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4.1            Introduction 

 Randomized control trials (RCTs) provide the foundation for evidence-based medi-
cine, which is the cornerstone of medical practice. RCTs are prospective studies that 
compare the effect of an intervention between an intervention and control group. An 
understanding of statistical methods is fundamental to the interpretation of RCT meth-
ods and results. This chapter will not provide an in-depth description of the methods 
of statistical analysis (this information can be obtained from any introductory statistics 
textbook). Instead, this chapter will provide a brief review of common statistical meth-
ods used to analyze data and discuss some issues associated with data analysis.  

4.2     Who Should Be Analyzed 

 The fi rst question that should be answered before proceeding with data analysis is 
which study participants should be included in data analysis. Defi ning the study 
population has important implications for the feasibility of the study and generaliz-
ability of the results. Unfortunately, even some of the best-designed clinical trials 
often cannot be perfectly implemented. In retrospect, some participants may not 
have met the inclusion criteria, data for some participants may be missing, or the 
protocol may not have been completely followed. Some investigators prefer to 
eliminate participants who do not adhere to the inclusion criteria or the protocol, 
whereas other investigators believe that once a participant is randomized, he or she 
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should be included in the fi nal analysis [ 1 ]. Both of these views will be discussed 
later. 

 Exclusions are potential participants who do not meet all of the entry require-
ments and are not randomized. Fortunately, exclusions do not bias the results, but it 
is important to document exclusion criteria in the trial protocol because exclusions 
can infl uence interpretation of the results. Participants may also be withdrawn from 
analysis. Multiple reasons exist for withdrawing participants from the analysis, 
including ineligibility, nonadherence, and poor quality and/or missing data. 
Participant withdrawal can bias the results, and it is important to develop a policy 
on the handling of withdrawals during the design of the trial. Investigators are 
responsible for convincing readers that the analysis was not biased secondary to 
participant withdrawal.  

4.3     Expressing the Data 

 Before reviewing common statistical methods used to analyze data, we will fi rst 
review hypothesis testing. Hypothesis testing allows investigators to make general-
izations from a sample to the population from which the sample was obtained [ 2 ]. 
The fi rst step in hypothesis testing is stating a null ( H  0 ) and alternative ( H  A ) hypoth-
esis. The  H  0  states that there is no difference between the hypothesized and popula-
tion mean, whereas the  H  A  states that there is a difference between the hypothesized 
and population mean. The next step in hypothesis testing is to decide on the appro-
priate statistical test (reviewed in greater detail below). It is essential to account for 
random variation in order to conclude that the observed differences in the samples 
are not due to chance. The p-value estimates the probability of a true difference 
occurring by chance. If the observed results are highly unlikely (i.e.,  p  < 0.05), we 
reject the  H  0  and accept the  H  A . This means that 5 times out of 100, we will reject 
the  H  0  when it is true (i.e., state there is a difference between two populations when 
a difference does not exist). This is referred to as type 1 or alpha ( α ) error. Conversely, 
type 2 or beta ( β ) error occurs when an investigator fails to reject the  H  0  when it is 
false (i.e., state there is no difference between populations when a difference does 
exist). Power (1- β ) is the ability of a study to detect a true difference, and is impor-
tant in hypothesis testing. Whereas  α  error of 0.05 is  conventionally accepted,  β  
error of 0.10 or 0.20 is most often used (i.e., power of 90 or 80 %). 

 An example of utilizing hypothesis testing is as follows. Researchers imple-
mented a trial to determine whether work as a fi re fi ghter affects pulmonary func-
tion tests. The study included 50 fi refi ghters, and forced expiratory volume after 
1 second (FEV 1 ) was measured before and after a 2-year period on the job. The 
expected mean decline in FEV 1  over 5 years in normal males is 0.10 L. In this study, 
the  H  0  is the mean decline in FEV 1  will be equal to 0.10 L, and the  H  A  is the mean 
decline in FEV 1  will not be equal to 0.10 L. 
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4.3.1     Comparison of Two Means 

 The student’s  t -test can be used to determine whether the means of two separate 
groups are equal. Student’s  t -test compares the means of two continuous variables 
and expresses the probability that any differences are due to chance or a “real” dif-
ference exists. Data can be obtained from paired or unpaired samples. Paired sam-
ples occur when observation are made in the same person (involves a before and 
after treatment measurement), and unpaired samples occur when observations in 
one group are independent from observations in another group [ 3 ]. There are three 
assumptions that must be met to utilize the student’s  t -test: the data in both groups 
must follow a normal distribution, the standard deviation (or variance) for both 
groups is equal, and both groups are independent. Violation of any of these three 
assumptions can lead to misleading conclusions. If the assumptions are violated, it 
is recommended that a nonparametric method (Mann–Whitney  U  test for unpaired 
data or Wilcoxon signed rank test for paired data) be used instead. The one-way 
analysis of variance (ANOVA) is used to compare the means of three or more 
groups. 

 An example of the student’s  t -test can be illustrated using the previous 
 example comparing FEV 1  among fi refi ghters before and after a 5-year period on the 
job. As mentioned earlier, the expected mean decline in FEV 1  over 5 years in normal 
males is 0.10 L. The mean decline in FEV 1  in the 50 fi refi ghters included in the 
study is 0.2 L, and using student’s  t -test to compare means gives a  p -value < 0.001. 
One therefore rejects the  H  0  and concludes that the observed decline in FEV 1  is 
signifi cantly different from the expected decline.  

4.3.2     Comparison of Two Proportions 

 The chi-square test and Fisher’s exact test can be used to compare frequencies or 
proportions in two or more groups [ 4 ]. For example, consider a clinical trial com-
paring a new treatment (Drug A) to reduce mortality after pulmonary embolus. The 
primary end point is survival or death. A total of 1,000 patients with pulmonary 
embolus were randomized to receive Drug A ( n  = 525) or placebo ( n  = 575). In the 
treatment group 27 patients (5 %) died and in the placebo group 75 (13 %) died. The 
data can be displayed in a 2 × 2 table.

 Died  Survived 

 Drug A  27  498  525 
 Placebo  75  500  575 

 102  998  1,100 
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   The row totals are the total number of patients receiving Drug A and placebo, 
whereas the column totals are the total number of patients who died and survived. 
The chi-square test can be used to determine if there is a statistically signifi cant 
association between death and treatment with Drug A. The  H  0  would be there is 
no association between death and treatment with Drug A, and the  H  A  would be 
there is an association between death and treatment with Drug A. Using the 
 chi-square test,  p  < 0.001 therefore rejecting the  H  0 , and there is an association 
between death (or improved survival) with Drug A. Of note, the Fisher’s exact test 
is used when the expected cell frequencies are <5. The expected cell frequency is 
the probability of being in a given cell times the total sample size. For example, 
the expected cell frequency for the upper left cell is calculated as (525 × 102)/
1,100 = 48.7.  

4.3.3     Relative Risk and Odds Ratio 

 The relative risk (RR) is the ratio of the incidence in people with the risk factor 
(exposed persons) to the incidence in people without the risk factor (nonexposed 
persons). RR can only be calculated for cohort studies and clinical trials. In both 
instances, there is a group of subjects with the risk factor and a group of subjects 
without the risk factor. The subjects are then followed over time to determine which 
subjects develop the outcome of interest. 

 The odds ratio (OR) is the odds that a subject with an adverse event was at risk 
divided by the odds that a subject without an adverse event was at risk. OR can be 
calculated for cohort and case–control studies. The OR and RR can be easily calcu-
lated using a 2 × 2 table.  

 For example, a trial was performed comparing thrombotic events in patients tak-
ing a nonsteroidal anti-infl ammatory drug (NSAID) compared to placebo. In the 
NSAID group, 46 out of 1,000 patients had a thrombotic event compared to 26 out 
of 1,000 patients in the placebo group.

 Disease  No disease 

 Treated/exposed  a  b 
 Control group  c  d 
 OR = a * d/b * c 

  
RR =

+

+

( )
( )

a a b

c c d

/

/
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 Thrombotic event  Total 

 Yes  No 

 NSAID  46  954  1,000 
 Placebo  26  974  1,000 

   The calculated OR would be 1.81 [(46 × 974)/(954 × 26)]. This can be interpreted 
as patients taking the assigned NSAID have 1.81 increased odds of having a throm-
botic event compared to patients taking placebo. The calculated RR [(46/1,000)/
(26/1,000)] is 1.76. This can be interpreted as patients taking the assigned NSAID 
have a 76 % increase in the rate of thrombotic events compared to patients taking 
placebo. 

 OR or RR greater than 1 indicates that there is an increased risk of the measured 
event associated with the exposure. When the OR or RR equals 1, the measured 
event is no more likely to occur with or without the exposure. On the other hand, 
when the OR or RR is less than 1, the measured event is less likely to occur with the 
exposure [ 5 ]. Also of note, in the previous example, OR and RR approximate each 
other, 1.81 and 1.76, respectively. This is usually true when the event rates are low 
and/or the treatment effect is small. 

 Other terms to be familiar with include absolute risk reduction, number needed 
to treat, absolute risk increase, and relative risk reduction. The absolute risk reduc-
tion allows one to assess the reduction in risk compared with the baseline risk. 
Specifi cally, it is the reduction in risk of a new intervention compared to the risk 
without intervention, and it is the absolute value of the difference between the 
experimental and control event rates. The number needed to treat is the reciprocal of 
the absolute risk reduction and provides the number needed to treat in order to pre-
vent one event. For example, if a new treatment decreases the relative risk of myo-
cardial infarction and has an absolute risk reduction of 0.0086, then the number of 
people who need to be treated to prevent 1 myocardial infarction is approximately 
116 (1/0.0086 = 116.3). Absolute risk increase is the opposite of the absolute risk 
reduction. It is the increase in risk with a new treatment compared with the risk 
without the treatment, and relative risk reduction is the reduction in risk with a new 
treatment relative to the risk without treatment [ 4 ].  

4.3.4     Correlation and Linear Regression 

 Correlation is used to determine if a linear relationship exists between two quantita-
tive variables. Linear correlation is a measure of the degree to which an increase or 
decrease in one continuous variable is associated with a proportional increase or 
decrease in a second continuous variable [ 6 ]. In other words, can the relationship 
between two variables be described by a straight line? For example, consider a 
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scatterplot depicting the hemoglobin A1c and serum glucose in ten patients with 
diabetes mellitus. If every point falls on a straight line, the two variables are per-
fectly correlated. The Pearson correlation coeffi cient ( r ) can be used to calculate the 
strength of a relationship and ranges from −1 to +1. A value of 0 represents no cor-
relation, −1 represents perfect negative correlation, and +1 represents perfect posi-
tive correlation between two variables. The Pearson’s correlation coeffi cient can be 
calculated for any dataset, but it is more meaningful if the two variables are nor-
mally distributed. 

 Linear regression allows investigators to analyze the relationship between two or 
more continuous variables when one variable depends on the others and allows 
 investigators to predict one variable given the value of the other variables [ 3 ]. For 
example, investigators were interested in the relationship between height and forced 
expiratory volume (FEV) in children. Using linear regression, it was found that FEV = 
−6.07 + (0.14 × height). Using this equation, the predicted FEV for a fi ve foot (60″) 
child would be 2.34 l (−6.06 + 0.14 × 60). Of note, when performing multivariate analy-
sis (i.e., more than two variables are included in the model), the number of covariates 
used in the model depends on the sample size. Ideally the sample size should exceed 
ten times the number of independent variables. For example, if the sample size in a 
study is 100, no more than ten independent variables should be included in the linear 
regression model. If too many independent variables are included in the model, inves-
tigators run the risk of overfi tting the data. The same is also true for small sample size. 
Also, assumptions must be met in order to utilize linear regression models. They are as 
follows: the sample must be randomly selected,  X  and  Y  are normally distributed, and 
the  Y  values are independent of each other (i.e., not correlated).  

4.3.5     Survival Analysis 

 Survival analysis is also referred to as time to event analysis. It allows for the analy-
sis of binary categorical outcomes such as death, onset of disease, recurrence of 
disease, and onset of disability. Survival can be reported as a percentage (i.e., 1-year 
or 5-year survival), median survival, or survival curves. There are several different 
survival analysis methods: incidence density method, life table (actuarial method), 
Kaplan-Meier (product-limit method), and Cox Proportional Hazards model. 
Kaplan-Meier and Cox Proportional Hazards are the more commonly used survival 
methods for clinical trials. Kaplan-Meier survival analysis allows investigators to 
generate survival curves for each group which can be compared using the logrank 
statistic. Kaplan-Meier survival analysis is to be considered generally reliable up to 
two times the median follow-up time. Assumptions made when utilizing the Kaplan- 
Meier method include no change in the event rate over time and the outcome is the 
same for patients that are followed and those lost to follow-up. The Cox Proportional 
Hazard model provides a hazard ratio and allows for the comparison of two or more 
survival curves after adjusting for covariates. For example, a multi- institutional ret-
rospective study identifi ed 3,500 patients who underwent pancreatic resection for 
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pancreatic cancer. A multivariate-adjusted Cox Proportional Hazard model was 
used to evaluate the prognostic signifi cance of adjuvant radiation therapy (AXRT). 
The hazard ratio for patients who received AXRT was 0.75. This can be interpreted 
as patient who received AXRT after surgical resection of pancreatic cancer had a 
25 % decreased risk of death compared to patients who did not receive AXRT. 
During covariate adjustment, in general the ratio of the number of independent vari-
ables used in the Cox model to number of events should not exceed 1:10. For exam-
ple, if a study has a sample size of 1,000 and 100 patients died, the maximum 
number of independent variables that should be included in the model is 10. Similar 
to linear regression, if too many independent variables are included in the model, 
one is at risk of overfi tting the data. Assumptions for Cox regression are the same as 
Kaplan-Meier survival analysis, and the effect of the covariate does not change over 
time for any of the independent variables.   

4.4     Analyzing the Data 

 Careful analysis of data obtained from clinical trials requires a major investment of 
time and effort. Inappropriate statistical analysis can result in misleading conclu-
sions and impairs the credibility of the trial and investigators. Two important issues 
that should be considered in the analysis of clinical trial results are intention-to-treat 
analysis and the role for subgroup analysis. 

4.4.1     Intention-to-Treat Analysis 

 Intention-to-treat (ITT) analysis is a technique commonly used in randomized con-
trol trials. The defi nition is as follows: “All patients randomly allocated to one of the 
treatments in a trial should be analyzed together as representing that treatment, 
whether or not they completed, or indeed received that treatment” [ 7 ]. In other 
words, ITT compares outcomes between study groups with each participant ana-
lyzed according to their randomized group assignment regardless of receiving the 
assigned treatment, withdrawal from the study, or deviation from the protocol. 

 An alternative to ITT is “per protocol” analysis, which only evaluates those partici-
pants who complied with the assigned treatment. This appears to be an appropriate 
approach to analysis because participants can only be affected by an intervention they 
actually received. However, the problem arises when participants who adhere to the 
study treatment differ from those that are noncompliant or drop out, thus introducing 
bias [ 8 ]. For example, in the Postmenopausal Estrogen/Progestin Intervention (PEPI) 
Trial, 875 healthy postmenopausal women aged 45–64 years of age who had no 
known contraindication to hormone therapy were randomly assigned to four different 
estrogen or estrogen plus progesterone regimens and placebo. Of the 175 women 
assigned to the unopposed estrogen arm, 41 (23 %) discontinued treatment because of 
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endometrial hyperplasia, which is a precursor of endometrial cancer [ 9 ]. If “per proto-
col” analysis was performed, these women would have been eliminated from analysis, 
and the association of estrogen therapy and endometrial cancer may have been missed. 

 ITT analysis not only minimizes bias but it also maintains the similarities between 
treatment groups in regard to prognosis. This is the reason for randomization, and 
this feature may be lost if analysis is not performed on the groups produced by the 
randomization process. This can be illustrated by the European Coronary Surgery 
Study Group Trial comparing medical and surgical treatment for stable angina. 
A total of 768 men under the age of 65 with angina were included in the study (373 
men were randomized to medical treatment, and 395 men were randomized to surgi-
cal treatment). A total of 26 men assigned to the surgical arm did not undergo sur-
gery, and 50 men assigned to the medical arm underwent surgery. Using ITT 
analysis, there was no signifi cant difference in mortality between the two groups at 
2 years [ 10 ]. Alternatively, using “per protocol” analysis, the mortality rate would 
be 8.4 % for the medical treatment and 4.1 % for the surgical treatment ( P  = 0.018) 
[ 7 ]. In “per protocol” analysis, surgery appears to have a falsely low mortality rate. 

 Despite the advantages of ITT analysis, the major disadvantage is that partici-
pants who choose not to take the assigned intervention will be included in the esti-
mate of the effects of that intervention. There is potential for the magnitude of the 
effect of the treatment to be underestimated if there are a signifi cant number of 
participants who “cross over” between treatments. For this reason, results of trials 
are often evaluated using both ITT and “per protocol” analysis, and if both analyses 
have similar results, the confi dence in the trial conclusions is increased. However, if 
the results from the two analyses are different, the results of ITT analyses dominate 
because randomization is preserved and bias minimized. 

 The utilization of ITT analysis has increased over the years. In 1999, Hollis et al. 
surveyed all reports of randomized controlled trials published in 1997 in the  BMJ , 
 Lancet ,  JAMA and New England Journal of Medicine . A total of 119 (48 %) trials 
mentioned ITT analysis. Of these, 12 trials excluded any patients who did not start 
the allocated intervention, and three trials did not analyze all randomized subjects as 
allocated. The authors concluded that the ITT approach is often inadequately 
described and inadequately applied, and readers should critically assess the validity 
of reported ITT analysis [ 11 ]. More recently, Gravel et al. conducted a cross- sectional 
literature review of randomized control trials reported in ten medical journals in 
2002. Of the 403 articles, 249 (62 %) reported the use of ITT. Among these, 192 
(77 %) clearly analyzed patients according to the groups to which they were random-
ized. Authors used a modifi ed ITT approach in 23 (9 %) and clearly violated a major 
component of ITT in 17 (7 %). The approach used in 17 (7 %) was unclear [ 12 ].  

4.4.2     Subgroup Analysis 

 Clinical trials are labor intensive and costly, and investigators often use subgroup 
 analysis to extract as much information as possible regarding the effect of a particular 
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treatment. Subgroup analysis compares subsets of randomized participants. 
Specifi cally, investigators compare the treatment effect between one and more sub-
groups rather than the entire cohort of participants. Subgroups are usually defi ned 
based on baseline characteristics. Using subgroup analysis, investigators have the 
potential to determine in which participants a specifi c treatment is more (or less) effec-
tive (or harmful). For example, a double-blind, placebo-controlled trial was conducted 
in which the reduction in the incidence of death or hospitalization for cardiovascular 
reasons with the use of the beta-blocker carvedilol was compared to placebo in patients 
with heart failure. In subgroup analysis, the investigators further examined whether 
carvedilol decreased the incidence of cardiovascular events according to the patients’ 
severity of disease, age, sex, left ventricular ejection fraction, 6-min walk, cause of 
congestive heart failure, systolic blood pressure, and heart rate. Patients treated with 
carvedilol had a 65 % lower risk of death than those given placebo, and the benefi cial 
effect of carvedilol on survival was consistent in all evaluated subgroups [ 13 ]. 

 Even though subgroup analysis allows investigators to identify who, if anyone, 
benefi ts from an intervention, care must be utilized in the interpretation of subgroup 
fi ndings. There are several issues that arise during subgroup analysis [ 14 ]:

    1.    Most trials are not suffi ciently powered to detect a difference between treatment 
groups. Subgroups are by defi nition smaller that the entire trial cohort. Therefore, 
if a difference does exist between subgroups, it may not be detected because the 
size of the trial is not large enough. Investigators may also examine results in a 
large number of subgroups, thus increasing the likelihood that a difference in 
treatment effect in a subgroup may be due to chance (type I error).   

   2.    A number of subgroups can be identifi ed based on baseline characteristics, and 
subgroups can be specifi ed either before or after examination of the data. These 
two methods are referred to as prespecifi ed subgroup analysis and post hoc anal-
ysis, respectively. Prespecifi ed subgroup analysis is planned and documented 
before any data analysis is performed. Post hoc analysis is often referred to as 
“data dredging” or “fi shing” and can be of particular concern because it can be 
unclear how many subgroups were analyzed and whether some subgroups were 
identifi ed secondary to inspection of the data [ 15 ].   

   3.    Statistical tests for interaction examine the strength of treatment differences 
between varying subgroups. This is the best method for making inferences from 
subgroup analysis. Tests for interaction take into consideration that data avail-
able for subgroup analysis is limited. Even though tests for interactions protect 
investigators from making false or premature claims from subgroup analysis, the 
test is not routinely used. In a survey of 50 trial reports in 4 major journals con-
ducted by Pocock et al. in 2002, only 15 (43 %) of the 35 reports with subgroup 
analysis used tests for interaction [ 14 ]. A common mistake made by investigators 
is presenting separate  p -values for treatment differences within each subgroup. 
For example, testing the hypothesis that there is no treatment effect in patients 
younger than 50 years of age and then testing the hypothesis separately in 
patients older than 50 years of age does not address whether treatment differ-
ences vary according to age. Separate subgroup  p -values can be misleading.   
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   4.    The results of subgroup analysis are often overinterpreted by authors and read-
ers, and caution has to be exercised when drawing conclusions. In the same 
survey conducted by Pocock et al., 21 trials (42 %) claimed to fi nd differences in 
subgroups that were not compatible with the overall treatment comparison, and 
13 of these featured these claims in the summary and/or conclusion [ 14 ]. As 
readers analyze trials that utilize subgroup analysis, biological plausibility, the 
number of subgroup analyses performed, prespecifi cation of the subgroups, and 
the trial size have to be considered when drawing conclusions.    

  Treatment decisions in multiple fi elds of medicine are directed by the results 
from randomized clinical trials (RCTs). One fi eld in which there have been hun-
dreds of RCTs is cardiology. Hernandez et al. reviewed 63 cardiovascular RCTs 
published from 2002 to 2004 in major medical journals. Of the selected RCTs, 39 
reported subgroup analysis, and 26 had more than 5 subgroups. Only 14 (35.8 %) 
prespecifi ed the subgroups, and only 11 (28 %) reported interaction tests. The 
authors concluded that the reporting of subgroup analysis in cardiovascular RCTs 
had several shortcomings, including lack of prespecifi cation and testing of a large 
number of subgroups without the use of tests for interactions. Based on these results, 
the authors made several recommendations to appropriately perform and interpret 
subgroup analysis [ 16 ]:

    1.    Specify subgroups in advance with a clear rationale.   
   2.    Use statistical tests for interaction in the full RCT population.   
   3.    Be skeptical if subgroups were not prespecifi ed, not biologically plausible, or no 

interaction test was performed.   
   4.    Utilize subgroup analysis as a hypothesis-generating tool for future studies.   
   5.    Emphasis should be placed on the overall results, which for the most part are 

better estimates of treatment effects compared to subgroup effects.    

  In summary, subgroup analysis is important in clinical trials. The results of sub-
group analysis can be used to generate a hypothesis for future studies, but the results 
must be interpreted with caution, and broad, general conclusion statements should 
not be made based on subgroup analysis.   

4.5     Handling Missing Data 

 Missing data is a serious problem and has the potential to compromise conclusions 
drawn from clinical trials. Missing data is defi ned as “values that are not available 
and that would be meaningful for analysis if they were observed” [ 17 ]. It occurs 
when participants drop out of a study before its conclusion. Dropout can be second-
ary to treatment or analysis dropout. Treatment dropout occurs when the assigned 
treatment is terminated, and analysis dropout occurs when some study measure-
ments are not recorded [ 18 ]. If dropout is secondary to the intervention, whether it 
is treatment dropout or analysis dropout, bias can be introduced into the analysis. 
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Unfortunately, limited information is available on how to handle missing data. 
Wood et al. reviewed all randomized trials published between July and December 
2001 in the  British Medical Journal ,  Journal of the American Medical Association , 
 Lancet ,  and New England Journal of Medicine . They focused on trial design and 
how missing outcome data was described and how statistical methods were used to 
deal with missing data. The conclusion of their review was that missing outcome 
data is a common problem in randomized controlled trials and it is often inade-
quately handled in the statistical analysis [ 19 ]. To help address this problem, the 
National Research Council convened the Panel on the Handling of Missing Data in 
Clinical Trials at the request of the Food and Drug Administration (FDA). The 
objective of the panel was to prepare “a report with recommendations that would be 
useful for FDA’s development of a guidance for clinical trials on appropriate statisti-
cal methods to address missing data for analysis of results” [ 20 ]. The recommenda-
tions of the panel are summarized below. 

 The fi rst step in minimizing missing data occurs during the design of the clinical 
trial. Every effort should be made to clearly defi ne the target population and out-
come measures prior to the initiation of the trial. The trial should be designed to 
maximize adherence to the protocol and ensure participants adhere to follow-up 
visits and measurements. Little et al. published several suggestions (adopted from 
the Panel on the Handling of Missing Data in Clinical Trials) for limiting missing 
data in the design of clinical trials [ 17 ,  18 ]:

    1.    Target a population that is not adequately served by available treatments and 
thus have incentive to remain on the study.   

   2.    Include a run-in period in which all participants are initially placed on active 
treatment. After a specifi ed time, the participants who were adherent to the ther-
apy are randomized to continue active treatment or begin placebo.   

   3.    Allow fl exibility in the treatment regimen in order to reduce the dropout rate 
because of a lack of effi cacy or treatment intolerance.   

   4.    Consider add-on designs (study treatment is added to an existing treatment).   
   5.    Shorter follow-up periods for the primary outcome.   
   6.    Allow the use of rescue medications.   
   7.    Consider a randomized withdrawal design to assess long-term effi cacy (partici-

pants who have received study treatment without dropping out are randomized 
to continue to receive the treatment or switch to placebo).   

   8.    Try to avoid using outcome measures that are likely to lead to substantial miss-
ing data.    

  Another important factor to take into consideration during the design phase is 
how missing data will affect the power of the trial. Most investigators “infl ate” the 
initial sample size to account for anticipated missing data. 

 Even when investigators take every step to minimize missing data during the 
design of the trial, every participant will not follow their assigned intervention to 
the completion of the trial. The question then presents itself in regard to which data, 
if any, should be collected for participants who do not complete the assigned treat-
ment. Investigators have two opposing views. Some believe that participants who 
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do not complete the assigned treatment are no longer relevant to the study. The 
opposing view is that continued data collection may be informative and can poten-
tially allow for the ability to analyze end points for all participants and explore 
whether assigned therapy effects the use and effi cacy of subsequent therapies [ 18 ]. 

 After taking steps to minimize missing data during the design of the clinical trial, 
attention must then be turned to minimizing missing data during the conduct of the 
trial. Little et al. once again have several suggestions (also adopted from the Panel 
on the Handling of Missing Data in Clinical Trials) for limiting missing data during 
conduct of the trial [ 17 ,  18 ]:

    1.    Select investigators who have good track records enrolling participants, follow-
ing participants, and collecting complete data.   

   2.    Set acceptable rates for missing data in the study protocol.   
   3.    Provide incentives (as long as they comply with ethical requirements) to investi-

gators and participants for completeness of data collection.   
   4.    Minimize the participant inconvenience and burden associated with data collection.   
   5.    Provide effective treatment to participants after the trial.   
   6.    Train investigators and their research staff on the negative impact of missing 

data.   
   7.    Train investigators and their research staff on the informed consent process as a 

tool for encouraging complete data.   
   8.    Monitor missing data during the trial.    

  Unfortunately, there is no universal method for handling missing data during data 
analysis. The Panel on the Handling of Missing Data in Clinical Trials identifi ed four 
different methods to adjust for missing data: complete-case analysis, single imputa-
tion methods, estimating equation methods, and methods based on a statistical method. 
Complete-case analysis excludes participants with missing data from the analysis. 
Single imputation methods fi ll in a value for each missing value using methods such 
as the last observation or baseline observation carried forward. Estimating equation 
methods weigh complete cases by the inverse of an estimate of the probability of 
being observed, and methods based on statistical methods include maximum likeli-
hood, Bayesian methods, and multiple imputations. In general, the panel favored esti-
mating equation methods and methods based on a statistical model for the data [ 17 ]. 

 In summary, missing data is a major issue that has to be addressed in the design 
and analysis of clinical trials. Missing data can lead to bias and affect the interpreta-
tion of trial results. Therefore, it is important to try to minimize missing data during 
the design and conduct of clinical trials.  

4.6     CONSORT Statement 

 In an effort to facilitate the interpretation of data from randomized trial and to facili-
tate their complete and transparent reporting such that some of the issues described 
above can be deliberated during the interpretation of the results, scientists and 
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editors have developed the Consolidated Standards of Reporting Trials (CONSORT) 
statement [ 21 ]. It is comprised of a 25-item checklist and a fl ow diagram focusing 
on reporting how the trial was designed, analyzed, and interpreted. While use of the 
CONSORT statement improves the communication of the study design and its fi nd-
ings, it is important to understand these key issues for the interpretation of data.  

4.7     Conclusion 

 RCTs provide the foundation for evidence-based medicine. The design and imple-
mentation of RCTs are labor extensive and expensive; therefore, it is important that 
investigators have a clear understanding of the design and implementation of clini-
cal trials and the analysis of the results obtained during a clinical trial. This chapter 
provided a brief review of common statistical methods utilized to express the results 
of clinical trials and common issues associated with data analysis.     
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