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Abstract

Robot manipulators have been widely used in industrial automation. In many

modern robot control applications, sensory information such as visual feedback

is used to improve positioning accuracy and robustness to uncertainty. This

chapter introduces basic concepts and design methods that are employed for
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motion control of robot manipulators with uncertainty. The chapter covers both

basic methods in joint-space control and advance topics in sensory task-space

control.

Introduction

Robotic manipulation has shown to be a key technology in factory automation.

In order for a robot to perform some specific tasks, the robot is required to move

according to the commands from a motion controller. Most motion control applica-

tions of robot manipulators can be categorized into two main classes. The first is

the point-to-point motion control or set-point regulation where the robot is

required to move from an initial position to a final desired position in the workspace.

Pick-and-place operations are typical examples of the point-to-point motion control

applications. Other examples that require set-point control are spot welding and hole

drilling. The second type is trajectory tracking applications, such as arc welding,

machining, and painting, where the robot has to follow a desired trajectory.

Robot manipulator Robot manipulator consists of rigid links connected by joints.

One end of the manipulator is fixed to a base and an end effector or tool is connected

to the other end. The vector space in which the joint displacements are defined is

often referred to as the joint space, and the coordinates in which the manipulator

task of the end effector is specified is referred to as the task space, which can be a

Cartesian space or an image space depending on the task requirements. The motion

control problem of a robot can be formulated either in the joint space (Kelly

et al. 2005) or in the task space (Spong et al. 2006). In the joint-space control

methodology, the desired position of the end effector is converted to a

corresponding desired joint configuration by solving an inverse kinematic problem,

and a feedback control law is designed so that the robot joints follow the desired

joint position. To eliminate the problem of solving the inverse kinematics, the robot

motion control problem can be directly formulated and designed in task space.

A transformation matrix Transformation matrix or Jacobian matrix Jacobian matrix

is used to transform the task-space feedback error to joint control inputs.

The most commonly used controllers in industrial applications are PD and PID

controllers (Ziegler and Nichols 1942). The main advantages of such controllers are

the simplicity and ease of implementation. However, the kinematics and dynamics

of a robot manipulator are highly nonlinear with coupling between joints, and

hence, the linear control theory cannot be applied directly to design PD or PID

controllers for a robot manipulator. By exploring physical properties of the robot

dynamics, Takegaki and Arimoto (Takegaki and Arimoto 1981) first showed using

Lyapunov method (Slotine and Li 1991) that a simple PD controller with gravity

compensation is effective for set-point control of a robot manipulator Robot

manipulator. The result was an important landmark in robot control theory. Inspired

by the original work (Takegaki and Arimoto 1981), much progress has been made

in understanding the robot motion control problem, and various control methods

have been developed for a robot manipulator (Arimoto and Miyazaki 1984, 1985;
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Arimoto et al. 1994; Ortega et al. 1995; Arimoto 1994; Wen and Bayard 1988;

Niemeyer and Slotine 1991; Berghuis et al. 1993; Cheah et al. 1998, 2004, 2007,

2010; Cheah 2003; Dixon 2007; Liang et al. 2010; Braganza et al. 2005; Wang and

Xie 2009; Garcia-Rodriguez and Parra-Vega 2012; Cheah and Liaw 2005; Kelly

1997; Wang et al. 2007).

This chapter focuses on motion control methods of robot manipulators that were

developed based on the Lyapunov method. In particular, several set-point and

adaptive tracking controllers are presented in both the joint space and task space,

for a robot manipulator with uncertainty. The robot kinematics and dynamics are

nonlinear with coupling between joints, and a good understanding of the structure

and properties of the models is essential for the design of simple and effective

controllers. The dynamics and kinematics of robot manipulators and their basic

properties are first introduced in section “Dynamics and Kinematics of Robot

Manipulators” and several examples are given to illustrate the properties. The

next two sections of this chapter present the standard motion controllers in robotics,

which serve as foundation works for the design of most robot controllers based on

the Lyapunov method. Section “Set-Point Control by PD Plus Gravity Controller”

introduces the set-point controllers based on the PD plus gravity control strategy.

Section “Adaptive Control of Robot Manipulators” presents adaptive control meth-

odology for tracking control of robot manipulators. Recent advances in sensing

technology has led to the research and development of sensory task-space feedback

control laws for robot manipulators. The use of task-space sensory feedback

information such as visual information improves the endpoint accuracy in the

presence of uncertainty. Section “Approximate Jacobian Set-Point Control” pre-

sents the basic task-space sensory feedback control problem of a robot manipulator

with kinematic and dynamic uncertainty for set-point control applications.

Moreover, the results are extended to deal with uncertain gravitational force.

Section “Adaptive Jacobian Tracking Control” presents the adaptive Jacobian

controller for task-space sensory feedback tracking control applications. Simulation

results are presented in section “Simulation Results.” A brief review of the basic

concepts and theories for stability analysis of nonlinear systems is also provided in

the Appendix.

Dynamics and Kinematics of Robot Manipulators

In this section, the dynamic and kinematic equations of robot manipulators Robot

manipulator are introduced and the properties which constitute the basis of con-

troller design in this chapter are presented.

Dynamic Equation of Robots

For a robot manipulator of n DOF with the joint coordinate q ¼ [q1,. . ., qn]
T, the

equation of motion using Lagrange approach takes the following form:
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Xn
j¼1

Mij€qj þ
Xn
j¼1

Xn
k¼1

Γijk _qj _qk þ Dii qð Þ _qi þ gi qð Þ ¼ ui, i ¼ 1, . . . , n (1)

such that Γkji is called the Christoffel symbols and it is defined as

Γijk ¼ 1

2

@Mij qð Þ
@qk

þ @Mik qð Þ
@qj

� @Mkj qð Þ
@qi

( )
: (2)

Equation 1 can be expressed in the following compact form:

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qþ g qð Þ ¼ u (3)

where M(q) � Rn�n is the inertia matrix, C q; _qð Þ is the matrix of Coriolis and

centripetal terms, D(q) � Rn�n is the matrix of damping coefficients, g(q) � Rn

denotes the gravitational force, and u � Rn is the vector of control input. The

following example is presented for better understanding of the dynamic equation

expressed in Eq. 3.

Example 1 Consider a two-link planar robot manipulator as depicted in Fig. 1.

The dynamic equation of the robot is expressed as follows:

M11 M12

M21 M22

� �
€q1
€q2

� �
þ C11 C12

C21 C22

� �
_q1
_q2

� �
þ D11 0

0 D22

� �
_q1
_q2

� �
þ g1

g2

� �
¼ u (4)

where parameters Mij, Cij, and gi for i, j ¼ 1, 2 are expressed in Appendix 2.

Parameters D11 and D22 are positive constants that represent damping coefficients

for each joint.

Some properties of dynamic equation of robot manipulators expressed by Eq. 3

are as follows:

Property 1 The inertia matrix M(q) is symmetric and positive definite for all
q � Rn.

Fig. 1 A two-link robot manipulator
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Property 2 The matrix _M qð Þ � 2C q; _qð Þ is skew symmetric so that

yT _M qð Þ � 2C q; _qð Þ� �
y ¼ 0 for all y�Rn: (5)

To show property 2, the elements of matrix C q; _qð Þ are obtained by using Eqs. 1

and 2:

Cij q; _qð Þ ¼
Xn
k¼1

1

2

@Mij qð Þ
@qk

þ @Mik qð Þ
@qj

� @Mkj qð Þ
@qi

( )
_qk (6)

Therefore, the elements of matrix _M qð Þ � 2C q; _qð Þ can be expressed as

_M qð Þ � 2C q; _qð Þ� �
ij

¼
Xn
k¼1

@Mij qð Þ
@qk

_qk �
@Mij qð Þ
@qk

þ @Mik qð Þ
@qj

� @Mkj qð Þ
@qi

( )
_qk

¼
Xn
k¼1

� @Mik qð Þ
@qj

þ @Mkj qð Þ
@qi

( )
_qk:

Switching i and j and considering the symmetricity of matrix M(q) yield

_M qð Þ � 2C q; _qð Þ� �
ij

¼ �
Xn
k¼1

� @Mjk qð Þ
@qi

þ @Mki qð Þ
@qj

( )
_qk

¼ � _M qð Þ � 2C q; _qð Þ� �
ji
,

which shows that the matrix _M qð Þ � 2C q; _qð Þ� �
is skew symmetric.

Property 3 The dynamic equation Eq. 3 can be linearly parameterized with
respect to the constant parameters, as follows:

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qþ g qð Þ ¼ Y q; _q; _q; €qÞθdð (7)

where Y(�) � Rn�pis the known regressor matrix and θd is the unknown parameter
vector.

The following example is presented to illustrate properties 1–3:

Example 2 Consider the two-link robot manipulator depicted in Fig. 1. The inertia

matrix is expressed by Eq. 113 in the Appendix. To show the positive definiteness

of the inertia matrix, it is sufficient to show that all leading principal minors of the

matrix are positive. Hence, the following inequalities must hold:

I :
4

3
M1L

2
c1 þ

4

3
M2L

2
c2 þM2L

2
1 þ 2M2L1Lc2 cos q2ð Þ > 0

II : det Mð Þ > 0

(
: (8)

For inequality I, the worst case is cos (q2) ¼ �1; then it gives
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4

3
M1L

2
c1 þ

1

3
M2L

2
c2 þM2 L1 � Lc2ð Þ2 > 0: (9)

For the second inequality, the determinant of M(q) is computed as follows:

16

9
M1M2L

2
c1L

2
c2 þM2

2L
2
1L

2
c2

4

3
� cos 2 q2ð Þ

� 	
> 0 (10)

which yields the positive definiteness of the inertia matrix.

To show the skew-symmetric property of the matrix _M qð Þ � 2C q; _qð Þ, let us form
the matrix _M qð Þ:

_M qð Þ ¼ �2M2L1Lc2 _q2 sin q2ð Þ �M2L1Lc2 _q2 sin q2ð Þ
�M2L1Lc2 _q2 sin q2ð Þ 0

� �
(11)

Hence, the matrix _M qð Þ � 2C q; _qð Þ can be expressed as

_M qð Þ � 2C q; _qð Þ ¼ 0 Ψ
�Ψ 0

� �
(12)

where Ψ ¼ 2M2L1Lc2 _q1 sin q2ð Þ þM2L1Lc2 _q2 sin q2ð Þ. It can be seen from Eq. 12

that the matrix _M qð Þ � 2C q; _qð Þ is skew symmetric.

To show the property Eq. 3, the elements of known regressor matrix Y � R(2�7)

are given as

Y11 ¼ €q1, Y12 ¼ €q2

Y13 ¼ 2€q1 þ €q2ð Þ cos ðq2
�� ð2 _q1 _q2 þ _q22

�
sin ðq2

�
Y14 ¼ _q1, Y15 ¼ 0, Y16 ¼ cos q1ð Þ, Y17 ¼ cos ðq1 þ q2

�
Y21 ¼ 0, Y22 ¼ €q1 þ €q2

Y23 ¼ €q1 cos q2ð Þ þ _q21 sin ðq2
�

Y24 ¼ 0, Y25 ¼ _q2, Y26 ¼ 0, Y27 ¼ cos q1 þ q2ð Þ,

and the unknown parameter vector is expressed as follows:

θd ¼

4

3
M1L

2
c1 þ

4

3
M2L

2
c2 þM2L

2
1

4

3
M2L

2
c2

M2L1Lc2
D11

D22

M1Lc1 þM2L1ð Þg
M2Lc2g

2
666666666664

3
777777777775
:
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Kinematic Equation Kinematic equation of Robots

The kinematic model represents the relationship between the joint angles and the

end-effector position. Hence, the kinematic model connects the task space to joint

space as follows:

x ¼ h qð Þ (13)

where x � Rm is the task-space vector and h(�) � Rn ! Rm is a transformation

describing the relation between the joint space and the task space. The relationship

between task-space and joint-space velocities is given as

_x ¼ J qð Þ _q (14)

where J(q) � Rm�n is the which provides a transformation from the joint space to

the task space.

Remark 1 The task-space vector can either be defined in a Cartesian space or an

image space. If cameras are used to measure the end-effector position, the task

space is defined as an image space. Let x denote the vector of image feature

parameters; the image velocity vector _x is related to the joint velocity vector _q as

_x ¼ JI qð ÞJe qð Þ _q (15)

where JI(q) is the image Jacobian matrix from the Cartesian space to the image

space (Hutchinson et al. 1996) and Je(q) is the manipulator Jacobian matrix from

the joint space to the Cartesian space. Therefore, the overall Jacobian from joint

space to task space is J(q) ¼ JI(q)Je(q). If a position sensor is used to measure the

end-effector position directly, the task-space vector x is defined as a Cartesian space
and hence J(q) ¼ Je(q).

A property of the kinematic equation Kinematic equation described by Eq. 14 is

stated as follows:

Property 4 The right-hand side of Eq. 14 is linear in a set of constant kinematic
parameters θk ¼ (θk1, � � �, θkq)T, such as link lengths and joint offsets. Hence,
Eq. 14 can be expressed as

_x ¼ J qð Þ _q ¼ Yk q; _qð Þθk, (16)

where Yk q; _qð Þ�Rn�q is called the kinematic regressor matrix.

Example 3 Consider the two-link robot manipulator as depicted in Fig. 1. The

kinematics of the robot can be expressed as follows:

x ¼ L1 cos q1ð Þ þ L2 cos
�
q1 þ q2

�
L1 sin q1ð Þ þ L2 sin

�
q1 þ q2

�� �
: (17)
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The task-space velocity can be obtained by differentiation Eq. 17 with respect to

time, as

_x ¼ �L1 sin q1ð Þ � L2 sin
�
q1 þ q2

� �L2 sin q1 þ q2ð Þ
L1 cos q1ð Þ þ L2 cos

�
q1 þ q2

�
L2 cos q1 þ q2ð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J qð Þ

_q1
_q2

� �
: (18)

Equation 18 can be written as follows:

_x ¼ � sin q1ð Þ _q1 � sin q1 þ q2ð Þð _q1 þ _q2
�

cos q1ð Þ _q1 cos q1 þ q2ð Þð _q1 þ _q2
�

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Yk q; _qð Þ

L1
L2

� �
|fflffl{zfflffl}

θk

: (19)

Set-Point Control by PD Plus Gravity Controller

This section considers the set-point control problems or point-to-point control

problems in which the robot is required to move from one point to another point

without controlling the path taken by the robot between the two points. A simple

and useful set-point controller for motion control is the PD plus gravity controller.

This control strategy employs feedback of joint angles, velocity, and compensation

of gravitational force as depicted in Fig. 2.

The feedback control law is expressed in the following form:

u ¼ �Kv _q� Kp~q þ g qð Þ (20)

where Kp is the proportional gain matrix, Kv is the derivative gain matrix, and

~q ¼ q� qd such that qd represents a constant desired position. Both Kp and Kv are

positive diagonal matrices. The closed-loop system can be obtained by substitut-

ing Eq. 20 into the dynamic Eq. 3:

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qþ Kv _qþ Kp~q ¼ 0: (21)

The stability of the closed-loop system is examined by using the Lyapunov-

based stability analysis. Consider the following Lyapunov function candidate as

V ¼ 1

2
_qTM qð Þ _qþ 1

2
~qTKp~q: (22)

Differentiating the Lyapunov-like candidate with respect to time gives

_V ¼ _qTM qð Þ€qþ 1

2
_qT _M qð Þ _qþ _qTKp~q: (23)

Substituting M qð Þ€q from the closed-loop Eq. 21 yields
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_V ¼ 1

2
_qT _M qð Þ � 2C q; _qð Þ� �

_q� _qTD qð Þ _q
� _qTKv _q� _qTKp~q þ _qTKp~q:

(24)

Considering the skew-symmetric property of the matrix _M qð Þ � 2C q; _qð Þ, _V is

simplified as follows:

_V ¼ � _qTD qð Þ _q� _qTKv _q � 0: (25)

Using LaSalle’s invariance principle (see lemma A1 in the Appendix) yields

_V ¼ 0 ) _qT D qð Þ þ Kvf g _q ¼ 0 , _q ¼ 0: (26)

From the closed-loop Eq. 21, one can conclude that

Kp~q ¼ 0 ) ~q ¼ 0 (27)

yields q ! qd as t ! 1.

In most robotic applications, the end effector of a robot manipulator is required

to move to a desired position in the task space. This can be obtained by either

solving the inverse kinematic problem to find the corresponding desired joint angles

or developing task-space control methodology directly by using the task-space

error. For task-space control, the Jacobian matrix is used to transform the task-

space errors to joint control inputs. In the following, a task-space set-point control

approach is presented. Consider the following feedback control law for the task-

space regulation:

u ¼ �JT qð Þ Kv _x� Kp~x
� �þ g qð Þ (28)

where ~x ¼ x� xd such that xd is the desired position of the end effector. A block

diagram of the task-space regulator described by Eq. 28 is illustrated in Fig. 3.

Fig. 2 A block diagram of the PD plus gravity controller
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Substituting the feedback law Eq. 28 into the dynamic Eq. 3 yields the following

closed-loop system:

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qþ JT qð Þ Kv _x� Kp~x
� � ¼ 0: (29)

The following Lyapunov-like candidate can be considered for the stability

analysis of the task-space regulation problem:

V ¼ 1

2
_qTM qð Þ _qþ 1

2
~xTKp~x: (30)

Differentiating Eq. 30 with respect to time and substituting Eq. 29 into it yield

_V ¼ � _qTD qð Þ _q� _qTJT
�
q
�
Kv _q� _qTJT

�
q
�
Kp~x þ _xTKp~x � _qTD qð Þ _q� _xTKv _x � 0:

(31)

If the Jacobian matrix is of full rank, by using LaSalle’s invariance principle (see

lemma A1 in the Appendix), it is obtained

_V ¼ 0 ) _qTD qð Þ _qþ _xTKv _x , _q ¼ 0

_x ¼ 0
:

�
(32)

From the closed-loop Eq. 29, one can conclude that

JT qð ÞKp~x ¼ 0 ) ~x ¼ 0: (33)

Hence, the position of the end effector converges to the desired position such as

x ! xd as t ! 1.

Remark 2 It was first shown in (Takegaki and Arimoto 1981) using the Lyapunov

method that the simple PD controller with gravity compensation Eq. 20 is effective

Fig. 3 A block diagram of the task-space PD plus gravity control system
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for set-point control of a robot manipulator Robot manipulator. The gravity com-

pensation term can also be computed off-line by using the desired position (Tomei

1991; Kelly 1993; Arimoto 1996):

u ¼ �Kv _q� Kp~q þ g qdð Þ: (34)

A main drawback of the PD plus gravity controller is that an exact knowledge of

the gravity force of the robot manipulator is required. The existence of uncertainty

in modeling the gravitational term results in steady-state position error. One way to

alleviate the problem is to increase the P control gain which may lead to saturation

of the control torques. A common practice to remove the steady-state error is to add

an integral term (Arimoto and Miyazaki 1984; Arimoto 1996).

u ¼ �Kv _q� Kp~q � KI

ð
~qdt (35)

where KI is a symmetric positive definite matrix. The closed-loop system of the

linear PID robot control system is asymptotically stable in a local sense. To achieve

global asymptotic stability, a saturated or bounded nonlinear function of the

position error can be used (Arimoto et al. 1994):

u ¼ �Kv _q� Kp~q � KI

ð
s ~qð Þdt (36)

where s(.) is the saturation function. Other regulators for robot manipulators

without using the gravitational term can be found in (Ortega et al. 1995; Kelly

1998). If the structure of the gravity force is known, adaptive PD controller with

gravity regressor can also be used to eliminate the steady-state position error in the

presence of uncertain parameters (Tomei 1991; Arimoto 1996):

u ¼ �Kv _q� Kp~q þ Z qð Þφ̂ (37)

with the parameter update law

_̂φ ¼ �LZT qð Þ _qþ αs ~qð Þð Þ (38)

where α is a positive constant. The gravity regressor matrix can be computed

off-line by using the desired position (Kelly 1993).

Adaptive Control of Robot Manipulators

For tracking control applications, the manipulator is required to follow a desired

time-varying trajectory. The simple PD controllers in the previous section are

usually not effective for tracking control, especially for high-speed manipulation

tasks. In this section, adaptive control method of robot manipulators is presented for

tracking control applications.
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To design the adaptive control, a reference vector is defined as follows:

_qr ¼ _qd � λ~q (39)

where λ is a positive constant. Using the reference vector Eq. 39, a sliding vector is
defined as follows:

s ¼ _q� _qr ¼ _~q þ λ~q: (40)

In fact, Eq. 40 represents a low-pass filter which is also depicted in Fig. 4. Hence,

~q can be obtained as

~q tð Þ ¼
ðt
0

e�λ t�τð Þs τð Þdτ: (41)

For a bounded sliding vector, i.e., jjsjj � Φ, then it yields

jj~q tð Þjj � Φ
ðt
0

e�λ t�τð Þs τð Þdτ � Φ
λ
: (42)

Therefore, inequality Eq. 42 shows that increasing λ leads to smaller tracking

error.

By differentiating Eq. 40 with respect to time, _s is obtained as follows:

_s ¼ €q� €qr ¼ €~q þ λ _~q: (43)

Substituting Eqs. 40 and 43 into Eq. 3 and using property 3, the following

equation is obtained:

M qð Þ _sþ C q; _qð Þsþ D qð Þsþ Y q; _q, _qr, €qrÞθd ¼ uð (44)

where Y q; _q, _qr, €qrÞð is a known regressor matrix and θd is an unknown parameter

vector, which are defined as follows:

Y q; _q, _qr, €qrÞθd ¼ M qð Þ€qr þ C q; _qð Þ _qr þ D qð Þ _qr þ g qð Þ:ð (45)

In fact, adaptive control strategies for a nonlinear system are mainly based on the

property of linear parameterization of the nonlinear dynamics with respect to

unknown parameters.

Fig. 4 Filter-like representation of Eq. 40 ( p ¼ (d/dt) is the Laplace operator)

1900 C.C. Cheah and R. Haghighi



The adaptive law is expressed as follows:

u ¼ �Kssþ Y q; _q, _qr, €qrÞθ̂d
�

(46)

where Ks is a positive definite matrix and θ̂d is the vector of estimated parameters,

which is updated based on the following update law:

θ̂d ¼ �LYT q; _q, _qr, €qrÞsð (47)

such that L is a symmetric positive definite matrix. A block diagram of the adaptive

law Eq. 46 is illustrated in Fig. 5.

The closed-loop equation for the robot manipulator is obtained by substituting

the adaptive feedback law Eq. 46 into the dynamic Eq. 3, as follows:

M qð Þ _sþ C q; _qð Þsþ D qð Þsþ Kssþ Y q; _q, _qr, €qrÞΔθd ¼ 0ð (48)

whereΔθd ¼ θd � θ̂d:To examine the stability of the closed-loop system described

by the Eq. 48, the following Lyapunov-like candidate is proposed:

V ¼ 1

2
sTM qð Þsþ 1

2
ΔθTdL

�1Δθd: (49)

By differentiating the Lyapunov-like candidate with respect to time, substituting

the closed-loop Eq. 48 into it yields

_V ¼ sTM qð Þ _sþ 1

2
sT _Mðq�sþ _̂θdL

�1Δθd

¼ �sTD qð Þs� sTKss� sTY q; _q, _qr, €qrð ÞΔθd
þ 1

2
sT _M qð Þ � 2C q; _qð Þ� �

sþ _̂θ
T

dL
�1Δθd: (50)

++

+
–

–

Robot
Manipulator

+ 

+
+

Fig. 5 A block diagram of the adaptive feedback law (46)
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Considering the skew symmetricity of the matrix _M qð Þ � 2C q; _qð Þ and substitut-
ing Eq. 47 into Eq. 50, _V is simplified as

_V ¼ �sTD qð Þs� sTKss � 0: (51)

Since M(q) and L are positive definite, V is positive definite in s and Δθd.
Therefore, s and Δθd are bounded. Hence, from closed-loop Eq. 48, one can

conclude the boundedness of _s , and this leads to the boundedness of €V , which

means that _V is uniformly continuous. By Barbalat’s lemma (see lemma A2), it then

follows _V goes to zero as t ! 1, so it can be concluded that s converges to zero.

The convergence of s yields the convergence of ~q and _~q to zero.

Remark 3 The globally tracking convergent adaptive controller Eq. 46 was derived

in (Slotine and Li 1987) for a robot with dynamic uncertainty. The dynamic

regressor matrix can also be computed off-line by using the desired trajectory

(Arimoto 1996; Sadegh and Horowitz 1990). An adaptive controller with off-line

computed dynamic regressor is as follows (Arimoto 1996):

u ¼ �kp~q � Kv
_~q þ Yd qd, _qd, _qd, €qdÞθ̂d

�
(52)

with the parameter update law as

_̂θd ¼ �LYT
d qd, _qd, _qd, €qdÞ _~q þ αs ~qð Þ� ��

(53)

where α is a positive constant and s(.) is the saturation function. Many other robot

adaptive controllers have also been proposed for a robot with dynamic uncertainty

(Wen and Bayard 1988; Niemeyer and Slotine 1991; Berghuis et al. 1993; Paden

and Panja 1988; Ortega and Spong 1989; Craig et al. 1987; Middleton and Goodwin

1988; Koditschek 1987; Lee and Khalil 1997).

This section focuses only on adaptive control of robot manipulators.

Other tracking control methods for robot manipulators with dynamic uncertainty

include robust control (Slotine 1985; Spong 1992; Abdallah et al. 1991), learning

control (Arimoto 1996; Arimoto et al. 1984), and neural network control

(Lewis 1996).

Remark 4 Since the closed-loop system Eq. 48 is directly dependant on time due to

the presence of the time-varying trajectory qd(t), LaSalle’s invariance principle

cannot be utilized to show the stability of the system.

Remark 5 A key point in adaptive control is that the tracking error will converge

regardless of parameter convergence. That is, one does not need parameter conver-

gence for tracking error convergence. However, parameter convergence can be

obtained if the persistence of excitation condition is satisfied.
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Remark 6 In many practical applications, the physical parameters are bounded by

prescribed upper and lower limits. Using these bounds as a priori information, the

parameter update law can be modified in a way that the estimates are constrained to

a specified region. In this regard, a commonly used method is the standard projec-

tion algorithm (Ioannou and Sun 1996).

Approximate Jacobian Set-Point Control

In many modern control applications of robot manipulators, task-space sensory

feedback information such as visual information is used to monitor the position of

the end effector. By using sensory feedback, the control systems are robust to

various modeling uncertainties. This gives the robot a high degree of flexibility in

dealing with unforeseen changes and uncertainties. When a robot picks up several

tools of different dimensions, unknown orientations, or gripping points, the kine-

matics changes and is difficult to derive exactly. In the presence of kinematic

uncertainty, inverse kinematic algorithms cannot be used to derive the desired

position in the joint space. This section presents a simple approximate Jacobian

set-point controller for a robot manipulator with uncertain kinematics by using task-

space sensory feedback of the position of the end effector. Though the position of

the end effector can be measured by task-space sensors, the uncertainty of the

Jacobian matrix poses a challenging robot control problem.

First the quasi-natural potential function Si(ϕ) is defined which will be used in

developing the feedback law.

Definition 1 Consider the scalar function Si(ϕ) and its derivative si(ϕ) as depicted
in Fig. 6 , with the following properties:

1. Si(ϕ) > 0 for ϕ � R � {0} and Si(0) ¼ 0.

2. Si(ϕ) is twice continuously differentiable, and the derivative si ϕð Þ ¼ dSi ϕð Þ
dϕ is

strictly increasing in ϕ for |ϕ| < γi with some γi and saturated for |ϕ| � γi,
i.e., si(ϕ) ¼ �si for ϕ � +γi and ϕ � �γi, respectively, where si is a positive
constant.

3. There are constants ci > 0, di > 0, di > dið Þ > 0 such that

dis
2
i ϕð Þ � ϕsi ϕð Þ � dis

2
i ϕð Þ > 0, Si ϕð Þ � cis

2
i ϕð Þ, (54)

for ϕ 6¼ 0

The approximate Jacobian set-point controller is expressed as follows:

u ¼ �Ĵ
T
qð Þ Kps ~xð Þ þ Kv _x
� �þ g qð Þ (55)

where Ĵ qð Þ�Rm�n is the estimation of the Jacobian matrix; J(q), Kp, Kv are positive

definite diagonal feedback gains for the position and velocity, respectively; and
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si(·), i ¼ 1, · · ·, m are saturated functions defined in definition 1. Here, it is assumed

that Ĵ
T
qð Þ is chosen so that

jjJT qð Þ � Ĵ
T
qð Þjj � γ, (56)

where γ is a positive constant to be defined later. Substituting the feedback law

Eq. 55 into the dynamic Eq. 3 gives the closed-loop equation as

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qþ Ĵ
T
qð Þ Kps ~xð Þ þ Kv _x
� � ¼ 0: (57)

To examine the stability of the closed-loop system, consider the following

Lyapunov-like candidate:

V ¼ 1

2
_qTM qð Þ _qþ α _qTM qð ÞĴ† qð Þs ~xð Þ

þ
Xm
i¼1

kpi þ αkvi
� �

Si ~xið Þ,
(58)

where α is a positive constant and Ĵ †(q) denotes the pseudo-inverse of Ĵ(q) such
that Ĵ(q)Ĵ T (q) is non-singular and Ĵ(q) Ĵ †(q) ¼ I. The parameters kpi, kvi denote the
ith diagonal elements of Kp and Kv, respectively. Consider the following inequality:

1

4
_qTM qð Þ _qþ α _qTM qð ÞĴ† qð Þs ~xð Þ þ

Xm

i¼1
kpi þ αkvi
� �

Si ~xið Þ
¼ 1

4
_qþ 2αĴ

†
qð Þs ~xð Þ

� T
M qð Þ _qþ 2αĴ

†
qð Þs ~xð Þ

� 
�

α2s ~xð ÞT Ĵ
†
qð Þ

� T
M qð ÞĴ† qð Þs ~xð Þ þPm

i¼1 kpi þ αkvi
� �

Si ~xið Þ
� Pm

i¼1 kpici þ α kvici � αλmð Þ� �
si
2 ~xið Þ

(59)

a b

Fig. 6 (a) Quasi-natural potential Si(ϕ), (b) derivative of Si(ϕ)
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where λm Δ λmax Ĵ
†
qð Þ

� T
M qð ÞĴ† qð Þ

� �
. Substituting the inequality Eq. 59 into

Eq. 58 yields

V � 1

4
_qTM qð Þ _qþ

Xm
i¼1

kpici þ α kvici � αλmð Þ� �
si
2 ~xið Þ � 0

where Kv and α can be chosen so that

kvici � αλm > 0: (60)

Hence, V is positive definite and represents a Lyapunov function candidate for

the set-point control of the robot with uncertain Jacobian matrix. Differentiating the

Lyapunov function candidate V with respect to time, it can be shown that (refer to

Appendix for details)

_V � � λmax Kvð Þ δ1 � γ

2
δ2 þ 2bJð Þ

� 
� αc0

n o
_qk k2

� λmax Kp

� �
αδ3 � γ

2

� 
� αc1

� 
s ~xð Þk k2

(61)

such that c0, c1 are positive constants, bJ is the upper bound of ||J(q)||, and

δ1 ¼ λmin JT qð ÞKvJ qð Þ þ D qð Þ� �
λmax Kvð Þ

δ2 ¼ λmax Kp

� �
λmax Kvð Þ

δ3 ¼ λmin Kp

� �
λmax Kp

� � :
(62)

If the following inequality holds

min
2δ1

δ2 þ 2bJ
, 2αδ3

� �
> γ, (63)

then by proper selection of parameters α, Kp, and Kv, such that

δ1 � γ

2
δ2 þ 2bJð Þ

� 
� αc0
λmax Kvð Þ > 0

αδ3 � γ

2

� 
� αc1
λmax Kp

� � > 0,
(64)

it can be guaranteed that _V < 0. This implies the convergence of the task-space

error and joint-space velocity such that ~x ! 0, _q ! 0, as t ! 1.
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Remark 7 For redundant robots, the dimension of x is different with the dimension

of q, but the LaSalle’s invariance theorem can be used to deduce the convergence

of ~x, _q to zero.

An alternate condition for the bound γ can be derived by substituting JT qð Þ ¼
Ĵ
T
qð Þ þ ~J qð Þ into Eq. 120 so that

_V � � _qT Ĵ
T
qð ÞKvĴ qð Þ þ D qð Þ � αc0I

n o
_q� αs ~xð ÞT Kp � c1I

� �
s ~xð Þ

� _qT ~J
T
qð ÞKvĴ qð Þ _qþ _qT ~J

T
qð ÞKps ~xð Þ: (65)

Therefore, condition Eq. 63 is written as follows:

min
2δ̂1

δ2 þ 2bĴ
, 2αδ3

( )
> γ, (66)

where δ̂1 ¼ λmin Ĵ
T
qð ÞKvĴ qð ÞþD qð Þ

� �
λmax Kvð Þ and bĴ is the upper norm bound of Ĵ(q). This implies

that the bound γ can be represented by the actual or estimated Jacobian matrix

whichever is larger.

In order to further explore the condition Eq. 63, let Kv ¼ kvI, Kp ¼ akvI. Hence,
condition Eq. 63 is simplified as

min
2λmin Ĵ

T
qð ÞĴ qð Þ þ D qð Þ=kv

h i
aþ 2bĴ

, 2α

8<
:

9=
; > γ: (67)

For a sufficiently large α i:e:; α >
λmin Ĵ

T
qð ÞĴ qð Þ þ D qð Þ=kv

� �
2bĴ

� 	
, condition Eq. 67 is

written as

2λmin Ĵ
T
qð ÞĴ qð Þ þ D qð Þ=kv

h i
aþ 2bĴ

> γ: (68)

The condition Eq. 63 is illustrated in Fig. 7. In order to guarantee the stability of

the system with approximate Jacobian matrix, the allowable bound of the Jacobian

uncertainty γ must be smaller than the curve as shown in the figure.

The following conditions can be obtained from Fig. 7:

(i) If γ is small, α can be chosen small and therefore from Eq. 60 it can be deduced

that a smaller controller gain is required.

(ii) If γ is small, a wider range of the feedback-gains ratio a can be chosen. In fact,
in the extreme case where γ ¼ 0, a could be chosen as any value.

(iii) If γ is large, a larger controller gain is required and a narrower range of the

feedback-gains ratio a is allowed.

1906 C.C. Cheah and R. Haghighi



Moreover, if a is increased, then the allowable bound γ of the Jacobian uncer-

tainty ~J qð Þ ¼ Ĵ
T
qð Þ � JT qð Þ is reduced. Therefore, the feedback-gains ratio

a should be kept smaller so that the allowable bound of the Jacobian uncertainty

is larger. This can be easily done by either reducing Kp or increasing Kv. Though the

condition is a sufficient condition, it is reasonable because increasing Kp amplifies

the estimated Jacobian Ĵ qð Þ and hence more accuracy on the estimation or more

damping is required. An important and piratical conclusion of the result is that when

the system is unstable, redesign of Ĵ qð Þmay not be necessary as the instability may

be due to the reason that the feedback-gains ratio a is not tuned properly. In

practice, we should therefore try to stabilize the system or increase the margin of

stability first by reducing the feedback-gains ratio a (Fig. 7).

In the presence of uncertainties in gravitational force and Jacobian matrix, the

task-space control of robot manipulators can be obtained by using the concept of

regressor for the robot dynamics (see Eq. 7) such that a gravity regressor is

introduced to compensate for the gravity force.

The gravity term can be characterized by a set of parameters φ ¼ (φ1, · · ·, φp)
T

as

g qð Þ ¼ Z qð Þφ, (69)

where Z(q) � Rn�p is the gravity regressor.

Example 4 For the two-link robot manipulator depicted in Fig. 1, Z(q) can be

expressed as follows:

Z qð Þ ¼ cos q1ð Þ cos q1 þ q2ð Þ
0 cos q1 þ q2ð Þ

� �
,

Fig. 7 An illustration of condition Eq. 63 where the vertical axis represents the bound of the

Jacobian uncertainty and the horizontal axis represents the feedback-gains ratio
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and the unknown parameter vector φ is expressed as

φ ¼ M1Lc1 þM2L1ð Þg
M2Lc2g

� �
:

The feedback control law is obtained as

u ¼ �Ĵ
T
qð Þ Kps ~xð Þ þ Kv _x
� �þ Z qð Þφ̂, (70)

such that the estimated parameter vector φ̂ is updated as

_̂φ tð Þ ¼ �LZT qð Þ _qþ αĴ
†
qð Þs ~xð Þ

� 
, (71)

where L � Rp�p is a positive definite matrix. A block diagram of the task-space

approximate Jacobian regulator Task-space approximate Jacobian regulator with

adaptive gravity compensation described by Eqs. 70 and 71 is illustrated in Fig. 8.

Substituting Eqs. 69 and 70 into the dynamic Eq. 3 gives

M qð Þ€qþ C q; _qð Þ _qþ D qð Þ _qĴT qð Þ Kps ~xð Þ þ Kv _x
� �þ Z qð ÞΔφ ¼ 0, (72)

where Δφ ¼ φ� φ̂. To examine the stability of the closed-loop system Eq. 72, the

following Lyapunov function candidate is considered:

V ¼ 1

2
_qTM qð Þ _qþ α _qTM qð ÞĴ† qð Þs ~xð Þ

þ 1

2
ΔφTL�1Δφþ

Xm
i¼1

kpi þ αkvi
� �

Si ~xið Þ:
(73)

Fig. 8 A block diagram of the task-space approximate Jacobian regulator with adaptive gravity

compensation
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The convergence of the task-space error and joint-space velocity can be shown

by differentiating the Lyapunov function candidate with respect to time (similar to

previous section), and using LaSalle’s invariance principle.

Remark 8 The approximate Jacobian set-point controller Eq. 55 with task-space

damping was proposed in (Cheah et al. 1998, 1999). The controller requires the

measurement of a task-space position by using a sensor such as vision systems. The

task-space velocity is obtained by numerical differentiation of the position. In

(Cheah et al. 2003), an approximate Jacobian feedback controller using only

joint-space damping was developed as

u ¼ �Ĵ
T
qð ÞKps ~xð Þ � Kv _qþ g qð Þ: (74)

The joint-space velocity is obtained by numerical differentiation of the joint

position, which is usually less noisy than in the task space. In the presence of

uncertainty in the gravitational force, the update law Eq. 71 or the integration

control term (Cheah et al. 1999) also requires the use of the inverse Jacobian

matrix. An approximate Jacobian controller with adaptive gravity compensation

was developed as (Cheah et al. 2003)

u ¼ �Ĵ
T
qð Þ Kps ~xð Þ þ Kv _x
� �þ Z qð Þφ̂, (75)

such that the estimated parameter vector φ̂ is updated as

_̂φ tð Þ ¼ �LZT qð Þ _qþ αĴ
T
qð Þs ~xð Þ

� 
, (76)

where α is positive constant and s(.) is the saturation function. The main advantages

of the controller are that the task-space velocity and the inverse of the approximate

Jacobian matrix are not required. An update law can also be used to update the

kinematic parameters of the estimated Jacobian matrix online (Cheah 2003; Dixon

2007), and the simpler stability conditions can be obtained as compared to using a

fixed approximate Jacobian matrix.

Adaptive Jacobian Tracking Control

The approximate Jacobian controller in the previous section is only effective for

point-to-point control problem. This section presents an adaptive Jacobian control-

ler for tracking control of a robot manipulator with uncertain kinematics and

dynamics. The concurrent adaptation to both kinematic and dynamic uncertainties

is something “humanlike” as in tool manipulation. The key idea is to introduce a

task-space adaptive sliding vector based on estimated task-space velocity and a

dynamic regressor matrix based on the estimated kinematic parameters.
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In the presence of kinematic uncertainty, the parameters of the Jacobian matrix

are uncertain and an estimated velocity is defined using Eq. 16 as

_̂x ¼ Ĵ q, θ̂k
� �

_q ¼ Yk q; _qð Þθ̂k (77)

where _̂x�Rn denotes the estimated task-space velocity, Ĵ q, θ̂k
� �

�Rn�n is an

estimated or adaptive Jacobian matrix, and θ̂k �Rq denotes a set of estimated

kinematic parameters. Figure 9 illustrates the difference between the estimated

task-space velocity and the actual task-space velocity.

A reference vector _xr �Rn is defined as follows:

_xr ¼ _xd � α x� xdð Þ (78)

where xd(t) � Rn is the desired trajectory in the task space. Differentiating Eq. 78

with respect to time yields

€xr ¼ €xd � α _x� _xdð Þ (79)

where €xd ¼ d _xd
dt �Rn is the desired acceleration in the task space. Using the reference

vector, an adaptive task-space sliding vector is defined as

ŝx ¼ _̂x� _xr ¼ Ĵ q, θ̂k
� �

_q� _xr (80)

where Ĵ q, θ̂k
� �

_q ¼ Yk q; _qð Þθ̂k as indicated in Eq. 77. The above vector is adaptive in
the sense that the parameters of the estimated Jacobian matrix are updated by a

parameter update law which will be introduced in the later development. The

adaptive task-space sliding vector can also be written as follows:

ŝx ¼ Ĵ q, θ̂k
� �

_q� _xd þ α~x þ _x� _x

¼ _~x þ α~x � J q, θkð Þ _q|fflfflfflfflffl{zfflfflfflfflffl}
Yk q, _qð Þθk

� Ĵ q, θ̂k
� �

_q|fflfflfflfflffl{zfflfflfflfflffl}
Yk q, _qð Þθ̂k

0
BBB@

1
CCCA

¼ _~x þ α~x � Yk q; _qð ÞΔθk:

(81)

Equation 81 shows that ŝx converges to the sliding vector _~x þ α~x
� �

, as Δθk goes
to zero.

Fig. 9 The estimated task-

space velocity and the actual

task-space velocity

1910 C.C. Cheah and R. Haghighi



Differentiating Eq. 80 with respect to time yields

_̂sx ¼ €̂x� €xr ¼ Ĵ q, θ̂k
� �

€qþ _̂J q, θ̂k
� �

_q� €xr (82)

where €̂x denotes the derivative of _̂x.
Now, a reference vector is defined in the joint space as

_qr ¼ Ĵ
�1

q, θ̂k
� �

_xr (83)

where Ĵ
�1

q, θ̂k
� �

is the inverse of the approximate Jacobian matrix Ĵ q, θ̂k
� �

. Here, it

is assumed that the robot is operating in a finite task space such that the approximate

Jacobian matrix is of full rank. From Eq. 83, it is obtained:

€qr ¼ Ĵ
�1

q, θ̂k
� �

€xr þ _̂J
�1

q, θ̂k
� �

_xr (84)

Hence, an adaptive sliding vector in joint space can be defined as

s ¼ _q� _qr ¼ _q� Ĵ
�1

q, θ̂k
� �

_xr (85)

and

_s ¼ €q� €qr: (86)

To obtain the relationship between the adaptive sliding vectors in the joint space

and task space, multiply both sides of Eq. 85 by Ĵ q, θ̂k
� �

and using Eq. 80 as

follows:

Ĵ q, θ̂k
� �

s ¼ Ĵ q, θ̂k
� �

_q� _xr ¼ ŝx: (87)

Substituting Eqs. 85 and 86 into Eq. 3 and using property 3, the equations of

motion can be expressed as

M qð Þ _sþ C q; _qð Þsþ D qð Þsþ Y q; _q, _qr, €qrÞθd ¼ uð (88)

such that

Y q; _q, _qr, €qrÞθd ¼ M qð Þ€qr þ C q; _qð Þ _qr þ D qð Þ _qr þ g qð Þ:ð (89)

The adaptive Jacobian tracking controller is presented as follows:

u ¼ �Ĵ
T
q, θ̂k
� �

Kv
_~x þ Kp~x

� �þ Y q; _q, _qr, €qrÞθ̂d
�

(90)
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where ~x ¼ x� xd , _~x ¼ _x� _xd , and Kv � Rn�n and Kp � Rn�n are symmetric

positive definite gain matrices. The kinematic and dynamic adaptation laws are

introduced as follows:
_̂θk ¼ LkY

T
k q; _qð Þ kv _~x þ Kp~x

� �
(91)

_̂θd ¼ �LdY
T q; _q, _qr, €qrÞs:ð (92)

A block diagram and an illustration of the adaptive Jacobian tracking controller

Eq. 90 are depicted in Figs. 10 and 11, respectively.

Substituting Eq. 90 into Eq. 88, the closed-loop equation can be expressed as

M qð Þ _sþ C q; _qð Þsþ D qð Þsþ Ĵ
T
q, θ̂k
� �

Kv
_~x þ Kp~x

� �þ Y q; _q, _qr, €qrÞΔθd ¼ 0ð
(93)

Fig. 10 A block diagram of the adaptive Jacobian tracking controller Eq. 90

Parameters update laws

Adaptive Jacobian Tracking Control 

Adaptive feedback
law 

Fig. 11 A schematic diagram of the adaptive Jacobian tracking controller (Eq. 90) together with

parameter update laws (91) and (92)
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where Δθd ¼ θd � θ̂d. For stability analysis, a Lyapunov-like function candidate is

defined as

V ¼ 1

2
sTM qð Þsþ 1

2
ΔθTdL

�1
d Δθd þ 1

2
ΔθTk L

�1
k Δθk þ 1

2
~xT Kp þ αKv

� �
~x (94)

whereΔθk ¼ θk � θ̂k. Differentiating V with respect to time; substituting the closed-

loop Eq. 93,
_̂θk from Eq. 91, and

_̂θd from Eq. 92 into it; and using property 2 yield

_V ¼ �sTD qð Þs� ŝTx Kv
_~x þ Kp~x

� �þ ~xT Kp þ αKv

� �
_~x

�ΔθTk Y
T
k q; _qð Þ Kv

_~x þ Kp~x
� �

:
(95)

Substituting Eq. 81 into Eq. 95 yields

_V ¼ �sTD qð Þs� _~x
T
Kv

_~x � α~xTKp~x � 0: (96)

Since M(q) is positive definite, V in Eq. 94 is positive definite in s, Δx, Δθk, and
Δθd. Therefore, Eq. 96 leads to boundedness of V, and consequently s, Δx, Δθk, and
Δθd are bounded, which implies that θ̂k and θ̂d are bounded and ŝx ¼ Ĵ q, θ̂k

� �
s is

bounded as seen from Eq. 87. If xd and its derivatives are bounded, then x and _xr (see
Eq. 78) are bounded. Therefore, _qr in Eq. 83 is also bounded if the approximate

Jacobian matrix is non-singular. From Eq. 85, _q is bounded and the boundedness of

_q means that _x is bounded since the Jacobian matrix is bounded. Hence, Δ _x is

bounded and €xr in Eq. 79 is also bounded if €xd is bounded. From Eq. 91,
_̂θk is

therefore bounded since Δx,Δ _x, _q are bounded and Yk(·) is a trigonometric function

of q. Therefore, €qr in Eq. 84 is bounded. From the closed-loop Eq. 93, one can

conclude that _s is bounded. The boundedness of _s implies the boundedness of €q as

seen from Eq. 86. From Eq. 82, _̂sx is therefore bounded. Finally, differentiating

Eq. 81 with respect to time and rearranging yield

€~xþα _~x ¼ _̂sx þ _Yk q; _q; €qð ÞΔθk � Yk q; _qð Þ _̂θk

which means that €~x ¼ €x� €xd is also bounded. Therefore, €V , which is shown as

follows:

€V ¼ �2sTB _s� 2Δ _xTKv
€~x � 2α~xTKp

_~x,

is bounded. Hence, _V is uniformly continuous. Using Barbalat’s lemma, it gives

~x ¼ x� xd ! 0, _~x ¼ _x� _xd ! 0, and s ! 0 as t ! 1.

Remark 9 The adaptive Jacobian tracking controller Eq. 90 for robots with uncer-

tainties in kinematics and dynamics was developed in (Cheah et al. 2004). The

proposed controller requires the differentiation of the task-space position which is
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noisy. An adaptive Jacobian tracking control law based on filtered differentiation of

the measured task-space position was developed in (Cheah et al. 2006a). Observer

design techniques can also be used to estimate the velocities (Liang et al. 2010). To

avoid singularities associated with Euler angle representation, adaptive Jacobian

tracking controller based on unit quaternion was developed (Braganza et al. 2005).

An adaptive Jacobian controller based on prediction error was proposed in (Wang

and Xie 2009). Sliding PID tracking control schemes with uncertain Jacobian were

proposed in (Garcia-Rodriguez and Parra-Vega 2012).

When cameras are used to measure the position of the end effector, the vector of

image feature parameter rates of change x is related to joint variables by the

following equation (Cheah et al. 2007):

_x ¼ Z�1 qð ÞL xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
JI

Jm qð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{J qð Þ

_q (97)

where Z (q) is a diagonal matrix, which contains the depth information of the

feature points with respect to the camera image frame, and L(x) is a Jacobian

matrix. Since the overall Jacobian matrix J(q) is inversely proportional to the

depths, it is not linearly parameterizable. Therefore, the kinematic parameters in

the image Jacobian cannot be extracted to form a lumped kinematic parameter

vector that includes the unknown depth parameters, i.e.,

J qð Þ _q 6¼ Y q; _qð Þθ: (98)

Thus, these abovementioned adaptive Jacobian controllers are effective only in cases

where the depth information is constant or slowly time varying. Vision-based tracking

controllers with uncertain depth were proposed in (Wang et al. 2007), but the uncertainty

of robot kinematics and dynamics was not considered and the depth information was not

updated online. However, the following linear parameterizations hold

Z qð Þ _x ¼ Yz q; _xð Þθz (99)

Je qð Þ _q ¼ Yk q; _qð Þθk (100)

where Yz q; _xð Þ is called the depth regressor matrix and Yk q; _qð Þ is called the

kinematic regressor matrix. Therefore, an adaptive Jacobian tracking control with

uncertain depth information can be proposed as (Cheah et al. 2007)

u ¼ �Ĵ
T
q, θ̂k
� �

Ẑ
�1

q, θ̂z
� �

Kp~x þ Kv
_~x

� �þ Yd q; _q, _qr, €qrÞθ̂d
�

(101)

where Ĵ
T
q, θ̂k
� �

Ẑ
�1

q, θ̂z
� �

is the adaptive Jacobian matrix and Kp and Kv are

symmetric positive definite matrices. The uncertain dynamic, kinematic, and

depth parameters are updated by the following update laws:
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_̂θd ¼ �LdY
T
d q; _q, _qr, €qrÞsð (102)

_̂θk ¼ LkY
T
k q; _qð ÞẐ�1

q, θ̂z
� �

Kp~x þ Kv
_~x

� �
(103)

_̂θz ¼ �LzY
T
z q; _xð ÞẐ�1

q, θ̂z
� �

Kp~x þ Kv
_~x

� �
: (104)

Remark 10 In the redundant case (Cheah et al. 2006a, b), the null space of the

approximate Jacobian matrix can be used to minimize a performance index. Hence,

the reference vector in the joint space can be defined as

_qr ¼ Ĵ
†
q, θ̂k
� �

_xr þ In � Ĵ
†
q, θ̂k
� �

Ĵ q, θ̂k
� �� 

ψ (105)

where Ĵ
†
q, θ̂k
� �

is the pseudo-inverse of the approximate Jacobian matrix and

ψ � Rn is minus the gradient of the convex function to be optimized.

Simulation Results

In this section, various feedback laws presented in the previous sections are

applied on the two-link robot manipulator (depicted in Fig. 1). The parameters of

the robot are shown in Table 1. The simulation was carried out in MATLAB/

SIMULINK.

PD Plus Gravity Control Law

For the set-point regulation, PD plus gravity control law Eq. 20 is applied on

two-link robot manipulator. The control gains were chosen as Kp ¼ diag{10, 10}
and Kv ¼ diag{5, 5}. The initial values of joint angles were chosen as q1(0) ¼ π/4
and q2(0) ¼ π/6, and the initial values of joint velocities were chosen as _q1 0ð Þ, _q2
0ð Þ ¼ 0. The desired joint angles were chosen as qd1 ¼ π/2 and qd2 ¼ π/3. The
simulation results are depicted in Figs. 12 and 13 which show error of joints angles

and joint velocities. The actuator torques are shown in Fig. 14.

Now assume there is 10 % mismatch in measurement of physical

parameters, i.e.,

M1 ¼ M1 þ 0:1M1 M2 ¼ M2 þ 0:1M2

L1 ¼ L1 þ 0:1L1 L2 ¼ L2 þ 0:1L2:

The error of joints angles is depicted in Fig. 15. Figure 15 shows that there is an

offset between the final values of joints angles and their desired values. To alleviate

this steady-state error, let the controller gains increase such that Kp ¼ diag{60, 60}
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Table 1 Parameters of the

two link robot manipulator
i Mi(kg) Li(m) Lci(m) Di(Nms/rad)

1 5 0.2 0.1 1

2 5 0.2 0.1 1
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and Kv ¼ diag{25, 25}. Figure 16 shows that the steady-state errors improved

considerably. However, if one plots the actuator toques as depicted in Fig. 17,

it shows that the actuator torques are also increased which might lead to saturation.

Hence, there is a trade-off between the accuracy and the control torque.
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Fig. 15 ~q1, ~q2 in the presence of 10 % mismatch in measurement of physical parameters
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Another method to improve the steady-state error in the presence of inaccurate

measurements is to utilize an integral term to the PD plus gravity control

law. Therefore, the feedback law for PID plus gravity law can be expressed

as follows:

q̃1
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Fig. 16 ~q1, ~q2 for high control gains
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u ¼ �Kv _q� Kp~q � Ki

ð
~qdtþ g qð Þ: (106)

The simulation results for PID plus estimated gravity in the presence of

10% mismatch in measurement of physical parameters are depicted in Figs. 18

and 19. The control gains were chosen as Kp ¼ diag{10, 10}, Ki ¼ diag{2, 2},
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Fig. 18 ~q1, ~q2 for PID plus gravity feedback control
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and Kv ¼ diag{5, 5}. It is shown that both accuracy and control torques are

improved significantly.

Task-Space PD Plus Gravity

The task-space PD plus gravity control law Eq. 28 is applied for two-link

robot manipulator to control its end-effector position to reach the desired position.

The controller gains were chosen as Kp ¼ diag{200, 200} and Kv ¼ diag{50, 50}.
The initial position of robot was x ¼ [0.4, 0], and the desired end-effector position

was considered as x ¼ [0.1, 0.3]. The end-effector position is depicted in Fig. 20.

The robot arms are depicted for different snapshots. The actuator toques are

depicted in Fig. 21.

Adaptive Control

The adaptive feedback law Eq. 46 together with the parameter update law

Eq. 47 is applied to the two-link robot manipulator for trajectory tracking.

The controller gains were chosen as Ks ¼ diag{15, 15} and λ ¼ 10. The gain

for update law was chosen as L ¼ 50. The initial position and velocity of

the robot’s joints were q ¼ [0, 0] and _q ¼ 0, 0½ � , respectively. The desired

trajectory was set as
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Fig. 20 The end-effector position for the task-space PD plus gravity regulator
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qd tð Þ ¼ 0:1þ 0:1tþ 0:2 sin tð Þ
0:1þ 0:1tþ 0:2 cos tð Þ

� �
: (107)

The initial values of the unknown parameters were chosen as

θ̂d 0ð Þ ¼ 0, 0, 0, 0, 0, 0, 0½ �T . The position and the desired reference of joint one and

two are depicted in Figs. 22 and 23. The velocity and the desired velocity of joint one

and two are depicted in Figs. 24 and 25. The actuator toques are depicted in Fig. 26.

Approximate Jacobian Set-Point Control with Uncertain
Gravitational Force

For this part, the approximate Jacobian set-point control in the presence of uncer-

tainties in gravitational force was considered for the simulation. The approximate

Jacobian regulator together with adaptive gravity compensation (Eqs. 75 and 76)

was applied for the two-link robot manipulator to control its end-effector

position to reach the desired position. The controller gains were chosen as

Kp ¼ diag{1000, 1000} and Kv ¼ diag{100, 100}. The adaptive gains were chosen
as L ¼ 500 and α ¼ 50. The initial values of the unknown parameters were chosen

as φ̂ 0ð Þ ¼ 0, 0½ �T . The initial position of the robot’s end effector was x ¼ [0.4, 0],

and the desired end-effector position was set as x ¼ [0.1,.3]. The end-effector

position is depicted in Fig. 27. The robot arms are depicted for different snapshots.

The actuator toques are depicted in Fig. 28.
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Fig. 21 Actuator torques u1, u2 for the task-space PD plus gravity regulator
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Adaptive Jacobian Tracking Control

In this case, the adaptive Jacobian tracking control Eq. 90 together with the

kinematic parameter update law Eq. 91 and dynamic parameter update law

Eq. 92 is applied to the two-link robot manipulator for trajectory tracking in the
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Fig. 22 The position and the desired reference of joint one for the adaptive trajectory tracking
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Fig. 23 The position and the desired reference of joint two for the adaptive trajectory tracking
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presence of uncertain kinematics and dynamics. The controller gains were chosen

as Kp ¼ diag{800, 800} and Kv ¼ diag{80, 80}. The adaptive gains were

chosen as Lk ¼ 5 and Ld ¼ 5. The initial values of the unknown parameters were

chosen as φ̂ 0ð Þ ¼ 0, 0½ �T . The initial position and velocity of robot’s end effector

were x ¼ [0, 0.15] and xd ¼ [0, 0], respectively. The desired trajectory was set as
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Fig. 24 The velocity and the desired velocity of joint one for the adaptive trajectory tracking
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xd tð Þ ¼ 0:15þ 0:05 sin t=2ð Þ
0:15þ 0:05 cos t=2ð Þ

� �
: (108)

The initial values of the unknown kinematic and dynamic parameters

θ̂k 0ð Þ and θ̂d 0ð Þ� �
were chosen randomly from the interval [0, 10]. The

end-effector position is depicted in Fig. 29. The robot arms are depicted for

different snapshots.

Summary

This chapter introduces robot control design methods using the Lyapunov based

method. By utilizing the physical properties of the robot kinematics and dynamics,

several set-point and adaptive tracking controllers have been presented in both the

joint space and task space. A simple motion controller that is effective for set-point

regulation is the PD controller with gravity compensation. For tracking control

tasks, the adaptive controller has been presented for a robot manipulator with

uncertain dynamics. Using sensory feedback of the robot end-effector position in

the task space, approximate Jacobian set-point controllers and adaptive Jacobian

tracking controllers have been presented for robot manipulators with uncertainties

in both kinematics and dynamics.
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Appendix 1

Preliminaries on control theories:
Consider the following nonlinear system:

_x ¼ f x, tð Þ (109)

where x � Rn is a vector of state of the system and f (.) is a nonlinear function.

Definition A1 The equilibrium points of the system Eq. 109 are defined as the state
vectors xe of x for which if at specific time t0, x ¼ xe, then x will remain unchanged
for all t > t0. In other words, at equilibrium points the state of the system satisfies f
(xe) ¼ 0.

It is often important to know whether the equilibrium point is stable or not. In the

following, a definition of stable equilibrium point is put forward:

Remark A1 It can be always assumed that the equilibrium point is zero by using

change of variable y ¼ x – xe.

Definition A2 The equilibrium point xe ¼ 0 of the system Eq. 109 is said to
be stable if for any e > 0, there exists δ > 0 such that if kx(0) � 0k < δ, then
kx(t) � 0k < e for all t > 0. It can be mathematically represents as follows:
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Fig. 29 The end-effector position for the task-space adaptive Jacobian tracking control
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8e > 0 ∃δ > 0, if x 0ð Þ � 0k k < δ ) x tð Þ � 0k k < e for t > t0: (110)

To examine the stability of the equilibrium point, the Lyapunov theory can be

utilized. The main advantage of the Lyapunov theory is that the stability of the

system can be determined without solving the differential equations of the system.

Moreover, the Lyapunov theory can be used to design controllers that stabilize

nonlinear systems.

Before presenting the Lyapunov theory, a certain class of functions is introduced

as follows:

Definition A3 A continuous function V : Rn � R+ ! R is a locally positive defi-
nite function (lpdf) if for some e > 0 and some continuous, the following conditions
hold:

I:V 0, tð Þ ¼ 0

II:V x, tð Þ > 0 8x�Be,8t � 0

�
(111)

where Be is a ball of size e around the origin which is mathematically expressed as
Be ¼ {x � Rn : kxk < e}.

In addition, V is a positive definite function (pdf) if the condition (II) is true for
all x � R.

If in condition (II) V (x, t) � 0, then V (x, t) is a (locally) positive semi-definite
function.

Remark A2 If V (x) ¼ xTMx, whereM is a real symmetric matrix, then V is a pdf if

and only if M is a positive definite matrix.

Theorem A1 Lyapunov stability theorem: Suppose xe ¼ 0 is an equilibrium point

of the system Eq. 109. Let V(x, t) be a nonnegative function with derivative _VV along
trajectories of the system dynamics:

dV

dt
¼ @V

@t
_x ¼ @V

@t
f x, tð Þ: (112)

(i) If V (x, t) is a locally positive definite function and _V is a locally positive semi-
definite function in x and for all t, then the origin of the system is locally stable.

(ii) If V (x, t) is a locally positive definite function and _V is a locally positive
definite function in x and for all t, then the origin of the system is locally
asymptotically stable.

(iii) If V (x, t) is a positive definite function and _V is a positive definite function in x
and for all t, then the origin of the system is globally asymptotically stable.

If the function V (x, t) exists in the above theorem, then it is called a Lyapunov
function.
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Remark A3 The Lyapunov stability theorem only provides sufficient conditions for

the stability of nonlinear systems; hence, the failure of finding a Lyapunov function

does not prove the instability of the nonlinear system

In the case that � _V x, tð Þ is a positive semi-definite function, the Lyapunov

stability theorem cannot provide any information on the asymptotic stability

of the system. To deal with the stability of nonlinear autonomous systems when

� _V xð Þ is a positive semi-definite function, LaSalle’s invariance principle has been

presented.

Lemma A1 LaSalle’s invariance principle: Let V : Rn ! R be a positive definite

function such that _V xð Þ � 0in compact set Ω. Let D be the set of all points in Ω

where _V xð Þ ¼ 0 . Therefore, every solution of the system _x ¼ f xð Þ starting in Ω
approaches to the largest invariant set inside D. In particular, if D contains no
trajectories other than x ¼ 0, then 0 is locally asymptotically stable.

LaSalle’s invariance principle enables one to conclude asymptotic stability only

for autonomous systems. For non-autonomous systems, Barbalat’s lemma can

be used.

Lemma A2 Barbalat’s lemma: If a function V (t, x) satisfies the following
conditions:

(i) V(x, t) is lower bounded.

(ii) _V x, tð Þ is negative semi-definite.
(iii) _V x, tð Þis uniformly continuous in time or equivalently €V t, xð Þ is bounded. Then,

_V x, tð Þ goes to zero as t ! 1.

Appendix 2

Parameters of dynamic Eq. 4 of the two-link robot manipulator which is depicted in

Fig. 1:

Elements of inertia matrix M(q) are

M11 ¼ 4

3
M1L

2
c1 þ

4

3
M2L

2
c2 þM2L

2
1 þ 2M2L1Lc2 cos q2ð Þ

M12 ¼ 4

3
M2L

2
c2 þM2L1Lc2 cos q2ð Þ

M21 ¼ 4

3
M2L

2
c2 þM2L1Lc2 cos q2ð Þ

M22 ¼ 4

3
M2L

2
c2:

(113)
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Elements of matrix C q; _qð Þ are given as

C11 ¼ �M2L1Lc2 _q2 sin q2ð Þ
C12 ¼ �M2L1Lc2 _q1 þ _q2½ � sin q2ð Þ
C21 ¼ M2L1Lc2 _q1 sin q2ð Þ
C22 ¼ 0:

(114)

Elements of gravitational force matrix are

g1 ¼ M1Lc1 þM2L1ð Þg cos �q1�þM2Lc2g cos
�
q1 þ q2

�
g2 ¼ M2Lc2g cos q1 þ q2ð Þ (115)

where g is the gravity due to acceleration.

Appendix 3

Part of the proof of the task-space control law Eq. 55:

Differentiating the Lyapunov candidate V (expressed in Eq. 58) with respect to

time gives

_V ¼ _qTM qð Þ€qþ 1

2
_qT _M

�
q
�
_qþ α€qTM

�
q
�
Ĵ
†�
q
�
s
�
~x
�

þ α _qT _M qð ÞĴ†�q�s�~x�þ α _qTM
�
q
� _̂J†�q�s�~x�

þ α _qTM qð ÞĴ†�q� _s�~x�þ _xTKps
�
~x
�þ α _xTKvs

�
~x
�
:

(116)

Substituting the closed-loop Eq. 57 into Eq. 116, using property 2 and simpli-

fying, yields

_V ¼ � _qTD qð Þ _q� _qTĴ
T�
q
�
Kps ~xð Þ þ Kv _x
� �

� α _qT C q; _qð Þ þ D qð Þ � _M qð Þ� �
Ĵ
†
qð Þs�~x�

� αs ~xð ÞTKps
�
~x
�þ α _qTM

�
q
� _̂J†�q�s�~x�

þ α _qTM qð ÞĴ†�q� _s�~x�þ _xTKps
�
~x
�
:

(117)

Using Eq. 14, _V can be written as follows:

_V ¼ � _qT Ĵ
T
qð ÞKvJ qð Þ þ D qð Þ

n o
_q� _qT Ĵ

T
qð Þ � JT qð Þ

n o
Kps ~xð Þ

� α _qT C q; _qð Þ þ D qð Þ � _M qð Þ� �
Ĵ
†
qð Þs�~x�� αs

�
~x
�
TKps

�
~x
�

þ α _qTM qð Þ _̂J
†�
q
�
s
�
~x
�þ α _qTM

�
q
�
Ĵ
†�
q
�
_s
�
~x
�
:

(118)

Since s ~xð Þ is bounded, there exist constants c0 > 0 and c1 > 0 so that
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�α _qT C q; _qð Þ þ D qð Þ � _M qð Þ� �
Ĵ
†
qð Þs�~x�þ α _qTM

�
q
� _̂J†�q�s�~x�

þα _qTM qð ÞĴ†�q� _s�~x� � αc0 _qk k2 þ αc1 s ~xð Þk k2:
(119)

Substituting inequality Eq. 119 into Eq. 118 yields

_V � � _qT Ĵ
T
qð ÞKvJ qð Þ þ D qð Þ � αc0I

n o
_q� αs ~xð ÞT�Kp � c1I

�
s
�
~x
�

� _qT Ĵ
T
qð Þ � JT qð Þ

n o
Kps ~xð Þ:

(120)

Let ~J qð Þ be the Jacobian estimation error which is defined as ~J qð Þ ¼ J qð Þ � Ĵ qð Þ.
Hence, Eq. 120 can be written with respect to J(q) and ~J qð Þ as follows:

_V � � _qT JT qð ÞKvJ qð Þ þ D qð Þ � αc0I
� �

_q� αs ~xð ÞT�Kp � c1I
�
s
�
~x
�

þ _qT ~J
T
qð ÞKvJ

�
q
�
_qþ _qT ~J

T�
q
�
Kps

�
~x
�
: (121)

Since the Jacobian matrix contains trigonometric functions of q, kJ(q)k � bJ
and Eq. 121 can be rewritten as

_V � � λmin JT qð ÞKvJ qð Þ þ D qð Þ� �� γbJλmax Kvð Þ � αc0
� �

_qk k2
þ γλmax Kp

� �
s ~xð Þk k _qk k � α λmin Kp

� �� c1
� �

s ~xð Þk k2 (122)

where γ is defined in Eq. 56. Since

2 s ~xð Þk k _qk k � s ~xð Þk k2 þ _qk k2, (123)

therefore, Eq. 122 is simplified as follows:

_V � � λmin JT qð ÞKvJ qð Þ þ D qð Þ� �� γbJλmax Kvð Þ � 1

2
γλmax Kp

� �� αc0

� �
_qk k2

� αλmin Kp

� �� 1

2
γλmax Kp

� �� αc1

� 	
s ~xð Þk k2:

(124)
Equation 124 can be written as follows:

_V � � λmax Kvð Þ δ1 � γ

2
δ2 þ 2bJð Þ

� 
� αc0

n o
_qk k2

� λmax Kp

� �
αδ3 � γ

2

� 
� αc1

� 
s ~xð Þk k2

(125)

such that

δ1 ¼
λmin JT qð ÞKvJ qð Þ þ D qð Þ� �

λmax Kvð Þ
δ2 ¼

λmax Kp

� �
λmax Kvð Þ

δ3 ¼
λmin Kp

� �
λmax Kp

� � :
(126)

1930 C.C. Cheah and R. Haghighi



References

Abdallah CT, Dawson D, Dorato P, Jamshidi M (1991) Survey of robust control for rigid robots.

IEEE Trans Control Syst Mag 11(2):24–30

Arimoto S (1994) A class of quasi-natural potentials and hyper-stable PID servo-loops for

nonlinear robotic systems. Trans Soc Instrum Control Eng 30(9):1005–1012

Arimoto S (1996) Control theory of non-linear mechanical systems: a passivity-based and circuit-

theoretic approach. Oxford University Press, New York

Arimoto S, Miyazaki F (1985)Asymptotic stability of feedback control for robot manipulators. In:

Proceedings of IFAC symposium on robot control, Barcelona, pp 447–452

Arimoto S, Miyazaki F (1984)Stability and robustness of PID feedback control for robot manip-

ulators of sensory capability. In: Proceedings of the 1st international symposium on robotics

research, pp 783–799

Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot

Syst 1(2):123–140

Arimoto S, Naniwa T, Parra-Vega V, Whitcomb L (1994) A quasi-natural potential and its role in

design of hyper-stable PID servo-loop for robotic systems. In: Proceedings of the CAI Pacific

symposium control and industrial automation application, pp 110–117

Berghuis H, Ortega R, Nijmeijer H (1993) A robust adaptive robot controller. IEEE Trans Robot

Autom 9(6):825–830

Braganza D, Dixon WE, Dawson DM, Xian B (2005)Tracking control for robot manipulators with

kinematic and dynamic uncertainty. In: Proceedings of IEEE conference on decision and

control, Seville, pp 5293–5297

Cheah CC (2003)Approximate Jacobian robot control with adaptive Jacobian matrix.

In: Proceedings of IEEE international conference on decision and control, Hawaii,

pp 5859–5864

Cheah CC, Liaw H (2005) Inverse Jacobian regulator with gravity compensation: stability and

experiment. IEEE Trans Robot Autom 21(4):741–747

Cheah CC, Kawamura S, Arimoto S (1998) Feedback control for robotic manipulators with

uncertain kinematics and dynamics. In: Proceedings of IEEE international conference on

robotics and automation, Leuven, pp 3607–3612

Cheah CC, Kawamura S, Arimoto S (1999a) Feedback control for robotic manipulators with an

uncertain Jacobian matrix. J Robot Syst 12(2):119–134

Cheah CC, Hirano M, Kawamura S, Arimoto S (2003) Approximate Jacobian control for robots

with uncertain kinematics and dynamics. IEEE Trans Robot Autom 19(4):692–702

Cheah CC, Liu C, Slotine JJE (2004) Approximate Jacobian adaptive control for robot manipu-

lators. In: Proceeding of IEEE international conference on robotics and automation, New

Orleans, pp 3075–3080

Cheah CC, Liu C, Slotine JJE (2006a) Adaptive tracking control for robots with unknown

kinematic and dynamic properties. Int J Robot Res 25(3):283–296

Chien-Chern Cheah, Chao Liu, Slotine J-JE (2006b) Adaptive Jacobian tracking control of robots

with uncertainties in kinematic, dynamic and actuator models. IEEE Trans Automat Contr

51(6):1024–1029

Cheah CC, Liu C, Slotine JJE (2007) Adaptive vision based tracking control of robots with

uncertainty in depth information. In: Proceedings of IEEE conference on roboties and auto-

mation, Roma, pp 2817–2822

Cheah CC, Liu C, Slotine JJE (2010) Adaptive Jacobian vision based control for robots with

uncertain depth information. Automatica 46:1228–1233

Cheah CC, Kawamura S, Arimoto S, Lee K (1999) PID control for robotic manipulator with

uncertain jacobian matrix. In: Proceedings of IEEE international conference on robotics and

automation, Detroit, pp 494–499

Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Int J Robot Res

6(2):10–20

53 Motion Control 1931



Dixon WE (2007) Adaptive regulation of amplitude limited robot manipulators with uncertain

kinematics and dynamics. IEEE Trans Automat Control 52(3):488–493

Garcia-Rodriguez R, Parra-Vega V (2012) Cartesian sliding PID control schemes for tracking

robots with uncertain Jacobian. Trans Inst Meas Control 34(4):448–462

Hutchinson S, Hager GD, Corke P (1996) A tutorial on visual servo control. IEEE Trans Autom

Control 12(5):651–670

Ioannou P, Sun J (1996) Robust adaptive control. Prentice-Hall, Englewood Cliffs

Kelly R (1993) Comments on adaptive PD controller for robot manipulators. IEEE Trans Robot

Autom 9:117–119

Kelly R (1997) PD control with desired gravity compensation of robotic manipulators: a review.

Int J Robot Res 16(5):660–672

Kelly R (1998) Global positioning of robot manipulators via PD control plus a class of nonlinear

integral actions. IEEE Trans Autom Control 43(7):934–938

Kelly R, Santibanez V, Loria A (2005) Control of robot manipulators in joint space.

Springer–Verlag, London

Koditschek DE (1987)Adaptive techniques for mechanical systems. In: 5th Yale workshop on

applications of adaptive systems theory, New Haven, pp 259–265

Lee KW, Khalil H (1997) Adaptive output feedback control of robot manipulators using high gain

observer. Int J Control 67(6):869–886

Lewis FL (1996) Neural network control of robot manipulators. Intell Syst Appl 11(3):64–75

Liang X, Huang X, Wang M, Zeng X (2010) Adaptive task-space tracking control of robots

without task-space- and joint-space-velocity measurements. IEEE Trans Robot 26(4):733–742

Middleton RH, Goodwin GC (1988) Adaptive computed torque control for rigid link manipulators.

Syst Control Lett 10:9–16

Niemeyer G, Slotine JJE (1991) Performance in adaptive manipulator control. Int J Robot Res

10(2):149–161

Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: a tutorial. Automatica

25(6):877–888

Ortega R, Loria A, Kelly R (1995) A semi-globally stable output feedback PI2D regulator for robot

manipulators. IEEE Trans Autom Control 40(8):1432–1436

Paden B, Panja R (1988) A globally asymptotically stable PD+ controller for robot manipulator.

Int J Control 47(6):1697–1712

Sadegh N, Horowitz R (1990) Stability and robustness analysis of a class of adaptive controllers

for robotic manipulators. Int J Robot Res 9(3):74–92

Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–61

Slotine JJE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res

6(3):49–59

Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

Spong MW (1992) On the robust control of robot manipulators. IEEE Trans Autom Control

37(11):1782–1786

Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York

Takegaki M, Arimoto S (1981) A new feedback method for dynamic control of manipulators.

ASME J Dyn Syst Meas Control 103:119–125

Tomei P (1991) Adaptive PD controller for robot manipulators. IEEE Trans Robot Autom

7:565–570

Wang H, Xie Y (2009) Prediction error based adaptive Jacobian tracking of robots with uncertain

kinematics and dynamics. IEEE Trans Automat Control 54(12):2889–2894, art. no. 5332275

Wang H, Liu YH, Zhou D (2007) Dynamic visual tracking for manipulators using an uncalibrated

fixed camera. IEEE Trans Robot 23(3):610–617

Wen JT, Bayard D (1988) New class of control laws for robotic manipulators Part 2. Adaptive

case. Int J Control 47(5):1387–1406

Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans

64:759–768

1932 C.C. Cheah and R. Haghighi


	53 Motion Control
	Introduction
	Dynamics and Kinematics of Robot Manipulators
	Dynamic Equation of Robots
	Kinematic Equation Kinematic equation of Robots

	Set-Point Control by PD Plus Gravity Controller
	Adaptive Control of Robot Manipulators
	Approximate Jacobian Set-Point Control
	Adaptive Jacobian Tracking Control
	Simulation Results
	PD Plus Gravity Control Law
	Task-Space PD Plus Gravity
	Adaptive Control
	Approximate Jacobian Set-Point Control with Uncertain Gravitational Force
	Adaptive Jacobian Tracking Control

	Summary
	Appendix 1
	Appendix 2
	Appendix 3
	References


