
Chapter 10
Other Applications of ADP

10.1 Introduction

As is known, both modern wireless networks and automotive engines are complex
non-linear dynamical systems. The corresponding optimal control problems have
been investigated for many years by many researchers. However, there are still not
results referring to the optimal control based on the ADP method. Due to the advan-
tages of ADP in solving the optimal feedback control in a forward-time fashion, the
ADP method is introduced in this chapter to solve the optimal control problem of
modern wireless networks and automotive engines.

In the first part, a self-learning call admission control algorithm is developed
for signal-to-interference ratio (SIR)-based power-controlled direct-sequence (DS)-
code division multiple access (CDMA) cellular networks that provide both voice
and data services [21]. The idea is built upon a novel learning control architecture
with only a single module instead of two or three modules in adaptive critic de-
signs. The call admission controller can perform learning in real time as well as in
off-line environments and the controller improves its performance as it gains more
experience. Another important contribution in the present work is the choice of util-
ity function for the present self-learning control approach which makes the present
learning process much more efficient than existing learning control methods.

In the second part, we apply an existing control algorithm to a production vehi-
cle. The algorithm is presented according to certain criteria and calibrated for vehi-
cle operation over the entire operating regime [24]. Actually, the algorithm has been
optimized for the engine in terms of its performance, fuel economy, and tailpipe
emissions through a significant effort in the research and development of calibra-
tion process. To further improve the engine performance through controller design,
one may go through the traditional calibration and control procedures today. But an
alternative to this traditional approach is to use the neural network-based learning
control approach. The final result of our neural network learning process is a con-
troller that has learned to provide optimal control signals under various operating
conditions. We emphasize that such a neural network controller will be obtained
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after a special learning process that performs adaptive dynamic programming al-
gorithm. Once a controller is learned and obtained (off-line or on-line), it will be
applied to perform the task of engine control. The performance of the controller can
be further refined and improved through continuous learning in real-time vehicle
operations.

10.2 Self-Learning Call Admission Control for CDMA Cellular
Networks Using ADP

10.2.1 Problem Formulation

In the DS-CDMA cellular network model used in this section, we assume that sep-
arate frequency bands are used for the reverse link and the forward link, so that the
mobiles only experience interference from the base stations and the base stations
only experience interference from the mobiles. We consider cellular networks that
support both voice and data services. Assume that there are K classes of services
provided by the wireless networks under consideration, where K ≥ 1 is an integer.
We define a mapping σ : Z+ → {1, . . . ,K} to indicate the fact that the nth con-
nection is from the service class σ(n), where Z+ denotes the set of non-negative
integers. We assume that each connection in our network may be from a different
service class, which requires a different quality of service target (e.g., in terms of
different bit error rate for each service class). This includes the case when we allow
each call to specify its own quality of service requirements. We assume that traffic
from the same service class has the same data rate, the same activity factor, the same
desired SIR (signal-to-interference ratio) value, and the same maximum power limit
that can be received at the base station.

Consider a base station currently with N active connections. The power received
at the base station from the user (mobile station) of the nth connection is denoted by
Sn, n = 1, . . . ,N . In an SIR-based power-controlled DS-CDMA network [2, 7, 13,
29], the desired value of Sn is a function of the number of active home connections
and total other cell interference. If we assume that the maximum received power at
a base station is limited to Hk for connections from service class k = σ(n), then
Sn is a random variable in the range of (0,Hk]. The maximum power limits Hk ,
k = 1, . . . ,K , are determined by the power limit of mobile transmitters, the cell
size, the path loss information, and the user’s service class. They have been used in
several previous works on call admission control [9, 17, 29].

In CDMA networks, the instantaneous bit SIR (or the bit energy-to-interference
ratio) for the nth connection at the base station (in a cell) can be expressed in terms
of the received powers of the various connections as [9]

(Eb/N0)n = SnW

InRσ(n)

, (10.1)
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where Sn is the instantaneous power level of the nth connection received at the base
station, W is the total spread bandwidth (or the chip rate), and Rσ(n) is the data rate
of service class σ(n). In in (10.1) indicates the instantaneous total interference to
the nth connection received at the base station and it is given by

In = (1 + f )

N∑

i=1,i �=n

νσ(i)Si + ηn,

where νσ(i) is the traffic (e.g., voice) activity factor of the ith connection, which is
from the service class σ(i), ηn is the background (or thermal) noise, N is the number
of active connections in the cell, and f is called the intercell interference factor
[32], having a typical value of 0.55. In the above, the value of f may not always
be constant in a system. Its value can be calculated using existing measurements
and can be updated periodically to reflect changes in traffic conditions and traffic
distributions.

Assume that after the admission of a new call or a handoff call, the power con-
trol algorithm starts to evolve until convergence. Assume that the power control
algorithm converges and it requires the power received at a base station from each
connection in the system given by S∗

n, n = 0,1, . . . ,N , where the total number of
connections in the system is N + 1 and connection 0 is the newly admitted caller.
Obviously, if S∗

n > Hσ(n) or S∗
n ≤ 0, for some n, 0 ≤ n ≤ N , the admission should

not be granted since it leads to an outage. Only when 0 < S∗
n ≤ Hσ(n) for all n,

n = 0,1, . . . ,N , the admission decision can be considered as a correct decision. The
goal of the present study is to develop a self-learning control algorithm that learns
to achieve the correct admission decisions under various, possibly changing, envi-
ronment conditions and user behavior and to optimize the grade of service (GoS)
measure.

The GoS in cellular networks is mainly determined by the new call blocking
probability and the handoff blocking probability. The former determines the fraction
of new calls that are blocked, while the latter is closely related to the fraction of
already admitted calls that cannot maintain their required quality of service (bit error
rate) and are dropped. For example, many works have chosen to use the following
definition for the GoS [1]:

GoS = P(call blocking) + w × P(handoff failure), (10.2)

where P(a) is the probability of event a and w is typically chosen as, e.g., 10. In our
simulation studies, we fix w = 10. The GoS defined in (10.2) provides a trade-off
between the new call blocking rate and the handoff call blocking rate. The parameter
w is a weighting factor that decides how much emphasis is placed on handoff calls.
Keeping the GoS defined in (10.2) under a desired target level would require one to
give much higher priority to handoff calls than to new calls when w = 10. On the
other hand, quality of service (QoS) is usually defined according to the bit error rate
in digital transmission. For example, the quality of service requirement for voice
users is usually expressed as a bit error rate less than 10−3 in order to guarantee the
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quality of communication which can be satisfied by the power control mechanism
keeping Eb/N0 at a required value of 7 dB or higher [9, 17, 29].

For a given set of parameters, including traffic statistics and mobility character-
istics, fixed call admission control schemes can sometimes yield optimal solutions
[26] in terms of GoS. All such schemes (see [12, 23, 26, 27, 29]), however, by re-
serving a fixed part of capacity, cannot adapt to changes in the network conditions
due to their static nature. Therefore, we develop in the present work a self-learning
call admission control algorithm for CDMA wireless networks. The present call ad-
mission control algorithm based on adaptive critic designs has the capability to learn
from the environment and the user behavior so that the performance of the algorithm
will be improved through further learning.

10.2.2 A Self-Learning Call Admission Control Scheme for CDMA
Cellular Networks

10.2.2.1 Adaptive Critic Designs for Problems with Finite Action Space

In the following, we provide a brief introduction to adaptive critic designs [18].
Suppose that one is given a discrete-time non-linear dynamical system

x(k + 1) = F [x(k), u(k), k],
where x ∈ R

n represents the state vector of the system and u ∈ R
m denotes the

control action. In the present section, the function F denotes a stochastic transition
from the state x(k) to the next state x(k + 1) under the given control action u(k) at
time k. Suppose that one associates with this system the cost functional

J [x(i), i] =
∞∑

k=i

γ k−iL[x(k), u(k), k], (10.3)

where L is called the utility function and γ is the discount factor with 0 < γ ≤ 1.
Note that J is dependent on the initial time i and the initial state x(i), and it is
referred to as the cost-to-go of state x(i). The objective is to choose the control
sequence u(k), k = i, i + 1, . . . , so that the cost functional J in (10.3) is minimized.

The class of ACDs considered in the present section is called action-dependent
heuristic dynamic programming, or ADHDP, which is shown in Fig. 10.1 (see [19]).
The critic network in this case will be trained by minimizing the following error
measure over time:

‖Eq‖ =
∑

k

Eq(k)

=
∑

k

[
Q(k − 1) − L(k) − γQ(k)

]2
,

(10.4)
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Fig. 10.1 A typical scheme
of an action-dependent
heuristic dynamic
programming [19]

where Q(k) is the critic network output at time k. When Eq(k) = 0 for all k, (10.4)
implies that

Q(k − 1) = L(k) + γQ(k)

= L(k) + γ [L(k + 1) + γQ(k + 1)]
= · · ·

=
∞∑

i=k

γ i−kL(i).

(10.5)

Comparing (10.5) to (10.3), we see that when minimizing the error function in
(10.4), we have a neural network trained so that its output becomes an estimate
of the cost functional defined in dynamic programming for i = k + 1, i.e., the value
of the cost functional in the immediate future [19].

The input–output relationship of the critic network in Fig. 10.1 is given by

Q(k) = Q
[
x(k), u(k), k,W

(p)
C

]
,

where W
(p)
C represents the weights of the critic network after the pth weight update.

There are two methods to train the critic network according to the error function
(10.4) in the present case, which are described in [19]. We will use the so-called
forward-in-time method.

We can train the critic network at time k − 1, with the output target given by
L(k) + γQ(k). The training of the critic network is to realize the mapping given by

Cf :
{

x(k − 1)

u(k − 1)

}
→ {L(k) + γQ(k)}. (10.6)
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In this case, the output from the network to be trained is Q(k−1) and the input to the
network to be trained is composed of x(k − 1) and u(k − 1). The target output value
for the critic network training is calculated using its output at time k as indicated in
(10.6). The goal of learning the function given by (10.6) is to have the critic network
output satisfy

Q(k − 1) ≈ L(k) + γQ(k) for all k,

which is required by (10.5) for adaptive dynamic programming solutions.
The critic network training procedure is described as follows using the strategy

of [16]:

1. Initialize two critic networks: cnet1 = cnet2;
2. Use cnet2 to get Q(k), and then train cnet1 for 50 epochs using the Levenberg–

Marquardt algorithm [11];
3. Copy cnet1 to cnet2, i.e., let cnet2 = cnet1;
4. Repeat Steps 2 and 3, e.g., four times;
5. Repeat Steps 1–4, e.g., ten times (start from different initial weights);
6. Pick the best cnet1 obtained as the trained critic network.

After the critic network’s training is finished, the action network’s training starts
with the objective of minimizing the critic network output Q(k). In this case, we
can choose the target of the action network training as zero, i.e., we will update the
action network’s weights so that the output of the critic network becomes as small
as possible. In general, a good critic network should not output negative values if
L(k) is non-negative. This is particularly true when L(k) is chosen as the square
error function in tracking control problems [31]. The desired mapping which will
be used for the training of the action network in Fig. 10.1 is given by

A : {x(k)} → {0(k)}, (10.7)

where 0(k) indicates the target values of zero. We note that during the training of
the action network, it will be connected to the critic network as shown in Fig. 10.1.
The target in (10.7) is for the output of the whole network, i.e., the output of the
critic network after it is connected to the action network as shown in Fig. 10.1.

There are many problems in practice that have a control action space that is finite.
Typical examples include bang-bang control applications where the control signal
only takes a few (finite) extreme values or vectors. When the application has only a
finite action space, the decisions that can be made are constrained to a limited num-
ber of choices, e.g., a binary choice in the case of call admission control problem.
When a new call or a handoff call arrives at a base station requesting admission, the
decisions that a base station can make are constrained to two choices, i.e., to accept
the call or to reject the call. Let us denote the two options by using u(k) = +1 for
“accept” and u(k) = −1 for “reject”. It is important to realize that in the present
case the control actions are limited to a binary choice, or to only two possible op-
tions. Because of this, the ACDs introduced in Fig. 10.1 can be further simplified,
so that only the critic network is needed. Our self-learning call admission control
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Fig. 10.2 The block diagram of the present adaptive critic approach

scheme for wireless cellular networks using adaptive critic designs is illustrated in
Fig. 10.2. When a new call or a handoff call arrives at a base station requesting ad-
mission, we can first ask the critic network to see whether u(k) = +1 (accept) or
u(k) = −1 (reject) will give a smaller output value. We will then choose the control
action, choosing from u(k) = +1 and u(k) = −1, that gives a smaller critic network
output. As in the case of Fig. 10.1, the critic network would also take the states of
the system as input. We note that Fig. 10.2 is only a schematic diagram that shows
how the computation takes place while making a call admission control decision.
The two blocks for the critic network in Fig. 10.2 represent the same network or
computer code in software. The block diagram in Fig. 10.2 indicates that the critic
network will be used twice in calculations (with different values of u(k)) to make a
decision on whether or not to accept a call.

The above description assumes that the critic network has been trained success-
fully. Once the critic network training is done, it can be applied as in Fig. 10.2. To
guarantee that the overall system will achieve optimal performance now and in fu-
ture environments which may be significantly different from what they are now, we
will allow the critic network to perform further learning when needed in the future.
In the next section, we describe how the critic network learning is performed. In par-
ticular, we describe how the training data are collected at each time step and how the
utility function L(k) is defined. We note that once the training data are collected, the
training of the critic network can use, e.g., the forward-in-time method, described
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in this section. We also note that the description here for the critic network training
applies to both the initial training of the critic network and further training of the
critic network when needed in the future.

10.2.2.2 Self-learning Call Admission Control for CDMA Cellular Networks

We use a utility function as reward or penalty to the action made by the call ad-
mission control scheme. When the call admission control scheme makes a decision
about accepting a call, it will lead to two distinct results. The first is that the deci-
sion of accepting a call is indeed the right decision due to the guarantee of quality
of service during the entire call duration. In this case we should give a reward to
the decision of accepting a call. Otherwise, a penalty is assigned to this decision.
On the other hand, if rejecting a call would have been the right decision due to
call dropping or system outage after the call acceptance, we will also give a re-
ward to the decision of rejecting a call. Otherwise, a penalty is assigned to this
decision.

It is generally accepted in practice that handoff calls will be given higher priority
than new calls [12, 26, 27, 29]. This is accomplished in our call admission con-
trol scheme by using different thresholds for new calls and handoff calls. A hand-
off call can be admitted if 0 < S∗

n ≤ Hσ(n) for all n = 0,1, . . . ,N . A new call
can only be admitted if 0 < S∗

0 ≤ Tσ(0) and 0 < S∗
n ≤ Hσ(n) for n = 1,2, . . . ,N ,

where Tσ(0) < Hσ(0) is the threshold for new calls (where connection 0 is the new
caller).

For handoff calls, when 0 < S∗
n ≤ Hσ(n) for n = 0,1, . . . ,N , accepting a handoff

call will be given a reward and rejecting a handoff call will be given a penalty. On
the other hand, when S∗

n > Hσ(n) for some n, 0 ≤ n ≤ N , accepting a handoff call
(i.e., the zeroth caller) will be given a penalty and rejecting a handoff call will be
given a reward. Obviously, when S∗

n ≤ 0 for some n, 0 ≤ n ≤ N , the call should be
rejected. We note that if the power control algorithm leads to either S∗

n > Hσ(n) or
S∗

n ≤ 0 for some n, the network will enter an outage, i.e., some calls will have to be
terminated prematurely since they cannot maintain required quality of service (bit
error rate). In this case, the action of rejection is given a reward and the action of
acceptance is given a penalty. Note that S∗

n , n = 0,1, . . . ,N , are power levels for
all connections after the call admission decision and the power control algorithm
convergence.

We first define the cost functional for handoff calls as follows (S∗
n ≥ 0 for n =

0,1, . . . ,N ):

En = ξ max

{
u(k)

[
S∗

n

Hσ(n)

− 1

]
,0

}
, (10.8)

where ξ > 0 is a coefficient, and u(k) = 1 represents accepting a call and u(k) = −1
represents rejecting a call. We emphasize that the conditions, 0 ≤ S∗

n ≤ Hσ(n) for
n = 0,1, . . . ,N , must hold for the entire duration of all calls in order for the system
to give reward to the action of accepting a handoff call.
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For new calls, when 0 < S∗
0 ≤ Tσ(0) and 0 < S∗

n ≤ Hσ(n) for n = 1,2, . . . ,N , we
give a reward to the action of accepting a new call, and we give a penalty to the
action of rejecting a new call. When S∗

0 > Tσ(0), or S∗
n > Hσ(n) for some n, n =

1,2, . . . ,N , or S∗
n ≤ 0 for some n, n = 0,1, . . . ,N , we give penalty for accepting a

new call and we give a reward for rejecting a new call. The cost functional for new
calls is defined as (S∗

n ≥ 0 for n = 0,1, . . . ,N ):

En =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ max

{[
S∗

n

Tσ(n)

− 1

]
,0

}
, when u(k) = 1,

ξ max

{[
1 − S∗

n

Hσ(n)

]
,0

}
, when u(k) = −1,

(10.9)

where Tσ(n) < Hσ(n), n = 0,1, . . . ,N . We note again that the conditions, 0 < S∗
n ≤

Hσ(n) for n = 0,1, . . . ,N , must hold for the entire duration of all calls in order for
the system to give reward to the action of accepting a new call, even though the
admission decision is according to the condition 0 < S∗

0 ≤ Tσ(0) for the new call.
The functions defined above satisfy the condition that En ≥ 0 for all n, n =

0,1, . . . ,N . From (10.8) and (10.9), we see that when the action is “accept”, if the
value of the utility function of any connection is larger than 0, this action should
be penalized. Also, when the action is “reject”, if the value of the utility function of
any connection is zero, this action should be rewarded. Therefore, from the system’s
point of view, the cost function should be chosen as

E =
⎧
⎨

⎩

max
0≤n≤N

(En), if u(k) = 1,

min
0≤n≤N

(En), if u(k) = −1.
(10.10)

The cost function defined in (10.10) indicates that the goal of our call admission
control algorithm is to minimize the value of function E, i.e., to reach its minimum
value of zero and to avoid its positive values.

The utility function L (used in (10.3)) in our present work is chosen as

L(u) = E

1 + E
. (10.11)

Figures 10.3 and 10.4 show plots of this utility function for handoff calls and new
calls, respectively, when ξ = 10. The parameter ξ is used to obtain a desired shape
of the utility function. Since our algorithm will search for the optimal performance
that corresponds to small values of the utility function, the shape of the utility func-
tion will have some effects on the optimization process. When ξ = 10, we see that
the utility function becomes more selective than ξ = 1 for any condition indicated
by signal power. From Figs. 10.3 and 10.4 we see that the choice of the present
utility functions in (10.11) clearly shows minimum points (the flat areas) that our
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Fig. 10.3 Utility function for handoff calls

Fig. 10.4 Utility function for new calls

call admission control scheme tries to reach and the points with high penalty that
our scheme should avoid. In addition, the conversion from E to U guarantees the
convergence of the performance index of dynamic programming, which is defined
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as in (10.3). With the present utility function given by (10.10) and (10.11), we have

0 < J(k) <
1

1 − γ
,

since L in (10.11) satisfies 0 ≤ L < 1. Without the conversions in (10.11), there is
no guarantee that the infinite summation in (10.3) will be bounded. We note that
the present critic network produces an output that approximates the cost functional
J (k) in (10.3), and the admission action chosen each time will minimize the critic
network output, to achieve approximate optimal control.

In stationary environment, where user traffic statistics (patterns) remain un-
changed, a simple static call admission control algorithm [20] will be able to achieve
the admission objective described above. However, traffic patterns including user
arrival rate, call holding times, user mobility patterns, etc., may show significant
changes from time to time. To deal with changing environments, static call admis-
sion control algorithm would not be appropriate. The present call admission con-
trol algorithm based on adaptive critic designs will be able to deal with environ-
ment changes through further learning in the future. Another benefit of the present
self-learning call admission control algorithm is its ability to improve performance
through further learning as the controller gains more and more experience.

The development of the present self-learning call admission control scheme in-
volves the following four steps:

1. Collecting data: During this phase, when a call comes, we can accept or reject the
call with any scheme and calculate the utility function for the system as presented
above. In the present section, we simply accept and reject calls randomly with
the same probability of 0.5. At the same time, we collect the states corresponding
to each action. The states (environment) collected for each action include total
interference, call type (new call or handoff call), call class (voice or data), etc.

2. Training critic network: Using the data collected to train the critic network as
mentioned in the previous section. Examples of input variables chosen for the
critic network will be given in our simulation examples.

3. Applying critic network: The trained critic network is then applied as shown in
Fig. 10.2.

4. Further updating critic network: The critic network will be updated as needed
while it is used in application to accommodate environment changes, for exam-
ple, user pattern and behavior changes or new requirements for the system. Data
collection has to be performed again and the training of the critic network as
well. In this case, the above three steps will be repeated.

The critic network will be updated when there are changes in call admission re-
quirements or if the already trained ACD scheme does not satisfy new requirements.
In fact, ACD is going to learn the rules imposed by the utility function of the system.
Therefore, rule changes can be accommodated by modifying the utility function to
accommodate new requirements. For example, to satisfy certain requirements, we
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modify the cost function in (10.9) to become

En =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ max

{[
S∗

n

Hσ(n)

− 1

]
,0

}
, when u(k) = 1

and na ≤ Nh,

ξ max

{[
S∗

n

Tσ(n)

− 1

]
,0

}
, when u(k) = 1

and na > Nh,

ξ max

{[
1 − S∗

n

Hσ(n)

]
,0

}
, when u(k) = −1,

(10.12)

where na is the number of active handoff calls in the cell and Nh is a fixed parameter
indicating the threshold for low traffic load.

When a call arrives at the base station, the admission decision would be either
“accept” or “reject”. If the decision is taken to accept a call, there will be two kinds
of data collected. One is that the decision is incorrect due to call dropping, and
the other one is that the decision is correct since 0 < S∗

n ≤ Hσ(n), n = 0,1, . . . ,N ,
is maintained for the entire duration of all calls. In the former case, a penalty is
recorded and in the latter case, a reward is recorded. If the decision is to reject a
call, there will be also be two kinds of data collected that correspond to a reward
and a penalty. Note that in the case of a “reject” decision, the value of the utility
function is determined as in (10.8)–(10.11) where the values of S∗

n , n = 0,1, . . . ,N ,
are calculated according to [3, 20, 30].

10.2.3 Simulations

We first conduct simulation studies for a network with a single class of service (e.g.,
voice). The network parameters used in the present simulation are taken similarly
as the parameters used in [13, 29] (see Table 10.1).

The arrival rate consists of the new call attempt rate λc and the handoff call at-
tempt rate λh. The new call attempt rate λc depends on the expected number of
subscribers per cell. The handoff call attempt rate λh depends on such network
parameters as traffic load, user velocity, and cell coverage areas [10, 12]. In our
simulation, we assume that λc : λh = 5 : 1 [12]. A channel is released by call com-
pletion or handoff to a neighboring cell. The channel occupancy time is assumed to
be exponentially distributed [10, 12] with the same mean value of 1/μ = 3 minutes.
For each neural network training in our simulation studies, we generated 35000 data
points according to the data collection procedure in the previous section.

In the following, we conduct comparison studies between the present self-
learning call admission control algorithm and the algorithm developed in [20] with
fixed thresholds for new calls given by T = H , T = 0.8H , and T = 0.5H , re-
spectively. The arrival rate in all neighboring cells is fixed at 18 calls/minutes.



10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 407

Table 10.1 Network
parameters Parameters Values Parameters Values

W 1.2288 Mcps R 9.6 kbps

η 1 × 10−14 W H 1 × 10−14 W

Eb/N0 7 dB v 3/8

Fig. 10.5 Comparison study using utility function defined in (10.9)

The training data are collected as mentioned in the previous section. We choose
Tσ(n) = 0.5Hσ(n) and ξ = 10 in (10.9). The critic network has three inputs. The first
is the total interference received at the base station, the second is the action (1 for
accepting, −1 for rejecting), and the third is the call type (1 for new calls, −1 for
handoff calls). The critic network is a multilayer feedforward neural network with
3–6–1 structure, i.e., three neurons at the input layer, six neurons at the hidden layer,
and one neuron at the output layer. Both the hidden and the output layers use the
hyperbolic tangent function as the activation function. Figure 10.5 shows the simu-
lation results. We see from the figure that the performance of the self-learning algo-
rithm is similar to the case of static algorithm with T = 0.5H , because we choose
Tσ(n) = 0.5Hσ(n) in (10.9) for our learning control algorithm. When the call arrival
rate is low, the self-learning algorithm is not so good because it reserves too much
for handoff calls and as a result it rejects too many new calls. That is why the GoS
is worse than the other two cases of static algorithms (T = 1.0H and T = 0.8H ).
In this case, the self-learning algorithm is trained to learn a call admission control
scheme that gives higher priority to handoff calls.
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Fig. 10.6 Comparison study using utility function defined in (10.12)

In order to improve the GoS when the call arrival rate is low, we use the mod-
ified cost function for new calls as in (10.12), where we choose Nh = 15 in our
simulation. Using this new utility function we collect the training data using one of
the static algorithms with fixed threshold or the previous critic network. Then we
train a new critic network with the newly collected data. In this time the critic net-
work has four inputs. Three of them are the same as in the previous critic network.
The new input is equal to 1 when na ≤ Nh and otherwise it is equal to −1. The
critic network in this case has a structure given by 4–8–1. Figure 10.6 shows the
result of applying the new critic network to the same traffic pattern as in Fig. 10.5.
From the figure we see that the self-learning algorithm using the new critic network
has the best GoS. We see that by simply changing the cost function from (10.11)
to (10.12), the self-learning algorithm can significantly improve its performance to
outperform static admission control algorithms. One of the benefits of self-learning
call admission control algorithm is that we can easily and efficiently design call ad-
mission control algorithms by modifying the cost function (equivalently, the utility
function) to satisfy the requirements or to accommodate new environment changes.

The traffic load in telephony systems is typically time varying. Figure 10.7 shows
a pattern concerning call arrivals during a typical 24 hour business day, beginning at
midnight [8]. It can be seen that the peak hours occur around 11:00 am and 4:00 pm.
Next, we use our newly trained critic network above for this traffic pattern. Fig-
ure 10.8 gives the simulation results under the assumption that the traffic load was
spatially uniformly distributed among cells, but followed the time-varying pattern
given in Fig. 10.7. Figure 10.8 compares the four call admission control algorithms
and shows that the self-learning algorithm has the best GoS among all the algo-
rithms tested. We note that the self-learning call admission control algorithm was
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Fig. 10.7 A traffic pattern of a typical business day

Fig. 10.8 Comparison study for varying traffic

not retrained from the previous case, i.e., we used the same critic network in the
simulation results of Fig. 10.8 as in Fig. 10.6.

In the following, we conduct comparison studies between the present self-
learning call admission control algorithm and that of [29]. Using the algorithm
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Fig. 10.9 Comparison studies with the algorithm in [29]

in [29], the base station controller reads the current interference from the power
strength measurer. It then estimates the current interference margin (CIM) and hand-
off interference margin (HIM), where CIM < HIM. A total interference margin
(TIM) is set according to the quality of service target. If CIM > TIM, reject the call
admission request. If HIM < TIM, accept the call request. If CIM < TIM < HIM,
then only handoff calls will be accepted. Figure 10.9 compares the present self-
learning call admission control algorithm with the algorithm in [29] that reserves
one, two, and three channels for handoff calls, respectively. The arrival rate in all
neighboring cells is fixed at 18 calls/minute. We assume the use of a hexagonal cell
structure. From Fig. 10.9, we see that the present algorithm has the best GoS. That
is because the algorithm in [29] is a kind of guard channel algorithm used in CDMA
systems. Therefore, when the load is low, GC = 1 performs the best, and when the
load is high, GC = 3 performs the best. However, our algorithm can adapt to vary-
ing traffic load conditions. It has the best overall performance under various traffic
loads. Again, we used the same critic network in the simulation results of Fig. 10.9
as in Fig. 10.6.

Finally, we conduct simulation studies for cellular networks with two classes of
services. One class is voice service and the other is data service. Network parameters
in our simulations are chosen in reference to the parameters used in [14, 28] (see
Table 10.2). In our simulation, the data traffic is similar to that in [14], i.e., low
resolution video or interactive data. In this case, the data traffic can be specified by a
constant transmission rate. The background noise in this case is chosen the same as
in Table 10.1. The utility function is defined for voice and data calls as in (10.9) and
(10.11). In (10.12), we choose Tσ(n) = 0.6Hσ(n) and ξ = 10 for both voice calls and
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Fig. 10.10 GoS for voice calls

Table 10.2 Network
parameters Voice users Data users

Parameters Values Parameters Values

Wv 4.9152 Mcps Wd 4.9152 Mcps

Rv 9.6 kbps Rd 38.4 kbps

Hv 1 × 10−14 W Hd 1 × 10−13 W

(Eb/N0)v 7 dB (Eb/N0)d 9 dB

νv 3/8 νd 1

data calls. Nh is chosen as 20 and 4 for voice calls and data calls, respectively. The
critic network now has five inputs. The newly added input is the call class which
is 1 for voice calls and −1 for data calls. The critic network structure is chosen as
5–10–1. Figures 10.10 and 10.11 compare our self-learning call admission control
algorithm and the static algorithm [20] with fixed thresholds given by T = H and
T = 0.8H . The arrival rates of voice users and data users in all neighboring cells are
fixed at 20 calls/minute and 3 calls/minute, respectively. From Figs. 10.10 and 10.11,
we see that the present self-learning algorithm has the best GoS for almost all call
arrival rates tested. We conclude that the present self-learning algorithm performs
better than the fixed algorithms due to the fact that the self-learning algorithm can
adapt to varying traffic conditions and environment changes.
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Fig. 10.11 GoS for data calls

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP

10.3.1 Problem Formulation

A test vehicle with a V8 engine and 4-speed automatic transmission is instrumented
with engine and transmission torque sensors, wide-range air–fuel ratio sensors in the
exhaust pipe located before and after the catalyst on each bank, as well as exhaust
gas pressure and temperature sensors. The vehicle is also equipped with a dSPACE
rapid prototyping controller for data collection and controller implementation. Data
are collected at each engine event under various driving conditions, such as the
Federal Test Procedure (FTP cycles), as well as more aggressive driving patterns, for
a length of about 95,000 samples during each test. The engine is run under closed-
loop fuel control using switching-type oxygen sensors. The dSPACE is interfaced
with the power-train control module (PCM) in a by-pass mode.

We build a neural network model for the test engine with a structure compatible
with the mathematical engine model developed by Dobner [5, 6, 22] and others. Due
to the complexity of modern automotive engines, in the present work, we use the
time-lagged recurrent neural networks (TLRNs) for engine modeling. In practice,
TLRNs have been used often for function approximation and it is believed that they
are more powerful than the networks with only feedforward structures (cf. [25, 33]).

For the neural network engine model, we choose air–fuel ratio (AFR) and engine
torque (TRQ) as the two outputs. We choose throttle position (TPS), electrical fuel
pulse width (FPW), and spark advance (SPA) as the three control inputs. These are
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input signals to be generated using our new adaptive critic learning control algo-
rithm. We choose intake manifold pressure (MAP), mass air flow rate (MAF), and
engine speed (RPM) as reference input. The time-lagged recurrent neural network
used for the engine combustion module has six input neurons, a single hidden layer
with eight neurons, and two output neurons.

Validation results for the output TRQ and AFR of the neural network engine
model indicate a very good match between the real vehicle data and the neural net-
work model output during the validation phase [15].

10.3.2 Self-learning Neural Network Control for Both Engine
Torque and Exhaust Air–Fuel Ratio

Suppose that one is given a discrete-time non-linear dynamical system

x(k + 1) = F [x(k), u(k), k], (10.13)

where x ∈ R
n represents the state vector of the system and u ∈ R

m denotes the
control action. Suppose that one associates with this system the cost functional (or
cost)

J [x(i), i] =
∞∑

k=i

γ k−iL[x(k), u(k), k], (10.14)

where L is called the utility function or local cost function and γ is the discount
factor with 0 < γ ≤ 1. Note that J is dependent on the initial time i and the initial
state x(i), and it is referred to as the cost-to-go of state x(i). The objective is to
choose the control sequence u(k), k = i, i + 1, . . . , so that the cost functional J

(i.e., the cost) in (10.14) is minimized.
Adaptive critic designs (ACDs) are defined as designs that approximate dy-

namic programming in the general case, i.e., approximate optimal control over
time in noisy, non-linear environments. A typical design of ACDs consists of three
modules—Critic (for evaluation), Model (for prediction), and Action (for deci-
sion). When in ACDs the critic network (i.e., the evaluation module) takes the ac-
tion/control signal as part of its input, the designs are referred to as action-dependent
ACDs (ADACDs). We use an action-dependent version of ACDs that does not re-
quire the explicit use of the model network in the design. The critic network in this
case will be trained by minimizing the following error measure over time:

‖Eq‖ =
∑

k

Eq(k)

=
∑

k

[
Q(k − 1) − L(k) − γQ(k)

]2
,

(10.15)
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where Q(k) = Q[x(k), u(k), k,WC]. When Eq(k) = 0 for all k, (10.15) implies that

Q(k − 1) = L(k) + γQ(k)

= L(k) + γ [L(k + 1) + γQ(k + 1)]
= · · ·

=
∞∑

i=k

γ i−kL(k).

(10.16)

We see that when minimizing the error function in (10.15), we have a neural network
trained so that its output at time k becomes an estimate of the cost functional defined
in dynamic programming for i = k + 1, i.e., the value of the cost functional in the
immediate future [19].

The input–output relationship of the critic network is given by

Q(k) = Q [x(k), u(k), k,WC] ,

where WC represents the weight vector of the critic network.
We can train the critic network at time k − 1, with the desired output target given

by L(k) + γQ(k). The training of the critic network is to realize the mapping given
by

Cf :
{

x(k − 1)

u(k − 1)

}
→ {L(k) + γQ(k)}. (10.17)

We consider Q(k − 1) in (10.15) as the output from the network to be trained and
the target output value for the critic network is calculated using its output at time k.

After the critic network’s training is finished, the action network’s training starts
with the objective of minimizing Q(k). The goal of the action network training is
to minimize the critic network output Q(k). In this case, we can choose the target
of the action network training as zero, i.e., we will train the action network so that
the output of the critic network becomes as small as possible. The desired mapping
which will be used for the training of the action network in the present ADHDP is
given by

A : {x(k)} → {0(k)}, (10.18)

where 0(k) indicates the target values of zero. We note that during the training of
the action network, it will be connected to the critic network to form a larger neural
network. The target in (10.18) is for the output of the whole network, i.e., the output
of the critic network after it is connected to the action network.

After the action network’s training cycle is completed, one may check the sys-
tem’s performance, then stop or continue the training procedure by going back to
the critic network’s training cycle again, if the performance is not acceptable yet.
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Assume that the control objective is to have x(k) in (10.13) track another signal
given by x∗(k). We define in this case the local cost function L(k) as

L(k) = 1

2
eT(k)e(k) = 1

2
[x(k) − x∗(k)]T[x(k) − x∗(k)].

Using the ADHDP introduced earlier in this section, we can design a controller to
minimize

J (k) =
∞∑

i=k

γ i−kL(i),

where 0 < γ < 1. We note that in this case our control objective is to minimize
an infinite summation of L(k) from the current time to the infinite future, while in
conventional tracking control designs, the objective is often to minimize L(k) itself.

10.3.3 Simulations

The objective of the present engine controller design is to provide control signals
so that the torque generated by the engine will track the torque measurement as
in the data and the air–fuel ratio will track the required values also as in the data.
The measured torque values in the data are generated by the engine using the exist-
ing controller. Our learning controller will assume no knowledge about the control
signals provided by the existing controller. It will generate a set of control signals
that are independent of the control signals in the measured data. Based on the data
collected, we use our learning controller to generate control signals TPS, FPW, and
SPA, with the goal of producing exactly the same torque and air–fuel ratio as in the
data set. That is to say, we keep our system under the same requirements as the data
collected, and we build a controller that provides control signals which achieve the
torque control and air–fuel ratio control performance of the engine.

As described in the previous section, the development of an adaptive critic learn-
ing controller involves two stages: the training of a critic network and the develop-
ment of a controller/action network. We describe in the rest of the present section
the learning control design for tracking the TRQ and AFR measurements in the data
set. This is effectively a torque-based controller, i.e., a controller that can generate
control signals given the torque demand. The block diagram of the present adaptive
critic engine control (including air–fuel ratio control) is shown in Fig. 10.12. The
diagram shows how adaptive critic designs can be applied to engine control through
adaptive dynamic programming.

10.3.3.1 Critic Network

The critic network is chosen as a 8–15–1 structure with eight input neurons and 15
hidden layer neurons:
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Fig. 10.12 Structure of adaptive critic learning engine controller

• The eight inputs to the critic network are TRQ, TRQ∗, MAP, MAF, RPM, TPS,
FPW, and SPA, where TRQ∗ is read from the data set, indicating the desired
torque values for the present learning control algorithm to track.

• The hidden layer of the critic network uses a sigmoidal function, i.e., the tansig
function in MATLAB [4], and the output layer uses the linear function purelin.

• The critic network outputs the function Q, which is an approximation to the func-
tion J (k) defined as in (10.14).

• The local cost functional L defined in (10.14) in this case is chosen as

L(k) = 1

2
[TRQ(k) − TRQ∗(k)]2 + 1

2
[AFR(k) − AFR∗(k)]2,

where TRQ and AFR are the engine torque and air–fuel ratio generated using the
proposed controller, respectively, and TRQ∗ and AFR∗ are the demanded TRQ
value and the desired AFR value, respectively. Both TRQ∗ and AFR∗ are taken
from the actual measured data in the present case. The utility function chosen
in this way will lead to a control objective of TRQ following TRQ∗ and AFR
following AFR∗.

• Utilizing the MATLAB Neural Network Toolbox, we apply traingdx (gradient
descent algorithm) for the training of the critic network. We note that other algo-
rithms implemented in MATLAB, such as traingd, traingda, traingdm,
trainlm are also applicable. We employ batch training for the critic network,
i.e., the training is performed after each trial of a certain number of steps (e.g.,
10000 steps). We choose γ = 0.9 in the present experiments.
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10.3.3.2 Controller/Action Network

The structure of the action network is chosen as 6–12–3 with six input neurons, 12
hidden layer neurons, and three output neurons:

• The six inputs to the action network are TRQ, TRQ∗, MAP, MAF, THR, and
RPM, where THR indicates the driver’s throttle command.

• Both the hidden layer and the output layer use the sigmoidal function tansig.
• The outputs of the action network are TPS, FPW, and SPA, which are the three

control input signals used in the engine model.
• The training algorithm we choose to use is traingdx. We employ batch training

for the action network as well.

10.3.3.3 Simulation Results

In the present simulation studies, we first train the critic network for many cycles
with 500 training epochs in each cycle. At the end of each training cycle, we check
the performance of the critic network. Once the performance is found to be satisfac-
tory, we stop critic network training. This process usually takes about 6–7 hours.

After the critic network training is finished, we start the action network training.
We train the controller network for 200 epochs after each trial. We check to see the
performance of the neural network controller at the end of each trial.

We choose to use 4000 data points from the data (16000–20000 in the data set)
for the present critic and action network training.

We first show the TRQ and AFR output due to the initial training of our neu-
ral network controller when TRQ∗ and AFR∗ are chosen as random signals during
training. Figures 10.13 and 10.14 show the controller performance when it is applied
with TRQ∗ and AFR∗ chosen as the measured values in the data set. The neural net-
work controller in this case is trained for 15 cycles using randomly generated target
signal TRQ∗ and AFR∗. Figures 10.13 and 10.14 show that very good tracking con-
trol of the commanded torque signal (TRQ) and the exhaust AFR are achieved. We
note that at the present stage of the research we have not attempted to regulate the
AFR at the stoichiometric value but to track a given command. In these experiments
we simply try to track the measured engine-out AFR values so that the control sig-
nal obtained can directly be validated against the measured control signals in the
vehicle. In Fig. 10.16, it appears that better tracking of AFR was achieved on the
rich side of stoichiometric value, possibly due to more frequent rich excursions en-
countered during model training. This could also have been caused by intentional
fuel enrichments (i.e., wall-wetting compensation) during vehicle accelerations.

Figures 10.15 and 10.16 show the TRQ and AFR output after refined training
when TRQ∗ and AFR∗ are chosen as the measured values in the data. The neural
network controller in this case is trained for 15 cycles using target signal TRQ∗ and
AFR∗ as in the data. Figures 10.15 and 10.16 show that excellent tracking control
results for the commanded TRQ and AFR are achieved.
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Fig. 10.13 Torque output generated by the neural network controller

Fig. 10.14 Air–fuel ratio output generated by the neural network controller

The simulation results indicate that the present learning controller design based
on adaptive dynamic programming (adaptive critic designs) is effective in training
a neural network controller to track the desired TRQ and AFR sequences through
proper control actions.
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Fig. 10.15 Torque output generated by the refined neural network controller

Fig. 10.16 Air–fuel ratio output generated by the refined neural network controller

10.4 Summary

In this chapter, we have investigated the optimal control problem of modern wire-
less networks and automotive engines by using ADP methods. First, we developed
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a self-learning call admission control algorithm based on ADP for multiclass traffic
in SIR-based power-controlled DS-CDMA cellular networks. The most important
benefit of our self-learning call admission control algorithm is that we can eas-
ily and efficiently design call admission control algorithms to satisfy the system
requirement or to accommodate new environments. We note that changes in traf-
fic conditions are inevitable in reality. Thus, fixed call admission control policies
are less preferable in applications. Simulation results showed that when the traffic
condition changes, the self-learning call admission control algorithm can adapt to
changes in the environment, while the fixed admission policy will suffer either from
a higher new call blocking rate, higher handoff call blocking rate, or interference
being higher than the tolerance.

Next a neural network learning control using adaptive dynamic programming
was developed for engine calibration and control. After the network was fully
trained, the present controller may have the potential to outperform existing con-
trollers with regard to the following three aspects. First, the technique presented
will automatically learn the inherent dynamics and non-linearities of the engine
from real vehicle data and, therefore, do not require a mathematical model of the
system to be developed. Second, the developed methods will further advance the
development of a virtual power train for performance evaluation of various con-
trol strategies through the development of neural network models of the engine
and transmission in a prototype vehicle. Third, the present controllers can learn
to improve their performance during the actual vehicle operations, and will adapt
to uncertain changes in the environment and vehicle conditions. This is an inherent
feature of the present neural network learning controller. As such, these techniques
may offer promise for use as real-time engine calibration tools. Simulation results
showed that the present self-learning control approach was effective in achieving
tracking control of the engine torque and air–fuel ratio control through neural net-
work learning.
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