
eRules: A Modular Adaptive Classification Rule

Learning Algorithm for Data Streams

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

Abstract Advances in hardware and software in the past decade allow to capture,
record and process fast data streams at a large scale. The research area of data stream
mining has emerged as a consequence from these advances in order to cope with the
real time analysis of potentially large and changing data streams. Examples of data
streams include Google searches, credit card transactions, telemetric data and data
of continuous chemical production processes. In some cases the data can be pro-
cessed in batches by traditional data mining approaches. However, in some applica-
tions it is required to analyse the data in real time as soon as it is being captured.
Such cases are for example if the data stream is infinite, fast changing, or simply
too large in size to be stored. One of the most important data mining techniques on
data streams is classification. This involves training the classifier on the data stream
in real time and adapting it to concept drifts. Most data stream classifiers are based
on decision trees. However, it is well known in the data mining community that
there is no single optimal algorithm. An algorithm may work well on one or several
datasets but badly on others. This paper introduces eRules, a new rule based adap-
tive classifier for data streams, based on an evolving set of Rules. eRules induces a
set of rules that is constantly evaluated and adapted to changes in the data stream by
adding new and removing old rules. It is different from the more popular decision
tree based classifiers as it tends to leave data instances rather unclassified than forc-
ing a classification that could be wrong. The ongoing development of eRules aims

Frederic Stahl
Bournemouth University, School of Design, Engineering and Computing, Poole House, Talbot
Campus,BH12 5BB e-mail: fstahl@bournemouth.ac.uk

Mohamed Medhat Gaber
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, PO1 3HE
e-mail: Mohamed.Gaber@port.ac.uk

Manuel Martin Salvador
Bournemouth University, School of Design, Engineering and Computing, Poole House, Talbot
Campus,BH12 5BB e-mail: msalvador@bournemouth.ac.uk

M. Bramer and M. Petridis (eds.), Research and Development in Intelligent Systems 65
DOI 10.1007/978-1-4471-4739-8_5, © Springer-Verlag London 2012

XX ,IX

mailto:fstahl@bournemouth.ac.uk
mailto:Mohamed.Gaber@port.ac.uk
mailto:msalvador@bournemouth.ac.uk

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

to improve its accuracy further through dynamic parameter setting which will also
address the problem of changing feature domain values

1 Introduction

According to [13] and [2] streaming data is defined as high speed data instances that
challenge our computational capabilities for traditional processing. It has greatly
contributed to the recent problem of analysis of Big Data. Analysing these data
streams can produce an important source of information for decision making in real
time. In the past decade, many data stream mining techniques have been proposed,
for a recent review and categorisation of data stream mining techniques the reader
is referred to [12]. In this paper, we have used the sliding window [2, 9] to extend
the rule-based technique PRISM [8] to function in the streaming environment. Mo-
tivated by the simplicity of PRISM and its explanatory power being a rule-based
technique, we have developed and experimentally validated a novel data stream
classification technique, termed eRules. The new technique is also able to adapt to
concept drift, which is a well known problem in data stream classification. A con-
cept drift occurs when the current data mining model is no longer valid, because of
the change in the distribution of the streaming data. Our eRules classifier works on
developing an initial batch model from a stored set of the data streams. This process
is followed by an incremental approach for updating the model to concept drift. The
model is reconstructed if the current model is unable to classify a high percentage
of the incoming instances in the stream. This in fact may be due to a big concept
drift. Although this may appear to be a drawback of our technique, it is one of its
important strengths, as many other techniques fail to adapt to big drift in the concept
when only an incremental update is used. The aim of this work is to contribute an
alternative method for the data stream classification, as it is a well-known observa-
tion that established algorithms may work well on one or several datasets, but may
fail to provide high performance on others. In fact eRules is being considered by the
INFER project [1] to be included into its predictive methods toolbox. The INFER
software is an evolving data mining system that is able to handle data streams. IN-
FER uses a pool of possible data mining and pre-processing methods including data
stream classifiers and evolves in order to find the optimal combination and parame-
ter setting for the current prediction task [16]. eRules in its current state only allows
static parameter settings and does not take the problem of changing domain values
into account. However, ongoing developments address these issues.

The paper is organised as follows. Section 2 highlights related work and Section
3 gives the background on learning modular rules represented in this paper by the
Prism algorithm. Our extension of the Prism algorithm enabling it to function in
the streaming environment, developing what we have termed as eRules technique,
is detailed in Section 4. We have experimentally validated our proposed technique

66

eRules: A Modular Classifier for Data Streams

in Section 5. In Section 6, we discuss our ongoing and future work related to the
eRules technique. Finally, the paper is concluded by a summary in Section 7.

2 Related Work

Several approaches to adapt existing batch learning data mining techniques to data
streams exist, such as reservoir sampling [15] and sliding window [2, 9]. The basic
idea of reservoir sampling is to maintain a representative unbiased sample of the
data stream without prior knowledge of the total number of data stream instances.
Data mining techniques are then applied on the reservoir sample. The basic idea
of sliding window is to only use recent data instances from the stream to build the
data mining models. Among the many techniques proposed for data stream mining,
a notable group of these algorithms are the Hoeffding bound based techniques [11].
The Hoeffding bound is a statistical upper bound on the probability that the sum of
random variables deviates from its expected value. The basic Hoeffding bound has
been extended and adopted in successfully developing a number of classification and
clustering techniques that were termed collectively as Very Fast Machine Learning
(VFML). Despite its notable success, it faces a real problem when constructing the
classification model. If there are ties of attributes and the Hoeffding bound is not
satisfied, the algorithm tends to increase the sample size. This may not be desirable
in a highly dynamic environment. The more flexible approach in addressing this
problem is using the sliding window.

3 Learning Modular Classification Rules

There are two main approaches to the representation of classification rules, the ‘sep-
arate and conquer’ approach, and the ‘divide and conquer’ approach, which is well
known as the top down induction of decision trees. ‘Divide and conquer’ induces
rules in the intermediate form of decision trees such as the C4.5 classifier [18],
and‘separate and conquer’ induces IF...THEN rules directly from the training data.
Cendrowska claims that decision tree induction grows needlessly large and complex
trees and proposes the Prism algorithm, a ‘separate and conquer’ algorithm that can
induce modular rules that do not necessarily fit into a decision tree [8] such as for
example the two rules below:

IF a = 1 and b = 2 THEN class = x
IF a = 1 and d = 3 THEN class = x

We propose to base the rule induction of eRules on the Prism algorithm for sev-
eral reasons. The classifier generated by Prism does not necessarily cover all possi-
ble data instances whereas decision tree based classifiers tend to force a classifica-
tion. In certain applications, leaving a data instance unclassified rather than risking

67

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

a false classification may be desired, for example, in medical applications or the
control of production processes in chemical plants. Also Prism tends to achieve a
better classification accuracy compared with decision tree based classifiers, if there
is considerable noise in the data [5]. Algorithm 1 summarises the basic Prism ap-
proach for continuous data, assuming that there are n (> 1) possible classes [20]. A
denotes an attribute in the training dataset.

Algorithm 1 Prism algorithm
1: for i = 1→ n do

2: W ← new Dataset
3: delete all records that match the rules that have been derived so f ar f or class i.
4: for all A ∈W do

5: sort the data according to A
6: for each possible split value v of attribute A do

7: calculate the probability that the class is i
8: f or both subsets A < v and A >= v.
9: end for

10: end for

11: Select the attribute that has the subset S with the overall highest probability.
12: Build a rule term describing S.
13: W ← S
14: repeat lines 4 to 13
15: until the dataset contains only records of class i.
16: � The induced rule is then the conjunction of all the rule terms built at line= 12.
17: repeat lines 2 to 16.
18: until all records of class i have been removed.
19: end for

Even so Prism has been shown to be less vulnerable to overfitting compared
with decision trees, it is not immune. Hence pruning methods for Prism have been
developed such as J-pruning [6] in order to make Prism generalising better on the
input data. Because of J-pruning’s generalisation capabilities we use Prism with
J-pruning for the induction of rules in eRules hence it is briefly described here. J-
pruning is based on the J-measure which according to Smyth and Goodman [19] is
the average information content of a rule IF Y = y THEN X = x and can be quantified
as:

J(X ;Y = y) = p(y) · j(X ;Y = y) (1)

The first factor of the J-measure is p(y), which is the probability that the an-
tecedent of the rule will occur. The second factor is the cross entropy j(X;Y=y),
which measures the goodness-of-fit of a rule and is defined by:

j(X ;Y = y) = p(x | y) · log2(
p(x | y)

p(x)
)+(1− p(x | y)) · log2(

(1− p(x | y))
(1− p(x))

) (2)

68

eRules: A Modular Classifier for Data Streams

The basic interpretation of the J-value is that a rule with a high J-value also
achieves a high predictive accuracy. If inducing further rule terms for the current rule
results in a higher J-value then the rule term is appended as it is expected to increase
the current rule’s predictive accuracy; and if a rule term decreases the current rule’s
J-value then the rule term is discarded and the rule is considered as being in its final
form. That is because appending the rule term is expected to decrease the current
rule’s predictive accuracy.

Having discussed the Prism algorithm for rule induction and the J-pruning for
avoiding the model overfitting problem, the following section is devoted for a de-
tailed discussion of our proposed technique eRules which is based on the concepts
presented in this section.

4 Incremental Induction of Prism Classification Rules with

eRules

Prism is a batch learning algorithm that requires having the entire training data avail-
able. However, often we do not have the full training data at hand. In fact the data is
generated in real time and needs to be analysed in real time as well. So we can only
look at a data instance once. It is one of the data stream mining techniques that is
to be sublinear in the number of instances. This implies that the algorithm may only
have one look at any data instance, or even some of the instances are discarded all
together.

Data mining algorithms that incrementally generate classifiers have been devel-
oped, the most notable being Hoeffding Trees [10]. Inducing a Hoeffding Tree is a
two stage process, first the basic tree is induced and second, once the tree is induced,
it is updated periodically in order to adapt to possible concept drifts in the data. A
concept drift is if the pattern in the data stream changes. However, incremental clas-
sifiers for data streams are based almost exclusively on decision trees, even though
it has been shown that general classification rule induction algorithms such as Prism
are more robust in many cases as mentioned in Section 3. Hence the development
of an incremental version of Prism, eRules, may well produce better classification
accuracy in certain cases.

Algorithm 2 describes the basic eRules approach. The basic algorithm consists
of three processes. The first process learns a classifier in batch mode on a subset
of the data stream, this is implemented in the very first stage when the algorithm is
executed. This is done in order to learn the initial classifier. This process may also
be repeated at any stage when the ‘unclassification rate’ is too high. The unclassi-
fication rate is discussed in 4.1. The second process adds new rules to the classifier
in order to adapt to a concept drift, this is implemented in the if inst is NOT cov-
ered by rules statement in Algorithm 2. The third process validates whether the
existing rules still achieve an acceptable classification accuracy and removes rules
if necessary. This is implemented in the else if inst wrongly classified statement in

69

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

Algorithm 2. Removing rules aims to ‘unlearn’/forget old concepts that are not valid
anymore and adding rules aims to learn a newly appearing concept.

Algorithm 2 eRules algorithm
1: ruleset← new RuleSet.
2: bu f f er← new DataBu f f er.
3: LEARNBATCHCLASSIFIER().
4: while more instances available do

5: inst← take next data instance.
6: if inst is NOT covered by rules then

7: BUFFER.ADD(inst).
8: if buffer fulfils Hoeffding Bound OR alternative metric then

9: learn a new set o f rules f rom bu f f er and add them to ruleset.
10: BUFFER.CLEAR().
11: end if

12: else if inst wrongly classified then

13: update rule in f ormation and delete rule i f necessary.
14: else if inst is correctly classified then

15: update rule in f ormation.
16: end if

17: if unclassification rate too high then

18: LEARNBATCHCLASSIFIER().
19: end if

20: end while

21: procedure LEARNBATCHCLASSIFIER()
22: ruleset← train classi f ier on n f irst incoming data instances.
23: bu f f er← new DataBu f f er.
24: end procedure

The algorithm starts with the first process, collecting the first incoming data in-
stances from the stream and induces an initial rule set in batch mode using the Prism
algorithm. The classifier is reset and a new batch classifier is trained as soon as too
many incoming test instances remain unclassified. How many data instances are
used for the batch learning and how the unclassification rate is measured is dis-
cussed in Section 4.1. eRules uses each incoming labelled data instance in order to
validate the existing rules and to update the classifier if necessary. If the incoming
data instance is not covered by any of the rules, then the second process is invoked,
i.e., the unclassified instance is added to a buffer containing the latest unclassified
instances. If there are enough instances in this buffer then new rules are generated
and added to the rule set, using the instances in the buffer. How one can measure if
there are enough instances in the buffer is discussed in Section 4.2. In contrary, if
the incoming data instance is covered by one of the rules then two cases are possi-
ble. The rule predicts the class label correctly and the concerning rule’s accuracy is
updated. In the second case the rule missclassifies the data instance, again the con-
cerning rules classification accuracy is updated, and then removed if the accuracy
is below a certain threshold. Section 4.3 discusses how such a threshold could be
defined.

70

eRules: A Modular Classifier for Data Streams

We have given an overview of our eRules technique in this section. The following
subsections provide further details with respect to each of the three processes of
eRules.

4.1 First Process: Learn Rules in Batch Mode

At the start of eRules’ execution, or if the unclassification rate is too high, a set of
rules is learned in batch mode using the Prism classifier. At the moment the eRules
implementation allows the user to specify the number of data instances that are used
to train the classifier in batch mode. By default the number of data instances is
50 as it seems to work well for all the experiments we conducted including those
presented in this paper. However more dynamic methods could and will be used
in future implementations, such as the Hoeffding bound, which is also used in the
Hoeffding tree classifier [10] and other Hoeffding bound machine learning methods.
The Hoeffding bound highlighted in equation (3) is used with different variations as
an upper bound for the loss of accuracy dependent on the number of instances in
each iteration of a machine learning algorithm. In equation (3) ε is the value of
the Hoeffding bound for an observed feature of range R where n is the number of
independent observations.

ε =

√
R2ln(1

δ)

2n
(3)

The Hoeffding bound could be used in eRules to determine the optimal size of
the batch of instances that minimises the error rate. This will be investigated by the
authors for our future work in this area.

A second issue that remains to be discussed for the first process is how to deter-
mine the unclassification rate. A window of the most recent stream data instances is
defined by the user, for which the current classifier’s accuracy and its unclassifica-
tion rate are defined. By default this window size is 50, however, it can be specified
by the user. If there are for example 10 unclassified instances then the unclassi-
fication rate would be 10

50 . More dynamic methods to define the window size are
currently being investigated.

4.2 Second Process: Adding New Rules

As discussed earlier in this section, the second process adds new rules to the rule
set if there are ‘enough’ unclassified instances. If there are enough unclassified in-
stances, then eRules will learn new rules only on the unclassified data instances
using the Prism classifier. It will then add the new rules to the existing rule set. A
window of unclassified instances with a certain size of the most recent unclassified

71

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

data instances is defined in order to determine the current unclassification rate of
the classifier. The oldest unclassified instance is always replaced by the newest un-
classified instance. What remains to be discussed is the window size. The smaller
the window size, the larger the risk that not the full concept describing the unclas-
sified instances is represented in the window, and hence not learned. The larger the
window size the higher the risk that older, no more valid concepts encoded in the
unclassified instances, are learned. By default the algorithm uses window size 20.
What needs to be determined as well is the optimal number of unclassified instances
to induce new rules from, at the moment this is by default 30 unclassified instances.
However, a possible improvement that is currently being investigated is the usage of
the Hoeffding bound to determine the optimal number of unclassified instances to
justify the induction of additional rules.

4.3 Third Process: Validation and Removal of Existing Rules

The removal of existing rules is determined by the classification accuracy of the
individual rule but also on a minimum number of classification attempts the rule
needs to fulfil in order to be discarded. Again both criteria can be predefined by the
user but are in the current implementation by default 0.8 as the minimum accuracy
and 5 as the minimum number of classifications attempted. The reason for not only
using the minimum classification accuracy is the fact that a rule would be already
discarded the first time it attempts to classify a test instance and actually assigns the
wrong classification. For example, let us assume that the minimum number of clas-
sification attempts is 1, and a certain rule predicts a wrong class for the first instance
it attempts to classify. In this case the rule would already be removed as its classi-
fication accuracy is 0. However if could happen that the rule only predicts the first
test instance incorrectly and the following 4 instances correctly then the rule’s accu-
racy would be 0.8 and also removed unless the minimum number of classification
attempts is at least 5.

5 Evaluation

For the evaluation of eRules, three different stream generators have been used, the
SEA, LED and Waveform generator. The three data streams used for experimenta-
tion can be typically found in the literature of concept drift detection. We provide
the details of the three generators in the following.

1. SEA Concepts Generator: this artificial dataset, presented in [23], is formed by
four data blocks with different concepts. Each instance has 3 numerical attributes
and 1 binary class. Only the two first attributes are used for classification, and the
third one is irrelevant. The classification function is f1 + f2 =< θ , where f1 and
f2 are the two first attributes and θ is a threshold that changes for each of the

72

eRules: A Modular Classifier for Data Streams

four blocks in this order: 9,8,7,9.5. SEA data stream is the consecutive join of
SEA9, SEA8, SEA7 and SEA9.5, where each block has 12500 instances and there
is a sudden drift between blocks. It has been used in [4] [17] [14].

2. LED Generator: this data stream [7] has 24 binary attributes, but 17 of them
are irrelevant for the classification. The goal is to predict the digit shown in a
7 segment LED display where each attribute has 10% of probability of being
reversed. Concept drift can be included indicating a number d of attributes that
change. It has been used in [24] [4].

3. Waveform Generator: this data stream was also presented in [7], and the goal
is to distinguish between 3 different classes of waves. Each wave is generated
by a combination of 2 or 3 basic waves. There are two variants of this problem:
wave21 with 21 numerical attributes with noise, and wave40 with 19 extra ir-
relevant attributes. Concept drifts can be included by swapping a number d of
attributes. It has been used in [24] [4] [14].

Taking these definitions as a starting point, and with the help of MOA software
(Massive Online Analysis) [3], we have generated several datasets for the experi-
mentation. A gradual concept drift has been included between data instances 450
and 550. The following parameters have been used for all experiments highlighted
in this section: 50 instances to learn the initial classifier, an accuracy below 0.8 and
a minimum of 5 classification attempts for each rule to be removed, a minimum of
30 unclassified instances have been accumulated before they are used to induce new
rules and a window size of the last 20 data instances from which the unclassification
rate and accuracy of the classifier are calculated.

Two versions of eRules have been evaluated, both use the parameters outlined
above. The first version just tries to adapt to concept drifts by removing and adding
new rules to the classifier. The second version re-induces the entire classifier, if the
unclassification rate is too high (40% in the last 20 instances observed).

Figure 1 shows the unclassification rate, total accuracy and the accuracy on all
instances for which eRules attempted a classification on the SEA data stream. It can
be seen in both cases; eRules with and without re-induction, that there is a high
unclassification rate and hence the total accuracy is relatively low. However, if we
take only the classified instances into account it can be seen that the classification
accuracy is relatively high. Also the concept drift is almost imperceptible. The un-
classification rate for the version with re-induction is lower which in turn improves
the total accuracy. However, the total classification accuracy for both versions of
eRules is almost the same, only eRules with re-induction classifies more instances.

Figure 2 shows the unclassification rate, total accuracy and the accuracy on all in-
stances for which eRules attempted a classification on the LED data stream. eRules
for the LED data stream exhibits a similar behaviour as for the SEA data stream. It
can be seen in both cases; eRules with and without re-induction, that there is a high
unclassification rate and hence the total accuracy is relatively low. However, if we
take only the classified instances into account it can be seen that the classification
accuracy is relatively high. Also the concept drift is almost imperceptible. The un-
classification rate for the version with re-induction is lower which in turn improves

73

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

Fig. 1 Evaluation with SEAGenerator: The horizontal axes show the number of iterations (the
time stamp of the data instance received) and the vertical axes show the accuracy and percentage of
unclassified instances. The graph on the top shows how the algorithm behaves without re-induction
of the entire classifier and the graph on the bottom shows how the algorithm behaves with re-
induction of the entire classifier. The concept drift takes place between instances 450 and 550.

the total accuracy. However, the total classification accuracy for both versions of
eRules is almost the same, only eRules with re-induction classifies more instances.

Figure 3 shows the unclassification rate, the total accuracy and accuracy on all in-
stances for which eRules attempted a classification on the Waveform data stream. In
this particular case, eRules does not cope well with the concept drift. For the version
of eRules without re-induction the total classification accuracy drops considerably
and the unclassification rate increases. However, if we take only the instances in
consideration that have been assigned a class label, then the drop in classification
accuracy is relatively low. This high classification accuracy whilst having a high
unclassification rate can be explained by the fact that due to the concept drift bad
performing rules are removed and the newly induced rules are not describing the
unclassified instances entirely. The reason for this could be that simply 30 unclas-
sified instances are not enough to generate adequate rules. This will be resolved in
the future by using metrics such as the Hoeffding bound in order to determine an
adequate number of instances to induce new rules from. The version of eRules with
re-induction performs better in this case as a completely new classifier is induced as
soon as the unclassification rate reaches 40%. For the re-induction of the entire clas-
sifier the most recent 50 instances are used, which are 20 instances more compared
with the induction of new rules covering unclassified cases. This again indicates that

74

eRules: A Modular Classifier for Data Streams

Fig. 2 Evaluation with LEDGenerator: The horizontal axes show the number of iterations (the
time stamp of the data instance received) and the vertical axes show the accuracy and percentage of
unclassified instances. The graph on the top shows how the algorithm behaves without re-induction
of the entire classifier and the graph on the bottom shows how the algorithm behaves with re-
induction of the entire classifier. The concept drift takes place between instances 450 and 550.

in this case more than 30 unclassified instances are needed for the induction of new
rules.

A comparison of the results obtained using eRules with previous approaches is
not possible as our technique has unique features by having instances not classified
as opposed to other methods that have only correct and incorrect classifications.
However, in general it can be observed that eRules exhibits an excellent accuracy on
the cases where classifications have been attempted. Sometimes eRules may leave
a large number of instances unclassified, because they are not covered by the exist-
ing rules. eRules aims to reduce the unclassification rate by re-inducing the entire
classifier once the unclassification rate becomes too high.

6 Ongoing and Future Work

All evaluation experiments outlined in Section 5 have been performed with a fixed
parameter setting that seemed to work well in most cases and on data with stable
feature domains. However, as it has been observed in Section 5 for the results dis-
played in Figure 3, there are cases in which the parameter setting could be improved.

75

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

Fig. 3 Evaluation with WaveformGenerator: The horizontal axes show the number of iterations
(the time stamp of the data instance received) and the vertical axes show the accuracy and per-
centage of unclassified instances. The graph on the top shows how the algorithm behaves without
re-induction of the entire classifier and the graph on the bottom shows how the algorithm behaves
with re-induction of the entire classifier. The concept drift takes place between instances 450 and
550.

The ongoing work will comprise an investigation of metrics that could be used to
dynamically adjust some of the parameters, for example the Hoeffding bound could
be used to decrease the error by determining the optimal number of unclassified in-
stances to be used to induce additional rules. Also the optimal size of the batch that
is used to induce the initial classifier and to re-induce the entire classifier could be
determined using the Hoeffding bound. The re-induction of the entire classifier also
resets the classifier to changed feature domains. Thus it is expected that also the
robustness of the classifier to changing feature domains is improved by the dynamic
adjustment of the above mentioned parameters.

Further research will look into alternative implementations of the underlying
modular classifier, with the aim to develop a rule induction method that delivers
less unclassified cases. A possible candidate for that could be the PrismTCS classi-
fier [6] which uses a default rule for unclassified instances.

Another possibility that will be investigated in future research is the usage of J-
pruning. At the moment J-pruning is used for all rule induction processes in eRules,
inducing the initial classifier in batch mode, re-induction of the entire classifier in
batch mode and the induction of additional rules for the already existing classi-
fier. However, J-pruning may not necessarily improve eRules’s induction of addi-

76

eRules: A Modular Classifier for Data Streams

tional classification rules. This is because the unclassified instances accumulated
for inducing additional rules are polarised towards the concept that causes certain
instances to be unclassified. Also a further pruning facility for Prism algorithms,
Jmax-pruning [22] will be investigated for its usage in the eRules system.

We also consider improving eRules’s computational scalability by making use of
parallel processing techniques. The underlying Prism batch classifier has been par-
allelised successfully in previous research [21], and hence indicates eRules potential
to be parallelised as well. A parallelisation, and hence speed up of the rule adaption
could enable eRules to be applicable on high speed data streams.

7 Conclusions

A novel data stream classifier, eRules, has been presented based on modular classi-
fication rule induction. Compared with decision tree based classifiers this approach
may leave test instances unclassified rather than giving them a wrong classifica-
tion. This feature of this approach is highly desired in critical applications. eRules
is based on three basic processes. The first process learns a classifier in batch mode,
this is done at the beginning of eRules’s execution in order to induce an initial classi-
fier. However, batch learning is also performed to re-induce the classifier if it leaves
too many instances unclassified. The second and third processes are used to adapt
the classifier on the fly to a possible concept drift. The second process removes bad
performing rules from the classifier and the third process adds rules to the classifier
to cover instances that are not classifiable by the current rule set.

A first version of the classifier has been evaluated on three standard data stream
generators, and it has been observed that eRules in general delivers a high classifi-
cation accuracy on the instances it attempted to classify. However, eRules also tends
to leave many test instances unclassified, hence a version of eRules that re-induces
the entire classifier, if the unclassification rate is too high, has been implemented.
eRules in general uses a fixed parameter setting, however, ongoing work on the clas-
sifier considers using the Hoeffding bound in order to dynamically adjust some of
the parameters, while the algorithm is being executed.

Acknowledgements The research leading to these results has received funding from the Euro-
pean Commission within the Marie Curie Industry and Academia Partnerships & Pathways (IAPP)
programme under grant agreement no 251617.

References

1. Computational intelligence platform for evolving and robust predictive systems,
http://infer.eu/ 2012.

2. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In In PODS, pages 1–16, 2002.

77

http://infer.eu/

Frederic Stahl, Mohamed Medhat Gaber and Manuel Martin Salvador

3. Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive online
analysis. J. Mach. Learn. Res., 99:1601–1604, August 2010.

4. Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. New
ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, KDD ’09, pages 139–148,
New York, NY, USA, 2009. ACM.

5. M A Bramer. Automatic induction of classification rules from examples using N-Prism.
In Research and Development in Intelligent Systems XVI, pages 99–121, Cambridge, 2000.
Springer-Verlag.

6. M A Bramer. An information-theoretic approach to the pre-pruning of classification rules. In
B Neumann M Musen and R Studer, editors, Intelligent Information Processing, pages 201–
212. Kluwer, 2002.

7. Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classification and Re-
gression Trees. Chapman & Hall/CRC, 1 edition, January 1984.

8. J. Cendrowska. PRISM: an algorithm for inducing modular rules. International Journal of
Man-Machine Studies, 27(4):349–370, 1987.

9. Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statis-
tics over sliding windows. In ACM-SIAM Symposium on Discrete Algorithms (SODA 2002),
2002.

10. Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
’00, pages 71–80, New York, NY, USA, 2000. ACM.

11. Pedro Domingos and Geoff Hulten. A general framework for mining massive data stream.
Journal of Computational and Graphical Statistics, 12:2003, 2003.

12. Mohamed Medhat Gaber. Advances in data stream mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):79–85, 2012.

13. Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data
streams: a review. SIGMOD Rec., 34(2):18–26, 2005.

14. João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pages 329–338, New York, NY, USA, 2009.
ACM.

15. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2001.

16. Petr Kadlec and Bogdan Gabrys. Architecture for development of adaptive on-line prediction
models. Memetic Computing, 1:241–269, 2009.

17. J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble method for
drifting concepts. J. Mach. Learn. Res., 8:2755–2790, December 2007.

18. Ross J Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
19. P. Smyth and R M Goodman. An information theoretic approach to rule induction from

databases. 4(4):301–316, 1992.
20. F. Stahl and M. Bramer. Towards a computationally efficient approach to modular classifica-

tion rule induction. Research and Development in Intelligent Systems XXIV, pages 357–362,
2008.

21. F. Stahl and M. Bramer. Computationally efficient induction of classification rules with the
pmcri and j-pmcri frameworks. Knowledge-Based Systems, 2012.

22. F. Stahl and M. Bramer. Jmax-pruning: A facility for the information theoretic pruning of
modular classification rules. Knowledge-Based Systems, 29(0):12 – 19, 2012.

23. W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale clas-
sification. In Proceedings of the seventh ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’01, pages 377–382, New York, NY, USA, 2001. ACM.

24. Periasamy Vivekanandan and Raju Nedunchezhian. Mining data streams with concept drifts
using genetic algorithm. Artif. Intell. Rev., 36(3):163–178, October 2011.

78

	eRules: A Modular Adaptive Classification Rule Learning Algorithm for Data Streams
	1 Introduction
	2 Related Work
	3 Learning Modular Classification Rules
	4 Incremental Induction of Prism Classification Rules with eRules
	4.1 First Process: Learn Rules in Batch Mode
	4.2 Second Process: Adding New Rules
	4.3 Third Process: Validation and Removal of Existing Rules

	5 Evaluation
	6 Ongoing and Future Work
	7 Conclusions
	References

