
Chapter 4
Alignment of Time-of-Flight and Stereoscopic
Data

Abstract An approximately Euclidean representation of the visible scene can be
obtained directly from a time-of-flight camera. An uncalibrated binocular system,
in contrast, gives only a projective reconstruction of the scene. This chapter ana-
lyzes the geometric mapping between the two representations, without requiring
an intermediate calibration of the binocular system. The mapping can be found by
either of two new methods, one of which requires point correspondences between
the range and color cameras, and one of which does not. It is shown that these
methods can be used to reproject the range data into the binocular images, which
makes it possible to associate high-resolution color and texture with each point in the
Euclidean representation. The extension of these methods to multiple time-of-flight
system is demonstrated, and the associated problems are examined. An evaluation
metric, which distinguishes calibration error from combined calibration and depth
error, is developed. This metric is used to evaluate a system that is based on three
time-of-flight cameras.

Keywords Depth and color combination · Projective alignment · Time-of-Flight
camera calibration ·Multicamera systems

4.1 Introduction

It was shown in the preceding chapter that time-of-flight (tof) cameras can be geo-
metrically calibrated by standard methods. This means that each pixel records an
estimate of the scene distance (range) along the corresponding ray, according to the
principles described in Chap. 1. The 3-D structure of a scene can also be recon-
structed from two or more ordinary images, via the parallax between corresponding
image points. There are many advantages to be gained by combining the range and
parallax data. Most obviously, each point in a parallax-based reconstruction can be
mapped back into the original images, from which color and texture can be obtained.

M. Hansard et al., Time-of-Flight Cameras, SpringerBriefs in Computer Science, 59
DOI: 10.1007/978-1-4471-4658-2_4, © Miles Hansard 2013

http://dx.doi.org/10.1007/978-1-4471-4658-2_1


60 4 Alignment of Time-of-Flight and Stereoscopic Data

Fig. 4.1 The central panel shows a range image, color-coded according to depth (the blue region is
beyond the far limit of the device). The left and right cameras were aligned to the tof system, using
the methods described here. Each 3-D range pixel is reprojected into the high-resolution left and
right images (untinted regions were occluded, or otherwise missing, from the range images). Note
the large difference between the binocular views, which would be problematic for dense stereo-
matching algorithms. It can also be seen that the tof information is noisy, and of low resolution

Parallax-based reconstructions are, however, difficult to obtain, owing to the difficulty
of putting the image points into correspondence. Indeed, it may be impossible to find
any correspondences in untextured regions. Furthermore, if a Euclidean reconstruc-
tion is required, then the cameras must be calibrated. The accuracy of the resulting
reconstruction will also tend to decrease with the distance of the scene from the
cameras [23].

The range data, on the other hand, are often very noisy (and, for very scattering
surfaces, incomplete), as described in Chap. 1. The spatial resolution of current tof
sensors is relatively low, the depth range is limited, and the luminance signal may be
unusable for rendering. It should also be recalled that tof cameras of the type used
here [19] cannot be used in outdoor lighting conditions. These considerations lead
to the idea of a mixed color and tof system [18] as shown in Figs. 4.1 and 4.2. Such
a system could, in principle, be used to make high-resolution Euclidean reconstruc-
tions, with full photometric information [17]. The task of camera calibration would
be simplified by the tof camera, while the visual quality of the reconstruction would
be ensured by the color cameras.

In order to make full use of a mixed range/parallax system, it is necessary to
find the exact geometric relationship between the different devices. In particular, the
reprojection of the tof data, into the color images, must be obtained. This chapter
is concerned with the estimation of these geometric relationships. Specifically, the
aim is to align the range and parallax reconstructions, by a suitable 3-D transforma-
tion. The alignment problem has been addressed previously, by fully calibrating the
binocular system, and then aligning the two reconstructions by a rigid transformation
[6, 12, 27, 28]. This approach can be extended in two ways. First, it is possible to
optimize over an explicit parameterization of the camera matrices, as in the work of
Beder et al. [3] and Koch et al. [16]. The relative position and orientation of all cam-
eras can be estimated by this method. Second, it is possible to minimize an intensity
cost between the images and the luminance signal of the tof camera. This method
estimates the photometric, as well as geometric, relationships between the different
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Fig. 4.2 A single tof+2rgb system, as used in this chapter, with the tof camera in the center of
the rail

cameras [13, 22, 25]. A complete calibration method, which incorporates all of these
considerations, is described by Lindner et al. [18].

The approaches described above, while capable of producing good results, have
some limitations. First, there may be residual distortions in the range data, that make
a rigid alignment impossible [15]. Second, these approaches require the binocular
system to be fully calibrated, and recalibrated after any movement of the cameras.
This requires, for best results, many views of a known calibration object. Typical
view-synthesis applications, in contrast, require only a weak calibration of the cam-
eras. One way to remove the calibration requirement is to perform an essentially
2-D registration of the different images [1, 4]. This, however, can only provide an
instantaneous solution, because changes in the scene structure produce correspond-
ing changes in the image-to-image mapping.

An alternative approach is proposed here. It is hypothesized that the tof recon-
struction is approximately Euclidean. This means that an uncalibrated binocular
reconstruction can be mapped directly into the Euclidean frame, by a suitable 3-D
projective transformation. This is a great advantage for many applications, because
automatic uncalibrated reconstruction is relatively easy. Furthermore, although the
projective model is much more general than the rigid model, it preserves many
important relationships between the images and the scene (e.g., epipolar geometry
and incidence of points on planes). Finally, if required, the projective alignment can
be upgraded to a fully calibrated solution, as in the methods described above.

It is emphasized that the goal of this work is not to achieve the best possible
photogrammetric reconstruction of the scene. Rather, the goal is to develop a practical
way to associate color and texture information to each range point, as in Fig. 4.1. This
output is intended to use in view-synthesis applications.

This chapter is organized as follows. Section 4.2.1 briefly reviews some standard
material on projective reconstruction, while Sect. 4.2.2 describes the representation
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of range data in the present work. The chief contributions of the subsequent sections
are as follows: Sect. 4.2.3 describes a point-based method that maps an ordinary
projective reconstruction of the scene onto the corresponding range representation.
This does not require the color cameras to be calibrated (although it may be necessary
to correct for lens distortion). Any planar object can be used to find the alignment,
provided that image features can be matched across all views (including that of the
tof camera). Section 4.2.4 describes a dual plane-based method, which performs
the same projective alignment, but that does not require any point matches between
the views. Any planar object can be used, provided that it has a simple polygonal
boundary that can be segmented in the color and range data. This is a great advantage,
owing to the very low resolution of the luminance data provided by the tof camera
(176 × 144 here). This makes it difficult to automatically extract and match point
descriptors from these images, as described in Chap. 3. Furthermore, there are tof
devices that do not provide a luminance signal at all. Section 4.2.5 addresses the
problem of multisystem alignment. Finally, Sect. 4.3 describes the accuracy than can
be achieved with a three tof+2rgb system, including a new error metric for tof data
in Sect. 4.3.2. Conclusions and future directions are discussed in Sect. 4.4.

4.2 Methods

This section describes the theory of projective alignment, using the following nota-
tion. Bold type will be used for vectors and matrices. In particular, points P , Q and
planes U ,V in the 3-D scene will be represented by column vectors of homogeneous
coordinates, e.g.,

P =
(

P�
P4

)
and U =

(
U�
U4

)
(4.1)

where P� = (P1, P2, P3)
� and U� = (U1, U2, U3)

�. The homogeneous coordi-
nates are defined up to a nonzero scaling; for example, P � (P�/P4, 1)�. In par-
ticular, if P4 = 1, then P� contains the ordinary space coordinates of the point P .
Furthermore, if |U�| = 1, then U4 is the signed perpendicular distance of the plane
U from the origin, and U� is the unit normal. The point P is on the plane U if
U�P = 0. The cross-product u × v is often expressed as (u)×v, where (u)× is a
3× 3 antisymmetric matrix. The column vector of N zeros is written 0N .

Projective cameras are represented by 3 × 4 matrices. For example, the range
projection is

q � CQ where C = (
A3×3 | b3×1

)
. (4.2)

The left and right color cameras C� and Cr are similarly defined, e.g., p� � C� P .
Table 4.1 summarizes the geometric objects that will be aligned.

Points and planes in the two systems are related by the unknown 4 × 4 space
homography H , so that
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Table 4.1 Summary of
notations in the left, right, and
range systems

Observed Reconstructed
Points Points Planes

Binocular C�,Cr p�, pr P U
Range C (q, ρ) Q V

Q � HP and V � H−�U . (4.3)

This model encompasses all rigid, similarity, and affine transformations in 3-D. It
preserves collinearity and flatness, and is linear in homogeneous coordinates. Note
that, in the reprojection process, H can be interpreted as a modification of the camera
matrices, e.g., p� �

(
C� H−1

)
Q, where H−1 Q � P .

4.2.1 Projective Reconstruction

A projective reconstruction of the scene can be obtained from matched points p�k and
prk , together with the fundamental matrix F, where p�rk Fp�k = 0. The fundamental
matrix can be estimated automatically, using the well-established ransac method.
The camera matrices can then be determined, up to a four-parameter projective
ambiguity [10]. In particular, from F and the epipole er , the cameras can be defined as

C� �
(
I | 03) and Cr �

(
(er )×F + er g�

∣∣ γ er
)
. (4.4)

where γ �= 0 and g = (g1, g2, g3)
� can be used to bring the cameras into a

plausible form. This makes it easier to visualize the projective reconstruction and,
more importantly, can improve the numerical conditioning of subsequent procedures.

4.2.2 Range Fitting

The tof camera C provides the distance ρ of each scene point from the camera
center, as well as its image coordinates q = (x, y, 1). The back projection of this
point into the scene is

Q� = A−1((ρ/α) q − b
)

where α = ∣∣A−1 q
∣∣. (4.5)

Hence, the point ( Q�, 1)� is at distance ρ from the optical center −A−1b, in the
direction A−1q. The scalar α serves to normalize the direction vector. This is the
standard pinhole model, as used in [2].
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The range data are noisy and incomplete, owing to illumination and scattering
effects. This means that, given a sparse set of features in the intensity image (of the
tof device), it is not advisable to use the back-projected point (4.5) directly. A better
approach is to segment the image of the plane in each tof camera (using the range
and/or intensity data). It is then possible to back project all of the enclosed points,
and to robustly fit a plane V j to the enclosed points Qi j , so that V�j Qi j ≈ 0 if
point i lies on plane j . Now, the back projection Qπ of each sparse feature point q
can be obtained by intersecting the corresponding ray with the plane V , so that the
new range estimate ρπ is

ρπ = V�� A−1b− V4

(1/α) V�� A−1q
(4.6)

where |V4| is the distance of the plane to the camera center, and V� is the unit normal
of the range plane. The new point Qπ is obtained by substituting ρπ into (4.5).

The choice of plane-fitting method is affected by two issues. First, there may be
very severe outliers in the data, due to the photometric and geometric errors described
in Chap. 1. Second, the noise-model should be based on the pinhole model, which
means that perturbations occur radially along visual directions, which are not (in
general) perpendicular to the observed plane [11, 24]. Several plane-fitting methods,
both iterative [14] and noniterative [20], have been proposed for the pinhole model.
The outlier problem, however, is often more significant. Hence, in practice, a ransac-
based method is often the most effective.

4.2.3 Point-Based Alignment

It is straightforward to show that the transformation H in (4.3) could be estimated
from five binocular points Pk , together with the corresponding range points Qk .
This would provide 5 × 3 equations, which determine the 4 × 4 entries of H , sub-
ject to an overall projective scaling. It is better, however, to use the ‘Direct Linear
Transformation’ method [10], which fits H to all of the data. This method is based
on the fact that if

P ′ = HP (4.7)

is a perfect match for Q, then μ Q = λP ′, and the scalars λ and μ can be eliminated
between pairs of the four implied equations [5]. This results in

(4
2

) = 6 interdependent
constraints per point. It is convenient to write these homogeneous equations as

(
Q4 P ′� − P ′4 Q�

Q� × P ′�

)
= 06. (4.8)

Note that if P ′ and Q are normalized so that P ′4 = 1 and Q4 = 1, then the
magnitude of the top half of (4.8) is simply the distance between the points.
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Following Förstner [7], the left-hand side of (4.8) can be expressed as
(

Q
)
∧P ′

where (
Q

)
∧ =

(
Q4 I3 −Q�(
Q�

)
× 03

)
(4.9)

is a 6 × 4 matrix, and
(

Q�
)
×P� = Q� × P�, as usual. The Eq. (4.8) can now be

written in terms of (4.7) and (4.9) as

(
Q

)
∧HP = 06. (4.10)

This system of equations is linear in the unknown entries of H , the columns of which
can be stacked into the 16×1 vector h. The Kronecker product identity vec(XY Z) =
(Z�⊗ X) vec(Y) can now be applied, to give

(
P� ⊗ (

Q
)
∧
)

h = 06 where h = vec
(
H

)
. (4.11)

If M points are observed on each of N planes, then there are k = 1, . . . , M N
observed pairs of points, Pk from the projective reconstruction and Qk from the
range back projection. The M N corresponding 6× 16 matrices

(
P�k ⊗ ( Qk)∧

)
are

stacked together, to give the complete system

⎛
⎜⎝

P�1 ⊗
(

Q1
)
∧

...

P�M N ⊗
(

QM N

)
∧

⎞
⎟⎠ h = 06M N (4.12)

subject to the constraint |h| = 1, which excludes the trivial solution h = 016. It
is straightforward to obtain an estimate of h from the SVD of the the 6MN × 16
matrix on the left of (4.12). This solution, which minimizes an algebraic error [10],
is the singular vector corresponding to the smallest singular value of the matrix. In
the minimal case, M = 1, N = 5, the matrix would be 30 × 16. Note that, the
point coordinates should be transformed, to ensure that (4.12) is numerically well
conditioned [10]. In this case, the transformation ensures that

∑
k Pk� = 03 and

1
M N

∑
k |Pk�| =

√
3, where Pk4 = 1. The analogous transformation is applied to

the range points Qk .
The DLT method, in practice, gives a good approximation HDLT of the homog-

raphy (4.3). This can be used as a starting point for the iterative minimization of a
more appropriate error measure. In particular, consider the reprojection error in the
left image,

E�(C�) =
M N∑
k=1

D
(
C� Qk, p�k

)2 (4.13)

where D( p, q) = | p�/p3−q�/q3|. A 12-parameter optimization of (4.13), starting
with C�← C� H−1

DLT, can be performed by the Levenberg-Marquardt algorithm [21].
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The result will be the camera matrix C�
� that best reprojects the range data into the left

image (C�
r is similarly obtained). The solution, provided that the calibration points

adequately covered the scene volume, will remain valid for subsequent depth and
range data.

Alternatively, it is possible to minimize the joint reprojection error, defined as the
sum of left and right contributions,

E
(
H−1) = E�

(
C� H−1)+ Er

(
Cr H−1) (4.14)

over the (inverse) homography H−1. The 16 parameters are again minimized by the
Levenberg-Marquardt algorithm, starting from the DLT solution H−1

DLT.
The difference between the separate (4.13) and joint (4.14) minimizations is that

the latter preserves the original epipolar geometry, whereas the former does not.
Recall that C� Cr , H and F are all defined up to scale, and that F satisfies an
additional rank-two constraint [10]. Hence, the underlying parameters can be counted
as (12− 1)+ (12− 1) = 22 in the separate minimizations, and as (16− 1) = 15
in the joint minimization. The fixed epipolar geometry accounts for the (9 − 2)

missing parameters in the joint minimization. If F is known to be very accurate (or
must be preserved) then the joint minimization (4.14) should be performed. This will
also preserve the original binocular triangulation, provided that a projective-invariant
method was used [9]. However, if minimal reprojection error is the objective, then
the cameras should be treated separately. This will lead to a new fundamental matrix
F� = (e�

r )×C�
r (C�

�)
+, where (C�

�)
+ is the generalized inverse. The right epipole is

obtained from e�
r = C�

r d�
�, where d�

� represents the nullspace C�
�d�

� = 03.

4.2.4 Plane-Based Alignment

The DLT algorithm of Sect. 4.2.3 can also be used to recover H from matched planes,
rather than matched points. Equation (4.10) becomes

(
V )∧ H−�U = 06 (4.15)

where U and V represent the estimated coordinates of the same plane in the parallax
and range reconstructions, respectively. The estimation procedure is identical to that
in Sect. 4.2.3, but with vec(H−�) as the vector of unknowns.

This method, in practice, produces very poor results. The chief reason that
obliquely viewed planes are foreshortened, and therefore hard to detect/estimate,
in the low-resolution tof images. It follows that the calibration data set is biased
towards fronto-parallel planes.1 This bias allows the registration to slip sideways,
perpendicular to the primary direction of the tof camera. The situation is greatly

1 The point-based algorithm is unaffected by this bias, because the scene is ultimately ‘filled’ with
points, regardless of the contributing planes.
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improved by assuming that the boundaries of the planes can be detected. For example,
if the calibration object is rectangular, then the range projection of the plane V is
bounded by four edges vi , where i = 1, . . . 4. Note that, these are detected as depth
edges, and so no luminance data are required. The edges, represented as lines vi ,
back project as the faces of a pyramid,

Vi = C�vi =
(

Vi�
0

)
, i = 1, . . . , L (4.16)

where L = 4 in the case of a quadrilateral projection. These planes are linearly
dependent, because they pass through the center of projection; hence, the fourth
coordinates are all zero if, as here, the tof camera is at the origin. Next, if the
corresponding edges u�i and uri can be detected in the binocular system, using both
color and parallax information, then the planes Ui can easily be constructed. Each
calibration plane now contributes an additional 6L equations

(
Vi )∧ H−�Ui = 06 (4.17)

to the DLT system (4.12). Although these equations are quite redundant (any two
planes span all possibilities), they lead to a much better DLT estimate. This is because
they represent exactly those planes that are most likely to be missed in the calibration
data, owing to the difficulty of feature detection over surfaces that are extremely
foreshortened in the image.

As in the point-based method, the plane coordinates should be suitably trans-
formed, in order to make the numerical system (4.12) well conditioned. The trans-
formed coordinates satisfy the location constraint

∑
k Uk� = 03, as well as the scale

constraint
∑

k |Uk�|2 = 3
∑

k U 2
k4, where Uk� = (Uk1, Uk2, Uk3)

�, as usual. A final
renormalization |Uk | = 1 is also performed. This procedure, which is also applied
to the V k , is analogous to the treatment of line coordinates in DLT methods [26].

The remaining problem is that the original reprojection error (4.13) cannot be used
to optimize the solution, because no luminance features q have been detected in the
range images (and so no 3-D points Q have been distinguished). This can be solved
by reprojecting the physical edges of the calibration planes, after reconstructing
them as follows. Each edge plane V i intersects the range plane V in a space-line,
represented by the 4× 4 Plücker matrix

W i = V V �
i − Vi V�. (4.18)

The line W i reprojects to a 3× 3 antisymmetric matrix [10]; for example

W�i � C�Wi C�� (4.19)

in the left image, and similarly in the right. Note that W �i p� = 0 if the point p� is
on the reprojected line [10]. The line-reprojection error can therefore be written as
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E×� (C�) =
L∑

i=1

N∑
j=1

D×
(
C�Wi C�� , u�i j

)2
. (4.20)

The function D×
(
M, n

)
compares image lines, by computing the sine of the angle

between the two coordinate vectors,

D×(M, n) =
√

2
∣∣Mn

∣∣
|M| |n| =

|m × n|
|m| |n| , (4.21)

where M = (m)×, and |M| is the Frobenius norm. It is emphasized that the coor-
dinates must be normalized by a suitable transformations G� and Gr , as in the case
of the DLT. For example, the line n should be fitted to points of the form Gp, and
then M should be transformed as G−�M, before computing (4.21). The reprojection
error (4.20) is numerically unreliable without this normalization.

The line reprojection (4.21) can either be minimized separately for each camera,
or jointly as

E×
(
H−1) = E×�

(
C� H−1)+ E×r

(
Cr H−1) (4.22)

by analogy with (4.14). Finally, it should be noted that although (4.21) is defined in
the image, it is an algebraic error. However, because the errors in question are small,
this measure behaves predictably (see Fig. 4.2).

4.2.5 Multisystem Alignment

The point-based and plane-based procedures, described in Sects. 4.2.3 and 4.2.4
respectively, can be used to calibrate a single tof+2rgb system. Related methods
can be used for the joint calibration of several such systems, as will now be explained,
using the point-based representation. In this section, the notation P i will be used
for the binocular coordinates (with respect to the left camera) of a point in the i-th
system, and likewise Qi for the tof coordinates of a point in the same system. Hence,
the i-th tof, left and right rgb cameras have the form

C i � (Ai | 03), C�i � (A�i | 03) and Cri � (Ari | bri ) (4.23)

where Ai and A�i contain only intrinsic parameters, whereas Ari also encodes the
relative orientation of Cri with respect to C�i . Each system has a transformation
H−1

i that maps tof points Qi into the corresponding rgb coordinate system of C�i .
Furthermore, let the 4×4 matrix Gi j be the transformation from system j , mapping
back to system i . This matrix, in the calibrated case, would be a rigid 3-D transfor-
mation. However, by analogy with the tof-to-rgb matrices, each Gi j is generalized
here to a projective transformation, thereby allowing for spatial distortions in the
data. The left and right cameras that project a scene point P j in coordinate system j
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Fig. 4.3 Example of a three tof+2rgb setup, with tof cameras labeled 1,2,3. Each ellipse represents
a separate system, with system 2 chosen as the reference. The arrows (with camera-labels) show
some possible tof-to-rgb projections. For example, a point P2 � H−1

2 Q2 in the center projects
directly to rgb view �2 via C�2, whereas the same point projects to �3 via C�32 = C�3G32

to image points p�i and pri in system i are

C�i j = C�i Gi j and Cri j = Cri Gi j . (4.24)

Note that if a single global coordinate system is chosen to coincide with the k-th
rgb system, then a point Pk projects via C�ik and Crik . These two cameras are
respectively equal to C�i and Cri in (4.23) only when i = k, such that Gi j = I
in (4.24). A typical three-system configuration is shown in Fig. 4.3.

The transformation Gi j can only be estimated directly if there is a region of
common visibility between systems i and j . If this is not the case (as when the systems
face each other, such that the front of the calibration board is not simultaneously
visible), then Gi j can be computed indirectly. For example, G02 = G01 G12 where
P2 = G−1

12 G−1
01 P0. Note that, the stereo-reconstructed points P are used to estimate

these transformations, as they are more reliable than the tof points Q.

4.3 Evaluation

The following sections will describe the accuracy of a nine-camera setup, calibrated
by the methods described above. Section 4.3.1 will evaluate calibration error, whereas
Sect. 4.3.2 will evaluate total error. The former is essentially a fixed function of the
estimated camera matrices, for a given scene. The latter also includes the range noise
from the tof cameras, which varies from moment to moment. The importance of
this distinction will be discussed.
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The setup consists of three rail-mounted tof+2rgb systems, i = 1 . . . 3, as in
Fig. 4.3. The stereo baselines are 17 cm on average, and the tof cameras are sepa-
rated by 107 cm on average. The rgb images are 1624 × 1224, whereas the Mesa
Imaging SR4000 tof images are 176×144, with a depth range of 500 cm. The three
stereo systems are first calibrated by standard methods, returning a full Euclidean
decomposition of C�i and Cri , as well as the associated lens parameters. It was estab-
lished in [8] that projective alignment is generally superior to similarity alignment,
and so the transformations Gi j and H−1

j will be 4 × 4 homographies. These trans-
formations were estimated by the DLT method, and refined by LM-minimization of
the joint geometric error, as in (4.14).

4.3.1 Calibration Error

The calibration error is measured by first taking tof points Qπ
j corresponding to ver-

tices on the reconstructed calibration plane π j in system j , as described in Sect. 4.2.2.
These can then be projected into a pair of rgb images in system i , so that the error
Ecal

i j = 1
2

(
Ecal

�i j + Ecal
ri j

)
can be computed, where

Ecal
�i j =

1

|π |
∑
Qπ

j

D
(

C�i j H−1
j Qπ

j , p�i

)
(4.25)

and Ecal
ri j is similarly defined. The function D(·, ·) computes the image distance

between inhomogenized points, as in (4.13), and the denominator corresponds to
the number of vertices on the board, with |π | = 35 in the present experiments. The
measure (4.25) can of course be averaged over all images in which the board is
visible. The calibration procedure has an accuracy of around 1 pixel, as shown in
Fig. 4.4.

4.3.2 Total Error

The calibration error, as reported in the preceding section, is the natural way to eval-
uate the estimated cameras and homographies. It is not, however, truly representative
of the ‘live’ performance of the complete setup. This is because the calibration error
uses each estimated plane π j to replace all vertices Q j with the fitted versions Qπ

j .
In general, however, no surface model is available, and so the raw points Q j must
be used as input for meshing and rendering processes.

The total error, which combines the calibration and range errors, can be measured
as follows. The i-th rgb views of plane π j must be related to the tof image points
qj by the 2-D transfer homographies T �i j and T ri j , where
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0.0        0.5         1.0        1.5         2.0

1 → 1, r1

pixel error
0.0        0.5         1.0        1.5         2.0

2 → 2, r2

pixel error
0.0         0.5         1.0         1.5          2.0

3 → 3, r3

pixel error

Fig. 4.4 Calibration error (4.25), measured by projecting the fitted tof points Qπ to the left and
right rgb images (1624×1224) in three separate systems. Each histogram combines left-camera and
right-camera measurements from 15 views of the calibration board. Subpixel accuracy is obtained

p�i � T �i j q j and pri � T ri j q j . (4.26)

These 3 × 3 matrices can be estimated accurately, because the range data itself
is not required. Furthermore, let Π j be the hull (i.e., bounding polygon) of plane
π j as it appears in the tof image. Any pixel q j in the hull (including the original
calibration vertices) can now be reprojected to the i-th rgb views via the 3-D point
Q j , or transferred directly by T �i j and T ri j in (4.26). The total error is the average

difference between the reprojections and the transfers, E tot
i j = 1

2

(
E tot

�i j+E tot
ri j

)
, where

E tot
�i j =

1

|Π j |
∑

q j∈Π j

D
(

C�i j H−1
j Q j , T �i j q j

)
(4.27)

and E tot
ri j is similarly defined. The view-dependent denominator |Π j | � |π | is the

number of pixels in the hull Π j . Hence, E tot
i j is the total error, including range noise,

of tof plane π j as it appears in the i-th rgb cameras.
If the rgb cameras are not too far from the tof camera, then the range errors

tend to be canceled in the reprojection. This is evident in Fig. 4.5, although it is clear
that the tail of each distribution is increased by the range error. However, if the rgb
cameras belong to another system, with a substantially different location, then the
range errors can be very large in the reprojection. This is clear from Fig. 4.6, which
shows that a substantial proportion of the tof points reproject to the other systems
with a total error in excess of 10 pixels.

It is possible to understand these results more fully by examining the distribution
of the total error across individual boards. Figure 4.7 shows the distribution for a
board reprojected to the same system (i.e., part of the data from Fig. 4.5). There is a
relatively smooth gradient of error across the board, which is attributable to errors
in the fitting of plane π j , and in the estimation of the camera parameters. The pixels
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Fig. 4.5 Total error (4.27), measured by projecting the raw tof points Q to the left and right rgb
images (1624× 1224) in three separate systems. These distributions have longer and heavier tails
than those of the corresponding calibration errors, shown in Fig. 4.4
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pixel error
0 5 10 15 20
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Fig. 4.6 Total error when reprojecting raw tof points from system 2 to rgb cameras in systems 1
and 3 (left and right, respectively). The range errors are emphasized by the difference in viewpoints
between the two systems. Average error is now around 5 pixels in the 1624× 1224 images, and the
noisiest tof points reproject with tens of pixels of error

can be divided into sets from the black and white squares, using the known board
geometry and detected vertices. It can be seen in Fig. 4.7 (right) that the total error for
each set is comparable. However, when reprojecting to a different system, Fig. 4.8
shows that the total error is correlated with the black and white squares on the board.
This is due to significant absorption of the infrared signal by the black squares.

4.4 Conclusions

It has been shown that there is a projective relationship between the data provided by
a tof camera, and an uncalibrated binocular reconstruction. Two practical methods
for computing the projective transformation have been introduced; one that requires
luminance point correspondences between the tof and color cameras, and one that
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Fig. 4.7 Left 3-D tof pixels (|Π | = 3216), on a calibration board, reprojected to an rgb image in
the same tof+2rgb system. Each pixel is color coded by the total error (4.27). Black crosses are
the detected vertices in the rgb image. Right histograms of total error, split into pixels on black or
white squares
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Fig. 4.8 Left 3-D tof pixels, as in Fig. 4.7, reprojected to an rgb image in a different tof+2rgb
system. Right histograms of total error, split into pixels on black or white squares. The depth of the
black squares is much less reliable, which leads to inaccurate reprojection into the target system

does not. Either of these methods can be used to associate binocular color and texture
with each 3-D point in the range reconstruction. It has been shown that the point-
based method can easily be extended to multiple-tof systems, with calibrated or
uncalibrated rgb cameras.

The problem of tof noise, especially when reprojecting 3-D points to a very
different viewpoint, has been emphasized. This source of error can be reduced by
application of the denoising methods described in Chap. 1. Alternatively, having
aligned the tof and rgb systems, it is possible to refine the 3-D representation by
image matching, as explained in Chap. 5.

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
http://dx.doi.org/10.1007/978-1-4471-4658-2_5
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