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Abstract

Pediatric surgeons have the privilege to care for patients at every stage of 
human development, from the fetus to the fully developed young adult. As 
such, we must cultivate and advance an all-encompassing knowledge base 
ranging from obstetrics to pediatrics to adult medicine and surgery. This 
unique, sweeping perspective on human disease requires an equally broad 
approach to research, which in our field is as vast and varied as it is 
stimulating.
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3.1  Introduction

Pediatric surgeons have the privilege to care for 
patients at every stage of human development, 
from the fetus to the fully developed young adult. 
As such, we must cultivate and advance an all- 
encompassing knowledge base ranging from 
obstetrics to pediatrics to adult medicine and sur-
gery. This unique, sweeping perspective on 

human disease requires an equally broad 
approach to research, which in our field is as vast 
and varied as it is stimulating.

Yet, despite the appeal of research in such a 
diversified and vibrant spectrum, the relative pro-
portion of pediatric surgeons performing research 
appears to have been dwindling in recent years. 
While different factors can be debated as impli-
cated in this scenario, perhaps one should be 
emphasized, namely the increasingly restricted 
exposure to research during training. The greater 
significance of this trend lies in the fact that, 
unlike most other components of this conjunc-
ture, it has career-long consequences, rendering 
the unexposed trainees essentially unable to 
develop as independent investigators once they 
become practicing pediatric surgeons, notwith-
standing the eventual will to do so. Regrettably, 
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fewer and fewer countries and institutions can 
afford the time and resources necessary for 
 surgical trainees to develop a strong research 
background.

While the recent emphasis on a multidisci-
plinary approach to research has allowed for 
many developments that would not have been 
possible in isolation, we must aspire to a central 
role within research groups related to our spe-
cialty. Clinical expertise is often a pre-requisite 
for one to provide consequential guidance to the 
powerful scientific methodology currently avail-
able and the perspective offered by the pediatric 
surgeon cannot be replaced. By the same token, 
only we can protect and expand the role of 
research in the education of our future peers. This 
chapter is aimed at tendering some support, how-
ever limited, to this need.

It would be beyond the scope of any book 
chapter to present a comprehensive, exhaustive 
review of all the possible developments applica-
ble to research in Pediatric Surgery. Here, we 
present a summarized overview of different 
aspects involving both laboratory- and clinical- 
based research that should be of interest to both 
trainees and practicing colleagues, through select 
examples representative of the far reach of our 
field. Our focus will be on translational research, 
as this is typically the chief dominion of the pedi-
atric surgeon, as opposed to that of the basic 
scientist.

3.2  Animal Models

Although much can be learned from in vitro anal-
yses of intracellular processes and defined cellular 
manipulations, especially in light of recent devel-
opments in cellular reprogramming, the complex-
ity of organ systems or whole organisms cannot 
yet be substituted. Both developmental and inter-
ventional research pursuits still depend heavily on 
animal models, which remain the workhorses at 
most pediatric surgical laboratories.

There is now an overwhelming variety of ani-
mal models for research, spanning widely across 
taxonomic groups [1]. A few basic considerations 
should guide animal selection for a given experi-

ment. One is of course the degree of correspon-
dence to the human disease or biological process 
of interest. The options here are perhaps surpris-
ingly broad, depending on the subject, not infre-
quently including significantly less prescient 
species, such as in the zebra fish model of lym-
phatic malformation, in addition to more predict-
able mammals. At the same time, species-specific 
variations in physiology and anatomy can render 
certain higher species essentially irrelevant to a 
given human disease process. For example, a 
swine model of naturally occurring congenital 
diaphragmatic hernia (CDH) (Sus scrofa) does 
not include pulmonary hypoplasia, virtually 
ubiquitous to CDH in human infants.

Another consideration is the availability of 
genetic tools conducive to in depth molecular and 
pathway-specific analyses of mechanisms behind 
the phenomena being studied. Mice (Mus muscu-
lus) constitute the prime representative of that set 
of considerations, not the least due to the plethora 
of knockout and knock-in murine models, though 
the thornier rat knockouts have also become 
options in the last several years. The International 
Mouse Phenotyping Consortium is striving to 
create viable strains of identical genetic back-
ground mice in which only one of the approxi-
mately 20,000 genes in the mouse genome can be 
selectively deactivated for systematic phenotypic 
screens, further expanding the scope of the 
murine genetic manipulation platform [2]. The 
more recent development of the first cloned rat 
also paves the way for the establishment of over-
expression rat models based on targeted inser-
tions [3].

Yet another consideration of special appeal to 
pediatric surgery is tolerance to fetal manipula-
tion/intervention. While this can be accomplished 
in a number of species, sheep (Ovis aries) 
deserves special attention due to their inordi-
nately high tolerance to such manipulations, the 
size of their fetuses and newborns, and the easily 
manageable gestational times. The ovine model 
can also be an asset to an additional aspect to be 
taken into consideration when selecting an ani-
mal model, namely is fast growth rate combined 
to the fact that their sizes are comparable to that 
of humans, from infancy to adulthood. 
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Meaningful growth is often a pre-requisite to 
pediatric surgical research, for example in proj-
ects involving different forms of structural repair.

Expectedly, as always, logistical and financial 
constraints come into play as well. The following 
is a brief review of select animal models of inter-
est to certain specific groups of pediatric surgical 
diseases, as representative illustrations of the 
breadth of animal research in our field. Other lists 
equally focused on our specialty, though based 
on somewhat different criteria, should also be of 
particular interest to the reader [4].

3.2.1  Abdominal Wall Defects

Not infrequently, a given structural congenital 
anomaly can be modeled in animals by either of 
five methods: surgery; genetic manipulation; 
drugs/chemicals; other environmental manipula-
tions; or it may be naturally occurring. Selecting 
which one best correlates with the clinical dis-
ease is not always straightforward, especially 
when the etiology of the human condition is 
unknown. Animal models of gastroschisis and 
omphalocele illustrate that scenario.

There is an inbred mouse strain, namely HLG/
Zte, in which gastroschisis occurs spontaneously. 
The typical prevalence of 3% can be increased 
with irradiation during pre-implantation develop-
ment [5]. Studies with these animals have identi-
fied a region of the mouse chromosome 7 as a 
responsible locus [6]. Further similar studies may 
shed more light on genes eventually involved in 
the development of abdominal wall defects.

Abdominal wall defects can also be induced 
experimentally with a variety of teratogens. 
However, these agents typically lead to inconsis-
tent results, as well as multiple associated anoma-
lies. Aminpyrine causes omphalocele when given 
to pregnant mice at midgestation [7]. This can be 
augmented by supplementation with barbital [8]. 
In rats, omphaloceles have been induced with 
maternal exposure to DA-125 (anthracycline anti-
neoplastic agent) [9], beta- aminoprpioitrile [10], 
or flubendazole [11]. Additional teratogenic agents 
have been explored in assorted species, including 
doxorubicin hydrochloride [12], ethanol [13, 14], 

nitrous oxide [15], ethylene glycol [16], scopol-
amine hydrobromide [17], acetazolamide [18], 
and cyclooxygenase inhibitors [19]. The rate of 
gastroschisis in this studies, however, is somewhat 
limited, ranging from 3.7 to 19.8%. In guinea pigs, 
a daily period of maternal hyperthermia can result 
in abdominal wall defects, among other abnormal-
ities [20].

Various species have been used in surgical 
models of gastroschisis, the most prominent of 
which are sheep, rabbit, and the chicken embryo. 
Haller et al. first described a sheep model of gas-
troschisis by operating on fetal lambs at midgesta-
tion and excising a full thickness disk of abdominal 
wall lateral to the umbilical cord [21]. The exposed 
intestine in surviving fetuses was edematous and 
matted, similar to the findings in humans. Langer 
and colleagues later modified this model by plac-
ing a silastic ring in the abdominal wall defect 
[22–24]. Though this design was associated with a 
relatively high rate of spontaneous abortion, it 
demonstrated that intestinal damage correlates 
with the time of exposure to the amniotic fluid. 
Less costly rabbit models of gastroschisis have 
also been described [25, 26]. Improvements in 
experimental fetal surgery have improved the suc-
cess rate of this model to the range of 80–90% [27, 
28]. An interesting modification of the leporine 
model has been described so as to remove the 
effect of amniotic fluid exposure on the intestinal 
damage during fetal development [29]. The least 
costly models for gastroschisis involve chicken 
embryos. The chicken embryo is enveloped in 
amniotic fluid and a number of membranes. After 
confirming fertility of an egg, a 1 cm defect is cre-
ated in the shell. Using the allantoic vessels and 
the umbilical cord as landmarks, the physiologic 
umbilical hernia sac can be incised in order to cre-
ate a gastroshisis [30]. Using this model, the 
effects of amniotic fluid exchange as a means to 
reduce the severity of intestinal damage have been 
studied [31–33].

3.2.2  Biliary Atresia

Multiple theories have been proposed to account 
for the varied spectrum of pathology in biliary 
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atresia, ranging from putative congenital malfor-
mations of the bile ducts to the presence of a 
causative infectious agent. Reflecting this diver-
sity, several types of models have been described.

Lampreys provide an arguable natural model 
for biliary atresia. Adult lampreys are the only 
vertebrates with an absence of a bile duct system 
in their livers. This occurs through programmed 
degeneration of the biliary tract during normal 
morphogenesis [34]. As the biliary tract regresses, 
the adult lamprey develops progressive cholesta-
sis and bile pigment accumulation. The spectrum 
of pathology resembles the human form of the 
biliary atresia with the accumulation of luminal 
debris, basement membrane thickening, disorga-
nization of hepatic architecture, extra-hepatic 
bile duct atresia, and shrinkage or loss of the gall 
bladder [35]. These animals live for several years 
after biliary tract regression allowing for studies 
on compensatory response to cholestasis as well 
as changes in the evolution of biliary atresia at 
the molecular level [36].

Bile duct injury has been induced with several 
agents in an attempt to mimic histological fea-
tures of biliary atresia. After having identified 
low levels of L-proline in the serum of patients 
with biliary atresia, Vacanti and Folkman were 
able to induce bile duct enlargement with a con-
tinuous intraperitoneal infusion of L-proline 
[37]. 1,4-phenylenediisothiocyanate (PDT), an 
antihelminthic agent, can be employed to induce 
bile duct inflammation [38, 39]. The bile duct 
pathology is related to the timing of exposure to 
this agent. When gavaged in the postnatal period, 
PDT causes bile duct enlargement. When gavaged 
to pregnant rats, PDT causes fibrosis in the bile 
ducts. However, with a combination of gavage to 
the pregnant rats and during the postnatal period, 
the bile ducts exhibit wall thickening with steno-
sis and atresia. Further study of this temporal 
relationship may aid in the understanding of bile 
duct development. Another agent, phorbol 
myristate acetate (PMA), has been infused 
directly into the gallbladders of adult rats with a 
subcutaneous pump [40]. After a 28-day infu-
sion, portal fibrosis and neo-cholangiogenesis 
were observed. PMA is a nonspecific activator of 
inflammation and may lead to insights on the role 

of inflammation in the development of biliary 
atresia.

Surgical models involving ligation of the fetal 
bile duct have been described in sheep [41]. 
Although the distal bile duct can become atretic, 
similarly to what is found in the human form of 
biliary atresia, the same does not apply to the 
impact on the liver, which does not correlate with 
what is found in the human disease. More 
recently, it has been shown, also in the ovine 
model, that occlusion of the fetal bile duct and 
the consequent hyperarterialization of the liver 
actually/instead significantly affects hepatic 
hematopoiesis, leading to a new perspective into 
the mechanisms that govern hematopoiesis in 
general, illustrating the potentially far reaching 
impact of fetal surgical models [42].

3.2.3  Congenital Diaphragmatic 
Hernia

Multiple animal models of congenital diaphrag-
matic hernia (CDH) have been described, how-
ever only few bear relevance to the human 
disease.

A model of familial CDH has been described 
in pigs which were originally bred to produce 
anorectal malformations, with a prevalence of 
approximately 10% [43]. Animals show herni-
ated intra-abdominal organs within the tho-
racic cavity, but not the pulmonary hypoplasia 
characteristic of CDH. Several genetically 
manipulated mice models have also demon-
strated CDH in combination with other associ-
ated malformations. If both murine retinoic 
acid receptors are deleted, mice have a high 
incidence of cranial, vertebral, limb, cardiac, 
foregut and pulmonary malformations, in addi-
tion to occasional CDH [44, 45]. Mutations in 
the homeobox Hlx gene result in CDH with 
large lungs and small livers [46]. Homozygous 
inactivation of WT-1 causes CDH and major 
defects in the urogenital system [47]. Knockout 
mice homozygous for Slit3  deficiency exhibit 
CDH in a ventral midline location with hernia-
tion of the liver and gallbladder, along with 
renal and ureteral agenesis [48].
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The first surgical model of CDH was described 
by De Lorimier using third trimester fetal lambs 
[49]. Through a maternal hysterotomy and a fetal 
thoracotomy, a large defect was created in the left 
dome of the diaphragm. This model resulted in 
hypoplastic lungs, however with essentially nor-
mal pressure-volume curves. Further studies 
using an inflatable balloon in the fetal chest pro-
duced significantly reduced tidal volume and pul-
monary compliance compared with control 
animals [50, 51]. Deflation of the balloon in utero 
improved these pathophysiologic effects and 
improved newborn survival [50]. In another vari-
ation of fetal manipulation, the diaphragmatic 
defect was created in the second trimester rather 
than the third, in order to more closely mimic the 
human disease [52]. In these animals, the lungs 
were hypoplastic, had abnormal airway branch-
ing, and a smaller and more muscularized pulmo-
nary arterial tree when compared with controls 
[53, 54]. The fetal surgical model of CDH has 
also been described and further explored in rab-
bits [55–57]. As these surgical models are created 
during fetal life, they hold limited significance to 
the embryogenesis of CDH.

Experimental CDH can also be produced in 
other animal species through different interven-
tions, other than surgical creation of the defect, 
including: exposure to diet deficient in either 
vitamin A [58, 59], zinc [60], or cadmium [61]; 
administration of either thalidomide [62], anti- 
rat rabbit serum [63], 2,4-diclorophenil-p- 
nitrofenilic ether (nitrofen, a herbicide) [64–66], 
or polibromate biphenils [67, 68]; and genetic 
manipulations, such as FOG-2, COUP-TFII, and 
GATA-4 mutations [69–71]. However, with the 
possible exception to the nitrofen model, there’s 
been no conclusive relationship between these 
experimental models and clinical/epidemiologi-
cal data in humans. The nitrofen model has been 
increasingly accepted as the most relevant to 
clinical CDH due to the fact that, in that model, 
the pulmonary hypoplasia precedes the diaphrag-
matic defect and is independent from the latter. 
This is in accordance with today’s favored notion 
that the primary defect is not in the diaphragm, 
but rather in the developing lung buds, with the 
diaphragmatic defect being actually secondary to 

a primary pulmonary hypoplasia. Such pulmo-
nary hypoplasia, in turn, could be made worse by 
the herniated content into the chest.

Laboratory developments in CDH include a 
peculiar facet which further epitomizes the 
impact that fetal intervention models can have in 
our understanding of not only a given disease, but 
also of germane biological processes. In the six-
ties, Carmel and colleagues used a healthy lepo-
rine model to demonstrate that fetal tracheal 
occlusion induced lung growth [72]. In the seven-
ties, Alcorn et al. suggested, in a healthy ovine 
model, that fetal tracheal occlusion and drainage 
led to hyperplasia and hypoplasia of the lungs, 
respectively [73]. It was not until the early nine-
ties, however, that Wilson et al. showed, also in 
sheep, that fetal tracheal occlusion could actually 
be a means to reverse the pulmonary hypoplasia 
associated with both CDH and fetal nephrectomy 
[74–76]. Wilson’s sentinel studies on therapeutic 
fetal tracheal occlusion have triggered one of the 
most fertile experimental and clinical develop-
ment sprees of recent memory in our specialty, 
with ramifications that have crossed the boundar-
ies of our field.

3.2.4  Hirschsprung’s Disease

A number of animal species have naturally occur-
ring aganglionic megacolon, including mice, rats 
and horses [77–79]. In 1966, Lane described two 
strains of mice with autosomal recessive agangli-
onosis [79]. The lethal spotting (ls) mice have 
approximately 2 mm of aganglionosis while pie-
bald lethal (s1) mice have approximately 10 mm 
of aganglionosis. Lane and Liu also described 
megacolon associated with a dominant spotting 
gene (Dom) in mice, characterized by distal 
colonic aganglionosis and a long hypoganglionic 
transition zone [78]. Ikadai and Agematsu 
described an autosomal recessive total colonic 
aganglionosis in a strain of rats [77]. These ani-
mals have a high mortality rate and are only able 
to survive for 3–4 weeks after birth, eventually 
succumbing to severe bowel obstruction and 
enterocolitis. Histological studies using acetyl 
cholinesterase whole-mounts in all these rodent 
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models are virtually identical to the human histo-
pathology [80].

Various genes have been actively disrupted in 
mice, producing phenotypes similar to human 
Hirschsprung’s Disease (HD). The Ret gene 
encodes a receptor tyrosine kinase, which has 
four ligands: glial cell line derived growth factor 
(GDNF), neurturin (NTN), artemin (ATM) and 
persephin (PSP) [81]. The complete receptor 
complex includes the Ret receptor tyrosine kinase 
and a glycosylphosphatidylinositol-anchored 
binding component (gfrα1, gfrα2, gfrα3 or gfrα4). 
This receptor has been suggested to function as an 
adhesion molecule, which is required for neural 
crest migration and could also play a role in either 
differentiation or survival of the neural crest cells 
which have stopped migrating [82, 83]. Ret (−/−) 
transgenic mice have a homozygous, targeted 
mutation of the tyrosine kinase receptor resulting 
in a loss of its function. These mice exhibit total 
intestinal aganglionosis and renal agenesis [84]. 
The Ret gene has been demonstrated to be a major 
gene causing HD in humans. Mutations of Ret 
account for 50% of familial and 15–20% of spo-
radic cases of HD [85–88]. GDNF, one of the Ret 
receptor ligands, stimulates the proliferation and 
survival of neural crest derived precursor cells in 
the embryonic gut [89, 90]. Mice homozygous for 
null mutation in Ret, GDNF and gfrα1 have 
almost identical phenotypes characterized by fail-
ure of enteric nervous system development distal 
to the esophagus and absent kidneys [84, 91–95]. 
Although a causative role for GDNF mutations in 
some patients with HD has been suggested, the 
occurrence of such cases is uncommon. It is more 
likely that the GDNF mutations are involved via 
its interaction with the Ret receptor [96, 97]. No 
gfrα1 mutations have been identified in patients 
with HD [98].

Endothelins are intercellular local messen-
gers that comprise four members to date: ET-1, 
ET-2, ET-3 and VIP. They transduce a signal via 
two cell surface transmembrane receptors: 
ENDR-A and ENDR-B [81]. Both ET-3 and 
ENDR-B genes have been disrupted and have 
been identified as the cause for the natural 
mutants lethal spotting mice and piebald lethal 
mice, respectively [99, 100]. Moreover, a trans-

genic mouse ENDR-B knockout has a pheno-
type identical to the piebald lethal mouse [101]. 
As the connection between mutations in the Ret 
receptor and familial HD was established, ET-3 
and ENDR-B mutations were also implicated in 
the disease [99, 100, 102]. However, these muta-
tions have been demonstrated in less than 10% 
of the cases of HD in humans [103]. Endothelins 
are initially produced as an inactive proendothe-
lin that has to be activated by a specific enzyme, 
the endothelin- converting enzyme (ECE). Two 
ECE genes have been described, ECE-1 and 
ECE-2 [81]. ECE-1 knockout mice show cra-
niofacial and cardiac abnormalities in addition 
to colonic aganglionosis [104]. A heterozygous 
ECE-1 mutation has been identified in a patient 
with HD who also had craniofacial and cardiac 
defects [105].

Sox10 is a member of the SRY-related family 
of transcription factors that is expressed by 
enteric nervous system precursors before and 
throughout colonization of the gut mesenchyme 
[81]. Disruption of the Sox10 gene has been 
demonstrated to be the cause of the Dom mouse 
natural mutant [106, 107]. Interestingly, both 
homozygous and heterozygous animals produce 
a lethal HD-like phenotype [108]. Mutations in 
Sox10 have been identified in Waardenburg syn-
drome associated with HD [109].

Phox2B is a transcription factor that is essen-
tial for the development of the neural crest deri-
vates as it regulates the Ret expression in enteric 
nervous system precursors [110, 111]. Targeted 
Phox2B gene disruption leads to a complete 
absence of enteric nervous system in the mice, a 
phenotype that is very similar to that of the Ret 
knockout mouse [110]. Garcia-Barcelo et al. 
reported that Phox2B deficiency might predis-
pose to HD in humans [112].

Pax3 is a member of the paired-box contain-
ing family of nuclear transcription factors that 
is expressed in neural cell precursors giving 
rise to enteric ganglia and synergizes with 
Sox10 to activate an enhancer in the Ret gene 
[113]. In the mouse, Pax3 mutations result in a 
phenotype characterized by deficient enteric 
ganglia in the heterozygous state. Homozygous 
deficient embryos die during mid-gestation 
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with neural tube defects, cardiac defects and 
absence of enteric ganglia [113]. So far, no 
Pax3 mutations have been identified in patients 
with HD, though.

Most surgical models of HD have involved 
chick embryos because they are easily accessible 
and the development of their enteric nervous sys-
tem has been well studied. In that species, agan-
glionosis can be caused by surgical ablation of 
the premigratory neural crest [114]. This model 
is useful for the investigation of possible treat-
ment strategies. It has been used to recolonize 
aganglionic bowel with neural crest cells by 
transplanting tissue obtained from the dorsal neu-
ral tube [115–117]. It has also been employed to 
show that neurons from more proximal regions of 
bowel are capable of recolonizing distal bowel 
and forming enteric ganglia [115, 118].

Sato and colleagues described a chemical 
model of HD [119]. They created segmental 
aganglionosis by applying benzalkonium chlo-
ride topically to the colon and rectum in rats. 
This model has been reproduced in mice and 
guinea pigs [120, 121]. It has also been used in 
the distal esophagus as a model of achalasia 
[122]. Benzalkonium chloride causes cell dam-
age and death by producing an irreversible 
depolarization of the cell membrane. Due to the 
high cell membrane negative charge of neurons, 
they are more intensely affected then other 
cells. As a result, benzalkonium chloride 
induces a selective neuronal ablation in the 
intestinal wall eliminating almost all myenteric 
neurons and glia in treated segments [121]. 
Although the aganglionic bowel does not show 
hypertrophic nerve bundles and the chemical 
does not affect the number of submucosal neu-
rons, the treated part does become narrowed 
and the rectoanal reflex is abolished [119]. 
Compared to the other models of HD, this tech-
nique is inexpensive, easy to perform and the 
animals can survive longer. It has been used to 
study functional and structural changes in the 
bowel resulting from loss of these neural ele-
ments. It could also be used to study the chronic 
changes caused by the aganglionic segment, as 
well as the long-term effects of different surgi-
cal treatments [123–128].

3.2.5  Necrotizing Enterocolitis

To date, no true animal model for necrotizing 
enterocolitis (NEC) has been described. 
Nevertheless, as multiple factors have been 
implicated in the pathogenesis of NEC, several 
animal models exist that may provide useful plat-
forms for the study of different aspects relevant 
to the pathophysiology of this disease.

The ischemia/reperfusion model involves 
direct occlusion of mesenteric vessels or the 
superior mesenteric artery for varied periods of 
time followed by reperfusion. It has been per-
formed in different species. In one study in neo-
natal piglets, the mesenteric vessels were tied off 
at different points near the distal ileum for 48 h 
[129]. There was a higher chance of intestinal 
injury when the occlusion was closer to the ileo-
cecal junction. The degree of injury was greatest 
in low birth weight piglets as measured by ulcer-
ation, vascular engorgement, pneumatosis intes-
tinalis, full-thickness necrosis, and ulceration 
with perforation. In normal birth weight piglets 
no injury was observed. This model allows for 
the investigation of eventual differences in the 
intestinal response to injury dependent on devel-
opmental stages. In mice, the time for the devel-
opment of ischemic injury following vascular 
occlusion is substantially less than in low birth 
weight piglets. For example, occlusion of the 
superior mesenteric artery for 20 min in adult 
mice can result in the development of ischemic 
intestinal lesions in 50% of the animals by 48 h 
[130].
Studies in human infants with NEC have shown 
that, within the intestinal lumen, the pH was gen-
erally less than 5.0, the protein content less than 
5 g/dL, and sufficient carbohydrate and bacteria 
were available to produce organic acids by fer-
mentation [131]. Based on these data, investiga-
tors have created a rabbit model of NEC using a 
bovine casein formulation acidified with propi-
onic acid [131, 132]. In weanling rabbits, either 
saline or a solution of 10 mg/mL casein and 
50 mg/mL calcium gluconate acidified to a pH of 
4.0 was instilled into isolated intestinal loops 
triggering increased intestinal blood flow, muco-
sal permeability and histamine release. After 3 h, 
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the villa were blunted, the lymphatic vessels 
dilated and edema was observed [133]. After 
16 hours, several rabbits had hemorrhagic necro-
sis and died. Advantages of this model include its 
simplicity and reproducibility as well as the fact 
that assorted animals at varied stages of develop-
ment can be evaluated as to their response.

3.2.6  Short Bowel Syndrome

Perhaps not surprisingly, many models of short 
bowel syndrome (SBS) have been described. For 
example, intestinal resection and subsequent gut 
adaptation have been characterized in the pig 
[134, 135], dog [136–138], rat [139, 140], and 
mouse [141]. Warner and colleagues have shown 
that the murine model can be particularly useful 
for the study of various genes germane to intesti-
nal adaptation [141]. In this model, a proximal 
resection is preferred, as adaptive changes are 
most pronounced in the distal intestine. Large 
animal models such as the pig are more useful for 
the development of new surgical bowel lengthen-
ing techniques [142–144].

3.2.7  Parenteral Nutrition

Now exceedingly rare due to animal welfare reg-
ulations, canine models were instrumental to one 
of the most relevant achievements not only in 
pediatric surgery, but in all of medicine and sur-
gery, namely the ability to sustain life exclusively 
by parenteral nutrition, chiefly through the work 
of Dudrick and colleagues [145]. In their original 
study, the aim was to support growth and devel-
opment in beagle puppies for 10 weeks [146]. 
Small lipoid pigment deposits and hemosiderin 
pigment were present in the liver, so dosages of 
fat and iron were reduced. These results lead to a 
subsequent study in which 6 beagle puppies were 
fed entirely by central venous infusion for 72 to 
256 days and compared with their littermates 
[147]. These puppies exceeded their orally fed 
control littermates in weight gain and matched 
them in skeletal growth, development, and activ-
ity for the study period. The longest-term ani-

mals, fed for 235 and 256 days, more than tripled 
their body weight and developed comparably to 
their control littermates. These studies first dem-
onstrated that it was both possible and practical 
to feed animals entirely by vein for prolonged 
periods of time without excessive risks or com-
promise of growth and development. Soon there-
after, Dudrick and colleagues administered total 
parenteral nutrition to six severely malnourished 
adult patients with chronic, severe gastrointesti-
nal disease for up to 48 days [148]. Positive nitro-
gen balance was achieved in all of them, along 
with weight gain, normalized wound healing, and 
increased activity. All patients were eventually 
discharged from the hospital. The first neonatal 
administration occurred in that same year, in an 
infant with near-total small bowel atresia who 
underwent a massive intestinal resection [149].

3.2.8  Vacter and Other Models

As previously stated, this was not to be an all- 
inclusive list, but rather one illustrative of the dif-
ferent development avenues offered by a variety 
of animal platforms. Other models applicable to 
the pediatric surgical diseases discussed above, 
as well as models of interest to other pathological 
processes, will be discussed in their respective 
chapters. A special note must be mentioned on 
the remarkable variety of models of the VACTER 
(vertebral, anorectal, cardiac, trachea- esophageal, 
and renal) association, both as far as mechanism 
of action, as well as variability within the broad 
spectrum of this “syndrome” [4, 150–159].

3.3  Cell-Based Research

Cell-based therapies remain largely experimen-
tal, yet cell-based research has undergone dra-
matic growth and diversification over the last few 
decades. Certainly, in light of recent advances in 
stem cell biology, tissue engineering, gene 
manipulations, and other so-called regenerative 
medicine strategies, it is reasonable to speculate 
that these therapies may become alternatives, if 
not preferred treatment modalities, for a number 
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of structural congenital anomalies and other dis-
eases within the realm of pediatric surgery in the 
not so distant future [160, 161]. The following is 
a much summarized outline of a few aspects of 
this burgeoning field that are of particular conse-
quence to our specialty.

Prenatal stem cell and gene therapies have tre-
mendous potential to treat a range of disorders 
that can be diagnosed or predicted before birth, 
stemming from the unique environment present 
during fetal developmental, which can facilitate 
and enhance cellular engraftment. A notable 
example is in utero hematopoietic stem cell trans-
plantation (IUHSCT). While few disorders have 
a compelling rationale for IUHSCT based on the 
prevention of irreversible damage to the fetus 
before birth, such as for example glycogen stor-
age diseases with neurologic involvement, this 
methodology can be a powerful means to induce 
tolerance to transplantation later in life. Flake 
and colleagues have developed germane work in 
this area aimed at maximizing chimerism through 
a variety of strategies so as to achieve complete 
or near complete replacement of host hematopoi-
esis by donor cells without toxicity or graft ver-
sus host disease in rodent models [162–164]. 
Consistent results in preclinical large animal 
models are now being pursued by that group and 
others [165].

Fetal tissue engineering is another notable 
development. It constitutes a novel therapeutic 
concept in perinatal surgery, involving the pro-
curement of fetal cells, which are then used to 
engineer tissue in vitro in parallel to the remain-
der of gestation, so that an infant, or a fetus, with 
a prenatally diagnosed birth defect could benefit 
from having autologous, expanded tissue readily 
available for surgical implantation in the perina-
tal period. The fetus is a prime tissue engineering 
subject, both as a donor and as a host. The many 
exclusive characteristics of fetal cells, in con-
junction with the developmental and long-term 
impacts of engineered graft implantation into a 
fetus or a newborn, add new dimensions to tissue 
engineering generally. Also, the fact that certain 
congenital anomalies present as perinatal surgi-
cal emergencies further justifies the fetal tissue 
engineering principle. Our group and others have 

been developing this notion in a variety of animal 
models of structural congenital anomalies, typi-
cally employing the amniotic fluid as a preferred 
source of fetal cells [166–180]. Preclinical stud-
ies have been reported and the first clinical trials 
are expected for the near future [181–183]. 
Another facet of fetal cell-based treatments of 
structural anomalies being developed experimen-
tally is the use of fetal neural stem cells for the 
repair of spinal cord damage in the setting of neu-
ral tube defects, such as spina bifida [184]. 
Additionally, select fetal cells have also been 
proven valuable experimentally in studies on 
wound healing modulation [185].

Tissue engineering techniques have already 
been used to repair congenital anomalies postna-
tally in children. Shin’oka and colleagues have 
accumulated considerable clinical experience 
with the use of engineered conduits as vascular 
replacements in low-pressure systems, in chil-
dren with varying forms of complex congenital 
cardiovascular anomalies [186–190]. Further 
clinical experience with tissue engineering in 
pediatric surgery beyond the more prevalent 
anecdotal reports is expected in the coming years.

More recently, transamniotic stem cell therapy 
(TRASCET) has emerged experimentally as a 
novel therapeutic strategy for the treatment of 
different birth defects. It is based on the principle 
of harnessing/enhancing the normal biological 
role of mesenchymal stem cells that are naturally 
occurring in the amniotic fluid for therapeutic 
benefit. Specifically, we have recently shown that 
amniotic fluid-derived mesenchymal stem cells 
(afMSCs) play a central role in fetal wound heal-
ing, widely known to be enhanced when com-
pared with postnatal repair of tissue damage 
[185]. This germane finding was not only the first 
demonstration of a biological role for any amni-
otic cell, it has also provided validation for the 
use of afMSCs in regenerative strategies, in that 
these cells already play a regenerative role in 
nature. More recently, we have also shown, in 
different animal models, that the simple intra- 
amniotic delivery of afMSCs in large numbers 
can either elicit the repair, or significantly miti-
gate the effects associated with major congenital 
anomalies, putatively by boosting the activity 

3 Research in Pediatric Surgery



54

that these cells normally have. For example, con-
centrated amounts of these cells injected into the 
amniotic cavity can induce partial or complete 
coverage of experimental spina bifida by promot-
ing the local formation of a host-derived primi-
tive skin, thus protecting the spinal cord from 
damage [191, 192]. Placenta-derived MSCs also 
seem to be a suitable option for TRASCET, at 
least in experimental spina bifida [193]. In 
another example, TRASCET has been shown to 
significantly alleviate the bowel damage associ-
ated with gastroschisis [194]. Many other appli-
cations of this practical therapeutic concept, 
involving a variety of congenital anomalies, are 
currently being investigated.

3.4  Clinical Research

Clinical research has evolved appreciably, par-
ticularly over the last two decades. It has essen-
tially become a science deserving of a whole 
book, rather than a segment of a book chapter. 
The several aspects that make up clinical research 
need careful planning and execution if a study is 
to be any relevant. More specifically, conceiving 
the research question(s); establishing the appro-
priate study/trial format; defining randomization 
criteria when suitable; choosing and recruiting 
the research subjects; estimating sample size and 
power; assessing control/independent variables 
and/or causal interference; designing question-
naires and interviews; organizing and managing 
databases; analyzing data; implementing quality 
control; and addressing ethical issues are just 
some of the components that need to be tackled 
before one can embark on a meaningful project. 
By the same token, as the clinical research 
endeavor becomes more refined, it expectedly 
subdivides, perhaps more notably between clini-
cal trials and outcomes research.

As critical as it is to any medical/surgical field, 
the overall adequacy of clinical research design 
and reporting in our specialty has been rather 
inconsistent over time [195]. Fortunately, how-
ever, pediatric surgeons have grown increasingly 
more discerning of late, progressively driving our 
scientific journals and professional societies to 

implement enhanced and more standardized 
peer-review guidelines which ultimately should 
be of great benefit to the field as a whole 
[195–199].

3.5  Final Considerations

The history of our young specialty is already rich 
in original translational initiatives which have 
shaped clinical practice both within and across 
the boundaries of our field. Among the many of 
these, perhaps one should stand out as an inspira-
tion to all of us. A pediatric surgeon, Dr. M. Judah 
Folkman, was the first to propose and coin the 
term “antiangiogenesis” as a potential therapeu-
tic approach to cancer and other conditions in his 
landmark paper of 1971 [200]. With this seminal 
insight, he established a new perspective on can-
cer biology by expanding the focus beyond the 
tumor cells to their microenvironment. The con-
cept that proliferating endothelial cells may be 
better therapeutic targets than the neoplastic cells 
themselves represented a momentous shift of 
focus and triggered an enormous research enter-
prise. Folkman’s direct and rational approach to 
angiogenesis redefined cancer biology, as well as 
multiple other processes in health, embryonic 
development, and other diseases [201]. It has 
been predicted that angiogenesis-related thera-
pies can eventually benefit half a billion people 
worldwide [202].

As Dr. Folkman used to say, “science goes 
where you imagine it”. Let us hope that more 
and more of our colleagues can be drawn by that 
inspirational vision and manage to incorporate 
either of the many forms of pediatric surgical 
research into their daily activities and 
ambitions.
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