
Manipulator Dynamics 51
Shaoping Bai, Lelai Zhou, and Guanglei Wu

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856

Recursive Newton-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856

Outward Recursion to Calculate Velocities and Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1857

Inward Recursion to Calculate Forces and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1859

Lagrange’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1859

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1861

Example I: A 5-dof Lightweight Robotic Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1861

Example II: A Spherical Parallel Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1864

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1871

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1872

Abstract

This book chapter is about fundamentals of manipulator dynamics and their

applications. Two approaches of manipulator dynamics, namely, recursive
Newton-Euler approach and the Lagrange equations, are introduced and

discussed. Examples are included to demonstrate their application in manipula-

tor dynamics simulations and analysis. This book chapter can provide basic

understanding on manipulator dynamics, which is applicable to manipulators,

including serial and parallel manipulators.
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Introduction

Manipulator dynamics concerns with the actuation forces required to generate

motion of manipulators. The manipulator dynamics is expressed in terms of

equations of motion, which describe the relationships between the actuation,

reaction forces, and the accelerations and motion trajectories of manipulators. In

robotics, dynamics is a fundamental for the manipulator design, analysis, and

control.

Two types of problems are involved in the dynamics study, namely, the inverse

and forward dynamics. The inverse dynamics calculates the required actuating

forces at joints for a prescribed trajectories or known kinematic information

(position, velocity, and acceleration). The forward dynamics, on the other hand,

determines the joints’ and end-effector accelerations with applied actuating forces

at joints.

The equations of motion can be established with several approaches. The most

used approaches include recursive Newton-Euler approach and the Lagrange
equations, which can be found in literatures (Murray et al. 1994; Angeles 1997;

Featherstone and Orin 2000). In this chapter, the dynamics equation

formulation with the above two approaches is introduced. The formulations are

confined within the rigid-body dynamics. Readers with interests in flexible

body manipulators are directed to literatures (Shabana 2013; Low 1987;

Dwivedy and Eberhard 2006). Two examples are included to demonstrate

their applications, one applicable to a serial manipulator and the other to a

parallel robot.

Recursive Newton-Euler Method

The motion of a rigid body can be described by the Newton and Euler’s equations,

the former for the translation and the latter for the rotation. Basically, the equations

of motion of a manipulator can be established for each body of the manipulator on

the basis of free-body diagrams. Alternatively, the equations of motion can be

formulated through the recursive Newton-Euler method for serial manipulators,

with which the free-body diagrams can be omitted. The formulation presented is

based on the method introduced by Luh et al. (1980). This formulation is well suited

for inverse dynamics problems, i.e., to find the driving torques with known kine-

matics information.

The recursive Newton-Euler method consists of two steps. The first step is an

outward recursion, from the base to the end link, to calculate velocity and acceler-

ation. The second step is an inward recursion, from the end link to the base, to

calculate the forces and torques at joints. In the following formulation, the recursive

method is applied to a manipulator with n rigid links. Coordinate systems are

established by following Denavit-Hartenberg’s convention (D-H convention)

(Denavit and Hartenberg 1955).

1856 S. Bai et al.



Outward Recursion to Calculate Velocities and Accelerations

In the inverse dynamics problems, the positions, velocities, and accelerations (θi, _θi, €θi
for a revolute joint and di, _di , €di for a prismatic joint) of the joints are known. The

outward recursion propa gates velocities, and accelerations of each link from the base

to the end link.

Revolute joints
Referring to Fig. 1, the angular velocity of a revolute joint, propagated from link

i�1 to link i, is given by

ωi ¼ ωi�1 þ θ
:

izi (1)

or in local components

Riω
0
i ¼ Ri�1ω

0
i þ θ

:
Riz

0
i (2)

where Ri stands for the orientation matrix of link i and ωi
0 is the angular velocity of

link i with respect to the ith frame (local coordinate system). Premultiplying both

sides of Eq. 2 with Ri
T and simplifying yield

ω0
i ¼ Ri

i�1ω
0
i þ θ

:

iz
0
i (3)

where Ri�1
i is the rotation matrix relating link i�1 and link i. z0i is the unit vector

[0,0,1]T parallel to the zi axis. Similarly, the propagation of linear velocity from link

i�1 to link i can be derived as

Fig. 1 The illustration of the symbols
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v0i ¼ Ri
i�1 v0i�1 þ ω0

i�1 � pi�1
i

� �
(4)

where pi
i�1 denotes the position vector of the frame of link i in the (i�1)th frame.

The angular acceleration is calculated through

_ω0
i ¼ Ri

i�1 _ω0
i�1 þ €θiz

0
i þ Ri

i�1ω
0
i�1 � _θiz

0
i (5)

The linear acceleration with respect to the link-attached coordinate system is

given by

_v0i ¼ Ri
i�1 _v0i�1 þ _ω0

i�1 � pi�1
i þ ω0

i�1 � ω0
i�1 � pi�1

i

� �� �
(6)

where _v0i is the linear acceleration of link i in the ith frame.

The linear acceleration of the center of mass of link i is further calculated from

the velocity and acceleration of the link

_v0Ci ¼ _v0i þ _ω0
i � p0Ci þ ω0

i � ω0
i � p0Ci

� �
(7)

wherep0Ci
denotes the position vector of the center of mass of link i in its own frame.

Prismatic Joints
If the joints in question are prismatic, the angular velocities are identical for link

i and link i�1, which means ωi ¼ ωi�1. Expressing with local components yields

Riω
0
i ¼ Ri�1ω

0
i�1 (8)

that is,

ω0
i ¼ Ri

i�1ω
0
i�1 (9)

where matrix Ri�1
i is independent to rotations.

Likewise, the local angular acceleration of link i is

_ω0
i ¼ Ri

i�1 _ω0
i�1 (10)

Furthermore, the local linear velocity and acceleration become

v0i ¼ Ri
i�1 v0i�1 þ ω0

i�1 � pi�1
i

� �þ _diz
0
i (11)

_v0i ¼ Ri
i�1 _v0i�1 þ _ω0

i�1 � pi�1
i þ ω0

i�1 � ω0
i�1 � pi�1

i

� �� �þ 2ω0
i � _diz

0
i þ €diz

0
i (12)

where di is the displacement from axis xi�1 to xi along the zi axis.
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Inward Recursion to Calculate Forces and Torques

With the velocities and accelerations found, the inertial force and torque applied to

link i at its center of mass can be calculated by applying the Newton-Euler equations:

f 0Ci
¼ mi _v

0
Ci

(13)

n0Ci
¼ Ii _ω

0
i þ ω0

i � Iiω
0
i (14)

wheremi is the mass of the link and Ii denotes the inertia tensor of link i about its center
of mass, calculated in a frame identical to the link’s coordinate system except the

origin. In the equations above, all items are expressed in the local coordinate systems.

The forces and torques acting on the links are calculated through the outward

recursion. The joint torques that generate the forces and torques will be calculated

through the inward recursion.

Referring to Fig. 1, the inward recursion propagates the joint forces and torques

from the end link to the base as

f 0i ¼ f 0Ci
þ Ri

iþ1f
0
iþ1 (15)

n0i ¼ n0Ci
þ Ri

iþ1n
0
iþ1 þ p0Ci

� f 0Ci
þ piiþ1 � Ri

iþ1f
0
iþ1 (16)

where fi
0 and ni

0 are the force and torque exerted on link i with respect to the ith
frame.

The actuating torque on a revolute joint can be calculated by

τi ¼ n0Ti z
0
i (17)

For prismatic joints, the driving force is

f i ¼ f 0Ti z
0
i (18)

Forward Dynamics Problem
In the forward dynamics problem, the joint accelerations are to be calculated with known

joint torques. One method called articulated-body algorithm (ABA) (Featherstone 1983)

is applicable to this type of problem with recursive approach. More dynamics modeling

methods were reviewed and discussed in (Featherstone and Orin 2000).

Lagrange’s Equation

The equations of motion for a manipulator can also be formulated with Lagrangian

dynamics method. Two types of Lagrange’s equations can be formulated, one

with dependent coordinates (1st kind) and the other with independent coordinates
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(2nd kind). This section starts with the Lagrange’s equation of the 1st kind.

Hereafter, the vector q represents a set of n unknown dependent coordinates, m is

the total number of independent kinematically constraint equations, and f ¼ n � m
is the number of dynamic degrees of freedom (de Jalón and Bayo 1994). The

constraint conditions for the entire system are written in the following general form:

Φ qð Þ ¼ 0 (19)

Differentiating Eq. 19 with respect to time leads to

dΦ qð Þ
dt

¼ @Φ
@q

dq

dt
¼ Φq _q ¼ 0 (20)

where matrix Φq is the Jacobian matrix of the constraint Eq. 19.

Let L ¼ T � V be the Lagrangian of the system, where T ¼ T(q, _q) and V ¼ V(q)
are the kinetic and potential energies, respectively, and Qex is the vector of

generalized external forces acting along the dependent coordinates q. Considering
a manipulator as a constrained multibody system, the Lagrange’s equation can be

derived by generalizing the Hamilton’s principle by means of Lagrange multiplier

technique(de Jalón and Bayo 1994). Skipping details of derivation, the equations of

motion become

d

dt

@L

@ _q

� �
� @L

@q
þΦT

qλ ¼ Qex (21)

which is the Lagrange’s equation of the 1st kind. In the equation, λ is a

m-dimensional vector of Lagrange multipliers. ItemΦq
Tλ represents the generalized

forces due to reaction forces at joints.

With independent coordinates, the constraint Jacobian vanishes, and the term

with Lagrange multipliers is dropped out. The Lagrange’s equation of the 2nd kind
is thus obtained:

d

dt

@L

@ _q

� �
� @L

@q
¼ Qex (22)

The Lagrange’s equation of the 1st kind stands for a system of n equations for

n dependent co-ordinates and m unknown Lagrange multipliers. To solve the

equations, additional acceleration equations from the kinematic constraints are

required, as presented below.

The kinetic energy of a robotic system can be written as follows:

T ¼ 1

2
_qTM qð Þ _q (23)

where M(q) ¼ M is the mass matrix of the system. The first and second terms in

Eq. 21 can be expressed as below:
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d

dt

@L

@ _q

� �
¼ M€qþ _M _q;

@L

@q
¼ Lq ¼ Tq � Vq (24)

For the general case in which the kinetic energy depends on q, Eq. 21 becomes

M€qþΦT
qλ ¼ Qex þ Lq � _M _q (25)

On the other hand, differentiating the constraint Eq. 19 twicewith respect to time yields

Φq€qþ _Φq _q ¼ 0 (26)

Let c ¼ � _Φq _q and n ¼ Qex + Lq� _M _q. Combining Eqs. 25 and 26 leads to:

M ΦT
q

Φq 0

� �
€q
λ

� �
¼ n

c

� �
(27)

Equation 27 can solve simultaneously the accelerations and the Lagrange

multipliers.

Examples

Two examples are included to apply the equations of motion to robotic manipula-

tors. In the first example, a lightweight robotic arm consisting of five revolute joints

developed at Aalborg University (AAU), Denmark, is considered. In the second

example, the dynamics of a spherical parallel manipulator is presented.

Example I: A 5-dof Lightweight Robotic Arm

The lightweight robotic arm is demonstrated in Fig. 2a. Following the D-H con-

vention, Cartesian coordinate systems are attached to each link of the manipulator,

as shown in Fig. 2b. The D-H parameters of the manipulator are listed in Table 1.

Dynamics Modeling
The kinematics of the robotic arm can be found in (Zhou et al. 2011). This chapter

includes here only the dynamics formulation.

Jacobian matrix The joint angular velocity can be calculated with the Jacobian

matrix

_θ ¼ J�1vef (28)

where _θ5 _θ1, _θ2 . . . , _θn
� 	T

denotes an n-dimensional (n denotes the number of dof)

vector of the joint angular velocities, J is the Jacobian of the robotic arm, and vef the
velocity of the end-effector.
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For a revolute joint, the Jacobian matrix can be calculated by (Tsai 1999)

J ¼ j1, j2, . . . , jn½ �, ji ¼ zi�1 � pi�1

zi�1

� �
(29)

where zi�1 and pi�1 are given by

zi�1 ¼ Ri
i�1 0 0 1 �T, pi�1 ¼ Ri

i�1qi�1 þ pi
�

(30)

Fig. 2 AAU 5-dof robotic arm: (a) a prototype and (b) coordinate systems

Table 1 D-H parameters

of the 5-dof robotic arm
Joint i αi ai di θi
1 π/2 0 h1 θ1
2 0 l1 0 θ2
3 π/2 0 0 θ3
4 �π/2 0 l2 θ4
5 π/2 0 d1 θ5
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where qi�1 ¼ [ai cos θi, ai sin θi, di]
T. The local coordinates of the end-effector are

defined as pn ¼ [0, 0, 0]T. When the desired end-effector velocity vef is given, the
joint angular velocity can be solved by Eq. 28.

The joint angular acceleration €θ can be calculated through time derivative of the

velocity _θ.
€θ ¼ _J

�1
ve f þ J�1 _ve f (31)

Simulation Results
The dynamics of the 5-dof robotic arm was simulated with a program implemented

in MATLAB. The trajectory of the end-effector in the global coordinate system is

defined as xef(t) ¼ 5 + 400 (1 � cos(t)), yef(t) ¼ �990 + 800(1 � cos(t/2)), and
zef(t) ¼ 280 + 250(cos(t/2) � 1), all with unit of mm, which leads to

_xe f ¼
400 sin tð Þ
400 sin t=2ð Þ
�125 sin t=2ð Þ

2
4

3
5

The Euler angles for the end-effector are given as ψ ¼ [0, cos(t/180), 0]T,
following ZXZ convention. The rotation implies the end-effector remains horizontal

during the prescribed motion. For the prescribed motion, the rotation matrix

R and angular velocity ω can be readily found. The velocities of the end-effector

are vef ¼ _xTef ,ω
T

h iT
, from which the joint angular velocities and accelerations are

calculated.

To implement the Newton-Euler method to solve the inverse dynamics problem,

the equations in section “Recursive Newton-Euler Method” are summarized in a

recursive manner:

Outward recursion: i : 1 ! 5

ω0
i ¼ Ri

i�1ω
0
i�1 þ _θiz

0
i (32a)

ω0
i ¼ Ri

i�1ω
0
i�1 þ €θiz

0
i þ Ri

i�1ω
0
i�1 � _θiz

0
i (32b)

_v0i ¼ Ri
i�1 _vii�1 þ _ω0

i�1 � pi�1
i þ ω0

i�1 � ω0
i�1 � pi�1

i

� �� �
(32c)

_v0Ci
¼ _v0i�1 þ _ω0

i�1 � p0Ci
þ ω0

i�1 � ω0
i�1 � p0Ci


 �
(32d)

f 0Ci ¼ mi _v
0
Ci

(32e)

n0Ci ¼ Ii _ω
0
i þ ω0

i � Iiω
0
i (32f)

Inward recursion: i : 5 ! 1

f 0i ¼ f 0Ci
þ Ri

iþ1f
0
iþ1 (32g)
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n0i ¼ n0Ci
þ Ri

iþ1n
0
iþ1 þ p0Ci

� f 0Ci
þ p0iþ1 � Ri

iþ1f
0
iþ1 (32h)

τi ¼ n0Ti z
0
i (32i)

The joint angular velocities and accelerations are solved through Eq. 28, with

results displayed in Fig. 3. Let the payload at the end-effector of the robot be 5 kg,

which implies f6 ¼ 5gN, n6 ¼ 0, where g is the vector of gravity acceleration.

Through the modeling of inverse dynamics of Eqs. 32g–32i, the joint torques are

solved, as shown in Fig. 4.

Example II: A Spherical Parallel Manipulator

In this example, the Lagrange’s equation is illustrated with a spherical parallel

manipulator (SPM) (Gosselin and Angeles 1989). The SPMs are of closed-

kinematic chain. The Lagrange’s equation of the 1st kind is adopted for the

dynamics modeling of this manipulator.

A general SPM is shown in Fig. 5a with the parameterized ith leg in Fig. 5b. The
ith limb consists of three revolute joints, whose axes are parallel to the unit vectors

ui, vi, and wi. All three limbs have identical architectures, defined by angles α1 and
α2. Moreover, β and γ define the geometry of two triangular pyramids on the base

and the mobile platforms, respectively. The origin O of the base coordinate system

xyz is located at point O. The z axis is normal to the bottom surface of the base

pyramid and points upward, while the y axis is located in the plane made by the

z axis and u1.

Kinematic Modeling
Under the prescribed coordinate system, unit vector ui is derived as

ui ¼ � sin ηi sin γ cos ηi sin γ � cos γ½ �T (33)

where ηi ¼ 2(i � 1)π/3, i ¼ 1, 2, 3.

The unit vector vi of the axis of the intermediate revolute joint in the ith leg is

expressed as:

vi ¼
�sηisγcα1 þ cηisθi � sηicγcθið Þsα1
cηisγcα1 þ sηisθi þ cηicγcθið Þsα1

�cγcα1 þ sγcθisα1

2
4

3
5 (34)

where s(�) ¼ sin(�) and c(�) ¼ cos(�).
The unit vector wi of the top revolute joint in the ith leg is a function of the

orientation of the mobile platform (MP), namely,

wi ¼ wix wiy wiz �T ¼ Qw�
i

�
(35)
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where Q is the rotation matrix that carries the MP from its reference orientation

to the current one and wi
* is the unit vector of the axis of the top revolute joint

in the ith leg when the mobile platform is in its reference orientation, which is

given as

Fig. 3 Angular velocities and accelerations of the robotic arm joints
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w�
i ¼ � sin ηi sin β cos ηi sin β cos β �T�

(36)

Kinematic Jacobian Matrix
Let ω ¼ [ωx, ωy, ωz]

T denote the angular velocity of the mobile platform; the

velocity equation via the ith leg can be stated as

Fig. 4 Joint torques of the robotic arm

Fig. 5 A general SPM and the coordinate system, where only one leg is shown for clarity
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ω ¼ _θiui þ _ψ ivi þ _ξiwi (37)

To eliminate _ψ i and
_ξi, dot-multiplying Eq. 37 on both sides with vi � wi yields

vi � wið Þ � ω ¼ ui � við Þ � wi
_θi (38)

from which the SPM velocity equation is obtained as

Aω ¼ B _θ (39)

with

A ¼ v1 � w1 v2 � w2 v3 � w3 �T
�

(40a)

B ¼ diag u1 � v1ð Þ � w1 u2 � v2ð Þ � w2 u3 � v3ð Þ � w3 �½ (40b)

where _θ¼
h
_θ1, _θ2, _θ3

iT
. Matrices A and B are the forward and inverse Jacobian

matrices of the manipulator, respectively. The kinematic Jacobian matrix J of the

manipulator can be expressed as follows as long as matrix A is not singular:

J ¼ B�1A ¼ j1 j2 j3½ �T ; ji ¼
vi � wi

ui � vi � wi
(41)

Equation 38 is thus rewritten for the single joint velocity as

_θi ¼ jTi ω (42)

Velocity and Acceleration Analysis
The motions of the link and mobile platform are shown in Fig. 6. The angle rates

_ϕ ¼ _ϕ; _θ; _σ
� 	T

and the angular velocity ω are linearly dependent, namely,ω5Ψ _ϕ.
Differentiating the equation with respect to time yields

_ω ¼ ψ €ϕþ _ψ _ϕ (43)

Matrix Ψ is dependent on the rotations. For example, a rotation with the Euler

convention ZY Z of Q ¼ Rz(ϕ)Ry(θ)Rz(σ�ϕ), matrix Ψ is

ψ ¼
�sθcϕ �sϕ sθcϕ
�sθsϕ cϕ sθsϕ
1� cθ 0 cϕ

2
4

3
5 (44)

The velocity _ψ of the intermediate joint of ith leg is found by making use of

Eq. 37 to eliminate _θi and _ξi . Dot-multiplying Eq. 37 on both sides with ui � wi

leads to
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ui � wið Þ � ω ¼ _ψ ui � wið Þ � vi or _ψ ¼ ui � wið ÞT
ui � wið Þ � vi ω � jTψ iω (45)

The angular velocity of the distal link in the ith leg in the reference frame xyz is

found as ρi ¼ _θi ui þ _ψ i vi. Let ρli denote the corresponding angular velocity in the

local frame xiyizi, which means

ρi ¼ eix eiy eiz½ �ρli or ρi ¼ Eiρli (46)

with

eix ¼ vi þ wi

vi þ wij jj j , eiy ¼
vi þ wi

vi þ wij jj j , eiz ¼
vi þ wi

vi þ wij jj j (47)

which yields

ρli ¼ ET
i ρi (48)

Dynamic Modeling
The Lagrange’s equation for the SPM is expressed as

d

dt

@L

@ _q

� �
� @L

@q
þ CT

qλ ¼ Qex (49)

Fig. 6 The movement of the mobile platform and links

1868 S. Bai et al.



where q ¼ [θ1, θ2, θ3, ϕ, θ, σ]
T, Qex ¼ [τT, 0]T � ℝ6 is the vector of external

forces, and vector τ ¼ [τ1, τ2, τ3]
T characterizes the actuator torques. Moreover,

λ ¼ [λ1, λ2, λ3]T is a vector of Lagrange multipliers. Matrix Cq is the system’s

constraint Jacobian, which can be found from the velocity Eq. 39, namely,

B _θ� Aω ¼ B �Aψ � _θ
T _ϕ

T �T ¼ 0
hh

(50)

that is,

Cq _q ¼ 0 (51)

with Cq ¼ [B�AΨ].

Lagrangian of the Mobile Platform
The local frame xpypzp of the MP is established with the origin located at point P,
i.e., the center of mass of the MP of position vector p. Henceforth, the Lagrangian
of the mobile platform is obtained as

Lp ¼ Tp � Vp ¼ 1

2
ω0TIpω0 � mpg

Tp (52)

where Ip denotes the local inertia tensor of the mobile platform and ω0 its local

angular velocity. Moreover, g ¼ [0, 0, 9.81]T.

Lagrangian of a Single Leg
The Lagrangian of the ith leg is derived as

Li ¼ Ti � Vi ¼ 1

2
Il1 _θ

2

i þ
1

2
ρTliIl2ρli � ml1g

Thi � ml2g
Tki i ¼ 1, 2, 3 (53)

where Il1 is the proximal link’s mass moment of inertia about ui and Il2 is the distal
link’s local inertia tensor about point O. Moreover, hi and ki indicate the position
vectors for the centers of the mass of the proximal and distal links, respectively.

Substituting the Lagrangian Lp and Li, i ¼ 1, 2, 3, into Eq. 49, the inertia matrix

can be derived as

M qð Þ ¼ M1 03
03 M2

� �
(54)

with

M1 ¼ diag Il1 Il1 Il1 �½ (55a)

M2 ¼ ΨT QIpQ
T þ

X3

i¼1
jiu

T
i þ jψ iv

T
i


 �
EIl2E

T uij
T
i þ vij

T
ψ i


 �i
Ψ

h
(55b)
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and the other terms also can be derived. Moreover, differentiating Eq. 51 with

respect to time yields

Cq€q ¼ � _Cq _q (56)

with

Cq€q ¼ Cq €θ
T €ϕ

T �T ; _Cq _q ¼ _B� _AΨ�A _Ψ
� 	

_q
h

(57)

where

_A¼ jA1 jA2 jA3 �T
�

(58a)

_B¼ diag jB1 jB2 jB3 �½ (58b)

and

jAi ¼ _θi ui � við Þ � wi þ vi � ω� wið Þ (59a)

jBi ¼ _θi ui � ui � við Þ½ � � wi þ ui � við Þ � ω� wið Þ (59b)

Combining Eqs. 49 and 56 leads to

M qð Þ CT
q

Cq 0

� �
€q
λ

� �
¼ τ � _M qð Þ _qþ Tq � Vq

� _Cq _q

� �
(60)

With an external moment vector m, the actuator torques are expressed as

τa ¼ τ � J�Tm (61)

Simulation Results
The previously developed dynamic model is applied to a co-axial SPM (Bai 2010),

whose properties are given in Tables 2 and 3, where inertia tensors Ip and Il2 contain

Table 2 Parameters of the SPM and the initial simulation condition

α1 [deg] α2 [deg] β [deg] γ [deg] [ϕ, θ, σ] [rad] [ _θ1, _θ2, _θ3] [rad/s] m [Nm]

60 80 75 0 [0, π/6, 0] [�8, �7, �9] [0.1, 0.1, 0.1]

Table 3 Mass and inertia properties of the SPM

Mobile platform Proximal link Distal link

mp [kg] Ip [10
�4 kg m2] ml1 [kg] Il1 [10

�3 kg m2] ml2 [kg] Il2 [10
�4 kg m2]

0.332 [3.855 3.855

7.688]

0.123 1.169 0.114 [1.852 0.089

1.921]
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only diagonal entries. Simulations were conducted for motion of constant angular

accelerations at actuating joints, their initial conditions being specified in Table 2.

The results of the actuating torques are shown in Fig. 7. The results agree well with

the simulation results obtained from CAE software, namely, the MSC Adams.

Summary

This book chapter introduces the fundamental of manipulator dynamics, with focus

on the recursive Newton-Euler approach and the Lagrange equations, which are

approaches mostly common used in robot dynamics analysis and control. Both

inverse and forward dynamic problems are discussed. Applications to manipulators

are demonstrated.

In solving the dynamics equation, numerics problems may arise. One is compu-

tational efficiency. The recursive approach presented in this chapter is quite effi-

cient, while the Lagrange’s equations, as a closed-form equation, implies high

computational cost in finding solutions, which uses numerical methods, for exam-

ple, Newton–Raphson method. Other problems include the singular Jacobian and

the instability of the solution, etc., among others. The Jacobian matrix can become

singular when a singular configuration is reached or redundant constraints are

included, which may lead to a crash of simulation or a large error. Instability

takes place in numerical integration of the equation of motion, when the roundoff

errors increase with time, which can lead to the constraint equations not satisfied. A

method to improve the stability is the Baumgarte stabilization method, which is

introduced in (de Jalón and Bayo 1994).

Fig. 7 The simulation of inverse dynamics: actuator torques
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The approaches presented in this chapter are closely relevant to multibody

dynamics, which was extensively studied in the last century. With the advances

of robotics in the twenty-first century, manipulator dynamics has significantly been

expanded, not limited to multibody dynamics, but get involved with other subsets of

the dynamics. A new development among others is the continuum manipulators,

where continuummechanics is the major theory applicable (Walker 2013). The new

development of manipulator dynamics, which is not discussed in this chapter,

presents new opportunity and challenges for robotics.

References

Angeles J (1997) Fundamentals of robotic mechanical systems: theory, methods, and algorithms.

Springer, New York

Bai S (2010) Optimum design of spherical parallel manipulators for a prescribed workspace. Mech

Mach Theory 45(2):200–211

de Jalón JG, Bayo E (1994) Kinematic and dynamic simulation of multibody systems: the real-

time challenge. Springer, New York

Denavit J, Hartenberg RS (1955) A kinematic notation for lower pair mechanisms based on

matrices. ASME J Appl Mech 77:215–221

Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review.

Mech Mach Theory 41(7):749–777

Featherstone R (1983) The calculation of robot dynamics using articulated-body inertias. Int J

Robot Res 2(1):13–30

Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: Proceedings of the

2000 I.E. International Conference on Robotics & Automation, San Francisco, pp 826–834,

Apr 2000

Gosselin CM, Angeles J (1989) The optimum kinematic design of a spherical three-degree-of-

freedom parallel manipulator. ASME J Mech Des 111(2):202–207

Low KH (1987) A systematic formulation of dynamic equations for robot manipulators with

elastic links. J Robot Syst 4(3):435–456

Luh JYS, Walker MW, Paul RPC (1980) On-line computational scheme for mechanical manip-

ulators. J Dyn Sys Meas Control 102(2):69–76

Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC

Press, Boca Raton

Shabana AA (2013) Dynamics of multibody systems. Cambridge University Press, New York,

USA

Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley,

New York

Walker ID (2013) Continuous backbone continuum robot manipulators. ISRN Robot Article ID:

726506, 19pp

Zhou L, Bai S, Hansen MR (2011) Design optimization on the drive train of a light-weight robotic

arm. Mechatronics 21(3):560–569

1872 S. Bai et al.


	51 Manipulator Dynamics
	Introduction
	Recursive Newton-Euler Method
	Outward Recursion to Calculate Velocities and Accelerations
	Revolute joints
	Prismatic Joints

	Inward Recursion to Calculate Forces and Torques
	Forward Dynamics Problem


	Lagrange´s Equation
	Examples
	Example I: A 5-dof Lightweight Robotic Arm
	Dynamics Modeling
	Simulation Results

	Example II: A Spherical Parallel Manipulator
	Kinematic Modeling
	Kinematic Jacobian Matrix
	Velocity and Acceleration Analysis
	Dynamic Modeling
	Lagrangian of the Mobile Platform
	Lagrangian of a Single Leg
	Simulation Results


	Summary
	References


