
Chapter 6
Optimal Feedback Control for Continuous-Time
Systems via ADP

6.1 Introduction

In this chapter, we will study how to design a controller for continuous-time sys-
tems via the ADP method. Although many ADP methods have been proposed for
continuous-time systems [1, 6, 9, 10, 12, 13, 15, 17–19], a suitable framework
in which the optimal controller can be designed for a class of unknown general
continuous-time systems is still not available. Therefore, in Sect. 6.2, we will de-
velop a novel optimal robust feedback control scheme for a class of unknown gen-
eral continuous-time systems using ADP method. The merit of present method is
that we require only the availability of input/output data instead of exact system
model. Moreover, the obtained control input can be guaranteed to be close to the
optimal control input within a small bound.

As is known, in the real world, many practical control systems are described
by nonaffine structure, such as chemical reactions, dynamic model in pendulum
control, etc. The difficulty associated with ADP for nonaffine nonlinear system is
that the nonlinear function is an implicit function with respect to the control variable.
To overcome this difficulty, in Sect. 6.3, we will extend the ADP method to a class
of nonaffine nonlinear systems. Through the present two methods, optimal control
problems of a quite wide class of continuous-time nonlinear systems can be solved.

6.2 Optimal Robust Feedback Control for Unknown General
Nonlinear Systems

In this section, a robust approximate optimal tracking control scheme is developed
for a class of unknown general nonlinear systems by using the ADP method. In
the design of the controller, only available input/output data are required instead
of known system dynamics. First, a data-based model is established by a recurrent
neural network (RNN) to reconstruct the unknown system dynamics using available
input/output data. Then, based on the obtained data-based model, the ADP method
is utilized to design the approximate optimal tracking controller.
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6.2.1 Problem Formulation

Consider the following general continuous-time nonlinear systems:

ẋ(t) = f (x(t), u(t)), (6.1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state vector, u(t) = [u1(t), u2(t),

. . . , um(t)]T ∈ R
m is the input vector, and f (·, ·) is an unknown smooth nonlinear

function with respect to x(t) and u(t).
In this section, our control objective is to design an optimal controller for (6.1),

which ensures that the state vector x(t) tracks the specified trajectory xd(t) while
minimizing the infinite-horizon cost functional as follows:

J (e(t), u) =
∫ ∞

t

l(e(τ ), u(τ ))dτ, (6.2)

where e(t) = x(t)−xd(t) denotes the state tracking error, l(e(t), u(t)) = eT(t)Qe(t)

+ uT(t)Ru(t) is the utility function, and Q and R are symmetric positive definite
matrices with appropriate dimensions.

Since the system dynamics is completely unknown, we cannot apply existing
ADP methods to (6.1) directly. Therefore, it is now desirable to propose a novel con-
trol scheme that does not need the exact system dynamics but only the input/output
data which can be obtained during the operation of the system. Therefore, we pro-
pose a data-based optimal robust tracking control scheme using ADP method for
unknown general nonlinear continuous-time systems. Specifically, the design of the
present controller is divided into two steps:

1. Establishing a data-based model based on an RNN by using available in-
put/output data to reconstruct the unknown system dynamics, and

2. Designing the robust approximate optimal tracking controller based on the ob-
tained data-based model

In the following, the establishment of the data-based model and the controller
design will be discussed in detail.

6.2.2 Data-Based Robust Approximate Optimal Tracking Control

Although we cannot obtain the exact system model in general, fortunately, we can
access input–output data of the unknown general nonlinear systems in many prac-
tical control processes. So it is desirable to use available input–output data in the
design of the controller. The historical input–output data could be incorporated indi-
rectly in the form of a data-based model. The data-based model could extract useful
information contained in the input–output data and capture input–output mapping.
Markov models, neural network models, well structured filters, wavelet models, and
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other function approximation models can be regarded as data-based models [14, 20–
24, 26]. In this section, we develop a data-based model based on a recurrent neural
network (RNN) to reconstruct the unknown system dynamics by using available
input–output data.

To begin with the development, the system dynamics (6.1) is rewritten in the
form of an RNN as follows [16]:

ẋ(t) = C∗Tx(t) + A∗Th(x(t)) + C∗T
u u(t) + A∗T

u + εm(t), (6.3)

where εm(t) is assumed to be bounded, C∗T, A∗T, C∗T
u , and A∗T

u are unknown ideal
weight matrices. The activation function h(·) is selected as a monotonically increas-
ing function and satisfies

0 ≤ h(x) − h(y) ≤ k(x − y), (6.4)

for any x, y ∈R and x ≥ y, k > 0, such as h(x) = tanh(x).
Based on (6.3), the data-based model is then constructed as

˙̂x(t) = ĈT(t)x̂(t) + ÂT(t)h(x̂(t)) + ĈT
u (t)u(t) + ÂT

u(t) − υ(t), (6.5)

where x̂(t) is the estimated system state vector, Ĉ(t), Â(t), Ĉu(t), and Âu(t) are the
estimates of the ideal weight matrices C∗, A∗, C∗

u , and A∗
u, respectively, and υ(t) is

defined as

υ(t) = Sem(t) + θ̂ (t)em(t)

eT
m(t)em(t) + η

, (6.6)

where em(t) = x(t)− x̂(t) is the system modeling error, S ∈ R
n×n is a design matrix,

θ̂ (t) ∈R is an additional tunable parameter, and η > 1 is a constant.

Assumption 6.1 The term εm(t) is assumed to be upper bounded by a function of
modeling error such that

εT
m(t)εm(t) ≤ εM(t) = θ∗eT

m(t)em(t), (6.7)

where θ∗ is the bounded constant target value.

The modeling error dynamics is written as

ėm(t) = C∗Tem(t) + C̃T(t)x̂(t) + A∗Th̃(em(t))

+ ÃT(t)h(x̂(t)) + C̃T
u (t)u(t) + ÃT

u(t) + εa(t)

+ Sem(t) − θ̃ (t)em(t)

eT
m(t)em(t) + η

+ θ∗em(t)

eT
m(t)em(t) + η

, (6.8)

where C̃(t) = C∗ − Ĉ(t), Ã(t) = A∗ − Â(t), C̃u(t) = C∗
u − Ĉu(t), Ãu(t) = A∗

u −
Âu(t), h̃(em(t)) = h(x(t)) − h(x̂(t)), and θ̃ (t) = θ∗ − θ̂ (t).
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Theorem 6.2 (cf. [25]) The modeling error em(t) will be asymptotically convergent
to zero as t → ∞ if the weight matrices and the tunable parameter of the data-based
model (6.5) are updated through the following equations:

˙̂
C(t) = Γ1x̂(t)eT

m(t),

˙̂
A(t) = Γ2f (x̂(t))eT

m(t),

˙̂
Cu(t) = Γ3u(t)eT

m(t),

˙̂
Au(t) = Γ4e

T
m(t),

˙̂
θ(t) = −Γ5

eT
m(t)em(t)

eT
m(t)em(t) + η

, (6.9)

where Γi is a positive definite matrix such that Γi = Γ T
i > 0, i = 1,2, . . . ,5.

Proof Choose the following Lyapunov function candidate:

J3(t) = J1(t) + J2(t), (6.10)

where

J1(t) = 1

2
eT
m(t)em(t),

J2(t) = 1

2
tr{C̃T(t)Γ −1

1 C̃(t) + ÃT(t)Γ −1
2 Ã(t)

+ C̃T
u (t)Γ −1

3 C̃u(t) + ÃT
u(t)Γ −1

4 Ãu(t)} + 1

2
θ̃T(t)Γ −1

5 θ̃ (t).

Then, the time derivative of the Lyapunov function candidate (6.10) along the
trajectories of the error system (6.8) is computed as

J̇1(t) = eT
m(t)C∗Tem(t) + eT

m(t)C̃T(t)x̂(t)

+ eT
m(t)A∗Th̃(em(t)) + eT

m(t)ÃT (t)h(x̂(t))

+ eT
m(t)C̃T

u (t)u(t) + eT
m(t)ÃT

u(t) + eT
m(t)εm(t)

+ eT
m(t)Sem(t) − eT

m(t)θ̃(t)em(t)

eT
m(t)em(t) + η

+ eT
m(t)θ∗em(t)

eT
m(t)em(t) + η

. (6.11)

From (6.4), we can obtain

eT
m(t)A∗Th̃(em(t)) ≤ 1

2
eT
m(t)A∗TA∗em(t) + 1

2
k2eT

m(t)em(t). (6.12)
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According to Assumption 6.1, we have

eT
m(t)εa(t) ≤ 1

2
eT
m(t)em(t) + 1

2
εT
m(t)εm(t)

≤ 1

2
eT
m(t)em(t) + 1

2
θ∗eT

m(t)em(t). (6.13)

Therefore, (6.11) can be rewritten as

J̇1(t) ≤ eT
m(t)C∗Tem(t) + eT

m(t)C̃T(t)x̂(t)

+ 1

2
eT
m(t)A∗TA∗em(t) +

(
1

2
+ 1

2
θ∗ + 1

2
k2

)
eT
m(t)em(t)

+ eT
m(t)ÃT(t)h(x̂(t)) + eT

m(t)C̃T
u (t)u(t) + eT

m(t)ÃT
u(t)

+ eT
m(t)Sem(t) − eT

m(t)θ̃ (t)em(t)

eT
m(t)em(t) + η

+ eT
m(t)θ∗em(t)

eT
m(t)em(t) + η

. (6.14)

By computing the time derivative of J2(t), we have

J̇2(t) = tr{C̃T(t)Γ −1
1

˙̃
C(t) + ÃT(t)Γ −1

2
˙̃
A(t)

+ C̃T
u (t)Γ −1

3
˙̃
Cu(t) + ÃT

u(t)Γ −1
4

˙̃
Au(t)} + θ̃T(t)Γ −1

5
˙̃
θ(t). (6.15)

Combining (6.14) with (6.15), we have

J̇3(t) ≤ eT
m(t)C∗Tem(t) + 1

2
eT
m(t)A∗TA∗em(t)

+ eT
m(t)

((
1

2
+ 1

2
θ∗ + 1

2
k2

)
In + S

)
em(t) + eT

m(t)θ∗em(t)

eT
m(t)em(t) + η

≤ eT
m(t)Ξem(t), (6.16)

where In denotes a n × n identity matrix and

Ξ = C∗T + 1

2
A∗TA∗ +

(
1

2
+ 3

2
θ∗ + 1

2
k2

)
In + S,

and S is selected to make Ξ < 0. Therefore, it can be concluded that J̇3(t) < 0.
Since J3(t) > 0, it follows from [3] that em(t) → 0 as t → ∞.

This completes the proof. �

Remark 6.3 According to the results of Theorem 6.2, since em(t) → 0 as t → ∞,

the term υ(t) → 0 as t → ∞. In addition, ˙̂
C(t) → 0, ˙̂

A(t) → 0, ˙̂
Cu(t) → 0, and

˙̂
Au(t) → 0 as em(t) → 0. It means that Ĉ(t), Â(t), Ĉu(t), and Âu(t) all tend to be
constant matrices which are denoted C, A, Cu, and Au, respectively.
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Consequently, the nonlinear system (6.1) can be rewritten as

ẋ(t) = CTx(t) + ATh(x(t)) + CT
u u(t) + AT

u. (6.17)

In this way, the original optimal tracking control problem of (6.1) is transformed
into the optimal tracking control problem of (6.17). Next, the controller design based
on (6.17) will be given in detail.

It is assumed that the desired trajectory xd(t) has the following form:

ẋd (t) = CTxd(t) + ATh(xd(t)) + CT
u ud(t) + AT

u, (6.18)

where ud(t) is the control input of the desired system.
By using (6.17) and (6.18), the error system can be formulated as

ė(t) = CTe(t) + AThe(t) + CT
u ue(t), (6.19)

where he(t) = h(x(t)) − h(xd(t)) and ue(t) = u(t) − ud(t). It is noted that the
controller u(t) is composed of two parts, the steady-state controller ud(t) and the
feedback controller ue(t).

The steady-state controller ud(t) can be obtained from (6.18) as follows:

ud(t) = C−T
u (ẋd(t) − CTxd(t) − ATh(xd(t)) − AT

u), (6.20)

where C−1
u stands for the pseudo-inverse of Cu. The steady-state controller is used

to maintain the tracking error close to zero at the steady-state stage.
Next, the feedback controller ue(t) will be designed to stabilize the state tracking

error dynamics at transient stage in an optimal manner. In the following, for brevity,
the denotations e(t), ud(t), ue(t), u(t), and V (e(t)) are rewritten as e, ud , ue, u,
and V (e).

The infinite-horizon cost functional (6.2) is transformed into

J (e,u) =
∫ ∞

t

l(e(τ ), ue(τ ))dτ, (6.21)

where l(e, ue) = eTQe + uT
e Rue is the utility function; Q and R are symmetric

positive definite matrices with appropriate dimensions.
It is desirable to find the optimal feedback control u∗

e which stabilizes the sys-
tem (6.19) and minimizes the cost functional (6.21). The kind of control is called
admissible control.

Define the Hamilton function as

H(e,ue, Je) = J T
e (CTe + AThe + CT

u ue) + eTQe + uT
e Rue, (6.22)

where Je = ∂J (e)/∂e.
The optimal value function J ∗(e) is defined as

J ∗(e) = min
ue∈ψ(Ω)

∫ ∞

t

l(e(τ ), ue(e(τ )))dτ, (6.23)
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and satisfies

0 = min
ue∈ψ(Ω)

(H(e,ue, J
∗
e )). (6.24)

Further, we can obtain the optimal control u∗
e by solving ∂H(e,ue, J

∗
e )/∂ue = 0 as

u∗
e = −1

2
R−1CuJ

∗
e , (6.25)

where J ∗
e = ∂J ∗(e)/∂e. Then, the overall optimal control input can be rewritten as

u∗ = ud + u∗
e .

In the following, we will focus on the optimal feedback controller design using
the ADP method, which is implemented by employing the critic NN and the action
NN.

A neural network is utilized to approximate J (e) as

J (e) = WT
c φc(e) + εc, (6.26)

where Wc is the unknown ideal constant weights and φc(e) : Rn → R
N1 is called

the critic NN activation function vector, N1 is the number of neurons in the hidden
layer, and εc is the critic NN approximation error.

The derivative of the cost function J (e) with respect to e is

Je = �φT
c Wc +�εc, (6.27)

where �φc � ∂φc(e)/∂e and �εc � ∂εc/∂e.
Let Ŵc be an estimate of Wc, then we have the estimate of J (e) as follows:

Ĵ (e) = ŴT
c φc(e). (6.28)

Then, the approximate Hamilton function can be derived as follows:

H(e,ue, Ŵa) = ŴT
c �φc(C

Te + AThe + CT
u ue) + eTQe + uT

e Rue

= ec. (6.29)

Given any admissible control law ue, we desire to select Ŵc to minimize the
squared residual error Ec(Ŵc) as follows:

Ec(Ŵc) = 1

2
eT
c ec. (6.30)

The weight update law for the critic NN is a gradient descent algorithm, which
is given by

˙̂
Wc = −αcσc(φ

T
c Ŵc + eTQe + uT

e Rue), (6.31)
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where αc > 0 is the adaptive gain of the critic NN, σc = σ/(σTσ + 1), σ =
�φc(C

Te + AThe + CT
u ue). Therefore, there exists a positive constant σcM > 1

such that ‖σc‖ ≤ σcM . Define the weight estimation error of critic NN to be
W̃c = Ŵc − Wc, and note that, for a fixed control law ue, the Hamilton function
(6.22) becomes

H(e,ue,Wc) = WT
c �φc(C

Te + AThe + CT
u ue) + eTQe + uT

e Rue

= εHJB, (6.32)

where the residual error due to the NN approximation error is εHJB = −�εc(C
Te +

AThe + CT
u ue).

Rewriting (6.31) by using (6.32), we have

˙̃
Wc = −αcσc(φ

T
c W̃c + εHJB). (6.33)

To begin the development of the feedback control law, ue is approximated by the
action NN as

ue = WT
a φa(e) + εa, (6.34)

where Wa is the matrix of unknown ideal constant weights and φa(e) : Rn → R
N2

is called the action NN activation function vector, N2 is the number of neurons in
the hidden layer, and εa is the action NN approximation error.

Let Ŵa be an estimate of Wa , the actual output can be expressed as

ûe = ŴT
a φa(e). (6.35)

The feedback error signal used for tuning action NN is defined to be the differ-
ence between the real feedback control input applied to the error system (6.19) and
the desired control signal input minimizing (6.28) as

ea = ŴT
a φa + 1

2
R−1Cu�φT

c Ŵc. (6.36)

The objective function to be minimized by the action NN is defined as

Ea(Ŵa) = 1

2
eT
a ea. (6.37)

The weight update law for the action NN is a gradient descent algorithm, which
is given by

˙̂
Wa = −αaφa

(
ŴT

a φa + 1

2
R−1Cu�φT

c Ŵc

)T

, (6.38)

where αa > 0 is the adaptive gain of the action NN.
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Define the weight estimation error of action NN to be W̃a = Ŵa − Wa . Since
the control law in (6.34) minimizes the infinite-horizon cost functional (6.26), from
(6.25) we have

εa + WT
a φa + 1

2
R−1Cu�φT

c Wc + 1

2
R−1Cu�εc = 0. (6.39)

Combining (6.38) with (6.39), we have

˙̃
Wa = −αaφa

(
W̃T

a φa + 1

2
R−1Cu�φT

c W̃c + ε12

)T

, (6.40)

where ε12 = −(εa + R−1Cu�εc/2).

Remark 6.4 It is important to note that the tracking error must be persistently ex-
cited: enough for tuning the critic NN and action NN. In order to satisfy the persis-
tent excitation condition, probing noise is added to the control input [17]. Further,
the persistent excitation condition ensures ‖σc‖ ≥ σcm and ‖φa‖ ≥ φam with σcm

and φam being positive constants.

Based on the above analysis, the optimal tracking controller is composed of the
steady-state controller ud and the optimal feedback controller ue . As a result, the
control input is written as

u = ud + ûe. (6.41)

According to (6.35) and the error system (6.19), we have

ė = CTe + AThe + CT
u ŴT

a φa. (6.42)

Subtracting and adding CT
u Waφa to (6.42), and then recalling (6.34), (6.42) is

rewritten as

ė = CTe + AThe + CT
u W̃T

a φa + CT
u ue − CT

u εa. (6.43)

In the following, the stability analysis will be performed. First, the following
assumption is made, which can reasonably be satisfied under the current problem
settings.

Assumption 6.5

(a) The unknown ideal constant weights for the critic NN and the action NN, i.e.,
Wc and Wa , are upper bounded so that ‖Wc‖ ≤ WcM and ‖Wa‖ ≤ WaM with
WcM and WaM being positive constants, respectively.

(b) The NN approximation errors εc and εa are upper bounded so that ‖εc‖ ≤ εcM

and ‖εa‖ ≤ εaM with εcM and εaM being positive constants, respectively.
(c) The vectors of the activation functions of the critic NN and the action NN, i.e.,

φc and φa , are upper bounded so that ‖φc(·)‖ ≤ φcM and ‖φa(·)‖ ≤ φaM with
φcM and φaM being positive constants, respectively.
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(d) The gradients of the critic NN approximation error and the activation function
vector are upper bounded so that ‖�εc‖ ≤ ε′

cM and ‖�φa‖ ≤ φdM with ε′
cM

and φdM being positive constants. The residual error is upper bounded so that
‖εHJB‖ ≤ εHJBM with εHJBM being positive constant.

Now we are ready to prove the following theorem.

Theorem 6.6 (cf. [25]) Consider the system given by (6.17) and the desired trajec-
tory (6.18). Let the control input be provided by (6.41). The weight updating laws of
the critic NN and the action NN are given by (6.31) and (6.38), respectively. Let the
initial action NN weights be chosen to generate an initial admissible control. Then,
the tracking error e, the weight estimate errors W̃c and W̃a are uniformly ultimately
bounded (UUB) with the bounds specifically given by (6.51)–(6.53). Moreover, the
obtained control input u is close to the optimal control input u∗ within a small bound
εu, i.e., ‖u − u∗‖ ≤ εu as t → ∞ for a small positive constant εu.

Proof Choose the following Lyapunov function candidate:

L(t) = L1(t) + L2(t) + L3(t), (6.44)

where L1(t) = tr{W̃T
c W̃c}/2αc, L2(t) = αc tr{W̃T

a W̃a}/2αa , and L3(t) =
αcαa(e

Te + Γ J(e)) with Γ > 0.
According to Assumption 6.5 and using (6.21), (6.33), and (6.40), the time

derivative of the Lyapunov function candidate (6.44) along the trajectories of the
error system (6.43) is computed as follows:

L̇(t) = L̇1(t) + L̇2(t) + L̇3(t), (6.45)

where

L̇1(t) = 1

αc

tr{W̃T
c

˙̃
Wc}

= 1

αc

tr{W̃T
c (−αcσc(φ

T
c W̃c + εHJB))}

≤ −
(

σ 2
cm − αc

2
σ 2

cM

)
‖W̃c‖2 + 1

2αc

ε2
HJB,

L̇2(t) = αc

αa

tr{W̃T
a

˙̃
Wa}

= αc

αa

tr

{
W̃T

a

(
−αaφa

(
W̃T

a φa + 1

2
R−1Cu�φT

c W̃c + ε12

)T)}

≤ −
(

αcφ
2
am − 3

4
αcαaφ

2
aM

)
‖W̃a‖2

+ αc

4αa

‖R−1‖2‖Cu‖2φ2
dM‖W̃c‖2 + αc

2αa

εT
12ε12,
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L̇3(t) = 2αcαae
Tė + αcαaΓ (−eTQe − uT

e Rue)

= 2αcαae
T(CTe + AT he + CT

u W̃T
a φa + CT

u ue

− CT
u εa) + αcαaΓ (−eTQe − uT

e Rue)

≤ αcαa(2‖C‖ + 3 + ‖A‖2 + k2 − Γ λmin(Q))‖e‖2

+ αcαaφ
2
aM‖Cu‖2‖W̃a‖2 + αcαa‖Cu‖2εT

a εa

+ αcαa(‖Cu‖2 − Γ λmin(R))‖ue‖2.

Then we obtain

L̇(t) ≤ −
(

σ 2
cm − αc

2
σ 2

cM − αc

4αa

‖R−1‖2‖Cu‖2φ2
dM

)
‖W̃c‖2

−
(

αcφ
2
am − 3

4
αcαaφ

2
aM − αcαaφ

2
aM‖Cu‖2

)
‖W̃a‖2

− αcαa(−‖Cu‖2 + Γ λmin(R))‖ue‖2

− αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))‖e‖2

+ 1

2αc

ε2
HJB + αc

2αa

εT
12ε12 + αcαa‖Cu‖2εT

a εa. (6.46)

By using Assumption 6.5, we have ‖ε12‖ ≤ ε12M , where ε12M = εaM +
R−1Cuε

′
cM/2. Then, we have

1

2αc

ε2
HJB + αc

2αa

εT
12ε12 + αcαa‖Cu‖2εT

12ε12 ≤ DM, (6.47)

where DM = ε2
HJBM/(2αc) + αcε

2
12M/(2αa) + αcαa‖Cu‖2ε2

12M .
If Γ , αc , and αa are selected to satisfy

Γ > max

{ ‖Cu‖2

λmin(R)
,

2‖C‖ + 3 + ‖A‖2 + k2

λmin(Q)

}
, (6.48)

αc <
4αaσ

2
cm

2αaσ
2
cM + ‖R−1‖2‖Cu‖2φ2

dM

, (6.49)

αa <
4φ2

am

3φ2
aM + 4φ2

aM‖Cu‖2
, (6.50)

and given the following inequalities:

‖e‖ >

√
DM

αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))

� be, (6.51)
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or

‖W̃c‖ >

√
4αaDM

4αaσ 2
cm − 2αaαcσ

2
cM − αc‖R−1‖2‖Cu‖2φ2

dM

� b
W̃c

, (6.52)

or

‖W̃a‖ >

√
4DM

4αcφ2
am − 3αcαaφ

2
aM − 4αcαaφ

2
aM‖Cu‖2

� b
W̃a

, (6.53)

then we can conclude L̇(t) < 0. Therefore, using Lyapunov theory [7], it can be
concluded that the tracking error e, and the NN weight estimation errors W̃c and W̃a

are UUB.
Next, we will prove ‖u − u∗‖ ≤ εu as t → ∞. Recalling the expression of u∗

together with (6.34) and (6.41), we have

u − u∗ = W̃T
a φa + εa. (6.54)

When t → ∞, the upper bound of (6.54) is

‖u − u∗‖ ≤ εu, (6.55)

where εu = b
W̃a

φaM + εaM .
This completes the proof. �

Remark 6.7 From (6.31) and (6.38), it is noted that the weights of critic NN and
action NN are updated simultaneously in contrast with some standard ADP methods
in which the weights of critic NN and action NN are updated sequentially.

Remark 6.8 If the NN approximation errors εc and εa are considered to be neg-
ligible, then from (6.47) we have DM = 0, with u → u∗. Otherwise, the obtained
control input u is close to the optimal input u∗ within a small bound εu.

Due to the presence of the NN approximation errors εc and εa , the tracking error
is UUB instead of asymptotically convergent to zero. In the following, for improving
the tracking performance, an additional robustifying term is developed to attenuate
the NN approximation errors such that tracking error converges to zero asymptoti-
cally, which can be constructed in the form

ur = Kre

eTe + ζ
, (6.56)

where ζ > 0 is a constant, Kr > Kr min is a designed parameter. Kr min is selected
to satisfy the following inequality:

Kr min ≥ DM(eTe + ζ )

2αcαa‖Cu‖eTe
. (6.57)
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Then, the overall control input is given as

uad = u − ur, (6.58)

where u is the same as (6.41).
Applying (6.58) to the error system (6.17) and using (6.18), a new error system

is obtained as follows:

ė = CTe + AThe + CT
u W̃T

a φa + CT
u ue − CT

u εa − CT
u ur . (6.59)

Theorem 6.9 (cf. [25]) Consider the system given by (6.17) and the desired trajec-
tory (6.18). Let the control input be provided by (6.58). The weight updating laws of
the critic NN and the action NN are given by (6.31) and (6.38), respectively. Let the
initial action NN weights be chosen to generate an initial admissible control. Then,
the tracking error e and the weight estimation errors W̃c and W̃a will asymptotically
converge to zero. Moreover, the obtained control input uad is close to the optimal
control input u∗ within a small bound δu, i.e., ‖uad − u∗‖ ≤ δu as t → ∞ for a
small positive constant δu.

Proof Choose the same Lyapunov function candidate as that in Theorem 6.6. Dif-
ferentiating the Lyapunov function candidate in (6.44) along the trajectories of the
error system in (6.59), similar to the proof of Theorem 6.6, by using (6.56) and
(6.57), we obtain

L̇(t) ≤ −
(

σ 2
cm − αc

2
σ 2

cM − αc

4αa

‖R−1‖2‖Cu‖2φ2
dM

)
‖W̃c‖2

−
(

αcφ
2
am − 3

4
αcαaφ

2
aM − αcαaφ

2
aM‖Cu‖2

)
‖W̃a‖2

− αcαa(−‖Cu‖2 + Γ λmin(R))‖ue‖2

− αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))‖e‖2. (6.60)

Choosing Γ , αc, and αa as Theorem 6.6, we have L̇(t) ≤ 0. Equations (6.44) and
(6.60) guarantee that the tracking error e, NN weight estimation errors W̃c and W̃a

are bounded, since L is nonincreasing. Because all the variables on the right-hand
side of (6.59) are bounded, ė is also bounded. From (6.60), we have

L̇(t) ≤ −Be‖e‖2, (6.61)

where Be = αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q)).
Integrating both sides of (6.61) and after some manipulations, we have

∫ ∞

0
‖e‖2dt ≤ B−1

e (L(0) − L(∞)). (6.62)

Since the right side of (6.59) is bounded, ‖e‖ ∈ L2. Using Barbalat’s lemma [7],
we have limt→∞ ‖e‖ = 0. Similarly, we can prove that limt→∞ ‖W̃c‖ = 0 and
limt→∞ ‖W̃a‖ = 0.
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Next, we will prove ‖uad − u∗‖ ≤ δu as t → ∞. From (6.34) and (6.58), we can
have

uad − u∗ = W̃T
a φa + εa + ur . (6.63)

Since ‖e‖ → 0 as t → ∞, the robustifying control input ‖ur‖ → 0 as t → ∞.
Then, the upper bound of (6.63) is

‖uad − u∗‖ ≤ δu, (6.64)

where δu = εaM .
This completes the proof. �

Remark 6.10 From (6.55) and (6.64), it can be seen that δu is smaller than εu, which
reveals the role of the robustifying term in making the obtained control input closer
to the optimal control input.

6.2.3 Simulations

In this subsection, two examples are provided to demonstrate the effectiveness of
the present approach.

Example 6.11 Consider the following affine nonlinear continuous-time system:

ẋ1 = −x1 + x2,

ẋ2 = −0.5x1 − 0.5x2(1 − (cos(2x1) + 2)2)

+ (cos(2x1) + 2)u. (6.65)

The cost functional is defined by (6.21) where Q and R are chosen as identity
matrices of appropriate dimensions. The control object is to make x1 follow the
desired trajectory x1d = sin(t). It is assumed that the system dynamics is unknown
and input/output data are available.

First, a data-based model is established to estimate the nonlinear system dy-
namics. Let us select the RNN as (6.5) with S = −30I2 and η = 1.5. The ac-
tivation function h(x̂) is selected as hyperbolic tangent function tanh(x̂). Select
the design parameters in Theorem 6.2 as Γ1 = [1,0.1;0.1,1], Γ2 = [1,0.2;0.2,1],
Γ3 = [1,0.1;0.1,1], Γ4 = 0.2, and Γ5 = 0.1. Then, we can obtain the trajectories of
the modeling error as shown in Fig. 6.1. It is observed that the obtained data-based
model can reconstruct the nonlinear system dynamics successfully, as Theorem 6.2
predicted.

Then, based on the obtained data-based model, the approximate optimal robust
controller is implemented for the unknown affine nonlinear continuous-time system
(6.65). The activation function of the critic NN is selected as φc = [e2

1 e1e2 e2
2]T, the
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Fig. 6.1 The modeling error for the affine nonlinear system

critic NN weights are denoted Ŵc = [Wc1 Wc2 Wc3]T. The activation function of the
action NN φa is chosen as the gradient of the critic NN, the action NN weights are
denoted Ŵa = [Wa1 Wa2 Wa3]T. The adaptive gains for the critic NN and action NN
are selected as αc = 0.8 and αa = 0.5, and the design parameters of the robustifying
term are selected as Kr = [20,20], ζ = 1.2. Additionally, the critic NN weights are
set as [1,1,1]T at the beginning of the simulation with the initial weights of the
action NN chosen to reflect the initial admissible control. To maintain the excitation
condition, probing noise is added to the control input for the first 5000 s.

After simulation, the trajectory of the tracking error is shown in Fig. 6.2. The
convergence trajectories of the critic NN weights and action NN weights are shown
in Figs. 6.3 and 6.4, respectively. For comparing the tracking performance, we apply
the obtained optimal robust controller and the initial admissible controller to system
(6.65) under the same initial state, and obtain the trajectories of tracking error as
shown in Fig. 6.5, respectively. It can be seen from Fig. 6.5 that the present robust
approximate optimal controller yields a better tracking performance than the initial
admissible controller.

Example 6.12 Consider the following continuous-time nonaffine nonlinear system:

ẋ1 = x2,

ẋ2 = x2
1 + 0.15u3 + 0.1(4 + x2

2)u + sin(0.1u). (6.66)

The cost functional is defined as Example 6.11. The control objective is to make
x1 follow the desired trajectory x1d = sin(t). It is assumed that the system dynamics
is unknown and input/output data are available.
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Fig. 6.2 The tracking error for the affine nonlinear system

Fig. 6.3 The critic NN weights

Using a similar method as shown in Example 6.11, we can obtain the trajectories
of modeling error as shown in Fig. 6.6. It is observed that the obtained data-based
model learns the nonlinear system dynamics successfully, as Theorem 6.2 predicted.
Then, based on the obtained data-based model we design the robust approximate
optimal controller, which is then applied to the unknown nonaffine nonlinear system



6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 239

Fig. 6.4 The action NN weights

Fig. 6.5 The comparison result between initial admissible controller and robust approximate op-
timal controller

(6.66). The activation functions of the critic NN and action NN are the same as the
ones in Example 6.11. The adaptive gains for critic NN and action NN are selected
as αc = 0.5 and αa = 0.2 and the parameters of the robustifying term are selected
as Kr = [10,10], ζ = 1.2. Additionally, the critic NN weights are set as [1,1,1]T at
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Fig. 6.6 The modeling error for the continuous-time nonaffine nonlinear system

Fig. 6.7 The tracking error for the nonaffine nonlinear system

the beginning of the simulation with the initial weights of the action NN chosen to
reflect the initial admissible control. Similarly, to maintain the excitation condition,
probing noise is added to the control input for the first 1500 s.

After simulation, the trajectory of the tracking error is shown in Fig. 6.7. The
convergence trajectories of the critic NN weights and action NN weights are shown
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Fig. 6.8 The critic NN weights

Fig. 6.9 The action NN weights

in Figs. 6.8 and 6.9, respectively. Similarly, for comparing the tracking performance,
we apply the obtained robust optimal controller and the initial admissible controller
to system (6.66) for the same initial state, and obtain the trajectories of tracking
error as shown in Fig. 6.10, respectively. It can be seen from Fig. 6.10 that the
present robust approximate optimal controller yields better tracking performance
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Fig. 6.10 The comparison result between initial admissible controller and robust approximate
optimal controller

than the initial admissible controller. The simulation results reveal that the present
controller can be applied to nonaffine nonlinear systems and we obtain satisfactory
tracking performance even for the unknown system dynamics.

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems

In this section, we will study the optimal feedback control problem of a class of
continuous-time nonaffine nonlinear systems via the ADP method.

6.3.1 Problem Formulation

Consider a class of continuous-time nonaffine nonlinear systems described as fol-
lows:

ẋi = xi+1, i = 1, . . . , n − 1,

ẋn = f (x,u),

y = x1, (6.67)

where x = [x1, . . . , xn]T ∈ R
n is the system state vector, u ∈ R is the control input,

and y ∈ R is the output of the system; f (x,u) is an unknown smooth function
satisfying f (0,0) = 0.
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Assumption 6.13 The control effectiveness term fu(x,u) � ∂f (x,u)/∂u has a
known sign and is bounded away from zero, i.e., there exists df > 0 such that
|fu(x,u)| ≥ df . Without loss of generality, we assume fu > 0.

The control objective is to force the system output y to follow the desired trajec-
tory yd while ensuring that all the signals of the closed-loop system are bounded.
Assume that yd and its up to n times derivatives, namely ẏd , y

(2)
d , . . . , and y

(n)
d are

smooth, bounded, and available for design.

6.3.2 Robust Approximate Optimal Control Based on ADP
Algorithm

Define the tracking error ỹ=y−yd , desired trajectory vector ȳd =[yd, . . . , y
(n−1)
d ]T,

tracking error vector x̃ = x − ȳd , and the filtered tracking error as

r = ỹ(n−1) + λn−1ỹ
(n−2) + · · · + λ2ỹ

(1) + λ1ỹ = [ΛT 1]x̃, (6.68)

where λi, i = 1, . . . , n − 2, are chosen such that the polynomial H(s) = s(n−1) +
λn−1s

(n−2) + · · · + λ1 is Hurwitz, and Λ = [λ1, . . . , λn−1]T.
With these definitions, the tracking error dynamics can be given as follows:

ṙ = −y
(n)
d + [0 ΛT]x̃ + f (x,u). (6.69)

Then, feedback linearization is performed by introducing a so-called pseudo-
control

υ = f̂ (x, u), (6.70)

where f̂ (x, u) is an available approximation of f (x,u) satisfying Assumption 6.13.

Assumption 6.14 f̂u � ∂f̂ (x,u)/∂u ≥ d
f̂

> 0 for some d
f̂

, and there exist some

constants bl , bu > 0 such that bl ≤ fu/f̂u ≤ bu.

By adding and subtracting υ on the right-hand side of (6.69), the tracking error
dynamics can be rewritten as follows:

ṙ = −y
(n)
d + [0 ΛT]x̃ + f̂ (x, u) + Δ, (6.71)

where Δ = f (x,u) − f̂ (x, u) is the modeling error.
The pseudocontrol υ is designed as

υ = υrm + υdc − υad + υr, (6.72)
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where υrm = y
(n)
d −[0 ΛT]x̃, υdc = −Kr is to stabilize the tracking error dynamics

in the absence of a modeling error, υad is used to approximately cancel the modeling
error, and υr is a robustifying term.

By inverting (6.70), we have the following control law:

u = f̂ −1(x,υ). (6.73)

Then, applying (6.73) to (6.71), we have

ṙ = −Kr + Δ − υad + υr . (6.74)

The term Δ − υad can be expressed as

Δ − υad = f (x, f̂ −1(x,υrm + υdc − υad + υr)) − υrm − υdc − υr . (6.75)

Reference [2] points out that Δ depends on υad through (6.72) and (6.73), while
υad is designed to cancel Δ. A contraction mapping assumption on Δ with respect
to υad is required to guarantee the existence of a smooth function υ∗

ad = Δ(·, υ∗
ad).

To remove the contraction mapping assumption, we follow the work of [8]. Define
υl � υrm + υdc, υ∗ � f̂ (x, f −1(x,υl)). Then we have υl = f (x, f̂ −1(x,υ∗)).

Using the mean value theorem [5], (6.75) can be expressed as

Δ − υad = f (x,u) − f̂ (x, u) − υad

= f (x, f̂ −1(x,υ)) − υl + υad − υr − υad

= f (x, f̂ −1(x,υ)) − f (x, f̂ −1(x,υ∗)) − υr

= fυ(ῡ)(υ − υ∗) − υr

= fυ(ῡ)(υl − υad + υr − f̂ (x, f −1(x,υl))) − υr

= fυ(ῡ)(−υad + υr + Δ̄) − υr, (6.76)

where Δ̄ = υl − f̂ (x, f −1(x,υl)) = f (x, f̂ −1(x,υ∗)) − f (x,f −1(x,υl)) de-
notes the unknown uncertain term, fυ(ῡ) � (∂f/∂u)(∂u/∂v)|υ=ῡ = (∂f/∂u)/

(∂f̂ /∂u)|
u=f̂ −1(x,ῡ)

, ῡ = λυ + (1 − λ)υ∗ and 0 ≤ λ(υ) ≤ 1.
Then, substituting (6.76) into (6.74), we have

ṙ = −Kr + fυ(ῡ)(−υad + Δ̄) + fυ(ῡ)υr . (6.77)

If Δ̄ is known, υad can be chosen as υad = Δ̄; then we let υr = 0. Since Δ̄ is
unknown, the desired υad cannot be implemented directly. Instead, an action NN is
employed to approximate Δ̄ as follows:

Δ̄ = WT
a φa(x̄) + εa(x̄), (6.78)

where x̄ = [1, x,υl, ȳd ], Wa ∈ R
N is the ideal weight of the action NN, φa(x̄) ∈ R

N

is the basis function of the action NN, and εa(x̄) is the reconstruction error of the
action NN satisfying ‖εa(x̄)‖ ≤ ε∗

a .
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Remark 6.15 Because the unknown nonlinear function f (x,u) of (6.67) is an im-
plicit function with respect to the control input u, traditional ADP methods can
rarely be applied. To overcome this difficulty, the action NN is employed to ap-
proximate the derived unknown uncertain term Δ̄ instead of modeling the unknown
system (6.67) directly.

The adaptive signal υad is designed as

υad = ŴT
a φa(x̄), (6.79)

where Ŵa is the estimate of Wa .
Substituting (6.78) and (6.79) into (6.77), the following is immediate:

ṙ = −Kr + (fυ(ῡ) − bu)W̃
T
a φa(x̄) + buW̃

T
a φa

+ fυ(ῡ)υr + fυ(ῡ)εa(x̄), (6.80)

where W̃a = Wa − Ŵa .
Using adaptive bounding technique, the robustifying term υr is designed as

υr = − br

1 − br

|κ̂|ψ tanh

(Rψ

α

)
, (6.81)

where br = 1− (bl/bu) < 1 and α is a design parameter, κ̂ is the adaptive parameter,
R and ψ will be defined later. Applying (6.81) to (6.80), the tracking error dynamics
can be rewritten as

ṙ = −Kr + buW̃
T
a φa + bu

[
υr +

(
fυ(ῡ)

bu

− 1

)(
υr + W̃T

a φa

)]

+ fυ(ῡ)εa(x̄). (6.82)

Remark 6.16 Since tanh(·) can maintain a continuous control signal while sgn(·)
will result in a chattering phenomenon due to its discontinuity, the robustifying term
is designed based on tanh(·) rather than sgn(·).

Next, we choose the critic signal as [13]

Rn = R+ |R|WT
c φc(r). (6.83)

The first term R is called the primary critic signal which is defined in terms of the
performance measure as

R= χ

1 + e−mr
− χ

1 + emr
, (6.84)

where m is a positive constants and the value of R is bounded in the interval
[−χ,χ] with χ > 0 being the critic slope gain. The second term |R|WT

c φc(r) is
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called the second critic signal, where Wc is the ideal weight of critic NN and φc(r)

is the basis function of critic NN. The actual output of the critic NN is ŴT
c φc(r)

where Ŵc is the estimate of Wc. Then, the actual critic signal can be expressed as
R̂n = R + |R|ŴT

c φc(r). Define W̃c = Wc − Ŵc. It should be noted that R will
approach zero when r approaches zero. Therefore we can conclude that R̂n will
approach zero. As a learning signal, the critic signal R̂n is more informative than
the filtered tracking error r . Consequently, a larger control input can be yielded and
better tracking performance can be obtained.

Next, the uniformly ultimate boundedness of the closed-loop system is demon-
strated by the Lyapunov method.

Assumption 6.17 The ideal weights of the action NN and the critic NN, i.e., Wa

and Wc, are bounded above by unknown positive constants so that ‖Wa‖ ≤ W ∗
a ,

‖Wc‖ ≤ W ∗
c .

Assumption 6.18 The activation functions of the action NN and critic NN, φa

and φc , are bounded above by known positive constants, so that ‖φa‖ ≤ φ∗
a ,

‖φc‖ ≤ φ∗
c .

Lemma 6.19 (cf. [4]) The following inequality holds:

‖δ‖� ‖Rfυ(ῡ)εa(x̄) + bubr |R|‖W̃a‖‖φa‖
+ bu|R|tr{ŴT

a φaφ
T
c Wa − WT

a φa(φ
T
c Ŵc)}‖

≤ bubr |R|κ∗ψ, (6.85)

where κ∗ is an unknown constant and ψ = 1 + ‖Ŵa‖ + ‖Ŵc‖.

Proof Using Assumptions 6.13, 6.14, 6.17, and 6.18, the boundedness of εa(x̄) and
the inequality ‖W̃a‖ ≤ ‖Ŵa‖ + ‖W ∗

a ‖, we have

‖δ‖ ≤ |R|buε
∗
a + bubr |R|‖Ŵa‖‖φa‖ + bubr |R|W ∗

a ‖φa‖
+ bu|R|φ∗

aφ∗
c W ∗

c ‖Ŵa‖ + bu|R|φ∗
aφ∗

c W ∗
a ‖Ŵc‖

≤ bubr |R|κ∗ψ, (6.86)

where κ∗ � max{ε∗
a/br +W ∗

a φ∗
a ,φ∗

a (1+φ∗
c W ∗

c /br),φ
∗
aφ∗

c W ∗
a /br}, ψ = 1+‖Ŵa‖+

‖Ŵc‖.
This completes the proof. �

Theorem 6.20 (cf. [4]) Under Assumptions 6.13, 6.14 and 6.17, considering the
closed-loop system consisting of system (6.67) and the control u provided by (6.73),
the weights tuning laws of the action NN and critic NN are

˙̂
Wa = α1(φa(R+ |R|ŴT

c φc)
T − KWa |R|Ŵa), (6.87)
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˙̂
Wc = −α2(|R|φc(Ŵ

T
a φa)

T + KWc |R|Ŵc), (6.88)

and the tuning law of the adaptive parameter is

˙̂κ = α3

(
Rψ tanh

(Rψ

α

)
− Kκκ̂

)
, (6.89)

where α1, α2, α3, KWa , KWc , and Kκ are the positive design parameters. If Kκ >

1/(bubr), then all the closed-loop signals are uniformly ultimately bounded.

Proof Choose a Lyapunov function candidate as

L = ρ(r) + bu

2α1
tr{W̃T

a W̃a} + bu

2α2
tr{W̃T

c W̃c} + bubr

2α3
κ̃2, (6.90)

where ρ(r) = χ(ln(1 + emr) + ln(1 + e−mr))/m, κ̃ = κ∗ − κ̂ . The time derivative
of (6.90) can be expressed as

L̇ = Rṙ + bu

α1
tr{W̃T

a
˙̃

Wa} + bu

α2
tr{W̃T

c
˙̃

Wc} + bubr

α3
κ̃ ˙̃κ. (6.91)

Substituting (6.82) into (6.91), we have

L̇ = R
{
−Kr + buW̃

T
a φa + bu

[
υr +

(
fυ(ῡ)

bu

− 1

)(
fυ(ῡ) + W̃T

a φa

)]}

+Rfυ(ῡ)εa(x̄) + bu

α1
tr{W̃T

a
˙̃

Wa} + bu

α2
tr{W̃T

c
˙̃

Wc} + bubr

α3
κ̃ ˙̃κ. (6.92)

Applying (6.87) to (6.92), we have

L̇ = R
{
−Kr + buW̃

T
a φa + bu

[
υr +

(
fυ(ῡ)

bu

− 1

)(
fυ(ῡ) + W̃T

a φa

)]}

+Rfυ(ῡ)εa(x̄) − butr
{
W̃T

a (φa(R+ |R|ŴT
c φc)

T − KWa |R|Ŵa)
}

+ bu

α2
tr{W̃T

c
˙̃

Wc} + bubr

α3
κ̃ ˙̃κ. (6.93)

Due to the fact that

butr{W̃T
a φaR} = RbuW̃

T
a φa,

tr{W̃T
a φa|R|(ŴT

c φc)
T} = |R|W̃T

a φaφ
T
c Ŵc

= |R|(−ŴT
a φaφ

T
c Wa + WT

a φaφ
T
c Ŵc + ŴT

a φaφ
T
c W̃c),

(6.94)
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and using (6.88), (6.93) can be rewritten as

L̇ ≤ −RKr +Rbu

[
υr +

(
fυ(ῡ)

bu

− 1

)(
fυ(ῡ) + W̃T

a φa

)]
+Rfυ(ῡ)εa(x̄)

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc}

+ bu|R|(−ŴT
a φa(φ

T
c Wa) + WT

a φaφ
T
c Ŵc) + bubr

α3
κ̃ ˙̃κ. (6.95)

With the robustifying term in (6.81), we have

Rυr = − br

1 − br

|κ̂|Rψsgn(Rψ) + br

1 − br

|κ̂|
(

|Rψ | −Rψ tanh

(Rψ

α

))
.

(6.96)

According to Assumptions 6.13 and 6.14, we have

∣∣∣∣
(

fυ(ῡ)

bu

− 1

)(
υr + W̃T

a φa

)∣∣∣∣ ≤ br |υr | + br‖W̃a‖‖φa‖. (6.97)

Substituting (6.96) and (6.97) into (6.95), we have

L̇ ≤ −RKr + bu

[
− br

1 − br

|κ̂|Rψsgn(Rψ) + brR|υr |

+ br

1 − br

|κ̂|
(

|Rψ | −Rψ tanh

(Rψ

α

))]

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc}

+ δ + bubr

α3
κ̃ ˙̃κ. (6.98)

According to Lemma 6.19 and the inequality 0 ≤ |Rψ | − Rψ tanh(Rψ/α) ≤ α

for ∀α > 0,Rψ ∈R, we have

L̇ ≤ −RKr + bu

[
−br |κ̂|Rψ tanh

(Rψ

α

)

+ br

1 − br

|κ̂|
(

|Rψ | −Rψ tanh

(Rψ

α

))]
+ buKWa |R|tr{W̃T

a Ŵa}

+ buKWc |R|tr{W̃T
c Ŵc} + bubrκ

∗
(

α +Rψ tanh

(Rψ

α

))

− bubr κ̃Rψ tanh

(Rψ

α

)
+ bubrKκ κ̃κ̂
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≤ −RKr + bubr

1 − br

|κ̂|α + bubrκ
∗α + buKWa |R|tr{W̃T

a Ŵa}

+ buKWc |R|tr{W̃T
c Ŵc} + bubrKκ κ̃κ̂. (6.99)

Let b∗ = bu −bl . Using the relation bubr/(1−br) = (bu/bl)b
∗ and the inequality

|κ̂| ≤ |κ̃| + κ∗, L̇ is further derived as

L̇ ≤ −RKr + bu

bl

b∗|κ̃|α + bu

bl

b∗κ∗α + bubrκ
∗α

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc} + bubrKκ κ̃κ̂. (6.100)

Since tr{W̃T
a Ŵa} ≤ −‖W̃a‖2/2+‖Wa‖2/2, tr{W̃T

c Ŵc} ≤ −‖W̃2‖2/2+‖Wc‖2/2,
κ̃ κ̂ ≤ −|κ̃|2/2 + κ∗2/2, (bu/bl)b

∗|κ̃|α ≤ ((bu/bl)b
∗α)2/2 + |κ̃|2/2, we have

L̇ ≤ −RKr − buKWa |R|
2

‖W̃a‖2 − buKWc |R|
2

‖W̃c‖2

− bubr

2

(
Kκ − 1

bubr

)
|κ̃|2 + D, (6.101)

where

D = buKWa |R|
2

‖Wa‖2 + buKWc |R|
2

‖Wc‖2 + bubrKκ

2
κ∗2

+ 1

2

(
bu

bl

b∗α
)2

+ bu

bl

b∗κ∗α + bubrκ
∗α. (6.102)

Because Rr > 0 for any r �= 0 and R ∈ [−χ,χ] and using Assumption 6.17,
(6.101) becomes

L̇ ≤ −χK|r| − buKWa |R|
2

‖W̃a‖2 − buKWc |R|
2

‖W̃c‖2

− bubr

2

(
Kκ − 1

bubr

)
|κ̃|2 + DM, (6.103)

where λM � buKWaχW ∗
a

2/2 + buKWcχW ∗
c

2/2 + (bu/bl)b
∗κ∗α + bubrκ

∗α +
((bu/bl)b

∗α)2/2.
With Kκ picked so that Kκ > 1/(bubr) is satisfied, the time derivative of L is

guaranteed to be negative as long as the following hold:

|r̃| ≥
√

DM

Kχ
, (6.104)

or

‖W̃a‖ ≥
√

2DM

buKWa |R| ≥
√

2DM

buKWaχ
, (6.105)
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or

‖W̃c‖ ≥
√

2DM

buKWc |R| ≥
√

2DM

buKWcχ
, (6.106)

or

|κ̃| ≥
√

2λM

bubr(Kκ − 1
bubr

)
. (6.107)

Therefore, according to the standard Lyapunov extensions [11], this demonstrates
that the filtered tracking error, the weights estimation errors of the critic NN and
action NN are uniformly ultimately bounded. �

Remark 6.21 It is interesting to note from (6.104)–(6.107) that arbitrarily small |r̃|,
‖W̃a‖, ‖W̃c‖ and |κ̃| may be achieved by selecting the large fixed gain K , KWa ,
KWc , and Kκ or the critic slope gain χ , respectively.

6.3.3 Simulations

Example 6.22 Consider the following continuous-time nonaffine nonlinear system:

ẋ1 = x2,

ẋ2 = x1x
2
2 + x2e

−1−x2
1 − x1x2 + (2 + 0.3sinx2

2)u + cos(0.1u).

y = x1.

The control objective is to make the output y follow the desired trajectory yd .
The reference signal is selected as yd = sin(t)+ cos(0.5t). We assume that the con-
trol design is performed by using the approximate model f̂ (x, u) = 10u. The con-
troller parameters are chosen as K = 30, Λ = 20, br = 1/3, and χ = 20. The critic
NN and action NN consist of five and six hidden-layer nodes, respectively. The
activation functions are selected as sigmoidal activation functions. The first-layer
weights of both action NN and critic NN are selected randomly over an internal of
[−1,1]. The threshold weights for the first layer of both action NN and critic NN
are uniformly randomly distributed between −10 and 10. The second-layer weights
of action NN Ŵa is uniformly randomly initialized over an internal of [−1,1]. The
second-layer weights of the critic NN Ŵc is initialized at zero. The parameters of
the critic signal are selected as m = 2. For weights and adaptive parameters updat-
ing, the design parameters are selected as α1 = α2 = α3 = KWa = KWc = 0.1, and
Kκ = 80, which satisfies Kκ > 1/(bubr). Then, for the initial states x(0) = [0,0]T,
we apply the present controller to the system for 100 s. The simulation results are
shown in Figs. 6.11–6.16. From Fig. 6.11, it is observed that the system output
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Fig. 6.11 The trajectories of yd and y

Fig. 6.12 The trajectory of control input u

y tracks the desired trajectory yd fast and well. Figures 6.12, 6.13, 6.14 clearly
show that the control input u is bounded. Figure 6.15 displays that the critic sig-
nal R̂n is bounded. From Fig. 6.16, it is observed that the adaptive parameter κ̂ is
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Fig. 6.13 The trajectory of υad

Fig. 6.14 The trajectory of υr

bounded. The simulation results show that the present ADP method can perform
successful control and achieve the desired performance for the nonaffine nonlinear
system.
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Fig. 6.15 The trajectory of R̂n

Fig. 6.16 The trajectory of κ̂

6.4 Summary

In this chapter, we investigated the optimal feedback control problems of a class
of unknown general continuous-time nonlinear systems and a class of continuous-
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time nonaffine nonlinear systems via the ADP approach. In Sect. 6.2, we developed
an effective scheme to design the data-based optimal robust tracking controller for
unknown general continuous-time nonlinear systems, in which only input/output
data are required instead of the system dynamics. In Sect. 6.3, a novel ADP based
robust neural network controller was developed for a class of continuous-time non-
affine nonlinear systems, which is the first attempt to extend the ADP approach to
continuous-time nonaffine nonlinear systems. Numerical simulations have shown
that the present methods are effective and can be used for a quite wide class of
continuous-time nonlinear systems.
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