

Communications and Control Engineering

For further volumes:
www.springer.com/series/61

http://www.springer.com/series/61

Huaguang Zhang � Derong Liu � Yanhong Luo �

Ding Wang

Adaptive Dynamic
Programming
for Control

Algorithms and Stability

Huaguang Zhang
College of Information Science Engin.
Northeastern University
Shenyang
People’s Republic of China

Derong Liu
Institute of Automation, Laboratory

of Complex Systems
Chinese Academy of Sciences
Beijing
People’s Republic of China

Yanhong Luo
College of Information Science Engin.
Northeastern University
Shenyang
People’s Republic of China

Ding Wang
Institute of Automation, Laboratory

of Complex Systems
Chinese Academy of Sciences
Beijing
People’s Republic of China

ISSN 0178-5354 Communications and Control Engineering
ISBN 978-1-4471-4756-5 ISBN 978-1-4471-4757-2 (eBook)
DOI 10.1007/978-1-4471-4757-2
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012955288

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Background of This Book

Optimal control, once thought of as one of the principal and complex domains in
the control field, has been studied extensively in both science and engineering for
several decades. As is known, dynamical systems are ubiquitous in nature and there
exist many methods to design stable controllers for dynamical systems. However,
stability is only a bare minimum requirement in the design of a system. Ensuring
optimality guarantees the stability of nonlinear systems. As an extension of the cal-
culus of variations, optimal control theory is a mathematical optimization method
for deriving control policies. Dynamic programming is a very useful tool in solving
optimization and optimal control problems by employing the principle of optimality.
However, it is often computationally untenable to run true dynamic programming
due to the well-known “curse of dimensionality”. Hence, the adaptive dynamic pro-
gramming (ADP) method was first proposed by Werbos in 1977. By building a
system, called “critic”, to approximate the cost function in dynamic programming,
one can obtain the approximate optimal control solution to dynamic programming.
In recent years, ADP algorithms have gained much attention from researchers in
control fields. However, with the development of ADP algorithms, more and more
people want to know the answers to the following questions:

(1) Are ADP algorithms convergent?
(2) Can the algorithm stabilize a nonlinear plant?
(3) Can the algorithm be run on-line?
(4) Can the algorithm be implemented in a finite time horizon?
(5) If the answer to the first question is positive, the subsequent questions are where

the algorithm converges to, and how large the error is.

Before ADP algorithms can be applied to real plants, these questions need to
be answered first. Throughout this book, we will study all these questions and give
specific answers to each question.

v

vi Preface

Why This Book?

Although lots of monographs on ADP have appeared, the present book has unique
features, which distinguish it from others.

First, the types of system involved in this monograph are rather extensive. From
the point of view of models, one can find affine nonlinear systems, non-affine non-
linear systems, switched nonlinear systems, singularly perturbed systems and time-
delay nonlinear systems in this book; these are the main mathematical models in the
control fields.

Second, since the monograph is a summary of recent research works of the au-
thors, the methods presented here for stabilizing, tracking, and games, which to a
great degree benefit from optimal control theory, are more advanced than those ap-
pearing in introductory books. For example, the dual heuristic programming method
is used to stabilize a constrained nonlinear system, with convergence proof; a data-
based robust approximate optimal controller is designed based on simultaneous
weight updating of two networks; and a single network scheme is proposed to solve
the non-zero-sum game for a class of continuous-time systems.

Last but not least, some rather unique contributions are included in this mono-
graph. One notable feature is the implementation of finite horizon optimal control
for discrete-time nonlinear systems, which can obtain suboptimal control solutions
within a fixed finite number of control steps. Most existing results in other books
discuss only the infinite horizon control, which is not preferred in real-world appli-
cations. Besides this feature, another notable feature is that a pair of mixed optimal
policies is developed to solve nonlinear games for the first time when the saddle
point does not exist. Meanwhile, for the situation that the saddle point exists, exis-
tence conditions of the saddle point are avoided.

The Content of This Book

The book involves ten chapters. As implied by the book title, the main content of the
book is composed of three parts; that is, optimal feedback control, nonlinear games,
and related applications of ADP. In the part on optimal feedback control, the edge-
cutting results on ADP-based infinite horizon and finite horizon feedback control,
including stabilization control, and tracking control are presented in a systematic
manner. In the part on nonlinear games, both zero-sum game and non-zero-sum
games are studied. For the zero-sum game, it is proved for the first time that the
iterative policies converge to the mixed optimal solutions when the saddle point
does not exist. For the non-zero-sum game, a single network is proposed to seek the
Nash equilibrium for the first time. In the part of applications, a self-learning call
admission control scheme is proposed for CDMA cellular networks, and meanwhile
an engine torque and air-fuel ratio control scheme is studied in detail, based on
ADP.

In Chap. 1, a brief introduction to the background and development of ADP
is provided. The review begins with the origin of ADP, and the basic structures

Preface vii

and algorithm development are narrated in chronological order. After that, we turn
attention to control problems based on ADP. We present this subject regarding two
aspects: feedback control based on ADP and nonlinear games based on ADP. We
mention a few iterative algorithms from recent literature and point out some open
problems in each case.

In Chap. 2, the optimal state feedback control problem is studied based on ADP
for both infinite horizon and finite horizon. Three different structures of ADP are
utilized to solve the optimal state feedback control strategies, respectively. First,
considering a class of affine constrained systems, a new DHP method is developed
to stabilize the system, with convergence proof. Then, due to the special advantages
of GDHP structure, a new optimal control scheme is developed with discounted cost
functional. Moreover, based on a least-square successive approximation method,
a series of GHJB equations are solved to obtain the optimal control solutions. Fi-
nally, a novel finite-horizon optimal control scheme is developed to obtain the sub-
optimal control solutions within a fixed finite number of control steps. Compared
with the existing results in the infinite-horizon case, the present finite-horizon opti-
mal controller is preferred in real-world applications.

Chapter 3 presents some direct methods for solving the closed-loop optimal
tracking control problem for discrete-time systems. Considering the fact that the
performance index functions of optimal tracking control problems are quite differ-
ent from those of optimal state feedback control problems, a new type of perfor-
mance index function is defined. The methods are mainly based on iterative HDP
and GDHP algorithms. We first study the optimal tracking control problem of affine
nonlinear systems, and after that we study the optimal tracking control problem of
non-affine nonlinear systems. It is noticed that most real-world systems need to be
effectively controlled within a finite time horizon. Hence, based on the above re-
sults, we further study the finite-horizon optimal tracking control problem, using
the ADP approach in the last part of Chap. 3.

In Chap. 4, the optimal state feedback control problems of nonlinear systems
with time delays are studied. In general, the optimal control for time-delay systems
is an infinite-dimensional control problem, which is very difficult to solve; there are
presently no good methods for dealing with this problem. In this chapter, the opti-
mal state feedback control problems of nonlinear systems with time delays both in
states and controls are investigated. By introducing a delay matrix function, the ex-
plicit expression of the optimal control function can be obtained. Next, for nonlinear
time-delay systems with saturating actuators, we further study the optimal control
problem using a non-quadratic functional, where two optimization processes are
developed for searching the optimal solutions. The above two results are for the
infinite-horizon optimal control problem. To the best of our knowledge, there are
no results on the finite-horizon optimal control of nonlinear time-delay systems.
Hence, in the last part of this chapter, a novel optimal control strategy is devel-
oped to solve the finite-horizon optimal control problem for a class of time-delay
systems.

In Chap. 5, the optimal tracking control problems of nonlinear systems with time
delays are studied using the HDP algorithm. First, the HJB equation for discrete

viii Preface

time-delay systems is derived based on state error and control error. Then, a novel
iterative HDP algorithm containing the iterations of state, control law, and cost func-
tional is developed. We also give the convergence proof for the present iterative
HDP algorithm. Finally, two neural networks, i.e., the critic neural network and
the action neural network, are used to approximate the value function and the cor-
responding control law, respectively. It is the first time that the optimal tracking
control problem of nonlinear systems with time delays is solved using the HDP
algorithm.

In Chap. 6, we focus on the design of controllers for continuous-time systems
via the ADP approach. Although many ADP methods have been proposed for
continuous-time systems, a suitable framework in which the optimal controller can
be designed for a class of general unknown continuous-time systems still has not
been developed. In the first part of this chapter, we develop a new scheme to design
optimal robust tracking controllers for unknown general continuous-time nonlinear
systems. The merit of the present method is that we require only the availability of
input/output data, instead of an exact system model. The obtained control input can
be guaranteed to be close to the optimal control input within a small bound. In the
second part of the chapter, a novel ADP-based robust neural network controller is
developed for a class of continuous-time non-affine nonlinear systems, which is the
first attempt to extend the ADP approach to continuous-time non-affine nonlinear
systems.

In Chap. 7, several special optimal feedback control schemes are investigated.
In the first part, the optimal feedback control problem of affine nonlinear switched
systems is studied. To seek optimal solutions, a novel two-stage ADP method is
developed. The algorithm can be divided into two stages: first, for each possible
mode, calculate the associated value function, and then select the optimal mode for
each state. In the second and third parts, the near-optimal controllers for nonlinear
descriptor systems and singularly perturbed systems are solved by iterative DHP
and HDP algorithms, respectively. In the fourth part, the near-optimal state-feedback
control problem of nonlinear constrained discrete-time systems is solved via a single
network ADP algorithm. At each step of the iterative algorithm, a neural network
is utilized to approximate the costate function, and then the optimal control policy
of the system can be computed directly according to the costate function, which
removes the action network appearing in the ordinary ADP structure.

Game theory is concerned with the study of decision making in a situation where
two or more rational opponents are involved under conditions of conflicting inter-
ests. In Chap. 8, zero-sum games are investigated for discrete-time systems based on
the model-free ADP method. First, an effective data-based optimal control scheme is
developed via the iterative ADP algorithm to find the optimal controller of a class of
discrete-time zero-sum games for Roesser type 2-D systems. Since the exact mod-
els of many 2-D systems cannot be obtained inherently, the iterative ADP method
is expected to avoid the requirement of exact system models. Second, a data-based
optimal output feedback controller is developed for solving the zero-sum games of
a class of discrete-time systems, whose merit is that knowledge of the model of the
system is not required, nor the information of system states.

Preface ix

In Chap. 9, nonlinear game problems are investigated for continuous-time sys-
tems, including infinite horizon zero-sum games, finite horizon zero-sum games and
non-zero-sum games. First, for the situations that the saddle point exists, the ADP
technique is used to obtain the optimal control pair iteratively. The present approach
makes the performance index function reach the saddle point of the zero-sum differ-
ential games, while complex existence conditions of the saddle point are avoided.
For the situations that the saddle point does not exist, the mixed optimal control pair
is obtained to make the performance index function reach the mixed optimum. Then,
finite horizon zero-sum games for a class of nonaffine nonlinear systems are stud-
ied. Moreover, besides the zero-sum games, the non-zero-sum differential games are
studied based on single network ADP algorithm. For zero-sum differential games,
two players work on a cost functional together and minimax it. However, for non-
zero-sum games, the control objective is to find a set of policies that guarantee the
stability of the system and minimize the individual performance function to yield a
Nash equilibrium.

In Chap. 10, the optimal control problems of modern wireless networks and auto-
motive engines are studied by using ADP methods. In the first part, a novel learning
control architecture is proposed based on adaptive critic designs/ADP, with only a
single module instead of two or three modules. The choice of utility function for the
present self-learning control scheme makes the present learning process much more
efficient than existing learning control methods. The call admission controller can
perform learning in real time as well as in off-line environments, and the controller
improves its performance as it gains more experience. In the second part, an ADP-
based learning algorithm is designed according to certain criteria and calibrated for
vehicle operation over the entire operating regime. The algorithm is optimized for
the engine in terms of performance, fuel economy, and tailpipe emissions through
a significant effort in research and development and calibration processes. After the
controller has learned to provide optimal control signals under various operating
conditions off-line or on-line, it is applied to perform the task of engine control in
real time. The performance of the controller can be further refined and improved
through continuous learning in real-time vehicle operations.

Acknowledgments

The authors would like to acknowledge the help and encouragement they received
during the course of writing this book. A great deal of the materials presented in
this book is based on the research that we conducted with several colleagues and
former students, including Q.L. Wei, Y. Zhang, T. Huang, O. Kovalenko, L.L. Cui,
X. Zhang, R.Z. Song and N. Cao. We wish to acknowledge especially Dr. J.L. Zhang
and Dr. C.B. Qin for their hard work on this book. The authors also wish to thank
Prof. R.E. Bellman, Prof. D.P. Bertsekas, Prof. F.L. Lewis, Prof. J. Si and Prof. S. Ja-
gannathan for their excellent books on the theory of optimal control and adaptive

x Preface

dynamic programming. We are very grateful to the National Natural Science Foun-
dation of China (50977008, 60904037, 61034005, 61034002, 61104010), the Sci-
ence and Technology Research Program of The Education Department of Liaoning
Province (LT2010040), which provided necessary financial support for writing this
book.

Huaguang Zhang
Derong Liu

Yanhong Luo
Ding Wang

Shenyang, China
Beijing, China
Chicago, USA

Contents

1 Overview . 1
1.1 Challenges of Dynamic Programming 1
1.2 Background and Development of Adaptive Dynamic Programming 3

1.2.1 Basic Structures of ADP 4
1.2.2 Recent Developments of ADP 6

1.3 Feedback Control Based on Adaptive Dynamic Programming . . . 11
1.4 Non-linear Games Based on Adaptive Dynamic Programming . . . 17
1.5 Summary . 19
References . 19

2 Optimal State Feedback Control for Discrete-Time Systems 27
2.1 Introduction . 27
2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP . 27

2.2.1 Problem Formulation . 28
2.2.2 Infinite-Horizon Optimal State Feedback Control via DHP . 30
2.2.3 Simulations . 44

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 52
2.3.1 Problem Formulation . 52
2.3.2 Infinite-Horizon Optimal State Feedback Control Based

on GDHP . 54
2.3.3 Simulations . 67

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB
Algorithm . 71
2.4.1 Problem Formulation . 71
2.4.2 Constrained Optimal Control Based on GHJB Equation . . 73
2.4.3 Simulations . 78

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP . . 80
2.5.1 Problem Formulation . 82
2.5.2 Finite-Horizon Optimal State Feedback Control Based on

HDP . 84
2.5.3 Simulations . 102

xi

xii Contents

2.6 Summary . 106
References . 106

3 Optimal Tracking Control for Discrete-Time Systems 109
3.1 Introduction . 109
3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 109

3.2.1 Problem Formulation . 110
3.2.2 Infinite-Horizon Optimal Tracking Control Based on HDP . 111
3.2.3 Simulations . 118

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 120
3.3.1 Problem Formulation . 123
3.3.2 Infinite-Horizon Optimal Tracking Control Based on GDHP 126
3.3.3 Simulations . 137

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 138
3.4.1 Problem Formulation . 141
3.4.2 Finite-Horizon Optimal Tracking Control Based on ADP . 144
3.4.3 Simulations . 154

3.5 Summary . 158
References . 159

4 Optimal State Feedback Control of Nonlinear Systems with Time
Delays . 161
4.1 Introduction . 161
4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 162

4.2.1 Problem Formulation . 162
4.2.2 Optimal State Feedback Control Using Delay Matrix 163
4.2.3 Simulations . 175

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 177
4.3.1 Problem Formulation . 177
4.3.2 Optimal Control Based on Iterative HDP 180
4.3.3 Simulations . 186

4.4 Finite-Horizon Optimal State Feedback Control for a Class
of Nonlinear Systems with Time Delays 188
4.4.1 Problem Formulation . 188
4.4.2 Optimal Control Based on Improved Iterative ADP 190
4.4.3 Simulations . 196

4.5 Summary . 197
References . 198

5 Optimal Tracking Control of Nonlinear Systems with Time Delays . 201
5.1 Introduction . 201
5.2 Problem Formulation . 201
5.3 Optimal Tracking Control Based on Improved Iterative ADP

Algorithm . 202
5.4 Simulations . 213
5.5 Summary . 220
References . 220

Contents xiii

6 Optimal Feedback Control for Continuous-Time Systems via ADP . 223
6.1 Introduction . 223
6.2 Optimal Robust Feedback Control for Unknown General

Nonlinear Systems . 223
6.2.1 Problem Formulation . 224
6.2.2 Data-Based Robust Approximate Optimal Tracking

Control . 224
6.2.3 Simulations . 236

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 242
6.3.1 Problem Formulation . 242
6.3.2 Robust Approximate Optimal Control Based on ADP

Algorithm . 243
6.3.3 Simulations . 250

6.4 Summary . 253
References . 254

7 Several Special Optimal Feedback Control Designs Based on ADP . 257
7.1 Introduction . 257
7.2 Optimal Feedback Control for a Class of Switched Systems 258

7.2.1 Problem Description . 258
7.2.2 Optimal Feedback Control Based on Two-Stage ADP

Algorithm . 259
7.2.3 Simulations . 268

7.3 Optimal Feedback Control for a Class of Descriptor Systems . . . 271
7.3.1 Problem Formulation . 271
7.3.2 Optimal Controller Design for a Class of Descriptor

Systems . 273
7.3.3 Simulations . 279

7.4 Optimal Feedback Control for a Class of Singularly Perturbed
Systems . 281
7.4.1 Problem Formulation . 281
7.4.2 Optimal Controller Design for Singularly Perturbed

Systems . 283
7.4.3 Simulations . 288

7.5 Optimal Feedback Control for a Class of Constrained Systems
Via SNAC . 288
7.5.1 Problem Formulation . 288
7.5.2 Optimal Controller Design for Constrained Systems

via SNAC . 292
7.5.3 Simulations . 299

7.6 Summary . 306
References . 306

8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free
ADP . 309
8.1 Introduction . 309

xiv Contents

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D
Systems . 309
8.2.1 Problem Formulation . 310
8.2.2 Data-Based Optimal Control via Iterative ADP Algorithm . 317
8.2.3 Simulations . 328

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via
Model-Free ADP . 331
8.3.1 Problem Formulation . 332
8.3.2 Data-Based Optimal Output Feedback Control via ADP

Algorithm . 334
8.3.3 Simulations . 341

8.4 Summary . 343
References . 343

9 Nonlinear Games for a Class of Continuous-Time Systems Based
on ADP . 345
9.1 Introduction . 345
9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear

Systems . 346
9.2.1 Problem Formulation . 346
9.2.2 Zero-Sum Differential Games Based on Iterative ADP

Algorithm . 347
9.2.3 Simulations . 355

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 358
9.3.1 Problem Formulation . 360
9.3.2 Finite Horizon Optimal Control of Nonaffine Nonlinear

Zero-Sum Games . 362
9.3.3 Simulations . 370

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based
on ADP . 372
9.4.1 Problem Formulation of Non-Zero-Sum Games 373
9.4.2 Optimal Control of Nonlinear Non-Zero-Sum Games

Based on ADP . 376
9.4.3 Simulations . 387

9.5 Summary . 391
References . 392

10 Other Applications of ADP . 395
10.1 Introduction . 395
10.2 Self-Learning Call Admission Control for CDMA Cellular

Networks Using ADP . 396
10.2.1 Problem Formulation . 396
10.2.2 A Self-Learning Call Admission Control Scheme

for CDMA Cellular Networks 398
10.2.3 Simulations . 406

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP 412

Contents xv

10.3.1 Problem Formulation . 412
10.3.2 Self-learning Neural Network Control for Both Engine

Torque and Exhaust Air–Fuel Ratio 413
10.3.3 Simulations . 415

10.4 Summary . 419
References . 420

Index . 423

Chapter 1
Overview

1.1 Challenges of Dynamic Programming

As is known, there are many methods to design stable controllers for non-linear
systems. However, stability is only a bare minimum requirement in system design.
Ensuring optimality guarantees the stability of the non-linear system. However, op-
timal control of non-linear systems is a difficult and challenging topic [8]. Dynamic
programming is a very useful tool in solving optimization and optimal control prob-
lems by employing the principle of optimality. In particular, it can easily be ap-
plied to non-linear systems with or without constraints on the control and state vari-
ables. In [13], the principle of optimality is expressed as: “An optimal policy has the
property that, whatever the initial state and initial decision are, the remaining deci-
sions must constitute an optimal policy with regard to the state resulting from the
first decision.” There are several options for dynamic programming. One can con-
sider discrete-time systems or continuous-time systems, linear systems or non-linear
systems, time-invariant systems or time-varying systems, deterministic systems or
stochastic systems, etc.

We first take a look at discrete-time non-linear (time-varying) dynamical (deter-
ministic) systems. Time-varying non-linear systems cover most of the application
areas and a discrete time is the basic consideration for digital computation. Suppose
that one is given a discrete-time non-linear (time-varying) dynamical system

x(k + 1)= F [x(k), u(k), k] , k = 0,1, . . . , (1.1)

where x(k) ∈ R
n represents the state vector of the system and u(k) ∈ R

m denotes the
control action. Suppose that the cost functional that is associated with this system is

J [x(i), i] =
∞∑

k=i

γ k−i l [x(k), u(k), k], (1.2)

where l is called the utility function and γ is the discount factor with 0 < γ ≤ 1.
Note that the functional J is dependent on the initial time i and the initial state

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_1,
© Springer-Verlag London 2013

1

http://dx.doi.org/10.1007/978-1-4471-4757-2_1

2 1 Overview

x(i), and it is referred to as the cost-to-go of state x(i). The objective of dynamic
programming problem is to choose a control sequence u(k), k = i, i+ 1, . . . , so that
the functional J (i.e., the cost) in (1.2) is minimized. According to Bellman, the
optimal value function is equal to

J ∗ (x(k))= min
u(k)

{
l (x(k), u(k))+ γ J ∗ (x(k + 1))

}
. (1.3)

The optimal control u∗(k) at time k is the u(k) which achieves this minimum, i.e.,

u∗(k)= arg min
u(k)

{
l (x(k), u(k))+ γ J ∗ (x(k + 1))

}
. (1.4)

Equation (1.3) is the principle of optimality for discrete-time systems. Its impor-
tance lies in the fact that it allows one to optimize over only one control vector at a
time by working backward in time.

In the non-linear continuous-time case, the system can be described by

ẋ(t)= F [x(t), u(t), t] , t ≥ t0. (1.5)

The cost functional in this case is defined as

J (x(t), u)=
∫ ∞

t

l (x(τ), u(τ))dτ. (1.6)

For continuous-time systems, Bellman’s principle of optimality can be ap-
plied, too. The optimal value function J ∗ (x0) = minJ (x0, u(t)) will satisfy the
Hamilton–Jacobi–Bellman equation,

−∂J ∗ (x(t))
∂t

= min
u∈U

{
l (x(t), u(t), t)+

(
∂J ∗ (x(t))
∂x(t)

)T

× F(x(t), u(t), t)

}

= l
(
x(t), u∗(t), t

)+
(
∂J ∗ (x(t))
∂x(t)

)T

× F
(
x(t), u∗(t), t

)
. (1.7)

Equations (1.3) and (1.7) are called the optimality equation of dynamic program-
ming which are the basis for computer implementation of dynamic programming.
In the above, if the function F in (1.1), (1.5) and the cost functional J in (1.2), (1.6)
are known, obtaining the solution of u(t) becomes a simple optimization problem.
If the system is modeled by linear dynamics and the cost functional to be minimized
is quadratic in the state and control, then the optimal control is a linear feedback of
the states, where the gains are obtained by solving a standard Riccati equation [56].
On the other hand, if the system is modeled by the non-linear dynamics or the cost

1.2 Background and Development of Adaptive Dynamic Programming 3

functional is non-quadratic, the optimal state feedback control will depend upon
obtaining the solution to the Hamilton–Jacobi–Bellman (HJB) equation, which is
generally a non-linear partial differential equation or difference equation [58]. How-
ever, it is often computationally untenable to run true dynamic programming due to
the backward numerical process required for its solutions, i.e., as a result of the
well-known “curse of dimensionality” [13, 30]. In [75], three curses are displayed
in resource management and control problems to show that the optimal value func-
tion J ∗, i.e., the theoretical solution of the HJB equation is very difficult to obtain,
except for systems satisfying some very good conditions.

1.2 Background and Development of Adaptive Dynamic
Programming

Over the last 30 years, progress has been made to circumvent the “curse of dimen-
sionality” by building a system, called “critic,” to approximate the cost function
in dynamic programming (cf. [68, 76, 81, 97, 99, 100]). The idea is to approx-
imate dynamic programming solutions by using a function approximation struc-
ture such as neural networks to approximate the cost function. The earliest re-
search refers to reference [96] in 1977, where Werbos introduced an approach for
ADP that was later called adaptive critic designs (ACDs). Then, adaptive dynamic
programming (ADP) algorithms gained much attention from a lot of researchers,
cf. [1, 3, 4, 7, 9, 15, 24, 26, 33, 34, 39, 54, 60–63, 68, 76, 80, 83, 85, 95, 99–
102, 104, 105]. In the literature, there are several synonyms used for “Adaptive Critic
Designs” [29, 46, 50, 62, 76, 92], including “Approximate Dynamic Programming”
[86, 100], “Asymptotic Dynamic Programming” [79], “Adaptive Dynamic Program-
ming” [68, 69], “Heuristic Dynamic Programming” [54, 98], “Neuro-Dynamic Pro-
gramming” [15], “Neural Dynamic Programming” [86, 106], and “Reinforcement
Learning” [87].

In [15], Bertsekas and Tsitsiklis gave an overview of neuro-dynamic program-
ming. They provided the background, gave a detailed introduction to dynamic pro-
gramming, discussed the neural-network architectures and methods for training
them, and developed general convergence theorems for stochastic approximation
methods as the foundation for the analysis of various neuro-dynamic programming
algorithms. They provided the core neuro-dynamic programming methodology, in-
cluding many mathematical results and methodological insights. They suggested
many useful methodologies to apply in neuro-dynamic programming, like Monte
Carlo simulation, on-line and off-line temporal difference methods, Q-learning al-
gorithm, optimistic policy iteration methods, Bellman error methods, approximate
linear programming, approximate dynamic programming with cost-to-go function,
etc. Particularly impressive successful, greatly motivating subsequent research, was
the development of a backgammon playing program by Tesauro [88]. Here a neural
network was trained to approximate the optimal cost-to-go function of the game of
backgammon by using simulation, that is, by letting the program play against itself.

4 1 Overview

Fig. 1.1 Learning from the
environment

Unlike chess programs, this program did not use look-ahead of many steps, so its
success can be attributed primarily to the use of a properly trained approximation of
the optimal cost-to-go function.

1.2.1 Basic Structures of ADP

To implement the ADP algorithm, Werbos [100] proposed a means to get around this
numerical complexity by using “approximate dynamic programming” formulations.
His methods approximate the original problem with a discrete formulation. A solu-
tion to the ADP formulation is obtained through a neural-network-based adaptive
critic approach. The main idea of ADP is shown in Fig. 1.1.

Specifically, Werbos proposed two basic structure of ADP, which are heuristic
dynamic programming (HDP) and dual heuristic programming (DHP).

1.2.1.1 Heuristic Dynamic Programming (HDP)

HDP is the most basic and widely applied structure of ADP [10, 42, 82, 98, 121].
The structure of HDP is shown in Fig. 1.2. In HDP, the critic network will give an
estimation of the cost function J , which is guaranteed to be a Lyapunov function, at
least for deterministic systems. Lyapunov stability theory in general has hugely in-
fluenced control theory, physics, and many other disciplines. Within the disciplines
of control theory and robotics, many researchers have tried to stabilize complex
systems by first deriving Lyapunov functions for those systems. In some cases, the
Lyapunov functions have been derived analytically by solving the multiperiod opti-
mization problem in an analytic fashion.

In the presented HDP structure, there are two critic networks. During the ADP
algorithm based on HDP, there are two iteration loops, i.e., an outer iteration loop
and an inner iteration loop. The weights of critic network 1 are updated at each outer
loop iteration step, and the weights of critic network 2 are updated at each inner loop
iteration step. During the inner loop iteration, the weights of critic network 1 are kept

1.2 Background and Development of Adaptive Dynamic Programming 5

Fig. 1.2 The HDP structure diagram

unchanged. Once the whole inner loop iteration process is finished, the weights of
critic network 2 are transferred to critic network 1. The output of critic network 2
is Ĵ , which is the estimate of J in (1.2). This is done by minimizing the following
square tracking error measure over time:

‖Eh‖ =
∑

k

Eh(k)= 1

2

∑

k

[
Ĵ (k)− l(k)− γ Ĵ (k + 1)

]2
, (1.8)

where Ĵ (k)= Ĵ [x(k), u(k), k,WC,] and WC represents the parameters of the critic
network. When Eh(k)= 0 holds for all k, (1.8) implies that

Ĵ (k)= l(k)+ γ Ĵ (k + 1) (1.9)

and Ĵ (k)=
∞∑
i=k

γ i−kl(i), which is the same as (1.2).

1.2.1.2 Dual Heuristic Programming (DHP)

DHP is a structure for estimating the gradient of the value function, rather than J

itself. To do this, a function is needed to describe the gradient of the instantaneous
reward function with respect to the state of the model. In the DHP structure, the
action network remains the same, but for the critic network, the costate vector is
the output and the state variables are its input. The structure of DHP is shown in
Fig. 1.3, where

DER =
(
∂x̂(k + 1)

∂x(k)
+ ∂x̂(k + 1)

∂u(k)

∂u(k)

∂x(k)

)T

.

6 1 Overview

Fig. 1.3 The DHP structure diagram

The critic network’s training is more complicated than that in HDP since we
need to take into account all relevant pathways of back-propagation. Specifically,
this training is done by minimizing the following square tracking error measure
over time:

‖ED‖ =
∑

k

ED(k)= 1

2

∑

k

[
∂Ĵ (k)

∂x(k)
− ∂l(k)

∂x(k)
− γ

∂Ĵ (k + 1)

∂x(k)

]2

, (1.10)

where ∂Ĵ (k)
∂x(k)

= ∂Ĵ [x(k),u(k),k,WC]
∂x(k)

, and WC represents the parameters of the critic net-
work. When ED(k)= 0 holds for all k, (1.10) implies that

∂Ĵ (k)

∂x(k)
= ∂l(k)

∂x(k)
+ γ

∂Ĵ (k + 1)

∂x(k)
. (1.11)

1.2.2 Recent Developments of ADP

1.2.2.1 Development of ADP Structures

In [100], Werbos further presented two other versions called “action-dependent crit-
ics,” namely, ADHDP and ADDHP. In the two ADP structures, the control is also
the input of the critic networks. The two ADP structures are also summarized in
[76], where a detailed summary of the major developments of adaptive critic de-
signs up to 1997 is presented and another two ADP structures known as GDHP
and ADGDHP are proposed. The GDHP or ADGDHP structure minimizes the error

1.2 Background and Development of Adaptive Dynamic Programming 7

Fig. 1.4 The GDHP structure diagram

with respect to both the cost and its derivatives. While it is more complex to do this
simultaneously, the resulting behavior is expected to be superior. The diagram of
GDHP structure is shown in Fig. 1.4.

In [108], GDHP serves as a reconfigurable controller to deal with both abrupt
and incipient changes in the plant dynamics due to faults. A novel Fault Tolerant
Control (FTC) supervisor is combined with GDHP for the purpose of improving
the performance of GDHP for fault tolerant control. When the plant is affected by a
known abrupt fault, the new initial conditions of GDHP are loaded from a dynamic
model bank (DMB). On the other hand, if the fault is incipient, the reconfigurable
controller maintains normal performance by continuously modifying itself without
supervisor intervention. It is noted that the training of three networks used to im-
plement the GDHP is in an on-line fashion by utilizing two distinct networks to
implement the critic unit. The first critic network is trained at every iteration, but
the second one is updated at a given period of iterations. During each period of iter-
ations, the weight parameters of the second critic network keep unchanged, which
are a copy of the first one.

It should be mentioned that all the ADP structures can realize the same function,
that is, to obtain the optimal control while the computation precision and speed are
different. Generally, the computation burden of HDP is lowest but the computa-
tion precision is low; while GDHP possesses the most excellent precision but the
computation process will take the longest time. A detailed comparison can be seen
in [76].

In [33, 85], the schematic of direct heuristic dynamic programming is devel-
oped. Using the approach of [85], the model network in Fig. 1.2 is not needed
anymore. Reference [106] makes significant contributions to model-free adaptive
critic designs. Several practical examples are included in [106] for demonstration,

8 1 Overview

Fig. 1.5 Forward-in-time
approach

Fig. 1.6 Backward-in-time
approach

which include a single inverted pendulum and a triple inverted pendulum. The re-
inforcement learning-based controller design for non-linear discrete-time systems
with input constraints is presented by [40], where the non-linear tracking control is
implemented with filtered tracking error using direct HDP designs. For similar work
also see [41]. Reference [62] is also about model-free adaptive critic designs. Two
approaches for the training of a critic network are provided in [62]: A forward-in-
time approach and a backward-in-time approach. Figure 1.5 shows the diagram of
the forward-in-time approach. In this approach, we view Ĵ (k) in (1.9) as the out-
put of the critic network to be trained and choose l(k) + Ĵ (k + 1) as the training
target. Note that Ĵ (t) and Ĵ (k + 1) are obtained using state variables at different
time instances. Figure 1.6 shows the diagram of backward-in-time approach. In this
approach, we view Ĵ (k+ 1) in (1.9) as the output of the critic network to be trained
and choose (Ĵ − l)/γ as the training target. The training approach of [106] can be
considered as a backward-in-time approach. In Figs. 1.5 and 1.6, x(k + 1) is the
output of the model network.

Further, an improvement and modification to the action-critic network architec-
ture, which is called the “single network adaptive critic (SNAC),” has been devel-
oped in [72]. This approach eliminates the action network. As a consequence, the
SNAC architecture offers three potential advantages: a simpler architecture, less
computational load (about half of the dual network algorithm), and no approximate
error due to the elimination of the action network. The SNAC approach is applicable

1.2 Background and Development of Adaptive Dynamic Programming 9

to a wide class of non-linear systems where the optimal control (stationary) equation
can be explicitly expressed in terms of the state and the costate variables. Most of
the problems in aerospace, automobile, robotics, and other engineering disciplines
can be characterized by the non-linear control-affine equations that yield such a rela-
tion. SNAC-based controllers yield excellent tracking performances in applications
to microelectronic mechanical systems, chemical reactors, and high-speed reentry
problems. Padhi et al. [72] have proved that for linear systems (where the mapping
between the costate at stage k + 1 and the state at stage k is linear), the solution
obtained by the algorithm based on the SNAC structure converges to the solution of
discrete Riccati equation.

1.2.2.2 Development of Algorithms and Convergence Analysis

The exact solution of the HJB equation is generally impossible to obtain for non-
linear systems. To overcome the difficulty in solving the HJB equation, recursive
methods are employed to obtain the solution of the HJB equation indirectly. In
1983, Barto et al. [9] developed a neural computation-based adaptive critic learn-
ing method. They divide the state space into boxes and store the learned informa-
tion for each box. The algorithm works well but the number of boxes may be very
large for a complicated system. In 1991, Lin and Kim [59] integrated the cerebellar
model articulation controller technique with the box-based scheme. A large state
space is mapped into a smaller physical memory space. With the distributed infor-
mation storage, there is no need to reserve memory for useless boxes; this makes
the structure applicable to problems of larger size. Kleinman [49] pointed out that
the solution of the Riccati equation can be obtained by successively solving a se-
quence of Lyapunov equations, which is linear with respect to the cost function of
the system, and, thus, it is easier to solve than a Riccati equation, which is non-
linear with respect to the cost function. Saridis [80] extended this idea to the case
of non-linear continuous-time systems where a recursive method is used to obtain
the optimal control of continuous system by successively solving the generalized
Hamilton–Jacobi–Bellman (GHJB) equation, and then updating the control action
if an admissible initial control is given.

Although the GHJB equation is linear and easier to solve than a HJB equation,
no general solution for GHJB is supplied. Therefore, successful application of the
successive approximation method was limited until the novel work of Beard et al.
in [12], where they used a Galerkin spectral approximation method at each iter-
ation to find approximate solutions to the GHJB equations. Then Beard [11] em-
ployed a series of polynomial functions as basic functions to solve the approximate
GHJB equation in continuous time, but this method requires the computation of a
large number of integrals and it is not obvious how to handle explicit constraints on
the controls. However, most of the above papers discussed the GHJB method for
continuous-time systems, and there are few results available on the GHJB method
for discrete-time non-linear systems. The discrete-time version of the approximate

10 1 Overview

GHJB-equation-based control is important since all the controllers are typically im-
plemented by using embedded digital hardware. In [24], a successive approximation
method using the GHJB equation was proposed to solve the near-optimal control
problem for affine non-linear discrete-time systems, which requires the small per-
turbation assumption and an initially stable policy. The theory of GHJB in discrete
time has also been applied to the linear discrete-time case, which indicates that the
optimal control is nothing but the solution of the standard Riccati equation. On the
other hand, in [19], Bradtke et al. implemented a Q-learning policy iteration method
for the discrete-time linear-quadratic optimal control problem which required an ini-
tially stable policy. Furthermore, Landelius [51] applied HDP, DHP, ADHDP and
ADDHP techniques to the discrete-time linear-quadratic optimal control problem
without the initially stable conditions and discussed their convergence.

On the other hand, based on the work of Lyshevski [66], Lewis and Abu-Khalaf
employed a non-quadratic performance functional to solve constrained control prob-
lems for general affine non-linear continuous-time systems using neural networks
(NNs) in [1]. In addition, one showed how to formulate the associated Hamilton–
Jacobi–Isaac (HJI) equation using special non-quadratic supply rates to obtain the
non-linear state feedback control in [2]. Next, the fixed-final-time-constrained op-
timal control of non-linear systems was studied in [26, 27] based on the neural-
network solution of the GHJB equation. In order to enhance learning speed and im-
prove the performance, Wiering and Hasselt combined multiple different reinforce-
ment learning algorithms to design and implement four different ensemble methods
in [103]. In [35], another novel approach for designing the ADP neural-network
controllers was presented. The control performance and the closed-loop stability in
the linear parameter-varying (LPV) regime are formulated as a set of design equa-
tions that are linear with respect to matrix functions of NN parameters. Moreover, in
[48], a new algorithm for the closed-loop parallel optimal control of weakly coupled
non-linear systems was developed using the successive Galerkin approximation. In
[53], the author inspired researchers to develop an experience-based approach, se-
lecting a controller that is appropriate to the current situation from a repository of
existing controller solutions. Moreover, in [82], the HJB equations were derived and
proven on various time scales. The authors connected the calculus of time scales and
stochastic control via an ADP algorithm and further pointed out three significant di-
rections for the investigation of ADP on the time scales. In the past two years, there
have also been published some results on ADP and reinforcement learning algo-
rithms, such as [17, 21, 57, 94] and so on.

1.2.2.3 Applications of ADP Algorithms

As for the industrial application of ADP algorithm, it most focuses on missile sys-
tems [16], autopilot systems [34], generators [74], communication systems [63]
and so on. In [109], an improved reinforcement learning method was proposed
to perform navigation in dynamic environments. The difficulties of the traditional

1.3 Feedback Control Based on Adaptive Dynamic Programming 11

reinforcement learning were presented in autonomous navigating and three effec-
tive solutions were proposed to overcome these difficulties which were forgetting
Q-learning, feature based Q-learning, and hierarchical Q-learning, respectively. For-
getting Q-learning was proposed to improve performance in a dynamic environment
by maintaining possible navigation paths, which would be considered unacceptable
by traditional Q-learning. Hierarchical Q-learning was proposed as a method of sub-
dividing the problem domain into a set of more manageable ones. Feature-based
Q-learning was proposed as a method of enhancing hierarchical Q-learning.

Applications of adaptive critics in the continuous-time domain were mainly done
by using the discretization and the well-established discrete-time results (e.g., [89]).
Various types of continuous-time nondynamic reinforcement learning were dis-
cussed by Campos and Lewis [22] and Rovithakis [78], who approximated a Lya-
punov function derivative. Liu [61] proposed an improved ADHDP for on-line con-
trol and Abu-Khalaf [1] gave the optimal control scheme under constraint conditions
in the actuators. Lu, Si and Xie [65] applied direct heuristic dynamic programming
(direct HDP) to a large power system stability control problem. A direct HDP con-
troller learned to cope with model deficiencies for non-linearities and uncertainties
on the basis of real system responses instead of a system model. Ray et al. [77] re-
ported a comparison of adaptive critic-based and classical wide-area controllers for
power systems. Liu et al. [64] demonstrated a good engine torque and exhaust air-
fuel ratio (AFR) control with adaptive critic techniques for an engine application.
The design based on the neural network to automatically learn the inherent dynam-
ics and advanced the development of a virtual powertrain to improve their perfor-
mance during the actual vehicle operations. In [3] a greedy iterative HDP algorithm
to solve the discrete-time Hamilton–Jacobi–Bellman (DTHJB) equation of the opti-
mal control problem for general discrete-time non-linear systems was proposed. In
[68] a convergent ADP method was developed for stabilizing the continuous-time
non-linear systems and one succeeded to improve the autolanding control of aircraft.

Enns and Si [32] presented a lucid article on model-free approach to helicopter
control. Recent work by Lewis et al. and Jagannathan et al. has been quite rigorous in
theory and useful in practical applications. Jagannathan [84] has extended stability
proofs for systems with observers in the feedback loop and applied to spark engine
EGR operation on the basis of reinforcement learning dual control [41]. In order
to enhance learning speed and final performance, Wiering and Hasselt combined
multiple different reinforcement learning algorithms to design and implement four
different ensemble methods in [103].

1.3 Feedback Control Based on Adaptive Dynamic
Programming

In the most recent years, research on the ADP algorithm has made significant
progress. On the one hand, for discrete-time systems, a greedy iterative HDP scheme
with convergence proof was proposed in [3] for solving the optimal control problem

12 1 Overview

of non-linear discrete-time systems with a known mathematical model, which did
not require an initially stable policy. The basic iterative ADP algorithm for discrete-
time non-linear systems, which is proposed based on Bellman’s principle of opti-
mality and the greedy iteration principle, is given as follows.

First, one start with the initial value function V0(·)= 0, which is not necessarily
the optimal value function. Then, the law of a single control vector v0(x) can be
obtained as follows:

v0(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ u(k)TRu(k)+ V0(x(k + 1))

}
, (1.12)

and the value function can be updated as

V1(x(k))= xT(k)Qx(k)+ v0(x(k))
TRv0(x(k)). (1.13)

Therefore, for i = 1,2, . . . , the iterative ADP algorithm then iterates between

vi(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ u(k)TRu(k)+ Vi(x(k + 1))

}
(1.14)

and

Vi+1(x(k))= xT(k)Qx(k)+ vi(x(k))
TRvi(x(k))+ Vi (x(k + 1)) . (1.15)

In summary, in this iterative algorithm, the value function sequence {Vi} and con-
trol law sequence {vi} are updated by implementing the recurrent iteration between
(1.14) and (1.15) with the iteration number i increasing from 0 to ∞.

On the other hand, there are also corresponding developments in the ADP tech-
niques for non-linear continuous-time systems. Murray et al. proposed an iterative
ADP scheme in [68] for a class of continuous-time non-linear systems with respect
to the quadratic cost function and succeeded to improve the autolanding control of
aircraft. The iteration was required to begin with an initially stable policy, and after
each iteration the cost function was updated. So the iterative policy is also called
“cost iteration.” The specific algorithm is given as follows.

Consider the following continuous-time systems:

ẋ = F(x)+B(x)u, x(t0)= x0, (1.16)

with the cost functional given by

J (x)=
∫ ∞

t0

l (x(τ), u(τ))dτ, (1.17)

where l(x, u) = q(x) + uTr(x)u is a nonnegative function and r(x) > 0. Similar
to [81], an iterative process is proposed to obtain the control law. In this case, the
optimal control can be simplified to

u∗(x)= −1

2
r−1(x)BT(x)

[
dJ ∗(x)

dx

]T

. (1.18)

1.3 Feedback Control Based on Adaptive Dynamic Programming 13

Starting from any stable Lyapunov function J0 (or alternatively, starting from an
arbitrary stable controller u0) and replacing J ∗ by Ji , (1.18) becomes

ui(x)= −1

2
r−1(x)BT(x)

[
dJi(x)

dx

]T

, (1.19)

where Ji = ∫ +∞
t0

l (xi−1, ui−1) dτ is the cost of the trajectory xi−1(t) of plant (1.16)
under the input u(t)= ui−1(t). Furthermore, Murray et al. gave a convergence anal-
ysis of the iterative ADP scheme and a stability proof of the system. Before that,
most of the ADP analysis was based on the Riccati equation for linear systems. In
[1], based on the work of Lyshevski [66], an iterative ADP method was used to
obtain an approximate solution of the optimal value function of the HJB equation
using NNs. Different from the iterative ADP scheme in [68], the iterative scheme
in [1] adopted policy iteration, which meant that after each iteration the policy (or
control) function was updated. The convergence and stability analysis can also be
found in [1].

Moreover, Vrabie et al. [93] proposed a new policy iteration technique to solve
on-line the continuous-time LQR problem for a partially model-free system (internal
dynamics unknown). They presented an on-line adaptive critic algorithm in which
the actor performed continuous-time control, whereas the critic’s correction of the
actor’s behavior was discrete in time, until best performance was obtained. The critic
evaluated the actor’s performance over a period of time and formulated it in a param-
eterized form. Policy update was implemented based on the critic’s evaluation on the
actor. Convergence of the proposed algorithm was established by proving equiva-
lence with an established algorithm [49]. In [35], a novel linear parameter-varying
(LPV) approach for designing the ADP neural-network controllers was presented.
The control performance and the closed-loop stability of the LPV regime were for-
mulated as a set of design equations that were linear with respect to matrix functions
of NN parameters.

It can be seen that most existing results, including the optimal control scheme
proposed by Murray et al., require one to implement the algorithm by recurrent iter-
ation between the value function and control law, which is not expected in real-time
industrial applications. Therefore, in [91] and [119], new ADP algorithms were pro-
posed to solve the optimal control in an on-line fashion, where the value functions
and control laws were updated simultaneously. The optimal control scheme is re-
viewed in the following.

Consider the non-linear system (1.16), and define the infinite-horizon cost func-
tional as follows:

J (x,u)=
∫ ∞

t

l(x(τ), u(τ))dτ, (1.20)

where l(x, u) = xTQx + uTRu is the utility function, and Q and R are symmetric
positive definite matrices with appropriate dimensions.

Define the Hamilton function as

H(x,u,Jx)= J T
x (F (x)+B(x)u)+ xTQx + uTRu, (1.21)

14 1 Overview

where Jx = ∂J (x)/∂x.
The optimal value function J ∗(x) is defined as

J ∗(x)= min
u∈ψ(�)

∫ ∞

t

l(x(τ), u(x(τ)))dτ (1.22)

and satisfies

0 = min
u∈ψ(�)(H(x,u, J ∗

x)). (1.23)

Therefore, we obtain the optimal control u∗ by solving ∂H(x,u,J ∗
x)/∂u= 0, thus:

u∗ = −1

2
R−1BT(x)J ∗

x , (1.24)

where J ∗
x = ∂J ∗(x)/∂x.

In the following, by employing the critic NN and the action NN, the ADP algo-
rithm is implemented to seek for an optimal feedback control law.

First, a neural network is utilized to approximate J (x) as follows:

J (x)=WT
c φc(x)+ εc, (1.25)

where Wc is for the unknown ideal constant weights and φc(x) :Rn → R
N1 is called

the critic NN activation function vector; N1 is the number of neurons in the hidden
layer, and εc is the critic NN approximation error.

The derivative of the cost function J (x) with respect to x is

Jx = �φT
c Wc +�εc, (1.26)

where �φc � ∂φc(x)/∂x and �εc � ∂εc/∂x.
Let Ŵc be an estimate of Wc; then we have the estimate of J (x) as follows:

Ĵ (x)= ŴT
c φc(x). (1.27)

Then the approximate Hamilton function can be derived as follows:

H(x,u, Ŵa)= ŴT
c �φc(F (x)+B(x)u)+ xTQx + uTRu

= ec. (1.28)

Given any admissible control law u, it is desired to select Ŵc to minimize the
squared residual error Ec(Ŵc) as follows:

Ec(Ŵc)= 1

2
eT
c ec. (1.29)

The weight update law for the critic NN is presented based on a gradient descent
algorithm, which is given by

˙̂
Wc = −αcσc(φ

T
c Ŵc + xTQx + uTRu), (1.30)

1.3 Feedback Control Based on Adaptive Dynamic Programming 15

where αc > 0 is the adaptive gain of the critic NN, σc = σ/(σTσ + 1),
σ = �φc(F (x)+B(x)u).

On the other hand, the feedback control u is approximated by the action NN as

u=WT
a φa(x)+ εa, (1.31)

where Wa is the matrix of unknown ideal constant weights and φa(x) : Rn → R
N2

is called the action NN activation function vector, N2 is the number of neurons in
the hidden layer, and εa is the action NN approximation error.

Let Ŵa be an estimate of Wa ; then the actual output can be expressed as

û= ŴT
a φa(x). (1.32)

The feedback error signal used for tuning action NN is defined as

ea = ŴT
a φa + 1

2
R−1Cu�φT

c Ŵc. (1.33)

The objective function to be minimized by the action NN is defined as

Ea(Ŵa)= 1

2
eT
a ea. (1.34)

The weight update law for the action NN is designed based on the gradient de-
scent algorithm, which is given by

˙̂
Wa = −αaφa

(
ŴT

a φa + 1

2
R−1Cu�φT

c Ŵc

)T

, (1.35)

where αa > 0 is the adaptive gain of the action NN.
After the presentation of the weight update rule, a stability analysis of the closed-

loop system can be performed based on the Lyapunov approach to guarantee the
boundness of the weight parameters [119].

It should be mentioned that most of the above results require the models of the
controlled plants to be known or at least partially known. However, in practical
applications, most models cannot be obtained. Therefore, it is necessary to recon-
struct the non-linear systems with function approximators. Recurrent neural net-
works (RNNs) are one kind of NN models, which are widely used in the dynamical
analysis of non-linear systems, such as [115, 118, 123]. In this book, we will present
the specific method for modeling the non-linear systems with RNN. Based on the
RNN model, the ADP algorithm can be properly introduced to deal with the optimal
control problems of unknown non-linear systems.

Meanwhile, saturation, dead-zones, backlash, and hysteresis are the most com-
mon actuator non-linearities in practical control system applications. Saturation
non-linearity is unavoidable in most actuators. Due to the nonanalytic nature of
the actuator’s non-linear dynamics and the fact that the exact actuator’s non-linear
functions are unknown, such systems present a challenge to control engineers. As

16 1 Overview

far as we know, most of the existing results of dealing with the control of systems
with saturating actuators do not refer to the optimal control laws. Therefore, this
problem is worthy of study in the framework of the HJB equation. To the best of
our knowledge, though ADP algorithms have made large progress in the optimal
control field, it is still an open problem how to solve the optimal control problem
for discrete-time systems with control constraints based on ADP algorithms. If the
actuator has saturating characteristic, how do we find a constrained optimal control?
In this book, we shall give positive answers to these questions.

Moreover, traditional optimal control approaches are mostly implemented in an
infinite time horizon. However, most real-world systems need to be effectively con-
trolled within a finite time horizon (finite horizon for brief), such as stabilized ones
or ones tracked to a desired trajectory in a finite duration of time. The design of
finite-horizon optimal controllers faces a huge obstacle in comparison to the infinite-
horizon one. An infinite-horizon optimal controller generally obtains an asymptotic
result for the controlled systems [73]. That is, the system will not be stabilized or
tracked until the time reaches infinity, while for finite-horizon optimal control prob-
lems, the system must be stabilized or tracked to a desired trajectory in a finite dura-
tion of time [20, 70, 90, 107, 111]. Furthermore, in the case of discrete-time systems,
a determination of the number of optimal control steps is necessary for finite-horizon
optimal control problems, while for the infinite-horizon optimal control problems,
the number of optimal control steps is infinite in general. The finite-horizon control
problem has been addressed by many researchers [18, 28, 37, 110, 116]. But most
of the existing methods consider only stability problems of systems under finite-
horizon controllers [18, 37, 110, 116]. Due to the lack of methodology and the fact
that the number of control steps is difficult to determine, the optimal controller de-
sign of finite-horizon problems still presents a major challenge to control engineers.

In this book, we will develop a new ADP scheme for finite-horizon optimal con-
trol problems. We will study the optimal control problems with an ε-error bound
using ADP algorithms. First, the HJB equation for finite-horizon optimal control of
discrete-time systems is derived. In order to solve this HJB equation, a new iterative
ADP algorithm is developed with convergence and optimality proofs. Second, the
difficulties of obtaining the optimal solution using the iterative ADP algorithm is
presented and then the ε-optimal control algorithm is derived based on the iterative
ADP algorithms. Next, it will be shown that the ε-optimal control algorithm can ob-
tain suboptimal control solutions within a fixed finite number of control steps that
make the value function converge to its optimal value with an ε-error.

It should be mentioned that all the above results based on ADP do not refer to the
systems with time delays. Actually, time delay often occurs in the transmission be-
tween different parts of systems. Transportation systems, communication systems,
chemical processing systems, metallurgical processing systems and power systems
are examples of time-delay systems. Therefore, the investigation of time-delay sys-
tems is significant. In recent years, much researches has been performed on decen-
tralized control, synchronization control and stability analysis [112, 114, 117, 122].
However, the optimal control problem is often encountered in industrial produc-
tion. In general, optimal control for time-delay systems is an infinite-dimensional

1.4 Non-linear Games Based on Adaptive Dynamic Programming 17

control problem [67], which is very difficult to solve. The analysis of systems with
time delays is much more difficult than that of systems without delays, and there
is no method strictly facing this problem for non-linear time-delay systems. So in
this book, optimal state feedback control problems of non-linear systems with time
delays will also be discussed.

1.4 Non-linear Games Based on Adaptive Dynamic
Programming

All of the above results discuss the situation that there is only one controller to be
designed. However, as is known, a large class of real systems are controlled by more
than one controller or decision maker with each using an individual strategy. These
controllers often operate in a group with a general quadratic cost functional as a
game [45]. Zero-sum differential game theory has been widely applied to decision
making problems [23, 25, 38, 44, 52, 55], stimulated by a vast number of applica-
tions, including those in economy, management, communication networks, power
networks, and in the design of complex engineering systems.

In recent years, based on the work of [51], approximate dynamic programming
(ADP) techniques have further been extended to the zero-sum games of linear and
non-linear systems. In [4, 5], HDP and DHP structures were used to solve the
discrete-time linear-quadratic zero-sum games appearing in the H∞ optimal con-
trol problem. The optimal strategies for discrete-time quadratic zero-sum games
related to the H∞ optimal control problem were solved forward in time. The idea
is to solve for an action-dependent cost function Q(x,u,w) of the zero-sum games,
instead of solving for the state-dependent cost function J (x) which satisfies a cor-
responding game algebraic Riccati equation (GARE). Using the Kronecker method,
two action networks and one critic network were adaptively tuned forward in time
using adaptive critic methods without the information of a model of the system.
The algorithm was proved to converge to the Nash equilibrium of the corresponding
zero-sum games. The performance comparisons were carried out on an F-16 autopi-
lot. Then, in [6] these results were extended to a model-free environment for the
control of a power generator system. In the paper, the on-line model-free adaptive
critic schemes based on ADP were presented by the authors to solve optimal con-
trol problems in both discrete-time and continuous-time domains for linear systems
with unknown dynamics. In the discrete-time case, the solution process leads to
solving the underlying game GARE of the corresponding optimal control problem
or zero-sum games. In the continuous-time domain, their ADP scheme solves the
underlying algebraic Riccati equation (ARE) of the optimal control problem. They
show that their continuous-time ADP scheme is nothing but a quasi-Newton method
to solve the ARE. Either in continuous-time domain or discrete-time domain, the
adaptive critic algorithms are easy to initialize considering that initial policies are
not required to be stabilizing.

In the following, we present some basic knowledge regarding non-linear zero-
sum differential games first [120].

18 1 Overview

Consider the following two-person zero-sum differential games. The state tra-
jectory of the game is described by the following continuous-time affine non-linear
function:

ẋ = f (x,u,w)= a(x)+ b(x)u+ c(x)w, (1.36)

where x ∈ R
n, u ∈ R

k , w ∈R
m and the initial condition x(0)= x0 is given.

The two control variables u and w are functions chosen on [0,∞) by player I and
player II from some control sets U [0,∞) and W [0,∞), respectively, subject to the
constraints u ∈ U(t), and w ∈ W(t) for t ∈ [0,∞), for given convex and compact
sets U(t) ⊂ R

k , W(t) ⊂ R
m. The cost functional is a generalized quadratic form

given by

J (x(0), u,w)=
∫ ∞

0
(xTAx + uTBu+wTCw

+ 2uTDw + 2xTEu+ 2xTFw)dt, (1.37)

where matrices A,B,C,D,E,F have suitable dimension and A≥ 0, B > 0, C < 0.
So we see, for ∀t ∈ [0,∞), that the cost functional J (x(t), u,w) (denoted by
J (x) for brevity in the sequel) is convex in u and concave in w. l(x, u,w) =
xTAx + uTBu + wTCw + 2uTDw + 2xTEu + 2xTFw is the general quadratic
utility function. For the above zero-sum differential games, there are two controllers
or players where player I tries to minimize the cost functional J (x), while player II
attempts to maximize it. According to the situation of the two players, the following
definitions are presented first.

Let

J (x) := inf
u∈U [t,∞)

sup
w∈W [t,∞)

J (x,u,w) (1.38)

be the upper value function and

J (x) := sup
w∈W [t,∞)

inf
u∈U [t,∞)

J (x,u,w) (1.39)

be the lower value function with the obvious inequality J (x) ≥ J (x). Define the
optimal control pairs be (u,w) and (u,w) for upper and lower value function, re-
spectively. Then, we have

J (x)= J (x,u,w) (1.40)

and

J (x)= J (x,u,w). (1.41)

If both J (x) and J (x) exist and

J (x)= J (x)= J ∗(x), (1.42)

we say that the optimal value function of the zero-sum differential games or the sad-
dle point exists and the corresponding optimal control pair is denoted by (u∗,w∗).

1.5 Summary 19

As far as we know, traditional approaches in dealing with zero-sum differential
games are to find the optimal solution or the saddle point of the games. So many
results are developed to discuss the existence conditions of the differential zero-sum
games [36, 113].

In the real world, however, the existence conditions of the saddle point for zero-
sum differential games are so difficult to satisfy that many applications of the zero-
sum differential games are limited to linear systems [31, 43, 47]. On the other hand,
for many zero-sum differential games, especially in the non-linear case, the opti-
mal solution of the game (or saddle point) does not exist inherently. Therefore, it is
necessary to study the optimal control approach for the zero-sum differential games
where the saddle point is invalid. The earlier optimal control scheme is to adopt the
mixed trajectory method [14, 71], in which one player selects an optimal probability
distribution over his control set and the other player selects an optimal probability
distribution over his own control set, and then the expected solution of the game can
be obtained in the sense of probability. The expected solution of the game is called
a mixed optimal solution and the corresponding value function is the mixed optimal
value function. The main difficulty of the mixed trajectory for the zero-sum differ-
ential games is that the optimal probability distribution is too hard, if not impossible,
to obtain for the whole real space. Furthermore, the mixed optimal solution is hardly
reached once the control schemes are determined. In most cases (i.e. in engineer-
ing cases), however, the optimal solution or mixed optimal solution of the zero-sum
differential games has to be achieved by a determined optimal or mixed optimal
control scheme. In order to overcome these difficulties, a new iterative approach is
developed in this book to solve zero-sum differential games for a non-linear system.

1.5 Summary

In this chapter, we briefly introduced the variations on the structure of ADP schemes
and stated the development of the iterative ADP algorithms, and, finally, we recall
the industrial application of ADP schemes. Due to the focus of the book, we do not
list all the methods developed in ADP. Our attention is to give an introduction to the
development of theory so as to provide a rough description of ADP for a new-comer
in research in this area.

References

1. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach. Automatica 41(5):779–791

2. Abu-Khalaf M, Lewis FL, Huang J (2006) Policy iterations on the Hamilton–Jacobi–
Isaacs equation for state feedback control with input saturation. IEEE Trans Autom Control
51(12):1989–1995

3. Al-Tamimi A, Lewis FL (2007) Discrete-time nonlinear HJB solution using approximate dy-
namic programming: convergence proof. In: Proceedings of IEEE international symposium
on approximate dynamic programming and reinforcement learning, Honolulu, HI, pp 38–43

20 1 Overview

4. Al-Tamimi A, Abu-Khalaf M, Lewis FL (2007) Adaptive critic designs for discrete-time
zero-sum games with application to H∞ control. IEEE Trans Syst Man Cybern, Part B,
Cybern 37(1):240–247

5. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear
discrete-time zero-sum games with application to H-infinity control. Automatica 43(3):473–
481

6. Al-Tamimi A, Lewis FL, Wang Y (2007) Model-free H-infinity load-frequency controller
design for power systems. In: Proceedings of IEEE international symposium on intelligent
control, pp 118–125

7. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using
approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern, Part
B, Cybern 38(4):943–949

8. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–
Jacobi–Bellman equations. Birkhauser, Boston

9. Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans Syst Man Cybern 13(5):835–846

10. Beard RW (1995) Improving the closed-loop performance of nonlinear systems. PhD disser-
tation, Rensselaer Polytech Institute, Troy, NY

11. Beard RW, Saridis GN (1998) Approximate solutions to the timeinvariant Hamilton–Jacobi–
Bellman equation. J Optim Theory Appl 96(3):589–626

12. Beard RW, Saridis GN, Wen JT (1997) Galerkin approximations of the generalized
Hamilton–Jacobi–Bellman equation. Automatica 33(12):2159–2177

13. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton
14. Bertsekas DP (2003) Convex analysis and optimization. Athena Scientific, Belmont
15. Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming. Athena Scientific, Bel-

mont
16. Bertsekas DP, Homer ML, Logan DA, Patek SD, Sandell NR (2000) Missile defense and

interceptor allocation by neuro-dynamic programming. IEEE Trans Syst Man Cybern, Part
A, Syst Hum 30(1):42–51

17. Bhasin S, Sharma N, Patre P, Dixon WE (2011) Asymptotic tracking by a reinforcement
learning-based adaptive critic controller. J Control Theory Appl 9(3):400–409

18. Blackmore L, Rajamanoharan S, Williams BC (2008) Active estimation for jump Markov
linear systems. IEEE Trans Autom Control 53(10):2223–2236

19. Bradtke SJ, Ydestie BE, Barto AG (1994) Adaptive linear quadratic control using policy it-
eration. In: Proceedings of the American control conference, Baltimore, Maryland, pp 3475–
3476

20. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation, and control.
Hemisphere–Wiley, New York

21. Busoniu L, Babuska R, Schutter BD, Ernst D (2010) Reinforcement learning and dynamic
programming using function approximators. CRC Press, Boca Raton

22. Campos J, Lewis FL (1999) Adaptive critic neural network for feedforward compensation.
In: Proceedings of American control conference, San Diego, CA, pp 2813–2818

23. Chang HS, Marcus SI (2003) Two-person zero-sum Markov games: receding horizon ap-
proach. IEEE Trans Autom Control 48(11):1951–1961

24. Chen Z, Jagannathan S (2008) Generalized Hamilton–Jacobi–Bellman formulation-based
neural network control of affine nonlinear discrete-time systems. IEEE Trans Neural Netw
19(1):90–106

25. Chen BS, Tseng CS, Uang HJ (2002) Fuzzy differential games for nonlinear stochastic sys-
tems: suboptimal approach. IEEE Trans Fuzzy Syst 10(2):222–233

26. Cheng T, Lewis FL, Abu-Khalaf M (2007) Fixed-final-time-constrained optimal con-
trol of nonlinear systems using neural network HJB approach. IEEE Trans Neural Netw
18(6):1725–1736

27. Cheng T, Lewis FL, Abu-Khalaf M (2007) A neural network solution for fixed-final time
optimal control of nonlinear systems. Automatica 43(3):482–490

References 21

28. Costa OLV, Tuesta EF (2003) Finite horizon quadratic optimal control and a separation prin-
ciple for Markovian jump linear systems. IEEE Trans Autom Control 48:1836–1842

29. Dalton J, Balakrishnan SN (1996) A neighboring optimal adaptive critic for missile guidance.
Math Comput Model 23:175–188

30. Dreyfus SE, Law AM (1977) The art and theory of dynamic programming. Academic Press,
New York

31. Engwerda J (2008) Uniqueness conditions for the affine open-loop linear quadratic differen-
tial game. Automatica 44(2):504–511

32. Enns R, Si J (2002) Apache helicopter stabilization using neural dynamic programming. J
Guid Control Dyn 25(1):19–25

33. Enns R, Si J (2003) Helicopter trimming and tracking control using direct neural dynamic
programming. IEEE Trans Neural Netw 14(4):929–939

34. Ferrari S, Stengel RF (2004) Online adaptive critic flight control. J Guid Control Dyn
27(5):777–786

35. Ferrari S, Steck JE, Chandramohan R (2008) Adaptive feedback control by constrained ap-
proximate dynamic programming. IEEE Trans Syst Man Cybern, Part B, Cybern 38(4):982–
987

36. Goebel R (2002) Convexity in zero-sum differential games. In: Proceedings of the 41th IEEE
conference on decision and control, Las Vegas, Nevada, pp 3964–3969

37. Goulart PJ, Kerrigan EC, Alamo T (2009) Control of constrained discrete-time systems with
bounded L2 gain. IEEE Trans Autom Control 54(5):1105–1111

38. Gu D (2008) A differential game approach to formation control. IEEE Trans Control Syst
Technol 16(1):85–93

39. Hanselmann T, Noakes L, Zaknich A (2007) Continuous-time adaptive critics. IEEE Trans
Neural Netw 18(3):631–647

40. He P, Jagannathan S (2005) Reinforcement learning-based output feedback control of nonlin-
ear systems with input constraints. IEEE Trans Syst Man Cybern, Part B, Cybern 35(1):150–
154

41. He P, Jagannathan S (2007) Reinforcement learning neural-network-based controller for
nonlinear discrete-time systems with input constraints. IEEE Trans Syst Man Cybern, Part
B, Cybern 37(2):425–436

42. Hou ZG, Wu CP (2005) A dynamic programming neural network for large-scale optimization
problems. Acta Autom Sin 25(1):46–51

43. Hua X, Mizukami K (1994) Linear-quadratic zero-sum differential games for generalized
state space systems. IEEE Trans Autom Control 39(1):143–147

44. Hwnag KS, Chiou JY, Chen TY (2004) Reinforcement learning in zero-sum Markov games
for robot soccer systems. In: Proceedings of the 2004 IEEE international conference on net-
working, sensing and control, Taipei, Taiwan, pp 1110–1114

45. Jamshidi M (1982) Large-scale systems-modeling and control. North-Holland, Amsterdam
46. Javaherian H, Liu D, Zhang Y, Kovalenko O (2004) Adaptive critic learning techniques for

automotive engine control. In: Proceedings of American control conference, Boston, MA, pp
4066–4071

47. Jimenez M, Poznyak A (2006) Robust and adaptive strategies with pre-identification via
sliding mode technique in LQ differential games. In: Proceedings of American control con-
ference Minneapolis, Minnesota, USA, pp 14–16

48. Kim YJ, Lim MT (2008) Parallel optimal control for weakly coupled nonlinear systems using
successive Galerkin approximation. IEEE Trans Autom Control 53(6):1542–1547

49. Kleinman D (1968) On an iterative technique for Riccati equation computations. IEEE Trans
Autom Control 13(1):114–115

50. Kulkarni NV, KrishnaKumar K (2003) Intelligent engine control using an adaptive critic.
IEEE Trans Control Syst Technol 11:164–173

51. Landelius T (1997) Reinforcement learning and distributed local model synthesis. PhD dis-
sertation, Linkoping University, Sweden

22 1 Overview

52. Laraki R, Solan E (2005) The value of zero-sum stopping games in continuous time. SIAM
J Control Optim 43(5):1913–1922

53. Lendaris GG (2008) Higher level application of ADP: a nextphase for the control field. IEEE
Trans Syst Man Cybern, Part B, Cybern 38(4):901–912

54. Lendaris GG, Paintz C (1997) Training strategies for critic and action neural networks in dual
heuristic programming method. In: Proceedings of the 1997 IEEE international conference
on neural networks, Houston, TX, pp 712–717

55. Leslie DS, Collins EJ (2005) Individual Q-learning in normal form games. SIAM J Control
Optim 44(2):495–514

56. Lewis FL (1992) Applied optimal control and estimation. Texas instruments. Prentice Hall,
Englewood Cliffs

57. Lewis FL, Liu D (2012) Reinforcement learning and approximate dynamic programming for
feedback control. IEEE press series on computational intelligence. Wiley, New York

58. Lewis FL, Syrmos VL (1992) Optimal control. Wiley, New York
59. Lin CS, Kim H (1991) CMAC-based adaptive critic self-learning control. IEEE Trans Neural

Netw 2(5):530–533
60. Liu X, Balakrishnan SN (2000) Convergence analysis of adaptive critic based optimal con-

trol. In: Proceedings of American control conference, Chicago, Illinois, pp 1929–1933
61. Liu D, Zhang HG (2005) A neural dynamic programming approach for learning control of

failure avoidance problems. Int J Intell Control Syst 10(1):21–32
62. Liu D, Xiong X, Zhang Y (2001) Action-dependent adaptive critic designs. In: Proceeding

of international joint conference on neural networks, Washington, DC, pp 990–995
63. Liu D, Zhang Y, Zhang HG (2005) A self-learning call admission control scheme for CDMA

cellular networks. IEEE Trans Neural Netw 16(5):1219–1228
64. Liu D, Javaherian H, Kovalenko O, Huang T (2008) Adaptive critic learning techniques

for engine torque and air–fuel ratio control. IEEE Trans Syst Man Cybern, Part B, Cybern
38(4):988–993

65. Lu C, Si J, Xie X (2008) Direct heuristic dynamic programming for damping oscillations in
a large power system. IEEE Trans Syst Man Cybern, Part B, Cybern 38(4):1008–1013

66. Lyshevski SE (2002) Optimization of dynamic systems using novel performance functionals.
In: Proceedings of 41st IEEE conference on decision and control, Las Vegas, Nevada, pp
753–758

67. Malek-Zavarei M, Jashmidi M (1987) Time-delay systems: analysis, optimization and appli-
cations North-Holland, Amsterdam, pp 80–96

68. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE
Trans Syst Man Cybern, Part C, Appl Rev 32(2):140–153

69. Murray JJ, Cox CJ, Saeks R (2003) The adaptive dynamic programming theorem. In: Liu D,
Antsaklis PJ (eds) Stability and control of dynamical systems with applications. Birkhäser,
Boston, pp 379–394

70. Necoara I, Kerrigan EC, Schutter BD, Boom T (2007) Finite-horizon min–max control of
max-plus-linear systems. IEEE Trans Autom Control 52(6):1088–1093

71. Owen G (1982) Game theory. Academic Press, New York
72. Padhi R, Unnikrishnan N, Wang X, Balakrishnan SN (2006) A single network adaptive critic

(SNAC) architecture for optimal control synthesis for a class of nonlinear systems. Neural
Netw 19(10):1648–1660

73. Parisini T, Zoppoli R (1998) Neural approximations for infinite-horizon optimal control of
nonlinear stochastic systems. IEEE Trans Neural Netw 9(6):1388–1408

74. Park JW, Harley RG, Venayagamoorthy GK (2003) Adaptive-critic-based optimal neurocon-
trol for synchronous generators in a power system using MLP/RBF neural networks. IEEE
Trans Ind Appl 39:1529–1540

75. Powell WB (2011) Approximate dynamic programming: solving the curses of dimensional-
ity, 2nd edn. Wiley, Princeton

76. Prokhorov DV, Wunsch DC (1997) Adaptive critic designs. IEEE Trans Neural Netw
8(5):997–1007

References 23

77. Ray S, Venayagamoorthy GK, Chaudhuri B, Majumder R (2008) Comparison of adaptive
critic-based and classical wide-area controllers for power systems. IEEE Trans Syst Man
Cybern, Part B, Cybern 38(4):1002–1007

78. Rovithakis GA (2001) Stable adaptive neuro-control design via Lyapunov function derivative
estimation. Automatica 37(8):1213–1221

79. Saeks RE, Cox CJ, Mathia K, Maren AJ (1997) Asymptotic dynamic programming: prelim-
inary concepts and results. In: Proceedings of the 1997 IEEE international conference on
neural networks, Houston, TX, pp 2273–2278

80. Saridis GN, Lee CS (1979) An approximation theory of optimal control for trainable manip-
ulators. IEEE Trans Syst Man Cybern 9(3):152–159

81. Saridis GN, Wang FY (1994) Suboptimal control of nonlinear stochastic systems. Control
Theory Adv Technol 10(4):847–871

82. Seiffertt J, Sanyal S, Wunsch DC (2008) Hamilton–Jacobi–Bellman equations and approx-
imate dynamic programming on time scales. IEEE Trans Syst Man Cybern, Part B, Cybern
38(4):918–923

83. Shervais S, Shannon TT, Lendaris GG (2003) Intelligent supply chain management using
adaptive critic learning. IEEE Trans Syst Man Cybern, Part A, Syst Hum 33(2):235–244

84. Shih P, Kaul B, Jagannathan S, Drallmeier J (2007) Near optimal output-feedback control
of nonlinear discrete-time systems in nonstrict feedback form with application to engines.
In: Proceedings of international joint conference on neural networks, Orlando, Florida, pp
396–401

85. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans
Neural Netw 12(2):264–276

86. Si J, Barto A, Powell W, Wunsch D (2004) Handbook of learning dynamic programming.
Wiley, New Jersey

87. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cam-
bridge

88. Tesauro GJ (2000) Practical issues in temporal difference learning. Mach Learn 8:257–277
89. Tsitsiklis JN (1995) Efficient algorithms for globally optimal trajectories. IEEE Trans Autom

Control 40(9):1528–1538
90. Uchida K, Fujita M (1992) Finite horizon H∞ control problems with terminal penalties.

IEEE Trans Autom Control 37(11):1762–1767
91. Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to solve the continuous-

time infinite horizon optimal control problem. Automatica 46:878–888
92. Venayagamoorthy GK, Harley RG, Wunsch DG (2002) Comparison of heuristic dynamic

programming and dual heuristic programming adaptive critics for neurocontrol of a turbo-
generator. IEEE Trans Neural Netw 13:764–773

93. Vrabie D, Abu-Khalaf M, Lewis FL, Wang Y (2007) Continuous-time ADP for linear sys-
tems with partially unknown dynamics. In: Proceedings of the 2007 IEEE symposium on
approximate dynamic programming and reinforcement learning, Honolulu, USA, pp 247–
253

94. Vrabie D, Vamvoudakis KG, Lewis FL (2012) Optimal adaptive control and differential
games by reinforcement learning principles. IET Press, London

95. Watkins C (1989) Learning from delayed rewards. PhD dissertation, Cambridge University,
Cambridge, England

96. Werbos PJ (1977) Advanced forecasting methods for global crisis warning and models of
intelligence. Gen Syst Yearbook 22:25–38

97. Werbos PJ (1987) Building and understanding adaptive systems: a statistical/numerical ap-
proach to factory automation and brain research. IEEE Trans Syst Man Cybern 17(1):7–20

98. Werbos PJ (1990) Consistency of HDP applied to a simple reinforcement learning problem.
Neural Netw 3(2):179–189

99. Werbos PJ (1990) A menu of designs for reinforcement learning over time. In: Miller WT,
Sutton RS, Werbos PJ (eds) Neural networks for control. MIT Press, Cambridge, pp 67–95

24 1 Overview

100. Werbos PJ (1992) Approximate dynamic programming for real-time control and neural mod-
eling. In: White DA, Sofge DA (eds) Handbook of intelligent control: neural, fuzzy and
adaptive approaches. Van Nostrand, New York, chap 13

101. Werbos PJ (2007) Using ADP to understand and replicate brain intelligence: the next level
design. In: Proceedings of IEEE symposium on approximate dynamic programming and re-
inforcement learning, Honolulu, HI, pp 209–216

102. Widrow B, Gupta N, Maitra S (1973) Punish/reward: learning with a critic in adaptive thresh-
old systems. IEEE Trans Syst Man Cybern 3(5):455–465

103. Wiering MA, Hasselt HV (2008) Ensemble algorithms in reinforcement learning. IEEE Trans
Syst Man Cybern, Part B, Cybern 38(4):930–936

104. Yadav V, Padhi R, Balakrishnan SN (2007) Robust/optimal temperature profile control of a
high-speed aerospace vehicle using neural networks. IEEE Trans Neural Netw 18(4):1115–
1128

105. Yang Q, Jagannathan S (2007) Online reinforcement learning neural network controller de-
sign for nanomanipulation. In: Proceedings of IEEE symposium on approximate dynamic
programming and reinforcement learning, Honolulu, HI, pp 225–232

106. Yang L, Enns R, Wang YT, Si J (2003) Direct neural dynamic programming. In: Liu D,
Antsaklis PJ (eds) Stability and control of dynamical systems with applications. Birkhauser,
Boston

107. Yang F, Wang Z, Feng G, Liu X (2009) Robust filtering with randomly varying sensor delay:
the finite-horizon case. IEEE Trans Circuits Syst I, Regul Pap 56(3):664–672

108. Yen GG, DeLima PG (2005) Improving the performance of globalized dual heuristic pro-
gramming for fault tolerant control through an online learning supervisor. IEEE Trans Autom
Sci Eng 2(2):121–131

109. Yen GG, Hickey TW (2004) Reinforcement learning algorithms for robotic navigation in
dynamic environments. ISA Trans 43:217–230

110. Zadorojniy A, Shwartz A (2006) Robustness of policies in constrained Markov decision pro-
cesses. IEEE Trans Autom Control 51(4):635–638

111. Zattoni E (2008) Structural invariant subspaces of singular Hamiltonian systems and non-
recursive solutions of finite-horizon optimal control problems. IEEE Trans Autom Control
53(5):1279–1284

112. Zhang HG, Wang ZS (2007) Global asymptotic stability of delayed cellular neural networks.
IEEE Trans Neural Netw 18(3):947–950

113. Zhang P, Deng H, Xi J (2005) On the value of two-person zero-sum linear quadratic differ-
ential games. In: Proceedings of the 44th IEEE conference on decision and control, and the
European control conference. Seville, Spain, pp 12–15

114. Zhang HG, Lun SX, Liu D (2007) Fuzzy H(infinity) filter design for a class of nonlinear
discrete-time systems with multiple time delays. IEEE Trans Fuzzy Syst 15(3):453–469

115. Zhang HG, Wang ZS, Liu D (2007) Robust exponential stability of recurrent neural networks
with multiple time-varying delays. IEEE Trans Circuits Syst II, Express Briefs 54(8):730–
734

116. Zhang HS, Xie L, Duan G (2007) H∞ control of discrete-time systems with multiple input
delays. IEEE Trans Autom Control 52(2):271–283

117. Zhang HG, Yang DD, Chai TY (2007) Guaranteed cost networked control for T-S fuzzy
systems with time delays. IEEE Trans Syst Man Cybern, Part C, Appl Rev 37(2):160–172

118. Zhang HG, Ma TD, Huang GB (2010) Robust global exponential synchronization of uncer-
tain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man
Cybern, Part B, Cybern 40(3):831–844

119. Zhang HG, Cui LL, Zhang X, Luo YH (2011) Data-driven robust approximate optimal track-
ing control for unknown general nonlinear systems using adaptive dynamic programming
method. IEEE Trans Neural Netw 22(12):2226–2236

120. Zhang HG, Wei QL, Liu D (2011) An iterative approximate dynamic programming method
to solve for a class of nonlinear zero-sum differential games. Automatica 47(1):207–214

References 25

121. Zhao Y, Patek SD, Beling PA (2008) Decentralized Bayesian search using approximate dy-
namic programming methods. IEEE Trans Syst Man Cybern, Part B, Cybern 38(4):970–975

122. Zheng CD, Zhang HG, Wang ZS (2010) An augmented LKF approach involving derivative
information of both state and delay. IEEE Trans Neural Netw 21(7):1100–1109

123. Zheng CD, Zhang HG, Wang ZS (2011) Novel exponential stability criteria of high-order
neural networks with time-varying delays. IEEE Trans Syst Man Cybern, Part B, Cybern
41(2):486–496

Chapter 2
Optimal State Feedback Control
for Discrete-Time Systems

2.1 Introduction

The optimal control problem of nonlinear systems has always been the key fo-
cus of control fields in the past several decades. Traditional optimal control ap-
proaches are mostly based on linearization methods or numerical computation meth-
ods. However, closed-loop optimal feedback control is desired for most researchers
in practice. Therefore, in this chapter, several near-optimal control scheme will be
developed for different nonlinear discrete-time systems by introducing the different
iterative ADP algorithms.

First, an infinite-horizon optimal state feedback controller is developed for a
class of discrete-time systems based on DHP. Then, due to the special advantages
of GDHP algorithm, a new optimal control scheme is developed with discounted
cost functional. Moreover, based on GHJB algorithm, an infinite-horizon optimal
state feedback stabilizing controller is designed. Further, most existing controllers
are implemented in infinite time horizon. However, many real-world systems need
to be effectively controlled within a finite time horizon. Therefore, we further pro-
pose a finite-horizon optimal controllers with ε-error bound, where the number of
optimal control steps can be determined definitely.

2.2 Infinite-Horizon Optimal State Feedback Control Based
on DHP

Saturation, dead-zone, backlash, and hysteresis are the most common actuator non-
linearities in practical control system applications. Due to the nonanalytic nature
of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear
functions are unknown, the systems with saturation present a challenge to control
engineers. In this section, we study this problem in the framework of the HJB equa-
tion from optimal control theory. First, based on nonquadratic functionals, the HJB
equation is formulated, whose solution results in a smooth saturated controller. Then

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_2,
© Springer-Verlag London 2013

27

http://dx.doi.org/10.1007/978-1-4471-4757-2_2

28 2 Optimal State Feedback Control for Discrete-Time Systems

a new iterative ADP algorithm is presented with convergence proof to solve the HJB
equation derived.

2.2.1 Problem Formulation

Consider a class of discrete-time affine nonlinear systems as follows:

x(k + 1)= f (x(k))+ g(x(k))u(k), (2.1)

where x(k) ∈ R
n is the state vector, and f : Rn → R

n and g : Rn → R
n×m are

differentiable in their arguments with f (0) = 0. Assume that f + gu is Lips-
chitz continuous on a set Ω in R

n containing the origin, and that the system
(2.1) is controllable in the sense that there exists at least a continuous control law
on Ω that asymptotically stabilizes the system. We denote Ωu = {u(k) | u(k) =
[u1(k), u2(k), . . . , um(k)]T ∈ R

m, |ui(k)| ≤ ūi , i = 1, . . . ,m}, where ūi is the sat-
urating bound for the ith actuator. Let Ū ∈ R

m×m be the constant diagonal matrix
given by Ū = diag{ū1, ū2, . . . , ūm}.

In this subsection, we mainly discuss how to design an optimal state feedback
controller for this class of constrained discrete-time systems. It is desired to find the
optimal control law v(x) so that the control sequence u(·) = (u(i), u(i + 1), . . .)
with each u(i) ∈Ωu minimizes the generalized cost functional as follows:

J (x(k), u(·))=
∞∑

i=k

{
xT(i)Qx(i)+W(u(i))

}
, (2.2)

where u(i)= v(x(i)), W(u(i)) ∈ R is positive definite, and the weight matrix Q is
also positive definite.

For optimal control problems, the state feedback control law v(x) must not only
stabilize the system on Ω but also guarantee that (2.2) is finite. Such a control law
is said to be admissible.

Definition 2.1 A control law v(x) is said to be admissible with respect to (2.2) on
Ω if v(x) is continuous with v(x(k)) ∈Ωu for ∀x(k) ∈Ω and stabilizes (2.1) on Ω ,
v(0) = 0, and for ∀x(0) ∈ Ω , J (x(0), u(·)) is finite, where u(·) = (u(0), u(1), . . .)
and u(k)= v(x(k)), k = 0,1,

Based on the above definition, we are ready to explain the admissible control
law sequence. A control law sequence {ηi} = (η0, η1, . . . , η∞) is called admissible
if the resultant control sequence (u(0), u(1), . . . , u(∞)) stabilizes the system (2.1)
with any initial state x(0) and guarantees that J (x(0), u(·)) is finite. It should be
mentioned that, in this case, each control action obeys a different control law, i.e.,
u(i) is produced by a control law ηi for i = 0,1, The control law sequence
{ηi} = (η0, η1, . . . , η∞) is also called a nonstationary policy in the literature [2].

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 29

For convenience, in the sequel J ∗(x(k)) is used to denote the optimal value func-
tion which is defined as J ∗(x(k)) = minu(·) J (x(k), u(·)), and u∗(x) is used to de-
note the corresponding optimal control law.

For the unconstrained control problem, W(u(i)) in the performance functional
(2.2) is commonly chosen as the quadratic form of the control input u(i). How-
ever, in this subsection, to confront the bounded control problem, we employ a non-
quadratic functional as follows:

W(u(i))= 2
∫ u(i)

0
ϕ−T(Ū−1s)ŪRds, (2.3)

ϕ−1(u(i))= [ϕ−1(u1(i)), ϕ
−1(u2(i)), . . . , ϕ

−1(um(i))]T,

where R is positive definite and assumed to be diagonal for simplicity of analysis,
s ∈ R

m, ϕ ∈ R
m, ϕ(·) is a bounded one-to-one function satisfying |ϕ(·)| ≤ 1 and

belonging to Cp (p ≥ 1) and L2(Ω). Moreover, it is a monotonic increasing odd
function with its first derivative bounded by a constant M . Such a function is easy
to find, and one example is the hyperbolic tangent function ϕ(·)= tanh(·). It should
be noticed that, by the definition above, W(u(i)) is ensured to be positive definite
because ϕ−1(·) is a monotonic odd function and R is positive definite.

According to Bellman’s principle of optimality, the optimal value function J ∗(x)
should satisfy the following HJB equation:

J ∗(x(k))=min
u(·)

∞∑

i=k

{
xT(i)Qx(i)+ 2

∫ u(i)

0
ϕ−T(Ū−1s)ŪRds

}

=min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ J ∗(x(k + 1))
}
. (2.4)

The optimal control law u∗(x) should satisfy

u∗(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ J ∗(x(k + 1))
}
. (2.5)

The optimal control problem can be solved if the optimal value function J ∗(x)
can be obtained from (2.4). However, there is currently no method for solving this
value function of the constrained optimal control problem. Therefore, in the next
subsection we will discuss how to utilize the iterative ADP algorithm to seek the
near-optimal control solution.

30 2 Optimal State Feedback Control for Discrete-Time Systems

2.2.2 Infinite-Horizon Optimal State Feedback Control via DHP

Since direct solution of the HJB equation is computationally intensive, we develop
in this subsection an iterative ADP algorithm, based on Bellman’s principle of opti-
mality and the greedy iteration principle.

First, we start with initial value function V0(·) = 0 which is not necessarily the
optimal value function. Then, we find the law of single control vector v0(x) as fol-
lows:

v0(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V0(x(k + 1))
}
, (2.6)

and we update the value function by

V1(x(k))= xT(k)Qx(k)+ 2
∫ v0(x(k))

0
ϕ−T(Ū−1s)ŪRds. (2.7)

Therefore, for i = 1,2, . . . , the iterative ADP algorithm iterates between

vi(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ Vi(x(k + 1))
}

(2.8)

and

Vi+1(x(k))=min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ Vi(x(k + 1))
}
. (2.9)

It can be seen that, based on (2.8), (2.9) can further be written as

Vi+1(x(k))= xT(k)Qx(k)+ 2
∫ vi (x(k))

0
ϕ−T(Ū−1s)ŪRds + Vi (x(k + 1)) ,

(2.10)

where x(k + 1)= f (x(k))+ g(x(k))vi(x(k)).
In summary, in this iterative algorithm, the value function sequence {Vi} and con-

trol law sequence {vi} are updated by implementing the recurrent iteration between
(2.8) and (2.10) with the iteration number i increasing from 0 to ∞.

To further explain the iteration process, next we are ready to analyze this iterative
algorithm. First, based on (2.10) we obtain

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 31

Vi(x(k + 1))= xT(k + 1)Qx(k + 1)+ 2
∫ vi−1(x(k+1))

0
ϕ−T(Ū−1s)ŪRds

+ Vi−1 (x(k + 2)) , (2.11)

where x(k + 2) = f (x(k + 1))+ g(x(k + 1))vi−1(x(k + 1)). Then, by further ex-
panding (2.10), we have

Vi+1(x(k))= xT(k)Qx(k)+ 2
∫ vi (x(k))

0
ϕ−T(Ū−1s)ŪRds

+ xT(k + 1)Qx(k + 1)+ 2
∫ vi−1(x(k+1))

0
ϕ−T(Ū−1s)ŪRds

+ · · · + xT(k + i)Qx(k + i)

+ 2
∫ v0(x(k+i))

0
ϕ−T(Ū−1s)ŪRds + V0 (x(k + i + 1)) , (2.12)

where V0 (x(k + i + 1))= 0.
From (2.12), it can be seen that during the iteration process, the control actions

for different control steps obey different control laws. After the iteration number
i + 1, the obtained control law sequence is (vi, vi−1, . . . , v0). With the iteration
number i increasing to ∞, the obtained control law sequence has a length of ∞. For
the infinite-horizon problem, both the optimal value function and the optimal control
law are unique. Therefore, it is desired that the control law sequence will converge
when the iteration number i → ∞. In the following, we will prove that both the
value function sequence {Vi} and the control law sequence {vi} are convergent.

In this subsection, in order to prove the convergence characteristics of the itera-
tive ADP algorithm for the constrained nonlinear system, we first present two lem-
mas before presenting our theorems. For convenience, the nonquadratic functional
2
∫ u(k)

0 ϕ−T(Ū−1s)ŪRds will be written as W(u(k)) in the sequel.

Lemma 2.2 Let {μi} be an arbitrary sequence of control laws, and {vi} be the
control law sequence as in (2.8). Let Vi be as in (2.9) and Λi be

Λi+1(x(k))= xT(k)Qx(k)+W(μi(x(k)))+Λi(x(k + 1)). (2.13)

If V0(·)=Λ0(·)= 0, then Vi(x)≤Λi(x), ∀i.

Proof It is clear from the fact that Vi+1 is the result of minimizing the right hand
side of (2.9) with respect to the control input u(k), while Λi+1 is a result of arbitrary
control input. �

Lemma 2.3 Let the sequence {Vi} be defined as in (2.9). If the system is control-
lable, then there is an upper bound Y such that 0 ≤ Vi(x(k))≤ Y, ∀i.

32 2 Optimal State Feedback Control for Discrete-Time Systems

Proof Let {ηi(x)} be a sequence of stabilizing and admissible control laws, and let
V0(·)= P0(·)= 0, where Vi is updated by (2.9) and Pi is updated by

Pi+1(x(k))= xT(k)Qx(k)+W(ηi(x(k)))+ Pi(x(k + 1)). (2.14)

From (2.14), we further obtain

Pi(x(k + 1))= xT(k + 1)Qx(k + 1)+W(ηi−1(x(k + 1)))

+ Pi−1(x(k + 2)). (2.15)

Thus, the following relation can be obtained:

Pi+1(x(k))= xT(k)Qx(k)+W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1)+W(ηi−1(x(k + 1)))

+ Pi−1(x(k + 2))

= xT(k)Qx(k)+W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1)+W(ηi−1(x(k + 1)))

+ xT(k + 2)Qx(k + 2)+W(ηi−2(x(k + 2)))

+ Pi−2(x(k + 3))

...

= xT(k)Qx(k)+W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1)+W(ηi−1(x(k + 1)))

+ xT(k + 2)Qx(k + 2)+W(ηi−2(x(k + 2)))

+ . . .

+ xT(k + i)Qx(k + i)+W(η0(x(k + i)))

+ P0(x(k + i + 1)), (2.16)

where P0(x(k + i + 1))= 0.
Let li (x(k))= xT(k)Qx(k)+W(ηi(x(k))), and then (2.16) can further be written

as

Pi+1(x(k))=
i∑

j=0

li−j (x(k + j))

=
i∑

j=0

{
xT(k + j)Qx(k + j)+W(ηi−j (x(k + j)))

}

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 33

≤ lim
i→∞

i∑

j=0

{
xT(k + j)Qx(k + j)+W

(
ηi−j (x(k + j))

)}
. (2.17)

Note that {ηi(x)} is an admissible control law sequence, i.e., x(k) → 0 as k →
∞. Therefore there exists an upper bound Y such that

∀i : Pi+1(x(k))≤ lim
i→∞

i∑

j=0

li−j (x(k + j))≤ Y. (2.18)

Combining with Lemma 2.2, we obtain

∀i : Vi+1(x(k))≤ Pi+1(x(k))≤ Y. (2.19)

This completes the proof. �

Next, Lemmas 2.2 and 2.3 will be used in the proof of our main theorems.

Theorem 2.4 (cf. [17]) Define the value function sequence {Vi} as in (2.10) with
V0(·)= 0, and the control law sequence {vi} as in (2.8). Then, we can conclude that
{Vi} is a nondecreasing sequence satisfying Vi+1(x(k))≥ Vi(x(k)), ∀i.

Proof For convenience of analysis, define a new sequence {Φi} as follows:

Φi+1(x(k))= xT(k)Qx(k)+W(vi+1(x(k)))+Φi(x(k + 1)), (2.20)

where Φ0(·)= V0(·)= 0. The control law sequence {vi} is updated by (2.8) and the
value function sequence {Vi} is updated by (2.10).

In the following, we prove that Φi(x(k)) ≤ Vi+1(x(k)) by mathematical induc-
tion.

First, we prove that it holds for i = 0. Noticing that

V1(x(k))−Φ0(x(k))= xT(k)Qx(k)+W(v0(x(k)))≥ 0, (2.21)

thus for i = 0, we have

V1(x(k))≥Φ0(x(k)). (2.22)

Second, we assume that it holds for i − 1. That is to say, for any x(k), we have
Vi(x(k))≥Φi−1(x(k)). Then, for i, since

Φi(x(k))= xT(k)Qx(k)+W(vi(x(k)))+Φi−1(x(k + 1)) (2.23)

and

Vi+1(x(k))= xT(k)Qx(k)+W(vi(x(k)))+ Vi(x(k + 1)) (2.24)

hold, we obtain

Vi+1(x(k))−Φi(x(k))= Vi(x(k + 1))−Φi−1(x(k + 1))≥ 0, (2.25)

34 2 Optimal State Feedback Control for Discrete-Time Systems

i.e., the following equation holds:

Φi(x(k))≤ Vi+1(x(k)). (2.26)

Therefore, (2.26) is proved for any i by mathematical induction.
Furthermore, from Lemma 2.2 we know that Vi(x(k))≤Φi(x(k)). Therefore we

have

Vi(x(k))≤Φi(x(k))≤ Vi+1(x(k)). (2.27)

The proof is completed. �

Next, we are ready to exploit the limit of the value function sequence {Vi} when
i → ∞.

Let {η(l)i } be the lth admissible control law sequence, similar to the proof of

Lemma 2.3, we can construct the associated sequence P (l)
i (x) as follows:

P
(l)
i+1(x(k))= xT(k)Qx(k)+W(η

(l)
i (x(k)))+ P

(l)
i (x(k + 1)), (2.28)

with P
(l)
0 (·)= 0.

Let l(l)i (x(k)) = xT(k)Qx(k) +W(η
(l)
i (x(k))). Then, the following relation can

be obtained similarly:

P
(l)
i+1(x(k))=

i∑

j=0

l
(l)
i−j (x(k + j)). (2.29)

Let i → ∞; we have

P (l)∞ (x(k))= lim
i→∞

i∑

j=0

l
(l)
i−j (x(k + j)). (2.30)

Combining (2.29) with (2.30), we obtain

P
(l)
i+1(x(k))≤ P (l)∞ (x(k)). (2.31)

Theorem 2.5 (cf. [17]) Define P
(l)∞ (x(k)) as in (2.30), and the value function se-

quence {Vi} as in (2.10) with V0(·)= 0. For any state vector x(k), define J ∗(x(k))=
infl{P (l)∞ (x(k))}, which can be considered as the “optimal” value function starting
from x(k) under all admissible control law sequences with length of ∞. Then, we
can conclude that J ∗ is the limit of the value function sequence {Vi}.

Proof According to the definition of P (l)∞ (x(k)), the associated control law sequence
{η(l)i (x)} is admissible. Thus, it is guaranteed that limi→∞

∑i
j=0 l

(l)
i−j (x(k + j)) is

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 35

finite, i.e., P (l)∞ (x(k)) is finite. Hence for any l, there exists an upper bound Yl such
that

P
(l)
i+1(x(k))≤ P (l)∞ (x(k))≤ Yl. (2.32)

Combining with Lemma 2.2, we further obtain

∀l, i : Vi+1(x(k))≤ P
(l)
i+1(x(k))≤ Yl. (2.33)

Since J ∗(x(k)) = infl{P (l)∞ (x(k))}, for any ε > 0, there exists a sequence of
admissible control laws {η(K)

i } such that the associated value function satisfies

P
(K)∞ (x(k)) ≤ J ∗(x(k)) + ε. According to (2.33), we have Vi(x(k)) ≤ P

(l)
i (x(k))

for any l and i. Thus, we obtain limi→∞ Vi(x(k)) ≤ P
(K)∞ (x(k)) ≤ J ∗(x(k)) + ε.

Noting that ε is chosen arbitrarily, we have

lim
i→∞Vi(x(k))≤ J ∗(x(k)). (2.34)

On the other hand, since Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl,∀l, i, we have limi→∞

Vi(x(k))≤ infl {Yl}. According to the definition of admissible control law sequence,
the control law sequence associated with the value function limi→∞ Vi(x(k)) must
be an admissible control law sequence, i.e., there exists a sequence of admissible
control laws {η(N)

i } such that limi→∞ Vi(x(k)) = P
(N)∞ (x(k)). Combining with the

definition J ∗(x(k))= infl{P (l)∞ (x(k))}, we can obtain

lim
i→∞Vi(x(k))≥ J ∗(x(k)). (2.35)

Therefore, combining (2.34) with (2.35), we can conclude that limi→∞ Vi(x(k))

= J ∗(x(k)), i.e., J ∗ is the limit of the value function sequence {Vi}.
The proof is completed. �

Next, let us consider what will happen when we make i → ∞ in (2.9). The left
hand side is simply V∞(x). But for the right hand side, it is not obvious to see since
the minimum will reach at different u(k) for different i. However, the following
result can be proved.

Theorem 2.6 For any state vector x(k), the “optimal” value function J ∗(x) satis-
fies the HJB equation

J ∗(x(k))= inf
u(k)

{
xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))

}
.

Proof For any u(k) and i, according to (2.9), we have

Vi(x(k))≤ xT(k)Qx(k)+W(u(k))+ Vi−1(x(k + 1)). (2.36)

36 2 Optimal State Feedback Control for Discrete-Time Systems

According to Theorems 2.4 and 2.5, the value function sequence {Vi} is a non-
decreasing sequence satisfying limi→∞ Vi(x(k)) = J ∗(x(k)), hence the relation
Vi−1(x(k + 1))≤ J ∗(x(k + 1)) holds for any i. Thus, we obtain

Vi(x(k))≤ xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1)). (2.37)

Let i → ∞; we have

J ∗(x(k))≤ xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1)). (2.38)

Since u(k) in the above equation is chosen arbitrarily, the following equation holds:

J ∗(x(k))≤ inf
u(k)

{
xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))

}
. (2.39)

On the other hand, for any i the value function sequence satisfies

Vi(x(k))= min
u(k)

{
xT(k)Qx(k)+W(u(k))+ Vi−1(x(k + 1))

}
. (2.40)

Combining with Vi(x(k))≤ J ∗(x(k)),∀i, we have

J ∗(x(k))≥ inf
u(k)

{
xT(k)Qx(k)+W(u(k))+ Vi−1(x(k + 1))

}
. (2.41)

Let i → ∞; then we obtain

J ∗(x(k))≥ inf
u(k)

{
xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))

}
. (2.42)

Combining (2.39) and (2.42), we have

J ∗(x(k))= inf
u(k)

{
xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))

}
. (2.43)

The proof is completed. �

According to Theorems 2.4 and 2.5, we can conclude that Vi(x(k))≤ Vi+1(x(k)),
∀i and limi→∞ Vi(x(k)) = J ∗(x(k)). Furthermore, according to Theorem 2.6, we
have J ∗(x(k)) = infu(k){xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))}. Therefore, we
can conclude that the value function sequence {Vi} converges to the optimal value
function of the discrete-time HJB equation, i.e., Vi → J ∗ as i → ∞. Since the value
function sequence is convergent, according to (2.5) and (2.8), we can conclude that
the corresponding control law sequence {vi} converges to the optimal control law
u∗ as i → ∞.

It should be mentioned that the value function Vi(x) we constructed is a new
function that is different from ordinary cost function. Via Lemma 2.3 and Theo-
rem 2.4, we have showed that for any x(k) ∈Ω , the function sequence {Vi(x(k))} is
a nondecreasing sequence, which will increase its value with an upper bound. This

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 37

is in contrast to other work in the literature, e.g., [5], where the value functions are
constructed as a nonincreasing sequence with lower bound. Moreover, it should be
noted that we do not require every control law in the sequence {vi} to be admissible.
What we need is a control law sequence to be admissible, i.e., the resultant sequence
of control vectors can stabilize the system.

Next, we are ready to discuss the implementation of the iterative ADP algorithm.
(1) Derivation of the iterative DHP algorithm. First, we assume that the value

function Vi(x) is smooth. In order to implement the iteration between (2.8) and
(2.10), for i = 0,1, . . . , we further assume that the minimum of the right hand side
of (2.8) can be exactly solved by letting the gradient of the right hand side of (2.8)
with respect to u(k) equal to zero, i.e.,

∂
(
xT(k)Qx(k)+W(u(k))

)

∂u(k)
+
(
∂x(k + 1)

∂u(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
= 0. (2.44)

Therefore, for i = 0,1, . . . , the corresponding control law vi(x) can be obtained by
solving the above equation, i.e.,

vi(x(k))= Ūϕ

(
−1

2
(ŪR)−1gT(x(k))

∂Vi(x(k + 1))

∂x(k + 1)

)
. (2.45)

From (2.45), we find that the control law vi(x) at each step of iteration has to
be computed by ∂Vi(x(k + 1))/∂x(k + 1), which is not an easy task. Furthermore,
at each iteration step of value function Vi+1(x(k)) in (2.10), there exists an integral
term 2

∫ vi (x(k))
0 ϕ−T(Ū−1s)ŪRds to compute, which is a large computing burden.

Therefore, in the following we will present another method called iterative DHP
algorithm to implement the iterative ADP algorithm.

Define the costate function λ(x) = ∂V (x)/∂x. Here, we assume that the value
function V (x) is smooth so that λ(x) exists. Then, the recurrent iteration between
(2.8) and (2.10) can be implemented as follows.

First, we start with an initial costate function λ0(·) = 0. Then, for i = 0,1, . . . ,
by substituting λi(x)= ∂Vi(x)/∂x into (2.45), we obtain the corresponding control
law vi(x) as

vi(x(k))= Ūϕ
(

− 1

2
(ŪR)−1gT(x(k))λi(x(k + 1))

)
. (2.46)

For λi+1(x(k))= ∂Vi+1(x(k))

∂x(k)
, according to (2.10) we can obtain

λi+1(x(k))= ∂
(
xT(k)Qx(k)+W (vi(x(k)))

)

∂x(k)

+
(
∂vi(x(k))

∂x(k)

)T ∂
(
xT(k)Qx(k)+W(vi(x(k)))

)

∂vi(x(k))

+
(
∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)

38 2 Optimal State Feedback Control for Discrete-Time Systems

+
(
∂vi(x(k))

∂x(k)

)T(
∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)

= ∂
(
xT(k)Qx(k)+W(vi(x(k)))

)

∂x(k)

+
(
∂vi(x(k))

∂x(k)

)T
[
∂
(
xT(k)Qx(k)+W(vi(x(k)))

)

∂vi(x(k))

+
(
∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)

]

+
(
∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
. (2.47)

According to (2.44) and (2.45), we have

∂
(
xT(k)Qx(k)+W(vi(x(k)))

)

∂vi(x(k))
+
(
∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)
= 0. (2.48)

Therefore (2.47) can further be written as

λi+1(x(k))= ∂
(
xT(k)Qx(k)+W(vi(x(k)))

)

∂x(k)

+
(
∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
, (2.49)

i.e.,

λi+1(x(k))= 2Qx(k)+
(
∂x(k + 1)

∂x(k)

)T

λi(x(k + 1)). (2.50)

Therefore, the iteration between (2.46) and (2.50) is an implementation of the
iteration between (2.8) and (2.10). From (2.46) the control law vi can directly be
obtained by the costate function. Hence the iteration of value function in (2.10)
can be omitted in the implementation of this iterative algorithm. Considering the
principle of DHP algorithm in Chap. 1, we call such iterative algorithm as iterative
DHP algorithm.

Next, we present a convergence analysis of the iteration between (2.46) and
(2.50).

Theorem 2.7 Define the control law sequence {vi} as in (2.8), and update the value
function sequence {Vi} by (2.10) with V0(·) = 0. Define the costate function se-
quence {λi} as in (2.50) with λ0(·) = 0. Then, the costate function sequence {λi}
and the control law sequence {vi} are convergent as i → ∞. The optimal value λ∗
is defined as the limit of the costate function λi when vi approaches the optimal
value u∗.

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 39

Proof According to Theorems 2.4–2.6, we have proved that limi→∞ Vi(x(k)) =
J ∗(x(k)), and J ∗(x(k)) satisfies the corresponding HJB equation, i.e.,

J ∗(x(k))= inf
u(k)

{xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))}.

Therefore, we conclude that the value function sequence {Vi} converges to the
optimal value function of the DTHJB equation, i.e., Vi → J ∗ as i → ∞. With
λi(x(k)) = ∂Vi(x(k))/∂x(k), we conclude that the corresponding costate function
sequence {λi} is also convergent with λi → λ∗ as i → ∞. Since the costate func-
tion is convergent, we can conclude that the corresponding control law sequence
{vi} converges to the optimal control law u∗ as i → ∞. �

Remark 2.8 In the iterative DHP algorithm, via the costate sequence (2.50), the cor-
responding control law sequence can be directly obtained by (2.46), which does not
require the computation of ∂Vi(x(k + 1))/∂x(k + 1). Furthermore, in (2.10) there
is an integral term 2

∫ vi (x(k))
0 ϕ−T(Ū−1s)ŪRds to compute at each iteration step,

which is not an easy task. However, in (2.50) the integral term has been removed,
which greatly reduces the computational burden. On the other hand, in order to com-
pute the costate function by (2.50), the internal dynamics f (x(k)) and g(x(k)) of
the system are needed. In the implementation part of the algorithm, a model network
is constructed to approximate the nonlinear dynamics of the system, which avoids
the requirement of known f (x(k)) and g(x(k)).

(2) RBFNN implementation of the iterative DHP algorithm. In the iterative DHP
algorithm, the optimal control is difficult to solve analytically. For example, in
(2.46), the control at step k is a function of costate at step k + 1. A closed-form
explicit solution is difficult to solve, if not impossible. Therefore we need to use
parametric structures, such as fuzzy models [15] or neural networks, to approxi-
mate the costate function and the corresponding control law in the iterative DHP
algorithm. In this subsection, we choose radial basis function (RBF) NNs to ap-
proximate the nonlinear functions.

An RBFNN consists of three-layers (input, hidden and output). Each input value
is assigned to a node in the input layer and passed directly to the hidden layer with-
out weights. Nodes at the hidden layer are called RBF units, determined by a vector
called center and a scalar called width. The Gaussian density function is used as an
activation function for the hidden neurons. Then, linear output weights connect the
hidden and output layers. The overall input–output equation of the RBFNN is given
as

yi = bi +
h∑

j=1

wjiφj (X), (2.51)

where X is the input vector, φj (X)= exp(−‖X −Cj‖2/σj
2) is the activation func-

tion of the j th RBF unit in the hidden layer, Cj ∈ R
n is the center of the j th RBF

40 2 Optimal State Feedback Control for Discrete-Time Systems

unit, h is the number of RBF units, bi and wji are the bias term and the weight be-
tween hidden and output layer, and yi is the ith output in the m-dimensional space.
Once the optimal RBF centers are established over a wide range of operating points
of the plant, the width of the ith center in the hidden layer is calculated by the
following formula:

σi =

√√√√√
1

h

h∑

j=1

n∑

k=1

(‖cki − ckj‖), (2.52)

where cki and ckj are the kth value of the center of the ith and j th RBF units,
respectively. In (2.51) and (2.52), ‖ · ‖ represents the Euclidean norm. To avoid
the extensive computational complexity during training, the batch mode k-means
clustering algorithm is used to calculate the centers of the RBF units.

In order to implement the iterative ADP algorithm, i.e., implement the iteration
between (2.46) and (2.50), we employ RBFNNs to approximate the costate func-
tion λi(x) and the corresponding control law vi(x) at each iteration step i. In the
implementation of the iterative DHP algorithm, there are three networks, which are
model network, critic network and action network, respectively. All the neural net-
works are chosen as RBF networks. The inputs of the model network are x(k) and
vi(x(k)) and the inputs of the critic network and action network are x(k + 1) and
x(k), respectively. The diagram of the whole structure is shown in Fig. 2.1.

For unknown plants, before carrying out the iterative DHP algorithm, we first
train the model network. For any given x(k) and v̂i (x(k)), we obtain x̂(k + 1), and
the output of the model network is denoted

x̂(k + 1)=wT
mφ(Im(k)), (2.53)

where Im(k)= [xT(k)v̂T
i (x(k))]T is the input vector of the model network.

We define the error function of the model network as

em(k)= x̂(k + 1)− x(k + 1). (2.54)

The weights in the model network are updated to minimize the following perfor-
mance measure:

Em(k)= 1

2
eT
m(k)em(k). (2.55)

The weight updating rule for model network is chosen as a gradient-based adapta-
tion rule

wm(k + 1)=wm(k)− αm

[
∂Em(k)

∂wm(k)

]
, (2.56)

where αm is the learning rate of the model network.
After the model network is trained, its weights are kept unchanged.

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 41

Fig. 2.1 The structure
diagram of the iterative DHP
algorithm

The critic network is used to approximate the costate function λi+1(x). The out-
put of the critic network is denoted

λ̂i+1(x(k))=wT
c(i+1)φ(x(k)). (2.57)

The target costate function is given as in (2.50). Define the error function for the
critic network as

ec(i+1)(k)= λ̂i+1(x(k))− λi+1(x(k)). (2.58)

The objective function to be minimized for the critic network is

Ec(i+1)(k)= 1

2
eT
c(i+1)(k)ec(i+1)(k). (2.59)

The weight updating rule for the critic network is a gradient-based adaptation given
by

wc(i+1)(j + 1)=wc(i+1)(j)− αc

[
∂Ec(i+1)(k)

∂wc(i+1)(j)

]
, (2.60)

42 2 Optimal State Feedback Control for Discrete-Time Systems

where αc > 0 is the learning rate of the critic network, and j is the inner-loop itera-
tion step for updating the weight parameters.

In the action network, the state x(k) is used as the input of the network and the
output can be formulated as

v̂i (x(k))=wT
aiφ(x(k)). (2.61)

The target value of the control vi(x(k)) is obtained by (2.46). So we can define the
error function of the action network as

eai(k)= v̂i (x(k))− vi(x(k)). (2.62)

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eai(k)= 1

2
eT
ai(k)eai(k). (2.63)

The updating algorithm is then similar to the one for the critic network. By the
gradient descent rule, we obtain

wai(j + 1)=wai(j)− αa

[
∂Eai(k)

∂wai(j)

]
, (2.64)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iteration step for updating the weight parameters.

From the neural-network implementation, we can find that in this iterative DHP
algorithm, ∂Vi(x(k + 1))/∂x(k + 1) is replaced by λ̂i (x(k + 1)), which is just the
output of the critic network. Therefore, it is more accurate than computing by back-
propagation through the critic network as in [1].

(3) Design procedure of the approximate optimal controller. Based on the itera-
tive DHP algorithm, the design procedure of the optimal control scheme is summa-
rized as follows:

1. Choose imax, jamax, jcmax, εm, ε0, Ū , αm, αc, αa and the weight matrices Q

and R.
2. Construct the model network x̂(k + 1) = wT

mφ(Im(k)) with the initial weight
parameters wm0 chosen randomly from [−0.1,0.1] and train the model network
with a random input vector uniformly distributed in the interval [−1,1] and
arbitrary initial state vector in [−1,1] till the given accuracy εm is reached.

3. Set the iteration step i = 0. Set the initial weight parameters of critic network
wc0 as zero so that the initial value of the costate function λ0(·) = 0, and ini-
tialize the action network with the weight parameters wa0 chosen randomly in
[−0.1,0.1].

4. Choose an array of state vector x(k) = (x(1)(k), x(2)(k), . . . , x(p)(k)) ran-
domly from the operation region and compute the corresponding output target
vi(x(k))= (vi(x

(1)(k)), vi(x
(2)(k)), . . . , vi(x

(p)(k))) by (2.46), where the state

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 43

vector at the next time instant

x(k + 1)=
(
x(1)(k + 1), x(2)(k + 1), . . . , x(p)(k + 1)

)

is computed by the model network (2.53). With the same state vector x(k) =
(x(1)(k), x(2)(k), . . . , x(p)(k)) and

x(k + 1)=
(
x(1)(k + 1), x(2)(k + 1), . . . , x(p)(k + 1)

)
,

compute the resultant output target

λi+1(x(k))=
(
λi+1(x

(1)(k)), λi+1(x
(2)(k)), . . . , λi+1(x

(p)(k))
)

by (2.50).
5. Set wc(i+1) = wci . With the data set (x(j)(k), λi+1(x

(j)(k))), j = 1,2, . . . , p,
update the weight parameters of the critic network wc(i+1) by (2.60) for jcmax

steps to get the approximate costate function λ̂i+1.
6. With the data set (x(j)(k), vi(x(j)(k))), j = 1,2, . . . , p, update the weight pa-

rameters of the action network wai by (2.64) for jamax steps to get the approxi-
mate control law v̂i .

7. If

‖λi+1(x(k))− λi(x(k))‖2 < ε0,

go to Step 9; otherwise, go to Step 8.
8. If i > imax, go to Step 9; otherwise, set i = i + 1 and go to Step 4.
9. Set the final approximate optimal control law û∗(x)= v̂i (x).

10. Stop.

As stated in the last subsection, the iterative algorithm will be convergent with
λi(x) → λ∗(x) and the control sequence vi(x) → u∗(x) as i → ∞. However, in
practical applications, we cannot implement the iteration till i → ∞. Actually, we
iterate the algorithm for a max number imax or with a pre-specified accuracy ε0 to
test the convergence of the algorithm. In the above procedure, there are two levels
of loops. The outer loop starts from Step 3 and ends at Step 8. There are two inner
loops in Steps 5 and 6, respectively. The inner loop of Step 5 includes jcmax iterative
steps, and the inner loop of Step 6 includes jamax iterative steps. The state vector
x(k) is chosen randomly at Step 4. Suppose that the associated random probability
density function is nonvanishing everywhere. Then we can assume that all the states
will be explored. So we know that the resulting networks tend to satisfy the formulas
(2.46) and (2.50) for all state vectors x(k). The limits of λ̂i and v̂i will approximate
the optimal ones λ∗ and u∗, respectively. The parameters ε0 and imax are chosen
by the designer. The smaller the value of ε0 is set, the more accurate the costate
function and the optimal control law will be. If the condition set in Step 7 is satisfied,
it implies that the costate function sequence is convergent with the pre-specified

44 2 Optimal State Feedback Control for Discrete-Time Systems

accuracy. The larger the value of imax in Step 8 is set, the more accurate the obtained
control law v̂(x) will be at the price of increased computational burden.

2.2.3 Simulations

In this section, two examples are provided to demonstrate the effectiveness of the
control scheme developed in this subsection.

Example 2.9 (Nonlinear Discrete-Time System) Consider the following nonlinear
system [5]:

x(k + 1)= f (x(k))+ g(x(k))u(k), (2.65)

where f (x(k)) = [−0.8x2(k)

sin(0.8x1(k)−x2(k))+1.8x2(k)

]
, g(x(k)) = [0

−x2(k)

]
, and assume that

the control constraint is set to |u| ≤ 0.3.
Define the cost functional as

J (x(k), u(·))=
∞∑

i=k

{
xT(i)Qx(i)+ 2

∫ u(i)

0
tanh−T(Ū−1s)ŪRds

}
, (2.66)

where Ū = 0.3, and the weight matrices are chosen as Q= [1 0
0 1

]
and R = [0.5].

First, we perform the simulation of iterative ADP algorithm. In this iterative
algorithm, we choose RBFNNs as the critic network, the action network and the
model network with the structure 2–9–2, 2–9–1 and 3–9–2, respectively. The train-
ing sets are selected as −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1, which is the operation
region of the system. It should be mentioned that the model network should be
trained first. The initial state vectors are chosen randomly from [−1,1]. Under the
learning rate of αm = 0.1, the model network is trained until the given accuracy
εm = 10−6 is reached. After the training of the model network is completed, the
weights are kept unchanged. Then, the critic network and the action network are
trained with the learning rates αa = αc = 0.1 and the inner-loop iteration number
jcmax = jamax = 2000. Meanwhile the pre-specified accuracy ε0 is set to 10−20. De-
note the outer loop iteration number as L. After implementing the outer loop itera-
tion for L= imax = 100, the convergence curves of the costate function are shown in
Fig. 2.2. It can be seen that the costate function is basically convergent with the outer
loop iteration L > 15. In order to compare the different actions of the control laws
obtained under different outer loop iteration numbers, for the same initial state vec-
tor x1(0)= 0.5 and x2(0)= 0.5, we apply different control laws to the plant for 30
time steps and obtain the simulation results as follows. The state curves are shown
in Figs. 2.3 and 2.4, and the corresponding control inputs are shown in Fig. 2.5. It
can be seen that the system responses are improved when the outer loop iteration
number L is increased. When L > 80, the system responses only improve slightly
in performance.

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 45

Fig. 2.2 The convergence process of the costate function at x = (0.3,−0.5), x = (−0.2,0.2),
x = (0.8,0.6)

Fig. 2.3 The state trajectory x1 for L= 2,30,80,100

It should be mentioned that in order to show the convergence characteristics of
the iterative process more clearly, we set the required accuracy ε0 to a very small
number 10−20 and we set the max iteration number to twice of what is needed.

46 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.4 The state trajectory x2 for L= 2,30,80,100

Fig. 2.5 The control input u for L= 2,30,80,100

In this way, the given accuracy ε0 did not take effect even when the max iteration
number is reached. Therefore, it seems that the max iteration number imax becomes
the stopping criterion in this case. If the designer wants to save the running time, the

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 47

Fig. 2.6 The state variables curves without considering the actuator saturation in the controller
design

pre-specified accuracy ε0 can be set to a normal value so that the iterative process
will be stopped once the accuracy ε0 is reached.

Moreover, in order to make comparison with the controller designed without
considering the actuator saturation, we also present the system responses obtained
by the controller designed regardless of the actuator saturation. However, the ac-
tuator saturation is actually existing, therefore in the simulation if the control in-
put overrun the saturation bound, it is limited to the bound value. After simula-
tion, the state curves are as shown in Fig. 2.6, and the control curve is shown in
Fig. 2.7.

From the simulation results, we can see that the iterative costate function se-
quences do converge to the optimal ones with very fast speed, which also indicates
the validity of the iterative ADP algorithm for dealing with constrained nonlinear
systems. Comparing Fig. 2.5 with Fig. 2.7, we can see that in Fig. 2.5 the restriction
of actuator saturation has been overcome successfully, but in Fig. 2.7 the control
input has overrun the saturation bound and therefore be limited to the bound value.
From this point, we can conclude that the present iterative ADP algorithm is effec-
tive in dealing with the constrained optimal control problem.

Example 2.10 (Mass–Spring System) Consider the following discrete-time nonlin-
ear mass–spring system:

{
x1(k + 1)= 0.05x2(k)+ x1(k),

x2(k + 1)= −0.0005x1(k)− 0.0335x3
1(k)+ 0.05u(k)+ x2(k),

(2.67)

where x(k) is the state vector, and u(k) is the control input.

48 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.7 The control input curve without considering the actuator saturation in the controller de-
sign

Define the cost functional as

J (x(k), u(·))=
∞∑

i=k

{
xT(i)Qx(i)+ 2

∫ u(i)

0
tanh−T(Ū−1s)ŪRds

}
, (2.68)

where the control constraint is set to Ū = 0.6, and the weight matrices are chosen
as Q = [0.5 0

0 0.5

]
and R = [1]. The training sets are −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1.

The critic network, the action network and the model network are chosen as RBF
neural networks with the structure of 2–16–2, 2–16–1 and 3–16–2, respectively.
In the training process, the learning rates are set to αa = αc = 0.1. The other pa-
rameters are set the same as those in Example 2.9. After implementing the outer
loop iteration for L = imax = 300, the convergence curves of the costate function
are shown in Fig. 2.8. It can be seen that the costate function is basically conver-
gent with the outer loop iteration L> 200. In order to compare the different actions
of the control laws obtained under different outer loop iteration numbers, for the
same initial state vector x1(0)= −1 and x2(0)= 1, we apply different control laws
to the plant for 300 time steps and obtain the simulation results as follows. The
state curves are shown in Figs. 2.9, 2.10, and the corresponding control inputs are
shown in Fig. 2.11. It can be seen that the closed-loop system is divergent when
using the control law obtained by L = 2, and the system’s responses are improved
when the outer loop iteration number L is increased. When L > 200, the system

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 49

Fig. 2.8 The convergence process of the costate function at x = (−0.5,0.2), x = (0.4,−0.6),
x = (0,−0.3)

Fig. 2.9 The state trajectory x1 for L= 2,10,30,200

responses basically remain unchanged with no significant improvement in perfor-
mance.

In order to make comparison with the controller without considering the actua-
tor saturation, we also present the controller designed by iterative ADP algorithm

50 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.10 The state trajectory x2 for L= 2,10,30,200

Fig. 2.11 The control input u for L= 2,10,30,200

regardless of the actuator saturation. The state curves are shown in Fig. 2.12 and the
control curve is shown in Fig. 2.13.

From the simulation results, we can see that the iterative costate function se-
quence does converge to the optimal one very fast. Comparing Fig. 2.11 with

2.2 Infinite-Horizon Optimal State Feedback Control Based on DHP 51

Fig. 2.12 The state curves without considering the actuator saturation in controller design

Fig. 2.13 The control curves without considering the actuator saturation in controller design

Fig. 2.13, we can find that in Fig. 2.11 the restriction of actuator saturation has
been overcome successfully, which further verifies the effectiveness of the present
iterative ADP algorithm.

52 2 Optimal State Feedback Control for Discrete-Time Systems

2.3 Infinite-Horizon Optimal State Feedback Control Based
on GDHP

2.3.1 Problem Formulation

In this section, we will study the discrete-time nonlinear systems described by

x(k + 1)= f (x(k))+ g(x(k))u(k), (2.69)

where x(k) ∈ R
n is the state vector and u(k) ∈ R

m is the control vector, f (·) and
g(·) are differentiable in their arguments with f (0) = 0. Assume that f + gu is
Lipschitz continuous on a set Ω in R

n containing the origin, and that the system
(2.69) is controllable in the sense that there exists a continuous control law on Ω

that asymptotically stabilizes the system.
Let x(0) be an initial state and define uN−1

0 = (u(0), u(1), u(N −1)) be a control
sequence with which the system (2.69) gives a trajectory starting from x(0): x(1)=
f (x(0))+g(x(0))u(0), x(2)= f (x(1))+g(x(1))u(1), . . . , x(N)= f (x(N−1))+
g(x(N − 1))u(N − 1). We call the number of elements in the control sequence
uN−1

0 the length of uN−1
0 and denote it as |uN−1

0 |. Then, |uN−1
0 | = N . The final

state under the control sequence uN−1
0 can be denoted x(f)(x(0), uN−1

0) = x(N).
When the control sequence starting from u(0) has infinite length, we denote it as
u∞

0 = (u(0), u(1), . . .) and then the correspondingly final state can be written as
x(f)(x(0), u∞

0)= limk→∞ x(k).

Definition 2.11 A nonlinear dynamical system is said to be stabilizable on a
compact set Ω ∈ R

n, if for all initial conditions x(0) ∈ Ω , there exists a con-
trol sequence u∞

0 = (u(0), u(1), . . .), u(i) ∈ R
m, i = 0,1, . . . , such that the state

x(f)(x(0), u∞
0)= 0.

Let u∞
k = (u(k), u(k + 1), . . .) be the control sequence starting at k. It is desired

to find the control sequence u∞
k which minimizes the infinite-horizon cost functional

given by

J (x(k), u∞
k)=

∞∑

i=k

γ i−kl(x(i), u(i)), (2.70)

where l is the utility function, l(0,0)= 0, l(x(i), u(i))≥ 0 for ∀x(i), u(i), and γ is
the discount factor with 0 < γ ≤ 1. Generally speaking, the utility function can be
chosen as the quadratic form as follows:

l(x(i), u(i))= xT(i)Qx(i)+ uT(i)Ru(i).

For optimal control problems, the designed feedback control must not only sta-
bilize the system on Ω but also guarantee that (2.70) is finite, i.e., the control must
be admissible.

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 53

It is noted that a control law sequence {ηi} = (ηN , . . . , η1, η0), N → ∞, is called
admissible if the resultant control sequence (u(0), u(1), . . . , u(N)) stabilizes sys-
tem (2.69) with any initial state x(0) and guarantees that J (x(0), uN0) is finite.
In this case, it should be mentioned that each control action obeys a different
control law, i.e., the control action u(i) is produced by the control law ηN−i or
u(i)= ηN−i (x(i)), for i = 0,1, . . . ,N , N → ∞.

Let

Ax(k) = {
u∞
k : x(f)(x(k), u∞

k)= 0
}

be the set of all infinite-horizon admissible control sequences of x(k). Define the
optimal value function as

J ∗(x(k))= inf
u∞
k

{
J (x(k), u∞

k) : u∞
k ∈ Ax(k)

}
. (2.71)

Note that (2.70) can be written as

J (x(k), u∞
k)= xT(k)Qx(k)+ uT(k)Ru(k)+ γ

∞∑

i=k+1

γ i−k−1l(x(i), u(i))

= xT(k)Qx(k)+ uT(k)Ru(k)+ γ J (x(k + 1), u∞
k+1). (2.72)

According to Bellman’s optimality principle, it is known that, for the case of infinite-
horizon optimization, the optimal value function J ∗(x(k)) is time invariant and sat-
isfies the DTHJB equation

J ∗(x(k))= min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γ J ∗(x(k + 1))

}
. (2.73)

The optimal control u∗ satisfies the first-order necessary condition, which is
given by the gradient of the right hand side of (2.73) with respect to u(k) as

∂
(
xT(k)Qx(k)+ uT(k)Ru(k)

)

∂u(k)
+ γ

(
∂x(k + 1)

∂u(k)

)T
∂J ∗(x(k + 1))

∂x(k + 1)
= 0.

Then, we obtain

u∗(x(k))= −γ

2
R−1gT(x(k))

∂J ∗(x(k + 1))

∂x(k + 1)
. (2.74)

By substituting (2.74) into (2.73), the DTHJB equation becomes

J ∗(x(k))= xT(k)Qx(k)+ γ 2

4

(
∂J ∗(x(k + 1))

∂x(k + 1)

)T

g(x(k))R−1

× gT(x(k))
∂J ∗(x(k + 1))

∂x(k + 1)
+ γ J ∗(x(k + 1)) (2.75)

54 2 Optimal State Feedback Control for Discrete-Time Systems

where J ∗(x(k)) is the optimal value function corresponding to the optimal control
law u∗(x(k)). When dealing with the linear quadratic regulator (LQR) optimal con-
trol problems, this equation reduces to the Riccati equation which can be efficiently
solved. In the general nonlinear case, however, the HJB equation cannot be solved
exactly.

2.3.2 Infinite-Horizon Optimal State Feedback Control Based
on GDHP

Four parts are included in this subsection. In the first part, the unknown nonlinear
system is identified via an NN system identification scheme with stability proof.
The iterative ADP algorithm is introduced in the second part, while in the third
part, the corresponding convergence proof is developed. Then, in the fourth part,
the implementation of the iterative ADP algorithm based on NN is described in
detail.

2.3.2.1 NN Identification of the Unknown Nonlinear System

For the design of the NN identifier, a three-layer NN is considered as the function
approximation structure. Let the number of hidden-layer neurons be denoted by l,
the ideal weight matrix between the input layer and hidden layer be denoted by ν∗

m,
and the ideal weight matrix between the hidden layer and output layer be denoted
by ω∗

m. According to the universal approximation property [8] of NN, the system
dynamics (2.69) has a NN representation on a compact set S, which can be written
as

x(k + 1)= ω∗T
m σ

(
ν∗T
m z(k)

)+ θ(k). (2.76)

In (2.76), z(k) = [xT(k) uT(k)]T is the NN input, θ(k) is the bounded NN func-
tional approximation error according to the universal approximation property, and
[σ(z̄)]i = (ez̄i − e−z̄i)/(ez̄i + e−z̄i), i = 1,2, . . . , l, are the activation functions se-
lected in this work, where z̄(k) = ν∗T

m z(k), z̄(k) ∈ R
l . Additionally, the NN activa-

tion functions are bounded such that ‖σ(z̄(k))‖ ≤ σM for a constant σM .
In the system identification process, we keep the weight matrix between the input

layer and the hidden layer as constant while only tune the weight matrix between
the hidden layer and the output layer. So, we define the NN system identification
scheme as

x̂(k + 1)= ωT
m(k)σ (z̄(k)), (2.77)

where x̂(k) is the estimated system state vector, and ωm(k) is the estimation of the
constant ideal weight matrix ω∗

m.

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 55

Denote x̃(k)= x̂(k)− x(k) as the system identification error. Combining (2.76)
and (2.77), we can obtain the identification error dynamics as

x̃(k + 1)= ω̃T
m(k)σ (z̄(k))− θ(k), (2.78)

where ω̃m(k)= ωm(k)−ω∗
m. Let ψ(k)= ω̃T

m(k)σ (z̄(k)). Then, (2.78) can be rewrit-
ten as

x̃(k + 1)=ψ(k)− θ(k). (2.79)

The weights in the system identification process are updated to minimize the
following performance measure:

E(k + 1)= 1

2
x̃T(k + 1)x̃(k + 1). (2.80)

Using the gradient-based adaptation rule, the weights can be updated as

ωm(k + 1)= ωm(k)− αm

[
∂E(k + 1)

∂ωm(k)

]

= ωm(k)− αmσ(z̄(k))x̃
T(k + 1), (2.81)

where αm > 0 is the NN learning rate.
We now give the following assumption before presenting the asymptotic stability

proof of the state estimation error x̃(k).

Assumption 2.12 The NN approximation error term θ(k) is assumed to be upper
bounded by a function of the state estimation error x̃(k) such that

θT(k)θ(k)≤ θMk = δx̃T(k)x̃(k), (2.82)

where δ is the constant target value with δM as its upper bound, i.e., ‖δ‖ ≤ δM .

Next, the stability analysis of the present NN-based system identification scheme
is presented by using the Lyapunov theory.

Theorem 2.13 (cf. [10]) Let the identification scheme (2.77) be used to identify
the nonlinear system (2.69), and let the parameter update law given in (2.81) be
used for tuning the NN weights. Then, the state estimation error dynamics x̃(k) is
asymptotically stable while the parameter estimation error ω̃m(k) is bounded.

Proof Consider the following positive definite Lyapunov function candidate:

Lk = L1k +L2k, (2.83)

where

L1k = x̃T(k)x̃(k),

56 2 Optimal State Feedback Control for Discrete-Time Systems

L2k = 1

αm
tr
{
ω̃T
m(k)ω̃m(k)

}
.

Taking the first difference of the Lyapunov function (2.83) and substituting the iden-
tification error dynamics (2.79) and the NN weight update law (2.81) reveal that

ΔL1k = x̃T(k + 1)x̃(k + 1)− x̃T(k)x̃(k)

=ψT(k)ψ(k)− 2ψT(k)θ(k)+ θT(k)θ(k)− x̃T(k)x̃(k)

ΔL2k = 1

αm
tr
{
ω̃T
m(k + 1)ω̃m(k + 1)− ω̃T

m(k)ω̃m(k)
}

= 1

αm
tr
{− 2αmψ(k)x̃

T(k + 1)

+ α2
mx̃(k + 1)σT(z̄(k))σ (z̄(k))x̃T(k + 1)

}

= −2ψT(k)x̃(k + 1)+ αmσ
T(z̄(k))σ (z̄(k))x̃T(k + 1)x̃(k + 1).

After applying the Cauchy–Schwarz inequality ((a1 + a2 + · · · + an)
T(a1 + a2 +

· · · + an)≤ n(aT
1 a1 + aT

2 a2 + · · · + aT
n an)) to ΔL2k , we have

ΔL2k ≤ −2ψT(k)(ψ(k)− θ(k))

+ 2αmσ
T(z̄(k))σ (z̄(k))

(
ψT(k)ψ(k)+ θT(k)θ(k)

)
.

Therefore, we can find that

ΔLk ≤ −ψT(k)ψ(k)+ θT(k)θ(k)− x̃T(k)x̃(k)

+ 2αmσ
T(z̄(k))σ (z̄(k))

(
ψT(k)ψ(k)+ θT(k)θ(k)

)
.

Considering ‖σ(z̄(k))‖ ≤ σM and (2.82), we obtain

ΔLk ≤ −(1 − 2αmσ
2
M

)‖ψ(k)‖2

− (
1 − δM − 2αmδMσ 2

M

)‖x̃(k)‖2. (2.84)

Define αm ≤ ρ2/(2σ 2
M); then (2.84) becomes

ΔLk ≤ −(1 − ρ2)‖ψ(k)‖2 − (
1 − δM − δMρ2)‖x̃(k)‖2

= −(1 − ρ2)∥∥ω̃T
m(k)σ (z̄(k))

∥∥2

− (
1 − δM − δMρ2)‖x̃(k)‖2. (2.85)

From (2.85), we can conclude that ΔLk ≤ 0 provided 0 < δM < 1 and

max

{
−
√

1 − δM

δM
,−1

}
≤ ρ ≤ min

{√
1 − δM

δM
,1

}
,

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 57

where ρ �= 0. As long as the parameters are selected as discussed above, ΔLk ≤ 0 in
(2.85), which shows stability in the sense of Lyapunov. Therefore, x̃(k) and ω̃m(k)

are bounded, provided x̃0 and ω̃m(0) are bounded in the compact set S. Furthermore,
by summing both sides of (2.85) to infinity and taking account of ΔLk ≤ 0, we have

∣∣∣∣∣

∞∑

k=0

ΔLk

∣∣∣∣∣=
∣∣∣ lim
k→∞Lk −L0

∣∣∣<∞.

This implies that

∞∑

k=0

{(
1 − ρ2)∥∥ω̃T

m(k)σ (z̄(k))
∥∥2 + (

1 − δM − δMρ2)‖x̃(k)‖2
}
<∞.

Hence, it can be concluded that the estimation error approaches zero, i.e.,
‖x̃(k)‖ → 0 as k → ∞. �

Remark 2.14 According to Theorem 2.13, after a sufficient learning session, the NN
system identification error converges to zero, i.e., we have

f (x(k))+ ĝ(x(k))u(k)= ωT
m(k)σ (z̄(k)), (2.86)

where ĝ(x(k)) denotes the estimated value of the control coefficient matrix g(x(k)).
Taking the partial derivative of both sides of (2.86) with respect to u(k) yields

ĝ(x(k))= ∂
(
ωT
m(k)σ (z̄(k))

)

∂u(k)

= ωT
m(k)

∂σ (z̄(k))

∂z̄(k)
ν∗T
m

∂z(k)

∂u(k)
, (2.87)

where

∂z(k)

∂u(k)
=
[

0n×m

Im

]
,

and Im is the m×m identity matrix.

Next, this result will be used in the derivation and implementation of the iterative
ADP algorithm for the optimal control of unknown discrete-time nonlinear systems.

2.3.2.2 Derivation of the Iterative ADP Algorithm

In this part, we mainly present the iterative ADP algorithm. First, we start with the
initial value function V0(·) = 0, and then solve for the law of single control vector
v0(x(k)) as follows:

v0(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γV0(x(k + 1))

}
. (2.88)

58 2 Optimal State Feedback Control for Discrete-Time Systems

Once the control law v0(x(k)) is determined, we update the cost function as

V1(x(k))= min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γV0(x(k + 1))

}

= xT(k)Qx(k)+ vT
0 (x(k))Rv0(x(k)). (2.89)

Therefore, for i = 1,2, . . . , the iterative ADP algorithm can be used to implement
the iteration between the control law

vi(x(k))= arg min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γVi(x(k + 1))

}

= −γ

2
R−1ĝT(x(k))

∂Vi(x(k + 1))

∂x(k + 1)
(2.90)

and the value function

Vi+1(x(k))= min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γVi(x(k + 1))

}

= xT(k)Qx(k)+ vT
i (x(k))Rvi(x(k))+ γVi(x(k + 1)). (2.91)

In the above recurrent iteration, i is the iteration index of the control law and
value function, while k is the time index of the system’s control and state trajec-
tories. The value function and control law are updated until they converge to the
optimal ones. In the following part, we will present a proof of convergence of the
iteration between (2.90) and (2.91) with the value function Vi → J ∗ and the control
law vi → u∗ as i → ∞.

2.3.2.3 Convergence Analysis of the Iterative ADP Algorithm

Lemma 2.15 Let {μi} be an arbitrary sequence of control laws and {vi} be the
control law sequence described in (2.90). Define Vi as in (2.91) and Λi as

Λi+1(x(k))= xT(k)Qx(k)+μT
i (x(k))Rμi(x(k))+ γΛi(x(k + 1)). (2.92)

If V0(x(k))=Λ0(x(k))= 0, then Vi(x(k))≤Λi(x(k)), ∀i.

Proof It can easily be derived noticing that Vi+1 is the result of minimizing the right
hand side of (2.91) with respect to the control input u(k), while Λi+1 is a result of
arbitrary control input. �

Lemma 2.16 Let the value function sequence {Vi} be defined as in (2.91). If the
system is controllable, then there is an upper bound Y such that 0 ≤ Vi(x(k))≤ Y ,
∀i.

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 59

Proof Let {ηi(x)} be a sequence of admissible control laws, and let V0(·)= Z0(·)=
0, where Vi is updated as in (2.91) and Zi is updated by

Zi+1(x(k))= xT(k)Qx(k)+ ηT
i (x(k))Rηi(x(k))+ γZi(x(k + 1)). (2.93)

It is clear that

Zi(x(k + 1))= xT(k + 1)Qx(k + 1)+ ηT
i−1(x(k + 1))Rηi−1(x(k + 1))

+ γZi−1(x(k + 2)). (2.94)

Noticing that l(x(k), ηi(x(k)))= xT(k)Qx(k)+ηT
i (x(k))Rηi(x(k)), we can further

obtain

Zi+1(x(k))= l(x(k), ηi(x(k)))+ γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2Zi−1(x(k + 2))

= l(x(k), ηi(x(k)))+ γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2l(x(k + 2), ηi−2(x(k + 2)))+ γ 3Zi−2(x(k + 3))

...

= l(x(k), ηi(x(k)))+ γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2l(x(k + 2), ηi−2(x(k + 2)))

+ · · · + γ il(x(k + i), η0(x(k + i)))

+ γ i+1Z0(x(k + i + 1)), (2.95)

where Z0(x(k + i + 1))= 0. Then, (2.95) can be written as

Zi+1(x(k))=
i∑

j=0

γ j l(x(k + j), ηi−j (x(k + j)))

=
i∑

j=0

γ j
(
xT(k + j)Qx(k + j)+ ηT

i−j (x(k + j))Rηi−j (x(k + j))
)

≤ lim
i→∞

i∑

j=0

γ j
(
xT(k + j)Qx(k + j)

+ ηT
i−j (x(k + j))Rηi−j (x(k + j))

)
. (2.96)

60 2 Optimal State Feedback Control for Discrete-Time Systems

Since {ηi(x)} is an admissible control law sequence, we have x(k)→ 0 as k → ∞,
and there exists an upper bound Y such that

Zi+1(x(k))≤ lim
i→∞

i∑

j=0

γ j l(x(k + j), ηi−j (x(k + j)))≤ Y, ∀i. (2.97)

By using Lemma 2.15, we obtain

Vi+1(x(k))≤Zi+1(x(k))≤ Y, ∀i. (2.98)

�

Based on Lemmas 2.15 and 2.16, we now present our main theorems.

Theorem 2.17 Define the value function sequence {Vi} as in (2.91) with V0(·) =
0, and the control law sequence {vi} as in (2.90). Then, {Vi} is a monotonically
nondecreasing sequence satisfying Vi+1 ≥ Vi , ∀i.

Proof Define a new sequence

Φi+1(x(k))= xT(k)Qx(k)+ vT
i+1(x(k))Rvi+1(x(k))+ γΦi(x(k + 1)) (2.99)

with Φ0(·) = V0(·) = 0. Let the control law sequence {vi} and the value function
sequence {Vi} be updated as in (2.90) and (2.91), respectively.

In the following part, we prove that Φi(x(k)) ≤ Vi+1(x(k)) by mathematical
induction.

First, we prove that it holds for i = 0. Considering

V1(x(k))−Φ0(x(k))= xT(k)Qx(k)+ vT
0 (x(k))Rv0(x(k))≥ 0

then, for i = 0, we get

V1(x(k))≥Φ0(x(k)). (2.100)

Second, we assume that it holds for i−1, i.e., Vi(x(k))≥Φi−1(x(k)), ∀x(k). Then,
for i, noticing that

Vi+1(x(k))= xT(k)Qx(k)+ vT
i (x(k))Rvi(x(k))+ γVi(x(k + 1))

and

Φi(x(k))= xT(k)Qx(k)+ vT
i (x(k))Rvi(x(k))+ γΦi−1(x(k + 1)),

we get

Vi+1(x(k))−Φi(x(k))= γ (Vi(x(k + 1))−Φi−1(x(k + 1)))≥ 0

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 61

i.e.,

Vi+1(x(k))≥Φi(x(k)). (2.101)

Thus, we complete the proof through mathematical induction.
Furthermore, from Lemma 2.15 we know that Vi(x(k)) ≤ Φi(x(k)), therefore,

we have

Vi+1(x(k))≥Φi(x(k))≥ Vi(x(k)). (2.102)

�

We have reached the conclusion that the value function sequence {Vi} is a mono-
tonically nondecreasing sequence with an upper bound, and therefore, its limit ex-
ists. Now, we can derive the following theorem.

Theorem 2.18 For any state vector x(k), define

lim
i→∞Vi(x(k))= V∞(x(k))

as the limit of the value function sequence {Vi}. Then, the following equation holds:

V∞(x(k))= min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1))

}
.

Proof For any u(k) and i, according to (2.91), we can derive

Vi(x(k))≤ xT(k)Qx(k)+ uT(k)Ru(k)+ γVi−1(x(k + 1)).

Combining with

Vi(x(k))≤ V∞(x(k)), ∀i (2.103)

which is obtained from Theorem 2.17, we have

Vi(x(k))≤ xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1)), ∀i.
Let i → ∞, we can acquire

V∞(x(k))≤ xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1)).

Note that in the above equation, u(k) is chosen arbitrarily; thus, we obtain

V∞(x(k))≤ min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1))

}
. (2.104)

On the other hand, since the value function sequence satisfies

Vi(x(k))= min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γVi−1(x(k + 1))

}

62 2 Optimal State Feedback Control for Discrete-Time Systems

for any i, considering (2.103), we have

V∞(x(k))≥ min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γVi−1(x(k + 1))

}
, ∀i.

Let i → ∞; we get

V∞(x(k))≥ min
u(k)

{
xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1))

}
. (2.105)

Based on (2.104) and (2.105), we can acquire the conclusion that V∞(x(k)) =
minu(k){xT(k)Qx(k)+ uT(k)Ru(k)+ γV∞(x(k + 1))}. �

Next, we will prove that the value function sequence {Vi} converges to the opti-
mal value function J ∗(x(k)) as i → ∞.

Theorem 2.19 (cf. [10]) Define the value function sequence {Vi} as in (2.91) with
V0(·) = 0. If the system state x(k) is controllable, then J ∗ is the limit of the value
function sequence {Vi}, i.e.,

lim
i→∞Vi(x(k))= J ∗(x(k)).

Proof Let {η(l)i } be the lth admissible control law sequence. We construct the asso-

ciated sequence {P (l)
i (x)} as follows:

P
(l)
i+1(x(k))= xT(k)Qx(k)+ η

(l)T
i (x(k))Rη

(l)
i (x(k))+ γP

(l)
i (x(k + 1)) (2.106)

with P
(l)
0 (·)= 0. Similar to the derivation of (2.95), we get

P
(l)
i+1(x(k))=

i∑

j=0

γ j l
(
x(k + j), η

(l)
i−j (x(k + j))

)
. (2.107)

Using Lemmas 2.15 and 2.16, we have

Vi+1(x(k))≤ P
(l)
i+1(x(k))≤ Yl, ∀l, i (2.108)

where Yl is the upper bound associated with the sequence {P (l)
i+1(x(k))}. Denote

lim
i→∞P

(l)
i (x(k))= P (l)∞ (x(k));

then, we obtain

V∞(x(k))≤ P (l)∞ (x(k))≤ Yl, ∀l. (2.109)

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 63

Let the corresponding control sequence associated with (2.107) be

(l)û
k+i
k = (

(l)û(k),(l) û(k + 1), . . . ,(l) ûk+i

)

= (
η
(l)
i (x(k)), η

(l)
i−1(x(k + 1)), . . . , η(l)0 (x(k + i))

);
then we have

J
(
x(k),(l) û

k+i
k

)=
i∑

j=0

γ j l
(
x(k + j), η

(l)
i−j (x(k + j))

)= P
(l)
i+1(x(k)). (2.110)

Letting i → ∞, and denoting the admissible control sequence related to P
(l)∞(x(k))

with length ∞ as (l)û
∞
k , we get

J
(
x(k),(l) û

∞
k

)=
∞∑

j=0

γ j l
(
x(k + j),(l) û(k + j)

)= P (l)∞ (x(k)). (2.111)

Then, according to the definition of J ∗(x(k)) in (2.71), for any ε > 0, there exists a
sequence of admissible control laws {η(M)

i } such that the associated cost function

J
(
x(k),(M) û

∞
k

)=
∞∑

j=0

γ j l
(
x(k + j),(M) û(k + j)

)= P (M)∞ (x(k)) (2.112)

satisfies J (x(k),(M) û
∞
k)≤ J ∗(x(k))+ ε. Combining with (2.109), we have

V∞(x(k))≤ P (M)∞ (x(k))≤ J ∗(x(k))+ ε. (2.113)

Since ε is chosen arbitrarily, we get

V∞(x(k))≤ J ∗(x(k)). (2.114)

On the other hand, because Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl,∀l, i, we can get

V∞(x(k)) ≤ infl{Yl}. According to the definition of admissible control law se-
quence, the control law sequence associated with the cost function V∞(x(k)) must
be an admissible control law sequence. We can see that there exists a sequence of
admissible control laws {η(N)

i } such that V∞(x(k))= P
(N)∞ (x(k)). Combining with

(2.111), we get V∞(x(k)) = J (x(k),(N) û
∞
k). Sine J ∗(x(k)) is the infimum of all

admissible control sequences starting at k with length ∞, we obtain

V∞(x(k))≥ J ∗(x(k)). (2.115)

Based on (2.114) and (2.115), we can conclude that J ∗ is the limit of the value
function sequence {Vi}, i.e., V∞(x(k))= J ∗(x(k)). �

From Theorems 2.17 and 2.18, we can derive that the limit of the value function
sequence {Vi} satisfies the DTHJB equation, i.e., V∞(x(k))= minu(k){xT(k)Qx(k)

64 2 Optimal State Feedback Control for Discrete-Time Systems

+ uT(k)Ru(k) + γV∞(x(k + 1))}. Besides, from Theorem 2.19, we can get the
result that V∞(x(k)) = J ∗(x(k)). Therefore, we can find that the cost function se-
quence {Vi(x(k))} converges to the optimal value function J ∗(x(k)) of the DTHJB
equation, i.e., Vi → J ∗ as i → ∞. Then, according to (2.74) and (2.90), we can con-
clude the convergence of the corresponding control law sequence. Now, we present
the following corollary.

Corollary 2.20 Define the value function sequence {Vi} as in (2.91) with V0(·)= 0,
and the control law sequence {vi} as in (2.90). If the system state x(k) is control-
lable, then the sequence {vi} converges to the optimal control law u∗ as i → ∞,
i.e.,

lim
i→∞vi(x(k))= u∗(x(k)).

Remark 2.21 Like (2.95), when we further expand (2.91), we obtain a control law
sequence (vi, vi−1, . . . , v0) and the resultant control sequence (vi(x(0)), vi−1(x(1)),
. . . , v0(x(i))). With the iteration number increasing to ∞, the derived control law
sequence has the length of ∞. Then, using the corresponding control sequence, we
obtain a state trajectory. However, it is not derived from a single control law. For
infinite-horizon optimal control problem, what we should get is a unique optimal
control law under which we can obtain the optimal state trajectory. Therefore, we
only use the optimal control law u∗ obtained in Corollary 2.20 to produce a control
sequence when we apply the algorithm to practical systems.

2.3.2.4 NN Implementation of the Iterative ADP Algorithm Using GDHP
Technique

When the controlled system is linear and the cost function is quadratic, we can
obtain a linear control law. In the nonlinear case, however, this is not necessarily
true. Therefore, we need to use function approximation structure, such as NN, to
approximate both vi(x(k)) and Vi(x(k)).

Now, we implement the iterative GDHP algorithm in (2.90) and (2.91). In the
iterative GDHP algorithm, there are three networks, which are model network, critic
network and action network. All the networks are chosen as three-layer feedforward
NNs. The input of the critic network and action network is x(k), while the input
of the model network is x(k) and v̂i (x(k)). The diagram of the whole structure is
shown in Fig. 2.14, where

DER =
(
∂x̂(k + 1)

∂x(k)
+ ∂x̂(k + 1)

∂v̂i(x(k))

∂v̂i(x(k))

∂x(k)

)T

.

The training of the model network is completed after the system identification
process and its weights are kept unchanged. Then, according to Theorem 2.13, when
given x(k) and v̂i (x(k)), we can compute x̂(k + 1) by (2.77), i.e.,

x̂(k + 1)= ωT
m(k)σ

(
ν∗T
m [xT(k) v̂T

i (x(k))]T).

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 65

Fig. 2.14 The structure diagram of the iterative GDHP algorithm

As a result, we avoid the requirement of knowing f (x(k)) and g(x(k)) during the
implementation of the iterative GDHP algorithm.

Next, the learned NN system model will be used in the process of training critic
network and action network.

The critic network is used to approximate both Vi(x(k)) and its derivative
∂Vi(x(k))/∂x(k), which is named the costate function and denoted λi(x(k)). The
output of the critic network is denoted

[
V̂i(x(k))

λ̂i(x(k))

]
=
[
ω1T
ci

ω2T
ci

]
σ
(
νT
cix(k)

)= ωT
ciσ

(
νT
cix(k)

)
, (2.116)

where

ωci = [
ω1
ci ω2

ci

]
,

i.e.,

V̂i (x(k))= ω1T
ci σ

(
νT
cix(k)

)
(2.117)

and

λ̂i (x(k))= ω2T
ci σ

(
νT
cix(k)

)
. (2.118)

The target function can be written as

Vi+1(x(k))= xT(k)Qx(k)+ vT
i (x(k))Rvi(x(k))+ γ V̂i(x̂(k + 1)) (2.119)

66 2 Optimal State Feedback Control for Discrete-Time Systems

and

λi+1(x(k))= ∂
(
xT(k)Qx(k)+ vT

i (x(k))Rvi(x(k))
)

∂x(k)
+ γ

∂V̂i(x̂(k + 1))

∂x(k)

= 2Qx(k)+ 2

(
∂vi(x(k))

∂x(k)

)T

Rvi(x(k))

+ γ

(
∂x̂(k + 1)

∂x(k)
+ ∂x̂(k + 1)

∂v̂i(x(k))

∂v̂i(x(k))

∂x(k)

)T

λ̂i (x̂(k + 1)). (2.120)

Then, we define the error function for training the critic network as

e1
cik = V̂i (x(k))− Vi+1(x(k)) (2.121)

and

e2
cik = λ̂i (x(k))− λi+1(x(k)). (2.122)

The objective function to be minimized in the critic network training is

Ecik = (1 − β)E1
cik + βE2

cik, (2.123)

where

E1
cik = 1

2
e1T
cike

1
cik (2.124)

and

E2
cik = 1

2
e2T
cike

2
cik. (2.125)

The weight updating rule for training the critic network is also gradient-based adap-
tation given by

ωci(j + 1)= ωci(j)− αc

[
(1 − β)

∂E1
cik

∂ωci(j)
+ β

∂E2
cik

∂ωci(j)

]
(2.126)

νci(j + 1)= νci(j)− αc

[
(1 − β)

∂E1
cik

∂νci(j)
+ β

∂E2
cik

∂νci(j)

]
(2.127)

where αc > 0 is the learning rate of the critic network, j is the inner-loop iteration
step for updating the weight parameters, and 0 ≤ β ≤ 1 is a parameter that adjusts
how HDP and DHP are combined in GDHP. For β = 0, the training of the critic
network reduces to a pure HDP, while β = 1 does the same for DHP.

In the action network, the state x(k) is used as input to obtain the optimal control.
The output can be formulated as

v̂i (x(k))= ωT
aiσ

(
νT
aix(k)

)
. (2.128)

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 67

The target control input is given as

vi(x(k))= −γ

2
R−1ĝT(x(k))

∂V̂i(x̂(k + 1))

∂x̂(k + 1)
. (2.129)

The error function of the action network can be defined as

eaik = v̂i (x(k))− vi(x(k)). (2.130)

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eaik = 1

2
eT
aikeaik. (2.131)

Similarly, the weight updating algorithm is

ωai(j + 1)= ωai(j)− αa

[
∂Eaik

∂ωai(j)

]
, (2.132)

νai(j + 1)= νai(j)− αa

[
∂Eaik

∂νai(j)

]
(2.133)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iteration step for updating the weight parameters.

Remark 2.22 According to Theorem 2.19, Vi(x(k)) → J ∗(x(k)) as i → ∞. Since
λi(x(k)) = ∂Vi(x(k))/∂x(k), we can conclude that the costate function sequence
{λi(x(k))} is also convergent with λi(x(k))→ λ∗(x(k)) as i → ∞.

Remark 2.23 From Fig. 2.14, we can see that the outputs of the critic network of the
iterative GDHP algorithm contain not only the cost function but also its derivative.
This is important because the information associated with the cost function is as
useful as the knowledge of its derivative. Besides, as is shown in (2.126) and (2.127),
training the critic network of the iterative GDHP algorithm utilizes an error measure
which is a combination of the error measures of HDP and DHP. Though it is more
complicated to do this, the resulting behavior is expected to be superior to simple
ADP methods.

2.3.3 Simulations

An example is provided in this subsection to demonstrate the effectiveness of the
control scheme derived by the iterative GDHP algorithm.

Example 2.24 Consider the following nonlinear system:

x(k + 1)= f (x(k))+ g(x(k))u(k),

68 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.15 The system identification error (x̃k1 and x̃k2 are denoted em1 and em2, respectively)

where x(k) = [x1(k) x2(k)]T ∈ R
2 and u(k) ∈ R are the state and control vari-

ables, respectively. The cost function is chosen as l(x(k), u(k)) = xT(k)x(k) +
uT(k)Ru(k). The system functions are given as

f (x(k))=
[− sin(0.5x2(k))

− cos(1.4x2(k)) sin(0.9x1(k))

]

g(x(k))=
[

0
1

]
.

We choose three-layer feedforward NNs as model network, critic network and
action network with the structures 3–8–2, 2–8–3, 2–8–1, respectively. In the system
identification process, the initial weights between the input layer and the hidden
layer, and the hidden layer and the output layer are chosen randomly in [−0.5,0.5]
and [−0.1,0.1], respectively. We apply the NN identification scheme for 100 steps
under the learning rate αm = 0.05 and obtain the result as shown in Fig. 2.15. It is
clearly observed that the NN identifier successfully learns the unknown nonlinear
system. Then, we finish the training of the model network and keep its weights
unchanged.

The initial weights of the critic network and action network are all set to be ran-
dom in [−0.1,0.1]. Then, let the discount factor γ = 1 and the adjusting parameter
β = 0.5, we train the critic network and action network for 10 training cycles with
each cycle of 2000 steps. In the training process, the learning rate αc = αa = 0.05.
The convergence process of the value function and its derivative of the iterative
GDHP algorithm at time instant k = 0 are shown in Fig. 2.16. We can see that the
iterative value function sequence does converge to the optimal value function quite
rapidly, which also indicates the effectiveness of the iterative GDHP algorithm.

2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 69

Fig. 2.16 The convergence process of the value function and its derivative of the iterative GDHP
algorithm

Fig. 2.17 The state trajectory x1

Moreover, in order to make a comparison with the iterative ADP algorithm us-
ing HDP and DHP technique (iterative HDP algorithm and iterative DHP algorithm
for brief), we also present the controllers designed by iterative HDP algorithm and
iterative DHP algorithm, respectively. Then, for the given initial state x1(0) = 0.5
and x2(0) = 0.5, we apply the optimal control laws designed by iterative GDHP,
HDP and DHP algorithm to the controlled system for 20 time steps, respectively,
and obtain the state curves as shown in Figs. 2.17 and 2.18. The corresponding con-
trol curves are shown in Fig. 2.19. It can be seen from the simulation results that the

70 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.18 The state trajectory x2

Fig. 2.19 The control input u

controller designed by the iterative GDHP algorithm has better performance than
iterative HDP algorithm and iterative DHP algorithm. The most important property
that the iterative GDHP algorithm superior to the iterative DHP algorithm is the
former can show us the convergence process of the value function sequence. Be-
sides, the time that the iterative GDHP algorithm takes in the entire computation
process is much less than that of HDP. For the same problem, the iterative GDHP
algorithm takes about 26.6 seconds while the iterative HDP algorithm takes about
61.3 seconds before satisfactory results are obtained.

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 71

2.4 Infinite-Horizon Optimal State Feedback Control Based
on GHJB Algorithm

2.4.1 Problem Formulation

Consider an affine nonlinear discrete-time system of the form

x(k + 1)= f (x(k))+ g(x(k))u(k), (2.134)

where x(k) ∈ Ω ∈ R
n, f : Rn → R

n, g : Rn → R
n×m. The input satisfies u(k) ∈

Ωu, Ωu = {u(k) = [u1(k), u2(k), . . . , um(k)]T ∈ R
m : |ui(k)| < ūi(k), i = 1,2,

. . . ,m}, where ūi (k) is the saturating bound of the ith actuator. Let Ū = diag{ū1, ū2,

. . . , ūm}. Assuming that f +gu is continuous on a set Ω ⊆ R
n containing the origin,

and system (2.134) is controllable in the sense that there exists a continuous con-
trol on Ω that asymptotically stabilizes the system. In this subsection, the infinite-
horizon optimal control problem for nonlinear discrete-time systems with actuator
saturation is investigated. It is desired to find the constrained state feedback input
u(x(k)) which minimizes a generalized cost functional as follows:

J (x(0), u)=
∞∑

k=0

Q(x(k))+W(u(x(k))), (2.135)

where Q(x(k)) and W(u(x(k))) are positive definite on Ω . For optimal control
problem, it is worthy to note that u(x(k)) must both stabilize the system and make
the cost functional finite, i.e., it must be an admissible control.

For system (2.134), the nonlinear discrete-time GHJB equation without consid-
ering saturation is given as follows:

∇V T(x)(f (x)+ g(x)u(x)− x)+Q(x)+W(u(x))= 0, (2.136)

V (x)|x=0 = 0. (2.137)

For a given admissible control u, there exists a positive definite continuously
differentiable value function V (x) whose initial value V (x(0)) equals J (x(0), u).

For unconstrained control problem, a common choice of function W(u(x)) is
uT(x)Ru(x), where R ∈ R

m×m is positive definite. On substitution of the optimal
control u∗(x) = −R−1gT(x)∇J ∗(x)/2, where J ∗(x) is the optimal value function
corresponding to optimal control u∗(x), the GHJB equation (2.136) with the bound-
ary condition (2.137) becomes the well-known HJB equation as follows:

∇J ∗T(x)(f (x)+ g(x)u(x)− x)+Q(x)

+ 1

4
∇J ∗T(x)g(x)R−1gT(x)∇J ∗(x)= 0, (2.138)

J ∗(x)|x=0 = 0. (2.139)

72 2 Optimal State Feedback Control for Discrete-Time Systems

However, the HJB equation above is not suitable for constrained optimal control
problem. To guarantee bounded controls, we introduce a generalized nonquadratic
functional as follows:

W(u(x))= 2
∫ u(x)

0
Φ−T(Ū−1s)ŪRds, (2.140)

where W(u(x)) is a scalar, Φ(v)= [ϕ(v1), . . . , ϕ(vm)]T and

Φ−1(u)= [ϕ(u1)
−1, . . . , ϕ(um)

−1]T

are bounded one-to-one functions that belong to Cp(p) ≥ 1 and L2(Ω), satisfy-
ing |ϕ(·)| ≤ 1. Moreover, ϕ(·) is a monotonic odd function with its first derivative
bounded by a constant M . It is not difficult to find such functions, such as the hyper-
bolic tangent function ϕ(·)= tanh(·). R is positive definite and assumed to be sym-
metric for simplicity of analysis. Substituting (2.140) into (2.136), the constrained
discrete-time GHJB equation with boundary condition is derived as follows:

∇V T(x)(f (x)+ g(x)u(x)− x)+Q(x)+ 2
∫ u(x)

0
Φ−T(Ū−1s)ŪRds = 0,

(2.141)

V (x)|x=0 = 0. (2.142)

According to the first-order necessary condition of the optimal control, the con-
strained optimal state feedback control law can be obtained as follows:

u∗(x)= ŪΦ

(
−1

2
(ŪR)−1gT(x)∇J ∗(x)

)
. (2.143)

Substitute (2.143) into (2.141), and the constrained discrete-time HJB equation
can be derived as follows:

∇J ∗T(x)

(
f (x)+ gŪΦ

(
−1

2
(ŪR)−1gT∇J ∗(x)

)
− x

)

+Q(x)+ 2
∫ ŪΦ(− 1

2 (ŪR)
−1gT(x)∇J ∗(x))

0
Φ−T(Ū−1s)ŪRds = 0,

J ∗(x)|x=0 = 0. (2.144)

If this HJB equation can be solved for the optimal value function J ∗(x), then
(2.143) gives the optimal constrained control. However, this equation is generally
impossible to solve.

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 73

2.4.2 Constrained Optimal Control Based on GHJB Equation

Contrast to HJB equation (2.144) being nonlinear difference equation about
∇J ∗(x), the GHJB equation (2.141) is linear in ∇V (x). So it is easier to solve
the GHJB equation than the HJB equation from a theoretical viewpoint. That is the
reason why a successive approximation based on GHJB equation is introduced to
solve the HJB equation. Via solving a sequence of GHJB(V [i], u[i]) = 0 we can
obtain a sequence for V [i] and prove V [i] → J ∗.

Theorem 2.25 (cf. [6]) If u[i](x) ∈ Ψ (Ω), x(0) ∈Ω , the value function V [i] is posi-
tive definite and continuously differentiable onΩ , and satisfies GHJB(V [i], u[i])= 0
with the boundary condition V [i](0)= 0, then

u[i+1](x)= ŪΦ

(
−1

2
(ŪR)−1gT∇V [i](x)

)
(2.145)

is an admissible control for (2.134) on Ω . Moreover, if ϕ(·) is monotone odd, and
V [i+1] is the unique positive definite function, which satisfies GHJB(V [i+1], u[i+1])
= 0 with the boundary condition V [i+1](0) = 0, then we can conclude that
V (i+1)(x(0))≤ V [i](x(0)).

Proof First, we should prove that u[i+1] is admissible.
For simplicity, in the following we write f (x) as f , g(x) as g. Taking the dif-

ference of the system with the control u[i+1] along the system (f, g,u[i+1]), we
have

ΔV [i](x(k))= V [i](x(k + 1))− V [i](x(k))

≈ ∇V [i]T
k

(
fk + gku

[i+1]
k − x(k)

)
, (2.146)

where

∇Vk = ∂V (x)

∂x

∣∣∣∣
x=x(k)

=
[

∂

∂x1
V (x),

∂

∂x2
V (x), . . . ,

∂

∂xn
V (x)

]T
∣∣∣∣∣
x=x(k)

,

fk = f (x(k)), gk = g(x(k)), and uk = u(x(k)). For any x(k) ∈ Ω , since
GHJB(V [i], u[i])= 0, we have

∇V [i]T
k

(
fk + gku

[i]
k − x(k)

)
+Q(x(k))+ 2

∫ u
[i]
k

0
Φ−T(Ū−1s)ŪRds = 0.

(2.147)

74 2 Optimal State Feedback Control for Discrete-Time Systems

Substituting (2.147) into (2.146), we have

ΔV [i](x(k))= ∇V [i]T
k gk

(
u

[i+1]
k − u

[i]
k

)
−Q(x(k))

− 2
∫ u

[i]
k

0
Φ−T(Ū−1s)ŪRds. (2.148)

Since

∇V [i]T
k (x)gk = −2Φ−T

(
Ū−1u

[i+1]
k

)
ŪR, (2.149)

we get

ΔV [i](x(k))= −Q(x(k))+ 2

[
Φ−T

(
Ū−1u

[i+1]
k

)
ŪR

(
u

[i]
k − u

[i+1]
k

)

−
∫ u

[i]
k

0
Φ−T(Ū−1s)ŪRds

]
. (2.150)

Because ϕ and ϕ−1 are monotone odd, the second term of (2.150) is negative. This
implies that ΔV [i](x(k)) < 0 for x(k) �= 0. Thus, V [i] is a Lyapunov function for
u[i+1] on Ω and the system (2.134) is asymptotically stable.

Next, we are ready to show that the value function of the system with the updated
control u[i+1] is finite.

Since u[i] is admissible, from Definition 2.1, we get

V [i](x(0))= J (x(0), u[i]) <∞, x(0) ∈Ω. (2.151)

The value function for u[i+1] is

V (x(0), u[i+1])=
∞∑

k=0

{
Q(x(k)+ 2

∫ u
[i+1]
k

0
Φ−T(Ū−1s)ŪRds

}
, (2.152)

where x(k) is the state trajectory of system with admissible control u[i+1].
From (2.150) and (2.152), we have

V [i](x(∞))−V [i](x(0))

=
∞∑

k=0

ΔV [i](k)

=
∞∑

k=0

{
−Q(x(k))+ 2[Φ−T(Ū−1u

[i+1]
k)ŪR(u

[i]
k − u

[i+1]
k)

−
∫ u

[i]
k

0
Φ−1(Ū−1s)ŪRds]

}

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 75

= − J (x(0), u[i+1])+ 2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k)ŪR(u

[i]
k − u

[i+1]
k)

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}
. (2.153)

Since x(∞) = 0 and V [i](x)|x=0 = 0, we get V [i](x(∞)) = 0. By rewriting
(2.152), we have

J (x(0), u[i+1])= V [i](x(0))+ 2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k ŪR(u

[i]
k − u

[i+1]
k)

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}
. (2.154)

Since ϕ and ϕ−1 are monotone odd, and the second term of (2.154) is less than
0, we have

J (x(0), u[i+1]) < V [i](x(0))= J (x(0), u[i]) <∞. (2.155)

Because V [i] is continuously differentiable, and g : Rn → Rn×m is a Lipschitz
continuous function, u[i+1] is continuous. Since V [i] is positive definite and attains
its minimum at the origin, and ΔV [i] must approach 0 at the origin, from (2.145)
we have u[i+1](x)|x=0 = 0.

From Definition 2.1, we know that u[i+1] is an admissible control on Ω . Since
u[i+1] is admissible, there exists a V [i+1] satisfying GHJB(V [i+1], u[i+1])= 0, and

V [i+1](x(0))= J (x(0), u[i+1]). (2.156)

From (2.154) and (2.156), we get

V [i+1](x(0))− V [i](x(0))= −2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k)ŪR(u

[i]
k − u

[i+1]
k)

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}

≤ 0. (2.157)

The proof is completed. �

Corollary 2.26 Given u[0](x) ∈ Ψ (Ω), if one iteratively solve the GHJB equation
GHJB (V [i], u[i]) = 0 and for i = 0,1,2, . . . , update the control as u[i+1](x) =
ŪΦ(− 1

2 (ŪR)
−1gT∇V [i](x)), then it can be concluded that V [i](x)→ J ∗(x).

76 2 Optimal State Feedback Control for Discrete-Time Systems

Proof According to Theorem 2.25, V [i] is a decreasing sequence with a lower
bound. Since V [i] > 0 , V [i+1] − V [i] < 0 , V [i] will converge to a positive defi-
nite function V [i+1] = V [i] = V d when i → ∞. Due to the HJB equation having a
unique solution, we just need to prove V d = J ∗. When V [i] = V [i+1] = V d , from
(2.145) we have

u[i](x)= u[i+1](x)= ŪΦ

(
−1

2
(ŪR)−1gTΔV [i](x)

)
. (2.158)

The GHJB equation with input u[i] can be written as

∇V [i](x)T
(
f (x)+ gŪΦ

(
−1

2
(ŪR)−1gT∇V [i](x)

)
− x

)
+Q(x)

+ 2
∫ ŪΦ(− 1

2 (ŪR)
−1gT∇V [i](x))

0
Φ−T(Ū−1s)ŪRds = 0, (2.159)

V [i](x)|x=0 = 0. (2.160)

From (2.144), the conclusion can be drawn that (2.159) with boundary condition
(2.160) is the HJB equation. This implies that V [i](x)→ J ∗(x), u[i](x)→ u∗(x). �

In the next part, we are ready to discuss how to design the nearly optimal satu-
rated controller using NNs. In general, the closed-form solution of GHJB equation
(2.141) cannot be obtained even though solving GHJB equation (2.141) is easier
than solving HJB equation (2.144). In this section, a neural network is used to ap-
proximate the solution V (x) of constrained nonlinear discrete-time GHJB equation.
Finally, the nearly optimal state feedback control is obtained according to (2.143).

V (x) is approximated by a neural network as follows:

VL(x)=
L∑

j=1

wjσj (x)=WT
Lσ̄L(x), (2.161)

where wj are the weights of the neural network, σj (x) are the activation func-
tions, σj (x) are continuous and satisfy σj (x)|x=0 = 0. L is the number of hidden-
layer neurons. σ̄L(x)≡ [σ1(x), σ2(x), . . . , σL(x)]T is the vector activation function,
WL(x)≡ [w1(x),w2(x), . . . ,wL(x)]T is the vector weight. The control objective is
to make the residual error minimum in a least-square sense by tuning the weights.

Substituting (2.161) into (2.141), we have

GHJB

⎛

⎝VL =
L∑

j=1

wjσj ,u

⎞

⎠= eL(x). (2.162)

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 77

The method of weighted residuals is used to find the least-square solution, i.e.,
〈
∂(eL(x))

∂WL(x)
, eL(x)

〉
= 0, (2.163)

where 〈f,g〉 = ∫
Ω
fgdx is a Lebesgue integral.

By expanding (2.163), we get

〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 ·WL

+
〈
Q(x)+ 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
= 0. (2.164)

Lemma 2.27 If the set {σj (x)}L1 is linearly independent and u ∈ Ωu, then the set
{∇σT

j Δx}L1 is also linearly independent.

From Lemma 2.27, 〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 is invertible. Therefore there exists
a unique solution as follows:

WL = −〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉−1

×
〈
Q(x)+ 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
, (2.165)

and the control can be derived as

u= ŪΦ
(

− 1

2
(ŪR)−1gT∇σT

LWL

)
. (2.166)

For reducing computation, the integration in (2.165) is approximated by the def-
inition of Riemann integration [4].

A mesh of points over the integral region can be introduced on Ω , with the size
δx chosen as small as possible. Moreover, p is required to be larger than L, and
the activation functions are linearly independent to guarantee (ATA) invertible. The
specific expressions are given as follows:

A= [∇σ̄L(x)Δx|x=x1
, . . . , ∇σ̄L(x)Δx|x=xp]T, (2.167)

B =

⎡

⎢⎢⎢⎣

Q(x)+ 2
∫ u(x)

0 Φ−T(Ū−1s)ŪRds

∣∣∣
x=x1

...

Q(x)+ 2
∫ u(x)

0 Φ−T(Ū−1s)ŪRds

∣∣∣
x=xp

⎤

⎥⎥⎥⎦ , (2.168)

〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 = lim‖δx‖→0
(ATA) · δx, (2.169)

78 2 Optimal State Feedback Control for Discrete-Time Systems

〈
Q(x)+ 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
= lim‖δx‖→0

(ATB) · δx. (2.170)

Therefore, we get

WL = −(ATA)−1ATB. (2.171)

The design procedure of the optimal constrained controller of nonlinear discrete-
time systems with actuator saturation is given below:

1. Using a neural network to approximate V (x), i.e., we have V (x) = ∑L
j=1 ×

wjσj (x).
2. Select an initial admissible control u[0], then solve GHJB(V [0], u[0])= 0 by ap-

plying the least-square method to obtain W[0], and accordingly V [0] is computed.
3. For i = 0,1,2, . . . , update the control u[i+1] = ŪΦ(− 1

2 (ŪR)
−1gT∇V [i]).

4. For i = 0,1,2, . . . , solve GHJB(V [i+1], u[i+1]) = 0 by the least-square method
to obtain Wi+1, and then we can get V [i+1].

5. If V [i](0)− V [i+1](0)≤ ε, where ε is a small positive constant, then J ∗ = V [i],
stop; else i = i + 1, go back to step 3 and go on.

6. After J ∗ being solved off-line, the optimal state feedback control u∗ =
ŪΦ(− 1

2 (ŪR)
−1gT∇J ∗) will be implemented on-line.

2.4.3 Simulations

In order to demonstrate the effectiveness of the method developed in this section, an
example is presented in this subsection.

Example 2.28 Consider the following affine nonlinear discrete-time system with
actuator saturation:

x(k + 1)= f (x(k))+ g(x(k))u(k), (2.172)

where

f (x(k))=
[−0.8x2(k)

sin(0.8x1(k)− x2(k))+ 1.8x2(k)

]
,

g(x(k))=
[

0
−x2(k)

]
,

and the upper bound Ū of actuator saturation is 0.35.
The control objective is to design an optimal controller with bound less than 0.35.
Define the cost functional as

J (x(0), u)=
∞∑

k=0

{
xT(k)Qx(k)+ 2

∫ u(x(k))

0
tanh−T(Ū−1s)ŪRds

}
, (2.173)

where the weight matrices are chosen as Q= [1 0
0 1

]
and R = 1.

2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 79

Fig. 2.20 Norm of neural-network weights at each step

To find a nearly optimal controller, a Volterra neural network is used to approxi-
mate the value function of the system as follows:

V (x)=w1x
2
1 +w2x

2
2 +w3x1x2 +w4x

4
1 +w5x

4
2 +w6x

3
1x2

+w7x
2
1x

2
2 +w8x1x

3
2 +w9x

6
1 +w10x

6
2 +w11x

5
1x2

+w12x
4
1x

2
2 +w13x

3
1x

3
2 +w14x

2
1x

4
2 +w15x1x

5
2 . (2.174)

The algorithm is implemented over the region Ω defined by |x1| ≤ 0.5, |x2| ≤
0.5. Select the initial control u0(k) = x1(k) + 1.5x2(k), which is admissible, and
then update the control by u[i+1] = Ū tanh(−(ŪR)−1gT∇V [i]/2), where u[i] and
V [i] satisfy the following GHJB equation:

∇V [i]T(x)(f (x)+ g(x)u[i](x)− x)+ xTQx

+2
∫ u[i](x)

0
tanh−T(Ū−1s)ŪRds = 0. (2.175)

In the simulation, the parameters are chosen as follows: the mesh size δx = 0.01,
the small positive constant ε = 0.01, and the initial states x1(0)= x2(0)= 0.5. Fig-
ure 2.20 shows the trajectory of the norm of neural-network weights at each iteration
step. Figure 2.21 shows that the value function converges to a constant very rapidly.
After 12 successive iterative steps, the nearly optimal saturated control can be ob-
tained off-line. Then, the controller is applied to the system with given initial states
for 100 time steps. Figure 2.22 shows the control trajectory and Fig. 2.23 shows
the state trajectories, whereas Figs. 2.24 and 2.25 illustrate the control trajectory
and state trajectories without considering actuator saturation, respectively. By com-
parison, we can see that saturated control and corresponding state trajectories have
fewer oscillations, and saturation has been overcome successfully.

80 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.21 The value function at each iteration step

Fig. 2.22 The control trajectory

2.5 Finite-Horizon Optimal State Feedback Control Based
on HDP

In this section, we will develop a new ADP scheme for the finite-horizon optimal
control problem. We will study the optimal control problem with an ε-error bound
using ADP algorithms. First, the HJB equation for finite-horizon optimal control of
discrete-time systems is derived. In order to solve this HJB equation, a new iterative
ADP algorithm is developed with convergence and optimality proofs. Second, the
difficulties of obtaining the optimal solution using the iterative ADP algorithm is
presented and then the ε-optimal control algorithm is derived based on the iterative

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 81

Fig. 2.23 The state trajectories

Fig. 2.24 The control trajectory without considering the actuator saturation in the controller de-
sign

ADP algorithm. Next, it will be shown that the ε-optimal control algorithm can
obtain suboptimal control solutions within a fixed finite number of control steps that
make the value function converge to its optimal value with an ε-error. Furthermore,
in order to facilitate the implementation of the iterative ADP algorithms, we use
NNs to obtain the iterative value function and the optimal control policy. Finally, an
ε-optimal state feedback controller is obtained for the finite-horizon optimal control
problem.

82 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.25 The state trajectories without considering the actuator saturation in the controller design

2.5.1 Problem Formulation

In this section, we will study the following deterministic discrete-time systems:

x(k + 1)= F(x(k), u(k)), k = 0,1,2, . . . , (2.176)

where x(k) ∈ R
n is the state and u(k) ∈ R

m is the control vector. Let x(0) be
the initial state. The system function F(x(k), u(k)) is continuous for ∀x(k), u(k)
and F(0,0) = 0. Hence, x = 0 is an equilibrium state of system (2.176) under
the control u = 0. The cost function for state x(0) under the control sequence
uN−1

0 = (u(0), u(1), . . . , u(N − 1)) is defined as

J
(
x(0), uN−1

0

)=
N−1∑

i=0

l(x(i), u(i)), (2.177)

where l is the utility function, l(0,0)= 0, and l(x(i), u(i))≥ 0 for ∀x(i), u(i).
The sequence uN−1

0 defined above is a finite sequence of controls. Using this
sequence of controls, system (2.176) gives a trajectory starting from x(0): x(1) =
F(x(0), u(0)), x(2)= F(x(1), u(1)), . . . , x(N)= F(x(N − 1), u(N − 1)). We call
the number of elements in the control sequence uN−1

0 the length of uN−1
0 and

denote it as |uN−1
0 |. Then, |uN−1

0 | = N . The length of the associated trajectory
xN0 = (x(0), x(1), . . . , x(N)) is N + 1. We denote the final state of the trajectory as
x(f)(x(0), uN−1

0), i.e., x(f)(x(0), uN−1
0) = xN . Then, for ∀k ≥ 0, the finite control

sequence starting at k can be written as uk+i−1
k = (u(k), u(k+1), . . . , u(k+ i−1)),

where i ≥ 1 is the length of the control sequence. The final state can be written as
x(f)(x(k), uk+i−1

k)= x(k + i).

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 83

We note that the cost function defined in (2.177) does not have the term as-
sociated with the final state since in the present study we specify the final state
x(N) = F(x(N − 1), u(N − 1)) to be at the origin, i.e., x(N) = x(f) = 0. For
the present finite-horizon optimal control problem, the feedback controller u(k) =
u(x(k)) must not only drive the system state to zero within a finite number of
time steps but also guarantee the cost function (2.177) to be finite, i.e., uN−1

k =
(u(x(k)), u(x(k + 1)), . . . , u(x(N − 1))) must be a finite-horizon admissible con-
trol sequence, where N > k is a finite integer.

Definition 2.29 A control sequence uN−1
k is said to be finite-horizon admissible for

a state x(k) ∈R
n, if x(f)(x(k), uN−1

k)= 0 and J (x(k), uN−1
k) is finite, where N > k

is a finite integer.

A state x(k) is said to be finite-horizon controllable (controllable for brief) if
there is a finite-horizon admissible control sequence associated with this state.

Let uk be an arbitrary finite-horizon admissible control sequence starting at k and
let

Ax(k) = {
uk : x(f)(x(k), uk

)= 0
}

be the set of all finite-horizon admissible control sequences of x(k). Let

A
(i)
x(k) = {

uk+i−1
k : x(f)(x(k), uk+i−1

k

)= 0,
∣∣uk+i−1

k

∣∣= i
}

be the set of all finite-horizon admissible control sequences of x(k) with length i.
Then, Ax(k) = ⋃

1≤i<∞ A
(i)
x(k). In this notation, a state x(k) is controllable if and

only if Ax(k) �= ∅.
For any given system state x(k), the objective of the present finite-horizon

optimal control problem is to find a finite-horizon admissible control sequence
uN−1
k ∈ A

(N−k)
x(k) ⊆ Ax(k) to minimize the cost J (x(k), uN−1

k). The control sequence

uN−1
k has finite length. However, before it is determined, we do not know its length

which means that the length of the control sequence |uN−1
k | =N − k is unspecified.

This kind of optimal control problems have been called finite-horizon problems
with unspecified terminal time [3] (but in the present case, with fixed terminal state
x(f) = 0).

Define the optimal value function as

J ∗(x(k))= inf
uk

{
J (x(k), uk) : uk ∈Ax(k)

}
. (2.178)

Then, according to Bellman’s principle of optimality, J ∗(x(k)) satisfies the discrete-
time HJB equation

J ∗(x(k))= min
uk

{
l(x(k), u(k))+ J ∗(F (x(k), u(k)))

}
. (2.179)

84 2 Optimal State Feedback Control for Discrete-Time Systems

Now, define the law of optimal control sequence starting at k by

u∗(x(k))= arg inf
uk

{
J (x(k), uk) : uk ∈ Ax(k)

}
,

and define the law of optimal control vector by

u∗(x(k))= arg min
u(k)

{
l(x(k), u(k))+ J ∗(F (x(k), u(k)))

}
.

In other words, u∗(x(k))= u∗
k and u∗(x(k))= u∗

k . Hence, we have

J ∗(x(k))= l(x(k), u∗
k)+ J ∗(F (x(k), u∗

k)).

2.5.2 Finite-Horizon Optimal State Feedback Control Based
on HDP

In this subsection, a new iterative ADP algorithm is developed to obtain the finite-
horizon optimal controller for nonlinear systems. The goal of the present iterative
ADP algorithm is to construct an optimal control policy u∗(x(k)), k = 0,1, . . . ,
which drives the system from an arbitrary initial state x(0) to the singularity 0 within
a finite time, and simultaneously minimizes the performance index function. Con-
vergence proofs will also be given to show that the performance index function will
indeed converge to the optimum.

2.5.2.1 Derivation and Properties of the Iterative ADP Algorithm

We first consider the case where for any state x(k), there exists a control vector u(k)
such that F(x(k), u(k))= 0, i.e., we can control the state of system (2.176) to zero
in one step from any initial state. For the case where F(x(k), u(k)) = 0 does not
hold, we will discuss and solve the problem later in the subsection.

In the iterative ADP algorithm, the value function and control policy are updated
by recursive iterations, with the iteration index number i increasing from 0 and with
the initial performance index function V0(x)= 0 for ∀x ∈ R

n.
The value function for i = 1 is computed as

V1(x(k))=min
u(k)

{l(x(k), u(k))+ V0(F (x(k), u(k)))}
subject to F(x(k), u(k))= 0

=min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k))= 0

= l(x(k), u∗
k(x(k))), (2.180)

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 85

where V0(F (x(k), u(k))) = 0 and F(x(k), u∗
k(x(k))) = 0. The control vector

v1(x(k)) for i = 1 is chosen as v1(x(k)) = u∗
k(x(k)). Therefore, (2.180) can also

be written as

V1(x(k))=min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k))= 0

= l(x(k), v1(x(k))), (2.181)

where

v1(x(k))= arg min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k))= 0. (2.182)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

Vi(x(k))= min
u(k)

{l(x(k), u(k))+ Vi−1(F (x(k), u(k)))}

= l(x(k), vi(x(k)))+ Vi−1(F (x(k), vi(x(k)))), (2.183)

where

vi(x(k))= arg min
u(k)

{l(x(k), u(k))+ Vi−1(x(k + 1))}

= arg min
u(k)

{l(x(k), u(k))+ Vi−1(F (x(k), u(k)))} . (2.184)

Equations (2.181)–(2.184) form the iterative ADP algorithm.

Remark 2.30 Equations (2.181)–(2.184) in the iterative ADP algorithm are similar
to the HJB equation (2.179), but they are not the same. There are at least two obvious
differences:

1. For any finite time k, if x(k) is the state at k, then the optimal value function
in HJB equation (2.179) is unique, i.e., J ∗(x(k)), while in the iterative ADP
equations (2.181)–(2.184), the value function is different for each iteration index
i, i.e., Vi(x(k)) �= Vj (x(k)) for ∀ i �= j in general.

2. For any finite time k, if x(k) is the state at k, then the optimal control law ob-
tained by HJB equation (2.179) possesses the unique optimal control expres-
sion, i.e., u∗

k = u∗(x(k)), while the control law solved by the iterative ADP algo-
rithm (2.181)–(2.184) is different from each other for each iteration index i, i.e.,
vi(x(k)) �= vj (x(k)) for ∀ i �= j in general.

Remark 2.31 According to (2.177) and (2.183), we have

Vi+1(x(k))= min
uk+i
k

{
J
(
x(k), uk+i

k

) : uk+i
k ∈A

(i+1)
x(k)

}
. (2.185)

86 2 Optimal State Feedback Control for Discrete-Time Systems

Since

Vi+1(x(k))= min
u(k)

{l(x(k), u(k))+ Vi(x(k + 1))}

= min
u(k)

{
l(x(k), u(k))+ min

u(k+1)

{
l(x(k + 1), u(k + 1))

+ min
u(k+2)

{
l(x(k + 2), u(k + 2))+ · · ·

+ min
u(k+i−1)

{l(x(k + i − 1), u(k + i − 1))

+V1(x(k + i))} · · ·}
}}

,

where

V1(x(k + i))= min
u(k+i)

l(x(k + i), u(k + i))

subject to F(x(k + i), u(k + i))= 0,

we obtain

Vi+1(x(k))=min
uk+i
k

{l(x(k), u(k))+ l(x(k + 1), u(k + 1))

+· · · + l(x(k + i), u(k + i))}
subject to F(x(k + i), u(k + i))= 0,

=min
uk+i
k

{
J
(
x(k), uk+i

k

) : uk+i
k ∈ A

(i+1)
x(k)

}
.

Using the notation in (2.184), we can also write

Vi+1(x(k))=
i∑

j=0

l
(
x(k + j), vi+1−j (x(k + j))

)
. (2.186)

In the above, we can see that the value function J ∗(x(k)) solved by HJB equation
(2.179) is replaced by a sequence of iterative value functions Vi(x(k)) and the opti-
mal control law u∗(x(k)) is replaced by a sequence of iterative control law vi(x(k)),
where i ≥ 1 is the index of iteration. We can prove that J ∗(x(k)) defined in (2.178)
is the limit of Vi(x(k)) as i → ∞.

Theorem 2.32 Let x(k) be an arbitrary state vector. Suppose that A(1)
x(k) �= ∅. Then,

the value function Vi(x(k)) obtained by (2.181)–(2.184) is a monotonically nonin-
creasing sequence for ∀ i ≥ 1, i.e., Vi+1(x(k))≤ Vi(x(k)) for ∀ i ≥ 1.

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 87

Proof We prove this by mathematical induction. First, we let i = 1. Then, we have
V1(x(k)) given as in (2.181) and the finite-horizon admissible control sequence is
û
k
k = (v1(x(k))).

Next, we show that there exists a finite-horizon admissible control sequence ûk+1
k

with length 2 such that J (x(k), ûk+1
k)= V1(x(k)). The trajectory starting from x(k)

under the control of ûkk = (v1(x(k))) is x(k+1)= F(x(k), v1(x(k)))= 0. Then, we
create a new control sequence ûk+1

k by adding a 0 to the end of sequence ûkk to obtain
the control sequence û

k+1
k = (û

k
k,0). Obviously, |ûk+1

k | = 2. The state trajectory
under the control of ûk+1

k is x(k + 1) = F(x(k), v1(x(k))) = 0 and x(k + 2) =
F(x(k + 1), û(k + 1)), where û(k + 1) = 0. Since x(k + 1) = 0 and F(0,0) = 0,
we have x(k + 2) = 0. So, ûk+1

k is a finite-horizon admissible control sequence.
Furthermore,

J (x(k), û
k+1
k)= l(x(k), v1(x(k)))+ l(x(k + 1), û(k + 1))

= l(x(k), v1(x(k)))

=V1(x(k))

since l(x(k + 1), û(k + 1)) = l(0,0) = 0. On the other hand, according to Re-
mark 2.31, we have

V2(x(k))= min
uk+1
k

{
J
(
x(k), uk+1

k

) : uk+1
k ∈A

(2)
x(k)

}
.

Then, we obtain

V2(x(k))=min
uk+1
k

{
J
(
x(k), uk+1

k

) : uk+1
k ∈A

(2)
x(k)

}

≤ J
(
x(k), û

k+1
k

)

= V1(x(k)). (2.187)

Therefore, the theorem holds for i = 1.
Assume that the theorem holds for any i = q , where q > 1. From (2.186), we

have

Vq(x(k))=
q−1∑

j=0

l
(
x(k + j), vq−j (x(k + j))

)
.

The corresponding finite-horizon admissible control sequence is û
k+q−1
k =

(vq(x(k)), vq−1(x(k + 1)), . . . , v1(x(k + q − 1))).
For i = q + 1, we create a control sequence

û
k+q
k = (

vq(x(k)), vq−1(x(k + 1)), . . . , v1(x(k + q − 1)),0
)

88 2 Optimal State Feedback Control for Discrete-Time Systems

with length q + 1. Then, the state trajectory under the control of ûk+q
k is x(k),

x(k + 1)= F(x(k), vq(x(k))), x(k + 2)= F(x(k + 1), vq−1(x(k + 1))), . . ., x(k +
q) = F(x(k + q − 1), v1(x(k + q − 1))) = 0, x(k + q + 1) = F(x(k + q),0) = 0.
So, ûk+q

k is a finite-horizon admissible control sequence. The value function under
this control sequence is

J (x(k), û
k+q
k)= l(x(k), vq(x(k)))+ l(x(k + 1), vq−1(x(k + 1)))

+ · · · + l(x(k + q − 1), v1(x(k + q − 1)))+ l(x(k + q),0)

=
q−1∑

j=0

l
(
x(k + j), vq−j (x(k + j))

)

=Vq(x(k))

since l(x(k + q),0)= l(0,0)= 0.
On the other hand, we have

Vq+1(x(k))= min
u
k+q
k

{
J
(
x(k), u

k+q
k

) : uk+q
k ∈ A

(q+1)
x(k)

}
.

Thus, we obtain

Vq+1(x(k))= min
u
k+q
k

{
J
(
x(k), u

k+q
k

) : uk+q
k ∈ A

(q+1)
x(k)

}

≤ J
(
x(k), û

k+q
k

)

= Vq(x(k)),

which completes the proof. �

From Theorem 2.32, we know that the value function Vi(x(k))≥ 0 is a monoton-
ically nonincreasing sequence and is bounded below for iteration index i = 1,2,
Now, we can derive the following theorem.

Theorem 2.33 Let x(k) be an arbitrary state vector. Define the performance index
function V∞(x(k)) as the limit of the iterative function Vi(x(k)), i.e.,

V∞(x(k))= lim
i→∞Vi(x(k)). (2.188)

Then, we have

V∞(x(k))= min
u(k)

{l(x(k), u(k))+ V∞(x(k + 1))}.

Proof Let ηk = η(x(k)) be any admissible control vector. According to Theorem
2.32, for ∀ i, we have

V∞(x(k))≤ Vi+1(x(k))≤ l(x(k), ηk)+ Vi(x(k + 1)).

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 89

Let i → ∞, we have

V∞(x(k))≤ l(x(k), ηk)+ V∞(x(k + 1)),

which is true for ∀ηk . Therefore,

V∞(x(k))≤ min
u(k)

{l(x(k), u(k))+ V∞(x(k + 1))}. (2.189)

Let ε > 0 be an arbitrary positive number. Since Vi(x(k)) is nonincreasing for i ≥ 1
and limi→∞ Vi(x(k))= V∞(x(k)), there exists a positive integer p such that

Vp(x(k))− ε ≤ V∞(x(k))≤ Vp(x(k)).

From (2.183), we have

Vp(x(k))=min
u(k)

{l(x(k), u(k))+ Vp−1(F (x(k), u(k)))}

= l(x(k), vp(x(k)))+ Vp−1(F (x(k), vp(x(k)))).

Hence,

V∞(x(k))≥ l(x(k), vp(x(k)))+ Vp−1(F (x(k), vp(x(k))))− ε

≥ l(x(k), vp(x(k)))+ V∞(F (x(k), vp(x(k))))− ε

≥ min
u(k)

{l(x(k), u(k))+ V∞(x(k + 1))} − ε.

Since ε is arbitrary, we have

V∞(x(k))≥ min
u(k)

{l(x(k), u(k))+ V∞(x(k + 1))}. (2.190)

Combining (2.189) and (2.190), we prove the theorem. �

Next, we will prove that the iterative value function Vi(x(k)) converges to the
optimal value function J ∗(x(k)) as i → ∞.

Theorem 2.34 (cf. [14]) Let V∞(x(k)) be defined in (2.188). If the system state
x(k) is controllable, then we have the value function V∞(x(k)) equal to the optimal
value function J ∗(x(k)), i.e.,

lim
i→∞Vi(x(k))= J ∗(x(k)),

where Vi(x(k)) is defined in (2.183).

Proof According to (2.178) and (2.185), we have

J ∗(x(k))≤ min
uk+i−1
k

{
J (x(k), uk+i−1

k) : uk+i−1
k ∈ A

(i)
x(k)

}
= Vi(x(k)).

90 2 Optimal State Feedback Control for Discrete-Time Systems

Then, let i → ∞, and we obtain

J ∗(x(k))≤ V∞(x(k)). (2.191)

Next, we show that

V∞(x(k))≤ J ∗(x(k)). (2.192)

For any ω > 0, by the definition of J ∗(x(k)) in (2.178), there exists η
k
∈ Ax(k) such

that

J (x(k), η
k
)≤ J ∗(x(k))+ω. (2.193)

Suppose that |η
k
| = p. Then, η

k
∈A

(p)

x(k). So, by Theorem 2.32 and (2.185), we have

V∞(x(k)) ≤ Vp(x(k))

= min
u
k+p−1
k

{
J (x(k), u

k+p−1
k) : uk+p−1

k ∈ A
(p)

x(k)

}

≤ J (x(k), η
k
)

≤ J ∗(x(k))+ω.

Since ω is chosen arbitrarily, we know that (2.192) is true. Therefore, from (2.191)
and (2.192), we have proven the theorem. �

We can now present the following corollary.

Corollary 2.35 Let the value function Vi(x(k)) be defined by (2.183). If the system
state x(k) is controllable, then the iterative control law vi(x(k)) converges to the
optimal control law u∗(x(k)), i.e.,

lim
i→∞vi(x(k))= u∗(x(k))

Remark 2.36 Generally speaking, for the finite-horizon optimal control problem,
the optimal value function depends not only on state x(k) but also on the time left
(see [7] and [11]). For the finite-horizon optimal control problem with unspecified
terminal time, we have proved that the iterative value functions converge to the
optimal as the iterative index i reaches infinity. Then, the time left is negligible and
we say that the optimal value function J ∗(x(k)) is only a function of the state x(k)
which is like the case of infinite-horizon optimal control problems.

According to Theorem 2.34 and Corollary 2.35, we know that if x(k) is control-
lable, then, as i → ∞, the iterative value function Vi(x(k)) converges to the optimal
value function J ∗(x(k)) and the iterative control law vi(x(k)) also converges to the
optimal control law u∗(x(k)). So, it is important to note that for controllable state

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 91

x(k), the iterative value functions Vi(x(k)) are well defined for all i under the iter-
ative control law vi(x(k)).

Let T0 = {0}. For i = 1,2, . . . , define

Ti = {x(k) ∈ R
n| ∃u(k) ∈R

m s.t. F(x(k), u(k)) ∈ Ti−1}. (2.194)

Next, we prove the following theorem.

Theorem 2.37 Let T0 = {0} and Ti be defined in (2.194). Then, for i = 0,1, . . . , we
have Ti ⊆ Ti+1.

Proof We prove the theorem by mathematical induction. First, let i = 0. Since T0 =
{0} and F(0,0)= 0, we know that 0 ∈ T1. Hence, T0 ⊆ T1.

Next, assume that Ti−1 ⊆ Ti holds. Now, if x(k) ∈ Ti , we have F(x(k),

ηi−1(x(k))) ∈ Ti−1 for some ηi−1(x(k)). Hence, F(x(k), ηi−1(x(k))) ∈ Ti by the
assumption of Ti−1 ⊆ Ti . So, x(k) ∈ Ti+1 by (2.194). Thus, Ti ⊆ Ti+1, which proves
the theorem. �

According to Theorem 2.37, we have

{0} = T0 ⊆ T1 ⊆ · · · ⊆ Ti−1 ⊆ Ti ⊆ · · · .
We can see that by introducing the sets Ti , i = 0,1, . . . , the state x(k) can be

classified correspondingly. According to Theorem 2.37, the properties of the ADP
algorithm can be derived in the following theorem.

Theorem 2.38

(i) For any i, x(k) ∈ Ti ⇔ A
(i)
x(k) �= ∅ ⇔ Vi(x(k)) is defined at x(k).

(ii) Let T∞ = ⋃∞
i=1 Ti . Then, x(k) ∈ T∞ ⇔ Ax(k) �= ∅ ⇔ J ∗(x(k)) is defined at

x(k) ⇔ x(k) is controllable.
(iii) If Vi(x(k)) is defined at x(k), then Vj (x(k)) is defined at x(k) for every j ≥ i.
(iv) J ∗(x(k)) is defined at x(k) if and only if there exists an i such that Vi(x(k)) is

defined at x(k).

2.5.2.2 The ε-Optimal Control Algorithm

In the previous subsection, we have proved that the iterative value function
Vi(x(k)) converges to the optimal value function J ∗(x(k)) and J ∗(x(k)) =
minuk {J (x(k), uk), u ∈Ax(k)} satisfies the Bellman’s equation (2.179) for any con-
trollable state x(k) ∈ T∞.

To obtain the optimal value function J ∗(x(k)), a natural strategy is to run the
iterative ADP algorithm (2.181)–(2.184) until i → ∞. But unfortunately, it is not
practical to do so. In many cases, we cannot find the equality J ∗(x(k)) = Vi(x(k))

for any finite i. That is, for any admissible control sequence uk with finite length,

92 2 Optimal State Feedback Control for Discrete-Time Systems

the cost starting from x(k) under the control of uk will be larger than, not equal
to, J ∗(x(k)). On the other hand, by running the iterative ADP algorithm (2.181)–
(2.184), we can obtain a control vector v∞(x(k)) and then construct a control
sequence u∞(x(k)) = (v∞(x(k)), v∞(x(k + 1)), . . . , v∞(x(k + i)), . . .), where
x(k+ 1)= F(x(k), v∞(x(k))), . . . , x(k+ i)= F(x(k+ i − 1), v∞(x(k+ i − 1))),
. . . . In general, u∞(x(k)) has infinite length. That is, the controller v∞(x(k)) can-
not control the state to reach the target in finite number of steps. To overcome this
difficulty, a new ε-optimal control method using iterative ADP algorithm will be
developed.

First, we will introduce our method of iterative ADP with the consideration of
the length of control sequences. For different x(k), we will consider different length
i for the optimal control sequence. For a given error bound ε > 0, the number i will
be chosen so that the error between J ∗(x(k)) and Vi(x(k)) is within the bound.

Let ε > 0 be any small number and x(k) ∈ T∞ be any controllable state. Let the
value function Vi(x(k)) be defined by (2.183) and J ∗(x(k)) be the optimal value
function. According to Theorem 2.34, given ε > 0, there exists a finite i such that

|Vi(x(k))− J ∗(x(k))| ≤ ε. (2.195)

Definition 2.39 (cf. [14]) Let x(k) ∈ T∞ be a controllable state vector. Let ε > 0 be
a small positive number. The approximate length of optimal control sequence with
respect to ε is defined as

Kε(x(k))= min{i : |Vi(x(k))− J ∗(x(k))| ≤ ε}. (2.196)

Given a small positive number ε, for any state vector x(k), the number Kε(x(k))

gives a suitable length of control sequence for optimal control starting from x(k).
For x(k) ∈ T∞, since limi→∞ Vi(x(k))= J ∗(x(k)), we can always find i such that
(2.195) is satisfied. Therefore, {i : |Vi(x(k))− J ∗(x(k))| ≤ ε} �= ∅ and Kε(x(k)) is
well defined.

We can see that an error ε between Vi(x(k)) and J ∗(x(k)) is introduced into the
iterative ADP algorithm which makes the value function Vi(x(k)) converge within
a finite number of iteration steps. In this part, we will show that the corresponding
control is also an effective control that drives the value function to within error
bound ε from its optimal.

From Definition 2.39, we can see that all the states x(k) that satisfy (2.196) can
be classified into one set. Motivated by the definition in (2.194), we can further
classify this set using the following definition.

Definition 2.40 (cf. [14]) Let ε be a positive number. Define T (ε)
0 = {0} and for

i = 1,2, . . . , define

T (ε)
i = {x(k) ∈ T∞ : Kε(x(k))≤ i}.

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 93

Accordingly, when x(k) ∈ T (ε)
i , to find the optimal control sequence which has

value less than or equal to J ∗(x(k)) + ε, one only needs to consider the control
sequences uk with length |uk| ≤ i. The sets T (ε)

i have the following properties.

Theorem 2.41 (cf. [14]) Let ε > 0 and i = 0,1, Then:

(i) x(k) ∈ T (ε)
i if and only if Vi(x(k))≤ J ∗(x(k))+ ε

(ii) T (ε)
i ⊆ Ti

(iii) T (ε)
i ⊆ T (ε)

i+1

(iv)
⋃

i T
(ε)
i = T∞

(v) If ε > δ > 0, then T (ε)
i ⊇ T (δ)

i

Proof (i) Let x(k) ∈ T (ε)
i . By Definition 2.40, Kε(x(k)) ≤ i. Let j = Kε(x(k)).

Then, j ≤ i and by Definition 2.39, |Vj (x(k)) − J ∗(x(k))| ≤ ε. So, Vj (x(k)) ≤
J ∗(x(k))+ ε. By Theorem 2.32, Vi(x(k))≤ Vj (x(k))≤ J ∗(x(k))+ ε. On the other
hand, if Vi(x(k))≤ J ∗(x(k))+ ε, then |Vi(x(k))− J ∗(x(k))| ≤ ε. So, Kε(x(k))=
min{j : |Vj (x(k))− J ∗(x(k))| ≤ ε} ≤ i, which implies that x(k) ∈ T (ε)

i .

(ii) If x(k) ∈ T (ε)
i , Kε(x(k)) ≤ i and |Vi(x(k)) − J ∗(x(k))| ≤ ε. So, Vi(x(k))

is defined at x(k). According to Theorem 2.38 (i), we have x(k) ∈ Ti . Hence,
T (ε)
i ⊆ Ti .

(iii) If x(k) ∈ T (ε)
i , Kε(x(k))≤ i < i + 1. So, x(k) ∈ T (ε)

i+1. Thus, T (ε)
i ⊆ T (ε)

i+1.

(iv) Obviously,
⋃

i T
(ε)
i ⊆ T∞ since T (ε)

i are subsets of T∞. For any x(k) ∈ T∞,

let p =Kε(x(k)). Then, x(k) ∈ T (ε)
p . So, x(k) ∈⋃i T

(ε)
i . Hence, T∞ ⊆⋃

i T
(ε)
i ⊆

T∞, and we obtain,
⋃

i T
(ε)
i = T∞.

(v) If x(k) ∈ T (δ)
i , Vi(x(k)) ≤ J ∗(x(k))+ δ by part (i) of this theorem. Clearly,

Vi(x(k)) ≤ J ∗(x(k)) + ε since δ < ε. This implies that x(k) ∈ T (ε)
i . Therefore,

T (ε)
i ⊇ T (δ)

i . �

According to Theorem 2.41(i), T (ε)
i is just the region where Vi(x(k)) is close

to J ∗(x(k)) with error less than ε. This region is a subset of Ti according to Theo-
rem 2.41(ii). As stated in Theorem 2.41(iii), when i is large, the set T (ε)

i is also large.
That means that, when i is large, we have a large region where we can use Vi(x(k))
as the approximation of J ∗(x(k)) under certain error. On the other hand, we claim
that if x(k) is far away from the origin, we have to choose long control sequence
to approximate the optimal control sequence. Theorem 2.41(iv) means that for ev-
ery controllable state x(k) ∈ T∞, we can always find a suitable control sequence
with length i to approximate the optimal control. The size of the set T (ε)

i depends

on the value of ε. Smaller value of ε gives smaller set T (ε)
i which is indicated by

Theorem 2.41(v).
Let x(k) ∈ T∞ be an arbitrary controllable state. If x(k) ∈ T (ε)

i , the iterative
value function satisfies (2.195) under the control vi(x(k)), we call this control the

94 2 Optimal State Feedback Control for Discrete-Time Systems

ε-optimal control and denote it as μ∗
ε(x(k)), i.e.,

μ∗
ε(x(k))= vi(x(k))= arg min

u(k)
{l(x(k), u(k))+ Vi−1(F (x(k), u(k)))} . (2.197)

We have the following corollary.

Corollary 2.42 (cf. [14]) Let μ∗
ε(x(k)) be expressed in (2.197) that makes the value

function satisfy (2.195) for x(k) ∈ T (ε)
i . Then, for any x′

k ∈ T (ε)
i , μ∗

ε(x
′
k) guarantees

|Vi(x′
k)− J ∗(x′

k)| ≤ ε. (2.198)

Proof The corollary can be proved by contradiction. Assume that the conclusion
is not true. Then, the inequality (2.198) is false under the control μ∗

ε(·) for some

x′′
k ∈ T (ε)

i .

As μ∗
ε(x(k)) makes the value function satisfy (2.195) for x(k) ∈ T (ε)

i , we have
Kε(x(k)) ≤ i. Using the ε-optimal control law μ∗

ε(·) at the state x′′
k , according to

the assumption, we have |Vi(x′′
k)− J ∗(x′′

k)| > ε. Then, Kε(x
′′
k) > i and x′′

k /∈ T (ε)
i .

It is in contradiction with the assumption x′′
k ∈ T (ε)

i . Therefore, the assumption is

false and (2.198) holds for any x′
k ∈ T (ε)

i . �

Remark 2.43 Corollary 2.42 is very important for neural-network implementation
of the iterative ADP algorithm. It shows that we do not need to obtain the optimal
control law by searching the entire subset T (ε)

i . Instead, we can just find one point of

T (ε)
i , i.e., x(k) ∈ T (ε)

i , to obtain the ε-optimal control μ∗
ε(x(k)) which will be effec-

tive for any other state x′
k ∈ T (ε)

i . This property not only makes the computational
complexity much reduced but also makes the optimal control law easily obtained
using neural networks.

Theorem 2.44 (cf. [14]) Let x(k) ∈ T (ε)
i and let μ∗

ε(x(k)) be expressed in

(2.197). Then, F(x(k),μ∗
ε(x(k))) ∈ T (ε)

i−1. In other words, if Kε(x(k)) = i, then
Kε(F (x(k),μ

∗
ε(x(k))))≤ i − 1.

Proof Since x(k) ∈ T (ε)
i , by Theorem 2.41 (i) we know that

Vi(x(k))≤ J ∗(x(k))+ ε. (2.199)

According to (2.183) and (2.197), we have

Vi(x(k))= l(x(k),μ∗
ε(x(k)))+ Vi−1(F (x(k),μ

∗
ε(x(k)))). (2.200)

Combining (2.199) and (2.200), we have

Vi−1(F (x(k),μ
∗
ε(x(k))))= Vi(x(k))− l(x(k),μ∗

ε(x(k)))

≤ J ∗(x(k))+ ε − l(x(k),μ∗
ε(x(k))). (2.201)

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 95

On the other hand, we have

J ∗(x(k))≤ l(x(k),μ∗
ε(x(k)))+ J ∗(F (x,μ∗

ε(x(k)))). (2.202)

Putting (2.202) into (2.201), we obtain

Vi−1(F (x(k),μ
∗
ε(x(k))))≤ J ∗(F (x(k),μ∗

ε(x(k))))+ ε.

By Theorem 2.41 (i), we have

F(x(k),μ∗
ε(x(k))) ∈ T (ε)

i−1. (2.203)

So, if Kε(x(k)) = i, we know that x(k) ∈ T (ε)
i and F(x,μ∗

ε(x(k))) ∈ T (ε)
i−1 ac-

cording to (2.203). Therefore, we have

Kε(F (x(k),μ
∗
ε(x(k))))≤ i − 1,

which proves the theorem. �

Remark 2.45 From Theorem 2.44 we can see that the parameter Kε(x(k)) gives an
important property of the finite-horizon ADP algorithm. It not only gives an optimal
condition of the iterative process, but also gives an optimal number of control steps
for the finite-horizon ADP algorithm. For example, if |Vi(x(k))−J ∗(x(k))| ≤ ε for
small ε, then we have Vi(x(k))≈ J ∗(x(k)). According to Theorem 2.44, we can get
N = k + i, where N is the number of control steps to drive the system to zero. The
whole control sequence uN−1

0 may not be ε-optimal but the control sequence uN−1
k

is ε-optimal control sequence. If k = 0, we have N = Kε(x(0)) = i. Under this
condition, we say that the iteration index Kε(x(0)) denotes the number of ε-optimal
control steps.

Corollary 2.46 Let μ∗
ε(x(k)) be expressed in (2.197) that makes the value function

satisfy (2.195) for x(k) ∈ T (ε)
i . Then, for any x′

k ∈ T (ε)
j , where 0 ≤ j ≤ i, μ∗

ε(x
′
k)

guarantees

|Vi(x′
k)− J ∗(x′

k)| ≤ ε. (2.204)

Proof The proof is similar to Corollary 2.42 and is omitted here. �

Remark 2.47 Corollary 2.46 shows that the ε-optimal control μ∗
ε(x(k)) obtained for

∀x(k) ∈ T (ε)
i is effective for any state x′

k ∈ T (ε)
j , where 0 ≤ j ≤ i. This means that

for ∀x′
k ∈ T (ε)

j , 0 ≤ j ≤ i, we can use a same ε-optimal control μ∗
ε(x

′
k) to control

the system.

According to Theorem 2.41(iii) and Corollary 2.42, the ε-optimal control
μ∗
ε(x(k)) obtained for an x(k) ∈ T (ε)

i is effective for any state x′
k ∈ T (ε)

i−1 (which

96 2 Optimal State Feedback Control for Discrete-Time Systems

Fig. 2.26 The control
process of the controllable
sate x(k) ∈ T (ε)

i using the
iterative ADP algorithm

is also stated in Corollary 2.46). That is to say: in order to obtain effective ε-optimal
control, the iterative ADP algorithm only needs to run at some state x(k) ∈ T∞. In
order to obtain an effective ε-optimal control law μ∗

ε(x(k)), we should choose the

state x(k) ∈ T (ε)
i \T (ε)

i−1 for each i to run the iterative ADP algorithm. The control
process using the iterative ADP algorithm is illustrated in Fig. 2.26.

From the iterative ADP algorithm (2.181)–(2.184), we can see that for any state
x(k) ∈R

n, there exists a control u(k) ∈R
m that drives the system to zero in one step.

In other words, for ∀x(k) ∈ R
n, there exists a control u(k) ∈ R

m such that x(k +
1) = F(x(k), u(k)) = 0 holds. A large class of systems possesses this property;
for example, all linear systems of the type x(k + 1) = Ax(k) + Bu(k) when B

is invertible and the affine nonlinear systems with the type x(k + 1) = f (x(k)) +
g(x(k))u(k) when the inverse of g(x(k)) exists. But there are also other classes of
systems for which there does not exist any control u(k) ∈ R

m that drives the state to
zero in one step for some x(k) ∈ R

n, i.e., ∃ x(k) ∈ R
n such that F(x(k), u(k)) = 0

is not possible for ∀u(k) ∈ R
m. In the following part, we will discuss the situation

where F(x(k), u(k)) �= 0 for some x(k) ∈R
m.

Since x(k) is controllable, there exists a finite-horizon admissible control se-
quence uk+i−1

k = (uk, u(k+ 1), . . . , uk+i−1) ∈A
(i)
x(k) that makes x(f)(x(k), uk+i−1

k)

= x(k + i) = 0. Let N = k + i be the terminal time. Assume that for k + 1, k +
2, . . . ,N−1, the optimal control sequence u(N−1)∗

k+1 = (u∗(k+1), u∗
k+2, . . . , u

∗
N−1)∈

A
(N−k−1)
x(k+1) has been determined. Denote the value function for x(k + 1) as J (x(k +

1), u(N−1)∗
k+1)= V0(x(k+ 1)). Now, we use the iterative ADP algorithm to determine

the optimal control sequence for the state x(k).
The value function for i = 1 is computed as

V1(x(k))= l(x(k), v1(x(k)))+ V0(F (x(k), v1(x(k)))), (2.205)

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 97

where

v1(x(k))= arg min
u(k)

{l(x(k), u(k))+ V0(F (x(k), u(k)))}. (2.206)

Note that the initial condition used in the above expression is the value function V0
which is obtained previously for x(k + 1) and now applied at F(x(k), u(k)). For
i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

Vi(x(k))= l(x(k), vi(x(k)))+ Vi−1(F (x(k), vi(x(k)))), (2.207)

where

vi(x(k))= arg min
u(k)

{l(x(k), u(k))+ Vi−1(F (x(k), u(k)))} . (2.208)

Theorem 2.48 Let x(k) be an arbitrary controllable state vector. Then, the value
function Vi(x(k)) obtained by (2.205)–(2.208) is a monotonically nonincreasing
sequence for ∀ i ≥ 0, i.e., Vi+1(x(k))≤ Vi(x(k)) for ∀ i ≥ 0.

Proof It can easily be proved by following the proof of Theorem 2.32, and the proof
is omitted here. �

Theorem 2.49 Let the value function Vi(x(k)) be defined by (2.207). If the system
state x(k) is controllable, then the value function Vi(x(k)) obtained by (2.205)–
(2.208) converges to the optimal value function J ∗(x(k)) as i → ∞, i.e.,

lim
i→∞Vi(x(k))= J ∗(x(k)).

Proof This theorem can be proved following similar steps to the proof of Theo-
rem 2.34 and the proof is omitted here. �

We can see that the iterative ADP algorithm (2.205)–(2.208) is an expansion from
of the previous one (2.181)–(2.184). So, the properties of the iterative ADP algo-
rithm (2.181)–(2.184) is also effective for the current one (2.205)–(2.208). But there
also exist differences. From Theorem 2.32, we can see that Vi+1(x(k)) ≤ Vi(x(k))

for all i ≥ 1, which means that V1(x(k)) = max{Vi(x(k)) : i = 0,1, . . .}. While
Theorem 2.48 shows that Vi+1(x(k)) ≤ Vi(x(k)) for all i ≥ 0 which means that
V0(x(k))= max{Vi(x(k)) : i = 0,1, . . .}. This difference is caused by the difference
of the initial conditions of the two iterative ADP algorithms.

In the previous iterative ADP algorithm (2.181)–(2.184), it begins with the initial
value function V0(x(k)) = 0 since F(x(k), u(k)) = 0 can be solved. While in the
current iterative ADP algorithm (2.205)–(2.208), it begins with the value function
V0 for the state x(k+1) which is determined previously. This also causes the differ-
ence between the proofs of Theorems 2.32 and 2.34 and the corresponding results
in Theorems 2.48 and 2.49. But the difference of the initial conditions of the itera-
tive performance index function does not affect the convergence property of the two
iterative ADP algorithms.

98 2 Optimal State Feedback Control for Discrete-Time Systems

For the iterative ADP algorithm, the optimal criterion (2.195) is very difficult to
verify because the optimal value function J ∗(x(k)) is unknown in general. So, an
equivalent criterion is established to replace (2.195).

If |Vi(x(k)) − J ∗(x(k))| ≤ ε holds, we have Vi(x(k)) ≤ J ∗(x(k)) + ε and
J ∗(x(k))≤ Vi+1(x(k))≤ Vi(x(k)). These imply that

0 ≤ Vi(x(k))− Vi+1(x(k))≤ ε, (2.209)

or

|Vi(x(k))− Vi+1(x(k))| ≤ ε.

On the other hand, according to Theorem 2.49, |Vi(x(k)) − Vi+1(x(k))| → 0
implies that Vi(x(k))→ J ∗(x(k)). Therefore, for any given small ε, if |Vi(x(k))−
Vi+1(x(k))| ≤ ε holds, we have |Vi(x(k))− J ∗(x(k))| ≤ ε if i is sufficiently large.

We will use inequality (2.209) as the optimal criterion instead of the optimal
criterion (2.195).

Let ûK−1
0 = (u(0), u(1), . . . , u(K − 1)) be an arbitrary finite-horizon admissi-

ble control sequence and the corresponding state sequence be x̂K0 = (x(0), x(1),
. . . , x(K)) where x(K)= 0.

We can see that the initial control sequence ûK−1
0 = (u(0), u(1), . . . , u(K − 1))

may not be optimal, which means that the initial number of control steps K may not
be optimal. So, the iterative ADP algorithm must complete two kinds of optimiza-
tion. One is to optimize the number of control steps. The other is to optimize the
control law. In the following, we will show how the number of control steps and the
control law are optimized simultaneously in the iterative ADP algorithm.

For the state x(K − 1), we have F(x(K − 1), u(K − 1)) = 0. Then, we run the
iterative ADP algorithm (2.181)–(2.184) at x(K − 1) as follows. The value function
for i = 1 is computed as

V 1
1 (x(K − 1))= min

u(K−1)
{l(x(K − 1), u(K − 1))+ V0(F (x(K − 1), u(K − 1)))}

subject to F(x(K − 1), u(K − 1))= 0

= l(x(K − 1), v1
1(x(K − 1))), (2.210)

where

v1
1(x(K − 1))= arg min

u(K−1)
l(x(K − 1), u(K − 1))

subject to F(x(K − 1), u(K − 1))= 0, (2.211)

and V0(F (x(K − 1), u(K − 1))) = 0. The iterative ADP algorithm will be imple-
mented as follows for i = 2,3,4, . . . :

V 1
i (x(K − 1))= l(x(K − 1), v1

i (x(K − 1)))

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 99

+ V 1
i−1(F (x(K − 1), v1

i (x(K − 1)))), (2.212)

where

v1
i (x(K − 1))= arg min

u(K−1)

{
l(x(K − 1), u(K − 1))

+ V 1
i−1(F (x(K − 1), u(K − 1)))

}
, (2.213)

until the inequality
∣∣∣V 1

l1
(x(K − 1))− V 1

l1+1(x(K − 1))
∣∣∣≤ ε (2.214)

is satisfied for l1 > 0. This means that x(K − 1) ∈ T (ε)
l1

and the optimal number of
control steps is Kε(x(K − 1))= l1.

Considering x(K − 2), we have F(x(K − 2), u(K − 2)) = x(K − 1). Put
x(K − 2) into (2.214). If |V 1

l1
(x(K − 2))− V 1

l1+1(x(K − 2))| ≤ ε holds, then

according to Theorem 2.41(i), we know that x(K − 2) ∈ T (ε)
l1

. Otherwise, if

x(K − 2) /∈ T (ε)
l1

, we will run the iterative ADP algorithm as follows. Using the

value function V 1
l1

as the initial condition, we compute, for i = 1,

V 2
1 (x(K − 2))= l(x(K − 2), v2

1(x(K − 2)))

+ V 1
l1
(F (x(K − 2), v2

1(x(K − 2)))), (2.215)

where

v2
1(x(K − 2))= arg min

u(K−2)
{l(x(K − 2), u(K − 2))

+ V 1
l1
(F (x(K − 2), u(K − 2)))}. (2.216)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

V 2
i (x(K − 2))= l(x(K − 2), v2

i (x(K − 2)))

+ V 2
i−1(F (x(K − 2), v2

i (x(K − 2)))), (2.217)

where

v2
i (x(K − 2))= arg min

u(K−2)

{
l(x(K − 2), uK−2)

+ V 2
i−1(F (x(K − 2), u(K − 2)))

}
, (2.218)

until the inequality
∣∣∣V 2

l2
(x(K − 2))− V 2

l2+1(x(K − 2))
∣∣∣≤ ε (2.219)

100 2 Optimal State Feedback Control for Discrete-Time Systems

is satisfied for l2 > 0. We then obtain x(K − 2) ∈ T (ε)
l2

, and the optimal number of
control steps is Kε(x(K − 2))= l2.

Next, assume that j ≥ 2 and x(K − j + 1) ∈ T (ε)
lj−1

, i.e.,

∣∣∣V j−1
lj−1

(x(K − j + 1))− V
j−1
lj−1+1(x(K − j + 1))

∣∣∣≤ ε (2.220)

holds. Considering x(K − j), we have F(x(K − j), u(K − j)) = x(K − j + 1).
Putting x(K − j) into (2.220) and if

∣∣∣V j−1
lj−1

(x(K − j))− V
j−1
lj−1+1(x(K − j))

∣∣∣≤ ε (2.221)

holds, then we know that x(K − j) ∈ T (ε)
lj−1

. Otherwise, if x(K − j) /∈ T (ε)
lj−1

, then we
run the iterative ADP algorithm as follows. Using the performance index function
V
j−1
lj−1

as the initial condition, we compute for i = 1,

V
j

1 (x(K − j))= l(x(K − j), v
j

1 (x(K − j)))

+ V
j−1
lj−1

(F (x(K − j), v
j

1 (x(K − j)))), (2.222)

where

v
j

1 (x(K − j))= arg min
u(K−j)

{l(x(K − j), u(K − j))

+ V
j−1
lj−1

(F (x(K − j), u(K − j)))}. (2.223)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

V
j
i (x(K − j))= l(x(K − j), v

j
i (x(K − j)))

+ V
j

i−1(F (x(K − j), v
j
i (x(K − j)))), (2.224)

where

v
j
i (x(K − j))= arg min

u(K−j)

{
l(x(K − j), u(K − j))

+ V
j

i−1(F (x(K − j), u(K − j)))
}
, (2.225)

until the inequality
∣∣∣V j

lj
(x(K − j))− V

j

lj+1(x(K − j))

∣∣∣≤ ε (2.226)

is satisfied for lj > 0. We then obtain x(K − j) ∈ T (ε)
lj

, and the optimal number of
control steps is Kε(x(K − j))= lj .

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 101

Finally, considering x(0), we have F(x(0), u(0))= x(1). If
∣∣∣VK−1

lK−1
(x(0))− VK−1

lK−1+1(x(0))
∣∣∣≤ ε

holds, then we know that x(0) ∈ T (ε)
lK−1

. Otherwise, if x(0) /∈ T (ε)
lK−1

, then we run the

iterative ADP algorithm as follows. Using the performance index function VK−1
lK−1

as
the initial condition, we compute, for i = 1,

VK
1 (x(0))= l(x(0), vK1 (x(0)))+ VK−1

lK−1
(F (x(0), vK1 (x(0)))), (2.227)

where

vK1 (x(0))= arg min
u(0)

{l(x(0), u(0))+ VK−1
lK−1

(F (x(0), u(0)))}. (2.228)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

VK
i (x(0))= l(x(0), vKi (x(0)))+ VK

i−1(F (x(0), v
K
i (x(0)))), (2.229)

where

vKi (x(0))= arg min
u(0)

{
l(x(0), u(0))+ VK

i−1(F (x(0), u(0)))
}
, (2.230)

until the inequality
∣∣∣VK

lK
(x(0))− VK

lK+1(x(0))
∣∣∣≤ ε (2.231)

is satisfied for lK > 0. Therefore, we obtain x(0) ∈ T (ε)
lK

, and the optimal number of
control steps is Kε(x(0))= lK .

Starting from the initial state x(0), the optimal number of control steps is lK
according to our ADP algorithm.

Remark 2.50 For the case where there are some x(k) ∈ R
n, there does not exist

a control u(k) ∈ R
m that drives the system to zero in one step; the computational

complexity of the iterative ADP algorithm is strongly related to the original finite-
horizon admissible control sequence ûK−1

0 . First, we repeat the iterative ADP algo-
rithm at x(K −1), x(K −2), . . . , x(1), x(0), respectively. It is related to the control
steps K of ûK−1

0 . If K is large, it means that ûK−1
0 takes large number of control

steps to drive the initial state x(0) to zero and then the number of times needed to
repeat the iterative ADP algorithm will be large. Second, the computational com-
plexity is also related to the quality of control results of ûK−1

0 . If ûK−1
0 is close to

the optimal control sequence u
(N−1)∗
0 , then it will take less computation to make

(2.226) hold for each j .

Now, we summarize the iterative ADP algorithm as follows:

Step 1. Choose an error bound ε and choose randomly an array of initial states x(0).

102 2 Optimal State Feedback Control for Discrete-Time Systems

Step 2. Obtain an initial finite-horizon admissible control sequence ûK−1
0 =

(u(0), u(1), . . . , u(K − 1)) and obtain the corresponding state sequence

x̂K0 = (x(0), x(1), . . . , x(K)),

where x(K)= 0.
Step 3. For the state x(K − 1) with F(x(K − 1), u(K − 1)) = 0, run the iterative

ADP algorithm (2.210)–(2.213) at x(K − 1) until (2.214) holds.
Step 4. Record V 1

l1
(x(K − 1)), v1

l1
(xK−1) and Kε(x(K − 1))= l1.

Step 5. For j = 2,3, . . . ,K , if for x(K− j) the inequality (2.221) holds, go to Step
7; otherwise, go to Step 6.

Step 6. Using the value function V j−1
lj−1 as the initial condition, run the iterative ADP

algorithm (2.222)–(2.225) until (2.226) is satisfied.
Step 7. If j = K , then we have obtained the optimal value function V ∗(x(0)) =
VK
lK
(x(0)), the law of the optimal control sequence u∗(x(0)) = vKlK

(x(0)) and the
number of optimal control steps Kε(x(0)) = lK ; otherwise, set j = j + 1, and go
to Step 5.

Step 8. Stop.

2.5.3 Simulations

To evaluate the performance of our iterative ADP algorithm, we choose two exam-
ples with quadratic utility functions for numerical experiments.

Example 2.51 Our first example is chosen from [16]. We consider the following
nonlinear system:

x(k + 1)= f (x(k))+ g(x(k))u(k),

where x(k) = [x1(k) x2(k)]T and u(k) = [u1(k) u2(k)]T are the state and control
variables, respectively. The system functions are given as

f (x(k))=
[

0.2x1(k) exp(x2
2(k))

0.3x3
2(k)

]
, g(x(k))=

[−0.2 0
0 −0.2

]
.

The initial state is x(0) = [1 −1]T. The value function is in quadratic form with
finite time horizon expressed as

J
(
x(0), uN−1

0

)=
N−1∑

k=0

(
xT(k)Qx(k)+ uT(k)Ru(k)

)
,

where the matrix Q=R = I , and I denotes the identity matrix with suitable dimen-
sions.

The error bound of the iterative ADP is chosen as ε = 10−5. Neural networks are
used to implement the iterative ADP algorithm and the neural-network structure can

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 103

Fig. 2.27 Simulation results for Example 2.51. (a) The convergence of value function. (b) The
ε-optimal control vectors. (c) and (d) The corresponding state trajectories

be seen in [13, 16]. The critic network and the action network are chosen as three-
layer BP neural networks with the structures of 2–8–1 and 2–8–2, respectively. The
model network is also chosen as a three-layer BP neural network with the structure
of 4–8–2. The critic network is used to approximate the iterative value functions
which are expressed by (2.210), (2.212), (2.215), (2.217), (2.222), (2.224), (2.227),
and (2.229). The action network is used to approximate the optimal control laws
which are expressed by (2.211), (2.213), (2.216), (2.218), (2.223), (2.225), (2.228),
and (2.230). The training rules of the neural networks can be seen in [12]. For each
iteration step, the critic network and the action network are trained for 1000 itera-
tion steps using the learning rate of α = 0.05, so that the neural-network training
error becomes less than 10−8. Enough iteration steps should be implemented to
guarantee the iterative value functions and the control law to converge sufficiently.
We let the algorithm run for 15 iterative steps to obtain the optimal value function
and optimal control law. The convergence curve of the value function is shown in
Fig. 2.27(a). Then, we apply the optimal control law to the system for Tf = 10 time
steps and obtain the following results. The ε-optimal control trajectories are shown
in Fig. 2.27(b) and the corresponding state curves are shown in Figs. 2.27(c) and (d).

After seven iteration steps, we have |V6(x(0))−V7(x(0))| ≤ 10−5 = ε. Then, we
obtain the optimal number of control steps Kε(x(0)) = 6. We can see that after six
time steps, the state variable becomes x6 = [0.912 × 10−6, 0.903 × 10−7]T. The
entire computation process takes about 10 seconds before satisfactory results are
obtained.

104 2 Optimal State Feedback Control for Discrete-Time Systems

Example 2.52 The second example is chosen from [9] with some modifications. We
consider the following system:

x(k + 1)= F(x(k), u(k))= x(k)+ sin(0.1x(k)2 + u(k)), (2.232)

where x(k), u(k) ∈ R, and k = 0,1,2, The cost functional is defined as in Ex-
ample 2.51 with Q = R = 1. The initial state is x(0) = 1.5. Since F(0,0) = 0,
x(k) = 0 is an equilibrium state of system (2.232). But since (∂F (x(k), u(k))/

∂x(k))(0,0) = 1, system (2.232) is marginally stable at x(k) = 0 and the equilib-
rium x(k)= 0 is not attractive.

We can see that, for the fixed initial state x(0), there does not exist a control
u(0) ∈ R that makes x(1) = F(x(0), u(0)) = 0. The error bound of the iterative
ADP algorithm is chosen as ε = 10−4. The critic network, the action network, and
the model network are chosen as three-layer BP neural networks with the structures
of 1–3–1, 1–3–1, and 2–4–1, respectively. According to (2.232), the control can be
expressed by

u(k)= −0.1x(k)2 + sin−1(x(k + 1)− x(k))+ 2λπ, (2.233)

where λ= 0,±1,±2,
To show the effectiveness of our algorithm, we choose two initial finite-horizon

admissible control sequences.
Case 1. The control sequence is û

1
0 = (−0.225 − sin−1(0.7), −0.064 −

sin−1(0.8)) and the corresponding state sequence is x̂2
0 = (1.5,0.8,0).

For the initial finite-horizon admissible control sequences in this case, run the
iterative ADP algorithm at the states x(k) = 0.8 and 1.5, respectively. For each it-
erative step, the critic network and the action network are trained for 1000 iteration
steps using the learning rate of α = 0.05 so that the neural-network training ac-
curacy of 10−8 is reached. After the algorithm has run for 15 iterative steps, we
obtain the performance index function trajectories shown in Figs. 2.28(a) and (b),
respectively. The ε-optimal control and state trajectories are shown in Figs. 2.28(c)
and (d), respectively, for 10 time steps. We obtain Kε(0.8)= 5 and Kε(1.5)= 8.

Case 2. The control sequence is û3
0 = (−0.225 − sin−1(0.01), 2π − 2.2201 −

sin−1(0.29), −0.144 − sin−1(0.5), −sin−1(0.7)) and the corresponding state se-
quence is x̂4

0 = (1.5,1.49,1.2,0.7,0).
For the initial finite-horizon admissible control sequence in this case, run the

iterative ADP algorithm at the states x(k) = 0.7, 1.2, and 1.49, respectively. For
each iteration step, the critic network and the action network are also trained for
1000 iteration steps using the learning rate of α = 0.05, so that the neural-network
training accuracy of 10−8 is reached. Then we obtain the value function trajectories
shown in Figs. 2.29(a)–(c), respectively. We have Kε(0.7) = 4, Kε(1.2) = 6, and
Kε(1.49)= 8.

After 25 iteration steps, the value function Vi(x(k)) is sufficiently convergent at
x(k)= 1.49, with V 3

8 (1.49) as the value function. For the state x(k)= 1.5, we have
|V 3

8 (1.5)− V 3
9 (1.5)| = 0.52424 × 10−7 < ε. Therefore, the optimal value function

2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 105

Fig. 2.28 Simulation results for Case 1 of Example 2.52. (a) The convergence of value function
at x(k) = 0.8. (b) The convergence of value function at x(k) = 1.5. (c) The ε-optimal control
trajectory. (d) The corresponding state trajectory

Fig. 2.29 Simulation results for Case 2 of Example 2.52. (a) The convergence of value function
at x(k)= 0.7. (b) The convergence of value function at x(k)= 1.2. (c) The convergence of perfor-
mance index function at x(k) = 1.49. (d) The ε-optimal control trajectory and the corresponding
state trajectory

106 2 Optimal State Feedback Control for Discrete-Time Systems

at x(k)= 1.5 is V 3
8 (1.5) and, thus, we have x(k)= 1.5 ∈ T (ε)

8 and Kε(1.5)= 8. The
whole computation process takes about 20 seconds and then satisfactory results are
obtained.

Then we apply the optimal control law to the system for Tf = 10 time steps. The
ε-optimal control and state trajectories are shown in Fig. 2.29(d).

We can see that the ε-optimal control trajectory in Fig. 2.29(d) is the same as the
one in Fig. 2.28(c). The corresponding state trajectory in Fig. 2.29(d) is the same as
the one in Fig. 2.28(d). Therefore, the optimal control law is not dependent on the
initial control law. The initial control sequence û

K−1
0 can arbitrarily be chosen as

long as it is finite-horizon admissible.

Remark 2.53 If the number of control steps of the initial admissible control se-
quence is larger than the number of control steps of the optimal control sequence,
then we will find some of the states in the initial sequence to possess the same
number of optimal control steps. For example, in Case 2 of Example 2.52, we
see that the two states x = 1.49 and x = 1.5 possess the same number of opti-
mal control steps, i.e., Kε(1.49) = Kε(1.5) = 8. Thus, we say that the control u =
−0.225 − sin−1(0.01) that makes x = 1.5 run to x = 1.49 is an unnecessary control
step. After the unnecessary control steps are identified and removed, the number of
control steps will reduce to the optimal number of control steps and, thus, the initial
admissible control sequence does not affect the final optimal control results.

2.6 Summary

In this chapter, several infinite-time and finite-time optimal control schemes have
been developed to solve the corresponding control problems for several kinds of
nonlinear system. In Sects. 2.2, 2.3, and 2.4, the presented optimal controllers were
all infinite-time optimal state feedback controllers though the developed ADP algo-
rithms. The optimal control objective can be achieved when the number of control
steps tends to infinity. In Sect. 2.5, an effective iterative ADP algorithm has been
developed for the ε-optimal controller for a class of discrete-time nonlinear systems,
where the optimal control objective can be achieved with a finite number of control
steps.

References

1. Al-Tamimi A, Lewis FL (2007) Discrete-time nonlinear HJB solution using approximate dy-
namic programming: convergence proof. In: Proceedings of IEEE international symposium
on approximate dynamic programming and reinforcement learning, Honolulu, HI, pp 38–43

2. Bagnell J, Kakade S, Ng A, Schneider J (2003) Policy search by dynamic programming. In:
Proceedings of 17th annual conference on neural information processing systems, Vancouver,
Canada, vol 16, pp 831–838

References 107

3. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation, and control.
Hemisphere–Wiley, New York

4. Burk F (1998) Lebesgue measure and integration. Wiley, New York
5. Chen Z, Jagannathan S (2008) Generalized Hamilton–Jacobi–Bellman formulation-based

neural network control of affine nonlinear discrete-time systems. IEEE Trans Neural Netw
19(1):90–106

6. Cui LL, Zhang HG, Liu D, Kim YS (2009) Constrained optimal control of affine nonlinear
discrete-time systems using GHJB method. In: Proceedings of IEEE international symposium
on adaptive dynamic programming and reinforcement learning, Nashville, USA, pp 16–21

7. Han D, Balakrishnan SN (2002) State-constrained agile missile control with adaptive-critic-
based neural networks. IEEE Trans Control Syst Technol 10(4):481–489

8. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle
River

9. Jin N, Liu D, Huang T, Pang Z (2007) Discrete-time adaptive dynamic programming using
wavelet basis function neural networks. In: Proceedings of the IEEE symposium on approxi-
mate dynamic programming and reinforcement learning, Honolulu, HI, pp 135–142

10. Liu D, Wang D, Zhao D, Wei Q, Jin N (2012) Neural-network-based optimal control for a class
of unknown discrete-time nonlinear systems using globalized dual heuristic programming.
IEEE Trans Autom Sci Eng 9(3):628–634

11. Plumer ES (1996) Optimal control of terminal processes using neural networks. IEEE Trans
Neural Netw 7(2):408–418

12. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans
Neural Netw 12(2):264–276

13. Wang FY, Zhang HG, Liu D (2009) Adaptive dynamic programming: an introduction. IEEE
Comput Intell Mag 4(2):39–47

14. Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon
optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Trans Neural
Netw 22(1):24–36

15. Zhang HG, Xie X (2011) Relaxed stability conditions for continuous-time T-S fuzzy-control
systems via augmented multi-indexed matrix approach. IEEE Trans Fuzzy Syst 19(3):478–
492

16. Zhang HG, Wei QL, Luo YH (2008) A novel infinite-time optimal tracking control scheme
for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE
Trans Syst Man Cybern, Part B, Cybern 38(4):937–942

17. Zhang HG, Luo YH, Liu D (2009) Neural-network-based near-optimal control for a class
of discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw
20(9):1490–1503

Chapter 3
Optimal Tracking Control for Discrete-Time
Systems

3.1 Introduction

In the last chapter, we have studied the optimal state feedback control problem for
discrete-time systems. As a matter of fact, the optimal tracking control problem
carries the same weight as the state feedback problem. Therefore, the subject of
the optimal tracking control problem has been investigated over the past several
decades [2, 3, 7, 10–12]. Traditional optimal tracking control is mostly effective in
the neighborhood of the equilibrium point [4, 8], and the earlier optimal control for
nonlinear system is mostly open-loop control [1]. Hence, our aim of this chapter is
to present some direct methods that are adapted to the closed-loop optimal tracking
control problem.

In this chapter, we first study the infinite-horizon optimal tracking control for
discrete-time affine nonlinear systems in Sect. 3.2. A new type of cost functional is
defined. The iterative HDP algorithm is introduced to deal with the optimal tracking
control problem. It is worth noting that many practical applications have nonlinear
structures not only in the states but also in the control input [9]. Due to the high com-
plexity of controlling the nonaffine nonlinear system, the results deriving from the
affine nonlinear systems may not applicable to the nonaffine case [17]. Therefore,
in Sect. 3.3, we focus on a class of infinite-horizon discrete-time nonaffine nonlin-
ear systems. It is also noticed that most real-world systems need to be effectively
controlled within a finite time horizon. Hence, based on the above research, we will
study how to solve the finite-horizon optimal tracking control problem using the
ADP approach in Sect. 3.4. The iterative ADP algorithm is introduced to obtain the
finite-horizon optimal tracking controller.

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP

In this section, the infinite-horizon optimal tracking control problem for a class of
discrete-time nonlinear systems is studied. We will first transform the tracking con-

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_3,
© Springer-Verlag London 2013

109

http://dx.doi.org/10.1007/978-1-4471-4757-2_3

110 3 Optimal Tracking Control for Discrete-Time Systems

trol problem into an optimal regulation problem, and then the iterative HDP algo-
rithm can be properly introduced to deal with this regulation problem. Three neural
networks are used to approximate the value function, compute the optimal control
policy, and model the nonlinear system respectively for facilitating the implementa-
tion of the HDP iteration algorithm.

3.2.1 Problem Formulation

Consider a class of affine nonlinear systems of the form

x(k + 1)= f (x(k))+ g(x(k))u(k), (3.1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, f (x(k)) ∈
R
n, g(x(k)) ∈ R

n×m. Here assume that the system is strongly controllable on
Ω ⊂ R

n.
For the infinite-horizon optimal tracking control problem, the control objective

is to design optimal control u(k) for system (3.1) such that the state x(k) tracks the
specified desired trajectory xd(k) ∈ R

n, k = 0,1, It is assumed that there exists
a function δ : Rn → R

n satisfying xd(k+ 1)= δ(xd(k)). We further assume that the
mapping between the state x(k) and the desired trajectory xd(k) is one-to-one.

Define the tracking error as

e(k)= x(k)− xd(k). (3.2)

For time-invariant optimal tracking control problems of linear systems, the cost
functional is generally defined as the following quadratic form:

J (e(0), u)=
∞∑

k=0

{
eT(k)Q1e(k)+ (u(k + 1)− u(k))TR

× (u(k + 1)− u(k))
}
, (3.3)

where Q1 ∈ R
n×n and R ∈ R

m×m are two diagonal positive definite matrices.
However, for the time-variant tracking case in a nonlinear environment, the prob-

lem is much more complex and the aforementioned cost functional may be invalid,
i.e., J (e(0), u) calculated by (3.3) may be infinite, because the control u(k) depends
on the desired trajectory xd(k).

To solve this problem, we present the following cost functional similar to the
framework of references [12, 15]:

J (e(0),w)=
∞∑

k=0

{
eT(k)Q1e(k)+ (w(k)−w(k − 1))TR

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 111

× (w(k)−w(k − 1))
}
, (3.4)

where w(k) is defined as follows:

w(k)= u(k)− ue(k), (3.5)

and w(k)= 0 for k < 0. ue(k) denotes the expected control, which can be given as
follows:

ue(k)= g−1(xd(k))(δ (xd(k))− f (xd(k))), (3.6)

where g−1(xd(k))g(xd(k))= I , I ∈R
m×m is the identity matrix.

In (3.4), the first term means the tracking error and the second term means the
difference of the control error. However, there still exists the problem that if only
the tracking error and the difference of the control error are considered in the cost
functional, the system may oscillate. For example, the difference of the control er-
ror may be small but the error between the real tracking control and the expected
tracking control may be large. Therefore, it is necessary to define a new type of cost
functional for solving this kind of infinite horizon optimal tracking control problem.
We propose a new type of quadratic cost functional as follows:

J (e(0), u,w)=
∞∑

k=0

{
eT(k)Q1e(k)+ (u(k)− ue(k))

TS(u(k)− ue(k))

+ (w(k)−w(k − 1))TR(w(k)−w(k − 1))
}
, (3.7)

where S ∈ R
m×m is diagonal positive definite matrix and other parameters are the

same as those of (3.4).
Compared with (3.4), a new term (u(k) − ue(k))

TS(u(k) − ue(k)) is added to
represent the error between the real and the expected tracking control. Via this cost
functional, not only the tracking error and the difference of the control error are con-
sidered, but also the error between the real and expected tracking control; therefore,
the oscillation can well be prevented.

After the definition of such a new type of cost functional, we will mainly discuss
the optimal tracking control scheme based on the iterative HDP algorithm in the
following.

3.2.2 Infinite-Horizon Optimal Tracking Control Based on HDP

3.2.2.1 System Transformation

For simplicity, denote v(k)=w(k)−w(k − 1). Noticing that v(0)=w(0), we ob-
tain

w(k)= v(k)+ v(k − 1)+ · · · + v(0). (3.8)

112 3 Optimal Tracking Control for Discrete-Time Systems

Define z(k)= [eT(k), xT
d (k)]T. Thus, the cost functional (3.7) can be written as fol-

lows:

J (z(k), v)=
∞∑

i=k

{
zT(i)Qz(i)+ vT(i)Rv(i) (3.9)

+ [v(i)+ v(i − 1)+ · · · + v(0)]T

× S [v(i)+ v(i − 1)+ · · · + v(0)]
}
,

where Q= [
Q1 0n×n

0n×n 0n×n

]
. According to (3.5) and (3.6), we obtain

e(k + 1)= x(k + 1)− xd(k + 1)

= −δ(xd(k))+ f (e(k)+ xd(k))

+ g(e(k)+ xd(k)) (v(k)+ v(k − 1)+ · · · + v(0))

− g(e(k)+ xd(k))g
−1(xd(k))(f (xd(k))− δ(xd(k))). (3.10)

Let

[(− φ (xd(k))− g (z̄(k)+ xd(k)) g
−1 (xd(k)) (f (xd(k))− φ (xd(k)))

+ f (z̄(k)+ xd(k))
)T
, φT (xd(k))

]T

= f̄ (z(k)),

and [gT (z̄(k)+ xd(k)) ,0m×n]T = ḡ (z(k)). Considering z(k + 1) = [eT(k + 1),
xT
d (k + 1)]T, we have

z(k + 1)= f̄ (z(k))+ ḡ(z(k))(v(k)+ · · · + v(0)). (3.11)

Therefore, the optimal tracking control problem of (3.1) is transformed into the
optimal regulation problem of (3.11) with respect to (3.9). Here, the optimal con-
troller is designed by the state feedback of the transformed system (3.11). Thus, our
next work is to design a feedback controller v(z(k)) for (3.11) to regulate e(k) and
simultaneously to guarantee (3.9) is finite, i.e., admissible control.

3.2.2.2 Derivation of the Iterative HDP Algorithm

Here, we will design the optimal tracking controller using iterative HDP algorithm.

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 113

According to the Bellman optimality principle and (3.9), the HJB equation be-
comes

J ∗(z(k))= min
v(k)

{
zT(k)Qz(k)+ vT(k)Rv(k)

+ [v(k)+ v(k − 1)+ · · · + v(0)]T

× S [v(k)+ v(k − 1)+ · · · + v(0)] + J ∗(z(k + 1))
}
, (3.12)

where J ∗(z(k)) is the optimal value function which is defined as J ∗(z(k)) =
minv(k) J (z(k), v(·)).

In the iterative HDP algorithm, the value function and control policy are updated
by recurrent iteration, with the iteration number increasing from 0 to ∞.

First, for i = 0, we start with initial value function V0(z(k))= 0, and the control
v0(k) can be computed as follows:

v0(k)= arg min
v(k)

{
zT(k)Qz(k)+ vT(k)Rv(k)

+ [v(k)+ v(k − 1)+ · · · + v(0)]T

× S [v(k)+ v(k − 1)+ · · · + v(0)] + V0(z(k + 1))
}
. (3.13)

As there is no constraint for the system (3.11), we obtain

v0(k)= − (R + S)−1 S (v(k − 1)+ · · · + v(0)) . (3.14)

Then, we update the value function as follows:

V1(z(k))= zT(k)Qz(k)+ (v(k − 1)+ · · · + v(0))T

× S (R + S)−1 R (R + S)−1 S (v(k − 1)+ · · · + v(0))

+
(

− (R + S)−1S (v(k − 1)+ · · · + v(0))

+ v(k − 1)+ · · · + v(0)
)T

× S
(

− (R + S)−1S (v(k − 1)+ · · · + v(0))

+ v(k − 1)+ · · · + v(0)
)
. (3.15)

114 3 Optimal Tracking Control for Discrete-Time Systems

Next, for i = 1,2, . . . , the iterative HDP algorithm can be used to implement the
iteration between

vi(k)= − 1

2
(R + S)−1

(
2S (v(k − 1)+ · · · + v(0))

+ ḡT(z(k))
∂Vi(z(k + 1))

∂z(k + 1)

)
(3.16)

and

Vi+1(z(k))= zT(k)Qz(k)

+ 1

4

(
2S (v(k − 1)+ · · · + v(0))+ ḡT(z(k))

∂Vi(z(k + 1))

∂z(k + 1)

)T

× (R + S)−1 R (R + S)−1

×
(

2S (v(k − 1)+ · · · + v(0))+ ḡT(z(k))
∂Vi(z(k + 1))

∂z(k + 1)

)

+
(

−1

2
(R + S)−1

(
2S (v(k − 1)+ · · · + v(0))

+ ḡT(z(k))
∂Vi(z(k + 1))

∂z(k + 1)

)
+v(k − 1)+ · · · + v(0)

)T

× S

(
−1

2
(R + S)−1

(
2S (v(k − 1)+ · · · + v(0))

+ ḡT(z(k))
∂Vi(z(k + 1))

∂z(k + 1)

)
+v(k − 1)+ · · · + v(0)

)

+ Vi(z(k + 1)). (3.17)

In the following, we will present a proof of convergence of the iteration for (3.16)
and (3.17), with the value function Vi(z(k))→ J ∗(z(k)) and vi(k)→ u∗(k) as i →
∞, ∀k.

Lemma 3.1 Let ṽi (k), k = 0,1 . . . be any sequence of control, and vi(k) is ex-
pressed as (3.16). Define Vi+1(z(k)) as (3.17) and Λi+1(z(k)) as

Λi+1(z(k))= zT(k)Qz(k)+ ṽT
i (k)Rṽi(k)

+ [ṽi (k)+ v(k − 1)+ · · · + v(0)]T

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 115

× S
[
ṽi (k)+ v(k − 1)+ · · · + v(0)

]+Λi(z(k + 1)). (3.18)

If V0(z(k))=Λ0(z(k))= 0, then Vi(z(k))≤Λi(z(k)), ∀i.

In order to prove the convergence of the value function, the following theorem is
also necessary.

Theorem 3.2 (cf. [20]) Let the sequence {Vi(z(k))} be defined by (3.17). If e(k) for
the system (3.10) is strongly controllable, then there is an upper bound Y such that
0 ≤ Vi(z(k))≤ Y , ∀i.

Proof Let v̄(k), k = 0,1, . . . be any admissible control input. Define a new sequence
{Pi(z(k))} as follows:

Pi+1(z(k)) = zT(k)Qz(k)+ v̄T(k)Rv̄(k)

+[v̄(k)+ v(k − 1)+ · · · + v(0)]T

×S [v̄(k)+ v(k − 1)+ · · · + v(0)] + Pi(z(k + 1)), (3.19)

with P0(z(k))= V0(z(k))= 0, Vi(z(k)) is updated by (3.17). Thus, we obtain

Pi+1(z(k))− Pi(z(k)) = Pi(z(k + 1))− Pi−1(z(k + 1))

...

= P1(z(k + i))− P0(z(k + i)). (3.20)

Because P0(z(k + i))= 0, we have

Pi+1(z(k)) = P1(z(k + i))+ Pi(z(k))

= P1(z(k + i))+ P1(z(k + i − 1))+ Pi−1(z(k))

= P1(z(k + i))+ P1(z(k + i − 1))

+P1(z(k + i − 2))+ · · · + P1(z(k))

=
i∑

j=0

P1(z(k + j)). (3.21)

According to (3.19), (3.21) can be written as

Pi+1(z(k))=
i∑

j=0

{
zT(k + j)Qz(k + j)+ v̄T(k + j)Rv̄(k + j)

+ [v̄(k + j)+ v̄(k + j − 1)+ · · · + v(0)]T

× S[v̄(k + j)+ v̄(k + j − 1)+ · · · + v(0)]
}

116 3 Optimal Tracking Control for Discrete-Time Systems

≤
∞∑

j=0

{
zT(k + j)Qz(k + j)+ v̄T(k + j)Rv̄(k + j)

+ [v̄(k + j)+ v̄(k + j − 1)+ · · · + v(0)]T

× S[v̄(k + j)+ v̄(k + j − 1)+ · · · + v(0)]
}
. (3.22)

Noting that the control input v̄(k), k = 0,1, . . . is an admissible control, we obtain

∀i : Pi+1(z(k))≤
∞∑

j=0

P1(z(k + j))≤Y. (3.23)

From Lemma 3.1, we have

∀i : Vi+1(z(k))≤ Pi+1(z(k))≤Y. (3.24)

This completes the proof. �

With Lemma 3.1 and Theorem 3.2, the following main theorem can be derived.

Theorem 3.3 (cf. [20]) Define the sequence {Vi(z(k))} as (3.17), with V0(z(k))= 0.
Then, {Vi(z(k))} is a nondecreasing sequence in which Vi+1(z(k)) ≥ Vi(z(k)), ∀i,
and converges to the optimal value function of discrete-time HJB equation, i.e.,
Vi(z(k))→ J ∗(z(k)) as i → ∞.

Proof For the convenience of analysis, define a new sequence {Φi(z(k))} as follows:

Φi+1(z(k))= zT(k)Qz(k)+ vT
i+1(k)Rvi+1(k)

+ [vi+1(k)+ v(k − 1)+ · · · + v(0)]T

× S[vi+1(k)+ v(k − 1)+ · · · + v(0)] +Φi(z(k + 1)), (3.25)

where vi(k) obtained by (3.16) and Φ0(z(k))= V0(z(k))= 0.
In the following part, we prove Φi(z(k)) ≤ Vi+1(z(k)) by mathematical induc-

tion.
First, we prove that it holds for i = 0. Noting that

V1(z(k))−Φ0(z(k))= zT(k)Qz(k)+ vT
0 (k)Rv0(k)

+ [v0(k)+ v(k − 1)+ · · · + v(0)]T

× S[v0(k)+ v(k − 1)+ · · · + v(0)]
≥ 0. (3.26)

Thus, for i = 0, we get

V1(z(k))≥Φ0(z(k)). (3.27)

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 117

Second, we assume it holds for i − 1, i.e., Vi(z(k)) ≥ Φi−1(z(k)), ∀z(k). Then,
for i, because

Φi(z(k))= zT(k)Qz(k)+ vT
i (k)Rvi(k)

+ [vi(k)+ v(k − 1)+ · · · + v(0)]T

× S[vi(k)+ v(k − 1)+ · · · + v(0)] +Φi−1(z(k + 1)) (3.28)

and

Vi+1(z(k))= zT(k)Qz(k)+ vT
i (k)Rvi(k)

+ [vi(k)+ v(k − 1)+ · · · + v(0)]T

× S[vi(k)+ v(k − 1)+ · · · + v(0)] + Vi(z(k + 1)), (3.29)

we obtain

Vi+1(z(k))−Φi(z(k))= Vi(z(k))−Φi−1(z(k))≥ 0, (3.30)

i.e.,

Φi(z(k))≤ Vi+1(z(k)). (3.31)

Therefore, the mathematical induction proof is completed.
Moreover, from Lemma 3.1, we know that Vi(z(k))≤Φi(z(k)), and we obtain

Vi(z(k))≤Φi(z(k))≤ Vi+1(z(k)). (3.32)

It is proved that {Vi(z(k))} is a nondecreasing sequence bounded by (3.24). Hence,
we conclude that Vi(z(k))→ J ∗(z(k)) as i → ∞. �

3.2.2.3 Summary of the Algorithm

Now we summarize the iterative HDP algorithm for the nonlinear optimal tracking
control problem as follows:

1. Give x(0), imax, computation accuracy ε, desired trajectory xd(k), and control
sequence u(0), u(1), . . . , u(k − 1).

2. Compute z(k) according to (3.11) and v(0), . . . , v(k − 1) according to (3.5) and
(3.8).

3. Set i = 0, V0(z(k))= 0.
4. Compute v0(k) by (3.14) and the value function V1(z(k)) by (3.15).
5. Set i = i + 1.
6. Compute vi(k) by (3.16) and the corresponding value function Vi+1(z(k)) by

(3.17).
7. If |Vi+1(z(k))− Vi(z(k))|< ε, then go to Step 9; else go to Step 8.
8. If i > imax then go to Step 9; otherwise, go to Step 5.
9. Stop.

118 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.1 The structure diagram of the iterative HDP algorithm

If the optimal tracking control policy v(k) is obtained under the given accuracy ε.
Then, we can compute tracking control input for the original system (3.1) by u(k)=
v(k)+ v(k − 1)+ · · · + v(0)− g−1(xd(k)) (f (xd(k))− xd(k + 1)).

3.2.2.4 Neural-Network Implementation for the Tracking Control Scheme

In the case of linear systems, the value function is quadratic and the control policy is
linear. In the nonlinear case, this is not necessarily true, and therefore we use neural
networks to approximate vi(k) and Vi(z(k)) [19, 21–24]. There are three neural
networks needed to implement the algorithm, which are critic, model, and action
networks. All the neural networks are chosen as three-layer feedforward networks.
The structure diagram for running the iterative HDP algorithm is shown in Fig. 3.1.
The utility term in the figure denotes zT(k)Qz(k)+ v̂T(k)Rv̂(k)+[v̂(k)+v(k−1)+
· · · + v(0)]TS

[
v̂(k)+ v(k − 1)+ · · · + v(0)

]
. The gradient descent rule is adopted

for the weight update rules of each neural network, and the details can be seen
in [14], and for the analysis of the neural network one may refer to [16]; it is omitted
here.

3.2.3 Simulations

Example 3.4 An illustrative example is provided to demonstrate the effectiveness
of the present tracking control scheme.

3.2 Infinite-Horizon Optimal Tracking Control Based on HDP 119

Consider the following affine nonlinear system:

x(k + 1)= f (x(k))+ g(x(k))u(k), (3.33)

where x(k)= [x1(k) x2(k)]T, u(k)= [u1(k) u2(k)]T,

f (x(k))=
[

0.2x1(k) exp(x2
2(k))

0.3x3
2(k)

]
, g(x(k))=

[−0.2 0
0 −0.2

]
.

The given initial state is x(0)= [1.5 1]T and the desired trajectory is set to xd(k)=
[sin(k/20 + π/2) 0.5 cos(k/20)]T. In order to demonstrate the advantage of (3.7),
a comparison on the tracking performance for two different performance indices
is presented. For ease of comparison, we define an evaluation function by PER =∑Tf

0 eT(k)e(k), where Tf is the running time steps.
Case 1: The cost functional is defined by (3.4) where Q1 = [1 0

0 1

]
and R =[0.2 0

0 0.2

]
. The system is first transformed as (3.11). We implement the algorithm

at the time instant k = 0. The critic network, the action network, and the model
network are chosen as three-layer neural networks with the structure 4–8–1, 4–8–2
and 6–8–4, respectively. The initial weights of action network, critic network, and
model network are all set to be random in [−1,1]. We take 1000 groups of sampling
data to train the model network. For each group of data with the learning rate 0.01,
we train 4000 steps to reach the given accuracy ε = 10−6. After the training of the
model network is completed, the weights keep unchanged. Then, the critic network
and the action network are trained for 10000 iteration steps with a learning rate of
0.01, so that the given accuracy ε = 10−6 is reached. Then, we apply the optimal
tracking control policy to the system for Tf = 250 time steps. The convergence
trajectory of the value function is shown in Fig. 3.2. The state trajectories are given
in Figs. 3.3 and 3.4, the corresponding control trajectories are given in Fig. 3.5. In
this case, we can obtain the evaluation function value of the present tracking control
scheme as PER = 4.2958.

Case 2: Define the cost functional as (3.7) where S = [1 0
0 1

]
. All the other

parameters are set as the same as Case 1. We also implement the algorithm at
the time instant k = 0. The convergence process of the value function is shown
in Fig. 3.6. The state trajectories are given in Figs. 3.7 and 3.8, and the corre-
sponding control trajectories are given in Fig. 3.9. In this case, with Tf = 250, we
can obtain the evaluation function value of the present tracking control scheme as
PER = 2.1424.

It can be seen that the tracking performance of Case 2 is much better than that
of Case 1, though in both cases, the system states finally track the desired tra-
jectories. In Case 1, both the states and control inputs oscillate seriously. While
in Case 2, the oscillation is much slighter, and the evaluation function value
is much smaller than that in Case 1. Hence, the control scheme developed in
this section does solve the time-variant tracking control problem quite satisfy-
ingly, and the obtained optimal tracking controller has shown excellent perfor-
mance.

120 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.2 The convergence of value function

Fig. 3.3 The state trajectory x1 and desired trajectory xd1

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP

In this section an infinite-horizon optimal tracking control scheme is presented for
a class of discrete-time non-affine systems, where the optimal tracking controller is

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 121

Fig. 3.4 The state trajectory x2 and desired trajectory xd2

Fig. 3.5 The optimal tracking control trajectories

composed of two sub-controllers: the feedforward controller and the feedback con-
troller. The feedforward controller is designed by implicit function theorem, while

122 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.6 The convergence of value function

Fig. 3.7 The state trajectory x1 and desired trajectory xd1

the feedback controller is realized by the GDHP iteration algorithm. To facilitate the
implementation of the algorithm, three neural networks are adopted.

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 123

Fig. 3.8 The state trajectory x2 and desired trajectory xd2

Fig. 3.9 The optimal tracking control trajectories

3.3.1 Problem Formulation

Consider a class of non-affine MIMO nonlinear systems as follows:

124 3 Optimal Tracking Control for Discrete-Time Systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
1(k + 1)= x1

2(k)

x1
2(k + 1)= x1

3(k)
...

x1
n1
(k + 1)= f1(x(k), u(k))

...

xm1 (k + 1)= xm2 (k)

xm2 (k + 1)= xm3 (k)
...

xmnm(k + 1)= fm(x(k), u(k))

y1(k)= x1
1(k)

...

ym(k)= xm1 (k),

(3.34)

where x(k) ∈R
n, n=∑m

i=1 ni denotes the state vector, u(k) ∈ R
m denotes the input

vector, u(k)= [u1(k), u2(k), . . . , um(k)]T, and y(k) ∈R
m denotes the output vector

of the system, y(k) = [y1(k), y2(k), . . . , ym(k)]T. fi : Rn × R
m → R are assumed

to be unknown but analytic functions. It is further assumed that fi(0,0) = 0, and
meanwhile the system is strongly controllable on a compact set Ωx ⊂ R

n in the
sense that there exists an analytic control policy that renders the system’s output
track specific desired trajectories.

Assumption 3.5 The system satisfies the result that fi : Rn ×R
m →R is C1 for all

x(k) ∈Ωx and u(k) ∈R
m.

For optimal tracking control problem, the control objective is to design an opti-
mal control u(k) for the system (3.34) such that the output vector y(k) tracks the
specified desired trajectories yd(k). Specifically, it is assumed that for k = 0,1, . . . ,
the specified desired output trajectories are set as

yd(k)= [y1d(k), y2d(k), . . . , ymd(k)]T ∈ R
m, (3.35)

which lead to the desired state trajectories xd(k) as follows:

xd(k)= [x1
d(k), x

2
d(k), . . . , x

m
d (k)]T, (3.36)

where xid(k)= [yid(k), yid(k+ 1), . . . , yid(k+ni − 1)], with i = 1,2, . . . ,m. It can
be seen that the obtained desired state trajectories xd(k) satisfy xd(k) ∈Ωd ⊂Ωx .

The state tracking error can be expressed as

e(k)= x(k)− xd(k). (3.37)

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 125

As is known, for infinite-horizon state feedback control problem, the cost func-
tional is generally defined as the following quadratic form:

J (e(0), u)=
∞∑

k=0

{
xT(k)Q1x(k)+ uT(k)Ru(k)

}
, (3.38)

where Q1 ∈ R
n×n and R ∈ R

m×m are positive definite matrices.
However, for the infinite-horizon tracking control problem, the cost functional

cannot similarly be defined as

J (e(0), u)=
∞∑

k=0

{
eT(k)Q1e(k)+ uT(k)Ru(k)

}
. (3.39)

Because zero tracking error may not necessarily lead to zero control signals u(k),
which implies that this cost functional J (e(0), u) may become infinite.

To overcome the difficulty related to the cost functional, we need to find an ideal
control, required for maintaining the tracking in steady-state stage. Then, via sub-
tracting this ideal control from the control signal u(k), the remaining control signal
is allowed to vanish in the steady-state stage. Denote the ideal control signal uf (k);
it will be called the feedforward control in the sequel. Further, denote the remaining
control signal as v(k), calling it the feedback control. Therefore, the controller u(k)
becomes u(k) = v(k)+ uf (k), where uf (k) is to maintain the tracking error close
to zero at the steady-state stage, while v(k) is to stabilize the state tracking error dy-
namics at transient stage and vanish in the steady-state stage. In this way, by using
vT(k)Rv(k) to replace uT(k)Ru(k) in the cost functional (3.39), the obtained new
cost functional can be finite, and accordingly the optimal tracking control problem
can be appropriately defined.

Moreover, in order to further consider the control signal in the varying process,
we add a new term (v(k)−v(k−1))TS(v(k)−v(k−1)) to the cost functional (3.39).
Specifically, a new cost functional is defined as

J (e(k), v)=
∞∑

i=k

{
eT(i)Q1e(i)+ vT(i)Rv(i)

+ (v(i)− v(i − 1))T S (v(i)− v(i − 1))
}
, (3.40)

where Q1 ∈ R
n×n, R ∈ R

m×m and S ∈ R
m×m are all positive definite, v(k) is the

feedback control satisfying v(k)= 0 for k < 0.
After defining the cost functional (3.40), in the following development, we will

focus on the optimal tracking controller design. It can be seen that the optimal con-
troller is composed of two sub-controllers, i.e., the feedforward control uf (k) and
the feedback control v(k). In order to design these sub-controllers, we first derive
the error system.

For convenience of analysis, the system (3.34) can be rewritten as

x(k + 1)= F(x(k), u(k)), (3.41)

126 3 Optimal Tracking Control for Discrete-Time Systems

where F : Rn ×R
m → R

n is the vector function describing the nonlinear dynamics
of the system (3.34).

In view of

e(k + 1)= x(k + 1)− xd(k + 1), (3.42)

one has

e(k + 1)= F(x(k), u(k))− xd(k + 1). (3.43)

Since u(k)= v(k)+ uf (k), the error equation can be reformulated as

e(k + 1)= F
(
e(k)+ xd(k), v(k)+ uf (k)

)− xd(k + 1). (3.44)

Keeping (3.42) in mind, once the error system (3.44) is stabilized, i.e., e → 0, the
state vector of the original system will track the desired trajectories simultaneously.
Since the feedforward control uf (k) is designed beforehand to keep the state vector
of the plant to the desired trajectories at the steady-state stage, it first is required to
stabilize the error dynamic by choosing an appropriate feedback control v(k).

Therefore, based on the above analysis, the optimal tracking control problem of
(3.34) has been converted into two problems: one is to compute the feedforward
control uf (k), and the other is to design the optimal feedback control v(k) for sta-
bilizing the error equation (3.44). In the following development, we will discuss the
feedforward controller design and the optimal feedback controller design in detail.

3.3.2 Infinite-Horizon Optimal Tracking Control Based on GDHP

3.3.2.1 Design and Implementation of Feedforward Controller

As mentioned above, in order to make a plant follow specific desired trajectories,
it is necessary to design the feedforward controller uf (k) so that the tracking error
can keep zero at the steady-state stage. Therefore, by substituting the desired state
xd(k) and the ideal feedforward control uf (k) in place of x(k) and u(k) in (3.34),
the ideal steady-state equation can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1
n1d

(k + 1)= f1(xd(k), uf (k))

x2
n2d

(k + 1)= f2(xd(k), uf (k))

...

xmnmd(k + 1)= fm(xd(k), uf (k)),

(3.45)

where the ideal feedforward control uf (k) is left to be solved in the following part.
Let

xnd(k + 1)= [x1
n1d

(k + 1), x2
n2d

(k + 1), . . . , xmnmd(k + 1)]T. (3.46)

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 127

Then the ideal steady-state equation (3.45) can further be written as

xnd(k + 1)= F(xd(k), uf (k)), (3.47)

where F : Rn ×R
m → R

m is the vector function defined as

F(·)= [
f1(·), f2(·), . . . , fm(·)

]T
.

To solve the ideal feedforward control uf (k) uniquely from the above equa-
tion (3.47), we need to make sure that the implicit function theorem holds around
the desired trajectories xd(k). Therefore, we first present an assumption as follows.

Assumption 3.6 The Jacobian matrix Υ of the system (3.34) is nonsingular for all
x(k) ∈Ωd,u(k) ∈R

m, where

Υ =

⎡

⎢⎢⎢⎢⎣

∂f1(x(k),u(k))
∂u1(k)

∂f1(x(k),u(k))
∂u2(k)

. . .
∂f1(x(k),u(k))

∂um(k)
∂f2(x(k),u(k))

∂u1(k)
∂f2(x(k),u(k))

∂u2(k)
. . .

∂f2(x(k),u(k))
∂um(k)

...
...

...
∂fm(x(k),u(k))

∂u1(k)
∂fm(x(k),u(k))

∂u2(k)
. . .

∂fm(x(k),u(k))
∂um(k)

⎤

⎥⎥⎥⎥⎦
. (3.48)

Based on Assumptions 3.5 and 3.6, the implicit function theorem is obviously
ensured to hold. Therefore, the ideal feedforward control input uf (k) uniquely ex-
ists around the specific desired state trajectories xd(k) ∈ Ωd and can further be ex-
pressed as follows:

uf (k)=G(xd(k), xnd(k + 1)), (3.49)

where G : Rn × R
m → R is a unique one-to-one differentiable vector function sat-

isfying xnd(k + 1)= F(xd(k),G(xd(k), xnd(k + 1))).

3.3.2.2 Design and Implementation of Optimal Feedback Controller

The feedforward control has already been presented in the above subsection, which
is the unique control input required at steady-state stage. The crucial problem left
to solve is to design the optimal feedback control by the iterative algorithm after
performing some transformation on the error system (3.44).

System Transformation

With the feedforward control uf (k) in (3.49), we substitute it into the error equation
(3.44) and obtain

e(k + 1)= F (e(k)+ xd(k), v(k)+G(xd(k), xnd(k + 1)))− xd(k + 1).

(3.50)

128 3 Optimal Tracking Control for Discrete-Time Systems

From (3.36), we can know that xd(k) is only denoting the desired trajectory. It is
assumed that the desired trajectory is generated by the following relationship:

xd(k + 1)= δ(xd(k)), (3.51)

where δ(·) = [δ1(·), δ2(·), . . . , δn(·)]T is an analytic vector function. Then, it is
straightforward to show from (3.51) that

xnd(k + 1)= [δn1(xd(k)), δn1+n2(xd(k)), . . . , δn(xd(k))].

Therefore, the error system (3.50) can further be written as

e(k + 1)= Γ (e(k), xd(k), v(k)). (3.52)

In the above equation, e(k) is the states of the error equation and xd(k) can be
treated as signals. However, they are time-varying. To the best of our knowledge, it
is still not clear in the literature how to obtain the analytical solution for the optimal
control of the above systems with time-varying signals. Inspired by the dimension
augmentation technique, in this section we will construct an augmented system to
equivalently solve the optimal feedback control v(k).

Define z1(k)= e(k) and z2(k)= xd(k), and then the error system (3.52) and the
desired state trajectories equation (3.51) can be rewritten as

{
z1(k + 1)= Γ (z1(k), z2(k), v(k))

z2(k + 1)= δ(z2(k)),
(3.53)

which is called the augmented system of the error system (3.50). Here, the argu-
ments z1(k) and z2(k) are viewed as two new state vectors of the augmented sys-
tem. By this augmentation, the augmented system (3.53) has higher dimension than
the original error system (3.52), and there is no time variable explicitly appearing
in (3.53).

Accordingly, for this augmented system, the cost functional (3.40) can be rede-
fined as

J (z(k), v)=
∞∑

t=k

{
zT(t)Qz(t)+ vT(t)Rv(t) (3.54)

+ (v(t)− v(t − 1))T S (v(t)− v(t − 1))
}
,

where z(t) = [eT(t) xT
d (t)]T ∈ R

2n and Q = [Q1 0n×n

0n×n 0n×n

] ∈ R
2n×2n. This cost func-

tional (3.54) is equivalent to (3.40) in the sense that the objectives of the two cost
functionals are the same.

With this augmented model (3.53), it is now possible to design the optimal feed-
back controller to guarantee that the cost functional (3.54) is finite.

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 129

The Optimal Feedback Controller Design Based on GDHP Algorithm

In order to solve the optimal feedback control problem, the admissible control is
defined similarly as Definition 2.1. However, the state vector is z(k) and the cost
functional is J (z(0), v).

Actually the cost functional (3.54) can be expanded as

J (z(k), v)= zT(k)Qz(k)+ vT(k)Rv(k)

+ (v(k)− v(k − 1))T S (v(k)− v(k − 1))

+ J (z(k + 1), v). (3.55)

From Bellman’s optimality principle, the HJB equation is

J ∗(z(k))= min
v(k)

{
zT(k)Qz(k)+ vT(k)Rv(k)

+ (v(k)− v(k − 1))T S
(
v(k)− v(k − 1)

)

+ J ∗(z(k + 1))
}
, (3.56)

where J ∗(z(k)) is the optimal value function.
The corresponding optimal control can be defined as

u∗(k)= arg min
v(k)

{
zT(k)Qz(k)+ vT(k)Rv(k)

+ (v(k)− v(k − 1))T S
(
v(k)− v(k − 1)

)

+ J ∗(z(k + 1))
}
. (3.57)

It should be noted that if the optimal value function J ∗(z(k)) can be solved from
HJB equation (3.56), the optimal feedback control u∗(k) can be computed. How-
ever, it is not straightforward to solve this HJB equation in most cases. Thus, in this
section, we propose a new iterative algorithm named GDHP algorithm to solve the
optimal control by introducing a new vector λi(z(k)).

First, we start with the initial value function V0(·) = 0, initial costate function
λ0(·)= 0, and then for i = 0,1, . . . we implement the iteration between

vi(k)= arg min
v(k)

{
zT(k)Qz(k)+ vT(k)Rv(k)

+ (v(k)− v(k − 1))T S (v(k)− v(k − 1))

+ Vi(z(k + 1))
}

(3.58)

130 3 Optimal Tracking Control for Discrete-Time Systems

i.e.,

vi(k)= − 1

2
(R + S)−1

(
− 2Sv(k − 1)+

(
dz(k + 1)

dvi(k)

)T

λi(z(k + 1))

)
(3.59)

and

Vi+1(z(k))= zT(k)Qz(k)+ vT
i (k)Rvi(k)

+ (vi(k)− v(k − 1))T S (vi(k)− v(k − 1))

+ Vi
(
z(k + 1)

)
, (3.60)

λi+1(z(k))= 2Qz(k)+
(
∂z(k + 1)

∂z(k)

)T

λi(z(k + 1)). (3.61)

From the above analysis, we can find that via the costate function sequence
(3.61), the optimal control sequence can be directly obtained by (3.59), which can
avoid computing ∂Vi(z(k + 1))/∂z(k + 1) at each iterative step. This explains the
working principle for the present GDHP algorithm.

Convergence Analysis of GDHP Algorithm

In the following we will present a concise convergence analysis of the iteration
among (3.58), (3.60) and (3.61) with Vi(z(k)) → J ∗(z(k)), λi(z(k)) → λ∗(z(k))
and the control policy vi(k)→ u∗(k) as i → ∞.

Lemma 3.7 Let μi be any sequence of control policies, and vi is the optimal poli-
cies by (3.58). Define Vi+1(z(k)) as (3.60) and Λi+1(z(k)) as

Λi+1(z(k))= zT(k)Qz(k)+μT
i (k)Rμi(k)

+ (μi(k)− v(k − 1))T S (μi(k)− v(k − 1))

+Λi(z(k + 1)). (3.62)

If V0(·)=Λ0(·)= 0, then Vi(z(k))≤Λi(z(k)), ∀i.

Lemma 3.8 For the sequence {Vi(z(k))} defined by (3.60), if the system (3.52) is
controllable, then there is an upper bound Y such that 0 ≤ Vi ≤ Y , ∀i.

With Lemma 3.7 and Lemma 3.8, we are now ready to present the main theorem.

Theorem 3.9 Define the sequence {Vi(z(k))} as (3.60), with V0(·) = 0, the se-
quence {λi(z(k))} as (3.61), with λ0(·) = 0. Then, {Vi(z(k))} is a nondecreasing

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 131

sequence satisfying Vi+1(z(k))≥ Vi(z(k)), ∀i, and converges to the optimal value
function of the discrete-time HJB equation (3.56), i.e., Vi(z(k)) → J ∗(z(k)) as
i → ∞. Meanwhile, the costate function and the control input sequences are con-
vergent, with λi(z(k))→ λ∗(z(k)) and vi(k)→ u∗(k) as i → ∞.

Proof For the convenience of analysis, define a new sequence {Φi(z(k))} as follows:

Φi+1(z(k))= zT(k)Qz(k)+ vT
i+1(k)Rvi+1(k)

+ (vi+1(k)− v(k − 1))TS(vi+1(k)− v(k − 1))

+Φi(z(k + 1)), (3.63)

where vi(k) defined by (3.58) and Φ0(·)= V0(·)= 0.
In the following, we prove Φi(z(k)) ≤ Vi+1(z(k)) by mathematical induction.

First, we prove that it holds for i = 0. Noting that

V1(z(k))−Φ0(z(k))= zT(k)Qz(k)+ vT
0 (k)Rv0(k)

+ (v0(k)− v(k − 1))TS(v0(k)− v(k − 1))

≥ 0, (3.64)

for i = 0, we get

V1(z(k))≥Φ0(z(k)). (3.65)

Second, we assume that it holds for i − 1, i.e., Vi(z(k))≥Φi−1(z(k)), ∀z(k). Then,
for i, since

Φi(z(k))= zT(k)Qz(k)+ vT
i (k)Rvi(k)

+ (vi(k)− v(k − 1))TS(vi(k)− v(k − 1))

+Φi−1(z(k + 1)), (3.66)

and

Vi+1(z(k))= zT(k)Qz(k)+ vT
i (k)Rvi(k)

+ (vi(k)− v(k − 1))TS(vi(k)− v(k − 1))

+ Vi(z(k + 1)), (3.67)

we obtain

Vi+1(z(k))−Φi(z(k))= Vi(z(k))−Φi−1(z(k))≥ 0, (3.68)

i.e.,

Φi(z(k))≤ Vi+1(z(k)). (3.69)

Therefore, the mathematical induction proof is completed.

132 3 Optimal Tracking Control for Discrete-Time Systems

Moreover, from Lemma (3.7), we know that Vi(z(k)) ≤ Φi(z(k)); therefore we
obtain

Vi(z(k))≤Φi(z(k))≤ Vi+1(z(k)), (3.70)

which proves that {Vi(z(k))} is a bounded nondecreasing sequence. Hence we con-
clude that Vi(z(k)) → J ∗(z(k)) as i → ∞. With λi(z(k)) = ∂Vi(z(k))/∂z(k) and
λ∗(z(k))= ∂J ∗(z(k))/∂z(k), the corresponding costate sequence {λi(z(k))} is also
convergent with λi(z(k)) → λ∗(z(k)) as i → ∞. Since the costate functions are
convergent, we conclude that the corresponding control sequence vi(k) converges
to the optimal control u∗(k) as i → ∞.

This completes the proof. �

Neural-Network Implementation of the Optimal Feedback Controller

For facilitating the implementation of the GDHP algorithm, we use three neural
networks, named model network, critic network, and action network, respectively.

Model Network

Before carrying out the iterative process, we first construct the model network to
approximate the nonlinear dynamic of the augmented system. The model network
predicts z(k+1) given z(k) and v(k), i.e., it learns the mapping given in (3.53). The
output of the model network is denoted

ẑ(k + 1)=WT
mφ(V

T
mIm(k)), (3.71)

where Im(k)= col {v(k), z(k)} is the input vector of the model network.
Define the output error of the network as

em(k)= ẑ(k + 1)− z(k + 1). (3.72)

The weights in the model network are updated to minimize the following perfor-
mance error measure:

Em(k)= 1

2
eT
m(k)em(k). (3.73)

The weight update rule for model network is chosen as a gradient-based adaptation
given by

Wm(j + 1)=Wm(j)− αm(j)

[
∂Em(k)

∂Wm

]
, (3.74)

Vm(j + 1)= Vm(j)− αm(j)

[
∂Em(k)

∂Vm

]
, (3.75)

where αm(j) is the learning rate of the model network.
After the model network is trained, its weights are kept unchanged.

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 133

Critic Network

The output of the critic network is composed of two parts; one part is used to ap-
proximate the index function Vi+1(k), and the other part is used to approximate
the costate function λi+1(k). Define the output of the critic network as Oc(i+1)(k),
which can be described by

Oc(i+1)(k)=WT
c(i+1)φ(V

T
c(i+1)z(k)). (3.76)

Define the output target of the critic network as Dc(i+1)(k), which is also com-
posed of two parts, i.e.,

Dc(i+1)(k)= [Vi+1(k) λi+1(k)]T, (3.77)

where Vi+1(k) is the target of value function computed by (3.60); λi+1(k) is the
target of the costate function computed by (3.61), respectively.

Define the error function for the critic network as

ec(i+1)(k)=Oc(i+1)(k)−Dc(i+1)(k). (3.78)

Also, define the objective function to be minimized in the critic network as

Ec(i+1)(k)= 1

2
eT
c(i+1)(k)ec(i+1)(k). (3.79)

Choose the weight update rule for the critic network as a gradient-based rule given
by

Wc(i+1)(j + 1)=Wc(i+1)(j)− αc(j)

[
∂Ec(i+1)(k)

∂Wc(i+1)

]
, (3.80)

Vc(i+1)(j + 1)= Vc(i+1)(j)− αc(j)

[
∂Ec(i+1)(k)

∂Vc(i+1)

]
, (3.81)

where αc(j) > 0 is the learning rate of critic network.

Action Network

In the action network the augmented vector z(k) is used as input to create the optimal
feedback control as the output of the network. The output can be formulated as

v̂i (k)=WT
aiφ(V

T
aiz(k)). (3.82)

The output target vi(k) is given by (3.59). Thus, we can define the output error of
the action network as

eai(k)= v̂i (k)− vi(k). (3.83)

134 3 Optimal Tracking Control for Discrete-Time Systems

The weights in the action network are updated to minimize the following perfor-
mance error measure:

Eai(k)= 1

2
eT
ai(k)eai(k). (3.84)

The update algorithm is then similar to the one in the critic network. By the gradient
descent rule, we have

Wai(j + 1)=Wai(j)− αa(j)

[
∂Eai(k)

∂Wai

]
, (3.85)

Vai(j + 1)= Vai(j)− αa(j)

[
∂Eai(k)

∂Vai

]
, (3.86)

where αa(j) > 0 is the learning rate of action network.

Design Procedure of the Optimal Tracking Controller

The procedures of the optimal tracking control scheme based on the GI-GDHP al-
gorithm are summarized as follows:

1. Given x(0), u(0), u(1), . . . , u(k− 1), imax, ε0, and the desired trajectory yd(k).
2. Compute xd(k), xd(k + 1), z(k) according to (3.36) and (3.37).
3. Compute the feedforward control ûf (k) by solving the implicit equation

xnd(k + 1)= F(xd(k), uf (k)).
4. Construct the model network ẑ(k+1)=WT

mφ(V
T
mIm(k)) with the initial weight

parameters chosen randomly from [−0.1,0.1] and train the model network with
a random input vector uniformly distributed in the interval [−1,1] and an arbi-
trary initial state vector till the given accuracy ε0 is reached.

5. Set the iterative step i = 0, the initial value function Vi(·)= 0 and costate func-
tion λi(·) = 0. Construct both the critic network and the action network with
the initial weight parameters chosen randomly from [−1,1].

6. Compute the output target by (3.59) and update the weight parameters of the
action network by (3.85) and (3.86).

7. Compute the output target by (3.77) and update the weight parameters of the
critic network by (3.80) and (3.81).

8. If

‖λi+1(z(k))− λi(z(k))‖2 + ‖Vi+1(z(k))− Vi(z(k))‖2 < ε0,

go to Step 9; otherwise i = i + 1, go to Step 6.
9. If i > imax, v(k)= vi(k) and go to Step 11; otherwise i = i + 1, go to Step 6.

10. Compute the approximate optimal control u(k)= v(k)+ uf (k).
11. Stop.

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 135

As stated in the last subsection, the iterative algorithm will be convergent with
Vi(z(k))→ J ∗(z(k)), λi(z(k))→ λ∗(z(k)) and the control sequence vi(k)→ v∗(k)
as i → ∞. However, in the practical application, we cannot implement the iteration
till i → ∞. Actually, we iterate the algorithm for a max number imax or with a
tolerance value ε0 to test the convergence of the algorithm. In the above procedures,
the parameters ε0 and imax are chosen by the designer. The smaller ε0 is set, the
more accurate the costate function; the value function can be found in this way. If
the condition set in Step 8 is satisfied, it implies that the costate function and the
value function are convergent to the pre-specified accuracy. The larger the imax is
set, the more accurate the controller obtained will be at the price of increasing the
computing burden.

3.3.2.3 Convergence Characteristics of the Neural-Network Approximation
Process

Based on the insight in [6, 14], in this part we are ready to provide some convergence
analysis for the neural-network approximation process in an averaged sense by using
the stochastic approximation algorithm. In [13], a recursive stochastic procedure is
presented to find the root of a real-valued function r(ω) of a real variable ω.

A function r(ω) with the form r(ω) = E{h(ω)} (E{·} is the expectation opera-
tor) is called a regression function of h(ω), and, conversely, h(ω) is called a sample
function of r(ω). According to the Robbins–Monro algorithm, the following itera-
tive algorithm can be used to solve the root ω∗ of the function r(ω):

ω(j + 1)= ω(j)− q(j)h[ω(j)], (3.87)

where q(j) is a sequence of positive numbers which satisfy the following condi-
tions:

1)
∞∑

j=0

q(j)= ∞

2)
∞∑

j=0

q2(j) <∞

3) lim
j→∞q(j)= 0.

(3.88)

Conditions (N1) through (N3) should be satisfied.

(N1) r(ω) has a single root ω∗, r(ω∗)= 0 and
{
r(ω) < 0 if ω < ω∗,
r(ω) > 0 if ω > ω∗. (3.89)

(N2) The variance of h(ω) from r(ω) is finite

σ 2(ω)=E{r(ω)− h(ω)}2 <∞. (3.90)

136 3 Optimal Tracking Control for Discrete-Time Systems

(N3) The real-valued function r(ω) satisfies

| r(ω) |<M0 | ω−ω∗ | +M1 <∞. (3.91)

If the iterative algorithm (3.87) is implemented under the conditions (N1) through
(N3), the obtained ω(j) will converge toward the true root ω∗ in the mean square
error sense with probability one, i.e.,

lim
j→∞E

{
‖ ω(j)−ω∗ ‖2

}
= 0 (3.92)

Prob

{
lim
j→∞ω(j)= ω∗

}
= 1. (3.93)

In this section, similar to the framework in [14], the Robbins–Monro algorithm is
applied by setting r(ω)= ∂E/∂ω, where E is an objective function to be optimized.
If E has a local optimum at ω∗, r(ω) will satisfy the condition (N1) locally at ω∗.
If E has a quadratic form, r(ω) will satisfy the condition (N1) globally.

First, we are ready to investigate the learning process of action network. Recall
that the instantaneous error measure for the action network is of the following form:

eai(k)= v̂i (k)− vi(k). (3.94)

The performance error measure is defined as

Eai(k)= 1

2
eT
ai(k)eai(k). (3.95)

Let

Ẽai =E {Eai} , (3.96)

and assume that the expectation is well defined over the discrete state measurements.
The derivative of Ẽai with respect to the weights of the action network is then of the
form

∂Ẽai

∂ωai
=E

{(
∂eai

∂ωai

)T

eai

}
. (3.97)

According to the Robbins–Monro algorithm, the root (it may be a local root) of
∂Ẽai/∂ωai as a function of ωai can be obtained by the following recursive proce-
dure, if the root exists and if the step size αa(j) meets all the requirements described
in (3.88):

ωai(j + 1)= ωai(j)− αa(j)

[(
∂eai

∂ωai

)T

eai

]
. (3.98)

Recalling the update rule for the action network, we find that (3.98) is equivalent
to (3.83)–(3.86). In this sense, the action network update rule of (3.83)–(3.86) is

3.3 Infinite-Horizon Optimal Tracking Control Based on GDHP 137

actually converging to a (local) minimum of the performance measure (3.96) in a
statistical average sense.

In a similar framework, the convergence analysis of critic network and model
network in the optimal feedback scheme can be derived, except that the definitions
of the error measures are different. The details are therefore omitted here to save
space.

3.3.3 Simulations

Example 3.10 An example is provided to demonstrate the present effectiveness of
the optimal tracking control scheme.

Consider the following nonaffine nonlinear system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1
1(k + 1)= x1

2(k)

x1
2(k + 1)= 0.4x2

2(k)− 0.3 cos(x1
2(k))+ 2u1 + 2 tanh(u2)

x2
1(k + 1)= x2

2(k)

x2
2(k + 1)= x1

1(k)− 2u2 + 3 sin(x2
2(k))u1

y1(k)= x1
1(k)

y2(k)= x2
1(k),

(3.99)

where x(k) = [x1
1(k) x

1
2(k) x

2
1(k) x

2
2(k)] ∈ R

4 denotes the state vector, u(k) =
[u1(k) u2(k)] ∈ R

2 is the control vector, y(k) = [y1(k) y2(k)] ∈ R
2 is the output

vector.
The cost functional is defined as (3.54), the weight matrices are set as Q1 = 5I4,

R = 2I2 and S = 2I2, where In denotes the n×n identity matrix. The desired output
trajectories are set as y1d(k)= 0.5sin[2πk/100], y2d(k)= 0.5cos[2πk/100].

We would like to mention that the above test system (3.99) satisfies Assump-
tions 3.5 and 3.6 for the desired trajectories y1d(k), y2d(k). Therefore, the optimal
tracking control scheme developed above can be used to design the optimal con-
troller for this plant.

Here, the model network, the critic network, and the action network are set as
the feedforward neural networks with the structures of 10–8–8, 8–8–9, and 8–8–2,
respectively. All the neural networks are trained with a certain number of training
cycles, and in each training cycle there are a certain number of iterative steps. For
the optimal feedback controller design, we should first train the model network.
The learning rate is chosen as αm(j) = 0.1(1 − j/Nm), where Nm is the iterative
steps of each training cycle which is set to Nm = 5000. Denote the training cycle
number of all the neural networks as L. We train the model network for L = 1000
cycles with a random input vector uniformly distributed in the interval [−1,1] and
an arbitrary initial state vector to get the predefined accuracy εm = 10−4. Then,
keeping the weights of the model network fixed, both the critic network and the
action network are trained for L= 200 cycles to reach the predefined accuracy ε0 =
10−3. We should mention that in the training of the critic network and the action

138 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.10 The convergence trajectory of value function

network, the training cycle number L denotes the outer iterative number i in the
GDHP algorithm. The learning rate of the critic network is set as αc(j) = 0.1(1 −
j/Nc), where Nc is the iterative steps of each training cycle in critic network. The
learning rate of action network is set as αa(j) = 0.1(1 − j/Na), where Na is the
iterative steps of each training cycle in the action network. In the simulation, we set
the iterative steps as Nc =Na = 200. After simulation, the convergence trajectories
of the value function and costate function are shown in Figs. 3.10, 3.11. In order to
compare the different actions of the control policies obtained by different training
cycles, for the same initial state vector x(0) = [−0.2 0.2314 0.3 0.499], we use
the different control policies obtained for the plant and obtain the simulation results
as follows. The output tracking error trajectories are shown in Figs. 3.12, 3.13, 3.14
and 3.15. It can be seen that the controlled plant’s dynamics is out of order when
the number of training cycles L is less than 12, and when L > 15 the tracking
performance is improved with the training cycles increasing. When L > 120, the
iterative process is basically convergent with slight improvement in the tracking
performance.

From the simulation results, we can see that the output trajectories do track the
desired trajectories quite well, so the control scheme developed in this section can
solve the tracking control problem satisfactorily.

3.4 Finite-Horizon Optimal Tracking Control Based on ADP

A finite-horizon neuro-optimal tracking control scheme for a class of discrete-time
nonlinear systems is developed in this section. Through a system transformation,

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 139

Fig. 3.11 The convergence trajectory of costate function

Fig. 3.12 The output tracking error e1 for L= 1,2,8,10,12

the optimal tracking control problem is converted into a finite-horizon optimal reg-
ulation problem for the tracking error dynamics. Then, with convergence analy-
sis in terms of value function and control law, the iterative ADP algorithm via the
HDP technique is introduced to obtain the finite-horizon optimal tracking controller
which makes the value function close to its optimal value within an ε-error bound.

140 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.13 The output tracking error e1 for L= 15,40,80,150,200

Fig. 3.14 The output tracking error e2 for L= 1,2,8,10,12

Three neural networks are used as parametric structures to implement the algorithm,
which aims at approximating the value function, the control law, and the error dy-
namics, respectively.

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 141

Fig. 3.15 The output tracking error e2 for L= 15,40,80,150,200

3.4.1 Problem Formulation

Consider the discrete-time nonlinear systems given by

x(k + 1)= f (x(k))+ g(x(k))up(k), (3.100)

where x(k) ∈ R
n is the state, up(k) ∈ R

m is the control vector, f (·) and g(·) are
differentiable in their argument with f (0) = 0. Assume that f + gup is Lipschitz
continuous on a set Ω in R

n containing the origin, and that the system (3.100) is
controllable in the sense that there exists a continuous control on Ω that asymptoti-
cally stabilizes the system.

The objective for the optimal tracking control problem is to determine the optimal
control law u∗

p , so as to make the state trajectory of the nonlinear system (3.100)
to track a reference (or desired) trajectory xd(k) in an optimal manner. Here, we
assume that the reference trajectory xd(k) satisfies

xd(k + 1)= δ(xd(k)), (3.101)

where xd(k) ∈ R
n and δ(xd(k)) ∈R

n. Then, we define the tracking error as

e(k)= x(k)− xd(k). (3.102)

Inspired by the work of [12, 20], we define the steady control corresponding to
the reference trajectory xd(k) as

ud(k)= g−1(xd(k))(δ(xd(k))− f (xd(k))), (3.103)

142 3 Optimal Tracking Control for Discrete-Time Systems

where g−1(xd(k))g(xd(k))= Im and Im is an m×m identity matrix.
By denoting

u(k)= up(k)− ud(k) (3.104)

and using (3.100)–(3.103), we obtain the new system as
⎧
⎨

⎩

e(k + 1) = f (e(k)+ xd(k))+ g(e(k)+ xd(k))g
−1(xd(k))(δ(xd(k))

− f (xd(k)))− δ(xd(k))+ g(e(k)+ xd(k))u(k)

xd(k + 1)= δ(xd(k)).

(3.105)

Note that in system (3.105), e(k) and xd(k) are regarded as the system variables,
while u(k) is seen as system input. The second equation of system (3.105) only
gives the evolution of the reference trajectory which is not affected by the system
input. Therefore, for simplicity, (3.105) can be rewritten as

e(k + 1)= F(e(k), u(k)). (3.106)

Now, let e(0) be an initial state of system (3.106) and define uN−1
0 = (u(0), u(1),

. . . , u(N − 1)) be a control sequence with which the system (3.106) gives a tra-
jectory starting from e(0): e(1), e(2), . . . , e(N). The number of elements in the
control sequence uN−1

0 is called the length of uN−1
0 and we denote it |uN−1

0 |.
Then |uN−1

0 | = N . The final state under the control sequence uN−1
0 is denoted

e(f)(e(0), uN−1
0)= e(N).

Definition 3.11 A nonlinear dynamical system is said to be stabilizable on a com-
pact set Ω ∈R

n, if for all initial conditions e(0) ∈Ω , there exists a control sequence
uN−1

0 = (u(0), u(1), . . . , u(N − 1)), u(i) ∈ R
m, i = 0,1, . . . ,N − 1, such that the

state e(f)(e(0), uN−1
0)= 0.

Let uN−1
k = (u(0), u(1), . . . , u(N −1)) be the control sequence starting at k with

length N − k. For the finite-horizon optimal tracking control problem, it is desired
to find the control sequence which minimizes the following cost function:

J
(
e(k), uN−1

k

)=
N−1∑

i=k

l(e(i), u(i)), (3.107)

where l is the utility function, l(0,0) = 0, l(e(i), u(i)) ≥ 0 for ∀ e(i), u(i). In this
section, the utility function is chosen as the quadratic form as follows:

l(e(i), u(i))= eT(i)Qe(i)+ uT(i)Ru(i).

This quadratic cost functional cannot only force the system state to follow the ref-
erence trajectory, but also force the system input to be close to the steady value in
maintaining the state to its reference value. In fact, it can also be expressed as

l(e(i), u(i))= [
eT(i) xT

d (i)
][Q 0

0 0

][
e(i)

xd(i)

]
+ uT(i)Ru(i)

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 143

from the view point of system (3.105).
In this sense, the nonlinear tracking control problem is converted into a regulation

problem and the finite-horizon cost functional for tracking is written in terms of e(i)
and u(i). Then, the problem of solving the finite-horizon optimal tracking control
law u∗

p for system (3.100) is transformed into seeking the finite-horizon optimal
control law u∗ for system (3.106) with respect to (3.107). As a result, we will focus
on how to design u∗ in the following.

For the finite-horizon optimal control problem, the designed feedback control
must be finite-horizon admissible, which means that it must not only stabilize the
controlled system on Ω within a finite number of time steps, but also guarantee the
cost functional to be finite.

Definition 3.12 A control sequence uN−1
k is said to be finite horizon admissible for

a state e(k) ∈ R
n with respect to (3.107) on Ω if uN−1

k is continuous on a compact
set Ωu ∈R

m, u(0)= 0, e(f)(e(k), uN−1
k)= 0 and J (e(k), uN−1

k) is finite.

Let Ae(k) = {u(k) : e(f)(e(k), u(k))= 0} be the set of all finite-horizon admissi-
ble control sequences of ek and

A
(i)
e(k) =

{
uk+i−1
k : e(f)(e(k), uk+i−1

k

)= 0,
∣∣uk+i−1

k

∣∣= i
}

be the set of all finite-horizon admissible control sequences of e(k) with length i.
Define the optimal value function as

J ∗(e(k))= inf
u(k)

{
J (e(k), u(k)) : u(k) ∈Ae(k)

}
. (3.108)

Note that (3.107) can be written as

J
(
e(k), uN−1

k

)= eT(k)Qe(k)+ uT(k)R(k)u(k)+
N−1∑

i=k+1

l(e(k), u(k))

= eT(k)Qe(k)+ uT(k)R(k)u(k)+ J
(
e(k + 1), uN−1

k+1

)
. (3.109)

Then, according to Bellman’s optimality principle, it is known that the optimal value
function J ∗(ek) satisfies the discrete-time HJB equation

J ∗(e(k))= min
u(k)

{
eT(k)Qe(k)+ uT(k)Ru(k)+ J ∗(e(k + 1))

}
. (3.110)

The optimal control u∗ satisfies the first-order necessary condition, which is
given by the gradient of the right hand side of (3.110) with respect to u(k). Then,

u∗(e(k))= −1

2
R−1gT(e(k)+ xd(k))

∂J ∗(e(k + 1))

∂e(k + 1)
. (3.111)

144 3 Optimal Tracking Control for Discrete-Time Systems

By substituting (3.111) into (3.110), the discrete-time HJB equation becomes

J ∗(e(k))= eT(k)Qe(k)+ 1

4

(
∂J ∗(e(k + 1))

∂e(k + 1)

)T

g(e(k)+ xd(k))R
−1

× gT(e(k)+ xd(k))
∂J ∗(e(k + 1))

∂e(k + 1)
+ J ∗(e(k + 1)), (3.112)

where J ∗(e(k)) is the optimal value function corresponding to the optimal control
law u∗(e(k)). Since the above discrete-time HJB equation cannot be solved exactly,
we will present a novel algorithm to approximate the value function iteratively in
next section. Before that, we make the following assumption.

Assumption 3.13 For system (3.105), the inverse of the control coefficient matrix
g(e(k)+ xd(k)) exists.

Based on Assumption 3.13, for given e(k) and xd(k), there exists an initial con-
trol u(k) which can drive e(k) to zero in one time step.

3.4.2 Finite-Horizon Optimal Tracking Control Based on ADP

3.4.2.1 Derivation of the Iterative ADP Algorithm

In this part, we present the iterative ADP algorithm, where the cost function and the
control law are updated by recursive iterations.

First, we start with the initial value function V0(·)= 0, and then solve for the law
of single control vector v0(ek) as follows:

v0(e(k))= arg min
u(k)

{
l(e(k), u(k))+ V0(e(k + 1))

}

subject to F(e(k), u(k))= 0. (3.113)

Once the control law v0(e(k)) is determined, we update the cost function as

V1(e(k))= min
u(k)

{
l(e(k), u(k))+ V0(e(k + 1))

}= l(e(k), v0(e(k))),

which can also be written as

V1(e(k))= min
u(k)

l(e(k), u(k)) subject to F(e(k), u(k))= 0

= l(e(k), v0(e(k))). (3.114)

Then, for i = 1,2, . . . , the iterative algorithm can be implemented for the control
law

vi(ek)= arg min
u(k)

{
l(e(k), u(k))+ Vi(e(k + 1))

}

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 145

= −1

2
R−1gT(e(k)+ xd(k))

∂Vi(e(k + 1))

∂e(k + 1)
(3.115)

and the value function

Vi+1(e(k))= min
u(k)

{
l(e(k), u(k))+ Vi(e(k + 1))

}

= l(e(k), vi(e(k)))+ Vi(F (e(k), vi(e(k)))). (3.116)

Remark 3.14 In the iterative ADP algorithm (3.113)–(3.116), i is the iteration index
of the control law and the value function, while k is the time index of the system’s
control and state trajectories. The value function and control law are updated until
they converge to the optimal ones.

Next, we will present a convergence proof of the iteration between (3.115)
and (3.116) with the value function Vi → J ∗ and the control law vi → u∗ as i → ∞.
Before that, we will see what Vi+1(ek) will be when it is expanded. According to
(3.114) and (3.116), we obtain

Vi+1(e(k))= min
u(k)

{
l(e(k), u(k))+ Vi(e(k + 1))

}

= min
uk+1
k

{
l(e(k), u(k))+ l(e(k + 1), u(k + 1))+ Vi−1(e(k + 2))

}

...

= min
uk+i−1
k

{
l(e(k), u(k))+ l(e(k + 1), u(k + 1))

+ · · · + l(e(k + i − 1), u(k + i − 1))+ V1(e(k + i))
}
, (3.117)

where

V1(e(k + i))= min
u(k+i)

l(e(k + i), u(k + i))

subject to F(e(k + i), u(k + i))= 0. (3.118)

Then, we have

Vi+1(e(k))= min
uk+i
k

i∑

j=0

l(e(k + j), u(k + j))

subject to F(e(k + i), u(k + i))= 0

= min
uk+i
k

{
V
(
e(k), uk+i

k

) : uk+i
k ∈A

(i+1)
e(k)

}
, (3.119)

146 3 Optimal Tracking Control for Discrete-Time Systems

which can also be written as

Vi+1(e(k))=
i∑

j=0

l(e(k + j), vi−j (e(k + j))) (3.120)

when using the notation in (3.115). These equations will be useful in the conver-
gence proof of the iterative ADP algorithm.

3.4.2.2 Convergence Analysis of the Iterative ADP Algorithm

Theorem 3.15 (cf. [18]) SupposeA(1)
e(k) �= ∅. Then, the value function sequence {Vi}

obtained by (3.113)–(3.116) is a monotonically nonincreasing sequence satisfying
Vi+1(e(k))≤ Vi(e(k)) for ∀i ≥ 1, i.e., V1(e(k))= max{Vi(e(k)) : i = 1,2, . . . }.

Proof We prove this theorem by mathematical induction. First, we let i = 1. The
value function V1(e(k)) is given in (3.114) and the finite-horizon admissible control
sequence is û

k
k = (v0(e(k))). Now, we show that there exists a finite-horizon ad-

missible control sequence ûk+1
k with length 2 such that V (e(k), ûk+1

k) = V1(e(k)).
Let ûk+1

k = (û
k
k,0); then |ûk+1

k | = 2. Since e(k + 1) = F(e(k), v0(e(k))) = 0 and
ûk+1 = 0, we have e(k + 2) = F(e(k + 1), û(k + 1)) = F(0,0) = 0. Thus, ûk+1

k

is a finite-horizon admissible control sequence. Since l(e(k + 1), û(k + 1)) =
U(0,0)= 0, we can obtain

V
(
e(k), û

k+1
k

)= l(e(k), v0(e(k)))+ l(e(k + 1), û(k + 1))

= l(e(k), v0(e(k)))

= V1(e(k)).

On the other hand, according to (3.119), we have

V2(e(k))= min
uk+1
k

{
V
(
e(k), uk+1

k

) : uk+1
k ∈A

(2)
e(k)

}
,

which reveals that

V2(e(k))≤ V
(
e(k), û

k+1
k

)= V1(e(k)). (3.121)

Therefore, the theorem holds for i = 1.
Next, assume that the theorem holds for any i = q , where q > 1. The current

value function can be expressed as

Vq(e(k))=
q−1∑

j=0

l(e(k + j), vq−1−j (e(k + j))),

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 147

where û
k+q−1
k = (vq−1(e(k)), vq−2(e(k + 1)), . . . , v0(e(k + q − 1))) is the corre-

sponding finite-horizon admissible control sequence.
Then, for i = q + 1, we can construct a control sequence û

k+q
k = (vq−1(e(k)),

vq−2(e(k + 1)), . . . , v0(e(k + q − 1)),0) with length q + 1. The error trajec-
tory is given as e(k), e(k + 1) = F(e(k), vq−1(e(k))), e(k + 2) = F(e(k + 1),
vq−2(e(k + 1))), . . . , e(k + q) = F(e(k + q − 1), v0(e(k + q − 1))) = 0,

e(k + q + 1) = F(e(k + q), û(k + q)) = F(0,0) = 0. This shows that ûk+q
k is a

finite-horizon admissible control sequence. As l(e(k + q), û(k + q))= l(0,0)= 0,
we obtain

V
(
e(k), û

k+q
k

)= l(e(k), vq−1(e(k)))+ l(e(k + 1), vq−2(e(k + 1)))

+ · · · + l(e(k + q − 1), v0(e(k + q − 1)))

+ l(e(k + q), û(k + q))

=
q−1∑

j=0

l(e(k + j), vq−1−j (e(k + j)))

= Vq(e(k)).

On the other hand, according to (3.119), we have

Vq+1(e(k))= min
u
k+q
k

{
V
(
e(k), u

k+q
k

) : uk+q
k ∈A

(q+1)
e(k)

}
,

which implies that

Vq+1(e(k))≤ V
(
e(k), û

k+q
k

)= Vq(e(k)). (3.122)

Accordingly, we complete the proof by mathematical induction. �

We have concluded that the value function sequence {Vi(ek)} is a monotoni-
cally nonincreasing sequence which is bounded below, and therefore, its limit ex-
ists. Here, we denote it as V∞(e(k)), i.e., limi→∞ Vi(e(k)) = V∞(e(k)). Next, let
us consider what will happen when we make i → ∞ in (3.116).

Theorem 3.16 (cf. [18]) For any discrete time step k and tracking error e(k), the
following equation holds:

V∞(e(k))= min
u(k)

{
l(e(k), u(k))+ V∞(e(k + 1))

}
. (3.123)

Proof For any admissible control τ(k)= τ(e(k)) and i, according to Theorem 3.15
and (3.116), we have

148 3 Optimal Tracking Control for Discrete-Time Systems

V∞(e(k))≤ Vi+1(e(k))

= min
u(k)

{
l(e(k), u(k))+ Vi(e(k + 1))

}

≤ l(e(k), τ (k))+ Vi(e(k + 1)).

Let i → ∞; we get

V∞(e(k))≤ l(e(k), τ (k))+ V∞(e(k + 1)).

Note that in the above equation, τ(k) is chosen arbitrarily. Thus, we can obtain

V∞(e(k))≤ min
u(k)

{
l(e(k), u(k))+ V∞(e(k + 1))

}
. (3.124)

On the other hand, let ε > 0 be an arbitrary positive number. Then, there exists a
positive integer l such that

Vl(e(k))− ε ≤ V∞(e(k))≤ Vl(e(k)), (3.125)

because Vi(e(k)) is nonincreasing for i ≥ 1 with V∞(e(k)) as its limit. Besides,
from (3.116), we obtain

Vl(e(k))= min
u(k)

{
l(e(k), u(k))+ Vl−1(e(k + 1))

}

= l(e(k), vl−1(e(k)))+ Vl−1(F (e(k), vl−1(e(k)))).

Combining with (3.125), we obtain

V∞(e(k))≥ l(e(k), vl−1(e(k)))+ Vl−1(F (e(k), vl−1(e(k))))− δ

≥ l(e(k), vl−1(e(k)))+ V∞(F (e(k), vl−1(e(k))))− δ

≥ min
u(k)

{L(e(k), u(k))+ V∞(e(k + 1))} − δ,

which reveals that

V∞(e(k))≥ min
u(k)

{
l(e(k), u(k))+ V∞(e(k + 1))

}
, (3.126)

because of the arbitrariness of ε. Based on (3.124) and (3.126), we conclude that
(3.123) is true. �

Next, we will prove that the value function sequence {Vi} converges to the opti-
mal value function J ∗ as i → ∞.

Theorem 3.17 (cf. [18]) Define the value function sequence {Vi} as in (3.116) with
V0(·) = 0. If the system state e(k) is controllable, then J ∗ is the limit of the value
function sequence {Vi}, i.e.,

V∞(e(k))= J ∗(e(k)).

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 149

Proof On one hand, in accordance with (3.108) and (3.119), we find

J ∗(e(k))= inf
u(k)

{
V (e(k), u(k)) : u(k) ∈Ae(k)

}

≤ min
uk+i−1
k

{
V
(
e(k), uk+i−1

k

) : uk+i−1
k ∈A

(i)
e(k)

}

= Vi(e(k)).

Letting i → ∞, we get

J ∗(e(k))≤ V∞(e(k)). (3.127)

On the other hand, according to the definition of J ∗(e(k)), for any η > 0, there
exists an admissible control sequence σ(k) ∈Ae(k) such that

V
(
e(k), σ (k)

)≤ J ∗(e(k))+ η. (3.128)

Now, we suppose that |σ(k)| = q , which shows that σ(k) ∈A
(q)

e(k). Then, we have

V∞(e(k))≤ Vq(e(k))

= min
u
k+q−1
k

{
V
(
e(k), u

k+q−1
k

) : uk+q−1
k ∈A

(q)

e(k)

}

≤ V
(
e(k), σ (k)

)
,

using Theorem 3.15 and (3.119). Combining with (3.128), we get

V∞(e(k))≤ J ∗(e(k))+ η.

Noticing that η is chosen arbitrarily in the above expression, we have

V∞(e(k))≤ J ∗(e(k)). (3.129)

Based on (3.127) and (3.129), we can conclude that J ∗(e(k)) is the limit of the value
function sequence {Vi} as i → ∞, i.e., V∞(e(k))= J ∗(e(k)). �

From Theorems 3.15–3.17, we find that the value function sequence {Vi(e(k))}
converges to the optimal value function J ∗(e(k)) of the discrete-time HJB equation,
i.e., Vi → J ∗ as i → ∞. Then, according to (3.111) and (3.115), we can conclude
the convergence of the corresponding control law sequence. Now, we present the
following corollary.

Corollary 3.18 Define the value function sequence {Vi} as in (3.116) with
V0(·)= 0, and the control law sequence {vi} as in (3.115). If the system state e(k)
is controllable, then the sequence {vi} converges to the optimal control law u∗ as
i → ∞, i.e.,

lim
i→∞vi(e(k))= u∗(e(k)).

150 3 Optimal Tracking Control for Discrete-Time Systems

3.4.2.3 The ε-Optimal Control Algorithm

According to Theorems 3.15–3.17 and Corollary 3.18, we should run the iter-
ative ADP algorithm (3.113)–(3.116) until i → ∞ to obtain the optimal value
function J ∗(e(k)), and then to get a control vector v∞(e(k)). Based on this
control vector, we can construct a control sequence u∞(e(k)) = (v∞(e(k)),

v∞(e(k + 1)), . . . , v∞(e(k + i)), . . .) to control the state to reach the target. Ob-
viously, u∞(e(k)) has infinite length. Though it is feasible in terms of theory, it is
always not practical to do so because most real-world systems need to be effectively
controlled within finite horizon. Therefore, in this section, we will propose a novel
ε-optimal control strategy using the iterative ADP algorithm to deal with the prob-
lem. The idea is that, for a given error bound ε > 0, the iterative number i will be
chosen so that the error between Vi(e(k)) and J ∗(e(k)) is within the bound.

Let ε > 0 be any small number, e(k) be any controllable state, and J ∗(e(k))
be the optimal value of the value function sequence defined as in (3.116). From
Theorem 3.17, it is clear that there exists a finite i such that

|Vi(e(k))− J ∗(e(k))| ≤ ε. (3.130)

The length of the optimal control sequence starting from e(k) with respect to ε is
defined as

Kε(e(k))= min{i : |Vi(e(k))− J ∗(e(k))| ≤ ε}. (3.131)

The corresponding control law

vi−1(e(k))= arg min
u(k)

{
l(e(k), u(k))+ Vi−1(e(k + 1))

}

= −1

2
R−1gT(e(k)+ xd(k))

∂Vi−1(e(k + 1))

∂e(k + 1)
(3.132)

is called the ε-optimal control and is denoted μ∗
ε(e(k)).

In this sense, we can see that an error ε between Vi(e(k)) and J ∗(e(k)) is intro-
duced into the iterative ADP algorithm, which makes the value function sequence
{Vi(e(k))} converge in a finite number of iteration steps.

However, the optimal criterion (3.130) is difficult to verify because the optimal
value function J ∗(e(k)) is unknown in general. Consequently, we will use an equiv-
alent criterion, i.e.,

|Vi(e(k))− Vi+1(e(k))| ≤ ε, (3.133)

replacing (3.130).
In fact, if |Vi(e(k)) − J ∗(e(k))| ≤ ε holds, we have Vi(e(k)) ≤ J ∗(e(k)) + ε.

Combining with J ∗(e(k))≤ Vi+1(e(k))≤ Vi(e(k)), we find that

0 ≤ Vi(e(k))− Vi+1(e(k))≤ ε,

which means

|Vi(e(k))− Vi+1(e(k))| ≤ ε.

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 151

On the other hand, according to Theorem 3.17, |Vi(e(k)) − Vi+1(e(k))| → 0
connotes that Vi(e(k))→ J ∗(e(k)). As a result, if |Vi(e(k))−Vi+1(e(k))| ≤ ε holds
for any given small ε, we can derive the conclusion that |Vi(e(k))− J ∗(e(k))| ≤ ε

holds if i is sufficiently large.

3.4.2.4 Summary of the Algorithm

The detailed design procedure for the finite-horizon nonlinear optimal tracking con-
trol scheme using the iterative ADP algorithm will be given as follows:

1. Specify an error bound ε for the given initial state x0. Choose imax, the reference
trajectory xd(k), and the matrices Q and R.

2. Compute e(k) according to (3.101) and (3.102).
3. Set i = 0, V0(e(k)) = 0. Obtain the initial finite-horizon admissible vector

v0(e(k)) by (3.113) and update the value function V1(e(k)) by (3.114).
4. Set i = i + 1.
5. Compute vi(e(k)) by (3.115) and compute the corresponding value function

Vi+1(e(k)) by (3.116).
6. If |Vi(e(k))− Vi+1(e(k))| ≤ ε, then go to Step 8; otherwise, go to Step 7.
7. If i > imax, then go to Step 8; otherwise, go to Step 4.
8. Stop.

After the optimal control law u∗(e(k)) for system (3.105) is derived under the
given error bound ε, we can compute the optimal tracking control input for the
original system (3.100) by

u∗
p(k)= u∗(e(k))+ ud(k)

= u∗(e(k))+ g−1(xd(k))(δ(xd(k))− f (xd(k))). (3.134)

3.4.2.5 Neural-Network Implementation of the Iterative ADP Algorithm
via HDP Technique

Now, we implement the iterative HDP algorithm in (3.113)–(3.116) using NNs. In
the iterative HDP algorithm, there are three networks, which are model network,
critic network, and action network. All the networks are chosen as three-layer feed-
forward NNs. The input of the critic network and the action network are e(k), while
the input of the model network is e(k) and v̂i (e(k)). The structure diagram of the
iterative HDP algorithm is shown in Fig. 3.16.

Model Network

The purpose of designing the model network is to approximate the error dynamics.
We should train the model network before carrying out the iterative HDP algorithm.

152 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.16 The structure diagram of the iterative HDP algorithm

For given e(k) and v̂i (e(k)), we can obtain the output of the model network as

ê(k + 1)=WT
mφ

(
V T
mz(k)

)
, (3.135)

where

z(k)= [
eT(k) v̂T

i (e(k))
]T
.

We define the error function of the model network as

em(k)= ê(k + 1)− e(k + 1). (3.136)

The weights in the model network are updated to minimize the following perfor-
mance measure:

Em(k)= 1

2
eT
m(k)em(k). (3.137)

Using the gradient-based adaptation rule, the weights can be updated as

Wm(j + 1)=Wm(j)− αm

[
∂Em(k)

∂Wm(j)

]
, (3.138)

Vm(j + 1)= Vm(j)− αm

[
∂Em(k)

∂Vm(j)

]
, (3.139)

where αm > 0 is the learning rate of the model network, and j is the iterative step
for updating the weight parameters.

After the model network is trained, its weights are kept unchanged.

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 153

Critic Network

The critic network is used to approximate the value function Vi(e(k)). The output
of the critic network is denoted

V̂i(e(k))=WT
ciφ

(
V T
cie(k)

)
. (3.140)

The target function can be written as

Vi(e(k))= eT(k)Qe(k)+ vT
i−1(e(k))Rvi−1(e(k))+ V̂i−1(ê(k + 1)). (3.141)

Then, we define the error function for the critic network as

eci(k)= V̂i (e(k))− Vi(e(k)). (3.142)

The objective function to be minimized for the critic network is

Eci(k)= 1

2
eT
ci(k)eci(k). (3.143)

The weight updating rule for training the critic network is also a gradient-based
adaptation, given by

Wci(j + 1)=Wci(j)− αc

[
∂Eci(k)

∂Wci(j)

]
, (3.144)

Vci(j + 1)= Vci(j)− αc

[
∂Eci(k)

∂Vci(j)

]
, (3.145)

where αc > 0 is the learning rate of the critic network, and j is the inner-loop itera-
tive step for updating the weight parameters.

Action Network

In the action network, the state e(k) is used as input to obtain the optimal control.
The output can be formulated as

v̂i (e(k))=WT
aiφ

(
V T
aie(k)

)
. (3.146)

The target control input is given by

vi(e(k))= −1

2
R−1gT(e(k)+ xd(k))

∂V̂i(ê(k + 1))

∂ê(k + 1)
. (3.147)

The error function of the action network can be defined as

eai(k)= v̂i (e(k))− vi(e(k)). (3.148)

154 3 Optimal Tracking Control for Discrete-Time Systems

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eai(k)= 1

2
eT
ai(k)eai(k). (3.149)

Similarly, the weight updating algorithm is

Wai(j + 1)=Wai(j)− αa

[
∂Eai(k)

∂Wai(j)

]
, (3.150)

Vai(j + 1)= Vai(j)− αa

[
∂Eai(k)

∂Vai(j)

]
, (3.151)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iterative step for updating the weight parameters.

3.4.3 Simulations

In this part, two simulation examples are provided to confirm the theoretical results.

Example 3.19 The first example is derived from [5] with some modifications. Con-
sider the following nonlinear system:

x(k + 1)= f (x(k))+ g(x(k))up(k), (3.152)

where x(k)= [x1(k) x2(k)]T ∈R
2 and up(k)= [up1(k) up2(k)]T ∈R

2 are the state
and control variables, respectively. The parameters of the value function are chosen
as Q= 0.5I and R = 2I , where I denotes the identity matrix with suitable dimen-
sions. The state of the controlled system is initialized by x(0)= [0.8 − 0.5]T. The
system functions are given as

f (x(k))=
[

sin(0.5x2(k))x
2
1(k)

cos(1.4x2(k)) sin(0.9x1(k))

]
, g(x(k))=

[
1 0
0 1

]
.

The reference trajectory for the above system is selected as

xd(k)=
[

sin(0.25(k))
cos(0.25(k))

]
.

We set the error bound of the iterative HDP algorithm as ε = 10−5 and im-
plement the algorithm at time instant k = 0. The initial control vector of sys-
tem (3.105) can be computed as v0(e(0)) = [0.64 sin(0.25) − sin(0.72) cos(0.7)]T,
where e(0)= [0.8 −1.5]T. Then, we choose three-layer feedforward NNs as model
network, critic network, and action network with the structures 4–8–2, 2–8–1, 2–
8–2, respectively. The initial weights of the three networks are all set to be random

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 155

Fig. 3.17 The convergence process of the cost function

in [−1,1]. It should be mentioned that the model network should be trained first.
We train the model network for 1000 steps using 500 samples under the learning
rate αm = 0.1. After the training of the model network is completed, the weights
are kept unchanged. Then, we train the critic network and the action network for
20 iterations (i.e., for i = 1,2, . . . ,20) with each iteration of 2000 training steps
to make sure the given error bound ε = 10−5 is reached. In the training process,
the learning rate is αc = αa = 0.05. The convergence process of the value func-
tion of the iterative HDP algorithm is shown in Fig. 3.17, for k = 0. We can
see that the iterative value function sequence does converge to the optimal value
function quite rapidly, which indicates the effectiveness of the iterative HDP al-
gorithm. Therefore, we have |V19(e(0)) − V20(e(0))| ≤ ε, which means that the
number of steps of the ε-optimal control is Kε(e(0)) = 19. Besides, the ε-optimal
control law μ∗

ε(e(0)) for system (3.105) can also be obtained during the iterative
process.

Next, we compute the near-optimal tracking control law for the original sys-
tem (3.100) using (3.134) and apply it to the controlled system for 40 time steps.
The obtained state trajectories are shown in Figs. 3.18 and 3.19, where the corre-
sponding reference trajectories are also plotted to evaluate the tracking performance.
The tracking control trajectories and the tracking errors are shown in Figs. 3.20
and 3.21, respectively. Besides, we can derive that the tracking error becomes
e(19) = [0.2778 × 10−5 − 0.8793 × 10−5]T after 19 time steps. These simula-
tion results verify the excellent performance of the tracking controller developed by
the iterative ADP algorithm.

156 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.18 The state trajectory x1 and the reference trajectory r1

Fig. 3.19 The state trajectory x2 and the reference trajectory r2

Example 3.20 The second example is obtained from [20]. Consider the nonlinear
discrete-time system described by (3.152) where

f (x(k))=
[

0.2x1(k)e
x2

2 (k)

0.3x3
2(k)

]
, g(x(k))=

[−0.2 0
0 −0.2

]
.

3.4 Finite-Horizon Optimal Tracking Control Based on ADP 157

Fig. 3.20 The tracking control trajectories up

Fig. 3.21 The tracking error e

The desired trajectory is set to

xd(k)=
[

sin(k + 0.5π)
0.5 cosk

]
.

158 3 Optimal Tracking Control for Discrete-Time Systems

Fig. 3.22 Simulation results of Example 3.20

In the implementation of the iterative HDP algorithm, the initial weights and
structures of three networks are set in the same way as Example 3.19.

Then, for the given initial state x(0)= [1.5 1]T, we train the model network for
10000 steps using 1000 data samples under the learning rate αm = 0.05. Besides,
the critic network and the action network are trained for 5000 iterations so that the
given error bound ε = 10−6 is reached. The learning rate in the training process is
also αc = αa = 0.05.

The convergence process of the value function of the iterative HDP algorithm is
shown in Fig. 3.22(a), for k = 0. Then, we apply the tracking control law to the
system for 250 time steps and obtain the state and reference trajectories shown
in Figs. 3.22(b) and (c). Besides, the tracking control trajectories are given in
Fig. 3.22(d). It is clear from the simulation results that the iterative HDP algorithm
developed in this section is very effective in solving the finite-horizon tracking con-
trol problem.

3.5 Summary

In this chapter, we studied the optimal tracking control problem for discrete-time
affine nonlinear systems via the ADP approach. In Sect. 3.2, the infinite-horizon
optimal tracking control problem for discrete-time affine nonlinear systems was in-
vestigated. Then, we focused on a class of infinite-horizon discrete-time nonaffine

References 159

nonlinear systems in Sect. 3.3. In Sect. 3.4, the finite-horizon optimal tracking con-
trol problem was studied. Several numerical simulations showed that the present
methods are effective and can be used for a wide class of nonlinear systems.

References

1. Aganovic Z, Gajic Z (1994) The successive approximation procedure for finite-time optimal
control of bilinear systems. IEEE Trans Autom Control 39:1932–1935

2. Cimen T, Banks SP (2004) Nonlinear optimal tracking control with application to super-
tankers for autopilot design. Automatica 40:1845–1863

3. Cui LL, Zhang HG, Chen B, Zhang QL (2010) Asymptotic tracking control scheme for me-
chanical systems with external disturbances and friction. Neurocomputing 73:1293–1302

4. Devasiad S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans
Autom Control 41:930–942

5. Dierks T, Jagannathan S (2009) Optimal tracking control of affine nonlinear discrete-time
systems with unknown internal dynamics. In: Proceedings of joint 48th IEEE conference on
decision and control and 28th Chinese control conference, Shanghai, China, pp 6750–6755

6. Enns R, Si J (2003) Helicopter trimming and tracking control using direct neural dynamic
programming. IEEE Trans Neural Netw 14:929–939

7. Gao D, Tang G, Zhang B (2006) Approximate optimal tracking control for a class of nonlinear
systems with disturbances. In: Proceedings of 6th world congress on intelligent control and
automation, Dalian, China, pp 521–525

8. Ha IJ, Gilbert EG (1987) Robust tracking in nonlinear systems. IEEE Trans Autom Control
32:763–771

9. Hsu CT, Chen SL (2003) Nonlinear control of a 3-pole active magnetic bearing system. Au-
tomatica 39:291–298

10. Lewis FL, Syrmos VL (1995) Optimal control. Wiley, New York
11. Mclain TW, Bailry CA, Beard RW (1999) Synthesis and experimental testing of a nonlinear

optimal tracking controller. In: Proceedings of the American control conference, San Diego,
CA, USA, pp 2847–2851

12. Park YM, Choi MS, Lee KY (1996) An optimal tracking neuro-controller for nonlinear dy-
namic systems. IEEE Trans Neural Netw 7:1009–1110

13. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22:400–407
14. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans

Neural Netw 12:264–276
15. Stefano ML (1981) Optimal design of PID regulators. Int J Control 33:601–616
16. Yang Q, Jagannathan S (2007) Online reinforcement learning neural network controller de-

sign for nanomanipulation. In: Proceedings of the IEEE symposium on approximate dynamic
programming and reinforcement learning, Honolulu, HI, pp 225–232

17. Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon
optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Trans Neural
Netw 22:24–36

18. Wang D, Liu D, Wei Q (2012) Finite-horizon neuro-optimal tracking control for a class of
discrete-time nonlinear systems using adaptive dynamic programming approach. Neurocom-
puting 78:14–22

19. Zhang HG, Yang J, Su CY (2007) T-S fuzzy-model-based robust H-infinity design for net-
worked control systems with uncertainties. IEEE Trans Ind Inform 3:289–301

20. Zhang HG, Wei QL, Luo YH (2008) A novel infinite-time optimal tracking control scheme
for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE
Trans Syst Man Cybern, Part B, Cybern 38:937–942

160 3 Optimal Tracking Control for Discrete-Time Systems

21. Zhang HG, Wang ZS, Liu DR (2009) Global asymptotic stability and robust stability of a class
of Cohen–Grossberg neural networks with mixed delays. IEEE Trans Circuits Syst I, Regul
Pap 56:616–629

22. Zheng CD, Zhang HG (2007) Generalized multivariate rectangular matrix Pade-type approx-
imants. IEEE Trans Circuits Syst I, Regul Pap 54:2099–2105

23. Zheng CD, Zhang HG, Tian H (2007) Generalized homogeneous multivariate matrix Pade-
type approximants and Pade approximants. IEEE Trans Autom Control 52:2160–2165

24. Zheng CD, Zhang HG, Wang ZS (2009) Delay-dependent globally exponential stability crite-
ria for static neural networks: an LMI approach. IEEE Trans Neural Netw 56:605–609

Chapter 4
Optimal State Feedback Control of Nonlinear
Systems with Time Delays

4.1 Introduction

For time-delay system, much research is about decentralized control, synchroniza-
tion control, and stability analysis [4–7, 10–13, 15, 16]. However, the optimal con-
trol problem is often encountered in industrial production. So in this chapter, the op-
timal state feedback control problems of nonlinear systems with time delays will be
discussed. In general, the optimal control for the time-delay systems is an infinite-
dimensional control problem [1], which is very difficult to solve. The analysis of
systems with time delays is much more difficult than that of systems without de-
lays, and there is no method strictly facing this problem for nonlinear time-delay
systems.

In Sect. 4.2, the optimal state feedback control problem of nonlinear systems
with time delays both in states and controls is solved. By introducing a delay ma-
trix function, we can obtain the explicit expression of the optimal control function.
Also, it is proved that the value function converges to the optimum using the present
iterative ADP algorithm.

In Sect. 4.3, we study the optimal control problem of nonlinear time-delay
systems with saturating actuators. First, the HJB equation for time-delay sys-
tems with saturating actuators is derived using a nonquadratic function. In or-
der to solve this HJB equation, two optimization searching processes are de-
veloped. We also give the convergence proof for the new iterative HDP algo-
rithm. Finally, two neural networks are used to implement the iterative HDP al-
gorithm.

The above two sections are for the infinite-horizon optimal control problem. To
the best of our knowledge, only [8] presented finite-horizon optimal control in detail.
However, time-delay nonlinear systems have not been considered. So, we develop
an effective algorithm to solve the finite-horizon optimal control problem for a class
of time-delay systems in Sect. 4.4.

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_4,
© Springer-Verlag London 2013

161

http://dx.doi.org/10.1007/978-1-4471-4757-2_4

162 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

4.2 Infinite-Horizon Optimal State Feedback Control via Delay
Matrix

4.2.1 Problem Formulation

We consider the following discrete-time affine nonlinear system with time delays in
state and control variables:

x(k + 1)= f (x(k), x(k − σ))+ g0(x(k), x(k − σ))u(k)

+ g1(x(k), x(k − σ))u(k − τ), (4.1)

with the initial condition given by x(s) = φ(s), s = −σ,−σ + 1, . . . ,0, where
x(k) ∈ R

n is the state vector, f : Rn × R
n → R

n, and g0, g1 : Rn × R
n → R

n×m

are differentiable functions and we have the control u(k) ∈ R
m. The state and con-

trol delays σ and τ are both nonnegative integers. Assume that f (x(k), x(k−σ))+
g0(x(k), x(k − σ))u(k)+ g1(x(k), x(k − σ))u(k − τ) is Lipschitz continuous on a
set Ω in R

n containing the origin, and that the system (4.1) is controllable in the
sense that there exists a bounded control on Ω that asymptotically stabilizes the
system. In this section, we mainly discuss how to design an optimal state feedback
controller for this class of delayed discrete-time systems. Therefore, we desire to
find the optimal control u(x) satisfying u(x(k))= u(k) to minimize the generalized
cost functional as follows:

J (x(0), u)=
∞∑

k=0

{
xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ uT(k)R0u(k)

+ 2uT(k)R1u(k − τ)+ uT(k − τ)R2u(k − τ)
}
, (4.2)

where
[Q0 Q1

QT
1 Q2

] ≥ 0 and
[R0 R1

RT
1 R2

]
> 0 and l(x(k), x(k − σ),u(k), u(k − τ)) =

xT(k)Q0x(k) + 2xT(k)Q1x(k − σ) + xT(k − σ)Q2x(k − σ) + uT(k)R0u(k) +
2uT(k)R1u(k − τ)+ uT(k − τ)R2u(k − τ) is the utility function. Let J ∗(x) denote
the optimal value function which satisfies

J ∗(x)= min
u

J (x,u). (4.3)

According to Bellman’s optimality principle, we get the following HJB equation:

J ∗(x(k))= min
u(k)

{
xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ uT(k)R0u(k)

+ 2uT(k)R1u(k − τ)+uT(k − τ)R2u(k − τ)

+ J ∗(x(k + 1))
}
. (4.4)

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 163

For an optimal control problem, the state feedback control u(x) must not only sta-
bilize the system on Ω but also guarantee that (4.2) is finite, i.e., u(x) must be
admissible.

4.2.2 Optimal State Feedback Control Using Delay Matrix

Noting that the nonlinear delayed system (4.1) is infinite-dimensional, the control
variable u(k) couples with u(k− τ). It is nearly impossible to obtain the expression
of the optimal control by solving the HJB equation (4.4). To overcome the difficulty,
a new iterative algorithm is developed in this section.

Lemma 4.1 For the delayed nonlinear system (4.1) with respect to the cost func-
tional (4.2), if there exists a control u(k) �= 0 at time step k, then there exists a
bounded matrix function M(k) so that

u(k − τ)= M(k)u(k). (4.5)

Proof As u(k) and u(k−τ) are bounded real vectors, so we can construct a function
that satisfies

u(k − τ)= h(u(k)). (4.6)

Then, using the method of undetermined coefficients, let M(u(k)) satisfy

h(u(k))= M(u(k))u(k). (4.7)

Then we obtain M(u(k)) expressed as

M(u(k))= h(u(k))uT(k)
(
u(k)uT(k)

)−1
, (4.8)

where (u(k)uT(k))−1 means the generalized inverse matrix of (u(k)uT(k)). On the
other hand, since u(k) and u(k− τ) are both bounded real vectors, we have h(u(k))
and (u(k)uT(k))−1 are bounded. So M(k)=M(u(k)) is the solution. �

According to Lemma 4.1, the HJB equation becomes

J ∗(x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)+ xT(k − σ)Q2x(k − σ)

+ u∗T(k)R0u
∗(k)+ 2u∗T(k)R1M

∗(k)u∗(k)

+ u∗T(k)M∗T(k)R2M
∗(k)u∗(k)+ J ∗(x(k + 1)), (4.9)

where u∗(k) is the optimal control and u∗(k − τ)=M∗(k)u∗(k).

164 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

According to Bellman’s principle of optimality, we can obtain the optimal control
by differentiating the HJB equation (4.9) with respect to the control u. Then we
obtain the optimal control u∗(k) formulated as

u∗(k)= − 1

2

(
R0 + 2R1M

∗(k)+M∗T(k)R2M
∗(k)

)−1

× (
g0 (x(k), x(k − σ))+ g1 (x(k), x(k − σ))M∗(k)

)T

× ∂J ∗(x(k + 1))

∂x(k + 1)
. (4.10)

In (4.10), the inverse of
(
R0 + 2R1M

∗(k)+M∗T(k)R2M
∗(k)

)
should exist.

From (4.10), the explicit optimal control expression u∗ is obtained by solving the
HJB equation (4.9). We see that the optimal control u∗ depends on M∗ and J ∗(x),
where J ∗(x) is a solution of the HJB equation (4.9). It is still an open question how
to solve the HJB equation and there is currently no method for rigorously seeking for
the value function of this delayed optimal control problem. Furthermore, the optimal
delay matrix function M∗ is also unknown, which makes the optimal control u∗
more difficult to obtain. So an iterative index i is introduced into the ADP approach
to obtain the optimal control iteratively.

First, for i = 0,1, . . . , let

u[i+1](k − τ)= M [i](k)u[i+1](k), (4.11)

where M [0](k)= I and u[0](k − τ)=M [0](k)u[0](k). We start with an initial value
function V [0](x(k))= 0, and the control u[0](k) can be computed as follows:

u[0](x(k))= arg min
u

{
Γ [0] + V [0](x(k + 1))

}
, (4.12)

where

Γ [0] = xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ u[0]T(k)R0u
[0](k)

+ 2u[0]T(k)R1M
[0](k)u[0](k)

+ u[0]T(k)M [0]T(k)R2M
[0](k)u[0](k).

Then, the value function is updated as

V [1](x(k))= Γ [0] + V [0](x(k + 1)). (4.13)

Thus, for i = 1,2, . . . , the iterative ADP can be used to implement the iteration
between

u[i](x(k))= arg min
u

{
Γ [i] + V [i](x(k + 1))

}

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 165

= − 1

2

(
R0 + 2R1M

[i−1](k)+M [i−1]T(k)R2M
[i−1](k)

)−1

×
(
g0(x(k), x(k − σ))+ g1 (x(k), x(k − σ))M [i−1](k)

)T

× ∂V [i](x(k + 1))

∂x(k + 1)
, (4.14)

where

Γ [i] = xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ u[i]T(k)R0u
[i](k)

+ 2u[i]T(k)R1M
[i−1](k)u[i](k)

+ u[i]T(k)M [i−1]T(k)R2M
[i−1](k)u[i](k),

and

V [i+1](x(k))= Γ [i] + V [i](x(k + 1)). (4.15)

From (4.14) and (4.15), it can be seen that, during the iterative process, the con-
trol actions for different control steps obey different control laws. After iteration i,
the obtained control law sequence is (u[0], u[1], . . . , u[i]). For the infinite-horizon
problem, both the optimal value function and the optimal control law are unique.
Therefore, it is necessary to show that the iterative value function V [i](x(k)) will
converge when iteration i → ∞ under the iterative control u[i](k) and this will be
proved in the following.

Lemma 4.2 Let ũ[i](k), k = 0,1 . . . be any sequence of control, and let u[i](k) be
expressed as (4.14). Define V [i+1](x(k)) as (4.15) and Λ[i+1](x(k)) as

Λ[i+1](x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ ũ[i]T(k)R0ũ
[i](k)

+ 2ũ[i]T(k)R1M
[i−1](k)ũ[i](k)

+ ũ[i]T(k)M [i−1]T(k)R2M
[i−1](k)ũ[i](k)

+Λ[i](x(k + 1)). (4.16)

If V [0](x(k))=Λ[0](x(k))= 0, then V [i](x(k))≤Λ[i](x(k)), ∀i.

In order to prove the convergence of the value function, the following theorem is
also necessary.

Theorem 4.3 (cf. [9]) Let the value function V [i](x(k)) be defined by (4.15). If
x(k) of the system (4.1) is controllable, then there exists an upper bound Y such
that 0 ≤ V [i](x(k))≤ Y , ∀i.

166 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Proof As the system (4.1) is Lipschitz, M [i](k) is a bounded matrix for i = 0,1,
Define a delay matrix function M̄(k) which enforces

χT (R0 + 2R1M̄(k)+ M̄T(k)R2M̄(k)
)
χ

− χT
(
R0 + 2R1M

[i](k)+M [i]T(k)R2M
[i](k)

)
χ ≥ 0 (4.17)

for ∀i, where χ is any nonzero m-dimensional vector. Let ū(k), k = 0,1 . . . be any
admissible control input. Define a new sequence P [i](x(k)) as follows:

P [i+1](x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ ūT(k)R0ū(k)

+ 2ūT(k)R1M̄(k)ū(k)

+ ūT(k)M̄T(k)R2M̄(k)ū(k)+P [i](x(k + 1)), (4.18)

where we let P [0](x(k))= V [0](x(k))= 0 and ū(k − τ)= M̄(k)ū(k). V [i](x(k)) is
updated by (4.15). Thus, we obtain

P [i+1](x(k))−P [i](x(k)) = P [i](x(k + 1))−P [i−1](x(k + 1))

...

= P [1](x(k + i))−P [0](x(k + i)).

(4.19)

Because P [0](x(k + i))= 0, we have

P [i+1](x(k))= P [1](x(k + i))+ P [i](x(k))

=
i∑

j=0

P [1](x(k + j)). (4.20)

According to (4.18), (4.20) can be rewritten as

P [i+1](x(k))=
i∑

j=0

Ξ(k + j)≤
∞∑

j=0

Ξ(k + j), (4.21)

where

Ξ(k + j)= xT(k + j)Q0x(k + j)+ 2xT(k + j)Q1x(k + j − σ)

+ xT(k + j − σ)Q2x(k + j − σ)+ ūT(k + j)R0ū(k + j)

+ 2ūT(k + j)R1M̄(k + j)ū(k + j)

+ ūT(k + j)M̄T(k + j)R2M̄(k + j)u(k + j).

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 167

Noting that the control input ū(k), k = 0,1, . . . , is an admissible control, we obtain

∀i : P [i+1](x(k))≤
∞∑
j=0

P [i+j](x(k + j))≤Y. (4.22)

From Lemma 4.1, we have

∀i : V [i+1](x(k))≤ P [i+1](x(k))≤Y. (4.23)

This completes the proof. �

With Lemma 4.1 and Theorem 4.3, the following main theorem can be derived.

Theorem 4.4 Define the value function V [i](x(k)) as (4.15), with V [0](x(k)) = 0.
If x(k) for the system (4.1) is controllable, then V [i](x(k)) is a nondecreasing
sequence satisfying V [i](x(k)) ≤ V [i+1](x(k)), and V [i](x(k)) is convergent as
i → ∞.

Proof For convenience in our analysis, define a new sequenceΦ[i](x(k)) as follows:

Φ[i+1](x(k))=xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+xT(k−σ)Q2x(k−σ)+u[i+1]T(k)R0u
[i+1](k)

+ 2u[i+1]T(k)R1M
(i)(k)u[i+1](k)

+ u[i+1]T(k)M [i]T(k)R2M
[i](k)u[i+1](k)

+Φ[i](x(k + 1)), (4.24)

where u[i](k) is obtained by (4.14) and Φ[0](x(k))= V [0](x(k))= 0.
In the following part, we prove Φ[i](x(k)) ≤ V [i+1](x(k)) by mathematical in-

duction.
First, we prove that it holds for i = 0. Noting that

V [1](x(k))−Φ[0](x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)

≥ 0, (4.25)

for i = 0, we get

V [1](x(k))≥Φ[0](x(k)). (4.26)

Second, we assume it holds for i − 1, i.e., V [i](x(k))−Φ[i−1](x(k))≥ 0, ∀x(k).
Then, for i, from (4.15) and (4.24), we obtain

V [i+1](x(k))−Φ[i](x(k))= V [i](x(k + 1))−Φ[i−1](x(k + 1))

≥ 0, (4.27)

168 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

i.e.,

Φ[i](x(k))≤ V [i+1](x(k)). (4.28)

Thus, the mathematical induction proof is completed.
Moreover, from Lemma 4.1, we know that V [i](x(k))≤Φ[i](x(k)) and therefore

we obtain

V [i](x(k))≤Φ[i](x(k))≤ V [i+1](x(k)), (4.29)

which proves that V [i](x(k)) is a nondecreasing sequence bounded by (4.23).
Hence, we conclude that V [i](x(k)) is a nondecreasing convergent sequence as
i → ∞. �

Corollary 4.5 If Theorem 4.4 holds, then the delay matrix function M [i](k) is a
convergent sequence as i → ∞.

According to Corollary 4.5, we define

M [∞](k)= lim
i→∞M [i](k). (4.30)

Next, we will prove that the value function sequence V [i](x(k)) converges to
J ∗(x(k)) as i → ∞. As V [i](x(k)) is a convergent sequence as i → ∞, we define

V [∞](x(k))= lim
i→∞V [i](x(k)). (4.31)

Let ūl be the lth admissible control; then, similar to the proof of Theorem 4.3,
we can construct the value function sequence P [i]

l (x) as follows:

P
[i+1]
l (x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)

+ ūT
l (k)R0ūl(k)+ 2ūl(k)R1M

[∞](k)ūl(k)

+ ūl(k)M
[∞]T(k)R2M

[∞](k)ūl(k)

+ P
[i]
l (x(k + 1)), (4.32)

with P
[0]
l (·) = 0 and ūl(k) = M [∞](k)ūl(k − τ). According to Theorem 4.3, we

have

P
[i+1]
l (x(k))=

i∑

j=0

{
xT(k + j)Q0x(k + j)+ 2xT(k + j)Q1x(k + j − σ)

+ xT(k + j − σ)Q2x(k + j − σ)+ ūT
l (k + j)R0ūl(k + j)

+ 2ūT
l (k + j)R1M

[∞](k + j)ūl(k + j)

+ ūT
l (k + j)M [∞]T(k + j)R2M

[∞](k + j)ūl(k + j
}
. (4.33)

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 169

Let

P
[∞]
l (x(k))= lim

i→∞P
[i+1]
l (x(k)); (4.34)

then we have

P
[i]
l (x(k))≤ P

[∞]
l (x(k)). (4.35)

Theorem 4.6 Define P [∞]
l (x(k)) as in (4.34). Define the value function V [i](x(k))

as in (4.15) with V [0](·) = 0. For any state vector x(k), define J ∗(x(k)) =
minl{P [∞]

l (x(k))}. Then we conclude that J ∗(x(k)) is the limit of the value function
V [i](x(k)) as i → ∞.

Proof For any l, there exists an upper bound Yl such that

P
[i+1]
l (x(k))≤ P

[∞]
l (x(k))≤ Yl. (4.36)

According to (4.23), for ∀l, we have

V [∞](x(k))≤ P
[∞]
l (x(k))≤ Yl. (4.37)

Since J ∗(x(k)) = minl{P [∞]
l (x(k))}, for any ε > 0, there exists an admis-

sible control ūK , where K is a nonnegative number such that the associated
value function satisfies P [∞]

K (x(k)) ≤ J ∗(x(k)) + ε. According to (4.23), we have

V [∞](x(k)) ≤ P
[∞]
l (x(k)) for any l. Thus, we obtain V [∞](x(k)) ≤ P

[∞]
K (x(k)) ≤

J ∗(x(k))+ ε. Noting that ε is chosen arbitrarily, we have

V [∞](x(k))≤ J ∗(x(k)). (4.38)

On the other hand, since V [i](x(k)) is bounded for ∀i, according to the defi-
nition of admissible control, the control sequence associated with the value func-
tion V [∞](x(k)) must be an admissible control, i.e., there exists an admissible

control ū[i]
N such that V [∞](x(k)) = P

[∞]
N (x(k)). Combining with the definition

J ∗(x(k))= minl{P [∞]
l (x(k))}, we obtain

V [∞](x(k))≥ J ∗(x(k)). (4.39)

Therefore, combining (4.38) and (4.39), we conclude that

V [∞](x(k))= lim
i→∞V [i](x(k))= J ∗(x(k)), (4.40)

i.e., J ∗(x(k)) is the limit of the value function V [i](x(k)), as i → ∞. �

Based on Theorem 4.6, we will prove that the value function J ∗(x(k)) satisfies
the principle of optimality, which shows that V [i](x(k)) can reach the optimum as
i → ∞.

170 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Theorem 4.7 Consider any state vector x(k). The “optimal” value function
J ∗(x(k)) satisfies

J ∗(x(k))= min
u(k)

{xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)+ xT(k − σ)Q2x(k − σ)

+ uT(k)R0u(k)+ 2uT(k)R1M(k)u(k)

+ uT(k)M(k)R2M(k)u(k)+ J ∗(x(k + 1))}, (4.41)

where u(k − τ)=M(k)u(k).

Proof For any u(k) and i, based on Bellman’s optimality principle, we have

V [i](x(k))≤ Υ [i−1] + V [i−1](x(k + 1)), (4.42)

where

Υ [i−1] = xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)

+ uT(k)R0u(k)+ 2uT(k)R1M
[i−1](k)u(k)

+ uT(k)M [i−1]T(k)R2M
[i−1](k)u(k).

As V [i](x(k)) ≤ V [i+1](x(k)) ≤ V [∞](x(k)) and V [∞](x(k)) = J ∗(x(k)), we ob-
tain

V [i](x(k))≤ Υ [i−1] + J ∗(x(k + 1)). (4.43)

Let i → ∞; we have

J ∗(x(k))≤ Υ [∞] + J ∗(x(k + 1)). (4.44)

Since u(k) in the above equation is chosen arbitrarily, the following equation holds:

J ∗(x(k))≤ min
u(k)

{
Υ [∞] + J ∗(x(k + 1))

}
. (4.45)

On the other hand, for any i, the value function satisfies

V [i](x(k))= Ω [i−1] + V [i−1](x(k + 1)), (4.46)

where

Ω [i−1] = xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ u[i−1]T(k)R0u
[i−1](k)

+ 2u[i]T(k)R1M
[i−2](k)u[i−1]T(k)

+ u[i−1]T(k)M [i−2]T(k)R2M
[i−2](k)u[i−1]T(k).

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 171

Combining with V [i](x(k))≤ J ∗(x(k)),∀i, we have

J ∗(x(k))≥Ω [i−1] + V [i−1](x(k + 1)). (4.47)

Let i → ∞; then

J ∗(x(k))≥ lim
i→∞

{
Ω [i−1] + V [i−1](x(k + 1))

}

≥ min
u(k)

{
Ω [∞] + J ∗(x(k + 1))

}
. (4.48)

Combining (4.45) with (4.48), we have

J ∗(x(k))= min
u(k)

{Ω [∞] + J ∗(x(k + 1))}

= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ u∗T(k)R0u
∗(k)

+ 2u∗T(k)R1M
[∞](k)u∗(k)

+ u∗T(k)M [∞]T(k)R2M
[∞](k)u∗(k)

+ J ∗(x(k + 1)). (4.49)

Thus, we have u[i](k) → u∗(k) as i → ∞. So does u[i](k − τ). On the other hand,
we also have M [i](k)→M [∞](k) and u[i](k − τ)=M [i−1](k)u[i](k). Let i → ∞,
and we get

u∗(k − τ)= M [∞](k)u∗(k). (4.50)

Therefore, we have M [∞](k)=M∗(k), and (4.49) can be written as

J ∗(x(k))= xT(k)Q0x(k)+ 2xT(k)Q1x(k − σ)

+ xT(k − σ)Q2x(k − σ)+ u∗T(k)R0u
∗(k)

+ 2u∗T(k)R1M
∗(k)u∗(k)

+ u∗T(k)M∗T(k)R2M
∗(k)u∗(k)

+ J ∗(x(k + 1)), (4.51)

where u∗(k − τ)=M∗(k)u∗(k). �

Therefore, we conclude that the value function V [i](x(k)) converges to the opti-
mum J ∗(x(k)) as i → ∞.

In the case of linear systems, the value function is quadratic and the control law is
linear. In the nonlinear case, this is not necessarily true and therefore we use neural
networks to approximate u[i](k) and V [i](x(k)).

172 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Fig. 4.1 The structure diagram of the algorithm

The number of hidden layer neurons is denoted by N1, the weight matrix between
the input layer and hidden layer is denoted by V , and the weight matrix between the
hidden layer and output layer is denoted by W . Then, the output of the three-layer
NN is represented by

F̂ (X,V,W)= WTφ(V TX), (4.52)

where φ(V TX) ∈R
N1 is the activation function.

The NN estimation error can be expressed by

F(X)= F(X,V,W ∗)+ ε(X), (4.53)

where V ∗,W ∗ are the ideal weight parameters; ε(X) is the reconstruction error.
In our case, there are four neural networks, which are the critic network, model

network, action network, and delay matrix function network (M network), respec-
tively. All the neural networks are chosen as three-layer feedforward network. The
whole structure diagram is shown in Fig. 4.1. The utility term in the figure de-
notes xT(k)Q0x(k)+2xT(k)Q1x(k−σ)+xT(k−σ)Q2x(k−σ)+uT(k)R0u(k)+
2uT(k)R1u(k − τ)+ uT(k − τ)R2u(k − τ).

4.2.2.1 Model Network

The model network is to approximate the system dynamics and it should be trained
before the implementation of the iterative ADP algorithm. The update rule of the
model network adopts the gradient descent method. The training process is simple
and general. The details can be found in [14] and they are omitted here.

After the model network is trained, its weights are kept unchanged.

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 173

4.2.2.2 The M Network

The M network is to approximate the delay matrix function M(k). The output of
the M network is denoted

û(k − τ)= WT
Mφ(V

T
Mu(k)). (4.54)

We define the error function of the model network as

eM(k)= û(k − τ)− u(k − τ). (4.55)

Define the error measure as

EM(k)= 1

2
eT
M(k)eM(k). (4.56)

Then, the gradient-based weight updating rule for the M network can be de-
scribed by

wM(k + 1)= wM(k)+ΔwM(k), (4.57)

ΔwM(k)= αM

[
−∂EM(k)

∂wM(k)

]
, (4.58)

where αM is the learning rate of the M network.

4.2.2.3 Critic Network

The critic network is used to approximate the value function V [i](x(k)). The output
of the critic network is denoted

V̂ [i](x(k))= WT
ciφ(V

T
ciz(k)). (4.59)

The target function can be written as

V [i+1](x(k))= Γ [i] + V̂ [i](x(k + 1)). (4.60)

Then, we define the error function for the critic network as

eci(k)= V̂ [i+1](x(k))− V [i+1](x(k)). (4.61)

The objective function to be minimized in the critic network is

Eci(k)= 1

2
eT
ci(k)eci(k). (4.62)

So the gradient-based weight updating rule for the critic network is given by

wc(i+1)(k)= wci(k)+Δwci(k), (4.63)

174 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Δwci(k)= αc

[
−∂Eci(k)

∂wci(k)

]
, (4.64)

∂Eci(k)

∂wci(k)
= ∂Eci(k)

∂V̂ [i](x(k))
∂V̂ [i](x(k))
∂wci(k)

, (4.65)

where αc > 0 is the learning rate of critic network and wc(k) is the weight vector in
the critic network.

4.2.2.4 Action Network

In the action network, the state x(k) is used as input to create the optimal control.
The output can be formulated as

û[i](k)= WT
aiφ(V

T
aix(k)). (4.66)

And the output target of the action network is given by (4.14). So we define the
output error of the action network as

eai(k)= û[i](k)− u[i](k), (4.67)

where u[i](k) is the target function which can be described by

u[i](k)= − 1

2

(
R0+2R1M

[i−1](k)+M [i−1]T(k)R2M
[i−1](k)

)−1

×
(
g0 (x(k), x(k − σ))+ g1 (x(k), x(k − σ))M [i−1](k)

)T

× ∂V̂ [i](x(k + 1))

∂x(k + 1)
.

As u[i](k − τ) = M [i−1](k)u[i](k), we have
∂u[i](k − τ)

∂u[i](k)
= M [i−1](k). Then, ac-

cording to (4.54), M [i−1](k) can be expressed as

M
[i−1]
ij (k)= V T

Mi

[
1 − (

φ(V T
Mu(k))

)2
i

]
WMj (4.68)

for i, j = 1,2, . . . ,m. M [i−1]
ij (k) denotes the element of row i, column j of ma-

trix M [i−1](k). VMi and WMj mean the column i and column j of the weight
matrices VM and WM , respectively. (φ(V T

Mu(k)))i is the ith element of the vector
φ(V T

Mu(k)).
The weights in the action network are updated to minimize the following error

measure:

Eai(k)= 1

2
eT
ai(k)eai(k). (4.69)

4.2 Infinite-Horizon Optimal State Feedback Control via Delay Matrix 175

The weight updating algorithm is similar to the one for the critic network. By the
gradient descent rule, we obtain

wa(i+1)(k)= wai(k)+Δwai(k), (4.70)

Δwai(k)= αa

[
−∂Eai(k)

∂wai(k)

]
, (4.71)

∂Eai(k)

∂wai(k)
= ∂Eai(k)

∂eai(k)

∂eai(k)

∂u[i](k)
∂u[i](k)
∂wai(k)

, (4.72)

where αa > 0 is the learning rate of action network.

4.2.3 Simulations

Example 4.8 Consider the following affine nonlinear system:

x(k + 1)= f (x(k), x(k − σ))+ g(x(k), x(k − σ))u(k), (4.73)

where x(k) = [x1(k) x2(k)]T, u(k) = [u1(k) u2(k)]T, and f (x(k), x(k − σ)) =
[x1(k) exp(x3

2 (k))x2(k−2)

x3
2 (k)x1(k−2)

]
, g(x(k), x(k− σ))= [−0.2 0

0 −0.2

]
. The time delay in the state

is σ = 2 and the initial condition is x(k) = [1 − 1]T for −2 ≤ k ≤ 0. The cost
functional is defined as (4.2), where Q0 =Q2 =R0 = I and Q1 =R1 =R2 = 0.

We implement the algorithm at the time instant k = 5. We choose three-layer
neural networks as the critic network, the action network, and the model network
with the structure 4–10–2, 2–10–1 and 6–10–2, respectively. The initial weights
of action network, critic network, and model network are all set to be random in
[−0.5,0.5]. It should be mentioned that the model network should be trained first.
For the given initial state, we train the model network for 3000 steps under the
learning rate αm = 0.05. After the training of the model network is completed, the
weights are kept unchanged. Then, the critic network and the action network are
trained for 3000 steps, so that the given accuracy ε = 10−6 is reached. In the train-
ing process, the learning rate αa = αc = 0.05. The convergence curve of the value
function is shown in Fig. 4.2. Then, we apply the optimal control to the system for
Tf = 30 time steps and obtain the following results. The state trajectories are given
as Fig. 4.3 and the corresponding control curves are given as Fig. 4.4.

Example 4.9 For the second example, the control time delay is added to the system
of Example 4.8 and the system becomes

x(k + 1)= f (x(k), x(k − σ))+ g0(x(k), x(k − σ))u(k)

+ g1(x(k), x(k − σ))u(k − τ), (4.74)

176 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Fig. 4.2 The convergence of the value function

Fig. 4.3 The state variables trajectories

where σ = 2, τ = 1, x(k) = [x1(k) x2(k)]T, u(k) = [u1(k) u2(k)]T, and f (x(k),

x(k − σ)) is the same as Example 4.8, g0(x(k), x(k − σ))= g1(x(k), x(k − σ))=[−0.2 0
0 −0.2

]
. The initial condition is x(k)= [−1 −1]T and u(k)= 0 for −2 ≤ k ≤ 0.

The cost functional is defined as (4.2), where Q0 = Q2 = R0 = R2 = I and Q1 =
R1 = 0.

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 177

Fig. 4.4 The optimal control trajectories

We also implement the algorithm at the time instant k = 5. We choose three-layer
neural networks as the critic network, the action network, the model network, and
the M network with the structure 4–10–2, 2–10–1, 8–10–2, and 2–8–2, respectively.
All the other parameters are set the same as in Example 4.8. The initial weights of
action network, critic network, model network, and the M network are all set to
be random in [−0.5,0.5]. For the given initial state, we train the model network
for 4000 steps. After the training of the model network has completed, the weights
keep unchanged. Then, the critic network, the action network and the M network
are trained for 3000 steps to reach the given accuracy of ε = 10−6. The convergence
curve of the value function is shown in Fig. 4.5. Then, we apply the optimal control
to the system for Tf = 30 time steps and obtain the following results. The state
trajectories are given as Fig. 4.6 and the corresponding control curves are given
as Fig. 4.7.

4.3 Infinite-Horizon Optimal State Feedback Control via HDP

4.3.1 Problem Formulation

Consider a class of affine nonlinear discrete time-delay systems with saturating ac-
tuators as follows:
{
x(k + 1)= f (x(k − σ0), . . . , x(k − σm))+ g(x(k − σ0), . . . , x(k − σm))u(k),

x(k)= �(k), k = −σ0,−σ1, . . . ,−σm,

(4.75)

178 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Fig. 4.5 The convergence of the value function

Fig. 4.6 The state variables trajectories

where x(k − σ0), x(k − σ1), . . . , x(k − σm) ∈ R
n, uk ∈ R

m, f (x(k − σ0),

x(k − σ1), . . . , x(k − σm)) ∈ R
n, g(x(k − σ0), x(k − σ1), . . . , x(k − σm)) ∈ R

n×m,
�(k) describes the initial condition. σi , i = 1, . . . ,m is a positive integer. Set 0 =

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 179

Fig. 4.7 The optimal control trajectories

σ0 < σ1 < · · · < σm. Here assume that the system is controllable on Ω ⊂ R
n. As-

sume that f,g are all Lipschitz continuous functions. We denote Ωu = {u(k)|u(k)=
[u1(k) u2(k) . . . um(k)]T ∈ R

m, |ui(k)| ≤ ūi , i = 1, . . . ,m}, where ūi is the saturat-
ing bound for the ith actuator. Let Ū = diag{ū1 ū2 . . . ūm}.

In this section, we desire to find an optimal control law for the system (4.75),
which minimizes a generalized nonquadratic cost functional as follows:

J (x(k), u(k))=
∞∑

i=k

{Q(x(i))+W(u(i))} , (4.76)

where Q(x(i)),W(u(i)) are positive definite, and l(x(i), u(i)) = Q(x(i)) +
W(u(i)) is the utility function.

It is noted that, for optimal control problems, the state feedback control law u(k)

must not only stabilize the system (4.75) on Ω , but also guarantee that (4.76) is
finite. Such controls are defined to be admissible.

In this section, we mainly discuss the optimal control for a discrete time-delay
system with saturating actuators. We let

Q(x(k))= XT(k − σ)QX(k − σ), (4.77)

and

W(u(k))= 2
∫ u(k)

0
ϕ−T(Ū−1s)ŪRds, (4.78)

where X(k − σ) = [xT(k − σ0), x
T(k − σ1), . . . , x

T(k − σm)]T, Q and R are
positive definite. We assume that R is diagonal for simplicity in our analysis,

180 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

s ∈ R
m, ϕ ∈ R

m, ϕ−1(u(k)) = [ψ−1(u1(k)) ψ
−1(u2(k)) · · · ψ−1(um(k))]T, ψ(·)

is a bounded single mapping function satisfying |ψ(·)| ≤ 1 and belonging to Cp

(p ≥ 1) and L2. Moreover, it is a monotonically increasing odd function with its first
derivative bounded by a constant M . We know that the hyperbolic tangent function
ψ(·) = tanh(·) is one example of such functions. Noting that, W(u(k)) is ensured
to be positive definite by the definition above, because ψ−1(·) is a monotonic odd
function, and R is positive definite.

Let J ∗(x(k))= minu(k) J (x(k), u(k)) denote the optimal value function, and let
u∗(k) denote the corresponding optimal control law. According to Bellman’s prin-
ciple of optimality, the optimal value function J ∗(x(k)) should satisfy the following
HJB equation:

J ∗(x(k))= min
u(k)

∞∑

i=k

{Q(x(i)) + W(u(i))}

= min
u(k)

{Q(x(k)) + W(u(k))+ J ∗(x(k + 1))
}
, (4.79)

and the optimal controller u∗(k) should satisfy

u∗(k)= arg min
u(k)

∞∑

i=k

{Q(x(i)) + W(u(i))}

= arg min
uk

{Q(x(k)) + W(u(k))+ J ∗(x(k + 1))
}
. (4.80)

The optimal control problem for the nonlinear discrete time-delay system with
saturating actuators can be solved if the optimal value function J ∗(x(k)) can be ob-
tained from (4.79). However, there is currently no quite effective method for solving
this value function for the nonlinear discrete time-delay system with saturating ac-
tuators. Therefore, in the following we will discuss how to utilize the iterative HDP
algorithm to seek the approximate optimal control solution.

4.3.2 Optimal Control Based on Iterative HDP

First, for any given initial state �(k) and initial control law β(k), we start with the
initial iterative value function V [0](·) = 0. Then, we find the control vector u[0](k)
as follows:

u[0](k)= arg min
u(k)

{
XT(k − σ)QX(k − σ)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V [0](x(k + 1))

}
, (4.81)

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 181

and the value function is updated as

V [1](x(k))= min
u(k)

{
XT(k − σ)QX(k − σ)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V [0](x(k + 1))

}
, (4.82)

where x(1), . . . , x(k) are obtained under the action β(k), and

x(k + 1)= f (x(k − σ0), . . . , x(k − σm))

+ g(x(k − σ0), . . . , x(k − σm))u
[0](k). (4.83)

Moreover, for i = 1,2, . . . , the iterative HDP algorithm iterates between

u[i](k)= arg min
u(k)

{
XT(k − σ)QX(k − σ)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V [i](x(k + 1))

}
(4.84)

and

V [i+1](x(k))= min
u(k)

{
XT(k − σ)QX(k − σ)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V [i](x(k + 1))

}
, (4.85)

where x(1), . . . , x(k) are obtained under the action u[i−1](k), and

x(k + 1)= f (x(k − σ0), . . . , x(k − σm))

+ g(x(k − σ0), . . . , x(k − σm))u
[i](k). (4.86)

We further compute the control law u[i](k) from (4.84) as follows:

u[i](k)

= Ūϕ

(
−1

2
(ŪR)−1gT(x(k − σ0), . . . , x(k − σm))

∂V [i](x(k+1))

∂x(k + 1)

)
, (4.87)

and update the value function as

V [i+1](x(k))= XT(k − σ)QX(k − σ)+ 2
∫ u[i](k)

0
ϕ−T(Ū−1s)ŪRds

+ V [i](x(k + 1)). (4.88)

182 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

In the iterative HDP algorithm, the value function and control law are updated by
recurrent iteration, with the iteration number i increasing from 0 to ∞.

In the following, we give the convergence analysis of the present iterative HDP
algorithm for nonlinear discrete time-delay systems with saturating actuators theo-
retically.

Lemma 4.10 Let {μ[i](k)} be an arbitrary sequence of control laws, and {u[i](k)}
be the control law sequence expressed as in (4.84). Let V [i] be as in (4.85) and Λ[i]
as

Λ[i+1](x̃(k))= X̃T(k − σ)QX̃(k − σ)+ 2
∫ μ[i](k)

0
ϕ−T(Ū−1s)ŪRds

+Λ[i](x̃(k + 1)), (4.89)

where x̃(k + 1) is obtained under the action of μ[i](k). For the same initial state
�(k) and initial control law β(k), if V [0](·) = Λ[0](·) = 0, then V [i+1](x(k)) ≤
Λ[i+1](x̃(k)),∀i.

Proof It is straightforward from the fact that V [i+1] is a result of minimizing the
right hand side of equation (4.85) with respect to the control input u[i](k), while
Λ[i+1] is the result of an arbitrary control input. �

Theorem 4.11 (cf. [3]) Let the sequence V [i+1](x(k)) be defined by (4.85). If the
system is controllable, then there is an upper bound Y such that 0 ≤ V [i+1](x(k))≤
Y , ∀i.

Proof Let {γ [i](k)} be any stabilizing and admissible control input, and let V [0](·)=
P [0](·)= 0, where V [i+1](x(k)) is updated as (4.85) and P [i+1](x̄(k)) is updated as

P [i+1](x̄(k))= X̄T(k − σ)QX̄(k − σ)+ 2
∫ γ [i](k)

0
ϕ−T(Ū−1s)ŪRds

+ P [i](x̄(k + 1)), (4.90)

where x̄(1), . . . , x̄(k) are obtained under the action γ [i−1](k), and x̄(k + 1) is ob-
tained under the action of γ [i](k). From (4.90), we further obtain

P [i](x̄(k + 1))= X̄T(k − σ + 1)QX̄(k − σ + 1)

+ 2
∫ γ [i−1](k+1)

0
ϕ−T(Ū−1s)ŪRds

+ P [i−1](x̄(k + 2)). (4.91)

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 183

Thus, we obtain

P [i+1](x̄(k))= X̄T(k − σ)QX̄(k − σ)+ 2
∫ γ [i](k)

0
ϕ−T(Ū−1s)ŪRds

+ X̄T(k − σ + 1)QX̄(k − σ + 1)

+ 2
∫ γ [i−1](k+1)

0
ϕ−T(Ū−1s)ŪRds

+ · · ·
+ X̄T(k − σ + i)QX̄(k − σ + i)

+ 2
∫ γ [0](k+i)

0
ϕ−T(Ū−1s)ŪRds.

(4.92)

Let

L[i−j](x̄(k + j))= X̄T(k − σ + j)QX̄(k − σ + j)

+ 2
∫ γ [i−j](k+j)

0
ϕ−T(Ū−1s)ŪRds, (4.93)

and then (4.92) can further be written as

P [i+1](x̄(k))=
i∑

j=0

L[i−j](x̄(k + j))

=
i∑

j=0

{
X̄T(k − σ + j)QX̄(k − σ + j)

+ 2
∫ γ [i−j](k+j)

0
ϕ−T(Ū−1s)ŪRds

}
. (4.94)

Noticing that {γ [i](k)} is an admissible control law sequence, there exists an upper
bound Y such that

P [i+1](x̄(k))≤ lim
i→∞

i∑

j=0

L[i−j](x̄(k + j))≤ Y, ∀i. (4.95)

Thus, based on the definition of the cost functional and Lemma 4.10, we obtain

0 ≤ V [i+1](x(k))≤ P [i+1](x̄(k))≤ Y, ∀i. (4.96)

This completes the proof. �

184 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Theorem 4.12 Define the value function sequence {V [i]} as in (4.85) with
V [0](·) = 0, the control law sequence {u[i](k)} as in (4.84). Then, we conclude
that {V [i]} is a nondecreasing sequence satisfying V [i+1](x(k))≥ V [i](x(k)), ∀i.

Proof We define a new sequence {Φ[i](x(k))} as follows:

Φ[i](x(k))= XT(k − σ)QX(k − σ)+ 2
∫ u[i](k)

0
ϕ−T(Ū−1s)ŪRds

+Φ[i−1](x(k + 1)), (4.97)

where Φ[0](·)= V [0](·)= 0.
In the following part, we prove Φ[i](x(k))≤ V i+1(x(k)) by mathematical induc-

tion.
First,we prove that it holds for i = 0. Noticing that

V [1](x(k))−Φ[0](x(k))

= XT(k − σ)QX(k − σ)+ 2
∫ u[0](k)

0
ϕ−T(Ū−1s)ŪRds

≥ 0, (4.98)

for i = 0, we get

V [1](x(k))≥Φ[0](x(k)). (4.99)

Second, we suppose that V [i](x(k))≥Φ[i−1](x(k)), for i−1, ∀x(k). Then, for i,
since

V [i+1](x(k))= XT(k − σ)QX(k − σ)

+ 2
∫ u[i](k)

0
ϕ−T(Ū−1s)ŪRds + V [i](x(k + 1)), (4.100)

and

Φ[i](x(k))= XT(k − σ)QX(k − σ)

+ 2
∫ u[i](k)

0
ϕ−T(Ū−1s)ŪRds +Φ[i−1](x(k + 1)), (4.101)

we get

V [i+1](x(k))−Φ[i](x(k))= V [i](x(k + 1))−Φ[i−1](x(k + 1))≥ 0. (4.102)

Therefore, by mathematical induction, we have

V [i+1](x(k))≥Φ[i](x(k)),∀i. (4.103)

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 185

In addition, from Lemma 4.10 we know that V [i](x(k))≤Φ[i](x(k)). Therefore,
we have

V [i](x(k))≤Φ[i](x(k))≤ V [i+1](x(k)), (4.104)

which proves that {V [i](x(k))} is a nondecreasing sequence bounded by (4.96). �

Theorem 4.13 According to Theorem 4.11, there is a limit for the value func-
tion sequence {V [i](x(k))} when i → ∞. Without loss of generality, we define
limi→∞ V [i](x(k)) = J ∗(x(k)), and, accordingly, limi→∞ u[i](k) = u∗(k). Then,
for any discrete time step k, the limit J ∗(x(k)) is the “optimal” value function, i.e.,

J ∗(x(k))= min
u(k)

{
Q(x(k))+W(u(k))+ J ∗(x(k + 1))

}
. (4.105)

Proof For any i, the value function sequence satisfies

V [i+1](x(k))= min
u(k)

{
Q(x(k))+W(u(k))+ V [i](x(k + 1))

}
. (4.106)

Combining with V [i+1](x(k))≤limi→∞ V [i+1](x(k)),∀i, and limi→∞ V [i+1](x(k))
= J ∗(x(k)), we obtain

J ∗(x(k))≥ min
u(k)

{
Q(x(k))+W(u(k))+ V [i](x(k + 1))

}

=Q(x(k))+W(u[i](k))+ V [i](x(k + 1)). (4.107)

Let i → ∞, we have

J ∗(x(k))≥Q(x(k))+W(u∗(k))+ J ∗(x(k + 1)). (4.108)

On the other hand, for any i and û[i](k), we have

V [i+1](x(k))≤Q(x(k))+W(û[i](k))+ V [i](x(k + 1)). (4.109)

As V [i](x(k))≤ V [i+1](x(k)), we obtain

V [i](x(k))≤Q(x(k))+W(û[i](k))+ V [i](x(k + 1)). (4.110)

Let i → ∞, we have

J ∗(x(k))≤Q(x(k))+W(û[i](k))+ J ∗(x(k + 1)). (4.111)

Since û[i](k) in the above equation is chosen arbitrarily, we have

J ∗(x(k))≤Q(x(k))+W(u∗(k))+ J ∗(x(k + 1)). (4.112)

186 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Thus, we further obtain

J ∗(x(k))= Q(x(k))+W(u∗(k))+ J ∗(x(k + 1))

=min
u(k)

{
Q(x(k))+W(u(k))+ J ∗(x(k + 1))

}
. (4.113)

This completes the proof. �

Therefore, we conclude that the value function sequence {V [i]} converges to the
optimal value function of the discrete-time HJB equation, i.e., V [i] → J ∗ as i → ∞.
Simultaneously, we conclude that the corresponding control law sequence {u[i](k)}
converges to the optimal control law u∗(k) as i → ∞.

4.3.3 Simulations

Example 4.14 Consider the following two-order nonlinear discrete time-delay sys-
tem with saturating actuators:

{
x(k + 1)= f (x(k), x(k − 2))+ g(x(k), x(k − 2))u(k), k ≥ 0
x(k)= �(k), k = 0,−1,−2,

(4.114)

where f (x(k), x(k − 2)) = [0.2x1(k−2) exp(x2
2 (k))

0.3(x3
2 (k))

]
, g(x(k), x(k − 2)) = [0

−0.2

]
, and

assume that the control constraint is set to |u(k)| ≤ 0.3.
Define the cost functional as

J (x(k))=
∞∑

i=k

{
XT(i − σ)QX(i − σ)+ 2

∫ u(i)

0
tanh−T(Ū−1s)ŪRds

}
,

(4.115)

where X(i − σ) = [xT(i), xT(i − 2)]T, x(i) = [x1(i), x2(i)]T, Q = I4, R = 0.5.
The initial condition �(k) = [1.5 0.5]T, k = 0,−1,−2. Moreover, we implement
the algorithm at the time step k = 2.

In the presented iterative HDP algorithm, we choose three-layer neural networks
as the critic network and the action network with the structure 2-8-1 and 4-8-1. The
initial weight matrices are chosen randomly from [−0.1,0.1]. The critic network
and the action network are trained with the learning rates αa = αc = 0.01. After
5000 iteration steps we get the curves of states, control input, and value function.
The state trajectories are given as Fig. 4.8, and the corresponding control curve is

4.3 Infinite-Horizon Optimal State Feedback Control via HDP 187

Fig. 4.8 The state variable trajectories x1 and x2

Fig. 4.9 The control input trajectory u

given as Fig. 4.9. The convergence curve of the value function is shown in Fig. 4.10.
It is clear from the simulation that the new iterative algorithm in this section is

very effective.

188 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Fig. 4.10 The value function V

4.4 Finite-Horizon Optimal State Feedback Control for a Class
of Nonlinear Systems with Time Delays

4.4.1 Problem Formulation

Consider a class of time-delay affine nonlinear systems
{
x(t + 1)= f (x(t), x(t − h))+ g(x(t), x(t − h))u(t),

x(t)= �(t), −h≤ t ≤ 0,
(4.116)

where x(t) and x(t − h) are states, and h is a nonnegative integer. We have
f (x(t), x(t − h)) ∈ R

n, g(x(t), x(t − h)) ∈ R
n×m and the input u(t) ∈ R

m. �(t)
is the initial state. f (x(t), x(t − h)) and g(x(t), x(t − h)) are known functions.
Suppose that the system is drift free, and the system (4.116) is stabilizable on a
prescribed compact set Ω ∈R

n.
For ∀k, k > h, the finite-time cost functional for state x(k) under the control

sequence uN+k−1
k = (u(k), u(k + 1), . . . , u(N + k − 1)) is defined as

J (x(k), uN+k−1
k)=

N+k−1∑

i=k

{xT(i)Qx(i)+ uT(i)Ru(i)}, (4.117)

where Q and R are symmetric and positive-definite matrices. For the present finite-
horizon optimal control problem, the feedback control sequence must not only
drive the system state to zero within a finite number of time steps but also guar-
antee the cost functional (4.117) to be finite; uN+k−1

k = (u(k), u(k+ 1), . . . , u(N +

4.4 Finite-Horizon Optimal State Feedback Control for Time-Delay Systems 189

k − 1)) must be a finite horizon admissible control sequence [8], where N > k is
a finite integer, the length of the control sequence. The final state can be written as
x(f)(x(k), uN+k−1

k)= x(N + k).
For time-delay nonlinear system, define the optimal value function as

J ∗(x(k))= inf
uN+k−1
k

{
J (x(k), uN+k−1

k)
}
. (4.118)

From Bellman’s optimality principle, it is known that, for the finite-horizon op-
timization case, the value function J ∗(x(k)) satisfies the HJB equation as follows:

J ∗(x(k))= inf
u(k)

{xT(k)Qx(k)+ uT(k)Ru(k)+ J ∗(x(k + 1))}. (4.119)

The optimal control u∗(k) satisfies the first-order necessary condition, which is
given by the gradient of the right hand side of (4.119) with respect to u(k) as

∂J ∗(x(k))
∂u(k)

=∂
(
xT(k)Qx(k)+ uT(k)Ru(k)

)

∂u(k)

+
(
∂x(k + 1)

∂u(k)

)T
∂J ∗(x(k + 1))

∂x(k + 1)

= 0, (4.120)

and therefore we get

u∗(k)= −1

2
R−1gT (x(k), x(k − h))

∂J ∗(x(k + 1))

∂x(k + 1)
. (4.121)

By substituting (4.121) into (4.119), the HJB becomes

J ∗(x∗(k))= x∗T(k)Qx∗(k)+ 1

4

(
∂J ∗(x∗(k + 1))

∂x∗(k + 1)

)T

× g
(
x∗(k) , x∗(k − h)

)
R−1gT (x∗(k) , x∗(k − h)

)

× ∂J ∗(x∗(k + 1))

∂x∗(k + 1)
+ J ∗(x∗(k + 1)), (4.122)

where

x∗(t + 1)= f (x∗(t), x∗(t − h))

+ g(x∗(t), x∗(t − h))u∗(t), t = 0,1, . . . , k, (4.123)

190 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

4.4.2 Optimal Control Based on Improved Iterative ADP

In this section, we apply the improved ADP algorithm to solve the finite-horizon
value function and obtain an optimal control sequence (uN+k−1

k)∗ = (u∗(k),
u∗(k + 1), . . . , u∗(N + k − 1)).

From system (4.116), we can see that for ∀k, and any initial state �(k), there
exists a control vector u(k), such that x(k + 1) = 0, i.e., we can control the state
of system (4.116) to zero in one step from any initial state. In the iterative ADP
algorithm, the value function and control law are updated by recursive iterations,
with the iteration index number i increasing from 0 to ∞. The initial value function
V [0] = 0, and u[0](k) is an arbitrary control law.

The value function for i = 1 is computed as

V [1](x[0](k))= inf
u(k)

{x[0]T(k)Qx[0](k)+ uT(k)Ru(k)}

= x[0]T(k)Qx[0](k)+ u[1]T(k)Ru[1](k)

s.t. f (x[0](k), x[0](k − h))+ g(x[0](k), x[0](k − h))u(k)= 0, (4.124)

where

u[1](k)= arg inf
u(k)

{x[0]T(k)Qx[0](k)+ uT(k)Ru(k)}, (4.125)

and

x[0](t + 1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x[1](t), x[1](t − h))

+g(x[1](t), x[1](t − h))u[2](t), k ≤ t

f (x[0](t), x[0](t − h))

+g(x[0](t), x[0](t − h))u[0](t), 0 ≤ t < k

x[0](t)=�(t), −h≤ t < 0. (4.126)

For i = 1,2, . . . , the value function V [i+1](x[i](k)) is updated as follows:

V [i+1](x[i](k))= inf
u(k)

{x[i]T(k)Qx[i](k)+ uT(k)Ru(k)

+ V [i](x[i−1](k + 1))}. (4.127)

The control law is updated as follows:

u[i+1](k)= arg inf
u(k)

{x[i]T(k)Qx[i](k)+ uT(k)Ru(k)

+ V [i](x[i−1](k + 1))}, (4.128)

4.4 Finite-Horizon Optimal State Feedback Control for Time-Delay Systems 191

where

x[i](t + 1)=

⎧
⎪⎪⎨

⎪⎪⎩

f (x[i+1](t), x[i+1](t − h))

+g(x[i+1](t), x[i+1](t − h))u[i+2](t), k ≤ t,

f (x[i](t), x[i](t − h))

+g(x[i](t), x[i](t − h))u[i](t), 0 ≤ t < k,

x[i](t)= �(t), −h≤ t < 0. (4.129)

In this part, we present several theorems to demonstrate that the improved iter-
ative ADP algorithm is convergent. Furthermore, the iterative value function con-
verges to the optimal one.

Lemma 4.15 Let V [1](x[0](k)) be defined as (4.124), and V [i+1](x[i](k)) be defined
as (4.127). Let ûk+i

k be any finite-horizon admissible control sequence. Define

L[i+1](x̂[i](k), ûk+i
k)

= x̂[i]T(k)Qx̂[i](k)+ û[i+1]T(k)Rû[i+1](k)

+ x̂[i−1]T(k + 1)Qx̂[i−1](k + 1)+ û[i]T(k + 1)Rû[i](k + 1)+ · · ·
+ x̂[0]T(k + i)Qx̂[0](k + i)+ û[1]T(k + i)Rû[1](k + i),

s.t. f (x̂[0](k + i), x̂[0](k + i − h))

+ g(x̂[0](k + i), x̂[0](k + i − h))û[1](k + i)= 0, (4.130)

and the final state under uk+i
k satisfies

xf (x[i](k), uk+i
k)= 0. (4.131)

If û[0](k)= u[0](k), then we have for ∀x̂[i](k)

V [i+1](x[i](k))= inf
uk+i
k

{
L[i+1] (x̂[i](k), ûk+i

k

)}
. (4.132)

Proof From (4.127) and (4.130), we easily get (4.132). �

Theorem 4.16 (cf. [2]) For system (4.116), let x(k), k > h, be an arbitrary state
vector. Then, the value function sequence {V [i+1](x[i](k))} is a monotonically non-
increasing sequence for i ≥ 1, i.e., V [i+1](x[i](k))≤ V [i](x[i−1](k)) for i ≥ 1.

Proof In (4.130), we let û[i+1](k) = u[i](k), and then we have x̂[i](k) = x[i−1](k).
So we further obtain

L[i+1](x̂[i](k), ûk+i
k)

= x[i−1]T(k)Qx[i−1](k)+ u[i]T(k)Ru[i](k)

192 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

+ x[i−2]T(k + 1)Qx[i−2](k + 1)+ u[i−1]T(k + 1)Ru[i−1](k + 1)+ · · ·
+ x[0]T(k + i − 1)Qx[0](k + i − 1)+ u[1]T(k + i − 1)Ru[1]T(k + i − 1),

+ x̂[0]T(k + i)Qx̂[0](k + i)+ û[1]T(k + i)Rû[1](k + i). (4.133)

From (4.124) and (4.125), we have known that x̂[0](k + i)= 0 and û[1](k + i)= 0.
So we have

L[i+1](x̂[i](k), ûk+i
k)= V [i+1](x[i](k)). (4.134)

From Lemma 4.15, we have V i+1(x[i](k))≤ L[i+1](x[i](k), ûk+i
k). So we obtain

V [i+1](x[i](k))≤ V [i](x[i−1](k)). (4.135)

This completes the proof. �

From Theorem 4.16, we can see that the value function V [i+1](x[i](k)) is a mono-
tonically nonincreasing sequence and the lower bound is 0. In the following part,
we will demonstrate that the limit of V [i+1](x[i](k)) satisfies HJB. The following
lemma is necessary for the further proof.

Lemma 4.17 Let V [i+1](x[i](k)) and u[i](k) be defined as (4.127) and (4.128). Let
{μ[i](k)} be an arbitrary sequence of the control law, Λ[i+1](x̃[i](k)) be defined by

Λ[i+1](x̃[i](k))= x̃[i]T(k)Qx̃[i] +μ[i+1]T(k)Rμ[i+1](k)

+Λ[i](x̃[i−1](k + 1)), i > 0, (4.136)

with the first iteration expressed as follows:

Λ[1](x̃[0](k))= x̃[0]T(k)Qx̃[0](k)+μ[1]T(k)Rμ[1](k)

s.t. f (x̃[0](k), x̃[0](k − h))

+ g(x̃[0](k), x̃[0](k − h))μ[1](k)= 0, (4.137)

where

x̃[0](t + 1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x̃[1](t), x̃[1](t − h))

+g(x̃[1](t), x̃[1](t − h))μ[2](t), t ≥ k

f (x̃[0](t), x̃[0](t − h))

+g(x̃[0](t), x̃[0](t − h))μ[0](t), 0 ≤ t < k

x̃[0](t)= �(t), −h≤ t ≤ 0, (4.138)

4.4 Finite-Horizon Optimal State Feedback Control for Time-Delay Systems 193

and for i ≥ 0, the state is updated as follows:

x̃[i](t + 1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x̃[i+1](t), x̃[i+1](t − h))

+g(x̃[i+1](t), x̃[i+1](t − h))μ[i+2](t), t ≥ k

f (x̃[i](t), x̃[i](t − h))

+g(x̃[i](t), x̃[i](t − h))μ[i](t), 0 ≤ t < k

x̃[i](t)= �(t), −h≤ t ≤ 0. (4.139)

If u[0](k) = μ[0](k), and V [0] = Λ[0] = 0, then V [i+1](x[i−1](k)) ≤
Λ[i+1](x̃[i−1](k)),∀i.

Proof It can be straightforwardly seen from the fact that V [i+1](x[i](k)) is the re-
sult of minimizing the right hand side of (4.127) with respect to the control input
u[i+1](k), while Λ[i+1](x̃[i](k)) is the result of arbitrary control input. �

Theorem 4.18 For system (4.116), let x(k), k > h, be an arbitrary state vector.
Let u∞(k) = limi→∞ u[i](k), and V∞(x∞(k)) = limi→∞ V [i+1](x[i](k)), where
x∞(k) is the state under the action of u∞(k). Then, we have

V∞(x∞(k))= inf
u(k)

{x∞T(k)Qx∞(k)+ uT(k)Qu(k)+ V∞(x∞(k + 1))}

= x∞T(k)Qx∞(k)+ u∞T(k)Qu∞(k)

+ V∞(x∞(k + 1)), (4.140)

where

u∞(k)= arg inf
u(k)

{x∞T(k)Qx∞(k)+ uT(k)Qu(k)+ V∞(x∞(k + 1))}. (4.141)

Proof Let {μ[i](k)} be arbitrary sequence of control law, and Λ[i+1](x̃[i](k)) be
defined as (4.136). Then, from Lemma 4.17, we get

V [i+1](x[i](k))≤ x̃[i]T(k)Qx̃[i](k)+μ[i+1]T(k)Rμ[i+1](k)

+Λ[i](x̃[i−1](k + 1)). (4.142)

Let {μ[i](k)} = {u[i](k)}; then (4.142) can be changed to

V [i+1](x[i](k))≤ x[i]T(k)Qx[i](k)+ u[i+1]T(k)Ru[i+1](k)+ V [i](x[i−1](k + 1))

= inf
u(k)

{x[i]T(k)Qx[i](k)+ uT(k)Ru(k)

+ V [i](x[i−1](k + 1))}. (4.143)

194 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Let i → ∞ in (4.143), we obtain

V∞(x∞(k))≤ inf
u(k)

{x∞T(k)Qx∞(k)+ uT(k)Qu(k)

+ V∞(x∞(k + 1))}. (4.144)

According to Theorem 4.16, we have V [i+1](x[i](k))≤ V [i](x[i−1](k)), i.e.,

V [i](x[i−1](k))≥ inf
u(k)

{x[i]T(k)Qx[i](k)+ uT(k)Ru(k)

+ V [i](x[i−1](k + 1))}. (4.145)

Let i → ∞ in (4.145), and we obtain

V∞(x∞(k))≥ inf
u(k)

{x∞T(k)Qx∞(k)+ uT(k)Qu(k)

+ V∞(x∞(k + 1))}. (4.146)

Thus, combining (4.144) and (4.146), we have

V∞(x∞(k))= inf
u(k)

{x∞T(k)Qx∞(k)+ uT(k)Qu(k)

+ V∞(x∞(k + 1))}. (4.147)

This completes the proof. �

Theorem 4.19 Let V∞(x∞(k)) = limi→∞ V [i+1](x[i](k)), and let V [i+1](x[i](k))
be defined as (4.127). Then we have V∞(x∞(k))= J ∗(x∗(k)).

Proof From the definition of J ∗(x∗(k)), we get

J ∗(x∗(k))≤ V [i+1](x[i](k)). (4.148)

Let i → ∞ in (4.148); we have

J ∗(x∗(k))≤ V∞(x∞(k)). (4.149)

On the other hand, according to the definition J ∗(x∗(k)) in (4.119), for any
θ > 0, there exists a sequence of control law μ[i+1](k), such that the associ-
ated value function Λ[i+1](x̃[i](k)) defined as (4.136) satisfies Λ[i+1](x̃[i](k)) ≤
J ∗(x∗(k))+ θ . From Lemma 4.17, we get

V [i+1](x[i](k))≤Λ[i+1](x̃[i](k))≤ J ∗(x∗(k))+ θ. (4.150)

Let i → ∞; we obtain

V∞(x∞(k))≤ J ∗(x∗(k))+ θ. (4.151)

4.4 Finite-Horizon Optimal State Feedback Control for Time-Delay Systems 195

Note that θ is chosen arbitrarily, and we have

V∞(x∞(k))≤ J ∗(x∗(k)). (4.152)

Thus, combining (4.149) and (4.152), we have

V∞(x∞(k))= J ∗(x∗(k)). (4.153)

This completes the proof. �

From the previous part, we proved that the iterative value function V [i+1](x[i])(k)
converges to the optimal value function J ∗(x∗(k)) until i → ∞. But, unfortunately,
the infinite iteration is not practical to do so. According to Theorem 4.19, we have
limi→∞ V [i](x[i−1](k))= V ∗(x∗(k)), i.e., ∀γ > 0, ∃I ∈ N, such that ∀i > I ,

∣∣∣V [i](x[i−1](k))− V ∗(x∗(k))
∣∣∣≤ γ. (4.154)

Thus,

u∗
δ (k)= u[i](k)= arg min

u(k)
{x[i−1]T(k)Qx[i−1](k)

+ uT(k)Ru(k)+ V [i−1](x[i−2](k + 1))}. (4.155)

While the optimal value function J ∗(x∗(k)) is unknown in general, the optimality
criterion (4.154) is very difficult to verify. So the following theorem is necessary.

Theorem 4.20 Let V [i](x[i−1](k)) be defined as (4.127), and let J ∗(x∗(k)) be de-
fined as (4.122). Then, ∀δ > 0, ∃I ∈N, such that ∀i > I ,

∣∣∣V [i](x[i−1](k))− J ∗(x∗(k))
∣∣∣≤ δ, (4.156)

which is equivalent to
∣∣∣V [i+1](x[i](k))− V [i](x[i−1](k))

∣∣∣≤ δ. (4.157)

Proof From (4.156), we see that

V [i](x[i−1](k))≤ J ∗(x∗(k))+ δ. (4.158)

Furthermore, according to Theorem 4.16, we get

J ∗(x∗(k))≤ V [i+1](x[i](k))≤ V [i](x[i−1](k)). (4.159)

So we obtain

V [i](x[i−1](k))− V [i+1](x[i](k))≤ V [i](x[i−1](k))− J ∗(x∗(k))

≤ J ∗(x∗(k))+ δ − J ∗(x∗(k))

= δ. (4.160)

196 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

As V [i](x[i−1](k)) − V [i+1](x[i](k)) ≥ 0, we have |V [i+1](x[i](k)) −
V [i](x[i−1](k))| ≤ δ.

On the other hand, from (4.154), we have known that |V [i](x[i−1](k)) −
J ∗(x∗(k))| ≤ γ . Here we let γ = δ, so for ∀i > I , we have

∣∣∣V [i](x[i−1](k))− J ∗(x∗(k))
∣∣∣≤ δ. (4.161)

This completes the proof. �

In this part, two neural networks are used to approximate the iterative value func-
tion and optimal control. The process of implementation is as follows:

Step 1. Give the accuracy δ, the initial state � and the initial control law u[0]. Give
the initial time step k.

Step 2. Set i = 0, according to (4.126), we can obtain the state sequence x[0](1),
. . . , x[0](k). So we can get V [1](x[0](k)) and u[1](k) from (4.124) and (4.125).

Step 3. Set i = 1, we have the state sequence x[i](1), . . . , x[i](k) from (4.129).
According to (4.127) and (4.128), we obtain V [i+1](x[i](k)) and u[i+1](k). If
|V [i+1](x[i](k))− V [i](x[i−1](k))| ≤ δ, then go to Step 5. Otherwise, go to Step 4.

Step 4. i = i + 1; go to Step 3.
Step 5. Stop.

4.4.3 Simulations

Example 4.21 Consider the following nonlinear time-delay system:

x(t + 1)= f (x(t), x(t − 2))+ g(x(t), x(t − 2))u(t)

x(t)= �(t),−2 ≤ t ≤ 0, (4.162)

where f (x(t), x(t − 2))= [0.2x1(t) exp(x2(t))
2

0.3x3
2 (t−2)

]
and g(x(t), x(t − 2))= [−0.2 0

0 −0.2

]
.

In system (4.162), the initial state �(t) = [0.5 − 0.5]T, −2 ≤ t ≤ 0. The initial
control law u[0](t) = −2x(t). The initial time step is k = 3. In this section, we
adopt BP neural networks to approximate V [i+1](x[i](k)) and u[i+1](k). The initial
weights are chosen randomly from [−0.1,0.1], and the learning rate is 0.05. We
select Q=R = I2.

The state trajectories are given as Fig. 4.11. The control trajectories are shown in
Fig. 4.12. From the two figures we can see that the system (4.162) can be stabilized
using the iteration algorithm developed in this section. The value function iteration
curve is given in Fig. 4.13. It is clear that the value function is convergent as i → ∞.
As |V [15](x[14])− V [14](x[13])| < 10−5, we see that system (4.162) is stabilized in
N = 15 steps with accuracy error δ = 10−5.

4.5 Summary 197

Fig. 4.11 The state variable trajectories x1 and x2

Fig. 4.12 The control variable trajectories u1 and u2

4.5 Summary

In this chapter, we developed some effective algorithms based on iterative ADP to
solve optimal control problems for nonlinear systems with time delays. A delay
matrix function was introduced and the explicit expression of optimal control was

198 4 Optimal State Feedback Control of Nonlinear Systems with Time Delays

Fig. 4.13 The value function

obtained. We then developed an effective algorithm to solve the optimal control
problems for nonlinear time-delay systems with saturating actuators. Finally, an ef-
fective algorithm to solve the finite-horizon optimal control problems was developed
for a class of time-delay systems. Simulation studies successfully demonstrated the
outstanding performance of the present optimal control schemes for time-delay non-
linear systems.

References

1. Malek-Zavarei M, Jashmidi M (1987) Time-delay systems: analysis, optimization and appli-
cations. North-Holland, Amsterdam, pp 80–96

2. Song RZ, Zhang HG (2011) The finite horizon optimal control for a class of time-delay affine
nonlinear system. Neural Comput Appl. doi:10.1007/s00521-011-0706-3

3. Song RZ, Zhang HG, Wei QL, Luo YH (2010) Optimal control laws for time-delay sys-
tems with saturating actuators based on heuristic dynamic programming. Neurocomputing
73:3020–3027

4. Tong SC, Liu CL, Li YM, Zhang HG (2011) Adaptive fuzzy decentralized control for large-
scale nonlinear systems with time-varying delays and unknown high-frequency gain sign.
IEEE Trans Syst Man Cybern, Part B, Cybern 41:474–485

5. Wang ZS, Zhang HG (2010) Global asymptotic stability of reaction–diffusion Cohen–
Grossberg neural networks with continuously distributed delays. IEEE Trans Neural Netw
21:39–49

6. Wang ZS, Zhang HG, Li P (2010) An LMI approach to stability analysis of reaction–diffusion
Cohen–Grossberg neural networks concerning Dirichlet boundary conditions and distributed
delays. IEEE Trans Syst Man Cybern, Part B, Cybern 40:1596–1606

http://dx.doi.org/10.1007/s00521-011-0706-3

References 199

7. Wang YC, Zhang HG, Wang XY, Yang DS (2010) Networked synchronization control of
coupled dynamic networks with time-varying delay. IEEE Trans Syst Man Cybern, Part B,
Cybern 40:1468–1479

8. Wang FY, Jin N, Liu DR, Wei Q (2011) Adaptive dynamic programming for finite-horizon
optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Trans Neural
Netw 22:24–36

9. Wei QL, Zhang HG, Liu DR, Zhao Y (2010) An optimal control scheme for a class of discrete-
time nonlinear systems with time delays using adaptive dynamic programming. Acta Autom
Sin 36:121–129

10. Zhang HG, Wang YC (2008) Stability analysis of Markovian jumping stochastic Cohen–
Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 19:366–370

11. Zhang HG, Xie YH, Wang ZL, Zheng CD (2007) Adaptive synchronization between two
different chaotic neural networks with time delay. IEEE Trans Neural Netw 18:1841–1845

12. Zhang HG, Wang ZS, Liu DR (2008) Robust stability analysis for interval Cohen–Grossberg
neural networks with unknown time-varying delays. IEEE Trans Neural Netw 19:1942–1955

13. Zhang HG, Wang YC, Liu DR (2008) Delay-dependent guaranteed cost control for uncertain
stochastic fuzzy systems with multiple tire delays. IEEE Trans Syst Man Cybern, Part B,
Cybern 38:126–140

14. Zhang HG, Wei QL, Luo YH (2008) A novel infinite-time optimal tracking control scheme
for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE
Trans Syst Man Cybern, Part B, Cybern 38:937–942

15. Zheng CD, Zhang HG, Wang ZS (2009) New delay-dependent global exponential stability
criterion for cellular-type neural networks with time-varying delays. IEEE Trans Circuits Syst
II, Express Briefs 56:250–254

16. Zheng CD, Zhang HG, Wang ZS (2010) Improved robust stability criteria for delayed cellular
neural networks via the LMI approach. IEEE Trans Circuits Syst II, Express Briefs 57:41–45

Chapter 5
Optimal Tracking Control of Nonlinear Systems
with Time Delays

5.1 Introduction

Chapter 4 discussed the optimal state feedback control problems of nonlinear sys-
tems with time delay. In this chapter, we will solve the optimal tracking control
problem of nonlinear systems with time delay based on the HDP algorithm. First,
the HJB equation for a discrete time-delay system is derived which is based on state
error and control error. In order to solve this HJB equation, a novel iterative HDP
algorithm containing the iterations of state, control law, and cost functional is de-
veloped. We also give the convergence proof for the novel iterative HDP algorithm.
Finally, the critic network and action network are used to approximate the value
function and the corresponding control law, respectively. The main contributions of
this chapter can be summarized as follows:

1. It is the first time that one solves the optimal tracking control problem of nonlin-
ear systems with time delays using the HDP algorithm.

2. For the novel HDP algorithm, besides the value function iteration, the state is
also updated according to the iterative control law in every iteration step.

3. In the state update, we adopt “backward iteration”. For the (i + 1)st cost func-
tional iteration, the state at time step k + 1 is updated according to the states
before time step k + 1 in the ith iteration and the control law in the ith iteration.

5.2 Problem Formulation

Consider a class of discrete-time affine nonlinear systems with time delays:

x(k + 1)= f (x(k − σ0), x(k − σ1), . . . , x(k − σm))

+ g(x(k − σ0), x(k − σ1), . . . , x(k − σm))u(k),

x(k)= �1(k), −σm ≤ k ≤ 0, (5.1)

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_5,
© Springer-Verlag London 2013

201

http://dx.doi.org/10.1007/978-1-4471-4757-2_5

202 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

where x(k − σ0), x(k − σ1), . . . , x(k− σm) ∈R
n and x(k − σ1), . . . , x(k − σm) are

states of time delays. f (x(k − σ0), x(k − σ1), . . . , x(k − σm)) ∈ R
n,

g(x(k − σ0), x(k − σ1), . . . , x(k − σm)) ∈ R
n×m and the input u(k) ∈ R

m. �1(k)

is the initial state, σi is the time delay. We set 0 = σ0 < σ1 < · · · < σm, and
these are nonnegative integer numbers. f (x(k − σ0), x(k − σ1), . . . , x(k − σm))

and g(x(k− σ0), x(k− σ1), . . . , x(k− σm)) are known functions, and g(x(k− σ0),

x(k−σ1), . . . , x(k−σm)) is analytic. The system (5.1) is controllable and reachable
in Ω ∈R

n [8].
In this chapter, we define the state error as follows:

e(k)= x(k)− xd(k), (5.2)

where the reference orbit xd(k) is generated by the n-dimensional autonomous sys-
tem as follows:

xd(k + 1)= S(xd(k)),

xd(0)= �2(k),−σm ≤ k ≤ 0, (5.3)

where xd(k) ∈ R
n, S(xd(k)) ∈ R

n and �2 is the initial state, �2(−σm) = · · · =
�2(−σ1)= 0.

The objective in this chapter is to design an optimal state feedback control law
u(k) based on any given �1(k)(−σm ≤ k ≤ 0) and initial control law β(k), which
not only renders the state x(k) asymptotically tracking the reference orbit, i.e., e(k)
asymptotically approaches zero; it also minimizes the cost functional as follows:

J (e(k), v(k))=
∞∑

i=k

{
eT(i)Qe(i)+ vT(i)Rv(i)

}
, (5.4)

where Q and R are symmetric and positive-definite matrices. We divide u(k) into
two parts, i.e., v(k) and us(k). So we have

v(k)= u(k)− us(k), (5.5)

where us(k) denotes the steady control input corresponding to the desired trajectory
xd(k). In fact, v(k) is the error between actual control u(k) of system (5.1) and the
steady control us(k).

We see that the problem of solving the optimal tracking control law u(k) of
system (5.1) is converted into solving the optimal control law v(k). In the following
section, we will discuss how to design v(k).

5.3 Optimal Tracking Control Based on Improved Iterative ADP
Algorithm

In this section, we focus on designing the optimal control law to handle the optimal
tracking control problem. We first give a representation of the steady control input

5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm 203

us(k). Inspired by the paper of [13], we define the steady control as follows:

us(k)= g−1(xd(k − σ0), . . . , xd(k − σm))

× (xd(k + 1)− f (xd(k − σ0), . . . , xd(k − σm))), (5.6)

where g−1(·) denotes the inversion of g(·).

Remark 5.1 If g(·) is invertible, then us can be obtained directly by (5.6). So us
exists, when g(·) is invertible. If g(·) is noninvertible, us also exists. Because of the
numerical solution of g−1(·) can be solved at least by one of the three methods as
follows:

1. Moore–Penrose pseudoinverse technique [4]:
The Moore–Penrose pseudoinverse is a matrix G of the same dimensions as g,

satisfying four conditions: gGg = g, GgG = G, Gg is Hermitian, and gG is
Hermitian.

In [4], it is proved that the matrix G exists and is unique, if g �= 0. In this
chapter, g �= 0 obviously, because we supposed that the system (5.1) is control-
lable and reachable. So we can say that g−1 = G. Furthermore, in Matlab 7.5,
the Moore–Penrose pseudoinverse of g can be obtained by the Matlab function
G= pinv(g).

2. Least square method [2]:
As g(·)g−1(·)= I , we have

g−1(·)= (gT(·)g(·))−1gT(·). (5.7)

Introducing E(0, r2) ∈R
n×m into g(·), ḡ(·) can be expressed as follows:

ḡ(·)= g(·)+E(0, r2), (5.8)

where every element in E(0, r2) is zero-mean Gaussian noise. So we get

g−1(·)= (ḡT(·)ḡ(·))−1gT(·). (5.9)

Then, we sample K times, every time we take nm Gaussian points, so we have
Ei(0, r2), i ∈ {1,2, . . . ,K}. Every element in Ei is a Gaussian sample point.
Thus, we have G(·)= [ḡ1; . . . ; ḡK], where ḡi = g+Ei(0, r2), i ∈ {1,2, . . . ,K}.

So we get

g−1(·)= (GT(·)G(·))−1gT(·). (5.10)

3. Neural network method [11]:
First, we let the BP neural network be expressed as F̂ (X,V,W) =

WTσ(V TX), where W and V are the weights of the neural network and σ is
the activation function. Second, we use the output x̂(k + 1) of BP neural net-
work to approximate x(k + 1). Then, we have x̂(k + 1) = WTσ(V TX), where

204 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

X = [x(k), u(k)]. We already know that the system (5.1) is an affine nonlinear
system. So we get g = ∂x̂(k + 1)/∂u. The equation g−1 = ∂u/∂x̂(k + 1) can
also be established.

So we can see that us is existent and can be obtained by (5.6). In this chapter, we
adopt the Moore–Penrose pseudoinverse technique to get g−1(·) in our simulation
section.

According to (5.1), and in light of (5.2) with respect to x(k) and (5.5) with respect
to us(k), we easily obtain

e(k + 1)= f (e(k − σ0)+ xd(k − σ0), . . . , e(k − σm)

+ xd(k − σm))+ g(e(k − σ0)+ xd(k − σ0),

. . . , e(k − σm)+ xd(k − σm))

× (g−1(xd(k − σ0), . . . , xd(k − σm))

× (S(xd(k))− f (xd(k − σ0), . . . , xd(k − σm)))

+ v(k))− S(xd(k)),

e(k)= �(k),−σm ≤ k ≤ 0, (5.11)

where �(k)= �1(k)− �2(k).
So the aim for this chapter is changed to getting an optimal control law not only

making the system (5.11) asymptotically stable but also making the cost functional
(5.4) minimal. To solve the optimal tracking control problem in this chapter, the
following definition and assumption are required.

Definition 5.2 (cf. [10]) (Asymptotic Stability) An equilibrium state e = 0 for sys-
tem (5.11) is asymptotically stable if:

1. It is stable, i.e., given any positive numbers k0 and ε, there exists δ > 0, such
that every solution of system (5.11) satisfies maxk0≤k≤k0+σm |e(k)| ≤ δ and
maxk0≤k≤∞ |e(k)| ≤ ε.

2. For each k0 > 0 there is a δ > 0 such that every solution of system (5.11) satisfies
maxk0≤k≤k0+σm |e(k)| ≤ δ and limk→∞ e(k)= 0.

Assumption 5.3 Given the system (5.11), for the infinite-time horizon problem,
there exists a control law v(k), which satisfies:

1. v(k) is continuous on Ω ; if e(k − σ0) = e(k − σ1) = · · · = e(k − σm) = 0, then
v(k)= 0;

2. v(k) stabilizes system (5.11);
3. ∀e(−σ0), e(−σ1), e(−σm) ∈ R

n, J (e(0), v(0)) is finite.

Actually, for nonlinear systems without time delays, if v(k) satisfies Assump-
tion 5.3, then we can say that v(k) is an admissible control. The definition of an
admissible control can be found in [3].

5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm 205

In system (5.11), for time step k, J ∗(e(k)) is used to denote the optimal value
function, i.e., J ∗(e(k))= infv(k) J (e(k), v(k)), and the corresponding control input
can be formulated as v∗(k) = arg infv(k) J (e(k), v(k)). Thus, we see that u∗(k) =
v∗(k) + us(k) is the optimal control for system (5.1). Let e∗(k) = x∗(k) − xd(k),
where x∗(k) is used to denote the state under the action of the optimal tracking
control law u∗(k).

According to Bellman’s principle of optimality [10], J ∗(e(k)) should satisfy the
following HJB equation:

J ∗(e(k))= inf
v(k)

{
eT(k)Qe(k)+ vT(k)Rv(k)+ J ∗(e(k + 1))

}
, (5.12)

i.e., the optimal controller v∗(k) should satisfy

v∗(k)= arg inf
v(k)

{
eT(k)Qe(k)+ vT(k)Rv(k)+ J ∗(e(k + 1))

}
. (5.13)

Here we define e∗(k)= x∗(k)− xd(k), and

x∗(k + 1)= f (x∗(k − σ0), . . . , x
∗(k − σm))

+ g(x∗(k − σ0), . . . , x
∗(k − σm))u

∗(k), k = 0,1,2, . . . ,

x∗(k)= �1(k), k = −σm,−σm−1, . . . ,−σ0. (5.14)

Then the HJB equation is written as follows:

J ∗(e∗(k))= e∗T(k)Qe∗(k)+ v∗T(k)Rv∗(k)+ J ∗(e∗(k + 1)). (5.15)

Remark 5.4 Of course, one can reduce system (5.1) to a system without time de-
lay by defining a new (σm + 1)n-dimensional state vector y(k) = (x(k − σ0),

x(k − σ1), . . . , x(k − σm)). However, Chyung has pointed out that there are two
major disadvantages of this method in [6]. First, the resulting new system is a
(σm + 1)n-dimensional system increasing the dimension of the system by (σm + 1)
fold. Second, the new system may not be controllable, even if the original system is
controllable. This causes the set of attainability to have an empty interior which, in
turn, introduces additional difficulties [5–7].

Therefore, in the following part, a direct method for time-delay systems is de-
veloped for the optimal tracking control law. In the novel algorithm, we emphasize
that the states are regulated by the designed controller in each iteration. The detailed
iteration process is as follows.

First, we start with the initial value function V [0](·)= 0 which is not necessarily
the optimal value function. Then, for any given state �1(t) (−σm ≤ t ≤ 0), and initial
control β(t) in system (5.1), at any current time k, we start the iterative algorithm
from i = 0 to find the control law v[0](k) as follows:

v[0](k)= arg inf
v(k)

{
eT(k)Qe(k)+ vT(k)Rv(k)

}
, (5.16)

206 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

and the value function is updated as follows:

V [1](e(k))= inf
v(k)

{
eT(k)Qe(k)+ vT(k)Rv(k)

}
, (5.17)

where e(k)= x(k)− xd(k), and

x(t + 1)= f (x(t − σ0), . . . , x(t − σm))

+ g(x(t − σ0), . . . , x(t − σm))β(t)

x(t)= �1(t). − σm ≤ t ≤ 0. (5.18)

We notice that the states are generated by the designed controller, so we further get
the value function iteration as follows:

V [1](e[0](k))= e[0]T(k)Qe[0](k)+ v[0]T(k)Rv[0](k). (5.19)

For i = 1,2, . . . , the iterative HDP algorithm performs the iterations between

v[i](k)= arg inf
v(k)

{eT(k)Qe(k)+ vT(k)Rv(k)

+ V [i](e(k + 1))} (5.20)

and

V [i+1](e(k))= inf
v(k)

{eT(k)Qe(k)+ vT(k)Rv(k)

+ V [i](e(k + 1))}. (5.21)

It should be emphasized that the states in each iteration are regulated by the
designed control law, so we further obtain

V [i+1](e[i](k))= e[i]T(k)Qe[i](k)+ v[i]T(k)Rv[i](k)

+ V [i](e[i−1](k + 1)), (5.22)

where e[i](k) = x[i](k) − xd(k), i = 0,1,2, . . . , and the states are updated as fol-
lows:

x[i](t + 1)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x[i+1](t − σ0), . . . , x
[i+1](t − σm))

+g(x[i+1](t − σ0), . . . , x
[i+1](t − σm))

×u[i+1](t), t ≥ k,

f (x[i](t − σ0), . . . , x
[i](t − σm))

+g(x[i](t − σ0), . . . , x
[i](t − σm))

×u[i](t), 0 ≤ t < k,

x[i](t)= �1(t), −σm ≤ t ≤ 0, (5.23)

where u[i](t)= v[i](t)+ us(t).

5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm 207

Remark 5.5 From (5.23) we find that the state x[i](t + 1), t ≥ k, is related to
x[i+1](t − σ0), . . . , x

[i+1](t − σm) and u[i+1](t). It reflects the “backward iteration”
of state at t, t ≥ k.

Remark 5.6 One important property we must point out is that the HDP algorithm
developed in this chapter is different from the algorithm presented in [13]:

1. The HDP algorithm presented in [13] deals with nonlinear systems without time
delays, while the HDP algorithm developed in this chapter deals with time-delay
nonlinear systems.

2. For the HDP algorithm presented in [13], only the value function is updated
according to the control law iteration in every iteration step. For the HDP algo-
rithm developed in this chapter, besides the value function iteration, the state is
also updated according to the control law iteration.

Based on the analysis above, our algorithm is a novel HDP algorithm. It is a
development of the HDP algorithm presented in [13].

In the following part, we present the convergence analysis of the iteration of
(5.16)–(5.23).

Lemma 5.7 Let v[i](k) and V [i+1](e[i](k)) be expressed as (5.20) and (5.22), and
let {μ[i](k)} be arbitrary sequence of control law, and let Λ[i+1] be defined by

Λ[i+1](e[i](k))= e[i]T(k)Qe[i](k)+μ[i]T(k)Rμ[i](k)

+Λ[i](e[i−1](k + 1)), i ≥ 0. (5.24)

Thus, if V [0] =Λ[0] = 0, then V [i+1](e[i](k))≤Λ[i+1](e[i](k)),∀e[i](k).

Proof For given �1(t) (−σm ≤ t ≤ 0) of system (5.1), it can be straightforwardly
seen from the fact that V [i+1](e[i](k)) is obtained by the control input v[i](k), while
Λ[i+1](e[i](k)) is the result of arbitrary control input. �

Lemma 5.8 Let the sequence V [i+1](e[i](k)) be defined by (5.22); v[i](k) is the
control law expressed as (5.20). There is an upper bound Y , such that 0 ≤
V [i+1](e[i](k))≤ Y , ∀e[i](k).

Proof Let γ [i](k) be any control law that satisfies Assumption 5.3. Let V [0] =
P [0] = 0, and let P [i+1](e[i](k)) be defined as follows:

P [i+1](e[i](k))= e[i]T(k)Qe[i](k)+ (γ [i](k))TRγ [i](k)

+ P [i](e[i−1](k + 1)). (5.25)

From (5.25), we obtain

P [i](e[i−1](k + 1))= e[i−1]T(k + 1)Qe[i−1](k + 1)

208 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

+ γ [i−1]T(k + 1)Rγ [i−1](k + 1)

+ P [i−1](e[i−2](k + 2)). (5.26)

Thus, we get

P [i+1](e[i](k))= e[i]T(k)Qe[i](k)

+ γ [i]T(k)Rγ [i](k)

+ e[i−1]T(k + 1)Qe[i−1](k + 1)

+ γ [i−1]T(k + 1)Rγ [i−1](k + 1)

+ · · ·
+ e[0]T(k + i)Qe[0](k + i)

+ γ [0]T(k + i)Rγ [0](k + i). (5.27)

For j = 0, . . . , i, we let

L(k + j)= e[i−j]T(k + j)Qe[i−j](k + j)

+ γ [i−j]T(k + j)Rγ [i−j](k + j). (5.28)

Then (5.27) can further be written as follows:

P [i+1](e[i](k))=
i∑

j=0

L(k + j). (5.29)

Furthermore, we see that

∀i : P [i+1](e[i](k))≤ lim
i→∞

i∑

j=0

L(k + j). (5.30)

Noting that {γ [i](k)} satisfies Assumption 5.3, according to the third condition of
Assumption 5.3, there exists an upper bound Y such that

lim
i→∞

i∑

j=0

L(k + j)≤ Y. (5.31)

From Lemma 5.7 we obtain

∀i : V [i+1](e[i](k))≤ P [i+1](e[i](k))≤ Y. (5.32)

This completes the proof. �

5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm 209

Theorem 5.9 (cf. [12]) For system (5.1), the iterative algorithm is as in (5.16)–
(5.23); then we have V [i+1](e[i](k))≥ V [i](e[i](k)), ∀e[i](k).

Proof For convenience in our analysis, define a new sequence {Φ[i](e(k))} as fol-
lows:

Φ[i](e(k))= eT(k)Qe(k)+ v[i]T(k)Rv[i](k)

+Φ[i−1](e(k + 1)), (5.33)

with v[i](k) defined by (5.20), Φ[0](e(k))= 0.
In the following part, we will prove Φ[i](e(k)) ≤ V [i+1](e(k)) by mathematical

induction.
First, we prove that it holds for i = 0. Notice that

V [1](e(k))−Φ[0](e(k))= eT(k)Qe(k)v[0]T(k)Rv[0](k)

≥ 0, (5.34)

thus, for i = 0, we have

V [1](e(k))≥Φ[0](e(k)). (5.35)

Second, we assume that it holds for i, i.e., V [i](e(k))≥Φ[i−1](e(k)), for ∀e(k).
Then, from (5.21) and (5.33), we get

V [i+1](e(k))−Φ[i](e(k))= V [i](e(k + 1))−Φ[i−1](e(k + 1))

≥ 0, (5.36)

i.e., the following inequality holds:

Φ[i](e(k))≤ V [i+1](e(k)). (5.37)

Therefore, (5.37) is proved by mathematical induction, for ∀e(k).
On the other hand, from Lemma 5.7, we have ∀e[i](k), V [i+1](e[i](k)) ≤

Φ[i+1](e[i](k)). So we have V [i](e(k))≤Φ[i](e(k)).
Therefore for any e(k), we have

V [i](e(k))≤Φ[i](e(k))≤ V [i+1](e(k)). (5.38)

So, for any e[i](k), we have

V [i+1](e[i](k))≥ V [i](e[i](k)). (5.39)

�

We let V L(eL(k)) = limi→∞ V [i+1](e[i](k)). Accordingly, vL(k) = limi→∞ ×
v[i](k) and eL(k) = limi→∞ e[i](k) are the corresponding states. Let xL(k) =
eL(k)+ η(k) and uL(k)= vL(k)+ us(k).

210 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

In the following part, we will show that the value function JL(eL(k)) satisfies
the corresponding HJB function, and that it is the optimal value function.

Theorem 5.10 If the value function V i+1(ei(k)) is defined by (5.22). Let V L(eL(k))

= limi→∞ V [i+1](e[i](k)). Let vL(k)= limi→∞ v[i](k) and eL(k)= limi→∞ e[i](k)
be the corresponding states. Then, the following equation can be established:

V L(eL(k))= eLT(k)QeL(k)+ vLT(k)RvL(k)+ V L(eL(k + 1)). (5.40)

Proof First, according to Theorem 5.9, we have V [i+1](e[i](k)) ≥ V [i](e[i](k)),
∀e[i](k). So, we obtain

V [i+1](e[i](k))≥ e[i]T(k)Qe[i](k)+ v[i−1]T(k)Rv[i−1](k)

+ V [i−1](e[i−1](k + 1)). (5.41)

Let i → ∞; we have vL(k)= limi→∞ v[i](k) and

V L(eL(k))≥ eLT(k)QeL(k)+ vLT(k)RvL(k)

+ V L(eL(k + 1)). (5.42)

On the other hand, for any i and arbitrary control policy {μ[i](k)}, let
Λ[i+1](e[i](k)) be as in (5.24). By Lemma 5.7, we have

V [i+1](e[i](k))≤ e[i]T(k)Qe[i](k)+μ[i]T(k)Rμ[i](k)

+Λ[i](e[i−1](k + 1)). (5.43)

Since μ[i](k) in (5.43) is chosen arbitrarily, we let the control policy be {μ[i](k)} =
{v[i](k)},∀i. So we get

V [i+1](e[i](k))≤ e[i]T(k)Qe[i](k)+ v[i]T(k)Rv[i](k)

+ V [i](e[i−1](k + 1)). (5.44)

Let i → ∞, and then we have

V L(eL(k))≤ eLT(k)QeL(k)+ vLT(k)RvL(k)

+ V L(eL(k + 1)). (5.45)

Thus, combining (5.42) with (5.45), we have

V L(eL(k))= eLT(k)QeL(k)+ vLT(k)RvL(k)

+ V L(eL(k + 1)). (5.46)

�

Next, we give a theorem to demonstrate V L(eL(k))= J ∗(e∗(k)).

5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm 211

Theorem 5.11 Let the value function V [i+1](e[i](k)) be defined as (5.22) and
V L(eL(k)) = limi→∞ V [i+1](e[i](k)). J ∗(e∗(k)) is defined as in (5.15). Then, we
have V L(eL(k))= J ∗(e∗(k)).

Proof According to the definition J ∗(e(k))= infv(k){J (e(k), v(k))}, we know that

V [i+1](e(k))≥ J ∗(e(k)). (5.47)

So for ∀e[i](k), we have

V [i+1](e[i](k))≥ J ∗(e[i](k)). (5.48)

Let i → ∞, and then we have

V L(eL(k))≥ J ∗(eL(k)). (5.49)

On the other hand, according to J ∗(e(k)) = infv(k){J (e(k), v(k))}, for any θ >

0 there exists a sequence of control policy μ[i](k), such that the associated value
function Λ[i+1](e(k)) similar to (5.24) satisfies Λ[i+1](e(k))≤ J ∗(e(k))+ θ . From
Lemma 5.7, we get

V [i+1](e(k))≤Λ[i+1](e(k))≤ J ∗(e(k))+ θ. (5.50)

So we have

V [i+1](e[i](k))≤ J ∗(e[i](k))+ θ. (5.51)

Let i → ∞, and then we obtain

V L(eL(k))≤ J ∗(eL(k))+ θ. (5.52)

Noting that θ is chosen arbitrarily, we have

V L(eL(k))≤ J ∗(eL(k)). (5.53)

From (5.49) and (5.53), we get

V L(eL(k))= J ∗(eL(k)). (5.54)

From Theorem 5.10, we see that V L(eL(k)) satisfies the HJB equation, so we have
vL(k)= v∗(k). From (5.14) and (5.23), we have eL(k)= e∗(k). Then, we draw the
conclusion that V L(eL(k))= J ∗(e∗(k)). �

After that, we give a theorem to demonstrate that the state error system (5.11) is
asymptotically stable, i.e., the system state x(k) follows xd(k) asymptotically.

The following lemma is necessary for the proof of the stability property.

212 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

Lemma 5.12 Define the value function sequence {V [i+1](e[i](k))} as (5.22) with
V [0] = 0, and the control law sequence {v[i](k)} as (5.20). Then, we find that for
∀i = 0,1, . . . , the value function V [i+1](e[i](k)) is a positive definite function.

Proof The lemma can be proved by the following three steps.
1. Show that zero is an equilibrium point for the system (5.11).
For the autonomous system of the system (5.11), let e(k − σ0) = e(k − σ1) =

· · · = e(k − σm)= 0; we have e(k + 1)= 0. According to the first condition of As-
sumption 5.3, when e(k−σ0)= e(k−σ1)= · · · = e(k−σm)= 0, we have v(k)= 0.
So according to the definition of the equilibrium state in [10], we can say that zero
is an equilibrium point for the system (5.11).

2. Show that for ∀i, the value function V [i+1](e[i](k)) = 0 at the equilibrium
point.

This conclusion can be proved by mathematical induction.
For i = 0, we have V [0] = 0, and

V [1](e[0](k))= e[0]T(k)Qe[0](k)+ v[0]T(k)Rv[0](k). (5.55)

Let e[0](k − σ0) = e[0](k − σ1) = · · · = e[0](k − σm) = 0 at the equilibrium
point; hence we have v[0](k) = 0 according to Assumption 5.3. Then we get
V [1](e[0](k))= 0 at the equilibrium point.

Assume that for any i, V [i](e[i−1](k+ 1))= 0 holds at the equilibrium point. For
i + 1, we have

V [i+1](e[i](k))= e[i]T(k)Qe[i](k)+ v[i]T(k)Rv[i](k)+ V [i](e[i−1](k + 1))

= e[i]T(k)Qe[i](k)+ v[i]T(k)Rv[i](k)

+ V [i](f (e[i](k − σ0)+ xd(k − σ0), . . . , e
[i](k − σm)

+ xd(k − σ0))

+ g(e[i](k − σ0)+ xd(k − σ0), . . . , e
[i](k − σm)

+ xd(k − σm))(v
[i](k)+ us(k))− S(xd(k))). (5.56)

Let e[i](k − σ0)= e[i](k − σ1)= · · · = e[i](k − σm)= 0 at the equilibrium point.
Then, according to the first condition of Assumption 5.3, we have v[i](k) = 0. So
we obtain V [i+1](e[i](k))= 0 at the equilibrium point.

3. Show that the iterative value function V [i+1](e[i](k)), i = 0,1, . . . , is a positive
definite function.

From (5.22), we get

V [i+1](e[i](k))= e[i]T(k)Qe[i](k)+ v[i]T(k)Rv[i](k)

+ e[i−1]T(k + 1)Qe[i−1](k + 1)

5.4 Simulations 213

+ v[i−1]T(k + 1)Rv[i−1](k + 1)+ . . .

+ e[0]T(k + i)Qe[0](k + i)+ v[0]T(k + i)Rv[0](k + i). (5.57)

Then, we have V [i+1](e[i](k)) > 0 for e[i](k) �= 0,∀i. On the other hand, as
e[i](k) → ∞, we have V [i+1](e[i](k)) → ∞. So we can say that the value function
V [i+1](e[i](k)) is a positive definite function. �

Now, we give the theorem of the stability property.

Theorem 5.13 Let the optimal control v∗(k) be expressed as (5.13) and let the
value function J ∗(e∗(k)) be expressed as (5.15). Then, we find that the optimal
control v∗(k) stabilizes the system (5.11) asymptotically.

Proof We already know that V L(eL(k)) is a positive definite function. Furthermore,
we have proved V L(eL(k))= J ∗(e∗(k)) in Theorem 5.11. So we see that J ∗(e∗(k))
is a positive definite function.

Furthermore, according to the HJB equation (5.15), we have

J ∗(e∗(k + 1))− J ∗(e∗(k))= −{
e∗T(k)Qe∗(k)+ v∗T(k)Rv∗(k)

}

≤ 0. (5.58)

According to the definition of a Lyapunov function [9], we find that J ∗(e∗(k)) is a
Lyapunov function, which proves the conclusion. �

Therefore, we conclude that the value function {V [i+1](e[i](k))} is convergent,
based on the HDP algorithm developed in this chapter. Furthermore, the limit of
{V [i+1](e[i](k))} satisfies the HJB equation and is the optimal one.

5.4 Simulations

Example 5.14 Consider the following nonlinear time-delay system which is the ex-
ample in [1, 13] with modification:

x(k + 1)= f (x(k), x(k − 1), x(k − 2))

+ g(x(k), x(k − 1), x(k − 2))u(k),

x(k)= �1(k),−2 ≤ k ≤ 0, (5.59)

where

f (x(k), x(k − 1), x(k − 2))=
[

0.2x1(k) exp
(
x2

2(k)
)

x2(k − 2)
0.3x2

2(k) x1(k − 1)

]
,

214 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

Fig. 5.1 The Hénon chaos orbits

and

g(x(k), x(k − 1), x(k − 2))=
[−0.2 0

0 −0.2

]
.

The desired signal is the well-known Hénon mapping, as follows:

[
xd1(k + 1)
xd2(k + 1)

]
=
[

1 + bxd2(k)− ax2
d1(k)

xd2(k)

]
, (5.60)

where a = 1.4, b = 0.3,
[xd1(0)
xd2(0)

] = [0.1
−0.1

]
. The chaotic signal orbits are given as

Fig. 5.1.
Based on the implementation of the present HDP algorithm, we first give the

initial states as �1(−2)= �1(−1)= �1(0)= [0.5 −0.5]T, and the initial control law
as β(k)= −2x(k). The implementation of the algorithm is at the time instant k = 3.
The maximal iteration step imax is 50. We choose three-layer BP neural networks
as the critic network and the action network with the structure 2–8–1 and 6–8–2,
respectively. The iteration time of the weights updating for two neural networks is
100. The initial weights are chosen randomly from [−0.1,0.1], and the learning rate
is αa = αc = 0.05. We select Q=R = I2.

The state trajectories are given as Figs. 5.2 and 5.3. The solid lines in the two
figures are the system states, and the dashed lines are the trajectories of the desired
chaotic signal. From the two figures we see that the state trajectories of system (5.59)
follow the chaotic signal satisfactorily. The corresponding control error curves are
given as Fig. 5.4. From Lemma 5.8, Theorem 5.9 and Theorem 5.11, the value func-

5.4 Simulations 215

Fig. 5.2 The state variable trajectory x1 and desired trajectory xd1

Fig. 5.3 The state variable trajectory x2 and desired trajectory xd2

tion sequence {V [i+1]} is bounded and nondecreasing. Furthermore, it converges to
the optimal value function J ∗ as i → ∞. The curve in Fig. 5.5 shows the prop-
erties of the value function sequence. According to Theorem 5.13, we know that

216 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

Fig. 5.4 The control error variable trajectory v1 and v2

Fig. 5.5 The convergence of value function

system (5.11) is asymptotically stable. The error trajectories for the system (5.59)
and Hénon chaotic signal are presented in Fig. 5.6, and they converge to zero asymp-
totically. It is clear that the new HDP iteration algorithm is very feasible.

5.4 Simulations 217

Fig. 5.6 The tracking error trajectories e1 and e2

Example 5.15 Consider the following nonlinear time-delay system:

x(k + 1)= f (x(k), x(k − 1), x(k − 2))

+ g(x(k), x(k − 1), x(k − 2))u(k),

x(k)= �1(k),−2 ≤ k ≤ 0, (5.61)

where

f (x(k), x(k − 1), x(k − 2))=
[

0.2x1(k) exp
(
x2

2(k)
)

x2(k − 2)
0.3x2

2(k) x1(k − 1)

]
,

and

g(x(k), x(k − 1), x(k − 2))=
[
x2(k − 2) 0

0 1

]
.

From system (5.61), we know that g(·) is not always invertible. Here the Moore–
Penrose pseudoinverse technique is used to obtain g−1(·).

The desired orbit xd(k) is generated by the following exosystem:

xd(k + 1)=Axd(k), (5.62)

with

A=
[

coswT sinwT
− sinwT coswT

]
, xd(0)=

[
0
1

]
,

where T = 0.1s, w = 0.8π .

218 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

Fig. 5.7 The state variable trajectory x1 and desired trajectory xd1

Fig. 5.8 The state variable trajectory x2 and desired trajectory xd2

First, we give the initial states as �1(−2) = �1(−1) = �1(0) = [0.5 − 0.2]T,
and the initial control law as β(k) = −2x(k). We also implement the present HDP
algorithm at the time instant k = 3. The maximal iteration step imax is 60. The
learning rate is αa = αc = 0.01. We select Q=R = I2.

5.4 Simulations 219

Fig. 5.9 The control error variable trajectory v1 and v2

Fig. 5.10 The convergence of the value function

The trajectories of the system states are presented in Figs. 5.7 and 5.8. In the two
figures, the solid lines are the system states, and the dashed lines are the desired
trajectories. The corresponding control error curves are displayed in Fig. 5.9. In ad-
dition, we give the curve of the value function sequence in Fig. 5.10. It is bounded
and convergent. It verifies Theorem 5.9 and Theorem 5.11 as well. The tracking er-

220 5 Optimal Tracking Control of Nonlinear Systems with Time Delays

Fig. 5.11 The tracking error trajectories e1 and e2

rors are shown in Fig. 5.11, and they converge to zero asymptotically. It is clear that
the tracking performance is satisfactory, and the new iterative algorithm developed
in this chapter is very effective.

5.5 Summary

In this chapter, we developed an effective HDP algorithm to solve optimal tracking
control problems for a class of nonlinear discrete-time systems with time delays.
First, we defined a cost functional for time-delay systems. Then, a novel iterative
HDP algorithm was developed to solve the optimal tracking control problem. Two
neural networks are used to facilitate the implementation of the iterative algorithm.
Simulation examples demonstrated the effectiveness of the present optimal tracking
control algorithm.

References

1. Al-Tamimi A, Lewis FL (2007) Discrete-time nonlinear HJB solution using approximate dy-
namic programming: convergence proof. In: Proceedings of IEEE international symposium
on approximate dynamic programming and reinforcement learning, Honolulu, HI, pp 38–43

2. Al-Tamimi A, Abu-Khalaf M, Lewis FL (2007) Adaptive critic designs for discrete-time zero-
sum games with application to H∞ control. IEEE Trans Syst Man Cybern, Part B, Cybern
37:240–247

References 221

3. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using
approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern, Part
B, Cybern 38:943–949

4. Ben-Israel A, Greville TNE (2002) Generalized inverse: theory and applications. Springer,
New York

5. Chyung DH (1967) Discrete systems with time delay. Presented at the 5th annals Allerton
conference on circuit and system theory, Urbana

6. Chyung DH (1968) Discrete optimal systems with time delay. IEEE Trans Autom Control
13:117

7. Chyung DH, Lee EB (1966) Linear optimal systems with time delays. SIAM J Control
4(3):548–575

8. Isidori A (2005) Nonlinear control systems II. Springer, Berlin
9. Liao X, Wang L, Yu P (2007) Stability of dynamical systems. Elsevier, Amsterdam

10. Manu MZ, Mohammad J (1987) Time-delay systems analysis, optimization and applications.
North-Holland, New York

11. Wei QL, Zhang HG, Liu DR, Zhao Y (2010) An optimal control scheme for a class of discrete-
time nonlinear systems with time delays using adaptive dynamic programming. Acta Autom
Sin 36:121–129

12. Zhang HG, Song RZ (2011) Optimal tracking control for a class of nonlinear discrete-time
systems with time delays based on heuristic dynamic programming. IEEE Trans Neural Netw
22(12):1851–1862

13. Zhang HG, Wei QL, Luo YH (2008) A novel infinite-time optimal tracking control scheme
for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE
Trans Syst Man Cybern, Part B, Cybern 38:937–942

Chapter 6
Optimal Feedback Control for Continuous-Time
Systems via ADP

6.1 Introduction

In this chapter, we will study how to design a controller for continuous-time sys-
tems via the ADP method. Although many ADP methods have been proposed for
continuous-time systems [1, 6, 9, 10, 12, 13, 15, 17–19], a suitable framework
in which the optimal controller can be designed for a class of unknown general
continuous-time systems is still not available. Therefore, in Sect. 6.2, we will de-
velop a novel optimal robust feedback control scheme for a class of unknown gen-
eral continuous-time systems using ADP method. The merit of present method is
that we require only the availability of input/output data instead of exact system
model. Moreover, the obtained control input can be guaranteed to be close to the
optimal control input within a small bound.

As is known, in the real world, many practical control systems are described
by nonaffine structure, such as chemical reactions, dynamic model in pendulum
control, etc. The difficulty associated with ADP for nonaffine nonlinear system is
that the nonlinear function is an implicit function with respect to the control variable.
To overcome this difficulty, in Sect. 6.3, we will extend the ADP method to a class
of nonaffine nonlinear systems. Through the present two methods, optimal control
problems of a quite wide class of continuous-time nonlinear systems can be solved.

6.2 Optimal Robust Feedback Control for Unknown General
Nonlinear Systems

In this section, a robust approximate optimal tracking control scheme is developed
for a class of unknown general nonlinear systems by using the ADP method. In
the design of the controller, only available input/output data are required instead
of known system dynamics. First, a data-based model is established by a recurrent
neural network (RNN) to reconstruct the unknown system dynamics using available
input/output data. Then, based on the obtained data-based model, the ADP method
is utilized to design the approximate optimal tracking controller.

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_6,
© Springer-Verlag London 2013

223

http://dx.doi.org/10.1007/978-1-4471-4757-2_6

224 6 Optimal Feedback Control for Continuous-Time Systems via ADP

6.2.1 Problem Formulation

Consider the following general continuous-time nonlinear systems:

ẋ(t)= f (x(t), u(t)), (6.1)

where x(t)= [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state vector, u(t)= [u1(t), u2(t),

. . . , um(t)]T ∈ R
m is the input vector, and f (·, ·) is an unknown smooth nonlinear

function with respect to x(t) and u(t).
In this section, our control objective is to design an optimal controller for (6.1),

which ensures that the state vector x(t) tracks the specified trajectory xd(t) while
minimizing the infinite-horizon cost functional as follows:

J (e(t), u)=
∫ ∞

t

l(e(τ), u(τ))dτ, (6.2)

where e(t)= x(t)−xd(t) denotes the state tracking error, l(e(t), u(t))= eT(t)Qe(t)

+ uT(t)Ru(t) is the utility function, and Q and R are symmetric positive definite
matrices with appropriate dimensions.

Since the system dynamics is completely unknown, we cannot apply existing
ADP methods to (6.1) directly. Therefore, it is now desirable to propose a novel con-
trol scheme that does not need the exact system dynamics but only the input/output
data which can be obtained during the operation of the system. Therefore, we pro-
pose a data-based optimal robust tracking control scheme using ADP method for
unknown general nonlinear continuous-time systems. Specifically, the design of the
present controller is divided into two steps:

1. Establishing a data-based model based on an RNN by using available in-
put/output data to reconstruct the unknown system dynamics, and

2. Designing the robust approximate optimal tracking controller based on the ob-
tained data-based model

In the following, the establishment of the data-based model and the controller
design will be discussed in detail.

6.2.2 Data-Based Robust Approximate Optimal Tracking Control

Although we cannot obtain the exact system model in general, fortunately, we can
access input–output data of the unknown general nonlinear systems in many prac-
tical control processes. So it is desirable to use available input–output data in the
design of the controller. The historical input–output data could be incorporated indi-
rectly in the form of a data-based model. The data-based model could extract useful
information contained in the input–output data and capture input–output mapping.
Markov models, neural network models, well structured filters, wavelet models, and

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 225

other function approximation models can be regarded as data-based models [14, 20–
24, 26]. In this section, we develop a data-based model based on a recurrent neural
network (RNN) to reconstruct the unknown system dynamics by using available
input–output data.

To begin with the development, the system dynamics (6.1) is rewritten in the
form of an RNN as follows [16]:

ẋ(t)= C∗Tx(t)+A∗Th(x(t))+C∗T
u u(t)+A∗T

u + εm(t), (6.3)

where εm(t) is assumed to be bounded, C∗T, A∗T, C∗T
u , and A∗T

u are unknown ideal
weight matrices. The activation function h(·) is selected as a monotonically increas-
ing function and satisfies

0 ≤ h(x)− h(y)≤ k(x − y), (6.4)

for any x, y ∈R and x ≥ y, k > 0, such as h(x)= tanh(x).
Based on (6.3), the data-based model is then constructed as

˙̂x(t)= ĈT(t)x̂(t)+ ÂT(t)h(x̂(t))+ ĈT
u (t)u(t)+ ÂT

u(t)− υ(t), (6.5)

where x̂(t) is the estimated system state vector, Ĉ(t), Â(t), Ĉu(t), and Âu(t) are the
estimates of the ideal weight matrices C∗, A∗, C∗

u , and A∗
u, respectively, and υ(t) is

defined as

υ(t)= Sem(t)+ θ̂ (t)em(t)

eT
m(t)em(t)+ η

, (6.6)

where em(t)= x(t)− x̂(t) is the system modeling error, S ∈ R
n×n is a design matrix,

θ̂ (t) ∈R is an additional tunable parameter, and η > 1 is a constant.

Assumption 6.1 The term εm(t) is assumed to be upper bounded by a function of
modeling error such that

εT
m(t)εm(t)≤ εM(t)= θ∗eT

m(t)em(t), (6.7)

where θ∗ is the bounded constant target value.

The modeling error dynamics is written as

ėm(t)= C∗Tem(t)+ C̃T(t)x̂(t)+A∗Th̃(em(t))

+ ÃT(t)h(x̂(t))+ C̃T
u (t)u(t)+ ÃT

u(t)+ εa(t)

+ Sem(t)− θ̃ (t)em(t)

eT
m(t)em(t)+ η

+ θ∗em(t)
eT
m(t)em(t)+ η

, (6.8)

where C̃(t) = C∗ − Ĉ(t), Ã(t) = A∗ − Â(t), C̃u(t) = C∗
u − Ĉu(t), Ãu(t) = A∗

u −
Âu(t), h̃(em(t))= h(x(t))− h(x̂(t)), and θ̃ (t)= θ∗ − θ̂ (t).

226 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Theorem 6.2 (cf. [25]) The modeling error em(t) will be asymptotically convergent
to zero as t → ∞ if the weight matrices and the tunable parameter of the data-based
model (6.5) are updated through the following equations:

˙̂
C(t)= Γ1x̂(t)e

T
m(t),

˙̂
A(t)= Γ2f (x̂(t))e

T
m(t),

˙̂
Cu(t)= Γ3u(t)e

T
m(t),

˙̂
Au(t)= Γ4e

T
m(t),

˙̂
θ(t)= −Γ5

eT
m(t)em(t)

eT
m(t)em(t)+ η

, (6.9)

where Γi is a positive definite matrix such that Γi = Γ T
i > 0, i = 1,2, . . . ,5.

Proof Choose the following Lyapunov function candidate:

J3(t)= J1(t)+ J2(t), (6.10)

where

J1(t)= 1

2
eT
m(t)em(t),

J2(t)= 1

2
tr{C̃T(t)Γ −1

1 C̃(t)+ ÃT(t)Γ −1
2 Ã(t)

+ C̃T
u (t)Γ

−1
3 C̃u(t)+ ÃT

u(t)Γ
−1

4 Ãu(t)} + 1

2
θ̃T(t)Γ −1

5 θ̃ (t).

Then, the time derivative of the Lyapunov function candidate (6.10) along the
trajectories of the error system (6.8) is computed as

J̇1(t)= eT
m(t)C

∗Tem(t)+ eT
m(t)C̃

T(t)x̂(t)

+ eT
m(t)A

∗Th̃(em(t))+ eT
m(t)Ã

T (t)h(x̂(t))

+ eT
m(t)C̃

T
u (t)u(t)+ eT

m(t)Ã
T
u(t)+ eT

m(t)εm(t)

+ eT
m(t)Sem(t)− eT

m(t)θ̃(t)em(t)

eT
m(t)em(t)+ η

+ eT
m(t)θ

∗em(t)
eT
m(t)em(t)+ η

. (6.11)

From (6.4), we can obtain

eT
m(t)A

∗Th̃(em(t))≤ 1

2
eT
m(t)A

∗TA∗em(t)+ 1

2
k2eT

m(t)em(t). (6.12)

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 227

According to Assumption 6.1, we have

eT
m(t)εa(t)≤ 1

2
eT
m(t)em(t)+ 1

2
εT
m(t)εm(t)

≤ 1

2
eT
m(t)em(t)+ 1

2
θ∗eT

m(t)em(t). (6.13)

Therefore, (6.11) can be rewritten as

J̇1(t)≤ eT
m(t)C

∗Tem(t)+ eT
m(t)C̃

T(t)x̂(t)

+ 1

2
eT
m(t)A

∗TA∗em(t)+
(

1

2
+ 1

2
θ∗ + 1

2
k2
)
eT
m(t)em(t)

+ eT
m(t)Ã

T(t)h(x̂(t))+ eT
m(t)C̃

T
u (t)u(t)+ eT

m(t)Ã
T
u(t)

+ eT
m(t)Sem(t)− eT

m(t)θ̃ (t)em(t)

eT
m(t)em(t)+ η

+ eT
m(t)θ

∗em(t)
eT
m(t)em(t)+ η

. (6.14)

By computing the time derivative of J2(t), we have

J̇2(t)= tr{C̃T(t)Γ −1
1

˙̃
C(t)+ ÃT(t)Γ −1

2
˙̃
A(t)

+ C̃T
u (t)Γ

−1
3

˙̃
Cu(t)+ ÃT

u(t)Γ
−1

4
˙̃
Au(t)} + θ̃T(t)Γ −1

5
˙̃
θ(t). (6.15)

Combining (6.14) with (6.15), we have

J̇3(t)≤ eT
m(t)C

∗Tem(t)+ 1

2
eT
m(t)A

∗TA∗em(t)

+ eT
m(t)

((
1

2
+ 1

2
θ∗ + 1

2
k2
)
In + S

)
em(t)+ eT

m(t)θ
∗em(t)

eT
m(t)em(t)+ η

≤ eT
m(t)Ξem(t), (6.16)

where In denotes a n× n identity matrix and

Ξ = C∗T + 1

2
A∗TA∗ +

(
1

2
+ 3

2
θ∗ + 1

2
k2
)
In + S,

and S is selected to make Ξ < 0. Therefore, it can be concluded that J̇3(t) < 0.
Since J3(t) > 0, it follows from [3] that em(t)→ 0 as t → ∞.

This completes the proof. �

Remark 6.3 According to the results of Theorem 6.2, since em(t) → 0 as t → ∞,

the term υ(t) → 0 as t → ∞. In addition, ˙̂
C(t) → 0, ˙̂

A(t) → 0, ˙̂
Cu(t) → 0, and

˙̂
Au(t) → 0 as em(t) → 0. It means that Ĉ(t), Â(t), Ĉu(t), and Âu(t) all tend to be
constant matrices which are denoted C, A, Cu, and Au, respectively.

228 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Consequently, the nonlinear system (6.1) can be rewritten as

ẋ(t)= CTx(t)+ATh(x(t))+CT
u u(t)+AT

u. (6.17)

In this way, the original optimal tracking control problem of (6.1) is transformed
into the optimal tracking control problem of (6.17). Next, the controller design based
on (6.17) will be given in detail.

It is assumed that the desired trajectory xd(t) has the following form:

ẋd (t)= CTxd(t)+ATh(xd(t))+CT
u ud(t)+AT

u, (6.18)

where ud(t) is the control input of the desired system.
By using (6.17) and (6.18), the error system can be formulated as

ė(t)= CTe(t)+AThe(t)+CT
u ue(t), (6.19)

where he(t) = h(x(t)) − h(xd(t)) and ue(t) = u(t) − ud(t). It is noted that the
controller u(t) is composed of two parts, the steady-state controller ud(t) and the
feedback controller ue(t).

The steady-state controller ud(t) can be obtained from (6.18) as follows:

ud(t)= C−T
u (ẋd(t)−CTxd(t)−ATh(xd(t))−AT

u), (6.20)

where C−1
u stands for the pseudo-inverse of Cu. The steady-state controller is used

to maintain the tracking error close to zero at the steady-state stage.
Next, the feedback controller ue(t) will be designed to stabilize the state tracking

error dynamics at transient stage in an optimal manner. In the following, for brevity,
the denotations e(t), ud(t), ue(t), u(t), and V (e(t)) are rewritten as e, ud , ue, u,
and V (e).

The infinite-horizon cost functional (6.2) is transformed into

J (e,u)=
∫ ∞

t

l(e(τ), ue(τ))dτ, (6.21)

where l(e, ue) = eTQe + uT
e Rue is the utility function; Q and R are symmetric

positive definite matrices with appropriate dimensions.
It is desirable to find the optimal feedback control u∗

e which stabilizes the sys-
tem (6.19) and minimizes the cost functional (6.21). The kind of control is called
admissible control.

Define the Hamilton function as

H(e,ue, Je)= J T
e (C

Te+AThe +CT
u ue)+ eTQe+ uT

e Rue, (6.22)

where Je = ∂J (e)/∂e.
The optimal value function J ∗(e) is defined as

J ∗(e)= min
ue∈ψ(Ω)

∫ ∞

t

l(e(τ), ue(e(τ)))dτ, (6.23)

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 229

and satisfies

0 = min
ue∈ψ(Ω)

(H(e,ue, J
∗
e)). (6.24)

Further, we can obtain the optimal control u∗
e by solving ∂H(e,ue, J

∗
e)/∂ue = 0 as

u∗
e = −1

2
R−1CuJ

∗
e , (6.25)

where J ∗
e = ∂J ∗(e)/∂e. Then, the overall optimal control input can be rewritten as

u∗ = ud + u∗
e .

In the following, we will focus on the optimal feedback controller design using
the ADP method, which is implemented by employing the critic NN and the action
NN.

A neural network is utilized to approximate J (e) as

J (e)=WT
c φc(e)+ εc, (6.26)

where Wc is the unknown ideal constant weights and φc(e) : Rn → R
N1 is called

the critic NN activation function vector, N1 is the number of neurons in the hidden
layer, and εc is the critic NN approximation error.

The derivative of the cost function J (e) with respect to e is

Je = �φT
c Wc +�εc, (6.27)

where �φc � ∂φc(e)/∂e and �εc � ∂εc/∂e.
Let Ŵc be an estimate of Wc, then we have the estimate of J (e) as follows:

Ĵ (e)= ŴT
c φc(e). (6.28)

Then, the approximate Hamilton function can be derived as follows:

H(e,ue, Ŵa)= ŴT
c �φc(CTe+AThe +CT

u ue)+ eTQe+ uT
e Rue

= ec. (6.29)

Given any admissible control law ue, we desire to select Ŵc to minimize the
squared residual error Ec(Ŵc) as follows:

Ec(Ŵc)= 1

2
eT
c ec. (6.30)

The weight update law for the critic NN is a gradient descent algorithm, which
is given by

˙̂
Wc = −αcσc(φ

T
c Ŵc + eTQe+ uT

e Rue), (6.31)

230 6 Optimal Feedback Control for Continuous-Time Systems via ADP

where αc > 0 is the adaptive gain of the critic NN, σc = σ/(σTσ + 1), σ =
�φc(CTe + AThe + CT

u ue). Therefore, there exists a positive constant σcM > 1
such that ‖σc‖ ≤ σcM . Define the weight estimation error of critic NN to be
W̃c = Ŵc − Wc, and note that, for a fixed control law ue, the Hamilton function
(6.22) becomes

H(e,ue,Wc)=WT
c �φc(CTe+AThe +CT

u ue)+ eTQe+ uT
e Rue

= εHJB, (6.32)

where the residual error due to the NN approximation error is εHJB = −�εc(CTe+
AThe +CT

u ue).
Rewriting (6.31) by using (6.32), we have

˙̃
Wc = −αcσc(φ

T
c W̃c + εHJB). (6.33)

To begin the development of the feedback control law, ue is approximated by the
action NN as

ue =WT
a φa(e)+ εa, (6.34)

where Wa is the matrix of unknown ideal constant weights and φa(e) : Rn → R
N2

is called the action NN activation function vector, N2 is the number of neurons in
the hidden layer, and εa is the action NN approximation error.

Let Ŵa be an estimate of Wa , the actual output can be expressed as

ûe = ŴT
a φa(e). (6.35)

The feedback error signal used for tuning action NN is defined to be the differ-
ence between the real feedback control input applied to the error system (6.19) and
the desired control signal input minimizing (6.28) as

ea = ŴT
a φa + 1

2
R−1Cu�φT

c Ŵc. (6.36)

The objective function to be minimized by the action NN is defined as

Ea(Ŵa)= 1

2
eT
a ea. (6.37)

The weight update law for the action NN is a gradient descent algorithm, which
is given by

˙̂
Wa = −αaφa

(
ŴT

a φa + 1

2
R−1Cu�φT

c Ŵc

)T

, (6.38)

where αa > 0 is the adaptive gain of the action NN.

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 231

Define the weight estimation error of action NN to be W̃a = Ŵa − Wa . Since
the control law in (6.34) minimizes the infinite-horizon cost functional (6.26), from
(6.25) we have

εa +WT
a φa + 1

2
R−1Cu�φT

c Wc + 1

2
R−1Cu�εc = 0. (6.39)

Combining (6.38) with (6.39), we have

˙̃
Wa = −αaφa

(
W̃T

a φa + 1

2
R−1Cu�φT

c W̃c + ε12

)T

, (6.40)

where ε12 = −(εa +R−1Cu�εc/2).

Remark 6.4 It is important to note that the tracking error must be persistently ex-
cited: enough for tuning the critic NN and action NN. In order to satisfy the persis-
tent excitation condition, probing noise is added to the control input [17]. Further,
the persistent excitation condition ensures ‖σc‖ ≥ σcm and ‖φa‖ ≥ φam with σcm
and φam being positive constants.

Based on the above analysis, the optimal tracking controller is composed of the
steady-state controller ud and the optimal feedback controller ue . As a result, the
control input is written as

u= ud + ûe. (6.41)

According to (6.35) and the error system (6.19), we have

ė = CTe+AThe +CT
u Ŵ

T
a φa. (6.42)

Subtracting and adding CT
uWaφa to (6.42), and then recalling (6.34), (6.42) is

rewritten as

ė = CTe+AThe +CT
u W̃

T
a φa +CT

u ue −CT
u εa. (6.43)

In the following, the stability analysis will be performed. First, the following
assumption is made, which can reasonably be satisfied under the current problem
settings.

Assumption 6.5

(a) The unknown ideal constant weights for the critic NN and the action NN, i.e.,
Wc and Wa , are upper bounded so that ‖Wc‖ ≤ WcM and ‖Wa‖ ≤ WaM with
WcM and WaM being positive constants, respectively.

(b) The NN approximation errors εc and εa are upper bounded so that ‖εc‖ ≤ εcM
and ‖εa‖ ≤ εaM with εcM and εaM being positive constants, respectively.

(c) The vectors of the activation functions of the critic NN and the action NN, i.e.,
φc and φa , are upper bounded so that ‖φc(·)‖ ≤ φcM and ‖φa(·)‖ ≤ φaM with
φcM and φaM being positive constants, respectively.

232 6 Optimal Feedback Control for Continuous-Time Systems via ADP

(d) The gradients of the critic NN approximation error and the activation function
vector are upper bounded so that ‖�εc‖ ≤ ε′

cM and ‖�φa‖ ≤ φdM with ε′
cM

and φdM being positive constants. The residual error is upper bounded so that
‖εHJB‖ ≤ εHJBM with εHJBM being positive constant.

Now we are ready to prove the following theorem.

Theorem 6.6 (cf. [25]) Consider the system given by (6.17) and the desired trajec-
tory (6.18). Let the control input be provided by (6.41). The weight updating laws of
the critic NN and the action NN are given by (6.31) and (6.38), respectively. Let the
initial action NN weights be chosen to generate an initial admissible control. Then,
the tracking error e, the weight estimate errors W̃c and W̃a are uniformly ultimately
bounded (UUB) with the bounds specifically given by (6.51)–(6.53). Moreover, the
obtained control input u is close to the optimal control input u∗ within a small bound
εu, i.e., ‖u− u∗‖ ≤ εu as t → ∞ for a small positive constant εu.

Proof Choose the following Lyapunov function candidate:

L(t)= L1(t)+L2(t)+L3(t), (6.44)

where L1(t) = tr{W̃T
c W̃c}/2αc, L2(t) = αc tr{W̃T

a W̃a}/2αa , and L3(t) =
αcαa(e

Te+ Γ J(e)) with Γ > 0.
According to Assumption 6.5 and using (6.21), (6.33), and (6.40), the time

derivative of the Lyapunov function candidate (6.44) along the trajectories of the
error system (6.43) is computed as follows:

L̇(t)= L̇1(t)+ L̇2(t)+ L̇3(t), (6.45)

where

L̇1(t)= 1

αc
tr{W̃T

c
˙̃
Wc}

= 1

αc
tr{W̃T

c (−αcσc(φ
T
c W̃c + εHJB))}

≤ −
(
σ 2
cm − αc

2
σ 2
cM

)
‖W̃c‖2 + 1

2αc
ε2

HJB,

L̇2(t)= αc

αa
tr{W̃T

a
˙̃
Wa}

= αc

αa
tr

{
W̃T

a

(
−αaφa

(
W̃T

a φa + 1

2
R−1Cu�φT

c W̃c + ε12

)T)}

≤ −
(
αcφ

2
am − 3

4
αcαaφ

2
aM

)
‖W̃a‖2

+ αc

4αa
‖R−1‖2‖Cu‖2φ2

dM‖W̃c‖2 + αc

2αa
εT

12ε12,

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 233

L̇3(t)= 2αcαae
Tė+ αcαaΓ (−eTQe− uT

e Rue)

= 2αcαae
T(CTe+AT he +CT

u W̃
T
a φa +CT

u ue

−CT
u εa)+ αcαaΓ (−eTQe− uT

e Rue)

≤ αcαa(2‖C‖ + 3 + ‖A‖2 + k2 − Γ λmin(Q))‖e‖2

+ αcαaφ
2
aM‖Cu‖2‖W̃a‖2 + αcαa‖Cu‖2εT

a εa

+ αcαa(‖Cu‖2 − Γ λmin(R))‖ue‖2.

Then we obtain

L̇(t)≤ −
(
σ 2
cm − αc

2
σ 2
cM − αc

4αa
‖R−1‖2‖Cu‖2φ2

dM

)
‖W̃c‖2

−
(
αcφ

2
am − 3

4
αcαaφ

2
aM − αcαaφ

2
aM‖Cu‖2

)
‖W̃a‖2

− αcαa(−‖Cu‖2 + Γ λmin(R))‖ue‖2

− αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))‖e‖2

+ 1

2αc
ε2

HJB + αc

2αa
εT

12ε12 + αcαa‖Cu‖2εT
a εa. (6.46)

By using Assumption 6.5, we have ‖ε12‖ ≤ ε12M , where ε12M = εaM +
R−1Cuε

′
cM/2. Then, we have

1

2αc
ε2

HJB + αc

2αa
εT

12ε12 + αcαa‖Cu‖2εT
12ε12 ≤DM, (6.47)

where DM = ε2
HJBM/(2αc)+ αcε

2
12M/(2αa)+ αcαa‖Cu‖2ε2

12M .
If Γ , αc , and αa are selected to satisfy

Γ > max

{ ‖Cu‖2

λmin(R)
,

2‖C‖ + 3 + ‖A‖2 + k2

λmin(Q)

}
, (6.48)

αc <
4αaσ 2

cm

2αaσ 2
cM + ‖R−1‖2‖Cu‖2φ2

dM

, (6.49)

αa <
4φ2

am

3φ2
aM + 4φ2

aM‖Cu‖2
, (6.50)

and given the following inequalities:

‖e‖>
√

DM

αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))

� be, (6.51)

234 6 Optimal Feedback Control for Continuous-Time Systems via ADP

or

‖W̃c‖>
√

4αaDM

4αaσ 2
cm − 2αaαcσ 2

cM − αc‖R−1‖2‖Cu‖2φ2
dM

� b
W̃c
, (6.52)

or

‖W̃a‖>
√

4DM

4αcφ2
am − 3αcαaφ2

aM − 4αcαaφ2
aM‖Cu‖2

� b
W̃a
, (6.53)

then we can conclude L̇(t) < 0. Therefore, using Lyapunov theory [7], it can be
concluded that the tracking error e, and the NN weight estimation errors W̃c and W̃a

are UUB.
Next, we will prove ‖u − u∗‖ ≤ εu as t → ∞. Recalling the expression of u∗

together with (6.34) and (6.41), we have

u− u∗ = W̃T
a φa + εa. (6.54)

When t → ∞, the upper bound of (6.54) is

‖u− u∗‖ ≤ εu, (6.55)

where εu = b
W̃a
φaM + εaM .

This completes the proof. �

Remark 6.7 From (6.31) and (6.38), it is noted that the weights of critic NN and
action NN are updated simultaneously in contrast with some standard ADP methods
in which the weights of critic NN and action NN are updated sequentially.

Remark 6.8 If the NN approximation errors εc and εa are considered to be neg-
ligible, then from (6.47) we have DM = 0, with u → u∗. Otherwise, the obtained
control input u is close to the optimal input u∗ within a small bound εu.

Due to the presence of the NN approximation errors εc and εa , the tracking error
is UUB instead of asymptotically convergent to zero. In the following, for improving
the tracking performance, an additional robustifying term is developed to attenuate
the NN approximation errors such that tracking error converges to zero asymptoti-
cally, which can be constructed in the form

ur = Kre

eTe+ ζ
, (6.56)

where ζ > 0 is a constant, Kr > Kr min is a designed parameter. Kr min is selected
to satisfy the following inequality:

Kr min ≥ DM(eTe+ ζ)

2αcαa‖Cu‖eTe
. (6.57)

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 235

Then, the overall control input is given as

uad = u− ur, (6.58)

where u is the same as (6.41).
Applying (6.58) to the error system (6.17) and using (6.18), a new error system

is obtained as follows:

ė = CTe+AThe +CT
u W̃

T
a φa +CT

u ue −CT
u εa −CT

u ur . (6.59)

Theorem 6.9 (cf. [25]) Consider the system given by (6.17) and the desired trajec-
tory (6.18). Let the control input be provided by (6.58). The weight updating laws of
the critic NN and the action NN are given by (6.31) and (6.38), respectively. Let the
initial action NN weights be chosen to generate an initial admissible control. Then,
the tracking error e and the weight estimation errors W̃c and W̃a will asymptotically
converge to zero. Moreover, the obtained control input uad is close to the optimal
control input u∗ within a small bound δu, i.e., ‖uad − u∗‖ ≤ δu as t → ∞ for a
small positive constant δu.

Proof Choose the same Lyapunov function candidate as that in Theorem 6.6. Dif-
ferentiating the Lyapunov function candidate in (6.44) along the trajectories of the
error system in (6.59), similar to the proof of Theorem 6.6, by using (6.56) and
(6.57), we obtain

L̇(t)≤ −
(
σ 2
cm − αc

2
σ 2
cM − αc

4αa
‖R−1‖2‖Cu‖2φ2

dM

)
‖W̃c‖2

−
(
αcφ

2
am − 3

4
αcαaφ

2
aM − αcαaφ

2
aM‖Cu‖2

)
‖W̃a‖2

− αcαa(−‖Cu‖2 + Γ λmin(R))‖ue‖2

− αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q))‖e‖2. (6.60)

Choosing Γ , αc, and αa as Theorem 6.6, we have L̇(t)≤ 0. Equations (6.44) and
(6.60) guarantee that the tracking error e, NN weight estimation errors W̃c and W̃a

are bounded, since L is nonincreasing. Because all the variables on the right-hand
side of (6.59) are bounded, ė is also bounded. From (6.60), we have

L̇(t)≤ −Be‖e‖2, (6.61)

where Be = αcαa(−2‖C‖ − 3 − ‖A‖2 − k2 + Γ λmin(Q)).
Integrating both sides of (6.61) and after some manipulations, we have

∫ ∞

0
‖e‖2dt ≤ B−1

e (L(0)−L(∞)). (6.62)

Since the right side of (6.59) is bounded, ‖e‖ ∈ L2. Using Barbalat’s lemma [7],
we have limt→∞ ‖e‖ = 0. Similarly, we can prove that limt→∞ ‖W̃c‖ = 0 and
limt→∞ ‖W̃a‖ = 0.

236 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Next, we will prove ‖uad − u∗‖ ≤ δu as t → ∞. From (6.34) and (6.58), we can
have

uad − u∗ = W̃T
a φa + εa + ur . (6.63)

Since ‖e‖ → 0 as t → ∞, the robustifying control input ‖ur‖ → 0 as t → ∞.
Then, the upper bound of (6.63) is

‖uad − u∗‖ ≤ δu, (6.64)

where δu = εaM .
This completes the proof. �

Remark 6.10 From (6.55) and (6.64), it can be seen that δu is smaller than εu, which
reveals the role of the robustifying term in making the obtained control input closer
to the optimal control input.

6.2.3 Simulations

In this subsection, two examples are provided to demonstrate the effectiveness of
the present approach.

Example 6.11 Consider the following affine nonlinear continuous-time system:

ẋ1 = −x1 + x2,

ẋ2 = −0.5x1 − 0.5x2(1 − (cos(2x1)+ 2)2)

+ (cos(2x1)+ 2)u. (6.65)

The cost functional is defined by (6.21) where Q and R are chosen as identity
matrices of appropriate dimensions. The control object is to make x1 follow the
desired trajectory x1d = sin(t). It is assumed that the system dynamics is unknown
and input/output data are available.

First, a data-based model is established to estimate the nonlinear system dy-
namics. Let us select the RNN as (6.5) with S = −30I2 and η = 1.5. The ac-
tivation function h(x̂) is selected as hyperbolic tangent function tanh(x̂). Select
the design parameters in Theorem 6.2 as Γ1 = [1,0.1;0.1,1], Γ2 = [1,0.2;0.2,1],
Γ3 = [1,0.1;0.1,1], Γ4 = 0.2, and Γ5 = 0.1. Then, we can obtain the trajectories of
the modeling error as shown in Fig. 6.1. It is observed that the obtained data-based
model can reconstruct the nonlinear system dynamics successfully, as Theorem 6.2
predicted.

Then, based on the obtained data-based model, the approximate optimal robust
controller is implemented for the unknown affine nonlinear continuous-time system
(6.65). The activation function of the critic NN is selected as φc = [e2

1 e1e2 e
2
2]T, the

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 237

Fig. 6.1 The modeling error for the affine nonlinear system

critic NN weights are denoted Ŵc = [Wc1 Wc2 Wc3]T. The activation function of the
action NN φa is chosen as the gradient of the critic NN, the action NN weights are
denoted Ŵa = [Wa1 Wa2 Wa3]T. The adaptive gains for the critic NN and action NN
are selected as αc = 0.8 and αa = 0.5, and the design parameters of the robustifying
term are selected as Kr = [20,20], ζ = 1.2. Additionally, the critic NN weights are
set as [1,1,1]T at the beginning of the simulation with the initial weights of the
action NN chosen to reflect the initial admissible control. To maintain the excitation
condition, probing noise is added to the control input for the first 5000 s.

After simulation, the trajectory of the tracking error is shown in Fig. 6.2. The
convergence trajectories of the critic NN weights and action NN weights are shown
in Figs. 6.3 and 6.4, respectively. For comparing the tracking performance, we apply
the obtained optimal robust controller and the initial admissible controller to system
(6.65) under the same initial state, and obtain the trajectories of tracking error as
shown in Fig. 6.5, respectively. It can be seen from Fig. 6.5 that the present robust
approximate optimal controller yields a better tracking performance than the initial
admissible controller.

Example 6.12 Consider the following continuous-time nonaffine nonlinear system:

ẋ1 = x2,

ẋ2 = x2
1 + 0.15u3 + 0.1(4 + x2

2)u+ sin(0.1u). (6.66)

The cost functional is defined as Example 6.11. The control objective is to make
x1 follow the desired trajectory x1d = sin(t). It is assumed that the system dynamics
is unknown and input/output data are available.

238 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Fig. 6.2 The tracking error for the affine nonlinear system

Fig. 6.3 The critic NN weights

Using a similar method as shown in Example 6.11, we can obtain the trajectories
of modeling error as shown in Fig. 6.6. It is observed that the obtained data-based
model learns the nonlinear system dynamics successfully, as Theorem 6.2 predicted.
Then, based on the obtained data-based model we design the robust approximate
optimal controller, which is then applied to the unknown nonaffine nonlinear system

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 239

Fig. 6.4 The action NN weights

Fig. 6.5 The comparison result between initial admissible controller and robust approximate op-
timal controller

(6.66). The activation functions of the critic NN and action NN are the same as the
ones in Example 6.11. The adaptive gains for critic NN and action NN are selected
as αc = 0.5 and αa = 0.2 and the parameters of the robustifying term are selected
as Kr = [10,10], ζ = 1.2. Additionally, the critic NN weights are set as [1,1,1]T at

240 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Fig. 6.6 The modeling error for the continuous-time nonaffine nonlinear system

Fig. 6.7 The tracking error for the nonaffine nonlinear system

the beginning of the simulation with the initial weights of the action NN chosen to
reflect the initial admissible control. Similarly, to maintain the excitation condition,
probing noise is added to the control input for the first 1500 s.

After simulation, the trajectory of the tracking error is shown in Fig. 6.7. The
convergence trajectories of the critic NN weights and action NN weights are shown

6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems 241

Fig. 6.8 The critic NN weights

Fig. 6.9 The action NN weights

in Figs. 6.8 and 6.9, respectively. Similarly, for comparing the tracking performance,
we apply the obtained robust optimal controller and the initial admissible controller
to system (6.66) for the same initial state, and obtain the trajectories of tracking
error as shown in Fig. 6.10, respectively. It can be seen from Fig. 6.10 that the
present robust approximate optimal controller yields better tracking performance

242 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Fig. 6.10 The comparison result between initial admissible controller and robust approximate
optimal controller

than the initial admissible controller. The simulation results reveal that the present
controller can be applied to nonaffine nonlinear systems and we obtain satisfactory
tracking performance even for the unknown system dynamics.

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems

In this section, we will study the optimal feedback control problem of a class of
continuous-time nonaffine nonlinear systems via the ADP method.

6.3.1 Problem Formulation

Consider a class of continuous-time nonaffine nonlinear systems described as fol-
lows:

ẋi = xi+1, i = 1, . . . , n− 1,

ẋn = f (x,u),

y = x1, (6.67)

where x = [x1, . . . , xn]T ∈ R
n is the system state vector, u ∈ R is the control input,

and y ∈ R is the output of the system; f (x,u) is an unknown smooth function
satisfying f (0,0)= 0.

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 243

Assumption 6.13 The control effectiveness term fu(x,u) � ∂f (x,u)/∂u has a
known sign and is bounded away from zero, i.e., there exists df > 0 such that
|fu(x,u)| ≥ df . Without loss of generality, we assume fu > 0.

The control objective is to force the system output y to follow the desired trajec-
tory yd while ensuring that all the signals of the closed-loop system are bounded.
Assume that yd and its up to n times derivatives, namely ẏd , y

(2)
d , . . . , and y

(n)
d are

smooth, bounded, and available for design.

6.3.2 Robust Approximate Optimal Control Based on ADP
Algorithm

Define the tracking error ỹ=y−yd , desired trajectory vector ȳd=[yd, . . . , y(n−1)
d]T,

tracking error vector x̃ = x − ȳd , and the filtered tracking error as

r = ỹ(n−1) + λn−1ỹ
(n−2) + · · · + λ2ỹ

(1) + λ1ỹ = [ΛT 1]x̃, (6.68)

where λi, i = 1, . . . , n − 2, are chosen such that the polynomial H(s) = s(n−1) +
λn−1s

(n−2) + · · · + λ1 is Hurwitz, and Λ= [λ1, . . . , λn−1]T.
With these definitions, the tracking error dynamics can be given as follows:

ṙ = −y
(n)
d + [0 ΛT]x̃ + f (x,u). (6.69)

Then, feedback linearization is performed by introducing a so-called pseudo-
control

υ = f̂ (x, u), (6.70)

where f̂ (x, u) is an available approximation of f (x,u) satisfying Assumption 6.13.

Assumption 6.14 f̂u � ∂f̂ (x,u)/∂u ≥ d
f̂
> 0 for some d

f̂
, and there exist some

constants bl , bu > 0 such that bl ≤ fu/f̂u ≤ bu.

By adding and subtracting υ on the right-hand side of (6.69), the tracking error
dynamics can be rewritten as follows:

ṙ = −y
(n)
d + [0 ΛT]x̃ + f̂ (x, u)+Δ, (6.71)

where Δ= f (x,u)− f̂ (x, u) is the modeling error.
The pseudocontrol υ is designed as

υ = υrm + υdc − υad + υr, (6.72)

244 6 Optimal Feedback Control for Continuous-Time Systems via ADP

where υrm = y
(n)
d −[0 ΛT]x̃, υdc = −Kr is to stabilize the tracking error dynamics

in the absence of a modeling error, υad is used to approximately cancel the modeling
error, and υr is a robustifying term.

By inverting (6.70), we have the following control law:

u= f̂−1(x,υ). (6.73)

Then, applying (6.73) to (6.71), we have

ṙ = −Kr +Δ− υad + υr . (6.74)

The term Δ− υad can be expressed as

Δ− υad = f (x, f̂−1(x,υrm + υdc − υad + υr))− υrm − υdc − υr . (6.75)

Reference [2] points out that Δ depends on υad through (6.72) and (6.73), while
υad is designed to cancel Δ. A contraction mapping assumption on Δ with respect
to υad is required to guarantee the existence of a smooth function υ∗

ad =Δ(·, υ∗
ad).

To remove the contraction mapping assumption, we follow the work of [8]. Define
υl � υrm + υdc, υ∗ � f̂ (x, f−1(x,υl)). Then we have υl = f (x, f̂−1(x,υ∗)).

Using the mean value theorem [5], (6.75) can be expressed as

Δ− υad = f (x,u)− f̂ (x, u)− υad

= f (x, f̂−1(x,υ))− υl + υad − υr − υad

= f (x, f̂−1(x,υ))− f (x, f̂−1(x,υ∗))− υr

= fυ(ῡ)(υ − υ∗)− υr

= fυ(ῡ)(υl − υad + υr − f̂ (x, f−1(x,υl)))− υr

= fυ(ῡ)(−υad + υr + Δ̄)− υr, (6.76)

where Δ̄ = υl − f̂ (x, f−1(x,υl)) = f (x, f̂−1(x,υ∗)) − f (x,f−1(x,υl)) de-
notes the unknown uncertain term, fυ(ῡ) � (∂f/∂u)(∂u/∂v)|υ=ῡ = (∂f/∂u)/

(∂f̂ /∂u)|
u=f̂−1(x,ῡ)

, ῡ = λυ + (1 − λ)υ∗ and 0 ≤ λ(υ)≤ 1.
Then, substituting (6.76) into (6.74), we have

ṙ = −Kr + fυ(ῡ)(−υad + Δ̄)+ fυ(ῡ)υr . (6.77)

If Δ̄ is known, υad can be chosen as υad = Δ̄; then we let υr = 0. Since Δ̄ is
unknown, the desired υad cannot be implemented directly. Instead, an action NN is
employed to approximate Δ̄ as follows:

Δ̄=WT
a φa(x̄)+ εa(x̄), (6.78)

where x̄ = [1, x,υl, ȳd], Wa ∈ R
N is the ideal weight of the action NN, φa(x̄) ∈ R

N

is the basis function of the action NN, and εa(x̄) is the reconstruction error of the
action NN satisfying ‖εa(x̄)‖ ≤ ε∗

a .

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 245

Remark 6.15 Because the unknown nonlinear function f (x,u) of (6.67) is an im-
plicit function with respect to the control input u, traditional ADP methods can
rarely be applied. To overcome this difficulty, the action NN is employed to ap-
proximate the derived unknown uncertain term Δ̄ instead of modeling the unknown
system (6.67) directly.

The adaptive signal υad is designed as

υad = ŴT
a φa(x̄), (6.79)

where Ŵa is the estimate of Wa .
Substituting (6.78) and (6.79) into (6.77), the following is immediate:

ṙ = −Kr + (fυ(ῡ)− bu)W̃
T
a φa(x̄)+ buW̃

T
a φa

+ fυ(ῡ)υr + fυ(ῡ)εa(x̄), (6.80)

where W̃a =Wa − Ŵa .
Using adaptive bounding technique, the robustifying term υr is designed as

υr = − br

1 − br
|κ̂|ψ tanh

(Rψ

α

)
, (6.81)

where br = 1− (bl/bu) < 1 and α is a design parameter, κ̂ is the adaptive parameter,
R and ψ will be defined later. Applying (6.81) to (6.80), the tracking error dynamics
can be rewritten as

ṙ = −Kr + buW̃
T
a φa + bu

[
υr +

(
fυ(ῡ)

bu
− 1

)(
υr + W̃T

a φa

)]

+ fυ(ῡ)εa(x̄). (6.82)

Remark 6.16 Since tanh(·) can maintain a continuous control signal while sgn(·)
will result in a chattering phenomenon due to its discontinuity, the robustifying term
is designed based on tanh(·) rather than sgn(·).

Next, we choose the critic signal as [13]

Rn = R+ |R|WT
c φc(r). (6.83)

The first term R is called the primary critic signal which is defined in terms of the
performance measure as

R= χ

1 + e−mr
− χ

1 + emr
, (6.84)

where m is a positive constants and the value of R is bounded in the interval
[−χ,χ] with χ > 0 being the critic slope gain. The second term |R|WT

c φc(r) is

246 6 Optimal Feedback Control for Continuous-Time Systems via ADP

called the second critic signal, where Wc is the ideal weight of critic NN and φc(r)

is the basis function of critic NN. The actual output of the critic NN is ŴT
c φc(r)

where Ŵc is the estimate of Wc. Then, the actual critic signal can be expressed as
R̂n = R + |R|ŴT

c φc(r). Define W̃c = Wc − Ŵc. It should be noted that R will
approach zero when r approaches zero. Therefore we can conclude that R̂n will
approach zero. As a learning signal, the critic signal R̂n is more informative than
the filtered tracking error r . Consequently, a larger control input can be yielded and
better tracking performance can be obtained.

Next, the uniformly ultimate boundedness of the closed-loop system is demon-
strated by the Lyapunov method.

Assumption 6.17 The ideal weights of the action NN and the critic NN, i.e., Wa

and Wc, are bounded above by unknown positive constants so that ‖Wa‖ ≤ W ∗
a ,

‖Wc‖ ≤W ∗
c .

Assumption 6.18 The activation functions of the action NN and critic NN, φa
and φc , are bounded above by known positive constants, so that ‖φa‖ ≤ φ∗

a ,
‖φc‖ ≤ φ∗

c .

Lemma 6.19 (cf. [4]) The following inequality holds:

‖δ‖� ‖Rfυ(ῡ)εa(x̄)+ bubr |R|‖W̃a‖‖φa‖
+ bu|R|tr{ŴT

a φaφ
T
c Wa −WT

a φa(φ
T
c Ŵc)}‖

≤ bubr |R|κ∗ψ, (6.85)

where κ∗ is an unknown constant and ψ = 1 + ‖Ŵa‖ + ‖Ŵc‖.

Proof Using Assumptions 6.13, 6.14, 6.17, and 6.18, the boundedness of εa(x̄) and
the inequality ‖W̃a‖ ≤ ‖Ŵa‖ + ‖W ∗

a ‖, we have

‖δ‖ ≤ |R|buε∗
a + bubr |R|‖Ŵa‖‖φa‖ + bubr |R|W ∗

a ‖φa‖
+ bu|R|φ∗

aφ
∗
cW

∗
c ‖Ŵa‖ + bu|R|φ∗

aφ
∗
cW

∗
a ‖Ŵc‖

≤ bubr |R|κ∗ψ, (6.86)

where κ∗ � max{ε∗
a/br +W ∗

a φ
∗
a ,φ

∗
a (1+φ∗

cW
∗
c /br),φ

∗
aφ

∗
cW

∗
a /br}, ψ = 1+‖Ŵa‖+

‖Ŵc‖.
This completes the proof. �

Theorem 6.20 (cf. [4]) Under Assumptions 6.13, 6.14 and 6.17, considering the
closed-loop system consisting of system (6.67) and the control u provided by (6.73),
the weights tuning laws of the action NN and critic NN are

˙̂
Wa = α1(φa(R+ |R|ŴT

c φc)
T −KWa |R|Ŵa), (6.87)

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 247

˙̂
Wc = −α2(|R|φc(ŴT

a φa)
T +KWc |R|Ŵc), (6.88)

and the tuning law of the adaptive parameter is

˙̂κ = α3

(
Rψ tanh

(Rψ

α

)
−Kκκ̂

)
, (6.89)

where α1, α2, α3, KWa , KWc , and Kκ are the positive design parameters. If Kκ >

1/(bubr), then all the closed-loop signals are uniformly ultimately bounded.

Proof Choose a Lyapunov function candidate as

L= ρ(r)+ bu

2α1
tr{W̃T

a W̃a} + bu

2α2
tr{W̃T

c W̃c} + bubr

2α3
κ̃2, (6.90)

where ρ(r) = χ(ln(1 + emr)+ ln(1 + e−mr))/m, κ̃ = κ∗ − κ̂ . The time derivative
of (6.90) can be expressed as

L̇= Rṙ + bu

α1
tr{W̃T

a
˙̃
Wa} + bu

α2
tr{W̃T

c
˙̃
Wc} + bubr

α3
κ̃ ˙̃κ. (6.91)

Substituting (6.82) into (6.91), we have

L̇= R
{
−Kr + buW̃

T
a φa + bu

[
υr +

(
fυ(ῡ)

bu
− 1

)(
fυ(ῡ)+ W̃T

a φa

)]}

+Rfυ(ῡ)εa(x̄)+ bu

α1
tr{W̃T

a
˙̃
Wa} + bu

α2
tr{W̃T

c
˙̃
Wc} + bubr

α3
κ̃ ˙̃κ. (6.92)

Applying (6.87) to (6.92), we have

L̇= R
{
−Kr + buW̃

T
a φa + bu

[
υr +

(
fυ(ῡ)

bu
− 1

)(
fυ(ῡ)+ W̃T

a φa

)]}

+Rfυ(ῡ)εa(x̄)− butr
{
W̃T

a (φa(R+ |R|ŴT
c φc)

T −KWa |R|Ŵa)
}

+ bu

α2
tr{W̃T

c
˙̃
Wc} + bubr

α3
κ̃ ˙̃κ. (6.93)

Due to the fact that

butr{W̃T
a φaR} = RbuW̃

T
a φa,

tr{W̃T
a φa|R|(ŴT

c φc)
T} = |R|W̃T

a φaφ
T
c Ŵc

= |R|(−ŴT
a φaφ

T
c Wa +WT

a φaφ
T
c Ŵc + ŴT

a φaφ
T
c W̃c),

(6.94)

248 6 Optimal Feedback Control for Continuous-Time Systems via ADP

and using (6.88), (6.93) can be rewritten as

L̇≤ −RKr +Rbu

[
υr +

(
fυ(ῡ)

bu
− 1

)(
fυ(ῡ)+ W̃T

a φa

)]
+Rfυ(ῡ)εa(x̄)

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc}

+ bu|R|(−ŴT
a φa(φ

T
c Wa)+WT

a φaφ
T
c Ŵc)+ bubr

α3
κ̃ ˙̃κ. (6.95)

With the robustifying term in (6.81), we have

Rυr = − br

1 − br
|κ̂|Rψsgn(Rψ)+ br

1 − br
|κ̂|

(
|Rψ | −Rψ tanh

(Rψ

α

))
.

(6.96)

According to Assumptions 6.13 and 6.14, we have

∣∣∣∣

(
fυ(ῡ)

bu
− 1

)(
υr + W̃T

a φa

)∣∣∣∣≤ br |υr | + br‖W̃a‖‖φa‖. (6.97)

Substituting (6.96) and (6.97) into (6.95), we have

L̇≤ −RKr + bu

[
− br

1 − br
|κ̂|Rψsgn(Rψ)+ brR|υr |

+ br

1 − br
|κ̂|

(
|Rψ | −Rψ tanh

(Rψ

α

))]

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc}

+ δ + bubr

α3
κ̃ ˙̃κ. (6.98)

According to Lemma 6.19 and the inequality 0 ≤ |Rψ | − Rψ tanh(Rψ/α) ≤ α

for ∀α > 0,Rψ ∈R, we have

L̇≤ −RKr + bu

[
−br |κ̂|Rψ tanh

(Rψ

α

)

+ br

1 − br
|κ̂|

(
|Rψ | −Rψ tanh

(Rψ

α

))]
+ buKWa |R|tr{W̃T

a Ŵa}

+ buKWc |R|tr{W̃T
c Ŵc} + bubrκ

∗
(
α +Rψ tanh

(Rψ

α

))

− bubr κ̃Rψ tanh

(Rψ

α

)
+ bubrKκ κ̃κ̂

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 249

≤ −RKr + bubr

1 − br
|κ̂|α + bubrκ

∗α + buKWa |R|tr{W̃T
a Ŵa}

+ buKWc |R|tr{W̃T
c Ŵc} + bubrKκ κ̃κ̂. (6.99)

Let b∗ = bu−bl . Using the relation bubr/(1−br)= (bu/bl)b
∗ and the inequality

|κ̂| ≤ |κ̃| + κ∗, L̇ is further derived as

L̇≤ −RKr + bu

bl
b∗|κ̃|α + bu

bl
b∗κ∗α + bubrκ

∗α

+ buKWa |R|tr{W̃T
a Ŵa} + buKWc |R|tr{W̃T

c Ŵc} + bubrKκ κ̃κ̂. (6.100)

Since tr{W̃T
a Ŵa} ≤ −‖W̃a‖2/2+‖Wa‖2/2, tr{W̃T

c Ŵc} ≤ −‖W̃2‖2/2+‖Wc‖2/2,
κ̃ κ̂ ≤ −|κ̃|2/2 + κ∗2/2, (bu/bl)b∗|κ̃|α ≤ ((bu/bl)b

∗α)2/2 + |κ̃|2/2, we have

L̇≤ −RKr − buKWa |R|
2

‖W̃a‖2 − buKWc |R|
2

‖W̃c‖2

− bubr

2

(
Kκ − 1

bubr

)
|κ̃|2 +D, (6.101)

where

D = buKWa |R|
2

‖Wa‖2 + buKWc |R|
2

‖Wc‖2 + bubrKκ

2
κ∗2

+ 1

2

(
bu

bl
b∗α

)2

+ bu

bl
b∗κ∗α + bubrκ

∗α. (6.102)

Because Rr > 0 for any r �= 0 and R ∈ [−χ,χ] and using Assumption 6.17,
(6.101) becomes

L̇≤ −χK|r| − buKWa |R|
2

‖W̃a‖2 − buKWc |R|
2

‖W̃c‖2

− bubr

2

(
Kκ − 1

bubr

)
|κ̃|2 +DM, (6.103)

where λM � buKWaχW
∗
a

2/2 + buKWcχW
∗
c

2/2 + (bu/bl)b
∗κ∗α + bubrκ

∗α +
((bu/bl)b

∗α)2/2.
With Kκ picked so that Kκ > 1/(bubr) is satisfied, the time derivative of L is

guaranteed to be negative as long as the following hold:

|r̃| ≥
√
DM

Kχ
, (6.104)

or

‖W̃a‖ ≥
√

2DM

buKWa |R| ≥
√

2DM

buKWaχ
, (6.105)

250 6 Optimal Feedback Control for Continuous-Time Systems via ADP

or

‖W̃c‖ ≥
√

2DM

buKWc |R| ≥
√

2DM

buKWcχ
, (6.106)

or

|κ̃| ≥
√

2λM
bubr(Kκ − 1

bubr
)
. (6.107)

Therefore, according to the standard Lyapunov extensions [11], this demonstrates
that the filtered tracking error, the weights estimation errors of the critic NN and
action NN are uniformly ultimately bounded. �

Remark 6.21 It is interesting to note from (6.104)–(6.107) that arbitrarily small |r̃|,
‖W̃a‖, ‖W̃c‖ and |κ̃| may be achieved by selecting the large fixed gain K , KWa ,
KWc , and Kκ or the critic slope gain χ , respectively.

6.3.3 Simulations

Example 6.22 Consider the following continuous-time nonaffine nonlinear system:

ẋ1 = x2,

ẋ2 = x1x
2
2 + x2e

−1−x2
1 − x1x2 + (2 + 0.3sinx2

2)u+ cos(0.1u).

y = x1.

The control objective is to make the output y follow the desired trajectory yd .
The reference signal is selected as yd = sin(t)+ cos(0.5t). We assume that the con-
trol design is performed by using the approximate model f̂ (x, u) = 10u. The con-
troller parameters are chosen as K = 30, Λ= 20, br = 1/3, and χ = 20. The critic
NN and action NN consist of five and six hidden-layer nodes, respectively. The
activation functions are selected as sigmoidal activation functions. The first-layer
weights of both action NN and critic NN are selected randomly over an internal of
[−1,1]. The threshold weights for the first layer of both action NN and critic NN
are uniformly randomly distributed between −10 and 10. The second-layer weights
of action NN Ŵa is uniformly randomly initialized over an internal of [−1,1]. The
second-layer weights of the critic NN Ŵc is initialized at zero. The parameters of
the critic signal are selected as m = 2. For weights and adaptive parameters updat-
ing, the design parameters are selected as α1 = α2 = α3 = KWa = KWc = 0.1, and
Kκ = 80, which satisfies Kκ > 1/(bubr). Then, for the initial states x(0)= [0,0]T,
we apply the present controller to the system for 100 s. The simulation results are
shown in Figs. 6.11–6.16. From Fig. 6.11, it is observed that the system output

6.3 Optimal Feedback Control for Nonaffine Nonlinear Systems 251

Fig. 6.11 The trajectories of yd and y

Fig. 6.12 The trajectory of control input u

y tracks the desired trajectory yd fast and well. Figures 6.12, 6.13, 6.14 clearly
show that the control input u is bounded. Figure 6.15 displays that the critic sig-
nal R̂n is bounded. From Fig. 6.16, it is observed that the adaptive parameter κ̂ is

252 6 Optimal Feedback Control for Continuous-Time Systems via ADP

Fig. 6.13 The trajectory of υad

Fig. 6.14 The trajectory of υr

bounded. The simulation results show that the present ADP method can perform
successful control and achieve the desired performance for the nonaffine nonlinear
system.

6.4 Summary 253

Fig. 6.15 The trajectory of R̂n

Fig. 6.16 The trajectory of κ̂

6.4 Summary

In this chapter, we investigated the optimal feedback control problems of a class
of unknown general continuous-time nonlinear systems and a class of continuous-

254 6 Optimal Feedback Control for Continuous-Time Systems via ADP

time nonaffine nonlinear systems via the ADP approach. In Sect. 6.2, we developed
an effective scheme to design the data-based optimal robust tracking controller for
unknown general continuous-time nonlinear systems, in which only input/output
data are required instead of the system dynamics. In Sect. 6.3, a novel ADP based
robust neural network controller was developed for a class of continuous-time non-
affine nonlinear systems, which is the first attempt to extend the ADP approach to
continuous-time nonaffine nonlinear systems. Numerical simulations have shown
that the present methods are effective and can be used for a quite wide class of
continuous-time nonlinear systems.

References

1. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear
discrete-time zero-sum games with application to H∞ control. Automatica 43:473–481

2. Calise AJ, Hovakimyan N, Idan M (2001) Adaptive output feedback control of nonlinear
systems using neural networks. Automatica 37:1201–1211

3. Chellaboina V, Haddad WM (2002) A unification between partial stability and stability theory
for time-varying systems. IEEE Control Syst Mag 22:66–75

4. Cui LL, Luo YH, Zhang HG (2011) Adaptive critic design based robust neural network control
for a class of continuous-time nonaffine nonlinear system. In: Proceedings of international
conference on modelling, identification and control, Shanghai, pp 26–29

5. Ge S, Zhang J (2003) Neural-network control of nonaffine nonlinear system with zero dynam-
ics by state and output feedback. IEEE Trans Neural Netw 14:900–918

6. Hanselmann T, Noakes L, Zaknich A (2007) Continuous-time adaptive critics. IEEE Trans
Neural Netw 3:631–647

7. Khalil HK (2002) Nonlinear system. Prentice Hall, Englewood Cliffs
8. Kim N, Calise AJ (2007) Several extensions in methods for adaptive output feedback control.

IEEE Trans Neural Netw 18:482–494
9. Kim YH, Lewis FL (2000) Reinforcement adaptive learning neural-net-based friction com-

pensation control for high speed and precision. IEEE Trans Control Syst Technol 8:118–126
10. Kuljaca O, Lewis FL (2003) Adaptive critic design using non-linear network structure. Int J

Adapt Control Signal Prog 17:431–445
11. Lewis FL, Jagannathan S, Yesildirek A (1999) Neural network control of robot manipulators

and nonlinear systems. Taylor & Francis, London
12. Lin CK (2005) Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis

function networks. IEEE Trans Syst Man Cybern, Part B, Cybern 35:197–206
13. Lin CK (2009) H∞ reinforcement learning control of robot manipulators using fuzzy wavelet

networks. Fuzzy Sets Syst 160:1765–1786
14. Liu ZW, Zhang HG, Zhang QL (2010) Novel stability analysis for recurrent neural networks

with multiple delays via line integral-type L-K functional. IEEE Trans Neural Netw 21:1710–
1718

15. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE
Trans Syst Man Cybern, Part B, Cybern 32:140–153

16. Rubio JDJ, Yu W (2007) Stability analysis of nonlinear system identification via delayed
neural networks. IEEE Trans Circuits Syst II, Express Briefs 54:161–195

17. Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to solve the continuous-time
infinite horizon optimal control problem. Automatica 46:878–888

18. Vrabie D, Lewis FL (2009) Neural network approach to continuous-time direct adaptive opti-
mal control for partially unknown nonlinear system. Neural Netw 22:237–246

References 255

19. Vrabie D, Pastravanu O, Abu-Khalaf M, Lewis FL (2009) Adaptive optimal control for
continuous-time linear systems based on policy iteration. Automatica 45:477–484

20. Wang ZS, Zhang HG, Yu W (2009) Robust stability of Cohen–Grossberg neural networks via
state transmission matrix. IEEE Trans Neural Netw 20:169–174

21. Wang ZS, Zhang HG, Jiang B (2011) LMI-based approach for global asymptotic stability
analysis of recurrent neural networks with various delays and structures. IEEE Trans Neural
Netw 22:1032–1045

22. Zhang HG, Wang ZS, Liu DR (2008) Global asymptotic stability of recurrent neural networks
with multiple time-varying delays. IEEE Trans Neural Netw 19:855–873

23. Zhang HG, Li M, Yang J (2009) Fuzzy model-based robust networked control for a class of
nonlinear systems. IEEE Trans Syst Man Cybern, Part A, Syst Hum 39:437–447

24. Zhang HG, Liu ZW, Huang GB (2010) Novel weighting-delay-based stability criteria for re-
current neural networks with time-varying delay. IEEE Trans Neural Netw 21:91–106

25. Zhang HG, Cui LL, Zhang X, Luo YH (2011) Data-driven robust approximate optimal track-
ing control for unknown general nonlinear systems using adaptive dynamic programming
method. IEEE Trans Neural Netw 22(12):2226–2236

26. Zhang HG, Xie XP, Tong SC (2011) Homogeneous polynomially parameter-dependent H∞
filter designs of discrete-time fuzzy systems. IEEE Trans Syst Man Cybern, Part B, Cybern
41:1313–1322

Chapter 7
Several Special Optimal Feedback Control
Designs Based on ADP

7.1 Introduction

In Chap. 6, we have discussed the optimal feedback control for continuous-time
systems by ADP algorithms. In this chapter, several special optimal feedback control
designs based on ADP are developed.

In this chapter, we first study the optimal control problem of affine nonlinear
switched systems. Though there are some results on the control of switched systems,
most existing results only deal with the state-feedback control problem for switched
systems, such as [14, 16]. Hence, in order to seek the optimal solution, a novel
two-stage adaptive dynamic programming (TSADP) is developed. The algorithm
can be divided into two stages: first, for each possible mode, calculate associated
value function, and then select the optimal mode for each state. It is shown that the
value function at each iteration can be characterized pointwise by a set of smooth
functions recursively generated from TSADP. Moreover, the optimal control policy,
continuous control and switching control law included, is explicitly provided in a
state-feedback form.

In the second part, the near-optimal control problem of nonlinear descriptor sys-
tems is solved by greedy iterative DHP algorithm. A nonquadratic cost functional
is developed in order to deal with the actuator saturation problem. In this way, the
greedy iterative DHP algorithm can be properly introduced to solve the optimal
control problem of the original descriptor system.

In the third part, a novel near-optimal control design method for a class of non-
linear singularly perturbed systems is developed based on ADP algorithm. By the
slow/fast HJB equations and starting from initial performances, the optimal per-
formances are converged by neural network approximation and iteration between
control laws and performance indices. It avoids solving the complex HJB equations
directly.

In the fourth part, the near-optimal state-feedback control problem is solved
by SNAC method for a class of nonlinear discrete-time systems with control con-
straints. Based on the costate function, the greedy iterative DHP algorithm is devel-
oped to solve the HJB equation of the system. At each step of the iterative algorithm,

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_7,
© Springer-Verlag London 2013

257

http://dx.doi.org/10.1007/978-1-4471-4757-2_7

258 7 Several Special Optimal Feedback Control Designs Based on ADP

a neural network is utilized to approximate the costate function, and then the opti-
mal control policy of the system can be computed directly according to the costate
function, which removes the action network appearing in the ordinary ADP method.

7.2 Optimal Feedback Control for a Class of Switched Systems

7.2.1 Problem Description

Consider the following affine nonlinear discrete-time switched system:

x(t + 1)= fv(t)(x(t))+ gv(t)(x(t))u(t), (7.1)

where x(t) ∈ R
n and u(t) ∈ R

m are the continuous state variable and control in-
put, v(t) ∈M is the switching control that determines which subsystem is switched
on to operate. The sequence {〈u(t), v(t)〉}∞0 is called the hybrid control sequence
for system (7.1). Generally, the control is a feedback form, thus we denote the
hybrid feedback law as π(x(t)) = 〈μ(x(t)), ν(x(t))〉 : Rn → R

m × M, where
μ(x(t)) : Rn → R

m and ν(x(t)) : Rn → M. Then, the closed-loop system model
with control policy π is given by

x(t + 1)= fν(x(t))(x(t))+ gν(x(t))(x(t))μ(x(t)). (7.2)

The infinite horizon optimal control problem is to design a hybrid feedback con-
trol policy π = 〈μ,ν〉 that minimizes the following cost functional:

Jπ(z)=
∞∑

t=0

L(x(t), u(t), v(t)) (7.3)

subject to (7.2), where z ∈ R
n is an arbitrary initial state, i.e., x(0) = z, u(t) =

μ(x(t)) and v(t)= ν(x(t)). L(x,u, v)= xTQvx + uTRvu, Qv > 0 and Rv > 0 are
the cost-to-go weighting matrices for the state and control, respectively.

Definition 7.1 (Admissible Control Policy) The control policy π is admissible if π
stabilizes system (7.2) and ∀z, the total cost Jπ(z) is finite, denoted π ∈ΠA.

The following assumption is necessary in the rest of this section.

Assumption 7.2 At least one subsystem is stabilizable.

Assumption 7.2 guarantees the existence of at least one admissible control policy,
i.e., the set ΠA is not empty.

Thus, the discrete-time infinite horizon switched optimal control problem can be
formulated below.

7.2 Optimal Feedback Control for a Class of Switched Systems 259

Problem 7.3 For a given initial state z ∈ R
n, find the control policy π ∈ ΠA that

minimizes Jπ(z) subject to (7.2).

To solve this problem, define the optimal value function as

J ∗(z)= inf
π∈ΠA

Jπ(z), (7.4)

which is characterized by the Bellman equation

J ∗(z)= inf
u,v

{
L(z,u, v)+ J ∗(fv(z)+ gv(z)u)

}
. (7.5)

Then, based on traditional dynamic programming theory, the optimal value func-
tion can be computed by value iteration, i.e., to start from the initial value function
V0 and update iteratively according to

Vk+1(z)= inf
u,v

{L(z,u, v)+ Vk(fv(z)+ gv(z)u)} . (7.6)

Unfortunately, the value function for switched systems is in general nonsmooth,
even for simple LQR problem (see [15]). Besides, there are two independent vari-
ables to minimize the function, thus the iteration with (7.6) is quite complicated and
infeasible.

Notation M = 1, . . . ,M denotes the set of indices of subsystems. The set Lk is
defined as Lk = 1, . . . ,Mk where k is a positive integer or zero. mod (a, b) is
an operator that seeks the remainder of a/b and if a is an exact multiple of b, the
operator returns b. The operator [a] takes the largest integer that is no greater than a.
N represents the natural number set.

7.2.2 Optimal Feedback Control Based on Two-Stage ADP
Algorithm

In this section, we develop a novel iterative algorithm, termed two-stage adaptive
dynamic programming (TSADP), to seek the optimal value function J ∗. The great-
est advantage of our algorithm is that it transforms a multivariate optimal control
problem to be a certain number of univariate optimal control problems at each iter-
ation.

To start the iteration, set the initial condition as V0(z) = V
(1)
0 (z) = 0. For each

i ∈M and l ∈ L0 = {1}, solve

u
(l,i)
0 (z)= arg min

u

{
L(z,u, i)+ V

(l)
0 (fi(z)+ gi(z)u)

}
(7.7)

and then update the value function using u
(l,i)
0

V
(l̂)
1 (z)= L(z,u

(l,i)
0 , i)+ V

(l)
0 (fi(z)+ gi(z)u

(l,i)
0), (7.8)

260 7 Several Special Optimal Feedback Control Designs Based on ADP

where l̂ = (l − 1)×M + i.
Let

V1(z)= min
l̂∈L1

{
V
(l̂)
1 (z)

}
, (7.9)

where the set L1 has been defined in Sect. 7.2.1. Therefore, the value function of
the first iteration is obtained.

Denote

ι0(z)= arg min
l̂∈L1

{
V
(l̂)
1 (z)

}
. (7.10)

Thus, we get the initial control policy π0 = 〈μ0, ν0〉, where

ν0(z)= mod (ι0(z),M) , (7.11)

μ0(z)= u
(�ι0(z)/M�+1,ν0(z))

0 (z), (7.12)

and the initial iteration finishes.
Suppose Vk is obtained from the (k−1)st iteration, i.e., Vk(z) = minl∈Lk

{V (l)
k }.

Then, for each i ∈M and l ∈ Lk , solve

u
(l,i)
k (z)= arg min

u

{
L(z,u, i)+ V

(l)
k (fi(z)+ gi(z)u)

}
, (7.13)

and update the value function V
(l̂)
k+1

V
(l̂)
k+1(z)= L(z,u

(l,i)
k , i)+ V

(l)
k (fi(z)+ gi(z)u

(l,i)
k), (7.14)

where l̂ = (l − 1)×M + i. Then, we get

Vk+1(z)= min
l̂∈Lk+1

{
V
(l̂)
k+1(z)

}
(7.15)

and

ιk(z)= arg min
l̂∈Lk+1

{
V
(l̂)
k+1(z)

}
. (7.16)

Therefore, the control policy at the kth iteration is πk = 〈μk, νk〉, where

νk(z) = mod (ιk(z),M) , (7.17)

μk(z) = u
(�ιk(z)/M�+1,νk(z))
k (z). (7.18)

The iteration continues according to (7.13)–(7.18).
The core part of the two-stage adaptive dynamic programming algorithm is to

solve (7.13) and (7.14) iteratively. Compared with (7.6), there is only one variable
u to be determined, which is much easier to be dealt with. As a matter of fact, each

7.2 Optimal Feedback Control for a Class of Switched Systems 261

iteration can be separated into two steps: one to calculate the optimal u(l,i)k and V (l̂)
k+1

with each fixed i and l; then to find the optimal i and l for each z, i.e., to formulate
ιk(z) and then the control policy πk(z). That is what the term “two-stage” implies.

Remark 7.4 Note that the subscripts of all variables used above, such as Vk , V (·)
k and

uk demonstrate the kth iteration of our algorithm. Moreover, the superscript of V (l)
k

represents the lth possible component of Vk , while the counterpart of u(l,i)k indicates
the lth component of Vk−1 as well as the ith subsystem switched on.

Remark 7.5 Apparently, by induction, we conclude that all the functions V (l)
k are

smooth because each of them is calculated by conventional value iteration with ini-
tial smooth function V0 = 0.

Remark 7.6 Actually, unless the optimal value function is found, the controller law
μk and νk are not used to update the value function Vk+1, then they can be omitted
during the process.

Theorem 7.7 Value function at the kth iteration can be expressed as Vk(z) =
minl∈Lk

{V (l)
k } and the control policy πk = 〈μk, νk〉 defined in (7.18) and (7.17) is

optimal, i.e.,

〈μk, νk〉 = arg min
u,i

{L(z,u, i)+ Vk(fi(z)+ gi(z)u)} . (7.19)

Proof The expression of the value function can be naturally concluded from pre-
vious derivation. Besides, according to the principle of dynamic programming, we
have

Vk+1(z) = min
u,i

{L(z,u, i)+ Vk(fi(z)+ gi(z)u)}

= min
u,i

{
L(z,u, i)+ min

l∈Lk

{
V
(l)
k (fi(z)+ gi(z)u)

}}

= min
l∈Lk

min
u,i

{
L(z,u, i)+ V

(l)
k (fi(z)+ gi(z)u)

}

= min
l∈Lk

min
i

{
L(z,u

(l,i)
k , i)+ V

(l)
k (fi(z)+ gi(z)u

(l,i)
k)

}
. (7.20)

Denote

〈ςk(z), νk(z)〉 = arg min
l∈Lk

min
i

{
L(z,u

(l,i)
k , i)+ V

(l)
k (fi(z)+ gi(z)u

(l,i)
k)

}
. (7.21)

Thus, 〈u(ςk(z),νk(z))k (z), νk(z)〉 is the optimal control law for the kth value iteration,
i.e., minimizes the first equation in (7.20).

262 7 Several Special Optimal Feedback Control Designs Based on ADP

In addition, note that ιk(z) in (7.16) can be expressed by ςk(z), i.e., ιk =
(ςk − 1)×M + νk . As a result, the control policy 〈u(ςk(z),νk(z))k (z), νk(z)〉 is equiv-
alent to πk = 〈μk, νk〉 defined in (7.18) and (7.17). Therefore, πk satisfies (7.19). �

Remark 7.8 Different from normal optimal control problem, Vk for switched sys-
tem is no longer a single smooth function, it becomes the pointwise minimum of a
certain number of value functions obtained from two-stage adaptive dynamic pro-
gramming. Similarly, the control policy πk is also state-dependent instead of a single
optimal feedback control law over the entire state space.

Remark 7.9 Related work has been published in some references, e.g., [11] pro-
posed the master-slave procedure (MSP), which was based on some numerical
search techniques such as MIQP to solve similar optimal control problems. Com-
pared with the results in [5, 10–13], our contribution is that the two-stage adap-
tive dynamic programming explicitly presents the analytical expression of the opti-
mal feedback control policy and its connection to conventional value iteration, cf.
(7.17)–(7.19).

In this part, we will prove that the sequence of value functions {Vk} obtained by
TSADP is convergent, i.e., there exists a function V∞ satisfying V∞ = limk→∞ Vk ,
and derive the relation between V∞ and the optimal value function.

Lemma 7.10 Let {π̂k = 〈μ̂k, ν̂k〉} be arbitrary sequence of control policy and {Λk}
be defined by

Λk+1(z)= L(z, μ̂k, ν̂k)+Λk(fν̂k (z)+ gν̂k (z)μ̂k), (7.22)

and {Vk} is obtained by TSADP. If V0(z) = Λ0(z) = 0, thus Vk(z) ≤ Λk(z),
∀k ∈ N , z ∈R

n.

Proof According to Theorem 7.7, μk , νk minimize the right-hand side of (7.19)
and because V0(z) = Λ0(z) = 0, then by induction it follows that Vk(z) ≤ Λk(z),
∀k, z. �

Lemma 7.11 (cf. [4], Boundedness) Under Assumption 7.2, there is a state-
dependent upper bound B(z) such that Vk(z)≤ B(z), ∀k ∈N , z ∈ R

n.

Proof Suppose the ith subsystem (fi, gi) is stabilizable (i ∈ M). Denote {V (i)

k } as
the sequence of value functions generated by the iteration only in the i th subsystem

without switching, i.e., V (i)

k+1(z)= minu{L(z,u, i)+ V
(i)

k (fi(z)+ gi(z)u)}.
Because subsystem i is stabilizable, there must exist an admissible control law

sequence {π̂k = 〈μ̂k, i〉} where μ̂k can be obtained by

μ̂k = arg min
u

{
L(z,u, i)+ V

(i)

k (fi(z)+ gi(z)u)
}
, (7.23)

7.2 Optimal Feedback Control for a Class of Switched Systems 263

and thus V
(i)

k (z) < ∞. Therefore, there exists a B(z) such that V (i)

k (z) < B(z).

According to Lemma 7.10, Vk(z) ≤ V
(i)

k (z). Consequently, we have Vk(z) ≤
V
(i)

k (z) < B(z). �

Lemma 7.12 (cf. [4], Monotonicity) The sequence {Vk} generated from TSADP is
uniformly monotonically nondecreasing, i.e., Vk(z)≤ Vk+1(z), ∀k ∈ N , z ∈R

n.

Proof Define {Λk} as

Λk+1(z)= L(z,μk+1, νk+1)+Λk(fνk+1(z)+ gνk+1(z)μk+1), (7.24)

moreover,

Vk+1(z)= L(z,μk, νk)+ Vk(fνk (z)+ gνk (z)μk), (7.25)

with Λ0(z)= V0(z)= 0.
Next, we are ready to prove that Λk(z)≤ Vk+1(z), ∀z.
First, when k = 0, we have

V1(z)−Λ0(z)= L(z,μ0, ν0)≥ 0, (7.26)

i.e., Λ0(z)≤ V1(z), for ∀z.
Then, assuming Λk−1(z)≤ Vk(z) holds for ∀z, we obtain

Vk+1(z)−Λk(z)= Vk(ẑ)−Λk−1(ẑ)≥ 0, (7.27)

where ẑ= fνk (z)+ gνk (z)μk . This completes the proof that Λk(z)≤ Vk+1(z).
Furthermore, because μk and νk are optimal for Vk , according to Lemma 7.10,

we conclude that Vk(z)≤Λk(z). All in all, it follows that Vk(z)≤ Vk+1(z), ∀k, z. �

Finally, we study its convergence and optimality. Let π̃ = {〈μ̃k, ν̃k〉} be an admis-
sible control law sequence and construct the associated sequence {Pk(z)} as follows

Pk+1(z)= L(z, μ̃k, ν̃k)+ Pk(fν̃k (z)+ gν̃k (z)μ̃k). (7.28)

By induction, we get

Pk+1(z) = L(x(0), μ̃k, ν̃k)+ Pk(fν̃k (x(0))+ gν̃k (x(0))μ̃k)

=
1∑

j=0

L(x(j), μ̃k−j , ν̃k−j)+ Pk−1(fν̃k−1(x(1))+ gν̃k−1(x(1))μ̃k−1)

...

=
k∑

j=0

L(x(j), μ̃k−j , ν̃k−j), (7.29)

264 7 Several Special Optimal Feedback Control Designs Based on ADP

where x(j + 1)= fν̃k−j
(x(j))+ gν̃k−j

(x(j))μ̃k−j .
As k → ∞, we obtain

P∞(z)= lim
k→∞

k∑

j=0

L(x(j), μ̃k−j , ν̃k−j). (7.30)

Define

J ∗(z)= inf
π̃
P∞(z), (7.31)

then we have the following theorem.

Theorem 7.13 (cf. [4], Convergence and Optimality) Under Assumption 7.2, the
sequence {Vk} is convergent and as k → ∞, Vk → J ∗, where J ∗ is the optimal
value function satisfying

J ∗(z)= inf
u,v

{
L(z,u, v)+ J ∗(fv(z)+ gv(z)u)

}
. (7.32)

Proof From Lemmas 7.11 and 7.12, the sequence {Vk} is bounded and monoton-
ically nondecreasing, thus we easily conclude that the sequence gets convergent
to V∞.

Suppose the control policy is chosen to be π̃ , Lemma 7.10 still holds, i.e., ∀k, z,

Vk(z)≤ Pk(z), (7.33)

then

lim
k→∞Vk(z)≤ lim

k→∞Pk(z), (7.34)

and

V∞(z)= lim
k→∞Vk(z)≤ inf

π̃
lim
k→∞Pk(z)= J ∗(z). (7.35)

Moreover, from Lemma 7.11, we know that ∀k, Vk is bounded, so is V∞. Thus,
by definition of admissible control, the control sequence associated with the V∞
must be admissible. Recalling the definition of J ∗ in (7.31), we obtain J ∗ ≤ V∞.
Combining it with (7.35), we conclude that J ∗ = V∞, i.e., J ∗ = limk→∞ Vk .

Next, we commence to prove the J ∗ to be optimal.
On one hand, according to (7.6), for any k, z, u and v, we have

Vk+1(z)≤ L(z,u, v)+ Vk(fv(z)+ gv(z)u). (7.36)

From Lemma 7.12, the sequence {Vk} is uniformly monotonically nondecreasing
and gets convergent to J ∗. Hence, Vk ≤ J ∗ holds for any k, z. Thus, (7.36) becomes

Vk+1(z)≤ L(z,u, v)+ J ∗(fv(z)+ gv(z)u). (7.37)

7.2 Optimal Feedback Control for a Class of Switched Systems 265

As k → ∞, we get

J ∗(z)≤ L(z,u, v)+ J ∗(fv(z)+ gv(z)u). (7.38)

Since u and v are chosen arbitrarily, we have

J ∗(z)≤ inf
u,v

{
L(z,u, v)+ J ∗(fv(z)+ gv(z)u)

}
. (7.39)

On the other hand, Vk+1 in (7.6) still satisfies Vk+1 ≤ J ∗. Therefore, (7.6) can be
written as

J ∗(z)≥ inf
u,v

{L(z,u, v)+ Vk(fv(z)+ gv(z)u)} . (7.40)

Let k → ∞, we obtain

J ∗(z)≥ inf
u,v

{
L(z,u, v)+ J ∗(fv(z)+ gv(z)u)

}
. (7.41)

Combining (7.41) with (7.39), we conclude (7.32), i.e., J ∗ is the optimal value
function.

This completes the proof. �

From Theorem 7.13, we conclude that the sequence {Vk} obtained by TSADP
converges to the optimal value function.

It could be seen that the essential part of solving the switched optimal control
problem is to compute (7.13) and (7.14) iteratively. However, considering the com-
plexity and generality of nonlinear systems, there are still large difficulties in solving
(7.13) and (7.14) analytically, though it is much easier compared to (7.6). There-
fore, for implementation purposes, we apply two kinds of neural network structure,
named the critic and action network, respectively, to approximate the value function
and control law at each iteration.

Note that the neural network has a powerful ability to approximate any smooth
nonlinear function to arbitrary degree of accuracy, but for discontinuous (or nons-
mooth) functions, it is not efficient. Unfortunately, the value function for nonlinear
switched systems at each iterative Vk is the pointwise minimum of all V (l)

k gener-
ated from TSADP, which means it is nonsmooth generally. Hence, neural network
cannot be utilized directly to approximate the value function. In this section, a set
of neural networks, instead of a single one, is employed to approximate Vk .

According to Remark 7.5, we realize that all V (l)
k (z) are smooth. Thus, we can

use the following neural network structures to approximate value function V
(l)
k (z)

and control law u
(l,i)
k (z), respectively:

V
(l)
k (z) =W

(l)
k

T
φ(z), (7.42)

u
(l,i)
k (z) =U

(l,i)
k

T
σ(z), (7.43)

266 7 Several Special Optimal Feedback Control Designs Based on ADP

where W(l)
k = [W(l)

k,1, . . . ,W
(l)
k,NV

]T and U
(l,i)
k = [U(l,i)

k,1 , . . . ,U
(l,i)
k,NU

]T are NN weight
vectors, NV and NU are the numbers of hidden-layer neurons for critic and ac-
tion network, respectively. φ = [φ1, . . . , φNV

]T and σ = [σ1, . . . , σNU
]T, where

φj (z) and σj (z) are basis functions. Because it is required that V (l)
k (0) = 0 and

u
(l,i)
k (0)= 0, we select basis functions with φj (0)= 0 and σj (0)= 0. Moreover, the

value function is always positive definite and symmetric, thus it is convenient to re-
quire the φj to be symmetric, i.e., φj (z)= φj (−z). Despite the requirements above,
the choice of basis functions can be diverse. Many functions can be used, such as
the hyperbolic tangent function tanh(x). Here, we make use of polynomials as basis
functions whose terms are obtained from the expansion of the polynomial [2]

∞∑

j=1

(
n∑

k=1

xk

)2j

.

Particularly, the switching control νk(z) is not approximated by neural network
because νk(z) is a piecewise function which take discrete values finitely within the
set M.

According to (7.42), the value function at kth iteration can be expressed as

Vk(z)= min
l∈Lk

{
V
(l)
k

}
= min

W
(l)
k ∈Wk

{
W

(l)
k

T
φ(z)

}
, (7.44)

where Wk = {W(l)
k | l ∈ Lk} is a set of weights for constructing the value func-

tion Vk . To meet the condition V0(z) = 0, W0 is usually initialized with W0 =
{W(1)

0 = [0,0, . . . ,0]T}.
Based on (7.44), the weight of action network is tuned to solve (7.13), which can

be rewritten in the following form:

U
(l,i)
k = arg min

U

{
L(z,UTσ(z), i)+ V

(l)
k (fi(z)+ gi(z)U

Tσ(z))
}
. (7.45)

Note that (7.45) is an implicit function for U(l,i)
k , so it is difficult to solve the

weight explicitly. Therefore, we adopt the gradient descent algorithm (GDA); then
the updating formula for U(l,i)

k can be shown to be

U
(l,i)
k,[j+1] =U

(l,i)
k,[j] − α

∂(L(z,U
(l,i)
k,[j]

T
σ(z), i)+ V

(l)
k (fi(z)+ gi(z)U

(l,i)
k,[j]

T
σ(z)))

∂U
(l,i)
k,[j]

=U
(l,i)
k,[j] − α

(
2σ(z)RiU

(l,i)
k,[j]

T
σ(z)+ σ(z)g(z)T

∂φ(ẑ)

∂ẑ
W

(l)
k

T
)
, (7.46)

where ẑ = fi(z)+ gi(z)U
(l,i)
k,[j]

T
σ(z), α is a positive step size, j is the iteration step

for GDA and as j → ∞, U(l,i)
k,[j] →U

(l,i)
k .

7.2 Optimal Feedback Control for a Class of Switched Systems 267

Next, based on U
(l,i)
k and W

(l)
k , we can compute the target cost function for the

critic network according to

d(z,W(l)
k ,U

(l,i)
k)= L(z,U

(l,i)
k

T
σ(z), i)+W

(l)
k

T
φ(fi(z)+ gi(z)U

(l,i)
k

T
σ(z)).

(7.47)
Define the residual error as

e(z)=W
(l̂)
k+1

T
φ(z)− d(z,W(l)

k ,U
(l,i)
k), (7.48)

where l̂ = (l − 1)×M + i.

The task is to adjust the weight W(l̂)
k+1, such that the error e(z) is minimized on

a training set Ω ∈ R
n. Note that the relation between e(z) and W

(l̂)
k+1 is linear, for

convenient, we employ the method of weighted residuals to realize the iteration. The

weight W(l̂)
k+1 is determined by projecting the residual error onto de(z)/dW(l̂)

k+1 and
setting the result to zero for any z ∈Ω using the inner product, i.e.,

∫

Ω

∂e(z)

∂W
(l̂)
k+1

· eT(z)dz= 0. (7.49)

Substitute e(z) in (7.49) with (7.48), and then we have

∫

Ω

φ(z)

(
W

(l̂)
k+1

T
φ(z)− d(z,W(l)

k ,U
(l,i)
k)

)T

dz= 0. (7.50)

Therefore, a unique solution for W(l̂)
k+1 exists, i.e.,

W
(l̂)
k+1 =

(∫

Ω

φ(z)φ(z)Tdz

)−1 ∫

Ω

φ(z)dT(z,W
(l)
k ,U

(l,i)
k)dz. (7.51)

It is worth mentioning that the basis functions we choose, which are linearly
independent, guarantee that the inverse in (7.51) exists, see [1] for details.

For each i and l, there will be a unique W
(l̂)
k+1 generated from (7.51). All the

W
(l̂)
k+1 compose a new set Wk+1 = {W(l̂)

k+1 | l̂ ∈ Lk+1}. Therefore, the value function
at (k + 1)th iteration can be expressed as

Vk+1(z)= min
W

(l̂)
k+1∈Wk+1

{
W

(l̂)
k+1

T
φ(z)

}
. (7.52)

The iteration continues till Vk(z) converges to the optimal value function J ∗(z)
or V∞(z). Based on J ∗(z), we obtain the function ι∗(z)

ι∗(z)= arg min
l

{
V (l)∞ (z)

}
, (7.53)

268 7 Several Special Optimal Feedback Control Designs Based on ADP

and the optimal control policy π∗ = 〈μ∗, ν∗〉, where

ν∗(z)= mod
(
ι∗(z),M

)
, (7.54)

μ∗(z)= u
(�ι∗(z)/M�+1,ν∗(z))∞ (z). (7.55)

Note that at the kth iteration, the number of weights in Wk is Mk , which im-
plies that the computation burden grows exponentially as k increases. However, as a
matter of fact, not all the weights in Wk make contributes to characterize the value
function Vk . The weights that are redundant can be directly removed to simplify the
computation efficiently. To formalize this idea, firstly we introduce the following
definition.

Definition 7.14 (Redundant Weight) A weight Ŵ ∈ W is redundant if there exists
a W ∈ W \ {Ŵ } such that WTφ(z)≤ ŴTφ(z) holds for all z ∈ R

n.

Obviously, because the redundant weights are never utilized for the value func-
tion, there will be no influence on the optimality and convergence of our algorithm
if they are ruled out.

By now, we can summarize the TSADP algorithm using neural networks as fol-
lows:

1. Initialization. Choose suitable basis functions φ(x) and σ(x). Let W
(1)
0 =

[0,0, . . . ,0]T, W0 = {W(1)
0 }. k = 0.

2. For each l = 1,2, . . . ,Mk , i = 1,2, . . . ,M , update the weight U(l,i)
k according

to (7.46) and adjust W(l̂)
k+1 by (7.51) where l̂ = (l − 1)×M + i. All the weights

W
(l̂)
k+1 compose the set Wk+1.

3. Rule out redundant weights in Wk+1 based on Definition 7.14.
4. If Vk+1 = Vk , go to 5; else k = k + 1 and go to 2.
5. Compute the optimal control policy π∗ = 〈μ∗, ν∗〉 by (7.55) and (7.54).

7.2.3 Simulations

In this section, to support the novel theoretical result, we offer a simulation example
for the present TSADP algorithm.

Consider a general switched optimal control problem with the following two
nonlinear subsystems.

Subsystem 1:
[
x1(t + 1)
x2(t + 1)

]
=
[

0.2 sin(x1(t))x2(t)

0.5x2(t)+ 0.5u(t)

]
. (7.56)

7.2 Optimal Feedback Control for a Class of Switched Systems 269

Fig. 7.1 Number of remaining weights in Wk

Subsystem 2:
[
x1(t + 1)
x2(t + 1)

]
=
[

0.5x3
1(t)x2(t)

0.3x2(t)+ 0.5u(t)

]
. (7.57)

The weighting matrices in cost functional are set to be Q1 = Q2 = [1 0
0 1

]
,

R1 =R2 = 1.
To initiate the algorithm, basis functions for critic and action networks are re-

spectively chosen as

φ(x)= [x2
1 , x1x2, x

2
2 , x

4
1 , x

3
1x2, x

2
1x

2
2 , x1x

3
2 , x

4
2 , x

6
1 , x

5
1x2, x

4
1x

2
2 ,

x3
1x

3
2 , x

2
1x

4
2 , x1x

5
2 , x

6
2]T,

σ (x)= [x1, x2, x
3
1 , x

2
1x2, x1x

2
2 , x

3
2 , x

5
1 , x

4
1x2, x

3
1x

2
2 , x

2
1x

3
2 , x1x

4
2 , x

5
2]T,

with initial weight W(1)
0 = [0,0, . . . ,0]T. Training set is defined as

Ω = {[x1, x2]T | −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2
}
.

After 20 steps iteration, the value function gets convergent. At each iteration, the
number of remaining weights (after redundant weights are deleted) in Wk is shown
in Fig. 7.1. At the beginning (when k < 10), the number increases exponentially, but
eventually keeps almost constant. There is a slight perturbation, mainly because of
the approximated errors incurred by neural networks.

Based on the final set W20, we can compute the optimal control law μ∗ and ν∗
by (7.55) and (7.54). According to ν∗, we can draw the figure of decision region of

270 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.2 State trajectories in the optimal decision region map. The red one started with initial
condition x0 = [1.5,−1.5]T, while the green one with x0 = [−1.5,1.5]T.

Fig. 7.3 Control inputs with initial condition x0 = [1.5,−1.5]T

switching control, as illustrated in Fig. 7.2. States in the blue region choose mode
1, i.e., operate on the 1st subsystem, while states in the yellow one choose mode 2.
To depict this better, we run the switched system in the optimal manner with two
different initial states, x0 = [1.5,−1.5]T and x0 = [−1.5,1.5]T, respectively. The

7.3 Optimal Feedback Control for a Class of Descriptor Systems 271

Fig. 7.4 Control inputs with initial condition x0 = [−1.5,1.5]T

two trajectories are shown in Fig. 7.2. The curves of the control input are shown in
Figs. 7.3 and 7.4, respectively.

7.3 Optimal Feedback Control for a Class of Descriptor Systems

7.3.1 Problem Formulation

Consider a class of descriptor systems as follows:

x1(k + 1)= F1(x1(k), x2(k), u(k)), (7.58)

0 = F2(x1(k), x2(k), u(k)), (7.59)

where x1(k) ∈ R
n1 , x2(k) ∈ R

n2 , F1 : Rn1 × R
n2 × R

m → R
n1 , F2 : Rn1 × R

n2 ×
R
m → R

n2 , and the control u(k) ∈Ωu, Ωu = {u(k)= [u1(k), u2(k), . . . , um(k)]T ∈
R
m : |ui(k)| ≤ ūi , i = 1, . . . ,m}, here ūi denotes the saturating bound for the

ith actuator. Let Ūi ∈ R
m×m be the constant diagonal matrix described as Ū =

diag{ū1, ū2, . . . , ūm}.
For simplicity of analysis, we write (7.59) as

Ex(k + 1)= F(x(k), u(k)), (7.60)

where E is a singular matrix of rank n1, x(k) = col{x1(k), x2(k)}. Assume that F
is Lipschitz continuous on a set Ωx in R

n containing the origin, and that the system

272 7 Several Special Optimal Feedback Control Designs Based on ADP

(7.60) is controllable in the sense that there exists a continuous control law on Ωx

that asymptotically stabilizes the system.
In this section, we mainly discuss how to design an optimal controller for this

class of descriptor systems. Therefore, it is desired to find u(·) which minimizes a
generalized nonquadratic cost functional as follows:

J (Ex(k),u)=
∞∑

i=k

{
xT(i)Qx(i)+W(u(i))

}
, (7.61)

where W(u(i)) is positive definite and Q is also positive definite.
For the optimal control problem, it is required to find a control u(·) which can-

not only stabilize the system on Ωx , obtaining a unique impulse-free solution, but
also guarantee the cost functional J (Ex(0)) to be finite, i.e., admissible control. In
the following part, we use J ∗(Ex(k)) denote the minimal value of cost functional
J (Ex(k),u), which is also called optimal value function.

Definition 7.15 A control law η(x) ∈ Γ is called as an admissible policy for (7.60)
on Ωx , if for any initial state Ex0, not only the obtained closed-loop system has a
unique impulse-free solution, η(0) = 0, but the cost functional J (Ex(0)) is guar-
anteed to be finite. Γ is called the admissible policy set. η(x) is assumed to be
continuously differentiable in its argument.

Assumption 7.16 There exists at least an admissible policy for the system (7.60).
In a linear descriptor system, this is equivalent to the impulsive controllability of the
system.

According to the Bellman optimality principle, we obtain

J ∗(Ex(k))=min
u(k)

{xT(k)Qx(k)+W(u(k))+ J ∗(Ex(k + 1))}. (7.62)

For an unconstrained control problem, a common choice for W(u(i)) is
W(u(i)) = uT(i)Ru(i), where R ∈ R

m×m is positive semi-definite. With the first
order necessity condition, we compute the gradient of the right-hand side of (7.62)
with respect to u as

∂J ∗(Ex(k))
∂u(k)

=∂(xT(k)Qx(k)+ uT(k)Ru(k))

∂u(k)

+
(
∂x(k + 1)

∂u(k)

)T
∂J ∗(Ex(k + 1))

∂x(k + 1)

= 0. (7.63)

Therefore, we obtain

u∗(k)= −1

2
R−1

(
∂x(k + 1)

∂u(k)

)T
∂J ∗(Ex(k + 1))

∂x(k + 1)
, (7.64)

7.3 Optimal Feedback Control for a Class of Descriptor Systems 273

where J ∗ is the value function corresponding to the optimal control law u∗.
However, for constrained control problem, the above derivation is infeasible. To

confront this bounded control problem, we introduce a nonquadratic functional de-
rived from the idea by [8] as follows:

W(u(i))= 2
∫ u(i)

0
ϕ−T(Ū−1s)ŪRds,

ϕ−1(u(i))= [ψ−1(u1(i)), . . . ,ψ
−1(um(i))], (7.65)

where R is positive definite, s ∈ R
m, ϕ ∈ R

m,ψ(·) is a bounded one-to-one func-
tion satisfying |ψ(·)| ≤ 1 and belonging to Cp (p ≥ 1) and L2(Ω). Moreover, it
is a monotonically increasing odd function with its first derivative bounded by a
constant M . Such a function is easy to find; one example is the hyperbolic tangent
function ψ(·) = tanh(·). It should be noticed that by the definition above, W(u(i))

is ensured to be positive definite because ψ−1(·) is monotonic odd function and R

is positive definite.
Substituting (7.65) into (7.62), we obtain

J ∗(Ex(k))= min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ J ∗(Ex(k + 1))
}
. (7.66)

According to the necessary condition of optimal control, the following derivation
can be given:

∂J ∗(Ex(k))
∂u(k)

= 2RŪϕ−1(Ū−1u(k))+
(
∂x(k + 1)

∂u(k)

)T
∂J ∗(Ex(k + 1))

∂x(k + 1)
= 0.

(7.67)

Therefore, the following formulation can be obtained:

u∗(k)= Ūϕ

(
−1

2
(ŪR)−1

(
∂x(k + 1)

∂u(k)

)T
∂J ∗(Ex(k + 1))

∂x(k + 1)

)
. (7.68)

From (7.68), the optimal control u∗(k) can be directly obtained if the value func-
tion J ∗(Ex(k+ 1)) is known. However, there is currently no method for rigorously
solving for the costate vector of this constrained optimal control problem. There-
fore, in the next subsection we will discuss how to utilize an adaptive dynamic
programming method, named GI-DHP, to solve the near-optimal control solution.

7.3.2 Optimal Controller Design for a Class of Descriptor Systems

In the following, we will give the derivation of the GI-DHP Algorithm.

274 7 Several Special Optimal Feedback Control Designs Based on ADP

Define the costate ETλ(x(k))= ∂V (Ex(k))
∂x(k)

. Then, (7.68) can be written as

u∗(k)= Ūϕ

(
−1

2
(ŪR)−1

(
∂Ex(k + 1)

∂u(k)

)T

λ∗(x(k + 1))

)
. (7.69)

However, there is currently no method for rigorously solving for the costate vec-
tor λ∗ of this constrained optimal control problem. Therefore, in the next part, we
develop an iterative algorithm for computing the costate vector λ∗ and the optimal
control u∗.

First, we start with initial value function V [0](Ex(k)) = 0 which is necessary
to the value function. The initial costate vector is set to λ

[0]
1 (·) = 0 and then we

compute the optimal control u[0] as follows:

v[0](x(k))= arg min
u(k)

{
xT(k)Qx(k)+W(v(k))+ V [0](Ex(k + 1))

}
. (7.70)

In view of ETλ[i](x(k)) = ∂V [i](Ex(k))
∂x(k)

and according to the first order necessity
condition, we obtain

∂(xT(k)Qx(k)+W(u(k))

∂u(k)
+
(
∂Ex(k + 1)

∂u(k)

)T

λ[0](x(k + 1))= 0, (7.71)

i.e.,

v[0](k)= Ūϕ

(
−1

2
(ŪR)−1

(
∂Ex(k + 1)

∂u(k)

)T

λ[0](x(k + 1))

)

= Ūϕ

(
− 1

2
(ŪR)−1

((
∂F1(·)
∂u(k)

)T

λ
[0]
1 (x(k + 1))

+
(
∂F2(·)
∂u(k)

)T

λ
[0]
2 (x(k + 1))

))
, (7.72)

and then update the cost function by

V [1](Ex(k))= xT(k)Qx(k)+W(v[0](k))+ V [0](Ex(k + 1)). (7.73)

For the costate vector, it can be updated by

ETλ[1](x(k))= ∂(xT(k)Qx(k)+W(v[0](k)))
∂x(k)

+
(
∂Ex(k + 1)

∂x(k)

)T

λ[0](x(k + 1)). (7.74)

7.3 Optimal Feedback Control for a Class of Descriptor Systems 275

Let L[0](k) = xT(k)Qx(k) + W(v[0](k)), and then the above equation can be
expanded as

λ
[1]
1 (x(k))= ∂L[0](k)

∂x1(k)
+
(

∂F1

∂x1(k)

)T

λ
[0]
1 (x(k + 1))

+
(

∂F2

∂x1(k)

)T

λ
[0]
2 (x(k + 1)) (7.75)

and

0 = ∂L[0](k)
∂x2(k)

+
(

∂F1

∂x2(k)

)T

λ
[0]
1 (x(k + 1))+

(
∂F2

∂x2(k)

)T

λ
[0]
2 (x(k + 1)). (7.76)

Therefore, for the ith iteration, we have

v[i](x(k))= arg min
u(k)

{
xT(k)Qx(k)+W(u(k))+ V [i](Ex(k + 1))

}
. (7.77)

Also, according to the first order necessity condition, we obtain

∂(xT(k)Qx(k)+W(u(k))

∂u(k)
+
(
∂x(k + 1)

∂u(k)

)T
∂V [i](Ex(k + 1))

∂x(k + 1)
= 0, (7.78)

i.e.,

v[i](k)= Ūϕ

[
−1

2
(ŪR)−1

(
∂Ex(k + 1)

∂u(k)

)T

λ[i](x(k + 1))

]

= Ūϕ

[
− 1

2
(ŪR)−1

((
∂F1(·)
∂u(k)

)T

λ
[i]
1 (x(k + 1))

+
(
∂F2(·)
∂u(k)

)T

λ
[i]
2 (x(k + 1))

)]
. (7.79)

The updated value function is given as

V [i+1](Ex(k))= xT(k)Qx(k)+W(v[i](k))+ V [i](Ex(k + 1)). (7.80)

In view of ETλ[i+1](x(k))= ∂V [i+1](Ex(k))
∂x(k)

, we have

∂V [i+1](Ex(k))
∂x(k)

= ∂(xT(k)Qx(k)+W(v[i](k)))
∂x(k)

276 7 Several Special Optimal Feedback Control Designs Based on ADP

+
(
∂v[i](x(k))
∂x(k)

)T
∂(xT(k)Qx(k)+W(v[i](k)))

∂v[i](x(k))

+
(
∂x(k + 1)

∂x(k)

)T
∂V [i](Ex(k + 1))

∂x(k + 1)

+
(
∂v[i](x(k))
∂x(k)

)T(
∂x(k + 1)

∂v[i](x(k))

)T
∂V [i](Ex(k + 1))

∂x(k + 1)

= ∂(x(k)TQx(k)+W(v[i](k)))
∂x(k)

+
(
∂Ex(k+1)

∂x(k)

)T

λ[i](x(k+1)).

(7.81)

Combining with (7.78), (7.81) can be changed into

ETλ[i+1](x(k))= ∂(xT(k)Qx(k)+W(v[i](k)))
∂x(k)

+
(
∂Ex(k + 1)

∂x(k)

)T

λ[i](x(k + 1)). (7.82)

Similarly, the above equation can be expanded into

λ
[i+1]
1 (x(k))= ∂L[i](k)

∂x1(k)
+
(

∂F1

∂x1(k)

)T

λ
[i]
1 (x(k + 1))

+
(

∂F2

∂x1(k)

)T

λ[i]2(x(k + 1)) (7.83)

and

0 = ∂L[i](k)
∂x2(k)

+
(

∂F1

∂x2(k)

)T

λ
[i]
1 (x(k + 1))+

(
∂F2

∂x2(k)

)T

λ
[i]
2 (x(k + 1)). (7.84)

Therefore, the GI-DHP iterative scheme iterates between

v[i](k)= Ūϕ

[
− 1

2
(ŪR)−1

((
∂F1(·)
∂u(k)

)T

λ
[i]
1 (x(k + 1))

+
(
∂F2(·)
∂u(k)

)T

λ
[i]
2 (x(k + 1))

)]
, (7.85)

λ
[i+1]
1 (x(k))= ∂L[i](k)

∂x1(k)
+
(

∂F1

∂x1(k)

)
λ

[i]
1 (x(k + 1))

+
(

∂F2

∂x1(k)

)
λ

[i]
2 (x(k + 1)), (7.86)

7.3 Optimal Feedback Control for a Class of Descriptor Systems 277

and

0 = ∂L[i](k)
∂x2(k)

+
(

∂F1

∂x2(k)

)
λ

[i]
1 (x(k + 1))+

(
∂F2

∂x2(k)

)
λ

[i]
2 (x(k + 1)). (7.87)

At each iteration step, the λ[i]
1 (·) is computed iteratively by (7.86) while the λ[i]

2 (·)
is computed by the constraint equation (7.87). With known λ

[i]
1 (·) and λ

[i]
2 (·), the

control vi(·) can be obtained by (7.85).
In the following part, we will prove that by the above iterative process, the opti-

mal control u∗ and the costate λ∗ can be obtained with V [i] → J ∗, λ[i] → λ∗ and
the control policy v[i] → u∗ as i → ∞.

For convenience of analysis, we first present a lemma as follows.

Lemma 7.17 Let μ[i] be arbitrary sequence of control policies, and v[i] is the poli-
cies in (7.77). Let V [i] be (7.80) and Λ[i] as

Λ[i+1](Ex(k))= xT(k)Qx(k)+W(μ[i](k))+Λ[i](Ex(k + 1)), (7.88)

If V [0] =Λ[0] = 0, then V [i] ≤Λ[i], ∀i .

Lemma 7.18 Let the sequence
{
V [i]} be defined as (7.80). If the system is control-

lable, then there is an upper bound Y such that 0 ≤ V [i] ≤ Y ∀i .

Proof Let η(x(k)) be any stabilizing and admissible control input, and let V [0] =
Z[0] = 0 where V [i] is updated as (7.80) and Z[i] is updated as

Z[i+1](Ex(k))= xT(k)Qx(k)+W(η(k))+Z[i](Ex([k + 1])). (7.89)

It follows that the difference

Z[i+1](Ex(k))−Z[i](Ex(k))= Z[i](Ex(k + 1))−Z[i−1](Ex(k + 1))

= Z[i−1](Ex(k + 2))−Z[i−2](Ex(k + 2))

= Z[i−2](Ex(k + 3))−Z[i−3](Ex(k + 3))

...

= Z[1](Ex(k + i))−Z[0](Ex(k + i)). (7.90)

Then, the following relation can be obtained:

Z[i+1](Ex(k))−Z[i](Ex(k))= Z[1](Ex(k + i))−Z[0](Ex(k + i)). (7.91)

Since Z[0](Ex(·))= 0, we have

Z[i+1](Ex(k))= Z[1](Ex(k + i))+Z[i](Ex(k))

278 7 Several Special Optimal Feedback Control Designs Based on ADP

= Z[1](Ex(k + i))+Z[1](Ex(k + i − 1))+Z[i−1](Ex(k))

= Z[1](Ex(k + i))+Z[1](Ex(k + i − 1))

+Z[1](Ex(k + i − 2))+Z[i−2](Ex(k))

= Z[1](Ex(k + i))+Z[1](Ex(k + i − 1))

+Z[1](Ex(k + i − 2))+ · · · +Z[1](Ex(k)). (7.92)

So (7.92) can be written as

Z[i+1](Ex(k))=
i∑

j=0

Z[1](Ex(k + j))

=
i∑

j=0

(xT(k + j)Qx(k + j)+W(η(x(k + j)))

≤
∞∑

j=0

(xT(k + j)Qx(k + j)+W(η(x(k + j))). (7.93)

Noticing that the system is stable with the stabilizing and admissible control input
η(x(k)), i.e., x(k)→ 0 as k → ∞, we have

∀i : Z[i+1](Ex(k))≤∑∞
j=0 Z

[1](Ex(k + j))≤Y. (7.94)

From Lemma 7.17, we have

∀i : V [i+1](Ex(k))≤Z[i+1](Ex(k))≤Y. (7.95)

�

Now, Lemmas 7.17 and 7.18 will be used in the next main theorem.

Theorem 7.19 (cf. [7]) Define the sequence {V [i]} as (7.80) with V [0] = 0, the
sequence {λ[i]} as (7.86) and (7.87) with λ[0]

1 (·)= 0. Then, {V [i]} is a nondecreasing
sequence in which V [i+1](Ex(k))≥ V [i](Ex(k)), ∀i , and converge to the value
function of the discrete-time HJB equation, i.e., V [i] → J ∗ as i → ∞, while the
sequence {λ[i]} is also convergent with λ[i] → λ∗ as i → ∞.

Proof For the convenience of analysis, define a new sequence Φi as follows:

Φ[i+1](Ex(k))= xT(k)Qx(k)+W(v[i+1](k))+Φ[i](Ex(k + 1)), (7.96)

with Φ[0] = V [0] = 0 and the policies v[i] defined as (7.77); the value function V [i]
is updated by (7.80).

7.3 Optimal Feedback Control for a Class of Descriptor Systems 279

In the following, we prove Φ[i](Ex(k)) ≤ V [i+1](Ex(k)) by mathematical in-
duction.

First, we prove that it holds for i = 0. Noticing that

V [1](Ex(k))−Φ[0](Ex(k))= xT(k)Qx(k)+W(v[0](k))≥ 0, (7.97)

for i = 0, we get

V [1](Ex(k))≥Φ[0](Ex(k)). (7.98)

Second, we assume that it holds for i − 1, i.e., V [i](Ex(k))≥Φ[i−1](Ex(k)) ,
∀x(k). Then, for i, since

Φ[i](Ex(k))= xT(k)Qx(k)+W(v[i](k))+Φ[i−1](Ex(k + 1)) (7.99)

and

V [i+1](Ex(k))= xT(k)Qx(k)+W(v[i](k))+ V [i](Ex(k + 1)) (7.100)

hold, we obtain

V [i+1](Ex(k))−Φ[i](Ex(k))= V [i](Ex(k + 1))−Φ[i−1](Ex(k + 1))≥ 0,
(7.101)

i.e., the following equation holds:

Φ[i](Ex(k))≤ V [i+1](Ex(k)). (7.102)

Therefore, the mathematical induction proof is completed.
Furthermore, from Lemma 7.17 we know that V [i](Ex(k)) ≤ Φ[i](Ex(k)).

Therefore, we have

V [i](Ex(k))≤Φ[i](Ex(k))≤ V [i+1](Ex(k)). (7.103)

Hence, we can conclude that {V [i]} is a nondecreasing sequence in which
V [i+1](x(k)) ≥ V [i](x(k)) ∀i, and converge to the value function of the discrete-
time HJB, i.e., V [i] → J ∗ as i → ∞, while the sequence {λ[i]} is also convergent
with λ[i] → λ∗ as i → ∞.

Since value function and the costate vector are convergent, according to (7.68)
and (7.85), we can conclude that the corresponding control policy sequence {v[i]}
converges to the optimal policy u∗ as i → ∞.

This completes the proof. �

7.3.3 Simulations

In this section, an example is given to show the effectiveness of the control scheme
developed.

280 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.5 The state variables curves

Consider the following linear system:

ẋ1 = x2,

0 = x2 + u, (7.104)

where the control constraint is set to |u| ≤ 1. We first discretize this system with the
Euler method with t = kT , T is the sampling period and k is the sample number.

Let T = 0.001 s, we obtain the discrete system as follows:

x1(k + 1)= x2(k)T + x1(k),

0 = x2(k)+ u(k). (7.105)

Define the cost functional as

J (Ex(k),u)=
∞∑

i=k

{
xT(i)Qx(i)+ 2

∫ u(i)

0
tanh−T (s/Ū)ŪRds

}
, (7.106)

where the weight matrix is chosen as Q= [0.1 0
0 0.1

]
and R = 0.1.

The critic network and the action network are chosen with the structure 1–8–1
and 2–8–1, respectively. We take 1000 groups of sampling data to train the network.
After the iterative process, we apply the obtained optimal control policy to the sys-
tem for 2000 time steps under the initial state vector x1(0) = 0.5, x2(0) = 1, and
obtain the following results. The state trajectories are given as Fig. 7.5, the corre-
sponding control curve is given as Fig. 7.6, and the convergence curve of the cost
functional is given as Fig. 7.7.

7.4 Optimal Feedback Control for a Class of Singularly Perturbed Systems 281

Fig. 7.6 The control curve

Fig. 7.7 The convergence curve of costate vector

7.4 Optimal Feedback Control for a Class of Singularly
Perturbed Systems

7.4.1 Problem Formulation

Consider the following nonlinear singularly perturbed systems:

ẋ1 = f11(x1)+ f12(x1)x2 + g1(x1)u, (7.107)

282 7 Several Special Optimal Feedback Control Designs Based on ADP

εẋ2 = f21(x1)+ f22(x1)x2 + g2(x1)u, (7.108)

where x1 ∈ R
n1 and x2 ∈ R

n2 are states, u ∈ R
m is control input. 0 < ε � 1 is

perturbation parameter. fij and gi are differentiable functions, where f11(0)= 0 and
f21(0)= 0, i.e., guaranteeing that (0,0) is the equilibrium point. Suppose that f22 is
invertible for all x1, and system (7.107) and (7.108) is stabilizable in Ω ⊂ R

n1+n2 .
The target is to design the optimal controller to minimize the following cost

functional:

J =
∫ ∞

0
(xTQx + uTRu)dt , (7.109)

where x = [x1 x2]T, Q= [C1 C2]T[C1 C2] ≥ 0, R > 0.
Because of the existence of ε, the order of whole system will become much

higher, which makes it almost impossible to solve the optimal control problem di-
rectly. Therefore, we will decompose system (7.107) and (7.108) as fast subsystem
and slow subsystem in the next section.

First, let ε = 0, and then (7.108) becomes

x2s = −f−1
22 (x1s)f21(x1s)− f−1

22 (x1s)g2(x1s)us. (7.110)

Substituting (7.110) into (7.107), we get the slow subsystem

ẋ1s = Fs(x1s)+Gs(x1s)us, (7.111)

and

[
C1 C2

][x1s
x2s

]
= p(x1s)+ q(x1s)us, (7.112)

where

Fs(x1s)= f11(x1s)− f12(x1s)f
−1
22 (x1s)f21(x1s),

Gs(x1s)= g1(x1s)− f12(x1s)f
−1
22 (x1s)g2(x1s),

p(x1s)= C1x1s −C2f
−1
22 (x1s)f21(x1s),

q(x1s)= −C2f
−1
22 (x1s)g2(x1s).

Thus, the cost functional for the slow subsystem is

Js =
∫ ∞

0
ls(x1s , us)dt, (7.113)

where ls = pTp + 2pTqus + uT
s q

Tqus + uT
s Rus .

From optimal control theory, the optimal controller u∗
s and optimal cost func-

tional J ∗
s of slow subsystem should satisfy the following HJB equation:

0 =
(
∂J ∗

s

∂x1s

)T

(Fs +Gsu
∗
s)+ ls(x1s , u

∗
s), (7.114)

7.4 Optimal Feedback Control for a Class of Singularly Perturbed Systems 283

u∗
s = −1

2

(
qTq +R

)−1
(
GT
s

∂J ∗
s

∂x1s
+ 2qTp

)
. (7.115)

Set x2f = x2 − x2s and uf = u − us . Suppose x2s keeps constant, substituting
them into (7.108), and then we obtain the fast subsystem

εẋ2f = Ff (x1)x2f +Gf (x1)uf , (7.116)

where Ff (x1)= f22(x1), Gf (x1)= g2(x1). x1 is a fixed parameter.
Now, the fast cost functional is

Jf =
∫ ∞

0
lf (x2f , uf)dt, (7.117)

where lf = xT
2f C

T
2 C2x2f + uT

f Ruf .
Similarly, optimal controller u∗

f and cost functional J ∗
f of the fast subsystem

satisfy the following HJB equation:

0 =
(
∂J ∗

f

∂x2f

)T

(Ff +Gf u
∗
f)+ lf (x2f , u

∗
f), (7.118)

where

u∗
f = −1

2
R−1GT

f

∂J ∗
f

∂x2f
. (7.119)

From u∗
s and u∗

f , we get the composite control for system (7.107) and (7.108):

u∗
c = u∗

s + u∗
f . (7.120)

7.4.2 Optimal Controller Design for Singularly Perturbed Systems

7.4.2.1 Algorithm Design

Considering slow subsystem (7.111) and cost functional (7.113), choose one initial
value function V

[0]
s , and then initial control law can be obtained as

v[0]
s = −1

2

(
qTq +R

)−1

(
GT
s

∂V
[0]
s

∂x1s
+ 2qTp

)
. (7.121)

It is noted that the chosen V
[0]
s should guarantee that the corresponding control

law v
[0]
s is stable for system (7.111).

Based on the initial control law v
[0]
s , we get one state trajectory of system (7.111)

x
[0]
1s (x0, ·) for each initial state x0.

284 7 Several Special Optimal Feedback Control Designs Based on ADP

According to x
[0]
1s (x0, ·) and v

[0]
s , we update the value function by

V [1]
s =

∫ ∞

0
ls(x

[0]
1s (x0, t), u

[0]
s)dt . (7.122)

Repeatedly, the iteration between control law v
[i]
s and value function V [i+1]

s con-
tinues between

v[i]
s = −1

2

(
qTq +R

)−1

(
GT
s

∂V
[i]
s

∂x1s
+ 2qTp

)
, (7.123)

and

V [i+1]
s =

∫ ∞

0
ls(x

[i]
1s (x0, t), v

[i]
s)dt . (7.124)

Similarly, for the fast subsystem (7.116) and value function (7.117), if the value
function of fast subsystem at ith iteration is V [i]

f , then the corresponding control law
is

v
[i]
f = −1

2
R−1GT

f

∂V
[i]
f

∂x2f
. (7.125)

With the control law v
[i]
f , we can obtain the state trajectory of fast subsystem

x
[i]
2f (x0, ·). Furthermore, we can update the value function by

V
[i+1]
f =

∫ ∞

0
lf (x

[i]
2f (x0, t), v

[i]
f)dt . (7.126)

In the following, we are ready to prove the obtained V
(i)
s and V

(i)
f converge to

the corresponding optimal value J ∗
s and J ∗

f eventually.

Theorem 7.20 (cf. [3]) If initial control laws v[0]
s and v

[0]
f are stable, then, for any

i = 1,2, . . . , control laws v[i]
s and v

[i]
f obtained according to (7.123) and (7.125)

are also stable. Moreover, as i → ∞, V [i]
s → J ∗

s and V
[i]
f → J ∗

f , v[i]
s → u∗

s and

v
[i]
f → u∗

f .

Proof We prove this theorem by induction.
First, for the slow subsystem, v[0]

s is obviously stable based on assumption. Then,
assume that v[i]

s is stable. It is easy to see that (7.124) is equivalent to the iterative
HJB equation (7.127):

∂V
(i+1)
s

∂x1s

T

(Fs +Gsv
(i)
s)= −ls(x1s , v

(i)
s). (7.127)

7.4 Optimal Feedback Control for a Class of Singularly Perturbed Systems 285

Setting x1s = x
[i+1]
1s (x0, ·), we get

∂V
[i+1]
s

∂x1s

T

Fs(x
[i+1]
1s)= −∂V

[i+1]
s

∂x1s

T

Gs(x
[i+1]
1s)v[i]

s − ls(x
[i+1]
1s , v[i]

s). (7.128)

Therefore, we further obtain

dV [i+1]
s

dt
(x

[i+1]
1s (x0, t))= ∂V

[i+1]
s

∂x1s

T

Fs(x
[i+1]
1s)+ ∂V

[i+1]
s

∂x1s

T

Gs(x
[i+1]
1s)v[i+1]

s

= − ls(x
[i+1]
1s , v[i]

s)− ∂V
[i+1]
s

∂x1s

T

Gs(x
[i+1]
1s)v[i]

s + ∂V
[i+1]
s

∂x1s

T

Gs(x
[i+1]
1s)v[i+1]

s

= − pT
[
I − q(qTq+R)−1qT

]
p − 1

4

∂V
[i+1]
s

∂x1s

T

Gs(q
Tq+R)−1GT

s

∂V
[i+1]
s

∂x1s

− 1

4

[
∂V

[i+1]
s

∂x1s
− ∂V

[i]
s

∂x1s

]T

Gs(q
Tq +R)−1GT

s ×
[
∂V

[i+1]
s

∂x1s
− ∂V

[i]
s

∂x1s

]
.

(7.129)

Because R > 0, by Schur supplement, we have

qTq +R − qTq > 0 ⇔
[
I q

qT qTq +R

]
> 0 ⇔ I − q(qTq +R)−1qT > 0.

Apparently, the first term in the last equation of (7.129) is less than 0.
Thus, for x[i+1]

1s (x0, t) �= 0, dV [i+1]
s (x

[i+1]
1s (x0, t))/dt < 0. Then, V [i+1]

s can be

seen as the Lyapunov function for the slow subsystem, i.e., v[i+1]
s is stable.

As a result, for any i = 1,2, . . . , control law v
[i]
s obtained by (7.123) is stable.

Besides, we obtain

dV [i+1]
s

dt
(x

[i]
1s (x0, t))= pTq(qTq +R)−1

(
GT
s

∂V
[i]
s

∂x
+ 2qTp

)
− pTp

− 1

4

(
GT
s

∂V
[i]
s

∂x
+ 2qTp

)T

(qTq +R)−1

×
(
GT
s

∂V
[i]
s

∂x
+ 2qTp

)
. (7.130)

Based on (7.129), we have

d

dt
[V (i+1)

s − V [i]
s](x[i]

1s (x0, t))= 1

4

(
∂V

[i]
s

∂x
− ∂V

[i−1]
s

∂x

)T

286 7 Several Special Optimal Feedback Control Designs Based on ADP

×Gs(q
Tq +R)−1GT

s

(
∂V

[i]
s

∂x
− ∂V

[i−1]
s

∂x

)

> 0. (7.131)

Since x[i]
1s (x0, t) will converge to 0 eventually, V (i+1)

s −V
(i)
s converges to 0 as well.

Thus, based on (7.131), we deduce V
[i+1]
s < V

[i]
s . Therefore, sequence {V (i)

s }∞0 is

decreasing monotonously with lower bound J ∗
s . So, {V [i]

s }∞0 is convergent. Suppose

the convergent value is V
[∞]
s , and then V

[∞]
s satisfies the iterative HJB equation

(7.127), i.e.,

∂V
[∞]
s

∂x1s

T

(Fs +Gsv
[∞]
s)= −ls(x1s , v

[∞]
s), (7.132)

which is the HJB equation of the slow subsystem (7.128). According to the unique-
ness of optimal control, we have V [∞]

s = J ∗
s . Thus, we obtain v

[∞]
s = u∗

s .
On the other hand, the result of fast subsystem can be deduced similarly, us-

ing different iteration expressions of control law and value function, i.e., (7.125)
and (7.126), respectively. �

7.4.2.2 Neural Network Approximation

The ith iterative value function V
[i]
s of the slow subsystem is approximated by the

following NN:

V [i]
s =W [i]T

s Φs(x1s), (7.133)

where W [i]
s = [w[i]

s1 ,w
[i]
s2 , . . . ,w

[i]T
sNs

] are the matrix of weight. Φs(x1s) = [φs1, φs2,
. . . , φsNs]T is the vector of basis function. Each {φsi(x1s)}Ns

1 is linear independence.
Ns is the number of basis function. The fast subsystem is approximated by the same
NN, V [i]

f =W
[i]T
f Φf (x1, x2f).

Select x[i]
j = x

[i]
1s (x0, tj)(j = 1,2, . . . , rs) from x

[i]
1s (x0, ·), rs ≥ Ns as the initial

state. The value function of slow subsystem becomes

V [i+1]
s (x

[i]
j)=

∫ ∞

tj

ls

(
x

[i]
1s (x0, t), v

[i]
s

)
dt . (7.134)

For each x
[i]
j , V [i+1]

s (x
[i]
j)=W

[i+1]T
s Φs(x

[i]
j) must hold, and satisfies

Γs = ΨsW
[i+1]
s , (7.135)

Γs = [V [i+1]
s (x

[i]
1), . . . , V

[i+1]
s (x

[i]
rs)]T, Ψs = [Φs(x

[i]
1), . . . ,Φs(x

[i]
rs)]T.

7.4 Optimal Feedback Control for a Class of Singularly Perturbed Systems 287

The weight-update rule is based on least square algorithm, which is given by

W [i+1]
s = (

Ψ T
s Ψs

)−1
Ψ T
s Γs, (7.136)

and v
[i+1]
s becomes

v[i+1]
s = −1

2

(
qTq +R

)−1
(
GT
s

∂ΦT
s

∂x1s
W

[i+1]
s + 2qTp

)
. (7.137)

Select x[i]
k = x

[i]
2f (x0, tk) (k = 1,2, . . . , rf) from x

[i]
2f (x0, ·), rf ≥ Nf , as the ini-

tial state. The value function of fast subsystem becomes

V
[i+1]
f (x

[i]
k)=

∫ ∞

tk

lf

(
x

[i]
2f (x0, t), v

[i]
f

)
dt . (7.138)

Update W [i+1]
f according to (7.139). V [i+1]

f satisfies

W
[i+1]
f =

(
Ψ T
f Ψf

)−1
Ψ T
f Γf , (7.139)

where Γf = [V [i+1]
f (x

[i]
1), . . . , V

[i+1]
f (x

[i]
rf)]T, Ψf = [Φf (x

[i]
1), . . . ,Φf (x

[i]
rf)]T.

Hence, we get

v
[i+1]
f = −1

2
R−1GT

f

∂ΦT
f

∂x2f
W

[i+1]
f . (7.140)

The design procedure of the approximate optimal controller for singularly per-
turbed systems is summarized as follows:

1. Select V [0]
s and V

[0]
f , and let v[0]

s and v
[0]
f be admissible control.

2. Select random state as x0. Get the trajectories of states x[i]
1s (x0, ·), x[i]

2f (x0, ·) un-

der v[i]
s , v[i]

f (i = 1,2, . . .).

3. Update value functions V
[i+1]
s and V

[i+1]
f . Then, compute V

[i+1]
s (x

[i]
j) and

V
[i+1]
f (x

[i]
k), j �= k. Update W [i+1]

s and W [i+1]
f according to (7.136) and (7.139).

Update v[i+1]
s and v

[i+1]
f according to (7.137) and (7.140).

4. If ‖W [i+1]
s −W

[i]
s ‖ ≤ βs and ‖W [i+1]

f −W
[i]
f ‖ ≤ βf , stop; else, i = i + 1, go

to Step 2.

The final controller is composed by us and uf , i.e., v[∞]
c = v

[∞]
s + v

[∞]
f . Next,

we are ready to prove that v[∞]
c is the approximate optimal controller.

Theorem 7.21 (cf. [3]) For any small constant α, there exist Ns and Nf such that

‖v[∞]
c − u∗‖ ≤ α holds.

288 7 Several Special Optimal Feedback Control Designs Based on ADP

Proof From Theorem 7.20, we know that we always get v[i]
s → u∗

s and v
[i]
f → u∗

f
when i → ∞ if Ns and Nf are chosen appropriately.

It means that for ∀αs and ∀αf , there exists i such that ‖v[i]
s − u∗

s‖ ≤ αs and

‖v[i]
f − u∗

f ‖ ≤ αf hold.

Hence, if ε is small enough such that α−|O(ε)|> 0 holds, we get ‖v[∞]
c − u∗

c‖ ≤
α − |O(ε)|, ∀α.

Thus, we further obtain

‖v[∞]
c − u∗‖ = ‖v[∞]

c − u∗
c + u∗

c − u∗‖
≤ ‖v[∞]

c − u∗
c‖ + ‖u∗

c − u∗‖
≤ α − |O(ε)| + |O(ε)|
= α. �

7.4.3 Simulations

In this section, an example is provided to demonstrate the effectiveness of the
present method.

Consider the following singularly perturbed system:
[
ẋ1
εẋ2

]
=
[−x1 + x2
− sinx1 − x2

]
+
[

0
1

]
u, (7.141)

where ε = 0.01. The cost functional is chosen as (7.109), where Q= 2I2 and R = 1.
First, two NNs are used to approximate fast subsystem and slow subsystem.

Select Φs = [x2
1s x4

1s x6
1s x8

1s], Φf = x2
2f . Initial weights are chosen as Ws =

[0 0 0 0]T, Wf = 0. According to (7.134), (7.136), (7.138), and (7.139), the
weights will converge to

Φs = [0.8917 − 0.0181 0 0], Φf = 0.7258.

The state and input trajectories of slow subsystem and fast subsystem at different
iteration number are shown in Figs. 7.8 and 7.9, respectively. The states and input
trajectories with the composite control is shown in Fig. 7.10.

7.5 Optimal Feedback Control for a Class of Constrained
Systems Via SNAC

7.5.1 Problem Formulation

Consider the following nonlinear system:

x(k + 1)= f (x(k))+ g(x(k))u(k), (7.142)

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 289

Fig. 7.8 State and input trajectories of the slow system at different iteration number

Fig. 7.9 State and input trajectories of the fast system at different iteration number

where x(k) ∈ R
n is the state vector, and f : Rn → R

n and g : Rn → R
n×m are dif-

ferentiable with respect to their arguments with f (0) = 0. Assume that f + gu is
Lipschitz continuous on a set Ω in R

n containing the origin, and that the system
(7.142) is controllable in the sense that there exists a continuous control law on
Ωx that asymptotically stabilizes the system. We denote u(k) ∈ Ωu, Ωu = {u(k) =

290 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.10 State and input trajectories with composite control

[u1(k), u2(k), . . . , um(k)]T ∈ R
m : |ui(k)| ≤ ūi , i = 1, . . . ,m}, where ūi is the sat-

urating bound for the ith actuator. Let Ū ∈ R
m×m be the constant diagonal matrix

given by Ū = diag{ū1, ū2, . . . , ūm}.
In this section, we mainly discuss how to design an optimal state-feedback con-

troller for the system (7.142). It is desired to find the optimal control law u(·) to
minimize the generalized cost functional as follows:

J (x(k), u)=
∞∑

i=k

{
xT(i)Qx(i)+W(u(i))

}
, (7.143)

where W(u(i)) is positive definite, and the weight matrix Q is also positive definite.
For the optimal control problem, the state-feedback control law u(·) must not

only stabilize the system on Ωx , but also guarantee that (7.143) is finite. Such a
control law is said to be admissible.

Let J ∗ denotes the optimal value function. According to Bellman’s optimality
principle, we have

J ∗(x(k))= min
u(k)

{
xT(k)Qx(k)+W(u(k))+ J ∗(x(k + 1))

}
. (7.144)

For the unconstrained control problem, W(u(i)) is commonly chosen as the
quadratic form of the control input u(i), i.e., W(u(i)) = uT(i)Ru(i), where
R ∈R

m×m is semi-positive definite. Here, we assume that the value function is

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 291

smooth. According to the necessary condition for optimality, we obtain

u∗(k)= −1

2
R−1gT(x(k))

∂J ∗(x(k + 1))

∂x(k + 1)
, (7.145)

where J ∗ is the optimal value function with respect to the optimal control law u∗.
However, the above derivation is not suitable for constrained optimal control

problem. To guarantee bounded controls, inspired by [8], a nonquadratic functional
is introduced as follows:

W(u(i))= 2
∫ u(i)

0
ϕ−T(Ū−1s)ŪRds,

ϕ−1(u(i))= [ϕ−1(u1(i)), . . . , ϕ
−1(um(i))], (7.146)

where R is positive definite and assumed to be diagonal for simplicity of analysis,
s ∈ R

m, ϕ ∈ R
m, ϕ(·) is a bounded one-to-one function satisfying |ϕ(·)| ≤ 1 and

belonging to Cp(p ≥ 1) and L2(Ωx). Moreover, it is a monotonically increasing
odd function with its first derivative bounded by M . Such function is easy to find,
and one example is the hyperbolic tangent function ϕ(·)= tanh(·). It should be no-
ticed that by the definition above, W(u(i)) is ensured to be positive definite because
ϕ−1(·) is a monotonic odd function and R is positive definite.

Substituting (7.146) into (7.144), the HJB equation can be derived as follows:

J ∗(x(k))= min
u(k)

{
xT(k)Qx(k)+ 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds + J ∗(x(k + 1))

}
.

(7.147)

Assuming that the value function is smooth, and according to the necessary con-
dition for optimality, we obtain

∂J ∗(x(k))
∂u(k)

= 2RŪϕ−1(Ū−1u(k))+
(∂x(k + 1)

∂u(k)

)T ∂J ∗(x(k + 1))

∂x(k + 1)
= 0. (7.148)

Therefore, letting J ∗
x (x(k + 1)) = ∂J ∗(x(k + 1))/∂x(k + 1), the optimal control

law can be computed as follows:

u∗(k)= Ūϕ

(
−1

2
(ŪR)−1gT(x(k))J ∗

x (x(k + 1))

)
. (7.149)

If the optimal value function J ∗ is known, the optimal control law u∗(k) can
be obtained from (7.149). However, there is currently no method for solving this
value function of the constrained optimal control problem. Therefore, in the next
section we will discuss how to utilize the greedy iterative DHP algorithm to seek
the near-optimal control solution.

292 7 Several Special Optimal Feedback Control Designs Based on ADP

7.5.2 Optimal Controller Design for Constrained Systems via
SNAC

For convenience, in the sequel, W(u(k)) is used to denote the nonquadratic func-
tional 2

∫ u(k)
0 ϕ−T(Ū−1s)ŪRds.

Define the costate function λ(x(k))= ∂J (x(k))
∂x(k)

. Then, (7.149) can be rewritten as

u∗(k)= Ūϕ
(
−1

2
(ŪR)−1gT(x(k))λ∗(x(k + 1))

)
. (7.150)

By definition, the costate function λ∗(x(k)) satisfies

λ∗(x(k))= ∂J ∗(x(k))
∂x(k)

= ∂(xT(k)Qx(k)+W(u(k)))

∂x(k)

+
(
∂u(x(k))

∂x(k)

)T
∂(xT(k)Qx(k)+W(u(k)))

∂u(x(k))

+
(
∂x(k + 1)

∂x(k)

)T
∂J ∗(x(k + 1))

∂x(k + 1)

+
(
∂u(x(k))

∂x(k)

)T(
∂x(k + 1)

∂u(x(k))

)T
∂J ∗(x(k + 1))

∂x(k + 1)

=
(
∂u(x(k))

∂x(k)

)T [
∂(xT(k)Qx(k)+W(u(k)))

∂u(x(k))
+
(
∂x(k + 1)

∂u(x(k))

)T

× ∂J ∗(x(k + 1))

∂x(k + 1)

]
+ ∂(xT(k)Qx(k)+W(u(k)))

∂x(k)

+
(
∂x(k + 1)

∂x(k)

)T
∂J ∗(x(k + 1))

∂x(k + 1)

= 2Qx(k)+
(
∂x(k + 1)

∂x(k)

)T

λ∗(x(k + 1)). (7.151)

The optimal control law can be solved from (7.150) if the costate function λ∗ can
be obtained from (7.151). However, it is very difficult to solve (7.151) analytically
due to the two-point boundary value problems of partial difference equation. There-
fore, a greedy iterative DHP algorithm is developed to obtain the costate function
λ∗ and the optimal control law u∗ in the sequel.

First, we start with initial value function V0(·) = 0 and initial costate function
λ0(·)= 0, Then, we find the law of single control vector v0 as follows:

v0(x(k))= arg min
u(k)

{
xT(k)Qx(k)+W(u(k))+ V0(x(k + 1))

}
. (7.152)

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 293

According to the optimal principle, v0(x) can be derived as follows:

v0(x(k))= Ūϕ
(
−1

2
(ŪR)−1gT(x(k))λ0(x(k + 1))

)
. (7.153)

Thus, we have

x(k + 1)= f (x(k))+ g(x(k))v0(x(k)), (7.154)

and

v0(x(k + 1))

= arg min
u(k+1)

{
xT(k + 1)Qx(k + 1)+W(u(k + 1))+ V0(x(k + 2))

}
. (7.155)

According to λ0(x(k + 2)) = ∂V0(x(k + 2))/∂x(k + 2), and using (7.155), we
have

v0(x(k + 1))= Ūϕ
(
−1

2
(ŪR)−1gT(x(k + 1))λ0(x(k + 2))

)
. (7.156)

Then, the value function can be updated as

V1(x(k + 1))= xT(k + 1)Qx(k + 1)+W(v0(k + 1))+ V0(x(k + 2)). (7.157)

Therefore, for i = 0,1, . . . , the iterative ADP algorithm is realized by implementing
the iterations between

vi(x(k + 1))

= arg min
u(k+1)

{
xT(k + 1)Qx(k + 1)+W(u(k + 1))+ Vi(x(k + 2))

}
(7.158)

and

Vi+1(x(k + 1))= min
u(k+1)

{
xT(k + 1)Qx(k + 1)+W(u(k + 1))+ Vi(x(k + 2))

}

= xT(k + 1)Qx(k + 1)+W(vi(k + 1))+ Vi(x(k + 2)) (7.159)

until convergence.
Obviously, if we assume that the value function Vi is smooth, vi(k+1) in (7.158)

can further be solved as

∂Vi+1(x(k + 1))

∂v(k + 1)
= ∂(xT(k + 1)Qx(k + 1)+W(vi(k + 1))

∂v(k + 1)

+ gT(x(k + 1))
∂Vi(x(k + 2))

∂x(k + 2)

= 0. (7.160)

294 7 Several Special Optimal Feedback Control Designs Based on ADP

That is,

vi(k + 1)= Ūϕ
(
−1

2
(ŪR)−1gT(x(k + 1))λi(x(k + 2))

)
. (7.161)

Because λi+1(x(k + 1)) = ∂Vi+1(x(k + 1))/∂x(k + 1), similarly to the derivative
process of (7.151), we have

λi+1(x(k + 1))

= ∂(xT(k + 1)Qx(k + 1)+W(vi(k + 1)))

∂x(k + 1)

+
(
∂vi(x(k + 1))

∂x(k + 1)

)T
∂(xT(k + 1)Qx(k + 1)+W(vi(k + 1)))

∂vi(x(k + 1))

+
(
∂x(k + 2)

∂x(k + 1)

)T
∂Vi(x(k + 2))

∂x(k + 2)

+
(
∂vi(x(k + 1))

∂x(k + 1)

)T(
∂x(k + 2)

∂vi(x(k + 1))

)T
∂Vi(x(k + 2))

∂x(k + 2)

= ∂(xT(k + 1)Qx(k + 1)+W(vi(k + 1)))

∂x(k + 1)
+ gT(x(k + 1))

∂Vi(x(k + 2))

∂x(k + 2)
.

(7.162)

That is,

λi+1(x(k + 1))= 2Qx(k + 1)+ gT(x(k + 1))λi(x(k + 2)). (7.163)

Therefore, we obtain the optimal control as follows:

vi(x(k))= Ūϕ

(
−1

2
(ŪR)−1gT(x(k))λi(x(k + 1))

)
. (7.164)

Hence, the iteration between (7.158) and (7.159) is an implementation of the itera-
tion between (7.163) and (7.164).

In the following, we present the convergence analysis of the greedy iterative DHP
algorithm. We first present two lemmas before presenting our theorems.

Lemma 7.22 Let μi be an arbitrary sequence of control laws, and vi be the control
law sequence as in (7.158). Let Vi be as in (7.159) and Λi be

Λi+1(x(k + 1))= xT(k + 1)Qx(k + 1)+W(μi(k + 1))+Λi(x(k + 2)).
(7.165)

If V0 =Λ0 = 0, then Vi ≤Λi , ∀i.

Lemma 7.23 Let {Vi} be defined as in(7.159). If the system is controllable, then
there is an upper bound Y such that 0 ≤ Vi ≤ Y, ∀i.

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 295

Proof Let η(x(k+1)) be a sequence of stabilizing and admissible control laws, and
let V0(·)= Z0(·)= 0, where Vi is updated by (7.159) and Zi is updated by

Zi+1(x(k + 1))= xT(k + 1)Qx(k + 1)+W(η(x(k + 1)))+Zi(x(k + 2)).
(7.166)

Then, we obtain

Zi+1(x(k + 1))−Zi(x(k + 1))= Zi(x(k + 2))−Zi−1(x(k + 2))

= Zi−1(x(k + 3))−Zi−2(x(k + 3))

= Zi−2(x(k + 4))−Zi−3(x(k + 4))

...

= Z1(x(k + i + 1))−Z0(x(k + i + 1)). (7.167)

Thus, the following relation can be obtained:

Zi+1(x(k + 1))= Z1(x(k + i + 1))+Zi(x(k + 1))−Z0(x(k + i + 1)). (7.168)

Since Z0(·)= 0, it follows that

Zi+1(x(k + 1))= Z1(x(k + i + 1))+Zi(x(k + 1))

= Z1(x(k + i + 1))+Z1(x(k + i))+Zi−1(x(k + 1))

= Z1(x(k + i + 1))+Z1(x(k + i))

+Z1(x(k + i − 1))+ · · · +Z1(x(k + 1)). (7.169)

Then, (7.169) can further be rewritten as

Zi+1(x(k + 1))=
i∑

j=0

Z1(x(k + j + 1))

=
i∑

j=0

{
xT(k + j + 1)Qx(k + j + 1)+W(η(x(k + j + 1)))

}

≤
∞∑

j=0

{
xT(k + j + 1)Qx(k + j + 1)+W(η(x(k + j + 1)))

}
.

(7.170)

Note that η(x(k + 1)) is an admissible control law sequence, i.e., x(k + 1)→ 0
as k → ∞, Therefore, there exists an upper bound Y such that

∀i : Zi+1(x(k + 1))≤
∞∑

j=0

Z1(x(k + j + 1))≤ Y. (7.171)

296 7 Several Special Optimal Feedback Control Designs Based on ADP

Combining with Lemma 1, we obtain

∀i : Vi+1(x(k + 1))≤ Zi+1(x(k + 1))≤ Y. (7.172)

The proof is completed. �

Next, Lemmas 7.22 and 7.23 will be used in the proof of our main theorems.

Theorem 7.24 (cf. [6]) Define the value function sequence {Vi} as in (7.159) with
V0 = 0, and the control law sequence {vi} as in (7.163). Then, we can conclude that
{Vi} is a nondecreasing sequence satisfying Vi+1(x(k+ 1))≥ Vi(x(k+ 1)),∀i, and
is convergent to the value function of the discrete-time HJB equation, i.e., Vi → J ∗
as i → ∞. Meanwhile, we conclude that the costate function sequence {λi} and the
control law sequence {vi} are also convergent, i.e., λi → λ∗ and vi → u∗ as i → ∞.

Proof For convenience of analysis, define a new sequence Φ as follows:

Φi+1(x(k + 1))= xT(k + 1)Qx(k + 1)+W(vi+1(k + 1))+Φi(x(k + 2)),
(7.173)

with Φ0 = V0 = 0. The control law sequence vi is updated by (7.158) and the value
function sequence Vi is updated by (7.159).

In the following, we prove that Φi(x(k + 1))≤ Vi+1(x(k + 1)) by mathematical
induction.

First, we prove that it holds for i = 0. Noticing that

V1(x(k + 1))−Φ0(x(k + 1))= xT(k + 1)Qx(k + 1)+W(v0(k + 1))≥ 0,
(7.174)

we have

V1(x(k + 1))≥Φ0(x(k + 1)). (7.175)

Second, we assume that it holds for i − 1, i.e., for any x(k + 1), Vi(x(k + 1))≥
Φi−1(x(k + 1)). Then, for i, since

Φi(x(k + 1))= xT(k + 1)Qx(k + 1)+W(vi(k + 1))+Φi−1(x(k + 2)) (7.176)

and

Vi+1(x(k + 1))= xT(k + 1)Qx(k + 1)+W(vi(k + 1))+ Vi(x(k + 2)) (7.177)

hold, we obtain

Vi+1(x(k + 1))−Φi(x(k + 1))= Vi(x(k + 2))−Φi−1(x(k + 2))≥ 0, (7.178)

i.e., the following equation holds:

Φi(x(k + 1))≤ Vi+1(x(k + 1)). (7.179)

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 297

Therefore, for ∀i, (7.179) is proved by mathematical induction.
Furthermore, from Lemma 7.22, we know that Vi(x(k + 1)) ≤ Φi(x(k + 1)).

Therefore, we have

Vi(x(k + 1))≤Φi(x(k + 1))≤ Vi+1(x(k + 1)). (7.180)

Hence, we can conclude that the value function sequence {Vi} is a nondecreasing
sequence satisfying Vi+1(x(k + 1))≥ Vi(x(k + 1)),∀i, and convergent to the opti-
mal value function of the discrete-time HJB equation, i.e., Vi → J ∗ as i → ∞. The
costate sequence {λi} is also convergent, i.e., λi → λ∗ as i → ∞.

Since the value function sequence and the costate function sequence are con-
vergent, according to (7.163) and (7.164), we conclude that {vi} converges to the
optimal control law u∗ as i → ∞. �

For linear systems, if the cost functional is quadratic, then the optimal control
law is linear. For nonlinear system, this is not true. So we use neural network to
approximate costate function, and get the optimal control law.

In this part, we use single network GI-DHP algorithm to obtain the optimal
costate function and optimal control law. SNAC can remove the action network ap-
pearing in the ordinary ADP method. It simplifies the structure of the system, saves
storage space and reduces computation. In addition, it eliminates approximation er-
ror of neural network, and improves the calculation accuracy. We have known that
the control law is implicit function which is difficult to solve. So the costate func-
tion should be transformed. As λ(x(k + 1)) can be expressed by x(k), so we let
λ̄(x(k))= λ(x(k + 1)). Then, the critic neural network can be used to approximate
λ̄(x(k)).

Equation (7.163) can be written as

λ̄i+1(x(k))= 2Qx(k + 1)+ gT(x(k + 1))λ̄i(x(k + 1)). (7.181)

The optimal control law can be obtained as follows:

vi(x(k))= Ūϕ

(
−1

2
(ŪR)−1gT(x(k))λ̄i (x(k))

)
. (7.182)

Once we get the costate function λ̄(x(k)), then according to (7.182), we can
get the optimal control law. Let λ̄0(·) = 0, and then the iteration between (7.163)
and (7.164) is changed into the iteration between (7.181) and (7.182).

Based on the above analysis, we give the structure in Fig. 7.11.
For each iteration, we use three layer forward neural network to approximate

λi(x(k + 1))

λ̂i(x(k + 1))= ˆ̄λi(x(k))= w̄T
i σ (v̄

T
i x(k)), (7.183)

where w̄i and v̄i is the weights of output and hidden layers, σ(·) ∈ R
l , [σ(z)]p =

e
zp −e−zp

e
zp +e−zp

, p = 1, . . . , l, is the activation function of hidden layer, and l is the number
as hidden node.

298 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.11 The structure diagram of the single network GI-DHP algorithm

According to (7.163), the costate function can be expressed as

λ̂i+1(x(k + 1))= 2Qx(k + 1)+ gT(x(k + 1))λ̂i(x(k + 2))

= 2Qx(k + 1)+ gT(x(k + 1))w̄T
i σ (v̄

T
i x(k + 1)), (7.184)

where x(k + 1) can be obtained by x(k) and ui(x(k)).
Define the error function of critic network

ej (k + 1)= λ̂i(j)(x(k), w̄i(j), v̄i(j))− λi+1(x(k + 1)). (7.185)

The weights in the critic network are updated to minimize the following perfor-
mance measure:

Ej(k + 1)= 1

2
eT
j (k + 1)ej (k + 1). (7.186)

The weight updating rule for critic network is chosen as a gradient-based adap-
tation rule

w̄i(j+1)(k + 1)= w̄i(j)(k + 1)− α

[
∂Ej (k + 1)

∂w̄i(j)(k + 1)

]
, (7.187)

v̄i(j+1)(k + 1)= v̄i(j)(k + 1)− α

[
∂Ej (k + 1)

∂v̄i(j)(k + 1)

]
, (7.188)

where α > 0 is the learning rate and j is the inner-loop iterative step for updating
the weight parameters.

After the approximation of λi(x(k+1)), i.e., λ̄i (x(k)), we get the optimal control
law from (7.182).

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 299

7.5.3 Simulations

In this section, two examples are provided to demonstrate the effectiveness of the
control scheme.

Example 7.25 Consider the following Van der Pol oscillator system in [9]:

ẋ1 = x2,

ẋ2 = α(1 − x2
1)x2 − x1 + (1 + x2

1 + x2
2)u, (7.189)

where α = 0.05, control constraint is set to |u| ≤ 0.2.
We first use the Euler method to discretize the system, where t = kT , T is sam-

pling period, k is sampling step. If T is small enough compared with the system
time constant, then the discretization method is precise enough.

So, let T = 0.1; we have

x1(k + 1)= x1(k)+ 0.1x2(k),

x2(k + 1)= −x1(k)+ 0.005(1 − x2
1(k))x2(k)+ x2(k)

+ (1 + x2
1(k)+ x2

2(k))u(k). (7.190)

Define the cost functional as

J (x(k), u)=
∞∑

i=k

{
xT(i)Qx(i)+ 2Ū

∫ u(i)

0
tanh−T(Ūs)Rds

}
, (7.191)

where Ū = 0.2 and Q= [3 0
0 3

]
, R = [2].

We choose neural networks as the critic network with the structures 2–9–2. The
initial weights of the output layer are zero to guarantee the initial output of critic
network is zero, i.e., λ0 = 0. The initial weights of the hidden layer are chosen ran-
domly in [−1 1]. We train the critic network for 1200 iteration steps and 2000 time
steps. The critic network is trained until the given accuracy 10−10. The convergence
curves of the costate function are shown in Fig. 7.12. Furthermore, for x1(0)= 0.1
and x2(0)= 0.3, we run the system for 200 time steps, we get the state trajectory in
Fig. 7.13 and control trajectory in Fig. 7.14.

Moreover, in order to make comparison with the controller designed without
considering the actuator saturation, we also present the system responses obtained
by the controller designed regardless of the actuator saturation. After simulation, the
state curves is shown in Fig. 7.15 and the control curve is shown in Fig. 7.16.

From the simulation results, we can see that the iterative costate function se-
quences do converge to the optimal ones with very fast speed, which also indicates
the validity of the iterative ADP algorithm for dealing with constrained nonlinear
systems.

300 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.12 The convergence process of the costate function

Fig. 7.13 The state variables curves

Example 7.26 CSTR system is the first order process of heat release. According to
the quality of conservation and the principle of conservation of energy, the relation-
ship between quality of materials C and reactor temperature T is

Vol
dC
dt

= ζ(C0 − C)− VolRa,

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 301

Fig. 7.14 The control variables curves

Fig. 7.15 The state variables curves

VolCp

dT
dt

= ζ(T0 − T)+ (ΔH)VolRa −U(T − Tw), (7.192)

where Vol is the reactor volume, ζ is the raw materials in and out of the flow, C0
is the expectation of raw material of the supply, Ra is the unit volume response
rate, Cp is the raw materials of the unit volume produced by the heat energy, T0
is the expected temperature, ΔH is the reaction heat; if it is an exothermic reaction

302 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.16 The control variables curves

system, ΔH should be taken positive, U is the heat transfer coefficient of the surface
of the reactor, and Tw is the coolant average temperature.

Suppose that the first order reaction rate for the dynamic equation is

Ra = κ0C exp

(−Q
T

)
,

where κ0 is the rate constant, Q is the Arrhenius activation energy and we have the
ratio of the gas constant. By transformation, we have

x1 = C0 − C
C0

, x2 = T − T0

Q
,

ν = t

Vol
ζ

, u= Tw − T0

Q
,

and then (7.192) can be written as

dx1

dν
= −x1 +Da(1 − x1) exp

(
− 1

x2 + ρ

)
dx2

dν

= −(1 + �)x2 +HDa(1 − x1) exp

(
− 1

x2 + ρ

)
+ �u, (7.193)

where

Da = κ0Vol

ζ
, H = (ΔH)C0

QCp

, ρ = T0

Q
, � = U

ζCp

.

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 303

For Da , H , ρ, and �, (7.193) has one, two and three equilibrium points. Select
the corresponding control u= ue. If

Da = 0.072, H = 8, ρ = 20, � = 0.3,

and ue = 0, we see that (7.193) has one equilibrium point, i.e.,

xe =
[

0.0642
0.3948

]
.

Defining the following new state variables:

ιx1 = x1 − xe1,

ιx2 = x2 − xe2,

and then (7.193) can be written as

dιx1

dν
= −ιx1 − xe1 +Da(1 − ιx1 − xe1) exp

(
− 1

ιx2 + xe2 + ρ

)
,

dιx2

dν
= −(1+�)(ιx2+xe2)+HDa(1−ιx1−xe1) exp

(
− 1

ιx2+xe2+ρ

)
+�u.

(7.194)

Supposing |u| ≤ 0.05 and T = 0.01, we discretize (7.194) as

ιx1(k + 1)= −ιx1(k)T − xe1T

+Da(1 − ιx1(k)− xe1) exp

(
− 1

ιx2(k)+ xe2 + ρ

)
T + ιx1(k),

ιx2(k + 1)= −(1 + �)(ιx2(k)+ xe2)T

+HDa(1 − ιx1(k)− xe1) exp

(
− 1

ιx2(k)+ xe2 + ρ

)
T

+ ιx2(k)+ �T u. (7.195)

The cost functional is selected as in Example 7.25, where Ū = 0.05, Q= [2 0
0 2

]
,

and R = [0.5].
We choose a neural network as the critic network with the structures 2–11–2.
The initial weight vector of the output layer is set to zero vector, i.e., λ0 = 0. The

initial weights of the hidden layer are chosen randomly in [−1 1]. We train the critic
network for 1600 iteration steps and 2000 time steps. The critic network is trained
until the given accuracy 10−10. The convergence curves of the costate function are
shown in Fig. 7.17. Furthermore, for ιx1(0)= 1 and ιx2(0)= −1, we run the system

304 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.17 The convergence process of the costate function

Fig. 7.18 The state variables curves

for 100 time steps, we get the state trajectory in Fig. 7.18 and control trajectory in
Fig. 7.19.

As Example 7.25, in order to make a comparison with the controller designed
without considering the actuator saturation, we also present the system responses
obtained by the controller designed regardless of the actuator saturation. After
simulation, the state curves is shown in Fig. 7.20 and the control curve is shown
in Fig. 7.21.

7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC 305

Fig. 7.19 The control variables curves

Fig. 7.20 The state variables curves

From the simulation results, we see that the smooth optimal control law is ob-
tained and the actuators saturation phenomenon is avoided by a nonquadratic func-
tional, which also indicates the validity of the iterative ADP algorithm for dealing
with constrained nonlinear systems.

306 7 Several Special Optimal Feedback Control Designs Based on ADP

Fig. 7.21 The control variables curves

7.6 Summary

In this chapter, we studied several special optimal feedback control problems based
on ADP approach. In Sect. 7.2, the infinite horizon optimal control of affine nonlin-
ear discrete switched systems was investigated by using a two-stage ADP method.
In Sect. 7.3, the near-optimal control problem of nonlinear descriptor systems was
solved. Then, in Sect. 7.4, a novel near-optimal control design method for a class
of nonlinear singularly perturbed systems was developed. In Sect. 7.5, based on
the single network GI-DHP algorithm, the near-optimal state-feedback problem of
nonlinear constrained discrete-time systems was studied.

References

1. Al-Tamimi A, Lewis F, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using
approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern, Part
B, Cybern 38:943–949

2. Beard R (1995) Improving the closed-loop performance of nonlinear systems. PhD disserta-
tion, Rensselaer Polytechnic Institute, Troy, NY

3. Cao N, Zhang HG, Luo YH, Feng DZ, Liu Y (2011) Suboptimal control of a class of nonlinear
singularly perturbed systems. Control Theory Appl 28(5):688–692

4. Cao N, Zhang HG, Luo YH, Feng DZ (2012) Infinite horizon optimal control of affine nonlin-
ear discrete switched systems using two-stage approximate dynamic programming. Int J Syst
Sci 43(9):1673–1682

5. Lincoln B, Rantzer A (2006) Relaxing dynamic programming. IEEE Trans Autom Control
51:1249–1260

References 307

6. Luo YH, Zhang HG, Cao N, Chen B (2009) Near-optimal stabilization for a class of nonlinear
systems with control constraint based on single network greedy iterative DHP algorithm. Acta
Autom Sin 35(11):1436–1445

7. Luo YH, Liu Z, Yang D (2010) Greedy iterative DHP algorithm-based near-optimal control
for a class of nonlinear descriptor systems with actuator saturating. In: Proceedings of the 9th
IEEE international conference on cognitive informatics, pp 788–793

8. Lyshevski SE (1998) Nonlinear discrete-time systems: constrained optimization and applica-
tion of nonquadratic costs. In: Proceedings of the American control conference, Philadelphia,
USA, pp 3699–3703

9. Padhi R, Unnikrishnan N, Wang X, Balakrishnan SN (2006) A single network adaptive critic
(SNAC) architecture for optimal control synthesis for a class of nonlinear systems. Neural
Netw 19(10):1648–1660

10. Rantzer A (2005) On approximate dynamic programming in switching systems. In: Proceed-
ing of the IEEE conference on decision and control and the European control conference,
Seville, Spain, pp 1391–1396

11. Seatzu C, Corona D, Giua A, Bempoard A (2006) Optimal control of continuous time switched
affine systems. IEEE Trans Autom Control 51:726–741

12. Xu XP, Antsaklis PJ (2000) Optimal control of switched systems: new results and open prob-
lems. In: Proceeding of the American control conference, Chicago, Illinois, pp 2683–2687

13. Xu XP, Antsaklis PJ (2003) Results and perspectives on computational methods for optimal
control of switched systems. Hybrid systems: computation and control (HSCC). Springer,
Berlin, pp 540–555

14. Yang H, Jiang B, Cocquempot V, Zhang HG (2011) Stabilization of switched nonlinear sys-
tems with all unstable modes: application to multi-agent systems. IEEE Trans Autom Control
56(9):2230–2235

15. Zhang W, Hu J, Abate A (2009) On the value functions of the discrete-time switched LQR
problem. IEEE Trans Autom Control 54:2669–2674

16. Zhang HG, Liu Z, Huang GB (2010) Novel delay-dependent robust stability analysis for
switched neutral-type neural network with time-varying delays via SC technique. IEEE Trans
Syst Man Cybern, Part B, Cybern 40(6):1480–1491

Chapter 8
Zero-Sum Games for Discrete-Time Systems
Based on Model-Free ADP

8.1 Introduction

A large class of complicated practical systems are controlled by more than one
controller or decision maker, each using an individual strategy. These controllers
often operate in a group with a general cost functional as a game [8, 11]. Zero-
sum game theory has been widely applied to decision making and control engi-
neering problems [7]. Recently, much work has been done in the area of dealing
with zero-sum games based on ADP methods [2–6], most of which are only for the
one-dimensional systems. In the real world, many complicated control systems are
described by 2-dimensional (2-D) structures [12, 15], such as thermal processes, im-
age processing, signal filtering, etc. However, the optimal recurrent equation, the so
called Hamilton–Jacobi–Isaacs (HJI) equation, is invalid in the 2-D structure. More-
over, the exact models of many 2-D systems cannot be obtained inherently. To solve
the aforementioned problems, in Sect. 8.2, we will study the zero-sum games for a
class of discrete-time Roesser types 2-D systems based on model-free ADP method.
First, we will propose the optimality principle for 2-D systems and obtain the ex-
pressions of optimal control pair for the zero-sum games. Then, a data-based itera-
tive ADP algorithm is developed without the requirement of the exact system model.

It is well known that some states of the system may not be measurable in many
practical situations. So it is desirable to use available input–output data, rather than
the states of system in the design of controller. In Sect. 8.3, we will develop a novel
data-based optimal output feedback control scheme via the ADP algorithm, in which
neither the exact system model nor the full states of the system are needed.

8.2 Zero-Sum Differential Games for a Class of Discrete-Time
2-D Systems

In this section, we will use the model-free ADP method to obtain the optimal control
pair iteratively which makes the performance index function reach the saddle point
of the zero-sum games for a class of discrete-time 2-D systems.

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_8,
© Springer-Verlag London 2013

309

http://dx.doi.org/10.1007/978-1-4471-4757-2_8

310 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

8.2.1 Problem Formulation

Basically, we consider the following discrete-time linear Roesser type 2-D systems:

x+(k, l)=Ax(k, l)+Bu(k, l)+Cw(k, l) (8.1)

xh(0, l)= f (l), xv(k,0)= g(k) (8.2)

with

x(k, l)=
[
xh(k, l)

xv(k, l)

]
, x+(k, l)=

[
xh(k + 1, l)
xv(k, l + 1)

]
, (8.3)

where xh(k, l) is the horizontal state in R
n1 , xv(k, l) is the vertical state in R

n2 ,
u(k, l) and w(k, l) are the control input in R

m1 and R
m2 . Let the system matrices be

A ∈ R
(n1+n2)×(n1+n2), B ∈ R

(n1+n2)×n1 , and C ∈R
(n1+n2)×m2 . It is assumed that all

the system matrices are nonsingular, and that the system matrices can be expressed
by

A=
[
A1 A2
A3 A4

]
, B =

[
B1
B2

]
, C =

[
C1
C2

]
. (8.4)

The functions f (l) and g(k) are the corresponding boundary conditions along two
independent directions.

We define the following notation:

(k, l)≤ (m,n) if and only if k ≤m and l ≤ n,

(k, l)= (m,n) if and only if k =m and l = n,

(k, l) < (m,n) if and only if (k, l)≤ (m,n) and

(k, l) �= (m,n). (8.5)

Then, the infinite-time cost functional for the 2-D system (8.1) is given by

J (x(0,0), u,w)=
∑∑

(0,0)≤(k,l)<(∞,∞)

(
xT(k, l)Qx(k, l)

+uT(k, l)Ru(k, l)+wT(k, l)Sw(k, l)
)
, (8.6)

where Q≥ 0, R > 0, and S < 0 have suitable dimensions, and L(x(k, l), u(k, l))=
xT(k, l)Qx(k, l) + uT(k, l)Ru(k, l) + wT(k, l)Sw(k, l) is the utility function. For
the above zero-sum game, the two control variables u and w are chosen, respec-
tively, by player I and player II, where player I tries to minimize the cost functional
J (x(0,0), u,w), while player II attempts to maximize it. The following assump-
tions are needed; they are in effect in the remaining sections.

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 311

Assumption 8.1 The 2-D system (8.1) is controllable under the control variables u
and w.

Assumption 8.2 For the boundary conditions of the 2-D system (8.1), the terms∑∞
k=0 x

vT(k,0)xv(k,0),
∑∞

l=0 x
hT(0, l)xh(0, l) and

∑∑

(0,0)≤(k,l)<(∞,∞)

xvT(k,0)xh(0, l)

are all bounded.

Assumption 8.3 There exists a unique saddle point of the zero-sum games for the
2-D system (8.1).

There are some important characteristics that must be pointed out. First, for
the 1-D control system, the boundary condition is just an initial point of state,
while the boundary conditions of 2-D system are two given state trajectories
along two different directions. Second, for the zero-sum games of 2-D system
under the infinite time horizon, the boundary state trajectories are uncontrol-
lable, and therefore the terms

∑∞
l=0 x

T(k,0)Qx(k,0),
∑∞

l=0 x
T(0, l)Qx(0, l) and∑∑

(0,0)≤(k,l)<(∞,∞) x
T(k,0)Qx(0, l) may be infinite, which means that the cost

functional (8.6) is infinite. Therefore, Assumption 8.2 is necessary. Third, the
boundary conditions f (l) and g(k) in (8.2) should be boundary, but not necessary
smooth or continuous functions. For example, let

f (l)=
{
c l ≤ T,

0 l > T,
(8.7)

where c is any real constant number and T is given real number. So Assumption 8.2
is not very strong.

According to Assumption 8.3, the optimal value function can be expressed as

J ∗(x(k, l))= min
u

max
w

∑∑

(k,l)≤(i,j)<(∞,∞)

{
xT(i, j)Qx(i, j)

+uT(i, j)Ru(i, j)+wT(i, j)Sw(i, j)
}

= max
w

min
u

∑∑

(k,l)≤(i,j)<(∞,∞)

{
xT(i, j)Qx(i, j)

+uT(i, j)Ru(i, j)+wT(i, j)Sw(i, j)
}
. (8.8)

For the zero-sum games for 1-D systems, the optimal value function can be writ-
ten by a recurrent formulation according to the dynamic programming principle.
However, for the zero-sum games for 2-D systems, the dynamic programming prin-
ciple may not be true. The main difficulty lies in the state of the 2-D system in

312 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

the next stage coupling with the states of two different directions in the current
stage; then the dynamic programming equation of the zero-sum games for 2-D sys-
tems does not exist. So in this section, we propose an optimality principle for the
2-D system and obtain the expressions of an optimal control pair for the zero-sum
games.

In the following, we will propose the optimality principle for the zero-sum games
for 2-D systems, and discuss the properties of the optimal control pair derived by
the optimality principle.

Theorem 8.4 (cf. [16]) If the cost functional is defined as (8.6), let u(k, l) minimize
the cost functional (8.6) and w(k, l) maximize it subject to the system equation (8.1);
then there are (n+m)-dimensional vector sequences λ(k, l) and λ+(k, l) defined as

λ+(k, l)=
[
λh(k + 1, l)
λv(k, l + 1)

]
, λ(k, l)=

[
λh(k, l)

λv(k, l)

]
, (8.9)

where λh(k, l) ∈ R
n1 , λv(k, l) ∈ R

n2 , such that for all (0,0) ≤ (k, l) < (∞,∞) we
have the

1. State equation:

x+(k, l)= ∂H(k, l)

∂λ+(k, l)
, (8.10)

2. Costate equation:

λ(k, l)= ∂H(k, l)

∂x(k, l)
, (8.11)

3. Stationarity equation:

0 = ∂H(k, l)

∂u(k, l)
,

0 = ∂H(k, l)

∂w(k, l)
, (8.12)

where H(k, l) is a Hamilton function defined as

H(k, l)= xT(k, l)Qx(k, l)+ uT(k, l)Ru(k, l)

+wT(k, l)Sw(k, l)+ λ+T(k, l)(Ax(k, l)

+Bu(k, l)+Cw(k, l)). (8.13)

Proof By examining the gradients of each of the state equations, i.e., the vector of
partial derivatives with respect to all the variables x(k, l), u(k, l), and w(k, l) ap-
pearing in (8.6), they are easily seen to be linearly independent. The optimum of
the cost functional (8.6) is therefore a regular point of the system (8.1) (see [13],

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 313

pp. 187). The existence of linear independent λ(k, l), (0,0)≤ (k, l) < (∞,∞) im-
mediately follows from Lagrange multiplier theory (see [13], pp.187–198).

Let

J ′(x(k, l), u,w)=
∑∑

(k,l)≤(i,j)<(∞,∞)

{
xT(i, j)Qx(i, j)

+uT(i, j)Ru(i, j)+wT(i, j)Sw(i, j)

+λ+T(i, j)(Ax(i, j)+Bu(i, j)+Cw(i, j)

−x+(i, j))
}
. (8.14)

We introduce the Hamilton function of (8.13) and rewrite (8.14) as

J ′(x(k, l), u,w)=
∑∑

(k,l)≤(i,j)<(∞,∞)

{
H(i, j)− λ+T(i, j)x+(i, j)

}
. (8.15)

The last term in the previous double summation can be expanded as follows:
∑∑

(k,l)≤(i,j)<(∞,∞)

λ+T(i, j)x+(i, j)

=
∑∑

(k,l)≤(i,j)<(∞,∞)

[
λT(i, j)x(i, j)−

∞∑

j=l

λhT(0, j)xh(0, j)

−
∞∑

i=k

λvT(i,0)xh(i,0)

]
. (8.16)

According to the Lagrange multiplier theory, the increment J ′ due to increments
in all x(k, l), u(k, l), w(k, l), and λ(k, l) must be zero at a constrained minimum.
Hence

dJ ′(x(k, l), u,w)=
∑∑

(k,l)≤(i,j)<(∞,∞)

{[
∂H(i, j)

∂u(i, j)

]
du(i, j)

+
[
∂H(i, j)

∂w(i, j)

]
dw(i, j)

+
[
∂H(i, j)

∂λ+(i, j)
− x+(i, j)

]
dλ+(i, j)

+
[
∂H(i, j)

∂x(i, j)
− λ(i, j)

]
dx(i, j)

}
. (8.17)

Equation (8.17) yields (8.10)–(8.12) by the following remarks:

1. Increments du(i, j), dw(i, j), dx(i, j), and dλ(i, j), with the exception of
dxh(0, j) and dxv(i,0), are independent arbitrary vectors.

314 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

2. dxh(0, j)= 0, dxv(i,0)= 0, since xh(i, j) and xv(i, j) are fixed boundary con-
ditions. �

According to (8.12), the optimal control u∗(k, l) and w∗(k, l) can be expressed
as

u∗(k, l)= −1

2
R−1BTλ+(k, l), (8.18)

and

w∗(k, l)= −1

2
S−1CTλ+(k, l). (8.19)

Theorem 8.5 (cf. [16]) For the system (8.1) with respect to the cost functional (8.6),
if the controls u(k, l) and w(k, l) are expressed as (8.18) and (8.19) respectively,
then the optimal Hamilton function (8.13) satisfies a certain Riccati function.

Proof For the zero-sum games of 2-D linear system, the optimal state feedback
control should also be linearly dependent on the system state. As the system function
is time-invariant, there exists a matrix P that satisfies

λ(k, l)= 2Px(k, l). (8.20)

Then (8.18) and (8.19) can be rewritten as

u∗(k, l)= −BTP(Ax(k, l)+Bu(k, l)+Cw(k, l)), (8.21)

and

w∗(k, l)= −CTP(Ax(k, l)+Bu(k, l)+Cw(k, l)). (8.22)

So the optimal state feedback control u(k, l) and w(k, l) can be expressed as

u∗(k, l)= −(R +BTPB −BTPC(S +CTPC)−1CTPB)−1

× (BTPA−BTPC(S +CTPC)−1CTPA)x(k, l), (8.23)

and

w∗(k, l)= −(S +CTPC −CTPB(R +BTPB)−1BTPC)−1

× (CTPA−CTPB(R +BTPB)−1BTPA)x(k, l). (8.24)

According to (8.11) we have

2Px(k, l)= 2Qx(k, l)+ 2ATPx+(k, l)

= 2Qx(k, l)+ 2ATP(Ax(k, l)+Bu∗(k, l)

+Cw∗(k, l)). (8.25)

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 315

Substituting (8.23) and (8.24) into (8.25), we have the following Riccati function:

P =Q+ATPA−ATPB(R +BTPB −BTPC(S

+CTPC)−1CTPB)−1BTPA+ATPB(R +BTPB

−BTPC(S +CTPC)−1CTPB)−1BTPC(S

+CTPC)−1CTPA−ATPC(S +CTPC −CTPB

× (R +BTPB)−1BTPC)−1CTPA+ATPC(S

+CTPC −CTPB(R +BTPB)−1BTPC)−1CTPB

× (R +BTPB)−1BTPA. (8.26)

The proof is completed. �

As the zero-sum game has a saddle point and is solvable, in order to obtain the
unique feedback saddle point in the strictly feedback stabilizing control policy class,
the following inequalities should be satisfied (see [8] for details):

P > 0, (8.27)

S +CTPC < 0, (8.28)

and

R +BTPB > 0. (8.29)

Theorem 8.6 (cf. [16]) For the system (8.1) with respect to the cost functional (8.6),
if the optimal control u∗(k, l) and w∗(k, l) are expressed as (8.18) and (8.19), re-
spectively, then the optimal value function J ∗(x(k, l)) is a quadratic function de-
pendent on the state x(k, l).

Proof Substituting (8.18) and (8.19) into the Hamilton function (8.13), we have

H(k, l)= xT(k, l)Qx(k, l)+ 1

4
λ+T(k, l)BR−1BTλ+(k, l)

+ 1

4
λ+T(k, l)CS−1CTλ+(k, l)+ λ+(k, l)(Ax(k, l)

− 1

2
BR−1BTλ+(k, l)− 1

2
CS−1CTλ+(k, l)). (8.30)

Then, according to (8.20), (8.23), and (8.24), we have

H(k, l)= xT(k, l)
(
Q+ATPA−ATPB(R +BTPB

−BTPC(S +CTPC)−1CTPB)−1BTPA

+ATPB(R +BTPB −BTPC(S +CTPC)−1

316 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

×CTPB)−1BTPC(S +CTPC)−1CTPA

−ATPC(S +CTPC −CTPB(R +BTPB)−1

×BTPC)−1CTPA+ATPC(S +CTPC

−CTPB(R +BTPB)−1BTPC)−1CTPB

× (R +BTPB)−1BTPA)
)
x(k, l). (8.31)

According to (8.26) and the optimality principle, we immediately have

H(k, l)= xT(k, l)P x(k, l)= J ∗(x(k, l)). (8.32)

So, V ∗(x(k, l)) is a quadratic function dependent on the state x(k, l).
The proof is completed. �

According to Theorem 8.6, we have the following corollary.

Corollary 8.7 For the system (8.1) with respect to the cost functional (8.6), if the
control u(k, l) and w(k, l) are expressed as (8.18) and (8.19), respectively, then the
system is stable.

Proof According to the definition of the cost functional in (8.8), let (k, l) →
(∞,∞); we have

J ∗(x(∞,∞))=H(∞,∞)

= xT(∞,∞)Qx(∞,∞)+ u∗T(∞,∞)

×Ru∗(∞,∞)+w∗T(∞,∞)Sw∗(∞,∞). (8.33)

On the other hand, according to (8.13), let (k, l)→ (∞,∞); we have

H(∞,∞)= xT(∞,∞)Qx(∞,∞)+ u∗T(∞,∞)

×Ru∗(∞,∞)+w∗T(∞,∞)Sw∗(∞,∞)

+ λ+T(∞,∞)(Ax(∞,∞)+Bu(∞,∞)

+Cw(∞,∞)). (8.34)

According to (8.20), we have

H(∞,∞)= xT(∞,∞)Qx(∞,∞)+ u∗T(∞,∞)

×Ru∗(∞,∞)+w∗T(∞,∞)Sw∗(∞,∞)

+ (Ax(∞,∞)+Bu(∞,∞)+Cw(∞,∞))T

× 2P(Ax(∞,∞)+Bu(∞,∞)+Cw(∞,∞)). (8.35)

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 317

Then, we have

(Ax(∞,∞)+Bu(∞,∞)+Cw(∞,∞))T

× 2P(Ax(∞,∞)+Bu(∞,∞)+Cw(∞,∞))= 0. (8.36)

As the optimal control u∗(k, l) and w∗(k, l) are the state feedback control ex-
pressed in (8.23) and (8.24), respectively, and P > 0, we obtain

lim
(k,l)→∞x(k, l)= 0. (8.37)

The proof is completed. �

8.2.2 Data-Based Optimal Control via Iterative ADP Algorithm

In this subsection, based on the optimality principle, we will expand the ADP
method to 2-D systems.

As the optimal control u∗ and w∗ are both linear feedback dependent on the state,
let

u∗(k, l)=K∗x(k, l),

w∗(k, l)= L∗x(k, l). (8.38)

Let

H(x(k, l), u(k, l),w(k, l))= [xT(k, l) uT(k, l) wT(k, l)]H
⎡

⎣
x(k, l)

u(k, l)

w(k, l)

⎤

⎦ . (8.39)

Then, according to (8.13), we have

⎡

⎣
Hxx Hxu Hxw

Hux Huu Huw

Hwx Hwu Hww

⎤

⎦=
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦+
⎡

⎣
A B C

K∗A K∗B K∗C
L∗A L∗B L∗C

⎤

⎦
T

H

×
⎡

⎣
A B C

K∗A K∗B K∗C
L∗A L∗B L∗C

⎤

⎦

=
⎡

⎣
ATPA+Q ATPB ATPC

BTPA BTPB +R BTPC

CTPA CTPB CTPC + S

⎤

⎦ , (8.40)

where P = [I K∗T L∗T]H
[I
K∗
L∗

]
.

318 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

According to (8.12) and (8.40), we have

0 = ∂H(k, l)

∂u(k, l)
,

0 = 2Huxx(k, l)+ 2Huww(k, l)+ 2Huuu(k, l), (8.41)

and

0 = ∂H(k, l)

∂w(k, l)
,

0 = 2Hwxx(k, l)+ 2Hwuu(k, l)+ 2Hwww(k, l). (8.42)

Substituting (8.42) into (8.41), we get

u∗(k, l)= (Huu −HuwH
−1
wwHwu)

−1(HuwH
−1
wwHwx −Hux)x(k, l). (8.43)

Taking (8.43) into (8.42), we get

w∗(k, l)= (Hww −HwuH
−1
uu Huw)

−1(HwuH
−1
uu Hux −Hwx)x(k, l). (8.44)

So we have

K∗ = (Huu −HuwH
−1
wwHwu)

−1(HuwH
−1
wwHwx −Hux), (8.45)

and

L∗ = (Hww −HwuH
−1
uu Huw)

−1(HwuH
−1
uu Hux −Hwx). (8.46)

Although we have obtained the optimal control pair expressed in (8.45) and
(8.46) with the information of the matrix H , we see that the matrix H in (8.40)
is also unsolvable directly. Therefore, an iterative ADP algorithm is developed and
the convergence property is also discussed.

8.2.2.1 The Derivation of Data-Based Iterative ADP Algorithm

We start with an initial Hamilton function H0(k, l) = 0 which is not necessarily
optimal, and then we obtain the function Hi(k, l) for solving the following equation
with the iteration performance i ≥ 0:

[
xT(k, l) uT(k, l) wT(k, l)

]
Hi+1

⎡

⎣
x(k, l)

u(k, l)

w(k, l)

⎤

⎦

= min
u

max
w

⎧
⎨

⎩

[
xT(k,l) uT(k, l) wT(k, l)

]
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

u(k, l)

w(k, l)

⎤

⎦

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 319

+ [
xT(k, l) uT(k, l) wT(k, l)

]
⎡

⎣
A B C

KA KB KC

LA LB LC

⎤

⎦
T

Hi

×
⎡

⎣
A B C

KA KB KC

LA L∗B LC

⎤

⎦

⎡

⎣
x(k, l)

u(k, l)

w(k, l)

⎤

⎦

⎫
⎬

⎭

= [
xT(k, l) uT

i (k, l) wT
i (k, l)

]
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦

+ [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦
T

Hi

×
⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦ . (8.47)

Then, according to (8.43) and (8.44), the iterative control laws can be expressed as

Ki = (H [i]
uu −H [i]

uw(H
[i]
ww)

−1H [i]
wu)

−1(H [i]
uw(H

[i]
ww)

−1H [i]
wx −H [i]

ux), (8.48)

and

Li = (H [i]
ww −H [i]

wu(H
[i]
uu)

−1H [i]
uw)

−1(H [i]
wu(H

[i]
uu)

−1H [i]
ux −H [i]

wx). (8.49)

Therefore, the iterative controls can be given as

ui(k, l)=Kix(k, l), (8.50)

and

wi(k, l)= Lix(k, l). (8.51)

As we see, the iterative control law Ki and Li can be updated by the H matrix
without the system information. While the iteration of Pi changes into the iteration
of Hi , the property of the iterative Hi should be discussed. So in the following part,
the convergence and optimal properties are established. Also, we will show that the
iteration of Pi is the same as the iteration of Hi .

8.2.2.2 Properties of Data-Based Iterative ADP Algorithm

First, we give the following lemmas, which are necessary for the proof.

320 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Lemma 8.8 The matrices Hi+1, Ki and Li+1 can be expressed as

Hi+1 =
⎡

⎣
ATPiA+Q ATPiB ATPiC

BTPiA BTPiB +R BTPiC

CTPiA CTPiB CTPiC + S

⎤

⎦ , (8.52)

Ki+1 = −(R +BTPiB −BTPiC(S +CTPiC)
−1CTPiB)

−1

× (BTPiA−BTPiC(S +CTPiC)
−1CTPiA), (8.53)

and

Li+1 = −(S +CTPiC −CTPiB(R +BTPiB)
−1BTPiC)

−1

× (CTPiA−CTPiB(R +BTPiB)
−1BTPiA), (8.54)

where Pi is given as

Pi = [
I KT

i LT
i

]
Hi

⎡

⎣
I

Ki

Li

⎤

⎦ . (8.55)

Proof According to (8.47), we have

Hi+1 =
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦+
⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦
T

Hi

⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦

=
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦+
⎡

⎣
AT

BT

CT

⎤

⎦[I KT
i LT

i

]
Hi

⎡

⎣
I

KT
i

LT
i

⎤

⎦[A B C
]
. (8.56)

Substituting (8.55) into (8.56), it follows that

Hi+1 =
⎡

⎣
ATPiA+Q ATPiB ATPiC

BTPiA BTPiB +R BTPiC

CTPiA CTPiB CTPiC + S

⎤

⎦ . (8.57)

According to (8.23) and (8.45), we have

Ki = −(R +BTPiB −BTPiC(S +CTPiC)
−1CTPiB)

−1

× (BTPiA−BTPiC(S +CTPiC)
−1CTPiA)

= (H [i]
uu −H [i]

uw(H
[i]
ww)

−1H [i]
wu)

−1(H [i]
uw(H

[i]
ww)

−1H [i]
wx −H [i]

ux). (8.58)

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 321

According to (8.24) and (8.46), we have

Li = −(S +CTPiC −CTPiB(R +BTPiB)
−1BTPiC)

−1

× (CTPiA−CTPiB(R +BTPiB)
−1BTPiA)

= (H [i]
ww −H [i]

wu(H
[i]
uu)

−1H [i]
uw)

−1(H [i]
wu(H

[i]
uu)

−1H [i]
ux −H [i]

wx). (8.59)

The proof is completed. �

Lemma 8.9 Iterating on Hi is similar to iterating on Pi by

Pi+1 =Q+ATPiA−ATPiB(R +BTPiB −BTPiC(S

+CTPiC)
−1CTPiB)

−1BTPiA+ATPiB(R

+BTPiB −BTPiC(S +CTPiC)
−1CTPiB)

−1BT

× PiC(S +CTPiC)
−1CTPiA−ATPiC(S +CTPiC

−CTPiB(R +BTPiB)
−1BTPiC)

−1CTPiA

+ATPiC(S +CTPiC −CTPiB(R +BTPiB)
−1BT

× PiC)
−1CTPiB(R +BTPiB)

−1BTPiA, (8.60)

where Pi is defined in (8.55).

Proof From (8.55), we have

Pi+1 = [
I KT

i+1 L
T
i+1

]
Hi+1

⎡

⎣
I

Ki+1
Li+1

⎤

⎦ . (8.61)

Taking (8.52), we obtain

Pi+1 = [
I KT

i+1 L
T
i+1

]

×
⎡

⎣
ATPiA+Q ATPiB ATPiC

BTPiA BTPiB +R BTPiC

CTPiA CTPiB CTT PiC + S

⎤

⎦

⎡

⎣
I

Ki+1
Li+1

⎤

⎦ . (8.62)

Substituting (8.53) and (8.54) into (8.62), we have

Pi+1 =Q+ATPiA−ATPiB(R +BTPiB −BTPiC(S

+CTPiC)
−1CTPiB)

−1BTPiA+ATPiB(R

+BTPiB −BTPiC(S +CTPiC)
−1CTPiB)

−1BT

× PiC(S +CTPiC)
−1CTPiA−ATPiC(S

322 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

+CTPiC −CTPiB(R +BTPiB)
−1BTPiC)

−1CT

× PiA+ATPiC(S +CTPiC −CTPiB(R +BTPi

×B)−1BTPiC)
−1CTPiB(R +BT PiB)

−1BTPiA. (8.63)

The proof is completed. �

From Lemma 8.9, we have

xT(k, l)Pix(k, l)= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
Hi

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦ . (8.64)

Then (8.47) can be expressed as

Hi+1(k, l)= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦+H+
i (k, l)

= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦

+ x+T(k, l)Pixx
+(k, l), (8.65)

where

H+
i (k, l)= [

xT(k, l) uT
i (k, l) w

T
i (k, l)

]
⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦
T

Hi

×
⎡

⎣
A B C

KiA KiB KiC

LiA LiB LiC

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦ , (8.66)

and

Hi+1(k, l)= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
Hi+1

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦ . (8.67)

Theorem 8.10 (cf. [16]) For the 2-D system (8.1) with respect to the cost functional
(8.6), if the saddle point exists under the state feedback control u(k, l) and w(k, l),
respectively, then the iteration on (8.47) will converge to the optimal value function.

Proof In [9], it is shown that the iterating algebraic Riccati equation (8.63) is con-
vergent, for i → ∞ with P0 = 0. So let limi→∞Pi = P ∗. Then, for i → ∞, we

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 323

have

u(k, l)= −(R +BTP ∗B −BTP ∗C(S +CTP ∗C)−1CTP ∗B)−1

× (BTP ∗A−BTP ∗C(S +CTP ∗C)−1CTP ∗A)x(k, l), (8.68)

and

w(k, l)= −(S +CTP ∗C −CTP ∗B(R +BTP ∗B)−1BTP ∗C)−1

× (CTP ∗A−CTP ∗B(R +BTP ∗B)−1BTP ∗A)x(k, l), (8.69)

where P ∗ satisfies the algebraic Riccati equation (8.26).
According to Theorem 8.4, the controls u(k, l) and w(k, l) in (8.68) and (8.69)

are both optimal. So we have

J ∗(x(k, l))= xT(k, l)P ∗x(k, l). (8.70)

On the other hand, according to Lemma 8.8, we have

lim
i→∞Hi+1 = lim

i→∞

⎡

⎣
ATPiA+Q ATPiB ATPiC

BTPiA BTPiB +R BTPiC

CTPiA CTPiB CTPiC + S

⎤

⎦

=
⎡

⎣
ATP ∗A+Q ATP ∗B ATP ∗C
BTP ∗A BTP ∗B +R BTP ∗C
CTP ∗A CTP ∗B CTP ∗C + S

⎤

⎦ . (8.71)

So we obtain

Hi →
⎡

⎣
ATP ∗A+Q ATP ∗B ATP ∗C
BTP ∗A BTP ∗B +R BTP ∗C
CTP ∗A CTP ∗B CTP ∗C + S

⎤

⎦ (8.72)

as i → ∞.
The proof is completed. �

In the iterative ADP algorithm, the Hamilton function H+
i (k, l) is generally diffi-

cult to obtain. Therefor, a parameter structure is necessary to approximate the actual
H+
i (k, l). Next, a neural network, called a critic network, is adopted to approximate

H+
i (k, l). Similarly, we adopt two neural networks (called action networks) to ap-

proximate the controls u(k, l) and w(k, l), respectively. Let the output of the action
networks be expressed by

ûi (k, l)=Kix(k, l), (8.73)

and

ŵi(k, l)= Lix(k, l). (8.74)

324 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

The output of critic network is expressed by

zT
i (k, l)Hizi(k, l)= hT

i z̄i , (8.75)

where zi(k, l) = [xT(k, l) uT
i (k, l) wT

i (k, l)]T, zi(k, l) ∈ R
n1+n2+m1+m2=q , z̄i =

(z2
1, z1z2, . . . , z1zq, z

2
2, z2z3, . . . , z2zq, . . . , zq−1zq, z

2
q) is the Kronecker product

quadratic polynomial basis vector. Furthermore h= bv(H) with v(·) a vector func-
tion that acts on q × q matrix, and this gives a q(q + 1)/2 × 1 column vector.

To solve Hi+1(k, l), the right-hand side of (8.65) can be written as

d(zi(k, l),Hi)= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]

×
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦+H+
i (k, l), (8.76)

which can be regarded as the desired target function satisfying

hT
i+1z̄i (k, l)= d(zi(k, l),Hi). (8.77)

So we obtain

hi+1 = (z̄i (k, l)z̄
T
i (k, l))

−1z̄i (k, l)d(zi(k, l),Hi). (8.78)

Remark 8.11 In (8.78), we see that the matrix z̄i (k, l)z̄
T
i (k, l) is generally invert-

ible. To overcome this problem, two methods are developed. First, we can com-
pute (bz̄i(k, l)z̄

T
i (k, l))

−1 by the Moore–Penrose pseudoinverse technique, where
z̄i (k, l)z̄

T
i (k, l) �= 0, for ∀k, l. Second, we can use the least-square technique to ob-

tain the inverse of the matrix z̄i (k, l)z̄
T
i (k, l). We adopt the second method here.

To implement the least-square method, white noise is added into the controls
(8.50) and (8.51), respectively. Then we have

ũi (k, l)=Kix(k, l)+ ξ1, (8.79)

and

w̃i(k, l)= Lix(k, l)+ ξ2, (8.80)

where ξ1(0, σ 2
1) and ξ2(0, σ 2

2) are both zero-mean white noises with variances σ 2
1

and σ 2
2 , respectively. So zi(k, l) in (8.75) can be written as

z̃i(k, l)=
⎡

⎣
x(k, l)

ũi(k, l)

w̃i(k, l)

⎤

⎦=
⎡

⎣
x(k, l)

ui(k, l)+ ξ1
wi(k, l)+ ξ2

⎤

⎦=
⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦+
⎡

⎣
0
ξ1
ξ2

⎤

⎦ . (8.81)

Evaluating hi+1 at the N points p1,p2, . . . , pN , we have

hi+1 = (ZNZ
T
N)

−1ZNŶN , (8.82)

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 325

where

ZN = [
z̄N (p1) z̄(p2) . . . z̄(pN)

]
, (8.83)

and

ŶN = [
d(zN(p1),Hi) d(z(p2),Hi) . . . d(z(pN),Hi)]T

]
. (8.84)

Then, we obtain

Hi+1 = ḡ(hi+1) (8.85)

through the Kronecker method, and the feedback control law Ki+1 and Li+1 can
be obtained according to (8.48) and (8.49), respectively. According to the condition
of the least-square solution, the number of sampling points N should satisfy the
inequality

N ≥ 1

2
(2q × (2q + 1)) . (8.86)

The least-square method in (8.82) can be solved in real time by collecting enough
data points generated from d(zi(k, l),Hi) in (8.76). What we are required to know
is the state and control data x(k, l), ui(k, l),wi(k, l), and H+

i (k, l). Therefore, in
the present iterative ADP method, the model of the system is not required to update
the critic and the action networks.

Given the above preparation, now the present data-based iterative ADP algorithm
is summarized as follows:

1. Give the boundary condition xh(0, l) = f (l) and xv(k,0) = g(k). Let P0 = 0,
K0 = 0 and L0 = 0. Give the computation accuracy ε.

2. According to the N sampling points, compute ZN and ŶN based on (8.83) and
(8.84).

3. Compute hi according to (8.82) and compute Hi according to (8.85) through the
Kronecker method.

4. Compute the feedback control laws by

Ki+1 = (H [i]
uu −H [i]

uw(H
[i]
ww)

−1H [i]
wu)

−1(H [i]
uw(H

[i]
ww)

−1H [i]
wx −H [i]

ux), (8.87)

and

Li+1 = (H [i]
ww −H [i]

wu(H
[i]
uu)

−1H [i]
uw)

−1(H [i]
wu(H

[i]
uu)

−1H [i]
ux −H [i]

wx). (8.88)

5. If

‖hi+1 − hi‖ � ε, (8.89)

go to Step 7; otherwise, go to Step 6.
6. Set i = i + 1, go to Step 2.
7. Stop.

326 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Fig. 8.1 The structure diagram of the algorithm

8.2.2.3 Neural Network Implementation

In the following, neural networks are constructed to implement the iterative ADP
algorithm. There are several ADP structures that can be chosen. As the HDP struc-
ture is basic and convenient to realize, we will use HDP to implement the iterative
ADP algorithm.

Assume that the number of hidden layer neurons is denoted by l, the weight
matrix between the input layer and hidden layer is denoted by V , and the weight
matrix between the hidden layer and output layer is denoted by W . Then, the output
of the three-layer NN is represented by

F̂ (X,V,W)=WTσ(V TX), (8.90)

where we have the activation function σ(V TX) ∈ R
l , [σ(z)]i = (ezi − e−zi)/

(ezi + e−zi), i = 1, . . . , l.
The NN estimation error can be expressed by

F(X)= F(X,V ∗,W ∗)+ ε(X), (8.91)

where V ∗, and W ∗ are the ideal weight parameters, ε(X) is the reconstruction error.
Here, there are three neural networks, which are critic network and action net-

work u and action network w. All the neural networks are chosen as three-layer
feedforward networks. The whole structure diagram is shown in Fig. 8.1. The utility
term in the figure denotes xT(k, l)Qx(k, l)+ uT(k, l)Ru(k, l)+wT(k, l)Sw(k, l).

8.2.2.4 Critic Network

The critic network is used to approximate the Hamilton function H(k, l). The output
of the critic network is denoted

Ĥi(k, l)=WT
ciσ (V

T
cix(k, l)). (8.92)

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 327

The target function can be written as

Hi+1(k, l)= [
xT(k, l) uT

i (k, l) w
T
i (k, l)

]
⎡

⎣
Q 0 0
0 R 0
0 0 S

⎤

⎦

⎡

⎣
x(k, l)

ui(k, l)

wi(k, l)

⎤

⎦+H+
i (k, l).

(8.93)

Then, we define the error function for the critic network as

eci(k, l)= Ĥi+1(k, l)−Hi+1(k, l). (8.94)

The objective function to be minimized in the critic network is

Eci(k, l)= 1

2
eT
ci(k, l)eci(k, l). (8.95)

Therefore, the gradient-based weight updating rule for the critic network is given
by

wc(i+1)(k, l)=wci(k, l)+Δwci(k, l), (8.96)

Δwci(k, l)= αc

[
−∂Eci(k, l)

∂wci(k, l)

]
, (8.97)

∂Eci(k, l)

∂wci(k, l)
= ∂Eci(k, l)

∂Ĥi(k, l)

∂Ĥi(k, l)

∂wci(k, l)
, (8.98)

where αc > 0 is the learning rate of critic network and wc(k, l) is the weight vector
in the critic network.

8.2.2.5 Action Networks

Action networks are used to approximate the iterative optimal controls. There are
two action networks, which are used to approximate the optimal control u and w,
respectively.

For the action network that approximates the control u(k, l), the state x(k, l) is
used as input to create the optimal control u(k, l). The output can be formulated as

ûi (k, l)=WT
aiσ (V

T
aix(k, l)). (8.99)

Therefore, we define the output error of the action network as

eai(k, l)= ûi (k, l)− ui(k, l), (8.100)

where ui(k, l) is the target function, which can be described by

ui(k, l)= (H [i]
ww −H [i]

wu(H
[i]
uu)

−1H [i]
uw)

−1

× (H [i]
wu(H

[i]
uu)

−1H [i]
ux −H [i]

wx)x(k, l), (8.101)

where Hi can be obtained according to the Kronecker product in (8.85).

328 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eai(k, l)= 1

2
eT
aieai . (8.102)

The weight updating algorithm is similar to the one for the critic network. By the
gradient descent rule, we obtain

wa(i+1)(k, l)=wai(k, l)+Δwai(k, l), (8.103)

Δwai(k, l)= βa

[
−∂Eai(k, l)

∂wai(k, l)

]
, (8.104)

∂Eai(k, l)

∂wai(k, l)
= ∂Eai(k, l)

∂eai(k, l)

∂eai(k, l)

∂ui(k, l)

∂ui(k, l)

∂wai(k, l)
, (8.105)

where βa > 0 is the learning rate of the action network.
For the action network w, the state x(k, l) is used as input to create the optimal

control w(k, l). The target of the action network w can be expressed as

wi(k, l)= (H [i]
ww −H [i]

wu(H
[i]
uu)

−1H [i]
uw)

−1

× (H [i]
wu(H

[i]
uu)

−1H [i]
ux −H [i]

wx)x(k, l). (8.106)

All the update rules of action network w are the same as the update rules of action
network u, and they are omitted here.

8.2.3 Simulations

In this subsection, the present method is applied to an air drying process control.

Example 8.12 The dynamical processes can be described by the following Darboux
equation:

∂2x(s, t)

∂s∂t
= a1

∂x(s, t)

∂t
+ a2

∂x(s, t)

∂x
+ a0x(s, t)+ bu(s, t)+ cw(s, t), (8.107)

with the initial and boundary conditions

xh(0, t)=
{

0.5 t ≤ 4,

0 t > 4,
and xv(s,0)=

{
1 s ≤ 4,

0 s > 4,
(8.108)

where x(s, t) is an unknown function, a0, a1, a2, b, and c are real coefficients, and
u(s, t) and w(s, t) are the input functions. The variable x is for the humidity which
is the system state, s is for the location of the air, and t is the processing time.

8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems 329

Let a0 = 0.2, a1 = 0.3, a2 = 0.1, b = 0.3, and c = 0.25. The quadratic cost func-
tional is formulated as

J =
∫ ∞

t=0

∫ ∞

s=0

{
xT(s, t)Qx(s, t)+ uT(s, t)Ru(s, t)

+wT(s, t)Sw(s, t)
}

dtdx. (8.109)

The discretization method for the system (8.107) is similar to the method in [14].
Suppose that the sampling periods of the digital control system are chosen as X =
0.1cm and T = 0.1s. Following the methodology presented in [14], we compute the
discretized system equation as

[
xh((k + 1)X, lT)
xv(kX, (l + 1)T)

]
=
[

0.7408 0.2765
0.0952 0.9048

][
xh(kX, lT)

xv(kX, lT)

]

+
[

0.0259
0

]
u(kX, lT)+

[
0

0.0564

]
w(kX, lT), (8.110)

with the boundary conditions

xh(0, lT)=
{

0.5 l ≤ 40,

0 l > 40,
and xv(kX,0)=

{
1 k ≤ 40,

0 k > 40,
(8.111)

and the discredited cost functional

J (x(0,0), u,w)=
∞∑

k=0

∞∑

l=0

{
xT(Xk,T l)Qx(Xk,T l)

+ uT(Xk,T l)Ru(Xk,T l)

+wT(Xk,T l)Sw(Xk,T l)
}
. (8.112)

We implement the iterative algorithm at (k, l) = (0,0). We choose three-layer
neural networks as the critic network, the action network u, and the action network
w with the structure 2–8–1, 2–8–1 and 2–8–1, respectively. The initial weights of
action networks and critic network are all set to be random in [−0.5,0.5]. Then,
the critic network and the action networks are trained for i = 50 times so that the
given accuracy ε = 10−6 is reached. In the training process, the learning rate is βa =
αc = 0.05. The evaluating point number is set as N = 40 for every iteration. Choose
the small white noise as ξ1(0,0.01), ξ2(0,0.01). The convergence trajectory of the
value function is shown in Fig. 8.2. Then, we apply the optimal control to the system
for k = 40, l = 40 time steps and obtain the following results. The state trajectories
are given as Figs. 8.3 and 8.4. The control trajectories are given as Figs. 8.5 and 8.6,
respectively.

From the simulation results, we see that the present iterative ADP algorithm ob-
tains good effects. In [14], Tsai just studied the model-based optimal control in case

330 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Fig. 8.2 The convergence of value function

Fig. 8.3 The trajectories of the state variables xh

of a finite horizon. In this section, using the iterative ADP algorithm, the optimal
control scheme for 2-D system in infinite horizon can also be obtained without the
system model. So the present algorithm in this section is more effective than the
method in [14] for industrial process control.

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 331

Fig. 8.4 The trajectories of the state variables xv

Fig. 8.5 The trajectories of the optimal control u

8.3 Zero-Sum Games for a Class of Discrete-Time Systems
via Model-Free ADP

A novel model-free ADP method using output feedback is developed for zero-sum
games of a class of discrete-time systems in this section. It is worthy to note that
not only the model of the exact system is not required, but neither is the information

332 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Fig. 8.6 The trajectories of the optimal control w

of the system states. Only the data measured from input and output are required for
reaching the saddle point of the zero-sum games by using the present data-based
iterative ADP algorithm.

8.3.1 Problem Formulation

Consider the following discrete-time linear systems:

x(k + 1)=Ax(k)+Bu(k)+Ew(k),

y(k)= Cx(k), (8.113)

where x(k) ∈ R
n is the state, u(k) ∈ R

m1 is the control input, w(k) ∈ R
m2 is the

disturbance input, and y(k) ∈R
p is the measurable output.

The cost functional for (8.113) is given as follows:

J (x(k), u,w)=
∞∑

i=k

(yT
i Qyi + uT

i ui − γ 2wT
i wi)

= l(x(k), u(k),w(k))+ J (x(k + 1), u,w), (8.114)

where Q≥ 0 has suitable dimension, γ is a prescribed fixed value, and l(x(k), u(k),
w(k)) = yT(k)Qy(k) + uT(k)u(k) − γ 2wT(k)w(k) is the utility function. For the
above zero-sum games, two control variables u and w are chosen, respectively,
by player I and player II, where player I tries to minimize the cost functional

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 333

V (x(k), u,w), while player II tries to maximize it. The following assumptions are
needed; these are in effect in the remaining sections.

Assumption 8.13 The system (8.113) is controllable and observable under the con-
trol variables u and w.

Assumption 8.14 The order of the system and an upper bound on its “observable
index” are known.

Assumption 8.15 There exists a unique saddle point of the zero-sum games for the
system (8.113).

According to Assumption 8.15 and using the dynamic programming principle,
the optimal value function can be expressed as

J ∗(x(k))= min
u

max
w

(l(x(k), u(k),w(k))+ J ∗(x(k + 1), u,w))

= max
w

min
u
(l(x(k), u(k),w(k))+ J ∗(x(k + 1), u,w)). (8.115)

Because the system (8.113) is linear, there exists a matrix P that satisfies

J ∗(x(k))= xT(k)Px(k), (8.116)

where P ≥ 0 is the solution of following generalized algebraic Riccati equation
(GARE):

P =ATPA+CTQC − [ATPB ATPE]

×
[
I +BTPB BTPE

ETPB ETPE − γ 2I

]−1 [
BTPA

ETPA

]
. (8.117)

The optimal control u∗(k) and w∗(k) can be derived as

u∗(k)= −(I +BTPB −BTPE(ETPE − γ 2I)−1ETPB)−1

× (BTPA−BTPE(ETPE − γ 2I)−1ETPA)x(k), (8.118)

w∗(k)= −(ETPE − γ 2I −ETPB(I +BTPB)−1BTPE)−1

× (ETPA−ETPB(I +BTPB)−1BTPA)x(k). (8.119)

For obtaining the unique feedback saddle point in the strictly feedback stabilizing
control policy class, the following inequalities should be satisfied [7]:

I +BTT PB > 0, (8.120)

ETPE − γ 2I > 0. (8.121)

334 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

From (8.117)–(8.119), we see that the system model is needed not only for
solving the GARE equation, but also for computing the optimal controls u∗(k)
and w∗(k). To circumvent this requirement, [5] proposed the optimal strategies for
discrete-time linear system quadratic zero-sum games without knowing the system
dynamical matrices by using the Q-learning method under the assumption that all
the states of the plant are available for feedback. Next, we propose a novel data-
based optimal output feedback control scheme via the ADP algorithm, in which
neither the system model nor the system states are needed.

8.3.2 Data-Based Optimal Output Feedback Control via ADP
Algorithm

Inspired by the works in [1], according to Assumptions 8.13 and 8.14, the dynamics
can be rewritten on a time horizon [k −N,k] as the expanded state equation

x(k)=ANx(k −N)+UNūk−1,k−N + FNw̄k−1,k−N, (8.122)

ȳk−1,k−N = VNx(k −N)+ TN ūk−1,k−N +GNw̄k−1,k−N, (8.123)

where

ūk−1,k−N = [u(k − 1) u(k − 2) . . . u(k −N)]T ∈R
m1N,

w̄k−1,k−N = [w(k − 1) w(k − 2) . . . w(k −N)]T ∈R
m2N,

ȳk−1,k−N = [
y(k − 1) y(k − 2) . . . y(k −N)

]T ∈ R
pN,

VN =
[
CAN−1 . . . CA C

]T
,

UN =
[
B AB A2B . . . AN−1B

]
,

FN =
[
E AE A2E . . . AN−1E

]
,

TN =

⎡

⎢⎢⎢⎢⎢⎣

0 CB CAB . . . CAN−2B

0 0 CB . . . CAN−3B
...

...
. . .

. . .
...

0 0 CB

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

GN =

⎡

⎢⎢⎢⎢⎢⎣

0 CE CAE . . . CAN−2E

0 0 CE . . . CAN−3E
...

...
. . .

. . .
...

0 0 CE

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
. (8.124)

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 335

Since the system (8.113) is observable under the control variables u and w, there
exists a upper bound on the observability index K , such that rank(VN) < n for
N < K and rank(VN) = n for N > K . Choose N > K ; we have rank(VN) = n.
Then, there exists a matrix M ∈ R

n×pN such that

AN =MVN. (8.125)

Since rank(VN)= n, its left inverse is given as

V +
N = (V T

NVN)
−1V T

N. (8.126)

Then M can be rearranged as the sum of two parts,

M =ANV +
N +Z(I − VNV

+
N)≡M0 +M1, (8.127)

for any matrix Z, with M0 denoting the minimum norm operator and P(R⊥)(VN)=
I − VNV

+
N being the projection onto a range perpendicular to VN .

Theorem 8.16 (cf. [10]) Using Assumption 8.14, the system state x(k) is given
uniquely in terms of the measured input–output data sequences ȳk−1,k−N , ūk−1,k−N ,
and w̄k−1,k−N by

x(k)=M0ȳk−1,k−N + (UN −M0TN)ūk−1,k−N

+ (FN −M0GN)w̄k−1,k−N

=Myȳk−1,k−N +Muūk−1,k−N +Mww̄k−1,k−N, (8.128)

where My =M0, Mu =UN −M0TN , and Mw = FN −M0GN .

Proof Multiplying x(k −N) by both sides of (8.123), and using (8.125), we have

ANx(k −N)=MVNx(k −N)

=Mȳk−1,k−N −MTNūk−1,k−N −MGNw̄k−1,k−N. (8.129)

Then, using (8.127), we have

(M0 +M1)VNx(k −N)= (M0 +M1)ȳk−1,k−N − (M0 +M1)TN ūk−1,k−N

− (M0 +M1)GNw̄k−1,k−N . (8.130)

Since M1VN = 0, we have

MVNx(k −N)=M0VNx(k −N). (8.131)

Multiplying both sides of (8.123), we have

0 =M1ȳk−1,k−N −M1TN ūk−1,k−N −M1GNwk−1,k−N

∀M1 s.t. M1VN = 0. (8.132)

336 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Then, using (8.129)–(8.132), we have

ANx(k −N)=M0VNx(k −N)

=M0ȳk−1,k−N −M0TN ūk−1,k−N −M0GNw̄k−1,k−N . (8.133)

From (8.122), it follows that

x(k)=M0ȳk−1,k−N + (UN −M0TN)ūk−1,k−N

+ (FN −M0GN)w̄k−1,k−N

=Myȳk−1,k−N +Muūk−1,k−N +Mww̄k−1,k−N. (8.134)

This completes the proof. �

Remark 8.17 From (8.134), we see that the state variable is completely eliminated
from the right-hand side of (8.113). That is, x(k) can be reconstructed by the avail-
able measured input–output data sequence ȳk−1,k−N , ūk−1,k−N , and w̄k−1,k−N .

Next, we will derive the optimal controls u∗ and w∗ by using the available mea-
surable input–output data.

Define

z̄k−1,k−N =
⎡

⎣
ūk−1,k−N

w̄k−1,k−N

ȳk−1,k−N

⎤

⎦ . (8.135)

We have

V (x(k), u,w)= x(k)TPx(k)

= z̄T
k−1,k−N

⎡

⎢⎣
MT

u

MT
w

MT
y

⎤

⎥⎦P [Mu Mw My]z̄k−1,k−N

= z̄T
k−1,k−N

⎡

⎢⎣
MT

u PMu M
T
u PMw MT

u PMy

MT
wPMu M

T
wPMw MT

wPMy

MT
y PMu M

T
y PMw MT

y PMy

⎤

⎥⎦ z̄k−1,k−N

= z̄T
k−1,k−NP̄ z̄k−1,k−N, (8.136)

where z̄ ∈R
(m1+m2+p)N and P̄ ∈R

(m1+m2+p)N×(m1+m2+p)N .
By rewriting (8.115) and using (8.134), we have

(u∗(k),w∗(k))= arg min
u

max
w

{
yT(k)Qy(k)+ uT(k)u(k)− γ 2wT(k)w(k)

+ z̄T
k,k−N+1P̄ z̄k,k−N+1

}
. (8.137)

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 337

Partition z̄T
k,k−N+1P̄ z̄k,k−N+1 as

z̄T
k,k−N+1P̄ z̄k,k−N+1

=

⎡

⎢⎢⎢⎢⎣

u(k)

ūk−1,k−N+1
w(k)

w̄k−1,k−N+1
ȳk,k−N+1

⎤

⎥⎥⎥⎥⎦

T⎡

⎢⎢⎢⎢⎣

Puu Puū Puw Puw̄ Puȳ
Pūu Pūū Pūw Pūw̄ Pūȳ
Pwu Pwū Pww Pww̄ Pwȳ
Pw̄u Pw̄ū Pw̄w Pw̄w̄ Pw̄ȳ
Pȳu Pȳū Pȳw Pȳw̄ Pȳȳ

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

u(k)

ūk−1,k−N+1
w(k)

w̄k−1,k−N+1
ȳk,k−N+1

⎤

⎥⎥⎥⎥⎦
. (8.138)

Then differentiating with respect to u(k) to perform the minimization in (8.137)
yields

u(k)= −(I + Puu)
−1(Puūūk−1,k−N+1 + Puww(k)

+ Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1). (8.139)

Similarly, differentiating with respect to w(k) to perform the maximization in
(8.137) yields

w(k)= −(Pww − γ 2I)(Pwuu(k)+ Pwūūk−1,k−N+1

+ Pww̄w̄k−1,k−N+1 + Pwȳȳk,k−N+1). (8.140)

Thus, substitute (8.140) into (8.139), and u∗(k) can be derived as

u∗(k)= −(I + Puu − Puw(Pww − γ 2I)Pwu)
−1[−Puw(Pww − γ 2I)−1

× (Pwūūk−1,k−N+1 + Pww̄w̄k−1,k−N+1 + Pwȳȳk,k−N+1)

+ Puūūk−1,k−N+1 + Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1]. (8.141)

Similarly, substitute (8.139) into (8.140), and w∗(k) can be derived as

w∗(k)= −(Pww − γ 2I − Pwu(I + Puu)
−1Puw)

−1[−Pwu(R + Puu)
−1

× (Puūūk−1,k−N+1 + Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1)

+ Pwūūk−1,k−N+1 + Pww̄w̄k−1,k−N+1 + Pwȳ ȳk,k−N+1]. (8.142)

Comparing (8.118)–(8.119) with (8.141)–(8.142), it is important to note that the
optimal control u∗ and w∗ expressed by (8.141)–(8.142) can be obtained if P̄ can be
solved. Neither knowledge of the system dynamics A, B , E, and C, nor information
of the measurable state x(k) is needed.

In the following, the uniqueness of the optimal control is discussed.

Theorem 8.18 (cf. [10]) The optimal controls generated by (8.141) and (8.142)
are independent of M1 and depend only on M0. Moreover, (8.141) and (8.142) are
equivalent to

338 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

u∗(k)= −(I +BTPB −BTPE(ETPE − γ 2I)−1ETPB)−1

× [− Puw(Pww − γ 2I)−1

× (Pwūūk−1,k−N+1 + Pww̄w̄k−1,k−N+1 + Pwȳȳk,k−N+1)

+ Puūūk−1,k−N+1 + Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1
]
, (8.143)

w∗(k)= −[ETPE − γ 2I −ETPB(I +BTPB)−1BTPE]−1

× [− Pwu(I + Puu)
−1

× (Puūūk−1,k−N+1 + Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1)

+ Pwūūk−1,k−N+1 + Pww̄w̄k−1,k−N+1 + Pwȳȳk,k−N+1
]
, (8.144)

where Pwū, Pww̄ , Pwȳ , Puū, Puw̄ , and Puȳ depend only on M0.

Proof Rewrite (8.139) as

0 = u(k)+ Puuu(k)+ Puūūk−1,k−N+1 + Puww(k)

+ Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1

= u(k)+ [Puu Puū |Puw Puw̄ |Puȳ]
⎡

⎣
ūk,k−N+1
w̄k,k−N+1
ȳk,k−N+1

⎤

⎦ . (8.145)

According to (8.136) and (8.138), we have

[Puu Puū] = [Im1 0]MT
u PMu,

[Puw Puw̄] = [Im1 0]MT
u PMw,

Puȳ = [Im1 0]MT
u PMy. (8.146)

After substituting (8.146) into (8.145), we have

0 = u(k)+ [Puu Puū |Puw Puw̄ |Puȳ]
⎡

⎣
ūk,k−N+1
w̄k,k−N+1
ȳk,k−N+1

⎤

⎦

= u(k)+ [Im1 0]MT
u P

× [Muūk,k−N+1 +Mww̄k,k−N+1 +Myȳk,k−N+1]
= u(k)+ [Im1 0]MT

u P

× [M0ȳk−1,k−N + (UN −M0TN)ūk−1,k−N

+ (FN −M0GN)w̄k−1,k−N]. (8.147)

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 339

According to Theorem 8.16, (8.147) is unique and independent of M1. Using the
structure of UN , TN , FN , and GN , it follows that

Mu

[
Im1

0

]
= (UN −M0TN)

[
Im1

0

]
= B, (8.148)

Mw

[
Im2

0

]
= (FN −M0GN)

[
Im2

0

]
=E. (8.149)

Then,

Puu = [Im1 0]MT
u PMu

[
Im1

0

]
= BTPB, (8.150)

Puw = [Im1 0]MT
u PMw

[
Im2

0

]
= BTPE, (8.151)

Pwu = [Im2 0]MT
wPMu

[
Im1

0

]
=ETPB. (8.152)

Substituting (8.150)–(8.152) to (8.139), we obtain

u(k)= −(I +BTPB)−1(Puūūk−1,k−N+1 +BTPEw(k)

+ Puw̄w̄k−1,k−N+1 + Puȳ ȳk,k−N+1). (8.153)

Similarly, we obtain

w(k)= −(ETPE − γ 2I)(ETPBu(k)+ Pwūūk−1,k−N+1

+ Pww̄w̄k−1,k−N+1 + Pwȳ ȳk,k−N+1). (8.154)

Then, substituting (8.154) into (8.153), we have (8.143). By a similar method,
(8.144) can also be obtained.

This completes the proof. �

Although we have obtained the optimal control expressed in (8.141)–(8.142) with
the information of the matrix P̄ , it is not straightforward to solve P̄ in most cases.
Therefore, next we propose the data-based iterative ADP algorithm for zero-sum
games of (8.113).

First, the initial value of P̄ is set as P̄0 = 0, which is not necessarily optimal.
Then, for i = 0,1, . . . , the matrix P̄i associated with the cost function

Vi(x(k), u,w) and control policy ui(k) and wi(k) can be updated by implementing
the iteration between

z̄T
k−1,k−NP̄i+1z̄k−1,k−N = yT(k)Qy(k)+ uT

i (k)ui(k)− γ 2wT
i (k)wi(k)

+ z̄T
k,k−NP̄i z̄k,k−N, (8.155)

340 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

and

ui+1(k)= −(I + P [i+1]
uu + P [i+1]

uw (P [i+1]
ww − γ 2I)P [i+1]

wu)−1

× [− P [i+1]
uw (P [i+1]

ww − γ 2I)−1(P
[i+1]
wū ūk−1,k−N+1

+ P
[i+1]
ww̄ w̄k−1,k−N+1 + P

[i+1]
wȳ ȳk,k−N+1)

+ P
[i+1]
uū ūk−1,k−N+1 + P

[i+1]
uw̄ w̄k−1,k−N+1

+ P
[i+1]
uȳ ȳk,k−N+1

]
, (8.156)

wi+1(k)= −(P [i+1]
wu − γ 2I − P [i+1]

wu (I + P [i+1]
uu)−1P [i+1]

uw)−1

× [− P [i+1]
wu (I + P [i+1]

uu)−1(P
[i+1]
uū ūk−1,k−N+1

+ P
[i+1]
uw̄ w̄k−1,k−N+1 + P

[i+1]
uȳ ȳk,k−N+1)

+ P
[i+1]
wū ūk−1,k−N+1 + P

[i+1]
ww̄ w̄k−1,k−N+1

+ P
[i+1]
wȳ ȳk,k−N+1

]
(8.157)

until convergence.
In the following, we discuss the implementation of the present data-based itera-

tive ADP algorithm. Rewrite (8.155) as

stk(P̄i+1)[z̄k−1,k−N ⊗ z̄k−1,k−N] = yT(k)Qy(k)+ uT
i (k)ui(k)− γ 2wT

i (k)wi(k)

+ z̄k,k−N+1P̄i z̄k,k−N+1 (8.158)

with ⊗ being the Kronecker product and stk(·) being the column stacking operator.
Thus we obtain

stk(P̄i+1)= ((z̄k−1,k−N ⊗ z̄k−1,k−N)(z̄k−1,k−N ⊗ z̄k−1,k−N)
T)−1

× (z̄k−1,k−N ⊗ z̄k−1,k−N)
[
yT(k)Qy(k)+ uT

i (k)ui(k)

− γ 2wT
i (k)wi(k)+ z̄k,k−N+1P̄i z̄k,k−N+1

]
. (8.159)

Remark 8.19 It should be noted that the matrix (z̄k−1,k−N ⊗ z̄k−1,k−N)(z̄k−1,k−N ⊗
z̄k−1,k−N)

T) is generally invertible. To address this problem, we use the least-square
technique to obtain the inverse of the matrix (z̄k−1,k−N ⊗ z̄k−1,k−N)(z̄k−1,k−N ⊗
z̄k−1,k−N)

T).

To implement the least-square technique, probing noise is added into the u(k)

and w(k), i.e., û(k)= u(k)+ ξ1, ŵ(k)= w(k)+ ξ2, respectively. According to the
condition of the least-square solution, the number of sampling points should be not
less than [(m1 +m2 +p)N][(m1 +m2 +p)N +1]/2. The least-square problem can
be solved in real time by collecting enough data points.

8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP 341

Remark 8.20 It should be noted that what we need to know is the measurements of
the current utility,

r(x(k), u,w)= yT(k)Qy(k)+ uT(k)u(k)− γ 2wT(k)w(k),

and the available measured input–output data sequence ūk−1,k−N , w̄k−1,k−N , and
ȳk,k−N . The exact system model and full information regarding the system state
x(k) are not needed. The control policy given by (8.141)–(8.142) is actually a dy-
namic autoregressive moving-average (ARMA) regulator in terms of the past input
and the current and past output.

8.3.3 Simulations

Example 8.21 Consider the discrete-time system as follows:

x(k + 1)=
[

1.1 −0.3
1 0

]
x(k)+

[
1
0

]
u(k)+

[
0
1

]
w(k),

y(k)=
[

1
−0.8

]
x(k), (8.160)

where Q in the cost functional is the identity matrix of appropriate dimension and
γ is chosen as 0.2. The solution of the GARE equation (8.117) is

P =
[

0.9925 −0.7932
−0.7932 0.6335

]
. (8.161)

From (8.136), we have

P̄ =
⎡

⎢⎣
MT

u PMu MT
u PMw MT

u PMy

MT
wPMu MT

wPMw MT
wPMy

MT
y PMu MT

y PMw MT
y PMy

⎤

⎥⎦ . (8.162)

Then P̄ can be calculated using (8.134) as follows:

P̄ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1.5598 −1.4724 −0.2538 0.2135 1.9193 −0.5522
−1.4724 0.8120 0.2287 −0.1177 −1.2881 0.3045
−0.2538 0.2287 0.0411 −0.0332 −0.3025 0.0858

0.2135 −0.1177 −0.0332 0.0171 0.1868 −0.0442
1.9193 −1.2881 −0.3025 0.1868 1.8871 −0.4830

−0.5522 0.3045 0.0858 −0.0442 −0.4830 0.1142

⎤

⎥⎥⎥⎥⎥⎥⎦
. (8.163)

Next, the present data-based iterative ADP algorithm is applied for the system
(8.160). In order to implement the least-square technique, probing noise is added to

342 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

Fig. 8.7 The convergence of Pij where Pij denotes the element on col i, row j of the estimated
P̄ , i = 1, j = 1, . . . ,6

Fig. 8.8 The convergence of Pij where Pij denotes the element on col i, row j of the estimated
P̄ , i = 3, j = 1, . . . ,6

the control input u and w. In Figs. 8.7 and 8.8, the convergence of the estimated P̄

to the optimal one is shown. The system state trajectories are shown in Fig. 8.9. By
the simulation results, the effectiveness of the present method is validated.

8.4 Summary 343

Fig. 8.9 The trajectories of system states

8.4 Summary

We studied the zero-sum games for discrete-time systems based on the model-free
ADP method in this chapter. In Sect. 8.2, an effective data-based optimal control
scheme was developed via the iterative ADP algorithm to find the optimal con-
troller of a class of discrete-time zero-sum games for Roesser type 2-D systems.
The present method allows implementation without the system model. In Sect. 8.2,
a data-based optimal output feedback controller was developed for solving the zero-
sum games of a class of discrete-time systems, whose merit is that not only knowl-
edge of system model is not required, but also information of the system states is
not. The theoretical analysis and simulation study showed the validity of the present
methods.

References

1. Aangenent W, Kostic D, de Jager B, Van de Molengraft R, Steinbuch M (2005) Data-based
optimal control. In: Proceedings of American control conference, Portland, pp 1460–1465

2. Abu-Khalaf M, Lewis FL (2008) Neurodynamic programming and zero-sum games for con-
strained control systems. IEEE Trans Neural Netw 19:1243–1252

3. Abu-Khalaf M, Lewis FL, Huang J (2006) Policy iterations on the Hamilton–Jacobi–Isaacs
equation for H∞ state feedback control with input saturation. IEEE Trans Autom Control
51:1989–1995

4. Al-Tamimi A, Abu-Khalaf M, Lewis FL (2007) Adaptive critic designs for discrete-time zero-
sum games with application to H∞ control. IEEE Trans Syst Man Cybern, Part B, Cybern
37:240–247

344 8 Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP

5. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free q-learning designs for linear
discrete-time zero-sum games with application to H∞ control. Automatica 43:473–481

6. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear
discrete-time zero-sum games with application to H-infinity control. Automatica 43:473–481

7. Basar T, Bernhard P (1995) H∞ optimal control and related minimax design problems.
Birkhauser, Basel

8. Basar T, Olsder GJ (1982) Dynamic noncooperative game theory. Academic Press, New York
9. Bertsekas DP (2003) Convex analysis and optimization. Athena Scientific, Boston

10. Cui LL, Zhang HG, Zhang X, Luo YH (2011) Adaptive critic design based output feedback
control for discrete-time zero-sum games. In: Proceedings of IEEE symposium on adaptive
dynamic programming and reinforcement learning, France, pp 190–195

11. Hua X, Mizukami K (1994) Linear-quadratic zero-sum differential games for generalized state
space systems. IEEE Trans Autom Control 39:143–147

12. Li CJ, Fadali MS (1991) Optimal control of 2-D systems. IEEE Trans Autom Control 36:223–
228

13. Luenberger DG (1969) Optimization by vector space methods. Wiley, New York
14. Tsai JS, Li JS, Shieh LS (2002) Discretized quadratic optimal control for continuous-time

two-dimensional systems. IEEE Trans Circuits Syst I, Fundam Theory Appl 49:116–125
15. Uetake Y (1992) Optimal smoothing for noncausal 2-D systems based on a descriptor model.

IEEE Trans Autom Control 37:1840–1845
16. Wei QL, Zhang HG, Cui LL (2009) Data-based optimal control for discrete-time zero-sum

games of 2-D systems using adaptive critic designs. Acta Autom Sin 35:682–692

Chapter 9
Nonlinear Games for a Class
of Continuous-Time Systems Based on ADP

9.1 Introduction

Game theory is concerned with the study of decision making in situations where
two or more rational opponents are involved under conditions of conflicting inter-
ests. This has been widely investigated by many authors [5, 7, 8, 12, 13]. Though
the nonlinear optimal solution in term of Hamilton–Jacobi–Bellman equation is
hard to obtain directly [4], it is still fortunate that there is only one controller or
decision maker. In the previous chapter, we have studied discrete-time zero-sum
games based on the ADP method. In this chapter, we will consider continuous-time
games.

For zero-sum differential games, the existence of the saddle point is proposed
before obtaining the saddle point in much of the literature [1, 6, 11]. In many real
world applications, however, the saddle point of a game may not exist, which means
that we can only obtain the mixed optimal solution of the game. In Sect. 9.2, we will
study how to obtain the saddle point without complex existence conditions of the
saddle point and how to obtain the mixed optimal solution when the saddle point
does not exist based on the ADP method for a class of affine nonlinear zero-sum
games. Note that many applications of practical zero-sum games have nonaffine
control input. In Sect. 9.3, we will focus on finite horizon zero-sum games for a
class of nonaffine nonlinear systems.

The non-zero-sum differential games theory also has a number of potential ap-
plications in control engineering, economics and the military field [9]. For zero-sum
differential games, two players work on a cost functional together and minimax it.
However, for non-zero-sum games, the control objective is to find a set of policies
that guarantee the stability of the system and minimize the individual performance
function to yield a Nash equilibrium. In Sect. 9.4, non-zero-sum differential games
will be studied using a single network ADP.

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_9,
© Springer-Verlag London 2013

345

http://dx.doi.org/10.1007/978-1-4471-4757-2_9

346 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine
Nonlinear Systems

In this section, the nonlinear infinite horizon zero-sum differential games is studied.
We propose a new iterative ADP method which is effective for both the situation
that the saddle point does and does not exist. For the situation that the saddle point
exists, the existence conditions of the saddle point are avoided. The value function
can reach the saddle point using the present iterative ADP method. For the situation
that the saddle point does not exist, the mixed optimal value function is obtained
under a deterministic mixed optimal control scheme, using the present iterative ADP
algorithm.

9.2.1 Problem Formulation

Consider the following two-person zero-sum differential games. The system is de-
scribed by the continuous-time affine nonlinear equation

ẋ(t)= f (x(t), u(t),w(t))= f (x(t))+ g(x(t))u(t)+ k(x(t))w(t), (9.1)

where x(t) ∈R
n, u(t) ∈R

k , w(t) ∈ R
m, and the initial condition x(0)= x0 is given.

The cost functional is the generalized quadratic form given by

J (x(0), u,w)=
∫ ∞

0
l(x, u,w)dt, (9.2)

where l(x, u,w) = xTAx + uTBu + wTCw + 2uTDw + 2xTEu + 2xTFw. The
matrices A, B , C, D, E, and F have suitable dimensions and A ≥ 0, B > 0,
and C < 0. According to the situation of two players we have the following
definitions. Let J (x) := infu supw J (x,u,w) be the upper value function and
J (x) := supw infu J (x,u,w) be the lower value function with the obvious inequal-
ity J (x) ≥ J (x). Define the optimal control pairs to be (u,w) and (u,w) for up-
per and lower value functions, respectively. Then, we have J (x) = J (x,u,w) and
J (x)= J (x,u,w).

If both J (x) and J (x) exist and

J (x)= J (x)= J ∗(x) (9.3)

holds, we say that the saddle point exists and the corresponding optimal control pair
is denoted by (u∗,w∗).

We have the following lemma.

Lemma 9.1 If the nonlinear system (9.1) is controllable and both the upper value
function and lower value function exist, then J (x) is a solution of the following

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 347

upper Hamilton–Jacobi–Isaacs (HJI) equation:

inf
u

sup
w

{J t + J
T
xf (x,u,w)+ l(x, u,w)} = 0, (9.4)

which is denoted by HJI(J (x),u,w) = 0 and J (x) is a solution of the following
lower HJI equation:

sup
w

inf
u

{J t + J T
xf (x,u,w)+ l(x, u,w)} = 0, (9.5)

which is denoted by HJI(J (x),u,w)= 0.

9.2.2 Zero-Sum Differential Games Based on Iterative ADP
Algorithm

As the HJI equations (9.4) and (9.5) cannot be solved in general, in the following,
a new iterative ADP method for zero-sum differential games is developed.

9.2.2.1 Derivation of the Iterative ADP Method

The goal of the present iterative ADP method is to obtain the saddle point. As the
saddle point may not exist, this motivates us to obtain the mixed optimal value
function J o(x) where J (x)≤ J o(x)≤ J (x).

Theorem 9.2 (cf. [15]) Let (u,w) be the optimal control pair for J (x) and (u,w)

be the optimal control pair for J (x). Then, there exist control pairs (u,w) and
(u,w) which lead to J o(x) = J (x,u,w) = J (x,u,w). Furthermore, if the saddle
point exists, then J o(x)= J ∗(x).

Proof According to the definition of J (x), we have J (x,u,w) ≤ J (x,u,w). As
J o(x) is a mixed optimal value function, we also have J o(x) ≤ J (x,u,w). As
the system (9.1) is controllable and w is continuous on R

m, there exists a con-
trol pair (u,w) which makes J o(x) = J (x,u,w). On the other hand, we have
J o(x) ≥ J (x,u,w). We also have J (x,u,w) ≥ J (x,u,w). As u is continuous
on R

k , there exists a control pair (u,w) which makes J o(x) = J (x,u,w). If the
saddle point exists, we have (9.3). On the other hand, J (x)≤ J o(x)≤ J (x). Then,
clearly J o(x)= J ∗(x). �

If (9.3) holds, we have a saddle point; if not, we adopt a mixed trajectory to obtain
the mixed optimal solution of the game. To apply the mixed trajectory method, the
game matrix is necessary under the trajectory sets of the control pair (u,w). Small
Gaussian noises γu ∈ Rk and γw ∈ Rm are introduced that are added to the optimal

348 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

control u and w, respectively, where γ iu(0, σ
2
i), i = 1, . . . , k, and γ

j
w(0, σ 2

j), j =
1, . . . ,m, are zero-mean Gaussian noises with variances σ 2

i and σ 2
j , respectively.

We define the expected value function as
E(J (x)) = minPIi maxPIIj

∑2
i=1

∑2
j=1 PIiLijPIIj , where we let L11 =

J (x,u,w), L12 = J (x, (u + γu),w), L21 = J (x,u,w) and L22 = J (x,u,

(w + γw)). Let
∑2

i=1 PIi = 1 and PIi > 0. Let
∑2

j=1 PIIj = 1 and PIIj > 0. Next,
let N be a large enough positive integer. Calculating the expected value function N

times, we can obtain E1(J (x)),E2(J (x)), . . . ,EN(J (x)). Then, the mixed optimal
value function can be written as

J o(x)=E(Ei(J (x)))= 1

N

N∑

i=1

Ei(J (x)).

Remark 9.3 In the classical mixed trajectory method, the whole control sets R
k

and R
m should be searched under some distribution functions. As there are no con-

straints for both controls, we see that there exist controls that cause the system to be
unstable. This is not permitted for real-world control systems. Thus, it is impossible
to search the whole control sets and we can only search the local area around the
stable controls which guarantees stability of the system. This is the reason why the
small Gaussian noises γu and γw are introduced. So the meaning of the Gaussian
noises can be seen in terms of the local stable area of the control pairs. A proposi-
tion will be given to show that the control pair chosen in the local area is stable (see
Proposition 9.14). Similar work can also be found in [3, 14].

We can see that the mixed optimal solution is a mathematically expected
value which means that it cannot be obtained in reality once the trajectories
are determined. For most practical optimal control problems, however, the ex-
pected optimal solution (or mixed optimal solution) has to be achieved. To
overcome this difficulty, a new method is developed in this section. Let α =
(J o(x)− J (x))/(J (x)− J (x)). Then, J o(x) can be written as J o(x) = αJ (x) +
(1 − α)J (x). Let lo(x,u,w,u,w) = αl(x,u,w) + (1 − α)l(x,u,w). We have
J o(x(0)) = ∫∞

0 lodt . According to Theorem 9.2, the mixed optimal control pair
can be obtained by regulating the control w in the control pair (u,w) that mini-
mizes the error between J (x) and J o(x) where the value function J (x) is defined
as J (x(0))= J (x(0), u,w)= ∫∞

0 l(x, u,w)dt and J (x(0))≤ J (x(0))≤ J (x(0)).
Define J̃ (x(0))= ∫∞

0 l̃(x,w)dx, where l̃(x,w)= l(x, u,w)− lo(x,u,w,u,w).
Then, the problem can be described as minw(J̃ (x))2.

According to the principle of optimality, when J̃ (x) ≥ 0 we have the following
HJB equation:

HJB(J̃ (x),w) := min
w

{J̃t (x)+ J̃xf (x,u,w)+ l̃(x,w)} = 0. (9.6)

For J̃ (x) < 0, we have −J̃ (x) = −(J (x)− J o(x)) > 0, and we can obtain the
same HJB equation as (9.6).

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 349

9.2.2.2 The Iterative ADP Algorithm

Given the above preparation, we now formulate the iterative ADP algorithm for
zero-sum differential games as follows:

1. Initialize the algorithm with a stabilizing control pair (u[0],w[0]), and the value
function is V [0]. Choose the computation precision ζ > 0. Set i = 0.

2. For the upper value function, let

V
[i]
(x(0))=

∫ ∞

0
l(x, u[i+1],w[i+1])dt, (9.7)

where the iterative optimal control pair is formulated as

u[i+1] = − 1

2
(B −DC−1DT)−1(2(kT −DC−1F T)x

+ (gT(x)−DC−1kT(x))V
[i]
x

)
, (9.8)

and

w[i+1] = −1

2
C−1(2DTu[i+1] + 2F Tx + kT(x)V

[i]
x

)
. (9.9)

(u[i],w[i]) satisfies the HJI equation HJI(V
[i]
(x), u[i],w[i]) = 0, and V

[i]
x =

dV
[i]
(x)/dx.

3. If |V [i+1]
(x(0))− V

[i]
(x(0))|< ζ , let u= u[i], w =w[i] and J (x)= V

[i+1]
(x).

Set i = 0 and go to Step 4. Else, set i = i + 1 and go to Step 2.
4. For the lower value function, let

V [i](x(0))=
∫ ∞

0
l(x, u[i+1],w[i+1])dt, (9.10)

where the iterative optimal control pair is formulated as

u[i+1] = −1

2
g−1(2Dw[i+1] + 2kTx + gT(x)V [i]

x), (9.11)

and

w[i+1] = − 1

2
(C −DTBD)−1(2(F T −DTg−1E)x

+ (kT(x)−DTg−1gT(x))V [i]
x). (9.12)

(u[i],w[i]) satisfies the HJI equation HJI(V [i](x), u[i],w[i]) = 0, and V [i]
x =

dV [i](x)/dx.
5. If |V [i+1](x(0))− V [i](x(0))|< ζ , let u= u[i], w =w[i] and J (x)= V [i+1](x).

Set i = 0 and go to Step 6. Else, set i = i + 1 and go to Step 4.
6. If |J (x(0))− J (x(0))|< ζ , stop, and the saddle point is achieved. Else set i = 0

and go to the next step.

350 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

7. Regulate the control w for the upper value function and let

J̃ [i+1](x(0))= V [i+1](x(0))− J o(x(0)) (9.13)

=
∫ ∞

0
l̃(x, u,w[i])dt.

The iterative optimal control is formulated as

w[i] = −1

2
C−1(2DTu+ 2F Tx + kT(x)Ṽ [i+1]

x), (9.14)

where Ṽ [i]
x = dṼ [i](x)/dx.

8. If |V [i+1](x(0))− J o(x(0))|< ζ , stop. Else, set i = i + 1 and go to Step 7.

9.2.2.3 Properties of the Iterative ADP Algorithm

In this part, some results are presented to show the stability and convergence of the
present iterative ADP algorithm.

Theorem 9.4 (cf. [15]) If for ∀i ≥ 0, HJI(V
[i]
(x), u[i],w[i])= 0 holds, and for ∀t ,

l(x,u[i],w[i]) ≥ 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Proof According to (9.7), for ∀ t , taking the derivative of V
[i]
(x), we have

dV
[i]
(x)

dt
= V

[i]T
x

(
f (x)+ g(x)u[i+1] + k(x)w[i+1]) . (9.15)

From the HJI equation we have

0 = V
[i]T
x f (x,u[i],w[i])+ l(x, u[i],w[i]). (9.16)

Combining (9.15) and (9.16), we get

dV
[i]
(x)

dt
=V

[i]T
x (g(x)− k(x)C−1DT)(u[i+1] − u[i])

− xTAx − u[i]T(B −DC−1DT)u[i] − 1

4
V

[i]T
x k(x)C−1kT(x)V

[i]
x

− 2xT(E − FC−1DT)u[i+1] + xTFC−1F Tx. (9.17)

According to (9.8) we have

dV
[i]
(x)

dt
= − (u[i+1] − u[i])T(B −DC−1DT)

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 351

× (u[i+1] − u[i])− l(x, u[i+1],w(i+1))

≤0. (9.18)

So, V
[i]
(x) is a Lyapunov function. Let ε > 0 and ‖x(t0)‖< δ(ε). Then, there exist

two functions α(‖x‖) and β(‖x‖) which belong to class K and satisfy

α(ε)≥ β(δ)≥ V
[i]
(x(t0))≥ V

[i]
(x(t))≥ α(‖x‖). (9.19)

Therefore, system (9.1) is asymptotically stable. �

Theorem 9.5 (cf. [15]) If for ∀ i ≥ 0, HJI(V [i](x), u[i],w[i])= 0 holds, and for ∀ t ,
l(x, u[i],w[i]) < 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Corollary 9.6 If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, and for ∀t ,
l(x, u[i],w[i]) ≥ 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

Proof As V [i](x)≤ V
[i]
(x) and l(x, u[i],w[i])≥ 0, we have 0 ≤ V [i](x)≤ V

[i]
(x).

From Theorem 9.4, we know that for ∀t0, there exist two functions α(‖x‖) and
β(‖x‖) which belong to class K and satisfy (9.19).

As V
[i]
(x)→ 0, there exist time instants t1 and t2 (without loss of generality, let

t0 < t1 < t2) that satisfy

V
[i]
(x(t0))≥ V

[i]
(x(t1))≥ V [i](x(t0))≥ V

[i]
(x(t2)). (9.20)

Choose ε1 > 0 that satisfies V [i](x(t0)) ≥ α(ε1) ≥ V
[i]
(x(t2)). Then, there exists

δ1(ε1) > 0 that makes α(ε1)≥ β(δ1)≥ V
[i]
(x(t2)). Then, we obtain

V [i](x(t0))≥ α(ε1)≥ β(δ1)≥ V
[i]
(x(t2))≥ V

[i]
(x(t))≥ V [i](x(t))≥ α(‖x‖).

(9.21)

According to (9.19), we have

α(ε)≥ β(δ)≥ V [i](x(t0))≥ α(ε1)≥ β(δ1)≥ V [i](x(t))≥ α(‖x‖). (9.22)

Since α(‖x‖) belongs to class K, we obtain ‖x‖ ≤ ε.
Therefore, we conclude that the system (9.1) is asymptotically stable. �

Corollary 9.7 If for ∀i ≥ 0, HJI(V
[i]
(x), u[i],w[i]) = 0 holds, and for ∀t ,

l(x,u[i],w[i]) < 0, then the control pairs (u[i],w[i]) make system (9.1) asymptoti-
cally stable.

352 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Theorem 9.8 (cf. [15]) If for ∀i ≥ 0, HJI(V
[i]
(x), u[i],w[i]) = 0 holds, and

l(x,u[i],w[i]) is the utility function, then the control pairs (u[i],w[i]) make system
(9.1) asymptotically stable.

Proof For the time sequence t0 < t1 < t2 < · · · < tm < tm+1 < · · · , without loss of
generality, we assume l(x, u[i],w[i]) ≥ 0 in [t2n, t(2n+1)) and l(x, u[i],w[i]) < 0 in
[t2n+1, t(2(n+1))) where n= 0,1,

Then, for t ∈ [t0, t1) we have l(x, u[i],w[i]) ≥ 0 and
∫ t1
t0
l(x, u[i],w[i])dt ≥ 0.

According to Theorem 9.4, we have ‖x(t0)‖ ≥ ‖x(t)‖ ≥ ‖x(t1)‖.
For t ∈ [t1, t2) we have l(x, u[i],w[i]) < 0 and

∫ t2
t1
l(x, u[i],w[i])dt < 0. Accord-

ing to Corollary 9.7, we have ‖x(t1)‖ > ‖x(t)‖ > ‖x(t2)‖. So we obtain ‖x(t0)‖ ≥
‖x(t)‖> ‖x(t2)‖, for ∀t ∈ [t0, t2).

Using mathematical induction, for ∀t , we have ‖x(t ′)‖ ≤ ‖x(t)‖ where t ′ ∈
[t,∞). So we conclude that the system (9.1) is asymptotically stable, and the proof
is completed. �

Theorem 9.9 (cf. [15]) If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, and

l(x, u[i],w[i]) is the utility function, then the control pairs (u[i],w[i]) make system
(9.1) asymptotically stable.

Next, we will give the convergence proof of the iterative ADP algorithm.

Proposition 9.10 If for ∀i ≥ 0, HJI(V
[i]
(x), u[i],w[i]) = 0 holds, then the control

pairs (u[i],w[i]) make the upper value function V
[i]
(x)→ J̄ (x) as i → ∞.

Proof According to HJI (V
[i]
(x), u[i],w[i]) = 0, we obtain dV

[i+1]
(x)/dt by re-

placing the index “i” by the index “i + 1”:

dV
[i+1]

(x)

dt
= −(xTAx + u(i+1)T(B −DC−1DT)u[i+1]

+ 1

4
V

[i]T
x k(x)C−1kT(x)V

[i]
x + 2xT(E − FC−1DT)u[i+1]

− xTFC−1F Tx). (9.23)

According to (9.18), we obtain

d(V
[i+1]

(x)− V
[i]
(x))

dt
= dV

[i+1]
(x)

dt
− dV

[i]
(x)

dt

= (u[i+1] − u[i])T(B −DC−1DT(u[i+1] − u[i])

> 0. (9.24)

Since the system (9.1) is asymptotically stable, its state trajectories x converge

to zero, and so does V
[i+1]

(x) − V
[i]
(x). Since d(V

[i+1]
(x)− V

[i]
(x))/dt ≥ 0

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 353

on these trajectories, it implies that V
[i+1]

(x) − V
[i]
(x) ≤ 0; that is V

[i+1]
(x) ≤

V
[i]
(x). Thus, V

[i]
(x) is convergent as i → ∞.

Next, we define limi→∞ V
[i]
(x)= V

[∞]
(x).

For ∀i, let w∗ = arg maxw{∫ t̂
t
l(x, u,w)dτ + V

[i]
(x(t̂))}. Then, according to the

principle of optimality, we have

V
[i]
(x)≤ sup

w

{∫ t̂

t

l(x, u,w)dτ + V
[i]
(x(t̂))

}

=
∫ t̂

t

l(x, u,w∗)dτ + V
[i]
(x(t̂)). (9.25)

Since V
[i+1]

(x)≤ V
[i]
(x), we have V

[∞]
(x)≤ ∫ t̂

t
l(x, u,w∗)dτ + V

[i]
(x(t̂)).

Letting i → ∞, we obtain V
[∞]

(x) ≤ ∫ t̂
t
l(x, u,w∗)dτ + V

[∞]
(x(t̂)). So, we

have V
[∞]

(x)≤ infu supw{∫ t̂
t
l(x, u,w)dt + V

[i]
(x(t̂))}.

Let ε > 0 be an arbitrary positive number. Since the upper value function is non-

increasing and convergent, there exists a positive integer i such that V
[i]
(x)− ε ≤

V
[∞]

(x)≤ V
[i]
(x).

Let u∗ = arg minu{
∫ t̂
t
l(x, u,w∗)dτ + V

[i]
(x(t̂))}. Then we get V

[i]
(x) =

∫ t̂
t
l(x, u∗,w∗)dτ + V

[i]
(x(t̂)).

Thus, we have

V
[∞]

(x)≥
∫ t̂

t

l(x, u∗,w∗)dτ + V
[i]
(x(t̂))− ε

≥
∫ t̂

t

l(x, u∗,w∗)dτ + V
[∞]

(x(t̂))− ε (9.26)

= inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
− ε.

Since ε is arbitrary, we have

V
[∞]

(x)≥ inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
.

Therefore, we obtain

V
[∞]

(x)= inf
u

sup
w

{∫ t̂

t

l(x, u,w)dτ + V
[∞]

(x(t̂))

}
.

Let t̂ → ∞, we have

V
[∞]

(x)= inf
u

sup
w

J (x,u,w)= J (x). �

354 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Proposition 9.11 If for ∀i ≥ 0, HJI(V [i](x), u[i],w[i]) = 0 holds, then the control
pairs (u[i],w[i]) make the lower value function V [i](x)→ J (x) as i → ∞.

Theorem 9.12 (cf. [15]) If the saddle point of the zero-sum differential game ex-

ists, then the control pairs (u[i],w[i]) and (u[i],w[i]) make V
[i]
(x) → J ∗(x) and

V [i](x)→ J ∗(x), respectively, as i → ∞.

Proof For the upper value function, according to Proposition 9.10, we have

V
[i]
(x)→ J (x) under the control pairs (u[i],w[i]) as i → ∞. So the optimal control

pair for the upper value function satisfies J (x)= J (x,u,w)= infu supw J (x,u,w).
On the other hand, there exists an optimal control pair (u∗,w∗) making the value

reach the saddle point. According to the property of the saddle point, the optimal
control pair (u∗,w∗) satisfies J ∗(x)= J (x,u∗,w∗)= infu supw J (x,u,w).

So, we have V
[i]
(x) → J ∗(x) under the control pair (u[i],w[i]) as i → ∞.

Similarly, we can derive V [i](x) → J ∗(x) under the control pairs (u[i],w[i]) as
i → ∞. �

Remark 9.13 From the proofs we see that the complex existence conditions of the
saddle point in [1, 2] are not necessary. If the saddle point exists, the iterative value
functions can converge to the saddle point using the present iterative ADP algorithm.

In the following part, we emphasize that when the saddle point does not exist,
the mixed optimal solution can be obtained effectively using the iterative ADP al-
gorithm.

Proposition 9.14 If u ∈ R
k , w[i] ∈ R

m and the utility function is l̃(x,w[i]) =
l(x,u,w[i]) − lo(x,u,w,u,w), and w[i] is expressed in (9.14), then the control
pairs (u,w[i]) make the system (9.1) asymptotically stable.

Proposition 9.15 If u ∈ R
k , w[i] ∈ R

m and for ∀t , the utility function l̃(x,w[i])≥ 0,
then the control pairs (u,w[i]) make Ṽ [i](x) a nonincreasing convergent sequence
as i → ∞.

Proposition 9.16 If u ∈ R
k , w[i] ∈ R

m and for ∀t , the utility function l̃(x,w[i]) < 0,
then the control pairs (u,w[i]) make Ṽ [i](x) a nondecreasing convergent sequence
as i → ∞.

Theorem 9.17 (cf. [15]) If u ∈ R
k , w[i] ∈ R

m, and l̃(x,w[i]) is the utility function,
then the control pairs (u,w[i]) make Ṽ [i](x) convergent as i → ∞.

Proof For the time sequence t0 < t1 < t2 < · · · < tm < tm+1 < · · · , without
loss of generality, we suppose l̃(x,w[i]) ≥ 0 in [t2n, t2n+1) and l̃(x,w[i]) < 0 in
[t2n+1, t2(n+1)), where n= 0,1,

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 355

For t ∈ [t2n, t2n+1) we have l̃(x,w[i]) ≥ 0 and
∫ t1
t0
l̃(x,w[i])dt ≥ 0. Accord-

ing to Proposition 9.15, we have Ṽ [i+1](x) ≤ Ṽ [i](x). For t ∈ [t2n+1, t2(n+1)) we
have l̃(x,w[i]) < 0 and

∫ t2
t1
l̃(x,w[i])dt < 0. According to Proposition 9.16 we have

Ṽ [i+1](x) > Ṽ [i](x). Then, for ∀t0, we have

∥∥∥Ṽ [i+1](x(t0))
∥∥∥=

∥∥∥∥
∫ t1

t0

l̃(x,w[i])dt
∥∥∥∥+

∥∥∥∥
∫ t2

t1

l̃(x,w[i])dt
∥∥∥∥

+ . . .+
∥∥∥∥
∫ t(m+1)

tm

l̃(x,w[i])dt
∥∥∥∥+ . . .

<

∥∥∥Ṽ [i](x(t0))
∥∥∥ . (9.27)

So, Ṽ [i](x) is convergent as i → ∞. �

Theorem 9.18 (cf. [15]) If u ∈ Rk , w[i] ∈ Rm, and l̃(x,w[i]) is the utility function,
then the control pairs (u,w[i]) make V [i](x)→ J o(x) as i → ∞.

Proof It is proved by contradiction. Suppose that the control pair (u,w[i]) makes
the value function V [i](x) converge to J ′(x) and J ′(x) �= J o(x).

According to Theorem 9.17, based on the principle of optimality, as i → ∞ we
have the HJB equation HJB(J̃ (x),w)= 0.

From the assumptions we know that |V [i](x)−J o(x)| �= 0 as i → ∞. From The-
orem 9.5, we know that there exists a control pair (u,w′) that makes J (x,u,w′)=
J o(x), which minimizes the performance index function J̃ (x). According to the
principle of optimality, we also have the HJB equation HJB(J̃ (x),w′)= 0.

It is a contradiction. So the assumption does not hold. Thus, we have V [i](x)→
J o(x) as i → ∞. �

Remark 9.19 For the situation where the saddle point does not exist, the methods
in [1, 2] are all invalid. Using our iterative ADP method, the iterative value function
reaches the mixed optimal value function J o(x) under the deterministic control pair.
Therefore, we emphasize that the present iterative ADP method is more effective.

9.2.3 Simulations

Example 9.20 The dynamics of the benchmark nonlinear plant can be expressed by
system (9.1) where

f (x)=
[
x2

−x1+εx2
4 sinx3

1 − ε2cos2x3
x4

ε cosx3(x1−εx2
4 sinx3)

1 − ε2cos2x3

]T

,

g(x)=
[

0
−ε cosx3

1 − ε2cos2x3
0

1

1 − ε2cos2x3

]T

,

356 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.1 Trajectories of upper and lower value function

k(x)=
[

0
1

1 − ε2cos2x3
0

−ε cosx3

1 − ε2cos2x3

]T

, (9.28)

and ε = 0.2. The initial state is given as x(0) = [1,1,1,1]T. The cost functional is
defined by (9.2) where the utility function is expressed as l(x, u,w)= x2

1 + 0.1x2
2 +

0.1x2
3 + 0.1x2

4 + ‖u‖2 − γ 2‖w‖2 and γ 2 = 10.
Any differential structure can be used to implement the iterative ADP method.

For facilitating the implementation of the algorithm, we choose three-layer neural
networks as the critic networks with the structure of 4–8–1. The structures of the u
and w for the upper value function are 4–8–1 and 5–8–1; while they are 5–8–1 and
4–8–1 for the lower one. The initial weights are all randomly chosen in [−0.1, 0.1].
Then, for each i, the critic network and the action networks are trained for 1000 time
steps so that the given accuracy ζ = 10−6 is reached. Let the learning rate η = 0.01.
The iterative ADP method runs for i = 70 times and the convergence trajectory of
the value function is shown in Fig. 9.1. We can see that the saddle point of the game
exists. Then, we apply the controller to the benchmark system and run for Tf = 60
seconds. The optimal control trajectories are shown in Fig. 9.2. The corresponding
state trajectories are shown in Figs. 9.3 and 9.4, respectively.

Remark 9.21 The simulation results illustrate the effectiveness of the present itera-
tive ADP algorithm. If the saddle point exists, the iterative control pairs (u[i],w[i])
and (u[i],w[i]) can make the iterative value functions reach the saddle point, while
the existence conditions of the saddle point are avoided.

9.2 Infinite Horizon Zero-Sum Games for a Class of Affine Nonlinear Systems 357

Fig. 9.2 Trajectories of the controls

Fig. 9.3 Trajectories of state x1 and x3

Example 9.22 In this example, we just change the utility function to

l(x, u,w)=x2
1 + 0.1x2

2 + 0.1x2
3 + 0.1x2

4 + ‖u‖2 − γ 2‖w‖2 − 0.1uw

+ 0.1xTu+ 0.1xTw,

358 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.4 Trajectories of state x2 and x4

and all other conditions are the same as the ones in Example 9.20. We obtain
J (x(0)) = 0.65297 and J (x(0)) = 0.44713, with trajectories shown in Figs. 9.5(a)
and (b), respectively. Obviously, the saddle point does not exist. Thus, the method
in [1] is invalid. Using the present mixed trajectory method, we choose the Gaus-
sian noises γu(0,0.052) and γw(0,0.052). Let N = 5000 times. The value function
trajectories are shown in Fig. 9.5(c). Then, we obtain the value of the mixed optimal
value function J o(x(0))= 0.55235 and then α = 0.5936. Regulating the control w
to obtain the trajectory of the mixed optimal value function displayed in Fig. 9.5.
The state trajectories are shown in Figs. 9.6(a) and 9.7, respectively. The corre-
sponding control trajectories are shown in Figs. 9.8 and 9.9, respectively.

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear
Systems

In this section, a new iterative approach is derived to solve optimal policies of finite
horizon quadratic zero-sum games for a class of continuous-time nonaffine nonlin-
ear system. Through the iterative algorithm between two sequences, which are a
sequence of state trajectories of linear quadratic zero-sum games and a sequence
of corresponding Riccati differential equations, the optimal policies for nonaffine
nonlinear zero-sum games are given. Under very mild conditions of local Lips-
chitz continuity, the convergence of approximating linear time-varying sequences
is proved.

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 359

Fig. 9.5 Performance index function trajectories. (a) Trajectory of upper value function. (b) Tra-
jectory of lower value function. (c) Performance index functions with disturbances. (d) Trajectory
of the mixed optimal performance index function

Fig. 9.6 Trajectories of state x1 and x3

360 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.7 Trajectories of state x2 and x4

Fig. 9.8 Trajectory of control u

9.3.1 Problem Formulation

Consider a continuous-time nonaffine nonlinear zero-sum game described by the
state equation

ẋ(t)= f (x(t), u(t),w(t)), x(t0)= x0 (9.29)

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 361

Fig. 9.9 Trajectory of control w

with the finite horizon cost functional

J (x0, u,w)= 1

2
xT(tf)F (x(tf))x(tf)

+ 1

2

∫ tf

t0

[
xT(t)Q(x(t))x(t)+ uT(t)R(x(t))u(t)

−wT(t)S(x(t))w(t)
]

dt, (9.30)

where x(t) ∈ R
n is the state, x(t0) ∈ R

n is the initial state, tf is the terminal time,
the control input u(t) takes values in a convex and compact set U ⊂ R

m1 , and w(t)

takes values in a convex and compact set W ⊂ R
m2 . u(t) seeks to minimize the

cost functional J (x0, u,w), while w(t) seeks to maximize it. The state-dependent
weight matrices F(x(t)), Q(x(t)), R(x(t)), S(x(t)) are with suitable dimensions
and F(x(t))≥ 0, Q(x(t))≥ 0, R(x(t)) > 0, S(x(t)) > 0. In this section, x(t), u(t),
and w(t) sometimes are described by x, u, and w for brevity. Our objective is to
find the optimal policies for the above nonaffine nonlinear zero-sum games.

In the nonaffine nonlinear zero-sum game problem, nonlinear functions are im-
plicit function with respect to controller input. It is very hard to obtain the optimal
policies satisfying (9.29) and (9.30). For practical purposes one may just as well be
interested in finding a near-optimal or an approximate optimal policy. Therefore, we
present an iterative algorithm to deal with this problem. Nonaffine nonlinear zero-
sum games are transformed into an equivalent sequence of linear quadratic zero-sum
games which can use the linear quadratic zero-sum game theory directly.

362 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

9.3.2 Finite Horizon Optimal Control of Nonaffine Nonlinear
Zero-Sum Games

Using a factored form to represent the system (9.29), we get

ẋ(t)= f (x(t))x(t)+ g(x(t), u(t))u(t)+ k(x(t),w(t))w(t),

x(t0)= x0, (9.31)

where f : Rn → R
n×n is a nonlinear matrix-valued function of x, g : Rn ×R

m1 →
R
n×m1 is a nonlinear matrix-valued function of both the state x and control input u,

and k : Rn ×R
m2 → R

n×m2 is a nonlinear matrix-valued function of both the state
x and control input w.

We use the following sequence of linear time-varying differential equations to
approximate the state equation (9.31):

ẋi (t)= f (xi−1(t))xi(t)+ g(xi−1(t), ui−1(t))ui(t)+ k(xi−1(t),wi−1(t))wi(t),

xi(t0)= x0, i ≥ 0, (9.32)

with the corresponding cost functional

Vi(x0, u,w)= 1

2
xTi (tf)F (xi−1(tf))xi(tf)

+ 1

2

∫ tf

t0

[
xTi (t)Q(xi−1(t))xi(t)+ uTi (t)R(xi−1(t))ui(t)

−wT
i (t)S(xi−1(t))wi(t)

]
dt, i ≥ 0, (9.33)

where the superscript i represents the iteration index. For the first approxima-
tion, i = 0, we assume that the initial values xi−1(t) = x0, ui−1(t) = 0, and
wi−1(t) = 0. Obviously, for the ith iteration, f (xi−1(t)), g(xi−1(t), ui−1(t)),
k(xi−1(t),wi−1(t)), F(xi−1(tf)), Q(xi−1(t)), R(xi−1(t)), and S(xi−1(t)) are time-
varying functions which do not depend on xi(t), ui(t), and wi(t). Hence, each ap-
proximation problem in (9.32) and (9.33) is a linear quadratic zero-sum game prob-
lem which can be solved by the existing classical linear quadratic zero-sum game
theory.

The corresponding Riccati differential equation of each linear quadratic zero-sum
game can be expressed as

Ṗi(t)= −Q(xi−1(t))− Pi(t)f (xi−1(t))− f T(xi−1(t))Pi(t)

+ Pi(t)
[
g(xi−1(t), ui−1(t))R

−1(xi−1(t))

× gT(xi−1(t), ui−1(t))− k(xi−1(t),wi−1(t))

× S−1(xi−1(t))k
T(x[i−1])(t),wi−1(t))

]
Pi(t),

Pi(tf)=F(xi−1(tf)), i ≥ 0, (9.34)

where Pi ∈R
n×n is a real, symmetric and nonnegative definite matrix.

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 363

Assumption 9.23 It is assumed that S(xi−1(t)) > Ŝ i , where the threshold value
Ŝ i is defined as Ŝ i = inf{Si(t) > 0, and (9.34) does not have a conjugate point on
[0, tf]}.

If Assumption 9.23 is satisfied, the game admits the optimal policies given by

ui(t)= −R−1(xi−1(t))g
T(xi−1(t), ui−1(t))Pi(t)xi(t),

wi(t)= S−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t)xi(t), i ≥ 0, (9.35)

where xi(t) is the corresponding optimal state trajectory, generated by

ẋi (t)=[f (xi−1(t))− g(xi−1(t), ui−1(t))R
−1(xi−1(t))

× gT(xi−1(t), ui−1(t))Pi(t)+ k(xi−1(t),wi−1(t))

× S−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t)

]
xi(t),

xi(t0)=x0. (9.36)

By using the iteration between sequences (9.34) and (9.36) sequently, the limit
of the solution of the approximating sequence (9.32) will converge to the unique so-
lution of system (9.29), and the sequences of optimal policies (9.35) will converge,
too. The convergence of iterative algorithm will be analyzed in the next section. No-
tice that the factored form in (9.31) does not need to be unique. The approximating
linear time-varying sequences will converge whatever the representation of f (x(t)),
g(x(t), u(t)), and k(x(t),w(t)).

Remark 9.24 For the fixed finite interval [t0, tf], if S(xi−1(t)) > Ŝ i , the Riccati dif-
ferential equation (9.34) has a conjugate point on [t0, tf]. It means that Vi(x0, u,w)

is strictly concave in w. Otherwise, since Vi(x0, u,w) is quadratic and R(t) > 0,
F(t) ≥ 0, Q(t) ≥ 0, it follows that Vi(x0, u,w) is strictly convex in u. Hence, for
linear quadratic zero-sum games (9.32) with the performance index function (9.34)
there exists a unique saddle point; they are the optimal policies.

The convergence of the algorithm described above requires the following:

1. The sequence {xi(t)} converges on C([t0, tf];Rn), which means that the limit of
the solution of approximating sequence (9.32) converges to the unique solution
of system (9.29).

2. The sequences of optimal policies {ui(t)} and {wi(t)} converge on C([t0, tf];
R
m1) and C([t0, tf];Rm2), respectively.

For simplicity, the approximating sequence (9.32) is rewritten as

ẋi (t)= f (xi−1(t))xi(t)+G(xi−1(t), ui−1(t))xi(t)+K(xi−1(t),wi−1(t))xi(t),

xi(t0)= x0, i ≥ 0, (9.37)

364 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

where

G(xi−1, ui−1)
Δ= − g(xi−1(t), ui−1(t))R

−1(xi−1(t))
T(xi−1(t), ui−1(t))Pi(t),

K(xi−1,wi−1)
Δ= k(xi−1(t),wi−1(t))S

−1(xi−1(t))k
T(xi−1(t),wi−1(t))Pi(t).

The optimal policies for zero-sum games are rewritten as

ui(t)=M(xi−1(t), ui−1(t))xi(t),

wi(t)=N(xi−1(t),wi−1(t))xi(t), (9.38)

where

M(xi−1, ui−1)
Δ= −R−1(xi−1(t))g

T(xi−1(t), ui−1(t))Pi(t),

N(xi−1,wi−1)
Δ= S−1(xi−1(t))k

T(xi−1(t),wi−1(t))Pi(t).

Assumption 9.25 g(x,u), k(x,w), R−1(x), S−1(x), F(x) and Q(x) are bounded
and Lipschitz continuous in their arguments x, u, and w, thus satisfying:

(C1) ‖g(x,u)‖ ≤ b, ‖k(x,u)‖ ≤ e

(C2) ‖R−1(x)‖ ≤ r , ‖S−1(x)‖ ≤ s

(C3) ‖F(x)‖ ≤ f , ‖Q(x)‖ ≤ q

for ∀x ∈ R
n, ∀u ∈ R

m1 , ∀w ∈ R
m2 , and for finite positive numbers b, e, r , s, f ,

and q .

Define Φi−1(t, t0) as the transition matrix generated by fi−1(t). It is well known
that

‖Φi−1(t, t0)‖ ≤ exp

[∫ t

t0

μ(f (xi−1(τ)))dτ

]
, t ≥ t0, (9.39)

where μ(f) is the measure of matrix f , μ(f) = limh→0+ ‖I+hf ‖−1
h

. We use the
following lemma to get an estimate for Φi−1(t, t0)−Φi−2(t, t0).

The following lemma is relevant for the solution of the Riccati differential equa-
tion (9.34), which is the basis for proving the convergence.

Lemma 9.26 Let Assumption 9.25 hold; the solution of the Riccati differential
equation (9.34) satisfies:

1. Pi(t) is Lipschitz continuous.
2. Pi(t) is bounded, if the linear time-varying system (9.32) is controllable.

Proof First, let us prove that Pi(t) is Lipschitz continuous. We transform (9.34) into
the form of a matrix differential equation:

[
λ̇i (t)

Ẋi(t)

]
=
[−f (xi−1(t)) −Q(xi−1(t))

Ξ f (xi−1(t))

][
λi(t)

Xi(t)

]
,

[
λi(tf)

Xi(tf)

]
=
[
F(tf)

I

]
,

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 365

where

Ξ =g(xi−1(t), ui−1(t))R
−1(xi−1(t))g

T(xi−1(t), ui−1(t))

− k(xi−1(t),wi−1(t))S
−1(xi−1(t))k

T(xi−1(t),wi−1(t)).

Thus, the solution Pi(t) of the Riccati differential equations (9.34) becomes

Pi(t)= λi(t) (Xi(t))
−1 . (9.40)

If Assumption 9.25 is satisfied, such that f (x), g(x,u), k(x,w), R−1(x), S−1(x),
F(x), and Q(x) are Lipschitz continuous, then Xi(t) and λi(t) are Lipschitz con-
tinuous. Furthermore, it is easy to verify that (Xi(t))

−1 also satisfies the Lipschitz
condition. Hence, Pi(t) is Lipschitz continuous.

Next, we prove that Pi(t) is bounded.
If the linear time varying system (9.32) is controllable, there must exist

ûi (t), ŵi(t) such that x(t1)= 0 at t = t1. We define ūi (t), w̄i(t) as

ūi (t)=
{
ûi (t), t ∈ [0, t1)
0, t ∈ [t1,∞)

w̄i(t)=
{
ŵi(t)= S−1(xi−1(t))k

T(xi−1(t),wi−1(t))Pi(t)xi(t), t ∈ [0, t1)
0, t ∈ [t1,∞)

where ûi (t) is any control policy making x(t1)= 0, ŵi(t) is defined as the optimal
policy. We have t ≥ t1, and we let ūi (t) and w̄i(t) be 0, the state x(t) will still hold
at 0.

The optimal cost functional V ∗
i (x0, u,w) described as

V ∗
i (x0, u,w)= 1

2
xT
i (tf)F (xi−1(tf))xi(tf)+ 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ u∗T
i (t)R(xi−1(t))u

∗
i (t)−w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt, (9.41)

where u∗
i (t) and w∗

i (t) are the optimal policies. V ∗
i (x0, u,w) is minimized by u∗(t)

and maximized by w∗
i (t).

For the linear system, V ∗
i (x0, u,w) can be expressed as V ∗

i (x0, u,w) =
1/(2xT

i (t)Pi(t)xi(t)). Since xi(t) is arbitrary, if V ∗
i (x0, u,w) is bounded, then

Pi(t) is bounded. Next, we discuss the boundedness of V ∗
i (x0, u,w) in two

cases:

Case 1: t1 < tf ; we have

V ∗
i (x0, u,w)≤ 1

2
xT
i (tf)F (xi−1(tf))xi(tf)+ 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi (t)−w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

366 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

= 1

2

∫ t1

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi (t)−w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

=Vt1i (x)

<∞. (9.42)

Case 2: t1 ≥ tf ; we have

V ∗
i (x0, u,w)≤ 1

2
xT
i (tf)F (xi−1(tf))xi(tf)+ 1

2

∫ tf

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi(t)−w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

≤ 1

2

∫ ∞

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ūT
i (t)R(xi−1(t))ūi(t)− w̄T

i (t)S(xi−1(t))w̄i(t)
]
dt

= 1

2

∫ t1

t0

[
xT
i (t)Q(xi−1(t))xi(t)

+ ûT
i (t)R(xi−1(t))ûi(t)−w∗T

i (t)S(xi−1(t))w
∗
i (t)

]
dt

=Vt1i (x)

<∞. (9.43)

From (9.42) and (9.43), we know that V ∗
i (x) has an upper bound, independent of tf .

Hence, Pi(t) is bounded. �

According to Lemma 9.26, Pi(t) is bounded and Lipschitz continuous. If As-
sumption 9.25 is satisfied, then M(x,u), N(x,w), G(x,w), and K(x,w) are
bounded and Lipschitz continuous in their arguments, thus satisfying:

(C4) ‖M(x,u)‖ ≤ δ1, ‖N(x,w)‖ ≤ σ1,
(C5) ‖M(x1, u1) − M(x2, u2)‖ ≤ δ2‖x1 − x2‖ + δ3‖u1 − u2‖, ‖N(x1,w1) −

N(x2,w2)‖ ≤ σ2‖x1 − x2‖ + σ3‖w1 −w2‖,
(C6) ‖G(x,u)‖ ≤ ζ1, ‖K(x,w)‖ ≤ ξ1,
(C7) ‖G(x1, u1) − G(x2, u2)‖ ≤ ζ2‖x1 − x2‖ + ζ3‖u1 − u2‖, ‖K(x1,w1) −

K(x2,w2)‖ ≤ ξ2‖x1 − x2‖ + ξ3‖w1 −w2‖,

∀x ∈ R
n, ∀u ∈ R

m1 , ∀w ∈ R
m2 , and for finite positive numbers δj , σj , ζj , ξj , j =

1,2,3.

Theorem 9.27 (cf. [16]) Consider the system (9.29) of nonaffine nonlinear zero-
sum games with the cost functional (9.30), the approximating sequences (9.32) and
(9.33) can be introduced. We have F(x(t))≥ 0, Q(x(t))≥ 0, R(x(t)) > 0, and the
terminal time tf is specified. Let Assumption 9.25, and Assumptions (A1) and (A2)

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 367

hold and S(x(t)) > S̃, for small enough tf or x0; then the limit of the solution of the
approximating sequence (9.32) converges to the unique solution of system (9.29) on
C([t0, tf];Rn). Meanwhile, the approximating sequences of optimal policies given
by (9.35) also converge on C([t0, tf];Rm1) and C([t0, tf];Rm2), if

‖Ψ (t)‖< 1, (9.44)

where

Ψ (t)=
⎡

⎣
ψ1 ψ2 ψ3
ψ4 ψ5 ψ6
ψ7 ψ8 ψ9

⎤

⎦ ,

ψ1(t)=
{[

ζ2+ξ2
ζ1+ξ1

+ α(t − t0)
]
e(ζ1+ξ1)(t−t0) − ζ2+ξ2

ζ1+ξ1

}

(
1 + ζ1+ξ1

μ0

(
1 − eμ0(t−t0)

)) ‖x0‖ eμ0(t−t0),

ψ2(t)=
ζ3

ζ1+ξ1
‖x0‖ eμ0(t−t0)(e(ζ1+ξ1)(t−t0) − 1)
(

1 + ζ1+ξ1
μ0

(
1 − eμ0(t−t0)

)) ,

ψ3(t)=
ξ3

ζ1+ξ1
‖x0‖ eμ0(t−t0)(e(ζ1+ξ1)(t−t0) − 1)
(

1 + ζ1+ξ1
μ0

(
1 − eμ0(t−t0)

)) ,

ψ4(t)= δ1ψ1(t)+ δ2 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ5(t)= δ1ψ2(t)+ δ3 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ6(t)= δ1ψ3(t),

ψ7(t)= σ1ψ1(t)+ σ2 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

ψ8(t)= σ1ψ2(t),

ψ9(t)= σ1ψ3(t)+ σ3 ‖x0‖ e(μ0+ζ1+ξ1)(t−t0),

S̃ = max{Ŝ i}.
Proof The approximating sequence (9.37) is an nonhomogeneous differential equa-
tion, whose solution can be given by

xi(t)=Φi−1(t, t0)xi(t0)+
∫ t

t0

Φi−1(t, s)
[
G(xi−1(s), ui−1(s))

+K(xi−1(s),wi−1(s))
]
xi(s)ds. (9.45)

Then,

‖xi(t)‖ ≤ ‖Φi−1(t, t0)‖‖xi(t0)‖ +
∫ t

t0

‖Φi−1(t, s)‖
[‖G(xi−1, ui−1)‖

368 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

+ ‖K(xi−1,wi−1)‖
]‖xi(s)‖ds. (9.46)

According to inequality (9.39) and assuming (C6) to hold, we obtain

e−μ0t ‖xi(t)‖ ≤ e−μ0t0 ‖x0‖ +
∫ t

t0

(ζ1 + ξ1)e
−μ0s ‖xi(s)‖ds. (9.47)

On the basis of Gronwall–Bellman’s inequality

‖xi(t)‖ ≤ ‖x0‖ e(μ0+ζ1+ξ1)(t−t0), (9.48)

which is bounded by a small time interval t ∈ [t0, tf] or small x0.
From (9.45) we have

xi(t)− xi−1(t)= [
Φi−1(t, t0)−Φi−2(t, t0)

]
x0

+
∫ t

t0

Φi−1(t, s)G(xi−1, ui−1)
[
xi(s)− xi−1(s)

]
ds

+
∫ t

t0

Φi−1(t, s)K(xi−1,wi−1)
[
xi(s)− xi−1(s)

]
ds

+
∫ t

t0

Φi−1(t, s)
[
G(xi−1, ui−1)−G(xi−2, ui−2)

]
xi−1(s)ds

+
∫ t

t0

Φi−1(t, s)
[
K(xi−1,wi−1)−K(xi−2,wi−2)

]
xi−1(s)ds

+
∫ t

t0

[
Φi−1(t, s)−Φi−2(t, s)

]
G(xi−2, ui−2)xi−1(s)ds

+
∫ t

t0

[
Φi−1(t, s)−Φi−2(t, s)

]
K(xi−2,wi−2)xi−1(s)ds.

(9.49)

Consider the supremum to both sides of (9.49) and let

βi(t)= sup
s∈[t0,t]

‖xi(s)− xi−1(s)‖ ,

γi(t)= sup
s∈[t0,t]

‖ui(s)− ui−1(s)‖ ,

ηi(t)= sup
s∈[t0,t]

‖wi(s)−wi−1(s)‖ .

By using (9.39), (C6), and (C7), we get

βi(t)≤α ‖x0‖ eμ0(t−t0)(t − t0)βi−1(t)+ (ζ1 + ξ1)

∫ t

t0

eμ0(t−s)βi(s)ds

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 369

+ ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)
[
ζ2βi−1(s)+ ζ3γi−1(s)

]
ds

+ ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)
[
ξ2βi−1(s)+ ξ3ηi−1(s)

]
ds

+ αζ1 ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)(t − s)βi−1(s)ds

+ αξ1 ‖x0‖ eμ0(t−t0)

∫ t

t0

e(ζ1+ξ1)(s−t0)(t − s)βi−1(s)ds. (9.50)

Combining similar terms, we have

βi(t)≤ψ1(t)βi−1(t)+ψ2(t)γi−1(t)+ψ3(t)ηi−1(t), (9.51)

where ψ1(t) through ψ3(t) are described in (9.44).
Similarly, from (9.38), we get

ui(t)− ui−1(t)=M(xi−1, ui−1)
[
xi(t)− xi−1(t)

]

+ [
M(xi−1, ui−1)−M(xi−2, ui−2)

]
xi−1(t)

wi(t)−wi−1(t)=N(xi−1,wi−1)
[
xi(t)− xi−1(t)

]

+ [
N(xi−1,wi−1)−N(xi−2,wi−2)

]
xi−1(t). (9.52)

According to (C4), (C5), and (9.48), we have

γi(t)≤ψ4(t)βi−1(t)+ψ5(t)γi−1(t)+ψ6(t)ηi−1(t)

ηi(t)≤ψ7(t)βi−1(t)+ψ8(t)γi−1(t)+ψ9(t)ηi−1(t), (9.53)

where ψ4(t) through ψ9(t) are shown in (9.44).
Then, combining (9.51) and (9.53), we have

Θi(t)≤ Ψ (t)Θi−1(t), (9.54)

where Θi(t)=
[
βi(t)

γi (t)

ηi (t)

]
and Ψ (t)=

[
ψ1 ψ2 ψ3
ψ4 ψ5 ψ6
ψ7 ψ8 ψ9

]
.

By induction, Θi satisfies

Θi(t)≤ Ψ i−1(t)Θ [1](t), (9.55)

which implies that we have xi(t), ui(t) and Cauchy sequences in Banach spaces
C([t0, tf];Rn), C([t0, tf];Rn), C([t0, tf];Rm1), and C([t0, tf];Rm2), respectively.
If {xi(t)} converges on C([t0, tf];Rn), and the sequences of optimal policies {ui}
and {wi} also converge on C([t0, tf];Rm1) and C([t0, tf];Rm2) on [t0, tf].

It means that xi−1(t) = xi(t), ui−1(t) = ui(t), wi−1(t) = wi(t) when i → ∞.
Hence, the system (9.29) has a unique solution on [t0, tf], which is given by the
limit of the solution of approximating sequence (9.32). �

370 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Based on the iterative algorithm described in Theorem 9.27, the design proce-
dure of optimal policies for nonlinear nonaffine zero-sum games is summarized as
follows:

1. Give x0, maximum iteration times imax and approximation accuracy ε.
2. Use a factored form to represent the system as (9.31).
3. Set i = 0. Let xi−1(t) = x0, ui−1(t) = 0 and wi−1(t) = 0. Compute the cor-

responding matrix-valued functions f (x0), g(x0,0), k(x0,0), F(x0), Q(x0),
R(x0), and S(x0).

4. Compute x[0](t) and P [0](t) according to differential equations (9.34) and (9.36)
with x(t0)= x0, P(tf)= F(xf).

5. Set i = i + 1. Compute the corresponding matrix-valued functions f (xi−1(t)),
g(xi−1(t), ui−1(t)), k(xi−1(t),wi−1(t)), Q(xi−1(t)), R(xi−1(t)), F(xi−1(tf)),
and S(xi−1(t)).

6. Compute xi(t) and Pi(t) by (9.34) and (9.36) with x(t0)= x0, P(tf)= F(xtf).
7. If ‖xi(t)− xi−1(t)‖< ε, go to Step 9); otherwise, go to Step 8.
8. If i > imax, then go to Step 9; else, go to Step 5.
9. Stop.

9.3.3 Simulations

Example 9.28 We now show the power of our iterative algorithm for finding optimal
policies for nonaffine nonlinear zero-sum games.

In the following, we introduce an example of a control system that has the form
(9.29) with control input u(t), subject to a disturbance w(t) and a cost functional
V (x0, u,w). The control input u(t) is required to minimize the cost functional
V (x0, u,w). If the disturbance has a great effect on the system, the single distur-
bance w(t) has to maximize the cost functional V (x0, u,w). The conflicting design
can guarantee the optimality and strong robustness of the system at the same time.
This is a zero-sum game problem, which can be described by the state equations

ẋ1(t)= − 2x1(t)+ x2
2(t)− x1(t)u(t)+ u2(t)− 3x(t)w(t)+ 5w2(t),

ẋ2(t)=5x2
1(t)− 2x2(t)+ x2

2(t)+ u2(t)+w2(t). (9.56)

Define the finite horizon cost functional to be of the form (9.30), where F =
0.01 I2×2, Q = 0.01 I2×2, R = 1 and S = 1, where I is an identity matrix. Clearly,
(9.56) is not affine in u(t) and w(t), it has the control nonaffine nonlinear struc-
ture. Therefore, we represent the system (9.56) in the factored form f (x(t))x(t),
g(x(t), u(t))u(t) and k(x(t),w(t))w(t), which, given the wide selection of possi-
ble representations, have been chosen as

f (x(t))=
[

2 x2(t)

5x1(t) −2 + x2(t)

]
, g(x(t), u(t))=

[
x1(t)+ u(t)

u(t)

]
,

9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems 371

Fig. 9.10 The state trajectory x1(t) of each iteration

k(x(t),w(t))=
[−3x1(t)+ 5w(t)

w(t)

]
. (9.57)

The optimal policies designs given by Theorem 9.27 can now be applied to (9.31)
with the dynamics (9.57).

The initial state vectors are chosen as x0 = [0.6,0]T and the terminal time is set
to tf = 5. Let us define the required error norm between the solutions of the linear
time-vary differential equations by ‖xi(t)− xi−1(t)‖ < ε = 0.005, which needs to
be satisfied if convergence is to be achieved. The factorization is given by (9.57). Im-
plementing the present iterative algorithm, it just needs six sequences to satisfy the
required bound, ‖x[6](t)−x[5](t)‖ = 0.0032. With increasing of number of times of
iterations, the approximation error will reduce obviously. When the iteration number
i = 25, the approximation error is just 5.1205 × 10−10.

Define the maximum iteration times imax = 25. Figure 9.10 represents the con-
vergence trajectories of the state trajectory of each linear quadratic zero-sum game.
It can be seen that the sequence is obviously convergent. The magnifications of the
state trajectories are given in the figure, which shows that the error will be smaller
as the number of times of iteration becomes bigger. The trajectories of control in-
put u(t) and disturbance input w(t) of each iteration are also convergent, which is
shown in Figs. 9.11 and 9.12. The approximate optimal policies u∗(t) and w∗(t) are
obtained by the last iteration. Substituting the approximate optimal policies u∗(t)
and w∗(t) into the system of zero-sum games (9.56), we get the state trajectory.
The norm of the error between this state trajectory and the state trajectory of the
last iteration is just 0.0019, which proves that the approximating iterative approach
developed in this section is highly effective.

372 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.11 The trajectory u(t) of each iteration

Fig. 9.12 The trajectory w(t) of each iteration

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems
Based on ADP

In this section, a near-optimal control scheme is developed for the non-zero-sum
differential games of continuous-time nonlinear systems. The single network ADP

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 373

is utilized to obtain the optimal control policies which make the cost functions reach
the Nash equilibrium of non-zero-sum differential games, where only one critic net-
work is used for each player, instead of the action-critic dual network used in a
typical ADP architecture. Furthermore, novel weight tuning laws for critic neural
networks are developed, which not only ensure the Nash equilibrium to be reached,
but also guarantee the stability of the system. No initial stabilizing control policy is
required for each player. Moreover, Lyapunov theory is utilized to demonstrate the
uniform ultimate boundedness of the closed-loop system.

9.4.1 Problem Formulation of Non-Zero-Sum Games

Consider the following continuous-time nonlinear systems:

ẋ(t)= f (x(t))+ g(x(t))u(t)+ k(x(t))w(t), (9.58)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m and d(t) ∈ R
q are the control input

vectors. Assume that f (0)= 0 and that f (x), g(x), k(x) are locally Lipschitz.
The cost functional associated with u is defined as

J1(x,u,w)=
∫ ∞

t

r1(x(τ), u(τ),w(τ))dτ, (9.59)

where r1(x,u,w) = Q1(x) + uTR11u + wTR12w, Q1(x) ≥ 0 is the penalty on
the states, R11 ∈ R

m×m is a positive definite matrix, and R12 ∈ R
q×q is a positive

semidefinite matrix.
The cost functional associated with w is defined as

J2(x,u,w)=
∫ ∞

t

r2(x(τ), u(τ),w(τ))dτ, (9.60)

where r2(x,u,w) = Q2(x)+ uTR21u+wTR22w, Q2(x) ≥ 0 is the penalty on the
states, R21 ∈ R

m×m is a positive semidefinite matrix, and R22 ∈ R
q×q is a positive

definite matrix.
For the above non-zero-sum differential games, the two feedback control policies

u and w are chosen by player 1 and player 2, respectively, where player 1 tries to
minimize the cost functional (9.59), while player 2 attempts to minimize the cost
functional (9.60).

Definition 9.29 u= μ1(x) and w = μ2(x) are defined as admissible with respect to
(9.59) and (9.60) on Ω ∈ R

n, denoted by μ1 ∈ψ(Ω) and μ2 ∈ψ(Ω), respectively,
if μ1(x) and μ2(x) are continuous on Ω , μ1(0) = 0 and μ2(0) = 0, μ1(x) and
μ2(x) stabilize (9.58) on Ω , and (9.59) and (9.60) are finite, ∀x0 ∈Ω .

374 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Definition 9.30 The policy set (u∗,w∗) is a Nash equilibrium policy set if the in-
equalities

J1(u
∗,w∗)≤ J1(u,w

∗),
J2(u

∗,w∗)≤ J2(u
∗,w) (9.61)

hold for any admissible control policies u and w.

Next, define the Hamilton functions for the cost functionals (9.59) and (9.60)
with associated admissible control input u and w, respectively, as follows:

H1(x,u,w)=Q1(x)+ uTR11u+wTR12w

+�J T
1 (f (x)+ g(x)u+ k(x)w), (9.62)

H2(x,u,w)=Q2(x)+ uTR21u+wTR22w

+�J T
2 (f (x)+ g(x)u+ k(x)w), (9.63)

where �Ji is the partial derivative of the cost function Ji(x,u,w) with respect to x,
i = 1,2.

According to the stationarity conditions of optimization, we have

∂H1(x,u,w)/∂u= 0,

∂H2(x,u,w)/∂w = 0.

Therefore, the associated optimal feedback control policies u∗ and w∗ are found
and revealed to be

u∗ = −1

2
R−1

11 g
T(x)�J1, (9.64)

w∗ = −1

2
R−1

22 k
T(x)�J2. (9.65)

The optimal feedback control policies u∗ and w∗ provide a Nash equilibrium for the
non-zero-sum differential games among all the feedback control policies.

Considering H1(x,u
∗,w∗) = 0 and H2(x,u

∗,w∗) = 0, and substituting the op-
timal feedback control policy (9.64) and (9.65) into the Hamilton functions (9.62)
and (9.63), we have

Q1(x)−1

4
�J T

1 g(x)R
−1
11 g

T(x)�J1 +�J T
1 f (x)

+ 1

4
�J T

2 k(x)R
−1
22 R12R

−1
22 k

T(x)�J2

− 1

2
�J T

1 k(x)R
−1
22 k

T(x)�J2 = 0, (9.66)

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 375

Q2(x)−1

4
�J T

2 k(x)R
−1
22 k

T(x)�J2 +�J T
2 f (x)

+ 1

4
�J T

1 g(x)R
−1
11 R21R

−1
11 g

T(x)�J1

− 1

2
�J T

2 g(x)R
−1
11 g

T(x)�J1 = 0. (9.67)

If the coupled HJ equations (9.66) and (9.67) can be solved for the optimal value
functions J1(x,u

∗,w∗) and J2(x,u
∗,w∗), the optimal control can then be imple-

mented by using (9.64) and (9.65). However, these equations are generally difficult
or impossible to solve due to their inherently nonlinear nature. To overcome this
difficulty, a near-optimal control scheme is developed to learn the solution of cou-
pled HJ equations online using a single network ADP in order to obtain the optimal
control policies.

Before presenting the near-optimal control scheme, the following lemma is re-
quired.

Lemma 9.31 Given the system (9.58) with associated cost functionals (9.59) and
(9.60) and the optimal feedback control policies (9.64) and (9.65). For player i,
i = 1,2, let Li(x) be a continuously differentiable, radially unbounded Lyapunov
candidate such that L̇i = �LT

i ẋ = �LT
i (f (x)+ g(x)u∗ + k(x)w∗) < 0, with �Li

being the partial derivative of Li(x) with respect to x. Moreover, let Q̄i(x) ∈ R
n×n

be a positive definite matrix satisfying ‖Q̄i(x)‖ = 0 if and only if ‖x‖ = 0 and
Q̄imin ≤ ‖Q̄i(x)‖ ≤ Q̄imax for ‖χmin‖ ≤ ‖x‖ ≤ χmax with positive constants Q̄imin,
Q̄imax, χmin, χmax. In addition, let Q̄i(x) satisfy limx→∞ Q̄i(x)= ∞ as well as

�J ∗T
i Q̄i(x)�Li = ri(x,u

∗,w∗). (9.68)

Then the following relation holds:

�LT
i (f (x)+ g(x)u∗ + k(x)w∗)= −�LT

i Q̄i(x)�Li. (9.69)

Proof When the optimal control u∗ and w∗ in (9.64) and (9.65) are applied to the
nonlinear system (9.58), the value function Ji(x,u∗,w∗) becomes a Lyapunov func-
tion, i = 1,2. Then, for i = 1,2, differentiating the value function Ji(x,u∗,w∗) with
respect to t , we have

J̇ ∗
i = �J ∗T

i (f (x)+ g(x)u∗ + k(x)w∗)
= −ri(x,u

∗,w∗). (9.70)

Using (9.68), (9.70) can be rewritten as

(f (x)+ g(x)u∗ + k(x)w∗)= − (�J ∗
i �J ∗T

i)−1�J ∗
i ri(x, u

∗,w∗)

= − (�J ∗
i �J ∗T

i)−1�J ∗
i �J ∗T

i Q̄i(x)�Li

= − Q̄i(x)�Li. (9.71)

376 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Next, multiplying both sides of (9.71) by �LT
i , (9.69) can be obtained.

This completes the proof. �

9.4.2 Optimal Control of Nonlinear Non-Zero-Sum Games Based
on ADP

To begin the development, we rewrite the cost functions (9.59) and (9.60) by NNs
as

J1(x)=WT
c1φ1(x)+ ε1, (9.72)

J2(x)=WT
c2φ2(x)+ ε2, (9.73)

where Wi , φi(x), and εi are the critic NN ideal constant weights, the critic NN
activation function vector and the NN approximation error for player i, i = 1,2,
respectively.

The derivative of the cost functions with respect to x can be derived as

�J1 = �φT
1Wc1 +�ε1, (9.74)

�J2 = �φT
2Wc2 +�ε2, (9.75)

where �φi � ∂φi(x)/∂x, �εi � ∂εi/∂x, i = 1,2.
Using (9.74) and (9.75), the optimal feedback control policies (9.64) and (9.65)

can be rewritten as

u∗ = −1

2
R−1

11 g
T(x)�φT

1Wc1 − 1

2
R−1

11 g
T(x)�ε1, (9.76)

w∗ = −1

2
R−1

22 k
T(x)�φT

2Wc2 − 1

2
R−1

22 k
T(x)�ε2, (9.77)

and the coupled HJ equations (9.66) and (9.67) can be rewritten as

Q1(x)−1

4
WT

c1�φ1D1�φT
1Wc1 +WT

c1�φ1f (x)

+ 1

4
WT

c2�φ2S2�φ2
TWc2 − 1

2
WT

c1�φ1D2�φT
2Wc2 − εHJ1 = 0, (9.78)

Q2(x)−1

4
WT

c2�φ2D2�φT
2Wc2 +WT

c2�φ2f (x)

+ 1

4
WT

c1�φ1S1�φ1
TWc1 − 1

2
WT

c2�φ2D1�φT
1Wc1 − εHJ2 = 0, (9.79)

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 377

where

D1 =g(x)R−1
11 g

T(x),

D2 = k(x)R−1
22 k

T(x),

S1 =g(x)R−1
11 R21R

−1
11 g

T(x),

S2 = k(x)R−1
22 R12R

−1
22 k

T(x). (9.80)

The residual error due to the NN approximation for player 1 is

εHJ1 = −�εT
1

(
f (x)− 1

2
D1(�φT

1Wc1 +�ε1)

− 1

2
D2(�φT

2Wc2 +�ε2)

)
− 1

4
�εT

1D1�ε1 + 1

2
WT

c1�φ1D2�ε2

− 1

2
�εT

2 S2�φT
2Wc2 − 1

4
�εT

2 S2�ε2. (9.81)

The residual error due to the NN approximation for player 2 is

εHJ2 = −�εT
2

(
f (x)− 1

2
D1(�φT

1Wc1 +�ε1)

− 1

2
D2(�φT

2Wc2 +�ε2)

)
− 1

4
�εT

2D2�ε2 + 1

2
WT

c2�φ2D1�ε1

− 1

2
�εT

2 S1�φT
1Wc2 − 1

4
�εT

1 S1�ε1. (9.82)

Let Ŵc1 and Ŵc2 be the estimates of Wc1 and Wc2, respectively. Then we have
the estimates of V1(x) and V2(x) as follows:

Ĵ1(x)= ŴT
c1φ1(x), (9.83)

Ĵ2(x)= ŴT
c2φ2(x). (9.84)

Substituting (9.83) and (9.84) into (9.64) and (9.65), respectively, the estimates of
optimal control policies can be written as

û= −1

2
R−1

11 g
T(x)�φT

1 Ŵc1, (9.85)

ŵ = −1

2
R−1

22 k
T(x)�φT

2 Ŵc2. (9.86)

Applying (9.85) and (9.86) to the system (9.58), we have the closed-loop system
dynamics as follows:

ẋ = f (x)− D1�φT
1 Ŵc1

2
− D2�φT

2 Ŵc2

2
. (9.87)

378 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Substituting (9.83) and (9.84) into (9.62) and (9.63), respectively, the approxi-
mate Hamilton functions can be derived as follows:

H1(x, Ŵc1, Ŵc2)=Q1(x)− 1

4
ŴT

c1�φ1D1�φT
1 Ŵc1 + ŴT

c1�φ1f (x)

+ 1

4
ŴT

c2�φ2S2�φT
2 Ŵc2 − 1

2
ŴT

c1�φ1D2�φT
2 Ŵc2

= e1, (9.88)

H2(x, Ŵc1, Ŵc2)=Q2(x)− 1

4
ŴT

c2�φ2D2�φT
2 Ŵc2 + ŴT

c2�φ2f (x)

+ 1

4
ŴT

c1�φ1S1�φT
1 Ŵc1 − 1

2
ŴT

c2�φ2D1�φT
1 Ŵc1

= e2. (9.89)

It is desired to select Ŵc1 and Ŵc2 to minimize the squared residual error E =
eT

1 e1/2 + eT
2 e2/2. Then we have Ŵc1 → Wc1, Ŵc2 → Wc2, and e1 → εHJ1, e2 →

εHJ2. In other words, the Nash equilibrium of the non-zero-sum differential games
of continuous-time nonlinear system (9.58) can be obtained. However, tuning the
critic NN weights to minimize the squared residual error E alone does not ensure
the stability of the nonlinear system (9.58) during the learning process of critic NNs.
Therefore, we propose the novel weight tuning laws of critic NNs for two players,
which cannot only minimize the squared residual error E but also guarantee the
stability of the system as follows:

˙̂
W1 = − α1

σ̄1

ms1

(
Q1(x)− 1

4
ŴT

c1�φ1D1�φT
1 Ŵc1

+ ŴT
c1�φ1f (x)+ 1

4
ŴT

c2�φ2S2�φT
2 Ŵc2 − 1

2
ŴT

c1�φ1D2�φT
2 Ŵc2

)

+ α1

4
�φ1D1�φT

1 Ŵc1
σ̄T

1

ms1

Ŵc1 + α2

4
�φ1S1�φT

1 Ŵc1
σ̄T

2

ms2

Ŵc2

+Σ(x, û, ŵ)

(
α1�φ1D1�L1

2
+ α1�φ1D1�L2

2

)

− α1(F1Ŵc1 − F2σ̄
T
1 Ŵc1), (9.90)

˙̂
W2 = − α2

σ̄2

ms2

(
Q2(x)− 1

4
ŴT

c2�φ2D2�φT
2 Ŵc2

+ ŴT
c2�φ2f (x)+ 1

4
ŴT

c1�φ1S1�φT
1 Ŵc1 − 1

2
ŴT

c2�φ2D1�φT
1 Ŵc1

)

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 379

+ α2

4
�φ2D2�φT

2 Ŵc2
σ̄T

2

ms2

Ŵc2 + α2

4
�φ2S2�φT

2 Ŵc2
σ̄T

1

ms1

Ŵc1

+Σ(x, û, ŵ)

(
α2�φ2D2�L2

2
+ α2�φ2D2�L1

2

)

− α2(F3Ŵc2 − F4σ̄
T
2 Ŵc2), (9.91)

where σ̄i = σ̂i/(σ̂
T
i σ̂i + 1), σ̂i = �φi(f (x) − D1�φT

1 Ŵc1/2 − D2�φT
2 Ŵc2/2),

msi = σ̂T
i σ̂i + 1, αi > 0 is the adaptive gain, �Li is described in Lemma 9.31,

i = 1,2. F1, F2, F3, and F4 are design parameters. The operator Σ(x, û, ŵ) is given
by

Σ(x, û, ŵ)=
{

0 if �L1ẋ ≤ 0 and �L2ẋ ≤ 0,
1 else,

(9.92)

where ẋ is given as (9.87).

Remark 9.32 The first terms in (9.90) and (9.91) are utilized to minimize the
squared residual error E and derived by using a normalized gradient descent al-
gorithm. The other terms are utilized to guarantee the stability of the closed-loop
system while the critic NNs learn the optimal cost functions and are derived by
following Lyapunov stability analysis. The operator Σ(x, û, ŵ) is selected based
on the Lyapunov’s sufficient condition for stability, which means that the state x is
stable if Li(x) > 0 and �Liẋ < 0 for player i, i = 1,2. When the system (9.58)
is stable, the operator Σ(x, û, ŵ) = 0 and it will not take effect. When the system
(9.58) is unstable, the operator Σ(x, û, ŵ)= 1 and it will be activated. Therefore, no
initial stabilizing control policies are needed due to the introduction of the operator
Σ(x, û, ŵ).

Remark 9.33 From (9.88) and (9.89), it can be seen that the approximate Hamilton
functions H1(x, Ŵc1, Ŵc2) = e1 = 0 and H2(x, Ŵc1, Ŵc2) = e2 = 0 when x = 0.
For this case, the tuning laws of critic NN weights for two players (9.90) and (9.91)
cannot achieve the purpose of optimization anymore. This can be considered as a
persistency of the requirement of excitation for the system states. Therefore, the sys-
tem states must be persistently excited enough for minimizing the squared residual
errors E to drive the critic NN weights toward their ideal values. In order to satisfy
the persistent excitation condition, probing noise is added to the control input.

Define the weight estimation errors of critic NNs for two players to be W̃c1 =
Wc1 − Ŵc1 and W̃c2 =Wc2 − Ŵc2, respectively. From (9.78) and (9.79), we observe
that

Q1(x)= 1

4
WT

c1�φ1D1�φT
1Wc1 −WT

c1�φ1f (x)− 1

4
WT

c2�φ2S2�φ2
TWc2

+ 1

2
WT

c1�φ1D2�φT
2Wc2 + εHJ1, (9.93)

380 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Q2(x)= 1

4
WT

c2�φ2D2�φT
2Wc2 −WT

c2�φ2f (x)− 1

4
WT

c1�φ1S1�φ1
TWc1

+ 1

2
WT

c2�φ2D1�φT
1Wc1 + εHJ2. (9.94)

Combining (9.90) with (9.93), we have

˙̃
W1 =α1

σ̄1

ms1

[
−W̃T

c1σ̂1 + 1

4
W̃T

c1�φ1D1�φT
1 W̃c1 + 1

2
WT

c1�φ1D2�φT
2 W̃c2

− 1

2
W̃T

c2�φ2S2�φT
2Wc2 + 1

4
W̃T

c2�φ2S2�φT
2 W̃c2 + εHJ1

]

− α1

4
�φ1D1�φT

1 Ŵc1
σ̄T

1

ms1

Ŵc1 − α2

4
�φ1S1�φT

1 Ŵc1
σ̄T

2

ms2

Ŵc2

−Σ(x, û, ŵ)

(
α1�φ1D1�L1

2
+ α1�φ1D1�L2

2

)

+ α1(F1Ŵc1 − F2σ̄
T
1 Ŵc1). (9.95)

Similarly, combining (9.91) with (9.94), we have

˙̃
W2 =α2

σ̄2

ms2

[
−W̃T

c2σ̂2 + 1

4
W̃T

c2�φ2D2�φT
2 W̃c2 + 1

2
WT

c2�φ2D1�φT
1 W̃c1

− 1

2
W̃T

c1�φ1S1�φT
1Wc1 + 1

4
W̃T

c1�φ1S1�φT
1 W̃c1 + εHJ2

]

− α2

4
�φ2D2�φT

2 Ŵc2
σ̄T

2

ms2

Ŵc2 − α2

4
�φ2S2�φT

2 Ŵc2
σ̄T

1

ms1

Ŵc1

−Σ(x, û, ŵ)

(
α2�φ2D2�L2

2
+ α2�φ2D2�L1

2

)

+ α2(F3Ŵc2 − F4σ̄
T
2 Ŵc2). (9.96)

In the following, the stability analysis will be performed. First, the following
assumption is made, which can reasonably be satisfied under the current problem
settings.

Assumption 9.34

(a) g(·) and k(·) are upper bounded, i.e., ‖g(·)‖ ≤ gM and ‖k(·)‖ ≤ kM with gM
and kM being positive constants.

(b) The critic NN approximation errors and their gradients are upper bounded so
that ‖εi‖ ≤ εiM and ‖�εi‖ ≤ εidM with εiM and εidM being positive constants,
i = 1,2.

(c) The critic NN activation function vectors are upper bounded, so that ‖φi‖ ≤ φiM
and ‖�φi‖ ≤ φidM , with φiM and φidM being positive constants, i = 1,2.

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 381

(d) The critic NN weights are upper bounded so that ‖Wi‖ ≤WiM with WiM being
positive constant, i = 1,2. The residual errors εHJi are upper bounded, so that
‖εHJi‖ ≤ εHJiM with εHJiM being positive constant, i = 1,2.

Now we are ready to prove the following theorem.

Theorem 9.35 (cf. [17]) Consider the system given by (9.58). Let the control input
be provided by (9.85) and (9.86), and the critic NN weight tuning laws be given
by (9.90) and (9.91). Then, the system state x and the weight estimation errors of
critic NNs W̃c1 and W̃c2 are uniformly ultimately bounded (UUB). Furthermore, the
obtained control input û and ŵ in (9.85) and (9.86) are proved to converge to the
Nash equilibrium policy of the non-zero-sum differential games approximately, i.e.,
û and ŵ are closed for the optimal control input u∗ and w∗ with bounds εu and εw ,
respectively.

Proof Choose the following Lyapunov function candidate:

L= L1(x)+L2(x)+ 1

2
W̃T

c1α
−1
1 W̃c1 + 1

2
W̃T

c2α
−1
2 W̃c2, (9.97)

where L1(x) and L2(x) are given by Lemma 9.31.
The derivative of the Lyapunov function candidate (9.97) along the system (9.87)

is computed as

L̇=�LT
1

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+�LT
2

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ W̃T
c1α

−1
1

˙̃
W1 + W̃T

c2α
−1
2

˙̃
W2. (9.98)

Then, substituting (9.95) and (9.96) into (9.98), we have

L̇=�LT
1

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+�LT
2

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+ W̃T
c1σ̄1

(
−σ̄T

1 W̃c1 + εHJ1

ms1

)
+ W̃T

c2σ̄2

(
−σ̄T

2 W̃c2 + εHJ2

ms2

)

+ 1

4
W̃T

c1�φ1D1�φT
1Wc1

σ̄T
1

ms1

W̃c1 − 1

4
W̃T

c1�φ1D1�φT
1Wc1

σ̄T
1

ms1

Wc1

382 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

+ 1

4
W̃T

c1�φ1D1�φT
1 W̃c1

σ̄T
1

ms1

Wc1

+ 1

4
W̃T

c2�φ2D2�φT
2Wc2

σ̄T
2

ms2

W̃c2 − 1

4
W̃T

c2�φ2D2�φT
2Wc2

σ̄T
2

ms2

Wc2

+ 1

4
W̃T

c2�φ2D2�φT
2 W̃c2

σ̄T
2

ms2

Wc2

+ 1

2
W̃T

c1
σ̄1

ms1

WT
c1�φ1D2�φT

2 W̃c2 − 1

2
W̃T

c1
σ̄1

ms1

W̃T
c2�φ2S2�φT

2Wc2

+ 1

2
W̃T

c2
σ̄2

ms2

WT
c2�φ2D1�φT

1 W̃c1 − 1

2
W̃T

c2
σ̄2

ms2

W̃T
c1�φ1S1�φT

1Wc1

+ 1

4
W̃T

c1�φ1S1�φT
1Wc1

σ̄T
2

ms2

W̃c2 − 1

4
W̃T

c1�φ1S1�φT
1Wc1

σ̄T
2

ms2

Wc2

+ 1

4
W̃T

c1�φ1S1�φT
1 W̃c1

σ̄T
2

ms2

Wc2

+ 1

4
W̃T

c2�φ2S2�φT
2Wc2

σ̄T
1

ms1

W̃c1 − 1

4
W̃T

c2�φ2S2�φT
2Wc2

σ̄T
1

ms1

Wc1

+ 1

4
W̃T

c2�φ2S2�φT
2 W̃c2

σ̄T
1

ms1

Wc1

−Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

−Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)

+ W̃T
c1F1Ŵc1 − W̃T

c1F2σ̄
T
1 Ŵc1

+ W̃T
c2F3Ŵc2 − W̃T

c2F4σ̄
T
2 Ŵc2. (9.99)

In (9.99), the last two terms can be rewritten as

W̃T
c1F1Ŵc1 − W̃T

c1F2σ̄
T
1 Ŵc1

= W̃T
c1F1Wc1 − W̃T

c1F2σ̄
T
1 W̃c1 − W̃T

c1F2σ̄
T
1 Wc1 − W̃T

c1F2σ̄
T
1 W̃c1

+ W̃T
c2F3Ŵc2 − W̃T

c2F4σ̄
T
2 Ŵc2

= W̃T
c2F3Wc2 − W̃T

c2F3W̃c2 − W̃T
c2F4σ̄

T
2 Wc2 − W̃T

c2F4σ̄
T
2 W̃c2. (9.100)

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 383

Define z= [σ̄T
1 W̃c1, σ̄

T
2 W̃c2, W̃c1, W̃c2]T; then (9.99) can be rewritten as

L̇= − zT

⎡

⎢⎢⎣

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎤

⎥⎥⎦ z+ zTδ

+�LT
1

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+�LT
2

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2)

2

)

−Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

−Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)
, (9.101)

where the components of the matrix M are given by

M11 =M22 = I,

M12 =MT
21 = 0,

M13 =MT
31 = − 1

4ms1

�φ1D1�φT
1Wc1 − F2

2
,

M14 =MT
41 = − 1

4ms1

�φ2D2�φT
1Wc1 + 1

8
�φ2S2�φT

2Wc2,

M23 =MT
32 = − 1

4ms2

�φ1D1�φT
2Wc2 + 1

8
�φ1S1�φT

1Wc1,

M24 =MT
42 = − 1

4ms2

�φ2D2�φT
2Wc2 − F4

2
,

M33 = − 1

4ms2

�φ1S1�φT
1Wc2σ̄

T
2 + F1,

M34 =MT
43 = 0,

M44 = − 1

4ms1

�φ2S2�φT
2Wc1σ̄

T
1 + F3,

and the components of the vector δ = [d1 d2 d3 d4]T are given as

d1 = εHJ1

ms1

,

384 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

d2 = εHJ2

ms2

,

d3 = − 1

4ms1

�φ1D1�φT
1Wc1σ̄

T
1 Wc1

− 1

4ms2

�φ1S1�φT
1Wc1σ̄

T
2 Wc2 + F1Wc1 − F2σ̄

T
1 Wc1,

d4 = − 1

4ms2

�φ2D2�φT
2Wc2σ̄

T
2 Wc2

− 1

4ms1

�φ2S2�φT
2Wc2σ̄

T
1 Wc1 + F3Wc2 − F4σ̄

T
2 Wc2.

According to Assumption 9.34 and observing the facts that σ̄1 < 1 and σ̄2 < 1, it
can be concluded that δ is bounded by δM . Let the parameters F1, F2, F3, and F4

be chosen such that M > 0. Then, taking the upper bounds of (9.101) reveals

L̇≤�L1

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

+�L2

(
f (x)− D1�φT

1 Ŵc1

2
− D2�φT

2 Ŵc2

2

)

− ‖z‖2σmin(M)+ ‖z‖δM

−Σ(x, û, ŵ)

(
W̃T

c1�φ1D1�L1

2
+ W̃T

c1�φ1D1�L2

2

)

−Σ(x, û, ŵ)

(
W̃T

c2�φ2D2�L2

2
+ W̃T

c2�φ2D2�L1

2

)
. (9.102)

Now, the cases of Σ(x, û, ŵ)= 0 and Σ(x, û, ŵ)= 1 will be considered.
(1) When Σ(x, û, ŵ) = 0, the first two terms are less than zero. Noting that

‖x‖> 0 as guaranteed by the persistent excitation condition and using the operator
defined in (9.92), it can be ensured that there exists a constant ẋmin satisfying 0 <
ẋmin < ‖ẋ‖. Then (9.102) becomes

L̇≤ − ẋmin(‖�L1‖ + ‖�L2‖)− ‖z‖2σmin(M)+ ‖z‖δM

= − ẋmin(‖�L1‖+‖�L2‖)−σmin(M)

(
‖z‖− δM

2σmin(M)

)2

+ δ2
M

4σmin(M)
. (9.103)

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 385

Given that the following inequalities:

‖�L1‖ ≥ δ2
M

4σmin(M)ẋmin
� B�L1, (9.104)

or

‖�L2‖ ≥ δ2
M

4σmin(M)ẋmin
� B�L2, (9.105)

or

‖z‖ ≥ δM

σmin(M)
� Bz (9.106)

hold, then L̇ < 0. Therefore, using Lyapunov theory, it can be concluded that
‖�L1‖, ‖�L2‖ and ‖z‖ are UUB.

(2) When Σ(x, û, ŵ) = 1, it implies that the feedback control input (9.85) and
(9.86) may not stabilize the system (9.58). Adding and subtracting �LT

1D1ε1/2 +
�LT

2D2ε2/2 to the right hand side of (9.102), and using (9.64), (9.65), and (9.80),
we have

L̇≤�LT
1 (f (x)+ g(x)u∗ + k(x)w∗)+�LT

2 (f (x)+ g(x)u∗ + k(x)w∗)

+ 1

2
�L1D1�ε1 + 1

2
�L2D2�ε2 + 1

2
�L1D2�ε2 + 1

2
�L2D1�ε1

− σmin(M)

(
‖z‖ − δM

2σmin(M)

)2

+ δ2
M

4σmin(M)
. (9.107)

According to Assumption 9.34, Di is bounded by DiM , where DiM is a known
constant, i = 1,2. Using Lemma 9.31 and recalling the boundedness of �ε1, �ε2,
and δ, (9.107) can be rewritten as

L̇≤ − Q̄1 min‖�L1‖2 − Q̄2 min‖�L2‖2 + 1

2
‖�L1‖D1Mε1dM

+ 1

2
‖�L2‖D2Mε2dM + 1

2
‖�L1‖D2Mε2dM

+ 1

2
‖�L2‖D1Mε1dM − σmin(M)

(
‖z‖ − δM

2σmin(M)

)2

+ δ2
M

4σmin(M)

≤ − 1

2
Q̄1 min‖�L1‖2− 1

2
Q̄2 min‖�L2‖2−σmin(M)

(
‖z‖− δM

2σmin(M)

)2

+η,

(9.108)

where

η = D2
1Mε2

1dM

4Q̄1 min
+ D2

2Mε2
2dM

4Q̄2 min
+ D2

2Mε2
2dM

4Q̄1 min
+ D2

1Mε2
1dM

4Q̄2 min
+ δ2

M

4σmin(M)
.

386 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Given that the following inequalities:

‖�L1‖>
√

2η

Q̄1 min
� B ′

�L1
, (9.109)

or

‖�L2‖>
√

2η

Q̄2 min
� B ′

�L2
, (9.110)

or

‖z‖>
√

η

σmin(M)
+ δM

2σmin(M)
� B ′

z (9.111)

hold, then L̇ < 0. Therefore, using Lyapunov theory, it can be concluded that
‖�L1‖, ‖�L2‖, and ‖z‖ are UUB.

In summary, for the cases Σ(x, û, ŵ) = 0 and Σ(x, û, ŵ) = 1, if inequalities
‖�L1‖ > max(B�L1 ,B

′
�L1

) � B̄�L1 , or ‖�L2‖ > max(B�L2 ,B
′
�L2

) � B̄�L2 or

‖z‖> max(Bz,B
′
z)� B̄z hold, then L̇ < 0. Therefore, we can conclude that ‖�L1‖,

‖�L2‖ and ‖z‖ are bounded by B̄�L1 , B̄�L2 , and B̄z, respectively. According to
Lemma 9.31, the Lyapunov candidates �L1 and �L2 are radially unbounded and
continuously differentiable. Therefore, the boundedness of ‖�L1‖ and ‖�L2‖ im-
plies the boundedness of ‖x‖. Specifically, ‖x‖ is bounded by B̄x = max(B1x,B2x),
where B1x and B2x are determined by B̄�L1 and B̄�L2 , respectively. Besides, note
that if any component of z exceeds the bound, i.e., ‖W̃c1‖ > B̄z or ‖W̃c2‖ > B̄z or
‖σ̄T

1 W̃c1‖ > B̄z or ‖σ̄T
2 W̃c2‖ > B̄z, the ‖z‖ are bounded by B̄z, which implies that

the critic NN weight estimation errors ‖W̃c1‖ and ‖W̃c2‖ are also bounded by Bz.
Next, we will prove ‖û− u∗‖ ≤ εu and ‖ŵ −w∗‖ ≤ εw . From (9.64) and (9.85)

and recalling the boundedness of ‖�φ1‖ and ‖W̃c1‖, we have

‖û− u∗‖ ≤
∥∥∥∥−

1

2
R−1

11 g
T�φT

1 W̃c1

∥∥∥∥

≤ λmax(R
−1
11)�φ1MB̄z

� εu. (9.112)

Similarly, from (9.65) and (9.86) and recalling the boundedness of ‖�φ2‖ and
‖W̃c2‖, we obtain ‖ŵ −w∗‖ ≤ εw .

This completes the proof. �

Remark 9.36 In [10], each player needs two NNs consisting of a critic NN and an
action NN to implement the online learning algorithm. By contrast with [10], only
one critic NN is required for each player, the action NN is eliminated, resulting in a
simpler architecture, and less computational burden.

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 387

Remark 9.37 In Remark 3 of [10] one pointed out that the NN weights can be initial-
ized randomly but non-zero. That is because the method proposed in [10] requires
initial stabilizing control policies for guaranteeing the stability of the system. By
contrast, no initial stabilizing control policies are needed by adding an operator,
which is selected by the Lyapunov’s sufficiency condition for stability, on the critic
NN weight tuning law for each player in this subsection.

9.4.3 Simulations

Example 9.38 An example is provided to demonstrate the effectiveness of the
present control scheme.

Consider the affine nonlinear system as follows:

ẋ = f (x)+ g(x)u+ k(x)w, (9.113)

where

f (x)=
[

x2 − 2x1

−x2 − 0.5x1 + 0.25x2(cos(2x1 + 2))2 + 0.25x2(sin(4x2
1)+ 2)2

]
,

(9.114)

g(x)=
[

0
cos(2x1 + 2)

]
, k(x)=

[
0

sin(4x2
1)+ 2)

]
. (9.115)

The cost functionals for player 1 and player 2 are defined by (9.59) and (9.60),
respectively, where Q1(x) = 2xTx, R11 = R12 = 2I , Q2(x) = xTx, R21 = R22 =
2I , and I denotes an identity matrix of appropriate dimensions.

For player 1, the optimal cost function is V ∗
1 (x)= 0.25x2

1 + x2
2 . For player 2, the

optimal cost function is V ∗
2 (x)= 0.25x2

1 + 0.5x2
2 . The activation functions of critic

NNs of two players are selected as φ1 = φ2 = [x2
1 , x1x2, x

2
2]T. Then, the optimal

values of the critic NN weights for player 1 are Wc1 = [0.5,0,1]T. The optimal
values of the critic NN weights for player 2 are Wc2 = [0.25,0,0.5]T. The estimates
of the critic NN weights for two players are denoted Ŵc1 = [W11,W12,W13]T and
Ŵc2 = [W21,W22,W23]T, respectively. The adaptive gains for the critic NNs are
selected as a1 = 1 and a2 = 1, and the design parameters are selected as F1 = F2 =
F3 = F4 = 10I . All NN weights are initialized to zero, which means that no initial
stabilizing control policies are needed for implementing the present control scheme.
The system state is initialized as [0.5,0.2]T. To maintain the excitation condition,
probing noise is added to the control input for the first 250 s.

After simulation, the trajectories of the system states are shown in Fig. 9.13.
The convergence trajectories of the critic NN weights for player 1 are shown in
Fig. 9.14, from which we see that the critic NN weights for player 1 finally converge
to [0.4490,0.0280,0.9777]T. The convergence trajectories of the critic NN weights
for player 2 are shown in Fig. 9.15, from which we see that the critic NN weights for

388 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.13 The trajectories of system states

Fig. 9.14 The convergence trajectories of critic NN weights for player 1

player 2 finally converge to [0.1974,0.0403,0.4945]T. The convergence trajectory
of eu = û− u∗ is shown in Fig. 9.16. The convergence trajectory of ew = ŵ −w∗
is shown in Fig. 9.17. From Fig. 9.16, we see that the error between the estimated
control û and the optimal control u∗ for player 1 is close to zero when t = 230 s.

9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP 389

Fig. 9.15 The convergence trajectories of critic NN weights for player 2

Fig. 9.16 The convergence trajectory of eu

Similarly, it can been seen from Fig. 9.17 that the estimated control ŵ and the opti-
mal control w∗ for player 2 are also close to zero when t = 180 s. Simulation results
reveal that the present control scheme can make the critic NN learn the optimal cost
function for each player and meanwhile guarantees stability of the closed-loop sys-
tem.

390 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.17 The convergence trajectory of ew

Fig. 9.18 The trajectories of system states obtained by the method in [10] with initial NN weights
selected being zero

In order to compare with [10], we use the method proposed in [10] to solve the
non-zero-sum games of system (9.113) where all NN weights are initialized to be
zero, then obtain the trajectories of system states as shown in Fig. 9.18. It is shown

9.5 Summary 391

Fig. 9.19 The convergence trajectories of critic NN weights for player 1 (solid line: the method in
[10]), dashed line: our method)

that the system is unstable, which implies that the method in [10] requires initial
stabilizing control policies for guaranteeing the stability of the system. By contrast,
the present method does not need the initial stabilizing control policies.

As pointed out earlier, one of the main advantages of the single ADP approach
is that it results in less computational burden and eliminates the approximation er-
ror resulting from the action NNs. To demonstrate this quantitatively, we apply the
method in [10] and our method to the system (9.113) with the same initial condition.
Figures 9.19 and 9.20 show the convergence trajectories of the critic NN weights
for player 1 and player 2, where the solid line and the dashed line represent the re-
sults from the method in [10] and our method, respectively. For the convenience of
comparison, we define an evaluation function by PER(i) =∑N

k=1 ‖W̃i(k)‖, i = 1,2,
which means that the sum of the norm of the critic NN weights error during running
time, where N is the number of sample points. The evaluation functions of the critic
NN estimation errors as well as the time taken by the method in [10] and our method
are calculated and shown in Table 9.1. It clearly indicates that the present method
takes less time and obtains a smaller approximation error than [10].

9.5 Summary

In this chapter, we investigated the problem of continuous-time differential games
based on ADP. In Sect. 9.2, we developed a new iterative ADP method to obtain

392 9 Nonlinear Games for a Class of Continuous-Time Systems Based on ADP

Fig. 9.20 The convergence trajectories of critic NN weights for player 2 (solid line: the method in
[10]), dashed line: our method)

Table 9.1 Critic NN estimation errors and calculation time

Methods PER(1) PER(2) Time

[10] 78.2312 29.4590 184.2024 s

Our method 70.2541 26.4152 111.1236 s

the optimal control pair or the mixed optimal control pair for a class of affine non-
linear zero-sum differential games. In Sect. 9.3, finite horizon zero-sum games for
nonaffine nonlinear systems were studied. Then, in Sect. 9.4, the case of non-zero-
sum differential games was studied using a single network ADP. Several numerical
simulations showed that the present methods are effective.

References

1. Abu-Khalaf M, Lewis FL, Huang J (2006) Policy iterations on the Hamilton–Jacobi–Isaacs
equation for H-infinity state feedback control with input saturation. IEEE Trans Autom Con-
trol 51:1989–1995

2. Abu-Khalaf M, Lewis FL, Huang J (2008) Neurodynamic programming and zero-sum games
for constrained control systems. IEEE Trans Neural Netw 19:1243–1252

3. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear
discrete-time zero-sum games with application to H-infinity control. Automatica 43:473–481

4. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–
Jacobi–Bellman equations. Birkhäuser, Germany

References 393

5. Birkhäuser (1995) H-infinity optimal control and related minimax design problems: a dynam-
ical game approach. Birkhäuser, Berlin

6. Chang HS, Hu J, Fu MC (2010) Adaptive adversial multi-armed bandit approach to two-
person zero-sum Markov games. IEEE Trans Autom Control 55:463–468

7. Chen BS, Tseng CS, Uang HJ (2002) Fuzzy differential games for nonlinear stochastic sys-
tems: suboptimal approach. IEEE Trans Fuzzy Syst 10:222–233

8. Laraki R, Solan E (2005) The value of zero-sum stopping games in continuous time. SIAM J
Control Optim 43:1913–1922

9. Starr AW, Ho YC (1967) Nonzero-sum differential games. J Optim Theory Appl 3:184–206
10. Vamvoudakisand KG, Lewis FL (2011) Multi-player non-zero-sum games: online adap-

tive learning solution of coupled Hamilton–Jacobi equations. Automatica. doi:10.1016/
j.automatica.2011.03.005

11. Wang X (2008) Numerical solution of optimal control for scaled systems by hybrid functions.
Int J Innov Comput Inf Control 4:849–856

12. Wei QL, Zhang HG, Liu DR (2008) A new approach to solve a class of continuous-time non-
linear quadratic zero-sum game using ADP. In: Proceedings of IEEE international conference
on networking, sensing and control, Sanya, China, pp 507–512

13. Wei QL, Zhang HG, Cui LL (2009) Data-based optimal control for discrete-time zero-sum
games of 2-D systems using adaptive critic designs. Acta Autom Sin 35:682–692

14. Wei QL, Zhang HG, Dai J (2009) Model-free multiobjective approximate dynamic program-
ming for discrete-time nonlinear systems with general performance index functions. Neuro-
computing 7–9:1839–1848

15. Zhang HG, Wei QL, Liu DR (2011) An iterative adaptive dynamic programming method for
solving a class of nonlinear zero-sum differential games. Automatica 47:207–214

16. Zhang X, Zhang HG, Wang XY (2011) A new iteration approach to solve a class of finite-
horizon continuous-time nonaffine nonlinear zero-sum game. Int J Innov Comput Inf Control
7:597–608

17. Zhang HG, Cui LL, Luo YH (2012) Near-optimal control for non-zero-sum differential games
of continuous-time nonlinear systems using single network ADP. IEEE Trans Syst Man Cy-
bern, Part B, Cybern. doi:10.1109/TSMCB.2012.2203336

http://dx.doi.org/10.1016/j.automatica.2011.03.005
http://dx.doi.org/10.1016/j.automatica.2011.03.005
http://dx.doi.org/10.1109/TSMCB.2012.2203336

Chapter 10
Other Applications of ADP

10.1 Introduction

As is known, both modern wireless networks and automotive engines are complex
non-linear dynamical systems. The corresponding optimal control problems have
been investigated for many years by many researchers. However, there are still not
results referring to the optimal control based on the ADP method. Due to the advan-
tages of ADP in solving the optimal feedback control in a forward-time fashion, the
ADP method is introduced in this chapter to solve the optimal control problem of
modern wireless networks and automotive engines.

In the first part, a self-learning call admission control algorithm is developed
for signal-to-interference ratio (SIR)-based power-controlled direct-sequence (DS)-
code division multiple access (CDMA) cellular networks that provide both voice
and data services [21]. The idea is built upon a novel learning control architecture
with only a single module instead of two or three modules in adaptive critic de-
signs. The call admission controller can perform learning in real time as well as in
off-line environments and the controller improves its performance as it gains more
experience. Another important contribution in the present work is the choice of util-
ity function for the present self-learning control approach which makes the present
learning process much more efficient than existing learning control methods.

In the second part, we apply an existing control algorithm to a production vehi-
cle. The algorithm is presented according to certain criteria and calibrated for vehi-
cle operation over the entire operating regime [24]. Actually, the algorithm has been
optimized for the engine in terms of its performance, fuel economy, and tailpipe
emissions through a significant effort in the research and development of calibra-
tion process. To further improve the engine performance through controller design,
one may go through the traditional calibration and control procedures today. But an
alternative to this traditional approach is to use the neural network-based learning
control approach. The final result of our neural network learning process is a con-
troller that has learned to provide optimal control signals under various operating
conditions. We emphasize that such a neural network controller will be obtained

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2_10,
© Springer-Verlag London 2013

395

http://dx.doi.org/10.1007/978-1-4471-4757-2_10

396 10 Other Applications of ADP

after a special learning process that performs adaptive dynamic programming al-
gorithm. Once a controller is learned and obtained (off-line or on-line), it will be
applied to perform the task of engine control. The performance of the controller can
be further refined and improved through continuous learning in real-time vehicle
operations.

10.2 Self-Learning Call Admission Control for CDMA Cellular
Networks Using ADP

10.2.1 Problem Formulation

In the DS-CDMA cellular network model used in this section, we assume that sep-
arate frequency bands are used for the reverse link and the forward link, so that the
mobiles only experience interference from the base stations and the base stations
only experience interference from the mobiles. We consider cellular networks that
support both voice and data services. Assume that there are K classes of services
provided by the wireless networks under consideration, where K ≥ 1 is an integer.
We define a mapping σ : Z+ → {1, . . . ,K} to indicate the fact that the nth con-
nection is from the service class σ(n), where Z+ denotes the set of non-negative
integers. We assume that each connection in our network may be from a different
service class, which requires a different quality of service target (e.g., in terms of
different bit error rate for each service class). This includes the case when we allow
each call to specify its own quality of service requirements. We assume that traffic
from the same service class has the same data rate, the same activity factor, the same
desired SIR (signal-to-interference ratio) value, and the same maximum power limit
that can be received at the base station.

Consider a base station currently with N active connections. The power received
at the base station from the user (mobile station) of the nth connection is denoted by
Sn, n= 1, . . . ,N . In an SIR-based power-controlled DS-CDMA network [2, 7, 13,
29], the desired value of Sn is a function of the number of active home connections
and total other cell interference. If we assume that the maximum received power at
a base station is limited to Hk for connections from service class k = σ(n), then
Sn is a random variable in the range of (0,Hk]. The maximum power limits Hk ,
k = 1, . . . ,K , are determined by the power limit of mobile transmitters, the cell
size, the path loss information, and the user’s service class. They have been used in
several previous works on call admission control [9, 17, 29].

In CDMA networks, the instantaneous bit SIR (or the bit energy-to-interference
ratio) for the nth connection at the base station (in a cell) can be expressed in terms
of the received powers of the various connections as [9]

(Eb/N0)n = SnW

InRσ(n)

, (10.1)

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 397

where Sn is the instantaneous power level of the nth connection received at the base
station, W is the total spread bandwidth (or the chip rate), and Rσ(n) is the data rate
of service class σ(n). In in (10.1) indicates the instantaneous total interference to
the nth connection received at the base station and it is given by

In = (1 + f)

N∑

i=1,i �=n

νσ(i)Si + ηn,

where νσ(i) is the traffic (e.g., voice) activity factor of the ith connection, which is
from the service class σ(i), ηn is the background (or thermal) noise, N is the number
of active connections in the cell, and f is called the intercell interference factor
[32], having a typical value of 0.55. In the above, the value of f may not always
be constant in a system. Its value can be calculated using existing measurements
and can be updated periodically to reflect changes in traffic conditions and traffic
distributions.

Assume that after the admission of a new call or a handoff call, the power con-
trol algorithm starts to evolve until convergence. Assume that the power control
algorithm converges and it requires the power received at a base station from each
connection in the system given by S∗

n, n = 0,1, . . . ,N , where the total number of
connections in the system is N + 1 and connection 0 is the newly admitted caller.
Obviously, if S∗

n > Hσ(n) or S∗
n ≤ 0, for some n, 0 ≤ n ≤ N , the admission should

not be granted since it leads to an outage. Only when 0 < S∗
n ≤ Hσ(n) for all n,

n= 0,1, . . . ,N , the admission decision can be considered as a correct decision. The
goal of the present study is to develop a self-learning control algorithm that learns
to achieve the correct admission decisions under various, possibly changing, envi-
ronment conditions and user behavior and to optimize the grade of service (GoS)
measure.

The GoS in cellular networks is mainly determined by the new call blocking
probability and the handoff blocking probability. The former determines the fraction
of new calls that are blocked, while the latter is closely related to the fraction of
already admitted calls that cannot maintain their required quality of service (bit error
rate) and are dropped. For example, many works have chosen to use the following
definition for the GoS [1]:

GoS = P(call blocking)+w × P(handoff failure), (10.2)

where P(a) is the probability of event a and w is typically chosen as, e.g., 10. In our
simulation studies, we fix w = 10. The GoS defined in (10.2) provides a trade-off
between the new call blocking rate and the handoff call blocking rate. The parameter
w is a weighting factor that decides how much emphasis is placed on handoff calls.
Keeping the GoS defined in (10.2) under a desired target level would require one to
give much higher priority to handoff calls than to new calls when w = 10. On the
other hand, quality of service (QoS) is usually defined according to the bit error rate
in digital transmission. For example, the quality of service requirement for voice
users is usually expressed as a bit error rate less than 10−3 in order to guarantee the

398 10 Other Applications of ADP

quality of communication which can be satisfied by the power control mechanism
keeping Eb/N0 at a required value of 7 dB or higher [9, 17, 29].

For a given set of parameters, including traffic statistics and mobility character-
istics, fixed call admission control schemes can sometimes yield optimal solutions
[26] in terms of GoS. All such schemes (see [12, 23, 26, 27, 29]), however, by re-
serving a fixed part of capacity, cannot adapt to changes in the network conditions
due to their static nature. Therefore, we develop in the present work a self-learning
call admission control algorithm for CDMA wireless networks. The present call ad-
mission control algorithm based on adaptive critic designs has the capability to learn
from the environment and the user behavior so that the performance of the algorithm
will be improved through further learning.

10.2.2 A Self-Learning Call Admission Control Scheme for CDMA
Cellular Networks

10.2.2.1 Adaptive Critic Designs for Problems with Finite Action Space

In the following, we provide a brief introduction to adaptive critic designs [18].
Suppose that one is given a discrete-time non-linear dynamical system

x(k + 1)= F [x(k), u(k), k],
where x ∈ R

n represents the state vector of the system and u ∈ R
m denotes the

control action. In the present section, the function F denotes a stochastic transition
from the state x(k) to the next state x(k + 1) under the given control action u(k) at
time k. Suppose that one associates with this system the cost functional

J [x(i), i] =
∞∑

k=i

γ k−iL[x(k), u(k), k], (10.3)

where L is called the utility function and γ is the discount factor with 0 < γ ≤ 1.
Note that J is dependent on the initial time i and the initial state x(i), and it is
referred to as the cost-to-go of state x(i). The objective is to choose the control
sequence u(k), k = i, i+ 1, . . . , so that the cost functional J in (10.3) is minimized.

The class of ACDs considered in the present section is called action-dependent
heuristic dynamic programming, or ADHDP, which is shown in Fig. 10.1 (see [19]).
The critic network in this case will be trained by minimizing the following error
measure over time:

‖Eq‖ =
∑

k

Eq(k)

=
∑

k

[
Q(k − 1)−L(k)− γQ(k)

]2
,

(10.4)

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 399

Fig. 10.1 A typical scheme
of an action-dependent
heuristic dynamic
programming [19]

where Q(k) is the critic network output at time k. When Eq(k)= 0 for all k, (10.4)
implies that

Q(k − 1)= L(k)+ γQ(k)

= L(k)+ γ [L(k + 1)+ γQ(k + 1)]
= · · ·

=
∞∑

i=k

γ i−kL(i).

(10.5)

Comparing (10.5) to (10.3), we see that when minimizing the error function in
(10.4), we have a neural network trained so that its output becomes an estimate
of the cost functional defined in dynamic programming for i = k + 1, i.e., the value
of the cost functional in the immediate future [19].

The input–output relationship of the critic network in Fig. 10.1 is given by

Q(k)=Q
[
x(k), u(k), k,W

(p)
C

]
,

where W(p)
C represents the weights of the critic network after the pth weight update.

There are two methods to train the critic network according to the error function
(10.4) in the present case, which are described in [19]. We will use the so-called
forward-in-time method.

We can train the critic network at time k − 1, with the output target given by
L(k)+ γQ(k). The training of the critic network is to realize the mapping given by

Cf :
{
x(k − 1)
u(k − 1)

}
→ {L(k)+ γQ(k)}. (10.6)

400 10 Other Applications of ADP

In this case, the output from the network to be trained is Q(k−1) and the input to the
network to be trained is composed of x(k− 1) and u(k− 1). The target output value
for the critic network training is calculated using its output at time k as indicated in
(10.6). The goal of learning the function given by (10.6) is to have the critic network
output satisfy

Q(k − 1)≈ L(k)+ γQ(k) for all k,

which is required by (10.5) for adaptive dynamic programming solutions.
The critic network training procedure is described as follows using the strategy

of [16]:

1. Initialize two critic networks: cnet1 = cnet2;
2. Use cnet2 to get Q(k), and then train cnet1 for 50 epochs using the Levenberg–

Marquardt algorithm [11];
3. Copy cnet1 to cnet2, i.e., let cnet2 = cnet1;
4. Repeat Steps 2 and 3, e.g., four times;
5. Repeat Steps 1–4, e.g., ten times (start from different initial weights);
6. Pick the best cnet1 obtained as the trained critic network.

After the critic network’s training is finished, the action network’s training starts
with the objective of minimizing the critic network output Q(k). In this case, we
can choose the target of the action network training as zero, i.e., we will update the
action network’s weights so that the output of the critic network becomes as small
as possible. In general, a good critic network should not output negative values if
L(k) is non-negative. This is particularly true when L(k) is chosen as the square
error function in tracking control problems [31]. The desired mapping which will
be used for the training of the action network in Fig. 10.1 is given by

A : {x(k)} → {0(k)}, (10.7)

where 0(k) indicates the target values of zero. We note that during the training of
the action network, it will be connected to the critic network as shown in Fig. 10.1.
The target in (10.7) is for the output of the whole network, i.e., the output of the
critic network after it is connected to the action network as shown in Fig. 10.1.

There are many problems in practice that have a control action space that is finite.
Typical examples include bang-bang control applications where the control signal
only takes a few (finite) extreme values or vectors. When the application has only a
finite action space, the decisions that can be made are constrained to a limited num-
ber of choices, e.g., a binary choice in the case of call admission control problem.
When a new call or a handoff call arrives at a base station requesting admission, the
decisions that a base station can make are constrained to two choices, i.e., to accept
the call or to reject the call. Let us denote the two options by using u(k) = +1 for
“accept” and u(k) = −1 for “reject”. It is important to realize that in the present
case the control actions are limited to a binary choice, or to only two possible op-
tions. Because of this, the ACDs introduced in Fig. 10.1 can be further simplified,
so that only the critic network is needed. Our self-learning call admission control

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 401

Fig. 10.2 The block diagram of the present adaptive critic approach

scheme for wireless cellular networks using adaptive critic designs is illustrated in
Fig. 10.2. When a new call or a handoff call arrives at a base station requesting ad-
mission, we can first ask the critic network to see whether u(k) = +1 (accept) or
u(k)= −1 (reject) will give a smaller output value. We will then choose the control
action, choosing from u(k)= +1 and u(k)= −1, that gives a smaller critic network
output. As in the case of Fig. 10.1, the critic network would also take the states of
the system as input. We note that Fig. 10.2 is only a schematic diagram that shows
how the computation takes place while making a call admission control decision.
The two blocks for the critic network in Fig. 10.2 represent the same network or
computer code in software. The block diagram in Fig. 10.2 indicates that the critic
network will be used twice in calculations (with different values of u(k)) to make a
decision on whether or not to accept a call.

The above description assumes that the critic network has been trained success-
fully. Once the critic network training is done, it can be applied as in Fig. 10.2. To
guarantee that the overall system will achieve optimal performance now and in fu-
ture environments which may be significantly different from what they are now, we
will allow the critic network to perform further learning when needed in the future.
In the next section, we describe how the critic network learning is performed. In par-
ticular, we describe how the training data are collected at each time step and how the
utility function L(k) is defined. We note that once the training data are collected, the
training of the critic network can use, e.g., the forward-in-time method, described

402 10 Other Applications of ADP

in this section. We also note that the description here for the critic network training
applies to both the initial training of the critic network and further training of the
critic network when needed in the future.

10.2.2.2 Self-learning Call Admission Control for CDMA Cellular Networks

We use a utility function as reward or penalty to the action made by the call ad-
mission control scheme. When the call admission control scheme makes a decision
about accepting a call, it will lead to two distinct results. The first is that the deci-
sion of accepting a call is indeed the right decision due to the guarantee of quality
of service during the entire call duration. In this case we should give a reward to
the decision of accepting a call. Otherwise, a penalty is assigned to this decision.
On the other hand, if rejecting a call would have been the right decision due to
call dropping or system outage after the call acceptance, we will also give a re-
ward to the decision of rejecting a call. Otherwise, a penalty is assigned to this
decision.

It is generally accepted in practice that handoff calls will be given higher priority
than new calls [12, 26, 27, 29]. This is accomplished in our call admission con-
trol scheme by using different thresholds for new calls and handoff calls. A hand-
off call can be admitted if 0 < S∗

n ≤ Hσ(n) for all n = 0,1, . . . ,N . A new call
can only be admitted if 0 < S∗

0 ≤ Tσ(0) and 0 < S∗
n ≤ Hσ(n) for n = 1,2, . . . ,N ,

where Tσ(0) < Hσ(0) is the threshold for new calls (where connection 0 is the new
caller).

For handoff calls, when 0 < S∗
n ≤Hσ(n) for n= 0,1, . . . ,N , accepting a handoff

call will be given a reward and rejecting a handoff call will be given a penalty. On
the other hand, when S∗

n > Hσ(n) for some n, 0 ≤ n ≤ N , accepting a handoff call
(i.e., the zeroth caller) will be given a penalty and rejecting a handoff call will be
given a reward. Obviously, when S∗

n ≤ 0 for some n, 0 ≤ n≤N , the call should be
rejected. We note that if the power control algorithm leads to either S∗

n > Hσ(n) or
S∗
n ≤ 0 for some n, the network will enter an outage, i.e., some calls will have to be

terminated prematurely since they cannot maintain required quality of service (bit
error rate). In this case, the action of rejection is given a reward and the action of
acceptance is given a penalty. Note that S∗

n , n = 0,1, . . . ,N , are power levels for
all connections after the call admission decision and the power control algorithm
convergence.

We first define the cost functional for handoff calls as follows (S∗
n ≥ 0 for n =

0,1, . . . ,N):

En = ξ max

{
u(k)

[
S∗
n

Hσ(n)

− 1

]
,0

}
, (10.8)

where ξ > 0 is a coefficient, and u(k)= 1 represents accepting a call and u(k)= −1
represents rejecting a call. We emphasize that the conditions, 0 ≤ S∗

n ≤ Hσ(n) for
n= 0,1, . . . ,N , must hold for the entire duration of all calls in order for the system
to give reward to the action of accepting a handoff call.

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 403

For new calls, when 0 < S∗
0 ≤ Tσ(0) and 0 < S∗

n ≤Hσ(n) for n= 1,2, . . . ,N , we
give a reward to the action of accepting a new call, and we give a penalty to the
action of rejecting a new call. When S∗

0 > Tσ(0), or S∗
n > Hσ(n) for some n, n =

1,2, . . . ,N , or S∗
n ≤ 0 for some n, n= 0,1, . . . ,N , we give penalty for accepting a

new call and we give a reward for rejecting a new call. The cost functional for new
calls is defined as (S∗

n ≥ 0 for n= 0,1, . . . ,N):

En =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ max

{[
S∗
n

Tσ(n)
− 1

]
,0

}
, when u(k)= 1,

ξ max

{[
1 − S∗

n

Hσ(n)

]
,0

}
, when u(k)= −1,

(10.9)

where Tσ(n) < Hσ(n), n= 0,1, . . . ,N . We note again that the conditions, 0 < S∗
n ≤

Hσ(n) for n= 0,1, . . . ,N , must hold for the entire duration of all calls in order for
the system to give reward to the action of accepting a new call, even though the
admission decision is according to the condition 0 < S∗

0 ≤ Tσ(0) for the new call.
The functions defined above satisfy the condition that En ≥ 0 for all n, n =

0,1, . . . ,N . From (10.8) and (10.9), we see that when the action is “accept”, if the
value of the utility function of any connection is larger than 0, this action should
be penalized. Also, when the action is “reject”, if the value of the utility function of
any connection is zero, this action should be rewarded. Therefore, from the system’s
point of view, the cost function should be chosen as

E =
⎧
⎨

⎩

max
0≤n≤N

(En), if u(k)= 1,

min
0≤n≤N(En), if u(k)= −1.

(10.10)

The cost function defined in (10.10) indicates that the goal of our call admission
control algorithm is to minimize the value of function E, i.e., to reach its minimum
value of zero and to avoid its positive values.

The utility function L (used in (10.3)) in our present work is chosen as

L(u)= E

1 +E
. (10.11)

Figures 10.3 and 10.4 show plots of this utility function for handoff calls and new
calls, respectively, when ξ = 10. The parameter ξ is used to obtain a desired shape
of the utility function. Since our algorithm will search for the optimal performance
that corresponds to small values of the utility function, the shape of the utility func-
tion will have some effects on the optimization process. When ξ = 10, we see that
the utility function becomes more selective than ξ = 1 for any condition indicated
by signal power. From Figs. 10.3 and 10.4 we see that the choice of the present
utility functions in (10.11) clearly shows minimum points (the flat areas) that our

404 10 Other Applications of ADP

Fig. 10.3 Utility function for handoff calls

Fig. 10.4 Utility function for new calls

call admission control scheme tries to reach and the points with high penalty that
our scheme should avoid. In addition, the conversion from E to U guarantees the
convergence of the performance index of dynamic programming, which is defined

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 405

as in (10.3). With the present utility function given by (10.10) and (10.11), we have

0 < J(k) <
1

1 − γ
,

since L in (10.11) satisfies 0 ≤ L < 1. Without the conversions in (10.11), there is
no guarantee that the infinite summation in (10.3) will be bounded. We note that
the present critic network produces an output that approximates the cost functional
J (k) in (10.3), and the admission action chosen each time will minimize the critic
network output, to achieve approximate optimal control.

In stationary environment, where user traffic statistics (patterns) remain un-
changed, a simple static call admission control algorithm [20] will be able to achieve
the admission objective described above. However, traffic patterns including user
arrival rate, call holding times, user mobility patterns, etc., may show significant
changes from time to time. To deal with changing environments, static call admis-
sion control algorithm would not be appropriate. The present call admission con-
trol algorithm based on adaptive critic designs will be able to deal with environ-
ment changes through further learning in the future. Another benefit of the present
self-learning call admission control algorithm is its ability to improve performance
through further learning as the controller gains more and more experience.

The development of the present self-learning call admission control scheme in-
volves the following four steps:

1. Collecting data: During this phase, when a call comes, we can accept or reject the
call with any scheme and calculate the utility function for the system as presented
above. In the present section, we simply accept and reject calls randomly with
the same probability of 0.5. At the same time, we collect the states corresponding
to each action. The states (environment) collected for each action include total
interference, call type (new call or handoff call), call class (voice or data), etc.

2. Training critic network: Using the data collected to train the critic network as
mentioned in the previous section. Examples of input variables chosen for the
critic network will be given in our simulation examples.

3. Applying critic network: The trained critic network is then applied as shown in
Fig. 10.2.

4. Further updating critic network: The critic network will be updated as needed
while it is used in application to accommodate environment changes, for exam-
ple, user pattern and behavior changes or new requirements for the system. Data
collection has to be performed again and the training of the critic network as
well. In this case, the above three steps will be repeated.

The critic network will be updated when there are changes in call admission re-
quirements or if the already trained ACD scheme does not satisfy new requirements.
In fact, ACD is going to learn the rules imposed by the utility function of the system.
Therefore, rule changes can be accommodated by modifying the utility function to
accommodate new requirements. For example, to satisfy certain requirements, we

406 10 Other Applications of ADP

modify the cost function in (10.9) to become

En =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ max

{[
S∗
n

Hσ(n)

− 1

]
,0

}
, when u(k)= 1

and na ≤Nh,

ξ max

{[
S∗
n

Tσ(n)
− 1

]
,0

}
, when u(k)= 1

and na > Nh,

ξ max

{[
1 − S∗

n

Hσ(n)

]
,0

}
, when u(k)= −1,

(10.12)

where na is the number of active handoff calls in the cell and Nh is a fixed parameter
indicating the threshold for low traffic load.

When a call arrives at the base station, the admission decision would be either
“accept” or “reject”. If the decision is taken to accept a call, there will be two kinds
of data collected. One is that the decision is incorrect due to call dropping, and
the other one is that the decision is correct since 0 < S∗

n ≤ Hσ(n), n = 0,1, . . . ,N ,
is maintained for the entire duration of all calls. In the former case, a penalty is
recorded and in the latter case, a reward is recorded. If the decision is to reject a
call, there will be also be two kinds of data collected that correspond to a reward
and a penalty. Note that in the case of a “reject” decision, the value of the utility
function is determined as in (10.8)–(10.11) where the values of S∗

n , n= 0,1, . . . ,N ,
are calculated according to [3, 20, 30].

10.2.3 Simulations

We first conduct simulation studies for a network with a single class of service (e.g.,
voice). The network parameters used in the present simulation are taken similarly
as the parameters used in [13, 29] (see Table 10.1).

The arrival rate consists of the new call attempt rate λc and the handoff call at-
tempt rate λh. The new call attempt rate λc depends on the expected number of
subscribers per cell. The handoff call attempt rate λh depends on such network
parameters as traffic load, user velocity, and cell coverage areas [10, 12]. In our
simulation, we assume that λc : λh = 5 : 1 [12]. A channel is released by call com-
pletion or handoff to a neighboring cell. The channel occupancy time is assumed to
be exponentially distributed [10, 12] with the same mean value of 1/μ= 3 minutes.
For each neural network training in our simulation studies, we generated 35000 data
points according to the data collection procedure in the previous section.

In the following, we conduct comparison studies between the present self-
learning call admission control algorithm and the algorithm developed in [20] with
fixed thresholds for new calls given by T = H , T = 0.8H , and T = 0.5H , re-
spectively. The arrival rate in all neighboring cells is fixed at 18 calls/minutes.

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 407

Table 10.1 Network
parameters Parameters Values Parameters Values

W 1.2288 Mcps R 9.6 kbps

η 1 × 10−14 W H 1 × 10−14 W

Eb/N0 7 dB v 3/8

Fig. 10.5 Comparison study using utility function defined in (10.9)

The training data are collected as mentioned in the previous section. We choose
Tσ(n) = 0.5Hσ(n) and ξ = 10 in (10.9). The critic network has three inputs. The first
is the total interference received at the base station, the second is the action (1 for
accepting, −1 for rejecting), and the third is the call type (1 for new calls, −1 for
handoff calls). The critic network is a multilayer feedforward neural network with
3–6–1 structure, i.e., three neurons at the input layer, six neurons at the hidden layer,
and one neuron at the output layer. Both the hidden and the output layers use the
hyperbolic tangent function as the activation function. Figure 10.5 shows the simu-
lation results. We see from the figure that the performance of the self-learning algo-
rithm is similar to the case of static algorithm with T = 0.5H , because we choose
Tσ(n) = 0.5Hσ(n) in (10.9) for our learning control algorithm. When the call arrival
rate is low, the self-learning algorithm is not so good because it reserves too much
for handoff calls and as a result it rejects too many new calls. That is why the GoS
is worse than the other two cases of static algorithms (T = 1.0H and T = 0.8H).
In this case, the self-learning algorithm is trained to learn a call admission control
scheme that gives higher priority to handoff calls.

408 10 Other Applications of ADP

Fig. 10.6 Comparison study using utility function defined in (10.12)

In order to improve the GoS when the call arrival rate is low, we use the mod-
ified cost function for new calls as in (10.12), where we choose Nh = 15 in our
simulation. Using this new utility function we collect the training data using one of
the static algorithms with fixed threshold or the previous critic network. Then we
train a new critic network with the newly collected data. In this time the critic net-
work has four inputs. Three of them are the same as in the previous critic network.
The new input is equal to 1 when na ≤ Nh and otherwise it is equal to −1. The
critic network in this case has a structure given by 4–8–1. Figure 10.6 shows the
result of applying the new critic network to the same traffic pattern as in Fig. 10.5.
From the figure we see that the self-learning algorithm using the new critic network
has the best GoS. We see that by simply changing the cost function from (10.11)
to (10.12), the self-learning algorithm can significantly improve its performance to
outperform static admission control algorithms. One of the benefits of self-learning
call admission control algorithm is that we can easily and efficiently design call ad-
mission control algorithms by modifying the cost function (equivalently, the utility
function) to satisfy the requirements or to accommodate new environment changes.

The traffic load in telephony systems is typically time varying. Figure 10.7 shows
a pattern concerning call arrivals during a typical 24 hour business day, beginning at
midnight [8]. It can be seen that the peak hours occur around 11:00 am and 4:00 pm.
Next, we use our newly trained critic network above for this traffic pattern. Fig-
ure 10.8 gives the simulation results under the assumption that the traffic load was
spatially uniformly distributed among cells, but followed the time-varying pattern
given in Fig. 10.7. Figure 10.8 compares the four call admission control algorithms
and shows that the self-learning algorithm has the best GoS among all the algo-
rithms tested. We note that the self-learning call admission control algorithm was

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 409

Fig. 10.7 A traffic pattern of a typical business day

Fig. 10.8 Comparison study for varying traffic

not retrained from the previous case, i.e., we used the same critic network in the
simulation results of Fig. 10.8 as in Fig. 10.6.

In the following, we conduct comparison studies between the present self-
learning call admission control algorithm and that of [29]. Using the algorithm

410 10 Other Applications of ADP

Fig. 10.9 Comparison studies with the algorithm in [29]

in [29], the base station controller reads the current interference from the power
strength measurer. It then estimates the current interference margin (CIM) and hand-
off interference margin (HIM), where CIM < HIM. A total interference margin
(TIM) is set according to the quality of service target. If CIM > TIM, reject the call
admission request. If HIM < TIM, accept the call request. If CIM < TIM < HIM,
then only handoff calls will be accepted. Figure 10.9 compares the present self-
learning call admission control algorithm with the algorithm in [29] that reserves
one, two, and three channels for handoff calls, respectively. The arrival rate in all
neighboring cells is fixed at 18 calls/minute. We assume the use of a hexagonal cell
structure. From Fig. 10.9, we see that the present algorithm has the best GoS. That
is because the algorithm in [29] is a kind of guard channel algorithm used in CDMA
systems. Therefore, when the load is low, GC = 1 performs the best, and when the
load is high, GC = 3 performs the best. However, our algorithm can adapt to vary-
ing traffic load conditions. It has the best overall performance under various traffic
loads. Again, we used the same critic network in the simulation results of Fig. 10.9
as in Fig. 10.6.

Finally, we conduct simulation studies for cellular networks with two classes of
services. One class is voice service and the other is data service. Network parameters
in our simulations are chosen in reference to the parameters used in [14, 28] (see
Table 10.2). In our simulation, the data traffic is similar to that in [14], i.e., low
resolution video or interactive data. In this case, the data traffic can be specified by a
constant transmission rate. The background noise in this case is chosen the same as
in Table 10.1. The utility function is defined for voice and data calls as in (10.9) and
(10.11). In (10.12), we choose Tσ(n) = 0.6Hσ(n) and ξ = 10 for both voice calls and

10.2 Self-Learning Call Admission Control for CDMA Cellular Networks 411

Fig. 10.10 GoS for voice calls

Table 10.2 Network
parameters Voice users Data users

Parameters Values Parameters Values

Wv 4.9152 Mcps Wd 4.9152 Mcps

Rv 9.6 kbps Rd 38.4 kbps

Hv 1 × 10−14 W Hd 1 × 10−13 W

(Eb/N0)v 7 dB (Eb/N0)d 9 dB

νv 3/8 νd 1

data calls. Nh is chosen as 20 and 4 for voice calls and data calls, respectively. The
critic network now has five inputs. The newly added input is the call class which
is 1 for voice calls and −1 for data calls. The critic network structure is chosen as
5–10–1. Figures 10.10 and 10.11 compare our self-learning call admission control
algorithm and the static algorithm [20] with fixed thresholds given by T = H and
T = 0.8H . The arrival rates of voice users and data users in all neighboring cells are
fixed at 20 calls/minute and 3 calls/minute, respectively. From Figs. 10.10 and 10.11,
we see that the present self-learning algorithm has the best GoS for almost all call
arrival rates tested. We conclude that the present self-learning algorithm performs
better than the fixed algorithms due to the fact that the self-learning algorithm can
adapt to varying traffic conditions and environment changes.

412 10 Other Applications of ADP

Fig. 10.11 GoS for data calls

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP

10.3.1 Problem Formulation

A test vehicle with a V8 engine and 4-speed automatic transmission is instrumented
with engine and transmission torque sensors, wide-range air–fuel ratio sensors in the
exhaust pipe located before and after the catalyst on each bank, as well as exhaust
gas pressure and temperature sensors. The vehicle is also equipped with a dSPACE
rapid prototyping controller for data collection and controller implementation. Data
are collected at each engine event under various driving conditions, such as the
Federal Test Procedure (FTP cycles), as well as more aggressive driving patterns, for
a length of about 95,000 samples during each test. The engine is run under closed-
loop fuel control using switching-type oxygen sensors. The dSPACE is interfaced
with the power-train control module (PCM) in a by-pass mode.

We build a neural network model for the test engine with a structure compatible
with the mathematical engine model developed by Dobner [5, 6, 22] and others. Due
to the complexity of modern automotive engines, in the present work, we use the
time-lagged recurrent neural networks (TLRNs) for engine modeling. In practice,
TLRNs have been used often for function approximation and it is believed that they
are more powerful than the networks with only feedforward structures (cf. [25, 33]).

For the neural network engine model, we choose air–fuel ratio (AFR) and engine
torque (TRQ) as the two outputs. We choose throttle position (TPS), electrical fuel
pulse width (FPW), and spark advance (SPA) as the three control inputs. These are

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP 413

input signals to be generated using our new adaptive critic learning control algo-
rithm. We choose intake manifold pressure (MAP), mass air flow rate (MAF), and
engine speed (RPM) as reference input. The time-lagged recurrent neural network
used for the engine combustion module has six input neurons, a single hidden layer
with eight neurons, and two output neurons.

Validation results for the output TRQ and AFR of the neural network engine
model indicate a very good match between the real vehicle data and the neural net-
work model output during the validation phase [15].

10.3.2 Self-learning Neural Network Control for Both Engine
Torque and Exhaust Air–Fuel Ratio

Suppose that one is given a discrete-time non-linear dynamical system

x(k + 1)= F [x(k), u(k), k], (10.13)

where x ∈ R
n represents the state vector of the system and u ∈ R

m denotes the
control action. Suppose that one associates with this system the cost functional (or
cost)

J [x(i), i] =
∞∑

k=i

γ k−iL[x(k), u(k), k], (10.14)

where L is called the utility function or local cost function and γ is the discount
factor with 0 < γ ≤ 1. Note that J is dependent on the initial time i and the initial
state x(i), and it is referred to as the cost-to-go of state x(i). The objective is to
choose the control sequence u(k), k = i, i + 1, . . . , so that the cost functional J
(i.e., the cost) in (10.14) is minimized.

Adaptive critic designs (ACDs) are defined as designs that approximate dy-
namic programming in the general case, i.e., approximate optimal control over
time in noisy, non-linear environments. A typical design of ACDs consists of three
modules—Critic (for evaluation), Model (for prediction), and Action (for deci-
sion). When in ACDs the critic network (i.e., the evaluation module) takes the ac-
tion/control signal as part of its input, the designs are referred to as action-dependent
ACDs (ADACDs). We use an action-dependent version of ACDs that does not re-
quire the explicit use of the model network in the design. The critic network in this
case will be trained by minimizing the following error measure over time:

‖Eq‖ =
∑

k

Eq(k)

=
∑

k

[
Q(k − 1)−L(k)− γQ(k)

]2
,

(10.15)

414 10 Other Applications of ADP

where Q(k)=Q[x(k), u(k), k,WC]. When Eq(k)= 0 for all k, (10.15) implies that

Q(k − 1)= L(k)+ γQ(k)

= L(k)+ γ [L(k + 1)+ γQ(k + 1)]
= · · ·

=
∞∑

i=k

γ i−kL(k).

(10.16)

We see that when minimizing the error function in (10.15), we have a neural network
trained so that its output at time k becomes an estimate of the cost functional defined
in dynamic programming for i = k + 1, i.e., the value of the cost functional in the
immediate future [19].

The input–output relationship of the critic network is given by

Q(k)=Q [x(k), u(k), k,WC] ,

where WC represents the weight vector of the critic network.
We can train the critic network at time k− 1, with the desired output target given

by L(k)+ γQ(k). The training of the critic network is to realize the mapping given
by

Cf :
{
x(k − 1)
u(k − 1)

}
→ {L(k)+ γQ(k)}. (10.17)

We consider Q(k − 1) in (10.15) as the output from the network to be trained and
the target output value for the critic network is calculated using its output at time k.

After the critic network’s training is finished, the action network’s training starts
with the objective of minimizing Q(k). The goal of the action network training is
to minimize the critic network output Q(k). In this case, we can choose the target
of the action network training as zero, i.e., we will train the action network so that
the output of the critic network becomes as small as possible. The desired mapping
which will be used for the training of the action network in the present ADHDP is
given by

A : {x(k)} → {0(k)}, (10.18)

where 0(k) indicates the target values of zero. We note that during the training of
the action network, it will be connected to the critic network to form a larger neural
network. The target in (10.18) is for the output of the whole network, i.e., the output
of the critic network after it is connected to the action network.

After the action network’s training cycle is completed, one may check the sys-
tem’s performance, then stop or continue the training procedure by going back to
the critic network’s training cycle again, if the performance is not acceptable yet.

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP 415

Assume that the control objective is to have x(k) in (10.13) track another signal
given by x∗(k). We define in this case the local cost function L(k) as

L(k)= 1

2
eT(k)e(k)= 1

2
[x(k)− x∗(k)]T[x(k)− x∗(k)].

Using the ADHDP introduced earlier in this section, we can design a controller to
minimize

J (k)=
∞∑

i=k

γ i−kL(i),

where 0 < γ < 1. We note that in this case our control objective is to minimize
an infinite summation of L(k) from the current time to the infinite future, while in
conventional tracking control designs, the objective is often to minimize L(k) itself.

10.3.3 Simulations

The objective of the present engine controller design is to provide control signals
so that the torque generated by the engine will track the torque measurement as
in the data and the air–fuel ratio will track the required values also as in the data.
The measured torque values in the data are generated by the engine using the exist-
ing controller. Our learning controller will assume no knowledge about the control
signals provided by the existing controller. It will generate a set of control signals
that are independent of the control signals in the measured data. Based on the data
collected, we use our learning controller to generate control signals TPS, FPW, and
SPA, with the goal of producing exactly the same torque and air–fuel ratio as in the
data set. That is to say, we keep our system under the same requirements as the data
collected, and we build a controller that provides control signals which achieve the
torque control and air–fuel ratio control performance of the engine.

As described in the previous section, the development of an adaptive critic learn-
ing controller involves two stages: the training of a critic network and the develop-
ment of a controller/action network. We describe in the rest of the present section
the learning control design for tracking the TRQ and AFR measurements in the data
set. This is effectively a torque-based controller, i.e., a controller that can generate
control signals given the torque demand. The block diagram of the present adaptive
critic engine control (including air–fuel ratio control) is shown in Fig. 10.12. The
diagram shows how adaptive critic designs can be applied to engine control through
adaptive dynamic programming.

10.3.3.1 Critic Network

The critic network is chosen as a 8–15–1 structure with eight input neurons and 15
hidden layer neurons:

416 10 Other Applications of ADP

Fig. 10.12 Structure of adaptive critic learning engine controller

• The eight inputs to the critic network are TRQ, TRQ∗, MAP, MAF, RPM, TPS,
FPW, and SPA, where TRQ∗ is read from the data set, indicating the desired
torque values for the present learning control algorithm to track.

• The hidden layer of the critic network uses a sigmoidal function, i.e., the tansig
function in MATLAB [4], and the output layer uses the linear function purelin.

• The critic network outputs the function Q, which is an approximation to the func-
tion J (k) defined as in (10.14).

• The local cost functional L defined in (10.14) in this case is chosen as

L(k)= 1

2
[TRQ(k)− TRQ∗(k)]2 + 1

2
[AFR(k)− AFR∗(k)]2,

where TRQ and AFR are the engine torque and air–fuel ratio generated using the
proposed controller, respectively, and TRQ∗ and AFR∗ are the demanded TRQ
value and the desired AFR value, respectively. Both TRQ∗ and AFR∗ are taken
from the actual measured data in the present case. The utility function chosen
in this way will lead to a control objective of TRQ following TRQ∗ and AFR
following AFR∗.

• Utilizing the MATLAB Neural Network Toolbox, we apply traingdx (gradient
descent algorithm) for the training of the critic network. We note that other algo-
rithms implemented in MATLAB, such as traingd, traingda, traingdm,
trainlm are also applicable. We employ batch training for the critic network,
i.e., the training is performed after each trial of a certain number of steps (e.g.,
10000 steps). We choose γ = 0.9 in the present experiments.

10.3 Engine Torque and Air–Fuel Ratio Control Based on ADP 417

10.3.3.2 Controller/Action Network

The structure of the action network is chosen as 6–12–3 with six input neurons, 12
hidden layer neurons, and three output neurons:

• The six inputs to the action network are TRQ, TRQ∗, MAP, MAF, THR, and
RPM, where THR indicates the driver’s throttle command.

• Both the hidden layer and the output layer use the sigmoidal function tansig.
• The outputs of the action network are TPS, FPW, and SPA, which are the three

control input signals used in the engine model.
• The training algorithm we choose to use is traingdx. We employ batch training

for the action network as well.

10.3.3.3 Simulation Results

In the present simulation studies, we first train the critic network for many cycles
with 500 training epochs in each cycle. At the end of each training cycle, we check
the performance of the critic network. Once the performance is found to be satisfac-
tory, we stop critic network training. This process usually takes about 6–7 hours.

After the critic network training is finished, we start the action network training.
We train the controller network for 200 epochs after each trial. We check to see the
performance of the neural network controller at the end of each trial.

We choose to use 4000 data points from the data (16000–20000 in the data set)
for the present critic and action network training.

We first show the TRQ and AFR output due to the initial training of our neu-
ral network controller when TRQ∗ and AFR∗ are chosen as random signals during
training. Figures 10.13 and 10.14 show the controller performance when it is applied
with TRQ∗ and AFR∗ chosen as the measured values in the data set. The neural net-
work controller in this case is trained for 15 cycles using randomly generated target
signal TRQ∗ and AFR∗. Figures 10.13 and 10.14 show that very good tracking con-
trol of the commanded torque signal (TRQ) and the exhaust AFR are achieved. We
note that at the present stage of the research we have not attempted to regulate the
AFR at the stoichiometric value but to track a given command. In these experiments
we simply try to track the measured engine-out AFR values so that the control sig-
nal obtained can directly be validated against the measured control signals in the
vehicle. In Fig. 10.16, it appears that better tracking of AFR was achieved on the
rich side of stoichiometric value, possibly due to more frequent rich excursions en-
countered during model training. This could also have been caused by intentional
fuel enrichments (i.e., wall-wetting compensation) during vehicle accelerations.

Figures 10.15 and 10.16 show the TRQ and AFR output after refined training
when TRQ∗ and AFR∗ are chosen as the measured values in the data. The neural
network controller in this case is trained for 15 cycles using target signal TRQ∗ and
AFR∗ as in the data. Figures 10.15 and 10.16 show that excellent tracking control
results for the commanded TRQ and AFR are achieved.

418 10 Other Applications of ADP

Fig. 10.13 Torque output generated by the neural network controller

Fig. 10.14 Air–fuel ratio output generated by the neural network controller

The simulation results indicate that the present learning controller design based
on adaptive dynamic programming (adaptive critic designs) is effective in training
a neural network controller to track the desired TRQ and AFR sequences through
proper control actions.

10.4 Summary 419

Fig. 10.15 Torque output generated by the refined neural network controller

Fig. 10.16 Air–fuel ratio output generated by the refined neural network controller

10.4 Summary

In this chapter, we have investigated the optimal control problem of modern wire-
less networks and automotive engines by using ADP methods. First, we developed

420 10 Other Applications of ADP

a self-learning call admission control algorithm based on ADP for multiclass traffic
in SIR-based power-controlled DS-CDMA cellular networks. The most important
benefit of our self-learning call admission control algorithm is that we can eas-
ily and efficiently design call admission control algorithms to satisfy the system
requirement or to accommodate new environments. We note that changes in traf-
fic conditions are inevitable in reality. Thus, fixed call admission control policies
are less preferable in applications. Simulation results showed that when the traffic
condition changes, the self-learning call admission control algorithm can adapt to
changes in the environment, while the fixed admission policy will suffer either from
a higher new call blocking rate, higher handoff call blocking rate, or interference
being higher than the tolerance.

Next a neural network learning control using adaptive dynamic programming
was developed for engine calibration and control. After the network was fully
trained, the present controller may have the potential to outperform existing con-
trollers with regard to the following three aspects. First, the technique presented
will automatically learn the inherent dynamics and non-linearities of the engine
from real vehicle data and, therefore, do not require a mathematical model of the
system to be developed. Second, the developed methods will further advance the
development of a virtual power train for performance evaluation of various con-
trol strategies through the development of neural network models of the engine
and transmission in a prototype vehicle. Third, the present controllers can learn
to improve their performance during the actual vehicle operations, and will adapt
to uncertain changes in the environment and vehicle conditions. This is an inherent
feature of the present neural network learning controller. As such, these techniques
may offer promise for use as real-time engine calibration tools. Simulation results
showed that the present self-learning control approach was effective in achieving
tracking control of the engine torque and air–fuel ratio control through neural net-
work learning.

References

1. A guide to DECT features that influence the traffic capacity and the maintenance of high radio
link transmission quality, including the results of simulations. ETSI technical report: ETR 042,
July 1992. Available on-line at http://www.etsi.org

2. Ariyavisitakul S (1994) Signal and interference statistics of a CDMA system with feedback
power control—Part II. IEEE Trans Commun 42:597–605

3. Bambos N, Chen SC, Pottie GJ (2000) Channel access algorithms with active link protection
for wireless communication networks with power control. IEEE/ACM Trans Netw 8:583–597

4. Demuth H, Beale M (1998) Neural network toolbox user’s guide. MathWorks, Natick
5. Dobner DJ (1980) A mathematical engine model for development of dynamic engine control.

SAE paper no 800054
6. Dobner DJ (1983) Dynamic engine models for control development—Part I: non-linear and

linear model formation. Int J Veh Des Spec Publ SP4:54–74
7. Dziong Z, Jia M, Mermelstein P (1996) Adaptive traffic admission for integrated services in

CDMA wireless-access networks. IEEE J Sel Areas Commun 14:1737–1747

http://www.etsi.org

References 421

8. Freeman RL (1996) Telecommunication system engineering. Wiley, New York
9. Gilhousen KS, Jacobs IM, Padovani R, Viterbi AJ, Weaver LA, Wheatley CE III (1991) On

the capacity of a cellular CDMA system. IEEE Trans Veh Technol 40:303–312
10. Guerin RA (1987) Channel occupancy time distribution in a cellular radio system. IEEE Trans

Veh Technol 35:89–99
11. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm.

IEEE Trans Neural Netw 5:989–993
12. Hong D, Rappaport SS (1986) Traffic model and performance analysis for cellular mobile

radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Trans
Veh Technol 35:77–92

13. Kim DK, Sung DK (2000) Capacity estimation for an SIR-based power-controlled CDMA
system supporting ON–OFF traffic. IEEE Trans Veh Technol 49:1094–1100

14. Kim YW, Kim DK, Kim JH, Shin SM, Sung DK (2001) Radio resource management in
multiple-chip-rate DS/CDMA systems supporting multiclass services. IEEE Trans Veh Tech-
nol 50:723–736

15. Kovalenko O, Liu D, Javaherian H (2001) Neural network modeling and adaptive critic control
of automotive fuel-injection systems. In: Proceedings of IEEE international symposium on
intelligent control, Taipei, Taiwan, pp 368–373

16. Lendaris GG, Paintz C (1997) Training strategies for critic and action neural networks in
dual heuristic programming method. In: Proceedings of international conference on neural
networks, Houston, TX, pp 712–717

17. Liu Z, Zarki ME (1994) SIR-based call admission control for DS-CDMA cellular systems.
IEEE J Sel Areas Commun 12:638–644

18. Liu D, Zhang Y (2002) A new learning control approach suitable for problems with finite
action space. In: Proceedings of international conference on control and automation, Xiamen,
China, pp 1669–1673

19. Liu D, Xiong X, Zhang Y (2001) Action-dependent adaptive critic designs. In: Proceedings of
INNS-IEEE international joint conference on neural networks, Washington, DC, pp 990–995

20. Liu D, Zhang Y, Hu S (2004) Call admission policies based on calculated power control
setpoints in SIR-based power-controlled DS-CDMA cellular networks. Wirel Netw 10:473–
483

21. Liu D, Zhang Y, Zhang H (2005) A self-learning call admission control scheme for CDMA
cellular networks. IEEE Transactions on Neural Networks 16:1219–1228

22. Liu D, Hu S, Zhang HG (2006) Simultaneous blind separation of instantaneous mixtures with
arbitrary rank. IEEE Trans Circuits Syst I, Regul Pap 53:2287–2298

23. Liu D, Xiong X, DasGupta B, Zhang HG (2006) Motif discoveries in unaligned molecular
sequences using self-organizing neural networks. IEEE Trans Neural Netw 17:919–928

24. Liu D, Javaherian H, Kovalenko O (2008) Adaptive critic learning techniques for engine
torque and air–fuel ratio control. IEEE Trans Syst Man Cybern, Part B, Cybern 38:988–993

25. Puskorius GV, Feldkamp LA, Davis LL (1996) Dynamic neural network methods applied to
on-vehicle idle speed control. Proc IEEE 84:1407–1420

26. Ramjee R, Towsley D, Nagarajan R (1997) On optimal call admission control in cellular net-
works. Wirel Netw 3:29–41

27. Rappaport SS, Purzynski C (1996) Prioritized resource assignment for mobile cellular com-
munication systems with mixed services and platform types. IEEE Trans Veh Technol 45:443–
458

28. Sampath A, Holtzman JM (1997) Access control of data in integrated voice/data CDMA sys-
tems: benefits and tradeoffs. IEEE J Sel Areas Commun 15:1511–1526

29. Shin SM, Cho CH, Sung DK (1999) Interference-based channel assignment for DS-CDMA
cellular systems. IEEE Trans Veh Technol 48:233–239

30. Veeravalli VV, Sendonaris A (1999) The coverage-capacity tradeoff in cellular CDMA sys-
tems. IEEE Trans Veh Technol 48:1443–1450

422 10 Other Applications of ADP

31. Visnevski NA, Prokhorov DV (1996) Control of a nonlinear multivariable system with adap-
tive critic designs. In: Proceedings of conference on artificial neural networks in engineering,
St Louis, MO, pp 559–565

32. Viterbi AJ, Viterbi AM, Zehavi E (1994) Other-cell interference in cellular power-controlled
CDMA. IEEE Trans Commun 42:1501–1504

33. Werbos PJ, McAvoy T, Su T (1992) Neural networks, system identification, and control in the
chemical process industries. In: White DA, Sofge DA (eds) Handbook of intelligent control:
neural, fuzzy, and adaptive approaches, Van Nostrand Reinhold, New York, NY

Index

Symbols
2-D, 343

A
Adaptive critic designs, 3, 6–8, 395, 398, 401,

405, 413, 415, 418
Adaptive critic learning, 9, 413, 415
Admissible control law, 14, 28, 33–35, 59, 60,

62, 63, 183, 229, 262, 263, 295
Approximate dynamic programming, 3, 4, 17

B
Backward iteration, 201, 207
Bellman’s optimality principle, 53, 129, 143,

162, 170, 189, 290
Boundary conditions, 310, 311, 328, 329

C
CDMA, 396, 398, 410
Cellular networks, 395–397, 401, 410, 420
Composite control, 283, 288
Curse of dimensionality, 3

D
Data-based, 223–226, 236, 238, 254, 309, 325,

332, 339–341, 343
Delay matrix function, 161, 164, 166, 168,

172, 173, 197
Descriptor system, 257, 271, 272, 306
Dimension augmentation, 128
Dynamic programming, 1–3, 259, 261, 311,

312, 333, 396, 399, 404, 414

F
Fixed terminal state, 83

G
GARE, 17, 334, 341
Gaussian density function, 39
GHJB, 9, 10, 27, 71–73, 75, 76, 79

H
Hamilton function, 13, 14, 228–230, 312–315,

318, 323, 326, 374, 378, 379
Hermitian, 203
HJB, 3, 9, 10, 13, 16, 27–30, 35, 36, 39, 54,

71–73, 76, 80, 83, 85, 86, 113, 116,
129, 131, 143, 144, 149, 161–164, 180,
186, 189, 192, 201, 205, 210, 211, 213,
257, 278, 279, 282–284, 286, 291, 296,
297, 348, 355

HJI, 10, 309, 349

I
Infinite-dimensional, 16, 163
Initially stable policy, 10, 12

K
Kronecker, 17, 324, 325, 327, 340

L
Lagrange multiplier, 313
Least-square method, 78, 203, 324, 325
Lebesgue integral, 77
Lower value function, 18, 346, 349, 354
LQR, 13, 259
Lyapunov function, 4, 13, 55, 56, 74, 213, 226,

232, 235, 247, 285, 351, 375, 381

M
Mixed optimal solution, 19, 345, 347, 348, 354
Mixed optimal value function, 19, 346–348,

355, 358
Monte Carlo, 3

H. Zhang et al., Adaptive Dynamic Programming for Control,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4757-2,
© Springer-Verlag London 2013

423

http://dx.doi.org/10.1007/978-1-4471-4757-2

424 Index

N
Non-zero-sum, 345, 372–374, 378, 381, 390
Nonquadratic functional, 27, 31, 72, 273, 291,

292, 305

O
Optimal robust controller, 236, 237
Oscillate, 111, 119

P
Partial differential equation, 3
Persistent excitation condition, 231, 379, 384
Pseudocontrol, 243

Q
Quadratic polynomial, 324

R
RBFNN, 39
Recurrent neural network, 15, 223, 225, 412,

413
Redundant weight, 268
Regression function, 135
Reinforcement learning, 3, 10, 11
Robbins–Monro, 135, 136
Roesser, 309, 310, 343

S
Self-learning, 395, 397, 398, 400, 405, 407,

408, 411, 420

Singularly perturbed system, 257, 281, 287,
288, 306

SNAC, 8, 9, 257, 297
Stabilization control, vi
Steady-state stage, 125–127, 228
Switched system, 257–259, 262, 265, 270, 306

T
Time delays, 16, 17, 161, 162, 197, 201, 202,

204, 207, 220
Time-varying, 128, 358, 362–364, 408
Transient stage, 125, 228
TSADP, 257, 262, 263, 265, 268

U
Upper value function, 18, 346, 349, 350,

352–354, 356
Utility function, 1, 13, 18, 52, 82, 102, 142,

162, 179, 224, 228, 310, 332, 352,
354–357, 395, 398, 401–403

W
WC , 5
While the input of the model network is x(k)

and v̂i (x(k)), 64

Z
Zero-sum games, 17, 19, 309, 311, 312, 314,

331–334, 339, 343, 345, 358, 361, 363,
364, 370, 371, 392

	Adaptive Dynamic Programming for Control
	Preface
	Background of This Book
	Why This Book?
	The Content of This Book
	Acknowledgments

	Contents

	Chapter 1: Overview
	1.1 Challenges of Dynamic Programming
	1.2 Background and Development of Adaptive Dynamic Programming
	1.2.1 Basic Structures of ADP
	1.2.1.1 Heuristic Dynamic Programming (HDP)
	1.2.1.2 Dual Heuristic Programming (DHP)

	1.2.2 Recent Developments of ADP
	1.2.2.1 Development of ADP Structures
	1.2.2.2 Development of Algorithms and Convergence Analysis
	1.2.2.3 Applications of ADP Algorithms

	1.3 Feedback Control Based on Adaptive Dynamic Programming
	1.4 Non-linear Games Based on Adaptive Dynamic Programming
	1.5 Summary
	References

	Chapter 2: Optimal State Feedback Control for Discrete-Time Systems
	2.1 Introduction
	2.2 Inﬁnite-Horizon Optimal State Feedback Control Based on DHP
	2.2.1 Problem Formulation
	2.2.2 Inﬁnite-Horizon Optimal State Feedback Control via DHP
	2.2.3 Simulations

	2.3 Inﬁnite-Horizon Optimal State Feedback Control Based on GDHP
	2.3.1 Problem Formulation
	2.3.2 Inﬁnite-Horizon Optimal State Feedback Control Based on GDHP
	2.3.2.1 NN Identiﬁcation of the Unknown Nonlinear System
	2.3.2.2 Derivation of the Iterative ADP Algorithm
	2.3.2.3 Convergence Analysis of the Iterative ADP Algorithm
	2.3.2.4 NN Implementation of the Iterative ADP Algorithm Using GDHP Technique

	2.3.3 Simulations

	2.4 Inﬁnite-Horizon Optimal State Feedback Control Based on GHJB Algorithm
	2.4.1 Problem Formulation
	2.4.2 Constrained Optimal Control Based on GHJB Equation
	2.4.3 Simulations

	2.5 Finite-Horizon Optimal State Feedback Control Based on HDP
	2.5.1 Problem Formulation
	2.5.2 Finite-Horizon Optimal State Feedback Control Based on HDP
	2.5.2.1 Derivation and Properties of the Iterative ADP Algorithm
	2.5.2.2 The epsilon-Optimal Control Algorithm

	2.5.3 Simulations

	2.6 Summary
	References

	Chapter 3: Optimal Tracking Control for Discrete-Time Systems
	3.1 Introduction
	3.2 Inﬁnite-Horizon Optimal Tracking Control Based on HDP
	3.2.1 Problem Formulation
	3.2.2 Inﬁnite-Horizon Optimal Tracking Control Based on HDP
	3.2.2.1 System Transformation
	3.2.2.2 Derivation of the Iterative HDP Algorithm
	3.2.2.3 Summary of the Algorithm
	3.2.2.4 Neural-Network Implementation for the Tracking Control Scheme

	3.2.3 Simulations

	3.3 Inﬁnite-Horizon Optimal Tracking Control Based on GDHP
	3.3.1 Problem Formulation
	3.3.2 Inﬁnite-Horizon Optimal Tracking Control Based on GDHP
	3.3.2.1 Design and Implementation of Feedforward Controller
	3.3.2.2 Design and Implementation of Optimal Feedback Controller
	3.3.2.3 Convergence Characteristics of the Neural-Network Approximation Process

	3.3.3 Simulations

	3.4 Finite-Horizon Optimal Tracking Control Based on ADP
	3.4.1 Problem Formulation
	3.4.2 Finite-Horizon Optimal Tracking Control Based on ADP
	3.4.2.1 Derivation of the Iterative ADP Algorithm
	3.4.2.2 Convergence Analysis of the Iterative ADP Algorithm
	3.4.2.3 The epsilon-Optimal Control Algorithm
	3.4.2.4 Summary of the Algorithm
	3.4.2.5 Neural-Network Implementation of the Iterative ADP Algorithm via HDP Technique

	3.4.3 Simulations

	3.5 Summary
	References

	Chapter 4: Optimal State Feedback Control of Nonlinear Systems with Time Delays
	4.1 Introduction
	4.2 Inﬁnite-Horizon Optimal State Feedback Control via Delay Matrix
	4.2.1 Problem Formulation
	4.2.2 Optimal State Feedback Control Using Delay Matrix
	4.2.2.1 Model Network
	4.2.2.2 The M Network
	4.2.2.3 Critic Network
	4.2.2.4 Action Network

	4.2.3 Simulations

	4.3 Inﬁnite-Horizon Optimal State Feedback Control via HDP
	4.3.1 Problem Formulation
	4.3.2 Optimal Control Based on Iterative HDP
	4.3.3 Simulations

	4.4 Finite-Horizon Optimal State Feedback Control for a Class of Nonlinear Systems with Time Delays
	4.4.1 Problem Formulation
	4.4.2 Optimal Control Based on Improved Iterative ADP
	4.4.3 Simulations

	4.5 Summary
	References

	Chapter 5: Optimal Tracking Control of Nonlinear Systems with Time Delays
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Optimal Tracking Control Based on Improved Iterative ADP Algorithm
	5.4 Simulations
	5.5 Summary
	References

	Chapter 6: Optimal Feedback Control for Continuous-Time Systems via ADP
	6.1 Introduction
	6.2 Optimal Robust Feedback Control for Unknown General Nonlinear Systems
	6.2.1 Problem Formulation
	6.2.2 Data-Based Robust Approximate Optimal Tracking Control
	6.2.3 Simulations

	6.3 Optimal Feedback Control for Nonafﬁne Nonlinear Systems
	6.3.1 Problem Formulation
	6.3.2 Robust Approximate Optimal Control Based on ADP Algorithm
	6.3.3 Simulations

	6.4 Summary
	References

	Chapter 7: Several Special Optimal Feedback Control Designs Based on ADP
	7.1 Introduction
	7.2 Optimal Feedback Control for a Class of Switched Systems
	7.2.1 Problem Description
	7.2.2 Optimal Feedback Control Based on Two-Stage ADP Algorithm
	7.2.3 Simulations

	7.3 Optimal Feedback Control for a Class of Descriptor Systems
	7.3.1 Problem Formulation
	7.3.2 Optimal Controller Design for a Class of Descriptor Systems
	7.3.3 Simulations

	7.4 Optimal Feedback Control for a Class of Singularly Perturbed Systems
	7.4.1 Problem Formulation
	7.4.2 Optimal Controller Design for Singularly Perturbed Systems
	7.4.2.1 Algorithm Design
	7.4.2.2 Neural Network Approximation

	7.4.3 Simulations

	7.5 Optimal Feedback Control for a Class of Constrained Systems Via SNAC
	7.5.1 Problem Formulation
	7.5.2 Optimal Controller Design for Constrained Systems via SNAC
	7.5.3 Simulations

	7.6 Summary
	References

	Chapter 8: Zero-Sum Games for Discrete-Time Systems Based on Model-Free ADP
	8.1 Introduction
	8.2 Zero-Sum Differential Games for a Class of Discrete-Time 2-D Systems
	8.2.1 Problem Formulation
	8.2.2 Data-Based Optimal Control via Iterative ADP Algorithm
	8.2.2.1 The Derivation of Data-Based Iterative ADP Algorithm
	8.2.2.2 Properties of Data-Based Iterative ADP Algorithm
	8.2.2.3 Neural Network Implementation
	8.2.2.4 Critic Network
	8.2.2.5 Action Networks

	8.2.3 Simulations

	8.3 Zero-Sum Games for a Class of Discrete-Time Systems via Model-Free ADP
	8.3.1 Problem Formulation
	8.3.2 Data-Based Optimal Output Feedback Control via ADP Algorithm
	8.3.3 Simulations

	8.4 Summary
	References

	Chapter 9: Nonlinear Games for a Class of Continuous-Time Systems Based on ADP
	9.1 Introduction
	9.2 Inﬁnite Horizon Zero-Sum Games for a Class of Afﬁne Nonlinear Systems
	9.2.1 Problem Formulation
	9.2.2 Zero-Sum Differential Games Based on Iterative ADP Algorithm
	9.2.2.1 Derivation of the Iterative ADP Method
	9.2.2.2 The Iterative ADP Algorithm
	9.2.2.3 Properties of the Iterative ADP Algorithm

	9.2.3 Simulations

	9.3 Finite Horizon Zero-Sum Games for a Class of Nonlinear Systems
	9.3.1 Problem Formulation
	9.3.2 Finite Horizon Optimal Control of Nonafﬁne Nonlinear Zero-Sum Games
	9.3.3 Simulations

	9.4 Non-Zero-Sum Games for a Class of Nonlinear Systems Based on ADP
	9.4.1 Problem Formulation of Non-Zero-Sum Games
	9.4.2 Optimal Control of Nonlinear Non-Zero-Sum Games Based on ADP
	9.4.3 Simulations

	9.5 Summary
	References

	Chapter 10: Other Applications of ADP
	10.1 Introduction
	10.2 Self-Learning Call Admission Control for CDMA Cellular Networks Using ADP
	10.2.1 Problem Formulation
	10.2.2 A Self-Learning Call Admission Control Scheme for CDMA Cellular Networks
	10.2.2.1 Adaptive Critic Designs for Problems with Finite Action Space
	10.2.2.2 Self-learning Call Admission Control for CDMA Cellular Networks

	10.2.3 Simulations

	10.3 Engine Torque and Air-Fuel Ratio Control Based on ADP
	10.3.1 Problem Formulation
	10.3.2 Self-learning Neural Network Control for Both Engine Torque and Exhaust Air-Fuel Ratio
	10.3.3 Simulations
	10.3.3.1 Critic Network
	10.3.3.2 Controller/Action Network
	10.3.3.3 Simulation Results

	10.4 Summary
	References

	Index

