
Trajectory Planning 52
Quang-Cuong Pham

Contents

Introduction . 1874

Path and Trajectory Planning . 1876

Important Concepts . 1876

Path Planning Under Geometric Constraints . 1877

Trajectory Planning Under Kinodynamic Constraints . 1881

Path and Trajectory Optimization . 1881

Minimizing Path Length . 1881

Minimizing Trajectory Duration . 1882

Summary . 1885

References . 1886

Abstract

Trajectory planning consists in finding a time series of successive joint angles

that allows moving a robot from a starting configuration towards a goal config-

uration, in order to achieve a task, such as grabbing an object from a conveyor

belt and placing it on a shelf. This trajectory must respect given constraints: for

instance, the robot should not collide with the environment; the joint angles,

velocities, accelerations, or torques should be within specified limits, etc. Next,

if several trajectories are possible, one should choose the one that optimizes a

certain objective, such as the trajectory execution time or energy consumption.

This chapter reviews methods to plan trajectories with constraints and optimi-

zation objectives relevant to industrial robot manipulators.

Q.-C. Pham (*)

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

e-mail: cuong@ntu.edu.sg

Springer-Verlag London 2015

A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology,
DOI 10.1007/978-1-4471-4670-4_92

1873

mailto:cuong@ntu.edu.sg

Introduction

For a robot to accomplish a given high-level task – such as grabbing an object on a

conveyor belt and placing it on a shelf – this task must be translated into low-level
commands understandable by the robot operating system. This whole process,

known as “motion planning,” can be broken down into a number of steps, as

illustrated in Fig. 1. Note that, for clarity, the different levels and steps were

represented in a sequential, linear fashion. In practice, however, several levels or

steps might sometimes be addressed at the same time: for instance, when planning

at the “trajectory” level, one might have to take into account the robot torque

bounds, which appear at the “actuator commands” level.

Until recently, motion planning has mostly been performed by human operators:

for a given task, a skilled, experienced operator would manually find the commands

(using, e.g., a teach pendant and visual feedback) that would allow the robot to

achieve the task. However, this approach is time-consuming and usually produces

suboptimal trajectories. Further, if the task changes (even slightly), the whole

tedious teaching process has to be done over again.

Impressive theoretical advances in the field of motion planning in the past

few decades have brought about a new picture: it is now possible for a computer

to find, in minutes or seconds, optimal commands for a robot to achieve a given

task, even in very challenging, cluttered environments. Several companies, some

of them spinning off from academia (e.g., Siemens Kineo, France/Germany or

Mujin Inc., Japan), are developing software solutions that are in use in actual

factories.

The current chapter discusses trajectory planning, which is a part of motion

planning. Specifically, we shall focus on the problem of finding a trajectory of the
joint angles between given starting and goal joint angles, see Fig. 2. It is thus

assumed that appropriate computations have been carried out before (e.g., grab

synthesis, inverse kinematics, etc.) or will be carried out after (e.g., robot instruc-

tion synthesis, command synthesis, etc.) this stage.

Two important concepts, namely, constraints and optimization, are essential in

trajectory planning. Constraints restrict the range of motions that the robot can

execute. One can classify them into two categories. First, geometric constraints are
the constraints that can be expressed solely in terms of the robot joint angles: these

include bounds on the joint angles, avoidance of self-collision and of collision with

obstacles, etc. These constraints can thus be fully taken into account in the path

planning step. Second, kinodynamic constraints are the constraints that include

higher-order time derivatives of the joint angles, such as bounds on the joint

velocities, accelerations, torques, or motor current inputs. These constraints cannot

be taken into account by path planning alone and must be considered at the

trajectory level.

Optimization comes into play when there are more than one path or trajectory

that allow achieving the task while satisfying the constraints. It is then interesting to

select the path or trajectory that optimizes a given objective. At the path level, one

1874 Q.-C. Pham

Fig. 1 From task to commands. The work-space task may consist in, e.g., bringing the end effector

of the robot manipulator from a starting position and orientation in space, where it has just grabbed

the object, towards a goal position and orientation, where it can safely release the object onto the

shelf. Inverse kinematics finds the manipulator joint angles that allow achieving the desired

end-effector position and orientation. The joint-space task would then consist in connecting the

starting joint angles and the goal joint angles. Path planning finds a collision-free path, that is, a

continuous set of intermediate joint angles between the starting and goal joint angles, such that the

manipulator does not collide with the environment or with itself at any of the intermediate joint

angles. Time parameterization consists in finding the time stamps for the joint angles along the path,
while respecting, e.g., the torque bounds and/or optimizing the traversal time or the energy

consumption. Finally, instruction synthesis translates the desired trajectory into a set of instructions
in the robot language, and command synthesis converts these instructions into low-level commands,

such as the electrical current fed into the motors. Usually, this last step is performed internally by

the robot controller provided by the robot manufacturer and is not accessible to the end user

θ2goal θ2goalθ2start
θ2start

θ1start
θ1start

θ1goal

θ1goal

Joint anglea b

Time

Fig. 2 Trajectory planning for a two-link manipulator. (a) The manipulator and the obstacles

(black rectangles) in the work space. (b) Trajectories connecting qstart and qgoal in the joint space

52 Trajectory Planning 1875

might be interested in finding the shortest path in joint space or in the end-effector

space. At the trajectory level, other optimization objectives, such as minimum time,

maximum smoothness, minimum energy, etc., can be considered. Note that because

of kinodynamic constraints, a shortest path might not correspond to a minimum-

time or minimum-energy trajectory.

Scope of this Chapter From the above discussion, it is clear that there exists a

very large variety of trajectory planning problems (Hwang and Ahuja 1992;

LaValle 2006), in terms of robot structures, constraints, optimization objectives,

etc. The present chapter focuses on problems arising from the industry: we shall

specifically consider serial robotic manipulators, constraints arising from obstacle

avoidance and from bounds on the joint angles, velocities, accelerations and

torques, and optimization objectives related to the trajectory execution time.

Also, we shall concentrate more particularly on the methods that are actually in

use in the industry rather than cover the whole panorama of existing planning

methods.

Organization The remainder of this chapter is organized as follows. In section

“Path and Trajectory Planning,” some methods for geometric path planning and

kinodynamic trajectory planning are presented. The focus of that section is on

finding one feasible path or trajectory – optimization is not considered. In section

“Path and Trajectory Optimization,” methods for path and trajectory optimization
under geometric and kinodynamic constraints are reviewed. As stated above, we

shall mostly consider the minimization of trajectory execution time. Finally, section

“Conclusion” offers a brief conclusive discussion.

Path and Trajectory Planning

Important Concepts

We first introduce the important concept of configuration space (Lozano-Perez

1983) in the context of serial robotic manipulators.

Definition 1 (Configuration space). A set of joint angles q ¼ (θ1, . . ., θn), where n
is the number of joints of the robot manipulator, is called a configuration. The set of
all possible joint angles is called the configuration space and denoted C . For
instance, C5 �π, π½ �n for a manipulator with n revolute joints. If a robot is in
collision with the environment or with itself at configuration q, then q is called a
collidingconfiguration. The subset of C consisting of all non-colliding configura-
tions is called the free space and denoted Cfree.

It is assumed that the starting configuration qstart and the goal configuration qgoal
are given. The problem thus consists in finding a path or a trajectory (see definition

below) connecting qstart and qgoal and respecting the constraints.

1876 Q.-C. Pham

Definition 2 (Path and trajectory). Formally, a path can be defined as a continuous
function P

P : 0, 1½ � ! C
s 7! q sð Þ:

For a path connecting qstart and qgoal, one thus has

q 0ð Þ ¼ qstart, q 1ð Þ ¼ qgoal:

A path can be regarded as a geometric object devoid of any timing information.
Next, a time parameterization of P is a strictly increasing function

s : 0, T½ � ! 0, 1½ �
t 7! s tð Þ

with s(0) ¼ 0 and s(T) ¼ 1. The function s gives the position on the path for each
time instant t.

The path P endowed with a time parameterization s becomes a trajectory П

∏ : 0, T½ � ! C
t 7! q s tð Þð Þ,

with T being the duration of the trajectory. Note that the same path P can give rise to
many different trajectories П.

Path Planning Under Geometric Constraints

There exists a large variety of approaches to path planning: combinatorial methods,

potential field methods, sampling-based methods, etc.

Combinatorial methods make use of algebraic geometry and mathematical

programming tools to provide complete algorithms to the path planning problems.

“Complete” means that the algorithm can decide in finite time whether the problem

has a solution and provide a solution when it exists. An example of a combinatorial

method is the cell decomposition method: when the obstacles are polygonal, the

free space Cfree can be decomposed into cells (e.g., triangular cells by a Delaunay

triangulation). Solving the problem then boils down to finding a sequence of

adjacent cells such that qstart and qgoal belong to respectively the first and the last

cell of the sequence (see, e.g., LaValle 2006, Sect. 6.3.2). While combinatorial

methods are valuable to obtain theoretical results (for instance, they allow proving

that the general motion planning problem is NP complete), they are too slow to be

52 Trajectory Planning 1877

used in practice, especially in high-dimensional problems. Another issue is that

these methods require an explicit representation of the obstacles, which is very

difficult to obtain in most practical problems.

The potential field method was introduced in (Khatib 1986). This method

constructs a potential field which is high near the obstacles and low at the

goal configuration. Steering towards the goal configuration while avoiding the

obstacles can then be naturally achieved by letting the robot configuration

evolve in that potential field. This method is interesting in that it allows real-

time control. However, the issue of local minima – the robot may get trapped in the

local minima of the potential field – prevents its use in highly cluttered

environments.

Sampling-based methods are perhaps the most efficient and robust, hence prob-

ably the most widely used methods for path planning currently. The next two

sections review these methods in detail.

Grid Search and Probabilistic Roadmap (PRM)
A first category of sampling-based methods requires building, in a preprocessing
stage, a roadmap that captures the connectivity of C free. A roadmap is a graph

G whose vertices are configurations of Cfree. Two vertices are connected in G only if
it is possible to connect the two configurations by a path entirely contained in Cfree.
Once such a roadmap is built, it is easy to answer the path planning problem: if

(i) qstart can be connected to a (nearby) vertex u and (ii) qgoal can be connected to a

(nearby) vertex v and (iii) v and v are in the same connected component of G (in the

graph-theoretic sense), then there exists a collision-free path between qstart and qgoal
(see Fig. 3).

Methods for building the roadmap fall into two families: deterministic or

probabilistic. A typical deterministic method is the Grid Search, where the config-
uration space C is sampled following a regular grid, as in Fig. 3a. A sampled

configuration is rejected if it is not in Cfree. Next, one attempts to connect every pair

θ2

θ1

θ2

θ1

a b

Fig. 3 Roadmap-based methods. (a) Grid search. The starting and goal configurations are

represented by respectively the blue square and the yellow star. Green disks represent sampled

configurations lying in C free, while red disks represent obstacle configurations. (b) Probabilistic
roadmap. Same legends as in (a)

1878 Q.-C. Pham

of adjacent configurations (adjacent in the sense of the grid structure) to each other:

if the straight segment connecting the two configurations is contained within Cfree,
then the corresponding edge is added to the graph G.

In the Probabilistic Roadmapmethod (Kavraki et al. 1996), instead of following

a regular grid, samples are taken at random in Cfree, see Fig. 3b. Since there is no a

priori grid structure, several methods exist for choosing the pairs of vertices for

which connection is attempted: for instance, one may attempt, for each vertex, to

connect it to every vertices that are within a specified radius r from it.

Advantages of the Roadmap-Based Methods The strength of the roadmap-

based methods (both deterministic and probabilistic) comes from the global/

local decomposition – the difficult problem of path planning is solved at two scales:

the local scale, where neighboring configurations (adjacent configurations in

Grid Search, configurations within a small distance r of each other in the Probabi-

listic Roadmap) are connected by a simple straight segment; and the global scale,
where the graph search takes care of the global, complex connectivity of the free

space.

Note also that it is not necessary for these methods to have an explicit represen-

tation of Cfree: one only needs an oracle which says whether a given configuration is
in Cfree. To check whether a straight segment is contained within Cfree, it suffices to
call the oracle on every configuration (or, in practice, on sufficiently densely

sampled configurations) along that segment.

Thesemethods also possess nice theoretical guarantees. Specifically, it can be shown

that the Grid Search is resolution complete, which means that if a solution exists, the

algorithmwill find it in finite time and for a sufficiently small grid size. Similarly, it can

be shown that the Probabilistic Roadmap method is probabilistically complete, which
means that, if a solution exists, the probability that the algorithmwill find it converges to

1 as the number of sample points goes to infinity (LaValle et al. 2004). However, the

converge rate of both methods is difficult to determine on practical problem instances.

Regarding the comparative performances of the deterministic and probabilistic

approaches, it has been shown both theoretically and practically that randomness is

not advantageous in terms of search time. However, it can be argued that probabi-

listic methods are easier to implement (LaValle et al. 2004).

Rapidly Exploring Random Trees (RRT)
The methods just discussed require building the entire roadmap in the

preprocessing stage before being able to answer any query [a query being a pair

(qstart qgoal) to be connected]. In applications where only a single or a limited

number of queries are needed, it may not be worthy to build the whole roadmap.

Single query methods, such as the Rapidly Exploring Random Trees (RRT), are

much more suited for these applications (Lavalle et al. 1998).

Specifically, RRT iteratively builds a tree (see Algorithm 1), which is also a

roadmap, but which has the property of exploring “optimally” the free space. The

key lies in the EXTEND function, which selects the vertex in the tree that is the

closest to the randomly sampled configuration (see Algorithm 2 and Fig. 4). Thus,

the probability for a vertex in the tree to be selected is proportional to the size of its

52 Trajectory Planning 1879

Voronoi region, causing the tree to grow preferably towards previously under-

explored regions (Lavalle et al. 1998).

Algorithm 1 BUILD_RRT
Input: A starting configuration qstart
Output: A tree T rooted at qstart

T .INITIALIZE(qstart)
for rep ¼ 1 to Nmaxrepdo

qrand RANDOM_CONFIG()
EXTEND(T , qrand)

end for

Algorithm 2 EXTEND
Input: A tree T and a target configuration q
Effect: Grow T by a new vertex in the direction of q

qnear NEAREST_NEIGHBOR (T ,q)
if qnew STEER (qnear, q) succeeds then

Add vertex qnew to T
Add edge [qnear, qnew] to T

end if

Note: STEER(qnear, q) attempts making a straight motion from qnear towards q.
Three cases can happen: (i) q is within a given distance r of qnear and [qrand, q] is
collision-free, then q is returned as the new vertex qnew; (ii) q is farther than a given

distance r of qnear, and the segment of length r from qnear and in the direction of q is

collision-free, then the end of that segment is returned as qnew (see Fig. 4); (iii) else,

STEER returns failure

Finally, to find a path connecting qstart and qgoal, one can grow simultaneously

two RRTs, one rooted at qstart and the other rooted at qgoal, and attempt to connect

the two trees at each iteration. This algorithm is known as bidirectional RRT

(Kuffner and Lavalle 2000). In practice, bidirectional RRT has proved to be easy

qstart

qnear

qnew

qrand

Fig. 4 Illustration for the EXTEND function. The tree is rooted at the black disk. Red disks and
plain segments represent respectively the vertices and edges that have already been added to the

tree. EXTEND attempts at growing the tree towards a random configuration qrand. For this, qnear is
chosen as the vertex in the tree that is the closest to qrand. The tree is then grown from qnear towards
qrand, stopping at qnew, which is at the specified radius r from qnear

1880 Q.-C. Pham

to implement, yet extremely efficient and robust: it has been successfully applied to

a large variety of robots and challenging environments.

Trajectory Planning Under Kinodynamic Constraints

As mentioned earlier, kinodynamic constraints involve higher-order derivatives of the

configuration and cannot therefore be expressed in the configuration space.One approach

to kinodynamic planning thus consists of transposing the path planningmethods (such as

PRM or RRT) to the state-space X , that is, the configuration space C augmented with

velocity coordinates, where the kinodynamic constraints can be appropriately taken into

account (Donald et al. 1993; LaValle and Kuffner 2001; Hsu et al. 2002). One drawback

of this approach is thatmoving into the state space is associatedwith a twofold increase in

the dimension of the search space: ifC is of dimension n, thenX is of dimension 2n. Since
planning algorithms usually have complexities that scale exponentially with the dimen-

sion of the search space (Hsu et al. 2002), a twofold increase in the dimension maymake

state-space kinodynamic planning algorithms impractical even for relatively small values

of n (Shiller and Dubowsky 1991).
A second approach avoids the complexity explosion by decoupling the problem:

first, search for a path in the robot configuration spaceC under geometric constraints

(using path planning methods discussed earlier) and, in a second step, find a time
parameterization of that path that satisfies the kinodynamic constraints (Bobrow

et al. 1985; Kuffner et al. 2002). The drawback here is that the path found in the first

step may have no time parameterization at all that respects the kinodynamic

constraints. This drawback may be addressed by introducing an Admissible Veloc-

ity Propagation scheme, which allows checking, at each PRM/RRT extension, the

existence of an eventual admissible time parameterization (Pham et al. 2013).

Path and Trajectory Optimization

As stated in the Introduction, we shall focus here on minimizing trajectory execu-

tion time, which is the most common optimization objective in the industry. When

planning at the path level, minimizing execution time can be equated to minimizing

the path length, which is covered in section “Minimizing Path Length.” At the

trajectory level, however, shortest paths may not correspond to minimum-time

trajectories when kinodynamic constraints come into play. Section “Minimizing

Trajectory Duration” reviews methods to specifically minimize trajectory duration.

Minimizing Path Length

Asymptotically Optimal Methods
While the roadmap-based methods presented in section “Grid Search and Probabi-

listic Roadmap (PRM)” address the feasibility problem, i.e., the problem of finding

52 Trajectory Planning 1881

one feasible path, it is straightforward to modify them to include path length

optimization. Indeed, once qstart and qgoal have been connected respectively to

vertices u and v in G, classical graph algorithms, such as Dijkstra’s search (Dijkstra

1959) or A* search (Hart et al. 1968), can be applied to find the shortest path

between u and v in G. In turn, the path lengths between qstart and qgoal are
minimized.

It can be shown that these algorithms are asymptotically optimal in the sense that
the path length of the solution returned by these algorithms converges to the minimal

path length as the grid size – in the case of Grid Search – goes to 0, or as the number

of sampled points goes to infinity – in the case of the Probabilistic Roadmap.

Regarding the single-query problem, it has been shown that the RRT method, if

modified in the same way as above, would not yield an asymptotically optimal

algorithm. However, RRT* – a modified version of RRT where the EXTEND function

tries to extend from not only the nearest vertex but from a specific number of nearest

vertices – possesses the asymptotic optimality property (Karaman and Frazzoli 2011).

Path Shortcutting
While the RRT* algorithm just mentioned has the nice property of being asymptoti-

cally optimal, it is too slow to be used in practice. For single-query problems, it turns

out that a two-step approach consisting of (i) finding one path using RRT, followed by

(ii) post-processing this trajectory by repetitively applying shortcuts realizes a good

trade-off between path quality and computation time (Geraerts and Overmars 2007).

The shortcut method is presented in Algorithm 3. It is simple to implement, yet

very effective. A modified version, called partial shortcut, consists in shortcutting

one joint angle at a time, can yield even higher-quality paths but also requires a

longer computation time (Geraerts and Overmars 2007).

Algorithm 3 PATH_SHORTCUT
Input: A collision-free path P
Output: A shorter collision-free path

for rep ¼ 1 to Nmaxrep do
Pick two random points q1,q2 along the path
if [q1,q2] is collision-free then

Replace the portion of P between q1 and q2 by [q1, q2]
end if
end for

Note: [q1, q2] denotes the straight segment between q1 and q2 in the joint space.

Minimizing Trajectory Duration

Fixed-Path Time Minimization
Once a collision-free path has been found, one can give sample configurations

along the path as input to the robot. However, for most modern robot manipulators,

1882 Q.-C. Pham

execution time can be greatly reduced if each sample configuration is accompanied

with a time stamp, i.e., the time instant when the robot should reach that configu-

ration. This requires time parameterizing the path, that is, transforming it into a

trajectory.
More specifically, with the notations introduced in Definition 2 of section

“Important Concepts,” minimizing the traversal time of a given path P is to find

the time parameterization s such that T is minimal and that the parameterized

trajectory (q(s(t)))t∈[0,T] satisfies given kinodynamic constraints.

When the constraints are bounds on the joint torques, a very efficient solution to

this problem, based on Pontryagin’s maximum principle, was proposed in the 1980s

(Bobrow et al. 1985; Shin and McKay 1985) and has been continuously improved

until today (Pfeiffer and Johanni 1987; Slotine and Yang 1989; Shiller and Lu 1992;

Pham 2013). This method can also be applied to other types of kinodynamic

constraints such as gripper and payload constraints (Shiller and Dubowsky 1989)

or bounds on the joint velocities and accelerations (Kunz and Stilman 2012). More

recently, another family of algorithms to solve this fixed-path time minimization,

based on convex optimization, was proposed in (Verscheure et al. 2009; Hauser

2013).

Global Time Minimization
A number of exact (Geering et al. 1985; Meier and Ryson 1990) and approximate

(Yang and Slotine 1994) methods exist to directly find the time-optimal trajectory
subject to torque bounds between two configurations. However, these methods are

only practical for low-dimensional problems and cannot deal with geometric

obstacles.

To take into account both geometric and kinodynamic (e.g., torque bounds)

constraints, an effective approach consists of generating a large number of paths

and on each path, apply the fixed-path time minimization described in the previous

section. In (Bobrow 1988), the author considers a family of paths consisting

of Bezier curves. A path of this family can be represented by a set of control points

p ¼ (p1,. . ., pn). One can then define the cost C(p) by the duration of the time-

minimal parameterization of the Bezier curve represented by p. Finally, one

can search for the time-minimal trajectory by a gradient search, where the gradient

dC/dp is evaluated numerically.

Another method (Shiller and Gwo 1991) consists in building roadmaps as in

section “Minimizing Path Length,” but where the cost of an edge in the graph

search would not be the distance between the adjacent vertices but a heuristic

quantity related to the fixed-path time minimization algorithm of section

“Fixed-Path Time Minimization.”

Shortcutting with Kinodynamic Constraints
As in the case of path planning (section “Path Shortcutting”), it turns out that

shortcutting is the most effective method to obtain trajectories with short durations

(Hauser and Ng-Thow-Hing 2010). There is, however, an important difference

between trajectory and path shortcutting: in trajectory shortcutting, one usually

52 Trajectory Planning 1883

needs to ensure that the new portion can be inserted into the original trajectory

while preserving the smoothness properties of the original trajectory. For instance,
if one wants to preserve the C1-continuity of the trajectory (i.e., the property that the

trajectory is differentiable and that the derivative is continuous), then it is necessary

to generate shortcuts that begin and end, not only at the same configurations q1, q2,
but also with the same velocities _q1, _q2 as in the original portion.

Algorithm 4 presents shortcutting under velocity and acceleration (or pure

kinematic) bounds (Hauser and Ng-Thow-Hing 2010). This algorithm is very

effective thanks to the following property: given the beginning and ending config-

urations and velocities q1, _q1Þ, q2, _q2Þðð , it is possible to compute analytically the

time-optimal trajectory portion ∏kin q1, _q1,q2, _q2Þð under given velocity and accel-

eration bounds (Hauser and Ng-Thow-Hing 2010).

Algorithm 5 presents shortcutting under general kinodynamic bounds (Pham

2012). Contrary to the case of velocity and acceleration bounds, there is no analytic

expression of the time-optimal trajectory for general kinodynamic constraints. One

thus have to resort to the path decoupling approach presented earlier: (i) interpolate a

path between q1, _q1Þð and q2, _q2Þð respectingC1-continuity, and (ii) time-parameterize

the path optimally under the given kinodynamic constraints. Note that the heuristic to

choose the path in step (i) is crucial for the performance of the algorithm.

Algorithm 4 TRAJ_SHORTCUT_KINEMATIC
Input: A collision-free, C1 trajectory ∏ satisfying veloc-

ity and acceleration constraints
Output: A collision-free, C1 trajectory satisfying the

velocity and acceleration constraints and with shorter time
duration

for rep ¼ 1 to Nmaxrep do
Pick two random points q1,q2 along ∏
if ∏kin(q1, _q1,q2, _q2) is collision-free then

Replace the portion of ∏ between q1 and q2 by ∏kin(q1, _q1,
q2, _q2)

end if
end for

Note:∏kin (q1, _q1,q2, _q2) denotes the optimal trajectory between (q1, _q1) and (q2, _q2)
under given velocity and acceleration bounds (see text)

Algorithm 5 TRAJ_SHORTCUT_GENERAL
Input: A collision-free, C1 trajectory ∏ satisfying general
kinodynamic constraints
Output: A collision-free, C1 trajectory satisfying the
kinodynamic constraints and with shorter time duration

for rep ¼ 1 to Nmaxrep do
Pick two random points q1,q2 along ∏

1884 Q.-C. Pham

Generate a path Pint(q1, _q1,q2, _q2)
if Pint(q1, _q1,q2, _q2) is collision-free then
Time-parameterize Pint(q1, _q1, q2, _q2)into ∏int(q1, _q1,q2, _q2)

if ∏int(q1, _q1,q2, _q2) has shorter time duration than the orig-
inal portion then

Replace the portion of ∏ between q1 and q2 by ∏int(q1, _q1,
q2, _q2)

end if
end if
end for

Note: Pint(q1, _q1,q2, _q2) denotes an interpolated path between (q1, _q1) and (q2, _q2).
∏int(q1, _q1,q2, _q2) denotes the time-optimal trajectory obtained by time-

parameterizing

Pint(q1, _q1, q2, _q2) under given kinodynamic constraints (see text)

Summary

We have presented an overview of trajectory planning and optimization methods,

with a special emphasis on those relevant to industrial robotic manipulators. It

appears from this overview that very efficient methods exist for planning high-

quality trajectories when the environment (consisting of the robot, the obstacles,

etc.) is well defined and static. A typical work flow, may integrate some of these

methods as sketched in Fig. 5. The main current challenge of trajectory planning in

Fig. 5 Typical work flow as practiced in a company specialized in motion planning for industrial

robots

52 Trajectory Planning 1885

classical factory automation lies mainly in the development of robust software, as

well as practical integration into the work place.

The next major step in factory automation is to integrate the robot more tightly

with human operators. For this, new methods must be developed, taking into

account environments that are by nature time changing, and sometimes in an

unpredictable way, because of the close, possibly physical interaction with human

operators. In this context, other types of constraints and optimization objectives

must also be considered, such as safety or compliance.

References

Bobrow J (1988) Optimal robot plant planning using the minimum-time criterion. IEEE J Robot

Autom 4(4):443–450

Bobrow J, Dubowsky S, Gibson J (1985) Time-optimal control of robotic manipulators along

specified paths. Int J Robot Res 4(3):3–17

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J Assoc Comput Mach

40(5):1048–1066

Geering HP, Guzzella L, Hepner SA, Onder CH (1985) Time-optimal motions of robots in

assembly tasks. In: Proceedings of the 24th IEEE conference on decision and control, vol

24. IEEE, Fort Lauderdale, pp 982–989

Geraerts R, Overmars M (2007) Creating high-quality paths for motion planning. Int J Robot Res

26(8):845–863

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum

cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

Hauser K (2013) Fast interpolation and time-optimization on implicit contact submanifolds. In:

Proceedings of the robotics: science and systems, Berlin, 2013

Hauser K, Ng-Thow-Hing V (2010) Fast smoothing of manipulator trajectories using optimal

bounded-acceleration shortcuts. In: Proceedings of the IEEE international conference on

robotics and automation, 2010. Anchorage, pp 2493–2498

Hsu D, Kindel R, Latombe J-C, Rock S (2002) Randomized kinodynamic motion planning with

moving obstacles. Int J Robot Res 21(3):233–255

Hwang YK, Ahuja N (1992) Gross motion planning – a survey. ACM Comput Surv (CSUR) 24

(3):219–291

Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J

Robot Res 30(7):846–894

Kavraki L, Svestka P, Latombe J, Overmars M (1996) Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res

5(1):90–98

Kuffner J, LaValle S (2000) RRT-connect: an efficient approach to single-query path planning. In:

Proceedings of the IEEE international conference on robotics and automation, San Francisco,

2000

Kuffner J, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning

for humanoid robots. Auton Robot 12(1):105–118

Kunz T, Stilman M (2012) Time-optimal trajectory generation for path following with bounded

acceleration and velocity. Robot Sci Syst 8:09–13

Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report

98–11, Iowa State University

LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge

1886 Q.-C. Pham

LaValle S, Kuffner J (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400

LaValle SM, Branicky MS, Lindemann SR (2004) On the relationship between classical grid

search and probabilistic roadmaps. Int J Robot Res 23(7–8):673–692

Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100

(2):108–120

Meier E-B, Ryson AE (1990) Efficient algorithm for time-optimal control of a two-link manipu-

lator. J Guid Control Dyn 13(5):859–866

Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot

Autom 3(2):115–123

Pham Q-C (2012) Planning manipulator trajectories under dynamics constraints using minimum-

time shortcuts. In: Proceedings of the second IFToMM ASIAN conference on mechanism and

machine science, Tokyo, 2012

Pham Q-C (2013) Characterizing and addressing dynamic singularities in the time-optimal path

parameterization algorithm. In: Proceedings of the IEEE/RSJ international conference on

intelligent robots and systems, Tokyo, 2013

Pham Q-C, Caron S, Nakamura Y (2013) Kinodynamic planning in the configuration space via

velocity interval propagation. In: Proceedings of the robotics: science and system, Berlin, 2013

Shiller Z, Dubowsky S (1989) Robot path planning with obstacles, actuator, gripper, and payload

constraints. Int J Robot Res 8(6):3–18

Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manip-

ulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797

Shiller Z, Gwo Y (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot

Autom 7(2):241–249

Shiller Z, Lu H (1992) Computation of path constrained time optimal motions with dynamic

singularities. J Dyn Syst Meas Control 114:34

Shin K, McKay N (1985) Minimum-time control of robotic manipulators with geometric path

constraints. IEEE Trans Autom Control 30(6):531–541

Slotine J, Yang H (1989) Improving the efficiency of time-optimal path-following algorithms.

IEEE Trans Robot Autom 5(1):118–124

Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2009) Time-optimal path

tracking for robots: a convex optimization approach. IEEE Trans Autom Control 54

(10):2318–2327

Yang H, Slotine J (1994) Fast algorithms for near-minimum-time control of robot manipulators.

Int J Robot Res 13(6):521–532

52 Trajectory Planning 1887

	52 Trajectory Planning
	Introduction
	Path and Trajectory Planning
	Important Concepts
	Path Planning Under Geometric Constraints
	Grid Search and Probabilistic Roadmap (PRM)
	Rapidly Exploring Random Trees (RRT)

	Trajectory Planning Under Kinodynamic Constraints

	Path and Trajectory Optimization
	Minimizing Path Length
	Asymptotically Optimal Methods
	Path Shortcutting

	Minimizing Trajectory Duration
	Fixed-Path Time Minimization
	Global Time Minimization
	Shortcutting with Kinodynamic Constraints

	Summary
	References

