Chapter 2
Disambiguation of Time-of-Flight Data

Abstract The maximum range of a time-of-flight camera is limited by the peri-
odicity of the measured signal. Beyond a certain range, which is determined by
the signal frequency, the measurements are confounded by phase wrapping. This
effect is demonstrated in real examples. Several phase-unwrapping methods, which
can be used to extend the range of time-of-flight cameras, are discussed. Simple
methods can be based on the measured amplitude of the reflected signal, which is
itself related to the depth of objects in the scene. More sophisticated unwrapping
methods are based on zero-curl constraints, which enforce spatial consistency on the
phase measurements. Alternatively, if more than one depth camera is used, then the
data can be unwrapped by enforcing consistency among different views of the same
scene point. The relative merits and shortcomings of these methods are evaluated,
and the prospects for hardware-based approaches, involving frequency modulation
are discussed.

Keywords Time-of-Flight principle - Depth ambiguity - Phase unwrapping -
Multiple depth cameras

2.1 Introduction

Time-of-Flight cameras emit modulated infrared light and detect its reflection from
the illuminated scene points. According to the ToF principle described in Chap. 1, the
detected signal is gated and integrated using internal reference signals, to form the
tangent of the phase ¢ of the detected signal. Since the tangent of ¢ is a periodic
function with a period of 27, the value ¢ 4+ 2nmw gives exactly the same tangent value
for any nonnegative integer 7.

Commercially available ToF cameras compute ¢ on the assumption that ¢ is within
the range of [0, 27). For this reason, each modulation frequency f has its maximum
range dmax corresponding to 27, encoded without ambiguity:
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C
dmax = ﬁ! (2-1)

where c is the speed of light. For any scene points farther than dpax, the measured
distance d is much shorter than its actual distance d + ndmax. This phenomenon is
called phase wrapping, and estimating the unknown number of wrappings » is called
phase unwrapping.

For example, the Mesa SR4000 [16] camera records a 3D point X, at each pixel p,
where the measured distance d), equals ||X, ||. In this case, the unwrapped 3D point
X, (n) with number of wrappings n,, can be written as

dp + npdmaxX

Xp(np) = ~— . (2.2)
P

Figure2.1a shows a typical depth map acquired by the SR4000 [16], and Fig.2.1b
shows its unwrapped depth map. As shown in Fig.2.1e, phase unwrapping is crucial
for recovering large-scale scene structure.

To increase the usable range of TOF cameras, it is also possible to extend the
maximum range dmax by decreasing the modulation frequency f. In this case, the
integration time should also be extended, to acquire a high quality depth map,
since the depth noise is inversely proportional to f. With extended integration time,
moving objects are more likely to result in motion artifacts. In addition, we do not
know at which modulation frequency phase wrapping does not occur, without exact
knowledge regarding the scale of the scene.

If we can accurately unwrap a depth map acquired at a high modulation frequency,
then the unwrapped depth map will suffer less from noise than a depth map acquired
at a lower modulation frequency, integrated for the same time. Also, if a phase-
unwrapping method does not require exact knowledge on the scale of the scene, then
the method will be applicable in more large-scale environments.

There exist a number of phase-unwrapping methods [4-8, 14, 17, 21] that have
been developed for ToF cameras. According to the number of input depth maps, the
methods are categorized into two groups: those using a single depth map [5, 7, 14,
17, 21] and those using multiple depth maps [4, 6, 8, 20]. The following subsections
introduce their principles, advantages and limitations.

2.2 Phase Unwrapping from a Single Depth Map

TOF cameras such as the SR4000 [16] provide an amplitude image along with its
corresponding depth map. The amplitude image is encoded with the strength of the
detected signal, which is inversely proportional to the squared distance. To obtain
corrected amplitude A’ [19], which is proportional to the reflectivity of a scene surface
with respect to the infrared light, we can multiply amplitude A and its corresponding
squared distance d?:
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(d)

Fig. 2.1 Structure recovery through phase unwrapping. a Wrapped ToF depth map. b Unwrapped
depth map corresponding to (a). Only the distance values are displayed in (a) and (b), to aid visibility.
The intensity is proportional to the distance. ¢ Amplitude image associated with (a). d and e display
the 3D points corresponding to (a) and (b), respectively. d The wrapped points are displayed in
red. e Their unwrapped points are displayed in blue. The remaining points are textured using the
original amplitude image (c)

A = Ad>. (2.3)

Figure2.2 shows an example of amplitude correction. It can be observed from
Fig.2.2c that the corrected amplitude is low in the wrapped region. Based on the
assumption that the reflectivity is constant over the scene, the corrected amplitude
values can play an important role in detecting wrapped regions [5, 17, 21].
Poppinga and Birk [21] use the following inequality for testing if the depth of
pixel p has been wrapped:
A, < AT, (2.4)

where T is a manually chosen threshold, and A;ef is the reference amplitude of
pixel p when viewing a white wall at 1 m, approximated by



32 2 Disambiguation of Time-of-Flight Data

Ll

Fig. 2.2 Amplitude correction example. a Amplitude image. b ToF depth map. ¢ Corrected ampli-
tude image. The intensity in (b) is proportional to the distance. The lower left part of (b) has been
wrapped. Images courtesy of Choi et al. [5]

AT =B — ((xp —c)* + (yp — ¢))?). (2.5)

where B is a constant. The image coordinates of p are (x,, yp), and (cx, ¢y) is approx-
imately the image center, which is usually better illuminated than the periphery. Ar;t
compensates this effect by decreasing Ar;f T if pixel p is in the periphery.

After the detection of wrapped pixels, it is possible to directly obtain an unwrapped
depth map by setting the number of wrappings of the wrapped pixels to one on the
assumption that the maximum number of wrappings is 1.

The assumption on the constant reflectivity tends to be broken when the scene
is composed of different objects with varying reflectivity. This assumption cannot
be fully relaxed without detailed knowledge of scene reflectivity, which is hard to
obtain in practice. To robustly handle varying reflectivity, it is possible to adaptively
set the threshold for each image and to enforce spatial smoothness on the detection
results.

Choi et al. [5] model the distribution of corrected amplitude values in an image
using a mixture of Gaussians with two components, and apply expectation maxi-
mization [1] to learn the model:

p(AL) = anp(Alnn. of) +arLp(A L, of), (2.6)

where p(A;, |, %) denotes a Gaussian distribution with mean p and variance o2,

and « is the coefficient for each distribution. The components p(A’pl WH, ‘71%1) and
p(A;, lmr, o I%) describe the distributions of high and low corrected amplitude values,
respectively. Similarly, the subscripts H and L denote labels high and low, respec-
tively. Using the learned distribution, it is possible to write a probabilistic version of
Eq.(2.4) as

P(H|A;,) < 0.5, 2.7)

where P(H|A) = anp(A),|un, of)/p(A)).

To enforce spatial smoothness on the detection results, Choi et al. [5] use a seg-
mentation method [22] based on Markov random fields (MRFs). The method finds
the binary labels n € {H, L} or {0, 1} that minimize the following energy:
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Fig. 2.3 Detection of wrapped regions. a Result obtained by expectation maximization. b Result
obtained by MRF optimization. The pixels with labels L and H are colored in black and white,
respectively. The red pixels are those with extremely high or low amplitude values, which are
not processed during the classification. ¢ Unwrapped depth map corresponding to Fig.2.2(b). The
intensity is proportional to the distance. Images courtesy of Choi et al. [5]

E=Y"Dynp)+ > Vny. ny, (2.8)
p

(p.q)

where D, (np) is a data cost that is defined as 1 — P(np|A/p), and V(np,ng) is a
discontinuity cost that penalizes a pair of adjacent pixels p and g if their labels n,
and n, are different. V (n,, ny) is defined in a manner of increasing the penalty if a
pair of adjacent pixels have similar corrected amplitude values:

Vinp, ng) = )\exp(—ﬂ(A/p - A;)z) §(np # ng), (2.9)

where A and § are constants, which are either manually chosen or adaptively deter-
mined. §(x) is a function that evaluates to 1 if its argument is true and evaluates to
zero otherwise.

Figure 2.3 shows the classification results obtained by Choi et al. [5] Because of
varying reflectivity of the scene, the result in Fig. 2.3a exhibits misclassified pixels in
the lower left part. The misclassification is reduced by applying the MRF optimization
as shown in Fig. 2.3b. Figure 2.3c shows the unwrapped depth map obtained by Choi
et al. [5], corresponding to Fig.2.2b.

McClure et al. [17] also use a segmentation-based approach, in which the depth
map is segmented into regions by applying the watershed transform [18]. In their
method, wrapped regions are detected by checking the average corrected amplitude
of each region.

On the other hand, depth values tend to be highly discontinuous across the wrap-
ping boundaries, where there are transitions in the number of wrappings. For exam-
ple, the depth maps in Figs. 2.1a, 2.2b shows such discontinuities. On the assumption
that the illuminated surface is smooth, the depth difference between adjacent pixels
should be small. If the difference between measured distances is greater than 0.5dmax
for any adjacent pixels, say d, — dy > 0.5dmax, We can set the number of relative
wrappings, or, briefly, the shift n, —n, to 1 so that the unwrapped difference will
satisfy —0.5dmax < dp — dq — (ng — np)dmax < 0, minimizing the discontinuity.
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Fig. 2.4 One-dimensional phase-unwrapping example. a Measured phase image. b Unwrapped
phase image where the phase difference between p and g is now less than 0.5. In (a) and (b), all the
phase values have been divided by 27. For example, the displayed value 0.1 corresponds to 0.2

Fig. 2.5 Two-dimensional
phase-unwrapping example. a 0.0 0.1 0.2
Measured phase image. (b—d)
Sequentially unwrapped phase 0.0 00 03
images where the phase differ-
ence across the red dotted line
has been minimized. From

a to d, all the phase values T i -
have been divided by 27. For 08 08 0.7 0.6 8 08 0.7
example, the displayed value
0.1 corresponds to 0.2

09 08 0.6 05 9 08 06

0.8 0.6

0.8 0.7
(c)

Figure 2.4 shows a one-dimensional phase-unwrapping example. In Fig. 2.4a, the
phase difference between pixels p and g is greater than 0.5 (or ). The shifts that
minimize the difference between adjacent pixels are 1 (or,n; —n, = 1) for p and g,
and O for the other pairs of adjacent pixels. On the assumption that n, equals 0, we
can integrate the shifts from left to right to obtain the unwrapped phase image in
Fig.2.4b.

Figure 2.5 shows a two-dimensional phase-unwrapping example. From Fig.2.5a
to d, the phase values are unwrapped in a manner of minimizing the phase difference
across the red dotted line. In this two-dimensional case, the phase differences greater
than 0.5 never vanish, and the red dotted line cycles around the image center infinitely.
This is because of the local phase error that causes the violation of the zero-curl
constraint [9, 12].

Figure 2.6 illustrates the zero-curl constraint. Given four neighboring pixel loca-
tions (x, y), (x+1,y), (x,y+1),and (x + 1, y+ 1), leta(x, y) and b(x, y) denote
the shifts n(x +1, y) —n(x, y) and n(x, y+1) —n(x, y), respectively, where n(x, y)
denotes the number of wrappings at (x, y). Then, the shiftn(x+1, y+1)—n(x, y) can
be calculated in two different ways: eithera(x, y)+b(x+1, y) orb(x, y)+a(x, y+1)
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(x,y+1) alx,y+1) (x+1Ly+1) a(x,y+1)=0

Fig. 2.6 Zero-curl constraint: a(x, y) + b(x + 1, y) = b(x, y) + a(x, y + 1). a The number of
relative wrappings between (x+1, y+1) and (x, y) should be consistent regardless of its integrating
paths. For example, two different paths (red and blue) are shown. b shows an example in which the
constraint is not satisfied. The four pixels correspond to the four pixels in the middle of Fig.2.5a

following one of the two different paths shown in Fig. 2.6a. For any phase-unwrapping
results to be consistent, the two values should be the same, satisfying the following
equality:

alx,y)+bx+1,y) =b(x,y)+alx,y+1). (2.10)

Because of noise or discontinuities in the scene, the zero-curl constraint may not
be satisfied locally, and the local error is propagated to the entire image during
the integration. There exist classical phase-unwrapping methods [9, 12] applied in
magnetic resonance imaging [15] and interferometric synthetic aperture radar (SAR)
[13], which rely on detecting [12] or fixing [9] broken zero-curl constraints. Indeed,
these classical methods [9, 12] have been applied to phase unwrapping for ToF
cameras [7, 14].

2.2.1 Deterministic Methods

Goldstein et al. [12] assume that the shift is either 1 or -1 between adjacent pixels if
their phase difference is greater than iz, and assume that it is 0 otherwise. They detect
cycles of four neighboring pixels, referred to as plus and minus residues, which do
not satisfy the zero-curl constraint.

If any integration path encloses an unequal number of plus and minus residue,
the integrated phase values on the path suffer from global errors. In contrast, if any
integration path encloses an equal number of plus and minus residues, the global error
is balanced out. To prevent global errors from being generated, Goldstein et al. [12]
connect nearby plus and minus residues with cuts, which interdict the integration
paths, such that no net residues can be encircled.

After constructing the cuts, the integration starts from a pixel p, and each neigh-
boring pixel ¢g is unwrapped relatively to p in a greedy and sequential manner if ¢
has not been unwrapped and if p and g are on the same side of the cuts.
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Fig. 2.7 Graphical model that describes the zero-curl constraints (black discs) between neighboring
shift variables (white discs). 3-element probability vectors (12’s) on the shifts between adjacent nodes
(=1, 0, or 1) are propagated across the network. The x marks denote pixels [9]

2.2.2 Probabilistic Methods

Frey et al. [9] propose a very loopy belief propagation method for estimating the
shift that satisfies the zero-curl constraints. Let the set of shifts, and a measured
phase image, be denoted by

S:[a(x,y), b(x,y) :x=1,...,N—1; y:l,...,M—l}
and
<D:{¢(x,y) S 0<¢p(y) <1, x=1,....N: y:l,...,M},

respectively, where the phase values have been divided by 2. The estimation is then
recast as finding the solution that maximizes the following joint distribution:

N—-1M-1
p(S. @) o [ [] statx, y) +bx + 1, y) —alx, y +1) = b(x, y))
x=1 y=1
N-1 M
% H He—(¢(x+l,y)—¢(x,y)+a(x,y))2/2<72

x=1y
N M-1

=1
< 111 e~ @y —¢@.y)+b(x.y)? /207
X =1

:1y

2

where §(x) evaluates to 1 if x = 0 and to 0 otherwise. The variance o~ is estimated

directly from the wrapped phase image [9].
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Fig. 2.8 a Constraint-to-shift vectors are computed from incoming shift-to-constraint vectors.
b Shift-to-constraint vectors are computed from incoming constraint-to-shift vectors. ¢ Estimates
of the marginal probabilities of the shifts given the data are computed by combining incoming
constraint-to-shift vectors [9]

Frey etal. [9] construct a graphical model describing the factorization of p(S, @),
as shown in Fig.2.7. In the graph, each shift node (white disc) is located between
two pixels, and corresponds to either an x-directional shift (a’s) or a y-directional
shift (b’s). Each constraint node (black disc) corresponds to a zero-curl constraint,
and is connected to its four neighboring shift nodes. Every node passes a message to
its neighboring node, and each message is a 3-vector denoted by 1, whose elements
correspond to the allowed values of shifts, —1, 0, and 1. Each element of x can be
considered as a probability distribution over the three possible values [9].

Figure 2.8a illustrates the computation of a message 14 from a constraint node to
one of its neighboring shift nodes. The constraint node receives messages (i1, [2,
and w3 from the rest of its neighboring shift nodes, and filters out the joint message
elements that do not satisfy the zero-curl constraint:

1 1 1
pai = D > D Sk+1—i— j)urmakiar. (2.11)

j=—lk=—11=-1

where (4; denotes the element of 4, corresponding to shift value i € {—1,0, 1}.

Figure 2.8b illustrates the computation of a message (1, from a shift node to one
of its neighboring constraint node. Among the elements of the message 11 from the
other neighboring constraint node, the element, which is consistent with the measured
shift ¢ (x, y) — ¢(x + 1, y), is amplified:

por = i ep(—(@ G+ 1) =g ) +i)*/20%).  @12)

After the messages converge (or, after a fixed number of iterations), an estimate of
the marginal probability of a shift is computed by using the messages passed into its
corresponding shift node, as illustrated in Fig.2.8c:
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Plax,y) =i|®) = (2.13)

Given the estimates of the marginal probabilities, the most probable value of each shift
node is selected. If some zero-curl constraints remain violated, a robust integration
technique, such as least-squares integration [10] should be used [9].

2.2.3 Discussion

The aforementioned phase-unwrapping methods using a single depth map [5, 7, 14,
17, 21] have an advantage that the acquisition time is not extended, keeping the
motion artifacts at a minimum. The methods, however, rely on strong assumptions
that are fragile in real world situations. For example, the reflectivity of the scene
surface may vary in a wide range. In this case, it is hard to detect wrapped regions
based on the corrected amplitude values. In addition, the scene may be discontinuous
if it contains multiple objects that occlude one another. In this case, the wrapping
boundaries tend to coincide with object boundaries, and it is often hard to observe
large depth discontinuities across the boundaries, which play an important role in
determining the number of relative wrappings.

The assumptions can be relaxed by using multiple depth maps at a possible exten-
sion of acquisition time. The next subsection introduces phase-unwrapping methods
using multiple depth maps.

2.3 Phase Unwrapping from Multiple Depth Maps

Suppose that a pair of depth maps M and M> of a static scene are given, which have
been taken at different modulation frequencies fi and f> from the same viewpoint.
In this case, pixel p in M| corresponds to pixel p in M>, since the corresponding
region of the scene is projected onto the same location of M; and M;. Thus, the
unwrapped distances at those corresponding pixels should be consistent within the
noise level.

Without prior knowledge, the noise in the unwrapped distance can be assumed
to follow a zero-mean distribution. Under this assumption, the maximum likelihood
estimates of the numbers of wrappings at the corresponding pixels should minimize
the difference between their unwrapped distances. Let m , and n), be the numbers of
wrappings at pixel p in M and M>, respectively. Then, we can choose m, and n,
that minimize g(m, n,) such that

glmp,np) = \dp(fl) +mpdmax(fl) - dp(fZ) - npdmax(fZ) s (2.14)
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Fig. 2.9 Frequency modu-
lation within an integration
period. The first half is modu-
lated at f, and the other half
is modulated at f>

< - -
L Ll

<
first half integration period  second half integration period
modulated at | modulated at f5

where d,(f1) and d,(f2) denote the measured distances at pixel p in M| and M>
respectively, and dpmax (f) denotes the maximum range of f.

The depth consistency constraint has been mentioned by Goktiirk et al. [11] and
used by Falie and Buzuloiu [8] for phase unwrapping of ToF cameras. The illuminat-
ing power of ToF cameras is, however, limited due to the eye-safety problem, and the
reflectivity of the scene may be very low. In this situation, the amount of noise may
be too large for accurate numbers of wrappings to minimize g(m p, np). For robust
estimation against noise, Droeschel et al. [6] incorporate the depth consistency con-
straint into their earlier work [7] for a single depth map, using an auxiliary depth
map of a different modulation frequency.

If we acquire a pair of depth maps of a dynamic scene sequentially and indepen-
dently, the pixels at the same location may not correspond to each other. To deal with
such dynamic situations, several approaches [4, 20] acquire a pair of depth maps
simultaneously. These can be divided into single-camera and multicamera methods,
as described below.

2.3.1 Single-Camera Methods

For obtaining a pair of depth maps sequentially, four samples of integrated electric
charge are required per each integration period, resulting in eight samples within a
pair of two different integration periods. Payne et al. [20] propose a special hardware
system that enables simultaneous acquisition of a pair of depth maps at different fre-
quencies by dividing the integration period into two, switching between frequencies
f1 and f>, as shown in Fig.2.9.

Payne et al. [20] also shows that it is possible to obtain a pair of depth maps with
only five or six samples within a combined integration period, using their system.
By using fewer samples, the total readout time is reduced and the integration period
for each sample can be extended, resulting in an improved signal-to-noise ratio.
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Fig. 2.10 a Stereo ToF camera system. (b, ¢) Depth maps acquired by the system. d Amplitude
image corresponding to (b). (e, f) Unwrapped depth maps, corresponding to (b) and (c), respectively.
The intensity in (b, c, e, f) is proportional to the depth. The maximum intensity (255) in (b, c) and
(e, f) correspond to 5.2 and 15.6 m, respectively. Images courtesy of Choi and Lee [4]

2.3.2 Multicamera Methods

Choi and Lee [4] use a pair of commercially available TOF cameras to simultaneously
acquire a pair of depth maps from different viewpoints. The two cameras C and C»
are fixed to each other, and the mapping of a 3D point X from Cj to its corresponding
point X’ from C; is given by (R, T), where R is a 3 x 3 rotation matrix, and T is
a 3 x 1 translation vector. In [4], the extrinsic parameters R and T are assumed to
have been estimated. Figure2.10a shows the stereo TOF camera system.

Denoting by M and M; a pair of depth maps acquired by the system, a pixel p
in M and its corresponding pixel g in M»> should satisfy:

X[ (ng) = RX () + T, (2.15)

where X, (m ) and X; (n4) denote the unwrapped 3D points of p and g with their
numbers of wrappings m, and n,, respectively.

Based on the relation in Eq. (2.15), Choi and Lee [4] generalize the depth con-
sistency constraint in Eq.(2.14) for a single camera to those for the stereo camera
system:

pmgy =, g (K00 R ). 20
pynp =, min () < R, D)
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Table 2.1 Summary of phase-unwrapping methods

Methods # Depth maps Cues Approach Maximum range
Poppinga and Birk [21] 1 CA? Thresholding 2dmax

Choi et al. [5] 1 CA,DD? Segmentation, MRF (N4 + Ddimax
McClure et al. [17] 1 CA Segmentation, thresholding 2dmax

Jutzi [14] 1 DD Branch cuts, integration o0

Droeschel et al. [7] 1 DD MREF, integration o0

Droeschel et al. [6] 2 (Multi-freq.) DD, DC MREF, integration 00

Payne et al. [20] 2 (Multi-freq.) DC Hardware m

Choi and Lee [4] 2 (Stereo) DC Stereo ToF, MRF (N + 1)dmax

@ Corrected amplitude. ” Depth discontinuity. ¢ Depth consistency. ¢ The maximum number of
wrappings determined by the user.

where pixels ¢g* and p* are the projections of RX,(m ) + T and R” (X; (ng) = T)
onto M, and M1, respectively. The integer N is the maximum number of wrappings,
determined by approximate knowledge on the scale of the scene.

To robustly handle with noise and occlusion, Choi and Lee [4] minimize the
following MRF energy functions E; and E», instead of independently minimizing
Dy(mp) and D, (m,) at each pixel:

Er= D Dy(mp)+ D Vimy,my), (2.17)
peEM; (p,u)

E; = Z ﬁq(nq) + Z V(I’lq, ny),
qeMy (q,v)

where D p(mp) and ﬁq (nq) are the data cost of assigning m,, and n, to pixels p and
q, respectively. Functions V (mp, m,) and V(ng, n,) determine the discontinuity
cost of assigning (m,,m,) and (n4,n,) to pairs of adjacent pixels (p,u) and (g,v),
respectively.

The data costs D p(mp)and bq (ng) are defined by truncating D, (m ) and Dy (n,)
to prevent their values from becoming too large, due to noise and occlusion:

Dy(mp) = 1.(Dp(mp)), Dy(ng) = te(Dy(ny)), (2.18)
x,if x <e,
Te(x) = [8 otherwise (2.19)

where ¢ is a threshold proportional to the extrinsic calibration error of the system.
The function V (m,, m,) is defined in a manner that preserves depth continuity
between adjacent pixels. Choi and Lee [4] assume a pair of measured 3D points X,
and X, to have been projected from close surface points if they are close to each
other and have similar corrected amplitude values. The proximity is preserved by
penalizing the pair of pixels if they have different numbers of wrappings:
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A Axiu) ( AA;%”) . mp 75 nmy and
2 expl| — exp| — if
V(mp, my) = Tpu p( 20)2( P 20-%/ AXpu <0.5 dmax(fl)
0 otherwise.
where 2 is a constant, AX>, = ||X, — X, ||, and AA”Z = ||A}, — A, ||*. The

variances o,% and af‘, are adaptively determined. The positive scalar r,, is the image
coordinate distance between p and u for attenuation of the effect of less adjacent
pixels. The function V (ny, n,) is defined by analogy with V (m ,, m,).

Choi and Lee [4] minimize the MRF energies via the a-expansion algorithm [2],
obtaining a pair of unwrapped depth maps. To enforce further consistency between
the unwrapped depth maps, they iteratively update the MRF energy corresponding
to a depth map, using the unwrapped depth of the other map, and perform the min-
imization until the consistency no longer increases. Figure2.10e, f shows examples
of unwrapped depth maps, as obtained by the iterative optimizations. An alternative
method for improving the depth accuracy using two ToF cameras is described in [3].

2.3.3 Discussion

Table?2.1 summarizes the phase-unwrapping methods [4-7, 14, 17, 20, 21] for ToF
cameras. The last column of the table shows the extended maximum range, which
can be theoretically achieved by the methods. The methods [6, 7, 14] based on
the classical phase-unwrapping methods [9, 12] deliver the widest maximum range.
In [4, 5], the maximum number of wrappings can be determined by the user. It
follows that the maximum range of the methods can also become sufficiently wide,
by setting N to a large value. In practice, however, the limited illuminating power
of commercially available ToF cameras prevents distant objects from being precisely
measured. This means that the phase values may be invalid, even if they can be
unwrapped. In addition, the working environment may be physically confined. For
the latter reason, Droeschel et al. [6, 7] limit the maximum range to 2dmax-

2.4 Conclusions

Although the hardware system in [20] has not yet been established in commercially
available ToF cameras, we believe that future ToF cameras will use such a frequency
modulation technique for accurate and precise depth measurement. In addition, the
phase-unwrapping methods in [4, 6] are ready to be applied to a pair of depth maps
acquired by such future ToF cameras, for robust estimation of the unwrapped depth
values. We believe that a suitable combination of hardware and software systems
will extend the maximum TOF range, up to a limit imposed by the illuminating power
of the device.
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