
Chapter 1
Characterization of Time-of-Flight Data

Abstract This chapter introduces the principles and difficulties of time-of-flight
depth measurement. The depth images that are produced by time-of-flight cam-
eras suffer from characteristic problems, which are divided into the following two
classes. First, there are systematic errors, such as noise and ambiguity, which are
directly related to the sensor. Second, there are nonsystematic errors, such as scat-
tering and motion blur, which are more strongly related to the scene content. It is
shown that these errors are often quite different from those observed in ordinary color
images. The case of motion blur, which is particularly problematic, is examined in
detail. A practical methodology for investigating the performance of depth cameras
is presented. Time-of-flight devices are compared to structured-light systems, and
the problems posed by specular and translucent materials are investigated.
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1.1 Introduction

Time-of-Flight (tof) cameras produce a depth image, each pixel of which encodes
the distance to the corresponding point in the scene. These cameras can be used
to estimate 3D structure directly, without the help of traditional computer-vision
algorithms. There are many practical applications for this new sensing modality,
including robot navigation [31, 37, 50], 3D reconstruction [17], and human–machine
interaction [9, 45]. Tof cameras work by measuring the phase delay of reflected
infrared (IR) light. This is not the only way to estimate depth; for example, an
IR structured-light pattern can be projected onto the scene, in order to facilitate
visual triangulation [44]. Devices of this type, such as the Kinect [12], share many
applications with tof cameras [8, 33, 34, 36, 43].
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The unique sensing architecture of the tof camera means that a raw depth image
contains both systematic and nonsystematic bias that has to be resolved for robust
depth imaging [11]. Specifically, there are problems of low depth precision and low
spatial resolution, as well as errors caused by radiometric, geometric, and illumina-
tion variations. For example, measurement accuracy is limited by the power of the
emitted IR signal, which is usually rather low compared to daylight, such that the
latter contaminates the reflected signal. The amplitude of the reflected IR also varies
according to the material and color of the object surface.

Another critical problem with tof depth images is motion blur, caused by either
camera or object motion. The motion blur of tof data shows unique characteristics,
compared to that of conventional color cameras. Both the depth accuracy and the
frame rate are limited by the required integration time of the depth camera. Longer
integration time usually allows higher accuracy of depth measurement. For static
objects, we may therefore want to decrease the frame rate in order to obtain higher
measurement accuracies from longer integration times. On the other hand, capturing
a moving object at fixed frame rate imposes a limit on the integration time.

In this chapter, we discuss depth-image noise and error sources, and perform
a comparative analysis of tof and structured-light systems. First, the tof depth-
measurement principle will be reviewed.

1.2 Principles of Depth Measurement

Figure 1.1 illustrates the principle of tof depth sensing. An IR wave indicated in
red is directed to the target object, and the sensor detects the reflected IR component.
By measuring the phase difference between the radiated and reflected IR waves, we
can calculate the distance to the object. The phase difference is calculated from the
relation between four different electric charge values as shown in Fig. 1.2. The four
phase control signals have 90 degree phase delays from each other. They determine
the collection of electrons from the accepted IR. The four resulting electric charge
values are used to estimate the phase difference td as

td = arctan

(
Q3 − Q4

Q1 − Q2

)
(1.1)

where Q1 to Q4 represent the amount of electric charge for the control signals C1 to
C4, respectively [11, 20, 23]. The corresponding distance d can then be calculated,
using c the speed of light and f the signal frequency:

d = c

2 f

td
2π

. (1.2)
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Fig. 1.1 The principle of tof depth camera [11, 20, 23]: the phase delay between emitted and
reflected IR signals are measured to calculate the distance from each sensor pixel to target objects

Fig. 1.2 Depth can be calculated by measuring the phase delay between radiated and reflected IR
signals. The quantities Q1 to Q4 represent the amount of electric charge for control signals C1 to
C4 respectively

Here, the quantity c/(2 f ) is the maximum distance that can be measured without
ambiguity, as will be explained in Chap. 2.

1.3 Depth-Image Enhancement

This section describes the characteristic sources of error in tof imaging. Some meth-
ods for reducing these errors are discussed. The case of motion blur, which is partic-
ularly problematic, is considered in detail.
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Fig. 1.3 Systematic noise and error: these errors come from the tof principle of depth measurement.
a Integration time error: longer integration time shows higher depth accuracy (right) than shorter
integration time (left). b IR amplitude error: 3D points of the same depth (chessboard on the
left) show different IR amplitudes (chessboard on the right) according to the color of the target
object

1.3.1 Systematic Depth Error

From the principle and architecture of tof sensing, depth cameras suffer from several
systematic errors such as IR demodulation error, integration time error, amplitude
ambiguity, and temperature error [11]. As shown in Fig. 1.3a, longer integration
increases signal-to-noise ratio, which, however, is also related to the frame rate.
Figure 1.3b shows that the amplitude of the reflected IR signal varies according to
the color of the target object as well as the distance from the camera. The ambiguity
of IR amplitude introduces noise into the depth calculation.
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1.3.2 Nonsystematic Depth Error

Light scattering [32] gives rise to artifacts in the depth image, due to the low sensitivity
of the device. As shown in Fig. 1.4a, close objects (causing IR saturation) in the lower
right part of the depth image introduce depth distortion in other regions, as indicated
by dashed circles. Multipath error [13] occurs when a depth calculation in a sensor
pixel is an superposition of multiple reflected IR signals. This effect becomes serious
around the concave corner region as shown in Fig. 1.4b. Object boundary ambiguity
[35] becomes serious when we want to reconstruct a 3D scene based on the depth
image. Depth pixels near boundaries fall in between foreground and background,
giving rise to 3D structure distortion.

1.3.3 Motion Blur

Motion blur, caused by camera or target object motions, is a critical error source
for online 3D capturing and reconstruction with tof cameras. Because the 3D depth
measurement is used to reconstruct the 3D geometry of scene, blurred regions in
a depth image lead to serious distortions in the subsequent 3D reconstruction. In
this section, we study the theory of tof depth sensors and analyze how motion blur
occurs, and what it looks like. Due the its unique sensing architecture, motion blur
in the tof depth camera is quite different from that of color cameras, which means
that existing deblurring methods are inapplicable.

The motion blur observed in a depth image has a different appearance from that
in a color image. Color motion blur shows smooth color transitions between fore-
ground and background regions [46, 47, 51]. On the other hand, depth motion blur
tends to present overshoot or undershoot in depth-transition regions. This is due to
the different sensing architecture in tof cameras, as opposed to conventional color
cameras. The tof depth camera emits an IR signal of a specific frequency, and mea-
sures the phase difference between the emitted and reflected IR signals to obtain
the depth from the camera to objects. While calculating the depth value from the
IR measurements, we need to perform a nonlinear transformation. Due to this archi-
tectural difference, the smooth error in phase measurement can cause uneven error
terms, such as overshoot or undershoot. As a result, such an architectural differ-
ence between depth and color cameras makes the previous color image deblurring
algorithms inapplicable to depth images.

Special cases of this problem have been studied elsewhere. Hussmann et al. [19]
introduce a motion blur detection technique on a conveyor belt, in the presence of
a single directional motion. Lottner et al. [28] propose an internal sensor control
signal based blur detection method that is inappropriate in general settings. Lindner
et al. [26] model the tof motion blur in the depth image, to compensate for the
artifact. However, they introduce a simple blur case without considering the tof
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Fig. 1.4 Nonsystematic noise and error: based on the depth-sensing principle, scene structure may
cause characteristic errors. a Light scattering: IR saturation in the lower right part of the depth
image causes depth distortion in other parts, as indicated by dashed circles. b Multipath error: the
region inside the concave corner is affected, and shows distorted depth measurements. c Object
boundary ambiguity: several depth points on an object boundary are located in between foreground
and background, resulting in 3D structure distortion
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Fig. 1.5 tof depth motion-blur due to movement of the target object

principle of depth sensing. Lee et al. [24, 25] examine the principle of tof depth
blur artifacts, and propose systematic blur detection and deblurring methods.

Based on the depth-sensing principle, we will investigate how motion blur occurs,
and what are its characteristics. Let us assume that any motion from camera or object
occurs during the integration time, which changes the phase difference of the reflected
IR as indicated by the gray color in Fig. 1.2. In order to collect enough electric charge
Q1 to Q4 to calculate depth (1.1), we have to maintain a sufficient integration time.
According to the architecture type, integration time can vary, but the integration time
is the major portion of the processing time. Suppose that n cycles are used for the
depth calculation. In general, we repeat the calculation n times during the integration
time to increase the signal-to-noise ratio, and so

td = arctan

(
nQ3 − nQ4

nQ1 − nQ2

)
(1.3)

where Q1 to Q4 represent the amount of electric charge for the control signals C1
to C4, respectively (cf. Eq. 1.1 and Fig. 1.2). The depth calculation formulation (1.3)
expects that the reflected IR during the integration time comes from a single 3D point
of the scene. However, if there is any camera or object motion during the integration
time, the calculated depth will be corrupted. Figure 1.5 shows an example of this
situation. The red dot represents a sensor pixel of the same location. Due the motion
of the chair, the red dot sees both foreground and background sequentially within
its integration time, causing a false depth calculation as shown in the third image
in Fig. 1.5. The spatial collection of these false-depth points looks like blur around
moving object boundaries, where significant depth changes are present.

Figure 1.6 illustrates what occurs at motion blur pixels in the ‘2-tab’ architecture,
where only two electric charge values are available. In other words, only Q1 − Q2
and Q3 − Q4 values are stored, instead of all separate Q values. Figure 1.6a is the
case where no motion blur occurs. In the plot of Q1 − Q2 versus Q3 − Q4 in the
third column, all possible regular depth values are indicated by blue points, making a
diamond shape. If there is a point deviating from it, as an example shown in Fig. 1.6b,
it means that their is a problem in between the charge values Q1 to Q4. As we already
explained in Fig. 1.2, this happens when there exist multiple reflected signals with
different phase values. Let us assume that a new reflected signal, of a different phase
value, comes in from the mth cycle out of a total of n cycles during the first half or
second half of the integration time. A new depth is then obtained as
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(a)

(b)

Fig. 1.6 tof depth-sensing and temporal integration

td(m) = arctan

(
nQ̂3 − nQ̂4

(m Q1 + (n − m)Q̂1) − (m Q2 + (n − m)Q̂2)

)
(1.4)

td(m) = arctan

(
(m Q3 + (n − m)Q̂3) − (m Q4 + (n − m)Q̂4)

nQ̂1 − nQ̂2

)
(1.5)

in the first or second half of the integration time, respectively. Using the depth calcula-
tion formulation Eq. (1.1), we simulate all possible blur models. Figure 1.7 illustrates
several examples of depth images taken by tof cameras, having depth value tran-
sitions in motion blur regions. Actual depth values along the blue and red cuts in
each image are presented in the following plots. The motion blurs of depth images in
the middle show unusual peaks (blue cut) which cannot be observed in conventional
color motion blur. Figure 1.8 shows how motion blur appears in 2-tap case. In the
second phase where control signals C3 and C4 collect electric charges, the reflected
IR signal is a mixture of background and foreground. Unlike color motion blurs,
depth motion blurs often show overshoot or undershoot in their transition between
foreground and background regions. This means that motion blurs result in higher
or lower calculated depth than all near foreground and background depth values, as
demonstrated in Fig. 1.9.

In order to verify this characteristic situation, we further investigate the depth
calculation formulation in Eq. 1.5. First, we re-express Eq. 1.4 as
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Fig. 1.7 Sample depth value transitions from depth motion blur images captured by an SR4000
tof camera

Fig. 1.8 Depth motion blur in 2-tap case

td(m) = arctan

(
nQ̂3 − nQ̂4

m(Q1 − Q̂1 − Q2 + Q̂2) + n(Q̂1 − Q̂2)

)
(1.6)

The first derivative of the Eq. 1.6 is zero, meaning local maxima or local minima,
under the following conditions:
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Fig. 1.9 tof depth motion blur simulation results

t ′d(m) = 1

1 +
(

nQ̂3−nQ̂4

m(Q1−Q̂1−Q2+Q̂2)+n(Q̂1−Q̂2)

)2 (1.7)

= (m(Q1 − Q̂1 − Q2 + Q̂2) + n(Q̂1 − Q̂2))
2

(nQ̂3 − nQ̂4)2 + (m(Q1 − Q̂1 − Q2 + Q̂2) + n(Q̂1 − Q̂2))2
= 0

m = n
Q̂2 − Q̂1

Q1 − Q̂1 − Q2 + Q̂2
= n

1 − 2Q̂1

2Q1 − 2Q̂1
(1.8)

Figure 1.10 shows that statistically half of all cases have overshoots or under-
shoots. In a similar manner, the motion blur model of 1-tap (Eq. 1.9) and 4-tap
(Eq. 1.10) cases can be derived. Because a single memory is assigned for recording
the electric charge value of four control signals, the 1-tap case has four different
formulations upon each phase transition:
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Fig. 1.10 Half of the all motion blur cases make local peaks

td(m) = arctan

(
nQ̂3 − nQ̂4

(m Q1 + (n − m)Q̂1) − nQ̂2

)

td(m) = arctan

(
nQ̂3 − nQ̂4

nQ1 − (m Q2 + (n − m)Q̂2

)

td(m) = arctan

(
(m Q3 + (n − m)Q̂3) − nQ̂4

nQ̂1 − nQ̂2

)

td(m) = arctan

(
nQ3 − (m Q4 + (n − m)Q̂4

nQ̂1 − nQ̂2

)
(1.9)

On the other hand, the 4-tap case only requires a single formulation, which is:

td(m) = arctan

(
(m Q3 + (n − m)Q̂3) − (m Q4 + (n − m)Q̂4)

(m Q1 + (n − m)Q̂1) − (m Q2 + (n − m)Q̂2)

)
(1.10)

Now, by investigating the relation between control signals, any corrupted depth easily
can be identified. From the relation between Q1 and Q4, we find the following
relation:

Q1 + Q2 = Q3 + Q4 = K . (1.11)

Let us call this the Plus Rule, where K is the total amount of charged electrons.
Another relation is the following formulation, called the Minus Rule:

|Q1 − Q2| + |Q3 − Q4| = K . (1.12)

In fact, neither formulation exclusively represents motion blur. Any other event that
can break the relation between the control signals, and can be detected by one of the
rules, is an error which must be detected and corrected. We conclude that tof motion
blur can be detected by one or more of these rules.



12 1 Characterization of Time-of-Flight Data

(a)

(b)

Fig. 1.11 Depth-image motion blur detection results by the proposed method. a Depth images with
motion blur. b Intensity images with detected motion blur regions (indicated by white color)

Figure 1.11a shows depth-image samples with motion blur artifacts due to various
object motions such as rigid body, multiple body, and deforming body motions,
respectively. Motion blur occurs not just around object boundaries; inside an object,
any depth differences that are observed within the integration time will also cause
motion blur. Figure 1.11b shows detected motion blur regions indicated by white
color on respective depth and intensity images, by the method proposed in [24].
This is very straightforward but effective and fast method, which is fit for hardware
implementation without any additional frame memory or processing time.

1.4 Evaluation of Time-of-Flight and Structured-Light Data

The enhancement of tof and structured-light (e.g., Kinect [44]) data is an important
topic, owing to the physical limitations of these devices (as described in Sect. 1.3).
The characterization of depth noise, in relation to the particular sensing architecture,
is a major issue. This can be addressed using bilateral [49] or nonlocal [18] filters,
or in wavelet space [10], using prior knowledge of the spatial noise distribution.
Temporal filtering [30] and video-based [8] methods have also been proposed.
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The upsampling of low-resolution depth images is another critical issue. One
approach is to apply color super-resolution methods on tof depth images directly
[40]. Alternatively, a high-resolution color image can be used as a reference for
depth super resolution [1, 48]. The denoising and upsampling problems can also be
addressed together [2], and in conjunction with high-resolution monocular [34] or
binocular [7] color images.

It is also important to consider the motion artifacts [28] and multipath [13] prob-
lems which are characteristic of tof sensors. The related problem of tof depth
confidence has been addressed using random-forest methods [35]. Other issues with
tof sensors include internal and external calibration [14, 16, 27], as well as range
ambiguity [4]. In the case of Kinect, a unified framework of dense depth data extrac-
tion and 3D reconstruction has been proposed [33].

Despite the increasing interest in active depth sensors, there are many unresolved
issues regarding the data produced by these devices, as outlined above. Furthermore,
the lack of any standardized data sets, with ground truth, makes it difficult to make
quantitative comparisons between different algorithms.

The Middlebury stereo [38], multiview [41], and Stanford 3D scan [6] data set
have been used for the evaluation of depth-image denoising, upsampling, and 3D
reconstruction methods. However, these data sets do not provide real depth images
taken by either tof or structured-light depth sensors, and consist of illumination con-
trolled diffuse material objects. While previous depth accuracy enhancement methods
demonstrate their experimental results on their own data set, our understanding of the
performance and limitations of existing algorithms will remain partial without any
quantitative evaluation against a standard data set. This situation hinders the wider
adoption and evolution of depth-sensor systems.

In this section, we propose a performance evaluation framework for both tof
and structured-light depth images, based on carefully collected depth maps and their
ground truth images. First, we build a standard depth data set; calibrated depth images
captured by a tof depth camera and a structured-light system. Ground truth depth is
acquired from a commercial 3D scanner. The data set spans a wide range of objects,
organized according to geometric complexity (from smooth to rough), as well as
radiometric complexity (diffuse, specular, translucent, and subsurface scattering).
We analyze systematic and nonsystematic error sources, including the accuracy and
sensitivity with respect to material properties. We also compare the characteristics
and performance of the two different types of depth sensors, based on extensive
experiments and evaluations. Finally, to justify the usefulness of the data set, we use
it to evaluate simple denoising, super resolution, and inpainting algorithms.

1.4.1 Depth Sensors

As described in Sect. 1.2, the tof depth sensor emits IR waves to target objects, and
measures the phase delay of reflected IR waves at each sensor pixel, to calculate the
distance traveled. According to the color, reflectivity, and geometric structure of the
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target object, the reflected IR light shows amplitude and phase variations, causing
depth errors. Moreover, the amount of IR is limited by the power consumption of the
device, and therefore the reflected IR suffers from low signal-to-noise ratio (SNR).
To increase the SNR, tof sensors bind multiple sensor pixels to calculate a single
depth pixel value, which decreases the effective image size. Structured-light depth
sensors project an IR pattern onto target objects, which provides a unique illumination
code for each surface point observed at by a calibrated IR imaging sensor. Once the
correspondence between IR projector and IR sensor is identified by stereo matching
methods, the 3D position of each surface point can be calculated by triangulation.

In both sensor types, reflected IR is not a reliable cue for all surface materials. For
example, specular materials cause mirror reflection, while translucent materials cause
IR refraction. Global illumination also interferes with the IR sensing mechanism,
because multiple reflections cannot be handled by either sensor type.

1.4.2 Standard Depth Data Set

A range of commercial tof depth cameras have been launched in the market, such
as PMD, PrimeSense, Fotonic, ZCam, SwissRanger, 3D MLI, and others. Kinect
is the first widely successful commercial product to adopt the IR structured-light
principle. Among many possibilities, we specifically investigate two depth cameras:
a tof type SR4000 from MESA Imaging [29], and a structured-light type Microsoft
Kinect [43]. We select these two cameras to represent each sensor since they are the
most popular depth cameras in the research community, accessible in the market and
reliable in performance.

Heterogeneous Camera Set

We collect the depth maps of various real objects using the SR4000 and Kinect
sensors. To obtain the ground truth depth information, we use a commercial 3D
scanning device. As shown in Fig. 1.12, we place the camera set approximately
1.2 m away from the object of interest. The wall behind the object is located about
1.5 m away from the camera set. The specification of each device is as follows.

Mesa SR4000. This is a tof type depth sensor producing a depth map and amplitude
image at the resolution of 176 × 144 with 16 bit floating-point precision. The ampli-
tude image contains the reflected IR light corresponding to the depth map. In addition
to the depth map, it provides {x, y, z} coordinates, which correspond to each pixel in
the depth map. The operating range of the SR4000 is 0.8–10.0 m, depending on the
modulation frequency. The field of view (FOV) of this device is 43 × 34 degrees.

Kinect. This is a structured IR light type depth sensor, composed of an IR emitter, IR
sensor, and color sensor, providing the IR amplitude image, the depth map, and the
color image at the resolution of 640 × 480 (maximum resolution for amplitude and
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Fig. 1.12 Heterogeneous camera setup for depth sensing

depth image) or 1600 × 1200 (maximum resolution for RGB image). The operating
range is between 0.8 and 3.5 m, the spatial resolution is 3 mm at 2 m distance, and
the depth resolution is 10 mm at 2 m distance. The FOV is 57 × 43 degrees.

FlexScan3D. We use a structured-light 3D scanning system for obtaining ground
truth depth. It consists of an LCD projector and two color cameras. The LCD projector
illuminates coded pattern at 1024 × 768 resolution, and each color camera records
the illuminated object at 2560 × 1920 resolution.

Capturing Procedure for Test Images

The important property of the data set is that the measured depth data is aligned with
ground truth information, and with that of the other sensor. Each depth sensor has to
be fully calibrated internally and externally. We employ a conventional camera cali-
bration method [52] for both depth sensors and the 3D scanner. Intrinsic calibration
parameters for the tof sensors are known. Given the calibration parameters, we can
transform ground truth depth maps onto each depth sensor space. Once the system is
calibrated, we proceed to capture the objects of interest. For each object, we record
depth (ToFD) and intensity (ToFI) images from the SR4000, plus depth (SLD) and
color (SLC) from the Kinect. Depth captured by the FlexScan3D is used as ground
truth (GTD), as explained in more detail below (Fig. 1.13).

Data Set

We select objects that show radiometric variations (diffuse, specular, and translucent),
as well as geometric variations (smooth or rough). The total 36-item test set is divided
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Fig. 1.13 Sample raw image set of depth and ground truth. a GTD, b ToFD, c SLD, d Object,
e ToFI, f SLC

into three subcategories: diffuse material objects (class A), specular material objects
(class B), and translucent objects with subsurface scattering (class C), as in Fig. 1.15.
Each class demonstrates geometric variation from smooth to rough surfaces (a smaller
label number means a smoother surface).

From diffuse, through specular to translucent materials, the radiometric represen-
tation becomes more complex, requiring a high-dimensional model to predict the
appearance. In fact, the radiometric complexity also increases the level of challenges
in recovering its depth map. This is because the complex illumination interferes with
the sensing mechanism of most depth devices. Hence, we categorize the radiometric
complexity by three classes, representing the level of challenges posed by material
variation. From smooth to rough surfaces, the geometric complexity is increased,
especially due to mesostructure scale variation.

Ground Truth

We use a 3D scanner for ground truth depth acquisition. The principle of this sys-
tem is similar to [39]; using illumination patterns and solving correspondences and
triangulating between matching points to compute the 3D position of each surface
point. Simple gray illumination patterns are used, which gives robust performance
in practice. However, the patterns cannot be seen clearly enough to provide corre-
spondences for non-Lambertian objects [3]. Recent approaches [15] suggest new
high-frequency patterns, and present improvement in recovering depth in the pres-
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Original objects After matt spray

Fig. 1.14 We apply white matt spray on top of non-Lambertian objects for ground truth depth
acquisition. Original objects after matt spray

Fig. 1.15 Test images categorized by their radiometric and geometric characteristics: class A diffuse
material objects (13 images), class B specular material objects (11 images), and class C translucent
objects with subsurface scattering (12 images)

ence of global illumination. Among all surfaces, the performance of structured-light
scanning systems is best for Lambertian materials.

The data set includes non-Lambertian materials presenting various illumination
effects; specular, translucent, and subsurface scattering. To employ the 3D scanner
system for ground truth depth acquisition of the data set, we apply white matt spray
on top of each object surface, so that we can give each object a Lambertian surface
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while we take ground truth depth Fig. 1.14. To make it clear that the spray particles
do not change the surface geometry, we have compared the depth maps captured by
the 3D scanner before and after the spray on a Lambertian object. We observe that
the thickness of spray particles is below the level of the depth-sensing precision,
meaning that the spray particles do not affect on the accuracy of the depth map in
practice. Using this methodology, we are able to obtain ground truth depth for non-
Lambertian objects. To ensure the level of ground truth depth, we capture the depth
map of a white board. Then, we apply RANSAC to fit a plane to the depth map and
measure the variation of scan data from the plane. We observe that the variation is
less than 200µm, which is negligible compared to depth sensor errors. Finally, we
adopt the depth map from the 3D scanner as the ground truth depth, for quantitative
evaluation and analysis.

1.4.3 Experiments and Analysis

In this section, we investigate the depth accuracy, the sensitivity to various different
materials, and the characteristics of the two types of sensors.

Depth Accuracy and Sensitivity

Given the calibration parameters, we project the ground truth depth map onto each
sensor space, in order to achieve viewpoint alignment (Fig. 1.12). Due to the res-
olution difference, multiple pixels of the ground truth depth fall into each sensor
pixel. We perform a bilinear interpolation to find corresponding ground truth depth
for each sensor pixel. Due to the difference of field of view and occluded regions,
not all sensor pixels get corresponding ground truth depth. We exclude these pixels
and occlusion boundaries from the evaluation.

According to previous work [21, 42] and manufacturer reports on the accuracy
of depth sensors, the root-mean-square error (RMSE) of depth measurements is
approximately 5–20 mm at the distance of 1.5 m. These figures cannot be generalized
for all materials, illumination effects, complex geometry, and other factors. The use
of more general objects and environmental conditions invariably results in higher
RMSE of depth measurement than reported numbers. When we tested with a white
wall, which is similar to the calibration object used in previous work [42], we obtain
approximately 10.15 mm at the distance of 1.5 m. This is comparable to the previous
empirical study and reported numbers.

Because only foreground objects are controlled, the white background is seg-
mented out for the evaluation. The foreground segmentation is straightforward
because the background depth is clearly separated from that of foreground. In
Figs. 1.16, 1.17 and 1.18, we plot depth errors (RMSE) and show difference maps
(8 bit) between the ground truth and depth measurement. In the difference maps,
gray indicates zero difference, whereas a darker (or brighter) value indicates that the
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Fig. 1.16 Tof depth accuracy in RMSE (root mean square) for class A. The RMSE values and their
corresponding difference maps are illustrated. 128 in difference map represents zero difference
while 129 represents the ground truth is 1 mm larger than the measurement. Likewise, 127 indicates
that the ground truth is 1 mm smaller than the measurement

ground truth is smaller (or larger) than the estimated depth. The range of difference
map, [0, 255], spans [−128 mm, 128 mm] in RMSE.

Several interesting observations can be made from the experiments. First, we
observe that the accuracy of depth values varies substantially according to the mate-
rial property. As shown in Fig. 1.16, the average RMSE of class A is 26.80 mm
with 12.81 mm of standard deviation, which is significantly smaller than the overall
RMSE. This is expected, because class A has relatively simple properties, which
are well approximated by the Lambertian model. From Fig. 1.17 for class B, we are
unable to obtain the depth measurements on specular highlights. These highlights
either prevent the IR reflection back to the sensor, or cause the reflected IR to satu-
rate the sensor. As a result, the measured depth map shows holes, introducing a large
amount of errors. The RMSE for class B is 110.79 mm with 89.07 mm of standard
deviation. Class C is the most challenging subset, since it presents the subsurface
scattering and translucency. As expected, upon the increase in the level of translu-
cency, the measurement error is dramatically elevated as illustrated in Fig. 1.18.
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Fig. 1.17 Tof depth accuracy in RMSE (root mean square) for class B. The RMSE values and their
corresponding difference maps are illustrated

One thing to note is that the error associated with translucent materials differs
from that associated with specular materials. We still observe some depth values
for translucent materials, whereas the specular materials show holes in the depth
map. The measurement on translucent materials is incorrect, often producing larger
depth than the ground truth. Such a drift appears because the depth measurements
on translucent materials are the result of both translucent foreground surface and the
background behind. As a result, the corresponding measurement points lie some-
where between the foreground and the background surfaces.

Finally, the RMSE for class C is 148.51 mm with 72.19 mm of standard devia-
tion. These experimental results are summarized in Table 1.1. Interestingly, the accu-
racy is not so much dependent on the geometric complexity of the object. Focusing
on class A, although A-11, A-12, and A-13 possess complicated and uneven sur-
face geometry, the actual accuracy is relatively good. Instead, we find that the error
increases as the surface normal deviates from the optical axis of the sensor. In fact,
a similar problem has been addressed by [22], in that the orientation is the source
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Fig. 1.18 Tof depth accuracy in RMSE (root mean square) for class C. The RMSE values and their
corresponding difference maps are illustrated

of systematic error in sensor measurement. In addition, surfaces where the global
illumination occurs due to multipath IR transport (such as the concave surfaces on
A-5, A-6, A-10 of Class A) exhibit erroneous measurements.

Due to its popular application in games and human computer interaction, many
researchers have tested and reported the result of Kinect applications. One of common
observation is that the Kinect presents some systematic error with respect to distance.
However, there has been no in-depth study on how the Kinect works on various
surface materials. We measure the depth accuracy of Kinect using the data set, and
illustrate the results in Figs. 1.16, 1.17 and 1.18.

Overall RMSE is 191.69 mm, with 262.19 mm of standard deviation. Although the
overall performance is worse than that of tof sensor, it provides quite accurate results
for class A. From the experiments, it is clear that material properties are strongly
correlated with depth accuracy. The RMSE for class A is 13.67 mm with 9.25 mm
of standard deviation. This is much smaller than the overall RMSE, 212.56 mm.
However, the error dramatically increases in class B (303.58 mm with 249.26 mm of
deviation). This is because the depth values for specular materials cause holes in the
depth map, similar to the behavior of the tof sensor.

From the experiments on class C, we observe that the depth accuracy drops sig-
nificantly upon increasing the level of translucency, especially starting at the object
C-8. In the graph shown in Fig. 1.18, one can observe that the RMSE is reduced with
a completely transparent object (C-12, a pure water). It is because caustic effects
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Table 1.1 Depth accuracy upon material properties. Class A: diffuse, Class B: specular, Class C:
translucent. See Fig. 1.15 for illustration

Overall Class A Class B Class C

ToF 83.10 29.68 93.91 131.07
(76.25) (10.95) (87.41) (73.65)

Kinect 170.153 13.67 235.30 279.96
(282.25) (9.25) (346.44) (312.97)

Root-mean-square error (standard deviation) in mm

Table 1.2 Depth accuracy before/after bilateral filtering and superresolution for class A. See
Fig. 1.19 for illustration

Original RMSE Bilateral filtering Bilinear interpolation

ToF 29.68 27.78 31.93
(10.95) (10.37) (23.34)

Kinect 13.67 13.30 15.02
(9.25) (9.05) (12.61)

Root-mean-square error (standard deviation) in mm

appear along the object, sending back unexpected IR signals to the sensor. Since the
sensor receives the reflected IR, RMSE improves in this case. However, this does
not always stand for a qualitative improvement. The overall RMSE for class C is
279.96 mm with 312.97 mm of standard deviation. For comparison, see Table 1.1.

ToF Versus Kinect Depth

In previous sections, we have demonstrated the performance of tof and structured-
light sensors. We now characterize the error patterns of each sensor, based on the
experimental results. For both sensors, we observe two major errors; data drift and
data loss. It is hard to state which kind of error is most serious, but it is clear that both
must be addressed. In general, the tof sensor tends to show data drift, whereas the
structured-light sensor suffers from data loss. In particular, the tof sensor produces
a large offset in depth values along boundary pixels and transparent pixels, which
correspond to data drift. Under the same conditions, the structured-light sensor tends
to produce holes, in which the depth cannot be estimated. For both sensors, specular
highlights lead to data loss.

1.4.4 Enhancement

In this section, we apply simple denoising, super resolution and inpainting algorithms
on the data set, and report their performance. For denoising and super resolution, we
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Table 1.3 Depth accuracy before/after inpainting for class B. See Fig. 1.20 for illustration

Original RMSE Example-based inpainting

ToF 93.91 71.62
(87.41) (71.80)

Kinect 235.30 125.73
(346.44) (208.66)

Root-mean-square error (standard deviation) in mm

test only on class A, because class B and C often suffer from significant data drift or
data loss, which neither denoising nor super resolution alone can address.

By excluding class B and C, it is possible to precisely evaluate the quality gain
due to each algorithm. On the other hand, we adopt the image inpainting algorithm
on class B, because in this case the typical errors are holes, regardless of sensor type.
Although the characteristics of depth images differ from those of color images, we
apply color inpainting algorithms on depth images, to compensate for the data loss
in class B. We then report the accuracy gain, after filling in the depth holes. Note
that the aim of this study is not to claim any state-of-the art technique, but to provide
baseline test results on the data set.

We choose a bilateral filter for denoising the depth measurements. The bilateral
filter size is set to 3 × 3 (for tof, 174 × 144 resolution) or 10 × 10 (for Kinect,
640 × 480 resolution). The standard deviation of the filter is set to 2 in both cases.
We compute the RMSE after denoising and obtain 27.78 mm using tof, and 13.30 mm
using Kinect as demonstrated in Tables 1.2 and 1.3. On average, the bilateral filter
provides an improvement in depth accuracy; 1.98 mm gain for tof and 0.37 mm for
Kinect. Figure 1.19 shows the noise-removed results, with input depth.

We perform bilinear interpolation for super resolution, increasing the resolution
twice per dimension (upsampling by a factor of four). We compute the RMSE before
and after the super resolution process from the identical ground truth depth map.
The depth accuracy is decreased after super resolution by 2.25 mm (tof) or 1.35 mm
(Kinect). The loss of depth accuracy is expected, because the recovery of surface
details from a single low-resolution image is an ill-posed problem. The quantitative
evaluation results for denoising and super resolution are summarized in Tables 1.2
and 1.3.

For inpainting, we employ an exemplar-based algorithm [5]. Criminisi et al.
designed a fill order to retain the linear structure of scene, and so their method
is well suited for depth images. For hole filling, we set the patch size to 3×3 for tof
and to 9×9 for Kinect, in order to account for the difference in resolution. Finally, we
compute the RMSE after inpainting, which is 75.71 mm for tof and 125.73 mm for
Kinect. The overall accuracy has been improved by 22.30 mm for tof and 109.57 mm
for Kinect. The improvement for Kinect is more significant than tof, because the
data loss appears more frequently in Kinect than tof. After the inpainting process,
we obtain a reasonable quality improvement for class B.
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.

ToF Kinect

Fig. 1.19 Results before and after bilateral filtering (top) and bilinear interpolation (bottom)

.

ToF Kinect

Fig. 1.20 Before and after inpainting

Based on the experimental study, we confirm that both depth sensors provide
relatively accurate depth measurements for diffuse materials (class A). For specular
materials (class B), both sensors exhibit data loss appearing as holes in the measured
depth. Such a data loss causes a large amount of error in the depth images in Fig. 1.21.
For translucent materials (class C), the tof sensor shows nonlinear data drift toward
the background. On the other hand, the Kinect sensor shows data loss on translucent
materials. Upon the increase of translucency, the performance of both sensors is
degraded accordingly.
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Fig. 1.21 Sample depth images and difference maps from the test image set

1.5 Conclusions

This chapter has reported both quantitative and qualitative experimental results for
the evaluation of each sensor type. Moreover, we provide a well-structured standard
data set of depth images from real world objects, with accompanying ground truth
depth. The data set spans a wide variety of radiometric and geometric complexity,
which is well suited to the evaluation of depth processing algorithms. The analysis
has revealed important problems in depth acquisition and processing, especially
measurement errors due to material properties. The data set will provide a standard
framework for the evaluation of other denoising, super resolution, interpolation, and
related depth-processing algorithms.
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