critic NN is required for each player, the action NN is eliminated, resulting in a
simpler architecture, and less computational burden.
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Remark 9.37 In Remark 3 of [10] one pointed out that the NN weights can be initial-
ized randomly but non-zero. That is because the method proposed in [10] requires
initial stabilizing control policies for guaranteeing the stability of the system. By
contrast, no initial stabilizing control policies are needed by adding an operator,
which is selected by the Lyapunov’s sufficiency condition for stability, on the critic
NN weight tuning law for each player in this subsection.

9.4.3 Simulations

Example 9.38 An example is provided to demonstrate the effectiveness of the
present control scheme.

Consider the affine nonlinear system as follows:

ẋ = f (x) + g(x)u + k(x)w, (9.113)

where

f (x) =
[

x2 − 2x1

−x2 − 0.5x1 + 0.25x2(cos(2x1 + 2))2 + 0.25x2(sin(4x2
1) + 2)2

]
,

(9.114)

g(x) =
[

0
cos(2x1 + 2)

]
, k(x) =

[
0

sin(4x2
1) + 2)

]
. (9.115)

The cost functionals for player 1 and player 2 are defined by (9.59) and (9.60),
respectively, where Q1(x) = 2xTx, R11 = R12 = 2I , Q2(x) = xTx, R21 = R22 =
2I , and I denotes an identity matrix of appropriate dimensions.

For player 1, the optimal cost function is V ∗
1 (x) = 0.25x2

1 + x2
2 . For player 2, the

optimal cost function is V ∗
2 (x) = 0.25x2

1 + 0.5x2
2 . The activation functions of critic

NNs of two players are selected as φ1 = φ2 = [x2
1 , x1x2, x

2
2 ]T. Then, the optimal

values of the critic NN weights for player 1 are Wc1 = [0.5,0,1]T. The optimal
values of the critic NN weights for player 2 are Wc2 = [0.25,0,0.5]T. The estimates
of the critic NN weights for two players are denoted Ŵc1 = [W11,W12,W13]T and
Ŵc2 = [W21,W22,W23]T, respectively. The adaptive gains for the critic NNs are
selected as a1 = 1 and a2 = 1, and the design parameters are selected as F1 = F2 =
F3 = F4 = 10I . All NN weights are initialized to zero, which means that no initial
stabilizing control policies are needed for implementing the present control scheme.
The system state is initialized as [0.5,0.2]T. To maintain the excitation condition,
probing noise is added to the control input for the first 250 s.

After simulation, the trajectories of the system states are shown in Fig. 9.13.
The convergence trajectories of the critic NN weights for player 1 are shown in
Fig. 9.14, from which we see that the critic NN weights for player 1 finally converge
to [0.4490,0.0280,0.9777]T. The convergence trajectories of the critic NN weights
for player 2 are shown in Fig. 9.15, from which we see that the critic NN weights for
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Fig. 9.13 The trajectories of system states

Fig. 9.14 The convergence trajectories of critic NN weights for player 1

player 2 finally converge to [0.1974,0.0403,0.4945]T. The convergence trajectory
of eu = û − u∗ is shown in Fig. 9.16. The convergence trajectory of ew = ŵ − w∗
is shown in Fig. 9.17. From Fig. 9.16, we see that the error between the estimated
control û and the optimal control u∗ for player 1 is close to zero when t = 230 s.
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Fig. 9.15 The convergence trajectories of critic NN weights for player 2

Fig. 9.16 The convergence trajectory of eu

Similarly, it can been seen from Fig. 9.17 that the estimated control ŵ and the opti-
mal control w∗ for player 2 are also close to zero when t = 180 s. Simulation results
reveal that the present control scheme can make the critic NN learn the optimal cost
function for each player and meanwhile guarantees stability of the closed-loop sys-
tem.
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Fig. 9.17 The convergence trajectory of ew

Fig. 9.18 The trajectories of system states obtained by the method in [10] with initial NN weights
selected being zero

In order to compare with [10], we use the method proposed in [10] to solve the
non-zero-sum games of system (9.113) where all NN weights are initialized to be
zero, then obtain the trajectories of system states as shown in Fig. 9.18. It is shown
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Fig. 9.19 The convergence trajectories of critic NN weights for player 1 (solid line: the method in
[10]), dashed line: our method)

that the system is unstable, which implies that the method in [10] requires initial
stabilizing control policies for guaranteeing the stability of the system. By contrast,
the present method does not need the initial stabilizing control policies.

As pointed out earlier, one of the main advantages of the single ADP approach
is that it results in less computational burden and eliminates the approximation er-
ror resulting from the action NNs. To demonstrate this quantitatively, we apply the
method in [10] and our method to the system (9.113) with the same initial condition.
Figures 9.19 and 9.20 show the convergence trajectories of the critic NN weights
for player 1 and player 2, where the solid line and the dashed line represent the re-
sults from the method in [10] and our method, respectively. For the convenience of
comparison, we define an evaluation function by PER(i) =∑N

k=1 ‖W̃i(k)‖, i = 1,2,
which means that the sum of the norm of the critic NN weights error during running
time, where N is the number of sample points. The evaluation functions of the critic
NN estimation errors as well as the time taken by the method in [10] and our method
are calculated and shown in Table 9.1. It clearly indicates that the present method
takes less time and obtains a smaller approximation error than [10].

9.5 Summary

In this chapter, we investigated the problem of continuous-time differential games
based on ADP. In Sect. 9.2, we developed a new iterative ADP method to obtain
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Fig. 9.20 The convergence trajectories of critic NN weights for player 2 (solid line: the method in
[10]), dashed line: our method)

Table 9.1 Critic NN estimation errors and calculation time

Methods PER(1) PER(2) Time

[10] 78.2312 29.4590 184.2024 s

Our method 70.2541 26.4152 111.1236 s

the optimal control pair or the mixed optimal control pair for a class of affine non-
linear zero-sum differential games. In Sect. 9.3, finite horizon zero-sum games for
nonaffine nonlinear systems were studied. Then, in Sect. 9.4, the case of non-zero-
sum differential games was studied using a single network ADP. Several numerical
simulations showed that the present methods are effective.
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